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Preface

This book is not a textbook to become acquainted with the laws of nature. An
elementary knowledge about laws of nature, in particular the laws of physics, is
presupposed. The book is rather intended to provide a clarification of concepts
and properties of the laws of nature.

The authors would like to emphasise that this book has been developed –
created – as a real teamwork. Although the chapters (and in some cases parts
of the chapters) were originally written by one of the two authors, all of
them were discussed thoroughly and in detail and have been revised and
complemented afterwards. Even if both authors were in agreement on most
of the foundational issues discussed in the book, they did not feel it necessary
to balance every viewpoint. Thus some individual and personal difference or
emphasis will still be recognisable from the chapters written by the different
authors. In this sense the authors feel specifically responsible for the chapters
as follows: Mittelstaedt for Chaps. 4, 9.3, 10, 11.2, 12, 13 and Weingartner for
Chaps. 1, 2, 3, 5, 7, 8.2, 9.2, 9.4. The remaining parts are joint sections.

Most of the chapters are formulated as questions and they begin with
arguments pro and contra. Then a detailed answer is proposed which contains
a systematic discussion of the question. This is the respective main part of
the chapter. It sometimes begins with a survey of the problem by giving
some important answers to it from history (cf. Chaps. 6 and 9). However the
main part of each chapter is not historical and the authors do not identify
themselves with a historical position. The main part of the chapters tries to
give some systematic answer to basic questions in the light of our knowledge
today. The method to begin with arguments pro and contra was chosen in
order to stimulate and to draw the reader’s attention also to specific problems
connected with the question of the chapter. Since the problems of the pros
and contras are not always central they are discussed and clarified in the
commentaries (answers) to the objections at the ends of the chapters; first
because these commentaries presuppose what has been said in the main part
of the chapter; second they are not included in the main part of the chapter in
order not to distract. It has to be emphasised however that what is expressed
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in the pros and contras is not the opinion of the authors. It is sometimes the
opinion of other scholars as shown by quotations. The opinion of the authors
is expressed in the main part of the chapters and in the commentary to the
objections.
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Introduction

In our ordinary experience, we observe regularities: The daily sunrise, the
sequence of seasons during the year, and the regular increase and decrease
of the visible size of the moon. Do these observations indicate strict laws
that hold rigorously and without any exception? David Hume argued that
induction is not sufficient for concluding that there are strict laws behind the
observed regularities. Hence, we cannot be sure that there are laws at all and
our first question reads: Are there laws of nature? According to Hume, Kant,
and many other philosophers this question cannot be answered by induction
alone. Moreover, we are also confronted with the inverse question. If there are
regularities that are based on strict laws that hold necessarily, may these laws
be considered as genuine laws of nature? We discuss this problem with respect
to the laws of logic and with respect to some laws of mathematics. Our first,
still preliminary answer is that these formal and necessary laws should not be
considered as laws of nature. But then we must find an answer to the main
question of these first investigations: What is a law of nature? We discuss this
kind of problem in Part I of the present book.

Instead of giving a hasty answer to the two questions mentioned, in Part II
we investigate at first properties of relations that may be considered as can-
didates for “laws of nature”. We study these problems not in the greatest
possible generality but we restrict our considerations in general to physics
and thus to the laws of physics. There are several reasons for this restriction.
First, physics is a highly developed field of science – a mature science – which
no longer consists of a large collection of isolated and merely empirically con-
firmed rules, but of networks of multiply connected (empirically confirmed)
laws which are called theories. This holistic structure implies that only the-
ories can be tested empirically and not isolated relations, which means that
the laws of physics have a much higher reliability than individual law-like
rules in other fields of science. Second, from a reductionistic point of view,
physics may be considered as basic for science in general, since the laws of
astronomy, chemistry, biology etc. can, in principle be based on the laws of
physics. The reason for this important observation is not the higher accuracy
and reliability of the laws of physics, but the fact that physics is concerned
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with the most general structures of the empirical reality, with the most ab-
stract laws of space, time, and matter, which are also fundamental for all
other fields of science.

According to these arguments, we investigate the properties of physical
laws and physical theories in more detail. In particular, we discuss the in-
terrelations between laws and invariance principles, between laws and initial
conditions, and between laws and constants of nature. Furthermore, we inves-
tigate the relations between laws of nature – in the sense of laws of physics –
and causal relations. Is the principle of causality a law of nature and are laws
of nature necessarily causal? And what can be said about the predictability
of future events by laws of nature? Finally, we discuss the important question
whether there are two kinds of physical laws, dynamical laws and statistical
laws, – or whether statistical laws can always be reduced to dynamical laws. In
other words, is a statistical law merely an expression of an incomplete system
of dynamical laws or are there in addition also irreducible, genuine statistical
laws?

The detailed knowledge of properties of laws and the answers to the various
questions mentioned will help us step by step to understand the meaning of
the concept “law of nature”. In particular, it will become clear in what sense
a law of nature refers to a structure of the real world and in what sense it is an
expression of our intentions and our means of cognition. The known laws of
physics contain in general objective elements referring to the external reality
as well as constructive and conventional components, which are induced by
subjective decisions of the scientist. Only on the basis of our knowledge of
this complex structure, can we hope to successfully attack our last and most
ambitious question: Why are the laws of nature valid?

Clearly, this question must not be understood as falling back to the meta-
physics and theology of the 17th century, to the justification of laws by meta-
physical principles as we find in the writings of philosophers from Descartes
to Leibniz and Wolff. And we are equally not interested in the näıve recourse
of this question to theology as we can find it even in the work of physicists in
the 20th century. The answer we are looking for is intended to be free from
metaphysical speculations and based exclusively on our detailed knowledge of
the complex structure and the properties of the laws of nature.

It is obvious that we can put the question for ultimate reasons only with
respect to the most general and most fundamental laws. It is meaningless to
ask why Faraday’s law of induction, discovered in 1831, holds. The answer is
trivial today, since it follows from Maxwell’s equations. Most laws of physics
are imbedded in “theories” and we could ask only why these theories hold. In
addition, according to some contemporary attempts the well-established the-
ories can presumably be incorporated into a unified final theory of everything.
Hence, the search for rational reasons of the laws of nature must be concen-
trated and restricted to the most fundamental and most abstract features of
physical theories. Two examples of this kind are elaborated in more detail in
Part III of the present book.



Part I

What is a Law of Nature?
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Are there Laws of Nature at All?

This question has many facets and provides many different answers. A law
of nature is a law and hence a conceptual and linguistic entity, and a law of
nature refers to nature, i.e. to the real world. At first glance it is not quite
clear how these two aspects fit together. Here we will briefly discuss several
arguments and counterarguments which can be put forward and which might
serve as a smooth introduction into the problems of the present book. All
details will be discussed in the following Chaps. 1, 2 and 3.

1.1 Arguments Contra (Objections)

1.1.1 Every law of nature is a representation of some structure of nature (i.e.
of the real world). However, nature, or the real world, is in permanent change.
But what is an accurate representation of something in change needs to be
changing too. On the other hand a law is something which does not change.

Therefore: no law is a law of nature; and consequently there are no laws
of nature.

1.1.2 A law is called a law of nature in so far as it represents some structure of
nature (viz. some structure of the real world). Now every law is a conceptual
(or linguistic) object (entity). But conceptual (or linguistic) objects (entities)
are independent of the structure of nature (structure of the real world). On
the other hand no law of nature (since it represents nature) is independent of
nature or the real world.

Therefore: no law is a law of nature or, what follows from that: no law of
nature is a law. Thus there are no laws of nature.

1.2 Argument Pro

1.2.1 Laws of nature are usually expressed by law statements. But there are
lots of law statements which have been established and extensively confirmed
by the natural sciences.
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Therefore: there are laws of nature expressed by law statements (of the
natural sciences).

1.3 Proposed Answer

In what follows we give a preliminary answer to the first question which aims
at clarifying conceptual and terminological points. Further details will become
clear from further questions. The following answer will be divided into three
steps: We shall start with a very wide concept of law which will be illustrated
by a few examples (1.3.1). Secondly, a clarification of the concept of “law of
nature” will be given with the help of several distinctions (1.3.2). Thirdly, a
more detailed answer will be given to the question whether there are laws of
nature at all (1.3.3).

1.3.1 Wide Concept of Law

A law is a rule, order or description by which certain things (objects) and the
relations among them are arranged (ruled or ordered) or described. Concern-
ing this one might ask three questions: (1) What kinds of things are arranged
(ruled or ordered)? (2) Who has invented or discovered the rule? (3) What
kind of thing is the rule (law) itself? If the law in question is a juridical law,
then the things ruled by it are human actions, the inventor(s) of the rule (law)
are human persons (for instance the members of a parliament) and the rule
(law) is a law statement expressed in some (natural or juridical) language and
announced publicly (promulgated).

If the law in question is a law of logic or mathematics (say arithmetic)
then the things ruled are propositions or numbers (i.e. conceptual objects or
entities), the discoverer is a logician or mathematician and the law is a law
statement formulated in logical or mathematical language. Finally, if the law
in question is a law of nature, then the things (with their properties and
relations) described or ordered by the law are things of nature, i.e. objects of
the real world (universe), the inventor of the (true) law can be the creator
of the universe, the discoverer(s) of the law are human persons (scientists)
and the law itself is a law statement formulated in the language of some of
the natural sciences.

1.3.2 Clarification of the Concept “Law of Nature”

As to the clarification of the concept “law of nature” we shall first deal with the
objects described by the law and second with different meanings (concepts)
of the expression “law of nature”.
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1.3.2.1 As to the first it is convenient to divide things, objects or entities into
three categories: natural objects, concrete human artefacts and conceptual
objects.1 Examples of natural objects are protons, planets, fields of force,
lakes, plants, human persons, societies, etc.

Examples of concrete human artefacts are particular computers, houses,
works of art, linguistic tokens, etc. A bird’s nest or an anthill will be counted
as natural objects.

Examples for conceptual objects are: concepts, propositions, sets, num-
bers, inferences, hypothesis, laws, theories, etc. Observe that linguistic ex-
pressions (letters, words, sentences) are usually understood not as concrete
artefacts, i.e. as tokens but as conceptual objects; for instance the letter “A”
is understood not as a token at a certain place but as representing a class of
letters of same (similar) shape. Otherwise we couldn’t say that we find the
same letter in some line below, i.e. “same’ means “same form’. Likewise a law
statement ‘dx/dt = v(x, t)’ is usually understood as representing a class of
expressions (formulations) of same (similar) shape with the same meaning;
i.e. it is understood as a conceptual object. Further “electron microscope”
is usually understood as a conceptual object, except in the case of particu-
lar concrete electron microscope in a particular research institute (which is
a concrete artefact). Observe further that all concrete artefacts are built up
from (consist of) natural objects.

If we use the words “objects” and “things” we want to point out that
objects are not just identical with the set of properties describing them even
if they constitute often that part of the object which is known to us and which
enters laws. We assume that these properties have a bearer or that the real
world consists of individuals with their properties which we call “things” or
“objects”, though we are aware that the concept of “individual” is not an
absolute one. A similar view was taken by Einstein.2

Concerning the question now which kinds of objects, together with their
properties and relations, are described or ordered by laws of nature we can
answer: natural objects and concrete artefacts.

On the other hand conceptual objects without material basis are not de-
scribed or ordered by laws of nature. They are ordered and described by laws
of logic and mathematics. But nothing hinders that natural objects and con-
crete artefacts are described by laws of nature with the help of conceptual
objects.

1.3.2.2 As to the different meanings of the expression “law of nature” we notice
that this expression can mean at least five different things:

L1 The “law” as it “is” in the thought of the inventor or discoverer;
L2 The “law” as it “is” in the things which are ordered or described by it;
1 This distinction is due to Bunge (1973, MMM), p. 114.
2 cf. Einstein (1944, BRE). See also Chap. 10.
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L3 The “law” as a law statement formulated in some scientific language and
belonging to some scientific theory;

L4 The “law” as an ideal true law, with respect to (w.r.t.) which laws known
at present in the sense of L3 are approximations;

L5 The “law” as an ideal conceptual entity more or less independent and
separated from law statements.

As to L1 we can have some partial understanding if we speak for example of
(Newton’s) law of gravitation in the sense that Newton thought about it or as
Newton had it in (his) mind. And historians of science are sometimes providing
historical or biographical evidence for this or that version of reconstructing the
thoughts and views of the genius concerning such a law. But for a discussion of
“law of nature” L1 is not suitable. This can be seen as follows: (i) If Newton
would not have written down his law in his language, discussion about L1
could not rest on a solid basis but would be open to speculations. (ii) Newton’s
thoughts can only be known via other written linguistic expressions by him
anyway. (iii) The precise formulation in his scientific writing is by all means
preferable to (vague) conjectures about his thoughts; i.e. L3 is preferable by
all means to L1.

Concerning the inventor or creator of a lawful universe we cannot have an
adequate knowledge of the thoughts of an omniscient being on laws of nature
anyway.

However, we can formulate a metaphysical principle which underlies all
realistic scientific investigations: The world (universe) is ordered and struc-
tured by laws. Popper called this assumption the “law of lawfulness”. To this
principle we may add a second one, connected with the first, which says that
there are true laws of nature:

“To assert that there exists a true law of nature may be interpreted to mean
that the world is not completely chaotic but has certain structural regularities
“built in”, as it were.”3

“Our belief that there are true natural laws is undoubtedly based in some
way or other, on observed regularities.”4

As Popper points out, such a belief may still be justified, even if it will
be difficult to point to a particular law of physics and say: this is a true law
in its present formulation and interpretation. However, what can be scientif-
ically discussed are just these present formulations of laws in their present
interpretations, that is the laws in the sense of L3.

Therefore in a discussion of “law of nature” meaning L3 is to be preferred
by all means over meaning L1.

As to the second meaning of “law of nature” L2 we have to notice that
a law cannot exist in the things (natural objects) as a law statement (L3)
or as thoughts of a thinking person (L1). Such a view would be a too direct
and näıve “picture theory” of language or of mind. We are making here only
3 Popper (1983, RAS), p. 74.
4 Popper (1983, RAS), p. 72. cf. Schlick (1930, FEt), p. 106.
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a claim of modest realism: What corresponds to a true law of nature is a
structure of things (natural objects) with their properties and relations among
them. One may call such a structure a “law in the things”5 in a derived (or
metaphorical) way of speaking but one should bear in mind that there are
essential differences between the meanings L2 and L3:

(i) Law statements are true or false, structures of natural (real) objects are
not.

(ii) Law statements can be tested, confirmed, disconfirmed, refuted, revised,
etc. Neither of those can hold for structures of real objects.

(iii) Law statements can be nearer to the truth than other law statements.
Structures of real objects cannot.

(iv) Law statements can contain sentence negations and can therefore express
negative facts like “there is no perpetuum mobile”; but structures of real
objects cannot contain sentence negations.6

From (i)–(iv) it is plain that law of nature in the sense of L3 must not be
confused with sense L2 and moreover that neither of the two is a mapping of
the other.

Concerning meaning L4 we interpret a law statement L3 – usually – as
an approximation to the true law L4 in the same intended field of applica-
tion. “Usually” means here that we are never sure – even in the case of the
most highly confirmed laws known – that they would not have some false
consequences even if they have lots of informative and interesting true conse-
quences; and if they have some false ones they are not completely true (having
only true consequences). The true law – like the “Final Theory” – is of course
not known. Nothing beyond that is claimed: For example the true law need
not to have the same form or structure as the law statement which is an ap-
proximation; i.e. the true law could be non-linear whereas the approximate
law statement is linear.

To say it in somewhat more general terms: Most if not all of our laws
and theories will have some or other consequences which are false (already
known to be false today or proved by test to be false in the future). Therefore
it is important that the methods of science enable us to distinguish that
law (theory) which is nearer to the truth (which has more true relevant and
informative consequences and less false ones) from another law (theory) which
is further away from the truth in this sense.7

5 Recent examples are what Pagels calls the “cosmic code” (cf. Pagels (1983, CSC))
or the final symmetry structure of the universe, which some people believe to be
described by “string theory” (cf. Barrow (1991, TOE), Chap. 2), or what Bohm
describes as “Implicate Order” (cf. Bohm (1980, WIC)) or what Weinberg calls
the “symmetry group of nature” (cf. 5.3.2(1) below).

6 cf. Weingartner (2000, BQT), Chap. 8: Are there negative facts or properties?
7 See Weingartner (2000, BQT)), Chap. 9: Can one theory be nearer to the truth

than another?
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Sense L5 of law comes close to Bolzano’s and Frege’s view about laws of
logic and mathematics and to Popper’s interpretation of them by abstracting
from the knowing subject with the help of his theory of the third world.8

It seems to us however that sense L5 is more suitable to laws of logic
and mathematics than to laws of nature. Whereas law in the sense of L5
should not be abstracted or made independent from thinking or knowing of
(rational) beings in general (even if from particular ones), for laws of nature
it holds in addition that they cannot be completely abstracted of or made
independent from any type of real and material world (universe) of which
they are descriptions.

In conclusion we want to say that the expression “law of nature” as it
will be used in this book – if not otherwise indicated – is law in sense of L3;
i.e. “law of nature” will be understood as a law statement formulated in the
language of some scientific theory.

1.3.3 Answer to the Question:
Are there Laws of Nature at All?

(1) In a preliminary sense there is a straightforward answer to this question.
It is this: There are laws of nature in the sense of L3. This is evident from
any textbook of physics. However this answer is preliminary at this place
since important questions about the properties of laws of nature have not
been discussed so far. This will be done in the subsequent chapters.

(2) There is a structure of natural objects with their properties and relations
among them in the real world which is described by a true law statement
or described partially by an approximate true law statement. If one wants
to call this structure in a more metaphorical sense “law of nature in the
real things” or “law in nature” then there are also “laws of nature” in this
(metaphorical) sense.

(3) There are the thoughts of the inventor and discoverers of laws of nature.
Although these thoughts (L1) are not identical with the law statements
(L3) they may be expressed by linguistic signs in the form of law state-
ments (L3). In this specific sense, namely as those thoughts of discoverers
which are expressed by a law statement (L3) laws of nature also exist in
the sense of L1.

(4) Laws of nature in the sense of L4 do not yet exist in the thoughts of dis-
coverers (even if they can exist in the thoughts of an omniscient being)
but they can “exist” in the sense of L5 if they are not understood as
completely independent from the real world (universe). Since the usual
realist understanding is that it is a necessary condition that laws of na-
ture are dependent on nature (on the real world) in so far that they are

8 cf. Bolzano (1929, WSL)), Sects. 20–25; Frege (1964, BLA)), Introduction; Popper
(1969, EKS).
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descriptions of the real world and can be discovered and invented from
investigating the real world.9

1.4 Answer (Commentary) to the Objections

1.4.1 (to 1.1.1) “Structure of the real world” can be interpreted in a twofold
way: (1) First as contingent structure. To this structure belong all initial
conditions, singularities, random conditions (except constants of nature) and
possible microstates or branchings which make up the same macro-state. Of
this contingent structure it is correct to say that it changes permanently.
(2) Second as necessary and invariant structure. To this structure belong
properties and relations of things (objects) of the real world (universe) which
are conserved and invariant relative to a set of changes of certain magnitudes.
This can be illustrated by the following examples: Consider first the simple
spherical pendulum: although the pendulum is in permanent change there are
invariant structures like the period of oscillation (neglecting damping) or the
relation between length and period of oscillation. A further simple example
is this: p · V (pressure times volume) is invariant with respect to the changes
of the magnitudes (quantities) p and V (where T is kept constant). When T
is incorporated, p · V = R · T is a better approximation. Of this structure,
in the second sense, it is not correct to say that it changes. Now laws of
nature describe the invariant, necessary and conserved structure of nature (of
the real world).10 They abstract from hic et nunc (from here and now) as
already Thomas Aquinas pointed out very clearly;11 i.e. they do not tell us
singularities, particular initial states, particular random or microstates. Since
laws of nature describe the invariant and conserved structure of the world
they do not change even if they are accurate descriptions.

Thus the answer to the objection 1.1.1 is this: The second premise of
the argument uses the contingent structure of the world, whereas the fourth
premise uses the conserved (invariant) structure. Since this is a fallacy of
equivocation the conclusion of the argument is not proved.

1.4.2 (to 1.1.2) Concerning the independence of conceptual or linguistic ob-
jects from the structure of the real world we have to notice that two different
meanings of independence have to be distinguished here: The first is concerned
with the different ontological status (1) and the second is concerned with the
deviation of the law statement from the correct (true) description of the world
(2).

(1) As to the first we see that the means by which we describe the world
do usually not have the same ontological status as the world. Only in

9 See Sects. 2.1.1–2.1.3 and 2.4.1–2.4.3 for the view of Kant.
10 For further details see Chaps. 5 and 6 on invariance.
11 Thomas Aquinas (STh)I, 46,2.
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exceptional cases we use things to signify things as we use a particular
flag to signify a particular nation or a portrait to refer to a particular
person, or we use linguistic entities to describe other linguistic entities.
But in the normal case and especially in the sciences we use conceptual
and linguistic entities to signify and describe things of this world.

Now this difference in ontological status does certainly imply a certain
kind of independence which is quite different for different natural lan-
guages: Wittgenstein’s idea of a picture theory of language in his Tracta-
tus – only one mapping structure can be the correct picture of the real
world – was given up by himself in his Philosophical Investigations, where
he says of this view: “Ein Bild hielt uns gefangen.”12 The diversity of nat-
ural languages with their different structures – compare Indo-European
languages with Arabic languages or with Chinese or Japanese languages –
refute every too simple minded picture theory. Moreover no scientific lan-
guages, as for example the languages of modern physics or chemistry have
a simple picture structure.

(2) Concerning the second meaning of independence we understand that a
law statement should be dependent (i.e. not independent) on the real, or
corresponding to the real world in the sense that every new knowledge
(experiment) about the real world may lead to a revision and correction
(even perhaps refutation) of it. If however the law statement deviates
from the true law (or even from a better approximation to it) it has a
certain degree of independence w.r.t. certain series of tests. Thus for ex-
ample Galileo’s law for throwing bodies and the parabola as the trajectory
cannot be corrected (or refuted) by different arrangements of tests with
stones from (even high) towers. Or the interpretation of mass as velocity-
independent (expressed in the Euler formulation of Newton’s second law)
could not be tested with different tests using the then available velocities.
This kind of independence however is only accidental in the sense that it is
connected with the tests available of that time such that new and further
developed tests will make the respective law statements dependent of the
real world again.

Thus the answer to the objection 1.1.2 is this: The first kind of inde-
pendence (difference of ontological status) does not imply the second one
(independence from the real world). On the contrary: The first kind of in-
dependence is perfectly compatible with dependence in the second sense.
In fact premise 3 of the argument uses “independence” in the first sense,
whereas premise 4 uses “independence” in the second sense. Therefore the
conclusion of 1.1.2 is not proved by this argument.

12 Wittgenstein (1960, PhI)), §115.
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Can the Laws of Nature be Genuine Laws?

After we will give some arguments pro and contra we shall propose an answer
as follows: First we shall give eight necessary conditions for a law being a
genuine law. Then we shall discuss these conditions in some detail and with
examples. Finally we shall show that what is usually and often vaguely un-
derstood by law of nature fits very well these conditions for genuine laws.

2.1 Arguments Contra

2.1.1 As Kant says, every genuine law is universally valid and necessary. “Nun
sind wir gleichwohl wirklich im Besitze einer reinen Naturwissenschaft, die a
priori und mit aller derjenigen Notwendigkeit, welche zu apodiktischen Sätzen
erforderlich ist, Gesetze vorträgt, unter denen die Natur steht”, “Es sind da-
her objektive Gültigkeit und notwendige Allgemeingültigkeit (vor jedermann)
Wechselbegriffe”,1 “Es finden sich aber unter den Grundsätzen jener allge-
meinen Physik etliche, die wirklich die Allgemeinheit haben, die wir verlan-
gen. . . Diese sind wirklich allgemeine Naturgesetze, die völlig a priori beste-
hen.”2

If a law is universally valid it is obeyed by every kind of entity (object); thus
the laws of logic and mathematics – like for example x = x – are obeyed by
every entity (object), i.e. by conceptual objects, natural objects and concrete
artefacts. But as it was said in 1.3.21 laws of nature are not obeyed by all
kinds of objects but only by natural objects and concrete artefacts; thus they
are not universally valid.

Therefore: laws of nature are not genuine laws.

2.1.2 According to Kant it holds that if a law is a synthetic a priori truth then
it cannot be falsified or revised. Moreover according to Kant, every genuine law
is a synthetic a priori truth. But laws of nature can be falsified or revised. This
1 Kant (1783, PzM), Sects. 15 and 19.
2 Kant (1783, PzM), Sect. 15.
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can be demonstrated by the fact that many laws of nature have been either
corrected and revised or falsified. To give only two examples: Galileo’s law
of falling bodies (presupposing constant acceleration) was revised by Newton
because the gravitational force is dependent on height. The universal validity
of the law of conservation of parity was refuted by Lee and Yang.

Therefore: laws of nature are not genuine laws.

2.1.3 What is necessary holds in every possible world. Now as Kant says every
genuine law is necessary: “Da das Wort Natur schon den Begriff von Gesetzen
bei sich führt, dieser aber den Begriff der Notwendigkeit”3 But laws of nature
do not hold in every possible world. Since there might be consistent (possible)
worlds with different laws of nature.

Therefore: laws of nature are not genuine laws.

2.2 Arguments Pro

All laws of nature are either very general and severally confirmed dynamical
laws or very general and severely confirmed statistical laws. But all dynamical
or statistical laws, which are very general and severely confirmed are genuine
laws. Therefore: All laws of nature are genuine laws.

2.3 Proposed Answer

Laws of nature are genuine laws. One way to show this is with the help of
general conditions for genuine laws. Further support for this answer will be-
come evident from subsequent chapters. Here we characterise genuine laws by
several conditions, which should be fulfilled. The list (2.3.1) of eight condi-
tions is not considered complete. It gives a framework that is filled by the
investigations of the following chapters.

2.3.1 Genuine Law

A law, understood as a law statement in the sense of L3 (i.e. formulated in the
language of some scientific theory), is a genuine law if it satisfies conditions
G1–G8:

G1 Genuine laws describe or order a large domain of objects (natural objects,
concrete artefacts or conceptual objects) together with their properties
and relations among them. This domain belongs to some science.

G2 Genuine laws describe the conserved and invariant properties of the ob-
jects in that domain but they abstract from the objects as individuals.

3 Kant (1786, MAN), Vorrede, p. VI.
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G3 Genuine laws are invariant w.r.t. a certain set of changes of their para-
meters.

G4 Genuine laws are spacetime invariant.
G5 Genuine laws hold either in all cases of application (i.e. without excep-

tion) or in most cases.
G6 Genuine laws are a good approximation to the true law, i.e. they have a

high degree of confirmation and informative content.
G7 Genuine laws belong to a system of laws, which makes up the central

part of a theory.
G8 Genuine laws refer (ultimately) to objective reality.

2.3.2 Commentary to the Conditions G1–G8

G1: Genuine laws describe or order a large domain of objects (natural objects,
concrete artefacts or conceptual objects) together with their properties and
relations among them. This domain belongs to some science.

Laws usually apply to objects of a certain domain. And for genuine laws
the domain has to be quite large; thus Newton’s laws apply to all bodies which
are moved by forces as he tells us in the Preface to his Principia:

“I wish we could derive the rest of the phenomena of Nature by the
same kind of reasoning from mechanical principles, for I am induced by
many reasons to suspect that they may all depend upon certain forces
by which the particles of bodies, by some causes hitherto unknown, are
either mutually impelled towards one another, and cohere in regular
figures, or are repelled and recede from one another.”4

On the other hand the domain of the laws of Boyle–Mariotte and Gay-
Lussac or that of Snell’s refraction law is rather restricted from the very
beginning. Therefore these “laws” will not be called genuine laws.

However this does not mean that they are not strictly valid in a narrower
domain. Such a restriction of the domain is usually achieved by certain con-
ditions like T = constant or V = constant in the case of Boyle–Mariotte and
Gay-Lussac respectively; or like the laws of a pendulum or oscillator when
restricted to small amplitudes, or Hooke’s law for small deformations.

G1 may also be expressed by saying that a genuine law has a high degree
of universality. Though it is important to observe here that the universality
must not be artificial, virtual or reductionist; in any case a (several) universal
quantifier(s) is not sufficient to guarantee universality: thus in ∀x[x = c → Px]
the variable x is reduced to a constant c in the antecedent such that this
sentence expresses a pseudo-universality.5

4 Newtond (Princ), Preface, p. XVIII.
5 This point has been emphasised by Popper already in his (Popper (1959, LSD)

p. 68) by the example: For all x if x is identical with Napoleon then x is born
in Corsica. It holds also for such pseudo-examples as: for all x if x is an apple in
this basket then x is red. They are also ruled out as laws by condition G5.
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Since laws of nature are usually understood as describing natural objects
(cf. 1.3.1) or objects of nature together with their properties and relations (in-
cluding concrete artefacts) they must have a very wide domain of application.
Thus they satisfy G1 for genuine laws.

We may also say that the appropriate domain of laws of nature is the
domain of the natural sciences, although this does not mean that every par-
ticular law would encompass this whole domain. Thus laws of nature coincide
with those genuine laws of which their appropriate domain is that of the nat-
ural sciences or a subdomain of it. One may speak of genuine laws also outside
this domain if all the eight necessary conditions G1–G8 are satisfied. However,
laws of logic and mathematics can count as genuine laws only if condition G6
and G8 are interpreted in a very wide sense: i.e. if it is not required of the
confirming and refuting instances that they represent contingent facts with
concrete spacetime parameters and if “objective reality” in G8 may be inter-
preted also as conceptual reality in a similar sense as Popper’s “world 3” (cf.
Chaps. 3 and 4).

Observe that a single law of nature usually does not describe the whole
domain of objects belonging to the natural sciences. This could only be possi-
ble if this law would contain the “Final Theory” or a “Theory of Everything”
in the sense of a “World Formula”. The whole domain of the natural sciences
(natural objects and concrete artefacts) is not even completely covered by
all the laws of nature we know today, though in principle they refer to that
global domain. Even the most general laws we have, pick out some subdomain
by special antecedence conditions which are usually not explicitly mentioned.
Thus particle mechanics picks out rigid bodies measured by rigid measure-
ment rods (which are assumed to be arbitrarily movable in space). Special
relativity picks out mechanical and electromagnetic objects under Lorentz
transformation without taking into account gravitation.

G2: Genuine laws describe the conserved and invariant properties of the ob-
jects in that domain but they abstract from the objects as individuals.

No law describes individuals as individuals, though it describes individual
objects inclusively, since it describes the properties of objects of a certain kind ;
i.e. the properties of protons, neutrons, electrons, magnetic fields, electric
fields, gases, etc. But to exchange two individuals (say two electrons or two
protons) does not affect any law.6 Therefore laws of nature, by which we
understand very general laws, do not describe the individual as individual
(i.e. as different from another individual) but are invariant with respect to an
exchange of individuals. And so they satisfy condition G2 for genuine laws.

G3: Genuine laws are invariant w.r.t. a certain set of changes of their para-
meters.
6 This property is called permutation invariance; for details see Chap. 5.3.2(1).
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Already Aristotle observed that (his) substances are invariant w.r.t. several
kinds of changes. In this sense the following passage comes close to formulating
a law of substance conservation:

“But clearly matter also is substance; for in all the opposite changes
that occur there is something which underlies the changes, e.g. in re-
spect of place that which is now here and again elsewhere, and in
respect of increase that which is now of one size and again less or
greater; and in respect of alteration that which is now healthy and
again diseased; and similarly in respect of substance there is some-
thing that is now being generated and again being destroyed, and
now underlies the process as a ‘this’ and again underlies it as the pri-
vation of positive character. In this last change the others are involved.
But in either one or two of the others this is not involved; for it is not
necessary if a thing has matter for change of place that it should also
have matter for generation and destruction.”7

Every law is an invariance condition w.r.t. certain sets of changes.8 And
for genuine laws these changes have a rather wide range. Now for genuine
laws the set of changes that do not change the law is usually twofold: there
is the set of changes which concerns the parameters explicitly belonging to
the law itself. For example the parameters mass and distance in Newton’s law
of gravitation: F = G · m1 · m2/r2. In addition there is the set of changes
belonging to certain background conditions or presuppositions. For example
the position or constant velocity of the whole system, which do not influence
the relative positions and velocities of the masses inside the system. Both sets
of changes have restrictions and it would not make sense to require invariance
w.r.t. “all” changes. However the set of changes concerning the parameters
explicitly occurring in the law must not break down for extensions (provided if
they are not too extreme) otherwise it cannot be a genuine law: this is the case
with the “laws” of Boyle–Mariotte, Gay-Lussac, Rayleigh–Jeans and Wien
which hold only for a relatively small domain of changes. Since laws of nature
are understood as general principles (of nature) which express a symmetry
or invariance, it is clear that they must satisfy G3 (cf. 5.3.2 and 5.3.3). The
search for the symmetry group of nature (i.e. the set of all changes which
do not change laws of nature) is, according to Weinberg, the deepest thing
that we understand about nature: “It is increasingly clear that the symmetry
group of nature is the deepest thing that we understand about nature today. . .
Specifying the symmetry group of nature may be all we need to say about the
physical world beyond the principles of Quantum Mechanics.”9

7 Aristotle (Met, 1042a 33-b6).
8 For a detailed exposition of this important property of laws see Chaps. 5 and 6
9 Weinberg (1987, TFL), p. 73.
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G4: Genuine laws are spacetime invariant.
Spacetime invariance could have been included under G3. This has not

been done for the following reason: The invariance with respect to displace-
ment of time and place is the oldest and perhaps most important invariance
property of physical laws and of laws of nature in general. These two invari-
ances are of such fundamental importance that it is justified to say that the
concept of law (and of genuine law and law of nature) could not be understood
if spacetime invariance would not be satisfied:

“This principle can be formulated, in the language of initial conditions
as the statement that the absolute position and the absolute time are
never essential initial conditions. The statement that absolute time
and position are never essential initial conditions is the first and per-
haps the most important theorem of invariance in physics. If it were
not for it, it might have been impossible for us to discover laws of
nature.”10

G5: Genuine laws hold either in all cases of application (i.e. without exception)
or in most cases.

Already Aristotle had such a principle for the sciences:

“But that there is no science of the accidental is obvious; for all science
is either of that which is always or of that which is for the most part.”11

“Since, among things which are, some are always in the same state
and are of necessity (not necessity in the sense of compulsion but that
which means the impossibility of being otherwise), and some are not
of necessity nor always, but for the most part, this is the principle
and this the cause of the existence of the accidental; for that which is
neither always nor for the most part, we call accidental.”12

If we translate it into modern terms it says: Science is either of that which
can be described by strict or dynamical laws or of that which can be described
by statistical laws. If we do not have laws of either kind we cannot do science.13

It should be noted that accepting G5 for genuine laws and also for laws
of nature has severe consequences: i.e. to take statistical laws serious and to
interpret them realistically. That means to accept branching or degrees of
freedom as objectively given in nature and not just interpreted epistemically
as degrees of our ignorance. Though we do not, of course, deny that inde-
pendently of that, degrees of ignorance are everywhere (due to men’s and
scientist’s imperfection).
10 Wigner (1967, SRf), p. 4. For details cf. Chaps. 6 and 8
11 Aristotle (Met), 1027a 21.
12 Aristotle (Met), 1026b27f.
13 This principle of Aristotle throws out already a lot of the artificial examples

discussed concerning laws by philosophers like questions whether “all apples in
this basket are red” is a law. cf. G1.
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Therefore it is also justified to investigate our degrees of ignorance with
a subjective interpretation of probability. But what we want to stress here is
that there are, in our view reasons in nature (reality) for an objective inter-
pretation which treats the degrees of freedom and branching as real. However
this difficult problem cannot be discussed in detail here.14

In contradistinction to dynamical laws, there is an important exception
for statistical laws from the requirement that a genuine law of nature holds in
all cases of application. A statistical law does not provide predictions about
properties of a single object but only about probabilities and thus about
relative frequencies of the appearance of an observable property. However, a
predicted relative frequency will not appear in all cases. There are – very
few – sequences of events, the “non-random sequences”, that do not show the
predicted relative frequency behaviour, even if the sequences are sufficiently
long. A violation of the relative frequency prediction is not strictly impossible
but only “almost impossible”. Hence a statistical law holds in “almost all” or
“most” cases (cf. Chap. 7).

G6: Genuine laws are a good approximation to the true laws: i.e. they have
a high degree of confirmation and informative content.

This condition G6 includes three parts. First that laws can be understood
as approximations to the true law and consequently that the concept of ap-
proximation to truth can be made precise. Secondly and thirdly that necessary
conditions for a good approximation to the true law are a high degree of con-
firmation and a high degree of informative content.

(1) As to the first we want to point out that we accept the general idea of Karl
Popper’s theory of “verisimilitude”15 according to which theory (law) A
is closer to the truth than theory (law) B iff A has more true and less
false consequences than B.

This (or more accurately the respective precise definition) has been
correctly criticised by Tichy and Miller.16 It can be shown however that
Popper’s original idea can be rehabilitated if one restricts the consequence
class of classical logic to non-redundant and most informative consequence
elements.17 Moreover it can be shown that this “reduced” consequence
class is not weaker in logical content, i.e. is logically equivalent (by classical
logic) to the full consequence class.18

In the revised sense of Popper’s original idea we can say for exam-
ple that Newton’s theory of motion is nearer to the truth (his laws are
nearer to the true law) than Galileo’s theory. Newton’s laws are a better

14 For more on this difficult problem see Chap. 13.
15 Popper (1963, CaR), Appendix 3 and Popper (1972, Okn), p. 330.
16 cf. Tichy (1974, PDV), Miller (1974, CFT).
17 This has been shown in Schurz, Weingartner (1987, VDR). cf. also Weingartner

(2000, BQT), Chap. 9.
18 Therefore one does not lose any logical strength by this reduction (in contradis-

tinction to an erroneous remark of Niiniluoto (1998, VTP)).
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approximation to the true law than Kepler’s three laws. In both eases
Newton’s laws have more true and less false consequences than Galileo’s
or Kepler’s: Thus Galileo’s incorrect parabola is replaced by Newton’s
correct ellipse and it is shown (by Newton) that a trace of a projectile
becomes a parabola only under the incorrect assumption that the radius
of the earth is infinite such that the distance of the flight becomes negli-
gible compared to the size of the surface on which it lands. Kepler’s third
law a3/T 2 = const, Newton replaced by a3/T 2 = const (m0 +m1) – more
accurately by a3/T 2 = γ/4π2 · (m0 + m1) – which is a theoretically more
detailed formulation and for the general case a better approximation.19 It
should however be mentioned that a3/T 2 = const gives remarkably good
results even with today’s exact measurements of T and r (for the first
4 planets deviation occurs only at the fifth decimal place). In this case
Newton’s improvement, which is theoretically more correct for the general
case, does not give better results if only two masses m0 and m1 are taken
into account. An analogous comparison could be done also with several
other important consequences of the above three theories (three sets of
laws).20 Now every law of nature satisfies G6 in this respect: only if a law
can be called a good approximation to the true law it will be called a
law of nature. Thus it is justified to call Newton’s laws of motion or his
law of gravitation a law of nature, whereas this would not be justified for
Galileo’s law of falling bodies.

A further point to observe is that some hypotheses, since they have
been refuted soon or immediately, never were considered as approxima-
tions; whereas others, although it was discovered that they have some false
consequences, are still considered as laws which are good approximations
to the true law. An example for the first case is Bohr’s atom model and
one for the second case are Newton’s laws of motion, which have been
superseded by Einstein’s.

A further example for progress towards a better approximation to the
true law is the development from both the Rayleigh–Jeans law of radiation
(false for short waves) and Wien’s law of radiation (false for long waves)
to Planck’s law of radiation.

(2) It is a necessary condition for a genuine law that it has a high degree
of confirmation, which means that it has withstood a great number of
important and severe tests. Observe that neither quantity nor probability
are sufficient to make a test severe: Galileo’s law of falling bodies could be
confirmed with an unlimited number of tests with stones thrown from high
towers. The consequence is not that the quantity of tests is unimportant

19 Here m0, m1 are the masses of the sun and the planet, a is the distance and T is
the time of revolution, γ is Newton’s gravitational constant.

20 Such a comparison concerning approximation to the true law has been done in a
precise way with the development of the gas law in Schurz, Weingartner (1987,
VDR).



2.3 Proposed Answer 21

but that it may be empty if the test is done in such a restricted area
within which the law (hypothesis) is almost trivially satisfied. According
to a frequency interpretation of probability, a hypothesis which passes
only every second of a series of tests will get probability 1/2 though it will
be thrown away immediately; moreover a hypothesis which passes 90 of
the tests and fails 10 serious ones will also be thrown away immediately,
i.e. will be considered as unconfirmed, though having a high probability
w.r.t. this interpretation. This shows that a high degree of confirmation
of a hypothesis (law) cannot be defined in a simple and direct way w.r.t.
the quantity of positive tests. Though the frequency interpretation of
probability is the best objective way to use probabilities in natural science,
it is concerned with single events and does not give directly a probability
measure of statements (hypothesis or laws).21

The above mentioned laws of Wien and Raleigh–Jeans are also ex-
amples of “laws” with a low degree of confirmation: they were never well
confirmed before Planck replaced them by the much better approximation
of his law of black body radiation, which has been very well confirmed
then.

Also with respect to point (2) we can say that only a law with a high
degree of confirmation can be called a law of nature such that also laws
of nature satisfy this condition for genuine laws.

(3) A further necessary condition for a genuine law is a high degree of infor-
mative content. What is informative content is dependent on the area of
research and has to be relativised respectively. Thus with respect to log-
ical consequence informative content goes together with logical strength
or logical content.

Logical content can be defined in two different ways. Inside the field of
logic it is concerned with the logical strength of axioms of a system of logic
(say for propositional or predicate logic): it can be defined as the class of
consequences (in this case of logically true sentences) and it depends on
the used derivation rules. But this is an area of proof theory and does not
concern us here. Outside the field of logic, i.e. when logical inference (log-
ical consequence) is applied to different sciences, then the logical content
of a sentence A is defined as the class of all logical consequences of A (i.e.
those derivable by logical deduction) which are not logically true. Thus
A∧B (A and B) has more logical content than A∨B (A or B) since from
the former both A and B can be derived whereas neither of them can be
derived from the latter. In this sense every genuine law has a huge logical
content.

Another type of informative content which is important for all empir-
ical sciences is the so-called empirical content—f “empirical content”; it

21 This point has been stressed by Popper already in his German version (1934) of
(1959, LSD), p. 201ff and 215ff and in several of his later writings. cf. also Bunge
(1967, SRII), p. 323.
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can be defined as the class of all possible and consistent empirical coun-
terexamples of a hypothesis or a law. More accurately: the empirical con-
tent of a hypothesis H (or law in the sense of L3) is the class of all possible
(consistent) empirical test statements which criticise (refute, falsify) H.22

A test statement is a consistent statement with concrete spacetime
parameters which describes the result of an observation or experiment.
Observe that empirical content of H could not be defined by the class of
all empirical test statements which are derivable from H; because from
a hypothesis or law in the sense of L3 no such statements are derivable.
In order to derive an empirical test statement from a law statement we
would have to add to the law statement other empirical statements with
concrete parameters like initial conditions, random conditions, constants
etc. The above condition that genuine laws have to have empirical content
can also be expressed by saying that genuine laws are not trivial, because
they forbid or they rule out a lot of possible empirical events or situations
concerning natural objects. A law of logic, say p ⇒ p or p ∧ (p → q) ⇒ q
allows every empirical event (except logically inconsistent or impossible
ones). Therefore it does not say anything specific w.r.t. empirical phe-
nomena and consequently does not have empirical content. A genuine law
however says something specific about empirical or factual events, i.e. se-
lects certain events as factual and therefore has to forbid a lot of others
which are logically possible but not factual.23 Again another way of saying
that genuine laws have empirical content is to say that they are synthetic
in Kant’s sense.

Finally concerning laws of nature it must be said that only a law with
empirical content can be called a law of nature. This is so because a law
without empirical content does not say anything specific about natural objects
and their properties since it would allow any kind of object and any kind of
event if they are just logically consistent.

G7: Genuine laws belong to a system of laws which makes up the central part
of a theory.

This condition requires systemicity or belonging to some scientific system
(theory) whether already developed to a full-fledged theory or yet on a lower
level of developing. There are several subconditions for systemicity:
22 The definition of “empirical content” is due to Popper (1959, LSD); included al-

ready in his Logik der Forschung of 1934) VI, Sect. 35 “I define the of a statement
p as the class of its potential falsifiers”. Popper uses “basic statement” instead
of “test statement”. (1959, LSD), Sect. 28: “Basic statements have the form of
singular existential statements”. Example: There is a so and so in the (spacetime)
region k. For other types of informative content like mathematical content, value
content and normative content cf. Weingartner (1978, WThI), p. 45f.

23 For more on the distinction between laws of logic and mathematics on the one
hand and laws of nature on the other see Chaps. 3 and 4.
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(1) First that there must not be an inconsistency among the laws which be-
long to the same theory; i.e. inside one and the same theory the laws
have to be mutually compatible. This requirement of mutual compati-
bility is in fact much more general and holds (at least as a normative
principle though not always as a factual one) also among scientific disci-
plines: thus mathematical laws have to be compatible with laws of logic,
physical laws with laws of mathematics, chemical and biological laws with
those of physics, anthropological and sociological ones with those of bi-
ology. In this respect we accept also the requirement that philosophical
theories concerning nature (natural objects) have to be compatible with
well confirmed scientific theories.

(2) Secondly, since the laws make up the gist (kernel) of a theory, a change
of one of the laws will effect the theory such that one would speak of a
change of the theory as well. On the other hand the periphery of a theory
consists of (less confirmed) hypothesis. A change in such a hypothesis will
not change the theory.

(3) Thirdly a law, even if it is well confirmed but isolated, will not be called
genuine law. For example take Archimedes’ principle for the flotation of
bodies which is one of the oldest examples of what was called a physical
law. This principle was well confirmed for solid/fluid pairs. But only in
the 19th century it could be incorporated into mechanics where flotation
could be understood as a particular case of balancing of forces. By so
belonging to a scientific theory, this principle got indirect confirmation
support via the confirmation of the principles of dynamics.24 Thus two
important features can be grasped from this example: A principle or a
hypothesis which is incorporated into a theory receives first a new and
generalised interpretation of its basic concepts (in this case: flotation is
interpreted as a particular case of balancing of forces) and secondly it re-
ceives support from the confirmation of other laws of the theory and from
the confirmation of the whole theory. Further examples are the radiation
laws of Rayleigh–Jeans (wrong for short waves) and of Wien (wrong for
long waves) which have never been incorporated into a theory before they
were superseded by Planck’s radiation law which then became the start
and a basic building block of quantum theory.

The following two points (4) and (5) are optional conditions, not nec-
essary conditions:

(4) Fourthly, there may be a subordination of laws inside a theory. For in-
stance if one law is discovered to be a less general case of a still more
general law: The vector principle of the parallelogram is derivable from
classical particle mechanics; but also the much more general law of the
conservation of the linear impetus is a consequence from the laws of

24 cf. the detailed and interesting discussion of the principle of Archimedes in Bunge
(1967, SRI), p. 329ff.
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classical particle mechanics. In the latter case we have a subordination
of laws.

(5) Fifthly, there may be a special interrelation between a law and the theory
in which it is incorporated: interpretability. A law L is (weakly) inter-
pretable25 in a theory T if there is a consistent extension T* of T such
that for every non-logical basic concept C of L there are definitions in T*
which define C with the help of basic concepts in T . Examples: Peano’s
number theory is interpretable in the axiomatic theories (systems) of set
theory. The so-called equivalence principle – which says that it is always
possible to arrange the transformations of the spatial coordinates in such
a way that the static homogeneous field of gravitation will disappear – is
interpretable in the laws of general relativity.

Finally it is easily seen that these conditions concerning systemicity which
are characteristics of genuine laws are also characteristics of laws of nature:
they have to be compatible with one another, they belong to the kernel of a
theory, they are interpreted within the theory and they receive confirmation
support from it; further they might – these are not necessary conditions –
stand in a relation of deduction (derivation) to more general laws and they
might be interpretable in the theory to which they belong.

G8: Genuine laws refer ultimately to objective reality.
This condition says that genuine laws formulated as law statements in

the sense of L3 have as their referents patterns of objective reality. This will
become more clear by contrast w.r.t. three cases in which one could not speak
of genuine law:

(1) Phenomenological hypotheses. A phenomenological26 hypothesis describes
the input and output, but does not describe or explain the deeper events
in-between. For example the chemical description of the photosynthesis
by CO2 + H2O + chlorophyll + light (energy) from the sun ⇒ glucose +
oxygen is a phenomenological hypothesis.

Only later it became known that and how the plant disintegrates water
such that the hypothesis described the deeper level and became represen-
tational. A phenomenological hypothesis could never directly develop into
a genuine law though a representational one may so develop.

(2) Experiment and model referent hypothesis. Hypothesis may describe se-
ries of experiments or models as approximate pictures of real systems. In
both cases such hypotheses could not develop into genuine laws which have
to refer to the reality “behind” such pictures or models or experimental
situations.

(3) Meta-hypotheses or meta-laws. Meta-hypotheses and meta-laws refer to
hypotheses and to laws. Thus “all sociological hypotheses are statistical”

25 The concept of interpretability is due to Tarski, cf. Tarski, Mostowski, Robinson,
(1968, UDT), Chap. I.

26 cf. the description in Bunge (1967, SRI), p. 248.
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and “all physical laws are (or: have to be) spacetime invariant” refer to
hypotheses and laws and at least not directly to objective reality. They
describe properties of laws or hypothesis or they prescribe (in the sense
of norms) properties of laws or hypotheses but not properties of natural
objects like physical objects or societies. Therefore – in this respect – they
cannot count as genuine laws.

There is however the possibility that some laws can be formulated both in
the object language about physical objects and in the meta-language about
laws (as meta-laws). Take for example the principle of special relativity. Ex-
pressed in the object language about physical systems it says: All inertial
systems are equivalent. Expressed in the meta-language about laws it says:
The physical laws are invariant w.r.t. a transformation from one inertial sys-
tem to another one. Concerning such meta-laws we may say then that not
their versions about laws, but their versions about physical reality (or objec-
tive reality in general) can be called genuine laws (when satisfying the other
conditions). Since laws of nature are understood as saying something about
nature (i.e. natural objects and their properties) but not as saying something
about laws, they behave like genuine laws: meta-laws can count as laws of
nature in a derived or indirect sense.27

It may be worth mentioning here that there are also philosophical or meta-
physical meta-laws which have some relation to laws of nature. We shall give
two examples: Kant’s so-called “Copernican revolution” is expressed by saying
that the laws of nature are to be found in our intellect and that our intellect
cannot grasp them from nature but prescribes them to nature or puts them
on nature.28 Thomas Aquinas said that the first basic laws underlying ethics
are (have to be) invariant w.r.t. a transformation from one value scale (system
of ethical values) to another one. Such a law is the principle: the good should
be done and the bad should be avoided. This principle is invariant w.r.t. dif-
ferent value scales because it is formal in the sense that “good” and “bad” is
open concerning its content. It is then a separate task of a special system of
ethics to provide a definition or interpretation of these “variables” (“good”
and “bad”) and to give a reasonable justification for it.

2.4 Answer to the Arguments

2.4.1 (to 2.1.1) Genuine laws have to be universally valid and necessary in
their appropriate domain, which is restricted in Kant’s philosophy to objects
of experience. Thus genuine laws in the area (domain) of the natural sciences
need not to be obeyed by all kinds of objects generally but only by all kinds of
objects of their appropriate domain. For example if the appropriate domain
of physical laws are matter-dependent entities, then fictional entities of works
27 cf. Sect. 5.3.1(3) for further details.
28 We do however not adhere to this more idealistic view on laws of nature.
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of art need not obey these laws; at least not completely, even if it is assumed
that they obey such laws partially in order to be consistent with a selected
part of human experience. Since the appropriate domain of laws of nature is
the domain of the natural sciences they can be very well genuine laws.

2.4.2 (to 2.1.2) As it is clear from 1.3.2.2, we have to distinguish the law in
the sense of L3 (i.e. law statement formulated in some scientific language and
belonging to some scientific theory) from that in the sense of L4 (the ideal
true law), where laws in the sense of L3 are approximations to the true law
in the sense of L4. Now Kant has in mind the law in the sense of the ideal
true law (L4) when he speaks of the synthetic a priori truth. Genuine laws
however are usually understood as laws in the sense of L3 and because of
satisfying the necessary conditions G6 and G7 they are understood as good
approximations to the true law. Nothing hinders therefore that genuine laws
understood in this way can be corrected and revised and sometimes even be
falsified. The same is true for laws of nature. Therefore laws of nature can be
very well genuine laws. And they are in fact genuine laws since they satisfy
all the necessary (together sufficient) conditions for genuine laws as has been
substantiated above.

2.4.3 (to 2.1.3) The word “necessary” has different meanings. The two differ-
ent meanings which have to be distinguished here are “logically necessary”
and “empirically necessary” or “naturally necessary”. The propositions which
hold in every possible world are called logically necessary. These are the theo-
rems of fist order predicate calculus with identity which can be substantiated
by suitable axiom systems of modal logics and their semantics. Intuitively we
would count to this class also the theorems of the arithmetic of natural num-
bers and of some other basic domains of mathematics (though these are not
included in the above axiom systems and their semantics). Genuine laws, if
they satisfy conditions G1–G8, are not understood as logically necessary, but
as empirically or naturally necessary.29 And this means they have empirical
content and exclude a lot of possible worlds. Similarly laws of nature do of
course not hold in all possible worlds, otherwise they would not exclude any
possible world and thus would not say anything specific about a (or a class of)
particular world(s). Therefore laws of nature can very well be genuine laws.

2.4.4 (to 2.2) The second premise in the argument has to be completed: It
is not sufficient for genuine laws that they are very general dynamical or
statistical laws which are severely confirmed. Also the other necessary condi-
tions G2–G8 have to be added. The same holds for laws of nature. Then the
conclusion that all laws of nature are genuine laws is satisfied.

29 cf. Chap. 9.
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Are the Laws of Logic Laws of Nature?

3.1 Arguments Pro

3.1.1 If the laws of logic are applicable to all objects whatsoever they are
also applicable to the objects dealt with by the natural sciences. Now a law is
certainly applicable to some domain of objects if all the objects of this domain
satisfy the law. Thus if the laws of logic are satisfied by all objects whatsoever
they are also satisfied by the objects dealt with by the natural sciences. But
those laws which are satisfied by the objects dealt with by the natural sciences
are called laws of nature. Consequently: if the laws of logic are applicable to
all objects whatsoever then the laws of logic are also laws of nature. Now,
according to Kant the laws of logic are applicable to all objects whatsoever:
“Die Logik ist . . . eine Wissenschaft a priori von den notwendigen Gesetzen
des Denkens, aber nicht in Ansehung besonderer Gegenstände, sondern aller
Gegenstände überhaupt.”1

Therefore: the laws of logic are also laws of nature.

3.1.2 If logic is the most general of all sciences then its universe of discourse
(UL) includes the universes of discourse of all other sciences and so also that
of the natural sciences (UN), i.e. UN ⊂ UL. It follows from this that the laws
of logic which rule the elements of UL rule also the elements of UN. But the
laws which rule the elements of UN are called laws of nature. Consequently
if logic is the most general of all sciences then the laws of logic are laws of
nature, since they rule the elements of UN. Now as Leibniz and Gödel say logic
is the most general of all sciences: “Logica est scientia generalis”2 – “it is a
science prior to all others, which contains the ideas and principles underlying
all sciences.”3

Therefore: The laws of logic are also laws of nature.
1 Kant (1800, Lg), A4.
2 Leibniz (1903, OFI), p. 557.
3 Gödel (1944, RML), p. 125.
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3.1.3 If the laws of logic can be either justified by sense perception or falsified
and revised by contingent facts then they are rather laws of thought or laws
of thought processes and not – as Frege said – laws of truth.4 And if they are
laws of thought or thought processes they are laws of nature. Now as Gödel
says of Russell the laws of logic can be justified by sense perception:

“He [Russell] compares the axioms of logic and mathematics with the
laws of nature and logical evidence with sense perception, so that the
axioms need not necessarily be evident in themselves, but rather their
justification lies (exactly as in physics) in the fact that they make it
possible for these ‘sense perceptions’ to be deduced.”5

Moreover as Quine says the laws of logic can be revised or superseded like
one physical theory supersedes another:

“Conversely, by the same token, no statement is immune to revision.
Revision even of the logical law of the excluded middle has been pro-
posed as a means of simplifying quantum mechanics; and what differ-
ence is there in principle between such a shift and the shift whereby
Kepler superseded Ptolemy, or Einstein Newton, or Darwin Aristo-
tle?”6

Therefore: The laws of logic are laws of nature.

3.1.4 Any formal language of science contains the most general laws of logic.
Truth can be introduced w.r.t. these general laws of logic by describing their
invariance against changing elementary (atomic) sentences (with the predi-
cates contained in them) with the help of substitution: “A logical truth, then,
is definable as a sentence from which we get only truths when we substitute
sentences for its simple sentences.”7 Now since the laws of logic (or the logical
truths) are general they can be applied to any area of science outside logic;
i.e. the substitution instances can be taken from mathematics, physics, biol-
ogy, etc. But such substitution instances put constraints on the laws of logic
according to limits of mathematical reasoning or limits of nature. That this
is so can be seen from the following two examples:

(i) As Intuitionism points out, in the case of application to an infinite domain,
p∨¬p fails because neither ∃xFx holds in its intuitionistic interpretation
(there is no construction of a natural number k with a proof of Fk) nor
¬∃xFx holds (there is no uniform proof for ¬Fn for each n).

(ii) Since the principle of classical physics: Any two properties (quantities) out
of all observables can be observed (measured) simultaneously does not hold
in quantum physics, the combination or fusion of arbitrary propositions

4 Frege (1969, NGS), p. 139.
5 Gödel (1944, RML), p. 127.
6 Quine (1951, LPV), p. 43.
7 Quine (1970, PLg), p. 50.
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(and properties) by any connective – though generally allowed by the laws
of logic (logical truths in Quine’s sense) – is limited.

But since such limitations are ruled by laws of nature, it seems that the laws
of logic are limited by or reduced to laws of nature.

Therefore the laws of logic seem to be laws of nature.

3.1.5 All laws of (human) thought are laws of nature; since all humans belong
to nature. Now as Boole says, the laws of logic are derived from laws of
thought: “Chapter III: Derivation of the Laws of the symbols of Logic from
the laws of the operations of the human mind.”8

Therefore it seems that the laws of logic are derived from the laws of
nature.

3.2 Arguments Contra

3.2.1 As Ockham and Leibniz point out the laws of logic are an instrument
for all other sciences in that they are principles of demonstration and proof:

“Logica enim est omnium artium optissimum instrumentum, sine qua nulla
scientia perfecte scire potest.”9

“Scientiam generalem intelligo quae modum docet omnes alias scientias ex
datis sufficientibus inveniendi et demonstrandi.”10

But the laws of nature are not principles of demonstration and proof and
consequently are not an instrument of all the sciences.

Therefore: the laws of logic are not laws of nature.

3.2.2 According to Wittgenstein the laws of logic are analytic: “The proposi-
tions of logic are tautologies. Therefore the propositions of logic say nothing.
(They are analytic propositions.)”11 But the laws of nature describe reality
and are therefore not analytic but synthetic.

Therefore: the laws of logic cannot be laws of nature.

3.3 Proposed Answer

In every scientific discipline we can distinguish three domains: the domain of
problems, the domain of application and its proper domain. This holds also
for logic, for mathematics and for the natural sciences. But with respect to a
comparison of all three domains it can be shown that the laws of logic are not
laws of nature. This can be seen as follows:
8 Boole (1854, LoT), p. 39.
9 Ockham (1957, SLg), Pars Prima, p. 7.

10 Leibniz (1965, GPh), VII, p. 60.
11 Wittgenstein (1960, TLP), 6.1, 6.11. cf. 3.4.6 below.
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3.3.1 The Domain of Problems

If we speak of the domain of logic we may have in mind that logic deals
with a certain group of questions or problems. Although the selection of these
problems is not arbitrary or just a matter of convenience it nevertheless does
not have a sharp border w.r.t. other disciplines, especially to mathematics.
This does not mean however that the border is not sharp everywhere, since
there are also clear cases. Thus it means that there are problems which belong
unambiguously either to logic or to mathematics, but that there are others
where the decision is not so easy.

As to the unambiguous cases the problem of a general criterion for distin-
guishing valid from invalid arguments, or in other words the problem of the
concept of logical consequence, will certainly belong to the domain of problems
of logic. Whereas the problem of the solution of certain diophantine equations,
like Fermat’s problem, or the more general question of Hilbert’s 10th prob-
lem, whether every diophantine equation has also a solution in integers12 is
unambiguously a problem of mathematics.

Concerning the cases where the demarcation is not sharp, Skolem points
to the relation of basic concepts of logic and of arithmetic:

“I am taking the liberty here of a remark about the relation between
logical and arithmetical primitives (basic concepts). Independently
whether one introduces the concept of propositional function in the
first or second way one comes across the idea of the integer. Also with
an axiomatic introduction of that concept (for example in investiga-
tions of consistency) one is forced to consider what can be deduced
with the help of finitely many applications of the axioms. On the other
hand it is not possible to logically characterise the series of numbers
without using the concept of propositional function. . . It seems to me
therefore to be ill conceived both to base the logical concepts on the
arithmetical ones and vice versa. Both have to be established simul-
taneously and in mutual connection.”13

Skolem’s argument shows that neither all important concepts of mathe-
matics are included in or reducible to logic – a part of the doctrine of Logi-
cism – nor all important concepts of logic are included in or reducible to
concepts of mathematics. Nevertheless there is a certain hierarchy which will
be shown in the section about the proper domain of logic.
12 The problem was solved in 1970 by Jury Matijasevic who showed that Hilbert’s

10th problem is equivalent to Turing’s problem which depends on the undecid-
ability of the “halting problem”. The result is roughly as follows: To a given
computer programme one can construct a diophantine equation which has a so-
lution in integers iff the computer programme comes to a stop. And conversely
to a given diophantine equation one can construct a computer programme which
will stop iff the given diophantine equation has a solution in integers.

13 Skolem (1970, MLg), p. 196 (our translation).
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Independently of systematic distinctions the question what belongs to the
domain of problems (of a discipline) is to a great extend a question of historical
development. Thus the first problem concerning the validity of arguments is
as old as logic itself, i.e. goes back to Aristotle. And the question how to solve
diophantine equations goes back to Diophantus, a Greek mathematician.

Concerning the demarcation of problems of logic from those of natural
science it is clear that the problem to define the validity of inferences or the
consequence class of a set of premises is one of logic and not one of natural
science. Consequently from the point of view of the demarcation of problems
laws of logic in the sense of laws (rules) of derivation or inference cannot be
laws of nature. On the other hand the prize question of King Oscar II of
1885 is clearly a problem of physics (at least since mass points are not logical
entities):

“For an arbitrary system of mass points which attract each other
according to Newton’s laws, assuming that no two points ever collide,
give the coordinates of the individual points for all time as the sum
of a uniformly convergent series whose terms are made up of known
functions.”

The prize was given to Poincaré, who gave reasons that such series diverge
rather than converge although he did not solve the problem. It was solved
partially by Kolmogorov and finally by his pupil Arnold in 1963.14

Consequently Newton’s laws and laws concerning the divergence of adja-
cent points cannot be laws of logic.

3.3.2 The Domain of Application

With respect to the domain of application we consider three points: (1) That
the domain of application of logic with its laws is rather unlimited whereas the
domain of application of natural science and its laws is narrower. (2) That the
laws of logic of the full Classical Logic have different properties than the laws
of nature and (3) that the laws of logic of a restricted or reduced classical
calculus or those of a weaker (than classical) logic can nevertheless not be
reduced to laws of nature.

(1) Unlimited domain of application
The domain of application of logic is not only very wide, it seems rather
unlimited.15 Thus a logical inference – say the dictum de omni (inference
from all cases to one particular) – can be applied to sentences of logic,
of mathematics, physics, chemistry, history, juridical norms, etc. where
the variables (occurring in the inference) are interpreted respectively as

14 For more on that see Sect. 9.4.3.2(g)
15 In a similar way is the domain of application of mathematics rather unlimited

(cf. Chap. 4).
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signs for numbers, elementary particles, chemical elements, negotiations
for peace, human actions, mental processes.

Or the principle that if two properties (concepts) are compatible (have
a common extension) then also their respective higher order properties.
The analogon in set theory is: if two sets have a common member then also
their supersets. Like the above inference these principles about properties
and sets are also applicable to any consistent properties or sets.

But the domain of application of laws of nature is clearly narrower
since we cannot say that they are applicable to logic (for example to
the relations of pure concepts) to mathematics (for example to number
theoretic problems) or (under the assumption of not being an extreme re-
ductionist) to mental processes. Since no law of logic has such a restriction
of application, no law of logic is a law of nature.

(2) Full classical logic (PL1)
What is usually applied both in the area of mathematics and in the sci-
ences is much more than the above examples of very general logical rules
and similar ones: It is the theorems of first order predicate logic with
identity (PL1, which is also called classical logic). This system of Logic is
also the underlying logic of the two systems of set theory widely used to-
day: Zermelo–Fraenkel set theory and Neumann–Bernays–Gödel set the-
ory. PL1 is a first order theory in the sense that there is only quantification
over individual variables but not over predicates. Quantification over en-
tities of higher type (like predicates) or over sets is done in higher order
logic or in set theory. PL1 can be justified semantically or model theo-
retically on one hand or proof theoretically on the other. In both ways
one can show that PL1 is a complete theory, but not decidable. However
PL1 restricted to one-place predicates (and syllogistics which is included
in it) are decidable theories. But the laws of nature (at least those which
are known today) are not complete; i.e. it is not the case that all true
statements about things of nature or – when restricted to physics – ob-
jects of physics or physical systems are derivable from the laws plus initial
conditions.16

Therefore the laws of logic (as theorems of PL1) are not laws of nature
(and not laws of physics).

(3) Weaker logics and restricted classical logic
(a) Weaker logics

There can be good reasons for being more modest when choosing the
underlying logic for mathematics or for the application in the empir-
ical sciences. As to mathematics Intuitionism restricts the valid laws
of PL1 to those of intuitionistic logic, because it requires a special
kind of definite limitation of the concepts in the mathematical propo-
sitions which are applied to the infinite domain or in other words

16 For a detailed justification of the incompleteness of physical laws see Weingartner
(1997, CLN) and Chap. 11.
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of the quantified statements, where the quantification runs over an
infinite domain. Observe for example that the use of the principle
of excluded middle (bivalance) has never been questioned for finite
domains. But the intuitionistic interpretation of the quantified form
∃xA(x) ∨ ¬∃xA(x) of this principle reveals the main limitations: In
order to establish the validity of ∃xA(x) one must provide a con-
struction of a natural number k and a proof of A(k). To show that
¬∃xA(x) one has to give a proof which shows the falsity of A(n) for
all n. (¬∃xA(x) ⇔ ∀x¬A(x) holds intuitionistically). Thus what is
required is this: Either there is a construction of a natural number k
and a proof of A(k) or there is a uniform proof that shows the falsity
of A(n) for each n. It is easily understandable that neither may be
the case, i.e. the principle of excluded middle is not satisfied then.17

As a consequence of that also the underlying Propositional Logic is
affected such that bivalence and other principles like double negation,
(p → q) → (¬p ∨ q), (¬q → ¬p) → (p → q), (p → q) ∨ (q → p),
¬¬p → p are not generally valid. Moreover all the four connectives
(∧, ∨, →, ¬) are independent (not interdefinable).

Similar weakenings of PL1 for the applications both in mathemat-
ics and in empirical sciences are dialogical logic and constructivist
logic which both have simple proof theoretical justifications.18

A further group of weaker logics are relevant logics and paracon-
sistent logics. The first group, initiated by Anderson and Belnap,19

is based on the idea of strengthening implication which tradition-
ally goes back even to Stoic logic and to Medieval logic but be-
gan in the 20th century with Lewis’ system of “Strict Implication”
(1918, SSL), Parry’s “Analytische Implikation” (1933, AAI) and Ack-
ermann’s “Strenge Implikation” (1956, BSI). This approach has been
further developed by Meyer, Routley, Dunn and others. Another
approach rather independent of that concentrates also on implica-
tion and tries to develop a general theory of conditionals; Chel-
las (1975, BCL), v. Benthem (1984, FCL) and others. Paraconsis-
tent logics concentrate on avoiding the principle (p ∧ ¬p) 	 q (ex
falso quodlibet) which allows to derive any arbitrary formula from
a contradiction. It was called “exploding principle” (by G. Priest)
and its avoidance is a common feature of paraconsistent logics, rel-
evant logics and restricted classical logics (CL).20 In paraconsis-
tent quantum logics also A → (B → A) (which is used for the

17 cf. Fraenkel, Bar Hillel, Levy (1973, FST), Chap. IV: Intuitionistic Conception of
Mathematics (by D. van Dalen).

18 Such proposals have been made in detail by Paul Lorenzen. cf. his (1955, EOL),
(1980, MeM).

19 cf. Anderson, Belnap (1975, Ent). For further development see Dunn (1986, RLE).
20 See the citation of Tarski below (3.4.3). For paraconsistent logics cf. DaCosta

(1974, TIF) and Priest (1987, ICd).



34 3 Are the Laws of Logic Laws of Nature?

definition of commensurability) is invalid. This law (also called Frege’s
law) is also thrown out in restricted classical logic (cf. (b) P1 example
3 below).

All these logics try to solve some of the problems coming up if logic
is applied to empirical sciences and they are successful to solve some
of these problems, especially those connected with so-called paradoxes
of implication (of which the ex falso quodlibet is one, and that truth
is derivable from any premise is another). And to solve such prob-
lems was (at least originally) the motive for deviating from CL. But
although the motivation came from the application to empirical sci-
ences including natural sciences it does not follow from that that the
laws of these weaker logics are laws of nature.

Another type of weaker logics are quantum logics which focus on
problems arising when CL (mainly the propositional part of PL1) is
applied to modern physics, especially quantum physics. CL makes two
assumptions which are violated in quantum mechanics (QM):
(i) Every proposition (having a certain truth value) can be conjoined

(by some connective ∧,∨,→,↔) with any other proposition to re-
sult in a new proposition. Consequently also the predicates con-
tained in the propositions can be arbitrarily combined. A con-
sequence from this is: if proposition A represents (describes) a
(measurable) physical state (or state of affairs) and proposition
B does also, then the conjunction (and the disjunction, impli-
cation and equivalence) represent (describe) also a (measurable)
physical state (or state of affairs). It is well known that this (kind
of arbitrary combination or commensurability) is not the case in
some situations (measuring position and momentum) in QM (cf.
Sect. 13.2).

(ii) The laws of distributivity hold unrestrictedly as an equivalence.
Already Birkhoff and v. Neumann showed in their paper (1936,
LQM) that the distribution laws of CL do not hold in one di-
rection (of the two implications) w.r.t. propositions describing
experiments in QM.

Thus every quantum logic has to avoid these classical assumptions.
It is known that this can be achieved with an orthomodular lattice
calculus as has been shown for example by Mittelstaedt.21 Now quan-
tum logic is an example where facts of nature (experimental facts of
QM) are in conflict with special assumptions of CL ((i), (ii) above).
But observe that assumption (i) is not really a law or theorem of CL
(PL1) but concerns the very liberal formation rules for building up
the calculus (of PL1), although being the base for the rule of adjunc-
tion: p, q |– p ∧ q (used in systems of natural deduction). And the

21 cf. Mittelstaedt (1978, QLg). For a detailed exposition see Chap. 13 on Quantum
Logic.
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assumption (ii) claims an equivalence of which one part of the im-
plication (the one which leads from disjunctive parts to conjunctive
parts) still holds unrestrictedly also when applied to phenomena and
experiments in QM.

What this shows is that only a part of the laws of PL1 (CL) can
be used when applied to certain fields of empirical sciences, for ex-
ample QM. And the other part not used here can still be used in the
application to formal sciences (for example to classical mathematics
and set theory). However it does not show that some of the laws of
logic of PL1 (CL) are falsifyable by empirical facts as laws of nature
are and therefore could be called also laws of nature.

(b) Restricted classical logic (RCL)
In contradistinction to calculi described under (a) (weaker logics) RCL
is not a new logic and is in its general form in fact independent of
the underlying logic or its concept of a valid inference, although this
presentation uses CL as the underlying logic. RCL functions like a fil-
ter put on CL, it concentrates on restricting the classical consequence
class; because it has been shown in a number of articles that redun-
dant parts which are permitted in the consequence class of CL are the
culprits of most of the difficulties and paradoxes discussed for more
than 50 years in areas like confirmation, explanation, law statements,
disposition predicates, epistemic and deontic logic, verisimilitude and
quantum logic. Especially there are two very general properties P1
and P2 of CL (PL1) which make trouble when CL is applied out-
side logic and mathematics. As will be seen these two properties of
CL include also the assumptions (i) and (ii) above. The properties
P1 and P2 are concerned with the consequence (conclusion) α of a
(classically) valid inference A |– α.

P1 Parts of α are replaceable (in some inferences) by arbitrary parts of
the same category salva validitate of the inference.

P2 Parts of α are reducible (in some inferences) to simpler (and usually
shorter) parts consisting of conjuncts salva validitate of the inference
and by preserving the logical content of the conclusion.

Simple examples for P1 are: A |– (B → A), ¬A |– (A → B), A |– A ∨ B,
A ∧ ¬A |– B, A| – ((A ∧ B) ∨ (A ∧ ¬B)), A ∧ B |– ((A ∧ C) ∨ (B ∧ ¬C)).
In the first four valid inferences the variable “B” can be replaced by any
arbitrary propositional variable salva validitate of the inference. In the
fifth “B” and in the sixth “C” can be replaced on both occurrences by
any arbitrary propositional variable salva validitate of the inference.22

Simple examples for P2 are: C∧C, C∨C, ∀x(A∧ B), A∧B, A∨(B∧C),
(A ∧ B) ∨ (A ∧ C) can be reduced respectively to C; ∀xA, ∀xB ; A, B;
(A ∨ B) ∧ (A ∨ C); A ∧ (B ∨ C).

22 We use salva validitate w.r.t. inferences and salva veritate w.r.t. statements. “|–”
stands for derivability or valid implication.
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That P1 (replacable parts) causes difficulties23 can be seen from the fact
that replacing “B” by any other variable above means that A can be
combined (by connectives) with any arbitrary proposition. Or if we think
of the predicates in the propositions it means, that any predicate can be
combined with any other. Physically this means that commensurability
is always granted. Observe in this connection that the last two of the
above examples for P1 are the propositional analoga to the definiens of
commensurability and to one form of Bell’s inequalities.24

It will be easily understood that parts (in the consequence class) which
are replaceable by arbitrary parts (salva validitate) cannot be important con-
sequences; on the contrary they are redundant or superfluous in a good sense,
i.e. in the sense that something (proposition or predicate) which can be re-
placed by any arbitrary proposition or predicate – even by its own negation –
without changing the validity cannot be important or essential in the inference
(proof). In this sense a criterion which eliminates replaceable parts eliminates
redundancies in the consequence class thereby preserving the informative con-
sequence elements. Such a criterion can be formulated as follows:

R: α is an R-consequence of A iff both A |– α and it is not the case that a
propositional variable (a predicate, the identity sign) is replaceable in α on
some of its occurrences by any other propositional variable (predicate of same
arity, two place relation) salva validitate of A |– α.

That P2 (reducible parts) cause difficulties25 can be seen from the fact
that reversing the direction of reduction allows to produce disjunctions, to
fuse separated parts (propositions with their predicates) into conjunctions
(this again claims commensurability) and allows the problematic implications
of the distributive laws. For the propositional part of PL1 it can be shown26

that the restricted consequence class obtained by eliminating replaceable and
reducible parts is PL1-equivalent to the full consequence class. This shows that
nothing is lost of classical logic, only redundancies and superfluous elements
in the consequence class are dropped out.

As to the question what remains of basic principles of logic – despite
reasonable restrictions for applications in different areas – the following answer
seems to be well justified: Applying Logic means applying at least the following
principles:
23 Many such difficulties have been shown by Weingartner, Schurz (1986, PSS);

(1988, RCC); Weingartner (2000, RFC); (2001, ALO) in many different other ar-
eas like that of confirmation, explanation, law statements, disposition predicates,
epistemic logic and deontic logic.

24 cf. Mittelstaedt (1978, QLg), Chap. 2. (1998, IQM) eq. 4.52, Weingartner (2004,
RSL) p. 245 and Chap. 13.1.2.2 eq(5*).

25 See the above references and Schurz, Weingartner (1987, VDR) where it is shown
that the problem of verisimilitude (in Popper’s sense) can be solved by eliminating
replaceable and reducible parts.

26 The proof is given in Schurz, Weingartner (1987, VDR).
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(1) The principle of logical consequence or logical deduction
An inference (deduction) is logically valid if it leads always from true
premises to true conclusions. An inference is valid if there is no instance
with true premises and a false conclusion. Moreover a valid inference per-
mits to conclude from a false conclusion that at least one of the premises
must be false. This principle can also be expressed model theoretically by
saying that all the models which satisfy the premises (make the premises
true) satisfy also the conclusion (make the conclusion true).27

(2) A tolerant version of the principle of non-contradiction: Two propositions
of which one is the negation of the other cannot both be true (or more
generally: cannot both have designated values). Observe that this principle
does not presuppose bivalence and does not rule out many-valued logic
(see Sect. 3.3.3).

(3) Some traditional rules of inference or logical laws which have a very sim-
ple and transparent structure like: dictum de omni,28 modus ponens,29

modus tollens,30 hypothetical syllogism31 (= transitivity of the implica-
tion), simplification,32 identity laws.

This list cannot be extended arbitrarily since for instance bivalence
or double negation is not uncontroversial (especially in intuitionism) and
addition and adjunction make trouble in the application to the empirical
sciences.

A modest step beyond these three principles (1)–(3) which is based on CL
concerning the concept of validity, though solves most of the difficulties (in
applications outside logic and mathematics) and deviates least from CL (hav-
ing a consequence-class which is classically equivalent to the CL-consequences)
seems to be restricted classical logic.33

What the above restrictions show again w.r.t. our original question is not
that some laws of logic are refuted by empirical facts, but that not all laws
of CL can be applied or used in a special field of application in the empirical
sciences though they may be used in the application of formal sciences without
any problems.

3.3.3 The Proper Domain

The proper domain of logic was described in the tradition (middle ages, al-
ready by Boethius) as that of concept, proposition and inference. And this

27 The model-theoretic version was originally proposed by Tarski in 1936. Engl.
Translation in Tarski (1956, CLC).

28 ∀xFx |– Fa
29 p → q, p |– q
30 p → q, ¬q |– ¬p
31 p → q, q → r |– p → r
32 p ∧ q |– p
33 For more on these problems see Sect. 13.2 on Quantum Logic.
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is still today not a bad characterisation. It was also pointed out by Boethius
and then by Avicenna that logic is concerned with the “second intentions”:
that is not with the concept of “blue” or the concept of “matter” but with
the concept as concept or with the concept of concept. Similarly logic is con-
cerned not with a particular proposition or inference but with proposition as
such and its formal properties like true and false and its parts like subject and
predicate and that one is predicated from the other; again not with a particu-
lar inference but with inference as such and its formal properties like validity
and with the relation of the premises to the conclusion. The doctrine of the
“second intentions” points to the high degree of abstraction of those entities
with which logic is concerned: they are not concrete entities, they are not in-
dividuals on type level 0, but also not particular predicates on type level 1 or
2. A similar point is made by Russell concerning the entities of mathematics:

“To begin with, we do not, in this subject, deal with particular things
or particular properties. . . We are prepared to say that one and one
are two, but not that Socrates and Plato are two. . . A world in which
there were no such individuals would still be a world in which one and
one are two.”34

The high degree of abstraction and generality of the entities belonging to
the proper domain of logic can be substantiated further by the following three
principles E, M and L.

E: All concepts of logic are more general than all concepts of empirical sci-
ences. All laws of logic are more universal than all laws of the empirical
sciences.

This principle can be confirmed as follows: Every empirical concept like that of
mass, energy, simultaneity, field, cell, metabolism, society, peace, etc. presup-
poses material carriers (bearers) or material processes, i.e. is matter dependent
and can be defined only with material entities in spacetime. No concept of
logic on the other hand is space time or matter dependent. All laws of the
empirical sciences and laws of nature exclude at least some consistent and pos-
sible empirical structures (of an alternative world). But no basic law of logic
like the principle of non-contradiction (in a tolerant form) or the principle of
logical consequence excludes some possible (consistent) empirical structure.

Therefore it is clear that laws of logic cannot be laws of nature.
Concerning the application of the principle of non-contradiction to the

empirical sciences one should distinguish different versions of the principle of
non-contradiction (NC). They differ in strength such that some rule out many
valued logics other do not.

NC1 ¬(p ∧ ¬p), where p can only take the values true or false, is logically
true;

34 Russell (1919, IMP), p. 196.
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NC2 ¬(p ∧ ¬p) is logically true;
NC3 At least one member of the pair p, ¬p must be false;
NC4 At most one member of the pair p, ¬p can be true (or can have a

designated value);
NC5 A proposition cannot be both true and false;
NC6 A proposition can assume only a single truth value.35

NC1 includes bivalence in the additional condition. Such a principle Leibniz
seemed to have in mind as the principle of contradiction, since he gives two
consequences of it: one is NC5, the other a clear formulation of bivalence or
“tertium non datur” in his terminology.36

NC2 does not imply bivalence and holds in some systems of many valued
logics, though not in all (it fails in the three-valued systems of Lukasiewicz,
Post, Bochvar and Kleene).

Observe however that there are two different sorts of many valued logics:
In the first sense “many valued” can mean: some values in addition to the
values true and false. In the second sense “many valued” can mean more than
one value of true and more than one of false such that there is nothing between
true and false only different values for true and different ones for false.37 In
the latter case bivalence does not rule out many-valuedness.

NC3 is very restrictive as it requires values false in all lines of a matrix (truth
table) in which the negation of the proposition has other values than false (for
instance “indifferent”).

NC4 is certainly the most tolerant version which was also defended already
by Aristotle.38

It is with respect to this version that we can definitely say that it does not
exclude any empirical structure.

NC5 is mentioned by Leibniz and is acceptable in general at least for all
applications of logic to empirical sciences.39

NC6 finally expresses the view that when assigning truth values to proposi-
tions, one presupposes bivalence, i.e. the proposition, if it has value v cannot
have another value v′ (�= v).
35 NC2–NC6 are mentioned by Rescher. He distinguishes another version of NC2

which differs from it only if the negation operator does not have the reflection
property. cf. Rescher (1969, MVL), p. 144ff.

36 cf. Leibniz (NE), 4, 2, 1. For a detailed discussion see Weingartner (1983, IMS),
p. 160ff.

37 Matrix systems of this sort have been used for independence proofs, for example
by Bernays. A six-valued matrix system (three values for true and three for false)
for a modal logic with 14 modalities has been proposed in Weingartner (1968,
MLT).

38 cf. Aristotle (Met) 1011b14 and 1062a22.
39 Rescher describes some quasi-truth functional systems for which it does not hold.

Ibid. p. 166ff.
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To sum up it seems that for a logical system applied to natural sciences
the principle of non-contradiction has to be asserted in the form NC4 whereas
NC5 and NC6 can be accepted in the metatheory for the formation of the
system.

We want to point out however that we do not think that nature or reality
(or their real processes) violate NC4; violations of NC4 can only happen in
human thinking and theorising about nature. Therefore paraconsistent log-
ics, which allow a violation of NC4, can be understood as models of human
thinking but not of real processes.

M : Some concepts of mathematics are less abstract than all concepts of logic.
Some laws (or statements) of mathematics are less general than all laws
of logic. The first part can be proved by the fact that the concept of
a particular natural number, say 5, is less abstract than any concept
of logic. The only concepts of entities obeying the uniqueness condition
(which is satisfied by the natural numbers) in logic are the truth values T
(true) and F (false) but logic can be built up dispensing with them, i.e.
in a proof theoretical way. But for mathematics the entities of natural
numbers are basic and indispensible. And moreover there have to be infi-
nitely many in order to do mathematics. Concerning laws or statements
of mathematics: Statements like 5+7 = 12 of arithmetic, i.e. statements
containing exclusively concepts of particular (single) entities – in this
case natural numbers – (besides +, =) are genuine statements of math-
ematics. Examples of geometry show that there are statements which
contain at least one concept of a particular kind or one constant like in :
the sum of angles in a triangle equals 180◦.40 But no statement (or law)
of logic contains concepts of particular entities. All genuine statements
of logic contain variables (besides the logical terms like →, ∧, ∨, ¬).

L: Some concepts of logic are more abstract than all concepts of mathemat-
ics and some laws of logic are more general or more basic than all laws
of mathematics. The first part can be shown to be true by taking the
concepts of identity or predication (where a two or more place predicate
is called a relation). The concept of identity is presupposed in math-
ematics and so is the general concept of predication (relation). Every
mathematical equation is some more specific identity and every mathe-
matical function is some kind of predication or relation. The second part
is evident from the fact that the law of identity x = x or the principle of
logical consequence are more universal than any law of mathematics: the
first is obeyed by every mathematical equation and the second by every
mathematical proof.

For a general demarcation between logic and mathematics we propose
the following conditions L1 to L4 for laws of logic and M1 to M3 for laws
(theorems) of mathematics:

40 For more see Sects. 4.1 and 4.2.
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L1 Let s be a wff (well formed formula) in prenex normal form (i.e. all quan-
tifiers – if any – at the beginning of the sentence). Then all expressions,
except logical constants, are either universally quantified or can be uni-
versally quantified salva veritate (validitate) of s. Logical constants are:
∧, ∨, →, ¬, ↔, ∈,=,⊆, ⊂, ∩, ∪, etc.

L2 The universe of discourse (the domain to which the variables refer) con-
tains at least one object (i.e. is not empty). This holds for PL1 and all
systems discussed in Sect. 3.32(3) above. A logic which permits an empty
domain (depending on the inference rules or non-refering terms) an empty
logic or a free logic. These systems have however some other properties.

L3 s is a valid inference rule which can be reinterpreted as a true universal
implication which obeys L1.

L4 s is a logical consequence of a sentence obeying L1 or L3.
M1 Let m be a wff in prenex normal form and let all expressions of m (except

the logical and mathematical constants like above and <, >,+,−, ·,Ø,
etc.) have an index of stratification i(0 ≤ i < n) (0 for those of lowest
type). Then there is at least one expression (usually predicate variable
or set variable) which is existentially quantified and has index i ≥ 1.
Example: All axioms of standard set theory – except the axiom of exten-
sionality – have such an existentially quantified variable representing the
existence of the respective set (of pairing, sum set, power set, etc.).

M2 The universe of discourse contains at least denumerably infinite many
objects.

M3 m is a logical consequence of a theorem of mathematics according to M1
and M2.41

3.3.4 No Laws of Logic are Laws of Nature
and no Laws of Nature are Laws of Logic

This answer to the question “Are the laws of logic laws of nature?” can be
substantiated as follows. The names “laws of logic” and “laws of nature” are
taken from the proper domain of logic and from the proper domain of the
natural sciences. But they are not taken from their domains of application.
Thus although the laws of any science A which is applied to another one
B contains variables the instances of which may be terms (signs) of entities
belonging to a specific (proper) domain of a particular science B, such a law
is not a law of that particular science B. Thus although the variables of x =
x may be interpreted as signs for physical entities either individual ones like
41 For the demarcation in general see Quine (1970, PLg) and Russell (1919, IMP), p.

202ff. For free logics and empty logics see Bencivenga (1986, FLg). For the concept
of stratification see Quine (1969, MLg), p. 157. For details on this demarcation
and possible others see Weingartner (1982, DLM). For the axioms of standard set
theories see Fraenkel, Bar Hillel, Levy (1973, FST) and Gödel (1940, CCH).
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elementary particles or abstract ones like masses or fields, and although the
physical entities obey this law, nevertheless this law can never be a law of
physics. One important reason is that no law of logic excludes any consistent
empirical structure but every law of physics (and of nature) does.

On the other hand no law of physics (and of nature) can be a law of logic.
This is so because no law of physics can be universalised in such a way that
by replacing physical terms by variables we get a law of logic. This just means
that no physical law is a substitution instance of a law of logic. Thus a law of
physics like F = m ·a (Newton’s second law)42 although of course obeying the
identity law x = x and its instance F = F cannot result in a law of logic just
by replacing the three physically interpreted signs by three different variables.
The same holds for other laws of natural sciences like those of chemistry and
biology.

An analogous consideration can be made concerning mathematics: a cer-
tain homogenous partial differential equation of second order – as long as its
terms do not have a physical interpretation – is not a physical law; even if
physical entities will obey the equation if it is a mathematically valid equa-
tion. On the other hand a replacement of the physical terms in the Schrödinger
equation by mathematical variables will not lead to a mathematical law; less
than that would anybody count stationary states of energy to entities of the
proper domain of mathematics. Though they may count as entities of the do-
main of application of mathematics. But as it was said above the name “law
of logic” and also “law of mathematics” are not taken from their domains of
application but from their proper domains.

From the above considerations it is plain that the proper domain of logic
can clearly be distinguished from the proper domain of natural sciences. Laws
of logic and laws of nature have no common proper domain. But although
this is unambiguous w.r.t. the theoretical demarcation it can be hidden in the
practical application. Thus it could happen that a special law of physics is not
really a law of nature but merely a logical law disguised as a law of physics.
In several fields of physics we can find disguised logical structures formulated
in terms of physics. For example, the algebraic structures of the state spaces
in classical and quantum mechanics are nothing else than Lindenbaum–Tarski
algebras of calculi of the underlying propositional logic formulated in terms
of classical or quantum mechanics. These structures are not proper laws of
nature and they cannot be falsified by experimental evidence within their
domain of application.

3.4 Answer to the Objections

3.4.1 (to 3.1.1) It is correct that the laws of logic are applicable to all objects
dealt with by the natural sciences and consequently to all objects which are
42 This law is written here in a rough form only but for the point to be made the

form is irrelevant.
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described and ruled by laws of nature; and moreover that these objects obey
the laws of logic. But from this it does not follow that the laws of logic are also
laws of nature. Since – as it was said in the answer – the names “law of logic”
and “law of nature” are not taken from the domain of application; since then
not only the laws of logic would be laws of nature but also the laws of nature
would be also laws of ethics because human actions obey also the laws of
nature. Therefore these names “laws of logic” and “laws of nature” are taken
from the respective proper domains of the disciplines which are different.

The citation of Kant does not make the wrong claim that the laws of logic
are laws of nature. It says only that the laws of logic are applicable to all
objects whatsoever. However there is a problem with Kant’s view of laws in
general: Whether he thinks that the a priori laws of logic are just laws of
the a priori structures of our thought; since in an analogous way he claims
that the “laws of nature” are just the a priori laws (structures) of the human
mind who projects them on nature.43 In any case we do not share this kind
of subjective or idealistic view about laws of nature which is clear already
from Chap. 2. Concerning laws of logic Kant mentions only the principle of
non-contradiction, to which – according to him – all other laws of logic can be
reduced and stresses that these laws are all analytic. The first (reduction) is
of course not correct proof theoretically, and semantically there is no selection
of a principle by a mark of distinction anyway. The second (analytic) is un-
derstandable, since Kant understood logic as syllogistics (and had apparently
no knowledge of further developments in the Stoics, the Scholastics and in
Leibniz). But every syllogistic mode has to obey the principle that the predi-
cates in the conclusion (subject term and predicate term) are included in the
predicates of the premises (subject term, predicate term, middle term). And
this was just Kant’s concept of taking out (unfolding, extricating) the con-
clusion form the premises with which he described analyticity.44 Applied to
propositional logic the “analyticity condition” from syllogistics requires that
there are no propositional variables in the conclusion (in the consequent of a
valid implication) which are not already in the premises (antecedent). This
is an interesting relevance criterion which was called Aristotelean criterion of
relevance and has been investigated elsewhere.45 For the quantificational part
of PL1 however an analogous requirement of analyticity is not suitable, since
it would generally forbid to introduce new individual terms in the conclusion;
i.e. existential generalisations of the form a = a |– ∃x(x = a) and many similar
ones in the logic of relations would be forbidden.
43 cf. Kant (1783, PzM), Sect. 36. This is however not the place to discuss this

intricate question of the history of philosophy in detail.
44 For the concept of analyticity in general and for an interpretation of Kant’s ana-

lyticity with the help of formal logic see Hintikka (1966, AAn), (1966, KVd).
45 cf. Parry (1933, AAI), Weingartner (1985, SRC), which provides a semantics with

matrices for this Aristotelean relevance criterion, and Weingartner, Schurz (1986,
PSS).
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3.4.2 (to 3.1.2) Although logic is the most general of all sciences with respect
to application and although the laws of logic rule the elements of the universe
of discourse of the natural sciences it does not follow that the laws of logic are
laws of nature.46 One important reason was given in the answer and in the
commentary to the first objection: the domain of application is not identical
with the proper domain of which the names “law of logic” and “law of nature”
are taken. Another reason is that laws of nature satisfy all the conditions for
genuine laws (see Chap. 2) but laws of logic do not satisfy all of them.

Still another reason can be grasped from what has been said in the section
“Domain of Application” (3.3.2): Not all laws of logic are equally applicable to
all fields of research. Whereas all laws of CL seem to be applicable in classical
mathematics and set theory, not all laws of CL are applicable in all empirical
sciences. And moreover some presuppositions of CL are not laws of logic, but
strong assumptions for the formation of the system (calculus) like the one
that every proposition (predicate) can be combined with every other.

The phase “the laws of logic rule the elements of the universe of discourse
of natural sciences” should not be misunderstood. To “rule or order certain
things” can have at least two different meansings: (i) to rule something by
causally influencing it; (ii) to rule or order in the sense that the objects ruled
satisfy the rule. Here it is only understood in the second sense (ii). That
means nothing else than that the natural objects (for example material bodies)
satisfy the laws of logic, i.e. are consistent objects (do not have incompatible
properties at the same time) or satisfy the logical consequences if they satisfy
the premises, etc. When it is said that laws of nature rule the elements of the
universe of discourse of natural sicences then “law of nature” is understood
in the sense of L2 (law like structure of nature) or in the sense of L4 (the true
law) (cf. Sect. 1.3) but not in the sense of L3 (law statement) which is only
an approximation to L4.

3.4.3 (to 3.1.3) Concerning this objection we have to distinguish two things:
First the opinion that the laws of logic can be justified or revised by con-
tingent facts (like perception and others). Secondly whether independently
of such an extreme view of logic one can show that the laws of logic are
not laws of nature. Concerning the first one can show that Russell’s opinion
leads to absurd consequences: Although one can admit that finitistically ver-
ifiable propositions concerning (the finite part of) natural numbers (i.e. the
“multiplication table”) play some role of direct evidence (“sense perception”)

46 Concerning logic this holds for PL1 (with identity). Concerning higher order, set
theory in the version of Zermelo Fraenkel or Neumann Bernays Gödel seems to be
the most general formal system. Maximal generality may hold also for an ontology
or metaphysics which is understood in a very general way: everything or almost
everything can be understood as some being (in the widest sense). Though also
here important restrictions for consistency have to be made like those put on
highly general classes, like the restrictions on the universal sets in set theory.
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for elementary understanding47 or even for building up the system of natural
numbers in a constructivist way (cf. Chap. 4) it seems clearly untenable to ex-
tend such a “justification” to other domains of mathematics.48 It can also not
be acceptable for the generality of logical laws. Thus the logical law that all
logical consequences from true premises are true cannot be justified by sense
perception. Concerning the opinion of Quine one can agree to have a weaker
system of logic (without bivalence) – i.e. to deviate from classical logic – for
the application to certain domains outside logic, say mathematics from the
intuitionistic point of view. But from this it does not follow that one can
“revise” every law of logic. For instance in this sense one cannot “revise” the
above principle of logical consequence or a very tolerant version of the princi-
ple of non-contradiction (recall Sect. 3.32 above). On the other hand one can
even admit what is a common feature of all paraconsistent logics: to reject
(certainly to reject as relevant, not necessarily to reject as valid) the inference
that from a contradiction any statement whatsoever (not in any relation to
the premises) can be derived which is a theorem of classical logic. According
to the above restriction (see 3.32(b)) such a conclusion is a replaceable part.
This move was criticised even by such a classical logician as Tarski:

“A theory becomes untenable if we succeed in deriving from it two
contradictory sentences. [. . .] People who are acquainted with modern
logic are inclined to answer this question in the following way: A well-
known logical law shows that a theory which enables us to derive two
contradictory sentences enables us also to derive every sentence. [. . .]

I have some doubts whether this answer contains an adequate
analysis of the situation. I think that people who do not know modern
logic are as little inclined to accept an inconsistent theory [. . .]; and
probably this applies even to those who regard [. . .] the logical law
on which the argument is based as a highly controversial issue, and
almost as a paradox.”49

Concerning the second point it can be said that even independently of the
opinions of Russell and Quine laws of logic do not satisfy the necessary con-
ditions for laws of nature and therefore cannot be laws of nature. In Chap. 2
it has been shown that laws of nature satisfy all the eight conditions which
have been described for genuine laws. Now laws of logic w.r.t. their usual un-
derstanding do not satisfy conditions G2, G6, G7, G8: they do not describe
conserved and invariant properties because they allow every property (do not
exclude any except the inconsistent ones) (G2); they do not have empirical
informative content (G6); they do not belong to a system of laws which makes

47 cf. Feferman (1964, SPA), p. 3f.
48 cf. the detailed critical remarks concerning an exaggeration for an analogy be-

tween mathematics and physics by Kreisel in his (1965, MLg), Chaps. 3 and 5,
(1967, MLW), Chap. 2, and (1974, NMT).

49 Tarski (1944, SCT), p. 367.
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up the central part of an (empirical) theory (G7); they do not refer to mind in-
dependent objective reality in the empirical–ontological sense but to objective
conceptual entities (G8).

3.4.4 to (3.1.4) The answer to this objection is clear from the section Domain
of Application (3.32). The laws of logic are not laws of nature. First because
the former are complete, the latter are not (subsection (2)). Secondly, limita-
tions concerning the application (as described in subsection (3)(i) and (ii)) do
not invalidate or limit the laws of logic themselves but limit their application
and may restrict some presuppositions which are not laws of logic but forma-
tion rules for the propositions and predicates used in the laws. But the fact
that those laws of logic which are not applicable in certain areas of empirical
sciences are applicable without any problems or necessary restrictions in other
areas (especially those of formal sciences) shows that they are not invalidated
by the limitation of applicability: Contingent constraints of empirical facts
lead to a selection of logical laws for the special application rather than to
a violation. And since the so selected laws of logic are still belonging to the
proper domain of logic (are still laws of logic) by other criteria they are not
reducible to laws of nature.

3.4.5 (to 3.1.5) The answer to this objection and especially to the view ex-
pressed in the introduction and in later passages of Boole’s Laws of Thought
is similar to that given in 3.4.3 to Russell: the generality of the laws of logic
cannot be ultimately justified by the operations of the human mind in the
sense of subjective human experience, even in the most evident experience of
these operations. Since – as it is well known from the history of mathematics
and the sciences – some propositions which have been proposed as most evi-
dent axioms turned out to be inconsistent or incompatible with experimental
results. On the other hand it can be conceded that evident operations of the
mind play a role for the process of learning and understanding laws of logic.

That the laws of logic are independent from laws of nature or laws of
thought (or operations of the mind) in an important sense can also be seen
from an argument brought forward by Haldane which is directed against ma-
terialism: “if materialism is true, it seems to me that we cannot know that it
is true. If my opinions are the result of the chemical processes going on in my
brain, they are determined by the laws of chemistry, not of logic.”50 One may
first object that also computers work in full accordance with the laws of logic.
But to this objection there is a simple reply: The computer is programmed
and constructed by humans in such a way that it uses the laws of CL (usu-
ally with some special restrictions like resolution rules, Horn clauses, etc. in
order to avoid redundant inferences). One could construct a computer which
makes invalid inferences or which makes valid inferences only at random. This
shows unambiguously that the computer does not possess the logical laws in
50 Haldane (1937, InM), p. 157. Popper discusses Haldane’s argument and gives also

reasons for the need of standards of validity. cf. Popper, Eccles (1985, SBr), p. 76f.
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its nature. And moreover since both computers and humans (logicians, math-
ematicians and scientists) can and do commit logical (and other) errors, it is
plain that by the laws of logic we understand standards of validity which have
some important independence of laws of nature and of the physical world.

3.4.6 (to 3.2.1 and 3.2.2) The argument in 3.2.1 agrees with what has been
said in our proposed answer. To the citation of Wittgenstein (3.2.2) we want
to comment two things: First Wittgenstein uses the terminology he and peo-
ple of the Vienna Circle invented and which was used afterwards by many
logicians. Questions of terminology are not important except the terminology
is misleading which is certainly the case with the word “tautology”. Secondly
to say “therefore the propositions of logic say nothing” is hardly acceptable
as a conclusion from an invented terminology. Moreover the claim is a bold
exaggeration or understatement. Since Frege and Russell have given logic a
precise form a great number of interesting theorems has been proved (inside
the system of PL1 and about the system). In a similar way proposition 6.2 of
the Tractatus (“Mathematics is a logical method. The propositions of mathe-
matics are equations, that is “Scheinsätze”) is at least misleading if not plainly
false. It seems to presuppose a strong “Logicism” (reduction of mathematics
to logic) and seems to assume (wrongly) also for mathematics completeness
and recursive enumerability of all true propositions as it is claimed for logic
in 6.125 (Tractatus).51 We shall not go into the question of whether the laws
of logic are analytic – though widely and controversially discussed in philoso-
phy. It suffices to say that as long as the claim of the analyticity of logic says
only that the laws of logic do not describe and explain empirical (physical,
biological. . . etc.) facts it can be easily agreed upon.52

51 This fits to Wittgenstein’s mechanical picture of logic, he had at the time of writ-
ing the Tractatus. Though correct for classical propositional logic the mechanical
picture does not anymore fit to PL1 and much less to higher order logic because
of its undecidability (though completeness).

52 For a proposal to clarify different conceptions of analyticity by precise logical
means see Hintikka (1966, AAn)
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Are the Laws of Mathematics Laws of Nature?

In every law of physics mathematics is contained as an essential ingredient. If
a physical law is a valid law of nature, then the mathematical laws contained
in it hold a fortiori, indirectly, in the reality too. However, this very general
aspect is not the problem that we are interested here. Instead, we will ask
whether the mathematical laws which refer to the objective reality directly
and without reference to physics, are valid laws of nature. Hence, we restrict
our considerations to those parts of mathematics which are not concerned with
abstract entities like groups, rings, and lattices but with concrete mathemat-
ical objects like natural numbers, geometrical objects in a three dimensional
space and probabilities of real events. Here, we will investigate the question
mentioned with respect to arithmetic of natural numbers, three-dimensional
geometry and elementary probability.

Generally, we must distinguish two subquestions. Firstly, we ask, whether
a given mathematical law holds in nature at all and secondly, whether this
law, provided it holds in nature, is a genuine law of nature. Consequently,
we proceed in two steps. In the first step we investigate the validity of the
mathematical law considered in the objective reality and ask why this law
holds in nature. On the basis of an answer to this question in a second step
we will investigate whether the law in question is a genuine law of nature.
As mentioned above (Chap. 2) a genuine law of nature is valid, it refers to
the objective reality and the reason for its validity are certain features of the
reality. A genuine law of nature is a contingent law and can – in principle –
be falsified.

The three mathematical fields which we will study here can be formu-
lated by means of convenient axioms. However, these fields are not genuine
axiomatic structures but fields that can also be obtained by means of an op-
erational approach. Within the framework of this approach we can find firstly
an answer to the question why the laws considered hold for mathematical
objects and secondly why these laws hold also for real objects. For the three
fields mentioned we will show that under well defined conditions the laws of
arithmetic, geometry and probability hold strictly in the real world, partly
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for a priori reasons and partly for contingent reasons as the genuine laws of
nature.

4.1 Arithmetic

In our everyday experience and in science we constantly apply the laws of
arithmetic to the exterior reality. Prima facie, there are no doubts that the
laws of arithmetic hold in our experience. We are able to count sheep in a
flock of sheep and small planets in our solar system and we are sure that the
numbers obtained are subject to the laws of arithmetic. Hence, the question
arises whether the laws of arithmetic are contingent and falsifiable empirical
results. Are they laws of nature – or are the laws of arithmetic a priori valid
and hold, for this reason, also in our experience?

This question has a long history which will not be reported here. We men-
tion only briefly that Kant considered the laws of arithmetic as a priori valid
since they follow from the most general preconditions of possible experience.1

Since Kant did not provide an explicit proof of this statement, i.e. he did not
deduce Peano-like axioms, his argument was exposed to the critique of the
logical empiricism of the 20th century. In particular, Quine2 argued in favour
of a fallibilism of arithmetic, such that arithmetic as a whole could be falsified
by empirical evidence. In contrast, Wittgenstein pointed out that modifica-
tions of arithmetic for empirical reasons would lead to serious difficulties since
they would presumably invalidate the preconditions of that experience which
led to the modification in question.3 Wittgenstein did not elaborate this argu-
ment in detail and in particular, he did not formulate explicitly the arithmetic
preconditions of experience.

4.1.1 Question: Is Arithmetic a priori Valid?

In order to demonstrate the a priori validity of arithmetic and the impossibility
of its empirical falsification, we will follow a more formal way of reasoning
which allows to formulate in detail the preconditions of experience which are
expressed by the laws of arithmetic.4 In particular, it must be shown that the
way to obtain empirical results about the objective reality always presupposes
some arithmetical structures. Here, we will restrict our considerations to that
part of arithmetic which deals with natural numbers 1, 2,. . . , n, . . . and with
propositions like the equation 2 · 3 = 3 · 2, etc. Of course, arithmetic is a
much wider field that incorporates negative integers, rational numbers, and
also real numbers. However, the transcendental way of reasoning, which allows
1 Kant I. (1787, KRV); Kant, I. (1929, CPR).
2 Quine, W.v.O. (1961, LPV), p. 47.
3 Wittgenstein, L. (1974, GdM), p. 97 and 161.
4 Tetens, H. (1994, AAp).
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to demonstrate – in the spirit of Kant – the a priori validity of arithmetic in
the empirical reality, is restricted to the infinite set of natural numbers. Only
within the limited framework of arithmetic of natural numbers we can hope
to show the a priori validity of arithmetic and thus to answer the question
whether the laws of arithmetic are genuine laws of nature.

In the sense of operational mathematics,5 which we will adopt here, num-
bers are given by figures that can be constructed by the calculus of arithmetic.
Figures which represent numbers, i.e. numerals, are either the usual ciphers
1, 2, 3,. . . or simply sequences |, ||, |||, · · · of dashes. A number system N of
this kind is subject to the following rules.

N1 In any number system N there is a well defined beginning sign α.
N2 To any sign β there is a uniquely defined successor σ(β), which is different

from all the preceding signs.
N3 Any sign β of N can be constructed by repeated application of the suc-

cessor rule N2 to the beginning sign α.

These rules are a formal description of the counting process. A number system
N which fulfils the rules N1–N3 is an ordered system of signs which will
be called “Peano sequence”.6 The elements of a Peano sequence are signs
(numerals) of natural numbers and these numbers are subject to the well
known Peano axioms of arithmetic. The Peano axioms read:

P1 0 is a natural number;
P2 to any natural number n there is a uniquely defined successor σ(n) which

is again a natural number;
P3 for any natural number n holds that n �= σ(n);
P4 for any two numbers n and m holds that n �= m implies σ(n) �= σ(m);
P5 if a proposition A(x) (x is a variable for natural numbers) is fulfilled by

x = 0 and if A(x) is fulfilled by x = σ(n) if it is fulfilled by x = n, then
A(x) is fulfilled by any natural number.7

However, there is a large ambiguity in the signs which denote natural num-
bers. We could use the usual ciphers, sequences of dashes, or material objects
provided they can be incorporated into a Peano sequence. In any case, there
must be a one-to-one correspondence between numbers and signs for numbers.
Moreover, any empirical object which can clearly be distinguished from other
objects, can be inserted into a Peano sequence and used as a sign for a num-
ber. Hence, a Peano sequences could – in principle – be constituted exclusively
by means of distinguishable single objects, provided there are infinitely many
objects available, what will never be the case. In other words, to say that to
5 Mainzer, K. (1984, OpM), p. 806.
6 Tetens, H. (1994, AAp).
7 This axiomatic system differs from the rules N1–N3 by the “axiom of induction”

P5, since within the operational approach to arithmetic axiom P5 is an obvious
consequence and need not to be formulated explicitly.
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any material numeral n there is – according to P2 – a successor σ(n), is an
idealisation.

4.1.2 Proposed Answer

The preceding arguments show in which way the laws of arithmetic of natural
numbers can be justified. Propositions of arithmetic deal with natural numbers
or, more precisely according to Hilbert8 with signs for numbers. These signs
are constructed by means of the rules N1–N3 and fulfil – for that reason –
the Peano axioms P1–P5. Hence, numbers, which are denoted by numerals,
ciphers etc. are subject to the laws of arithmetic. It is obvious that this way
of reasoning, which demonstrates the a priori validity of arithmetic, does not
depend on experience in any way. Hence, our first – but still preliminary –
result is that the laws of arithmetic are not laws of nature.

4.1.3 Question: Is Arithmetic Valid in the Real World?

Next, we consider the problem of applicability of arithmetic to empirical ob-
jects. Why can the laws of arithmetic be applied to objects of reality? In
order to answer this question we argue in the following way. Our experience
of the exterior reality consists of individual objects which are carriers of ob-
servable properties. These objects can be distinguished from other objects
and re-identified at a later time. Empirical objects of this kind appear in our
experience as a temporally ordered sequence and this sequence has obviously
the essential properties of a Peano sequence. However, real objects can change
their properties and they could even be destroyed. Hence, they are not very
useful as signs for numbers. The individual and distinguishable objects which
we observe at certain time values can, however, be named by dual numbers,
say, which contain all the information about the object including the time of
its appearance. This ordered system of names has again the essential prop-
erties of a Peano sequence and it fulfils as any other Peano sequence the
arithmetical laws, which follow from the Peano axioms.

Hence, if there are single objects in our experience, which can be distin-
guished and re-identified, then these objects can uniquely be named such that
the names can be ordered as a Peano sequence. Since this Peano sequence
fulfils the laws of arithmetic we conclude that the laws of arithmetic hold also
for the named real objects. For this conclusion, we must only assume that any
object, which appears in our experience can conveniently be named. However,
this assumption seems to be trivial, since otherwise the object would not be
subject of objective experience. Hence, we find that the laws of arithmetic
hold without any restriction for objects of experience.
8 Hilbert, D. (1922, NdM).
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4.1.4 Final Answer

On the basis of this result we can try to find a final answer to the question
whether the laws of arithmetic are genuine laws of nature. The laws of arith-
metic of natural numbers hold for numerals on account of their construction
and thus for individual objects named by these numerals. They are laws in the
sense of L5. Hence, the laws of arithmetic of natural numbers are not genuine
laws of nature, although they hold unrestrictedly for the single, distinguish-
able objects of our experience. Arithmetic of natural numbers is the most
important and most simple example, which shows, that unrestricted validity
of some laws in our experience does not imply that these laws are genuine laws
of nature. It could happen, that they can be justified by a priori reasoning,
as in case of arithmetic.

4.1.5 Reservation

There is, however, still a last reservation against this way of reasoning that
does not directly invalidate our final result, but rather the limits of applica-
bility of these arguments. The unrestricted validity of arithmetic in the real
world follows, if we assume that any conceivable experience consists of indi-
vidual and distinguishable objects. Usually, this presupposition is taken for
granted.9 If, however, in contrast to this assumption our experience were not
composed of single and distinguishable objects, which can conveniently be
named by numerals, then the whole way of reasoning presented here would
be without object.

A situation of this kind seems to be realised in quantum physics, where
experience consists of a set of objects (atoms, electrons, etc.) that are highly
correlated and indistinguishable.10 Hence, they cannot be named. Generally,
quantum objects cannot be individualised and re-identified at a later time.
There is, however, a remaining arithmetic component. The total number of
objects is still a meaningful concept. Hence, for the constitution of this kind of
residual experience presumably the cardinality of natural numbers is sufficient.
Presently, it is not known how a reduced arithmetic in this sense would look
like and in which sense it may be considered as a precondition of quantum
physical experience.11

4.2 Geometry

In the history of physics and geometry there is a long lasting debate about the
problem whether the laws of geometry are valid in the real three dimensional
9 e.g. Tetens, H. (1994, AAp).

10 Esfeld, M. (1999, HdQ).
11 A “non-Peanoan arithmetic” of this kind could be called “quantum arithmetic”.
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empty space.12 Whereas Kant considered the laws of geometry as a priori valid
and applicable in the real world, the situation was changed essentially by the
discovery of the non-Euclidean13 and the Riemannian geometry.14,15 On the
basis of this discovery, Gauß as well as Riemann considered it a meaning-
ful question which one of the many possible Riemannian geometries actually
holds in the real space. However, this question cannot easily be answered ex-
perimentally, since the geometry of the real space is not directly observable.
Of course, we can investigate by measurement the properties of a real triangle
made of wood, iron, or of light rays. However, experiments and measurements
of this kind will tell us only something about the geometrical properties of
light rays and massive bodies, but nothing about the geometry of the empty
space.

In this situation, we could go back to the preconditions of the geometry in
space and investigate the problem whether these preconditions can be tested
experimentally. We will not discuss here the most general geometry of the
three dimensional space but restrict our considerations to the Riemannian
geometry and to the three special cases of Riemannian geometry with con-
stant curvature, the Euclidean, elliptic, and hyperbolic geometry. The reason
for this restriction is that the geometries mentioned can conveniently be char-
acterised by conditions which must be fulfilled by the measuring roads. These
conditions, which seem to be very intuitive, follow from mathematical results
by Helmholtz, Lie, and Weyl.

Helmholtz considered the distance between two points as the fundamental
concept of geometry. In order to measure a real distance in the three dimen-
sional space we must compare this distance with some unit length, i.e. we must
move a measuring rod from the distance to be measured to the unit length.
This procedure presupposes that the measuring rod is not changed by this
transport in any way, i.e. that it is an ideal rigid body. Hence, a necessary
precondition of measuring distances is the free mobility of rigid measuring
rods in the real space without thereby changing their form in any way. It
turns out that this precondition of free mobility has important consequences
for the geometry of distances measured by roads.
12 Mittelstaedt, P. (1989, PMP), p. 49 ff.
13 Gauss, C.F. (1828, Dgc). Gauß meditated about the problem at least since 1800

but the early efforts (cf. a letter to W. Bolyai of 1804) were still directed to prove
the truth of Euclid’s fifth axiom. Later letters to Bessel (1829) and Schumacher
(1831) show some ideas but without proofs. The first fully developed systems of
“non-Euclidean geometry” are Lobachevsky (1829, OFG) – after having given
a lecture about this topic at the section of Mathematics and Physics of Kazan
university already in 1826 – and independently J. Bolyai’s The Absolute Geometry
of 1831, cf. Meschkowski (1978, PNM) p. 28 ff. and Bonola (1955, NEG) p. 84 ff.

14 Riemann, B. (1854, HyG).
15 Mainzer, K. (1980, GdG).
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The condition of free mobility of rigid measuring rods was first expressed
mathematically by Helmholtz16 and reformulated more precisely by Lie17 and
Weyl.18 Instead of a rigid body, we consider a set of points in a finite region of
space. The free mobility of a body then corresponds to an isometric mapping
of the region in space to itself. First, we assume that the region in space is
sufficiently small, i.e. only arbitrarily small bodies are freely movable. Then
we have the following:

Theorem I. (Helmholtz)19

If arbitrary small regions of space can be mapped isometrically to itself by a
point rotation, then the space is Riemannian and the line element assumes
the form ds = (gµνdxµdxν)1/2.

If, however, the premise of this theorem is strengthened such that even finitely
extended regions of space can be mapped isometrically to itself by a point
rotation, then we arrive at

Theorem II. (Helmholtz)
If finitely extended regions of space can be mapped isometrically to itself by a
point rotation, then the space is a Riemannian space with constant curvature,
i.e. Euclidean (K = 0), elliptic (K > 0), or hyperbolic (K < 0).

For the empirical geometry the two Helmholtz theorems lead to the following
corollaries:

Corollary I. If we are given sufficiently small, rigid bodies, freely movable in
space, then the geometry of the space that is measured with these rigid bodies
is Riemannian.

Corollary II. If we are given even rigid bodies of finite extension that are
feely movable, then the geometry of the space measured with these bodies is
the geometry of an Euclidean, elliptic or hyperbolic space.

These results suggest that we are confronted here with the following situation:
On the one hand, the geometry of the real space follows from the preconditions
that distances can be measured at all, i.e. from the free mobility of the mea-
suring rods. Hence if we are able to measure distances at all, then the laws
of the corresponding Riemannian geometry hold a priori for the measured
distances. On the other hand, the free mobility and rigidness of sufficiently
small or finitely extended rigid bodies is an contingent and falsifiable empir-
ical property which indicates that the laws of geometry are partly empirical
laws of nature.

This is, however not entirely correct for the following reasons. An exper-
imental test of the rigidness of a body can be performed only by marking
16 von Helmholtz, H. (1868, TdG).
17 Lie, M.S. (1888, TfG).
18 Weyl, H. (1923, MAR).
19 For the proof cf. Laugwitz (1960, DfG), p. 145 ff.
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on the body investigated at least four points that do not lie in a plane and
by comparing the distances between these points before and after a certain
motion. If the distances were unchanged, then the system of points would
have been transformed to another congruent system of points and the body
could be considered as rigid. However, for demonstrating the congruence of
two point systems one needs freely moving measuring rods the rigidity of
which, in turn, could only be demonstrated by congruence measurements.
Apparently, the rigidity of a measuring rod cannot be tested empirically in
this way.

Under these circumstances, one can conversely assert of an arbitrary, freely
movable body that it is rigid. In particular, according to Helmholtz, one could
take a body that is rigid in the sense of physical laws. More precisely, this
means that the body investigated must be rigid with respect to the totality
of physical laws, which are, in turn, be formulated within the framework of
that geometry which one obtains by using the body considered as measuring
rod. Hence the test of the rigidness of the body will consist in demonstrat-
ing the consistency of the assumed rigidness, the corresponding geometry and
the laws of physics. Obviously, the essential assumption which must be made
here, is the existence of objects which fulfil this consistency requirement.20

One can then use a body which is rigid in the sense of physics as measuring
rod. If the body is sufficiently small, then the measured geometry of space is
Riemannian; if furthermore it has finite extension, then one obtains the geom-
etry of a Riemannian space with constant curvature. However, the geometrical
propositions which one obtains in this way do not deal with the properties
of empty space but rather with the properties of the most general measuring
rods which are rigid in the sense of physics.

In conclusion we find that the laws of geometry in empty space depend on
some transcendental arguments and on the presupposition that there are freely
movable measuring rods which are rigid in the sense of physics. Hence, the
laws of geometry in empty space hold partly a priori and partly for empirical
reasons and are thus partly laws of nature.

4.3 Probability

Outline of the Problem

In many fields of physics, in thermodynamics, statistical mechanics, and quan-
tum mechanics the experimental results do not consist of single events Ei but
of probabilities p(Ei) for the occurrence of events Ei, or more precisely of
relative frequencies pi = f(Ei). These relative frequencies are usually treated
by means of probability laws – provided the number n of events is sufficiently
20 There are some doubts, whether objects of this kind which are defined exclusively

in terms of classical concepts are still meaningful in the realm of quantum physics.



4.3 Probability 57

large. Hence, the laws of probabilities are in fact applicable to the real world.
In addition, they fulfil also the other necessary requirements of law of nature.
As in the preceding sections about arithmetic and geometry, we will inves-
tigate here the question whether the laws of probability are genuine laws of
nature. The question turns out to be a rather intricate problem, which requires
a more detailed investigation.

From Kant to Boole

In his Treatise of Human Nature (1739) David Hume emphasised that we never
observe objects but only qualities and that it is nothing but imagination if we
regard the observed qualities as properties of an object. Hence, any scientific
cognition begins with the observation of qualities and it seems to be merely
a question of interpretation whether in addition to the observed phenomena
a fictitious object, “an unknown something”, is used for the description of
experimental results. Obviously, there is no reason to expect that general
laws like conservation of substance or causality hold in nature.

The same problem was treated by Kant in the Critique of Pure Reason
(1787). However, in contrast to Hume, Kant emphasised that “objects of ex-
perience” are not arbitrary imaginations but entities that are constituted from
the observed data by means of some well-defined conceptual prescriptions, the
categories of substance and causality. Hence, the interpretation of the empiri-
cal data as properties of an object can only be justified if the object as carrier
of properties is constituted by these categories. Kant formulated necessary
and sufficient conditions that must be fulfilled by the observational data if
the measurement results are to be considered as properties of an “object of
experience”.21

This way of reasoning can be illustrated within the framework of classical
mechanics. If we possess some objective cognition that relates to the external
reality and not to the observing subject, then the observations in space and
time must be connected by mechanical laws, which are specifications and real-
isations of the general laws of causality and of the conservation of substance.
For example, in the planetary system there is a large number of small planets
that can be observed only occasionally. Observations that can be obtained
within a period of several months, say, consist of many isolated light points
without any obvious connection. However, if these observed data refer to a
well-defined astronomical object, then the light points must be points on a
21 Kant did not claim that an interpretation of this kind is possible for any set of

observations. However, “if each representation were completely foreign to every
other, standing apart in isolation, no such thing as knowledge would ever arise.
For knowledge is [essentially] a whole in which representations stand compared
and connected”. In other words, without causal correlation the observed qualities
cannot be considered as properities of an object of experience (Kant, I. (1929,
CPR), A 97). This case of “empty knowledge” will become interesting also for
the problem of probability attribution.
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spacetime trajectory that is determined by Newton’s equation of motion. This
mechanical law is strictly causal and it conserves substance, i.e., it preserves
the mass point as the carrier of the mechanical predicates.

The physical sciences such as classical mechanics, which are governed by
strict causality laws, were extended in the nineteenth century by the incorpo-
ration of statistical theories. In these new fields, the primarily given entities
are no longer events Ei in space and time whose causal connection can easily
be recognised but probabilities p(Ei) for the occurrence of events Ei or, more
correctly, the relative frequencies of events Ei. Under these conditions the orig-
inal Kantian way of reasoning is no longer applicable. If causal correlations
between several events are not discernible, the objectivity of our cognition
cannot be guaranteed in the Kantian way. Instead, one has to begin with the
only perceptible empirical structure, the relative frequencies or probabilities
p(Ei) of various events Ei, and ask under which conditions probabilities of
this kind refer to a certain exterior object. 22

This problem was first studied by George Boole, best known as one of
the founders of modern logic. In his book The laws of Thought23 and in a
subsequent paper On the Theory of Probabilities,24 Boole investigated what he
called “the conditions of possible experience”. The problem treated by Boole
can be sketched as follows. Assume that the observer is given a set of numbers
p1, p2, . . . , pn with 0 ≤ pi ≤ 1, which represent the relative frequencies of n
merely logically connected events E1, E2, . . . , En. One can then ask for the
necessary and sufficient conditions that must be fulfilled if the numbers pi are
to be considered as probabilities for properties (given by Ei) of some object
of experience.25

Classicality Conditions

In order to realise Boole’s project, let us consider a sequence of n rational
numbers p1, p2, . . . , pn, which correspond to the relative frequencies of the log-
ically connected events E1, E2, . . . , En. “Logically connected” means in this
context that the events Ei are not logically independent but connected by
logical operations and relations. The question that will be investigated here
reads: what are the necessary and sufficient conditions that permit the inter-
pretation of the numbers pi as “probabilities” that can be attributed to some
physical system? In other words, what are the conditions for the existence of
a classical probability space such that there are n logically connected events
22 We will restrict our considerations to the “relative frequency interpretation” of

probabilities. “Single case interpretations” which make use of the concepts of
“propensity” (Popper) and “potentia” (Heisenberg) might be of interest in fields
different from natural sciences and will not be considered here. (cf. Mittelstaedt;
P. (1997, QPT)).

23 Boole, G. (1854, LoT).
24 Boole, G. (1862, ToP).
25 cf. also Pitowsky, I. (1994, CPE).
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E1, E2, . . . , En whose probabilities p(Ei) are given by the observed numbers
pi?

If the events Ei are logically independent, i.e. if they are not logically
connected in any way, then the only conditions that must be fulfilled by the
probabilities pi are 0 ≤ pi ≤ 1. Clearly, these conditions are always fulfilled by
the observed relative frequencies. A situation in which the observed data – the
events Ei – do not show any obvious connection in either a causal or a logical
sense can be compared with the “empty knowledge” case mentioned by Kant.
Indeed, if each event were completely isolated from every other, “no such
thing as knowledge could ever arise”. In this case, the numbers pi(0 ≤ pi ≤ 1)
could not be attributed to an object system as the probabilities of its various
properties.

If, however, the events Ei are logically interconnected, then one can inves-
tigate the question of whether the observed relative frequencies pi = f(Ei) of
the events Ei can be attributed to an object system as probabilities for the
properties given by Ei. For a more rigorous treatment of this problem, one
has to specify first the logic of events and second the probability measure in
question. Here we will give a brief account of the basic concepts needed in
the following discussion. For more details and formal proofs we refer to the
literature.26

An event system L is a triple L = 〈L0,≤,¬〉 where L0 is a set of (ele-
mentary) events that is equipped with a partial ordering relation ≤ and a
one-place operation ¬, the complementation, such that L is an orthocom-
plemented orthomodular, partially ordered set which can be extended to a
lattice by means of the two place operations ∧ and ∨. In particular a system
L is called a classical event system if it is a complemented distributive lat-
tice with respect to the relation ≤ and the complementation ¬. Clearly, the
logical meaning of the relation ≤ is the implication, the operation ¬ is the
negation, and the operations ∧ (and) and ∨ (or) can be defined as infimum
and as supremum, respectively.

A probability measure p on the event system L is a map

p : L → [0, 1]

of the set L of events onto the interval [0, 1] which satisfies the Kolmogorov
axioms

K1 p(0) = 0, p(I) = 1
K2 p(¬a) = 1 – p(a) for all a ∈ L (K)
K3 p(a1 ∨ a2 ∨ · · · ∨ an) = p(a1) + p(a2) + · · · + p(an) whenever ai ≤ ¬aj for

i �= j.

By an event probability space W we understand a pair W = 〈L, p〉, where L is
an event system and p a probability measure on L. By means of the concepts
L, p, and W we can now formulate the main problem.
26 Beltrametti, E.G., Maczynski, M.J. (1991, CNP), Pitowsky, I. (1989, QPL).
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A correlation sequence K = {p1, p2, . . . ; pij, . . . } is a set of elementary
probabilities pi and joint probabilities pij , where not all pairs (i,j) need to
appear. A sequence K is called consistently representable if there is an event
probability space W = 〈L, p〉 and a sequence of events (a1, a2, . . . , an) in L
such that

p = p(ai), pij = p(ai ∧ aj)

whenever the pair (i,j) appears in K.
In particular, K is called classically representable if L is a classical event

system. This means that the elements of K – the observed relative frequen-
cies – may be considered as classical (Kolmogorovian) probabilities that refer
to the elements ai of a classical event system LB . The property of a correla-
tion sequence K of being consistently representable in a classical event space is
called “classicality”. The (necessary and sufficient) conditions under which a
probability sequence K possesses the property of classicality are called “clas-
sicality conditions”. The classicality conditions show that a given sequence
of probabilities provides some objective knowledge about a physical system.
Indeed, if we are given (by experiment) a sequence of probabilities pi = p(Ei)
of events Ei, then the necessary and sufficient conditions for these events to
indicate classical properties Pi(S) of a physical system S are the classicality
conditions.

In order to illustrate the concept of classicality we consider a probability
sequence with two properties. For the properties, we write a and b and for the
probabilities p(a) and p(b), respectively. For the joint probability (of the prop-
erty a ∧ b) we write p(a, b). The simplest example of a probability sequence
is then given by (index “2” stands for two properties)

K2 = {p(a), p(b), p(a, b)}.
Classicality Theorem T2.

The correlation sequence K2 is consistently representable in a classical
event space if and only if the “classicality conditions”

0 ≤ p(a, b) ≤ p(a) ≤ 1
0 ≤ p(a, b) ≤ p(b) ≤ 1 (C2)
p(a) + p(b) − p(a, b) ≤ 1

hold.
For the proof of theorem T2 one needs the probability axioms (K) and

some properties of the Boolean lattice L
(2)
B that is generated by the two

elementary propositions a and b. The two parts of the proof (that condi-
tions (C2) are necessary and sufficient)27 illustrate the meaning of the clas-
sicality condition (C2): If the probabilities of a correlation sequence K2 =
{p(a), p(b), p(a, b)} pertain to a physical system as probabilities of its proper-
ties, then the properties fulfil the laws of classical logic and the probabilities
27 Mittelstaedt, P. (1998, IQM), p. 130 ff.



4.4 Concluding Answer 61

are subject to the Kolmogorov axioms. From these premises the classicality
conditions can easily be derived and vice versa. It should be mentioned that
the whole way of reasoning is not restricted to two elementary propositions a
and b, but can be extended to correlation sequences Kn, classicality conditions
Cn and Boolean lattices L

(n)
B that are generated by n elementary propositions.

In particular, the case n = 3 plays an important role in quantum mechanics,
where the conditions C3 are usually called “Bell’s inequalities”.28

On the basis of these results we come back to our main question whether
the probability laws are laws of nature. Within the framework of the present
discussion probability laws are consequences of the Kolmogorov axioms, e.g.
inequalities or equations. However, probability laws are not contingent empiri-
cal laws that could be falsified by experimental evidence. Instead, the empirical
validity of probability laws is based on some kind of transcendental argument:
If we are given a sequence

∑
n = {E1, E2, · · · , En} of events which refer to

an object system S as its properties, then the relative frequencies pi = f(Ei)
of events fulfil the laws of Kolmogorov probabilities.29 However, we have also
seen that not arbitrary sequences and their relative frequencies are subject
to the probability laws. Moreover, correlation sequences Kn of probabilities
which are given empirically, can be attributed to an object S if and only if
the corresponding classicality conditions Cn are fulfilled. Hence the classical-
ity conditions Cn are necessary and sufficient preconditions for the attribution
of relative frequencies to an individual object. Consequently, these conditions
Cn indicate the limits of validity and applicability of classical Kolmogorov
probability. It is well known that some conditions Cn, in particular the Bell
inequalities C3 are violated in quantum mechanics.

Hence, probability laws are not genuine laws of nature that can be tested
empirically. They hold whenever they can be applied. However the necessary
preconditions under which probability laws can be applied to the physical
reality, the classicality conditions Cn, are testable properties of the physical
reality. They are fulfilled in classical physics and partly violated in quantum
mechanics.

4.4 Concluding Answer

Are the laws of mathematics laws of nature? In the three cases discussed here
we found similar but rather complex answers. On the one hand, the laws of
arithmetic hold on account of the construction of its elements, the natural
numbers, the laws of geometry hold for measured distances because of the
free mobility of measuring rods and the probability laws hold since observed
relative frequencies can be attributed to an individual object as probabilities.
28 Mittelstaedt, P. l.c., p. 98 ff.
29 To be more precise, the probability laws hold for sequences

∑
n in the limit n → ∞

except for non-random sequences.
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Hence in the three cases the laws mentioned hold a priori as consequences
of the preconditions of counting objects, measuring distances and attributing
relative frequencies to a referent system. Consequently, under this aspect, they
cannot be considered as contingent and falsifiable laws of nature.

On the other hand, the a priori validity of the laws considered depends
on preconditions of possible experience that are by no means self-evident.
The existence of individual objects, the existence of freely movable measuring
rods which are rigid in the sense of physics, and the validity of classicality
conditions for observed relative frequencies are testable features of the physical
reality and even violated or at least questioned in some domains of this reality.
Hence, arithmetic, geometry and probability considered as applied sciences
depend also on contingent properties of the physical reality and are – under
this aspect – partly laws of nature.
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Properties of Laws



5

Does Every Law of Nature Express
an Invariance (Symmetry)?

5.1 Introduction. Arguments Pro and Contra

Terminological Remarks

(1) The expression “invariance” and “invariant” will be used only for laws
and for physical parameters and magnitudes (see also Chap. 6). However,
the expressions “symmetry” and “symmetrical” are usually applied to
both laws and physical systems. This holds also for their negations like
“asymmetrical” and “not-symmetrical”. The distinction between these
two applications will be discussed in Sect. 5.3.1. If there is no danger for
a confusion this two-fold usage is also adopted here.

(2) If the expressions “symmetry” and “symmetrical” are applied to laws
then we use the expressions “invariance”, “invariant” on the one hand
and “symmetry”, “symmetrical” on the other as having the same mean-
ing. Under this condition “symmetry-breaking” will mean the same as
“violation of invariance”.

(3) The terms “symmetrical”, “not-symmetrical”, and “asymmetrical” are
used according to the following definitions:
(i) Relation (function) R is symmetrical if and only if ∀x∀y(Rxy →Ryx )
(ii) Relation (function) R is not-symmetrical if and only if ¬∀x∀y(Rxy

→Ryx )
(iii) Relation (function) R is asymmetrical if and only if ∀x∀y(Rxy →

¬Ryx )
(iv) Relation (function) R is non-symmetrical if and only if R is neither

symmetrical nor asymmetrical.
From these definitions it follows:
R is asymmetrical and R is not empty → R is not-symmetrical;
R is non-symmetrical → R is not-symmetrical;
R is not-symmetrical → R is asymmetrical or R is non-symmetrical.

Examples: x, y are physical systems and R is translation or rotation or the
relation between right and left, past and future.
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Arguments Contra

5.1.1 If every law of nature expresses an invariance (symmetry) then there
must be a selected number of mutual independencies specific for that law
among some selected variables of the law, and not just an arbitrary unlimited
number of independencies. Thus for example in the hypothesis “the accelera-
tion (a) of a freely falling body does not depend on its mass (m)” we mean
that the values of a stay the same no matter what the values of m are. But,
as Bunge pointed out, an unlimited number of mutual independencies could
be set up concerning any given set of variables:

“For instance, we might truly say that the acceleration of a freely
falling body is independent of its colour, texture, price, aesthetic value
and so on without end.”1

This seems also to hold for laws of nature. Thus in the law “the total
momentum (p) of a system of particles subject to non-frictional forces (f) is
conserved” the values of p stay the same not only when the values of f change
but also when an unlimited arbitrary number of other values of properties of
the particles change.

Therefore: not every law of nature expresses an invariance (symmetry).

5.1.2 If asymmetrical states are realised in nature then laws describing them
cannot be called symmetry principles or cannot express a symmetry. Now,
as Bunge says, the following law is usually regarded as a law of nature: “In
nature only symmetrical or antisymmetrical states are realized”.2

Therefore: not all laws of nature can be called symmetry principles or do
express a symmetry.

5.1.3 If a law of nature describes and explains asymmetric phenomena then
this law cannot be called a symmetry (invariance) principle or does not ex-
press a symmetry. But several laws of nature describe and explain asymmetric
phenomena. For example Newton’s laws of planetary motion and also Kepler’s
describe and explain the elliptic orbits of the planets. These are however asym-
metric solutions with respect to the most simple solutions according to which
the orbits are circles due to rotational symmetry.

Therefore: Newton’s and Kepler’s laws of planetary motion do not express
a symmetry or cannot be called symmetry (invariance) principles.

5.1.4 If all laws of nature express important symmetries then they have to
be symmetrical under a mirror reflection (i.e. right-left symmetrical) which is

1 Bunge (1967, SRI), p. 315. Though texture, price and aesthetic value are of course
not properties of physical systems, the argument provokes the important question
concerning the selection of independent parameters with respect to which laws
are invariant.

2 Bunge (1967, SRI), p. 368. What Bunge calls “antisymmetrical” is in our termi-
nology “asymmetrical”.
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also called parity conservation. But parity conservation is violated as was dis-
covered in 1956: theoretically predicted by Lee and Yang and experimentally
confirmed by C. S. Wu and others in a cobalt-60 β-decay.

Therefore: not all laws of nature express important symmetries (invari-
ances).

5.1.5 If all laws of nature express important symmetries then they have to be
symmetrical under particle–antiparticle symmetry, i.e. they have to be charge
symmetrical.

But the violation of charge symmetry was conjectured by Lee and Yang in
1957 and experimentally established by Christenson et al. and Bennett et al.
in 1964 and 1967.

Therefore: not all laws of nature express important symmetries or invari-
ances.

5.1.6 If the laws of nature express symmetries (invariance) then the demarca-
tion between symmetry and symmetry-breaking must be based on something
objective and not on assumptions about observability. But as Lee says this
demarcation seems to be based on assumptions about what is non-observable
and what is observable:

“Since non-observables imply symmetry, any discovery of asymmetry
(symmetry-breaking) must imply some observable”.3

Thus the physical assumption that absolute position is a non-observable
leads to three conservation laws or symmetry principles of momentum. And
similarly with other such assumptions like direction in space, point of time, etc.
Thus symmetry principles are dependent on assumptions about observability.

Since laws of nature cannot be dependent on assumptions about observ-
ability laws of nature cannot be called symmetry principles or cannot express
symmetries.

5.1.7 If the laws of nature are principles expressing symmetry (invariance)
then the demarcation between symmetry and symmetry-breaking must not
be relative. But it seems to be an open question whether symmetry-breaking
phenomena refute the respective symmetric (invariant) law or whether there
is a symmetric law on the bottom and the symmetry-breaking phenomena
are caused by special initial conditions with respect to which the law is in-
variant. For example the violation of parity or charge conjugation may be
interpreted as refuting the respective symmetric laws or as caused by special
initial conditions while keeping the underlying laws symmetric (invariant).

Since such interpretations seem to be relative with respect to the level of
universality or abstraction the laws of nature cannot be principles expressing
symmetry (invariance).

3 Lee (1988, SAW), p. 11.
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Arguments Pro

If in cases where a supposed law of physics turns out not to be invariant it
should – according to the rules (norms) of methodology – be always replaced
by a new law which specifies the rate of change then the laws of physics are
invariance (symmetry) principles. As Popper says there should always be such
a replacement:

“Physicists as a rule hold that physical laws are eternal. . . It is indeed
difficult to think otherwise, since what we call the laws of physics are
the results of our search for invariants. Thus even if a supposed law
of physics should turn out to be variable, so that (say) one of the
apparently fundamental physical constants should turn out to change
in time, we should try to replace it by a new invariant law that specifies
the rate of change.”4

Therefore: every law of physics is a principle of invariance (symmetry).

5.2 What a Law Is

Proposed Answer

Every law of nature expresses an invariance or symmetry. This can be seen as
follows: Our understanding of any kind of genuine law is such that a genuine
law is something which does not change, i.e. is invariant (symmetric) relative
to something else which changes. But as it was shown in Chap. 2 every law of
nature is a genuine law. Therefore every law of nature expresses an invariance.

Moreover it can be shown independently that every law of nature does not
change relative to some parameters which change like space (position), time
(point of time), inertial frame. . . etc. (see below). In this sense Wigner says:

“It is not necessary to look deeper into the situation to realize that
laws of nature could not exist without principles of invariance”

and

“A law of nature can be accepted as valid only if the correlations which
it postulates are consistent with the accepted invariance principles.”5

Therefore every law of nature expresses an invariance or a symmetry. A
more detailed justification of this argument is as follows: first a comment
will be given to our understanding of a law which is connected with the philo-
sophical tradition. Second different meanings of “invariance” and “symmetry”
will be distinguished. Third it will be shown by discussing several groups of
4 Popper, Eccles (1985, SBr), p. 14.
5 Wigner (1967, SRf), p. 29 and 46.
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symmetries (invariances) that laws of nature express an invariance or symme-
try. Fourth the relation of symmetry and symmetry breaking will be discussed.

5.2.1 Our Understanding of What a Law Is

In addition to what has been said already in Chap. 2, G3, G4, the feature
of invariance belongs to the oldest features for understanding what a law is.
In order to be able to describe and explain movement we need to distinguish
something which changes relative to something which does not change. This
important distinction is pointed out by Aristotle6 also as a criticism of Par-
menides’ theory of the universe which assumes only one being and nothing
else.7 That what changes, moves was thought to be contingent (not necessary)
with respect to the not changing (or even not changeable) necessary princi-
ple or law. In general this idea belongs to the Greek Ideal of Science which
was more or less manifest in several Greek thinkers from Thales on but was
elaborated in detail by Plato and Aristotle: To describe and explain the vis-
ible (observable), concrete, particular, changing, material, contingent world
by non-visible (non-observable) abstract, universal, non changing, immaterial
and necessary principles.

In addition to this more general understanding the two particular invari-
ances (symmetries) which are the oldest in the tradition are those of space
and time. In some sense they are the most important invariance properties of
laws of nature in general and of physical laws in particular.

“The paradigm for symmetries of nature is of course the group of
symmetries of space and time. These are symmetries that tell you that
the laws of nature don’t care about how you orient your laboratory,
or where you locate your laboratory, or how you set your clocks or
how fast your laboratory is moving.”8

5.2.2 The Beginning of Time

The following passage points especially to the fact that the relations between
the events which are described by the laws depend only on the intervals but
not on a point of time when the first event occurred. That means that time-
symmetric laws cannot designate or select a beginning in time or a first event:

“Thus the time displacement invariance, properly formulated, reads:
the correlations between events depend only on the time intervals
between those events; they do not depend on the time when the first
of them takes place.9

6 Aristotle (Phys), 190a17f.
7 Aristotle (Met), 986b15f. and Aristotle (Phys), 186a24ff.
8 Weinberg (1987, TFL), p. 73. cf. Weingartner (1996, UWT) ch.5.
9 Wigner (1967, SRf), p. 31.
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The first philosopher who seems to have realised this very clearly was
Thomas Aquinas. In his quarrel with Bonaventura at the university of Paris
he defended the view that the beginning in time of the world (universe) cannot
be proved from universal principles of, or laws about this world.10 Because
universal principles like real universal definitions and laws together with the
universal concepts or predicates contained in them abstract from hic et nunc
(here and now):

“We hold by faith alone, and it cannot be proved by demonstration,
that the world did not always exist. . . . . The reason is this: the world
considered in itself offers no grounds for demonstrating that it was
once all new. For the principle for demonstrating an object is its de-
finition. Now the specific nature of each and every object abstracts
from the here and now, which is why universals are described as being
everywhere and always. Hence it cannot be demonstrated that man or
the heavens or stone did not always exist.”11

In this connection we want to mention that the question whether it can
be demonstrated that the world has always existed or that it has a beginning
in (with) time – answered differently by the two competing theories of the
development of the universe – is a question about the completeness of the laws
of nature – or at least of that laws we know. A system of laws L about a certain
part P of reality is complete if and only if every truth about P is provable
(derivable) from L.12 Thomas Aquinas’ stance was that the universal laws of
nature (about this world) are not complete with respect to all questions (all
truths) about this world. It is not just our insufficient knowledge of the laws of
nature what he has in mind, but the true laws itself are incomplete according
to him with respect to some special questions. That means that there are
some statements about this world which are undecidable from the laws about
this world. Or in more modern terms: the laws of nature are incomplete with
respect to some important initial conditions.
10 In contrast to Thomas Aquinas Bonaventura argued that an infinite past of the

universe is logically impossible. This argument goes back to Johannes Philoponos
“De aeternitate mundi: contra Proclum”. (1899, DAM).

11 Thomas Aquinas (STh) I, 46, 2. Observe that by “demonstration” Thomas
Aquinas means a rigorous proof from premises which essentially include necessary
laws (of nature).

12 For the question of the completeness of the laws of nature see Chap. 11. For the
rôle of initial conditions see Chap. 8.
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5.3 Invariance and Symmetry

5.3.1 Different Meanings of “Invariance”
and “Symmetry” and their Context

We use the terms “invariance” and “symmetry” according to the terminologi-
cal remarks stated at the beginning of this chapter: applied to laws the expres-
sions “invariance”, “invariant” and “symmetry”, “symmetrical”, respectively,
are used as having the same meaning. For physical systems, however, only
“symmetry” and “symmetrical” are used, but then with a different meaning.

In this section the distinction between different meanings of “invariance”
and “symmetry” will be as follows: Concerning laws we shall distinguish three
meanings of invariance (1–3):

Invariance (symmetry) in a very wide and general sense, invariance with
respect to transformation groups and invariance of highest level principles in
a hierarchical order. Further we shall make a remark on non-invariance (4).
A further clarification will concern the relation between symmetric laws and
physical systems on one hand and non-symmetrical phenomena on the other
(5). Finally active and passive transformations will be related to the invariant
laws (6).

(1) Invariance or symmetry in a wide sense
This type of “invariance” (“symmetry”) is connected with our general un-
derstanding of what a law is: something which is stable, does not change,
is independent relative to something else which is unstable, which changes,
which is dependent. The rough idea is expressed above by describing the
Greek ideal of science. But this rough idea can be made a bit more precise
by the following consideration. We might ask the question: Under what
kind of changes are laws of nature invariant? We might answer first by
giving some of the continuous spacetime symmetries (see below 5.3.2).
But then we might continue with discrete symmetries like CPT symme-
try, etc. But where to end? This leads to the question: What is the set of
all changes which do not change laws (of nature)?

Let us call the set of all the changes which do not change the laws
(of nature) the symmetry group of nature. About this symmetry group
Weinberg says:

“It is increasingly clear that the symmetry group of nature is the
deepest thing that we understand about nature today. . . Specifying
the symmetry group of nature may be all we need to say about the
physical world beyond the principles of quantum mechanics.”13

13 Weinberg (1987, TFL), p. 73. Weinberg’s definition of “symmetry group of na-
ture” is a little bit different and has some subjective element in it: “point of view”
and “way you look at nature”. “The set of all these changes in point of view is
called the symmetry group of nature.” cf. ibid. p. 72 and 73. We shall try to avoid
this subjective element and use as a preliminary version: the set of all changes
which do not change the laws. cf. Weingartner (1996, UWT) Chap. 7.
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But how can we determine the set of all changes, which leave the laws
invariant? This would mean to know the line of demarcation between con-
tingent initial conditions and necessary and invariant laws. It would mean
to know which constants when changed do not affect the laws and which
do; and which initial conditions and boundary conditions would affect the
laws when changed and which would not. Are the laws of nature invariant
with respect to a change of the amount of energy (mass) of the whole uni-
verse (which is constant by the law of conservation of energy)? Or could
we change the ratio of electron and proton mass slightly without changing
laws?’ From these questions it is clear that invariance (or symmetry) in
this wide sense incorporates all the groups of symmetries which are listed
in Sect. 5.3.2 below; and it may even concern further ones of which we
are ignorant so far. However, this wide sense of invariance and symmetry
should not be confused with a much more definite and restricted meaning
to be described as follows:

(2) Invariance (symmetry) under changes of reference frames
This is the sense which is used nowadays to formulate most invariance
(symmetry) principles (see (3) below) and to speak about the invariance
(or symmetry) of laws: a law of nature is invariant (symmetric) if and only
if it does not change under a change of (physical) reference frames. For
example a law could be invariant under a change of inertial systems. In
general a maximal set of transformations is combined to a transformation
group, such as the Galilean group or the Lorentz group. It is said then
that laws are Galilean invariant or Lorentz invariant, like those of classical
mechanics and quantum mechanics on one hand, and those of classical
electrodynamics, special relativity and general relativity on the other.14

(3) Invariance (symmetry) principles as laws about laws
Invariance (symmetry) principles are sometimes understood as meta-laws
about laws (of nature) or as guiding principles which have to be satisfied
by every genuine law of nature. Such a view is expressed in the following
quotations of Wigner and Bunge:

“From a very abstract point of view, there is a great similarity between
the relation of the laws of nature to the events on one hand, and the
relation of symmetry principles to the laws of nature on the other.15

“. . . the new aspects which would be dealt with in these pages . . . rather
support . . . and confirm the function of the invariance principles to provide
a structure or coherence to the laws of nature just as the laws of nature
provide a structure and coherence to the set of events.16

14 For a definition of reference frame and coordinate system see Sect. 6.3.1 Invariance
in the sense of (2) will be of special importance in Chap. 6.

15 Wigner (1967, SRf), p. 16.
16 Ibid., p. 17.
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“It is good to emphasize at this point the fact that the laws of nature
that is, the correlations between events, are the entities to which the
symmetry laws apply, not the events themselves.17

“Apparently ‘nonconservation of parity’ refers to certain law formulas,
and the asymmetry has testable consequences that can be compared with
certain facts; in other words ‘nonconservation of parity’ is in this case an
ambiguous phrase, since it refers both to certain laws and to certain sets
of facts.”18

Concerning this view of Wigner which he defends in more detail espe-
cially in Chap. 2 of the cited book we have to distinguish two things: (i)
first the question of terminology and (ii) second the message of Wigner.
(i) Concerning terminology it is necessary to observe that there is a cer-

tain ambiguity in the application of the term “symmetry” (recall
the terminological remarks at the beginning of this chapter). Sym-
metry and symmetry principles are also applied to real objects like
snowflakes or letters and to physical systems like molecules or crys-
tals. But here (in these quotations) they are used only as very abstract
properties of laws of nature. This tells us that from the terminological
point of view there is an ambiguity here which has to be taken care
of and which can be made explicit (see Sect. (4) below).

(ii) Concerning the message of Wigner we have to distinguish two ways
of understanding a law. First every law can be understood as an
invariance principle, in the sense of expressing an invariance, along
the lines which have been explained historically and systematically
in Sects. 5.2.1 and 5.3.1(1) above. Secondly some laws can be under-
stood as laws about laws or as meta-laws (or meta-nomological laws).
And in this second sense Wigner understands “symmetry principle”
or “invariance principle”. Thus spacetime invariance can be expressed
by the principle: All physical laws (or all laws of nature) are space-
time invariant. This meta-law can even be expressed as a normative
principle in the sense of a valid rule for finding new laws or for re-
quiring desirable properties of laws, or as a norm in the ideal sense:
All laws or nature should (must, ought to) be spacetime invariant.
And a law not satisfying this rule will then be thrown out of the laws
of nature. Observe however that the prescriptive (normative) forms
of such meta-laws are not testable, except in the sense that a norm
cannot be valid if that what it requires is logically inconsistent or is
not satisfiable by facts.

However it should be noticed that the point of Wigner and Bunge should
not be overemphasised. The reason is that the physical content of many
fundamental laws can be formulated in both ways, as laws about laws

17 Ibid., p. 19.
18 Bunge (1967, SRI), p. 364. See also the chapter “Laws of Laws” in Bunge (1967,

SRI), p. 363 ff.
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or meta-laws and as laws about systems, be they reference systems or
physical systems. This can be shown by the following examples:

Relativity in Classical Mechanics

All inertial systems are equivalent. The laws of motion are invariant under
change of inertial systems.

Parity in Electrodynamics

The electromagnetic interactions19 obey parity invariance. The laws of
electrodynamics (Maxwell’s equations) are invariant under change of
parity.

Permutational Invariance

All physical systems, which differ only by an exchange of elementary par-
ticles of the same kind (electron for electron, proton for proton, etc.) are
equivalent. All laws of nature are invariant with respect to permutational
change.

CPT Invariance

All phenomena of radioactive decay obey CPT invariance. All radiation
laws are invariant with respect to combined symmetries of charge conju-
gation change of parity and time reversal.

(4) “Laws” which are not invariant (not symmetric).
To speak about laws which are not symmetric or not invariant seems to
contradict what has been said in 5.2.1 and 5.3.1(1) namely that every law
expresses an invariance. The answer to this problem is however rather
simple: Though every law (and therefore every law of nature) expresses
an invariance and may therefore be called an invariance principle (or a
principle of symmetry) no law of nature is invariant or symmetric with
respect to every (or arbitrary) changes or transformations.20 Therefore it
is very well possible that some law is not invariant with respect to trans-
formation T1 but is invariant with respect to transformation T2. Thus
for example Newton’s laws of mechanics are not Lorentz invariant but
they are Galilean invariant. Or, laws of radioactive decay are not parity
invariant but they are CPT invariant. The examples could be continued
along that way.

However, it will be understood from what has been said in (1) and
(2) above: Something is called a law because it is invariant (symmetric)
with respect to some change or transformation whereas asymmetries with
respect to other changes or transformations accompany the law but are
not a reason to call something a law.

19 This does not say that in the solutions of the equations there could not be sym-
metry breaking (see 5(a) below).

20 For laws of logic see Chap. 3.
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(5) Invariant laws and physical systems
The relation of laws to physical systems depends on how we interpret
“physical system”. There are two ways which are relevant here: (a) “phys-
ical system” is understood as a material system at a certain instant of
time, more precisely as a concrete state of a physical system. (b) “physi-
cal system” is understood as a material system throughout the expansion
of time, more accurately as a temporally ordered set of states of that
system.

According to (a) an invariant (symmetrical) law can describe, explain
and predict non-symmetrical phenomena. Because a differential equation
can have non-symmetrical solutions which represent the (predicted) non-
symmetrical phenomena. Thus non-symmetrical phenomena (in nature)
do not imply non-symmetrical laws but can be caused by non-symmetrical
initial conditions. This will be discussed in more detail in the answer to
the objections 2 and 3 in Sect. 5.4.2 below.

According to (b) there is a certain kind of correspondence between
the laws and the systems they describe:21 To say a law L describing the
physical system S is invariant (symmetrical) under a transformation G
corresponds to the fact that S does not change if the transformation G is
executed on the physical system. For example: To say Newton’s laws of
motion (L) describing the system sun–earth (S) are Galilean invariant (G)
corresponds to the fact that the system sun–earth does not change when
it is transformed internally or moved inertially. Similarly with other laws
describing other physical systems. Though in the present example (sun–
earth) a real execution is impossible there are cases where the internal
transformations and the inertial movement can be executed. Such a case
is described in detail by Galileo (see Sect. 5.4.2 below).

The respective correspondence also holds between statistical laws and
the system they describe: To say that the law of entropy, describing a
process of approaching the macrostate of a relative equilibrium, is invari-
ant with respect to changes of microstates corresponds to the fact that
whatever the movements of the (regular or irregular) individual micro-
processes are, the macrostate which is produced by averaging billions of
those microprocesses has statistical regularity.

This kind of correspondence is analogous to the comparison in
section (3) above between meta-laws which state properties of laws and
laws about (physical) systems which state the corresponding properties of
these systems. Therefore the examples of section (3) can be applied also
here in an analogous way.

21 From a more fundamental point of view the correspondence between laws and
objects which they describe is discussed in Chap. 10.
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(6) Active and passive transformations
A laboratory system consists of a material basis which is equipped with
rods and clocks and will also be referred to as a reference system.22 Assume
a laboratory of this kind or a more perfectly equipped one like the ship
described by Galileo (see 5.4.2 below). Then the laws, which hold in this
reference system will not change, i.e. they are invariant if we change
(a) the position of the laboratory;
(b) the orientation of the laboratory (i.e. turn it on an angle);
(c) the day of observation (to the past or to the future);
(d) the state of motion of the laboratory (from rest to uniform velocity

on a straight line (inertial movement) or from one inertial movement
to a different one).23

On the other hand the laws describing the same system will also not
change (stay invariant) if we change the coordinate system of the labo-
ratory instead of changing the laboratory in the sense of (a)–(d): That
means, if we change respectively
(a′) the names of the places for the location (space coordinates);
(b′) (turn) the environment around for the same angle or better: just

change the names of the places in the surroundings;
(c′) (reset) the clocks in the laboratory (reference frame);
(d′) the names (numbers) of the measurement units on a straight line

(x-axis) in accordance with a motion with constant velocity.
Changes of the laboratory in the sense of (a)–(d) are called passive trans-
formations, whereas changes of the coordinate system of the laboratory in
the sense of (a′)–(d′) are called active transformations.24 The important
point to notice here is this: Since the laws are invariant with respect to
both, passive transformations [(a)–(d)] and active transformations [(a′)–
(d′)] it follows that both transformations are equivalent. Or in other words:
If the laws (of nature) describing a physical system S are invariant under
transformations G then active and passive transformations in the sense
of G are equivalent (with respect to S).

5.3.2 Groups of Symmetries (Invariances)

The symmetries (invariances) of contemporary physics go beyond the two
traditional ones of space and time: First with respect to a rich differentiation
22 From a more systematic point of view the concepts of coordinate system and

reference system will be treated in Sect. 6.3 below.
23 Observe that the word “change” must not be misunderstood here. All what is

meant is that the laws don’t care whether the laboratory is at rest or whether it
moves with a constant velocity (or a different constant one) on a straight line.

24 For more details on active and passive transformations see 6.4.7.2 (4) and Mit-
telstaedt (1995, KLM), p. 36 ff.
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inside the two traditional ones of space and time and second with respect to
new symmetries which have not been known in the tradition.25

(1) Permutational symmetry
Permutational symmetry means that “different individual” particles of
the “same kind” are treated identical. Thus the laws and the respective
physical reality described by these laws remain the same if we interchange
any two electrons. The same holds for protons, neutrons, neutrinos and
µ-mesons (according to the Fermi–Dirac statistics) and also for photons,
π-mesons, K-mesons and gravitons (according to the Bose–Einstein sta-
tistics).

Permutation, i.e. the exchange of elementary particles of the same kind does
not change the laws of physics. However, this is not necessarily also the case
for a physical system or its state, respectively. There is an important differ-
ence between bosons (which are subject to the Bose–Einstein statistics) and
fermions (which are subject to the Fermi–Dirac statistics and which obey
Pauli’s exclusion principle). In case of bosons the exchange of two particles
does indeed not change the state of the physical (two-particle) system. This
means that bosons of the same kind are treated as indistinguishable although
numerically different. However, for fermions there are states, which change
sign if two fermions are exchanged.

Philosophically, it may seem controversial if by some principle of individ-
uation numerically different though indistinguishable particles are viewed as
different individuals. In this connection it is interesting to look at Leibniz’s
principle of the identity of indiscernibles.

Leibniz’s Principle of the Identity of Indiscernibles

According to Leibniz’s requirement, that indiscernibility of substances implies
their identity, any two individuals must differ by some internal properties. For

“it is always necessary that besides the difference of time and place
there should be an internal principle of distinction”.26

Leibniz had three main reasons for his principle of identity of indiscernibles.
First he thought that it follows from his principle of sufficient reason:

“I infer from the principle of sufficient reason among other conse-
quences, that there are not in nature two real, absolute beings indis-
cernible from each other; because if there were, God and nature would
act without reason in ordering the one otherwise than the other”.27

25 The rough division into four kinds of symmetries is taken from Lee (1988, SAW),
Appendix.

26 Leibniz (NE) 2, 27, 1.
27 Leibniz (GPh), 5th letter to Clark (GPh) 7, p. 393.
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For Leibniz this means also that the assumption that two individuals (or
substances) are completely equal cannot have a proof from (true) axioms;
because the system of reasons in nature or of the right axioms is complete.
Therefore his principle of sufficient reason has two parts:

“that nothing is without reason, or that every truth has it’s a priori
proof”.28

“It is certain therefore, that all truths, even the most contingent, have
an a priori proof, or some reason why they are rather than are not.
And this is itself what people commonly say, that nothing happens
without a cause, or that nothing is without a reason.”29

However it is hard to see why God (or nature) would act without reason
by designing two equal individuals which differ only in external (spacetime)
properties. But Leibniz goes so far to claim – and this is his second reason –
that from such a supposition it would follow that there would not be different
individuals at all; and because of such an absurd consequence there could not
be atoms such that the notion of “atom” is chimerical: “If two individuals
were perfectly alike and equal and, in a word, indistinguishable in themselves,
there would be no principle of individuation; and I even venture to assert that
there would be no individual distinction or different individuals under this
. . . condition. Therefore the notion of atom is chimerical and has its origin
only in the imperfect conceptions of men.”30

The third reason and the motivation for these claims are mainly to be
found in Leibniz’s monadology, i.e. in his theory of substance. The simple
substances or monads are spiritual units of activity, which differ from each
other in two internal properties: in their activity and in the fact that each
of them mirrors the universe in a different way. From this point of view the
atoms of Democritus didn’t seem to be genuine atoms for Leibniz.31 Coming
back to permutational symmetry the main reason for not accepting Leibniz’s
principle here is the criterion by laws of nature: An interchange of two el-
ementary particles of the same kind does not affect laws, i.e. such particles
are treated indistinguishable by laws (though they are numerically different).
And consequently we speak of permutational symmetry.

There is, however, an important problem, which should briefly be men-
tioned. Is there a difference between fermions and bosons with respect to
28 Leibniz (GPh) 2, p. 62.
29 Leibniz (GPh) 7, p. 300 f. That Leibniz’s principle of sufficient reason is a com-

pleteness principle has been elaborated in detail in Weingartner (1983, IMS) es-
pecially Chap. 2.5.2. See also Sect. 11.1 of the present book.

30 Leibniz (NE) 2, 27, 3.
31 This is however not the place to go into Leibniz’s metaphysics any further. It

suffices to understand that his “internal principle of distinction” is based on his
theory of substances or monads. In addition to that also macroscopic objects (like
leaves, plants or animals which he uses as examples) may have lead him to this
view.
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Leibniz’s principle? How relevant is the fact that fermions (in contrast to
bosons) obey Pauli’s exclusion principle? Indeed, the exclusion principle (no
two fermions of the same kind can occupy the same state) suggests a possi-
ble connection with Leibniz’s principle (no two substances can be completely
equal but different in number). On this ground it is sometimes claimed, in the
literature, that Leibniz’s principle is vindicated for fermions. For example,
Pauli’s exclusion principle is explicitly referred to as “Leibniz–Pauli exclusion
principle” by Weyl.32 The discussion of this point, starting with Margenau’s
argument that electrons violate Leibniz’s principle, generally focuses on the
question of what states can be attributed to the individual components of a
system of “identical” fermions.33 Finally, the discussion led to the commonly
accepted result that, if quantum mechanical description is to be considered
complete, there is no way of vindicating Leibniz’s principle for fermions.34 Par-
ticularly relevant, in this regard, is the impossibility of the so-called “ignorance
interpretation” for a certain class of mixes states, i.e. the non-objectification
theorem stating that general mixed states do not admit an ignorance inter-
pretation.35

Moreover, there is another interesting and very deep consequence of
Leibniz’s view concerning indiscernibles.36 It is directly connected with his
objections against Newton’s concept of absolute space: Leibniz pointed out
against Newton that if we change the absolute positions of all material bodies
while preserving their relative positions then the two states which correspond
to this change are indistinguishable. Absolute position and absolute velocity
do not have real significance and Newton’s laws of motion cannot make a dis-
tinction between such states. This is expressed by the principle of relativity
in classical mechanics which claims that all inertial systems are indistinguish-
able. Thus Leibniz has seen an important point here: that Newton’s laws (of
motion) satisfy a principle of indistinguishability of certain states and in gen-
eral that they satisfy a relativity principle with respect to inertial systems.
Moreover it should be noticed that taken literally Leibniz’s definition of iden-
tity of indiscernibles as agreement in all properties is hardly applicable at
all. The identity expressed by physical equations does not always satisfy this
definition, e.g. if on the right hand sight there are observable magnitudes (for
example masses, lengths, times) and on the left side not (forces) – like in New-
ton’s second law of motion. That is “for all properties” has to be restricted
in a suitable way – for example for all physical magnitudes representable by
real numbers.37 Thus a stronger principle of individuation may not be helpful
32 Weyl (1949, PMN).
33 Margenau (1944, Epr).
34 More details about this debate can be found in Castellani, Mittelstaedt (2000,

LPP).
35 Busch, Mittelstaedt (1991, POQ).
36 For a detilled discussion see Friedman (1983, FST), Chap. VI.
37 Similarly in mathematics the right part of the equation may contain complex

numbers whereas the left part does not.
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here. The distinctions and differences go as far as discovered inner properties
go; if new such inner properties would be discovered which hold only for a part
of the particles belonging to one kind, then new differences will appear.38

(2) Continuous spacetime symmetries
(a) Translation symmetry in space. This leads to three conservation prin-

ciples of momentum. Unobservable: absolute place.
(b) Rotation symmetry in space. This leads to three conservation princi-

ples of angular momentum. Unobservable: absolute direction. “Rota-
tion” means here turning of the physical system on an angle. It does
not mean that the system is rotating.

(c) Translation symmetry of time (i.e. delay in time makes no difference).
This leads to the principle of conservation of energy. Unobservable:
absolute (point of) time.

(d) Velocity symmetry: Invariance with respect to transformations be-
tween systems of inertia, thereby assuming the existence of a universal
time. Unobservable: absolute velocity.

(a)–(d) plus the explicit assumption of Euclidean space provide the full
Galilean invariance (symmetry) which includes relativity with respect to
inertial frames (d). This symmetry group (a)–(d) underlies Newton’s the-
ory. Observe that condition (d) was already discovered by Galileo although
fully understood only by Newton. This is the important principle of rel-
ativity entering the theory of special relativity when the existence of a
universal time is dropped.
(e) Lorentz invariance: Invariance with respect to transformations be-

tween systems of inertia, without thereby assuming a universal time,
i.e. one unique measure of time for all reference frames. This is the
invariance of special relativity.

(f) Invariance through the equivalence principle of general relativity:
Physical laws are the same in all “free falling” (with acceleration mov-
ing) local inertial systems and agree in these systems with the laws of
special relativity. This is the so-called weak equivalence principle. The
underlying equivalence, which also holds in general relativity is that
the inertial mass and the gravitational mass are proportional with a
universal factor.

(3) Discrete symmetries
(a) Charge conjugation symmetry or particle–antiparticle symmetry. Un-

observable: absolute sign of electric charge. This symmetry is in fact
not universally valid. Experiments with neutral K-mesons show that

38 It should be mentioned that there is an extensive discussion about the problem
whether the Leibniz principle is relevant at all for measurable physical quantities,
since physics is concerned merely with external properties which are, as place and
time, not sufficient for distinguishing two substances. cf. Castellani, Mittelstaedt
(2000, LPP).
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KL
0 particles, though electrically neutral, decay faster into e+ than

into e−.
(b) Parity or right–left symmetry or mirror-image symmetry. Conserva-

tion: Parity. Unobservable: absolute right or left, viz. absolute orien-
tation in space. This symmetry is satisfied for electromagnetic effects
but not completely fulfilled for radioactive decay phenomena.

(c) Time reversal symmetry or past–future symmetry. Unobservable: Ab-
solute direction of time. No conservation principle follows. All funda-
mental laws of physics (of quantum mechanics and of the theory of
relativity) seemed (so far) to be invariant with respect to time rever-
sal. According to Prigogine this is a sign that the laws of physics are
still incomplete since many processes are irreversible in time.39 But
time-reversal symmetry seems not to hold on the micro level.40

(d) CPT symmetry. This symmetry seems not to be violated by any
processes known so far. This is a symmetry without conservation prin-
ciple.

(4) Gauge symmetries
Gauge symmetry means that the physical world remains the same if in
electrodynamics, say, the 4-vector potential Aµ is replaced by Aµ + Λiµ
with an arbitrary scalar function Λ or if in quantum mechanics the wave
function ψ is multiplied by some phase factor. A consequence of this
symmetry is the conservation of electric charge and – when applied to
other phases – the conservation of hypercharge, baryon number and lepton
number. Unobservable: the phase difference between two states of different
charge.
(a) U1 symmetries. They lead to conservation laws of baryon number,

lepton number, electric charge and hypercharge.
(b) SU2 symmetry: Isospin symmetry. This symmetry which means an

interchange of proton and neutron is not completely satisfied because
of the slight mass difference (0,14%) of proton and neutron.

(c) SU3 symmetry: Colour and flavour symmetry. This symmetry is the
basis of quantum chromodynamics.41

It can be seen from the above list of symmetries or invariances that on the
one hand every of the symmetries listed either leads to a particular law or
is satisfied by some or by all laws. On the other hand it also becomes clear
that every law is an invariance or symmetry principle: because every law
is something which does not change (is stable) relative to something which

39 cf. Prigogine (1993, TDC) and Prigogine, Stengers (1993, PZt). See Sect. 7.2.3.2
below.

40 There is indirect evidence via CP violation and CPT symmetry. There is direct
evidence shown by new experiments. cf. Schwarzschild (1999, TEO) and Hagiwara
et al. (2002, PDG).

41 That there are gauge symmetries already in classical mechanics was pointed out
by Mittelstaedt (1995, KLM), p. 318 ff.
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changes and since what does not change is called invariant or symmetric it
follows that every law is invariant or symmetric relative to some change or
transformation.42

An invariance (symmetry) which seems to be satisfied by all laws of nature
(and by all laws of physics) is permutational symmetry. As far as we know,
also the two oldest (known) symmetries – translation symmetries in space and
in time – are satisfied by all laws of nature (and laws of physics). There is
however the large numbers hypothesis of Dirac which says that the constant G
(gravitational constant) is not really constant such that laws using G (directly
or indirectly) would no more be strictly (continuous) time symmetric (invari-
ant).43 Since the experimental results for a change of G are so far negative it
is believed that also the other continuous spacetime symmetries are satisfied
by all laws of nature.

Many laws satisfy parity and charge symmetry, but not all of them do so,
although CPT symmetry seems to be satisfied by all laws of nature (and of
physics).44 Time-reversal symmetry seemed to be satisfied by the fundamental
laws of quantum mechanics and of the theory of relativity but is now presum-
ably violated on the micro level. Moreover, it is not satisfied by the law of
entropy and all those laws which describe phenomena where the recurrence of
the state of the whole system is very improbable.45 Of the gauge symmetries
only some of U1 symmetries and the SU3 symmetries seem to be satisfied by
all laws.

5.3.3 Symmetry and Symmetry-Breaking

The notion “symmetry breaking” is not only applied to laws on the one hand
and to nature (or physical systems) on the other (as it was pointed in the ter-
minological remarks at the beginning) but is used also in the sense of explicit
and spontaneous symmetry breaking: If the symmetry is clearly dominant
and there are some small exceptions (symmetry breaking) then one speaks of
explicit symmetry breaking. Example: parity and charge violation. If there is
a transition from a rather complete symmetry to a state of ordered structure
one speaks of spontaneous symmetry breaking. Example: The melting charge
cools down and a crystal grows. The following considerations concerning sym-
metry and symmetry breaking refer to both types of symmetry breaking.

For the following consideration it will be presupposed what has been said
under 5.3.1(5), i.e. there will be no confusion if we speak of symmetric (in-
variant) laws on the one hand and of symmetric or asymmetric phenomena,
physical systems, biological systems etc. on the other. In this chapter we will
42 That this does not hold only for physical laws on which we focus here but also

for laws in biology is shown convincingly by Woodward (2001, LEB).
43 For more on that see Chaps. 8 and 9.
44 See below to objection 5.1.4 and 7.2.3.5
45 See below Sect. 7.2.3.2
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show two things: First (a) that the demarcation between symmetry and sym-
metry breaking depends (is relative with respect to) several aspects. And
second (b) that symmetry-breaking does not destroy symmetries but hides
them.

(a) The demarcation between symmetry and symmetry breaking depends on
several aspects The three following ones are important: (i) on the kinds
of phenomena considered, (ii) on the level considered, for example macro-
or micro-level or on the length of time to be observed (iii) on special
quantities, like distance or temperature, etc.
(i) If we consider electromagnetic phenomena we have parity (right–left

symmetry), if we consider radiation phenomena we have symmetry
breaking (of parity). Another example is Lorentz invariance with re-
spect to electromagnetic phenomena (satisfied) and with respect to
Newton’s mechanics (not satisfied). Such examples could be contin-
ued.

(ii) If we consider a litre of gas (isolated) at room temperature i.e. on
the macrolevel, its macrostate is highly symmetric: translation, ro-
tation and mirror symmetric. A snapshot of its microstate, however,
will show a strong symmetry-breaking with respect to all the three
symmetries of the macro state. Concepts like temperature, velocity
distribution of the molecules, pressure, etc. presuppose or use the
highly symmetric macro state which is the statistical average of a
huge number of possibly microstates. Similar with a vacuum. If we
make a “picture” of the vacuum with infinite exposure time the vac-
uum would appear as completely symmetrical; however if we make a
“picture” with short exposure time we could see all the fluctuations
and the complete symmetry would be broken. Also the microstates
of a gas, observed over a long time would become a symmetric state.
A further example is the cosmological principle. It says that the uni-
verse on a large scale (and in very large parts) is homogenous and
isotropic, i.e. symmetric with respect to translation and rotation.
But this symmetry is due to averaging over very large parts; locally
the distribution of masses is very asymmetric; large empty spaces on
the one hand and very high concentrations of masses on the other.

(iii) Symmetries are dependent on the strength and the range of interac-
tions: Unification of electromagnetic with weak interactions begins at
a range of 10−16 cm and smaller; above that range there is no symme-
try of electroweak interaction. According to the GUT scale there is
no symmetry for strong and electroweak interaction above 10−29 cm.
Another example concerning temperature is a crystal (symmetry
breaking) which is produced at a certain temperature from the sym-
metric melting charge of iron which is rotational symmetric above
the Curie temperature but becomes magnetic (symmetry-breaking)
below that temperature.
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(b) Symmetry breaking does not destroy symmetries but hides them
The examples given above suggest already the thesis that symmetry
breaking on one level presupposes symmetry on a deeper and more funda-
mental level. This idea is expressed nicely by Lee in the following passage:

“What is the difference between these two views: an non-symmetrical
natural law? Or a non-symmetrical world? Insofar as we accept the
fundamental law of nature to be immutable and permanent, while the
world obviously undergoes continuous change, these two possibilities
are clearly distinct from each other, though not mutually exclusive. A
non-symmetrical law implies a non-symmetrical world, but not vice
versa. Since we are perhaps more accustomed to a world which is
somewhat skewed, it seems at least meaningful to inquire whether all
the recent discoveries of symmetry violations are consistent with our
fundamental physical laws being totally symmetrical.”46

This passage points out two things: first, that although a “non-symmetrical
law implies a non-symmetrical world” it does not follow that a non-symmetri-
cal world implies a non-symmetrical law, i.e. a non-symmetrical world can be
very well described by symmetrical laws plus “non-symmetrical” initial con-
ditions.47 Secondly, that discoveries of symmetry-breaking can be consistent
with totally symmetrical fundamental physical laws which might be hidden.48

But is there a reason to prefer the symmetry, the symmetrical law on a deeper
(perhaps hidden) level over the symmetry-breaking or non-symmetrical law?
We think there is, and the main reason is connected with our understanding
of what a law is: A law is something general (recall condition G2 of genuine
laws) and does not describe individual objects as individuals. Thus a single
particular microstate of a gas, or a single crystal, or a single star – all these
are symmetry-breakings – are not the concern of a law. On the other hand
properties like temperature, velocity, pressure, density, etc. which enter sym-
metrical laws are based on averaging over a huge number of objects or single
states or events. By a similar consideration concerning universality we pre-
fer Planck’s radiation law to both, that of Rayleigh and Jeans and that of
Wien, since the latter hold only for the long waved or short waved part of the
spectrum respectively, whereas Planck’s law shows the higher symmetry. The
respective more general invariance – the higher symmetry – may be hidden.

The point that symmetries (invariances) might be hidden and the asym-
metry may have been caused by some initial conditions during the evolution
can also be illustrated by the following examples from biology. A biological
symmetry-breaking is that our heart is on the left side. But since there are few
cases where children are born with the heart on the right side the biological
laws do not seem to exclude such cases, i.e. the laws seem to be invariant with
46 Lee (1988, SAW), p. 20 f.
47 cf. The answer to objection 2 and 3 below, Sect. 5.4.2.
48 cf. also Genz, Decker (1991, SSP), p. 357.
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respect to right or left and the selection of “left” (for most cases) seems to
be produced by initial conditions. Another example are the houses of snails
which have the spiral turning in one direction within one species but with
a few exceptions where the spiral turns the opposite way. Beans grow in a
helical way of one direction. Similarly when polarised light is twisted to the
right when passing through a sugar solution. A fluid may possess hidden sym-
metries before it crystallises. In many such cases we do not know the exact
kind of initial conditions and when and how they produced the asymmetry
during the evolution of the universe.

5.4 Laws, Constants, Symmetries: Answer
to the Objections

5.4.1 Selection of Parameters Entering Laws (to Objection 5.1.1)

The selection of parameters and variables entering a law is not arbitrary in
a twofold way: First in a direct way by successful search for the relevant
parameters and variables (1). Secondly in an indirect way through limitations
by constants (2) and scales (3).

(1) Successful search for the relevant parameters and variables can occur in
different ways:
(a) By considerations of structural analogy. An example for this way are

the matter waves found by De Broglie by analogous transmission of
the relation between wavelength and momentum to material particles.

(b) By generalisation. When raising a law to a higher level of symmetry
or invariance certain parameters disappear but deeper parameters
remain. For many examples recall Sects. 5.3.2 (Groups of Symmetries)
and 5.3.3 (Symmetry and Symmetry-Breaking)

(c) By investigation on statistical correlation of variables. Quantitative
measures of statistical (linear) correlation of variables provide a more
precise way to judge whether two variables are mutually relevant in
a given domain, i.e. whether a change in the values of one of the
variables makes a difference in the values of the other.

(d) By systematic investigation of the conjectured parameters and vari-
ables. This can be illustrated by the following example:49

Consider the investigation of a spherical pendulum with small oscillations.
We might start by listing what we suspect to be the relevant parameters
(variables) and their dimensions: Period of oscillation T (s); length of pen-
dulum l (cm); mass of pendulum m (g), acceleration of gravity g (cm·s−2),
angle of swing γ. This selection of parameters is already guided by a conjec-
tural theoretical model which allows us to dispense (at least provisionally)
with the following parameters: air (damping), air (draught), suspension

49 This example is due to Bunge (1967, SRI), p. 322.
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(assumed to be rigid), thread (assumed to be inextensible) other environ-
ment (assumed to be not disturbing). In this sense the theoretical model
describes an “ideal” pendulum. The general relation among the selected
parameters is R(T, l, m, g, γ) and since we are looking for a law we are
looking for an invariance under changes (of units) of one or several of these
five parameters. Suppose we want to find a solution for T as a function
of l, m, g and γ. Then we might proceed as follows.

First discovery: a change of the (unit of) mass does not change any of
the four other parameters. Thus mass is not a relevant parameter. Result:
T= F (l, g, γ).

Second discovery: changes of l affect g if T does not change. Result:
T = f(l/g, γ). Since γ is dimensionless and the dimension l/g is T 2 the
result is T =

√
l/g · f(γ).

Third discovery by experiment: f(γ) is close to 2 π. Result: T =
2π

√
l/g. Concerning the selection of parameters and variables entering

a law the above example shows this:
(i) The selection at the beginning of some systematic investigation, since

it is conjectural to a high degree, may be more or less arbitrary.
(ii) In the process of further investigation the arbitrariness decreases step

by step and the demarcation between relevant and irrelevant para-
meters (variables) becomes more and more definite.

(iii) The obtained result (relevant parameters and low-level law) shows
a clear selection of the relevant parameters for the respective law.
Though this result is of course relative to a certain degree of accuracy
and a certain level of generality (larger oscillations or air damping
make the law more complicated); but relative to that domain the
selection of the parameters is not arbitrary.

Concluding section (1) it can be said that with respect to the result of
the respective investigation the parameters and variables entering a law
are not arbitrary.

(2) Limitations by constants50

Important constants enter laws of nature and thus restrict and select other
parameters occurring in these laws such that they cannot be arbitrary.
This can be shown by the fact that other parameters can be defined
with the help of these constants and this results in a constraint on the
remaining variables occurring in the law.51 For non-relativistic quantum
mechanics three constants are very important: Planck’s constant h (or for
many occasions more practical: h/2π = � = 1.055 · 10−27g · cm2· sec−1),
the mass of the electron me = 9, 11 ·10−28 g and the elementary charge of
the electron e = 4.81 · 10−10 g1/2 cm3/2 s−1(= 1.6 · 10−19 coulomb). With

50 For more on fundamental constants see Chap. 8.
51 For more details concerning the subsequent considerations see Genz, Decker (1991,

SSP), p. 302 ff.
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the help of these three constants one can define a length (equal to the
Bohr radius that is the radius of the hydrogen atom in its ground state)
and a time which is related to the energy Ee of the electron in this state
by �/2t = Ee.

The above-mentioned three constants are the important constants
of the non-relativistic Schrödinger equation of quantum mechanics, if
hydrogen-like atoms are treated. The mass parameter is – by approxi-
mation – that of the electron mass only, because the masses of the atomic
nucleus is very big in relation to that of the electron or one may take the
reduced mass m of both nucleus and electron: m = mN · me/(mN + me).

Taking Maxwell’s equations – which describe electric and magnetic
phenomena instead of the Schrödinger equation – requires the addition of
the constant velocity of light c if velocities comparable to c are permitted.
As already mentioned earlier Maxwell’s equations are Lorentz invariant.
With the help of �, e and c the fine-structure constant α can be defined
as α = e2/� · c ≈ 1/137.

For quantum mechanics combined with general relativity the three
main constants are h, c (light velocity) and G (gravitational constant),
where c = 3 · 1010 cm sec−1 and G = 6.67 · 10−8 cm3g−1 sec−2. With
the help of these three one can define the standards on the “Planck’s
scale”, the Planck length lPl = 1.6 · 10−33 cm, the Planck mass mPl =
2.176 · 10−5 g and the Planck time tPl = 5.39 · 10−44 sec. The standards of
the Planck scale are the same for every system and are therefore invariant
in a similar sense as the laws of nature.

These limitations by constants show that the selection of parameters
entering a law and those with respect to which the law is invariant are
not arbitrary or unlimited as claimed in objection 5.1.1; therefore its con-
clusion is not proved by that argument.

(3) Limitations by scales
The selection of parameters occurring in laws (of nature) are also not
arbitrary with respect to scales since the laws of nature are not scale
invariant. Scale invariance means that there is no natural scale; or in
other words that one cannot distinguish a system from its (by some factor)
enlarged copy just by its inner properties (laws). A map can be enlarged or
reduced in order to be suitable. But atoms cannot be enlarged or reduced
and thus laws in which basic physical constants play a role are not scale-
invariant.

Scale invariance is also called affine invariance or invariance with re-
spect to an affine group. An affine group translates points into points,
straight lines into straight lines, planes into planes, cubes into cubes, balls
into balls, etc. Thus it forgets distances but keeps intersection properties.
Thus such a transformation – also called scale transformation – changes
all lengths by the same factor a, all planes by a2 and all volumes by a3, if
a > 1 or a < 1 respectively. A modern copying apparatus enlarges or di-
minishes copies, maps are diminished representations of countries or cities,
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etc. But can we enlarge things of nature or art (technical constructions)
for instance can animals or trees or ships or buildings be twice or three
times or hundred times as large as they are? This was already a question
for Galileo and he answered it in the negative:

“From what has already been demonstrated, you can plainly see
the impossibility of increasing the size of structures to vast di-
mensions either in art or in nature; likewise the impossibility of
building ships, palaces, or temples of enormous size in such a way
that their oars, yards, beams, iron bolts, and, in short, all their
other parts will hold together; nor can nature produce trees of
extraordinary size because the branches would break down under
their own weight; so also it would be impossible to build up the
bony structures of men, horses, or other animals so as to hold to-
gether and perform their normal functions if these animals were to
be increased enormously in height; for this increase in height can
be accomplished only by employing a material which is harder
and stronger than usual, or by enlarging the size of the bones,
thus changing their shape until the form and appearance of the
animals suggest a monstrosity.52

Galileo was right to understand that we cannot enlarge or diminish reality.
Even if possible – within certain limits – for things made by technical construc-
tion we cannot make an enlarged or diminished copy of an atom. The radius
of the hydrogen atom (in its ground state) is fixed and about 5 ·10−9 cm. Also
the Avogadro number is fixed and 6.022 · 1023 mol−1. On the other hand the
smallest distance between elementary particles in collision, which is 10−18 cm
seems to be a technical limitation depending on the energy of our accelerators.
Larger systems do not contain larger atoms but just more atoms. Since the
laws of nature contain such constants they cannot be scale-invariant.53

Again the limitations by scales show that the selection of parameters rel-
evant for a law are not arbitrary, since laws of nature are not scale invariant.
Therefore the conclusion of objection 5.1.1 has not been proved.

5.4.2 Symmetrical Laws
and Non-Symmetrical Phenomena (to Objections 5.1.2 and 5.1.3)

As it is clear from 5.3.1(5) and 5.3.3(b) asymmetries in nature (or non-
symmetrical states) do not necessarily imply non-symmetrical laws, since they

52 Galileo (DNS), p. 130 [169]. See also the examples of Feynman (1997, SNP),
p. 26 f. and (1992, CPL), p. 95 f.

53 Observe however, that some low level (non genuine) laws like the principle of
Archimedes are (within modest limits) scale invariant. In his (2002, RIS), p. 120
Suppes describes the obvious non-scale-invariance of laws of nature misleadingly
by the statement that the “Fundamental equations of physics are not invariant”.
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may be due to initial conditions. As it was pointed out there the higher symme-
try (invariance) underlying an apparent asymmetry might be hidden. Thus
asymmetries in nature can be described and explained by symmetrical (in-
variant) laws plus “non-symmetrical” initial conditions. Or: Symmetric laws
describe (“produce”) and predict asymmetric phenomena if the initial con-
ditions are asymmetric. This can be substantiated by the following consid-
eration: Galileo understood that the physical laws are the same in different
inertial frames (i.e. in frames which are – relative to one another – at rest
or are moving with uniform velocity). That is the physical laws are invariant
(symmetric) with respect to inertial frames. The following is a nice passage
from his dialogue which describes his “Gedankenexperiment”:

“Salviatus. Shut yourself up with some friend in the main cabin below
decks on some large ship, and have with you there some flies, butter-
flies and other small flying animals. Have a large bowl of water with
some fish in it; hang up a bottle that empties drop by drop into a wide
vessel beneath it. With the ship standing still, observe carefully how
the little animals fly with equal speed to all sides of the cabin. The
fish swim indifferently in all directions; the drops fall into the vessel
beneath; and, in throwing something to your friend you need throw it
no more strongly in one direction than another, the distances being
equal; jumping with your feet together, you pass equal spaces in every
direction. When you have observed all these things carefully (though
there is no doubt that when the ship is standing still everything must
happen in this way), have the ship proceed with any speed you like,
so long as the motion is uniform and not fluctuating this way and
that. You will discover not the least change in all the effects named,
nor could you tell from any of them whether the ship was moving or
standing still.”54

Galileo assumed that the orbits of the planets are circles. One of his reasons
was probably aesthetic. At least the aesthetic reason is already present in the
Pythagoreans. First they thought that the earth is spherical, not flat; secondly
so are the stars. Thus Sarton says:

“The dogma of spherical perfection and its cosmologic consequences
may be considered the kernel of early Pythagorean science”.55

Thirdly they thought that the planets are not “errant”, do not wander, but
they must have circular and uniform movements. For Aristotle circular move-
ment is the most regular and perfect, and from it the best measure-unit of
time can be taken.56

54 Galileo (DWS) Second Day. cf. the discussion in Berry (1978, PCG), p. 30 ff. The
reference in Berry (p. 31) to Galileo “Dialogues concerning two new sciences” is
incorrect.

55 Sarton (1966, HSc) p. 212.
56 For more details see Sect. 6.2.2.
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The other – more important reason for Galileo – might have been his un-
derstanding that the laws of motion are rotationally symmetric and therefore
allow circles as its simplest solutions even if circles are not required by the
laws of motion. But what if he would have thought that the orbits are exclu-
sively determined by the rotationally symmetric laws? Then he would have
been fully justified to believe in the orbits as circles. In fact initial conditions
in addition to the laws determine the orbits. And these initial conditions may
be asymmetric, may break the symmetry; i.e. determine the deviation from
circles to produce ellipses, described and explained by Kepler and Newton.

That the orbit of a planet lies in one plane which contains the sun is deter-
mined by the laws, it follows from the conservation law of angular momentum.
But which plane it is or better which angle this plane has with respect to,
say, another star is not determined by the laws; i.e. is dependent on initial
conditions. That means that the laws would allow each of the possible planes
but only one as the realised one. Thus in some sense the rotationally symmet-
ric laws produce the asymmetry (the symmetry-breaking) of just one realised
plane but which one depends on the initial conditions. In this sense Barrow
says:

“Nature has not made things quite so simple. It transpires that there
exist a number of almost symmetries in Nature which we had thought
for a long period to be precise before very accurate experiments were
carried out. More awkward still, symmetrical laws do not necessarily
give rise to events which possess that same symmetry. The laws of
motion do not prefer one direction in space over any other, but perch
a ball symmetrically on the apex of a cone, and it will surely fall in
one direction or the other. All the directions are equally probable,
none has any special significance: but this symmetry will be hidden
by the particular motion that results in any outcome governed by
the law.”57

The distribution of masses in the universe is also locally asymmetric, i.e. lo-
cally non-isotropic (not rotationally symmetric) and not homogenous (not
translationally symmetric). This is due to asymmetric initial conditions but
in accordance with the Cosmological Principle the universe as a whole (and in
large parts) is homogenous and isotropic, i.e. symmetric in respect to trans-
lation and rotation. This principle is merely a hypothesis which is fairly well
corroborated by the following two empirical facts:

(1) The temperature of the cosmic background radiation is almost indepen-
dent of the direction of the radiation. That indicates that at least at
the time when the radiation began the universe was homogenous and
isotropic. And if there were later asymmetries by asymmetric conditions
they did not affect the temperature of the background radiation.

57 Barrow (1988, WwW), p. 115.
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(2) The velocities of the expansion of galaxies at far distance are roughly
proportional to the distance of these galaxies from the earth.

The cosmological principle is an assertion of symmetry. If it holds then the
laws of nature are symmetric with respect to translation and rotation and so
is the whole universe.

The conclusion of this section is: As it was already pointed out by Lee (see
5.3.3(b)) a non-symmetrical world can be described and explained by symmet-
rical laws plus non-symmetrical initial conditions. Therefore the conclusions
in objections 5.1.2 and 5.1.3 have not been proved by these arguments.

5.4.3 Explicit Symmetry-Breaking (to Objections 5.1.4 and 5.1.5)

The violation of parity and of charge conjugation are cases of explicit symme-
try breaking. “Explicit symmetry breaking” means that in the overwhelming
number of cases there is symmetry (between right and left and between +
and −) but in a few definite cases there is no symmetry. Concerning parity
we have to notice first that it is completely satisfied by all electromagnetic
phenomena. But it is violated by radioactive phenomena. That means that
the laws of physics are not invariant with respect to an exchange of a physical
system (of the universe) with its mirror image.58

From this consideration it is clear that parity conservation is not com-
pletely satisfied as it is said correctly in the objection. However, it would
be incorrect to conclude that there cannot be a symmetry (invariance) on a
deeper level that includes parity. And in fact the combination of charge and
parity, CP conservation, is already much better satisfied than the C and P
separately; and moreover CPT invariance seems to be completely satisfied.

Concerning charge conjugation, its violation was established by the decay
of K0

2 mesons and K0
L ions.59 That means that the experiments (nature) are

not symmetrical with respect to the plus and minus signs of electric charge.
Thus the objection is correct in the sense that charge conjugation is not

always satisfied. But again from this it does not follow that there are no
deeper and hidden symmetries as for example the combination of charge and
parity (CP). In the CP combination of charge and parity the “big” violations
which occur with respect to C and P separately are almost balanced but not
completely. More accurately: all violations of C and P separately (which have
not been described here) are completely neutralised in CP except one. This is
the one with neural K0

L mesons described above. The respective experiments
have been repeated many times with great care such that the result is well
corroborated. Therefore there is no complete CP invariance.
58 For a lucid discussion of parity and charge violation see Lee (1988, SAW), p. 11 ff.
59 K0

L has no electric charge, no spin, no electromagnetic moment and has 1000
times the mass of electron. Though K0

L is completely neutral electrically it decays
faster into e+ than e−.
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On the other hand in all processes known so far the invariance of the
combination of charge, parity and time was always confirmed. This means
that there is a close connection among the three symmetries C, P and T.60

The upshot is: Though there is symmetry breaking with respect to parity
and charge there are higher symmetries on a deeper level like CP and above
all CPT symmetry.

5.4.4 Higher and Lower Symmetries
(to Objections 5.1.6 and 5.1.7)

The objections 5.1.6 and 5.1.7 point to a certain relativity of symmetry and
invariance with respect to observability on one hand and with respect to the
demarcation between symmetry and symmetry-breaking on the other. Con-
cerning the first (objection 5.1.6) it has to be noticed that the term “ob-
servability” and “observable” or “non-observable” can be interpreted in two
ways: First in a more subjective sense requiring observers. And in this way a
law of nature cannot be dependent on assumptions about observables (in the
subjective sense).

Second in a more objective sense such that “non-observable” can be re-
placed by “disappearing parameter” or by “cancelled parameter”. Since it can
be grasped from the list of symmetries given in Sect. 5.3.3 that going from
one level of symmetry (invariance) to a higher level of symmetry results in a
disappearance or cancelling of one parameter. Thus translation symmetry in
space cancels absolute position, and moving to the combined higher symme-
try of both translation plus rotation symmetry in space cancels in addition
absolute direction (in space). More examples of that kind can be extracted
from the list of symmetries in 5.3.2. Therefore the terms “non-observable” and
“observable” in the passage of Lee (objection 5.1.6) can be replaced by “disap-
pearing or cancelled parameter” and by “appearing or emerging parameter”.
The passage then reads: “Since disappearing parameters imply symmetry, any
discovery of asymmetry (symmetry breaking) must imply some appearing pa-
rameter”. However, interpreted in this more objective sense it does not hinder
that laws of nature are dependent on appearing or disappearing parameters.
Since this means nothing else than that laws of nature can have different levels
of universality, i.e. different levels of symmetry or invariance.

The answer to objection 5.1.7 should be clear from what has been said
in Sect. 5.3.3. First of all no law of nature is invariant with respect to every
parameter or transformation. Second the demarcation between symmetry and
symmetry breaking is not arbitrary. It depends on important constraints and
aspects like area of application, level (macro/micro) of application, length of
time, distance etc. Thirdly it has been shown there, that symmetry breaking
does not destroy symmetries but rather hides them. Therefore the relativity
pointed out in the objection shows that laws can be considered at different
60 For more on CPT symmetry see Sect. 7.2.3.2(3).
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levels of generality; and on each level there is some symmetry. But it does
not show that the demarcation between symmetry and symmetry breaking is
(arbitrarily) relative since it is bound to important constraints as mentioned
above. Therefore the conclusion of the objection is not proved.

On a more general point of view one may add that the concern of this book
is the investigation of laws which means nothing else than the investigation of
symmetries and invariances. And as is clear from condition G2 of Chap. 2, laws
are not concerned with individuals as individuals. Nevertheless, as already
stressed by Plato the world (universe) is a world of changing individuals. And
every individual, or individual state or singularity is a breaking of symmetries.
And analogously, every solution of the differential equation is a symmetry
breaking relative to that equation (law). Therefore the focus of this book is
that on laws and consequently on symmetries and invariances and not on
symmetry breaking and individuality.



6

Is Every Law of Nature Spacetime Invariant?

6.1 Introduction. Arguments Pro and Contra

Arguments Contra

6.1.1 If every law of nature is spacetime invariant, then for physical systems
obeying these laws place is irrelevant. If every physical system is embedded
in some field, then place is not irrelevant. But as it seems that every physical
system is embedded in some field, at least in a gravitational field, it then
follows that for physical systems obeying laws of nature, place is not irrelevant.
It is, therefore, not the case that every law of nature is spacetime invariant.

6.1.2 If every law of nature is spacetime invariant, then it is also space in-
variant. Now, space invariance means that it is irrelevant how you orient your
coordinate system. But coordinate systems are mathematical spaces and not
identical with physical spaces or reference frames.

Now physical laws are only invariant with respect to physical space or
to reference systems. And since some physical laws are laws of nature, it
follows that there are some laws of nature, which are not space invariant in the
mathematical sense. And consequently: not all laws of nature are spacetime
invariant in the mathematical sense.

6.1.3 If all laws of nature are space invariant, then it is irrelevant how the
physical system (obeying these laws) is oriented in space. Now, it is a theorem
of mathematics that every arbitrary orientation in space can be produced by
a series connection of (suitably selected) movements of translation, rotation,
and mirror reflection. Thus, in order to produce some kinds of orientation, one
needs mirror reflection. But not all laws of nature are invariant with respect
to mirror reflection, as the violation of parity shows (cf. 5.4.3).

Therefore: not all laws of nature are space invariant, and consequently, not
all laws of nature are spacetime invariant.
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6.1.4 If all laws of nature are spacetime invariant, then a transition of the
reference frame, or of the physical system, must be possible in the same way
for both space and time. There is, however, a serious difference between space
and time in this respect: A physical system (object, particle) can move both
in the (spatial) direction of increasing (of values) on the x-axis and in the
direction of decreasing (of values) on the x-axis; but it can move only in the
direction of increasing time:

“The difference between the two cases arises from the fact that a parti-
cle’s world line can cross the t = constant line only in one direction (in
the direction of increasing t); it can cross the x = constant line in both
directions. If we replace ‘line’ in the last sentence by ‘plane’, we have
the generalisation of the distinction to the actual four-dimensional
universe.”1

Therefore: not all laws of nature are spacetime invariant.

6.1.5 If all laws of nature are spacetime invariant, then they seem to be in-
variant with respect to time reversal. But the laws of thermodynamics (like
the law of entropy) and the laws of radiation (like Planck’s law of radiation)
are not invariant with respect to time reversal. And, as Prigogine says: “Irre-
versibility and probability are objective properties.”2

Therefore: not all laws of nature seem to be spacetime invariant.

6.1.6 If all laws of nature are spacetime invariant, then the fundamental laws
of quantum mechanics (QM) and of the theory of general relativity (GR) are
also spacetime invariant. If the fundamental laws of QM and GR are also
invariant with respect to time reversal, then it seems that spacetime invari-
ance also implies invariance with respect to time reversal. And consequently,
if all laws of nature are spacetime invariant, they are also invariant with re-
spect to time reversal. But invariance with respect to time reversal does not
hold generally: Since CP invariance has been slightly violated by the decay
of neutral K0

L mesons (cf. 5.4.3 above), but CPT invariance holds universally,
T has to outbalance the difference. Consequently, T -invariance cannot hold
unrestrictedly.

Therefore: the laws of nature do not seem to be spacetime invariant.

6.1.7 If a law determines the geometry of spacetime, then it cannot be space-
time invariant. Now, Einstein’s field equations (of general relativity) determine
the geometry of spacetime as functionally dependent on the matter distrib-
uted in the universe. Moreover, Einstein’s field equations are genuine laws of
nature.

Therefore: not every law of nature is spacetime invariant.
1 Wigner (1972, TEU), p. 239.
2 Prigogine, Stengers (1993, PZt), Chap. 8 (p. 315).
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Arguments Pro

6.1.8 Without understanding that something is stable while something else
is changing, no law could be recognised. And thus, without any invariance
principle, no law of nature could be recognised. In this sense, Wigner says:

“The first two categories of invariance principles were always taken for
granted. In fact, it may be argued that laws of nature could not have
been recognised if they did not satisfy some elementary invariance
principles such as those of categories a and b – if they changed from
place to place, or if they were also different at different times.”3

As a consequence, invariance – such as space and time invariance – is a nec-
essary condition for understanding what a law of nature is. Therefore, our
understanding of a law of nature is such that every law of nature presupposes
an invariance principle such as space and time invariance.

6.2 Concepts of Space and Time in History

Before we proceed to our proposed answer, we shall give some important views
of the history of the concepts of space and time.

6.2.1 Some Highlights of the Concept of Space and Place

1. Aristotle
Aristotle develops mainly a concept of place4 (topos) and makes only short
remarks about space.5 Concerning the first, he gives a definition of place,
which is introduced by four desiderata (or presuppositions), and chooses
one of four options for the definition. The desiderata are as follows: (1)
Place is what contains that of which it is the place and is not part of that
which is located in place. (2) The immediate or “proper” place of a thing is
neither smaller nor greater than the thing itself. (3) Place is separable from
that thing which is located. (4) Every place implies a distinction between
upwards and downwards, and every body has a natural tendency to move
to its own special (or “proper”) place.6

3 Wigner (1967, SRf), p. 43. The two catergories of invariance principles a and b
which Wigner mentions some lines before are translation in Euclidean space and
translation in time.

4 This is to be found mainly in his (Phys), book IV, with additions in (Heav), book
II.

5 (Cat) 5a.
6 Aristotle (Phys), 210b35. cf. Jammer (1954, CSP), p. 16, and Thomas Aquinas

(CAP), IV, Lecture 5 (445).
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As a definition, he proposes then that (the immediate or proper) place
of the body is the immobile inner surface of that which contains it (i.e.
of the container).7 That place is immobile is connected with (1) and (3),
from which it also follows that a body is replaceable by another one at
the same place. (2) indicates that Aristotle accepts that the immediate or
proper place can be put into a larger context. Thus, he says: You are on
the place, on the earth, in the air, in the universe.

“To begin with, then, the phenomenon of ‘replacement’ seems at
once to prove the independent existence of the ‘place’ from which –
as if from a vessel – water, for instance, has gone out, and into which
air has come, and which some other body yet may occupy in its
turn; for the place itself is thus revealed as something different from
each and all of its changing contents.”8

Condition (4) shows that Aristotle had already anticipated a basic idea of
Mach and Einstein: Space, in the mathematical sense, has no distinguished
places according to Aristotle, such places being relational to each other.
This also happens, for him, in the void or absolute vacuum. But falling
bodies have a definite direction, a preference distinguished by nature:

“. . . whereas in Nature each of these directions is distinct and stable
independently of us. ‘Up’ or ‘above’ always indicates the ‘whither’
to which things buoyant tend; and so too ‘down’ or ‘below’ al-
ways indicates the ‘whither’ to which weighty and earthy matters
tend, and does not change with circumstance; and this shows that
‘above’ and ‘below’ not only indicate definite and distinct localities,
directions and positions, but also produce distinct effects.”9

As Barbour puts it: “The parallel with Mach and indeed specifically Mach’s
Principle becomes almost complete when Aristotle argues from the un-
doubted existence of the falling of bodies that they must be falling to a
definite place.”10

Concerning space, Aristotle understood it as finite, since it is an acci-
dental property of matter, which is itself finite. As he says in the Categories,
space is a continuous quantity, and Duhem seems to be right to interpret it
as the sum total of all places occupied by bodies.11 But what is important
with respect to modern cosmology is that there is not anything “outside”
the finite space or “outside” the finite universe, according to Aristotle. The
term “outside” has no meaning here. The comparison, therefore, of this

7 Aristotle (Phys), 212a20.
8 Ibid. 208a; 209af.
9 Aristotle (Phys), IV, 208b.

10 Barbour (1989, ARM), p. 78. cf. also Jammer (1954, CSP), p. 17ff, who points
to the interpretation by a dynamical field structure.

11 Duhem (1913, SdM), Vol. I, p. 197.
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conception with Einstein’s “spherical space” in early relativistic cosmology
seems to be well justified.12 And as Barbour correctly points out:

“We cannot conclude this section without commenting on the re-
markable similarity of the closed universes constructed by Aristotle
and, more than two thousand years later, by Einstein. Both were
spatially spherical and infinite in both temporal directions.”13

2. Thomas Aquinas
There is a clear passage in Thomas Aquinas, which shows that, according
to him, space and place are bound to the world (of material bodies). The
passage occurs in the answer to an objection, which claims the necessity of
a vacuum container for the world before the world existed:

“Objection 4: Further, a vacuum is where there is not a body, but
there might be. But if the world began to exist, there was first no
body where the body of the world now is; and yet it could be there,
otherwise it would not be there now. Therefore before the world
there was a vacuum; which is impossible.”
“Reply to Objection 4: The notion of a vacuum is not only in which
is nothing, but also implies a space capable of holding a body and
in which there is not a body as appears from Aristotle (Phys) IV
208b26. Whereas we hold that there was no place or space before
the world was.”14

3. Newton
The most famous places where Newton speaks about absolute space are
in the Scholium of the Principia (book I) and in De Gravitatione. De
Gravitatione was written earlier,15 and we see here an opinion, which is
similar to Aristotle and to Thomas Aquinas in that space is postulated
when being is postulated:16

“Space is a disposition of being qua being. No being exists or can
exist which is not related to space in some way. God is everywhere,
created minds are somewhere, and body is in the space that it
occupies; and whatever is neither everywhere nor anywhere does

12 cf. Jammer (1954, CSP), p. 20ff.
13 Barbour (1989, ARM), p. 92.
14 Thomas Aquinas (STh), I, 46, 1 ad 4. That also time is bound to the world,

according to Aquinas, and that the word “before” (the world) makes no more
sense than the word “outside” (the world) will be seen below.

15 The exact date is controversial. Hall and Hall date it 1664–66, Whiteside 1670–73,
some others close to the Principia.

16 Though neither Aristotle nor Thomas Aquinas would claim this for every being
or as a disposition of being qua being; they would exclude God, who according
to Aquinas creates finite space by creating a finite material world. For both, God
is immaterial, neither in space nor at some place, but can be “everywhere” in
his creation (world) through his knowledge and will. In this connection see also
Newton (Opt) query 28, which says that infinite space is the sensorium of God.
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not exist. And hence it follows that space is an effect arising from
the first existence of being because when any being is postulated,
space is postulated.”17

With the concepts of absolute space (and time), Newton departs not only
from the philosophers Aristotle, Thomas Aquinas and Descartes, but also
from Copernicus and Kepler. From all the five, Newton departs in the
sense that they have a concept of motion which is based on matter – some-
thing empirical – whereas Newton’s concept is based on absolute space
and absolute time, i.e. non-empirical concepts. Descartes, especially, re-
lates motion to other bodies in the vicinity: Motion, for Descartes, is a
translation from the vicinity of other contiguous parts. For Newton, this
kind of “relativism” is untenable and absurd.

“For unless it is conceded that there can be a single physical motion
of any body, and that the rest of its changes of relation and position
with respect to other bodies are so many external designations, it
follows that the Earth (for example) endeavours to recede from the
centre of the Sun on account of a motion relative to the fixed stars,
and endeavours the less to recede on account of a lesser motion
relative to Saturn and the aetherical orbit in which it is carried, and
still less relative to Jupiter and the swirling aether which occasions
its orbit, and also less relative to Mars and its aetherical orbit.
Since all these endeavours and non-endeavours cannot absolutely
agree, it is rather to be said that only the motion which causes
the Earth to endeavour to recede from the Sun is to be declared
the Earth’s natural and absolute motion. Its translations relative
to external bodies are but external designations.”18

As Barbour describes this view, Newton’s passionate belief was that (for
every singular body) there must be one motion that is true, absolute, and
proper.19 This absolute motion Newton related then in his Principia to the
unmoveable absolute space:

“Absolute space, in its own nature, without relation to anything
external, remains always similar and immovable. Relative space
is some moveable dimension or measure of the absolute spaces;
which our senses determine by its position to bodies, and which is
commonly taken for immovable space; such is the dimension of a
subterraneous, aerial or celestial space, determined by its position
in respect of the earth.”20

17 Newton (Grav), p. 136.
18 Ibid. p. 127.
19 Barbour (1989, ARM), p. 614.
20 Newtond (Princ), I, Scholium. A forerunner of Newton in the early Middle Ages

was Philoponus, who attacked the concept of space in Aristotle, claiming that
space is a given interval, measurable in three dimensions, and incorporal. See
Barbour (1989, ARM), p. 91.
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The critics to Newton’s search and claim that there must be one true
motion (for every body) pointed out that the difficulty, here, is to show
how these absolute motions could be deduced from, or at least confirmed
by, observed relative motions. In this respect, it is worth mentioning that
Lagrange provided a solution for that with respect to the three body prob-
lem.21 Lagrange showed that Newton’s equations can be rewritten in such
a form that they contained, besides the time coordinate, only relative space
coordinates (for the triangle formed by three bodies which interact gravita-
tionally). In addition, Lagrange showed how to calculate, with the help of
the relative quantities, the coordinates in absolute space, i.e. in the centre
of mass of the reference frame.

4. Laplace
We have already seen that the concept of space in Aristotle had certain sim-
ilarities with that of Mach and Einstein. But, also Laplace shows a striking
anticipation of Einstein’s curved space and even of one of the most im-
portant cosmological predications of general relativity: that of black holes.
And more than that, Laplace’s reason for it is an anticipation of the same
reason, which was also important for Einstein: The influence of gravitation
on the propagation of light. In his “Exposition du système du monde” of
1795, he makes quantitative statements about the influence of gravitation
on light, on the basis of Newton’s theory of gravitation. He also says there
that, because of this influence, a celestial body of sufficient size could not
send light rays and would be non-observable for us. Later (1799), he tried
to give a mathematical proof for this claim (i.e. for the existence of black
holes).22

5. Kant
It is usually thought that Kant interpreted Newton’s concept of absolute
space – with the help of his “Copernican Revolution” – as “Anschauungs-
form a priori”, i.e. as an a priori intuition (condition), under which sense
experience can possibly operate. This is correct of Kant’s conception of
space in his Critique of Pure Reason (and in the Prolegomena). It should,
however, be mentioned that Kant, in his pre-critical writings, had a com-
pletely different concept of space, which was relative in character:

“Now I begin to see that I lack something in the expression of
motion and rest. . . I should never say, a body is at rest, without
adding with regard to what it is at rest, and never say that it moves
without at the same time naming the objects with regard to which

21 Lagrange (1772, EPT). A detailed account is given by Dziobek (1888, MTP).
cf. Barbour (2001, GCB), p. 200.

22 This proof appeared in the Abhandlungen der Allgemeinen Geographischen
Ephemeriden-Gelehrtengesellschaft, ed. by F.X. von Zach, Weimar. cf. Schmutzer
(1996, RTA), p. 104. Engl. Trans. in: Hawking, Ellis (1973, LSS), Appendix.
Schmutzer gives also a quotation of Soldner, who (in 1801) describes the devia-
tion of light rays by the attraction of celestial bodies as a hyperbolic trajectory,
with the concave side on the attracting body.
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it changes its relation. If I wish to imagine also a mathematical
space free from all creatures as a receptacle of bodies, this would
still not help me. For by what should I distinguish the parts of
the same and the different places, which are occupied by nothing
corporal?”23

“. . . it is therefore impossible that a body would move towards an-
other one which is at absolute rest.”24

Ten years later, Kant had already changed his view and tried to find an
evident proof for the existence and reality of absolute space independent
of the existence of matter:

“My aim in this treatise is to investigate whether there is not to
be found in the judgements of extension, such as are contained
in geometry, an evident proof that space has a reality of its own,
independent of the existence of all matter, and indeed as the first
ground of the possibility of the compositeness of matter.”25

In his Critique of Pure Reason, Kant characterises space by four condi-
tions:26 (1) Space is not an empirical notion which has been derived from
external experience; (2) Space is a necessary perception a priori or a condi-
tion for the possibility of all external perceptions or a subjective condition
of sensation, because we cannot imagine that there is not space, but only
that there are no objects found in space; (3) Space is no discursive or general
notion but pure intuition; (4) Space is conceived as an infinite magnitude.
Compared with the simple description in (NLB), the above characterisation
of space contains many obscure components, which come from sacrificing
the earlier view for a view bound to transcendental idealism and its a priori
conditions for the possibility of experience at all.

6. Maxwell and Mach
Before we give some essential points of Mach, we also want to show that
Maxwell abandoned absolute space (and absolute time):

“Absolute space is conceived as remaining always similar to itself
and immovable. . . But as there is nothing to distinguish one por-
tion of time from another except the different events, which occur
in them, so there is nothing to distinguish one part of space from

23 Kant (1758, NLB), p. 3. In: (1912, KGS), Vol. 2, p. 13–25. The translation is due
to Jammer (1954, CSP), p. 130. Jammer is one among the few to mention this
development in Kant.

24 Ibid. p. 5.
25 Kant (1768, EGU). The translation is due to Jammer (1954, CSP), p. 130. The

change of Kant’s view seems to begin with this essay. The essay of 1763 “Versuch,
den Begriff der negativen Grösse in die Weltweisheit einzuführen” does not contain
a claim about absolute space (although a reference to Euler).

26 The points (1)–(3) are contained in the first edition 1781, point (4) only in the
second (1787): A24f, B38f and A26, B42.
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another except its relation to the place of material bodies. We can-
not describe the time of an event except by reference to some other
event, or the place of a body except by reference to some other
body. All our knowledge, both of time and place, is essentially rel-
ative.”27

But, Mach’s criticism of Newton’s concept of absolute space (and of ab-
solute motion) in his Mechanics can be viewed as the earliest formulation
of the principle of general relativity.28 An important passage is this:

“Für mich gibt es überhaupt nur eine relative Bewegung und ich
kann darin einen Unterschied zwischen Rotation und Translation
nicht machen. Dreht sich ein Körper relativ gegen den Fixstern-
himmel, so treten Fliehkräfte auf, dreht er sich relativ gegen einen
anderen Körper, nicht aber gegen den Fixsternhimmel, so fehlen
die Fliehkräfte. Ich habe nichts dagegen, wenn man die erstere Ro-
tation eine absolute nennt, wenn man nur nicht vergisst, dass dies
nichts anderes heißt, als eine relative Drehung gegen den Fixstern-
himmel. Können wir vielleicht das Wasserglas Newtons festhal-
ten, den Fixsternhimmel dagegen rotieren, und das Fehlen der
Fliehkräfte nun nachweisen? Der Versuch ist nicht ausführbar, der
Gedanke überhaupt sinnlos, da beide Fälle sinnlich voneinander
nicht zu unterscheiden sind. Ich halte demnach beide Fälle für
denselben Fall und die Newtonsche Unterscheidung für eine Illu-
sion.”29

The observation that the “absolute motion” of the fluid in the bucket exper-
iment is also merely a relative motion of the water in the pail with respect
to the far distant masses of the universe, is the origin of “Mach’s principle”.
This principle, which was formulated by Einstein and not by Mach, states
that the local inertial forces are caused by the relative motion of the masses
in the universe, and that this effect is induced by the gravitational field of
the large scale cosmic mass distribution. Hence, Mach’s principle should
be provable within the framework of a theory of gravitation. However, in
Einstein’s general relativity, Mach’s principle is not satisfied. The theory
provides many vacuum solutions (without masses) with inertial forces.

27 Maxwell (1991, MaM), Sect. 18.
28 See Jammer (1954, CSP), p. 141, and Wien (1921, RTh), p. 31.
29 This passage does not occur in McCormack’s translation, because it is from the

fourth edition (1901) and was omitted later (which was recognised by Jammer). In
this respect, it should be mentioned that the two declarations against the theory
of relativity in the prefaces of Mach’s Optik (finished 1913, edited 1921 by his son
Ludwig) and the 9th edition of his Mechanik (1933) are very probably forgery (by
his son Ludwig), as Gereon Wolters has shown in a painstaking analysis (1987,
MER).
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6.2.2 Some Highlights of the Concept of Time

1. Aristotle
The conception of time in Aristotle30 can be characterised by three main
features: (1) By its relation to change; (2) by the definition of time given by
Aristotle, and (3) by a heavenly standard as a unit for time measurement.

(1) The relation of time to change is twofold: (a) on the one hand, time is
bound to change such that if there is no change or movement there is
no time:

“Time cannot be disconnected from change; for when we ex-
perience no changes of consciousness . . . no time seems to have
passed . . . Since, then, we are not aware of time when we do
not distinguish any change . . . it is clear that time cannot be
disconnected from motion and change.”31

(b) On the other hand, time is independent of change and movement, in
the sense that there can be faster and slower movement but not faster
or slower time: “And further, all changes may be faster or slower, but
not so time; for fast and slow are defined by time, “faster” being more
change in less time, and “slower” less in more.”32

(2) Aristotle gives the definition of time as follows: “When we perceive a
distinct before and after, then we speak of time; for this is just what
time is, the calculable measure or dimension of motion with respect to
before-and-afterness.”33 Before he gives this definition, and subsequent
to it, he discusses two main features of it: (a) Since motion is from some
place to another, and since measures and magnitudes, with respect to
these places, are continuous, motion must be continuous. And since
time is a measure of motion, with respect to before and afterwards,
time is also continuous. (b) We apprehend time if we count different
“nows” in a process of succession such that one is before and the other
is after: “Time, then, is the dimension of movement in its before-and-
afterness, and is continuous.”34 Thomas Aquinas, in his commentary
on Aristotle’s Physics, explains this as follows:

“Therefore, when we sense one ‘now’ and do not discern in
motion a before and after, or when we discern in motion a
before and after but we take the same ‘now’ as the end of the
before and the beginning of the after, then it does not seem
that time passes, for there is no motion. But when we take
a before and after and number them, then we say that time

30 cf. Barbour (1989, ARM), p. 93ff, for a lucid exposition.
31 Aristotle (Phys), IV, 218b21.
32 Ibid. 218b15.
33 Ibid. 219b1.
34 Ibid. 220a25.
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passes. This is so because time is nothing else than the number
of motion in respect to before and after. For we perceive time,
as was said, when we number the before and after in motion.”35

(3) In search for a standard unit for time measurement, Aristotle proposes
a heavenly unit and tries to justify it by several points, three of which
seem to be of special importance.
(a) First, a unit for time can only be taken from such a motion or

change which is most basic, regular and uniform. Of the three types
of motion or change, i.e. change of increase and decrease, alteration
and change of place (or local motion), he tries to show that local
motion is first and most basic, since the two other types presuppose
local motion.36

(b) Further, he tries to show that circular motion is the most regular
and uniform of local motion; and since local motion is continuous,
circular motion is also continuous. Now, among circular motions
the daily motion – in his understanding, the revolving of the fir-
mament with the period of the day, in today’s understanding, the
rotation of the earth – is the most suitable for a unit for time
measurement of the other motions.37 Although revolution is not
identical with time, since a part of the revolution is not a revolu-
tion, whereas parts of time are time,38 it can serve as a unit for
time measurement.

“And now, keeping locomotion and especially rotation in
mind, note that everything is counted by some unit of like
nature to itself – monads monad by monad, for instance,
and horses horse by horse – and so likewise time by some
finite unit of time. But as we have said, motion and time
mutually determine each other quantitatively; and that be-
cause the standard of time established by the motion we
select is the quantitative measure both of that motion and
of time. If, then, the standard once fixed measures all di-
mensionality of its own order, a uniform rotation will be
the best standard, since it is easiest to count.”39

(c) In his Book VIII of Physics, Aristotle continues to describe im-
portant features of his concept of time. Among these is his claim

35 Thomas Aquinas (CAP), IV, 580.
36 Aristotle (Phys), VIII, 260a27, Barbour and Barnes translate the change of

place as “locomotion”. Barbour has a problem of interpretation (p. 98), though
Aristotle’s distinction of the three types seems to be quite simple. Barbour does
not seem to have incorporated Book VIII which contains an important comple-
mentation.

37 Ibid. IV, 223b18.
38 Ibid. IV, 218b2.
39 Ibid. 223b13.
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that the first local motion (locomotion) is eternally (infinitely)
continuous. In this respect, one has to know that, according to
Aristotle, the world (universe) is infinite in time (duration), i.e.
has (at least with respect to prime matter) no beginning or end (cf.
Sect. 6.2.1.1 about Aristotle above). Now, the first circular motion,
which is the most perfect motion, is moved by the first mover (by
the Aristotelean God). No other local motion other than circular
motion is infinitely continuous.40 This property of the first circu-
lar motion, that it is infinitely (eternally) continuous, i.e. going on
forever in a uniform and regular way, is indeed interesting, since it
suggests interpreting it in modern physical terms: as the movement
of inertial systems.

2. Thomas Aquinas
Thomas Aquinas’ theory of time can be characterised by three points:
First, by his definition of time, second, by its consequences, and third, by
the comparison of time with eternity.
(1) The definition of time Thomas Aquinas gives in several places in his

writings is mainly that of Aristotle: Time is the measure – expressed
in numbers – of change or movement with respect to before and after:

“Just as we derive our knowledge of simple things from com-
posite ones so we derive our knowledge of eternity from time,
which is the measure of before and after in change. For in all
change there is successiveness, one part coming after another,
and from our numbering antecedent and consequent parts of
change there arises the notion of time, which is simply the
numberedness of before and after in change.”41

(2) From this definition we can deduce several features of time, according
to Thomas Aquinas:
(a) Time is a measure, expressed in numbers, for the successiveness

of change. Now, since this successiveness is continuous, time is a
continuous quantity.

(b) Time is bound to change and consequently to the changing world.
Without change, there is no before and after, and consequently, no
time. Before and after, or past and future, are necessary conditions
for time: “Now something that lacks change and never varies its
mode of existence will not display a before and after.”42 Moreover,
there was no time “before” the world, but God created time by
creating a changing world:

“Those who would say that the world was eternal, would
say that the world was made by God from nothing, not
that it was made after nothing, according to what we

40 Ibid. VIII, 260a20f and 264b29.
41 Thomas Aquinas (STh), I, 10,1.
42 Ibid.
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understand by the word creation, but that it was not made
from anything.”43

“Things are said to be created in the beginning of time,
not as if the beginning of time were a measure of creation,
but because together with time heaven and earth were cre-
ated.”44

(c) Since this world is finite in time, according to Thomas Aquinas,
and since time is a measure of change of this world, time is finite,
too. Although this cannot, however, be proved with a demonstra-
tion, since a demonstration is a proof which uses universal laws
(of nature) about this world. But laws abstract from hic and nunc
(place and point of time) such that no point of time, neither of
beginning nor of end of the world, could be deduced from (or with
the help of) universal laws:

“The reason is this: the world considered in itself offers no
grounds for demonstrating that it was once all new. For
the principle of demonstration is that what something is.
Now the general concept of the specific nature abstracts
from here (hic) and now (nunc); whence it is said that
universals are everywhere and always.”45

(3) Time is different from eternity with respect to two features: (a) Time is
limited and finite like the world is limited and finite, having a beginning
and an end, since time is bound to this world. Eternity, on the other
hand, is not limited but interminable; it has neither a beginning nor an
end. (b) Time has an order of succession, a before and after in a process
of change. Eternity has no succession, being simultaneously whole.

“So just as numbering before and after in change produces
the notion of time, so awareness of invariability in something
altogether free from change produces the notion of eternity. A
further point: time is said by Aristotle to measure things that
begin and end in time, and that is because you can always
find a beginning and an end in changing things. But things
altogether unchangeable can no more have a beginning than
show successiveness.

Two things then characterise eternity: firstly, things existing
in eternity are endless, lacking both beginning and end (for
both may be called ends); and secondly, eternity itself exists
as a simultaneous whole, lacking successiveness.”46

43 Thomas Aquinas (STh), I, 46, 2 ad 2.
44 Ibid. 46, 3 ad 1.
45 Ibid. 46, 2. Recall the discussion of this passage in the foregoing Chap. 5. note

11.
46 (STh), I, 10,1.
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3. Newton
The place where Newton speaks of absolute time is the Scholium of the
Principia. Here are two important passages:

“Absolute, true, and mathematical time, of itself, and from its own
nature, flows equably without relation to anything external, and
by another name is called duration: relative, apparent, and com-
mon time, is some sensible and external (whether accurate or un-
equable) measure of duration by the means of motion, which is
commonly used instead of true time; such as an hour, a day, a
month, a year.”47

“Absolute time, in astronomy, is distinguished from relative, by the
equation or correction of the apparent time. For the natural days
are truly unequal, though they are commonly considered as equal,
and used for a measure of time; astronomers correct this inequality
that they may measure the celestial motions by a more accurate
time. It may be that there is no such thing as an equable motion,
whereby time may be accurately measured. All motions may be
accelerated and retarded, but the flowing of absolute time is not
liable to any change.”48

Concerning time, Newton wanted to avoid “that it may be, that there
is no such thing as an equable motion, whereby time may be accurately
measured” (see citation above); i.e. that there must be a more basic mea-
surement of time than the one provided by the rotation of the earth relative
to the stars or a similar periodic motion of another planet. In contradis-
tinction to absolute space, absolute time, for Newton, is still in some way
connected with experience: it is abstracted from by the astronomers as a
“correction of the apparent time” (see citation above from the Scholium).
He was searching for a genuine referential basis of observable motion and
for an explanation of observable motion with the help of unobservable and
absolute space and time. In this respect, he follows in the tradition of the
great aim of Greek science and philosophy: To describe and explain the
visible (observable), concrete, particular, changing, material world by non-
visible (non-observable) abstract, universal, non-changing and immaterial
principles. It does not seem that Newton ever mentions the possibility of
taking the totality of bodies in the material universe – in contradistinction
to a particular other body – as a frame of reference for defining motion of
one body in this universe, whereas Copernicus and Kepler defined motion
relative to the fixed stars (which for them were really fixed). Barbour49

gives three reasons for Newton’s adherence to the absolute concepts: His a
priori rationalistic concept of space “which he was very loath to abandon”;
his concentration on the demolition of Descartes’ definition of motion; and

47 Newtond (Princ), Scholium.
48 Ibid. Scholium IV.
49 Barbour (1989, ARM), p. 636.
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his insight that all the bodies in the universe are in motion relative to each
other.

Kant did not have anything new to say about time. In the four condi-
tions for space in his Critique, he repeats his concept of time as an a priori
intuition.50 He adds the further condition that, because of the necessity
provided by the a priori intuition, apodictic principles or axioms of time
can be formulated. He gives as examples, that time has one dimension, and
that different points of time are in succession after one another. But such
features – of course without claiming a priori intuitions – are already dealt
with, in much more detail, in Aristotle’s Physics.

Maxwell’s view on the relativity of time is well expressed in the passage
from Matter and Motion cited above (6.3.1(5)). This point is stressed again
when Maxwell describes a method of defining equal intervals of time.51

4. Mach
Mach asked the critical question whether Newton’s idea concerning ab-
solute time and its consequences could somehow be empirically tested. He
came to the conclusion that absolute time cannot be used as a reference
frame, at least not with any empirical meaning. On the other hand, the
change or movement in time of some body can only be measured with re-
spect to another body. More accurately, this means that by measuring time
we have to compare the change of some body with a concrete clock, which
is nothing but a physical process. Of course, no such process would be
suitable. Remember that Aristotle had already proposed the daily rotation
of the earth (in his understanding: of the stars) as a concrete clock, since
circular motion was most regular to him. Time was also, for Aristotle, the
measure of some concrete movement and change; and this is what Mach
pointed out against Newton’s idealisation of absolute time:

“This absolute time cannot be measured with the help of any move-
ment, it has therefore no practical and also no scientific value; no-
body is justified to claim that he has knowledge of it and it is
therefore a useless “metaphysical” concept.”52

Mach also considers the rotation of the earth as a more objective measure
for a time scale, since our physiological time is dependent on subjective
changes, and nature does not signify an unambiguous measure. An in-
teresting comparison between the search for an objective time scale and
that for an objective scale for temperature leads Mach to the conclusion
that the mutual similarities show no ultimate objectivity in both cases:
All that we have is a comparison or abstraction from different scales either
to an average scale or to a selection of a most suitable scale among similar
ones.

50 cf. Kant (1787, CPR), B46f.
51 Ibid. Sect. 43.
52 Mach (1933, MEC), p. 217.
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However, there is an important dissimilarity here: It is possible to define
an objective scale of temperature, based on the absolute temperature (zero
kelvin), which is independent from material (used in the instruments), with
the help of the efficiency of a Carnot process. This is not possible in the
same way for a time scale.

Mach still did not give up his search for a concept of absolute time
which was such that it could be given an empirical meaning by connecting
it with a global process of the universe. He was searching for something
analogous to Mach’s principle with respect to space. And his proposal for
such a measure of absolute time is the entropy of the whole universe.53

Although he points out critically that the empirical meaning gained that
way is hardly comprehensible.

5. Poincaré
Similar to Ernst Mach, Henry Poincaré also realised that Newton’s absolute
and universal time does not exist as an experimental quantity which is
measurable with well defined clocks. In this situation, the question arises
as to whether we can define a metric of time by real physical processes,
and whether this time is a convenient tool for formulating laws of physics.
In particular, Poincaré formulates two open questions:54

(i) How can we find a realisable and convenient measure of time which
allows for the comparison of the duration of two subsequent processes
at the same place?

(ii) Given a realisable measure of time in the sense of (i), how can we
compare the time values of two events which occur at far distant places?

The first problem had already been recognised by Newton, who pointed out
that astronomers measure time intervals with respect to the motion of the
sun, the planets, and the stars, which are, however, not exact clocks for the
absolute time: “For the natural days are truly unequal, though they are com-
monly considered as equal and used for a measure of time; astronomers correct
this inequality that they may measure the celestial motions by a more accu-
rate time.”55 This is, however, a very difficult task, since “It may be that
there is no such thing as an equable motion, whereby time may be accurately
measured.” On the basis of these considerations, Poincaré tried to find a most
general criterion according to which we can uniquely define time as a measur-
able quantity. Obviously, we can use a given measure of time for describing the
celestial motion, which will then turn out to be either uniform or accelerated.
Or we could use a particular celestial motion, which we assume to be uniform,
and define the measure of time by this motion. Both ways will not lead to a
metric of time which is an intrinsic measure of nature and at the same time
53 Mach, ibid. p. 319.
54 H. Poincaré, La mesure du temps, Revue de métaphysique et de moral, t. VI,

pp. 1–13 (1898), Chap. V.
55 I. Newton, Principia, ed. F. Cajori, Berkeley, University of California Press, 1947,

pp. 7–8.
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experimentally well defined. Hence, Poincaré formulated a principle accord-
ing to which Newton’s “astronomers” could have corrected and improved the
measure of time, and which can also be directly applied to physical processes:
“Time must be defined in such a way that the equations of motion in classical
mechanics are as simple as possible.”

This principle, which is not trivial, can be illustrated in the following
way.56 If t is Newton’s absolute time, then the equation of motion (in one
spatial coordinate) assumes the well-known form

m
d2x

dt2
= K (1)

If we introduce a new measure of time by ϑ = f(t), where f(t) is a bijective
function, then the equation of motion reads

m
d2x

dϑ2
=

1
(f ′(t)2)

K − m
f ′′(t)

(f ′(t))2
dx

dϑ
(2)

On the right hand side of this equation we find two terms, the external force
K multiplied with a time dependent factor, and a new term that corresponds
to a velocity dependent and a time dependent inertial force. Also without
explicitly formulating a principle of simplicity, it is obvious that (1) is simpler
than (2). Hence, the measure of time used in physics and astronomy seems
to be chosen according to the conventional postulate formulated by Poincaré,
that Newton’s equation of motion assumes its simplest form (1).

Even if a metric of time is established in the described way, the problem
arises how simultaneity of two clocks C(x) and C(x′) at different places x �= x′

can be defined. This is Poincaré’s second question, and he illustrates it by the
following example:57

In 1572 Tycho Brahe observed a nova explosion at the coordinates α =
0h20m, 6; δ = +63◦44′ in a distance of D = 1.91015 km. If we assume isotropy
of the velocity of light, i.e. equality of the velocities c+ and c− in both direc-
tions, then the event of the nova explosion occurred almost 200 years before
its observation.

If tO is the time of the observation which is made at the place xO, and
tN is the time of the nova explosion at the place xN , then D = xN − xO =
1.91015 km is the distance between the nova and the observer, which is directly
measurable. Hence, we have the simple relation

tN =
D

c+
(3)

where
c+ =

xN − xO

tN − tO
(4)

56 Mittelstaedt (1989, ZBP), pp. 28–32.
57 Poincaré, ibid. Chap. VI.
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is the velocity of a light signal which proceeds from the nova to the observer.
However, there is no independent method for measuring the one-way velocity
of light c+, since for its measurement we would need two already synchronised
clocks U(xN ) and U(xO) at places xN and xO, respectively. Hence, the follow-
ing problem arises: If we assume some value tN for the nova explosion, then
we can determine the value c+ of the velocity of light according to (4). If we
assume a certain value c+ for the velocity of light, then we can determine the
time value tN of the nova explosion according to (3). In any case, we have to
make a stipulation by convention either about the distant simultaneity of the
clocks C(xO) and C(xN ) or about the velocities c+ and c− in both directions.
The simplest convention for distant simultaneity is the assumption that the
velocity of light is isotropic, i.e.

c+ = −c− = c (5)

where c is the two-ways velocity of light in vacuum, which can be measured
with one single clock. This convention (5) for distant simultaneity was later
called Einstein synchronisation.58

6.3 The Concept of Spacetime

We understand by “spacetime” – as usual – a four dimensional differentiable
manifold, i.e. a set of points tied together continuously and differentiable. This
means that spacetime has two characteristics:

(1) It has a topology with a definition of neighbourhood.
(2) It is coordinatisable by the set of quadruples of real numbers R4 if there

is a homomorphism K : M4 R4 which is called a coordinate system.

6.3.1 Coordinate System and Reference System

A coordinate system K is given by a function K : M4R
4, which maps the

four-dimensional Minkowskian Spacetime M4 to the quadruples R4 of real
numbers. If in a coordinate system the space coordinates x of the material
elements of the reference system are constant in time, then the coordinate
system is said to be comoving. Within a given reference system there are
infinitely many comoving coordinate systems.59

58 cf. Mittelstaedt, ibid. p. 44.
59 For a most general treatment of coordinate systems see Hawking, Ellis (1973,

LSS). Note that the expression “comoving” is not predicated of the pure mathe-
matical coordinate system as such. Pure mathematical structures, since they are
conceptual entities, cannot move. This expression is applied to coordinate sys-
tems only insofar as they are conjoint to reference systems which have a physical
(material) basis. Therefore, reference systems can move.
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A reference system or a laboratory system consists of a material basis
which is equipped with rods and clocks. The simplest case is a rigid reference
system. Here, all parts of the system are at rest relatively to each other. In
the general case, the material parts of the reference system have velocities
relative to other parts of the system. Hence, in this case, a reference system
is characterised by a velocity field v(x, t), which attributes a velocity v to a
point (x, t) in spacetime.

Although coordinate systems (as mathematical structures) – as long as
they are consistent – can be constructed in different ways, as soon as they are
applicable to physical systems, they have to obey certain constraints. Such
constraints are necessary to preserve the causal structure of Minkowskian
Spacetime. As Schrödinger60 pointed out, for example coordinate systems
that do not allow the distinction between space-like and time-like vectors, or,
more generally, those that extinguish physical differences, are not suitable.61

In general: The coordinate systems which can be used have to have physical
models. Although a coordinate system – as long as it is consistent – cannot
be refuted empirically, it still may not be applicable, because it does not have
a physical model.

6.3.2 Space: Space can be Understood in a Twofold Way

(A) Space as a coordinate system with a purely mathematical structure, with-
out having physical properties, but with the possibility of receiving a
physical interpretation (physical model). Helmholtz62 found out that the
kind of spaces where the distances can be measured with the help of (fi-
nite) rigid measuring rods, which are freely movable, are spaces with con-
stant curvature, such that their geometries are either elliptical or hyper-
bolical or Euclidean. If the rigid measuring rods which are freely movable
are infinitesimal, then the spaces are Riemannian, having a Riemannian
geometry (Cf. Sect. 4.2).

(B) Space as physical space is a physical reference frame or a physical model
of a space coordinate system.63 A physical model of a space coordinate
system, or a reference frame, has to have a physical interpretation of the
primitives; that means that it has to have a physical length standard or a
unit distance. Such a unit can consist of the two endpoints of a measuring
rod or of two successive maxima of a light wave or of something similar.

60 Schrödinger (1954, STS). See also Möller (1952, ThR).
61 For example, a purely “prior geometry” that is fixed a priori, i.e. that cannot be

changed by changing the distribution of gravitating forces (like the one Nordstrøm
has constructed in 1913), could not be suitable for general relativity. For details
see Misner, Thorne, Wheeler (1973, Grav) p. 429ff.

62 Helmholtz (1896, TGZ) p. 1. Recall Sect. 4.2
63 cf. The distinction of Torretti between physically possible spacetimes and coordi-

nate representations (1983, RaG) p. 302f. For the question of “visually possible
space” see Suppes (2002, RIS), Chap. 6.
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Although it is conventional which standard or unit distance we choose, it
is not only conventional that there has to be a unit, and also the physical
properties of such a unit (for example that it is not absolutely rigid, etc.)
are not conventional. Observe that physical space is the space of this
existing universe or of a part of it. It is not only a container independent
of the physical bodies in the universe.

According to Einstein’s field equations, our universe is a spacetime
with a Riemannian geometry. It has a metric determined by the distrib-
ution of the matter and by initial and boundary conditions.

6.3.3 Time: Time can be Understood in a Twofold Way

(A) Time as described by a chronology with a purely logical or mathematical
structure, without having physical properties, but with the possibility of
receiving a physical interpretation. A mathematical or logical property of
a chronology is, for example, that the temporal ordering is a partial or-
dering (in tense logics also called comparability): x is earlier than y or y is
earlier than x or x is simultaneous to y. Moreover, since we want to allow
infinitesimal increasing (or decomposing), we assume continuous addi-
tivity for a pointwise producing of a line which represents the direction
of increasing values on the t (time) – axis.64 Proposals for chronologies
with properties which are rather independent of a physical interpreta-
tion are the so-called tense logics (logics of time).65 In such systems, the
following properties are usually required by their basic axioms: transi-
tivity, asymmetry, comparability, and density. A relational time theory
which abstracts from reference frames (i.e. it is non-local) and can be
interpreted as a spacetime structure for Euclidean continuum mechanics
was proposed by Noll.66 In this theory, the first part, with the axioms
of time-lapse, time–distance and the definition of Euclidean metric, is a
chronology, whereas the second part, which introduces bodies, forces and
dynamical processes, is an application to physics (a physical model).

Before we proceed to physical time, three misconceptions connected
to the general, chronological concept of time should be mentioned:
(i) It is not correct to say that the time order is reducible to causal

order. Although from “event e causes event e′ it follows that e is
either earlier than or simultaneous with e′, the converse is not true.67

64 Note that this has nothing to do with the so-called “arrow of time” nor with
time-reversibility or irreversibility. For these notions see Chap. 7.

65 Prior in his Prior (1957, TMd) was one of the first for such proposals. See also
his Prior (1967, PPF). For an overview see Burgess (1984, BTL). cf. further v.
Benthem (1991, LgT).

66 Noll (1967, STS). A similar one was proposed by Bunge (1967, FPh) p. 93ff.
67 This presupposes, of course, that causal propagation cannot be faster than the

speed of light. This, however, is not the place to enter into a discussion of
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(ii) It is not correct to say that the law of entropy defines the positive
direction of time, because: (a) this law presupposes the concept of
time since it states that entropy increases in time, and (b) the con-
cept of time occurs also in theories describing reversible processes
and thus must be independent of the law of entropy.

(iii) It is not correct to say that measurements (on the QM level) define
the arrow of time, since they produce an irreversible change in the
object measured. QM also presupposes the concept of time, and until
some years ago we would have added: and further because the laws
of QM are time reversible. This, however, cannot be presupposed
generally any more, since time reversibility on the micro-level now
seems to be violated: not only indirectly via CPT but also directly
(see Chap. 7).

(B) Time can be understood as physical time, i.e. the time which is shown by a
standard clock, or as the time of our universe; of course, without assuming
that the time of the standard clock is the time of the universe, or even
that there is a unique “time of the universe”. Not every chronology which
is logically or mathematically possible is applicable to physical systems
(or globally to this universe); only those which have physical models
are suitable for physical time. Thus, a chronology which would preclude
the relativisation to physical reference systems could not be applied to
physics. A physical model of a chronology has to have, further, a physical
interpretation of the primitives; that is, it has to define a physical time
standard or time unit (or unit interval). This can be done with the help of
physical processes which have a certain regularity. There are two types of
such processes: periodical and monotone processes. A periodic process is
a process where the state of the system repeats itself after a finite period
of time and continues to do so in the absence of external disturbing
forces. Examples are the spherical pendulum, the planetary movement
around the sun, or the daily earth rotation (which was already proposed
by Aristotle as a time unit (recall 6.2.2).

A monotone process is a process where the states of the system do not repeat
themselves. An example is the uniform (with constant velocity) movement of
a body on a straight line. Now, as Mach and Poincaré pointed out, no time
standard is determined at any point in space just by empirical reasons. In this
sense, the choice of the respective unit is conventional. A time unit can be
defined, with the help of a monotone process, by equal distances, since equal
distances correspond to equal intervals of time. This presupposes, of course,
that we already have the concept of physical space with a length standard or
unit distance available.

As for physical time, a further step is necessary: For comparison, one has to
have a definition of simultaneity and an operational device for synchronisation

“superluminality”. For a discussion of these issues see: Mittelstaedt, Nimtz (eds.)
(1998, SLV). For causality see Chap. 9 below.
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of physical clocks. Such a device was originally given by Einstein.68 Two events
on place A and B are happening at the same time if their emitted light rays
meet69 in half of the distance between A and B. Or: two events e and e′ (on
place A and B) are happening at the same time if they are produced by two
light rays coming from a light source which is in the middle of the distance
between A and B. Or, in Einstein’s description: Two clocks at rest in A and
B are synchronised if (tB − tA) = (t′A − tB). Here, the clock in A shows time
tA when the light ray starts in A, and the clock in B shows time tB when the
light ray arrives in B and is reflected towards A. The clock in A shows time
t′A when the light ray finally arrives back in A. This synchronisation device is
called “Einstein synchronisation”.

There is, of course, a presupposition involved in this definition of simul-
taneity: It is assumed that the propagation of light is isotropic (i.e. having
the same properties in every direction). It is easily seen that, if the light
would travel faster from A to B than back from B to A, the above kind of
synchronisation wouldn’t work.70

6.4 Is Every Law of Nature Spacetime Invariant?

Proposed Answer : The answer to this original question has to be given for
different levels. These levels are: Invariance under internal spacetime trans-
formations (6.4.3); invariance under inertial transformations I (Galilean trans-
formations) (6.4.4); invariance under inertial transformations II (Lorentz
transformations, special relativity) (6.4.5); and invariance under arbitrary
spacetime transformation (general relativity) (6.4.6).

6.4.1 General Remarks on Invariance

As is clear from 5.1 and 5.3.1, invariance or symmetry can be applied to both
physical systems and laws (of nature) describing such physical systems. Here,
we shall concentrate on the invariance of laws71 and on those parameters
(magnitudes) occurring in the laws.

Concerning the invariance of laws of nature, we can distinguish different
degrees of generality:
68 Einstein (1905, EBK) p. 894.
69 In order to point out the relation to a reference system we may say: “meet at an

observer”.
70 For the possibility of different definitions of synchronisation and consequently

for simultaneity see below, Sect. 6.4.5, for a detailed discussion see Mittelstaedt
(1989, ZBP) p. 41ff.

71 It will be understandable that consequences of laws are not discussed here. They
may be much less general, and especially if they are inferred with the help of initial
or boundary conditions like predictions (for example as solutions of an equation
of motion), they are much too restricted to be invariant at all in a similar way as
the laws.
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(1) In a very general sense, a law is invariant if it does not change when
other things change. This is the general understanding of a law already
described in 5.3.1(1).

(2) In one specific sense, a law (of nature) is invariant if it does not change
when space (place) or time change. This is the oldest and – at least for our
understanding of what a law is – the most important invariance of laws of
nature. Its traditional and present importance has already been discussed
with an example in 5.3.1 above. Its deeper features will be discussed below.

(3) In a sense more general than (2) but less general than (1), a law of nature
is invariant if it does not change under a change of (physical) reference
frames (or under a transformation of reference frames) (cf. 5.3.2(2)). This
is the sense which is used nowadays to formulate most invariance princi-
ples.

It will be understood that reference systems of spacetime have an upper limit
for their symmetries: There are at most seven parameters for internal trans-
formation (three for translation in space, three for orientation in space, one
for translation in time) and three for inertial movement. That is, the symme-
try groups of Galilean – and of Lorentz – transformations have at most ten
parameters each.

(4) There are also additional kinds of invariance:
(a) Dynamical symmetries

In addition to the spacetime symmetries mentioned, some physical
systems admit another kind of symmetries, the so-called dynamical
or internal symmetries. The most interesting example is the “Kepler
problem”, i.e. the motion of a particle in a central field with a 1/r-
potential. Here, the Hamiltonian is invariant with respect to a three-
parameter infinitesimal canonical transformation of the phase space,
whose generator is given by the Lenz–Runge vector Λi. Accordingly,
this vector is a conserved quantity of the Kepler problem, which is,
however, not induced by a spacetime symmetry in the Minkowski
spacetime as rotation or translation, say.

(b) Form invariance
There are other changes of the coordinate system which change the
form of a law. For example, if rectangular coordinates are changed into
spherical coordinates, then the law formulated with its help changes
its form, though it does not change its validity or its invariance prop-
erties. From this it is clear that invariance of laws differs from form
invariance of laws. The same law may be expressed in different forms,
and one reason for such a difference may be the coordinate system
(cf. 6.4.2).

Concerning parameters (and magnitudes) occurring in laws, a physical para-
meter (magnitude) is invariant if it does not change its value under a change
from one (physical) reference frame to another.
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6.4.2 Spacetime Invariance is Concerned
with Real Continuous Movements of the Reference Frame

This can be seen as follows: Concerning movements, we have to distinguish be-
tween real movements and virtual movements. A physical reference frame can
only make real movements like translations and rotations. A coordinate sys-
tem, however, can also make virtual movements like mirror reflections. Since
it is a mathematical theorem that every position (orientation) and movement
of an object in space can be produced by a suitable sequence of translation,
rotation, and mirror reflection, it is a natural question whether laws of nature
can be invariant under any (also virtual) change of orientation and movement
of the coordinate system. The answer to this question is: No. The reason is
that laws of nature are not in general invariant under mirror reflection. This
is known since Yang and Lee discovered that parity is violated in nature.
Now, since physical reference frames cannot transform into their mirror im-
age, parity has been listed under “Discrete Symmetries”, a different kind of
symmetry compared to “Continuous Spacetime Symmetries” (recall 5.3.2 (2)
and 5.3.2 (3)). Therefore, spacetime invariance is invariance of the laws under
continuous transformations. Groups of such transformations are mathemati-
cally describable by Lie groups (of various parameters).

6.4.3 Invariance Under Internal Transformations

Concerning transformations, we first have to distinguish between two types
of transformations. According to the first type of transformations, only the
comoving spacetime coordinates within a given frame of reference are changed
by transformations. This means that here we merely consider translations of
the spacetime coordinates and rotations in space. According to the second
type of transformations, the velocity field which characterises the reference
frame is also changed by convenient transformations.

The first type of transformation will be called internal transformation.
The reason is that such a transformation is nothing but a replacement, within
the system, of the respective coordinates by new ones which have a constant
distance (or constant angle) from the original. Thus, the space coordinate x is
replaced by x′ = x+a (as for the other two); the time coordinate t is replaced
by t′ = t+b, and the rotational (orientation) angle α is replaced by α′ = α+β
(as for the other two).

What happens with such transformations is expressed very vividly by
Stephen Weinberg. The first three transformations in this passage refer to
the first type of transformation, the last one to the second type:

“The paradigm for symmetries of nature is of course the groups of
symmetries of space and time. These are symmetries that tell you that
the laws of nature don’t care about how you orient your laboratory,
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or where you locate your laboratory, or how you set your clocks or
how fast your laboratory is moving.”72

As has been mentioned earlier (see Sect. 5.3.2 (2)), the invariance of laws
of nature under these three transformations leads to seven conservation prin-
ciples: three for momentum, three for angular momentum, and one for energy.

Observe, however, that this first type of transformations, i.e. the internal
transformations, abstracts from movement of the reference frame. In other
words, they do not take into account a movement of the reference frame or
laboratory. Therefore, they are also abstract from fast movements (where ve-
locity v is close to the order of magnitude of c) or from accelerations and
consequently from (strong) forces and (strong) fields. Although these trans-
formations abstract from forces and fields, it would be a misunderstanding to
say that they implicitly claim (or even make the assumption) that there are
no forces or fields. Such a claim or statement is not a consequence nor implied
by that first type of transformation.73

From the above considerations a first-level answer follows to our original
question “Is every law of nature spacetime invariant?” It reads: Granted that
we abstract from high velocities and from strong fields and forces, every gen-
uine law of nature is spacetime invariant, in the sense of continuous translation
with respect to internal transformations.

This first type of invariance (under internal transformations) forms a sub-
group of the so-called Galilean group: What is relevant here is only transla-
tion in space (GT ), translation in time (Gt), and rotation in space (O3), i.e.
GT × (O3 × Gt). The subgroups space translation and rotational translation
form the Euclidean group or the geometrical transformations in Euclidean
space; whereas for the full Galilean group G we have to add the change of
inertial systems (Go):

G = (O3 × Gt) × (GT × Go) .

According to this first type of internal invariance, we can say – always abstract-
ing from forces and fields – that space is isotropic, and time is homogeneous.

6.4.4 Invariance Under Inertial Movement

A reference system can move in two ways: As an inertial system, without
acceleration and without inertial forces, and as a system with acceleration
72 Weinberg (1987, TFL) p. 73.
73 Observe that the concept of transformation and invariance with respect to the

first type is independent of historical facts. We mean, for example, historical facts
in the sense that Galileo might have thought that the inertial movement of the
ship (in his example in his (DWS), Second Day) can have arbitrary velocity –
relative to a ship at rest (or slowly moving) – without any consequence on the
measuring rods of his laboratory on the ship. Here we might speak of some false
assumptions, which have been corrected by special relativity.
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and inertial forces respectively. Here, we restrict our considerations to the
motion of inertial systems. Generally, an inertial system moves with constant
velocity relative to any other inertial system. Note that any movement of
an inertial system A is an inertial movement relative to another system B,
even if we assume that B is at rest relative to A. Since there is no absolute
space, there is no absolute reference point available relative to which we could
judge that system A moves inertially, i.e. with uniform velocity on a straight
line. Therefore, the class of all inertial systems can be taken as a realisable
substitute for the metaphysical concept of absolute space.74

6.4.5 Invariance Under Inertial Movement I: Galilean Movement

Inertial systems of reference are characterised by the requirement that force-
free point-like particles (mass points) move along straight lines. It follows from
this condition that two inertial systems Iand I ′ move relatively to each other
with a constant velocity v. Obviously, it is assumed in this argument that there
are no global fields like gravitation in particular fields which could destroy the
isotropy and homogeneity of space. Such fields, though they do not destroy the
invariance of laws, violate the necessary conditions (or presuppositions) such
as the isotropy of space, under which inertial systems can exist at all. On the
basis of this result, we can give a second-level answer to the original question:
Every genuine law of nature is invariant under mutual transformations of
inertial frames of reference with a constant relative velocity v. This is a kind
of “relativity principle” which can also be expressed in the following way: Laws
of nature do not distinguish between inertial systems moving relative to each
other with a constant velocity v. Or: Inertial systems moving relative to each
other with a constant velocity v are equivalent with respect to laws of nature.

This statement should be further specified and illustrated by an example:
In one spatial coordinate the equation of motion in classical mechanics reads
m(d2x/dt2) = Kx. If we assume – in accordance with Newton – that there is
a universal time parameter t which is relevant for all inertial systems, then
the transformation from system I(x, t) to the system I ′ (x′, t′) is given by the
Galileo transformation x′ = x − vt, t′ = t. Obviously, the equation of motion
mentioned is invariant against this transformation. However, if we do not as-
sume – in accordance with Einstein – that there is a universal time t, then the
Galileo transformations must be replaced by a Lorentz transformation, and
Newton’s above-mentioned equation is no longer invariant. Hence, we must
replace the classical equation of motion by the Lorentz invariant relativistic
one, which leads to results which are unknown in Newtonian mechanics. For
example: The inertial mass of a moving body depends on its velocity v accord-
ing to the relation m(v) = m(0)/

√
(1 − v2/c2), where c is the velocity of light.

It should, however, be emphasised that the differences between the classical
and the relativistic case are almost negligible if we restrict our considerations
74 cf. Mittelstaedt (1989, KLM) p. 44.
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to velocities v � c that are very small, compared with the velocity of light
in vacuum. In this case, the well-known consequences of Newton’s equation
of motion, the velocity independence of mass, length, and time periods, are
almost in accordance with experimental results.

In addition, it should be noted that “Galilean invariance” and “Galilean
transformation” are not always described in the same way. A reason for this
is that they can also be understood historically. From the historical point
of view, in classical mechanics there is no restriction on the concept of time
and consequently on the velocity of the moving inertial systems; i.e. v could
not only come close to c but also exceed c.75 Even if the latter is at least
controversial, if not impossible, according to our knowledge today, a velocity
v that approximates c has the well-known serious consequences (of which an
important example is given above).

Summing up, it should be noticed that the Galilean invariance made three
important hidden assumptions:

(i) The time scale is the same in all inertial systems.
(ii) Simultaneity is the same in all inertial systems.
(iii) The spatial distance of two simultaneous events is the same in all inertial

systems.

6.4.6 Invariance Under Inertial Movement II: Special Relativity

Inertial systems (frames) move with v ≤ c relative to each other or undergo
internal transformations (6.4.3), thereby abstracting from forces or fields. In
his special theory of relativity,76 Einstein’s problem was a question of the
invariance of physical laws: Is it possible to formulate both the laws of clas-
sical mechanics (Newton’s theory) and the laws of classical electromagnetism
(Maxwell’s theory) in such a way that both laws are invariant under transfor-
mations of inertial systems?

“The same laws of electrodynamics and optics are valid for all frames
of reference for which the equations of mechanics hold good . . . We will
raise this conjecture (the purport of which will hereafter be called the
‘Principle of Relativity’) to the status of a postulate and also introduce
another postulate which is only apparently irreconcilable with the
former, namely that light is always propagated in empty space with a
definite velocity c which is independent of the state of motion of the
emitting body. These two postulates suffice for the attainment of a
simple and consistent theory of the electrodynamics of moving bodies
based on Maxwell’s theory for stationary bodies.”77

75 See the passage of Galileo (DWS) in Sect. 5.4.2
76 Einstein (1905, EBK) Engl. Transl. p. 37f.
77 Ibid.
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Since Maxwell’s equations are not Galileo invariant, there were three main op-
tions: (i) Assume an ether which is the designated inertial frame for Maxwell’s
theory, whereas the laws of classical mechanics have their Galileo invariance.
(ii) Try to adapt Maxwell’s equations to Galileo invariance by correcting them,
so that both laws are Galileo invariant.78 (iii) Invent a new principle (or kind)
of invariance which is obeyed by Maxwell’s equations and adapts classical
mechanics (Newton’s theory) by correcting it.

Einstein had chosen (iii) even before experiments had confirmed his choice.
That he rejected (ii) is certainly connected with the fact that (ii) is incompat-
ible with his strong belief – supported by his knowledge of electrodynamics –
that in general the velocity of light is constant, and its propagation is inde-
pendent of the emitting source.

(i) Was rejected by the Michelson–Morley experiment and other experiments
(Kennedy–Thorndike experiment and stellar aberration), which refuted
alternatives (Lorentz–Fitzgerald contraction, ether-drag hypothesis) for
saving an ether.

(ii) Was refuted by experiments which showed the independence of the ve-
locity of the source (the first experiments were done by de Sitter in 1913
and were later confirmed by experiments with the help of particle accel-
erators). Einstein’s new principle of invariance was the so-called Lorentz
invariance, and his correction of the laws of classical mechanics led to the
Lorentz invariant mechanics.

Historically, it is worth mentioning that Lagrange had already corrected New-
ton’s equations, in order to show how Newton’s absolute motion could be de-
duced from observed relative motions. He formulated Newton’s equations (for
three gravitationally interacting bodies) in such a way that they contained,
besides the time coordinate, three only relative space coordinates (determin-
ing the sides of a triangle in the corners of which are the three bodies).79

(a) Lorentz invariance
Lorentz invariance is invariance under transformation of inertial systems,
without assuming that the time scale (time measurement) is the same in
all inertial systems. This invalidates three important hidden assumptions
of Galilean invariance: (α) There is an absolute time in all inertial systems,
i.e. the time scale (time measurement) is the same in all inertial systems.
(β) Simultaneity is the same in all inertial systems; and as a consequence
(γ) the spatial distance of two simultaneous events is the same in all
inertial systems. That means that according to Galilean invariance time
measurements, simultaneity, and spatial distance are invariant magnitudes
under transformations of inertial systems. And these three invariances
were invalidated by Einstein’s theory of special relativity.

78 This option was investigated by Stachel and Jammer (1979, MWA).
79 Lagrange (1772, EPT). For a detailed account see Dziobek (1888, MTP). cf.

Barbour (2001, GCB) p. 200.
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(b) Lorentz transformation
The Lorentz transformation transformes the coordinates x, y, z, t of the
inertial system I into those x′, y′, z′, t′ of the inertial system I ′, which
moves with velocity v with respect to I:

x′ = k(x − vt) y′ = y z′ = z

t′ = k(t − vx
c2 ) where k =

1√
1 − v2/c2

.

As one can easily see, the decisive difference between the Galilean trans-
formation and the Lorentz transformation is that in the former simply
t′ = t, whereas in the latter t′ = k(t − vx/c2).

Consequently, (for velocities approaching c) there is contraction of
length (by the factor 1/k), dilatation of time (by the factor k), and in-
creasing mass (by the factor k).

Meanwhile, all three consequences have been experimentally con-
firmed: The increase of mass by experiments with nuclear particles in
accelerators; the dilatation of time by comparing the mean life for decay
of muons in flight with velocity close to c with muons brought to rest in
an absorbing block. Later, the effect could even be proved with atomic
clocks in an aeroplane.80 The contraction of length in the direction of
movement of an object can only be observed as an object which appears
to be turned (and thus shorter).

(c) Invariance of magnitudes
The most important invariant magnitude is, of course, c, the velocity
of light. No change in the inertial reference frame or in the velocity of
the light source can change the speed of light; it is invariant under all
changes of inertial systems. In other words: The propagation of light is
isotropic with respect to all inertial systems. This was first confirmed
by Michelson’s experiment (1882–1887). Another invariant magnitude is
electric charge. This basic magnitude in Maxwell’s equations is Lorentz
invariant and does not need any correction.

Although mass, length, time, and simultaneity are not invariant and
have to be corrected as shown above, there are combined magnitudes of
the above which are invariant. This can be seen by the following consid-
eration:

In an inertial system I with coordinates (x, t), we consider two events
E1(x1, t1) and E2(x2, t2), where we restrict our considerations to one
space coordinate. Neither the spatial distance ∆x = x2 − x1 nor the time
difference ∆t = t2 − t1 of these two events are Lorentz invariant, since
in another inertial system I ′(v) moving with velocity v the transformed
quantities read ∆x′ = k(v)(∆x − ∆vt) and

∆t′ = k(v)(∆t − v∆x/c2) .

80 This was first done by Hafele and Keating in 1971.
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The “four-dimensional distance”

(∆s)2 = c2(∆t)2 − (∆x)2 ,

however, is Lorentz invariant, since from the transformation formulas for
∆x and ∆t it follows:

c2(∆t′)2 − (∆x′)2 = c2(∆t)2 − (∆x)2 .

By means of the spacetime distance s, other Lorentz invariant quantities
can be constructed.

(d) Invariance of laws
We can now give a third-level answer to our original question: All laws of
electrodynamics (electromagnetism), i.e. of Maxwell’s theory, and all laws
of classical mechanics which are corrected in the sense of special relativ-
ity are invariant under transformations of inertial systems moving with
v ≤ c. Since inertial systems move along spacetime coordinates (physical
objects of the inertial system move along a world line), invariance under
transformations of inertial systems (moving with v ≤ c) also means space-
time invariance. Another description of the same fact is that all the laws
of nature mentioned above are Lorentz invariant. Again, another way to
express these facts is that there is no designated or “true” inertial system
from which time, place (space), mass, or velocity is universally measured
(for all other reference frames). On the contrary, every inertial reference
frame is – objectively – of equal rank. This can also be expressed by the
following three points: There are no privileged points in space and time,
there are no privileged directions in space, and there are no privileged
inertial systems. These formulations of the invariance of laws of nature
are at the same time alternative formulations of the principle of special
relativity (recall Einstein’s citation in 6.4.6). If we replace the third point
by “there are no privileged frames of reference at all” we pass to one of
the most important guiding ideas of general relativity. As is clear from
the discussion in 5.3.1 (3), such principles can be expressed as meta-laws
(either in descriptive or in normative form) or as laws about physical
systems.

6.4.7 Invariance Under Arbitrary Spacetime Transformations:
General Relativity

As in the case of special relativity, Einstein’s main idea for developing his
theory of general relativity (GR) was again invariance of laws of nature. In-
variance of laws in the most general sense transcends Lorentz invariance in a
threefold way: first, in the sense that it drops the restriction to inertial refer-
ence frames (a), second, in the sense that it drops the restriction to straight
Galilean coordinates (b), and third, in the sense that it extends to gravitation
(6.4.7.1), which was left out of consideration by special relativity.
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(a) To drop the restriction to inertial reference frames is well justified, for
many reasons. Four important ones are as follows:
(i) Because rotational movements, like the movement of the planets

around the sun and their self rotation, are not inertial motions, since
they are not free from inertial forces (in this case centrifugal forces,
Coriolis forces, etc.), they must be described by means of accelerated
frames of reference.

(ii) In general, accelerated movements have to be permitted in addition
to inertial movements.

(iii) Mach’s reinterpretation of Newton’s bucket experiment showed that
the motion of the water relative to the bucket does not lead to in-
ertial forces, whereas the motion relative to the starry sky induces
centrifugal forces. Mach left the question open how the stars could
act on the rotating water, but Einstein – more than twenty years
later – assumed that the gravitational field of the distant masses of
the universe induces inertial forces. Einstein called this hypothesis
“Mach’s principle” and considered it as one of the corner stone of
the new theory of general relativity (see 6.2.1.6 and 6.2.2.4).

(iv) The existence of gravitational fields and the impossibility to screen
off gravitational fields (of planets, stars and galaxies) precludes the
construction of global inertial systems, and thus, strictly speaking,
of inertial systems at all.

(b) The restriction to straight Galilean coordinates had to be given up for the
same reason. Because there are no inertial systems (at least not globally),
the geometry of light rays in a three-dimensional reference frame which
moves with acceleration is not Euclidian. In general, the world line of light
rays and of physical systems (reference frames) is geodesic, which means
as straight as possible. More accurately: these are geodesic lines in the
Riemannian spacetime, which is constituted by the local inertial systems.
Consequently, in the presence of gravitational fields we must restrict all
considerations to local inertial systems I (xk, t), i.e. to reference systems
which are inertial only at one place xk and at one instant t of time. This
restriction has far reaching consequences for the geometry of spacetime.

Summing up, the general theory of relativity, which is in fact a general theory
of gravitation, can be characterised by the following four basic assumptions:

(1) There is a spacetime metric.
(2) This metric is related to the distribution of matter and energy in space-

time by Einstein’s field equations, with the following consequence: The
effect of gravitation on matter fields can be described by replacing
the flat Minkowski metric of special relativity by a curved Riemannian
metric.

(3) Assuming the principle of equivalence between inertial and gravitational
mass, the formalisms which describe inertial forces can be applied to grav-
itational forces as well.
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(4) All special relativistic laws (laws of special relativity) are valid in local
Lorentz frames of the metric.81

6.4.7.1 The Principle of Equivalence

The incorporation of gravitation is essentially connected with dropping the
restriction to inertial movement and incorporating accelerated frames of ref-
erence. It was one of the important basic ideas in the development of general
relativity to see that, with respect to the motion of material bodies, a homo-
geneous gravitational field is indistinguishable from and can be replaced by a
uniformly accelerated frame of reference. Hence, a reference system K, which
is at rest in a homogeneous gravitational field, is equivalent to a reference
system K ′ (in a gravitational free space) moving with a uniform acceleration.
Since homogeneous gravitational fields do not exist in reality, these arguments
must be restricted to local situations: With respect to the motion of a mass
point, the influence of a gravitational field can locally and momentarily not
be distinguished from the effect of an accelerated frame of reference. Con-
sequently, locally and momentarily a gravitational field can be “transformed
away” by a transformation to a local and momentary inertial frame of refer-
ence.

This principle is called the principle of equivalence.82 It is usually formu-
lated like this: Physical laws are the same in all “free falling” local inertial
reference frames and satisfy in these systems the laws of special relativity. Or
in other words: Physical laws are invariant under changes of “free falling” lo-
cal inertial reference frames. Both formulations, however, are not sufficiently
detailed. Therefore, we want to add the following details:

(1) The equivalence is claimed between gravitational effects and acceleration
or between effects in “free falling” and “inertial” frames of reference. In
the first case, between a reference frame at rest in a gravitational field
and a reference frame moving with acceleration, and in the second case,
between a free falling reference frame and a reference frame with iner-
tial movement (free from forces). An example for both cases is Einstein’s
“Gedankenexperiment” with the elevator. With respect to the motion of

81 cf. Misner, Thorne, Wheeler (1973, Grav) p. 302 and Hawking (1980, TAG) p. 145.
For a detailed discussion of basic concepts and axioms see Bunge (1967, FPh) p.
218ff.

82 In the respective literature, this principle is sometimes called weak principle of
equivalence in contradistinction to the strong principle of equivalence, which is the
statement that the inertial mass and the gravitational mass are “equivalent” or
better: proportional with a universal factor. The usage of the terms “weak” and
“strong” is probably connected with the idea that the “weak” principle is in some
way derivable from the “strong” one. We do not use these terms, because they
are used in other contexts with another connotation. Such terms may therefore
be misleading.
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a mass point, the effect of a gravitational field in a given spacetime point
cannot be distinguished from an accelerated frame of reference, and a free
falling reference frame cannot be distinguished from an inertial reference
frame.

(2) A local reference frame relative to which a static gravitational field van-
ishes is equivalent to an inertial frame (because it is free from forces).
And a local reference frame relative to which a static gravitational field
emerges is equivalent to a uniform accelerated frame.

(3) It is always possible to make such a transformation that in the reference
frame a static homogeneous gravitational field vanishes. And: It is always
possible to make such a transformation that in the new reference frame
an acceleration of a particle vanishes. Moreover, a non-static and non-
homogeneous gravitational field is equivalent only to a local-instantaneous
reference frame.83 On the other hand, a non-static and non-homogeneous
gravitational field can vanish locally and, at a fixed point of time, only
through a local-instantaneous reference frame. Reference frames of this
kind may be realised by free falling reference frames. Although they are
locally inertial at every point of time, they have to be newly defined for
every point of time. Accordingly, a free falling observer (for example in a
satellite) could adjust to continually new inertial systems.

(4) It is usually assumed that the explanation or reason (or the premise)
for the principle of equivalence described by (1)–(3) is the equivalence of
inertial mass and gravitational mass, or, more accurately, the fact that
inertial mass and gravitational mass are proportional with a universal
factor. This fact itself does not have a satisfactory explanation so far.

With respect to the role of the principle of equivalence for GR we want to
point out three things: First, it was heuristically important for the develop-
ment of GR; second, this principle leads at most to the Riemannian structure
of spacetime but not to the Einstein equations, which describe the relations
between the spacetime metric and the sources of the gravitational field; third,
the principle of equivalence does not imply the regulating guidance principle
of GR, which has been called the principle of general covariance of laws of
nature.

6.4.7.2 General Invariance and General Covariance

As a guidance to finding the field equations of the gravitational field, Ein-
stein used a regulative principle which states that the laws of nature should
be independent both of any arbitrarily moving reference system and of any
coordinate system.84 In Einstein’s words:
83 cf. Misner, Thorne, Wheeler (1973, Grav), p. 386.
84 A reconstruction of this rather hypothetical “derivation” of Einstein’s field equa-

tions in modern terminology can be found in Anderson (1967, PRP) pp. 338–342.
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“The laws of nature must be of such a nature that they are valid with
respect to systems of reference in arbitrary motion”
“The general laws of nature are to be expressed by equations which
hold in all systems of coordinates, i.e. which are covariant with respect
to any arbitrary substitutions (generally covariant).”85

The two quotations show that Einstein distinguished between two aspects of
independence of the validity of laws. The first aspect (here called A) focuses
on physical reference systems under arbitrary motion; i.e. laws of nature re-
main valid under arbitrary motion of physical reference systems. The second
aspect (here called B) focuses on mathematical coordinate systems under ar-
bitrary transformation;86 i.e. laws of nature remain valid under an arbitrary
transformation of mathematical coordinate systems.

The validity of laws of nature, in the sense of A, is sometimes called the
principle of general invariance, 87 but usually referred to as the principle of
general covariance. Also, the validity of laws of nature, in the sense of B,
is called the principle of general covariance. There is no generally accepted
terminology with respect to the expressions invariant and covariant, and there
is still a good deal of confusion concerning what content Einstein implied by
the principle of covariance.88

Concerning the aspects A and B, we shall deal with the following questions:
(1) What is the connection with the theory of general relativity? (2) How can
the relativity principle be expressed? (3) Are both aspects A and B realised

85 Einstein (1916, GAR), p. 772 and 775f. Engl. Transl. p. 113 and 117. The
German text reads: “Die Gesetze der Physik müssen so beschaffen sein, daß
sie in bezug auf beliebig bewegte Bezugssysteme gelten. Wir gelangen also auf
diesem Wege zu einer Erweiterung des Relativitätspostulates.” “Die allgemeinen
Naturgesetze sind durch Gleichungen auszudrücken, die für alle Koordinatensys-
teme gelten, d.h. die beliebigen Substitutionen gegenüber kovariant (allgemein
kovariant) sind.”

86 We do not deny that Einstein sometimes did not distinguish both aspects, or that
he sometimes mentions only one aspect and later speaks of point coincidences etc.
It also appears from Einstein’s text that immediately after the second quotation
he claims it implies the first (the principle of relativity): “It is clear that a physical
theory which satisfies this postulate will also be suitable for the general postulate
of relativity.” That this is not the case will be shown in (5) below. cf. also Friedman
(1983, FST) p. 207f., and Norton (1989, CCE) and Norton (1993, GCF). For
further historical discussions see Howard (1999, PCP) and Rynasiewicz (1999,
KAC). For our purpose, to make clear the two aspects it is sufficient that Einstein
at least formulated initially this difference.

87 cf. Anderson (1967, PRP) p. 338.
88 As Thirring (1979, CMP) p. 166 says: “At the time of the birth of gravitation

theory, the requirement of general covariance provided some relief from labor
pains, but later on, it was more often a source of confusion”. For a detailed review
of the different interpretations of general covariance, which have been proposed
since the twenties, see Norton (1993, GCF).
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in and bound to general relativity? (4) Can both aspects be reduced to the
concepts of active and passive transformations? (5) Are both aspects A and
B equivalent?

(1) Aspect A refers to the equivalence of reference systems in arbitrary motion
and is an expression of the principle of relativity. However, since in spite
of a misleading terminology the theory of general relativity does not fulfil
the principle of relativity, aspect A does not apply to and is not realised
in the theory of general relativity.

Aspect B refers to the equivalence of arbitrary coordinate systems with
respect to the laws of nature. This equivalence of systems of coordinates
can be achieved by reformulating the laws of nature in terms of tensors,
the calculation rules of which guarantee the covariance of the laws con-
sidered.89 Since the theory of general relativity is a covariant formulation
of the theory of gravitation, aspect B is fully realised in general relativity.

Of the three versions of the principle of general covariance, in the
sense of B, distinguished by Carmeli, the second seems, therefore, to be
the most uncontroversial if applied to GR:90 (i) All coordinate systems
are equally good for stating the laws of physics. (ii) The equations that
describe the laws of physics should have tensorial form and be expressed in
a four-dimensional Riemannian spacetime. (iii) The equations describing
the laws of physics should have the same form in all coordinate systems.
This is so because version (i) depends at least partially on pragmatic
goals, and version (iii) is not acceptable, since covariance (invariance) of
laws differs from form invariance of laws, as has been pointed out already
in 6.4.1 (4b).91

On the other hand, the connection of aspect B to GR is not special or
unique. This has been shown first by Cartan (1923) and Friedrichs (1927),
who gave coordinate free formulations of Newton’s theory of gravitation.92

(2) There is the question of how the principle of relativity should be expressed.
Should it be expressed by aspect A or by aspect B or by both?93 Let us

89 This was Einstein’s key for the tensor formulation of his field equations. cf. Ein-
stein (1916, GAR) p. 780, Engl. Transl. p. 121.

90 Carmeli (1982, CFG) sections 1.4 and 1.5. cf. also the discussion in Norton (1993,
GCF) p. 817.

91 That and how form preservation restricts too much was shown also by Post (1967,
PNG).

92 See Misner, Thorne, Wheeler (1973, Grav) Chap. 12 for more about “Newtonian
Gravity in the Language of Curved Spacetime”, and Penrose (2001, GRQ) p.
298ff. cf. also the formulation of the Kepler problems in terms of Lagrangian
mechanics with generalised coordinates.

93 The formulation by Einstein of the principle of relativity for SR in Einstein (1905,
EBK) was expressed with aspect A; the “need for an extension of the postulate of
relativity” was formulated in Einstein (1916, GAR) Sect. 2 with aspect A and in
Sect. 3 under the title “. . . Covariance for the Equations. . . ” with aspect B. Aspect
B is also used already in Einstein (1911, ESA). The question of expressing such
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briefly recall the meaning of the principle of relativity as it is referred to
in many present-day textbooks.94 Consider two local frames of reference
R and R′ and two processes P and P′ which are prepared and performed
in the same way in the two reference systems R and R′, respectively. The
principle of relativity, then, claims that the two processes P and P′ are
equivalent and lead to the same observable results. This means that also
the laws of nature which govern the processes P and P′ can be formulated
such that they have the same form in R and in R′. In other words, it is not
possible to distinguish the reference frames R and R′ by local processes P
and P′ and by the corresponding laws of nature.95 It is well known that
this principle of relativity is valid for two inertial systems I and I′. Here,
however, it is postulated for arbitrary local frames of reference.

The principle of relativity can formally be expressed by the require-
ment that the laws of nature must be covariant under coordinate trans-
formations between two local frames of reference. This formulation corre-
sponds to aspect B and is also called general covariance by some authors.
Expressed as aspect A, the principle of relativity claims that a physi-
cal process and the laws which govern this process are invariant under
changes of the observer’s reference system. This invariance is sometimes
called general invariance. 96

(3) A further question is whether the ideas expressed by aspect A and aspect
B are realised in or restricted to the theory of general relativity (GR), i.e.
whether they are restricted to the present relativistic theory of gravita-
tion.97 The answer to this question is negative, for the following reason.
Although these ideas were guiding principles in the development of GR,
they transcend GR in that they are supposed to hold not only for a most
general theory of gravitation, but universally for every correct theory; i.e.
the idea behind is that the laws of nature are the same in the whole uni-
verse. And, consequently, if the laws satisfy aspect A or aspect B, then
no particular system is preferred or designated by these laws: The laws
do not select or designate any particular (physical) reference frame or
any particular (mathematical) coordinate system. As mentioned already
in (1) above, it has been shown in an important particular instance that
aspect B is not restricted to GR by providing coordinate free formulations
of Newton’s theory of gravitation.

(4) Can both aspects A and B be reduced to the concepts of active and passive
transformations? Generally, an active transformation changes one vector

principles in a descriptive or normative form and in a meta- or object-linguistic
form has been discussed in detail in 5.3.1 (3).

94 cf. Sexl, Urbantke (1992, RGT) p. 55ff.
95 Recall Galileo’s thought experiment discussed in Sect. 5.4.2.
96 cf. Anderson (1967, PRP) p. 338, and Schmutzer (1996, RTA) p. 115f.
97 Here, we refer to the standard version of the theory of gravitation which is subject

to many textbooks, e.g. Rindler (1977, ESR). There are, however, generalisations
and modifications of this theory which will not be considered here.
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into another, while leaving unchanged the underlying reference frame. By
contrast, a passive transformation leaves all vectors unchanged but alters
the reference frame. For measurable physical objects which are expressed
by vectors, tensors etc., active and passive transformations are in some
sense equivalent, expressing a duality in describing the same object.

(5) Are both aspects A and B equivalent in physics?
This question can be subdivided into the following two subquestions:

Subquestion 1: Is every change of a reference system representable by
a corresponding transformation of a coordinate system?

Subquestion 2: Is every transformation of a coordinate system repre-
sentable by a corresponding change of the reference system?

It will be shown, subsequently, that there is no general equivalence
between aspects A and B. This will be done in three steps. Firstly (a),
two general remarks concerning aspects A and B will be made. Secondly
(b), it will be shown that there is no equivalence if the aspects A and
B are applied outside their usual area of application to non-continuous
(discrete) transformations. Thirdly (c), it will be shown that within the
usual area of application, there is only equivalence on some restricted
levels.
(a) General remarks

To every reference system many different spacetime coordinate sys-
tems can be associated.98

These different coordinate systems are, however, not completely
arbitrary. They are restricted by methodological constraints which
are suitable for their area of application; such constraints are, for ex-
ample, that the direction of time is not reversed, or that the topology
of causality is preserved.99 Regardless of this restriction, it is obvious
that each reference system can be associated with several coordinate
systems. Starting from coordinates xµ(µ = 0, 1, 2, 3), any coordinate
system xµ′ given by xk′ = fk(x1, x2, x3), x0′ = f0(x0, x1, x2, x3) de-
scribes the same reference system, using only different space coordi-
nates and different clock synchronisations. For example, the trans-
formation from spatial Cartesian coordinates to polar coordinates is
not representable by a corresponding change of reference systems.
Also, the change from Einstein synchronisation (ε = 1/2) in an iner-
tial system to another clock synchronisation, ε = 1/3), say, cannot be
achieved by changing the reference system. Conversely, a spacetime
coordinate system determines a reference system only under the con-
dition that it is a comoving system such that the material elements of

98 Remember that according to our terminology introduced in 6.3, a coordinate
system is a mathematical structure (homomorphism), whereas a reference system
has a material basis which is equipped with rods and clocks.

99 Such methodological constraints have been elaborated by Heintzmann, Mittel-
staedt (1968, PGB). See also: Time Reversal, below Sect. 7.2.3.4.3.
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the reference system have temporally constant spatial coordinate val-
ues. Thus, subquestion 2 is answered negatively, and therefore, there
is no equivalence between aspects A and B.

(b) Aspects A and B applied to non-continuous transformations
It can be shown quite clearly that in the following two interesting
cases of non-continuous (discrete) transformations, subquestion 1 is
answered positively, but subquestion 2 is answered negatively:

Time reversal : Time reversal can be easily represented by a trans-
formation of the coordinate system, by transforming signs “t” into
signs “−t”. This does not correspond, however, to a real change of
the reference system (or laboratory), which cannot move backwards
in time; the reference system can cross the t = constant line only in
the direction of increasing t. Observe, further, that time reversal is
not generally satisfied in weak interaction (cf. Sect. 7.2.3.4.3).

Parity : Mirror image reflection can be represented by a transfor-
mation of the coordinate system, but this does not correspond to a
change of the reference system (or laboratory), which cannot switch
into its mirror image with its rods and clocks; although one could con-
struct new measuring rods and clocks which are the mirror images of
the old ones. Observe, further, that parity is not generally satisfied at
the microlevel (in weak interaction).

(c) Aspects A and B applied to continuous transformations
Internal transformations: These are transformations which corre-

spond to the first seven parameters of the Galileo group, i.e. trans-
lation and orientation in space, and translation of time without
movement (cf. 6.4.3 above). The most general internal transforma-
tion is given by

xk → xk′ = fk(x1, x2, x3) (k = 1, 2, 3) ; x0 = f0(x0, x1, x2, x3)

In this case, subquestion 1 is trivially satisfied, but subquestion 2 has
to be answered negatively.

Galilean transformation: Concerning Galilean transformation,
there is only an equivalence between aspects A and B if the (hidden)
assumption of the universal temporal metric (which implies also arbi-
trary velocities) is not physically used. Under this restriction, laws of
nature do not distinguish among reference systems which correspond
to Galilean coordinate transformations such that aspects A and B are
equivalent. On the other hand, there is no such equivalence in gen-
eral if the assumption of a universal temporal metric, which allows
arbitrary velocity and arbitrary transportation of measuring rods and
clocks, is not restricted.

Special relativity (SR): Concerning Lorentz transformation, there
is an equivalence between aspect A (invariance of laws under change
of reference systems) and aspect B (covariance of laws under
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transformations of coordinate systems), provided the reference sys-
tems considered are inertial systems. Hence, all inertial systems are
equivalent. And, consequently, aspects A and B are equivalent, in this
restricted sense, since changes of inertial frames of reference and trans-
formations of inertial coordinate systems are mutually representable.

On the other hand, in the presence of gravitational fields there are
only local systems of inertia (local geodesic systems of reference). Fi-
nitely, extended reference systems cannot be systems of inertia. Hence,
there is no equivalence between aspects A and B such that subques-
tion 2 has to be answered negatively.

The non-equivalence between aspects A and B is evident from the
following further point: The principle of relativity that all laws are the
same under change of inertial reference systems – which corresponds
to aspect A restricted to SR – is empirically testable, provided that
one uses the same measuring rods and clocks and conventions for si-
multaneity in the different inertial reference systems. In this sense,
the principle of relativity of SR has been very well confirmed since
100 years. The principle of general covariance, however, which corre-
sponds to aspect B, is not empirically testable; it can be satisfied by a
mathematical technique (writing the equations in tensorial form) for
the formulation of the laws.
General Relativity (GR)
(i) One important difference between aspects A and B can be ex-

pressed as follows. The idea of covariance in the sense of aspect
B, i.e. coordinate independent formulation of the laws, is con-
cerned with a property of the formulation of laws, whereas aspect
A, i.e. invariance of laws under change of reference systems, is
concerned with a property of the laws themselves.100

(ii) Neither an extended principle of relativity, in the sense that the
laws of nature are invariant with respect to reference systems
under arbitrary motion – which would correspond to aspect A
for GR – nor a general covariance principle, in the sense of aspect
B, are specific for GR. The first is not specific for GR because it is
not generally satisfied by it, and the second is not specific for GR
because general covariance of a theory can always be achieved.
This can be further illustrated by the coordinate independent
formulation of Newton’s theory of gravitation by Cartan and
others.

100 This point was realised by Einstein (1924, ÜdÄ) p. 90: General covariance is “more
characteristic of the mathematical form of this theory than its physical content”.
It was mainly Kretschmann’s point. Pauli (1921, RTh), p. 187, stresses that the
generally covariant formulation of the physical laws implies physical content only
via the principle of equivalence and not by itself.
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(iii) The general covariant formulation of physical laws such that they
hold equally in all coordinate systems (according to B) does not
imply a generalised relativity principle claiming a generalised
equivalence of reference systems (according to A). This can be
illustrated within the framework of classical, Lorentz-invariant
mechanics, i.e. in a situation without gravitational fields. In an
inertial system I(xµ) with Cartesian coordinates xµ, the equation
of motion of a force-free mass point reads

d2xµ

dτ2
= 0 .

In an accelerated frame of reference, the equation of motion of
the same mass point looks quite different, since various inertial
forces are induced by the acceleration of the reference system.
(Note that also in Newtonian mechanics the equation of motion
of a force-free mass point ẍ = 0 reads, e.g. in a rotating reference
system with angular velocity

→
Ω,

→
ẍ′ = −2(

→
Ω ×

→
ẋ′) − (

→
Ω ×(

→
Ω × →

x)) − (
→
Ω̇ × →

x)

and contains several inertial forces.) One can, however, obtain
a unified formulation of the equation of motion, if the metric
tensor and its derivatives are incorporated into the equation.
The equation of motion, then, reads

d2xµ

dτ2
+ Γµ

αβ
dxα

dτ
dxβ

dτ
= 0

independent of the coordinate system.101 However, it is obvi-
ous that this covariant reformulation of the equation of motion
does not change the observable inertial forces in any way. Quite
the same situation can be found in general relativity, when the
Minkowski spacetime is replaced by a Riemannian spacetime.

(iv) In the Riemannian spacetime of general relativity, there is an
additional and more sophisticated argument which shows that
reference systems and coordinate systems are not simply equiv-
alent. On the level of cosmological solutions of Einstein’s field
equations, the large-scale structure of spacetime generally re-
stricts the possibility of global coordinates. In general, an atlas
of a global solution will consist of several partly disconnected lo-
cal charts.102 As a simple but interesting illustration, we consider
a cosmological solution with incoherent matter. In this case, the

101 Covariant formulations in Minkowskian spacetime of more general laws of physics
can be found and are discussed in: Heintzmann, Mittelstaedt (1968, PGB).

102 cf. Hawking, Ellis (1973, LSS) p. 11ff.



6.4 Is Every Law of Nature Spacetime Invariant? 135

material elements which move freely on geodesics represent a ve-
locity field vµ(xλ) that constitutes a cosmic frame of reference.
We will imagine here, that at each material reference point there
is an observer who is equipped with a standard clock, rods, and
a radar system. Generally, a coordinate system attributes space-
time values to each reference point. If the system of coordinates
is comoving, then the position coordinates are constant for each
reference point. In analogy to inertial systems, it is of interest
to find spacetime coordinates such that the clocks of all refer-
ence points are synchronised, e.g. by Einstein synchronisation
with ε = 1/2. In this case, the totality of local clocks on reference
points would constitute a cosmic time scale.

This is, however, not always possible. The covariant deriv-
ative of the cosmic velocity field vµ is a tensor vµ;v which can
be decomposed in an irreducible way into three parts, the trace-
less symmetric shear tensor σµv, the tensor of expansion (dilata-
tion), and the antisymmetric tensor ωµv of rotation. Even if we
assume – as usual in cosmology – that the shear tensor disap-
pears, we find that a universal synchronisation – and thus, the
existence of a cosmic time scale – is only possible if the rota-
tion tensor ωµv of the cosmic matter vanishes. If this is not the
case,103 we cannot define a universal cosmic time scale by means
of which we can state that the age of the universe is almost
15 billion years.104 Hence, we conclude that, within the context
of Riemannian spacetime, for a given global frame of reference
represented by a global velocity field vµ there could be serious
restrictions for systems of coordinates, i.e. for consistently at-
tributing (xk, t) values, to each reference point.

(v) Similar to what has been said above with respect to special rel-
ativity, the non-equivalence between aspects A and B is evident
from the fact that general covariance, in the sense of coordinate
independent formulation of laws (aspect B), is not empirically
testable, because it can be achieved by a mathematical tech-
nique. Its actual role is rather a heuristic one.

On the other hand, the theory of general relativity, and this means the
theory of gravitation expressed by Einstein’s field equations, has success-
fully been confirmed by a great number of tests. It must be emphasised
that these tests do not justify the covariance principle, which is a heuristi-
cal point of view, but Einstein’s theory of gravitation. Not only the three

103 The most famous example of a cosmological model with rotation is Gödel’s solu-
tion of Einstein’s equations.

104 For more details cf. Mittelstaedt (1989, ZBP) p. 159–160; and Misner, Thorne,
Wheeler (1973, Grav) p. 715, who call coordinates with a cosmic time scale “syn-
chronous”.
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famous original predictions about the perihelion of Mercury, the devia-
tion of light rays, and the gravitational red shift (tests have been repeated
with most recent and accurate methods), but also numerous further ones
which include the equivalence of gravitational and inertial mass, clock
comparisons, the Thirring–Lense effect, gravitational lenses, black holes,
and gravitational waves.105

6.5 Reply to the Objections

6.5.1 (to 6.1.1) According to the proposed answer (Sects. 6.4.3–6.4.7), different
levels of invariance have to be distinguished. The first three kinds of invariance
– under internal transformations, under inertial movement I (Galilean trans-
formations), and under inertial movements II (Lorentz transformations) –
abstract from acceleration and from any gravitational fields. For accelerated
frames of reference and for reference frames in the presence of gravitational
fields, there are no further invariances of the physical laws. 6.5.2 (to 6.1.2)

According to the objection, there is a difference between coordinate systems
as mathematical structures and reference frames like inertial systems or ac-
celerated systems. Hence, invariance under changes of coordinate systems (as
mathematical structures) does not in general imply invariance under changes
of reference frames. By contrast – since according to 6.3.1 every reference
frame is also a physical system, conjoint with a local coordinate system –
invariance with respect to a reference system implies invariance with respect
to the conjoint local coordinate system. 6.5.3 (to 6.1.3) It states correctly in

this objection that not all laws of nature are invariant with respect to mirror
reflection, i.e. “nature” can distinguish between left and right. But, as we ex-
plained in Sect. 6.4.2, spacetime invariance is concerned with real continuous
displacement and movement of (physical) reference frames (including local
coordinate structures) and not with virtual movements or conceptual changes
alone. Now, since no real (physical) reference system can turn by mirror reflec-
tion, invariance or symmetry with respect to mirror reflection has been listed
under “Discrete Symmetries” (recall 5.3.3). Spacetime invariance, however, is
concerned with continuous translation or rotation in space, or displacement
of time, or inertial or arbitrary movement of the reference frame. Therefore,
the conclusion of this objection is not proved and nothing hinders that every
law of nature is spacetime invariant in this sense.

6.5.4 (to 6.1.4) The first premise of this objection is false: Spacetime invariance
does not imply that the displacement on the time axis (coordinate) is the
same as the displacement along one of the spatial coordinates. As long as the
laws are invariant under some displacement on the time coordinate, together

105 For a discussion of experimental tests for GR see Shapiro (1980, ECP) and Sexl,
Urbantke (2002, GRK) Chap. 4.
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with some displacement on the spatial coordinates (at least one of them),
we may speak of spacetime invariance. Thus, it is perfectly compatible with
spacetime invariance that a reference system can move only in the direction of
increasing time, though in the directions of increasing or decreasing (of values)
on the spatial coordinates (as Wigner points out in the quotation). Therefore,
the conclusion in objection 6.1.4 is not proved.106 6.5.5 (to 6.1.5 and 6.1.6)

The main premise used in both objections 6.1.5 and 6.1.6 is that spacetime
invariance implies invariance with respect to time reversal. This premise is
false, since spacetime invariance means invariance with respect to continuous
translations of spacetime, and this invariance does not imply invariance with
respect to time reversal. According to 6.4, there are three kinds of invariance to
be distinguished. But spacetime invariance implies in none of them invariance
with respect to time reversal.

(i) In the first way, spacetime invariance means that the respective laws are
invariant under internal transformation of reference systems. But, as was
explained in 6.4.3, an internal transformation (here, with the focus on
time) only means replacing some value of the time coordinate by another
one. Or – in Weinberg’s words (cf. 6.4.3) – to set your clocks differently
in your laboratory. But this does not involve any direction on the time
axis; it involves only continuous order. Thus, although such a continuous
order is compatible with time reversal, it does not imply it.

This can be illustrated by a simple example: In Newtonian mechanics,
the equation of motion with friction

m
d2x

dt2
= −α

dx

dt

is invariant with respect to the continuous translations of spacetime

x → x′ = x + a , t → t′ = t + b ,

but this equation is not invariant with respect to time reversal t → t′ =
−t.

(ii) In the second and third ways, spacetime invariance means that the respec-
tive laws are invariant under transformations of inertial systems, either
with Galilean transformation or with Lorentz transformation (cf. 6.4.4
and 6.4.5). But this second way of spacetime invariance cannot supply
invariance with respect to time reversal. This can be seen as follows: As
it was explained in 6.4.2, spacetime invariance is concerned with real con-
tinuous movements of the reference frame. But mirror reflections or time
reversal are virtual movements. This is connected with the following point
of understanding the movement of a coordinate system (or of a particle of
a coordinate system) which was stressed by Wigner: The moving system

106 For the question of invariance with respect to time reversal see the commentary
to the next objections 6.1.5, 6.1.6 and Sect. 7.2.3.4.3.
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can cross a value (line) on a spatial axis in both directions, but on the
time axis only in the direction of increasing t (recall objection 6.1.4 and
the reply to it in 6.5.4). Such a movement in the direction of increasing t
can be without a connection to an entropy increasing process (for example
in planetary movement), or it can be connected to an entropy increasing
process (as is the case in thermodynamic or cosmological processes). In
the first case, there is compatibility with time reversal of the laws, but, of
course, no implication of time reversal, which only concerns virtual move-
ment or change of the (mathematical) coordinate system. In the second
case, the question of the compatibility is a difficult problem and depends
very much on how strong the so-called “irreversibility” of entropy increas-
ing processes is interpreted.107

This can be illustrated by the following example: The Newtonian equa-
tion of motion md2x

dt2 = αt is invariant under the Galileo transformation
x → x′ = x − vt, t → t′ = t, but this equation is not invariant with
respect to time reversal t → t′ = −t.

6.5.6 (to 6.1.7) The first premise of objection 6.1.7 is based on a confusion: It
is not the law that determines the geometry of spacetime, but the distribution
of matter; and this fact is described by the law, i.e. by the field equations.
Nothing hinders, therefore, that the respective laws, which describe this fact
are spacetime invariant. And hence, the conclusion in objection 6.1.7 is not
proved. To be a little more detailed:

Einstein’s field equations

Rµv − 1
2
Rgµv = κT µv (κ is the relativistic gravitational constant)

connect the metric gµv of spacetime and its first and second derivatives with
the distribution of matter, i.e. the energy momentum (matter) tensor T µv.
These equations (10 coupled non-linear partial differential equations for the
10 coefficients of the metric tensor) describe the dependence of the structure
of spacetime (represented by the metric tensor) on the distribution of matter
(represented by the matter tensor). However, the covariant derivative of each
the left hand side of Einstein’s field equation vanishes identically, i.e.(

Rµv − 1
2
Rgµv

)
; v = κT µv; v = 0 .

Hence, the field equations provide only six independent differential equations
for the metric.

This is just the correct number of equations to determine the metric gµv,

since four of its ten components can have arbitrary values, according to the
107 On the rather weak interpretation – as a very small probability of recurrence –

which will be proposed in Chap. 7, there is hardly a serious incompatibility.
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four degrees of freedom that come from coordinate transformations. In this
way, the distribution of matter and the boundary conditions produce what
Weyl called the “guiding field” that makes the geometrical structure of space-
time curved, i.e. transforms the trajectories of the Minkowskian spacetime
into geodesics of a Riemannian spacetime.

The sometimes used slogan mentioned in this connection:

“Space acts on matter, telling it how to move.
In turn matter reacts back on space, telling it how to curve”,108

is only half true:
First, there is no such symmetry109 as the slogan suggests; if there is

matter, then there is a gravitational field; but the converse is not claimed
by GR. If there is a gravitational field, there need not to be matter. Indeed,
in case of Rµv = 0 there are Riemannian spacetime structures without field
producing matter.

To further elucidate this point, it is convenient to decompose the Rie-
mannian curvature tensor Rα

βγ δ according to110

Cαβγ δ = Rαβγ δ +
1

n − 2
(gαγRβ δ − gα δRβγ + gβ δRαγ)

+
R

(n − 1)(n − 2)
(gα δgβγ − gαγgβ δ)

where Cαβγ δ is the Weyl tensor, which describes the curvature of the matter
free spacetime.

Second, the term “geometry” in the slogan is misleading because the
curved spacetime of GR is not a purely mathematical–geometrical coordi-
nate system but a physically determined Riemannian spacetime metric (recall
6.3).

Third, the field equations obey two fundamental correspondence condi-
tions, which show that the slogan is not correct in the special relativistic and
in the non-relativistic limit:

(i) If gravitation decreases towards 0, then the field equations contain SR as
a limiting case. This is possible in two ways, globally and locally: In the
limit of the vanishing gravitational field (curvature) a reduction to a global
inertial frame can be introduced everywhere in which SR holds generally.
In the limit of the vanishing gravitational field (curvature) locally, a local
inertial frame is produced in which the laws of physics take their special

108 cf.: Misner, Thorne, Wheeler (1973, Grav) p. 5 and 408.or: Resnick and Halliday
(1985, BCR) p. 296. We do, however, not claim that these authors wanted to
be interpreted rather literally, concerning those passages including the slogan: In
Misner, Thorne and Wheeler they occur in introductory chapters. However, we
take this opportunity to clarify an important point.

109 Recall Sect. 6.4.7.2(5).
110 cf. Hawking et al. (1973, LSS), p. 41.
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relativistic form. There are, however, in both reductions no restrictions
on the metric, although there are severe constraints on matter and field.

(ii) In case of very weak gravitation, very small pressures and very low veloc-
ities, GR reduces to Newton’s theory of gravitation as a limiting case.111

111 cf. the elaboration of the Newtonian limit in Ehlers (1991, NLG).
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Dynamical and Statistical Laws

7.1 Are all Laws of Nature Either Dynamical
or Statistical Laws?

7.1.1 Arguments Contra

7.1.1.1 If all laws of nature are either dynamical or statistical laws, then all
phenomena systematically observed and described in physics can be described
and explained by one or the other type of laws. Now, since about twenty
years chaotic phenomena belonging to the so-called dynamical chaos have
been systematically observed and described. But these phenomena cannot be
explained or described by either dynamical or statistical laws. Therefore –
under the additional metascientific assumption that these phenomena are not
law-less – it does not hold that all laws of nature are either dynamical or
statistical laws.

7.1.1.2 If all laws of nature were either dynamical or statistical laws, then there
would be no third type of law which could describe the same phenomena in one
area in an alternative but also sufficiently complete way like these two types
of laws. But the principles of “least action”,1 which amount to minimising a
certain functional called “action”

S =

t2∫
t1

L(xk, x′
k, t)dt

with a Lagrangian L, are of a third type of law that can describe the respective
phenomenon in a completely alternative way. Therefore, not all laws of nature
are either dynamical or statistical laws.
1 For the approach with principles of least action see Feynman (1964, LPh), Vol.

II, Chap. 19. For historical investigations on the principle of least action see
Stöltzner, Weingartner (2005, FTK).
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7.1.2 Arguments Pro

Science is only possible if there are laws of nature. But, as Aristotle says,
science is possible where we have laws or regularities which say that something
happens always (without exceptions) or in most cases (with a few exceptions):
“But that there is no science of the accidental is obvious; for all science is either
of that which is always or of that which is for the most part.”2 Now, Aristotle’s
description “to happen always (without exceptions)” and “to happen in most
cases (with a few exceptions)” can be interpreted in modern terms by saying:
it happens according to dynamical laws, or it happens according to statistical
laws. Therefore – if Aristotle is right – the existence of (natural) science, which
is a fact, implies that the laws of nature (used in science) are either dynamical
or statistical laws.

7.1.3 Proposed Answer

All laws of nature known so far are either dynamical or statistical laws. This
can be shown by an exhaustive list of types or groups of laws of nature known
so far. Since in all the different types or groups we find either dynamical or
statistical laws:

(1) The laws of CM (classical mechanics). These laws have the form of differ-
ential equations and belong to the group of dynamical laws.

(2) The laws of CEM (classical electrodynamics; also called Maxwell’s equa-
tions). These laws have also the form of differential equations and belong
to the group of dynamical laws.

(3) The laws of SR (special theory of relativity). These laws are the laws
of CEM and the corrected versions of CM (corrected with the help of
the Lorentz transformations). Therefore, they also belong to the group of
dynamical laws.

(4) The laws of GR (general theory of relativity). Einstein’s general field
equations (and further developments of it) also belong to the group of
dynamical laws.

(5) The laws of thermodynamics, like the law of entropy, and the laws of
radiation, like Planck’s law of radiation, belong to the group of statistical
laws.

(6) The laws of QM (quantum mechanics) are of both types. Those like the
Schrödinger equation are dynamical laws; those which make predictions
about the outcomes of measurement processes are statistical laws.

(7) The (most universal) laws of chemistry, like the general law of gases and
van der Waals’ equation of real gases, are statistical laws.

(8) The (most universal) laws of biology, like the law of Hardy–Weinberg,
which is a further development of Mendel’s laws, are statistical laws.3

2 Aristotle (Met), 1027a20. cf. (Phys) 198b34.
3 This list is, of course, restricted to the laws of natural sciences. This restriction is

one which concerns this book, which, as was pointed out in the preface, deals with
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Since this list is more or less exhaustive with respect to laws of nature known
so far, all laws of nature known so far are either dynamical or statistical laws.

7.1.4 Reply to the Objections

7.1.4.1 (to 7.1.1.1) Though chaotic motion (belonging to dynamical chaos)4

is not law-less, its trajectories cannot be described or explained or predicted
with sufficient accuracy. First, chaotic motion is not law-less because it is gen-
erated by physical systems obeying dynamical laws, in the sense that these
underlying laws determine uniquely the time evolution of a certain state of
the system from its previous states. On the other hand, its trajectories cannot
be described or explained or predicted with sufficient accuracy (in many cases
with no accuracy at all) because the system is non-linear such that small-
est and closest points (or trajectories) in the initial state (initial conditions)
separate exponentially fast in a bounded region of phase space.

Therefore, the first premise in the objection is not entirely correct, since
not all phenomena – here, especially those of non-linear systems – can be
described and explained to a sufficient degree of accuracy by one or the other
type of law. Consequently, the conclusion of the objection is not proved by
this argument.

7.1.4.2 (to 7.1.1.2) The principle of least action. In order to elucidate this
problem in more detail within the framework of classical mechanics, we con-
sider the trajectory xk(t) of a given body under the influence of forces or
fields in the time interval t1 ≤ t ≤ t2. This trajectory is a real and measurable
phenomenon which allows, however, for two alternative interpretations.

(a) The causal interpretation
Starting from the initial values x(t1), x′(t1), the trajectory is created step
by step, ending up with the final values xk(t2) and x′

k(t2). A law which
describes this subsequent continuous creation under the influence of forces
must hold irrespective of the initial conditions. A law of this kind is given
by Newton’s classical equation of motion

d2xk

dt2
= Fk(xl, x

′
l, t)

since this differential equation implies – together with the initial values
mentioned – the trajectory xk(t).

(b) The teleological interpretation
The trajectory xk(t) minimises (or maximises) the “action”

laws of nature described and discovered by the natural sciences, and especially
by physics.

4 There are other types of chaotic motion, like those belonging to quantum chaos.
For more on both types of chaos see Sect. 9.4.
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S =

t2∫
t1

L(xk, x′
k, t)dt ,

where L is a convenient Lagrangian of the problem considered. Here, the initial
and final values are kept constant, and the trajectory is varied and chosen
such that the action S assumes an extreme value. The law which expresses
this global requirement is the variational principle

δ
t2∫

t1

L(xk, x′
k, t)dt = 0

with fixed boundaries t1 and t2. Elaborating this variation, one arrives again
at the trajectory xk(t).

Note that the trajectory xk(t) is a real phenomenon which can be mea-
sured and which belongs to the external reality. Neither the splitting of the
trajectory into initial conditions and a differential equation5

d2xk

dt2
= Fk(xl, x

′
l, t)

nor the variational principle δS = 0 are observable in the same sense as
the trajectory. They are motivated by methodological arguments and laden
with non-empirical interpretations. Newton’s equation of motion expresses the
causal interpretation of the trajectory, whereas the variational principle is
the formal expression of the teleological interpretation. It is easy to see that
the variational principle δS = 0 implies the differential equation

d2xk

dt2
= Fk(xl, x

′
l, t) .

The converse is, however, not the case, since neither the Lagrangian nor the ac-
tion is completely determined by the trajectory. There are, in general, several
equivalent formulations of an action principle. This plurality of empirically
equivalent action principles shows that the well-known metaphysical inter-
pretation of the action principle is untenable. A mechanical process does not
proceed such that at its end the used amount of time, of energy, or of action
is minimal.6 Physical nature has no goals in the sense as living organisms
have goals. Instead, the large variety of action principles for the same process
clearly demonstrates that many different quantities can be minimised or max-
imised by a given mechanical process. Hence, there is no definite tendency or
strategy.
5 For this splitting cf. 11.2.3 and 11.2.2.1.
6 The idea that an action principle is the mathematical expression of some optimi-

sation program was first conceived by Leibniz, and illustrated by Snell’s law for
the refraction of light and by Fermat’s principle. cf. Leibniz (Met), Sect. 22.
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In many fields of physics, both interpretations can be applied. This means
that, for a given “equation of motion” which represents a causal interpretation,
a variational principle can be found which represents a teleological interpre-
tation and implies the equation of motion. In classical mechanics, relativistic
mechanics, and electrodynamics combined with relativistic mechanics both
methods are well known.7 Even in quantum mechanics both methods can be
applied. Originally, quantum mechanics was formulated by Schrödinger’s time
dependent differential equation in accordance with a causal interpretation of
the wave function ψ(xk, t). For a long time, an action principle could not
be found, since in its standard version, quantum mechanics does not use the
Lagrangean formalism. In 1942 Feynman succeeded in reformulating quan-
tum mechanics in terms of a Lagrangean formalism and an action principle.8

In this formalism, all the trajectories – called “paths” here – are completely
fictitious and not observable, since trajectories in the classical sense do not
exist in quantum mechanics. They serve merely as a means for formulating
the time-dependent wave function ψ(xk, t).9 The difficulties to reformulate
quantum mechanics in terms of an action principle indicate that it is perhaps
not possible to find a corresponding action principle for every law that is ex-
pressed by a differential equation. However, for several classes of differential
equations it can be shown that for a given differential equation there are ac-
tion principles which imply the differential equation in question. In particular,
for any ordinary, second order differential equation there are infinitely many
corresponding action principles.10

7.2 Is One Type of Law Reducible to the Other?

7.2.1 Arguments Pro

7.2.1.1 If all laws of nature are either dynamical or statistical laws, then neither
of these classes is empty. But, if all statistical laws can be ultimately reduced
to dynamical laws, then the second class (of statistical laws) is empty. Now,
there seem to be good reasons for reducing all statistical laws to dynamical
laws. Thus, Planck says:

“I believe and hope that a strict mechanical significance can be found
for the second law along this path, but the problem is obviously ex-
tremely difficult and requires time.”11

7 For a survey about these methods cf. F. Rohrlich (1965, CCP).
8 R.P. Feynman, PhD thesis, Princeton 1942, published in: Rev. Mod. Phys. 20,

p. 367 (1948).
9 For all details about the path-integral method and its application in many fields

of physics, we refer to the monograph by Kleinert (1993, PDI), and the literature
quoted there.

10 Bolza (1909, VVR), pp. 37–38. Courant, Hilbert, (1968, MMP), p. 219.
11 Planck in a letter to his friend Leo Graetz. Cited in Kuhn (1978, BBT), p. 27.
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“The principle of energy conservation requires that all natural occur-
rences be analysable ultimately into so-called conservative effects like,
for example, those which take place in the motion of a system of mu-
tually attracting or repelling material points, or also in completely
elastic media, or with electromagnetic waves in insulators. . . . On the
other hand, the principle of the increase of entropy teaches that all
changes in nature proceed in one direction. . . . From this opposition
arises the fundamental task of theoretical physics, the reduction of
unidirectional change to conservative effects.”12

Therefore, there seem to be good reasons that all laws of nature are dy-
namical laws.

7.2.1.2 Statistical laws do not describe (determine) the particular (individual)
details of the state of the physical system. Thus, statistical laws express a lack
of knowledge of the details of a state (of the individual physical system). But,
as Laplace says, an intelligence who knows all the details of one state of a
(physical) system (or of the whole universe), together with all laws of nature,
could predict and retrodict all the other states of the system (of the universe):

“We ought to regard the present state of the universe as the effect of
its anterior state and as the cause of the one which is to follow. Given
for one instant an intelligence which could comprehend all the forces
by which nature is animated and the respective situation of the beings
who compose it – an intelligence sufficiently vast to submit these data
to analysis – it would embrace in the same formula the movements of
the greatest bodies of the universe and those of the lightest atom; for
it, nothing would be uncertain and the future, as the past, would be
present to its eyes.”13

Thus, in principle – that is, if all the details of a certain state of the
system are known – one could predict and retrodict all other states, as Laplace
says, and, consequently, all statistical laws would turn into dynamical laws.
Therefore – in principle, i.e. if there is no lack of knowledge concerning the
details of a state (or if this lack can be sufficiently diminished)14 – all statistical
laws are reducible to dynamical laws.
12 Planck in a paper read to the Prussian Academy of Science in 1897. Cited in

Kuhn (1978, BBT), p. 28.
13 Laplace (1814, EPr), Chap. 2.
14 It has to be noted that it is important in this connection that Laplace’s intelligence

(who knows the state in all details) must not belong as a part to the physical
system (having these states). If the physical system is the whole universe, this
intelligence has to be immaterial and has to be outside the universe. This has
been shown by Breuer (1995, IAS) and Breuer (1996, SDQ).



7.2 Is One Type of Law Reducible to the Other? 147

7.2.2 Argument Contra

All dynamical laws are time reversible; i.e. in a differential equation like that
of Newton’s second law of motion (for CM) or that of Schrödinger for QM,
one can replace the sign t (for time) by −t without making the law invalid.15

But this is not possible in statistical laws, like those of thermodynamics or
those describing processes of radiation.

Therefore, neither can be reduced to the other.

7.2.3 Proposed Answer

Neither statistical laws can be reduced to dynamical laws nor dynamical laws
can be reduced to statistical laws. The reason is that both types of laws have
several properties which differ in such a way that a reduction is impossible.
This will be shown in the following three parts: First, some historical remarks
concerning the two types of laws will be given (7.2.3.1). Secondly, it will be
shown in detail, by comparing the properties of dynamical and statistical laws,
that neither type of law can be reduced to the other (7.2.3.2, 7.2.3.3, 7.2.3.4).
Thirdly, it will be shown that, though a reduction is impossible, both types
of laws are nevertheless compatible in such a way that they may hold in the
same physical system (7.2.3.5).

7.2.3.1 Historical Introduction

The world view underlying Laplace’s quotation (7.2.1.2 above) was based on
the belief that all physical systems are – if analysed in their inmost structure –
ultimately mechanical systems. Since a clock was understood as a paradigm
example of a mechanical system, the main thesis of the mechanistic world view
could be expressed by saying that all complex systems (things) of the world –
even most complicated ones like gases, swarms of mosquitoes, or clouds – are
ultimately (i.e. if we would have enough knowledge of the detailed interaction
of the particles) clocks. Or, put in words Popper used in his A.H. Compton
Memorial Lecture: “All clouds are clocks”.16

After the discovery of statistical laws in thermodynamics and later in
other areas, there was a general doubt with respect to the mechanistic and
deterministic interpretation of the world. At this point, a clarification of the
concept “thermodynamics” seems to be suitable. In general, thermodynamics
is a discipline which is concerned with the question how the properties of
material (physical) systems change with temperature. This subject matter
can be investigated in a twofold way. First, it can be studied only on the
macroscopic scale. In this case, one is concerned solely with relations between
macroscopic observable quantities and does not look at (or, historically: was
15 For QM, this was shown by Wigner (1932, OZQ) and Dirac (1937, ROQ).
16 Popper (1965, CaC), p. 210.
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ignorant of) an underlying deeper (micro)structure. This approach, which may
be called classical thermodynamics, is “phenomenological” (recall Chap. 2) in
the sense that its answers are, to some extent, independent of an underlying
and explaining structure. However, they still provide boundary conditions
that have to be satisfied by any microscopic model about the underlying
explanatory structure. Second, this discipline can be studied at the microlevel,
with the focus to use the behaviour at the microlevel as the explanatory
structure of the behaviour at the macrolevel. This approach was developed in
two forms: As the kinetic theory of gases by Clausius and Maxwell, and as the
statistical mechanics discovered and invented by Boltzmann. Whereas the first
approach can be (and is) done rather independent of the second, the second is
always understood as intrinsically connected with the first, since the behaviour
on the microlevel is interpreted as the underlying structure explaining the
behaviour on the macrolevel. If not indicated otherwise, “Thermodynamics”
will subsequently be understood in the second sense.17

That there are physical truths which are statistical in character was
clear for Boltzmann and for Poincaré, who both underline the importance
of Maxwell’s, Clausius’, Gibb’s and Carnot’s discoveries:

“Schon Clausius, Maxwell u.a. haben wiederholt darauf hingewiesen,
daß die Lehrsätze der Gastheorie den Charakter statistischer Wahrhe-
iten haben. Ich habe besonders oft und so deutlich als mir möglich war
betont, daß das Maxwellsche Gesetz der Geschwindigkeitsverteilung
unter Gasmolekülen keineswegs wie ein Lehrsatz der gewöhnlichen
Mechanik aus den Bewegungsgleichungen allein bewiesen werden kann,
daß man vielmehr nur beweisen kann, daß dasselbe weitaus die größte
Wahrscheinlichkeit hat und bei einer großen Anzahl von Molekülen
alle übrigen Zustände damit verglichen so unwahrscheinlich sind, daß
sie praktisch nicht in Betracht kommen.”18

Poincaré, after commenting on Carnot’s principle and discussing irreversible
processes which cannot be explained with the help of classical mechanics, gives
an example:

“A drop of wine falls into a glass of water; whatever may be the law
of the internal motion of the liquid, we shall soon see it colored of
a uniform rosy tint, and however much from this moment one may
shake it afterwards, the wine and the water do not seem capable of
again separating. Here, we have the type of the irreversible physical
phenomenon: to hide a grain of barley in a heap of wheat, this is easy;
afterwards to find it again and get it out, this is practically impossible.
All this Maxwell and Boltzmann have explained; but the one who has
seen it most clearly, in a book too little read because it is a little

17 cf. the lucid exposition of thermodynamics in Longair (1984, TCP), Chaps. 6
and 7.

18 Boltzmann (1896, EWB), p. 567.
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difficult to read, is Gibbs, in his ‘Elementary Principles of Statistical
Mechanics’.”19

One of the first philosophers who noticed that a certain imperfection in all
“clocks” allows to enter chance and randomness was Charles Sanders Peirce:

“But it may be asked whether if there were an element of real chance
in the universe it must not occasionally be productive of signal effects
such as could not pass unobserved. In answer to this question, without
stopping to point out that there is an abundance of great events which
one might to be tempted to suppose were of that nature, it will be
simplest to remark that physicists hold that the particles of gases
are moving about irregularly, substantially as if by real chance, and
that by the principles of probabilities there must occasionally happen
to be concentrations of heat in the gases contrary to the second law
of thermodynamics, and these concentrations occurring in explosive
mixtures, must sometimes have tremendous effects.”20

The question was now: Could it not be the case that all laws are statistical
and the deterministic outlook is only on the surface of macroscopic phenom-
ena? That is, all complex systems (things) of the world are in fact – in their
inmost structure, i.e. on the atomic level – like gases or swarms of mosquitoes
or clouds. This led to another extreme picture discussed by Popper: “All clocks
are clouds”.21

The question whether all physical laws can be reduced to or based on
statistical laws was, however, not a serious topic at the time of Poincaré
and Boltzmann. One reason for that was that quantum theory was not yet
available. Rather there were two important questions:

(1) Are physical laws which are statistical, like the second law of thermody-
namics (the law of entropy), compatible with the basic dynamical laws
(of classical mechanics)?

(2) Are the statistical laws, like the law of entropy, explainable with the help
of (or reducible to) dynamical laws?

Zermelo thought to have proved that the answer to (1) is negative. But Boltz-
mann explains the misunderstandings of Zermelo, and shows that there is no
incompatibility.22 Planck hoped that (2) is true and stresses that he does not
go as far as Zermelo, who was Planck’s assistant at this time:
19 Poincaré (1958, VSc), p. 97. cf. the section on Poincaré’s recurrence theorem

7.2.3.4.3(2c).
20 Peirce (1960, CPC), Chap. 6.47.
21 Popper (1965, CaC), ibid.
22 Boltzmann (1896, EWB) and (1897, ZAM). For more details on that see Sect.

7.2.3.4.3(2) below.
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“Zermelo, however, goes farther [than I], and I think that incorrect.
He believes that the second law, considered as a law of nature, is in-
compatible with any mechanical view of nature. The problem becomes
essentially different, however, if one considers continuous matter in-
stead of discrete mass-points like the molecules of gas theory. I believe
and hope that a strict mechanical significance can be found for the
second law along this path, but the problem is obviously extremely
difficult and requires time.”23

But neither of these extreme pictures – reduction to dynamical laws “all
clouds are clocks” or reduction to statistical laws “all clocks are clouds” –
proved satisfactory as an explanation of everything. The heroic ideal to ex-
plain everything by one (or one kind of) principle24 had to be replaced by the
aim to find relatively few (kinds of) principles (laws) for relatively many facts.
This more modest ideal was manifest already in Greek Science, especially in
Aristotle’s theory of science in his posterior analytics, and in Euclid’s Ele-
ments. Feynman expresses it for the situation today in the following words:
“We do not have one structure from which all is deduced, we have several
pieces that do not quite fit exactly yet.”25 At the turn of the century and
in the first half of it, many physicists accepted a view which can be roughly
stated as follows:

With respect to some areas (mainly macroscopic), deterministic laws with
good predictability for single events give an adequate description and expla-
nation.

With respect to other areas (thermodynamics, friction, diffusion, radiation
and microscopic areas), statistical laws with no good predictability for the
single event but with predictability for the whole aggregate give an adequate
description and explanation.

7.2.3.2 Properties of Dynamical Laws

The dynamical law describes the time development of a physical system S in
such a way that the following condition D1 is satisfied:

D1 The state of the physical system S at any given time ti is a definite
function of its state at an earlier time ti−1. A unique earlier state (corre-
sponding to a unique solution of the differential equation) leads under the
time evolution to a unique final state (again corresponding to a unique
solution of the equation).

D2 Condition D1 is also satisfied for every part of the physical system, espe-
cially for every individual body (object) as part of the system, even if the

23 Planck in a letter to his friend Leo Graetz. Cited in Kuhn (1978, BBT), p. 27.
24 This was an ideal of Descartes’ philosophy: all factual truths should be derived

from one axiom, the “Cogito ergo sum”.
25 Feynman (1967, CPL), p. 30.
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individual objects may differ in the classical or in the quantum mechanical
sense.26

Dynamical laws have been applied successfully (i.e. such that the laws were
confirmed by the application) to those physical systems which satisfy the
following further conditions D3 and D4:

D3 The physical system S is periodic, that is, the state of S repeats itself after
a finite period of time and continues to do so in the absence of external
disturbing forces.

D4 The physical system S has a certain type of stability which obeys the
following condition: Very small changes in the initial states, say within a
neighbourhood distance of ε, lead to proportionally small (no more than
in accordance of a linearly increasing function of time) changes h(ε) in the
final state. This kind of stability, which survives small perturbations and
leads to relaxation afterwards, is called perturbative stability and holds in
many linear systems.27

D1 is the main condition for dynamical laws. It is represented in the quotation
of Laplace (7.2.1.2). This quotation, moreover, expresses Laplace’s view that
the dynamical laws are of global generality and applicability; they are the laws
governing the whole universe. This global idea of Laplace can be illustrated
by the following picture:

Assume a film is made of the world, i.e. of the events happening in the
whole universe. After the film is developed, we cut it into pieces corresponding
to single film-pictures. Now, we put the single pictures successively in time
(in the order of time) into a long card index box, like the cards of a library
catalogue. Then, one special state of the universe at a certain time t corre-
sponds to one such card (film picture) of the catalogue. One can follow one
trajectory across the (perpendicular to the) catalogue cards.

Interpreted with the help of this illustration, Laplace’s idea expressed in
the quotation means that it suffices to know the law(s) of nature and one single
catalogue card (film picture) corresponding to one state (of the universe) at
a certain time t in order to construct all other cards of the catalogue, i.e.
to predict and to retrodict all the other states of the universe. D1 is usually
taken as the defining condition for determinism.28 This is correct only if not
further properties, like predictability or conservation of information, etc. are
thought to be implied by this kind of determinism, because D1 alone does not
guarantee predictability or conservation of information, especially if D4 is not
satisfied (see below).

Concerning condition D2, we have to observe that “physical system” in
D1 can be understood in two ways: First, in a sense in which it was originally
26 For objects in the classical or in the quantum mechanical sense see Sects. 10.2

and 10.3.
27 cf. the discussion of the conditions D1, D3 and D4 in Holt, Holt (1993, RND).
28 For more on that, in connection with causality, see Chap. 9.1.
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understood in the history of physics, from the time of Newton on: As a macro-
scopic system, like the planetary system, which is composed of subsystems (say
the planets or parts of the planets) in a definite sense, such that D1 holds also
for all these subsystems, including individual bodies (objects).29 In this sense,
the dynamical law describes also the time development of the individual body
or particle or object as a part of the time development of the whole physical
system. This presupposes a concept of “individual object” that is unique and
re-identifiable through time, as it is understood in CM.30 This is, in fact, what
is said by condition D2.

Secondly, “physical system” in D1 can be understood in such a way that
the system does not consist of a definite composition of subsystems that are
individual objects in the classical sense of object above. If dynamical laws
are applied in QM, the (quantum) objects as parts (now not composable by
Boolean operations only) of the physical system are not complete, and have
to have commensurable properties.31 D3 is not a necessary condition for the
application of dynamical laws obeying D1 and D2, though D3 is satisfied
in most cases where dynamical laws are applied. The main point is that,
according to D3, there is recurrence of the state of the physical system after
some finite period of time.

Are there important cases of physical systems which satisfy D1 but neither
D3 nor D4? The answer to this question is: Yes. The systems in question are
systems which show chaotic behaviour (or systems in chaotic motion).

Chaotic behaviour is non-periodic. And this holds also without any exter-
nal disturbance. A consequence of that is a further characteristic of chaotic
motion: The Poincaré map shows space-filling points. This is a method in-
troduced by Poincaré which considers the points in which the trajectory cuts
a certain plane. If the motion is chaotic, there will be no immediate recur-
rence, that is, the plane will always be cut at new points and, as time goes
on, will be filled with points. But if the phase space is small, there will be
recurrence of the trajectory after some finite period of time. To give an illus-
tration: skiing in fresh powder snow is a great pleasure. But if the slope is
small and one is skiing down frequently, the slope will be filled with traces,
and after some time no new space is left, and thus, one has to use one’s own
traces again (recurrence). If the system is Hamiltonian and area preserving
(finite region), then the Poincaré recurrence theorem holds. It says that the
trajectory returns to a given neighbourhood of a point an infinite number
of times (if the time is infinite or sufficiently long). If it is ergodic, then the

29 According to the Principia of Newton for all extended material bodies.
30 For a detailed discussion of these objects of classical physics see Chap. 10, espe-

cially Sects. 10.2.1.3 and 10.3.2. For the deeper reason of the classically motivated
division into subsystems see also Zurek (1994, PSS), Sect. 11.2.

31 See the detailed discussion in Chap. 10, especially Sect. 10.3.2.
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system explores the entire region of phase space and eventually covers it uni-
formly (this implies also recurrency). In stronger kinds of chaotic motion, the
trajectory might not cover the whole phase space and neither stay in a local
area. The description is, then, more complicated.

For other important parameters, recurrency does not hold in chaotic mo-
tion. For example, phase density is non-recurrent, it will never come back to
its initial state, independently of the direction of time. Thus, we have non-
recurrency and time reversibility (the latter also for the relaxation property).
In consequence, it is important to notice that non-recurrency and time irre-
versibility are not equivalent notions.32

The non-periodicity can also be measured by the invariant density, which
measures how the iterations become distributed over the unit interval, and
by the correlation function f(m), which measures the correlation between
iterations which are m steps apart.33

D4 was a hidden assumption of CM until the end of the 20th century. In
other words, the laws of CM were understood in such a way that D4 is always
satisfied. The neglect is expressed by Lighthill as follows:

“Here I have to pause, and to speak once again on behalf of the broad
global fraternity of practitioners of mechanics. We are all deeply con-
scious today that the enthusiasm of our forebears for the marvellous
achievements of Newtonian mechanics led them to make generalisa-
tions in this area of predictability which, indeed, we may have gener-
ally tended to believe before 1960, but which we now recognise were
false. We collectively wish to apologise for having misled the general
educated public by spreading ideas about the determinism of systems
satisfying Newton’s laws of motion that, after 1960, were to be proved
incorrect.”34

On the other hand, that there are cases which violate D4, that is, where
small initial deviations lead to unproportional (exponentially increasing) ef-
fects, was known from antiquity. A first warning, with respect to a prin-
ciple like D4 in the area of epistemology or methodology, we find already
in Aristotle: “the least initial deviation from the truth is multiplied later a
thousandfold.”35 Kepler was convinced that the proportions of the distances
between the planets and the sun (and their mutual distances) contribute to
the harmony (in our interpretation: stability) of the whole planetary system.
A specific warning with a counterexample is due to Maxwell:
32 See Chirikov (1996, NLH), Sect. 2.2, and below Sect. 7.2.3.4.2(2).
33 See Sect. 9.4, where more properties of chaotic motion are discussed.
34 Lighthill (1986, RRF), p. 38.
35 Aristotle (Heav), 271b8. The exponentially increasing error can be explained by

the so-called Henon attractor. cf. Sect. 11.1.3.5(3) and Weingartner (1996, UWT),
p. 58.
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“There is another maxime which must not be confounded with that
quoted at the beginning of this article,36 which asserts ‘That like
causes produce like effects’. This is only true when small variations
in the initial circumstances produce only small variations in the final
state of the system. In a great many physical phenomena this con-
dition is satisfied; but there are other cases in which a small initial
variation may produce a very great change in the final state of the sys-
tem, as when the displacement of the ‘points’ causes a railway train
to run into another instead of keeping its proper course.”37

Experienced highlanders in mountainous countries like Tyrol know very
well that extremely small events can lead to a bursting of an avalanche which
might destroy huge forests and even a city.

It should be noted that the unproportional effects need not to be chaotic.
In the example of Maxwell, the running of the train in a different direction
is certainly not, but certain phenomena of the crash might be. Avalanches,
on the other hand, have always been very unpredictable events at least and
seem to be quite good examples for chaotic behaviour. Summing up, we can
say that dynamical laws – as understood in the usual way – describe physical
systems which satisfy all four conditions D1, D2, D3 and D4. And this holds
also for most applications of dynamical laws like CM, CEM and QM. However,
the necessary conditions for dynamical laws are only D1 and D2; therefore,
one of D3 and D4 (or both) may not be satisfied, and physical systems may
obey D1 (D2) but not D3 or D4. It was a discovery of the late 20th century
that chaotic motion, in the sense of “dynamical chaos”, satisfies D1 (D2) but
violates D3 and D4. Moreover, other kinds of motion, satisfying D1 (D2), do
not satisfy D3 or D4 either, as the example of Maxwell shows.

7.2.3.3 Properties of Statistical Laws

S1 The state of the physical system at ti is not a definite function of an earlier
state at ti–1. The same initial state may lead to different successor states
(branching).

S2 Statistical laws describe and predict the states of the whole physical sys-
tem, but they do not describe or predict the individual parts (objects) of
this system.

S3 Statistical laws describe only physical systems which are non-periodic, i.e.
systems with extremely improbable recurrence of the whole state of the
system.

S4 The loss of information (and, consequently, the difficulty of prediction)
about the state of an individual object (or a small part) of the whole
system increases exponentially with the complexity of the system. On the

36 The one which Maxwell refers to is “The same causes will always produce the
same effects”, which he discusses earlier. See below Sect. 9.4.4.

37 Maxwell (1991, MaM), p. 13.
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other hand: (accuracy of the) information about the average values of mag-
nitudes (parameters) of the state of a huge number of individual objects
(or particles) increases also with the complexity of the system.

7.2.3.4 Properties Compared: Reduction is not Possible

7.2.3.4.1 D1 Compared to S1

It is easy to see that there is an essential difference between the conditions D1
and S1. Like D1 is necessary for dynamical laws, S1 is necessary for statistical
laws. This presupposes, however, that we interpret S1 (and, by it, statistical
laws) realistically (i.e. in an ontic sense). That is, we assume there is real
branching in reality. An epistemic interpretation according to which branching
is only a sign for our lack of knowledge, whereas in the underlying reality
everything is determined (by hidden parameters and dynamical laws of which
we are ignorant), we do not find justified.38 This can be substantiated by the
fact that the following types of processes do not satisfy D1 (but satisfy S1), as
is evident from all the sophisticated knowledge we possess today about these
processes:

Thermodynamical processes, processes of friction, of diffusion, of radiation,
of electric transport, processes of quantum mechanics, processes of biology, of
cosmology, and of psychology.

If D1 is understood as the defining condition of determinism, then a system
is deterministic if it satisfies D1. In this case, it follows that all processes which
do not satisfy D1 are not deterministic in the sense of Laplace’s determinism.
However, if D1 only implies determinism (without being implied by it), then
the fact that the above enumerated processes do not satisfy D1 does not
imply anything about determinism. Thus, in this case it is possible that there
are “hidden parameters” and unknown deterministic laws on “the ground”
of the statistical behaviour on “the surface”. This is, in fact, what Planck
hoped, that the situation with the law of entropy could be as it is expressed in
the quotation of 7.2.1.1 above. And later, similar interpretations with hidden
parameters were proposed for the statistical laws of QM. If these were correct,
one could hope for a theory which reduces statistical laws to dynamical laws.
But, as will be shown in the comparison between D2 and S2, such a view is
hardly tenable: Especially in QM there are certain experiments which seem to
show unambiguously that the degrees of freedom allowed by statistical laws
are real and that particles can be objectively undetermined. If this is correct,
then the difference between D1 and S1 is sufficiently large such that neither
statistical laws are reducible to dynamical laws nor vice versa.

On the other hand, it does not follow from this that these processes are
non-causal, as will be shown in Chap. 9 below.
38 cf. Weingartner (1998, SLG).
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7.2.3.4.2 D2 Compared to S2

Similarly, D2 and S2 differ in an important point. Statistical laws are bound to
huge ensembles; they describe physical systems consisting of a huge number
of objects. The greater the number of objects, the more strict is the law
about the whole ensemble. Though there is indeterminacy for every individual
system, there is a strict law for the whole system if the ensemble is large
enough. To some extent, such laws “emerge” from the “lawless” behaviour
of a large number of individual systems. In this sense, Wheeler spoke of “law
without law”.39 This problem was clearly understood and emphasised already
by Boltzmann and Poincaré: How can the law of entropy emerge from random
behaviour of individual systems? Schrödinger gave the following answer in his
inaugural lecture of 1922:40

“In a very large number of cases of totally different types, we have now
succeeded in explaining the observed regularity as completely due to
the tremendously large number of molecular processes that are coop-
erating. The individual process may, or may not, have its own strict
regularity. In the observed regularity of the mass phenomenon the in-
dividual regularity (if any) need not be considered as a factor. On
the contrary, it is completely effaced by averaging millions of single
processes, the average values being the only things that are observ-
able to us. The average values manifest their own purely statistical
regularity.”

This description fits very well to the statistical laws in thermodynamics. Con-
cerning the statistical laws of quantum mechanics, Schrödinger’s observation
that the regularity of the single processes need not be thought to imply the
laws of the ensemble can explicitly be demonstrated. Though it is clear also,
here, that the theory refers to big ensembles of identically prepared systems,
in quantum mechanics it may happen that the respective properties of individ-
ual quantum systems, like photons or electrons, are objectively undetermined.
This can be illustrated in detail by means of so-called split-beam experiments,
which deal with individual photons and other particles.41 The main problem,
here, is that for every individual system, say an individual photon, the value of
the observable, before the measurement, is objectively undetermined, whereas
a sufficiently large number of photons satisfy a statistical law, telling relative
frequencies in the experiment. Thus, although there is indeterminacy in a good
objective sense for every individual system, there is a strict law if the ensem-
ble is large enough, such that we can speak of an objective and definite (i.e.
Yes/No) property of the whole system. Despite of this particular situation in

39 Wheeler (1983, RLL). For more details on this question see Sects. 12.2. and 12.3.
40 At the ETH Zürich. This lecture was later published under the title “Was ist ein

Naturgesetz?”. cf. Schrödinger (1961, WNG), p. 11.
41 For the emergence of statistical laws in quantum mechanics see Mittelstaedt

(1997, ESL) and Sects. 12.2 and 12.3 below.
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QM, it holds for all important statistical laws that the individual system is not
definitely described by the law, but has its degrees of freedom which are not
restricted by the law. Moreover, it has been emphasised that there are areas
where not only individual particles but whole subsystems locally dodge the
statistical law, in this case, the law of entropy: Every living system (organism)
which produces and increases order, orthogenesis (maturation), information,
and differentiation is a case in point. An example of a big subsystem of that
sort is the earth embedded in the sun–earth–cosmic environment. (cf. Sect.
7.2.3.4.3 (2d) below). This shows unambiguously the difference between D2
and S2. And it shows again that, with respect to D2 and S2, neither type of
law is reducible to the other.

7.2.3.4.3 D3 Compared to S3: Reversibility and Non-Recurrence

The difference between dynamical and statistical laws, which is usually viewed
as the striking difference, is that which is expressed in D3 and S3: Dynamical
laws are invariant under time reversal, statistical laws are not. The former
describe processes which are time (reversal) symmetric, the latter describe
processes which are irreversible;42 or, more accurately, they describe processes
with a very low probability of recurrence of the state of the system. It is also
said that the statistical laws “define” an arrow of time or a time asymme-
try, whereas the dynamical laws do not. Such formulations, however, have
already been criticised above (6.4.2). Observe also that there are thermody-
namic processes which are describable by statistical laws and which are re-
versible and recurrent as it is the case with Carnot processes. In order to show
more accurately that these differences between the two types of laws prevent
a reducibility of one type to the other, we first shall discuss time reversibility,
and, secondly, time asymmetry, or better: non-recurrence.

(1) Time reversibility
First of all, it should be mentioned that D3, i.e. the condition that the
physical system (described by dynamical laws) is periodic, is not equiva-
lent to saying that the system is time-reversal symmetric. Though peri-
odicity – provided that the state exactly repeats itself after a finite period
of time – implies time reversibility, the other implication does not hold.
In the discussion of D3 above, it was mentioned that there are systems
which obey dynamical laws but are not periodic, like systems of dynamical
chaos. But these are, of course, non-recurrent but the underlying dynam-
ical laws are time-reversal symmetric. In this respect, they are similar to
systems described by statistical laws, but they differ because they satisfy
D1 which is not satisfied by the latter. If Laplace’s idea described by the
illustration (recall the discussion of condition D1 above) would be a cor-
rect description of the developing universe, then time-reversal symmetry

42 To mention immediately a terminological clarification, we shall not use the
term “irreversible” or “irreversibility”, but rather the more modest term of non-
recurrence instead, for reason to become clear subsequently.
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would hold in the processes of the universe. But such a time development
needs not to be periodic (even if subsystems like a planetary system could
be). We know that time reversal is not the case in the universe; expansion
and radiation suffice as examples.

It is a rather difficult question discussed among physicists whether the funda-
mental laws of physics can be time-reversal symmetric despite the many time
asymmetries in the universe; in the sense that symmetrical laws together with
asymmetrical conditions can describe asymmetrical phenomena (recall 5.4.2):

“The disparity between the time symmetry of the fundamental laws of
physics and the time asymmetries of the observed universe has been
subject of fascination for physicists since the late 19th century.”43

“Next we mention a very interesting symmetry which is obviously
false, i.e. reversibility in time. The physical laws apparently cannot be
reversible in time, because, as we know, all obvious phenomena are
irreversible on a large scale: ‘The moving finger writes, and having
writ, moves on.’ So far as we can tell, this irreversibility is due to
the very large number of particles involved, and if we could see the
individual molecules, we would not be able to discern whether the
machinery was working forwards or backwards.”44

Keeping the laws (time-reversal) symmetric and putting the responsibility
for the time asymmetric phenomena into the initial or boundary conditions,
leads to explanations like the following:45 the thermodynamic asymmetry pre-
supposes progenitor states far from equilibrium; the CP asymmetry presup-
poses a spontaneous symmetry breaking of the Hamiltonian; the expansion of
the universe presupposes a special singularity (big bang), etc.

However, many authors have also discussed time symmetric models of the
universe.46 In this case, the universe undergoes expansion and contraction in a
symmetric way such that we have periodicity (even if the time of the sections
might be long to allow the recurrence). However, there are at least two dif-
ficulties with such proposals: The improbable recurrence and the T-violation
in weak interactions. The first is expressed by the following quotation:

“The difficulty with the time-symmetric models is their implausibility.
They require a very finely tuned set of boundary conditions, for which
no explanation is offered. And amongst a number of other problematic
features, it is difficult to imagine how a universe similar to the one in

43 Gell-Mann, Hartle (1994, TSA), p. 311.
44 Feynman (1997, SNP), p. 28.
45 For the problem of the demarcation between laws and initial conditions see

Chap. 8. Though, it should be remarked that there are many areas where this
separation is not problematic.

46 Gell-Mann, Hartle, ibid. Chap. 22.5. Schulman (1994, TSC).
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which we live, with large scale structures, stars and galaxies, might
emerge, and then return to its initial state.”47

The second was already briefly discussed in Sect. 5.4.3. Since CPT (charge–
parity–time) invariance (of laws) is generally satisfied – all fundamental field
equations are CPT invariant – but CP invariance is slightly violated in weak
interactions, T has to outbalance the difference. Therefore, T invariance (time-
reversal invariance) is not completely satisfied for the fundamental laws of
nature.48 CPT invariance – one of the most important symmetries of quantum
field theory – says that physical laws seem to be symmetric with respect to the
complex exchange of particle–antiparticle, right–left, and past–future. This
CPT symmetry has remarkable consequences: It implies that the mass of the
(any) particle must be the same as that of its respective antiparticle. The same
holds for their lifetimes. Their electric charges must have the same magnitude
but opposite signs, and their magnetic moments must agree.

A most striking consequence, however, is that, since CP invariance is vi-
olated but CPT invariance is not, T has to outbalance the difference, and
therefore, T invariance cannot hold unrestrictedly. This is, indeed, a serious
consequence and – if true – would have a lot of implications. On the other
hand, T-invariance (time reversal) is hardly compatible with a dipole-moment
of elementary particles, and it would reverse velocities and exchange initial
with final states. Such a time reversal operation would be strongly non-linear
in character, as Wigner pointed out long ago. If it could be proved that the
neutron has a dipole momentum, then the laws of nature could neither be
P-invariant nor T-invariant. As it has been said above, we know from other
experiments that they are not P-invariant. Since CP invariance is also violated
but CPT invariance is not, it is important to ask for the basic assumptions
which underlie the CPT invariance. These are mainly the following:49

(1) The particles which are not composite are finite in number.
(2) The symmetries of special relativity hold (with respect to continuous

transformations and one time and three space coordinates).
(3) The laws are local.
(4) Energies cannot be arbitrarily negative, i.e. there is a lowest energy level.
(5) The laws of QM hold in accordance with local relativistic quantum field

theories in four dimensions.
(6) The total probability of the quantum system is constant in time.

Moreover, as it appears from recent experiments, T-reversal symmetry seems
to be violated directly, too, and not only via CPT symmetry and CP violation.
47 Halliwell (1994, QCT), p. 374.
48 This holds, provided there are no other ways out; for instance, that the T-violation

is not due to an asymmetry in the cosmological boundary conditions or to an
asymmetry of our particular epoch and spatial location. cf. Gell-Mann, Hartle
(1994, TSA), p. 329.

49 cf. Wess (1989, CPT) and Genz, Decker (1991, SSB), p. 169.
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The violation concerns weak interactions. But, since weak interaction concerns
all elementary particles except photons, the experimental result appears to be
very important. There have been two different series of experiments indepen-
dently made in CERN and FERMILAB, which seem to prove the violation:
The time dependent rates for the strangeness-oscillation process K0 → K̄0

and its inverse, K̄0 → K0 (neutral kaons) are different. If time-reversal sym-
metry were strictly preserved, we should have identical rates (CERN).50 The
second experiment was based on the following idea. Both the time-reversal
operator T and the parity operator P reverse the direction of the momentum
of a particle (T reverses, in addition, the particle’s spin). The experimental-
ists measured for each observed decay the angular variable φ that changes
sign when all the final state momenta have their directions reversed. Time
reversal symmetry would require that the observed φ and sin 2φ distribution
be symmetrical about zero. The observed asymmetry is about 14%, which is
in agreement with the theoretical expectation.51

(2) Non-recurrence
(a) Examples for recurrence and non-recurrence

Skiing in fresh powder snow is a great pleasure. But if the slope is
small and one is skiing down frequently, the slope will be filled with
traces, and after some time no new space (powder snow) is left, and
thus one has to use one’s own traces again (recurrence). This illustra-
tion tells us already some important conditions: The motion has to
be area preserving (the skier is not supposed to leave the slope) and
in a finite region. Observe now that just by raising the complexity of
the system, recurrence becomes very improbable: Imagine that there
are thousands of skiers on the slopes of a big ski resort (the cable cars
and lifts of a big ski region in Austria can take up about 60,000 people
per hour). The probability that at some later time t1 all skiers will
be again at a position in which all skiers were at the time t0 earlier
such that the whole state of this system would recur has much lower
probability (even if we assume that they go on skiing days and nights)
than the recurrence of a single skier to an earlier position.

But observe also the following: Living organisms act randomly for
some time but not always. And even if they act according to certain
goals, there are two possibilities: The goals are different, and then the
recurrence of the whole system (encompassing a huge population) will
still be very improbable. The second possibility, however, is that the
goals agree with respect to one or more properties: Thus, all skiers
will have dinner in restaurants and moreover will return to their guest
rooms in hotels and pensions for the night; i.e. with respect to the
sleeping places, we will have recurrence at the second night and so on
(assuming that the skiers stay, say a week, in that ski region).

50 Angelopoulos, et al. (1998, CPL).
51 Schwarzschild (1999, TEO).
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(b) Boltzmann’s example
Instead of living organisms take the molecules in a litre of gas (air) at
temperature T = 0◦C (273 K) and atmospheric pressure (1.033 · 103 g
cm–2). Of these, we shall not assume that they “act according to
certain goals”. A litre of air (at temperature and pressure mentioned)
consists of 2.688 · 1022 molecules. It will be understandable that this
system of 2.688 · 1022 molecules can be in a huge number of different
(micro-) states. The number is about 105×1022

, so as to realise the
macrostate “litre of air under the conditions mentioned”. Thus, the
same (for our eyes or lungs the same) macrostate can be realised by a
huge number of different microstates. Boltzmann’s discovery was that
the probability of such a macrostate can be defined as the number of
microstates which can realise the macrostate, and that this number
(more accurately the logarithm of it) is the entropy. The probability
that such a macrostate of a physical system occurs by chance, i.e.
out of a huge number of microstates, describes the degree of disorder
(the entropy) of this system. Assume we have two macrostates with
probabilities p1 and p2, then the probability that they both occur will
be p = p1 · p2. The associated entropies S1 and S2, since they are
additive, will lead to S = S1 + S2. In order to connect probability p
with entropy S, it tells from mathematics that the relation must be
logarithmic, with some constant, which appears to be Boltzmann’s
constant. Thus, we get Boltzmann’s famous law: S = k ln p.

What is the probability of the recurrence of one of the microstates
in a litre of air? It is 1 in 105×1022

. Assume one litre of air expands into
a 2-litre vessel. What is the probability of the recurrence of the former
state, i.e. that it will occupy only 1 litre again? For each molecule the
probability is 1/2; thus, for two molecules the probability is (1/2)2;
for three: (1/2)3, etc. and for n molecules (1/2)n. Since n = 2.7 ·1022,
it will be understood that the probability is extremely low.

We might ask the questions: Will all the 105×1022
microstates of the

litre of air be realised at all? And in what time? This leads to an in-
teresting cosmological question: Assume that we are asking how many
possible microstates are in the whole universe, in order to calculate
the entropy of the whole universe. Then, the question arises whether
every microstate can be realised within the lifetime of the universe,
if the lifetime is finite. Since the number of microstates is extremely
huge, they probably will not all be realisable within the lifetime cal-
culated by the standard (big bang) theory. If this is so, then there are
more possible universes than the actual universe, which obey the same
laws of nature and differ only with respect to some microstates from
each other. In other words, the laws of nature have more (possible)
models than the one actually realised.52

52 For more on that see Chap. 8.1.6.
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(c) Poincaré’s recurrence theorem
Poincaré’s recurrence theorem says that for a (time independent)
Hamiltonian system a trajectory returns to a given neighbourhood of
a point in a sufficiently long (or in an infinite) time. Zermelo thought
that he had proved that this theorem shows that Boltzmann’s sta-
tistical mechanics cannot be a correct description of thermodynamic
processes as irreversible processes or processes with extremely im-
probable recurrence.53 However, as the replies of Boltzman54 show,
Zermelo partially neglected and partially misunderstood important
conditions in connection with Poincaré’s recurrence theorem. The first
thing which is made clear by Boltzmann is that Poincaré’s recurrence
theorem is not applicable under conditions where the number of mole-
cules is infinite and time is increasing and can be very long but finite.
On the other hand, if the conditions are such that time is infinite and
the number of molecules is very large (but finite and in a finite space),
then Poincaré’s theorem is applicable.55 And eventually, if time is fi-
nite but very long and the number of molecules is very large – and
this is the realistic situation – then there is no incompatibility, since
Boltzmann’s principle claims only that the recurrence is extremely im-
probable. The second thing, which Boltzmann realised very clearly, is
that the probability of recurrence depends very much on the complex-
ity (for example with the number of molecules, as shown above). In
fact, Boltzmann was modest enough to underline the enormous proba-
bility (for non-recurrence). And if he uses irreversibility at all, he adds
immediately that what is at stake are very extreme probabilities.

A further point which is worth to be mentioned is that Boltzmann’s
entropyis not identical with Gibb’s entropy.56 Whereas the first is de-
fined for a microstate of a macroscopic system, the second is defined
for an ensemble density of a microstate. They agree for systems in lo-
cal equilibrium. But they differ in their time development: The Gibb’s
entropy does not change in time when the ensemble density develops
in time, while the Boltzmann entropy does. At the starting time of
a system, in the state of local equilibrium, both entropies agree, but
subsequently Boltzmann’s entropy would increase, while Gibb’s would
not change. Therefore, the important entropy for describing the time
development of macrosystems is the entropy of Boltzmann.

53 Zermelo (1896, SDM) and (1896, MEI).
54 Boltzmann (1896, EWB) and (1897, ZAM).
55 But in an infinite time an earlier state can always recur. cf. Boltzmann (1896,

EWB), p. 569.
56 cf. Lebowitz (1994, TAB).
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(d) Irreversibility locally violated
Erwin Schrödinger raised the question: How can we understand a
living system (living organism) in terms of Boltzmann’s theory?57

Or, how can these systems manage to keep, or even to increase, a low
entropy level despite of the validity of the law of entropy?

Or, again, in other words: How are living systems capable to de-
crease the disorder and the probability of realising their macrostates
on the one hand, and to increase order, to create new subsystems and
raise the level of information, on the other? The answer, which was
partially already given by Schrödinger, includes the following points:

(i) Living systems (organisms) are not thermodynamically closed; they
are open systems.

(ii) Living systems receive high grade energy (energy with low entropy)
from their environment via metabolism, but they pass on low grade
energy (energy with high entropy).

(iii) By process (ii) the living systems are capable of achieving orthogen-
esis (maturation), i.e. increasing order, quality, and differentiation.

Cosmological investigations show that also planets, especially the earth,
behave in a similar way as living systems. For example, the earth sat-
isfies the above three conditions in an analogous way: It receives high
grade energy as electromagnetic radiation (with Planck temperature of
5600 kelvin) from the sun and passes on low grade energy as heat radi-
ation (with Planck temperature of only about 300 kelvin) into its envi-
ronment. The received energy has low entropy and a respectibly lower
number of degrees of freedom(i.e. of possible microstates which can re-
alise a macrostate), whereas the delivered energy has high entropy and
a much greater number of degrees of freedom. From the above consider-
ation about living systems, it is also understandable that the earth with
living organisms (including men) produces more entropy than it would
produce without. It should be mentioned, however, that, although the
flow of entropy is not balanced, the flow of energy (received per time unit
and delivered per time unit) is balanced. That means that the earth, and
also all living systems, convert high grade energy, by passing it through
their systems, into low grade energy, and by that process they are able to
create order, quality, and differentiation. The Earth (and living systems)
are open systems of non-equilibrium, which permit a loss of entropy which
does not violate the law of entropy, since in the whole system sun–earth–
cosmic environment, entropy still increases.58 But it shows that, locally,
the lawlike direction of the thermodynamic processes (towards higher en-
tropy) can be reversed such that order and information can be produced.

57 Schrödinger (1944, WLf).
58 cf. Fahr (1997, WKS).
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(e) Non-recurrence versus irreversibility
From the above considerations (a)–(d), it will be understandable that we
want to avoid the term “irreversibility” for three reasons:
(i) What thermodynamic processes and many others, like radiation, cos-

mological expansion, processes of measurement, biological and psy-
chological processes, really show is that recurrence of the state of the
whole system is very improbable, but not that recurrence or time
reversal is impossible. The latter cannot be proved by a statistical
law. Thus, we claim only what can be empirically corroborated with
the help of statistical laws.

(ii) From the last example described in (d), it is plain that thermody-
namic processes can be reversed locally without violating the second
law.

(iii) Moreover, we have seen above 7.2.3.2 that non-recurrence and time-
irreversibility are not equivalent notions: since we have cases of non-
recurrent phase density and time reversibility in chaotic motion of
dynamical chaos.

Summing up. A comparison of D3 and S3 shows that the difference between
dynamical and statistical laws, which is usually viewed as the most striking
one – time reversal invariance of the laws versus irreversibility of the laws – has
to be taken with care. Strict time-reversal symmetry is not any more valid on
the microlevel, and irreversibility on the macrolevel should be better replaced
by very improbable recurrence. However, the differences in this respect are
sufficiently large to forbid reducibility in the one or the other way. But the
more careful interpretation paves the way for the compatibility of both types
of laws.

7.2.3.4.4 D4 Compared to S4

From what has been said under Properties of Dynamical Laws (Sect. 7.2.3.2),
it will be clear that a physical system which obeys D4 cannot be a chaotic
system, because the violation of D4, i.e. sensitive dependence on initial con-
ditions or exponential separation of adjacent conjugate points (with respect
to the starting point), is a necessary condition for dynamical chaotic motion.
Another necessary condition for dynamical chaotic motion is the average loss
of information about the position of a point in an interval (relative to one
iteration). Both the separation of adjacent points and the loss of information
about their positions is measured by a positive Lyapunov exponent. From
this, it follows that the presence of D4 (stability) preserves the system from
both, sensitive dependence on initial conditions and average loss of informa-
tion. Therefore, it is the more understandable that in the presence of D1 and
D4 also D2 can be satisfied.

On the other hand, statistical laws are characterised by a loss of infor-
mation (and prediction) about the state of an individual object (a point, a
small part), (S4). And this loss of information increases exponentially with
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the complexity of the system. In this point, therefore, there is at first sight a
similarity with the behaviour in chaotic motion. But the difference is that the
indetermination (degrees of freedom) for the individual case and the loss of in-
formation about it is an essential property of the description of the system by
statistical laws, whereas in the case of dynamical chaos it is an exception, since
by the underlying dynamical laws also every individual subsystem should be
describable by dynamical laws (D2). However, in the case of statistical laws,
the accuracy of the information about the average values (think of velocity
distribution of particles, etc.) increases with the complexity of the system.
There does not seem to be a parallel of this in dynamical laws, independently
whether they obey all D1–D4 or only a part of it (like the underlying laws
in dynamical chaotic motion). Moreover, chaotic motion of dynamical chaos
is not in general describable by statistical laws, i.e. there is no general pre-
dictability of average values.

Therefore, the result of the above consideration is this: Condition D4,
which is also called the condition of stability or the condition of robustness,
preserves the dynamical properties of the system; i.e. it preserves the condi-
tions D1 and D2 (and for many systems D3). Since S4 differs essentially from
D4 with respect to the description of the individual case, no reduction of sta-
tistical laws to dynamical ones or vice versa is possible. Moreover, S4 differs
with respect to the average values of magnitudes also from the conditions for
dynamical chaos (where D4 is not satisfied), which shows another aspect of
the non-reducibility of the two types of laws.

7.2.3.5 Compatibility of Dynamical and Statistical Laws

Concerning the compatibility of dynamical and statistical laws, we shall deal
with two points: (1) With an illustration to show that both types of laws can
be compatible even within the same physical system. (2) By showing that the
so-called arrow of time is not a hindrance for the compatibility.

(1) First of all, it has to be remembered that basic laws which are time sym-
metric can “produce” asymmetric phenomena (states and processes) if
there are asymmetric initial conditions (cf. Chap. 5. above); i.e. an asym-
metrical world with asymmetrical states and processes does not imply
asymmetrical laws but requires asymmetrical initial conditions. Asym-
metrical initial conditions of a very strong kind, in fact the greatest sym-
metry breaking – also with respect to time – have to be assumed at the
beginning of the universe in all the theories which describe a universe
finite in time or with a finite age since the beginning. This amounts to an
extreme and – in the sense of the law of entropy – most improbable but
most ordered and structured singularity.

Secondly, it should be emphasised that basic laws which are time sym-
metric on the microscopic level are compatible with laws on the macro-
scopic level which are not time symmetric, but describe an arrow of time
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like the law of entropy (even if granted that the reverse process is not
completely impossible but very highly improbable). A nice “Gedankenex-
periment” for such a compatibility is given by Lee.59

Assume a number of airports with flight connections in such a way
that between any two of these airports the number of flights going both
ways along any route is the same. This property will stand for microscopic
reversibility. Some of the airports may have more than one air connection
(they are connected with more than one other airport), whereas other
airports have a connection only to one airport (let’s call such airports
dead end airports). A passenger starting from a dead end airport (or
starting from any other airport) can reach any other airport and can also
get back to his starting airport with the same ease. This property stands
for macroscopic reversibility. In this case, we have both microscopic and
macroscopic reversibility.

But suppose now we were to remove in every airport all the signs and
flight information, while maintaining exactly the same number of flights.
A passenger starting from a dead end airport A will certainly reach the
next airport B, since that is the only airport connected with A. But then –
especially when assuming that B has many flight connections – it will be
very difficult to get further to his final destination; in fact, it will be a
matter of chance. Moreover, his chance to find back to his dead end airport
A will be very small indeed. Moreover, if millions of flight passengers fly
around without any flight information, the probability of recurrence of
the whole system (say that each passenger is again in an earlier position
at some specific time t) will be extremely improbable.

Thus, in this case we have microscopic reversibility maintained but
macroscopic irreversibility, and both are not in conflict.

(2) Is the “arrow of time” compatible with dynamical laws?
We shall discuss this question with respect to three different descriptions
of time which say that: (a) time flows, (b) time flows only in one direction,
(c) time is connected with directional processes.
(a) Time flows

That time flows we grasp from change, i.e. mutation and movement
(i), with respect to an ordered sequence (ii).
(i) Without any change (mutation or movement) time would “stand

still” such that change (mutation and movement) is a necessary
condition of time – at least for our understanding: “It is utterly
beyond our power to measure the changes of things by time. Quite
the contrary, time is an abstraction at which we arrive by means
of the changes of things.”60

59 Lee (1988, SAW).
60 Mach (1960, MEC), p. 273. Recall also the definitions of time given by Aristotle

and Thomas Aquinas in Sect. 6.2.2.
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That time presupposes change was already pointed out by
Aristotle in his definition of time (recall Sect. 6.2.2(1)). In a dif-
ferent context – the transcendental philosophy – the same point
was made by Kant in the Critique of Pure Reason. Since time can-
not be observed, the direction of time is not given by experience
such that the temporal order of events could be determined by
reading off the respective time values from a fictitious universal
clock. By contrast, causally connected events determine the order
of instants of time such that the cause event is always earlier than
the effect event. It is obvious that in this way a metric of time
cannot be established but merely a topology.61

That there is no past to future direction of time in regions
that are at equilibrium was pointed out by Boltzmann.62 He com-
pared this with gravitation: As there is no downward direction
in regions of space where there is no gravitational force, there
is also no past to future direction of time in regions that are
at equilibrium. Boltzmann’s claim is stronger than Aristotle’s, if
“equilibrium” is understood as thermodynamic equilibrium. But,
if we understand “equilibrium” in a wide sense just as “no change
whatsoever”, then Boltzmann’s point is the same as Aristotle’s:
time presupposes (some kind of) change. This change can be of
different kind, but it will always belong to one of the two fol-
lowing groups: Change in the physical and biological sense: Any
movement of material bodies (in the universe) or any change in
living organisms. Change in the psychological or mental sense:
Any conscious proceeding of thinking, feeling and desiring. That
the understanding of time is also supplied by such “inner” men-
tal experiences is often forgotten. If it is underlined here, it is
not claimed that this kind of understanding of time is indepen-
dent of the one based on experience with the “outside world”,
but merely, that it plays also an important additional rôle for our
understanding of time.63

(ii) Thus, it seems better to speak of the asymmetry of a flowing
process of a sequence of successive states that are ordered by a
partial ordering, instead of a “flowing time”. In such a sequence,
we distinguish past and future states, and we measure the dis-
tance between them with the help of time units (produced by
another physical periodic process in a clock). So far, no direction
is presupposed; only partial ordering and the distinction between

61 Kant (1787, KRV), B233.
62 Boltzmann (1897, ZAM), p. 583.
63 This psychic or mental aspect in our experience of time has been stressed by

different authors. cf. for example Augustin (Conf) XI, 27 and 28, and Eddington
(1928, NPW), p. 91ff. cf. further Sklar (1977, CTT).
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past and future; i.e. intervals and units. The successive time units
(first, second, etc.) which correspond to the successive states may
have suggested the idea that “time flows”.

The presupposed ordered sequence is best described by the
chronology of time or by the basic axioms of tense logic, which as-
sume partial ordering, transitivity, asymmetry, irreflexibility and
density (recall Sect. 6.3.3). In such a sequence there is already the
distinction between earlier and later or past and future, because
this distinction is understood either only in analogy to – or more
usually as a mapping to – the distinction of smaller and greater in
the sequence of (real) numbers. Therefore, it is not correct to say
that understanding of the distinction between earlier and later
(or past and future) presupposes (understanding of) directional
processes, although it is correct that it presupposes (understand-
ing of) some kind of change which can be also non-directional,
like periodic change.

Expressed with the above idea that time flows, that means (α)
that “time flows equably” everywhere (in the whole universe). In
the second interpretation (β), however, this assumption is uncov-
ered and then avoided, because the dependence of the measuring
units (time units) on the corresponding successive states of real
processes are taken into account. Consequently, the measuring
units (time units) are not understood to be applicable universally
as rigid. Expressed with the above idea, that means that “time
flows unequably” in general, although it may “flow equably” lo-
cally.

The first interpretation (α) is that of Newton:
“Absolute, true and mathematical time, of itself, and from
its own nature, flows equably without relation to anything
external”64

The second interpretation (β) is that of Einstein in GR:
We may paraphrase it in a way, analogous to the text of New-

ton, as follows: The relative time of an observer plus reference
frame is measured by standard clocks. By stipulation it flows
equably but it depends on the distribution of matter, fields, and
boundary conditions. Every observer plus reference frame has its
own time scale, and there is no universal time scale that is rel-
evant for all observers. The continuous time translation or the
time development expressed by dynamical laws is in accordance
with the first interpretation under the condition of a classical ap-
proximation and restriction; it is in accordance with the second
interpretation under the condition of a generalisation and rela-
tivisation with respect to the whole universe.

64 Newton (Princ) I, Scholium. Recall Sect. 6.2.2.(3).
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Summing up: This point (a) (i.e. that “time flows”) which
implies change and partial ordering and intervals measured in
units is, of course, presupposed by dynamical laws, and so there
cannot be any incompatibility.

(b) Time flows only in one direction
Concerning (a) (“time flows)” we cannot speak of an “arrow” of time.
But an arrow of time (of different strength) seems to be expressed by
(b) and (c). Observe further that (c) includes (b) and (b) includes (a).

However, the subsequent considerations in (b) and (c) will show
that the frequently used expression of the “arrow of time” is mislead-
ing and not justified: although “time flows” in the sense of passing
away, the arrow is intrinsic in processes (not “in” time). That time
“flows only in one direction” we grasp in a twofold way: first, natu-
rally and scientifically, by our experience, with an ordered sequence
of particular changes in a process. This first way will be considered
in (c), whereas the following second way will concern us here. Sec-
ond, scientifically, by comparing a particle’s movement on a spatial
coordinate with a particle’s movement on the time coordinate. Con-
cerning this question of how to distinguish a (particle’s) movement on
a spatial coordinate (in GR: space like geodesic) from a (particle’s)
movement on a time coordinate (in GR: either time like geodesic or
null geodesic65), we may formulate two subquestions: (α) Can the co-
ordinates (geodesics) be distinguished by their directions (vectors)?
(β) Can the coordinates (geodesics) be distinguished by their closure
conditions? Both subquestions can be answered with: Yes. The an-
swer to the first subquestion is very well expressed by the following
quotation from Wigner: “The difference between the two cases arises
from the fact that a particle’s world line can cross the t = constant
line only in one direction (in the direction of increasing t); it can cross
the x = constant line in both directions. If we replace “line” in the
last sentence by “plane”, we have the generalisation of the distinction
to the actual four-dimensional universe.”66

The answer to the second subquestion is the following: Accord-
ing to GR, the space of the universe is closed (even if the universe
is expanding); that is, there are closed spatial coordinates or closed
space-like geodesics. On the other hand, we usually assume that the
time coordinate is not closed; i.e. we assume that the non-space-like
geodesics (time-like geodesics and null geodesics) are not closed. This
assumption has been called the chronology condition of spacetime.67

This condition plays an important role for the concept of causality.
Causality would break down and one could travel into one’s own past,

65 For space like, time like and null geodesics see Hawking, Ellis (1973, LSS).
66 Wigner (1972, TEU), p. 239.
67 cf. Hawking, Ellis (1973, LSS), p. 189.
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if the chronology condition is not satisfied (cf. Sect. 9.2.2.1 on causal-
ity). This second point (b), that the time coordinate is distinguished
from the spatial coordinates such that a particle’s world line can cross
the t = constant line only in the positive direction of increasing t, is
not determined by dynamical laws; because dynamical laws permit
both directions positive and negative. From this, it follows that (b),
i.e. time flows in one direction, is compatible with dynamical laws,
because dynamical laws allow both directions.

(c) Time is connected with directional processes
In addition to the directional feature of time described in (b), which
is not at all in conflict with dynamical laws, there are two further
features of time which are connected with directional processes. A
directional process can appear in a twofold way: First (i), through
the behaviour of huge ensembles of objects in contradistinction to the
behaviour of singular objects. Second (ii), when (i) is accompanied by
the increase of a certain physical magnitude.
(i) Consider the following example: Assume a very large (long) but

finite sequence of decimal places after 0, say the (finite) sequence
of natural numbers, i.e. 0, 1, 2, 3, . . . , 10, 11, 12, . . . , 99, 100,
101, . . . , etc. It can be proved that this sequence has a normal
distribution. It will, therefore, be easily understandable that the
probability of recurrence for the three numbers 1, 4, 2 (in this
order) on decimal places will be not very low. It occurs in 142,
in 1420, 1421, etc. In contradistinction to that, the probability of
the recurrence of an ordered sequence of 1010 numbers on decimal
places, as part of the above sequence, will be very much lower.
This has nothing to do with entropy or with the increasing of
a certain physical magnitude. But it has to do with “direction”
and asymmetry. The more the sequence of numbers increases, the
more improbable is the recurrence of the (whole) sequence. This
shows that for such an asymmetry (or “direction”) no physical
process is needed, because the objects in the huge ensemble may
be conceptual objects. But let the objects be, now, atoms of a
fluid or gas; and instead of a sequence, we may have a structure,
i.e. a state or a distribution in a phase space. It will be clear just
by probability considerations that the recurrence of a state with
1010 atoms is much much lower than that of a state with three
atoms.68

Concerning the question of the compatibility with dynamical
laws, it should be clear that there cannot be any conflict of dynam-
ical laws with an asymmetry or direction of a purely mathematical
kind.

68 Recall the examples in the section on Non-Recurrence above 7.2.3.4, D3 compared
to S3 (2).
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(ii) Directional processes: First, it should be clear that chronological
time scales, as they are used for time measurement, do not define
a direction of time even if they indicate that “time flows” in the
sense of representing a sequence of partial ordering. Remember
Poincaré’s considerations concerning convention in this respect
(Sect. 6.2.1.5) above. Assuming events (states) S1, S2, . . . (∈ S),
reference frames plus observer, RF, and chronometrical scales CS
(mappings of durations onto real numbers, standard clock), the
following postulates are basic for time T and time interval t:
(α) T is a function {S1, S2, RF, CS} → �+ with T{S1, S1, RF,

CS} = 0.
(β) For every state S1 relative to RF and CS and for any value

t ∈ �+ there exists a second state S2 such that T (S1, S2, RF,
CS) = t.

(γ) Transitivity. For any triple of states (S1, S2, S3) relative to RF
and CS it holds T (S1, S2, RF, CS) + T (S2, S3, RF, CS) =
T (S1, S3, RF, CS).

From these postulates, it follows that for any two events S1S2 relative to RF
and CS it holds that: T (S1S2RFCS) = –T (S2S1RFCS). This shows clearly
that the above basic assumptions and postulates do not define a direction
“in” time. They tell us only that the direction from S1 to S2 is the opposite of
the direction from S2 to S1, but not which event is first in nature. Moreover,
these postulates are in full agreement with the above mentioned paraphrase
of Newton’s statement about absolute time, if the reference system RF is
understood as a reference frame plus observer and the chronological scale CS
as a time scale of a standard clock.

On the other hand, so-called directional processes (of nature) tell us un-
ambiguously which event is first and which is second. Penrose lists seven such
directional processes:69

(1) The decay of neutralK mesons in weak interactions (recall Sect. 7.2.3.4.3(1)
above).

(2) The process of measurement in quantum mechanics, especially the so-
called “collapse of the wave function”.

(3) All processes in which entropy increases (recall 7.2.3.4.3(2)).
(4) All processes of radiation.
(5) All conscious mental processes (recall 7.2.3.5(2a) above).
(6) The process of expansion of the universe.
(7) The process of the gravitational collapse ending in a black hole.

Of these processes, (1), (3), (4) and (6) are experimentally very well con-
firmed. (5) is very well confirmed by introspection and by the descriptions of
the psychology of mental processes. The claim that (2) is a directional process

69 Penrose (1979, STA).
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is – at least to a considerable extent – a matter of interpretation of the quan-
tum mechanical process of measurement. The time reversal of (7), leading to
a white whole (no experimental evidence so far), is an open question such that
(7) cannot be viewed as an unambiguous case of a directional process. Fur-
thermore, it is an open question whether processes (1), (4), (6) and perhaps
(7) can be reduced ultimately to process (3).70 In this case, the underlying
fundamental law would be the second law of thermodynamics, i.e. the law of
entropy. Concerning (4), we refer to Chap. 8 below where the ambiguity of
the solutions of Maxwell’s equations will be discussed. With respect to (6) we
have to say that it is well confirmed for the past 20 billion years, but there is,
of course, no security for the long time future.

Now, concerning the question of a possible incompatibility between direc-
tional processes and dynamical laws, the following observations are important:
A first observation is that such processes can be described and explained only
by statistical laws and not by dynamical laws. A second observation is that
both laws, and, therefore, also their respective processes are compatible in
the same physical system as is shown by Lee’s Gedankenexperiment (recall
7.2.3.5(1) above). A third observation is that time reversal of dynamical laws
should not be taken too strictly, since it has been softened up already on
the microlevel with respect to weak interaction. A fourth observation is that
also irreversibility of directional processes should not be taken absolutely, be-
cause what is empirically defensible, is rather extremely low probability of
recurrence.

7.2.4 Answer to the Objections

7.2.4.1 (to 7.2.1.1) A reduction of statistical laws to dynamical ones and, ac-
cordingly, a reduction of unidirectional phenomena to “conservative effects”
(which permit time reversal) seemed to be possible, when Planck expressed
his hopes in the quotation in 7.2.1.1. At that time, he was supported by
Zermelo who was his assistant, and there was the controversy of Zermelo with
Boltzmann in the Wiedemann’s Annalen 1896 and 1897 (recall
Sect. 7.2.3.4.3(2c)). But, after Boltzmann showed in his replies that Zer-
melo partially neglected and partially misunderstood important physical con-
ditions concerning the restricted application of Poincaré’s recurrence theorem,
Zermelo seems to have left the subject and to become engaged very success-
fully in set theory.

Independent of historical matters, it has been shown in the sections of Sect.
7.2.3.4 – by a comparison of four characteristics of dynamical and statistical
laws – that no reduction from one type of law to the other is possible. This
was also supported by recent research concerning the properties of dynamical
and statistical laws.
70 cf. Wheeler (1994, TTd). Concerning (7), the important question is whether the

horizon area of the black hole can be proved to be proportional to measures of
entropy, which has been supported by Christodoulon, Bekenstein and Hawking.
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7.2.4.2 (to 7.2.1.2) This objection makes two important assumptions: (1) That
statistical laws express a lack of knowledge of the details of a state of a phys-
ical system. (2) That, if all details of a certain state are known, all past and
future states can be calculated (according to Laplace). Concerning the first
assumption (1), there is a right and a wrong interpretation. The right interpre-
tation of (1) is that every statistical law implies some deficiency of information
about the individual case, which increases with the size and complexity of the
ensemble. The wrong interpretation of (1) is that all the individual details
(of which there is lack of knowledge) are in fact fixed by hidden parameters
or by a deterministic structure. That such an assumption is hardly tenable
was shown in Sect. 7.2.3.4.1. What processes of thermodynamics, of friction,
of diffusion, of radiation, of cosmology and of quantum mechanics show, is
rather that there are real degrees of freedom, or there is real branching in
nature.

This is connected with the second assumption (2): If all details of a certain
state are known, then all past and future states can be calculated with the
help of (dynamical) laws. This assumption is only correct if the conditions
D1, D2 and D4 for physical processes obeying dynamical laws are satisfied.
But, as we know, these conditions are not satisfied by the above mentioned
processes, which cannot, therefore, be described by dynamical laws. Thus, (2)
is not true in general.

Moreover, the antecedent of assumption (2) (i.e. “if all details of a certain
state are known”) is not always satisfiable, even if dynamical laws can be
applied as in the case of dynamical chaos. In this case, then, assumption (2)
is applicable only in an empty sense, or better, not applicable at all.

A further restriction on (2) – mentioned already in note 14 – is that
Laplace’s intelligence must not belong (as a part) to the physical system,
and in case the physical system is the whole universe, the intelligence has to
be non-material and not belonging to the universe.

Since the objection (7.2.1.2) uses the wrong interpretation of assumption
(1) and makes assumption (2), which is not generally true, the conclusion in
the argument (of the objection) is not proved.



8

Laws, Boundary Conditions,
and Constants of Nature

“The world is very complicated and it is clearly impossible for the
human mind to understand it completely. Man has therefore devised
an artifice which permits the complicated nature of the world to be
blamed on something in which simple laws can be found. The compli-
cations are called initial conditions, the domains of regularities, laws
of nature. . . ” (E. P. Wigner)1

8.1 Are Boundary Conditions Independent
of Laws of Nature?

8.1.1 Arguments Contra and Pro

(1) What is ruled by a common coherent cause is not independent from each
other. But according to Mach’s principle the matter distributed in the
universe is the common coherent cause for both the laws and the initial
conditions. Therefore – if Mach’s principle is correct – then the initial
conditions are not independent of the laws of nature.2

(2) If our universe is the only model (realisation) to satisfy the laws of nature,
then the boundary conditions might be fixed by this model and thus be
dependent on the laws of nature. But it seems that there is only one (this)
universe.3 Therefore, – on the assumption that there is only one universe –
the boundary conditions are dependent on the laws of nature.

(3) A law of nature is something, which does not change, i.e. which is invari-
ant (symmetric) relative to something, which changes (Chap. 5). Among
those changing conditions the boundary conditions and especially the ini-
tial conditions are an important case in point, i.e. all laws of nature are

1 Wigner (1967, SRf)), p. 3.
2 It is not stated here that Mach’s principle actually holds.
3 The opposite point of view is defended, e.g. by Vilenkin (1982, CUN).
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invariant under a change of initial conditions. But this is only possible
if the initial conditions are independent of the laws of nature. Therefore,
the initial conditions must be independent of the laws of nature.

8.1.2 The Problem of the Separation
of Boundary Conditions and Constants from Laws of Nature

In the physical reality we observe various objects and processes, motions of
material bodies, optical phenomena, and heat processes, but we do never
observe directly laws of nature, boundary conditions, and constants of nature.
However, it is a methodological aspect of our way to describe the reality in
terms of physics, to splitting the phenomena into three distinct parts, the
laws, the boundary conditions, in particular the initial conditions, and some
constants of nature like gravitational constant or velocity of light. This way of
description by separation is by no means new since it was already successfully
applied by Newton in his mechanics. Whether this three-fold way to grasp
the reality is useful or necessary in all cases is a difficult question, which
will be treated in the subsequent sections. Some arguments in favour of this
separation can also be found in Sect. 11.2.3, where we will discuss the objection
that the laws of nature do not describe facts.

That the question does not have a simple answer can also be seen from the
following consideration. What we understand by initial conditions is depen-
dent to some extend on the question which point of view we find more natural
at least in connection with observation. The more natural view for us is to
understand initial conditions as characterising the state of the system (with
all spatial coordinates) at a definite instant of time and then considering the
development of the system into a state at a definite later instant of time. By
contrast, the more unnatural view for us is to understand initial conditions
as characterising the state of the system for all times, but only for a single
instant of one of the spatial coordinates and then to formulate the spatial
derivative according to this point of view.4 There is of course a good reason
for the preference of the former “natural” point of view: By empirical observa-
tions we are able to grasp very small and very huge distances in space (at one
point of time) but only short distances in time (for instance the life time of a
definite state). Therefore we use the position–momentum characterisation of
a physical system rather than the time- energy characterisation.5

4 cf. Wigner (1972, TEU) p. 239.
5 Observe, however, that in Hamiltonian mechanics we could use in principle any

pair of canonically conjugate observables for characterising the state of a physical
system.
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8.1.3 The Separation of Boundary Conditions
and Constants from Laws of Nature is Possible

That this is so can be shown first by the elementary example of planetary
motion, which also holds as representing the area of classical mechanics.

Example Planetary Motion

Two bodies with masses m1 and m2 and positions
→
r 1 and

→
r 2 are coupled by

gravitational forces given by the potential V (r) = −Gm1m2
r ≡ −α

r with r =∣∣→r 1 − →
r 2

∣∣ and the gravitational constant G. Hence in the relative coordinate
→
r =

→
r 1 − →

r 2 the equation of motion reads

m1m2

m1 + m2

→̈
r = − α

r3

→
r . (1)

Since this equation is invariant against rotations the angular momentum is a
constant of motion and the problem can be reduced to a plane motion with
coordinates r and ϑ. There are two first integrals of this differential equation,
given by the two constants of motion

l = mr2 ϑ̇2 (angular momentum)

with m =
m1m2

m1 + m2
and

E =
m

2
(ṙ2 + r2ϑ̇2) (energy) .

The explicit solution of (1) reads

t =

r∫
r0

dr′
{

2
m

(E +
Gm1m2

r′
− l2

2mr′2

}−1/2

, ϑ =

t∫
0

dt′

r2(t′)
+ ϑ0

leading to the functions r(t)and ϑ(t) with two arbitrary constants r0 and ϑ0

representing the initial values

r(t = 0) = r0 , ϑ(t = 0) = ϑ0 . (2)

Hence we obtain the solution in its final form

r = f(t; r0, ϑ0;G)
ϑ = g(t; r0, ϑ0;G)

(3)

which describes the real and observable planetary motion.
This simple example illustrates that in the framework of physics the de-

scription of the real process {r(t), ϑ(t)} given by (3) is split into three compo-
nents, the dynamical law (1), the coupling constant G, and the initial values
(2). There are no indications in the real planetary motion that a splitting
of this kind is meaningful. It is rather induced by our way to describe the
real world. The pragmatic reasons for separating laws, initial conditions and
constants of nature will be discussed in subsequent sections.
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8.1.4 Is the Separation into Laws
and Boundary Conditions Necessary?

According to our general understanding of laws of nature these laws should
be more general than the particular situation that they describe. In Chap. 5
we emphasised that the laws of nature express invariance properties which are
not necessarily present in the real physical process. This concerns in particular
the invariance of laws with respect to time reversal. The fundamental laws of
nature are – perhaps with one exception6 – invariant against time reversal, in
contrast to the observable real processes that are not time reversal invariant.
In the simple example of the preceding Sect. 8.1.3 we find that the law of
nature, i.e. the equation of motion (1) is in fact invariant with respect to the
time reversal transformation t → −t, but the solution (3), which describes the
planetary motion, does not show this invariance. The time reversal symmetry
is broken by the boundary condition. If we assume that the values of the spatial
coordinates (r, ϑ) are given as initial values in the past for t = 0, then the
future development of the planetary motion can be determined for all values
t > 0. Similarly, if we assume on the other hand that the values of r and ϑ
are given as final values in the far distant future, for t = T , then the past
development of the system is determined for all values t < T . Hence, Newton’s
equation of motion (1) does not define a certain direction of time. We make
this distinction by choosing either initial conditions or final conditions.7

8.1.5 Classification of Different Kinds
of Boundary Conditions – The Propagation of Fields

One might think that the free choice between different kinds of boundary
conditions is restricted to the domain of ordinary classical mechanics. This is,
however, not the case. In the more fundamental theory of fields which concern
classical fields (electrodynamics, gravitation) as well of quantum fields we are
confronted with a similar and even more complicated situation. Indeed, for the
general Lorentz-invariant field equation we find a large variety of boundary
conditions expressing different conceptions of the physical reality.

Let us discuss the relativistic field equation in its most simple form that
holds for a scalar field ψ(

→
x, t).

� ψ :=
(

1
c2

∂2

∂t2
− ∆

)
ψ = 0 (4)

6 cf. Sect. 7.2.3.4.3, no. (1), Time reversibility.
7 This point will be further discussed in Sect. 9.1.5.1.
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In the presence of sources f(
→
x, t) we have to consider the inhomogeneous field

equation
� ψ(

→
x, t) = f(

→
x, t) (5)

Equation (5) can formally be solved by means of Green functions according
to

ψ(
→
x, t) =

∫
d3x′dt′G(

→
x, t;

→
x
′
, t′)f(

→
x, t) (6)

where G(
→
x, t;

→
x
′
, t′) is the “Green function” that is determined by the differ-

ential equation
�G(

→
x, t;

→
x
′
, t′) = δ(

→
x −→

x
′
)δ(t − t′) (7)

By means of the Fourier transformation

G(
→
x, t;

→
x
′
, t′) =

1
(2π)2

∫
d3kdωG̃(

→
k , ω)ei(

→
k (

→
x−→

x
′
)−ω(t−t′))

we find G̃(
→
k , ω) = − c2

(2π)2
1

ω2−ω2
0

with ω0 = ck and obtain for the Green
function

G(
→
x, t;

→
x
′
, t′) = −1

2
c2

(2π)3

∫
d3kei(

→
k (

→
x−→

x
′
) 1
π

+∞∫
−∞

dω
e−iω(t−t′)

ω2 − ω2
0

) (8)

Since the integral

I(t) =
1
π

+∞∫
−∞

dω
e−iωt

ω2 − ω2
0

(9)

has two singularities at ω = ±ω0, which must be circumvented, the integration
must be performed in the complex plane. There are five different ways for the
calculation of the integral (9) and hence five resulting integrals I(t)and five
corresponding Green functions which are denoted as

Gp (principle value Green function)
Gret (retarded Green function)
Gav (advanced Green function)
Gc (causal Green function)
Gac (anticausal Green function).

What does this ambiguity of Green functions mean? Green functions connect
the value ψ of the field at a given spacetime point (

→
x, t) with the values f

of the sources at other spacetime points (
→
x, t). In particular, the choice of a

special Green function selects those regions of spacetime that determine the
values ψ(

→
x, t) according to formula (6). As an example we consider the (most

important) retarded Green function
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Gret(
→
x, t;

→
x
′
, t′) = 0 if t < t′

and

Gret(
→
x, t;

→
x
′
, t′) =

1

4π| →
x − →

x
′ |

δ

(
t − t′ − | →

x − →
x
′ |

c

)
if t > t′ .

Accordingly, the retarded field ψret(
→
x, t) is determined by the values of the

sources f at spacetime points (
→
x
′
, t′) = (

→
x
′
, t − |→x−→

x
′|

c ). These points are
lying on the backward light cone L−(

→
x, t) of the spacetime point (

→
x, t) – see

Fig. 8.1.

t

L+(x,t)

(x,t) x

L–(x,t)

|| xx ′−

Fig. 8.1. The two light cones of the point (x, t)

The choice of the retarded Green function corresponds to the conception
that events in the past determine events in the future. More precisely, the cause
should precede the effect, provided the direction of time is established by other
physical phenomena (the second law of thermodynamics or the expansion of
the universe) The preference for a certain sense of time does not follow from
the field equation that is symmetric with respect to time reversal.

If we had chosen the advanced Green function Gav(
→
x, t) then the sources

at points (
→
x
′
, t+ |→x−→

x
′|

c ) lying on the forward light cone L+(
→
x, t) of the point

(
→
x, t) would determine the advanced field ψav(

→
x, t), (Fig. 8.1). This choice

corresponds to a violation of our concept of causality, since effect precedes
cause in time. This is, however, not the right way of speaking. If we were
given a time by a process that does not belong to electrodynamics and that
flows in the opposite direction, then the advanced Green function would be the
right tool for describing the propagation of the field ψav(

→
x, t) – in accordance

with our notion of causality.
There is still a third way for describing the physical reality that avoids any

preference of a direction of time. It makes use of the Green function calculated
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by means of the principle value of the integral I(t) given by (9) that leads to
a time-symmetric solution of the field equation given by

ψp(
→
x, t) = 1/2(ψret(

→
x, t) + ψav(

→
x, t)) .

It has been shown by Wheeler and Feynman8 that a completely Lorentz-
covariant “action at a distance” field theory can be formulated by means of the
time-symmetric field ψp(

→
x, t). However, it turns also out that a reformulation

of the familiar retarded field ψret(
→
x, t) in terms of the time-symmetric solution

requires the hypothetical assumption of many distant “absorbers”. We will not
go into the details of this rather speculative theory and refer to the literature.9

The two remaining Green functions Gc and Gac are discussed in relativis-
tic quantum field theory. They are of less interest for the fundamental point
considered in the present section: The Lorentz-invariant field equation is sym-
metric with respect to time inversion. There are different classes of boundary
conditions referring to different directions of time in accordance with the con-
cept of causality. Hence, we have to choose the right class of initial conditions
once the sense of time is given by other phenomena. There is no way to read
off the direction of time from field theory.

Preliminary Answer to Question 1

Are boundary conditions independent of laws of nature? The two examples,
classical particle mechanics and relativistic field theory, show clearly that the
separation of the complex real processes into general laws and contingent
initial conditions leads indeed to two independent components of our way to
describe and to grasp the physical reality. This separation of our experience
is man-made and – according to Wigner – perhaps necessary for the human
mind to understand the complicated nature.

8.1.6 Are the Laws
of Nature Valid also in Other Universes which Differ
from Our Universe only with Respect to Initial Conditions?

According to an idea of Popper a law of nature is naturally or physi-
callynecessary if it holds in all universes that differ from our universe only
with respect to initial conditions.10 An even more general idea is what Wein-
berg called the symmetry group of nature.11 The symmetry group of nature
is the set of all changes that do not change the laws of nature. Weinberg says
that this is the deepest thing that we understand about nature today.12

8 Wheeler, Feynman (1949, DIA).
9 Wheeler, Feynman (1945, IAR).

10 Popper (1959, LgF) p. 433. cf. The discussion on the necessity of laws in 9.4.3(3)
below.

11 Weinberg (1987, TFL) p. 72f. Recall also 5.3.2(1) above.
12 Ibid.
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But how can we determine the set of all changes that leave the laws of
nature invariant? This would mean to know the line of demarcation between
contingent initial conditions and necessary and invariant laws in a most gen-
eral way (although we know it for large special areas as is clear from 8.1.2
and 8.1.5 above). It would mean to know which constants when changed do
not affect the laws and which do; and which initial conditions and boundary
conditions would affect the laws when changed and which would not. Are
the laws of nature invariant with respect to a slight change of the amount of
energy (mass) of the whole universe (which is constant by the law of conser-
vation of energy)? Or could we change the ratio of the electron and proton
mass slightly without changing laws. Presumably, this is not the case. Could
there be a constellation of the planets (or some star systems) which differs
from the one realised now (at a certain time) or in other words: Are different
constellations of systems of stars (of our planetary system) at a certain time
after the big bang compatible with the laws? In order to answer the question
posed in 8.1.6 we shall defend two theses from which it follows that there are
possible universes which satisfy all the laws of nature but are different with
respect to initial conditions. And this shows in turn that initial conditions
must be independent of the laws of nature.

Thesis 1 The laws of nature (known laws of nature) are valid just in our
universe only if the following conditions are satisfied:

Or in other words: If the laws of nature are valid just in our universe then
the following conditions are necessary:

(1) The laws of nature together with at least one initial state are complete
with respect to our universe.

(2) All laws of nature are deterministic.
(3) Permutation change (interchange) of elementary particles of the same kind

(see 5.3.3(1)) does not change the world (universe).
(4) All states of initial conditions compatible with the laws of nature occur

as states (are played through) during the lifetime of our universe.
(5) All fundamental constants are ruled by laws of nature.

Thesis 1 says in other words that all five conditions mentioned above are
satisfied if the set of all changes that do not change the laws of nature (the
known laws of nature) – is the empty set. Or in other words: All five conditions
above are satisfied if the set of all models which are satisfied by the laws of
nature is the unit set, i.e. if there is just one model and this is our universe.
Einstein’s question was more general: Not whether the laws of nature allow
more than one world as a model but whether God was free to create another
world (even perhaps with other laws).

Thesis 2 The above five conditions are not (all) satisfied, i.e. the laws of
nature (the known laws of nature) are valid also in other universes which
differ from ours.
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If thesis 2 is correct, then the initial conditions are independent of the laws
of nature. In order to support thesis 2 we have to show that at least one of
the above five conditions is not satisfied.

Condition (1): Completeness
As will be said in Sect. 11.1.3 a system L of laws about a certain part of
reality, in this case about the whole universe U , is complete, if every truth13

about U is derivable from L. First of all and more trivially L cannot be
complete concerning particular contingent truths about U since L does not
contain initial conditions. Thus let us ask whether L plus all initial conditions
determining particular states of U in the past (“Ip” for short) is complete.

In Sect. 11.1.3 it will be shown in detail that only for dynamical (and deter-
ministic) laws satisfying conditions D1–D4 (Sect. 7.2.3.2) – in the ideal sense
of Laplace – there can be completeness concerning the laws; although also in
this case incompleteness concerning initial conditions remains (for example
the question about a first state of the system or universe). In many cases like
that of dynamical laws which are satisfying condition D4 either not at all or
only partially (cf. 9.4) at of statistical laws (cf. 9.4.3.1, S-predictability, and
11.1.3.4) we cannot have completeness.14 Since we do not assume that the
universe is ruled exclusively by dynamical deterministic laws – its expansion,
radiation and its thermodynamic processes support this – condition (1) is not
fully satisfied.

Condition (2): Deterministic laws
The phenomena of thermodynamics, quantum mechanics, radiation and the
new discovered processes of cosmological evolution, of self-organisation and of
(certain kinds) of chaos suggest that condition (2) is not satisfied. Of course,
this holds under the assumption, which we accept here, that not all random-
ness comes ultimately from hidden parameters guided by deterministic laws.
That means that statistical laws in the realistic interpretation, i.e. describing
branches and degrees of freedom in nature, and not just degrees of our igno-
rance, can be genuine laws of nature (cf. Chaps. 2 and 7). But if this is true
then there are degrees of freedom for the development of the universe in the
future. And this means that more than one universe are models of these laws.
13 In order not to run into some logical difficulties (paradoxical situations) we do not

permit here a set with the usual logical closure. That means that from a certain
specific truth about U (say that proton and neutron have the same intrinsic
spin, or that the fine structure constant is about 1/137) not every consequence
which is allowed by logic is permitted in this set of truths about the world.
Since logic allows a lot of redundant truths to be derived from one true sentence
like “p or q” as a logical consequence of p (where q is anything whatsoever).
Therefore we restrict the logical consequences by some suitable relevance criterion
which has been applied successfully to many different areas like explanation and
confirmation theory, verisimilitude (theory of approximation to truth), quantum
logic, and still other areas like epistemic and denotic logic. cf. Sect. 3.3.2(b).

14 For the question of incompleteness of the laws of quantum mechanics cf. 11.1.3.7.
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Condition (3): Permutational change
Permutation change, i.e. interchange of elementary particles of the same kind
does not change laws but also – according to the usual understanding of a
physical system (this system may be the whole universe) − does not change
this system (cf. 5.3.3(1)). That means that elementary particles of the same
kind are treated as indistinguishable although there are of course more than
one particle.

Thus an interchange of two particles of the same kind does not lead to a
different world (universe). And thus thesis 2 cannot be supported by permu-
tation change.

Condition (4): Initial conditions
Can we imagine now that all possible initial conditions are or will be realised
during the lifetime of the universe? We think that this is not very probable.
Even if the choice of initial conditions at the beginning of the universe would
have been rather small – a question which is hardly decidable – as soon as we
take statistical laws seriously (cf. condition (2)) there will be a great number
of states which have not been realised because of the degrees of freedom which
allow different states by chance. But even if taking just deterministic laws,
with asymmetrical initial conditions asymmetric effects are produced: this
special plane of the orbit of a planet (note that it is a plane which follows
from the rotationally symmetric laws) is due to initial conditions and the
plane could lie in a different angle to the one realised.

Slight changes in the constellations of stars (and planets) seem not to
violate laws because such changes occur since planetary motion (and probably
this is similar with systems of stars) is to some extent chaotic (cf. 9.4.3.2(3)).

Or take a charge-symmetry violation. The ratio of the decay rate could be
slightly different (due to some change in the initial conditions) from the one
observed. Take parity: The ratio of the rates of snails having left screw shells
to those having right screw shells (or the respective ratio of heart on the left
and on the right side) could be different without affecting biological laws. In
radioactive decay phenomena parity violation could be more frequently than
observed.

Such examples (which could be continued) suggest that it is highly im-
probable that all possible changes of initial conditions will be realised some
time in this universe.15 That means that if not all initial conditions are played
trough during the lifetime of the universe, which is assumed to be finite, then
there are also other possible universes satisfying the laws of nature and having
some of those initial conditions which are not realised in our universe.

Condition (5): Fundamental constants of nature
This question, whether the fundamental constants of nature are independent
of the laws of laws of nature, will be discussed in the subsequent Sect. 8.2.

15 Recall the discussion of a cosmological question in 7.2.3.4.3(2b).
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But since this question is hardly decidable, no answer to it can be used here
for a support of thesis 2.

Summarising the discussion of the five conditions of thesis 1 we can say
that the conditions (1), (2), and (4) are not fully satisfied. Concerning (4) we
have to add the proviso with the universe finite in time. Since some (at least
one) of the five conditions are not satisfied, thesis 2 is strongly supported,
i.e. the laws of nature are valid also in other possible universes which differ
from ours with respect to initial conditions. And this proves that the initial
conditions are independent of the laws of nature.

8.1.7 Answer to the Objections

(1) Even if Mach’s principle is correct, it does not follow from it that there are
no degrees of freedom in the development of the universe. This means that
even then condition (4) of the thesis 1 in 8.1.6 can be violated such that
not all possible initial conditions are realised. Moreover, some possible
microstates of the whole universe will never be realised assuming that the
universe has a finite age (cf. 7.2.3.4.3(2b)). Therefore, initial conditions
can still be independent of the laws of nature.

(2) Although there is only one universe there are universes possible (not ac-
tual) that differ from ours only with respect to initial conditions as has
been supported in 8.1.6. Since the possible initial conditions and the possi-
ble microstates, which are thought to be realisable are not actually realised
in our universe, the laws of nature are valid also in those other possible
universes which proves that the initial conditions are not dependent on
the laws of nature.

8.2 Are the Constants of Nature Independent
of the Laws of Nature?

Terminological remark: Constants in physics and in natural science in gen-
eral can be divided into two groups. Into the so-called material constants
and system constants on the one hand and into the so-called on the other
hand. The first group includes constants like the bulk modulus, the modu-
lus of elasticity, the shear modulus, the Poisson ratio and also constants like
the gas constant or the lattice constant of a crystal, etc. The fundamental
constants—f fundamental constants, on the other hand, include constants like
the velocity of light in vacuum (c), Planck’s constant (�), the gravitational
constant (G), the elementary charge (e), the masses of elementary particles
like proton and electron (mP , me), Avogadro’s constant (NA), and the Boltz-
mann constant (kB). In particular, the fundamental constants include the
dimensionless combinations of these constants, the fine structure constant α
= e2/�c ≈ 1/137 and the ratio of the mass of the proton to that of the
electron, mP /me which is approximately 1836.
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The above question is concerned with the fundamental constants only.
Also the constants of nature discussed subsequently are only the fundamental
constants.

8.2.1 Arguments Pro and Contra

8.2.1.1 According to the preceding Sect. 8.1, the initial conditions are inde-
pendent of the laws of nature. But as Wheeler says, the constants of nature
might be more reasonable interpreted as initial conditions:

“A century and a half ago Laplace dramatized the difference between
initial conditions and dynamic laws. The intervening decades have
seen new laws uncovered, but not a single discovery about what fixes
the initial conditions. The time has come to ask if the constants and
the scale of the big numbers belong in the realm of law at all. Are
they not more reasonable to be understood as initial conditions?”16

Therefore, the constants of nature are independent of the laws of nature
provided they can be understood as initial conditions.

8.2.1.2 According to the law of the conservation of energy, the numerical
amount of energy of a closed system is constant. This holds also for the whole
universe as a closed system. But as it is known from classical mechanics, we
can express initial conditions by conserved quantities and vice versa. Therefore
such constants are independent of the laws of nature.

8.2.1.3 Measurement units like cm, g, s for length, mass, and time are con-
ventional and thus independent of laws of nature. But many fundamental
constants like the Bohr radius, the velocity of light, and the proton mass are
measurement units with the help of which all the above traditional units for
length, mass, and time and moreover those of the Planck scale can be defined.
Therefore such fundamental constants are independent of the laws of nature.

8.2.1.4 No law of nature describes the rate of change of a fundamental con-
stant. But since a change in time of some fundamental constant is possible,
the fundamental constants must be independent of the laws of nature.

8.2.1.5 Even though some fundamental constants might not be independent
of the laws of nature, a suitable combination of them may still be indepen-
dent. Thus even if a change of �, e, or c would change the laws in which these
constants occur, the combination α = e2/�c could outbalance these changes
such that the dimensionless quantity α (fine structure constant) is still inde-
pendent of the laws of nature. Therefore not all fundamental constants seem
to be dependent on the laws of nature.

8.2.1.6 Since the gravitational constant G enters in some of the most basic laws
of nature, as those of general relativity, a change of G would change these laws
16 Wheeler (1973, FRM) p. 241.
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of nature such that their time translation invariance would be violated. But
according to Dirac’s large numbers hypothesis G changes (decreases) with
the time development of the universe. Therefore – if Dirac’s large numbers
hypothesis is correct – some basic laws of nature are not time translation
invariant as a consequence of their dependence on constants of nature.

8.2.2 Proposed Answer

“With the question of the universal constants, you have broached one
of the most interesting questions that may be asked at all.”17

“In a reasonable theory there are no (dimensionless) numbers whose
values are only empirically determinable.”18

“Dimensionless constants in the laws of nature, which from the purely
logical point of view can just as well have different values, should not
exist. To me, with my ‘trust in God’ this appears to be evident, but
there will be few who are of the same opinion.”19

“My conclusion is that not only the laws of nature but the constants
of nature can be deduced from epistemological considerations, so that
we can have a priori knowledge of them.”20

“The question of the constancy of such dimensionless numbers is to
be settled not by definition but by measurements.”21

The above quotations are to show that questions about the constants of nature
have been a controversial matter. We can add that they are still controversial
today. Since our concern are the laws of nature we shall not deal with the
constants of nature in general, but we shall comment on three questions which
are connected with laws of nature in a more special way. These questions are
the following ones: What is the deeper reason for the values of the constants?
(8.2.2.1) Are these constants really constant? (8.2.2.2) Are these constants
independent of the laws of nature? (8.2.2.3) Honestly speaking, there is no
clear answer to the first two questions, there are only conjectures. However,
there is an answer to the third question, which will be given below.
17 Einstein in a letter to Ilse Rosenthal-Schneider of May 11, 1945. cf. Rosenthal-

Schneider (1980, RST).
18 Einstein in a letter to Ilse Rosenthal-Schneider of October 13, 1945. cf. Rosenthal-

Schneider (1949, PAE), p. 144.
19 Einstein in a letter to Ilse Rosenthal-Schneider of March 24, 1950. cf. Rosenthal-

Schneider (1980, RST).
20 Eddington (1939, PPS), p. 58.
21 Brans, Dicke (1961, MPR).
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8.2.2.1 What is the Deeper Reason
for the Values of the Constants of Nature?

Before we mention some conjectures concerning this question, we want to em-
phasise that what is listed under fundamental constants of nature differs to
some extent, although the following six are included in most of the serious
treatments on constants of nature:

c velocity of light in vacuum 299 792 458 ms−1

e unit of electric charge 1.602 177 33 · 10−19C
me rest mass of electron 9.109 3897 · 10−31 kg
mp rest mass of proton 1.672 623 · 10−27 kg
h Planck’s constant (or � = h/2π) 6.626 0755 · 10−34 Js
G constant of gravitation 6.672 59 · 10−11 m3kg−1s−2

Petley22 adds NA (Avogadro’s constant), kB (Boltzmann’s constant) and µ0,
ε0 (the magnetic and electric field constants). Dyson23 adds g (Fermi’s con-
stant of weak interaction), H (Hubble’s constant) and ρ (the mean density
of mass in the universe). Misner, Thorne and Wheeler24 add the Bohr radius
(a0 = �

2/mee
2), the reduced Compton wavelength (λ = �/mec) of the elec-

tron, the classical electron radius (r0 = e2/mec
2) and the atomic energy unit

(e2/aB), although they can all be defined with the help of e, �, me and c. It
should be mentioned that the values of H and ρ have a low degree of reliabil-
ity. H is uncertain by a factor of about 2, whereas ρ is uncertain by a factor
of at least 103 because of the invisible mass in the universe. Moreover, in gen-
eral relativity H is not exactly a constant. Still more difficult is the value of
the cosmological constant Λ.25 Weinberg26 lists the following three groups:

“The parameters that appear at the most fundamental level in our
present theories of elementary particles are
(1) the electroweak and strong gauge couplings,
(2) the masses and self-couplings of the ‘Higgs’ scalars, and
(3) the coupling constants for the interaction of the scalars to quarks

and leptons.”

Concerning the deeper reason for the values of the constants of nature we
may distinguish three types of proposals: logical or mathematical ones (1),
empirical ones (2), and theoretical and dynamical ones (3).

(1) Logical and mathematical reasons
One version of such a view is represented by Eddington, which is expressed by
22 Petley (1999, FdK), p. 429. cf. Petley (1988, FCF).
23 Dyson (1972, FCT), p. 213.
24 Misner, Thorne, Wheeler (1973, Grav) back cover.
25 For discussion of the problems see Abbott, L. (1988, RKK) and Weinberg (1989,

CCP).
26 Weinberg (1983, OTP), p. 249.
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the quotations above (8.2.2). Eddington was in fact of the rather extreme opin-
ion that the number of protons in the visible universe is deducible from purely
“epistemological” or “theoretical” or logical and mathematical premises. This
number is also called the “Eddington Number”. A more modest view in a
similar direction is expressed by Dirac:

“At present, we do not know why they should have the values they
have, but still one feels that there must be some explanation for them
and when our science is developed sufficiently, we shall be able to
calculate them.”27

In other views the logical and mathematical reasons are complemented by
additional aesthetic reasons like that of simplicity. Such a view is present in
the following famous quotation of Einstein: “What I am really interested in is
whether God could have made the world in a different way; that is, whether
the necessity of logical simplicity leaves any freedom at all.”28

(2) Empirical reasons
The empirical reasons for the constants of nature may be divided again into
two types of proposals: non-teleological ones and teleological ones. An example
of a non-teleological view is some version of what is called Mach’s principle:
The whole matter in the universe and its distribution determines the inertial
field (the guiding field) of all motions and consequently all the laws of motion
and presumably also some constants of nature.29

Examples of a teleological view are all versions of the so-called anthropic
principle. The following principle is what Barrow and Tipler call the “weak
anthropic principle”:

“The observed values of all physical and cosmological quantities are
not equally probable but they take on values restricted by the require-
ment that there exist sites where carbon-based life can evolve and by
the requirement that the Universe be old old enough for it to have
already done so.”30

(3) Theoretical and dynamical reasons
Within the framework of a universally valid quantum field theory – a “final
theory” as it was called by Weinberg – it should be possible in principle to
calculating not only some masses of elementary particles but also various cou-
pling constants between these particles. Although a “final theory” of this kind
27 Dirac (1973, FCD), p. 45.
28 Hawking, Israel (1987, ECV), p. 128.
29 The constants of nature are, according to such an interpretation, properties of

matter, whereas the laws of nature, if they are correct, describe all motions. For
an elaboration of Mach’s principle especially as it is manifest already in Aristotle,
Copernicus and Kepler and for Mach’s critique of Newton, see Barbour (1989,
ARM). cf. also Sects. 6.2.1(6) and 6.2.2(4).

30 Barrow, Tipler (1986, ACP), p. 16 and Barrow (2002, CNt), Chap. 8.
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is not yet in sight several attempts were made to calculate a mass spectrum for
elementary particles and coupling constants. For example, Heisenberg tried to
determine the value of the fine structure constant by means of his non-linear
spinor theory of elementary particles.31

8.2.2.2 Are the Constants of Nature Really Constant?

On a more general point of view we have to say first that anybody, who
would answer the above question with “No”, has to provide another measuring
rod that is more stable than the magnitude that is to be investigated. In
other words, a change of some fundamental constants is only meaningful if
at least some other constants remain unchanged. This leads to the following
aspects of the above question: Stability of the measuring rods and accuracy
of measurement (1), reduction of some of the constants to others (2), what
are the consequences if some constants would vary? (3).

(1) Stability of the measuring rods and accuracy of measurement
Maxwell had already made an important observation on this aspect:

“Yet, after all, the dimensions of our earth and its time of rotation,
though, relatively to our present means of comparison, very perma-
nent, are not so by any physical necessity . . .

But a molecule,32 say of hydrogen, if either its mass or its time of
vibration were to be altered in the least, would no longer be a molecule
of hydrogen.

If, then, we wish to obtain standards of length, time and mass
which shall be absolutely permanent, we must seek them not in the
dimensions, or the motion, or the mass of our planet, but in the wave-
length, the period of vibration, and the mass of these imperishable
and unalterable and perfectly similar molecules.”

Maxwell’s idea is realised to a great extend by interpreting e, me, mp,
α = e2/�c, and mp/me as very stable and permanent. The values of α and
mp/me have a constancy of at most 1% during the lifetime of the universe so
far (if the other usual underlying calculations are correct).33 Within the last
decades the accuracy of measurement for constants has been raised for one
decimal place within every period of 15 years. This was possible in many cases
by new experimental techniques and by extensive use of computers. Moreover
it should be mentioned that the magnitudes mp/me, e, � and the Rydberg con-
stant, furthermore some auxiliary magnitudes like the mol-mass of the proton
are known today to a high degree of accuracy (108 or more). Presently, there
31 Heisenberg (1967, ETE), p. 120 equation 8(32).
32 What Maxwell has in mind is in today’s terminology an atom. This passage is from

Maxwell’s Presidential Address to the British Association for the Advancement
of Science of 1870, quoted in Petley (1985, FPC), p. 15.

33 cf. Petley (1999, FdK), p. 430. cf. Shlyakhter’s conjecture below.



8.2 Are the Constants of Nature Independent of the Laws of Nature? 191

is still a special difficulty with G because it does not appear in a combination
of other fundamental constants, which are measurable more accurately.

(2) Reduction of some of the constants to others
According to Planck some constants are more basic than others such that not
everything is conventional in this respect:

“In contrast with this it might be of interest to note that, with the
aid of the two constants h and k which appear in the universal law
of radiation, we have the means of establishing units of mass, time
and temperature, which are independent of special bodies or sub-
stances, which necessarily retain their significance for all times and
or all environments, terrestrial and human or otherwise, and which
may, therefore, be described as ‘natural units’.”34

Today Planck’s units are defined with the help of the constants �, c and G as
follows:

(�c/G)1/2 Planck mass 2.177 · 10−8 kg
(G�/c3)1/2 Planck length 1.616 · 10−35 m
(G�/c5)1/2 Planck time 5.391 · 10−44 s

A further example of a reduction is motivated by the fact that the accuracy
of the measurement of the velocity of light c has become much greater such
that the unit of length (one meter) is defined now with the help of c.35

(3) What are the consequences if some constants would vary?
The constants which are usually regarded as the defining fundamental prop-
erties of the physical universe are those listed by Dyson (1972, FCT) p. 213,
i.e.: c, � , e, mp (or mp/me), g (Fermi’s constant), G, H (Hubble’s constant)
and ρ (mass density of the universe). From these quantities one can construct
five dimensionless constants as follows:

α = e2/�c = 7.297 353 08 · 10−3(≈1/137)
β = gm2

pc/�
3 = 9.0 · 10−6

γ = Gm2
p/�c ≈ 5 · 10−39

δ = H�/mpc
2 ≈ 10−42

ε = Gρ/H2 ≈ 2 · 10−3

Dirac’s original question of (1937, CCs) and (1938, NBC) was devoted to the
problem, which ones of these dimensionless constants vary with the evolution
of the universe. There are five different hypotheses, which give an answer to
that question.36

34 Planck (1913, THR), p. 175.
35 Until 1960 the “metre” was defined by the wave length of a particular spectral

line of the krypton atom, since 1983 the “metre” is defined by the velocity of light
c and the time unit (second) based on atomic clocks.

36 For a detailed description see Dyson (1972, FCT).
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Before we consider these hypotheses we can make some general remarks
about α and mp/me: First, both numbers are essential for the structure of
atoms and molecules; a variation of them would change this structure cor-
respondingly. According to Shlyakhter’s conjecture the rate of change of α
compared to the value of α is < 5 · 10−18 per year.37 As has been said al-
ready, mp/me and α can be measured with a very high degree of accuracy.
From this degree of stability of α it follows immediately that those hypotheses
according to which α varies with time (with the evolution of the universe) to
a higher degree must be excluded.

Dirac’s Hypothesis

In 1937 Dirac proposed a numerical principle according to which very large
or very small numbers should not occur in the basic laws of physics. Since
γ and δ are extremely small magnitudes, Dirac’s hypothesis assumes α, β, ε
to be constant but γ and δ to vary with time. The two main consequences of
this hypothesis are, that gravitational forces (measured via γ) decrease with
time and since ε is constant and ρ varies with time as t−1 (and not as t−3)
spacetime has zero curvature.

In 1972 Dirac formulated his large numbers hypothesis,which has simi-
lar consequences. This hypothesis states that very large numbers have to be
compared in some way.

“It involves the fundamental assumption that these enormous numbers
are connected with each other. The assumption should be extended
to assert that, whenever we have an enormous number turning up in
nature, it should be connected to the epoch and should, therefore,
vary as t varies. I will call this the Large Numbers Hypothesis.”38

Dirac found another large dimensionless constant which is the ratio of the
electric force e2/r2 between electron and proton and the gravitational force
G ·mp ·me/r2 between electron and proton, the quantity e2/G ·mp ·me which
is dimensionless and of the order of about 1040. He compared this number
with the age Tof the universe in terms of atomic units, for example expressed
in time units te = re/c, where te is the time the light needs for the distance
of the diameter of the electron. The age of the universe (as known today) in
time units te is also about 1040. Thus he proposed the equation

e2/G ·me ·mp = T/te (∗)

as a fundamental equation expressing his so-called “large numbers hypothe-
sis”.

This hypothesis and more specifically the above mentioned equation (*)
that connects the gravitational constant with the age of the universe has severe
consequences:
37 cf. Dyson (1978, VCs), p. 164, and Damour, Dyson (1996, OBT).
38 Dirac (1973, FCD), p. 46.
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(1) If this equation is true, then the laws of nature are not time translation
invariant. According to Dirac Ġ �= 0, and G should decrease with time. A
further consequence would be that the law of the conservation of energy
would not hold any more.

(2) As Dirac points out, the big bang theory, when developed in accordance
with the large numbers hypothesis, implies continuous creation of matter,
which violates the law of conservation of energy.

A consequence of (1), i.e. Ġ �= 0, would be that the moon should depart from
the earth in the course of time and that some of the constants in the above
equation – or respectively in the following transformation of it – would not
be really constants: T = e4/m2

e · mp · G · c3. The most exact measurements
concerning a departure of the moon did not show a significant effect or, more
accurately, are compatible with both Ġ = 0 and the expected deviation.39

Summing up we may say that – in the light of the data available today –
these, and the above stated consequences, do not make Dirac’s hypothesis
very probable.

Brans–Dicke Hypothesis

The Brans–Dicke hypothesis is very similar to that of Dirac.40 It also assumes
α, β and ε constant but γ and δ to vary with time. But the difference is that in
Dirac’s hypothesis γ varies with t−1, whereas in the Brans–Dicke hypothesis
it varies with t−r, where r is a small number of the order of 0.05. There-
fore the Brans–Dicke hypothesis implies a much weaker time variation of the
gravitational forces than Dirac’s hypothesis.

Conventional Hypothesis

The conventional view assumes α, β, γ to be constant and δ and ε to vary
with time as t−1. This view is based on the idea that the five dimensionless
magnitudes are divided into the “laboratory constants” α, β and γ and the
“cosmological constants” δ and ε. The latter are assumed to vary with time
and the universe is described by an open cosmology in which the distance
between two separated galaxies varies linearly with t.

There are two further hypothesis, that of Gamov (β, γ, ε constant, α, δ
varying with time) and that of Teller, Landau and DeWitt (β, ε constant, α,
γ, δ varying with time, α logarithmically) which can be taken to be already
refuted by experience: Gamov’s hypothesis is excluded by direct astronomical
measurement of α, while the hypothesis of Teller, Landau and DeWitt is
excluded by geophysical isotope abundances.41

39 cf. Dyson (1972, FCT), p. 227; Misner, Thorne, Wheeler (1973, Grav) §40,8, p.
1121ff; Irvine (1983, CLP), p. 429; Rees (1983, LNR, 2002, NCT); Damour et al.
(1988, LVG); Genz, Decker (1991, SSB), p. 94; Damour, Dyson (1996, OBT).

40 For the Brans–Dicke hypothesis there is also a theoretical justification. cf. Brans,
Dicke (1961, MPR).

41 cf. Dyson (1972, FCT), p. 235.
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8.2.2.3 Are the Constants of Nature Independent
of the Laws of Nature?

We say that the constants of nature are independent of the laws of nature
if either a change of these constants does not change the laws or if a change
of the laws does nor change the constants. A rough answer to the question
8.2.2.3 is as follows: Those constants of nature which enter (are constituents
of) laws of nature are not independent of laws of nature. Because a change of
these constants in time provides a change of the laws. For example a decrease
of G in time implies that the respective laws are no more time translation
invariant. Now since �, e, me, c and G enter laws of nature, these constants
are not independent of laws of nature. – In addition, those constants which
can be deduced from laws of nature in the sense of Heisenberg, say, are also
not independent of the laws of nature.

From a more detailed point of view we have to distinguish constants which
directly enter laws (1) from those which indirectly enter laws (2). The latter
may be divided into those (2a) which result from combinations of (1); further
into those (2b) which are scale constraints and into those (2c) which are first
initial conditions at the origin of the universe and which (might) determine
the constants of nature.

(1) The constants of nature which directly enter laws of nature are threefold:
First, there are those which enter the laws of non-relativistic quantum me-
chanics: �, me and e. A change of any one of them would cause a change in
the laws; for example a change of � would provide a change of Schrödinger’s
equation.

We have to observe however that “change” can mean two different things:
a change of � can mean that � has another value; and in this case the original
Schrödinger equation would not be valid anymore. A change of � could also
means that � changes with time; and in this case Schrödinger’s equation would
be not enough detailed, it would have to take this change into account. With
respect to both cases of “change” however these constants of nature are not
independent of the respective laws of nature.

Secondly, there is the constant that enters Maxwell’s theory and the special
relativity theory, the velocity of light c. Both types of changes mentioned
above would affect the respective laws. For example a change of c would affect
Maxwell’s equations and the Lorentz transformations.

Thirdly, there are those constants which enter the field equations of general
relativity theory: c and G. It was already mentioned that a change of G
with time implies that the respective laws of nature are not anymore time
translation invariant.42

(2a) Some of the most important derived constants which can be defined
with the help of the fundamental constants listed in 8.2.2.1 are α (the fine
structure constant) and the ratio of proton and electron mass mp/me ≈ 1836.
42 cf. note 34 above and the comments to Dirac’s Large Numbers Hypothesis.
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As mentioned above (8.2.2.2(3)), they can be measured with great accuracy
and are constant at least to a very high degree. Further important derived
constants are the Rydberg constant, which also plays an important role in
spectroscopy, and the Bohr radius a0 . It is obvious that these constants are
not independent of the laws of nature. Any change of them would affect the
basic laws of nature.

(2b) Constants which are scale constraints are Planck’s units (cf. 8.2.2.2(2)
above). The Planck units are scale constraints in the sense that at these values
a breakdown of spacetime structure is to be expected: The laws of general
relativity theory would not hold anymore such that this theory has to be
replaced by a theory of quantum gravity yet to be found. From this it is clear
that a change of Planck’s units would affect laws of nature. In this sense also
the constants � and c are scale constraints. Planck’s constant � defines the
borderline between quantum mechanics and classical mechanics and c defines
the border line between Special Relativity and classical mechanics. Hence a
change of � and c would shift the interface between classical mechanics on
the one hand and quantum theory and special relativity on the other hand.
(For consequences of changing � and c see the nice story by Gamow, G. (1965
MTP))

(2c) Assuming a hot big bang cosmology there is the question whether some
initial conditions at the beginning of the universe might determine funda-
mental constants of nature.43 Thus for example the ratio Ω0 of the potential
energy of the universe and its kinetic energy of expansion, which equals the
ratio ρ0/ρc of the matter density ρ0 of the universe, and its critical density ρc

(i.e. the largest density the universe can possess and still expand) determines
G and H (Hubble’s constant) via the equation ρ0/ρc = 8πG/3H2, which
holds in one of the Friedmann models. According to today’s calculations the
universe is very close to the critical state with Ω0 = 1. This implies a special
expansion rate at Planck time which again determines H and G.

Another example is this:44 One starts from the experimental fact of the
cosmic background radiation (Penzias and Wilson, 1965) with its present tem-
perature of about 3 K. Its thermal spectrum45 corresponds to a certain black
body radiation density which leads to the ratio of baryon to photon in the uni-
verse. This baryon photon ratio is another important cosmological parameter
which determines Ω0 and the cosmic entropy per baryon.

To sum up we can say that certain initial conditions at the beginning
of the universe might determine certain constants of nature. Now, although
initial conditions in the usual sense are independent of laws of nature (recall
Sect. 8.1), the question is more difficult concerning those initial conditions
at the beginning of the universe. Since if they are determining constants of
nature we cannot say that they are independent of the laws of nature.
43 cf. Barrow, Tipler (1986, ACP), ch. 6, and Rees (1983, LNR), p. 313ff.
44 cf. ibid. p. 380.
45 Calculated by Woody, Richards (1979, CBR).
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From a more critical point of view, however, we have to add that no-
body knows exactly what is determined first at the beginning of the universe
(around the area of Planck time): the laws, the constants, or the initial con-
ditions. Therefore, a strict answer to the question whether some constants of
nature are dependent on initial conditions at the beginning of the universe is
not possible.

8.2.3 Answer to the Objections

8.2.3.1 (to 8.2.1.1) The answer to this question is clear from 8.2.2.3: Constants
of nature are not independent of laws of nature. According to 8.2.2.3(2c) one
has even to add a proviso concerning those initial conditions at the beginning
of the universe which might determine constants of nature.

8.2.3.2 (to 8.2.1.2) Concerning this objection we have to distinguish two ques-
tions: First (1), whether a magnitude which is conserved according to a conser-
vation law is rather an initial condition than a constant. Second (2), whether
a conserved magnitude which is a parameter of the whole universe may still
determine constants of nature (constants of the universe).

(1) In many cases a magnitude which is conserved according to a conservation
law turns out to be rather an initial condition than a constant. This can
be seen from the following example:
Consider in classical mechanics the so-called harmonic oscillator mẍ +
mω2x = 0. Then there are two possibilities:
(a) We are given the initial values x(0) = x0 and ẋ(0) = v0.
(b) We are given the energy E = m

2 ω2(x2
0+ v2

0
ω2 ) together with the phase ϕ

of the oscillation. Since we have x0/v0 = (1/ω)tgϕ, we can calculate
the initial values with the help of E and ϕ. Therefore the values
of such conserved magnitudes behave like initial conditions. And as
initial conditions they are independent of the laws of nature.

(2) On the other hand a magnitude like the total energy of the universe or its
total mass may determine fundamental constants. Thus if the total mass
M of the visible universe is given by

M = (4π/3)ρ(ctu)3 ≈ c3tu/G ,

one can see – keeping tu and G the same – that c could be greater if M were
greater.46 A similar consideration of inverse dependence can be made with G.
46 A related idea has been proposed by Meessen (2000, STQ). According to his

theory of spacetime quantisation c = 2aEu/h, (where a is the smallest measurable
distance but not necessarily identical with the Planck length). Here c depends on
the amount of energy Eu of the universe and may be different if this amount is
different – although there are serious objections against such a view.
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On a more critical point of view one has to keep in mind that cal-
culations of the total energy or mass of the (observable) universe are
some kind of extrapolation from present cosmological data. Strictly
speaking we do not have a balance to weigh the universe if it is closed:
“Around a closed universe there is no place to put a test object or
gyroscope into Keplerian orbit to determine either any so-called ‘total
mass’ or ‘rest frame’ or ‘4-momentum’ or ‘angular momentum’ of the
system.”47

8.2.3.3 (to 8.2.1.3) Among the fundamental constants of nature we have to
distinguish two types: First those which serve as a basis for defining measure-
ment units and secondly those which cannot be used that way.

To the first group belong e, me, mp, �, ε0, c and G. For example a mass unit
can be defined just as me or mp and a length, time and amperage unit with
the help of �, me, e and ε0. The Planck units can be defined with the help of
�, c and G. In this sense these fundamental constants can be viewed as natural
measurement units with the help of which other conventional measurement
units are definable.

To the second group belong α, mp/me, β, γ (recall 8.2.2.2(3)). They cannot
be used to define conventional measurement units.

Now concerning the question of dependence or independence of the con-
stants from laws of nature it is easily seen that the fact that these constants
can define conventional measurement units does not make them conventional
in the same sense; and moreover this fact is not sufficient to make them inde-
pendent from laws of nature. As is clear from 8.2.2.1 a change of e, �, me, mp,
c, G would affect laws of nature. This holds also for those constants which in-
directly enter laws, like α or mp/me. Therefore the conclusion of the argument
8.2.1.3 is not correct.

8.2.3.4 (to 8.2.1.4) To this argument we have to say two things: First, that
the first premise is only correct under a condition and second that these two
meanings of “independence” are confused in the argument.

As to the first, the first premise “No law of nature describes the rate of
change of a fundamental constant” is correct. But it is correct only under
the condition that the fundamental constants are really constant. If some
change in time of some of the fundamental constants could be established
experimentally, then a law could be formulated which describes the rate of
change.

As to the second, the argument does not distinguish two types of “inde-
pendence” or “dependence”:

(a) The independence or dependence of a constant that enters a law, from
this law.

47 Misner, Thorne, Wheeler (1973, Grav), p. 458.
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(b) The independence or dependence of a constant from a law which describes
the change of this constant, whereas (a) applies always (b) applies only if
there is a change of a constant and a respective law to describe it. Now
the argument 8.2.1.4 uses (b) in its first premise and (a) in its conclusion.
Therefore the conclusion of this argument is not proved.

8.2.3.5 (to 8.2.1.5) As has been said in 8.2.2.3(2a) constants like α or mp/me

enter indirectly into the laws of nature. Now there is a difference between such
constants as α, β, γ or the Rydberg constant on the one hand and mp/me

on the other hand. The first could keep their values although the defining
constants change in such a related way as to outbalance a change of the
defined constants; thus α could keep its value although e, � and c would
change respectively. But from this it does not follow that α is independent
of laws of nature. Since a change of α would imply a change of at least one
of the defining constants, this would effect those laws of nature where this
defining constant (in the case of α: e, � or c) would enter. Moreover, if α
were derivable theoretically – in the sense of Heisenberg mentioned above −
the fine structure constant would depend on those laws that allow it to be
determined. Concerning mp/me, it is obvious that a change would affect laws
of nature, since laws of nature are in general not scale invariant (recall Sect.
5.4.1(3)).

8.2.3.6 (to 8.2.1.6) This argument is in agreement with what has been said in
Sect. 8.2.2.2 to Dirac’s hypothesis.
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Causality and Predictability

9.1 Do all Laws of Nature Represent a Causal Relation?

Arguments Contra

(a) In dynamical laws, the differential equation can be interpreted as repre-
senting a causal relation where the description of the initial state represents
the cause, and the description of the final (predicted) state represents the
effect. With statistical laws, however, no such interpretation is possible. But,
as is clear from Chaps. 2 and 7, statistical laws are genuine laws of nature.
Therefore, not all laws of nature represent a causal relation.

(b) Let us assume that every causal relation is asymmetric, i.e. if C(x, y)
is the causal relation between the events (states) x and y, then

∀x∀y(C(x, y) → ¬C(y, x)) ;

or, in words: if x causes y, then not: y causes x. But the law of gravitation
expresses a symmetrical influence of mutual attraction between two bodies or
states. Therefore, if causal relations are assumed to be asymmetric, then not
all laws of nature represent a causal relation.

Arguments Pro

Every law that describes a definite dependency of a later state on an earlier
state can be interpreted as describing a causal relation. If every law of nature
describes a definite dependency of a later state on an earlier state, then every
law of nature describes a causal relation.

General Aspects of the Causal Relation Discussed in History

9.1.1 Aristotle

In his metaphysics,1 Aristotle first gives a definition of cause, then distin-
guishes four types of causes, and finally states properties of the causal relation.
1 Aristotle (Met), Book V, Chap. 2.
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To obtain a definition of cause, Aristotle first discusses the genus of cause
which is “principle” (arché, according to him). After distinguishing six types
of arché, he says that every cause is an arché of a certain sort. More accurately,
the definition is this:

Definition: Every cause is an arché, i.e. something which is the first from
which either being or coming into being or knowledge starts.

Four types of causes: He then distinguishes four types of causes to
which special questions are related:

Cm causa materialis (material cause). Questions: Out of what? From
what? Interpretation (in the light of our knowledge today): The chemical
element with its isotopes, the material constants such as the elastic mod-
ulus of a certain metal, the diameter of a proton (and similar numerical
values which are scale invariant) are parts of Cm.

Cfo causa formalis (formal cause). Question: What is it? Interpreta-
tion: The chemical element with its isotopes, the atomic or the crystal
structure, the particular species (of a plant or animal), the DNA of a
species, the kind of phenomenon (for example: an eclipse, a DNA recom-
bination, etc.)

Ce causa efficiens (efficient cause). Questions: Which is the starting
point? Who is the producer? Who is the mover? Interpretation: The
parents (with respect to the children), the billiard player, the car driver,
the earlier state of the system with respect to the later state where both
are connected by a dynamical law.

Cfi causa finalis (final cause). Questions: Why? For what? What for?
Interpretation concerning the question “why?”: The premises (with re-
spect to the conclusion), the law (with respect to the explained phenom-
ena). For Aristotle, every scientific explanation is an answer to a “why”
question. Interpretation concerning the questions “for what?” and “what
for?”: The goal, purpose, aim, motive, intention, . . . etc. This second in-
terpretation is the usual one which is described as teleological, but one
should not forget the first one, which is the important one for scientific
explanation.

Properties of the causal relation: The causal relation is always asym-
metric:

∀a,b(C(a, b) → ¬C(b, a)). But, if the relation is different, then it may
hold for some a, b both: Ce(a, b) and Cf i(b, a). For instance, the master-
builder is the causa efficiens of the house, and the house is the causa finalis
of the master-builder. The asymmetry of the causal relation implies its
irreflexivity (i.e. a cannot be a cause of a). According to Aristotle, the
causal relation is sometimes counterfactual in the sense that: For some
a, b: If the obtaining of a is Ce for the obtaining of b, then the not-
obtaining of a is Ce for the not-obtaining of b. Concerning time, he holds
that cause and effect are non-simultaneous if the cause is in potency
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(with respect to the effect); however, cause and effect are simultaneous
if the cause is in actuality (with respect to the effect).

9.1.2 Thomas Aquinas

One important place to find properties of the causal relation and its applica-
tion are his proofs for the existence of God in his Summa Theologica (part I,
qu.2, art.3). The second of the five proofs (“five ways”) is explicitly concerned
with the order in the efficient causes. There are three axioms explicitly in the
text which describe the causal relation of Ce:

A1: Something causes something else.
A2: Nothing causes itself (irreflexivity).
A3: If there is no first cause for a thing, then there is also no intermediate

and no final cause for that thing.

In addition, the text defines a first cause (of other things) by stating at least
the following properties: It does not cause itself (irreflexivity), it is not caused
by anything else, and it is the first in a causal order. Thomas Aquinas con-
cludes from this: It is necessary to assume one first cause. The exact formu-
lation in symbolic language of these axioms and the definition is as follows:

A1 : ∃x∃yC(x, y) (‘C(x, y)’ for ‘x causes y’)
A2 : ∀x¬C(x, x)
A3 : ∀y [¬∃zFC(z, y) → ¬∃xC(x, y)]
Def. : FC(x, y) ↔ [x �= y ∧ ¬C(x, x) ∧ ∀u¬C(u, x)

∧∃w1 . . . ∃wn
(C(x,w1) ∧ . . . ∧ C(wn, y))]

(‘FC(x, y)’ for ‘x is the first cause with respect to y’)

In his reconstruction of this “second way”, Essler2 interprets Thomas as in-
tending to prove: There is one thing which is uncaused and causes everything.
In order to prove the second part (“. . . which causes everything”), Essler as-
sumes a fourth axiom, saying that the causal relation is partially connected:
If neither x causes y nor y causes x, then there is a z such that z causes both
x and y:

A4 : ∀x∀y [(x �= y ∧ ¬C(x, y) ∧ ¬C(y, x)) → ∃z(C(z, x) ∧ C(z, y))]

From A1–A4 plus a simpler but stronger version of the definition of the first
cause, Essler shows that one can derive: There is one first cause which is
uncaused, which does not cause itself and which causes everything (other
than itself). He also believes that Thomas assumes axiom 4, and that the
causal relation is transitive, although transitivity is not used in the argument
of Aquinas. We think that this interpretation is too strong in the following
sense:
2 Essler (1969, Elg).
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(1) There is no claim in the text that the first cause (God) causes everything.
To be the first member in a causal order does not mean that the first
member causes every member in the order. If parents produce children,
and these children produce their children (or commit a crime), we do
not say that the parents produced the grandchildren (or committed the
crime). That means that the causal relation, in the wide sense, is not gen-
erally transitive. However: If the parents do not exist, the grandchildren
and their crime do not exist either. This is (when generalised) Thomas’
axiom 3, and it tells that the first cause is a necessary condition (but
not a sufficient one) for all other members, although it is also a sufficient
one at least for the second cause (member). Thomas says explicitly that
God neither wants nor causes free immoral actions (otherwise he would
be inconsistent having given the ten commandments). Since he is neither
an allwilling nor an allcausing God, he does not apply his will or power
to every state of affairs.

(2) If God as the first cause does not cause everything, then there is no need
for axiom A4.

(3) In the text we do not find asymmetry either. From asymmetry, irreflexiv-
ity follows, but not the other way round. Aquinas seems only to require
irreflexivity (except for the relation of the first cause to the second or the
“higher secondary” causes, where asymmetry must hold additionally).
This is interesting, since the fundamental laws of Classical Mechanics and
Relativity Theory are time symmetric such that they do not designate a
causal order in one direction only. To give an example from another area:
The neuronal connections in the brain are reciprocal and do not show an
asymmetry either (cf. however 9.2.1(2)).

Summarising, we may say that Thomas Aquinas has a very modest (and wide)
concept of the causal relation: It is irreflexive, it holds (at least) between things
(or events) of this world (axiom A1), and the net (branch or chain) of causal
relations has to have a first element.

9.1.3 Leibniz

The causal principle of Leibniz is his principle of sufficient reason (PSR). As
has been shown elsewhere,3 this principle embodies a claim of the complete-
ness of certain scientific systems which are built up more geometrico or of
their axioms, respectively.

PSR Nothing happens without sufficient reason or every truth has its proof
. . . from the axioms and definitions.4

To see that PSR is a completeness claim, we have to recall the definition of
(semantical) completeness: A set S of axioms (laws) is complete with respect

3 Weingartner (1983, IMS).
4 Leibniz (GPh), Vol. 2, p. 62.
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to an area of events (effects, phenomena) E, if all true sentences E′ which are
descriptions of E are derivable from S.

Leibniz thought that logic, mathematics and metaphysics, built up as ax-
iomatic systems, are complete in the sense above, and men can, in principle,
find out the respective axioms. With respect to physics, jurisprudence and
ethics, however, he thought that there exist also axiomatic systems for these
areas which are complete. But, since some of their theorems are infinitely an-
alytic (i.e. can be traced back to simple axioms only within infinitely many
steps), these axiom systems cannot be known (and their completeness cannot
be proved) by men. PSR, however, is not only a completeness claim about the
respective axiom systems or sufficient premises. It is also one about the com-
pleteness of the sufficient reasons or sufficient causes for an area of events:
A set C of reasons or causes is complete with respect to an area of events
(effects, phenomena) E, if all events e of E can be scientifically explained or
are caused by C. In the light of our knowledge today, the question is: Are the
reasons or causes complete with respect to the known physical phenomena?
Taken generally, the answer is, of course: No. More specifically, there is some
suitable completeness with respect to some restricted areas, but there is no
completeness with respect to others (chaotic phenomena, for instance).5

9.1.4 Newton: Causes Interpreted as Forces

According to Newton’s Principia, the causes which produce or change (“true”)
movements are forces:

“The causes by which true and relative motions are distinguished, one from
the other, are the forces impressed upon bodies to generate motion. True
motion is neither generated nor altered, but by some force impressed upon
the body moved; but relative motion may be generated or altered without
any force impressed upon the body.”6

Some important consequences for the causal relation, as it is understood by
Newton (according to this passage), are as follows:

1. Causal change takes place on the background of noncausal inertial move-
ment.

2. There is causeless change of position. Of the two components of the move-
ment of a planet on its orbit, one, the tangential, is non-causal, and the
other, the centripetal, is causal.

3. Cause (force) and effect (acceleration) are simultaneous.
4. Causeless or non-causal movement and change does not mean indetermin-

ism: Inertial movement may be determined, at least in the sense of being
predictable without being a matter of chance, but is causeless, according
to Newton.

5 For the question of completeness of the laws of nature see Sec. 11.1.
6 Newtond (Princ), Book I, Definitions, Scholium.
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9.1.5 Newton, Lagrange, Laplace, Hamilton, Maxwell

What Newton began by using comprehensive laws for the explanation of phys-
ical phenomena was further developed by Lagrange, Laplace, Hamilton, and
Maxwell. It was understood that, since these laws describe the time develop-
ment of a physical system from one of its earlier states to its later state, this
later state could be interpreted as the effect of a cause which is represented
by the earlier state. And, the important relation between the two states is
the causal relation or connection that is represented by the dynamical law in
the form of a differential equation. While Newton’s idea to interpret causes as
forces did not become influential at all – probably also because of the strange
consequences mentioned above – the idea to interpret the causal relation with
the help of the dynamical laws of Classical Mechanics began a triumphant
march still current these days: The usual understanding a physicist or natural
scientist has of causality is a relation between states of a system where this
relation is described by a dynamical law. However, this does not mean that
this usual understanding is accurate enough to characterise dynamical laws
by the conditions D1–D4 (or by D1, D2 and D4) of Sect. 7.2.3.2. Although
D1 will be assumed explicitly, there is still ignorance of D4 which is, however,
crucial, as has been elaborated in 7.2.3.2 above.

9.1.6 Hume

David Hume raised the question why the concept of causality is usually consid-
ered as intimately related to the idea of necessity. Where does this connection
come from and how can it be justified? Hume did not question that there is
a necessary connection between cause and effect. He writes

“According to my definition, necessity makes an essential part of cau-
sation”7

and he had no doubts in the existence of causality at all,

“but allow me to tell you, that I never asserted so absurd Propositions
as that any thing might arise without a cause”.8

Hume has no doubts in the reality of the external world and in the causality
which is expressed by the laws of nature.9 His scepticism is focused on the
human capability to recognise the strict causality relation. This problem has
two facets. First, a causality proposition C(A, B) states, according to Hume,
that in all sequences of events A and B these events are connected necessarily.
7 Hume, D. (1939, THN), Book II, Part III, Sect. I.
8 cf. K. Smith (1966, PDH) p. 431 (letter by Hume, February 1754).
9 That Hume adheres to the necessitarian standpoint and to a realistic position is

elaborated in detail by Bonk (1998, KIA). cf. also K. Smith (1966, PDH).
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However, this corresponds to an infinite (quantifier) proposition, which can-
not be justified by a finite sequence of propositions. Second, Hume assumes
that a causality relation tells us something about nature, about the external
reality. And here we are confronted with the problem, how this causality in
the external reality can be justified by induction.

The question what causes us to believe that causality is intimately con-
nected with necessity is answered at first by a recourse to human customs and
habits. This way of reasoning expresses Hume’s scepticism against the argu-
ments of the rationalists as well as of the empiricists. However, Hume’s final
answer is concerned with human nature and with nature itself that causes us
to belief in the necessity of causal connections:

“Nature breaks the force of all sceptical arguments in time and keeps
them from having any considerable influence on the understanding.”

Hence it seems that Hume was convinced of the necessity of causal relations,
but nevertheless he could not give rational arguments that induction can
justify this conviction. Hume’s remarks concerning human nature and nature
at all do not present a commonly accepted justification of the method of
induction and thus of the necessity of causal relations. For this reasons, other
philosophers did not consider Hume’s arguments as a proof or a justification
of necessary causal connections between several events.

In this sense, Kant writes in the introduction of the Prolegomena:10

“Hume ging hauptsächlich von einem einzigen, aber wichtigen Be-
griffe der Metaphysik, nämlich dem der Verknüpfung von Ursache
und Wirkung [. . . .] aus, und forderte die Vernunft, die da vorgibt,
ihn in ihrem Schoße erzeugt zu haben, auf, ihm Rede und Antwort zu
geben, mit welchem Rechte sie sich denkt: dass etwas so beschaffen
sein könnte, dass, wenn es gesetzt ist, dadurch auch etwas anderes
notwendig gesetzt werden müsse; denn das sagt der Begriff der Ur-
sache aus.”

The problem that was formulated by Hume is quite clear: In the laws of nature
there are causal connections which hold necessarily. Since we observe merely
finite regularities we justify these causal connections by induction. We are led
to this way of justification by human nature, by custom, and by habit. This is,
however – and Hume is completely aware of it – no justification in the sense
of rationalism. Hence, how causality can strictly be justified, remains an open
question.

9.1.7 Kant

The challenge formulated by Hume was taken up by Kant in the Critique of
Pure Reason. Kant agrees with Hume, that the necessity of causation cannot
10 I. Kant (1783, PzM), A7.
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be justified strictly by induction and he presents a new completely different
way of reasoning. The cognition of the real world is a complex process that
consists of several clearly distinguished steps. In a first step we have percep-
tions, impressions, and sensations in space and time – but without objective
temporal order and without any law-like connection. In terms of natural sci-
ences one would think of light spots, sounds, colours, and other qualities. In
a second step these appearances are ordered and interpreted by conceptual
tools, the categories of substance and causality, in order to obtain objective
knowledge about the real world. Objective means in this context that the
cognition refers to the external, material world and not – or not only to the
subjective impressions of the observing subject.11

The application of the category of substance to the appearances has to
confirm that the changes of appearances in time are merely alterations of
predicates which refer to a substance which abides. Hence, according to Kant,
we have to find out

“that all change (succession) of appearances is merely alteration”.12

In other words, the interpretation of changing appearances as alterations of
predicates presupposes a time independent carrier of properties corresponding
to these predicates. Hence, the persistence of a substance, a carrier of prop-
erties, is not an empirical matter of fact but a necessary precondition of the
experience of objects.

“Permanence is thus a necessary condition under which alone appear-
ances are determinable as things or objects in a possible experience.”13

On the basis of this clarification we can apply the category of causality. We
perceive that predicates or properties change in time, and we try to connect
these perceptions at different instances of time such that they refer to an object
that persists in time. Here, however, we are confronted with the following
difficulty: Time cannot directly be observed such that the perceptions can be
ordered according to their temporal sequence.

“Time cannot be perceived in itself and what precedes and what fol-
lows cannot, therefore, by relation to it, be empirically determined in
the object.”14

In order to obtain objective knowledge of an object of experience the temporal
sequence of various perceptions must be determined. This can be performed
by means of the category of causality: If two successive appearances may be
considered as cause and effect, then the cause event is earlier than the effect
11 For the constitution of objects within the framework of Kant’s philosophy see

also Sect. 10.1.3.
12 Kant (1787, KRV), B233.
13 Kant, ibid. B232.
14 Kant, ibid. B234.



9.1 Do all Laws of Nature Represent a Causal Relation? 207

event. Hence the chronological order of two appearances is not determined by
time, which is not observable, but the two events determine their temporal
order by causal relations which connect them.15

A specific difficulty of understanding Kant’s arguments comes from the
fact that this way of reasoning can be inverted and is usually applied by Kant
in its inverted form – which inversion is also called the transcendental way of
reasoning. Whenever we are given objective experience of some object, then
this object must have been constituted on the basis of appearances in space
and time by means of the categories of substance and causality. Hence we
arrive at the result that all alterations which refer to properties of an object
are in accordance with the law of causality. In other words, the law of causality
holds necessarily, since causality belongs to the preconditions of any objective
experience. In this sense, Kant considers the causality law as a law that holds
a priori in our experience.

This result establishes the principle of causality which is expressed by Kant
as follows:

“All alterations take place in conformity with the law of the connection
of cause and effect.”16

Even more instructive is presumably the formulation of this principle in the
first edition of the Critique of Pure Reason:17

“Everything that happens, that is, begins to be, presupposes some-
thing upon which it follows according to a rule.”18

In this formulation we find also an interesting link to the concept of a “law
of nature”. The “rule” which is not further specified here, may be considered
and understood as a law of nature. The principle of causality does not claim
that a particular law of nature holds a priori, it merely states that under the
assumed premises there is a law that connects the two events in question.

9.1.8 von Helmholtz

Herrmann von Helmholtz (1821–1894) was one of the leading scientists of the
19th century. He worked in physiology, physics, and geometry and he was
15 It should be emphasised that Kant did not assume that any two appearances can

be chronologically ordered according to this rule. However, if this were not the
case, we would not obtain objective knowledge: “If each representation were com-
pletely foreign to every other, . . . no such thing as knowledge would ever arise.”
(Kant, ibid. A 97).

16 Kant, ibid. B232.
17 Kant, ibid. A 189.
18 On account of the importance of this principle for Kant’ transcendental way of

reasoning we add here the original German version: “Alles, was geschieht (anhebt
zu sein) setzt etwas voraus, worauf es nach einer Regel folgt.”
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actively involved in the epistemological discussion of his time. Although he
assumed an empiricist position he discussed Kant’s transcendental arguments
very carefully. His main critique against the Kantian approach was based on
his physiological investigations which had led him to the conviction that the
form of our spatial intuition is not given a priori – as it was assumed by Kant –
but determined by the physiological possibilities of our sensual perceptions.19

On the basis of this result Helmholtz concluded that Kant’s “proof” of the
Euclidean character of the geometry is not tenable and must be replaced by
a relaxed argument which refers to the material preconditions of our spatial
intuition and which allows for the three non-Euclidean geometries.20 This way
of reasoning could be justified mathematically by Helmholtz’ two theorems
on non-Euclidean and Riemannian geometry.21 With respect to the causality
law Helmholtz’ position is somewhat nearer to Kant’s transcendental way of
reasoning. However, he shares Hume’s scepticism against the justification of
induction:

“Jeder Induktionsschluß stützt sich auf das Vertrauen, dass ein bisher
beobachtetes gesetzliches Verhalten sich auch in allen noch nicht zur
Beobachtung gekommenen Fällen bewähren werde.”22

Nevertheless, he accepts Kant’s argument that our sensual perceptions must
be ordered and interpreted by conceptual prescriptions – which Kant called
categories. However, Helmholtz is aware of the fact that the grasp of material
and external reality is not necessarily successful. It is based on the trust in
the law-like behaviour of the real world. The assumption that for an observed
process a cause can be found, is a regulative principle that is called “law of
causality”. It is obvious that this “causality law” does not hold necessarily.

Für die Anwendbarkeit des Causalgesetzes haben wir aber keine weit-
ere Bürgschaft als seinen Erfolg. Wir könnten in einer Welt leben, in
der jedes Atom von jedem anderen verschieden wäre, und wo es nichts
Ruhendes gäbe. Da würde keinerlei Regelmäßigkeit zu finden sein, und
unsere Denktätigkeit müsste ruhen.23

In this sense – and not in the Kantian one – Helmholtz says

“Das Kausalgesetz ist wirklich ein a priori gegebenes, ein transcen-
dentales Gesetz.”

This interpretation of the law of causality as a methodological principle, which
allows for recognising the real world, is more tolerant than Kant’s interpreta-
tion of causality as a necessary precondition of any possible experience. Ac-
cording to Helmholtz the causality law is not given priori to any experience,
19 Helmholtz (1879 TdW), pp. 27, 34, and 48.
20 Helmholtz l.c., pp. 28, 29.
21 Helmholtz (1884 UBA) and (1868 TdG).
22 Helmholtz (1979, TdW). p. 46.
23 Helmholtz l.c. p. 47.
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since its applicability depends on its success. Helmholtz’ position anticipates
in some sense the critique of Kant’s rigorous a priorism that was expressed by
physicists in the 20th century. In special relativity and in quantum mechanics
only a relaxed and more general concept of causality can be applied to the
physical phenomena.24

9.2 Proposed Answer – General Part: Properties
of the Causal Relation

General Remarks

All laws of nature represent some causal relation, provided the two following
conditions are satisfied:

(i) “Causal relation” is defined differently for dynamical and for statistical
laws on the one hand and also for different areas of physics like classical
mechanics, theory of relativity, thermodynamics and quantum mechanics
on the other.

(ii) In all cases of application, the causal relation is understood in such a way
that it satisfies the chronology condition (i.e. there are no closed time-
like curves) and the condition of temporal order (the cause preceeds the
effect).25

Concerning (i) it will be shown that the properties of the causal relation differ
not only for different types of laws, but also for different applications of one
type of law in different areas. This indicates already that we do not propose one
single concept of causality with global applicability, although certain features
of the causal relation will appear in many versions, even if they are sometimes
only partially satisfied.

From (ii) it follows that only those laws of nature which describe a time
development of a physical system represent such a causal relation, which will
be described in a more detailed and precise way subsequently. This does not
mean, however, that laws of nature, where (ii) is not satisfied or not applicable,
like the ideal gas law pV = kT (because of its timeless formulation), describe
physical systems in which no causal relations would exist, but only that they
must be of an entirely different type than the ones which satisfy (ii) and are
represented by laws of nature.

From what has been said already it is clear that we do not give a treatment
of all types of causal relations. The focus here is only those causal relations
that are represented by laws of nature. And, since causal relations described
by laws of nature occur either always (dynamical laws) or in most cases (sta-
tistical laws), it follows, as a further restriction, that we do not treat causality
24 cf. Mittelstaedt, P. (1989, PMP), Chaps. I, IV, and V.
25 For these properties recall 7.2.3.5(2b) above, and for more details see Sect. 9.3

(Proposed Answer, Special Part) below.
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as a relation between single events which happen only accidentally. Thus,
Kutschera,26 for example, concentrates on single causes and single effects by
emphasising that there need not be any lawlike connection, like in the exam-
ple where somebody breaks his leg because of a banana skin. Investigations
on single, apparently non-law-like causal relations have their own right, and
in fact, there are probably laws involved also in such cases. What we want
to point out here, however, is to say that they (and other causal relations
which are not law-like) are not a topic of this chapter (or book). Another
approach, which does not concern us here is a kind of ontological foundation
of causal relations by a theory of propensities or capacities underlying all
single causes.27 Such proposals go back ultimately to the theory of potency
of Aristotle. Again, such investigations have their own right. But since the
topics of this book are laws of nature, this is not an adequate place for this
kind of ontological investigations. The subsequent parts of 9.2 are divided as
follows: First, properties of the causal relation will be discussed in 9.2.1–9.2.2
with respect to the question which of them are present in the causal relation
represented by laws of nature. Second, two recent views (regularity and coun-
terfactuality) about causality will be discussed (9.2.3). Third, a proposal will
be made for a principle of causality both for dynamical laws and for statistical
laws (9.2.4).

We shall divide the properties of the causal relation into three parts: (1)
Logical properties: Irreflexivity, asymmetry, transitivity; one-to-one, one-to-
many, many-to-one (Sect. 9.2.1). (2) Spatio-temporal properties: Continuity,
temporal order, limitation of causal propagation, objectivity of causal order-
ing. (These will be treated in detail in the chapter on causality in different
areas of physics (9.3).) (3) Intrinsic properties: Completeness, robustness, ne-
cessity (Sect. 9.2.2).

9.2.1 Logical Properties

(1) Irreflexivity
Are all causal relations which are represented by laws of nature irreflexive?
If C(s1, s2) stands for “state s1 causes state s2”, then the causal relation
C, represented by the law, is irreflexive if and only if ¬(∃xC(x, x)). Thus, a
cause cannot be identical with the effect of which it is the cause, although
in a causal chain a state s2 which is an effect relative to the ancestor
state s1 may be a cause relative to its successor state s3. One may think
that there are exceptions with periodic systems, i.e. systems in which the
state of the system recurs after a finite period of time. On a closer look,
however, the repeated state is not identical with the earlier; first, since
it occurs at a different time, and second and more importantly, since,

26 cf. Kutschera (1993, Caus), p. 569.
27 Recent proposals of that sort have been made by Popper (1959, PIP), Suppes

(1970, PTC), and Cartwright, (1989, NCM).
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as Bohm expresses it, “there is no known case of a causal law that is
completely free from dependence on contingencies that are introduced
from the outside of the context treated by the law in question.”28 That
means to say, that the respective state “repeats” itself is an idealisation
abstracting from deviations coming from the contingencies mentioned in
the quotation above. It will be clear that we need not to mention statistical
laws, where the subsequent microstates of the system always differ from
one another.

Historically, Thomas Aquinas required irreflexivity for the causal re-
lation but not asymmetry and not transitivity (recall 9.1.2 above). The
concept of “causa sui” (cause of itself) originated much later, probably
with Spinoza’s Definition 1 of his Ethics:

“I understand that to be a cause of itself the essence of which
involves existence”29

From the requirement of irreflexivity for causality, assumed by the most
important philosophers and theologians in the Middle Ages, it follows
that they understood causality as a relation either among events of this
universe (or of creation) or between God and his creation, but not with
regard to God himself. For our purposes, causality is understood as a
relation among states of this universe. But it seems to make no sense at
all to say that a state (of this universe) causes itself or is the cause of
itself.

From the historical Sect. 9.1.1 it is also clear that Aristotle assumed
irreflexivity for the causal relation, since he assumed even the something
stronger asymmetry from which irreflexivity follows. Also Leibniz’s prin-
ciple of sufficient reason presupposes that the sufficient reason (cause) for
an event is not identical with that event. Moreover, Newton’s causes as
forces are not identical with their effects (like acceleration). Further, we
see that in the interpretation of the dynamical law as a causal law by
Lagrange, Laplace, Hamilton, and Maxwell the initial state as the cause
is always different from the final state as the effect. Also with respect to
statistical laws the states that can be called causes (a microstate at a
certain time or a series of microstates in a time interval) and those which
can be called effects (a later microstate or a series of microstates at a later
interval of time) are always different.

It seems reasonable, therefore, to postulate irreflexivity for all types
of causal relations (represented by laws of nature), which will be treated
here subsequently. We may sum up the reasons for not accepting causal
relations of the form “x causes x” as follows: First, because our common

28 Bohm (1957, CCM), p. 61.
29 Spinoza (1677, Eth) I, Def. 1. The original text in Latin reads: “Per causam sui

intelligo id, cujus essentia involvit existentiam; . . . ”. Whether such a conception
is reasonable at all is questionable. But this is not the place to enter such a
discussion.
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understanding of cause and effect presupposes that they are not identical.
Second, because the understanding of cause and effect which is in accor-
dance with the philosophical and scientific tradition also tells us (only
with very few exceptions, like Spinoza) that the causal relation has been
interpreted as irreflexive. Third, because there seem to be no physical mod-
els with causes and effects as physical states where the causal relation is
reflexive.

(2) Asymmetry
According to the terminology introduced at the beginning of Chap. 5, a
binary relation (here, the causal relation) is symmetric if and only if

∀xy(C(x, y) → C(y, x))

and asymmetric if and only if

∀xy(C(x, y) → ¬C(y, x)) .

We call it non-symmetric if and only if it is neither symmetric nor asym-
metric.30

A further remark is necessary: The causal relation is understood, here,
as a binary relation C(S1, S2) between two states S1 and S2. However, we
have to add the specification: . . . between two states S1 and S2 that are
connected by laws of nature. But it can be understood also as a relation
between a property A1 of state S1 and a property A2 of state S2, which
are connected by laws of nature.

After this clarification, we come back to the question of whether the
causality relation expressed by laws of nature is always asymmetric, or
whether there are also cases of symmetry. On a first impression, it seems
that the following examples are cases of a symmetric causal relation ex-
pressed by laws:
• the causal relation expressed by Newton’s law of the mutual gravita-

tional interaction between two bodies;
• the causal relation expressed by Coulomb’s law of the mutual electro-

static interaction between two charged bodies;
• the mutual interaction between two neurons firing to each other.
At first glance, the two physical examples mentioned, the gravitational
interaction (according to Newton’s law) and the electrostatic interaction
(according to Coulomb’s law), give in fact the wrong impression of a sym-
metric causality relation that is induced by an instantaneous action at a
distance. However, on a closer look the two examples are not cases of a
symmetric causal relation. They could be interpreted as showing a sym-
metric causal relation only if we make the additional assumption that
there is an instantaneous action at a distance that can be interpreted as

30 It should be mentioned that sometimes a different terminology is taken, but we
adopted that which is widely used in logic textbooks.
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a causal interaction. In accordance with contemporary physics we can,
however, avoid this conclusion, if instead of an instantaneous interaction
we make use of the concept of a dynamical field that propagates in space-
time with a finite velocity, and which was introduced first by Faraday
and Maxwell into electrodynamics. In addition, a field of this kind that
propagates with a finite velocity v ≤ c fulfils also important requirements
of special relativity.31

That under these assumptions the causal relation in the examples men-
tioned cannot be symmetric can be further illustrated by the diagram in
Fig. 9.1.

t

t1

xA xB

x

A’ B’

Light Light 

t0

A B 

Fig. 9.1. Mutual causal influence between two physical systems

Let A and B be two different physical systems at rest in an inertial system
I(x, t). The two systems are at different places xA and xB , respectively,
but at the same time t0. Light rays emitted by systems A and B in opposite
directions meet half way between the systems at time tL = t0 + (xB −
xA)/2c. A causal influence from A to B does not reach B at t0 but at a later
time t1 = t0 +∆t, where ∆t is the time needed for the propagation of the
causal influence. According to special relativity, we have ∆t ≥ 2(tL − t0).

But B at t0 has meanwhile developed into B′ at t1, and strictly speaking
B �= B′. The same holds for the causal influence from B at t0. It cannot
reach A at t0 but reaches A′ at t1 (into which A was developed during
the time interval ∆t). And again, strictly speaking, A �= A′. Hence, the

31 It is, of course, somewhat surprising that by means of the static gravitational
potential the two-body problem in celestial mechanics can be calculated with a
very high degree of accuracy. If we discuss the analogous problem with two charged
bodies and the Coulomb potential, it becomes obvious that the electromagnetic
field must be taken into account, since otherwise the radiation emitted from the
moving bodies could not be explained. However, the difference between the two
cases is only a quantitative one. The ratio of the coupling constants is about 1040,
and hence it is very hard to measure gravitational waves.
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above examples for causal interactions are not cases of symmetric causal
relations expressed by laws, which describe these interactions.32

If A causally influences B′ (where the influence is described by a law),
then it is not the case that B′ causally influences A. Therefore, we have to
speak of an asymmetric causal relation. Observe, however, that the asym-
metry is not due to a different causal influence; on the contrary, the kind
of mutual causal influence (say electrodynamical interaction, gravitation,
neuronal firing) can be the same (and it is the same in the above cases),
but, since the causal influence cannot be instantaneous, the causal rela-
tion cannot be symmetric. In other words: Since causal relations expressed
by laws of nature have to obey certain necessary preconditions, they can-
not be symmetric. Here, the important preconditions are: Temporal or-
der (the cause precedes the effect), limitation of causal propagation (the
causal propagation has a finite limit), and, implicitly, also the chronology
condition (there are no closed timelike curves).33

If we drop the condition of temporal order, the causal order would not
imply time order (from past to future) even if it could still imply time
orientation, i.e. the distinction between past and future. In this sense, all
the dynamical laws that are compatible with time reversal (like the laws
of classical mechanics) do not presuppose temporal order. Thus, state S1

at t1 can be the cause for state S2 at t2 just as S2 at t2 (the “effect”) can
be the cause of S1 at t1, where the causal connection is described by a
dynamical law. In such a situation we could say that the causal relation
is symmetric. However, our understanding of the causal relation both in
philosophy and also in natural science is such that we presuppose temporal
order as a necessary condition for every causal relation. Therefore, in the
case of a dynamical law of classical mechanics all the past events can
count as causes for the future events, but not vice versa (cf. 9.3.1). Under
this assumption, the causal relations expressed by dynamical laws are
asymmetric.

On the other hand, there are many examples of causal interactions
described by statistical laws where the causal relation is asymmetric: The
positive energy of state S1 causes the positive energy of state S2, where
the respective law describes the propagation of energy from state S1 to
state S2. But the positive energy of S2 is not the cause of the positive
energy of S1. The past microstates MIi,. . . , MIn (of a gas, say a litre
of air at 273 K) cause the microstate MIn+1, but this microstate does
not necessarily cause one of the past microstates, but may cause another
possible microstate which did not occur so far.

32 Another example, which also shows that causal propagation needs time is dis-
cussed by Schurz (2001, CAI), p. 60f. cf. further the example discussed by Haus-
man (1998, CAS), p. 44f.

33 Concerning the application of these conditions to physical theories see Sect. 9.3
below.
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(3) Transitivity
The causal relation between events (or states) x, y, z is transitive if
and only if ∀x,y,z [(C(x, y) ∧ C(y, z)) → C(x, z)] . We first observe that
the causal relation taken in general is not always transitive. For example,
it strikes one’s eyes that the human genealogical tree is, of course, a causal
chain, but not transitive, provided cause is understood as sufficient con-
dition, i.e. as sufficient for producing the effect:34 The four grandparents
are a sufficient cause for the parents and the parents are a sufficient cause
for their children, but the grandparents are not a sufficient cause of their
grandchildren. In the case of Laplace, a cause (any earlier state) is always
both sufficient and necessary. If cause, however, is interpreted as necessary
condition, then the human genealogical tree is transitive.

The general question whether there is a counterexample against the
transitivity of the causal relation can be brought into the following sim-
ple form. Is there a case which can be described as follows: State A is
capable of changing state B and state B is capable of changing state C;
yet state A is incapable of changing state C.35

Now, even granted that the causal relation in general is not transitive,
the concern here is the causal relation as it is expressed by laws of nature.
And, concerning this specification, we can see an important difference with
respect to both types of laws, dynamical laws and statistical laws. In the
case of dynamical laws of classical mechanics, in the sense of Laplace (cf.
7.2.1.2 and 9.4.3.1) there is transitivity of the causal relations between
the states of the system not only in the direction towards the future, but
also (because of the time-reversal invariance of the laws) in the direction
towards the past. This is so also concerning the causal relation expressed
in Maxwell’s equation in accordance with special relativity. Moreover, the
Minkowski spacetime of special relativity allows defining a causal relation
that is irreflexive, asymmetric, and transitive.36 Thus, in the case of dy-
namical laws, transitivity of the causal relation expressed by these laws is
satisfied.

34 It is clear that “sufficient condition” has to be taken also under normal environ-
ment contingencies. Otherwise a cause could be never sufficient except it is the
set of all past events.

35 This formulation is due to Pearl, who discusses several models which are coun-
terexamples to transitivity and writes: “That causal dependence is not transitive
is clear . . . The question naturally arises as to why transitivity is so often con-
ceived of as an inherent property of causal dependence . . . ”. Pearl (2000, CMR),
p. 237. See also Galles, Pearl (1997, ACR).Transitivity of the causal relation was
recently defended also by David Lewis (2000, CIn). However, an attack of one
type of counterexample against transitivity (even if it would be successful) (p.
194) cannot prove transitivity of causation as a general property of causation
even if it holds in wide areas.

36 See below 9.3.1(4).
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In the case of statistical laws, however, there are counterexamples
against transitivity or difficulties for its applicability. Consider the follow-
ing thermodynamic processes in non-equilibrium systems, where causes
are understood as sufficient conditions for the respective effects: The earth,
embedded in the system sun–earth–cosmic environment, and any living
system in its environment are thermodynamically open. It receives high
grade energy, and by passing it through it delivers low grade energy to
the environment (recall Sect. 7.2.3.4.3(2d)). Thus, the sun, providing the
electromagnetic high grade energy (A), causes the state of order and infor-
mation of the earth (B), and B produces (causes) the low grade energy C.
But it does not hold that A causes C. On the contrary, A caused the pro-
duction of order and information and not its opposite. In a similar way,
transitivity is not satisfied in living systems. High grade energy, which
they take from nutrition (A), causes order and orthogenesis in the living
organism (B), and B produces low grade energy which is delivered to the
environment (C). But A is not sufficient to produce C.

Summing up, we may say that counterexamples against transitivity of
the causal relation, where cause is understood as sufficient condition, are
available in the case of statistical laws applied to thermodynamic systems
of non-equilibrium, and therefore are also available in areas which are
based on them, like biological systems.

(4) One-to-one, one-to-many, many-to-one
Assume that the development from an initial state S1 to some successor
state S2 of a physical system is described by some law. Then, the relation
between S1 and S2 can be one-to-one, one-to-many or many-to-one. If
S1 can be interpreted as a cause and S2 as its effect, the causal relation
described by the law can be also of one of these three types. Now, the
nearest case of a one-to-one relation is realised by an isolated mechanical
system obeying Newton’s laws of motion. It is an idealisation, which is
expressed in Laplace’s idea.37 According to Laplace’s idea, one arbitrary
state allows the calculation (via laws) of any state in the past or in the
future. In this case, the causal relation would be symmetric since “time
reversal”, or better, reversal of motion is possible. Or, to put it into other
words: the necessary precondition for causal relations – temporal order –
is not satisfied. Since in the case of laws which allow time reversal the
causes (initial states) and their effects (final states) can be exchanged.

On the other hand, in all cases where statistical laws are involved, we
have the relations one-to-many and many-to-one between the initial states
and the (not necessarily immediate) successor states. Examples for rela-
tions one-to-many are all cases where the effect (successor state) remains
within certain bounds but has a range of indetermination (or error). This
is even so with a relatively precise gun, the more with a particle accelerator

37 cf. 7.2.1.2 and 9.3.1. Concerning the question of the realisation of isolated (ide-
alised) systems see ch. 11.2 on reliability.
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or with processes of radiation. Thermodynamic processes have both one-
to-many and many-to-one relations among their states: Thus, on the one
hand, one microstate develops into many different successor microstates,
and on the other hand, many different states lead to an equilibrium. The
first shows that, given one microstate as a cause, the effect needs not be
unique, i.e. is not necessary. The second shows that for a unique effect the
cause needs not be unique, i.e. is not a necessary condition.

The spatio-temporal properties of the causal relation (expressed by
laws of nature) will be treated in Sect. 9.3 (Causality in different areas of
physics). Since we already need to refer to the spatio-temporal properties
in the subsequent sections, we list them here as follows:
(1) Continuity: Is every causal relation (expressed by laws) continuous,

i.e. if A is the cause of B, is there always a C between A and B such
that A causes C and C causes B? Or: Does every discontinuity imply
non-causality?

(2) Chronology condition: There are no closed time-like curves.38

(3) Temporal order: Can the effect precede its cause, or is it a general
postulate that the cause must be earlier or simultaneous with its ef-
fect?

(4) Limitation for causal propagation: Is the velocity of light or another
finite velocity the maximal velocity for causal propagation?

(5) Objectivity of causal ordering: Is the causal order with respect to
what is cause and what is effect independent of (a) observer and (b)
reference system?

9.2.2 Intrinsic Properties

9.2.2.1 Completeness of Causes

The topic Completeness of Laws will be treated in detail in Sect. 11.1 be-
low. Here, the question of completeness will be discussed only with respect to
causes expressed by laws. Historically, Leibniz proposed a universal complete-
ness principle with his principle of sufficient reason: Nothing happens without
a sufficient reason. Or, as he adds immediately: Every truth has its a priori
proof.39 The first part can also be paraphrased: Nothing happens without a
sufficient cause. The idea of completeness behind these principles can, then,
be expressed also thus: A set of reasons (causes, states) C is called complete
with respect to an area G if every state E in G can be explained sufficiently
by some causes c of C (or, if it is determined sufficiently by some c of C).
The version with “explained” is an epistemological one, the one with “deter-
mined” an ontological one. The above definition leaves open whether there is
38 See Sect. 7.2.3.5(2b) above.
39 For a discussion of several versions of this principle see 11.1.3.1 below, and Wein-

gartner (1983, IMS).
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one unique cause (in this case, the set C has to be replaced by its unit set) or
many causes as elements of C. It also leaves open whether one of the many
causes is already sufficient for the effect, or whether they are sufficient only to-
gether. Further, it leaves open whether there is only one unique effect (state),
or whether there are many. If we want to make a concrete application – say G
is the area of classical mechanics – then we see immediately that something
essential is missing here. The expressions “can be explained sufficiently” and
“is determined sufficiently” are obscure in a double sense: first, they are im-
precise, and second, they seem to presuppose a hidden connection between
cause and effect. In other words, they do not spell out an important point:
the laws that are needed for the connection. Thus, a more precise reading
with a concrete application is this:

A set of initial states C (interpreted as a set of causes) at t1 is com-
plete with respect to the area of Classical Mechanics if every state e of E at
t2(≥t1) is uniquely determined by C and the laws of Classical Mechanics (cf.
9.3.1 below). If we replace the reasons, causes or events by those propositions
which describe them, then we arrive at the second version of Leibniz’s prin-
ciple above: Every true proposition describing an event (state) in G can be
proved a priori from the axioms (and definitions) which describe the reasons
or causes. More accurately and applied: A set of propositions C∗ describing
the initial states (causes) c of C at t1 is complete with respect to the area
of classical mechanics, if and only if every proposition e∗ of E∗ describing a
state at t2(≥t1) follows from C∗ plus the laws of classical mechanics. Now, as
it is clear from 11.1.3.1 below, Leibniz did not claim that such completeness
results are available for every area G. He thought they could be achieved by
man if G is the area of logic or of mathematics or of metaphysics (if built up
axiomatically).40 However, he pointed out that such completeness results are
not available for man if G is the area of natural science or ethics and jurispru-
dence, since contingent propositions (viz. contingent events and causes) are
involved in the proof process (viz. in the process of events).41

These more philosophical ideas became more concrete and applicable to
physics by Laplace’s idea of the development of the universe, expressed in his
essay about probability.42 In this passage, a very strong completeness thesis
with respect to all events (states) of the whole universe is claimed:

T1: One (arbitrarily chosen) state of the (whole) universe (at a certain point
of time) plus the laws of nature are sufficiently complete in order to
calculate every other state of the universe.

40 Today we know that he was right with respect to logic if we take first order
predicate logic, but not if we take higher order logic, and not with respect to
mathematics.

41 Although ultimately – and for God – there is completeness also in these areas,
according to Leibniz.

42 Recall the quotation in 7.2.1.2, the conditions of dynamical laws, especially D1
in 7.2.3.2 above and 9.3.1 below.
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According to thesis T1, the state (say A) which is arbitrarily chosen in order
to calculate state B with the help of laws might occur also later than state
B. That means that T1 is independent of temporal order, or temporal order
is not presupposed in T1. However, the time axis seemed to be understood
by Laplace in such a way that the chronology condition is satisfied. A causal
interpretation of T1 can be given by a weaker thesis T2 which follows from
T1:

T2: One state A of the (whole) universe at time t1 – where A is interpreted
as a cause – together with the laws of nature are sufficiently complete in
the defined sense for producing at least one other state B of the universe
at the later time t2 – where B is interpreted as the effect of A.

This weaker thesis T2, in order to have a reasonable causal interpreta-
tion, has to satisfy the following three conditions: the chronology condition
(cf. 7.2.3.5(2b)), the condition of temporal order, and the condition of limi-
tation of causal propagation. That the chronology condition is important for
every causality condition is especially stressed by Hawking and Ellis after they
prove a proposition which shows that the chronology condition is a necessary
condition for the causal structure:

“This shows that in physically realistic solutions the causality and
chronology conditions are equivalent.”43

To this view, we want to emphasise five things:

(i) The chronology condition cannot be proved from a law or from generally
accepted axioms; it has to be assumed as a precondition or as an axiom.

(ii) One of the main purposes to assume it is the restriction of the number
of possible solutions of Einstein’s field equations.

(iii) There are many investigations (for example by Kip Thorne and others44)
of the consequences, like “time travel” of different sorts, if the chronology
condition is violated.

(iv) Since the consequences mentioned in (iii) lead to somewhat paradoxical
situations, especially with respect to the causal order, many physicists
and philosophers do not deny that the chronology condition is a reason-
able assumption.

(v) However one should keep in mind that if the minimum length of all
closed time-like curves were extremely long (e.g. greater than the age of
the universe) the respective cosmology would behave – for all practical
purposes – like an ordinary cosmology with non-periodic time (satisfying
the chronology condition).45

43 Hawking, Ellis (1973, LSS), p. 192. For situations in QM (tunnelling processes,
measurement processes, and EPR correlations) see 9.3.2c below.

44 cf. for more details Thorne, K. (1994, BHW). cf. note 87 below.
45 cf. Barrow, Tipler (1986, ACP), p. 449.
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Also the following theses T3–T5 in their causal interpretation (i.e. assuming
the three conditions above) follow logically from the strong thesis T1:

T3: The first initial state A of the universe together with the laws of nature
are sufficiently complete to cause every later state B (at ti).

T4: The present state A of the universe together with the laws of nature are
sufficiently complete to cause every later state B.

T5: All the past states (including the present state) of the universe, together
with the laws of nature, are sufficiently complete to cause every later
state B.

Commentary on the Completeness Theses

T1, which expresses the idea of Laplace, makes two assumptions which are
necessary conditions for the claim: that the laws of mechanics are the laws
of the whole universe, and that the initial states which represent the causes
can be described with arbitrary precision. Under these assumptions, an initial
state (its exact values for position and momentum) of a part or of the whole
universe together with the Hamiltonian differential equation (see 9.3.1a, 2 be-
low) is a complete set of causes for the final state (its exact values for position
and momentum). However, since these two necessary conditions cannot be
realised globally (for the whole universe), the completeness of the causes can-
not be realised globally either. This can be seen as follows: First, the laws of
the universe are not exclusively laws of mechanics, not even only dynamical
laws, as is evident from the fact that the universe is full of processes of ra-
diation, thermodynamics, and expansion which do not obey dynamical laws.
And for statistical laws, conditions D1 and D2 (of dynamical laws cf. 7.2.3.2)
do not hold. Second, even granted that the laws are laws of mechanics or,
more generally, dynamical laws, it is not possible to describe the initial states
that represent the causes with arbitrary precision. And, sometimes small dif-
ferences in the initial conditions will lead to an exponential separation of
originally adjacent points in successor states which cannot be calculated ex-
actly any more. From these considerations it follows that the causes for the
final or later states are certainly not complete if the system is the whole uni-
verse (according to the idea of Laplace).46 On the other hand, completeness of
the causes for the final state (as the effect) can be approximately achieved if
the physical system is a sufficiently isolated mechanical system. For example,
46 cf. Sect. 11.1 in which Laplace completeness is discussed with respect to laws. In

order to avoid misunderstandings, we want to stress that when we speak of the
laws of mechanics or those of the universe we mean laws in the sense of L3 (see
Chap. 1), not the ideal law L4. Otherwise, the ideal true dynamical laws as hidden
structures plus the ideal true states could always be claimed to be complete with
respect to other or later states. In any case, completeness cannot be claimed any
more if ideal true statistical laws with realistic degrees of freedom (branching)
are incorporated.
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very exact calculations of a future state of the planetary system show that
the degree of completeness of the causes can be considerably high. A good
example is the calculation of the orbit of mercury, first by Newton’s theory
and then by Einstein’s Theory of General Relativity. -What has been said
for T1 holds also for the weaker theorems T2–T5, if only dynamical laws are
involved.

Let us now drop the two assumptions, which have been presupposed for the
interpretation of Laplace’s idea. Then we have to understand laws of nature as
including both dynamical and statistical laws. Since neither condition D1 nor
condition D2 (of dynamical laws, cf. 7.2.3.2 and 7.2.3.3) hold for statistical
laws, there are degrees of freedom for particles and parts of a physical system
and possibilities for branching of the trajectories. And, since we do interpret
these degrees of freedom and the possibilities for branching realistically, that
is, not epistemically as lack of knowledge plus hidden deterministic parame-
ters, the earlier states plus laws do not uniquely determine the final individual
or microstate. Concerning statistical laws, however, we have to add a proviso:
it is assumed that the initial state and the final state are of the same category:
both are microstates. If, on the other hand, we have the situation of a series of
microstates leading to one macro-state, this macro-state (for example a state
of equilibrium) can be the unique outcome of a series of microstates such that,
in this case, the series of microstates is sufficiently complete (even if there are
a lot of degrees of freedom) to produce the macro-state.

Therefore, the earlier states (as causes) plus dynamical and statistical laws
are not (in general) sufficiently complete for the final state (as the effect). This
holds for all the theses T2–T5.

The thesis T3 deserves special attention. It claims that the initial state
(considered as the cause) together with the laws is sufficiently complete for
every later state (of the universe). To this claim, we may ask two questions.

(i) Is the initial state uniquely defined – given other facts of the universe?
(ii) In what sense could the initial state be complete?

Concerning (i) we may recall that Thomas Aquinas required in his axiom 3
(cf. 9.1.2 above) that, if something causes something else, then there must be
a first cause, i.e. the causal chain (S) must terminate after a finite time or
after a finite number of causes. Moreover, in this case the “first cause” does
not belong to the universe and is assumed to be independent of the universe
in the sense that the causal relation is strictly asymmetric. On the other hand,
within the framework of general relativity, a “first cause” of the universe that
belongs to the universe itself can be shown not to exist (cf. 9.3.1.c2.γ below).
This decides the second question: the initial state cannot be complete because
it does not exist as a “first cause”.
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9.2.2.2 Robustness

The considerations in the chapter on transitivity and on completeness (above)
have shown that the causal relation expressed by laws is different for dynam-
ical and for statistical laws. In one case it is transitive, in the other it is not,
and in the dynamical case the later state is determined by the earlier state
which is not so in the case of statistical laws. The question here is whether
the causal relation (expressed by laws) is invariant against disturbances of
the state which is interpreted as the cause. More accurately there are two
main possibilities: (i) small disturbances of the cause may lead to proportion-
ally small changes – described by linearly increasing functions – of the effect;
(ii) small disturbances of the cause may lead to disproportionate big changes
of the effect, described by exponentially increasing functions. If in case (i)
the kind of causal relation does not change, it is called robust. Sometimes
robustness is defined only for stochastic or probabilistic causality.47 But the
two possibilities (i) and (ii) concern of course dynamical laws as well. This
is clear from the stability condition D4 (Sect. 7.2.3.2). We may therefore call
a causality relation robust if it is invariant under the condition that D4 is
satisfied. On the other hand, we shall not expect that the causality relation
will not change if D4 is violated, i.e. if (ii) is satisfied. This leads to the ques-
tion whether in such a case (violation of D4) we can still speak of a causal
relation. Healey and Redhead for example require robustness as a necessary
condition for causality.48 We do not find this reasonable because why should
a process with weak perturbation be still causal, whereas one with strong
perturbation (chaotic motion) is non-causal. Especially since in the case of
dynamical chaos, although D4 is violated, the underlying laws are dynamical
laws. Although it is evident that the causal relations have to be weaker than
in the case of satisfying D4, they need not to disappear completely. The view
to accept only a strong concept of causal relation and to deny any causal
relation, where the strong causal relation is not satisfied, does not seem to us
the right strategy. On the contrary, we accept a pluralism of causal relations
and different modes of application in classical mechanics and special relativity,
in quantum mechanics, in thermodynamics and areas of statistical laws and
finally in processes where D4 is violated.49

9.2.2.3 Necessity

It is assumed here that the necessity of the causal relation expressed by laws
of nature is nothing else than the necessity of these laws. This can be sub-
47 Thus for example Healey (1992, CRE), p. 283 defines robustness thus: “If R is a

stochastic relation between events a and b, then R is robust just in case P (a/b)
(the probability of a given b) is invariant under any sufficiently small disturbance
of b.

48 Ibid., p. 287, Redhead (1987, INR), p. 103.
49 cf. 9.2.4, 9.3.2(b), and 9.4.3.2 below.
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stantiated as follows: First, because the causal relations discussed here are
those expressed by laws. Other kinds of causal relations like single event
causality or single causal processes based on propensities or capacities are
not treated here (cf. 9.4). Second, because the necessity according to which a
state S(t2) follows from a state S(t1)(t1 < t2) with the help of a dynamical
law is given by the respective dynamical law. Similarly the necessity accord-
ing to which a microstate MI(t2) follows from one of the microstates MI1(ti),
MI2(ti), MI3(ti)(ti < t2) with the help of a statistical law is given by the
respective statistical law. Third, because the necessity of laws of nature can
be defined with the help of the properties of these laws (see below). In this
sense the necessity of the causal relation expressed by laws of nature can be
reduced to the necessity of the laws themselves. The term “necessary” applied
to statements including laws has different meanings. We have to mention at
least two meanings which are not concerned with laws of nature: the necessity
of the laws of logic and that of the laws of mathematics.

(a) Necessity of the laws of logic
That the laws of logic are necessary is usually expressed with the help of an
idea of Leibniz saying that the laws of logic hold in all possible worlds. This
idea was semantically clarified and restricted (to “accessible possible worlds”)
by Possible World Semantics in the sense that it answered the question what
holds logically in all possible worlds. These are the theorems of PL1 (first
order predicate logic with identity) plus some modal propositions depending
on the underlying modal system. However, theorems of second order logic or of
set theory are not included. Thus Possible World Semantics gives a semantic
interpretation of what it means to say that a theorem of PL1 is valid, or
is logically true, or to say that a theorem of PL1 is logically necessary or
holds necessarily. That this kind of logical necessity is not the necessity of
laws of nature can be seen as follows: First, because according to Chap. 3
laws of logic are not laws of nature and therefore the necessity of laws of logic
cannot be the same as the necessity of laws of nature. Second, because laws
of logic have nothing to do with a time development. If the antecedent of a
logically true implication is referred to an earlier state and the consequent
to a later state – as used in a prediction – then this relation of succession is
an additional interpretation for the respective application. The same logically
true implication can equally be used for a retrodiction (from a present or
past event to an earlier past event). Third, because the laws of logic are also
completely independent of a causal succession.50 On the other hand this whole
chapter attempts to show how and in what sense laws of nature express causal
relations.
50 Recall however the historical part (Sect. 9.1): According to Aristotle a law-like

premise answering a “why” question can be called a causa finalis (a final cause).
But this kind of meaning – also present in the Middle Ages – where, in an anal-
ogous way, premises are called causes w.r.t. the conclusion is not any more used
today.
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(b) Necessity of the laws of mathematics
Possible World Semantics does not answer the question whether a statement
of finite number theory, say 2 + 3 = 5, is necessarily true or holds in all possible
worlds. The deeper reason for that is a basic assumption of PL1, which says
that there is at least one element (object) in its universe of discourse. This is
adequate for logic,51 but much too modest for mathematics, where one needs
infinitely many elements (objects) in the universe of discourse.

To give a further illustration, the statement: “It is possible that there
exist two objects with property F” (say two natural numbers), symbolically:
♦∃x∃y (Fx ∧ Fy ∧ x �= y) is not provable in any of the modal systems which
are semantically interpreted by Possible World Semantics; but one would
expect that this – even without “♦” – should be provable and hence – by the
rule of necessitation: If |– p then |–� p – necessary. According to Leibniz also
the laws or theorems of mathematics are necessarily true in the sense that they
hold in all possible worlds. However, here it is not possible to give a simple
interpretation with the help of Possible World Semantics. The deeper reasons
for that are the incompleteness and two further important differences w.r.t.
logic: (i) The universe of discourse contains infinitely many objects which is
made explicit by an axiom of infinity.52 (ii) Whereas the laws of logic can all
be understood as universaliseable w.r.t. to predicates (even if predicates are
not quantified because of first order), the axioms of set theory, which underlie
many laws of mathematics, make existence assumptions of sets or predicates
(relations, functions, etc.) which are type-theoretically of higher order.53

That this kind of necessity of the laws and theorems of mathematics is
not the necessity of laws of nature can be seen as follows: In Chap. 4 we in-
vestigated three different fields of mathematics – arithmetic of natural num-
bers, geometry of the three-dimensional space, elementary probability theory –
w.r.t. the question whether the theorems of these fields are laws of nature. In
these three cases it could be shown explicitly that the mathematical laws are
valid in nature, but they are not genuine laws of nature, since they can be
justified by formal means only without any recourse to experience. Hence, the
necessity of both kind of laws cannot be the same. Moreover, as in the case of
laws of logic also the laws of arithmetic, geometry, and probability have noth-
ing to do with the time development and are also completely independent of
a causal succession.

In the three mathematical fields mentioned the abstract formulation in
terms of axioms – e.g. the Peano axioms for arithmetic, the Hilbert axioms
51 cf. the discussion of Russell in his (1919, IMP), p. 203f. There are weaker logics –

so-called “free logics” and “empty logics” – which do not make even this assump-
tion. cf. Bencivenga (1986, FLg). The differences between logic and mathemetics
are discussed in Quine (1970, PLg), Boolos (1998, LLL), Sect. 3, Weingartner
(1976, WTh II) Sects. 2.21–2.28, and Chap. 3 of this book.

52 Fraenkel, Bar Hillel, Levy (1973, FST), p. 23ff. and 46f.
53 cf. Weingartner (1975, FAM) and (1976, WTh II), Sect. 2.21ff.
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for geometry, and the Kolmogorov axioms for probability54 – and its justifica-
tion by the construction of the mathematical entities, must be clearly distin-
guished from the validity of the respective theorems in the empirical reality.
The demarcation between the two aspects seems to be the explicit reference
to possible processes that allow for counting, measuring and constituting the
real objects in question. The necessary validity of the mathematical theorems
in nature is then a consequence of the necessity of these laws in mathematics.
Obviously, this is not the necessity of genuine laws of nature.

(c) Necessity of the laws of nature
The necessity of the causal relation expressed by laws of nature is nothing
else than the necessity of these laws. Several reasons for that have been given
already above with respect to both dynamical and statistical laws. What con-
cerns the causal relations expressed by laws, we have already described them
with the help of logical and intrinsic properties, whereas its spacio temporal
properties will be dealt with below. Here the task is to tell what the necessity
of a law is. One general answer is that the necessity of laws of nature is their
invariance.55 This can be defended as follows:

(i) From a comparison with its opposition: Statements which are not nec-
essary, i.e. statements which describe contingent facts, like initial condi-
tions, do not express an invariance or symmetry. On the other hand the
invariance structure “in the laws” implies that they do not hold contin-
gently, but necessarily: “Nevertheless, there is a structure in the laws of
nature which we call the laws of invariance.”56

(ii) From the universal status of the core of a theory which consists of laws:
not the contingent facts are contained in the core of a theory, but neces-
sary correlations: “The irrelevant initial conditions must not enter in a
relevant fashion into the results of the theory.”57

(iii) From a definition of natural necessity. Such a definition was proposed by
Popper: “A statement may be said to be naturally or physically neces-
sary iff it is deducible from a statement function which is satisfied in all
worlds that differ from our world (if at all) only with respect to initial
conditions.”58 Popper’s definition can be expressed also with the concept

54 Peano (1889, PAP), Hilbert (1962, GlG), Tarski’s axiomatisation and decision
method of elementary geometry (1951, DME), Kolmogorov (1956, FTP).

55 That every law of nature expresses an invariance or symmetry was substantiated
in detail in Chap. 5.

56 Wigner (1967, SRf), p. 29. The special view of Wigner of “laws of invariance” as
laws about (or in) laws was discussed in detail in Sect. 5.3.1(3).

57 Wigner, ibid. p. 8.
58 Popper (1959, LSD), p. 433. Here “statement” is to be understood as a law

statement which is neither a law of logic nor a law of mathematics.



226 9 Causality and Predictability

of invariance:59 A law statement may be said to be naturally or physically
necessary if it is invariant under a change of initial conditions.

From Sect. 5.3.2 it is clear that there are further properties of in-
variance of laws of nature than those w.r.t. initial conditions. Thus we
might distinguish more general laws of nature from less general ones by
the degree in which they possess invariance properties. And consequently
we may say that a law of nature is naturally or physically necessary to
a high degree if it possesses invariance properties to a high degree. And
since we have said that the necessity of the causal relations expressed
by laws of nature is just the necessity of the respective laws, it follows
that the causal relation expressed by a law of nature is necessary to that
degree to which this law of nature possesses invariance properties.

(iv) From a consideration of the “symmetry group of nature”. We understand
by “symmetry group of nature” the set of all changes which do not change
laws of nature.60 If we think in terms of models or possible worlds in which
the laws are satisfied, then the symmetry group of nature is the set of
all models or possible worlds in which the laws of nature are satisfied.
In Sect. 8.1.6 it was defended that this set contains more than just one
member (i.e. just the actual world). According to these considerations,
we can say that the necessity of the causal relations expressed by laws
of nature is determined by the set of all models or possible worlds in
which these laws are satisfied. Or in other words: the necessity of the
causal relations expressed by laws of nature consists in its (the causal
relations’) invariance w.r.t. a change from one possible world (model) to
another.

9.2.3 Two Recent Views: Regularity and Counterfactuality

9.2.3.1 Regularity

The theory of regularity is usually attributed to Hume. Hume assumes that
in the complex idea of causation the following elements are present: Temporal
order, spatial and temporal contiguity, regularity and necessary connection.61

Spatio-temporal contiguity is later (in the Enquiry) given up since Hume ac-
cepts there causal relations also between mental actions. Necessity is also given
up, at least epistemically in the sense that we can only observe finite regular-
ities, the expectations of which are based on our habits and customs. Thus
what remains are temporal order and finite regularities. The main reason for
59 A completely different way of interpreting the necessity of law of nature by means

of categories, logical structures and the “law without law” argument is elabo-
rated in detail in Chaps. 10 (categories), 12 (law-without-law) and 13 (logical
structures).

60 See Sect. 5.3.1, note 13.
61 Hume (1739, THN), Book I, III, Sect. 2 and Part IV, Sect. 5.
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Hume that we cannot extend the finite regularities to something more law-
like and necessary is the problem of induction: From some observations about
finite regularities we cannot derive a necessary causal or law-like relation.62 In
recent literature, theories have been called “regularity theories of causation”
which go far beyond Hume’s restriction. They propose definitions of cause and
principles of causality which describe the causal relation which is expressed
by dynamical laws: For example by saying (roughly) that a cause is an event,
which together with laws (dynamical laws are meant) are sufficient for the
(event) effect. Or by presupposing the principle of causality: the same cause
is always accompanied by the same effect. This principle holds also only for
dynamical laws.63 That such and similar theories cannot count as regularity
theories in Hume’s sense is seen easily by the fact that Hume’s theory lacks a
theory of genuine laws (in this case: dynamical laws) expressing a necessary
causal relation. Similarly, Mackie’s proposal, which is to a great extend John
Stuart Mill’s, is stronger than Hume’s, although it may seem to be a regular-
ity theory in Hume’s sense on a first look. But on a closer analysis the claim
that a cause is an INUS condition (i.e. an insufficient but non-redundant part
of an unnecessary, but sufficient condition) is only applicable under the pre-
supposition that the INUS condition is deterministically law-like. Otherwise
it would give us accidental and irrelevant “causes”.64

Coming back to a regularity theory of causal connection in the more mod-
est sense of Hume we may say the following: The regularity theory of causation
is insufficient in the sense that it lacks laws which express causal relations and
it is not able to distinguish genuine causes from spurious ones. Therefore an
event or state C, which regularly precedes another, E – say a bell of a clock
w.r.t. to a bell of another clock ringing later – would be the cause (C) of the
event E although in fact it is not. On the other hand it might be suitable for
a phenomenological (surface) description for both cases of single event causal-
ity and cases for types of causal relations. In this sense a regularity view is
always present on a first level of investigation of assumed causal connections
which are expressed by new hypotheses which penetrate into an inexperienced
area. But if the hypothesis is better and better confirmed with the tendency
to become a well-established law the regularity view becomes more and more
insufficient. In other words the regularity view is not suitable to interpret the
causal relation as it is expressed in laws of nature.
62 For Hume’s view on causation see Sect. 9.1.6 and Hausman (1998, CAS), Chap. 3.
63 See for example Breuer (2001, UCP), p. 163, and Grasshoff, May (2001, CRg),

p. 88. We need not to go into further detail here because in this chapter causal
relations are treated anyway as they are represented in either dynamical or sta-
tistical laws.

64 cf. the analysis in Hausman (1998, CAS), p. 40ff.
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9.2.3.2 Counterfactuality

The counterfactual understanding of the causal relation goes also back at least
to Hume. In his Inquiry he says: “We may define a cause to be an object,
followed by another. . . where if the first object had not been, the second had
never existed.”65 Recently David Lewis has constructed a theory out of it66

which enjoys widespread attention. Here we have to consider the question
whether the counterfactual theory offers a correct interpretation of one of
those types of causal relations which are expressed by laws of nature We shall
therefore first give a formulation of the gist of the counterfactual relation as an
interpretation of the causal relation and then check whether it suits the causal
relations expressed by different types of laws in different areas. The gist of the
counterfactual interpretation of the causal relation can be expressed thus:

CF A causes B iff A and B are distinct events and if A were not to occur,
then B would not occur either.67

From this it follows that cause is interpreted as a necessary condition for
the effect. Lewis and other authors, in order to evaluate the right part of CF
consider possible worlds in which A does not occur, and which of those possible
worlds are more similar to the actual world than others. For our consideration
it is not necessary to enter such complications. CF and its interpretation of
the cause as a necessary condition for the effect is sufficient to answer the
question of the applicability to the causal relation expressed by the laws of
physics.

(1) If we look first at the laws of classical mechanics, then we come to the
following conclusion: Under the assumption that we presuppose temporal
order of the causal relation and interpret state A at t1 as the cause and
state B at t2 (t1 ≤ t2) as the effect, then state A is certainly a necessary
condition (which is together with the dynamical deterministic law suffi-
cient) for sate B.68 However, on a closer look we see that this is only true
under the additional assumption that the time development of the system
(described by a special solution of the differential equation) begins not
later than A. Otherwise any other state which lies between A and B on
the time coordinate is equally sufficient together with the law to bring
about B. And then A is not necessary for B (or if A were not, B could
nevertheless be).69

65 Hume (1748, EHU), Chap. VII, part II.
66 Lewis (1973, Ctf) and (1973, Caus).
67 cf. Lewis (1973, Caus), p. 557, and Hausman (1998, CAS), p. 112.
68 Lewis is aware of the restriction of his analysis to dynamical-deterministic laws (cf.

his (1973, Caus), p. 559), although not even this is correct since the counterfactual
theory does not apply to dynamical chaos, which is also guided by dynamical-
deterministic laws.

69 In this connection March (1957, NDM), p. 106 f. points to a blind spot, widespread
under philosophers which is to single out only one particular state (of a physical
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(2) If we consider special relativity then we have to add to the presuppo-
sitions temporal order and chronology condition the limitation of causal
propagation and the fact that causal propagation needs time. Under these
additional assumptions the same can be said about the application of CF
as in the case of classical mechanics.

(3) This is however not the same in all cases where dynamical laws are applied.
The first deviation is quantum mechanics: In the case of the application
of the Schrödinger dynamics the causality relation is not applicable in
the sense that a cause or an effect is a completely determined object or
state because – in contradistinction to classical mechanics – it possesses
at a certain time t only a limited class of properties, which have to be
commensurable.70 The second deviation is the case of dynamical chaos
where we have underlying dynamical laws. Here many different possible
states A1, . . . , An and different conditions may lead to the same type of
chaotic behaviour. In this case none of the different states or conditions
are necessary. This will become clear in a more general way w.r.t. all
processes which are describable only by statistical laws.

(4) In the case of statistical laws we have usually a mixture of the relations
one-to-many and many-to-one (cf. 9.2.1(4)).

The main point is that many different states may lead to the same equilibrium,
or many different microstates (possible causes) may develop into one particu-
lar microstate (effect). Thus none of the causes (of the different microstates)
is a necessary condition. This shows that the concept of counterfactuality is
not suitable in all the cases where statistical laws are essential in physics (i.e.
in processes of thermodynamics, radiation, friction, electric transport, mea-
surement processes in QM, etc.). A special simple counterexample against
counterfactuality from the area of chemistry is given by Hausman.71 Recently
Lewis defended also transitivity of the causal relation.72 However, as it was
shown in Sect. 9.2.1(3) above the processes in living systems do not obey such
causal relations. Or in other words: The statistical laws which can describe
such processes do not express a type of causality relation which would satisfy
transitivity.

Summing up we may say that Lewis’ construction of counterfactuality as
an interpretation of the causal relation is applicable only (with the respective
provisos) to the causality relation expressed by the dynamical laws of classical

system) as the cause of another (later) state as the effect; whereas for a physicist
this is completely unjustified since every state in the past light cone can count
as a cause for a state (as the effect) in the future light cone. The reason for that
narrow-mindedness may be also a confusion with single event causality which is
not the topic here (cf. 9.2) but which is certainly very important in other domains
like that of criminal law.

70 cf. Sect. 9.3.2 below.
71 Hausman (1998, CAS), p. 120ff.
72 Lewis (2000, CIn).
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mechanics (with the exception of dynamical chaos) and special relativity. But
in all other areas there are either serious restrictions (as concerning dynamical
laws in QM) or wrong application or no application at all (as in all the domains
of statistical laws).

9.2.4 Principles of Causality

9.2.4.1 Dynamical Laws

In his Matter and Motion Maxwell discussed two principles of causality. First
he asks whether the principle “the same causes will always produce the same
effects” generally holds.73 Maxwell continues:

“To make this maxim intelligible we must define what we mean by the
same causes and the same effects, since . . . causes and effects cannot
be the same in all respects. What is really meant is that if the causes
differ only as regards the absolute time or the absolute place74 at
which the event occurs, so likewise will the effects.”

A more simple way is to use “states” (states of a physical system at a certain
time t) when formulating such principles. Then Maxwell’s principle can be
formulated in Arthur March’s words:

CP1 The same initial state leads – under the same conditions – to the same
series of successor states.75

CP1 is a principle of causality which is applicable to dynamical laws. This
can be seen from the properties of physical systems D1–D4, described by
dynamical laws (Sect. 7.2.3.2).76 Recall the illustration with the film as an
interpretation of Laplace’s idea: A catalogue card, representing a state of the
universe at t1 is – with the help of the laws of nature – a cause for any
catalogue card representing a later state of the universe at t2. And CP1 says
then that two equal catalogue cards (two equal states) will have – according
to the laws – the same series of successor catalogue cards (the same successor
states).

We may say that CP1 represents a principle of deterministic causality. The
main reason for that is that in this case we have a unique state as a cause –
73 Maxwell (1991, MaM), Sect. 9, p. 13. For Maxwell’s second principle of causality

see 9.2.4.2.
74 It should be mentioned however that Maxwell refuses Newton’s absolute space

and time in Sects. 17 and 18 of the same work: “All our knowledge, both of time
and place, is essentially relative.” Ibid. p. 12. Recall Sect. 6.2.1(6). There is a
footnote on p. 12 by Larmor who interpreted Maxwell (wrongly) along Newton.

75 March (1957, NDM), p. 14; (1960, PEG), p. 33.
76 It should be noted that D3 (the condition that the physical system is periodic) is

not necessary, although it was satisfied in most cases when dynamical laws have
been confirmed by observational results.
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corresponding to a unique solution of the differential equation – and a unique
state as the effect – again corresponding to a unique solution of the differential
equation. In this case conditions D1, D2 and D4 are satisfied.

A principle of causality which received controversial comments was pro-
posed by Pierre Curie.77 It says roughly that the symmetries of the cause are
preserved as the symmetries of its effects and that the asymmetries of the
effects can be found in the asymmetries of the cause:

“Lorsque certaines causes produisent certains effets, les éléments de
symétrie des causes doivent se retrouver dans les effets produits.

Losque certains effets révèlent une certaine dissymétrie, cette dis-
symétrie doit se retrouver dans les causes qui lui ont donné nais-
sance.”78

This principle of Curie can be interpreted in two ways: (1) In a very general
way, (2) in a specific way of application.

(1) In a very general way we may interpret Curie’s principle along the consid-
erations made in Sect. 5.3.3(b) in the sense that relative to the symmetric
dynamical law the particular state which is predicted as the effect is some
symmetry breaking and so is also the initial state as the cause; i.e. from
an asymmetric effect and symmetric laws we may conclude asymmetric
initial conditions. This fits also very well to what is said by Curie in the
summary (p. 414) and what he calls the negative but certain conclusion;
while the positive one which claims the transmission of the symmetry
of the cause to the symmetry of the effect does not hold with certainty
according to him.

(2) In a specific way Pierre Curie investigated the principle in the domain of
crystals w.r.t. the preservation of symmetries of crystal structures. This
however is a domain much too small to count as evidence for a general
principle of causality.79

As a concluding remark we may therefore say that Curie’s principle can be
understood as a causality principle only in the general sense of interpretation
(1). And in this sense it is not a new principle and was discussed already in
Sect. 5.3.3(b).

77 Curie (1894, SPP).
78 Ibid. p. 401.
79 Whyte (1970, PCP) tried to apply Curie’s principle to entropy relaxation and

frictional/damping processes. We do not want to enter a discussion on the con-
troversy concerning Curie’s principle in a more specific interpretation than the
first (1) above. Chalmers, (1970, CPr)and Ismael (1997, CPr)defend it, whereas
van Fraassen (1989, LaS), p. 240 thinks it is untenable.
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9.2.4.2 Dynamical Laws Underlying Chaotic Systems

The second principle of causality which Maxwell discusses in his Matter and
Motion is the principle: like causes produce like effects. And he says of it:

“This is only true when small variations in the initial circumstances
produce only small variations in the final state of the system. In a
great many physical phenomena this condition is satisfied; but there
are other cases in which a small initial variation may produce a very
great change in the final state of the system”80

The passage shows clearly that Maxwell understood already very well the
most important necessary condition for dynamical chaos: the sensitive depen-
dence on initial conditions. That means that very small changes in the initial
conditions lead to exponentially increasing bifurcations. Not just simple bi-
furcations which have been known so far as unstable behaviour or as small
perturbations, i.e. it is not a case of “perturbative stability”.This property of
being sensitively dependent on initial conditions is measured by the (positive)
Ljapunov exponent.81 Exponentially increasing factors were well known for a
long time as the example for increasing error of Aristotle shows.82 As Maxwell
says, his second principle is only satisfied if small variations in the initial states
lead to proportional small variations in the final states, i.e. if condition D4
(Sect. 7.2.3.2) is satisfied. In this case an approximation of principle CP1 can
be assumed as a principle of causality. But if D4 is not satisfied, i.e. for cases
of chaotic motion, we may formulate the following principle of causality:

CP2 Two similar initial states (i.e. states with a small distance between pairs
of two related adjacent points) lead – under a positive Ljapunov expo-
nent83 – to two separated systems where the Ljapunov exponent (Kol-
mogorov entropy) measures the average factor by which the distance
between the related adjacent points becomes stretched.

Since the Ljapunov exponent (Kolmogorov entropy) measures also at the same
time the loss of information about the position of a point (in an interval) and
the increasing disorder, we may formulate a second causality principle for
dynamical chaos thus:

CP3 Two similar states (i.e. states with a small distance between pairs of
two related adjacent points) lead – under a positive Ljapunov exponent

80 Maxwell (1991, MaM), p. 13.
81 For details see Schuster (1989, DCh), p. 24ff. and Weingartner (1996, UWT),

p. 52ff. See also below Sects. 9.4 and 7.2.3.2 commentary to D3 and D4.
82 cf. Sect. 7.2.3.2, note 35, and Sect. 11.1.3.5(3).
83 More generally: The Kolmogorov–Sinai entropy (or for short: Kolmogorov en-

tropy) which is equivalent to the sum of positive Ljapunov exponents for more
dimensional maps according to a proof by Pesin. Observe that dynamical chaos
is based on trajectories described by a Hamiltonian. Quantum chaos and chaos in
large Poincaré systems (cosmology) have different properties. See below, Sect. 9.4.
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(Kolmogorov entropy) – to a certain degree of disorder and loss of in-
formation which is measured by the Kolmogorov entropy.

So far we have dealt with causality principles for dynamical laws. And this
for obvious reasons: For a long time the (dynamical) laws of classical mechan-
ics have been understood as the causal laws. From this point of view it was
also not realised that D4 is a very important presupposition which has been
a hidden assumption for centuries. Not in the sense that one considered the
systems free of perturbation; but in the sense that one assumed arbitrary de-
gree of perturbation (i) could be exactly calculated by special mathematical
methods and (ii) would lead to the relaxation of the system after some finite
time (even if energy supply is not stopped). Both assumptions were wrong.
This was realised theoretically already by Hadamard and Poincaré and exper-
imentally only in the second half of the 20th century. As a result we may say
that the dynamical laws which describe physical systems satisfying condition
D4, express one type of causal relation which is described by the principle
CP1 whereas the dynamical laws which underlie those physical systems not
satisfying condition D4 express another (weaker) type of causal relation char-
acterised by CP2 and CP3.

9.2.4.3 Statistical Laws

It took a long time until the statistical laws, mainly discovered in the 19th
century, were accepted as genuine laws. Many physicists had a hope like the
one formulated by Planck: “I believe and hope that a strict mechanical sig-
nificance can be found for the second law along this path, but the problem is
obviously extremely difficult and requires time.”84

It was understandable therefore that one spoke of causality, if at all, only
in connection with dynamical laws. In addition to that the properties of sta-
tistical laws made it difficult to find a causal relation which was expressed
by such laws. This is also clear from the four properties of systems obeying
statistical laws discussed in 7.2.3.3 and their comparison with those holding
for dynamical laws (7.2.3.4). From such a comparison one can easily see that
a principle of causality in the sense of CP1 is not applicable here: the same
initial states lead usually to different successor states; but the different suc-
cessor states may represent the same statistics. In thermodynamic terms this
means that if we start with two equal micro- or macro-states, the two series
of successor microstates will be entirely different, but their average values say
the velocity distribution or the mean distance between two molecules, etc. will
be the same, such that the macro-states will be the same. Such a development
is of course only realised, if both systems are interpreted as isolated systems,
i.e. if the two series of successor microstates are not influenced by different en-
vironments. If this is granted, we can accept the following principle of March
as a principle of causality for statistical laws:
84 Planck in a letter to his friend Leo Graetz. Cited in Kuhn (1978, BBT), p. 27.
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CP4 The same initial state may lead to different series of successor states.
But those successor states which belong to the same initial state obey
the same statistics.85

The principle CP4 is independent of whether the statistical process is one-
to-many (branching; example: radiation) or many-to-one (running together;
example: many states leading to an equilibrium).

Summing up we may say that there is not only one principle of causality
which is applicable in a suitable way to both of the different types of laws,
dynamical and statistical laws, and to dynamical ones under more liberal con-
ditions, like in the case of violating D4. On the contrary, we have to distinguish
different principles of causality and so to accept a kind of pluralism of concepts
of causality in physics. This is also supported by the discussion on transitivity
and counterfactuality: in some areas (classical mechanics) the causal relation
is transitive, and under some provisos, counterfactual in others; where statis-
tical laws have to be applied it is not transitive and not counterfactual.

9.2.5 Answer to the Objections

9.2.5.1 (to 9.1(a)) As has been demonstrated in the Proposed Answer (general
part), a pluralism of concepts of causal relation is necessary when they are
applied to physical laws and to the physical systems described by them. And
therefore it is correct, as pointed out in the objection, that the causal relation
represented by dynamical laws cannot be applied to statistical laws. From this
however it does not follow that statistical laws do not represent any causal
relation. This causal relation has to be weaker than the one expressed by
dynamical laws, which is shown by the difference of the two principles of
causality CP1 and CP4 and moreover by several other differences concerning
the properties of the causal relation (like transitivity, one-to-many and many-
to-one). Moreover, remember that also in the case of dynamical chaos, though
guided by dynamical laws, the principles of causality have to be weaker (CP2
and CP3).

9.2.5.2 (to 9.1.(b)) The answer to this objection is clear from the section on
Asymmetry (9.2.1(2)). Only on a first impression gravitational interaction
seems to express a symmetrical causal relation. As soon as we incorporate
the fact that any causal propagation needs some finite time, the asymmetry
is understandable.

9.3 Proposed Answer – Special Part: Causality
in Different Areas of Physics

In contemporary textbooks of physics we can find the concept of causality only
very rarely. Causality is not one of the laws, principles, or axioms of physics.
85 cf. March (1957, NDM), p. 14 and (1960, PEG), p. 37.
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Instead, causality appears in physics merely as a general aspect, sometimes as
a regulative principle and as a requirement that is based on philosophical ar-
guments. The reason is, that we are confronted in physics with a situation that
is completely different from all philosophical positions mentioned in 9.1.(1–8).
Primarily, we are concerned with laws of nature and we will not discuss here
why these laws are valid. Instead, we have to check whether these physical
laws do fulfil the requirement of causality, can fulfil it, or must fulfil it.86

Hence, we will investigate here several classes of physical laws, in particular

– laws of classical physics (Newtonian mechanics, special relativity, general
relativity),

– laws of quantum physics (Schrödinger dynamics, uncertainty, non-
objectivity).

We will then check whether the various properties of a causality relation men-
tioned in 9.2(1–4) actually pertain to the physical laws in question.

9.3.1 Causality in Classical Physics

(a) Classical mechanics

(1) Newtonian formulation In classical mechanics the spacetime behaviour of
a point-like body, a particle, with the inertial mass m is – in an inertial
system I(xk, t)− governed by the equation of motion

m
d2xi

dt2
= Ki (i = 1, 2, 3)

where xi are the space coordinates of the mass point in I and t the absolute
and universal time coordinate. Ki are the components of an external force.
This ordinary second order differential equation determines the trajectory
xi(t) of the body in spacetime, if for a special value t = t0 initial condi-
tions xi(t0) = x0

i and ẋi(t0) = ẋ0
i for the function xi(t) and for the first

derivative are given. In other words, if for t = t0 the position xi(t0) of the
mass point and its velocity ẋi(t0) are given, then the entire trajectory is
determined by the dynamical law.

In this theory, causality is realised in the following sense: Every effect
{xk(t1), ẋk(t1)} at time t1 has exactly one cause {xk(t0), ẋk(t0)} at time
t0. However, the concepts of cause and effect are somewhat artificial in
classical mechanics. The trajectory of a body is completely determined by
the equation of motion together with the initial conditions and it is merely
a matter of interpretation if we call a point A = {xk(t0), ẋk(t0)} in the
configuration space the “cause” of another point B = {xk(t1), ẋk(t1)} at

86 This point of view is already expressed by Kant’s definition of causality: “Every-
thing that happens, that is, begins to be, presupposes something upon which it
follows according to a rule”. – In our case, the “rules” are the laws of physics.



236 9 Causality and Predictability

a later time, which we call “effect”. This difficulty can, however, in some
sense be eliminated in the Hamiltonian formulation of classical mechanics.

(2) Hamiltonian formulation
In the Hamiltonian formulation of classical mechanics a causality relation
can be found which is perhaps somewhat nearer to the intuitive idea of
causation meaning that what happens at (xA

k , tA) causally effects what
happens at (xB

k , tB). Indeed, what happens at (xB
k , tB) is not “caused”

by the spacetime point (xA
k , tA) alone but also by the forces which act on

the particle in question. This additional aspect can be expressed in the
following way.

First,we replace the Newtonian equation of motion by the Lagrange
equation

∂L

∂xi
− d

dt

∂L

∂ẋi
= 0

with initial conditions xi(t0) = x0
i , ẋi(t0) = ẋ0

i where L(xi, ẋi, t) is a conve-
niant Lagrange function which contains all information about forces that
act on the moving particle. Second, we define new “canonical coordinates”
by

qi(t) := xi(t); pi(t) :=
∂L

∂q̇i

that form the “phase space” Γ(qk, pk) and define the Hamiltonian H(qk,
pk, t)by

H(qk, pk; t) =
∑

pkq̇k − L

which contains all dynamical information. The Hamiltonian equations of
motion

q̇k =
∂H

∂pk
, ṗk = −∂H

∂qk
, −∂L

∂t
=

∂H

∂t

together with the new initial conditions

qk(t0) = q0
k , pk(t0) = p0

k

determine the trajectory {qk(t), pk(t)} of the particle. Making use of the
Poisson operator

X(H) =
∑ ∂H

∂pk

∂

∂qk
− ∂H

∂qk

∂

∂pk

the Hamiltonian equations of motion read

q̇k = X(H)qk, ṗk = X(H)pk

and can be integrated in closed form. Taking together the canonical coor-
dinates qk and pk of the phase space we get

{qk(t); pk(t)} = exp[X(H)(t − t0)] {qk(t0); pk(t0)} .
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This is the most adequate formulation of the determinism of classical
mechanics. The phase space operator exp[X(H)(t − t0)] causes the phase
space point {qk(t0); pk(t0} to move to the phase space point {qk(t); pk(t)}.
In this way the particles trajectory is continuously created by the “causal-
ity operator” COP(H) = exp[X(H)(t − t0)] of classical mechanics.

Wemention briefly some properties of this causality relation contained
in classical mechanics that follow immediately from the equations of mo-
tion.
(1) Obviously, this causality relation is continuous in the sense mentioned

above. If, what happens at A ≡ {qk(tA), pk(tA)} can causally effect
what happens at B ≡ {qk(tB), pk(tB)} with tA ≤ tB , then also every
A′ ≡ {qk(tA

′
), pk(tA

′
)} with tA ≤ tA

′ ≤ tB is a cause of B. The reason
is the continuity of the “causality operator” COP.

(2) The time values tA and tB of cause A(tA) an effect B(tB) fulfil the
relation tA ≤ tB , i.e. the cause is earlier than the effect, in accordance
with the chronology condition.However, in the present case this order
can also be inverted since the event B(tB) determines also A(tA) if
tA ≤ tB . Newtons equation of motion as well as the causality operator
COP are symmetric with respect to time inversion and do not define
a certain direction of time.

(3) Since in classical mechanics the existence of an absolute and univer-
sal time is presupposed, no problems arise with the objectivity of
the causal relation. If two events A(tA) and B(tB) with tA ≤ tB

are causally connected in one system of reference, then they are also
causally connected in any other frame of reference.

(b) Special relativity

(1) The light-cone structure of spacetime
Compared with Newtonian mechanics in special relativity we dispense
with the metaphysical concept of absolute time. Spacetime of special rel-
ativity is best described by a Minkowski space M , i.e. a four-dimensional
pseudo-Euclidean spacetime with signature 2. In the Minkowski spacetime
we must presuppose that there are no gravitational fields. The relations
between physical laws and causality are more complicated here than in
case of Newtonian mechanics but also more interesting. We will briefly
describe the new situation.

The four dimensional Minkowski spacetime (xk, t) is characterised by
its light cone structure. In any inertial system there is a maximal velocity
for the propagation of waves, signals, and in particular for causal chains,
which is given by the velocity of light in vacuum.

The boundary of realisable velocities is then given by the light cone
xk = ct. Two systems of inertia I and I ′ are connected by a Lorentz trans-
formation which leaves the light cone invariant. The light cone structure
allows for a invariant decomposition of spacetime in three completely dis-
tinct regions. In a given inertial system I(xk, t) no effect whatever can
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propagate faster than light in vacuum. Hence if the “cause” is at the point
A {xA

k , tA} then a possible “effect” at the point B {xB
k , tB} can only be

lying in the forward light cone of the point A given by

L+(A) = {∣∣xk − xA
k

∣∣ ≤ c(t − tA), t ≥ tA} .

Inversely, an “effect” at the event point B (xB
k , tB) can be effected only

by cause events A′ lying in the backward light cone of the event B given
by (Fig. 9.2)

L−(B) = {∣∣xk − xB
k

∣∣ ≤ −c(t − tB), t ≤ tB} .

t

(A)L
B

A                        x 

A´(B)L

Fig. 9.2. Cause A and forward light cone; effect B and backward light cone

The light-cone structure leads to the following terminological conven-
tion: Given an event A, the totality of events B which can be influenced
by A, i.e. the events in or on the surface of the forward light cone L+(A)
is called the future of A. The totality of events in or on the surface of the
backward light cone L−(A) is called the past of A. It is obvious that there
is a large region in spacetime which belongs neither to the future L+(A)
nor to the past L−(A) of A. It is called the presence of A. (Fig. 9.3)

Theimportance of this separation of spacetime into future, past, and
present becomes obvious if we consider different inertial systems I, I ′ and
I ′′. An inertial system is a reference system with the special property that
all point-like particles which are not influenced by any force, move along
straight lines in the sense of Euclidean geometry. Usually, we assume that
an inertial system is equipped with clocks and rods and an observer who
registers the measured results. Generally, two inertial systems I and I ′ are
in relative motion, where the relative velocity vI,I′ is constant in time and
always smaller than the velocity of light in vacuum. Two inertial systems
I and I ′ are connected by a Lorentz transformation.
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t

future L+(A)

presence presence

A(x,t) x

past
L–(A)

Fig. 9.3. Past, presence, and future of event A

If we apply Lorentz transformations we find that the light cone remains
invariant. Hence the future of an event A is transformed into the future,
the past into the past and the presence into the presence. The name
“presence” for the large spacetime region can now be explained: For every
event G(xG

k , tG) in the presence of A(xA
k , tA) there exists an inertial

system I ′(xk′ , t′) such that the time values tG
′

and tA
′

are equal and
simultaneous in the usual sense. Simultaneous events are said to be in
“space-like” distance. They cannot be connected by causal interaction.

Special relativity cannot say whether there are causal connections be-
tween two events E and E′ in the Minkowski spacetime. However, if there
are causal connections induced by dynamical laws then Special Relativity
tells us that the events E and E′ have “time-like” distance, which means
that E is lying in or on the surface of the backward – or forward light
cone of E′.87

87 In spite of this clear situation, in the literature we find a very controversial debate
concerning the possibility of backward causation (or retrocausation) in physics.
In 1974 Earman (1974, PDT) argued that classical electrodynamics could pro-
vide examples for retrocausation. In particular, radiation damping was assumed
to lead to pre-acceleration and backward causation. In several papers Grünbaum
(1976, MRE) could show, that the “myth of retrocausation” is based on a misin-
terpretation of the Lorentz–Dirac equation of motion of a charged particle. From
a formal point of view the situation is quite clear. The motion of a charged particle
is correctly described by the coupled Maxwell–Lorentz equations of particle and
field that show no pre-acceleration or backward causation. Only if the field vari-
ables are eliminated in terms of particle variables, additional runaway solutions
appear which must be eliminated by conveniant initial conditions. For details
see the monograph by Rohrlich (1965, CCP), pp. 134–153 and the textbook by
Thirring (1979, CMP), Chap. 2.4.
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(2) Properties of the relativistic causality relation
From these short remarks we can draw some interesting conclusions for
the concept of causality:
1. As in Newtonian spacetime causality is continuous. If A(xA

k , tA) is
in the past of B(xB

k , tB) and A′(xA′
k , tA

′
) is in the future of A but

tA
′
< tB , then A′ is also in the causal past of B.

2. As in the Newtonian spacetime the cause event A is always earlier than
the effect event B, i.e. tA ≤ tB, in accordance with the chronology
condition. However, if we were given two events B and A whose time
values tB and tA fulfil the inequality tA < tB , we could in general not
infer that A is a possible cause of B. The events A and B could have
space-like distance.

3. Since causally connected events have time-like distance, a causality re-
lation is objective in the sense that it holds for any observer. Since a
cause is lying in the backward light-cone of the effect and since the light
cone structure is Lorentz invariant, it follows that a causality relation
between two events is preserved under the change of the inertial sys-
tem. This result is important but surprising only at first glance. For the
derivation of the Lorentz transformation we can proceed in two steps.
In a first step we derive a transformation which fulfils the requirement
of relativity. In this transformation which is not yet fully determined
we have still free choice between two options: First, a transformation
according to which the temporal order of two events is never invariant
and second, the Lorentz transformation which leaves the temporal or-
der of two events with time-like distance invariant. In order to preserve
at least the temporal order of causally connected events, Special Rela-
tivity makes use of Lorentz transformations.88 Hence, it should not be
a surprise that the causality relation is Lorentz invariant.

(3) Digression: Superluminality
Causally connected events A and B that can be used for the propagation of
signals have time-like distance. This means in particular, that we can send
signals from A to B at most with the velocity of light v = c in vacuum.
The well established Lorentz-invariant theories of classical mechanics and
classical electrodynamics confirm this general result. Indeed, particles are
moving on spacetime trajectories always with velocities v < c. Otherwise
their inertial mass would become infinite.

Electromagnetic waves, the most common tool for sending signals
propagate with velocities v ≤ c. In classical physics there is no process
known that could propagate with a superluminal velocity v > c. Never-
theless, we could speculate what would happen, if we were given a process

88 cf. Mittelstaedt (1996, KLM), p. 93, 94.
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that allows for the transmission of superluminal signals89,90 with a ve-
locity vS > c. Elementary calculations show, that two events A and B
which are connected by superluminal signals have space-like distance, i.e.
c2(tB − tA)2 − (xB − xA)2 ≤ 0.

This means that the temporal order of the events A and B is no longer
invariant but can be changed by a Lorentz transformation to another in-
ertial system. Hence the order of cause and effect could be inverted simply
by changing the reference system. There is only one, though speculative
way to resolve this obvious inconsistency. If the superluminal signals with
the velocity vS > c are generally available for the scientific community,
similar as light or radar signals, then the spacetime metric could be re-
established on the basis of these superluminal signals. In this reformulated
spacetime theory that merely replaces c by cS all inconsistencies would
disappear.91 More details about this way of reasoning can be found in the
literature.92

(4) Causal topology
The light-cone structure of the Minkowski spacetime M allows for clarify-
ing some more formal properties of the causality relation. For two elements
x, y ∈ M we define a binary relation C ⊆ M × M and say that for two
elements (x, y) the relation C holds, (x, y) ∈ C, when some signal can
propagate from x to y. In other words, what happens at x can causally
effect what happens at y. It is useful to distinguish two relations of causal-
ity: If C(x, y) and x �= y then we write CP (x, y) and call as before “C”
causal relation and “CP ” proper causal relation CP ⊆ C ⊆ M × M .

The theory of the causal relation is also called causal topology, The
Minkowski spacetime is partially ordered by the causal relation C. This
implies the following properties of the proper causal relation CP ⊆ C.
The relation CP is

transitive CP (x, y) and CP (y, z) implies CP (x, z)
asymmetric CP (x, y) implies ¬CP (y, x)
irreflexive ¬CP (x, x) ,

where we write ¬CP (x, y) for (x, y) /∈ CP .
In accordance with the previously introduced terminology for CP (x, y)

we also say that x is in the past of y or y is in the future of x. If neither
CP (x, y) nor CP (y, x) hold then we say that x and y are in the presence
of each other.

The formal properties of the proper causal relation CP are in accor-
dance with the more general arguments of Sect. 9.4.1. The causal relation

89 Several proposals can be found in the Proceeding of the Workshop on Superlumi-
nal (?) Velocities, Ann. Phys. (Leipzig), 7 (1998).

90 Nimtz, G. (2003, SLT).
91 Mittelstaedt, P. (2000, WSS).
92 Schelb, U. (1998, STA) and the literature quoted there.
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CP is irreflexive, asymmetric and transitive and this without any recourse
to the philosophical arguments mentioned in 9.4.1. This observation shows
again that the causality is not a law of physics but that in some theories a
causal relation can be defined by the valid laws of nature. In the following
section we will describe explicit examples which don’t allow the definition
of a causality relation

There is still an important result to be mentioned: The invariance
group G of the Minkowski spacetime that is composed of
(i) the orthochronous Lorentz group
(ii) the translation group
(iii) the dilatation group
induces the light cone structure of M . The causality relation C based
on this light cone structure defines the causal topology and the causality
group GC . If f : M → M is a one-to-one mapping then we call f a causal
automorphism if both f and f−1 preserve the partial ordering given by
C. In this case we have

C(x, y) ⇔ C(fx, fy) for all x, y ∈ M .

The causal automorphism form a group, the causality group GC . If
M were two-dimensional (1 space coordinate, 1 time coordinate) then GC

would be much larger than G. The reason is that in the case of two dimen-
sions there are non-linear transformations, not contained in G, which leave
the light cone structure invariant. However, if M is the full (3+1) dimen-
sional spacetime, then the additional transformations disappear and the
well known relation G ⊆ GC can be sharpened by the relation G = GC .
In other words, “causality implies the Lorentz group”. This is the content
of the Zeeman theorem.93

(c) General relativity
(1) Riemannian spacetime

If gravitational fields are taken into account then there are no systems
of inertia in the sense explained above. Inertial frames of reference can
be constructed only locally and momentarily as freely falling reference
systems. Since gravitational fields cannot be screened off, there are no
force free particles that – as in the Minkowski spacetime – would propagate
along straight lines in the sense of Euclidean geometry. The substitute
are freely falling point-like particles that are free from non-gravitational
forces. They don’t propagate along straight spacetime trajectories, but
along curved trajectories that can be interpreted as time-like geodesics in
a four dimensional pseudo-Riemannian spacetime of signature 2. Hence,
in the presence of gravitational fields the Minkowski spacetime must be
replaced by the Riemannian spacetime of General Relativity.

The detailed structure of this Riemannian spacetime is determined
by the distribution of gravitational masses in the world and by initial

93 Zeeman, E. (1964, CLG).
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and boundary conditions. The law which connects the metric of the Rie-
mannian spacetime with the sources of the gravitational field and the
boundary conditions is given by Einstein’s field equations. We will not go
into details here and refer to Sect. 6.5.6 of this book and the literature
quoted there. For the present considerations it is sufficient to assume that
we are given a Riemannian spacetime which provides a guiding field94

that determines the trajectories of massive particles and light rays.
As to the causality relation, in a finite region of the Riemannian space-

time the situation is not so different from a Minkowski spacetime. We find
again a light-cone structure, at least locally. To any event point (xk, t) a
light cone is locally defined. This light cone structure is invariant against a
large class of spacetime transformations,95 such that the sequence of past,
presence, and future is preserved. Hence different observers with different
frames of reference will observe locally the same chronological order of
events with time-like distance.

(2) The large scale structure of spacetime
(α) The future event horizon

The situation becomes more interesting if we consider not only finite
regions of the Riemannian spacetime but global solutions of Einstein’s
field equations which describe the entire universe in its complete ex-
tension in space and time. There are many cosmological models of
this kind given by a large variety of Riemannian spacetime mani-
folds. In the Minkowski spacetime we know, that in a given inertial
system an observer O who is located at a fixed space point P (xk,t)
can receive signals from all event points Q of the universe. At any in-
stance t of time the observer can receive signals from all events lying
in the backward light cone L−(xk, t). Also from all other event points
Q′(x′

k, t′) outside this light cone signals can be received. In this case
the observer O has nothing else to do than to wait – and this means
to proceed on its vertical world line (Fig. 9.4). One day, when the ob-
server arrives at an event point P ∗(xk, t∗) the event Q′(x′

k, t′)will be
lying in or on the surface of the backward light cone of the observer
O, i.e. in his causal past.

The large scale structure of a pseudo Riemannian spacetime does
not generally provide this possibility. In the Minkowski spacetime any
future directed time-like geodesic approaches a point i+, called “future
time-like infinity” and originates at i−, the “past time-like infinity”.
In i+ all possible information about the world can be received by

94 The expression “guiding field” was introduced by H. Weyl and is further discussed
in Chap. 6.

95 For the restrictions cf. Sect. 6.4.7.2.
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t P* world line of
observer O

P
x

Q'

L–(P) Q

Fig. 9.4. Minkowski space. An observer at a fixed space point receives signals from
all events of the universe

realisable signals.96 The same global structure can be found in many
Riemannian spacetime models of the universe.

However, there are also cosmological models, i.e. global solutions of
Einstein’s field equations that do not show this large-scale structure.
For example, in a De Sitter spacetime, which locally has many sim-
ilarities with our universe, the global structure is very different. For
an observer P located at x there are regions of spacetime from which
another observer Q located at y could never send signals to P , i.e.
the observer P can never be influenced by the observer Q in a causal
way. The boundary between events that will at some time be observ-
able for P and those that will never be observable for P is called the
“future event horizon”. Consequently, in a De Sitter spacetime this
future event horizon prevents the existence of a “doomsday” at which
all information about the universe could be received and registered.

(β) Closed time-like curves
Another feature of cosmological models that could violate the causal-
ity structure appears when the global solution considered is not time
orientable. Locally, there is no problem in a Riemannian spacetime
since the chronological order is taken from the Minkowski spacetime.
The backward light cone represents the past and the forward light
cone the future. Hence, causality should hold locally. However the
global question is still open since on a large scale closed time-like
curves could exist. Some authors claim that the existence of closed
time-like curves leads to paradoxes and must thus be excluded.97

Indeed, one could imagine travelling round such a curve arriving
back before one’s departure and preventing oneself from starting.

96 In a theologically way of speaking the future timelike infinity could also be called
“doomsday”.

97 Hawking, Ellis (1973, LSS), p. 198.
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Obviously, this argument is conclusive only if we presuppose that the
space traveller has “free will” – a premise that cannot be formulated
in terms of physics. Moreover, the possibility of closed time-like curves
cannot be excluded by general arguments of this kind since there ex-
ist explicit solutions of Einstein’s field equations with closed time-like
curves on a large scale, for instance the Gödel universe. Hence we
conclude that causality cannot be required generally on a large scale.

(γ) The first cause
Within the framework of cosmological models, i.e. global solutions
of Einstein’s field equations that describe an expanding universe, the
time-like trajectories considered as chains of causes and effects can be
traced back to a point where all time-like trajectories coincide. One
could guess that this event may be considered as the “first cause”
in the sense of the traditional philosophy. However, this event is a
singularity that must be excluded from spacetime for mathematical
reasons. Moreover, according to some rigorous results98 this kind of
singularity is unavoidable under very general conditions.

However, this result though rigorously valid, does not invalidate
seriously the search for a first cause. The reason is that in the neigh-
bourhood of the singularity general relativity is no longer the correct
theory for the description of spacetime and must be replaced by quan-
tum gravity, a theory that combines quantum mechanics and general
relativity. More precisely, if we go back in the history of the universe
we finally arrive at the Planck area corresponding to the Planck length
lPl = 1, 62 × 10−22 cm, the Planck time tPL = 5, 4 × 10−44 s, and the
Planck massmPl = 2, 18× 10−5 g. In this area classical physics looses
its validity and must be replaced by quantum physics, in the present
case by quantum gravity.

Within the framework of this theory the creation of matter can
consistently be described by pair production that is induced by fluc-
tuations of a Riemannian vacuum.99 At first sight it seems that we
could continue our search for a first cause and ask for a cause of
the vacuum fluctuations mentioned. It must, however, be emphasised
that for a single quantum mechanical fluctuation a sufficient reason
must not be assumed, not even hypothetically – irrespective of the
fact that the statistical distribution of fluctuations is governed by a
statistical law.100 For our present problem this means that any search
for a first cause of the universe must end here. In other words, there
is no first cause belonging to the evolution of the universe.

98 Hawking, Ellis (1973, LSS), p. 266.
99 Vilenkin, A. (1982, CUN) Creation of Universes from Nothing, Phys. Rev. Lett.

117B, p. 26.
100 The general problem of statistical laws that hold strictly though the individual

processes are not determined by any law will be discussed in Chap. 12.
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9.3.2 Causality in Quantum Physics

(a) Schrödinger dynamics
A quantum mechanical object system S – an atom, a nucleus, or an elec-
tron – is described by a complex separable Hilbert space H(S). The states
of S are given by the set T (H)+1 of positive trace class one operators and
are either mixed states W ∈ T (H)+1 or pure states P [ϕ] that are deter-
mined by unit vectors ϕ ∈ H.P [ϕ] is a one dimensional projection operator
that projects another vector state ψ onto ϕ according to P [ϕ]ψ = (ϕ, ψ)ϕ,
where (ϕ, ψ) is the scalar product defined in H of the vectors ϕ and ψ.101

The observables are given in H by the bounded, linear, self-adjoint op-
erators. The simplest operator of this kind is a projection operator P (M)
that projects onto a subspace M ⊆ H, i.e. on a closed linear manifold
contained in H. Observables given by self-adjoint operators assume sharp
values, either discrete ones or continuous values. Projection operators have
only two values, 0 and 1, and correspond to properties which can pertain
to an object (value 1) or not (value 0). However, the most general type of
observable which is not given by self-adjoint operators allows for unsharp
values and represents a very important tool for many applications and
fundamental questions.102 We will not use unsharp observables and prop-
erties here, since they do not provide new aspects for our present problem,
causality in quantum mechanics.

The simplest situation is given if the physical system S is prepared in
a pure state given by a vector ψ. Generally, this state is time dependent
and we write ψ(t). The law that describes the temporal development of
this “state” ψ(t) is given by the Schrödinger equation

i�
∂ψ(t)

∂t
= Hψ

where H is the Hamilton operator, an observable in H(S) that corresponds
to Hamilton function in classical mechanics. As in this theory H contains
all forces acting on the system. If H does not depend explicitly on t the
Schrödinger equation can be integrated by

ψ(t) = exp
[
− i

�
H(t − t0)

]
ψ(t0)

where ψ(t0) is the initial state at the time t0 < t and U(t, t0) =
exp[− i

�
H(t − t0)] the unitary time development operator. Hence we find

that the state function ψ at time t0 strictly determines the state function
ψ(t) at a later time t > t0. This will be called the Schrödinger determin-
ism.

101 More details about the quantum mechanical formalism can be found in modern
textbooks, e.g. Sakurai (1994, MQM).

102 cf. Busch et al. (1995, OQP) and the literature quoted there.
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At first sight one could get the impression that quantum mechanics is a
deterministic theory in the same sense as classical mechanics. Indeed, the
causality operator exp[X(H)(t−t0)] of classical mechanics seems to be re-
placed here simply by the unitary Hilbert space operator exp[− i

�
H(t−t0)]

of quantum mechanics. There is, however, a most important difference.
The state ψ(t) represents the complete set

∑
t = {P i

ψ(t)} of jointly mea-
surable properties P i

ψ, expressed by projection operators, that at time t
pertain to the system in question either positively or negativly. The set
Σt of these “objectve” properties is always smaller than the set Σ of all
possible properties, i.e. Σt ⊂ Σ. In addition, since the state ψ(t)is time de-
pendent, also the set Σt changes with time. This means that for a certain
property P ∗

ψ (t) ∈ Σt that pertains to S at time t the quantum mechan-
ical causality law could become useless and irrelevant if later at a time
t′ with t < t′ the observable P ∗ is no longer an objective property of
S, i.e. P ∗ /∈ Σt. At subsequent time values t, t′, t′′ we have different sets
Σt,Σt′ ,Σt′′ of properties which are objective with respect to the varying
states ψ(t), ψ(t′), and ψ(t′′) of the system. Since objects are not com-
pletely determined in the sense of Kant103 for a particular property P ∗

there is only a restricted law of causality. In the schematic representation
of Fig. 9.5, P ∗

ψ (t0) determines completely P ∗
ψ (t2), but nothing can be said

about P ∗
ψ (t1), since the property P ∗ is non-objective with respect to the

state ψ(t1). Hence the causality law is restricted to a few time frames and
thus incomplete.

P

P*

    0    1       2 

Σt

Fig. 9.5. Schematic representation of the temporal variation of the set of objec-
tive properties. The causality law is restricted to certain time frames and is thus
incomplete.

(b) Statistical causality
These mainly negative statements about the lack of causality in the devel-
opment of a single quantum system are quite correct. Indeed, if a certain
property P ∗ is not objective with respect to system S in state ψS(t), then
nothing can be said about whether P ∗ pertains to S or not. However, irre-
spective of the correctness of this statement, the property P ∗ in question

103 cf. Sect. 9.1.7.
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can be “measured”. This means that by a dynamical process the state ψS

of S is changed (transformed) into a new state ψS ’ such that P ∗ is ob-
jective with respect to ψS ’. In other words, the observable assumes either
the value 1 or the value 0 which means that P ∗ pertains to S(ψ′) or that
P ∗ does not pertain to S(ψ′), respectively.

We will briefly sketch the measurement process here.104 Let ψ(S) be
the state of S before the measurement – the preparation – and Φ(M)
the preparation of the apparatus M. Furthermore, we consider a discrete
observable A with possible values ai – the eigenvalues – and pure states
ϕA

i – the eigenstates – in which the observable A assumes the values ai.
Formally this means AϕA

i = aiϕA
i . Since a measurement is a dynamical

process the state transformation can be described by a unitary operator
UM – like the time development operator U(t, t0) mentioned above. For
example, if S is already in an eigenstate ϕA

i and the compound state of
S +M reads ϕA

i ⊗Φ then the measurement must lead to the value ai and
the state ϕA

i . Formally this means

UM (ϕA
i ⊗ Φ) = ϕA

i ⊗ Φi

where Φi is the post-measurement state of the apparatus that indicates
the result ai .

If we apply the measurement operator UM to the more general situ-
ation, when S is in the state ψ, we obtain a new state ψ(S + M) given
by

UM (ψ(S) ⊗ Φ(M)) = ψ′(S + M) .

This state ψ′ which is no longer a product state can, however, be decom-
posed into a series of product states ϕA

i ⊗ Φi with coefficients ci = (ϕA
i ,

ψ) given by the scalar product of eigenstates ϕA
i with the preparation ψ,

i.e.
ψ′(S + M) = Σici(ϕA

i ⊗ Φi) .

Hence, by the dynamical process we can achieve that the compound sys-
tem S + M is in a superposition of product states ϕA

i ⊗ Φi, which means
that S is in a mixture of eigenstates ϕA

i but we don’t know in which one.
There is, however an important result which we will briefly mention.

Although the state ϕA
i of S and the value ai of A after the measurement

process are completely unknown in the single case, for a large number
N of A-measurements of identically prepared systems Si in states ψ, the
relative frequency of the result ak, say, is given by |(ϕA

k , ψ)|2 , at least in
the limit N →∝ of an infinite number of trials. Hence, in a measurement
process we cannot determine the result ai in the single case but we can

104 For more details cf. Mittelstaedt (1998, IQM), Chap. 2.
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predict its probability105 p(ψ, ak) = |(ϕA
k , ψ)|2. This strictly reduced kind

of causality was called statistical causality by Pauli.106

Comparing this result with the preceding section (a) we find that in
quantum mechanics there are two serious restrictions of the concept of
causality. Either we have the incomplete causality of the Schrödinger dy-
namics (section a) which is applicable and useful only for a few time-
frames, or we consider dynamical measurement processes and find a
causality that is complete but only statistically applicable and not rel-
evant in a single case (section b).

As to the general properties of the causality relation we find that the
Schrödinger causality (section a) is continuous and the cause is earlier than
the effect. By contrast, statistical causality (section b) is not continuous
but the cause is earlier than the effect also here.

(c) Superluminality
In spite of the well established results in relativistic mechanics and electro-
dynamics in quantum mechanics there are several processes that seem to
contain among others also superluminal phenomena, i.e. processes which
propagate faster than the velocity of light in vacuum. We mention here
three candidates for superluminal processes:
– the quantum mechanical tunnelling process,
– the measurement process,
– the EPR correlations.
1. The tunnelling process

Consider a particle with mass m that is located inside a potential wall
as shown in Fig. 9.6.

More precisely, at time t the wavefunction ψ(x, t) is concentrated
in the region between the potential walls, i.e. in region B defined by
a < x < b. According to the time dependent Schrödinger equation

i�
∂ψ(x, t)

∂t
= − �

2

2m
∆ψ + V (x)ψ

there is a finite probability p(x′, t′) = |ψ(x′, t′)|2 to find by a position
measurement the particle at a later time t′ > t at any point x′ in region
C. The same argument hlds for region A.
This well established result of quantum mechanics is confirmed by
many experimental results, at first by the decay process of a radioac-
tive nucleus,107 and then by numerous laboratory experiments. We will
not go into details here. The question that is relevant for the causality
problem refers to the time that is needed by the particle for the trans-
mission of the potential barrier. Since the velocity of the particle within

105 For the difficult problem whether in quantum mechanics relative frequencies can
be interpreted as probabilities see Sect. 12.2.

106 cf. Laurikainen, K.V. (1988, BtA), p. 32, 33.
107 cf. Gamow, G. (1928, ZQA).
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V V
A B

ψ

C

a b x

Fig. 9.6. Wavefunction ψ in a potential wall

the tunnel is not restricted by the velocity of light, it seems that we
could send superluminal signals using a tunnel barrier. Indeed, we could
send a particle from a source S in direction x first tunnelling through
a barrier B of width b and finally being registered by the detector D.
(Fig. 9.7)

S B D 

x0 b x1 x

Fig. 9.7. Experimental set-up for the transmission of superluminal signals

The time ∆t that is needed by a certain particle to travel from x0

(source) to x1 (detector) will be smaller than the time ∆t∗ which is
needed if the barrier is removed. However, it should be emphasised that
a complete time dependent description of the transmission process is
not yet possible, since a unique time observable is not available in quan-
tum mechanics.108 There are numerous investigations on this problem
but a commonly accepted result could not be achieved.

For superluminal communication the sender (at x0) and the receiver
(at x1) must agree about a certain time frame ∆τ. A one-bit message
could then consist of sending a particle within the time frame ∆τ or
not. The receiver can register a particle at x1 within a slightly delayed
time interval ∆τ′ and thus receive a one-bit signal. Experiments of
this kind were realised with massive particles and with photons.109

There is no doubt that the time δt to cross the barrier is smaller than
b/c and perhaps even 0. However, it is also clear that superluminal
signals cannot be transmitted in this way. Indeed, a simple quantum

108 cf. Busch et al. (1995, OQP), p. 77 ff.
109 cf. Nimtz, G. (2003, OST).
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mechanical calculation by means of the Schrödinger equation shows,
that a particle emitted at x0 can either transmit the barrier or it can be
reflected at the barrier. There is a well defined transmission probability
p(T ) and a probability p(R) for reflecting the particle. Clearly we have
p(T ) + p(R) = 1. This means that in case no particle is registered
in x1 within the time interval ∆τ′, the receiver cannot conclude that
the sender emitted no particle. Also the barrier could have reflected
the particle. Hence, in this case the receiver does not obtain a reliable
signal.

2. The measurement process
Consider again a particle with mass m that at time t0 is spread over
a large region of space, which is described here by the wavefunction
ψ(x, t0). At time t1 > t0 a position measurement will be performed
with the result that S is located at the space-point x1, say. This is,
however, not a stable situation. According to quantum mechanics the
time development of the state ψ(x, t0) leads after a time interval ∆t
to a state ψ(x, t + ∆t) with the following properties: Even if the time
interval ∆t is arbitrary small, for any point x2 in space there exists a
finite probability to register the particle at x2 by a position measure-
ment. Hence, if S is detected at x2 it must have moved with a velocity
v(x1, x2) = x2−x1

∆t . Since ∆t can be made arbitrary small, there is
no limitation for the particles speed which can exceed the velocity of
light and which could – in principle – become infinite.110 It should be
emphasised that this result holds very general and under very weak
assumptions and is not restricted to non-relativistic quantum mechan-
ics.111

This instantaneous spreading of a state can, however, not be used
for the transmission of superluminal signals. Let us assume that the
sender prepares the particle state by localising it in x1 at t1. This
particle will now be used as a one-bit signal. If it arrives in x2 we have
yes (1), if not we have no (0). However, in case no particle arrives at
x2 the receiver cannot decide whether the sender emitted no particle
or whether the particle is now (at t = t1 + ∆t) somewhere else. The
receiver has only a certain probability to detect the particle at place x2

but there is no certainty. On the basis of mere probabilities reliable
communication is not possible. Hence superluminal signals cannot be
transmitted in this way.

3. EPR correlations
The third experimental set-up that is frequently discussed as a means
for superluminal communication is the experiment proposed by Einstein,

110 cf. Schlieder, S. (1971, KRQ).
111 Hegerfeld G. C. (1980, CLS) and (1989, ISQ).



252 9 Causality and Predictability

Podolsky, and Rosen112 and realised first by Aspect et al.113 and re-
cently by Gisin et al.114 Consider two different spin 1/2 systems S1 and
S2 (e.g. proton and neutron) and assume that the compound system
S = S1 + S2 was prepared in a singlett state ψ(S) with total spin 0.
If there is no interaction between the systems S1 and S2 the distance
between the systems can be made very large. In the experiments of
Aspect et al. the distance was 14 m, in the new experiments by Gisin
et al. it is almost 10 km.

If the spin observable σ1(
→
n) in the direction

→
n of system S1 is mea-

sured, then the pure state operator P [ψ(S)] of the compound system S
is transformed into a mixed state W (ψ;

→
n) that describes the two pos-

sible outcomes. There is a strong correlation between the measurement
results µ{σ1(

→
n) and µ{σ2(

→
n)} such that

µ{σ1(
→
n) = ±1 ↔ µ{σ2(

→
n)} = ∓1

This means that if σ1(
→
n) was measured with the result s1 = +1, then

a measurement of σ2(
→
n) will lead with certainty to the result s2 = −1.

If the second measurement refers to a spin observable σ2(
→
n′) with

a different direction
→
n′ then one can no longer predict the result with

certainty. In this case quantum mechanics provides only the conditional

probability p(
→
n ;

→
n′) for obtaining the result µ{σ2(

→
n′)} = −1 on system

S2 if µ{σ1(
→
n)} = +1 was measured on system S1.

Generally, quantum measurements are performed by observers who
are equipped with measurement apparatuses. Here we have two ob-
servers O1 and O2 and apparatuses M1 and M2 for measurements of

the observables σ1(
→
n) and σ2(

→
n′), respectively. We will assume here

that the compound system has a large extension and that the subsys-
tems as well as the observers O1 and O2 have a macroscopic distance
R. In the experiments mentioned the distance R is 14 m and about
10 km. Quantum mechanics does not state that after the first mea-
surement of σ1(

→
n) with the result s1 = +1 performed by observer O1

the second observer O2 has to wait for some time interval ∆t before
he can obtain the result s2 = −1 of a σ2(

→
n) measurement with cer-

tainty. One could think that this instantaneous action at a distance is
not in accordance with the relativistic limitations of velocities between
cause and effect. Indeed, since the arguments presented here are based
on non-relativistic quantum mechanics, they are not fully convincing.
However, the same result can be obtained within the framework of

112 Einstein et al. (1935, CQD).
113 Aspect et al. (1982, ETB).
114 Gisin et al. (2000, OQN).
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Lorentz invariant quantum field theory.115 Hence from a theoretical
point of view there are no doubts in the reliability of our results. More-
over, experimental estimations for the velocity of the causal process
between the σ1(

→
n) measurements and the σ2(

→
n) measurement led to

the result116 that the cause–effect velocity vce clearly exceeds the ve-
locity of light and can be estimated by vce > 2/3107c.

There is still an open question. Can the instantaneous correlations in EPR
experiments be used for the transmission of superluminal signals? This prob-
lem is intensively discussed in the literature since 1970 and led to a result
which we will briefly sketch here. Let us presuppose the locality axiom of
quantum field theory claiming that two local observables A1 and A2 which
are measurable by two observers O1 and O2 in spacetime regions R1 and R2

with space-like distance, commute, i.e. [A1, A2] = 0. If we apply this axiom

to the EPR experiment we find that σ1(
→
n) and σ2(

→
n′) must commute. This

result has far reaching consequences for the possibility of superluminal signals.
The sender O1 could try to send a one-bit signal to O2 by the alternative

(measurement of σ1(
→
n) – no measurement) and the receiver O2 has to find out

whether O1 performed a measurement or not. By means of a single measure-
ment O1 cannot send a signal to O2. If O1 obtains the result µ{σ1(

→
n)} = +1,

say, then O2 obtains the result µ{σ2(
→
n) = −1. However, this result does not

contain any useful information. If O2 measures σ2(
→
n) then he will obtain in

any case one of the two values ±1 and it does not matter whether O1 has
performed a measurement or not.

In a next step the sender O1 could try to send a one-bit signal by perform-
ing a sequence of N � 1 σ1(

→
n) measurements or not. In this case O1 obtains

a sequence of N results µ{σ1
→
n)} = ±1 with probabilities p(±) = 1/2 . How-

ever, irrespective of the special results, any σ1(
→
n) measurement transforms

the pure state P[ψ] of the compound system into the mixed state W(ψ,
→
n)

mentioned above. The receiver O2 could try to find out whether or not O1 has

made a series of measurements by measuring the spin observable σ2(
→
n′) in a

different direction
→
n′ �=→

n many (N) times. In this way O2 can determine the

expectation value σ2(
→
n′) with respect to W (ψ,

→
n). If the expectation value

of σ2(
→
n′) with respect to P [ψ] – without measurement − and to W(ψ,

→
n)

were different, then O2 could decide whether O1 has made a series of σ1(
→
n)

measurements, and in this way receive a one-bit signal.
However, there is an important argument that seems to show that the two

expectation values are equal and hence a signal cannot be received in this

way. As mentioned above the locality axiom implies that σ1(
→
n) and σ2(

→
n′)

115 Schlieder, S. (1971, KRQ).
116 Gisin N. et al. (2000, OQN), p. 836.
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commute. Furthermore, according to a theorem by Lüders117 it follows that

for commuting operators σ1(
→
n) and σ2(

→
n′) the expectation values of σ2(

→
n′)

with respect to the states P [ψ] and W (ψ,
→
n) agree. Hence, O2 cannot find out

whether O1 has made a series of measurements or not, and consequently O2

cannot receive signals in this way. – There is, however, one weak link in this
chain of arguments. The locality axiom of quantum field theory is an assump-
tion that is usually justified118 by the argument that it excludes superluminal
quantum signals. Obviously, this is a vicious circle and the question whether
EPR correlations can be used for superluminal signals cannot be answered in
the way described and is still open.

Summarising the results of this section (c) we find that the known quantum
mechanical processes that propagate faster than light – tunnelling processes,
measurement processes, and non-local EPR correlations – do not allow for
superluminal signals. For tunnelling and measuring processes this result is
well established. However, in case of EPR correlations the locality axiom must
be presupposed, which has no independent justification.

9.4 Do all Laws of Nature Imply Predictability?

Concerning terminology we say that a prediction is a statement about a fu-
ture event. It is a scientific prediction if it is made in a scientific context
with the help of laws and interpreted data about past events and possibly
some additional conditions. We say that a law implies predictability if the law
together with suitable initial, boundary and possibly other additional condi-
tions, which describe a certain event (state) of some physical system, logically
imply predictions which describe some future events (states) of that system.

9.4.1 Arguments Pro

9.4.1.1 If every law of nature describes the time development of state S1 into
state S2, then this development needs time and cannot proceed faster than
with a certain finite velocity. Thus S2 is always a future state w.r.t. state S1.
But describing a future state means to predict it.

Therefore every law of nature that describes the time development from
S1 into S2 implies predictability.

9.4.1.2 Every law of nature represents some causal relation (even if not always
the same one or to the same extend), as was shown in Sects. 9.2 and 9.3. Now
every causal relation satisfies the condition of temporal order such that the
effect lies in the future relative to its cause. But this means to predict the
effect with the help of the cause and the law.

117 Lüders, G. (1951, ZMP).
118 Schlieder, S. (1968, ZML).
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Therefore every law of nature implies predictability.

9.4.1.3. According to Chap. 7, all laws are either dynamical laws or statistical
laws. Now with the help of dynamical laws we can predict both the behaviour
of the whole system and the behaviour of a single part (of a single trajectory);
whereas with the help of statistical laws we can predict the behaviour of the
whole system (for example towards an equilibrium), but not of a single part.

Therefore all laws of nature imply predictability.

9.4.2 Arguments Contra

9.4.2.1 The motion of dynamical chaos is ruled by dynamical laws. But the mo-
tion of dynamical chaos is not predictable. Hence those dynamical laws which
underlie and rule the motion of dynamical chaos, do not imply predictability.

Therefore not all laws of nature imply predictability.

9.4.2.2 In quantum mechanics there are processes that proceed with arbitrary
velocity and whose final state cannot be predicted. E.g. assume that the posi-
tion of a particle (electron, proton, etc.) is measured at time t1 with the result
x1. After an arbitrary small time interval ∆t = t2 − t1 > 0 we can find the
particle at any place x2 in space, but the value x2 cannot be predicted by the
laws of quantum mechanics.

Therefore not all laws of nature imply predictability and not all laws of
nature require velocities smaller than the velocity c of light in vacuum.

9.4.3 Proposed Answer

Not all laws of nature imply predictability. This is so even if we distinguish
different types of predictability according to the differences of dynamical and
statistical laws.

9.4.3.1 Different Types of Predictability

The first and strongest kind of predictability is expressed in the quotation of
Laplace (Sect. 7.2.1.2). It can be expressed also by the following version which
will be called L-predictability:

L-predictability: The state of any closed physical system at any given future
instant of time can be predicted with any specified degree of precision, by
deducing the prediction from dynamical theories (systems of dynamical
laws), in conjunction with initial conditions of which the required degree
of precision can always be calculated.119

119 cf. Popper (1982, OUn), p. 36. To avoid misunderstanding we have to mention
first that Popper uses the above text to define scientific determinism. Secondly, we
skipped the phrase “even from within the system” after “predicted”. This phrase
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Observe first that, since dynamical laws are involved, conditions D1 and D2
(Sect. 7.2.3.2) have to be satisfied. In addition, L-predictability contains the
following important assumptions:

(i) it refers to any closed physical system,
(ii) it says that any required degree of precision concerning the initial condi-

tions can always be calculated,
(iii) it says that the future state can be predicted with any specified degree

of precision.

(i): This condition is too strong, since L-predictability does not refer to
thermodynamical systems or systems of radiation or quantum mechanical
measurement processes, etc. Therefore (i) has to be restricted, and it seems
most suitable to restrict it to systems of classical mechanics.

(ii): Also this condition is too strong in the sense that even a very high
degree of precision does not guarantee L-predictability if not in addition con-
dition D4 (Sect. 7.2.3.2) is satisfied.

(iii): The degree of precision depends on the degree of precision with which
the initial conditions can be calculated and therefore in turn depends on the
satisfaction of D4.

If these restrictions are granted, then L-predictability is possible for clas-
sical mechanics and special relativity, as it was shown in detail in Sect. 9.3
above by describing the causal relations in this area of physics. Moreover, if the
principle of causality CP1 is satisfied (cf. 9.2.4.1), then also L-predictability
is possible. Concerning quantum mechanics, the same holds for Schrödinger
dynamics, as it is transparent from Sect. 9.3.2a) above. However, it will be
shown below that even in the field of CM there are exceptions for a form of
L-predictability which, although it is restricted w.r.t. (i), does not satisfy D4.

Concerning predictability with the help of statistical laws, we have to dis-
tinguish three levels of description. According to the distinctions made in
7.2.3.1, the physical system described by statistical laws may be investigated

is especially connected with Popper’s interpretation of Laplace, since he inter-
prets Laplace’s “intelligence” (usually, but wrongly called “demon”) as a human
superscientist who cannot “ascertain initial conditions with absolute mathemat-
ical precision” (p. 34) and who belongs to the physical world. This weakening of
Laplace’s intelligence is certainly not extractable from the text and context. But
as Earman (1986, PDt, p. 8f.) thinks, Popper uses it to show that also Classical
Physics in the understanding of Laplace exhibits some physical systems which
are not deterministic. However that may be, we want to stress that the phrase
“even from within the system” (i.e. Laplace’s intelligence belongs to the physical
system) is problematic on independent reasons: As has been pointed out already
in Chap. 7, note 14, an intelligence that knows the state in all details (as Laplace
says) cannot belong as a part to the physical system. Thirdly, we inserted “dy-
namical” since it is clear that the laws Laplace had in mind are dynamical laws.
Here we use Popper’s description only because it contains important assumptions
in connection with prediction, as will be discussed below.
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only on the macroscopic level. Such is a kind of “phenomenological” ap-
proach concerning Classical Thermodynamics. Secondly, the physical system
described by statistical laws can be studied at the microlevel with the focus
to use the behaviour at the microlevel as the explanatory structure of the
behaviour at the macrolevel. In this case the macroscopic magnitudes like
temperature or entropy of the system are interpreted as determined by the
dynamic behaviour of the microscopic particles. But statistical laws cannot be
reduced generally in that sense to dynamical behaviour of single particles as
shown in Sects. 7.2.3.4 and 12. below. Therefore on a third level the statisti-
cal laws can describe the respective property definitely and objectively w.r.t.
to a huge ensemble of particles, although the attribution of this property to
the individual particle is objectively undetermined. This happens concerning
both, statistical mechanics and quantum statistics.120 Accordingly we pro-
pose two further forms of predictability for statistical mechanics (for example
thermodynamics) and for quantum statistics:

S-predictability: The macrostate of a physical system containing a huge num-
ber of single objects (particles) can be predicted at any given
future instant of time with sufficient degree of precision (in
the best case with probability = 1) by deducing the pre-
diction from statistical laws in conjunction with some con-
servation laws plus initial conditions (about the number of
particles, their mean energy, etc.)

Q-predictability: The property attributed to a large number of particles of
a quantum system (containing a large number of particles)
can be predicted at any given future instant of time with
sufficient degree of precision (in the best case with proba-
bility = 1) by deducing the prediction from statistical laws
in conjunction with QM postulates concerning the measure-
ment process.121

9.4.3.2 Chaotic Motion Violates Predictability

We are discussing here the violation of predictability in dynamical sys-
tems which show chaotic behaviour in the sense of dynamical (deterministic)
chaos.122 However, we shall not go into a discussion of quantum chaos,123

which deals with quantum systems which cannot be described by wavefunc-
tions satisfying Schrödinger’s equation. Moreover, we cannot discuss here
chaotic phenomena in large Poincaré systems (cosmology).124 The chaotic

120 For details see Sect. 12.2 below.
121 For details see Mittelstaedt (1998, IQM), p. 11ff. and 43ff. and Sect. 12.3.2 below.
122 For different areas of research on dynamical chaos see Berry et al. (eds.) (1987,

DCh) and Prigogine (1995, GCh).
123 For Quantum Chaos cf. Casati, Chirikov (1994, QCh) and Chirikov (1991, TDQ).
124 cf. Prigogine (1993, TDC) and Fahr (1997, WKS).
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motion of both types has properties which differ from those of dynamical
chaos—ff. The discussion of dynamical chaos will proceed in three steps: First,
by discussing an important experiment. Second, by describing properties of
chaotic motion. Third, by dealing with the violation of predictability.

(1) The chaotic pendulum
Chaotic behaviour was discovered theoretically (or mathematically) by
Hadamard and Poincaré,125 and experimentally by E. N. Lorenz126 concern-
ing meteorological and fluid phenomena and only at latest concerning solid
mechanical systems, like the pendulum.127 The experiment with the spheri-
cal pendulum shows that even those physical systems which have been un-
derstood as ideally satisfying the dynamical laws of classical mechanics, can
become chaotic in a strong sense.

The spherical pendulum has a certain type of stability (cf. 7.2.3.2, D4,
and 9.4.3.2(1)). Assume we make very small changes in the initial states, say
within a neighbourhood distance of ε. Then the distance of the state h(ε) is
proportionally small (no more than a linearly increasing function of time).
This kind of stability with respect to small perturbations is called “perturba-
tive stability” which holds in many linear systems. The very important false
belief of most scientists until 1970 was that this holds also for the general
case.

The important new discovery is now that this simple physical system be-
comes chaotic if the top end is forced to move back and forth (maximal dis-
placement ∆) with a slightly different period T greater than T0, provided that
∆ is about 1/64 of l and not more than about a tenth of the energy of motion
is dissipated by damping (air resistance, etc.). Miles (1984) showed experi-
mentally that the system is chaotic for values of T = 1.00234T0. It has to be
emphasised however that this does not just mean that the system becomes
unstable in the sense of simple bifurcation. Instability in the sense of simple
bifurcation has been known for a long time. In this case the pendulum weight
makes a back and forth oscillation in the same plane and by forcing the upper
end this movement begins to be unstable. Such a simple bifurcation, where
the plane is not changed, occurs when T = 0.989T0 and slightly above. But
for T = 1.00234T0 the pendulum is breaking out of the plane, the number of
further bifurcations is arbitrarily increasing, the dependence on initial condi-
tions is completely random such that there is no predictability (or only for
very short times).128

125 Hadamard (1898, SCO). cf. Ruelle (1991, CCh), Chap. 8. and Popper (1982,
OUn), p. 39f. Poincaré (1892, MNM).

126 Lorenz (1963, DNF).
127 Miles (1984, RMS). cf. Lighthill (1986, RRF).
128 In view of this discorvery Lighthill made the acknowledgement cited in

Sect. 7.2.3.2, note 34.
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(2) Properties of chaotic motion
(a) Sensitive dependence on initial conditions
This is certainly one of the most important characteristics of chaotic behav-
iour. And it is taken by some as its defining property.129 But there are phe-
nomena which have that property without being chaotic, as one can see from
Maxwell’s example (cf. 7.2.3.2, note 37). Therefore this condition (sensitive
dependence on initial conditions) cannot be a sufficient condition of chaotic
behaviour (motion). But it is certainly an important necessary condition. This
important property is measured by the so-called Ljapunov exponent Λ. In fact
the Ljapunov exponent measures two things:

(i) It measures the (exponential) separation of adjacent conjugate points
(conjugate in respect to the starting point x0):

x0 x0 + ε N iterations f N(x0) f N(x0 + ε)
…

ε ε · eNΛ(x0)
⇒  ⇒

This description of stretching of the distance between closely (ε) adjacent
points corresponds to a one-dimensional Poincaré map. In real motion the
stretching occurs in three dimensions. Then it must be measured by the
sum of positive Ljapunov exponents, which is equal to the Kolmogorov
entropy (see below).

(ii) The Ljapunov exponent measures also the average loss of information(I0)
about the position of a point in an interval [0, 1] after one iteration.
Assume [0, 1] separated into n equal intervals such that x0 occurs in each
of them with probability 1/n. The answer to the question which interval
contains x0 is then:

I0 = −
∑n

i=1

1
n

ld
1
n

= ldn (where ld is the logarithm to the base 2)

With decreasing n the information I0 is decreasing, too, and I0 = 0 for
n = 1.

Concerning the information presented by a trajectory the Alekseev–
Brudno theorem is worth mentioning: The information given with a trajectory
of a certain length of time (its algorithmic complexity per time unit) is as-
ymptotically equal to the metric entropy.130

(b) Superposition does not hold
Chaotic behaviour in the sense of classical dynamical chaos requires physical
systems whose equations are non-linear, i.e. the superposition principle does

129 “Chaos is thus the prevalence of sensitive dependence on initial conditions, what-
ever the initial condition is.” Ruelle (1990, DCh), p. 42. cf. Farmer (1985, SDP).

130 cf. Brudno (1983, ECT) and Chirikov (1996, NLH).
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not hold since the exponential instability (positive Ljapunov exponent) is
non-linear.131

It is worth mentioning though that not every chaotic behaviour is non-
linear. An example is linear wave chaos in quantum mechanics.132 Thus non-
linearity is a necessary condition for classical dynamical chaos, but for chaotic
behaviour in general it is neither necessary, nor sufficient. In general it holds
that if the equations of motion are non-linear, then the superposition principle
does not hold. However, there are a few exceptions.133

(c) Non-periodicity
This property of chaotic motion was already described in Sect. 7.2.3.2 in
connection with condition D3.
(d) Bounded motion
Chaotic motion is bounded. This means that the number of degrees of free-
dom is limited in different ways depending on the kind of chaotic motion.
These limitations make the motion – roughly speaking – “oscillatory” in time
between stable points (fixed points), whose number multiplies in dependence
of certain parameters. One speaks of “folding” with respect to an interval,
whereas the exponential separation of adjacent conjugate points (Ljapunov
exponent > 0) is called “stretching”. Another possibility is that a trajectory
becomes attracted to a bounded area of phase space, i.e. to a so-called “strange
attractor”,134 within which there is exponential separation of adjacent conju-
gate points.

Theoretically the boundaries are usually described as Neumann or Dirich-
let conditions. In the practical experimental application they may mean for
example the size of the system, the number of rolls in a fluid layer of a Bénard
experiment, the diffusion coefficients in a chemical experiment etc.
(e) Continuous spectrum
The Fourier spectrum of chaotic motion, which is aperiodic, is continuous and
its phase space is continuous (the Poincaré map shows space-filling points,
cf. 7.2.3.2, D3). Regular motion on the other hand, which obeys conditions
at least D1, D2 and D4, has a discrete spectrum. If we count the number
of degrees of freedom (for example these may correspond to the number of

131 There are famous examples in physics of laws or of the respective physical sys-
tems which satisfy the superposition principle. Some of them are the following:
acoustic waves, electromagnetic phenomena (time dependent Maxwell equations),
optical phenomena, Michelson experiment (independence of the light velocity in
respect to moved reference frames). This experiment works only if interference
(superposition) is possible. Schrödinger’s equation is a linear differential equation.
Quantum phenomena are explained with probability amplitudes which can have
superpositions. In fact most fundamental equations of QM are linear so far.

132 cf. Chirikov (1992, LCh).
133 For example stable solutions of one dimensional non-linear wave equations, so-

called solitons.
134 cf. Ruelle (1980, StA) and the example of the Henon attractor as an explanation

of increasing error in Sect. 11.1.3.5(3) below.
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rolls of a fluid layer in the Bénard experiment) by the number of Fourier
components, then already in an unstable motion at least one such component
is continuous. It should be added that quantum chaos violates the condition
of the continuous spectrum of the motion and that of continuous phase space.
In connection with the uncertainty principle (which allows only a finite size
of the elementary cells of phase space) the frequency spectrum of quantum
motion is discrete for the motion bounded in phase space.
(f) Change of the variables of the system
A further necessary condition for chaotic behaviour is the permanent change
of the important variables of the system. For example in the case of the forced
pendulum the change of the amplitude, in the case of a fluid under heat the
change of the conductivity of heat in the layers of the fluid. Although these
magnitudes remain within a minimum and maximum value they do not recur
in the course of time.
(g) Non-integrability
Until Poincaré’s discovery to the contrary it was a hidden assumption that
all dynamical systems are integrable. And indeed the two body systems like
the system sun–earth are integrable in this sense. But if a third body is in-
corporated (like in the system sun–Jupiter–earth) the system is not anymore
integrable. Even less so for the general case of many-body systems. This was
the famous prize question of King Oscar II of Sweden of 1885:

“For an arbitrary system of mass points which attract each other
according to Newton’s laws, assuming that no two points ever collide,
give the coordinates of the individual points for all time as the sum
of a uniformly convergent series whose terms are made up of known
functions.”

The prize was given to Poincaré for his great work “Les Méthodes Nouvelles
de la Méchanique Celeste”. However, he did not really solve the problem, but
gave reasons that such series do not exist, i.e. that contrary to the expectation
these series of perturbation theory in fact diverge.135

The prize question was partially answered by Kolmogorov in 1954 and
solved by his pupil Arnold in 1963. A special case of it was answered by

135 That a prize should be given for an important mathematical discovery was sug-
gested to the King by the Swedish mathematician Mittag-Leffler. The special
prize question was proposed by Weierstrass (the committee consisted of Weier-
strass, Hermite and Mittag-Leffler). cf. Moser (1978, SSS). Weierstrass himself
was surprised about Poincaré’s answer because he arrived (earlier) at the op-
posite answer. He showed that Poincaré did not in fact prove his result. Today
it is known that for very special frequencies such series may in fact converge.
cf. ibid. p. 70f. For some of the historical questions concerning that matter cf. the
letters of Weierstrass to Sofia Kowalevskaya, Weierstrass (1993, BKW) especially
the letter of 15.08.1878, ibid. p. 226ff.
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Moser. Hence the name KAM theorem.136 It gives an answer to the question
whether an integrable system (with an arbitrary number of degrees of freedom)
survives weak perturbation. The theorem says that the answer is positive
and that the invariance with respect to small perturbation or the stability is
proportional to the degree of irrationality of the rotation number r (= the
ratio of the motion frequency w, to that of the perturbation 2π) of the curve
of the trajectory. This has led to a new (weakened) concept of stability which
holds for the majority of the orbits; i.e. the majority of solutions (for the
respective differential equations) are quasiperiodic.

A criterion of integrability was first given by the Russian mathematician
Sofia Kowalevskaya in 1890:137

Let x(t, x0) be a function describing the motion of a dynamical system,
where x0 are the initial conditions (the position of the system at t = 0). Let
the function x(t, x0) have a pole at tp = t1 ± iΛ in the complex t plane, where
Λ is the Ljapunov exponent.Then the system is integrable if every tp depends
on x0. Now chaotic behaviour (motion) is non-integrable and therefore its
poles do not depend on x0 and specifically Λ does not depend on x0.

It should be mentioned, however, that there are weak kinds of chaos or
“quasi-chaos”, where integrability holds like in Quantum Chaos. A somewhat
stronger case is partial integrability (KAM integrability) when an integrable
system is exposed to weak perturbation, but is resistant. In this sense inte-
grability (non-integrability) can be used to distinguish levels of disorder in an
arrangement beginning with full integrability via KAM integrability to chaos.

Accordingly we may distinguish three levels of increasing disorder and
complexity:

(i) Complete integrability: This level of maximal order is characterised by a
stable and dynamically predictable motion in terms of individual trajec-
tories (recall conditions D1–D4 of 7.2.3.2).

(ii) KAM integrability: On this level the system is still integrable under suf-
ficiently weak perturbation. Different degrees of disorder on this level
correspond to a non-zero Kolmogorov entropy K (see below). In this
sense KAM describes degrees of partial integrability. However, the non-
integrable part is restricted to an exponentially narrow chaotic behav-
iour.138

(iii) Strong chaos: K > 0 and in the limiting case K → ∞. The motion spec-
trum is purely continuous (cf. (e) above) and the individual trajectory
is most complicated like in the example of the chaotic pendulum (cf. (1)

136 The KAM theorem was proved in: Kolmogorov (1954, CCP), Arnold (1963, SDP)
and Moser (1967, CSE).

137 cf. Chirikov (1991, TDQ), p. 450. For different levels of integrability see Chirikov
(1991, PCh) and Prigogine (1993, TDC).

138 KAM integrability has also an important connection to adiabatic invariance. cf.
Chirikov (1987, PCA).
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above). Nevertheless the dynamical equations can still be applied and
statistical properties of the unstable motion can be proved.139

(3) Violation of predictability
As will be clear from the three levels of integrability distinguished above
predictability is not violated on the first level; but it is partially violated
on the second and completely violated on the third. Since many dynamical
systems show weak perturbation and weak chaotic behaviour,140 the second
level of KAM integrability with its different degrees is rather important for
the question of predictability. In fact the Kolmogorov entropy (K) can be a
measure for predictability. K is a measure of the degree to which a dynamical
system is chaotic. For one-dimensional maps, K measures the same as the
positive Ljapunov exponent. For higher dimensional systems K is equal to
the average sum of all the positive Ljapunov exponents.141 It was already
mentioned that the Ljapunov exponent measures both, the loss of information
about the system, and the exponential separation of adjacent conjugate points
(recall (2a) above). Moreover, K can be defined by Shannon’s measure of
information in such a way that K is proportional to the degree of loss of
information of the state of the dynamical system in the course of time.142

Thus it is plain that K is also a measure of the (average) rate for the loss of
information of a dynamical system with the evolution of time. In consequence
of that, K is also a measure of predictability: it is inversely proportional to
the length of time over which the state of a chaotic dynamical system can be
predicted.

From the considerations in this Chap. (9.4.3.2) it can be grasped that the
following principles are violated if chaotic motion is present:

(i) In case of strong dynamical chaos: Principles of causality CP1, CP4 and
L-predictability. On the other hand principles CP2 and CP3 are satisfied.
S-predictability and CP4 may partially be satisfied for some statistical
properties of the unstable motion.

(ii) In case of weak dynamical chaos corresponding to a certain degree of
KAM integrability: CP2 and CP3. The principle of causality CP1, L-
predictability and S-predictability may be satisfied at least for some mod-
est positive values of K.

139 cf. Ornstein, Weiss (1991, SPC).
140 For example Laskar (1994, LCS) and others showed that the orbits of the first

four planets are partially chaotic; Merkury most (as can be expected because of
being closest to the sun), second (unexpectedly) Mars, Venus third, whereas the
earth is the most quiet.

141 This was shown by Pesin (1977, CLE).
142 cf. Farmer (1982, IDP).
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9.4.4 Answer to the Objections

9.4.4.1 (to 9.4.1.1) It is correct to say that every law of nature which de-
scribes the time development of state S1 into state S2 implies some kind of
predictability. But it is not correct to say that this predictability can be arbi-
trarily strong or complete. Thus for instance in the case of strong dynamical
chaos there is no L-predictability and no L-predictability of a single trajectory
except for an extremely short time.

9.4.4.2 (to 9-4.1.2) Although every law of nature represents a causal relation
which satisfies temporal order it does not follow from this that the respective
causal relation is strong enough, like CP1, to allow L-predictability including
predictability of single trajectories. Moreover, the discovery and analysis of
dynamical chaos leaves the following question still open: Are there causal
relations other than those characterised by the principles CP1 to CP4, which
guide the trajectories of chaotic motion in such a way that predictability of
them is impossible? Such causal relations may pertain to laws which we have
not discovered yet.

9.4.4.3 (to 9.4.1.3) It is correct to say that all laws of nature imply some kind
of predictability if by “predictability” it is only meant that some statistical
properties of the motion (process) in question can be predicted for a suffi-
ciently short future. This, however, is a very weak statement based on a very
weak concept of predictability, although it is then also satisfied by chaotic
motion.



10

Laws and Objects

In natural sciences and in particular in physics we usually make use of a
dualistic picture for the description of the observed phenomena: There are two
clearly distinguished entities, the objects of experience and the laws of nature,
where the behaviour of objects is governed by laws of nature. In classical
mechanics the spatio-temporal behaviour of mass points is determined by
Newton’s law of motion. In particular, the trajectories of planets in our solar
system are determined by Kepler’s laws. The same picture is used in quantum
mechanics. The objects, i.e. atoms, electrons, neutrons, etc. are governed by
the fundamental law of quantum mechanics, the Schrödinger equation which
provides a unitary time development of the quantum mechanical state. The
lack of individuality does not invalidate the dualistic schema. The behaviour of
a neutron, say, is determined by the Schrödinger equation even if the neutron
cannot be individualised. In this case, the law holds for an element of the kind
“neutron” but not for a particular one.

In the following sections we will investigate the intricate question whether
there are really two well distinguished entities, laws and objects, or whether
there is an ontological priority of one of these components with respect to the
other one. In physics and philosophy, we find several different answers to this
question, some of which will be briefly discussed here.

10.1 Are Objects of Experience Governed
by Laws of Nature?

10.1.1 Arguments Pro

The assumption that there are single entities which constitute the reality can
be traced back to Aristotle. In Metaphysics Z and H Aristotle distinguishes
its form (eidos) and its matter (hyle). Generally, we assume that a given ob-
ject preserves some properties which characterise the object as such, whereas
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other properties may or may not pertain to the object without thereby inval-
idating its persistent identity. A certain stone may change its temperature or
change its position in space without thereby loosing the properties that deter-
mine this particular stone. Hence, we can distinguish two kinds of properties,
the essential properties that determine the object as such and the accidental
properties that are varying in time. However, it is not meant, that there is
first a well-defined object and in addition essential and accidental properties,
which may pertain to it. Instead, according to the Aristotelian ontology the
object is constituted by those properties that characterise and determine the
object irrespective of the varying accidental properties. Hence, it seems to be
correct to identify these essential constituents with the form of the object.1 In
the behaviour of these objects we find regularities which we would call today
“laws of nature”. In the Aristotelian philosophy the principles2 (archai) which
determine the behaviour of the objects, in particular their natural motion, are
not reduced to anything else3 but considered as independent entities.

It is a controversial question whether the form in the Aristotelian ontology
refers to a certain kind of objects and hence to a class of things or whether the
form refers to an individual object.4 In the former case an additional principle
of individuation is needed for characterising an individual object. In the latter
case, individuality of the form means distinguishability of a given object from
other objects and re-identifiability at a later time by the form.

The idea that the form determines an individual object was taken up by
Duns Scotus and later in particular by Leibniz. For Leibniz an individual ob-
ject is uniquely characterised by its essential or “internal” properties, which
are contained in the “complete concept”. Moreover, the “external” proper-
ties like position and velocity can be deduced from the complete concept. In
addition, the internal properties determine also the history of the object, i.e.
its temporal development. This means that in the philosophy of Leibniz the
behaviour of individual objects is governed by laws, which follow from the
corresponding complete concept. Hence, for Leibniz there is an obvious on-
tological priority of objects compared to laws (of nature), which appear as
derived entities.

Without any explicit recourse to the philosophical tradition in contem-
porary physics many scientists assume a position which could be considered
as a naive realism: There are objects, atoms, molecules, macroscopic bodies,
planets, stars, etc. with observable properties, and in addition there are laws
that govern the behaviour of the observable properties and in particular the
spatio-temporal motion of the objects considered. In other words, objects exist
together with properties, even if there are no laws, which govern the behaviour
of the variable properties. Hence, objects are considered to be ontologically
1 Frede, M., Patzig, G. (1988, AMP) p. 44, 45
2 Wieland (1970, APh), p. 231
3 Wieland 1.c. p. 64
4 Frede, Patzig l.c.
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prior to the laws of nature, which appear in this picture as independent and
contingent structures.

Summarising the philosophical positions of this Sect. 10.1.1. we find that
objects of experience are governed by laws of nature.

10.1.2 Arguments Contra

There are serious doubts whether in addition to observed qualities there are
some entities, things, or objects, which possess the qualities mentioned as their
properties. In his Treatise of Human Nature (1739) David Hume emphasised
that we never observe objects directly but only qualities and that it is nothing
but imagination if we regard the observed qualities as properties of an object.
Hence, any scientific cognition begins with the observation of qualities and it
seems to be merely a question of interpretation whether in addition to the
observed phenomena a fictitious object, “an unknown something”5 is used for
the interpretation and formulation of the experimental results. Consequently,
within this scepticism, there is no reason to assume that objects – as fictitious
entities – obey at least general laws like the conservation of substance or some
causality.

10.1.3 Arguments Contra Hume’s Scepticism

The same problem was treated by Kant in his Critique of Pure Reason (1787).
However, in contrast to Hume, Kant emphasised that “objects of experience”
are not arbitrary imaginations but entities that were constituted from the
observable data by means of some conceptual prescriptions, the categories of
substance and causality. Hence, the interpretation of the observed data as
properties of an object can only be justified, if an object was constituted as
carrier of properties by means of the categories mentioned. Kant formulated
necessary conditions, which must be fulfilled by the observational data, if these
data are considered as properties of an “object of experience”. Accordingly,
if we have objective cognition of the reality, i.e. if our observations refer to
an element of the exterior reality and not to the observing subject, then
the observations in space and time must have been ordered and interpreted
according to the categories of substance and causality. In this way, “objects
of experience” are constituted and the categories mentioned are necessary
preconditions of these objects. It is not claimed by Kant that an interpretation
of this kind is always possible. “If each representation were completely foreign
to every other, . . . no such thing as knowledge would ever arise”.6 If, however,
the observations allow for the constitution of objects, then the categories
5 which view of things . . . obliges the imagination to feign an unknown something,

or original substance and matter as a principle of union or cohesion among these
qualities. . . Hume (1739, THN), Vol. 1, part IV, Sect. 3.

6 I. Kant (1787, KRV), A97.
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are necessary preconditions of these objects, which fulfil the a priori laws of
substance and causality. However, the categories are only preconditions of
kinds of objects with the same “essential” properties but not of individual
systems.

In our everyday experience and in the domain of classical physics, which
will be discussed in Sect. 10.2.1, to the formal preconditions of experience,
the categories of substance and causality, material preconditions can be added
which correspond to the material possibilities to measure and to observe prop-
erties. These material preconditions of experience specify the formal possibil-
ities for the constitution of objects. In the present case there are no obvious
restrictions for measuring all possible predicates Pi jointly on a system which
is thus subject to the principle of complete determination:

“Every thing as regards its possibility is likewise subject to the princi-
ple of complete determination according to which if all possible pred-
icates are taken together with their contradictory opposites, then one
of each pair of contradictory opposites must belong to it”.7

A system of this kind or a “thing” possesses each possible “accidental” prop-
erty P either positive (P) ore negative (not P). In this case, the causality law
leads to a strict and complete determination of all properties. In particular, it
follows that “things” or objects possess always a well-defined position in space,
i.e. they are permanently localised. If in addition impenetrability is assumed,
then the permanent localisation can be used for a determination of individual
objects by their trajectories in space and time.8 Later we will find that in the
domain of quantum physics Kant’s “principle of complete determination” is
no longer tenable and must considerably be relaxed.

Summarising the philosophical positions of Sect. 10.1.3. we find that ob-
jects exist only in the sense that they are constituted by general laws and that
these laws hold a priori for the objects.

10.1.4 Arguments Contra 10.1.3

Kant’s transcendental way of reasoning was completely ignored by natural sci-
entists and in particular by physicists in the 19th century. Quite in the spirit
of a naive realism mentioned above (10.1.1.) objects were not considered as
constituted by categories and other concepts but as really existing mater-
ial entities. In astrophysics, Kepler’s laws govern the motion of real planets,
in classical mechanics Newton’s law describes the motions and collisions of
billiard balls. Even atoms, though not directly visible, were considered by
Boltzmann, say, as really existing material entities. Without explicitly men-
tioning this point, objects obtained again ontological priority with respect to
laws of nature.
7 I. Kant (1787, KRV), B 600.
8 I. Kant (1787, KRV), A 272.
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Obviously, this naive and uncritical position was again exposed to argu-
ments in the spirit of Hume’s scepticism. Hence, it is not surprising that the
controversy between scepticism and realism was repeated in some sense within
the positivism of the 19th century. Ernst Mach9 argued in a similar way as
Hume and denied the existence of atoms since – at this time – atoms could not
directly be observed but only inferred from their effects on thermodynamic
qualities. Although Boltzmann defended the atomistic viewpoint throughout
his career, he has never mentioned Kant’s transcendental arguments. Conse-
quently, the Mach–Boltzmann debate could not finally be decided.

10.2 Objects and Laws of Nature in Classical Physics

10.2.1 The Constitution of Objects in Classical Physics

The discussion in the preceding Sect. 10.1 has shown that it is by no means
clear whether objects exist and are governed by laws of nature – or whether
objects are merely hypothetical entities which allow to interpret the observed
qualities as properties of an object. Also Kant’s transcendental attempt to
combine these two aspects by the idea that objects are constituted by laws
was not taken into account in natural sciences.

Hence, in this situation it seems to be correct to investigate in detail the
well-known theories of physics and to ask what kind of theoretical entities
may be considered as carriers of properties which persist in time. We will
discuss this problem at first within the realm of classical physics, since classical
physics is often considered as the formal and mathematical representation
of our everyday experience which – as such – was subject to philosophical
investigations from Aristotle to Kant. In particular, we will study here the
theory of classical mechanics since in this theory the basic concepts of classical
physics are formulated.

At first sight Mach’s critique seems to be correct: Neither in mechanics
nor in other classical theories objects appear as genuine entities but only as
a means to express the behaviour of measurable quantities. Mechanics deals
with the phase space, with observables, canonical transformations, symmetries
etc. but not with mass points. Hence, it seems to be interesting to investigate
within the framework of classical mechanics the transcendental way of reason-
ing, which regards objects as entities constituted by categories and laws. Is it
possible to constitute in the Kantian way mass points, planets, and stars?

10.2.1.1 Objectivity and Invariance

The Kantian way of reasoning can be made explicit within the framework of
classical mechanics in the following way: The goal of physics and in particular
9 The whole debate is treated fom a historical point of view by Brush (1985, KMH).
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of classical mechanics is the cognition of the external reality and not of the
observing subject. Accordingly, observations or measuring results should refer
to the external reality and not to the observer’s subjective impressions. This
requirement of objectivity implies that the cognition of the external reality
must be independent in some sense of the observer’s preconditions. The sub-
jective, observer dependent component of a measuring result is given by the
observers spacetime coordinates. Hence, the requirement of objectivity can
only be fulfilled if the laws of the external reality have some invariance prop-
erties. If an observer changes his spacetime coordinates, then the observations
should be changed such that they refer to the same but equivalently changed
object. In this way, the objectivity of the measuring results can be achieved.10

The fundamental laws of classical mechanics are invariant against the
transformations of the ten-parameter Galilean group G10. If the observer
is “moved” in accordance with a Galilean transformation, the translations
in space, say, then the observations that refer to the external object, will
transform “covariantly” with respect to this transformation. Since also the
observers, represented by measurement instruments are physical objects, they
will be subject to the same invariance laws. This implies a symmetry between
active and passive transformations: The transformation of the measurement
results does not depend on whether the observer is moved according to a
Galilean transformation or whether the object is moved according to the in-
verse transformation.

10.2.1.2 Covariance and Observables

The symmetry between active and passive transformations allows for clari-
fication of the concept of an “observable”. Intuitively an observable may be
understood as a measurable quantity or a property of an object system S,
which belongs to the external reality and which is clearly distinguished from
the measuring apparatus. “Properties” correspond to yes–no propositions Pi

or to the most simple observables with values 0 and 1. The set {Pi} of elemen-
tary propositions can be extended by introducing the logical operations ∧, ∨,
¬, and the relation ≤. In this way one arrives at the propositional system of
classical mechanics which is given by a Boolean lattice LC .

One can then define an “observable” in a more formal sense as a relation
between numbers on the reading scale of the measurement apparatus and
properties of the object system. Hence, an observable may be considered as a
mapping Φ

Φ : ß(�) → LC

from the Borel sets ß(�) of the real line � onto the Boolean lattice LC of propo-
sitions. An observable is connected with the group G10 of Galilean transforma-
tions in a twofold way. Firstly, the properties of the system S are changed by
an active transformation, when the transformation group acts on the system
10 H. Weyl (1966, PMN).
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and its propositional lattice. Secondly, the reference system of the observer
plus apparatus is changed by a passive transformation, when the transforma-
tion group acts on the measurement device M , i.e. on the Borel sets of the
reading scale.

Within this conceptual framework the symmetry between active and pas-
sive transformations leads to the following important covariance postulate (C),
which must be fulfilled by an observable: The actively transformed properties
of the system S, i.e. the propositions transformed by a representation S(G)
of the Galilean group coincide with the propositions which are obtained by
passively transforming the observers coordinate system by a representation
M(G) of the Galilean group and hence the reading scale of the apparatus.
This means that the diagram in Fig. 10.1 must “commute”. The covariance
postulate (C) is the abstract formulation of the invariance of classical me-
chanics with respect to the Galilean group of transformations. It determines
those functions which may be considered as “observables” and it shows, how
these observables are transformed under a special transformation.

ß LC

M(G)      S(G)

ß LC

M S

Fig. 10.1. Covariance diagram of classical mechanics

On the basis of the covariance postulate (C) and the Galilean group, one
can now define the fundamental observables p (momentum), q (position) and
the observable t (time). In this way the basis quantities (p, q, t) of the state
space can be shown to be “observables” in the sense explained, which satisfy
the covariance postulate (C). Within the framework of classical mechanics all
other observables can be written as functions F (p, q, t) which depend on the
coordinates p, q, and t. If an object of classical mechanics is understood as
a carrier of properties, then it is obviously sufficient, to require that it is a
carrier of the fundamental observables p, q, and t.

10.2.1.3 Classical Objects

One can now define the concept of a classical object S in the following way:

“A classical object S is given by an algebra LC , such that a represen-
tation of the (passive) Galilean group is defined by automorphism of
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the lattice LC , which admit the observables p, q, t in the sense of the
covariance postulate (C) of classical physics.”

This means that a classical object is a carrier of the properties P ∈ LC ,
not only in one contingent situation K given by an observer, its reference
frame and its system of coordinates, but also in all other situations K ′ which
evolve from K by Galilean transformations. The classical object is a carrier
of properties which transform covariantly under the transformations of the
Galilean group.

One can further specify this concept by considering different classes. For
example, elementary systems are given by irreducible representations of the
Galilean group. For elementary systems, which correspond to mass points
without geometrical structure, there are no true but only projective repre-
sentations of the group G10. These representations are characterised by one
continuous parameter m that can be interpreted as the “mass” of the object.
The next, slightly more general system is a rotating system, with three addi-
tional degrees of freedom which correspond to the components of the internal
angular momentum.11

The result of this Sect. (10.2.1.3) allows for two alternative interpretations.
From a realistic point of view, it describes in which way we can recognise
an object on the basis of observed properties. From a constructive point of
view the mentioned results is merely a definition of what we call an object.
For example, Sudarshan et al. writes in this sense:12 “A free nonrelativistic
point particle in classical mechanics is nothing but an irreducible canonical
realisation of the Galilean group with a positive neutral element.”

10.2.1.4 Illustration of the Covariance Postulate:
The Objective Reality of the Starry Sky

As a simple example for the covariance principle, which is not trivial, we
consider the starry sky. If we are looking to the firmament, we are observing
a large number of light spots, which we identify usually with various stars.
However, it is not quite clear whether these stars are real entities and not
merely our subjective impressions. In order to check the objective reality of
the starry sky we follow the way of reasoning mentioned above.

In the four-dimensional Minkowski spacetime M the world line of an ob-
server B1(0) who is at rest in a given inertial coordinate system is described
by a vertical line (Fig. 10.2). The world lines of stars s1, s2, s3, s4 cross the
backward light cone of B1(0) in event points indicated by black dots. What
observer B1(0) perceives are the light rays coming from these events. The
positions of the stars seem to be situated on the celestial sphere that appears
to surround B1. A second observer B2(v) who is moving at some velocity v

11 For more details and for more complicated representations of the Galilean group
we refer to the literature, e.g. Sudarshan et al. (1974, CDM), pp. 389 ff.

12 Sudarshan, l.c. p. 391. (emphasis by the authors).
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B1(0) B2(V)

t

Fig. 10.2. Aberration. Two observers B1(0) and B2(v) with relative velocity v
perceive different pictures of the starry sky

relative to B1 and passes by B1 at the moment when B1 looks to the sky, will
observe the stars si to be located in different positions on the celestial sphere.
This effect is called “aberration”.

The coordinate systems of the observer B1(0) and B2(v) are connected by
a Lorentz transformation TL(v). The points x

(1)
i where the stars are located

on the celestial sphere for observer B1(0) are different from the positions x
(2)
i

that are perceived by the second observer B2(v). The transformations between
the positions x

(1)
i and x

(2)
i are Möbius transformations which map circles into

circles and leave angles invariant.13 For more details about Möbius transfor-
mations we refer to the literature.14 By means of the Lorentz transformations
TL(v) which connect the oordinates of the observers B1(0) and B2(v), and the
Möbius transformations TM which connect the star configurations σ1 = {x(1)

i }
and σ2 = {x(2)

i } we can express the condition of objective reality of the starry
sky. Observables are mappings Φ : {Mi} → {σi} from the subsets {Mi} of
the Minkowski spacetime to the set {σi} of star configurations. A certain con-
figuration σ1 which is perceived by B1(0) has objective reality if the Möbius
transformed image Φ(M1)′ = σ′

1 = σ2 of the subset M1 agrees with the image
Φ(M ′

1) of the Lorentz transformed subset M ′
1, i.e. if the diagram Fig. 10.3

commutes.15

13 This exemple is taken from Penrose (1997, LSH), who used it, however, in a
completely different context.

14 H. Weyl (1923, MAR).
15 Here we used in the covariance diagram the relativistic Lorentz transformation

and not the Galilean transformation, since the Lorentz aberration formula is
much simple than the corresponding aberration transformation of nonrelativistic
celestial mechanics.
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B1(0) 1

Lorentz Möbius

transformation  TL(v)  TM transformation

B2(v) 2

M S

Fig. 10.3. The starry sky has objective reality since the covariance diagram of the
starry sky commutes

10.2.1.5 Individual Objects

The representations of the Galilean group characterise classes of objects with
the same permanent properties. In order to denote an individual system one
has to find additional properties which distinguish the system S in question
from all the other systems S′, S′′, . . . of the same class. Two questions arise at
this point. Firstly, one has to make clear, whether the triple (p, q, t) is a unique
denotation of S, i.e. whether there is only one system with these properties.
Secondly, if uniqueness is guaranteed, one has to find out in which way the
system S defined at time t can be re-identified at some later time t′ > t. In
order to guarantee uniqueness of S one needs an additional dynamical prin-
ciple which excludes that two systems are at the same time t at the same
phase point (p, q). Clearly this postulate is fulfilled if impenetrability in posi-
tion space is given. This is actually the case in all known situations. However,
it does not follow from any dynamical principle. In order to guarantee also
the re-identifiability of the system S uniquely defined at time t, at some later
time value t′, one needs a convenient law which connects the point (p, q)t in
phase space (at time t) with the phase point (p, q)t′ (at any other time t′).
In classical mechanics a dynamical law of this kind is given by a Hamiltonian
H(p, q) and the canonical equations. This means that an individual system S
can be re-identified at any other time value t′ �= t by the (p, q) values on its
dynamical trajectory T (S) := (pt, qt) in phase space. Both requirements for
individual objects, the uniqueness and the reidentifyability are usually guar-
anteed in classical mechanics. For this reason an individual system S can be
named permanently by an arbitrary point (pt, qt) on its trajectory T (S).

10.2.1.6 Proposed Answer to Question 10.1
for the Classical World

In classical mechanics there are no primarily given entities that could be re-
garded as objects. Classical mechanics deals with properties, observables, and
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symmetry transformations but not with objects like mass points. Classical ob-
jects are given by various representations of the Galilean group, the symmetry
group of classical mechanics. Hence, symmetry transformations together with
the covariance postulate determine objects as carriers of properties. This way
to construct objects may be considered as a realisation of Kant’s constitution
of objects of experience within the framework of classical mechanics. Me-
chanical objects, which are constructed in this way fulfil some laws of nature
in particular those laws which were used for their constitution, i.e. symme-
try laws, covariance requirements, conservation of mass, impenetrability, and
Newton’s law for trajectories in space and time.

10.3 The Constitution of Objects in Quantum Physics

10.3.1 What is a Quantum System?

The general problems to incorporate objects into our experience which were
discussed within the scepticism of David Hume and the positivism of Ernst
Mach were sharpened by new difficulties which arise in quantum physics. For
this reason, in the first interpretation of quantum mechanics, the Copenhagen
interpretation, Niels Bohr assumed a very restrictive position: In this interpre-
tation one considers only measurement results and their mutual relations, but
without assuming that the observed predicates can be attributed to an object
as its properties. However, Bohr used this “minimal interpretation” not only
for philosophical reasons, but because the hypothetical assumption of objects
as carriers of properties is sometimes incompatible with quantum mechanics.
Indeed, the constitution of objects in quantum mechanics provides problems
which are not known from Kant’s philosophy and from classical mechanics.

If one tries to extend the Copenhagen interpretation by incorporating ob-
jects, then one finds that for quantum systems the laws of substance conserva-
tion and causality are no longer generally valid. The reason for this surprising
observation is, that quantum systems are not subject to Kant’s “principle of
complete determination” mentioned above (10.1.3). In quantum mechanics the
material preconditions of experience, i.e. the physical laws of measurements,
do not allow to determine jointly all possible properties of a given system. In
any contingent situation which is described by a state Ψ only a subset PΨ of
properties can be measured jointly on the system S. The properties P i ∈ PΨ

are mutually commensurable, which means that they can be measured in ar-
bitrary sequence without thereby changing the results of the measurements.
The measurement results of these properties (P i or ¬P i) can be related to the
object system just as in classical mechanics. Hence we refer to these properties
as the “objective” properties of the system in the state Ψ. However, for any
state Ψ there are also non-objective properties P i /∈ PΨ whose measurement
provides a material change of the state Ψ of S. For the non-objective prop-
erties Kant’s principle of complete determination is violated, since none of a
“pair of contradicting opposites” pertains to the object system.
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In quantum physics as well as in classical physics for the constitution of
objects one has to begin with the requirement of objectivity. The observed
predicates should refer to an object as carrier of the respective properties.
Again, this requirement leads to the necessary preconditions of any objective
experience, the categories of substance and causality. However, in the present
case the material preconditions of classical experience are not fulfilled, since
the systems are not “completely determined”. This means that a quantum ob-
ject system SΨ can only be constituted incompletely by means of the restricted
set of is objective properties PΨ.

It follows from these arguments that the causality law – in the sense of a
dynamical law – holds in quantum mechanics only for the set PΨ of objective
properties, which are given by the state Ψ(t) at some time value t. The tem-
poral development of this state is determined by the Schrödinger equation in
a causal way, i.e. the state Ψ(t) determines the state Ψ(t′) at any later time
t′≥ t. However, since the state Ψ corresponds only to the restricted set PΨ of
objective properties, at different time values t′, t′′, . . . we have different sets
PΨ′ , PΨ′′ . . . of objective properties. Hence, it will in general not be possible
to establish a causal connection between a property P a (t) at time t and the
same property P a(t′) at a later time t′. Consequently, there is only a very
limited causality law between the objective properties PΨ and PΨ′ at differ-
ent time values.16 These restrictions have far reaching consequences for the
constitution of objects in quantum mechanics.

10.3.2 Objects in Quantum Mechanics

In principle, the same way of reasoning which allows for the constitution of
objects in classical mechanics can also be applied to quantum mechanics. In
quantum mechanics as well as in classical mechanics we are interested in the
cognition of the external reality and not in the observing subject. This leads
again to the requirement of objectivity which means that the fundamental
laws of physics are subject to a group of symmetry transformations. Different
observers, which are connected by transformations of the invariance group will
then be able to describe the same object of the external reality. The invariance
group is again given by the Galilean groupG10. The observer corresponds to
a macroscopic and classical measuring apparatus, which is associated with
a spacetime coordinate system. For this reason a passive Galilean transfor-
mation has a meaning, which is quite similar to the classical case. Different
observers represented by measurement apparatuses are connected by transfor-
mations of the Galilean group and the measuring results will then transform
“covariantly” with respect to these transformations.

Similarly as in classical mechanics also in quantum mechanics observables
will be characterised by their covariance with respect to the subgroups of the
Galilean group. A Galilean covariant sharp observable can then be defined
16 cf. P. Mittelstaedt (1984, CNI), (1994, OQP); I. Strohmeyer (1995, QTP).
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as self-adjoint operator or a projection valued measure Φ on a homogeneous
space (equipped with a Borel algebra B) of some subgroup of G10. Observ-
ables of this kind allow for sharp measurements of some properties, they are,
however, subject to the well-known complementarity restrictions. The sharp
properties of a quantum system S at some time value t which correspond to
(sharp) yes–no propositions Pi are given by the subspaces of the Hilbert space
of the system, or by the corresponding projection operators with eigenvalues
0 and 1. If the set {Pi} of propositions is extended by the quantum logical
operations ∧, ∨, ¬ and the implication relation ≤, then one arrives at the
complete, atomic and orthomodular lattice LQ of “quantum logic”. The oper-
ations introduced here are defined as intersection and span of two subspaces
and as the orthocomplement. (cf. 13.1)

A quantum mechanical observable Φ can then be defined as a relation
between pointer values Z on the reading scale of the measurement apparatus
M and properties of the object system S. Accordingly, an observable may be
considered as a mapping Φ

Φ : B(�) → LQ

from the Borel sets B on the real line � onto the propositional lattice LQ of
quantum logic, i.e. as a projection valued measure. An observable is then again
connected with the invariance group G10 in a twofold way. Firstly, the trans-
formation group acts actively on the system changing its properties. Secondly,
the transformation group acts passively on the measuring outcomes which
correspond to the Borel sets of �. The principle of covariance implies again
the equivalence of active and passive transformations17,18. Hence, the require-
ment of objectivity is fulfilled if the image Φ(Z ′) of a transformed pointer value
Z ′ agrees with the transformed image Φ(Z)′ of the pointer value Z, i.e. if the
diagram in Fig. 10.4 “commutes”.

M S

B LQ

M(G)      S(G)

B LQ

Fig. 10.4. Covariance diagram of quantum mechanics

The difference between the covariance postulates of classical and quan-
tum physics consists in the different propositional systems LC and LQ. As in
17 C. Piron (1976, FQP), p. 93 ff., pp. 77–90.
18 P. Mittelstaedt (1995, OQM).
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classical mechanics the general concept of an observable can again be specified
by the fundamental observables of position, momentum and time.

As in the classical case, also quantum objects will be introduced as carriers
of the fundamental properties which correspond to the observables q (posi-
tion), p (momentum), and t (time). Using the covariance postulate we define
the concept of a quantum object in the following way: A quantum object SQ

is given by an algebra LQ such that a unitary representation of the (passive)
Galilean group is defined by the automorphism of LQ which admit the observ-
ables q, p, and t in the sense of the covariance postulate of quantum physics.
This means that a quantum object is a carrier of the properties P ∈ LQ, but
not only in one contingent situation, which is given by the apparatus and its
space time coordinates, but also in all situations which can be obtained by
Galilean transformations. Hence the quantum object is a carrier of properties
P ∈ LQ, which transform covariantly under Galilean transformations.

However, in spite of the similarities in the method of constitution, there
are striking differences between classical objects and quantum objects that
come from the different lattices LC and LQ, respectively. The propositional
system LC is a complete, atomic orthomodular and distributive lattice. Hence
the object S possesses any property P ∈ LC either in the affirmative or in
the negative sense, i.e. the object S is “completely determined”. In contrast
to this well known situation a quantum object S possesses at a certain time
value t simultaneously only a limited class of commensurable properties given
by elements of a Boolean sublattice of LQ. Hence a quantum system is (at
a certain time value t) only a carrier of a class of mutually commensurable
properties. One can again specify this concept by considering different classes.
Elementary quantum systems are given by irreducible unitary representations
of the Galilean group. For elementary objects there are only projective repre-
sentations which are characterised by one continuous parameter m which can
be interpreted as the mass of the quantum object and which characterises a
certain class of objects.

10.3.3 Individual Quantum Systems

The characterisation of individual objects in quantum mechanics provides
problems which are unknown in our everyday experience and in classical
physics. The reasons for the difficulties to individualise quantum objects are
that the procedures to determine individual systems which were discussed in
the traditional philosophy and in classical physics cannot be applied to quan-
tum objects. The characterisation of individual quantum systems by their
essential and permanent properties fails, since the permanent properties de-
fine classes of objects (electrons, protons, etc.) which contain more than one
element. The characterisation of individual systems by their accidental prop-
erties fails since the totality of accidental properties which were needed for
the individualisation is not simultaneously available. Since, roughly speaking,
only one half of the classical phase space properties pertain simultaneously to
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a quantum system and are thus available for the observer, the determination
of quantum systems by their accidental properties will never be complete. This
means in particular that individual quantum systems cannot be determined
by their trajectories in space and time.

10.3.4 Proposed Answer to Question 10.1
for the Quantum World

In quantum mechanics as well as in classical physics there are no primarily
given objects. Quantum mechanics is concerned with properties, i.e. subspaces
of a Hilbert space, dynamical laws and symmetry transformations. Objects
are given by representations of the Galilean group, the symmetry group of
quantum mechanics. Hence, symmetry transformations together with the co-
variance postulate for observables determine objects as carriers of properties.
Objects of this kind are governed by laws of nature since they are constituted
as entities which are objective carriers of properties and since properties are
ruled by laws of nature. However, in contrast to classical mechanics a law does
not hold for a particular object, but for a kind of objects, like an electron.
Hence, the Schrödinger equation together with its initial conditions holds for
an electron, say, but this object can be replaced by any other object of the
same kind. The indistinguishability of quantum objects of the same kind cor-
responds to the permutational invariance of a compound (many body) system,
which we discussed in Sect. 5.3.2. For individual objects, there are no laws in
quantum physics. (cf. also 12.2)
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Completeness and Reliability

Assume that we are given a large number of physical laws referring to the
well-known fields of physics. Two questions arise:

Firstly, is it possible that the set of physical laws, which are presently
known, or a larger set which might be discovered in the not too distant future,
is complete. Completeness means in this context that the laws are sufficient
in principle to describe any conceivable physical situation, and that no new
logically independent law can be found.

Secondly, are the physical laws reliable in the sense that they are true and
applicable to realistic physical situations? More precisely, are these laws an
immediate image of the processes that we observe in nature or are they merely
formal instruments, which can be used for the construction of a correct image
of the empirical reality.

We will treat these questions in the following two sections. The question
of completeness is concerned with a fundamental structure of laws of nature
whereas the problem of reliability refers to the meaning and interpretation of
laws of physics.

11.1 Can the Laws of Nature (Physics) be Complete?

11.1.1 Arguments Pro

11.1.1.1 The laws of nature known so far (in the sense of L3, Chap. 1) are
always laws of a certain area like those of classical mechanics, of special rela-
tivity, of general relativity, or of quantum theory. But inside that area, they
are like axioms. From them together with initial conditions one can deduce
every truth about that area. But this is just what completeness means: a sys-
tem of axioms or laws (plus initial conditions) is complete with respect to an
area A if and only if all truths about A follow logically from the axioms or laws
(plus initial conditions). Therefore, the laws of nature seem to be complete
with respect to the area to which they belong.
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11.1.1.2 A law of nature (physics) is not complete if there are some phenomena
(experimental results) the true description of which cannot be derived from
this law (plus initial conditions). However, in such a case it is always possible
to make the law complete again by restricting the area in a suitable way.
Therefore, the laws of nature (physics) seem to be complete with respect to
the area to which they belong.

11.1.2 Arguments Contra

11.1.2.1 Every physical theory which consists of (a system of) laws (in its
kernel) presupposes and uses arithmetic. But as Gödel has shown in 1931
arithmetic is incomplete.1 Therefore, the (system of) laws of a physical theory
must be incomplete.

11.1.3 Proposed Answer

The concept of completeness used here is the rudimentary basis idea that a
system of laws (axioms) is complete with respect to a given field (domain,
research area) of reality if and only if all true sentences about that field are
derivable from the laws (axioms). It should be emphasised however that re-
sults on completeness or incompleteness obtained in the field of logic and
mathematics, cannot automatically be transmitted to physical laws since it
is very questionable whether important necessary conditions for these results
(like axiomatic construction, closure conditions, definability of the concept
of provability within the system etc.) are available for systems of physical
laws. Therefore, no more than the above basic idea of completeness will be
used subsequently. In accordance with this basic idea the question of the com-
pleteness of laws of nature (law of physics) will be discussed in the following
way: First some important views in the history (Leibniz, Thomas Aquinas,
and Laplace) will be discussed where the case of Laplace is concerned with
dynamical laws. Then the question of completeness will be systematically con-
sidered with respect to statistical laws, chaotic motion, EPR, and quantum
theory.

11.1.3.1 Leibniz: The Laws of Physics Known are not Complete

According to Leibniz there are four great comprehensive areas of scientific
research which can be built up according to the principle of rationalism and
of more geometrico as axiomatic systems: logic and mathematics, metaphysics,
physics, jurisprudence (including ethics). He thought that in principle these
systems of truths are finitely axiomatisable, consistent and complete though
for mankind the finite axiomatisability, the consistency, and the completeness
are available only for logic, mathematics, and metaphysics but not for the
1 Gödel (1931, FUS). cf. (1930, SMR).
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other two areas since they include contingent truths.2 The principle for the
consistency of axiomatic systems is according to Leibniz: All finitely analytic
propositions are (necessarily) true. According to Leibniz a finitely analytic
proposition is one that is either an “identical” (i.e. one of the form A is A or
A ∧ B is A like “a rational animal is an animal”) or one that can be reduced
to an identical proposition with the help of a finite number of steps using
definitions.3 Thus, this principle is a soundness principle of the form:

Every proposition, which is derivable in the axiomatic system, is (nec-
essarily) true.4

Leibniz’ principle of sufficient reason is a completeness principle. Leibniz gives
different formulations of the principle. But he seems to understand them as
different versions of the same underlying principle: “that nothing is without
a reason, or that every truth has it’s a priori proof, drawn from the notion
of the terms, although it is not always in our power to make this analysis.”5

“Generally, every true proposition (which is not identical true or true per se)
can be proved a priori by the help of axioms, or propositions true per se,
and by the help of definitions or ideas. . . . It is certain, therefore, that all
truths, even the most contingent, have an a priori proof, or some reason why
they are rather than are not. An this is itself what people commonly say,
that nothing happens without a cause, or that nothing is without a reason”.6

The principle of sufficient reason can be formulated at least in three versions:
(i) nothing happens without a sufficient reason. (ii) Every true proposition
has its a priori proof. (iii) Every true proposition is finitely or infinitely ana-
lytic. To understand the last version one has to know two things: (1) Leibniz’
understanding of analysis: Analysis is a process of logical inference using de-
finitional replacement and determination of predicational containment.7 (2)
Leibniz’ view of two kinds of proof processes: In the area of truths of reason
the proof–process is terminating after a finite number of steps, i.e. the proposi-
tion proved is finitely analytic. On the other hand, in the realm of contingent
truths the proof–process is not terminating after a finite number of steps,
i.e. the proposition is infinitely analytic. In both cases however, we have a
genuine proof–process intended as an inferential procedure of the most rigor-
ous kind, i.e. a proof of a proposition within a deductive system. Our claim
has been substantiated in detail (1983, IMS) is that Leibniz’ principle of suffi-
cient reason is a completeness principle stating the completeness of a scientific
field built up axiomatically (more geometrico). This can be seen already from
some of the quotes: Every true proposition has an a priori proof (or is provable
2 For a detailed discussion of this and the following see Weingartner (1983, IMS)

part 2. where the respective passages in Leibniz’ works are given.
3 Leibniz (GPh), Vol. 7, p. 195.
4 For details see Weingartner (1983, IMS), Sect. 2.4.
5 Leibniz (GPh), Vol. 2, p. 62.
6 Leibniz (GPh), Vol. 7, p. 300, 301.
7 cf. Rescher (1967, PhL) p. 23.
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from the axioms in the respective deductive system, which represents one of
the four fields (logic, mathematics, metaphysics, physics, and jurisprudence
with ethics). But although all the four areas are in principle complete for God
who knows all the right axioms, the completeness can be effectively shown by
men only in those areas where every true proposition is finitely analytic, i.e.
can be traced back in a finite number of steps to the axioms. According to
Leibniz this is the case in logic and mathematics and metaphysics which deal
both only with “true reasons”.8 However in the areas of physics and jurispru-
dence with ethics, since these areas contain contingent truths, not every true
proposition is finitely analytic, some are, but some are only infinitely analytic.
In these cases men cannot trace back the respective true proposition to the
axioms (since the steps would be infinite) and he cannot find the right axioms
(since they are not simple truths of reason but complicated truths of fact).
Thus the axioms and laws of physics (and those of jurisprudence with ethics),
which are known by men, are not complete.

An interesting related problem for logic is to investigate Leibniz’ idea of
ars inveniendi, i.e. a method to find laws or axioms or explanations if one has
a lot of particular truths and lower level hypotheses within a field of research.

11.1.3.2 Thomas Aquinas: The Laws
of Nature about the World (Universe) are not Complete

The invariance with respect to displacement in time (and of place) are the
oldest and perhaps most important invariance properties of physical laws and
laws of nature in general. It seems that the concept of law (of nature) is vi-
olated if these invariance conditions would not be satisfied. “The statement
that absolute time and position are never essential initial conditions is the first
and perhaps the most important theorem of invariance in physics. If it were
not for it, it might have been impossible for us to discover laws of nature”.9

The first philosopher, who seems to have been realised this very clearly was
Thomas Aquinas. In his quarrel with Bonaventura at the university of Paris
he defended the view that the beginning in time of the world (universe) can-
not be proved from universal principles (laws) of (about) this world. Because
universal principles abstract from hic (here) et nunc (now): “We hold by faith
alone, and it cannot be proved by demonstration, that the world has always
existed.10 . . . The reason is this: the world considered in itself offers no ground
8 We know today that Leibniz was right with respect to predicate logic of first order

but not with respect to mathematics in general. He found an arithmetisation and
decision procedure for syllogistics and seemed to be very optimistic to extend
such a method further to mathematical proofs. (cf. Weingartner (1983, IMS)
ch. 3.1.

9 Wigner (1967, SRf) p. 4.
10 In contrast to Thomas Aquinas Bonaventura argued that an infinite past of

the universe is logically impossible. This argument can be traced back to Jo-
hannes Philoponos “De aeternitate mundi: contra Proclum”. (1899, DAM). From
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for demonstrating that it was once all new. For the principle for demonstrating
an object is in its definition. Now the specific nature of each and every object
abstracts from the here and now, which is why universals are described as
being everywhere and always. Hence it cannot be demonstrated that man or
the heavens or stone did not always exist.”11 The question whether it can be
demonstrated that the world has always existed or that it has a beginning in
(with) time – answered differently by competing theories of the universe – is a
question about the completeness of the laws of nature. Or at least of those laws
we know. Thomas Aquinas’ standpoint was that the universal laws of nature
(about this world) are not complete with respect to all questions (all truths)
about this world. It is not just our insufficient knowledge of the laws of nature
what he has in mind, but the true laws itself are incomplete according to him
with respect to some special questions. Or in more modern terms: the laws of
nature are incomplete with respect to some important initial conditions. This
problem plays an important role in the Big Bang Theory of the cosmologi-
cal evolution with respect to (at least) the “first three minutes”.12 However
important experiments since 1965 (Penzias and Wilson) revealed the cosmic
background radiation, which strongly supports a finite age (and beginning)
of the universe. Even if Thomas Aquinas would perhaps say it is not a proof
in the sense of demonstration, i.e. a derivation from true or well confirmed
laws, it seems still a strong experimental evidence in support to the Big Bang
Theory and for a finite age of the universe. That the question is still open is
shown by other theories that claim a universe infinite in time and try to be
consistent or even to explain the same experimental data.13

11.1.3.3 Laplace: The Laws of Nature Together
with one State are Complete

The considerations in the last section showed already that “completeness”
as it is used in logic is not sufficient when applied to physical laws. Since
from laws alone without initial conditions we cannot derive particular truths.
Thus the question is rather whether a certain set of physical laws L plus a
certain set of initial conditions I could be complete with respect to a certain
field F. But how many initial conditions do we need? Laplace thought that
we need only one (the minimum) – more accurately: one state of the whole
universe at a certain point of time – if the laws are dynamical (in this sense
deterministic) laws. Dynamical laws like Newton’s laws of motion characterise
a physical system by four important conditions. These have been described
and discussed as D1–D4 already in Sect. 7.2.3.2. Laplace was mainly concerned

a historical and a systematic point of view the impossibility of an infinite past is
discussed by Whitrow (1978, IIP).

11 Thomas Aquinas (STh)I, 46, 2.
12 cf. Weinberg (1977, FTM).
13 cf. for instance Hawking (1988, BHT) who uses imaginary time and Linde (1990,

IQC), whose theory avoids this rather implausible assumption.
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with conditions D1 and D2 which are usually taken as the defining conditions
for determinism or deterministic laws. Lapace’s basic idea was someone (a
perfect intellect) knowing all the laws (of the universe) could calculate all its
states just by knowing one (arbitrary) state.

“We ought then to regard the present state of the universe as the effect
of its anterior state and as the cause of the one which is to follow. Given
for one instance an intelligence which could comprehend all the forces
by which nature is animated and the respective situation of the beings
who compose it – an intelligence sufficiently vast to submit these data
to analysis – it would embrace in the same formula the movements of
the greatest bodies of the universe and those of the lightest atom; for
it, nothing would be uncertain and the future, as the past, would be
present to its eyes.”14

This idea can be illustrated by the following example: Assume a film is made
of the world, i.e. of the events happening in the whole universe. After the film
is developed we cut it into pieces corresponding to single film – pictures. Now
we put the single pictures successively in time (in the order of time) into a long
card index box like the cards of a library catalogue. Then one special state
of the universe at a certain time t corresponds to such a card (film picture)
of the catalogue. One can follow one trajectory across the (perpendicular to
the) catalogue cards. Interpreted with the help of this illustration Laplace’s
determinism means that it suffices to know the law(s) of nature and one
single catalogue card (film picture) in order to construct all other cards of the
catalogue, i.e. to predict and to retrodict all other states of the universe. This
means that Laplace’s idea is a completeness claim with respect to the laws
of nature: the correct laws of nature (known to a perfect intellect) plus one
initial state of the whole universe are together complete in the sense that all
true descriptions of states of the universe follow from them.

There are some important points however which show that Laplace is only
right in a very restricted sense. In general also dynamic (deterministic) laws
plus initial conditions are not complete: (1) If the laws in the Laplace’s sense,
the differential equations of motion were not defined everywhere then also
those laws would be incomplete. (2) Laplace’s theory is still incomplete with
respect to the question of Thomas Aquinas, i.e. it does not imply a finite
age of the universe nor does it imply an infinite one in time. In terms of
our illustration, Thomas Aquinas would ask: Can you prove that there is a
first catalogue card (a first state)? Or can you prove that there is no first card
(state). And he would point out that this question cannot be decided with the
help of Laplace’s laws plus available cards (states). (3) If the universe is finite
in time then it is possible that some of the solutions of the equations could
not be realised because the laws plus one initial condition allow to determine
14 Laplace (1951, PEP) p. 4.
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more states than can happen in the finite time of the existence of the universe.
This then is a sense of over-completeness of laws.

11.1.3.4 Statistical Laws Cannot be Complete

After the discovery of statistical laws in thermodynamics and later in other
areas there was a general doubt as to an overall interpretation of the world
by dynamical-deterministic laws. One of the first philosophers who noticed
that a certain imperfection in all mechanical processes allow to enter chance
was Charles Sanders Peirce. “But it may be asked whether if there were an
element of real chance in the universe it must not occasionally be produc-
tive of signal effects such as could not pass unobserved.”15 Moreover, already
Thomas Aquinas pointed out that ethical and legal laws – except those very
general and formal ones like “the good should be done, the bad should be
avoided” – are valid only for most cases and allow exceptions, i.e. are statis-
tical in character.16

Concerning statistical laws in physics, it suffices to mention names like
Maxwell, Boltzmann, Clausius, Poincaré, Gibbs, and Carnot in order to re-
mind us of very important new discoveries. Processes of heat, friction, dif-
fusion, radiation, electric transport, absorption, dispersion, transmission, re-
laxation and phenomena like low of water, flow of glacier, floods, avalanches,
lightening, growing, aging, propagation, etc. cannot be described by dynamical
laws in Newton’s sense. Although some essential features of it, the utilisation
of the mechanical viewpoint, applied to a huge collection of very small parts
of the system, was adopted and lead to a new theory: statistical mechanics.
Details and necessary conditions about statistical laws have been discussed
in Sect. 7.2.3.3 above. Bearing these conditions in mind, we can give several
reasons to show that the statistical laws are incomplete:

(1) Statistical laws are incomplete because they don’t describe individual
processes.

From what has been said so far one can grasp already one essential reason
for the incompleteness of statistical laws. They describe ensembles and the
behaviour of ensembles; they don’t describe the individual micro processes
and microstates. The resulting realised macrostate (a litre of air or a litre of
water at a certain temperature) is in fact an ambiguous thing; it consists of
a huge number of microstates of which the realised ones change quickly and
permanently.

(2) Statistical laws are incomplete because they don’t describe correctly the
relative frequency of all sequences of events.

15 cf. Peirce (1960, CPC) 6. 47 and the quotations in 7.2.3.1. cf. also Popper (1965,
CaC) p. 213.

16 cf. (STh) I–II, 96,6.
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Consider a Mach-Zehnder interferometer (as described in 12.2) with two
semitransparent mirrors and two detectors D1 and D2. For a very large se-
quence of identically prepared incoming photons the statistical laws of quan-
tum mechanics predict that the relative frequency of photons that are regis-
tered in D1 is 1/2. However, since the individual process is not determined at
all, it could happen that even in an infinite chain of events all photons are
registered in the detector D1. These non-random sequences have probability
zero but they are not excluded by any physical law. Hence, the statistical
laws don’t describe the relative frequency of these sequences and are thus
incomplete.

(3) The incompleteness of statistical laws increases with the complexity of
the system.

Consider the following example. Place a little beetle on the first square of a
chess board. with borders (so that it cannot leave the chess board). After some
time of running around the beetle will again come back to the first square (re-
currence). A measure for it will be the probability of recurrence. Place now
10 beetles on each square. The 640 beetles will run around randomly. The
probability for recurrence for an individual state of the whole system (say
that all beetles are coming back at the same time to their start position)
will of course be much lower. Thus the loss of information about a particular
state of the system will increase. This can be interpreted as a kind of in-
completeness of the statistical hypothesis (law) with respect to the individual
(particular) state of the system.

Imagine now a system of 1022 molecules. This is Boltzmann’s example and
his relevant point here: The loss of information (and with it the correspond-
ing incompleteness) about one particular microstate out of 105×1022

when the
statistical hypothesis describes the behaviour of the macrostate is in fact enor-
mous. Since non-recurrence and irreversibility are not equivalent notions one
may explain the “arrow of time” more modestly by non-recurrence or with
Boltzmann by “extremely improbable recurrence”.

(4) What is the reason for the incompleteness of the statistical laws?

An old question of the logic of probability has been whether probability and
statistical laws have to be interpreted only subjectively (lack of knowledge)
or can be interpreted also objectively (representing features of reality).

Is it a lack of our knowledge about physical reality (about nature) which
permits us only to use statistical laws for the description of certain phenomena
instead of dynamical laws? In this case there could be hidden parameters –
unknown to as – which would allow a complete description and explanation
(in principle) also for individual states with the help of dynamical laws.

Or is it the indeterminism of nature, of physical reality itself, which forces
the laws (and theories) to be incomplete. This question is one of the underlying
main questions of quantum mechanics.
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11.1.3.5 The New Incompleteness Shown by Chaotic Motion

The new discovery with respect to chaotic motion was that even within an
area when dynamical laws are applicable the behaviour of the natural system
can change radically such that the motion of a mechanical system may become
chaotic. Thus even simple mechanical systems which have been paradigms for
strictly obeying dynamical laws (like Newton’s law of motion) can turn into
chaotic motion and become completely unpredictable just by changing slightly
the initial conditions. Since the general characteristics of chaotic motion –
mainly in the sense of dynamical chaos17 – have been discussed in detail in
Chap. 9 this section will be concerned only with the aspect of the special kind
of incompleteness shown by chaotic motion (in the sense of dynamical chaos).
We shall discuss this type of incompleteness in three points: First (1) we shall
deal with the sensitive dependence on initial conditions with respect to the loss
of information. Second (2) we shall show some important differences between
this kind of incompleteness and the one of statistical laws and third (3) we
shall discuss increasing error as a negative effect of incompleteness.

(1) Sensitive dependence. Within the last twenty years important proper-
ties of chaotic motion (dynamical chaos) have been discovered. One of
the most important necessary conditions is the sensitive dependence on
initial conditions. Traditionally this aspect is not new, it was known to
Aristotle. “The least initial deviation from the truth is multiplied later a
thousendfold.”18 A specific example is due to Maxwell: it shows that the
principle “like causes produce like effects” is violated if small variations
in the initial conditions produce exponentially increasing effects.19

What these examples describe is a strong sensitivity with respect to
initial conditions. And this is one of the most important necessary condi-
tions of chaotic motion. (For more details see 9.4.3.2). Observe however
that it is not a sufficient condition too and therefore cannot serve as a
definition of chaotic motion (in contradistinction to widespread claims):
In Maxwell’s example the running of the train in a completely different
direction is not a chaotic phenomenon, though some aspects of the crash
may have chaotic properties.

(2) Differences with respect to the incompleteness in statistical laws.
Recalling the four points discussed about the incompleteness of statistical
laws (cf. 11.1.3.4 (1)–(4)) the main differences concern points (1) and (3):
Concerning (1) the incompleteness in chaotic motion of dynamical chaos
is not due to not describing individual processes: The opposite is shown
by the experiment with the pendulum (cf. 9.4.3.2). This is also clear from
the fact that dynamical chaos is guided by dynamical laws which describe,

17 So-called “quantum chaos” has different properties. cf. Casati and Chirikov (1994,
QCh).

18 Aristotle (Heav) 271b8.
19 Maxwell (1982, MAM) p. 13. See the full quotation in 7.2.3.2 (D4).
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according to the condition D2 (recall 7.2.3.2) not only the physical system
as a whole but also all of its parts or individual objects (even if the
individual objects may differ in the classical and quantum mechanical
situation and Quantum Chaos is not at stake here). The separation of
adjacent points and with it the loss of information occurs in the individual
case.

Concerning point (3) of statistical laws no complexity is needed for the
chaotic behaviour. Although increasing complexity of the chaotic system
will usually increase the Kolmogorov entropy, no complexity is needed to
begin with. Whereas in the case of statistical laws their incompleteness
only begins on a certain degree of complexity since there are no statistical
laws describing individual situations, like one special state of the system
with a very low probability, if they are not embedded in huge ensembles.

(3) Increasing error
The Hénon attractor20 is a particular example of a strange attractor (re-
call 8. 2), which describes the increasing error or better the sensitive de-
pendence on initial small errors. Thus the Hénon attractor can be viewed
as one possible interpretation of Aristotle’s observation (cf. the quotation
in (1) above).

If xt and x′
t correspond to the initial data x0 and x′

0 close to each
other, the distance d(xt, x

′
t) increases exponentially with t.21

d(xt, x
′
t) ∼= d(x0, x

′
0) · at(where a ≈ 1, 52)

Since a > 1, at increases exponentially with t, i.e. the error d(xt, x
′
t)

increases exponentially with time. This means that small initial errors
(small errors in the beginning) which are never completely avoidable in
the case of experimental data increase exponentially with time.

11.1.3.6 The Incompleteness Discussed in EPR

In their paper of 1935 Einstein, Podolsky and Rosen (EPR)22 argued that
quantum mechanics is incomplete in the sense that it cannot describe every
part of the physical reality. This is, however, not correct since the Gedanken-
experiment used in the EPR paper – and its various realisations,23 – does not
demonstrate the incompleteness of quantum mechanics. In order to elaborate
this argument in more detail we consider a quantum mechanical two-body
20 cf. Hénon (1976, TDM). That such attractors exist was proved for the Hénon

Attractor by Benedicks and Carlson (1991, DHM).
21 As long as the distance is small. If the distance reaches the order of the attractor

it cannot increase anymore.
22 Einstein et al. (1935, CQD).
23 The experiments are due to Freedman et al. (1972, ELH), Aspect et al. (1982,

ETB), and Kwiat et al. (1995, IBI). Most recent experiments are described by
Weihs et al. (1998, VBI).
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system, which is composed of, two spin 1/2 particles (e.g. a proton and a neu-
tron) in a singlet state. This means that the spin of the compound system is
0. If a spin measurement in x-direction, say, of particle 1 leads to the value
s
(1)
x = 1/2, then we can predict with certainty that a spin-x measurement of

particle 2 leads to the value s
(2)
x = −1/2.

A physical theory will be called “complete” if every element of the phys-
ical reality has a counterpart in the physical theory. The advocates of the
incompleteness theses are using the thought experiment mentioned together
with the following requirements.

(i) (Locality) If the two particles are sufficiently separated from each other
then a spin measurement of particle 1 will not influence the other particle
2 in any sense.

(ii) (Reality) If without in any way disturbing a system, we can predict with
certainty the value of a physical quantity, then there exists an element of
the physical reality corresponding to this physical quantity.

These two claims, usually denoted as “locality”(i), and “reality” (ii) are
the basis of the EPR incompleteness fallacy.

Let particles 1 and 2 be sufficiently separated such that according to (i)
a measurement of particle 1 does not influence particle 2 in any sense. If
a spin-x measurement of particle 1 leads to the result s

(1)
x = ±1/2 then we

can predict with certainty that a spin-x measurement of particle 2 yields
s
(2)
x = ∓1/2. The same argument holds for any other direction, in particular for

the orthogonal directions y and z. Since the measurement process of particle
1 has no influence on particle 2 the spin values s

(2)
x , s

(2)
y , and s

(2)
z pertain to

particle 2 as real properties in accordance with (ii) and that irrespective of
any measurement of particle 1. However, quantum mechanics cannot predict
the values of these really existing spin properties of particle 2 and is thus,
according to the definition of completeness, incomplete.

The conclusion formulated in the last sentence is not correct. The way
of reasoning is correct up to the point where we concluded that the spin
values s

(2)
x , s

(2)
y and s

(2)
z pertain to particle 2 as real properties. However,

this conclusion implies that there is a three-joint probability p(s(2)
x , s

(2)
y , s

(2)
z )

which allows to derive inequalities between the marginal two-joint probabili-
ties p(s(2)

x , s
(2)
y ), p(s(2)

x , s
(2)
z ), p(s(2)

y , s
(2)
z ) and the probabilities p(s(2)

x ), p(s(2)
y ),

and p(s(2)
z ). Using some simple algebra from these relations we obtain the full

set of four Bell inequalities.24

Since these Bell inequalities were shown to be violated experimentally in
accordance with quantum mechanics we arrive at a contradiction between
quantum mechanics and the claims (i) and (ii) mentioned above. Hence it
is not possible to infer the incompleteness of quantum mechanics from these
requirements. A detailed investigation of the entire problem shows that for a
24 cf. Mittelstaedt (1998, IQM) p. 99.
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consistent description of the EPR Gedankenexperiment the locality condition
(i) must be sacrificed. Without this condition it is, however, no longer possible
to derive the incompleteness of quantum mechanics in the way mentioned
above.

11.1.3.7 The Incompleteness in Quantum Mechanics

Except of the EPR fallacy mentioned above which does not demonstrate an
incompleteness of quantum mechanics, there are two other arguments which
seem to show that quantum mechanics cannot be complete in an absolute and
rigorous sense. These arguments, which are rather irrelevant for all practical
purposes, are concerned with the problem of an internal observer and with
the self-referentiality of the measuring process. They are loosely connected
with Gödel’s incompleteness theorem for an important class of formal systems
which problem will be briefly discussed at the end of this section.

(a) The internal observer
Within the quantum theory of measurements the object system S and the
measuring apparatus M are treated as quantum mechanical systems.25 Prior
to the measuring process the systems S and M will assumed here to be isolated
and to be in pure states ϕ (S) and Φ (M), respectively. The state of the
composite system S + M is then given by the tensor product state

Ψ(S + M) = ϕ(S) ⊗ Φ(M) .

A unitary measurement operator U acts on the state Ψ and leads after an
appropriate time to a highly correlated state

Ψ′(S + M) = UΨ(S + M) .

Since Ψ′ is an entangled state the reduced states W ′
S and W ′

M of S and M ,
respectively, are in general mixed states which provide only a restricted infor-
mation about the compound system, since they do not contain the correlations
between S and M . Moreover, the mixed states do not admit ignorance inter-
pretation and lead, for that reason, to the problem of pointer objectification.26

Here we consider a slightly different situation in which the apparatus M
is contained in the object system S as a proper subsystem.27 The system S is
then composed of two subsystems M and R, where R = S\M is the residue,
and thus S = M+R. The apparatus M is used here for measuring the value Ai

of an observable A of the object system S. By Z we denote the discrete non-
degenerate pointer observable with values Zi and states Φi and assume that a
measurement of A leads to a pointer value Zi which indicates the measurement
25 Busch et al. (1996, QTM).
26 For more details cf. Mittelstaedt (1998, IQM) p. 65 ff.
27 We shall not distinguish here the apparatus and the observer but rather assume

that the measuring apparatus plus observer corresponds to system M
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 Ordinary measurement process Measurement from inside

Fig. 11.1. In the ordinary measurement process apparatus M and object system S
are separated (left), for a measurement from inside the apparatus M is a subset of
the object system S (right)

result Ai = f(Zi) where f is the pointer function. A measurement of this kind,
called a measurement from inside, is characterised by some peculiarities which
will be briefly discussed. (Fig. 11.1)

Since M is properly included in S the object system has more degrees of
freedom than the apparatus. This means that there are pairs of different object
states {W, W ′} with W �= W ′ that have the same reduced states WM = W ′

M in
the subsystem M .28 Furthermore, if after the measurement of A the pointer is
in a state P [Φλ]29 and possesses a pointer value Zλ indicating the object value
Aλ = f(Zλ) which belongs to the state Wλ then the reduction Wλ

M of this
state Wλ to the apparatus M must reproduce the originally measured pointer
state P [Φλ]. This requirement which is fulfilled in the quantum theory of
measurement30 expresses the consistency of the internal measurement process.

However, for measurements from inside the following problem arises. Con-
sider two different states W and W ′ of the object system S with the same
reduced states WM = W ′

M of the apparatus. According to the consistency
argument just mentioned, measurements of the two states W and W ′ (by
means of a convenient observable A) lead to the same pointer values and
pointer states WM and W ′

M . Hence, although the object states W and W ′

and the corresponding values of an object observable are different, the inter-
nal observer cannot recognise this fact. The pointer states and the pointer
values are in both cases the same.

Since the internal observer cannot distinguish all states of the object sys-
tem, the knowledge that he can obtain about the object system is incomplete.
Hence quantum mechanics and in particular the quantum mechanical mea-
surement process provides only an incomplete information about the quantum
28 It is easy to find examples which illustrate this result.
29 By P [Φ ] we denote the projection operator which projects onto Φ.
30 cf. Mittelstaedt (1996, IQM), p. 119.



294 11 Completeness and Reliability

physical reality. However, since this conclusion is relevant only for an inter-
nal observer it is rather innocuous. If the object system S is a part of the
physical reality, the incomplete information of the internal observer about the
system can easily be made complete by an external apparatus plus observer.
Hence, the incomplete knowledge of the internal observer is merely a sub-
jective deficiency of information. Only if the object system S is the entire
universe the incompleteness of the observer’s knowledge cannot be removed.
This means that within the framework of quantum cosmology quantum me-
chanics is incomplete in the described sense. However, it must be emphasised
that this deficiency of information is not a particular disadvantage of quantum
mechanics, since there are strong arguments31 that any theory, which is con-
cerned with the entire universe leads to similar restrictions of measurability.
Hence, one should rather speak of the incompleteness of any cosmology.

(b) Universality and semantic completeness
The assumption of the universal validity of quantum mechanics implies that
the theory can be applied not only to any kind of object systems but also
to the measuring apparatus plus observer that is used for the experimental
justification or refutation of quantum mechanical propositions. Quantum me-
chanics describes the full measuring process and treats the apparatus as a
proper quantum system. The property of a theory to incorporating the means
of its own justification, refutation, and interpretation will be called “semantic
m-completeness” (“m” for measurable), since a theory with this property con-
tains that part of its semantics which is concerned with the confirmation or
disconfirmation of statements by measurements, i.e. by experimental evidence.
Hence “m-completeness” means in this context that the apparatuses which are
used for testing the laws of quantum mechanics are not governed by unknown
external laws of nature but by the same quantum mechanical laws whose va-
lidity they are used to test. Universality implies semantic m-completeness.
Meta-theoretical statements, which are concerned with the possibilities and
limitations of the apparatus can be reformulated in terms of object theory and
proved as propositions of object quantum mechanics. The “interface” between
object theory and meta-theory is given by the measurement process.

As an illustration of these remarks we consider an object system S in a
pure state ϕ and an observable A with values Ai. The proposition Ai(S, ϕ):
“System S(ϕ) possesses the value Ai of A” can be verified by means of a
measuring process. Hence, the meta-proposition “Ai(S, ϕ) is true” which says
that Ai(S, ϕ) is verified by a measurement, can be expressed in terms of the
object theory by making use of the quantum theory of measurement. If UA is
the unitary measurement operator of the observable A and Φi the pointer state
which indicates the result Ai, then the translation of the meta-proposition
mentioned reads UA(ϕ ⊗ Φ) = ϕ ⊗ Φi. A more complicated and also more
important example is the problem of joint measurements.
31 cf. Breuer (1995, IAS) and (1996, SDQ).



11.1 Can the Laws of Nature (Physics) be Complete? 295

The proposition P : = Ai(S, ϕ) ∧ Bk(S, ϕ), meaning that “system S(ϕ)
possesses the value Ai of A and the value Bk of B” can be verified by a joint
measurement process of observables A and B. In general the observables do
not commute, i.e. [A, B] �= 0. The meta-proposition “P is true” which says
that P is verified by a measurement of the kind mentioned, can be expressed
in terms of object quantum theory in the following way. If UA and UB are
unitary measuring operators for A and B, respectively, e.g.32

UA = eiλ(A⊗P Z
A ) and UB = eiµ(B⊗P Z

B )

which fulfil the calibration condition, then the translation of the meta-
proposition mentioned in terms of object language reads

UB(UA(ϕ ⊗ Φ)) = UB(ϕ ⊗ ΦA
i ) = ϕ ⊗ ΦB

k .

However, this equation can be fulfilled only if the observables A and B com-
mute, i.e. if we have [A, B] = 0.33 Hence, the meta-proposition “P is true”
implies that A and B commute.

These arguments apply whenever the apparatus is treated as a proper
quantum system. It does not matter here whether object and apparatus are
separated (as in section b) or whether the apparatus is included in the object
(as in section a). In the ordinary case when the object S and the apparatus M
are separated quantum systems, the “probability reproducibility assertion”
(PR) can be proved in terms of object theory34 and the “pointer objectifi-
cation conjecture” (PO) can be disproved.35 In case that the apparatus M
is contained in the object system S, as discussed in the preceding section
(a), the indistinguishability of two states W and W ′ (W �= W ′) with the
same reduction to the subsystem M by internal measurements is proved by
the object-theoretical statement WM = W ′

M . Hence, if quantum mechanics
is universally valid in and thus semantically m-complete in the sense men-
tioned, some meta-theoretical statements can be proved or disproved within
the framework of object quantum mechanics.

(c) Relations to Gödel’s incompleteness theorem
The situation in the quantum theory of measurement has some similarity with
the meta-mathematical problems studied by Gödel.36 Gödel investigated a
32 Here the parameters µ and λ are proportional to the time interval of the interac-

tion and to the coupling constants that indicate the strength of the interaction.
P Z

A is the observable of the apparatus that is canonically conjugate to the pointer
observable ZA, P Z

B is defined in a similar way. (For more details cf. Mittelstaedt
(1998, IQM) p. 27 ff.)

33 The special choice of the operators UA and UB does not invalidate this result. It
can equally be obtained by more complicated unitary operators. (cf. Busch et al.
(1995, OQP), Chap. 7).

34 cf. Chap. 12.3.2.
35 Mittelstaedt (1996, IQM) p. 122.
36 Gödel (1931, FUS).
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formal system P which fulfils some standard requirements of formalisation
and axiomatisation. In particular, the formal system must be rich enough
to contain a formalisation (and axiomatisation) of the arithmetic of natural
numbers in which primitive recursive functions can be represented; it may
appear therefore that the system would contain also all of its own syntax and
semantics. That this cannot be the case was shown – among other things –
by Gödel’s “Incompleteness Theorem”.37 Every formal system P rich enough
to contain a formalisation of recursive arithmetic is either consistent or else
contains an undecidable (though true) formula. In particular the proof showed
that for any formal system P , a sentence S in the language of P equivalent in
P to its own P -unprovability (i.e. S is equivalent to nonprovable  S! where
 S! is the code for S) cannot be proved in P , provided that P is consis-
tent. Since S is equivalent to non-provable  S!, provable  S! → ¬S holds
in the formal system P . Therefore if: provable  S! → S were provable then
also: non-provable S!; and consequently S would be provable. Since iteration
is accepted as a minimum condition on “provable”: provable S → provable
(provable S!) holds. Thus non-provable  S! and provable  S! would both be
provable.38 From this it follows that every consistent formal system of this
kind has limited deductive power and is syntactically and semantically in-
complete. For the proof Gödel used a coding system of natural numbers (so
called “Gödel numbers”) with the help of which the class of axioms and the
rules of inference (the relations: x is an immediate consequence of y and z
and x is a proof of the formula y) are recursively definable within P . The
unexpected result is that a set of the Gödel numbers of all true sentences of a
given consistent formal system P belongs to those sets for which no defining
expression exists in P . The meta-theoretical results about formal systems in
the above sense may be shortly expressed thus: Any formal system containing
arithmetic which is such that the proof predicate is recursively definable in
it, contains undecidable propositions. Or: For any formal system containing
arithmetic: either the proof predicate is not recursively definable in it or it
contains undecidable propositions.39 The up shot is: The price of complete-
ness is inconsistency. An therefore: if consistency has to be granted then one
has to put up with incompleteness.

As mentioned above, universality of quantum mechanics implies that meta-
theoretical propositions can be reformulated in terms of object quantum me-
chanics making use of the theory of the measuring process. Hence meta-
theoretical statements play a twofold role. They are elements of the semantics
that provides relations between observations and theoretical terms, and they
are object-theoretical propositions that follow from the quantum theory of
measurement. On account of the analogy with Gödel’s work, one could guess
37 And also by Tarski with respect to questions of definability, in particular also of

the notion of truth.
38 cf. Kreisel (1990, RGC).
39 Observe that there are of course systems for which both is the case.



11.1 Can the Laws of Nature (Physics) be Complete? 297

that some of these meta-theoretical propositions are not provable within the
object quantum theory, even if they can be seen to be true otherwise. If this
conjecture were correct, quantum mechanics would be incomplete in a similar
sense as arithmetic is incomplete in the sense of Gödel.

However, in spite of this interesting analogy there are important differ-
ences between Gödel’s investigations and the situation in quantum theory.
Since quantum mechanics is not given as a strictly formalised theory it is
very hard to see whether the basic requirements of Gödels system P are also
fulfilled in quantum mechanics. Hence it is neither clear whether all meta-
theoretical propositions can be reformulated in terms of object theory, nor is
it obvious that some true meta-propositions cannot be proved in the object
theory. Gödels important tool that the class of axioms and rules of inference
(i.e. the relation of logical consequence) are recursively definable within the
formal system by coding the system with natural numbers (Gödel number-
ing) is not available in quantum mechanics. For this reason we must leave
the question open whether in quantum mechanics there is a Gödel-like incom-
pleteness. The incompleteness of quantum mechanics for an internal observer
which we discussed in section (a) is of a completely different kind and must
not be confused with an incompleteness à la Gödel.

11.1.4 Answer to the Objections

11.1.4.1 (to 11.1.1.1 and 11.1.1.2) Though it is true that all laws of nature
known so far are laws of a certain area the restriction and reduction to such
an area has a certain threshold, which is connected with two aspects. The
first is that the aim of science is to find most general laws with respect to
one whole discipline such as the most general laws of physics or of chemistry
or of biology. In current research of cosmology or of the theory of evolution,
say, the goal is even broader namely to find laws for the development of the
whole universe. This is one important reason why the laws restricted to some
subarea are viewed as preliminary with the hope of finding more general laws.

The second aspect of the threshold is the necessary condition to preserve
severe testability of the laws. To react with restriction of the area of the law
after each negative test (in that unrestricted area) leads to immunisation of
laws with respect to criticising tests and blocks progress in science. Therefore
the aim cannot be completeness of laws via sacrificing generality; and still
less the aim can be completeness of laws by buying immunisation and loosing
severe testability because this will ultimately sacrifice truth.

11.1.4.2 (to 11.1.2.1) The incompleteness of arithmetic transfers only indi-
rectly and improperly to physics, though physics presupposes and uses (and
needs) arithmetic. This is because those arithmetical propositions which are
true but are not provable in arithmetic40 are not interesting or relevant in
40 A concrete example of a mathematically simple and interesting (arithmeti-

cal) proposition which is not decidable in arithmetic was given by Paris and
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any reasonable sense for physics. Therefore, the incompleteness of arithmetic
does not provide us with special characteristics which are important for the
kind of incompleteness of laws of nature (of physics) in the case of dynamical
or statistical laws or in the case of special kind of incompleteness in quantum
mechanics. The general underlying idea of completeness however, outlined at
the beginning of this chapter, is important in all these considerations.

11.2 Are the Laws of Nature Reliable?

11.2.1 What does it Mean that a Law of Nature is Reliable?

A law of nature and in particular a law of physics is called reliable here, if the
law holds rigorously, i.e. if under all possible circumstances the law holds and
if it provides correct statements about physical facts. Under these conditions,
an observer can use the law for predictions and explanations of present and
future experimental results. In the sense of this meaning we will raise the
question “are the laws of physics reliable?”. In particular, we will treat here
the following questions:

(1) Do the laws state facts?
(2) Do the laws state single facts?
(3) Do the laws treat isolated situations?
(4) Do the laws describe realistic situations?

11.2.2 Arguments Contra – “How the Laws of Physics Lie”41

11.2.2.1 Firstly, we mention the argument that the laws of physics do not
state facts.42 By a fact we mean the present state of a physical system, its
measurable properties and its position in space and time. Facts are also given
by physical processes, which can be observed in a certain region of spacetime.
As simple examples we mention the sunrise, a lightning-stroke, or a car acci-
dent. Events of this kind are not directly subject to physical laws. The laws of
physics describe – without any reference to physical processes – the chrono-
logical order of several processes, the mutual influence of processes, and causal
connections between events. In particular, laws of nature are only the formal
framework, which must be completed by initial conditions, final conditions,
causality requirements, numerical values for constants, etc.

In the above-mentioned example of the sunrise the laws of physics which
must be applied in this case are the equations of motion of the earth in the

Harrington (1977, MIP). cf. also Kreisel (1980, KGB), p. 175. Later more such
propositions have been discovered.

41 This phrase is adopted from the title of Nancy Cartwright (1983, LPL), How the
Laws of Physics Lie

42 Cartwright, l.c. pp. 54–73.
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gravitational field of the sun – if we neglect the additional influences of the
moon and the other planets. However, the time of the sunrise at a certain
place can be determined by these laws only, if in addition the values of the
position and of the velocity of the orbital motion around the sun as well as
the angle and the angular velocity of the rotation of the earth are given for
a certain instant of time. For this reason the laws of physics provide only an
abstract scheme which connects possible events but they do not describe single
facts.43 In this sense Feynman writes with a slight poetic exaggeration that
“there is . . . a rhythm and pattern between the phenomena of nature which is
not apparent to the eye but only to the eye of analysis; and it is this rhythm
and pattern which we call physical laws. . . ,44

11.2.2.2 Secondly, we could argue that the laws of physics, even if we under-
stand them in the abstract sense mentioned, lie since they treat only isolated
situations and not real processes. As an example, Feynman formulates the
Newtonian law of gravitation as follows:45 “The law of gravitation is that
bodies exert a force between each other which varies inversely as the square
of the distance between them, and varies directly as the product of these
masses.”46 Even it we accept the very general and abstract character of this
law, it does not correctly describe the realistic behaviour of bodies. In fact,
if the two interacting bodies possess – in addition to their masses also charges –
the motion of the bodies is determined both by the law of gravitation and the
Coulomb law between charges. For this reason the law of gravitation formu-
lated by Feynman is not entirely correct. There are two ways out of this
dilemma. The first reaction is that Feynman’s formulation of the law is not
complete and must be completed by a ceteris paribus clause as “if there are no
other forces than gravitational forces”. But then we are again exposed to the
argument that the laws of physics describe only isolated, fictitious situations
but not realistic ones.

The second reaction is to formulate a new, more general law, which in-
corporates the Coulomb forces. The two forces, described by vectors FG for
the gravitational force and FC for the Coulomb force could be added making
use of the vector addition rule. If this were correct the new, more general law
could be formulated by replacing the gravitational force FG by the resulting
force F = FG + FC . This way of reasoning is, however, not quite correct. The
superposition principle of forces47 states that whenever two forces F1 and F2

are acting on a body, in the equation of motion of this body the resulting
force F = F1 + F2 must be used. However, this principle is a new, empirical
requirement, which does not follow from the vector addition rule. Without
additional assumptions the resulting force reads F = F1+ F2+ f12(F1, F2)

43 Cartwright, l.c.
44 Feynman, R. (1967, CPL) p. 13.
45 Cartwright, l.c. p. 57.
46 Feynman, l.c. p. 14.
47 Mittelstaedt, R. (1995, KLM) p. 62.
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where f12(F1, F2) describes the mutual interaction of the forces F1 and F2.
If, as in our example F1 is an electromagnetic force and F2 is a gravitational
force, then F1 is always influenced by F2 and vice versa.

Consequently, also the second attempt to show that the laws of physics
describe realistic situations fails. Hence it seems that the laws of physics do
not describe realistic situations and processes but isolated and artificial cases.

11.2.2.3 According to the arguments in 11.2.2.1 and 11.2.2.2 the laws of physics
represent an abstract schema that connects isolated and idealised events but
not realistic situations. The latter argument can be extended to the objection
that the laws of physics – even if they treat isolated cases – are concerned only
with artificially simplified cases, which are far from the complexity physical
facts. For illustrating this argument we consider the very simple law of free
fall in the sense of Galileo which reads in modern terminology mI ẍ = −mGg.
In this law x is the vertical coordinate, mI the inertial mass and mG the
gravitational mass of the falling body. Since the values of mI and mG are
proportional with a universal factor we write here the equation of motion
in the simple form mẍ = −mg with m = mI = mG. The constant g = 9,
81 cm/sec2 is the gravitational acceleration on the earth. Integration of this
differential equation leads – together with some initial conditions – to the
solution x = −1/2 gt2 + v0t + x0 where v0 and x0 are constant initial values.
However, taken literally, this law is not correct.

It holds only if the values of the air pressure p = 0 (vacuum), the ge-
ographic position, the altitude of the experiment, the radius ρ = 0 of the
falling body (mass point) and other not explicitly known parameters are kept
constant. The reason for this condition is that the gravitational force (mg) is
not constant but depends on the geographic position, the altitude, and the air
pressure. In addition, the law holds only for mass points since additional de-
grees of freedom of extended bodies would change then simple law of Galileo.
Since in the present case for the validity of Galileo’s law many parameters
which were not mentioned explicitly must kept constant, Cartwright calls it
a ceteris paribus law.

One could try to incorporate the ceteris paribus parameters in a new, more
complicated law. This is partially done in Newtons reformulation of Galileo’s
equation of motion. Hence, the constant g is replaced by kM/R2, where k is
the (Newtonian) gravitational constant, M the gravitational mass, and R the
radius of the earth. Hence, the new law reads

mẍ = −kmM

R2

where the number of ceteris paribus conditions is strongly but not completely
reduced. E.g. since the earth is not an exact sphere, at different places we must
use different values of R. One could try to go one step further. In Newton’s
equation of motion the requirement of special and general relativity are not
taken into account. This means that Newton’s law does not hold rigorously
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but only under the condition that the gravitational field is weak and that
the velocities of bodies are very small compared to the velocity of light in
vacuum. Hence, Newton’s equation of motion is again a ceteris paribus law
in the above-mentioned sense. The incorporation of the relativity conditions
leads finally to Einstein’s equation of motion,

d2x

dτ2
+ Γµ

αβ
dxα

dτ
dxβ

dτ
= 0

i.e. to the differential equation of a geodesic line in a four dimensional pseudo-
Riemannian spacetime. We will not go into details here and refer to the litera-
ture.48 We stop here since obviously this way of reasoning could be continued
up to the formulation of the fee fall within the framework of a “final theory” –
if it exists at all. Hence we conclude, that up to now the laws of physics which
we find in textbooks and handbooks hold only in the sense of ceteris paribus
laws.

11.2.2.4 For sake of completeness we should add that there are also ceteris
paribus conditions of the laws of nature which consist of more formal hidden
assumptions which we are not aware of. We mention here some examples.

(α) Laws of nature expressed by mathematical formulae presuppose mathe-
matical premises, which are sometimes unknown at the time when the law
is formulated. The equation of motion in classical mechanics was consid-
ered for a long time as a strictly deterministic equation which allows for a
complete prediction of future events. The ceteris paribus condition which
is not mentioned here consists of restrictive assumptions about the depen-
dence of a solution on the initial condition, since otherwise the motion
could become chaotic and thus unpredictible. (For details cf. Chap. 8.)

(β) Concepts are often not sufficiently well defined. To say that a certain
equation of motion describes correctly the trajectory of a given mass
point presupposes the existence of a symmetry group such that convenient
representations of this group allow for the definition of the mass point in
question. (For details cf. Chap. 10). For a long time this group theoretical
ceteris paribus condition was completely unknown and hence a hidden
assumption of the kind mentioned.

(γ) There are even logical structures, which are tacitly assumed to hold if
a physical theory is applied to some domain of physical reality. If these
assumptions were not known when the theory was formulated, then they
represent hidden logical ceteris paribus conditions. The statement that
quantum mechanics, say, is a consistent theory, presupposes – under the
conditions of Gödel’s theorem – that it is not complete, i.e. that it contains
undecidable propositions. (For details cf. Sect. 11.1.3.7c.) Hence, incom-
pleteness is a logical ceteris paribus condition, which was completely un-
known at the time when quantum mechanics was discovered and a hidden
assumption of the kind discussed here.

48 e.g. Rindler (1977, ESR) p. 139.
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11.2.3 Answer to the Objections – What does it Mean
that a Law of Nature Holds?

In 11.2.2 we mentioned three arguments which show that the laws of physics
do not provide a description of real physical events and processes. Instead,
the laws of physics are abstract tools which are applicable merely to isolated
situations and artificially simplified cases.

To 11.2.2.1: The observation that the laws of physics expressed by equa-
tions of motion and field equations do not describe facts is completely correct.
However, it is a methodological principle of physics for the description of a real
process to use two clearly distinguished components: the equation of motion
in a very general sense and initial conditions, boundary conditions, causality
requirements, etc. In terms of mathematics, this means that a real trajectory,
say, is described by a law given by a differential equation and by initial con-
ditions, which correspond to certain values of constants of integration. Thus,
the laws of physics together with initial conditions describe facts, although
the laws alone don’t.49

This dualism of laws and boundary conditions has the advantage, that
a law can be formulated which “holds” for arbitrary processes and that a
special individual process is characterised by additional initial, or boundary
values. It is obvious that a law cannot be recognised since any real process is
composed of laws and boundary conditions. There is nothing in reality which
corresponds to the separation of these two components.

One could go even one step further by incorporating symmetry principles
into the description of real processes. The most general component is then
the invariance or symmetry principle. The special law is characterised by ad-
ditional requirements and for the individual process also boundary conditions
are needed. However, a real physical process does not show three distinguish-
able features, a symmetry property, a dynamical law and boundary conditions.
These three components exist as separated entities only on the level of our
description.

To 11.2.2.2: It is correct to say that the abstract laws of nature together
with convenient boundary conditions do not describe arbitrary real situations
but merely isolated objects and processes. In 11.2.2.2 we found that the two
attempts to remove this defect fail. There are, however, good reasons not to
change the strategy of physics. First we mention the context of discovery. The
way in which physical laws can be found at all is to isolate an object from all
other bodies, fields and from the environment, and to study the behaviour of
this isolated object. (cf. the example of the search for the law of the pendulum
in Sect. 5.4.) In this way we arrive at physical laws which are rather simple
compared with the laws of compound systems. But even these laws are not
always simple in a technical sense. As an example we mention Maxwell’s equa-
tions in vacuum without gravitation and without incoming radiation and with
49 For further discussion of the distinction between laws and initial conditions

cf. Chap. 8.1.
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a finite number of charged mass points as sources of the electromagnetic field.
The behaviour of this isolated cloud turns out to be extremely complicated.
Even the approximation without free electromagnetic fields leads to Darwin’s
Lagangian50, which does not allow for simple solutions. The full relativistic
case, which incorporates radiation damping is almost intractable.

Hence, we conclude that in spite of some disadvantages laws of physics
must be concerned with isolated and thus unrealistic cases since otherwise
they could not be discovered. The fundamental laws of physics are ceteris
paribus laws since the incorporation of the tacitly assumed conditions would
lead to very complicated laws which could neither be discovered nor applied
on account of their mathematical intractability.

To 11.2.2.3: Obviously, it is a correct observation that the fundamental
laws of physics refer not only to isolated situations but also to oversimplified
cases. They are ceteris paribus laws since influences from various sources are
tacitly excluded. The attempt to incorporate the ceteris paribus conditions
and to obtain in this way laws for more complex situations leads to more
and more complicated laws of physics. This was illustrated for the equation
of motion in a gravitational field.

The formulation of more complicated laws for more complex situations is
not only complicated but also not desirable. We mention here three reasons.
Firstly, the incorporation of ceteris paribus conditions leads step by step to
more complicated laws. It is hard to say whether this sequence ever ends.
There are explicitly assumed ceteris paribus conditions, which can in principle
be eliminated. There are, however also conditions which come from “higher
order” theories and which are less known. In addition, we don’t know, whether
the hierarchy of theories ends after a final number of steps in a “final theory”51

or in a “theory of everything”. Only in this case we could eliminate – at least
in principle – the totality of ceteris paribus conditions. Hence, this way of
reformulating the laws of physics is not very promising.

The second argument refers to the “context of justification”. One task of
physics is the formulation of laws in terms of mathematics. Another task is the
justification of these laws by experimental evidence. The experimental justi-
fication is practically possible only for simple laws which hold of course only
under various ceteris paribus conditions. For example, the quantum mechan-
ical Schrödinger equation could in principle be tested at a complex molecule
in an electromagnetic and a gravitational field. From a practical point of view
it is much easier to test this equation at a one body problem with Coulomb
forces only without gravitation and electromagnetic waves. This is the well-
known hydrogen atom problem which can be solved exactly and easily be
compared with experimental results. Hence, also within the context of justifi-
cation simple though somewhat artificial laws have many advantages.
50 Landau, L.D. Lifschitz, E.M. (1963, ThP) p. 187.
51 cf. Weinberg (1993, DFT)
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There is a third, more sophisticated argument in favour of simple physical
laws, which hold for artificial and oversimplified cases. The totality of laws of
physics must not be considered as a collection of independent rules. Instead,
these laws constitute multiple connected networks of laws, which are usually
called theories. As an example for a physical theory we mention Maxwell’s
theory of electrodynamics. In this theory from Maxwell’s equations and some
other requirements all other laws of electricity and magnetism, e.g. the laws of
Faraday, Biot and Savart, and Oersted, can be derived. Theories of this kind
are constituted by simple laws which refer to simple, sometimes oversimplified
experimental situations. Only the interplay of these multiple connected laws
will apply to realistic and complex situations.

In addition, in contemporary physics an even more hypothetical argument
is often used. Theories are not considered as logically independent structures
but as complex systems of laws, which are on their part connected in a man-
ifold way. Some physicists assume that there is a hierarchy of theories such
that from a “theory of everything”52 all other theories can be derived. We will
not discuss here the question whether it is the goal of physics to find a “final
theory”53 and whether this goal can ever be achieved. From the preceding
discussion it is, however quite clear that a hierarchy of theories and a possible
final theory will only be concerned with abstract and simple laws which do
not describe directly our immediate physical experience.

11.2.4 Summary

It is a correct observation that the majority of laws of physics are formu-
lated incompletely without mentioning all constraints and conditions, which
are tacitly assumed to be fulfilled. Hence, the physical laws which we find in
our textbooks and handbooks are not literally applicable to real physical sit-
uations. In this and only in this sense one could say that “the laws of physics
lie”54. This statement can be further illustrated by comparing physical laws
and mathematical laws. In the correct formulation of a mathematical theorem
all premises must be formulated explicitly. In this way exceptions can be fully
excluded and the theorem holds generally. A formulation of this kind is always
possible since the premises of the theorem in question are known. In physics
the situation is quite different. Firstly, there are many preconditions, which
are tacitly assumed since otherwise the laws would become intractable. Sec-
ondly, many preconditions of a physical law cannot be mentioned explicitly
since they are not, or more precisely not yet known. In the example of the
52 The denotation “theory of everything” is ambiguous and somewhat misleading.

It is not meant here that a theory of everything describes the totality of observ-
able phenomena but only the fundamental structures which allow to derive the
structure and the behaviour of every complex observable phenomenon. cf. also
Barrow (1991, TOE). T’Hooft G. (1995, PVW) and Breuer (1997, QMG).

53 cf. Weinberg (1993, DFT).
54 Cartwright (1983, LPL).
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equation of motion in a gravitational field we found, that the number of con-
ditions increases if we proceed step by step to more general theories. Starting
from Galileo’s formula for the free fall, we proceeded to Newton’s theory and
further to Einstein’s theory. The next step would be the formulation of this
problem within the framework of quantum gravity, etc. This means that the
list of preconditions could be completed only, if we were in the possession of
a theory of everything, i.e. if physics were already in its final stage.55 This is,
however not the case. Also the mathematical and logical hidden assumptions
mentioned above could not be taken account of in the original formulation of
physical laws, since they were not yet known when the laws were formulated.
One could speculate that even today there are formal hidden assumptions
which are presupposed in some laws of nature and which we do not yet know.

In spite of difficulties which might arrive if we are dealing with laws that
are not directly applicable to realistic situations, there are good reasons to
maintain very simple and incomplete physical laws. Laws of this kind have
many advantages and they are almost unavoidable

– in the context of discovery, since otherwise the laws could not be found.
For example, for the discovery of quantum mechanics it was essential that
there are a few exact and simple solutions of the Schrödinger equation
(hydrogen atom and harmonic oscillator) which could be compared directly
with simple experimental situations.

– in the context of justification, since experimental tests can only be per-
formed on isolated objects in strongly simplified situations. For this reason
most interesting features of quantum mechanics as non-locality and entan-
glement were tested only in recent years since the experimental technique
for investigating isolated, individual quantum objects did not exist before.

– in the context of explanation, since only for simple laws we can hope to
explain one law by another one. Generally, we want to know which laws
are explanatory relevant for which others. In particular we want to explain
complex phenomena as the result of the interplay of simple laws. This is,
however possible at most for laws which hold for simple and isolated situa-
tions. Even for these cases, the problem could become very complicated. In
the example of an interplay of gravitational forces and Coulomb forces we
found that the vector addition law does not hold due to non-linear terms
which arise in this case.

In addition, simple, idealised laws can be used for the formation of theories
which can then be connected by intertheoretical relations.56 In this way a
network of theories can be constructed which could serve as a guideline for
future research work.

As to the complexity of realistic situations and processes it must be em-
phasised quite generally, that the laws of physics are not conceived and must
55 In contrast to S. Hawkings prediction of 1980, (1980, ETP) that “the goal of

physics might be achieved in the not too distant future”.
56 cf. Scheibe (1997, RPT), (1999, RPT).
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not be understood as mathematical simulations of these complex situations.
Instead, they must rather be considered as various tools, which can – together
with convenient boundary conditions – jointly be used for the description of
realistic situations. In other words, the laws and theories of physics are not
images of the real world but rather tools for constructing correct models of the
world. This means, however, that the physical laws that we find in textbooks,
monographs, and handbooks are only the first step. In addition to the formal
laws, we must learn to apply them to the real world. This is a difficult task, in
particular since there are no general rules for considering or neglecting various
ceteris paribus conditions of the physical laws which we find in the textbooks.
Moreover, the real processes are not pure cases but must be described by a
joint application of several laws. Hence, there are many pitfalls in interpreting
and understanding the laws of physics.



Part III

Why are Laws of Nature Valid?
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Statistical Laws

12.1 General Preliminaries

12.1.1 Regularity and Necessity

In our experience we observe regularities. Compared with the period of a pen-
dulum the rotation of the earth is periodic and defines the duration of a day.
The orbital motion of the earth around the sun is again periodic and defines
the duration of a year. If there are no gaps in these regularities we assume
that there is a law behind the observed phenomena that governs the motion
of the earth and the other planets in our solar system. The first attempt to
formulate laws of the planetary system in terms of mathematics was made
by Kepler who was convinced that the three laws formulated by him already
elucidate the intrinsic harmony of the universe. This conclusion was, how-
ever, somewhat too hasty. A law of physics should not describe a particular
process like the motion of the earth but any arbitrary motion of the same
kind. In case of the planetary motion a law with this degree of generality is
given by Newton’s equation of motion of a body in the gravitational field of
the sun. The trajectory of each planet can then be determined by Newton’s
law together with convenient initial conditions. The more special laws discov-
ered by Kepler can then be derived – in a convenient approximation – from
the general Newtonian law. Hence a law is an abstraction that describes the
observed regularities apart from concrete processes and specific objects. (cf.
11.2)

Another important requirement, which must be fulfilled by a law of nature,
is universality. A law should hold not only at a certain instant of time but
always and not only at a particular place but everywhere. In should hold in
all equivalent situations, where the concept of “equivalence” must explicitly
be explained. For example, in Newtonian mechanics all systems of inertia are
dynamically equivalent. Requirements of this kind are usually expressed by
invariance postulates, which must be fulfilled by laws of nature. In addition, a
law of this kind must be compatible with other laws such that various at first
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glance independent laws can be comprehended in a “theory”, a formal system
that allows to derive new consequences describing new experimental facts.

If a particular law or a network of laws, which we call “theory”, fulfils the
mentioned requirements of universal validity, then the question arises why the
laws considered hold. Does the claim to universal validity indicate a hidden,
not yet recognised necessity of the observed regularities? We will follow this
question here and ask at first for possible nonempirical reasons and justifica-
tions for a law of nature.

12.1.2 Why are Laws of Nature Valid?

We mention here three possible justifications for the necessity of a law of
nature:

(a) A law of nature could hold necessarily since it is merely a disguised law of
logic or of mathematics. In Chap. 4 it became obvious that – irrespective
of their mathematical justification – the laws of arithmetic, geometry of
the three-dimensional space, and probability could also be considered as
laws of nature. They are applicable to the physical reality and they hold
rigorously in all conceivable situations. Hence they fulfil the necessary
requirements of laws of nature but their validity is not based on experience
but on mathematical reasoning.

Another example is quantum logic, which will be discussed in Chap. 13.
The universal empirical validity of quantum mechanics will not be ques-
tioned here. However, we query the empirical justification of quantum
mechanics and ask for an additional argument that demonstrates the ne-
cessity of quantum mechanics. It turns out that the formal framework
of quantum mechanics, the Hilbert space with complex numbers, can be
traced back to the orthomodular lattice of its subspaces and that this lat-
tice is the Lindenbaum–Tarski algebra of the calculus of quantum logic.
Since all laws of quantum logic are also valid in ordinary classical logic
and since quantum logic follows from the most general conditions of a for-
mal language of physics we find that the validity of quantum mechanics
is not only based on experience but that this theory can be justified by
purely logical and mathematical reasoning.

(b) A law of nature holds necessarily for a certain real entity – an object, a
property, or a process – if the validity of the law in question is a neces-
sary precondition of that entity. In Sects. 10.2 and 10.3 we demonstrated
that for the constitution of objects in classical mechanics and in quantum
mechanics invariance principles and laws of physics must be presupposed.
In particular it turned out that observables and symmetry transforma-
tions must fulfil certain covariance postulates. Hence it is obvious that
the laws and symmetries that were used for the constitution of objects
hold necessarily for these objects. This is the case in particular for the
invariance properties in question. Although this result is almost trivial it
demonstrates a further kind of necessary laws of nature.
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The way of reasoning, which is applied here, is not new but can be
traced back to the transcendental arguments in the philosophy of Kant.
In the Critique of Pure Reason Kant emphasised that “objects of experi-
ence” cannot directly be recognised but must be constructed, composed,
or constituted on the basis of sensations and observations by means of
conceptual prescriptions, the categories of substance and causality. This
means that our impressions and sensations must be ordered and inter-
preted by these categories in order to obtain objects, i.e. entities of the
external reality. For these constituted objects the laws of causality and
conservation of substance hold a priori, i.e. independent of and prior to
any possible experience. However, these arguments don’t show the neces-
sity of a particular law of nature, but only the necessary validity of the
very general rules of causality and conservation of substance. Kant’s at-
tempts to extend his results in a similar transcendental way to some laws
of classical Newtonian mechanics1 are not convincing and will thus not
be considered in the present investigations.

(c) There is a third, completely different way for demonstrating that a law
of nature holds necessarily. For compound systems which are composed
of a very large number of subsystems it can happen, that the compound
system obeys laws which follow exclusively from the large number of the
single systems, i.e. laws which are based merely on the statistical law
of large numbers. This means that the laws that govern the individual
subsystems have no influence on the laws that determine the behaviour
of the ensemble. This possibility was already indicated by Schrödinger in
his inaugural lecture of 1922 (cf. Sect. 7.2.3.4.2)2 and further elaborated
by Wheeler who called a statistical law that holds without any recourse
to individual laws a “law without law”.3

Hence it could happen that some laws of statistical mechanics hold irrespec-
tive of the laws that govern the individual particles, i.e. the laws of classical
Newtonian mechanics. However, a test of this conjecture is a difficult task,
since one had to show that also alternative non-Newtonian laws for the indi-
vidual particles would lead to the well known laws of statistical mechanics.
The problem behind this way of reasoning is that alternative theories for clas-
sical mechanics could be inconsistent in many ways. Presently we don’t know
why the laws of Newtonian mechanics hold and whether modifications of these
laws are free from internal inconsistencies.

Within the domain of statistical mechanics and thermodynamics one can,
however test a somewhat weaker conjecture, which seems to be sufficient
for our problem. We could presuppose, that individual systems are governed
1 The most interesting exemples of this kind can be found in the Metaphysische

Anfangsgründe der Naturwissenschaft; further attempts are in Kant’s Opus Pos-
tumum. (cf. Vittorio Mathieu (1989, KOP))

2 cf. Schrödinger (1961, WNG) p.11
3 Wheeler (1983, RLL)
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merely by very general and less specific laws like invariance principles and de-
rive from these weak assumptions a law of statistical thermodynamics. This
will be done in Sect. 12.3.1 where Boltzmann’s energy distribution law is
derived from very weak assumptions.

It would be even better, if we could find a field of physics where individ-
ual objects are not determined by any law. If under these extreme conditions
statistical laws for a large ensemble can be derived then these laws hold nec-
essarily. In the domain of quantum mechanics we find situations of this kind.
In Sect. 12.3.2 we will show that the probabilistic laws of quantum mechanics
can be derived although the single quantum systems are not determined by
any law of nature. Hence, these probabilistic laws of quantum mechanics are
necessary.

The question posed at the beginning of the present section, whether there
are laws of nature that hold necessarily, can thus be answered in the affir-
mative. However, this does not answer the question whether in addition to
these laws there are also contingent laws, i.e. laws that cannot be justified by
a priori reasoning. We must leave this question open in particular since it is
not clear what it means that a law – not a mere regularity – is contingent.

12.2 Are Statistical Laws Based on Individual Laws?

In classical statistical physics there are strong indications that statistical laws
which hold for macroscopic systems, i.e. for large ensembles of microscopic
objects are based on dynamic laws and properties of the single objects con-
sidered. (cf. Chap. 6) Usually, we assume that the single objects are governed
by the laws of Newtonian mechanics, electrodynamics, and gravity and that
processes like collisions, motion in an electromagnetic or gravitational field
etc. are adequately described by them. Many statistical laws follow from these
premises. We mention here the relation between the temperature of an ideal
gas of molecules and the kinetic energy of the single molecules, the barom-
eter formula which connects the density of a gas as function of the altitude
with the motion of molecules in the gravitational field of the earth, and many
other thermodynamic relations which can be traced back to the dynamics of
electrons, atoms, and molecules.4

In this way a dualistic picture of statistical physics and classical dynamics
of single objects seems to be well established. The behaviour of macroscopic
quantities like temperature, density, entropy etc. is determined by the dy-
namic behaviour of the underlying microscopic objects like electrons, atoms,
and molecules. However, these results do not show that for every law which
connects statistical quantities corresponding laws of individual objects can
be found which induce the statistical laws mentioned. Of course, outside of
4 cf. for example the textbook on Statistical Physics by Landau and Lifschitz (1966,

ThP)
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physics there are many statistical regularities which are not justified on the
basis of individual laws but simply based on empirical evidence. We mention
here the statistical results used in life insurance, or the statistics about rela-
tive frequencies of car accidents etc. These problems are outside the scope of
our consideration. Instead, we are interested in the question whether there are
well-confirmed statistical laws of nature that are not based on dynamical laws
for the single systems. The answer to this question requires a more detailed
investigation. We will proceed here in two steps, first discussing problems of
classical statistics and second problems of quantum statistics.

12.3 Are there Statistical Laws
without Individual Laws?

Arguments Contra

(1) If there were statistical laws of an ensemble of molecules or atoms, say,
without individual laws, then there would be no laws governing the single
molecules and atoms. In this case, the single molecules and atoms would
not even be guided by the conservation laws (like that of energy, charge,
etc.). But the conservation laws are assumed to hold universally and they
are the most well established laws of physics. For the conservation of en-
ergy this argument is confirmed by the example in Sect. 12.3.1 on classical
statistics.

Therefore, it is impossible that there are statistical laws without indi-
vidual laws.

(2) If there were statistical laws without individual laws then there would be
no laws at all governing the single elementary particles. Hence, the single
elementary particles could not be guided by dynamical laws. But as a
matter of fact – and without any exception – the single particles obey the
law of gravitation, since gravity is a universal force.
Therefore, it is impossible that there are statistical laws without individual
laws.

Arguments Pro

(1) If for every individual system, say an individual neutron or photon (in a
quantum mechanical measurement) the value of the measured observable
is objectively undetermined before the measurement, whereas a sufficiently
large number of photons (or neutrons) satisfy a statistical law, then there
are statistical laws without individual laws. Indeed, recent split-beam ex-
periments show that there is indeterminacy in a strict objective sense for
every individual system and yet an emergence of a statistical law (if the
ensemble is large enough) which provides an objective and definite prop-
erty of the whole system. In quantum mechanics, this result holds also for
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conserved quantities like energy or momentum and for gravity induced
phenomena as the path of a particle.5 In this sense Wheeler spoke of “law
without law”

“All physics, in my view, will be seen someday to follow the pat-
tern . . . of regularity based on chaos, of ‘law without law ’.”6

Therefore, there are statistical laws without individual laws.

12.3.1 Classical Statistics

The first example for a “law without law” which we will discuss here is taken
from statistical mechanics. The behaviour of a large ensemble of molecules is
governed by Boltzmann’s law:7

The probability p for a molecule to be in a state of energy ε is given by
the formula

p(ε) = p0(N)e−ε/γ

where p0(N) is a normalising factor depending on the number N of molecules,
ε is the energy of the molecular state in question and γ is the mean energy of a
molecule which is proportional to the temperature. Hence, we are confronted
with the important question “how can stupid molecules ever be conceived to
obey a law so simple and so general?” (Wheeler (1983, RLL)). The predicate
“stupid” means in this context that the molecules are not governed by any
law.

In order to answer this question let us consider N oscillators and K quanta
of energy. By µ(K,N) we denote the number of ways of sharing the energy
(K quanta) between N oscillators. E.g. for N = 2 oscillators we have K + 1
ways to distribute K quanta according to the scheme:

[0 |K], [1 |K − 1], [2 |K − 2], . . . , [K | 0] .

In the general case of N oscillators and K quanta of energy the number of
ways to distribute the energy is given by

µ(K,N) = (K + N − 1)!/K!(N − 1)! .

This formula can be further elucidated, if we consider the number νK(x;N)
of possibilities to have x quanta in one oscillator and K − x quanta in the
remaining N − 1 oscillators. This number is given by

νK(x;N) = µ(K − x,N − 1) = (K − x + N − 2)!/(K − x)!(N − 2)! .

For the special case K = 4, N = 4 the graph of this formula (Fig. 12.1) shows
a rapidly decreasing function.
5 This can be illustrated by the split-beam experiment of Sect. 12.2.2 with neutrons

in a gravitational field which was realised by Rauch et al. cf. Rauch (1988,NIT)
6 Wheeler (1983, RLL), p. 398
7 Boltzmann (1868, SKA)
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Fig. 12.1. The number v4(x; 4) of possibilities to have x quanta in one oscillator

With increasing numbers of N and K of oscillators and quanta, respec-
tively, the formula shows more and more exponential behaviour. For K = N
= 6 we obtain the graph in Fig. 12.2 which confirms this conjecture.
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Fig. 12.2. The number v6(x; 6) of possibilities to have x quanta in one oscillator

In the limit of very large numbers N and K one obtains Boltzmann’s
formula. This can be shown in the following way: The number of possibilities
to have x quanta of energy ε0, i.e. the energy ε = x · ε0 in one oscillator is
given by

µ(K − x,N − 1) = {1/(N − 2)!}
N−2∏
i=1

(K − x + N − 1 − i) .
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Here we write E = K · ε0 for the total energy and γ := (E − ε)/(N − 1) for
the mean energy of one of the remaining (N − 1) oscillators. Hence K − x =
(E − ε)/ε0, and thus we find

K − x + N − 1 − i = (E − ε)/ε0 + N − 1 − i

=
(

E + (N − 1 − i)ε0

ε0

) (
1 − ε

E + (N − 1 − i)ε0

)

and

µ(K − x,N − 1)

= {1/(N − 2)!}
N−2∏
i=1

E + (N − 1 − i)ε0

ε0

N−2∏
i=1

1 − ε
E + (N − 1 − i)ε0

We will now make the following approximations

E � ε, K − x � N − 1 � 1 .

It therefore follows γ � ε0 and thus

E + (N − 1 − i)ε0 ≈ (N − 1)γ + (N − 1 − i)ε0 ≈ (N − 1)γ

for all i. The equation for µ(k − x,N − 1) now becomes

µ(k − x,N − 1) =
1

(N − 2)!
((N − 1)γ/ε0)N−2(1 − ε/(N − 1)γ)N−2

Using the relation
e−λ = lim

s→∞(1 − λ/s)s

for N � 1 we find
µ(K − x,N − 1) = C(N) e

−ε/γ

with C(N) = [1/(N − 2)!]((N − 1)γ/ε0)N−2. Finally, normalisation leads to
the Boltzmann formula mentioned above

p(ε) = p0(N)e−ε/γ .

Where does this formula come from? For the derivation there is no need to
presuppose dynamical laws which are fulfilled by oscillators or quanta of en-
ergy. There is only one restriction: The total amount of energy E = ε0K
contained in K quanta of energy must be constant. Hence, Boltzmann’s for-
mula is not exactly a “law without law” but a law that follows from a weak
law-like assumption, the conservation of energy. This energy conservation law,
which corresponds to an invariance property, is a genuine law of nature. Hence,
Boltzmann’s law – though very surprising at first glance – is finally based on
an empirical law, which can, in principle, be falsified. This means that the
“stupid molecules” in Wheelers above-mentioned question are not completely
stupid. They obey the law of conservation of energy.
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12.3.2 Quantum Statistics

Our second example for a “law without law” is taken from quantum mechan-
ics. Here, we are confronted with a very particular situation. The laws that
are primarily provided by the theory are statistical laws and these laws are
confirmed experimentally to a very high degree of accuracy. However, for a
single system we do not know a dynamical law – like Newton’s equation of
motion – that determines the properties of the system considered. Moreover,
in quantum mechanics it is not possible to assume hypothetically that the
behaviour of an individual system is determined by a dynamical law that we
do not know. Hence, in quantum physics a situation is realised such that we
have well-established statistical laws but objective indeterminacy for individ-
ual systems. The statistical laws are laws without a law-like background and
we will ask where these laws come from.

Objective Indeterminacy versus Statistical Determination

For illustrating this situation we consider the split beam experiment in
Fig. 12.3, which was realised both with photons and neutrons. In this experi-
mental set-up the state ϕ of the incoming photon is split by a half-transparent
mirror, beam splitter BS1, into two orthogonal components described by or-
thonormal states ϕB and ϕ¬B . The two parts of the split beam are reflected at
two (fully reflecting) mirrors M1 and M2 and recombined with a phase shift
δ at a second half-transparent mirror, beam splitter BS2. In the experiment
there are two mutually exclusive measuring arrangements: If the detectors D1
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Fig. 12.3. Photon split-beam experiment with beam splitters BS1 and BS2, both
half-reflecting mirrors, two fully reflecting mirrors M1 and M2, a phase shifter PS
providing a phase shift δ, and two detectors D1 and D2 in mutually exclusive posi-
tions (D1

A, D2
A) and (D1

B , D2
B)
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and D2 are in the positions (DB
1 , DB

2 ) one observes which way (B or ¬B) the
photon came. If the detectors are in the position (DA

1 , DA
2 ) one observes the

interference pattern, i.e. the intensities which depend on the phase δ.
In the latter case of position (DA

1 , DA
2 ) let us first consider the special case

δ = 0 without phase shift. In this particular situation the outcomes of the split-
beam experiment is completely determined. destructive interference destroys
all radiation going to the second detector DA

2 , whereas the first detector DA
1

registers, in case of ideal sensitivity, every incoming photon. However, even in
this situation of fully determined outcomes nothing can be said about the path
of a single photon, neither which way the photon came nor that it travelled
both routes.

In the general case of a non-vanishing phase shift δ �= 0 for an individual
photon it is no longer determined whether it will be registered at detector
D1 or D2. However, in spite of the indeterminacy in each individual case,
for a large number of identically prepared photons the preparation ϕ and the
observable A induce a probability for A (to register the photon in DA

1 ) and
for ¬A (to register the photon in DA

2 ) which reads

p(ϕ, A) = cos2 δ/2 and p(ϕ,¬A) = sin2 δ/2,

respectively. This means that the relative frequency of photons arriving at
DA

1 is approximately given by cos2 δ/2 and the relative frequency of systems
arriving at DA

2 by sin2 δ/2. Under these conditions one is tempted to assume
that for each individual photon the state or the value after measurement can
be attributed to the object even before the measurement, although these data
are not yet known to the observer in this situation.

It is one of the most important results of quantum mechanics that this
assumption is not correct. Neither an eigenstate of A nor the corresponding
eigenvalue can be attributed to the photon system in the preparation state
ϕ before the measurement of A. Indeed, if the observable A could be weakly
objectified to the system S in state ϕ, i.e. if an A-value could be attributed to
S(ϕ), then the system S were in the mixed state.8

WS(ϕ, A) = p(ϕ, A)P [ϕA] + p(ϕ,¬A)P [ϕ¬A]

and not in the pure state P [ϕ]. Here we have denoted the two eigenstates of A
by ϕA and ϕ¬A, respectively. However, it can easily be shown that the states
P [ϕ] and WS (ϕ, A) are not generally equivalent.

In order to demonstrate this important result one must compare the prob-
abilities of a convenient test-observable C for the two situations mentioned, i.e.
for the pure state P [ϕ] and for the mixed state WS (ϕ, A). Experimentally,
this comparison can be performed by extending the beam-split experiment
such that the two beams of A and ¬A, respectively, are recombined with a
phase shift ε by a third half-transparent mirror BSI (Fig. 12.4). The photons

8 Busch, P. et al. (1992,WOB)
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Fig. 12.4. Extended split beam experiment with three half-reflecting mirrors BS1,
BS2, and BS3, two phase shifters providing phase shifts δ and ε, and two Detectors
D1 and D2 in positions (DC

1 , DC
2 )

will then be registered by the detectors in positions (DC
1 , DC

2 ). The probabil-
ity to register a photon in the detector DC

2 is then given for the pure state
P[ϕ] by

p(ϕ, D2) =
1
2
(1 + sin δ sin ε)

and for the mixed state by

p(WS(ϕ, A), D2) =
1
2

Clearly, the probability p(ϕ, D2) shows interference pattern in accordance
with experiments, which could easily be performed, whereas p(WS(ϕ, A), D2)
does not depend on ε at all and thus does not show any interference pattern.
Hence, we find, that weak objectification of A in the state ϕ leads to predic-
tions about the statistics of measurement outcomes which are incompatible
both with quantum theory and with realisable experiments. For this reason
weak objectification of A in the state ϕ is not possible. This means that the
result of an A-measurement performed at an individual photon is not only
subjectively unknown for the observer but objectively undecided.

Summarising the discussion of this section we arrive at the following two
at the first glance incompatible results: On the one hand, for each individ-
ual photon the value of the observable A is objectively undetermined prior
to the registration in one of the detectors. On the other hand, a sufficiently
large number of photons fulfils the statistical law which states that the rel-
ative frequency of photons registered in detector DA

1 is approximately given
by cos2 δ/2. Hence, we find that a large number of lawless quantum systems
fulfils a strict probability law. Under these conditions one may wonder where



320 12 Statistical Laws

this statistical law comes from. Again, we will pose here Wheeler’s question
whether we are confronted here with a “law without law”, i.e. a law-like behav-
iour of a large number of elements which emerges without any causal reason.
Hence, we will investigate the question whether the quantum probability law
emerges by measuring a large ensemble of lawless single quantum systems.

The Quantum Mechanical Measurement Process

The split beam experiment of the proceeding section can be described in a
two dimensional Hilbert space H2 = C2 which is conveniently illustrated by
the Poincare’ sphere P (Fig. 12.5). If we denote the orthogonal unit vectors
of the sphere by n1, n2, n3 and make use of the Pauli matrices σ1, σ2, σ3 then
the projection operators in H2 = C2 can be written as

P (n) =
1
2

(1 + niσi) n2
1 + n2

2 + n2
3 = 1

where n= (n1, n2, n3) is a unit vector. Hence the projection operators corre-
spond to points on the surface of the Poincare’ sphere. The properties B and
A of the preceding section can then be expressed by the projection operators

P (B) := P (n3) =
1
2
(1 + σ3), P (¬B) := P (−n3)

with eigenstates ϕB and ϕ¬B and

P (A) := P (n1) =
1
2
(1 + σ1), P (¬A) := P (−n1)

with eigenstates ϕA and ϕ¬A. The preparation of the system ϕ of the system
(photon, neutron, etc.) is then given by ϕ = 1/

√
2 ( ϕB + eiδϕ¬B) or by the

projection operator

P(A)

P(B)

P(ϕ)

P(  A)

δ

P( B)

.

.

.

. .
.

Fig. 12.5. Poincaré sphere of the photon split-beam experiment shown in Fig. 12.3
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P [ϕ] = P (ϕ) =
1
2
(1 + cos δσ1 + sin δσ2) (1)

with ϕ = (cos δ, sin δ, 0) and corresponds to a point an the equator of P . The
angle between vectors ϕ and n1 is then given by the phase shift δ.

For the probabilities of B and A we obtain

p(ϕ, B) = tr{P [ϕ]P (B)} =
1
2
(1 + ϕ · n3) = 1/2

p(ϕ, A) = tr{P [ϕ]P (A)} =
1
2
(1 + ϕ · n1) = cos2 δ/2 (2)

In order to describe the measuring process of the observable A : P (A) we con-
sider the object system S with Hilbert space HS and the measuring apparatus
M with Hilbert space HM . Let ϕ ∈ HS and Φ ∈ HM be the preparations of
S and M , respectively, i.e. the states prior to the measurement process. Here
we consider a unitary and repeatable premeasurement of A, which can be
described by a unitary operator UA acting on the tensor product ϕ⊗Φ of the
compound system S +M . The operator UA is further determined by the cali-
bration postulate. If the object system S is in one of the two eigenstates ϕA or
ϕ¬A of A, then the unitary and repeatable premeasurement must reproduce
this state. This means that for the special preparation ϕ(δ = 0) = ϕA and
ϕ(δ = π) = ϕ¬A we have

ϕA ⊗ Φ → UA(ϕA ⊗ Φ) = ϕA ⊗ ΦA

ϕ¬A ⊗ Φ → UA(ϕ¬A ⊗ Φ) = ϕ¬A ⊗ Φ¬A (3)

where ΦA and Φ¬A are eigenstates of a pointer observable Z = ZA P [ΦA] +
Z¬AP [Φ¬A] whose eigenvalues ZA and Z¬A indicate the measuring results
A and ¬A, respectively. From (2) it follows by the unitarity of UA for an
arbitrary preparation ϕ = (ϕA, ϕ)ϕA + (ϕ¬A, ϕ)ϕ¬A

ϕ ⊗ Φ → UA(ϕ ⊗ Φ) = (ϕA, ϕ)ϕA ⊗ ΦA + (ϕ¬A, ϕ)ϕ¬A ⊗ Φ¬A .

For the particular preparation ϕ given by (1) we find for the state of S + M
after the measurement

UA(ϕ ⊗ Φ) =
1
2
(1 + eiδ)ϕA ⊗ ΦA +

1
2
(1 − eiδ)ϕ¬A ⊗ Φ¬A .

The state of the object system after the premeasurement is then given by the
reduced mixed state

WS(ϕ, A) = cos2 δ/2 P [ϕA] + sin2 δ/2 P [ϕ¬A] .

The interpretation of this mixed state of the object system after the pre-
measurement is usually given by the probability reproducibility condition:
The probability distribution p(ϕ, Ai), Ai ∈ {A,¬A} which is induced by the
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preparation ϕ and the measured observable P (A), is reproduced in the sta-
tistics of the post-measurement values (ZA, Z¬A) and states (ϕA, ϕ¬A) of the
pointer. In case of repeatable measurements this means that p(ϕ, Ai) is also
reproduced in the statistics of the states (ϕA, ϕ¬A). On the basis of these
arguments the main question of this paper can now be formulated as follows:
Given an ensemble of (before the measurement) identically prepared systems
S that are in the reduced state

WS(ϕ, A) = p(ϕ, A)P [ϕA] + p(ϕ,¬A)P [ϕ¬A]

after the premeasurement of A. Is it possible to justify that the (formal)
probability p(ϕ, Ai) is reproduced in the statistics of the measurement results
Ai? A justification of this kind could presumably explain in which way a large
number of objectively undetermined objects fulfil a strict statistical law.

The Probability Reproducibility Condition

Consider a large number of identically prepared systems Si in states ϕ(i)

which are not eigenstates of the observable A. Let us further assume that the
unitary operator UA, which is used for a measurement of the observable A,
fulfils the calibration postulate for repeatable measurements. Then we know
that a measurement of the observable A in case of the particular preparation
ϕA leads with certainty to the states ΦA and ϕA showing the result A. On the
basis of this probability free interpretation of quantum mechanics we want to
show that for arbitrary preparations ϕ �= ϕA, ϕ �= ϕ¬A the formal probability
p(ϕ, Ai), which is induced by ϕ and A, is reproduced in the statistics of the
measuring outcomes Ai. The probability reproducibility condition would then
be a theorem of the probability free theorem and no longer an additional
postulate.

Let us consider N independent systems Si with identical preparation ϕ(i)

as a compound system S(N) in the tensor product state

(ϕ)N = ϕ(1) ⊗ ϕ(2) · · · ⊗ ϕ(N), (ϕ)N ∈ H
(N)
S

where H
(N)
S is the tensor product of N Hilbert spaces H(Si). A premeasure-

ment of A transforms the initial state ϕ(i) of each system Si into the mixed
state

W ′
S =

∑
p(ϕ, Ai)P [ϕ(Ai)]

with eigenstates ϕ(Ai) of A corresponding to values Ai. If A is measured
on each system Si, then the measuring result is given by a sequence {Al(1),
Al(2), · · ·Al(N)} of system values Al(i) and states ϕ(Al(i)), respectively, with
an index sequence l: = {l(1), l(2), · · · l(N)} such that Al(i) ∈ {Ak}.

In the N-fold tensor product Hilbert space HS
(N) of the compound system

S(N) the special states (ϕ)N
l = ϕ(1)

l(1)⊗· · ·⊗ϕ(N)
l(N) with ϕ(i)

l(i) := ϕ (Al(i)) ∈ H(Si)
form an orthonormal basis. The relative frequency fN (k, l) of values Ak in the
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state (ϕ)N
l is then given by fN (k, l) = 1/N

∑
δl(i),k. We can then define in

H
(N)
S an operator “relative frequency of systems with values Ak” by

fN
k :=

∑
fN (k, l)P [(ϕ)N

l ]

where the sum runs over all sequences l. The eigenvalue equation of this op-
erator

fN
k (ϕ)N

l = fN (k, l)(ϕ)N
l

then shows that the relative frequency of the value Ak is an objective property
of S(N) in the state (ϕ)N

l and given by fN (k, l). The eigenvalue equation can
also be written in the equivalent form

tr{P [(ϕ)N
l ](fN

k − fN (k, l))2} = 0 .

After a premeasurement of A a system Si is in a mixed state W ′
S . If N pre-

measurements of A are performed, then the state of the compound system
S(N) is given by the N-fold tensor product state

(W ′
S)N = W ′

1 ⊗ W ′
2 ⊗ · · · ⊗ W ′

N

of these mixed states W ′
i . One easily verifies that the expectation value of fN

k

in this product state is given by

tr{fN
k (W ′

S)N} = p(ϕ, Ak) .

However, in general the state (W ′
S)N is not eigenstate of the relative frequency

operator fN
k . This means that

TN
k := tr{(W ′

S)N (fN
k − p(ϕ, Ak))2} �= 0

and that the relative frequency of values Ak is not an objective property of
the system S(N) in the state (W ′

S)N .
In contrast to this somewhat unsatisfactory result one finds that for large

values of N the post-measurement product state (W ′
S)N of the compound

system S(N) becomes an eigenstate of the operator fNk and the value of the
relative frequency of Ak approaches the probability p(ϕ, Ak). Indeed, one finds
after some tedious calculations9,10

TN
k = 1/Np(ϕ, Ak)(1 − p(ϕ, Ak))

and thus one finally obtains the desired result

lim
N→∞

tr{(W ′
S)N (fN

k − p(ϕ, Ak)2} = 0

9 DeWitt (1971, MUI)
10 Mittelstaedt (1990, OMI), (1993, MPI), (1998, IQM)
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This means that in the limit of an infinite number N of systems the state
(W ′

S)N is an eigenstate of the operator fN
k of the relative frequency of val-

ues Ak and that the compound system S(N) possesses the relative frequency
p(ϕ, Ak) of Ak as an objective property.

In the present example of a photon split-beam experiment there are two
possible outcomes A1 = A and A2 = ¬ A with probabilities p(ϕ, A1) =
cos2 δ/2 and p(ϕ, A2) = sin2 δ/2. The decomposition of the preparation ϕ into
eigenstates ϕ(Ai) reads

ϕ =
1
2
(1 + eiδ)ϕ(A) + 1/2(1 − eiδ)ϕ(¬A)

and the post-premeasurement mixed state is given by

W ′
S = cos2 δ/2 P [ϕ (A)] + sin2 δ/2 P [ϕ (¬A)]

For finite N the expectation value of the relative frequency operator in the
state (W ′

S)N is always given by

tr{(W ′
S)NfN

k } = p(ϕ, Ak) =: pk(δ)

but (W ′
S)N is not an eigenstate of fN

k . However, for the expression TN
k (δ) we

obtain
TN

k (δ) = tr{(W ′
S)N (fN

k − pk(δ))2} = (1/4N) sin2 δ

which shows that for increasing N the mixed state (W ′
S)N becomes an eigen-

state of fN
k .

In order to ensure this way of reasoning against mathematical objections
one has to guarantee that the overwhelming majority of index sequences l =
{l(i)} are random sequences and that the contribution of the non random
sequences can be neglected. As a first orientation let us define the function
δ(l) =

∑
k (fN (k, l) − p(ϕ, Ak))2 in order to measure the degree to which a

given sequence l deviates from a random sequence with weights p(ϕ, Ak). A
sequence l will be called first random if δ(l) < ε for an arbitrary positive ε. In
the limit N→ ∞ the contribution of the non first random sequences disappear.
This can be shown in the following way:11

A unitary premeasurement (of the observable A) of one system Si in the
state ϕ(i) with an initial pointer state Φ(i) leads to the S +M compound state

Ψ′ = UA(ϕ(i) ⊗ Φ(i)) =
∑

k

ckϕ(i)
k ⊗ Φ(i)

k

with pointer eigenstates Φ(i)
k and coefficients ck = (ϕ(i)

k , ϕ(i)). If a measure-
ment process is performed with N equally prepared systems Si we have to
consider the final state
11 Mittelstaedt (1990, OMI), Busch et al. (1996, QTM), (pp.48, 49)
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Ψ(N)′ = ⊗N
i=1

(∑
k

ckϕ(i)
k ⊗ Φ(i)

k

)
=

∑
l

c{l}(ϕ)N
l ⊗ ΦN

l

with index sequences l = {l(i)}, coefficients c{l} = cl(1) · cl(2) · . . . cl(N) and
pointer eigenstates tensor products ΦN

l = Φ(1)
l(1)⊗Φ(2)

l(2) . . .⊗ΦN
l(N). If we remove

from the superposition Ψ(N)′ all sequences l that are not first random, i.e. all
l with δ(l) ≥ ε, then we obtain

Ψ(N)′
ε =

∑
l:δ<ε

c{l}(ϕ)N
l ⊗ ΦN

ε

and the difference between Ψ(N)′ and Ψ(N)′
ε is given by

χN
ε := Ψ(N)′ − Ψ(N)′

ε =
∑
l:δ≥ε

c{l}(ϕ)N
l ⊗ ΦN

l .

Using some results for the relative frequency fN (k, l) one finds that

(χN
ε , χN

ε ) ≤ 1
Nε

∑
k

p(ϕ, Ak)[1 − p(ϕ, Ak)] ≤ 1
Nε

which means that in the limit N → ∞ the contribution of the non-first-random
sequences becomes arbitrary small. This first confirmation of our statistical
results will be made more rigorous in the following section.

Mathematical Considerations

In classical probability theory it is well known that probabilities are not rel-
ative frequencies and that relative frequencies are not probabilities.12 For a
given experimental process, e.g. dice tossing, the probability for a certain re-
sult can be determined by mathematical means only. The interpretation of
probabilities by relative frequencies suggests that in a sequence of ideal dice
tossing events the relative frequency of a certain result, five spots, say, ap-
proaches the calculated probability 1/6 provided the number N of events is
sufficiently large. This is, however, not entirely correct. There are counter ex-
amples, which cannot be excluded. For example, the sequence that consists
only of results with three spots is not forbidden by any law of nature. However,
sequences of this kind, the non-random sequences, are very rare compared to
the normal random sequences. More precisely, within the set of all sequences
of events the subset of non-random sequences is of measure zero. This is the
content of the “law of large numbers”: For large numbers N the relative fre-
quency fN (k, l) for some index value k approaches the probability p(k) for
almost all sequences l, i.e. with a probability which is equal to one.13 This
12 This was emphasised in particular by R. v. Mises (1931, WAS)
13 For details cf. Richter (1956, WTh), pp. 52–57 and Bauer (1978, WGH), pp. 165–

71.
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means that probability statements cannot be replaced in general by probabil-
ity free statements, even if the number of samples is infinite. Hence, it must
be clarified for the above-mentioned result that in quantum mechanics proba-
bilities can in fact be completely eliminated, provided the number of systems
or of measurement outcomes is infinite.

According to a recent investigation by Gutman14 for the problem of the
present paper this can actually be shown. Let S(∞) be a compound system
which is composed of infinitely many copies of split beam photons Si. The
system a S(∞) can be described in the infinite tensor product space H

(∞)
S =

H(S1) ⊗ H(S2) · ·· which is a nonseparable Hilbert space.15 The eigenvalue
equation of the observable P(A), say, for the individual system Si is written
here as

P (A)(i)ϕ(i)
k = A

(i)
k ϕ(i)

k , k ∈ {1, 2}, A
(i)
1 = 1, A

(i)
2 = 0 .

For an arbitrary state ϕ ∈ HS with (ϕ, ϕ) = 1 the product state (ϕ)∞ =
ϕ(1) ⊗ ϕ(2) · ·· with ϕ(i) ∈ H(Si) is a state in H

(∞)
S , i.e. (ϕ)∞ ∈ H

(∞)
S .

If one performs P (A) – measurements on each system Si one obtains a
sequence s{l} of P (A) – eigenvalues A

(i)
l(i) ∈ {0, 1}, l = {l1, l2, · · ·} and li ∈

{1, 2}. Let
∑

= {s{l}} be the nondemumerable set of sequences of this kind.
Any subset

∑(α) ⊆ ∑
describes a property. E.g. the set

∑(p) of sequences
s{l} with the “probability p law of large number property” ( with respect to
A(i) = 1) reads

(p)∑
=

{
(s{l}) : lim

N→∞
1
N

N∑
1

A
(i)
l(i) = p

}

For any subset we introduce an indicator function F (α)(s{l}) by F (α)(s{l}) = 1

if s{l} ∈ ∑(α) and F (α)= 0 otherwise.
According to the spectral theorem by an indicator function F (α) a projec-

tion operator P (α) is uniquely defined in H
(∞)
S . Hence, for the product state

(ϕ)∞l we obtain
P (α)(ϕ)∞l = F (α)(s{l})(ϕ)∞l .

In the nonseparable Hilbert space H
(∞)
S there are many product states (ψ)∞k =

ψ(1)
k(1) ⊗ ψ(2)

k(2) . . . which are not superpositions of the states (ϕ)∞l . For these
states one obtains

|P (α)(ψ)∞k |2 =
∫

F (α)(s{l})dµ (*)

where the measure µ depends on the state (ψ)∞k and on the measured observ-
able.
14 Gutman (1995, CPQ)
15 von Neumann (1938, IDP)
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For explicitly calculating the measure µ we consider first the case of arbi-
trary finite N. Using the spectral decomposition of the projection operator

P (α) =
∑

l

F (α)(s{l})P [(ϕ)N
l ]

we obtain for ψN = ψ1 ⊗ · · ⊗ψN

P (α)
∣∣ψN

〉
=

∑
l

F (α)(s{l})〈l
∣∣ψN

〉 |l〉

with |l〉 :=
∣∣(ϕ)N

l

〉
, and thus

∣∣∣P (α)
∣∣ψN

〉∣∣∣2 =
∑

l

F (α)(s{l}
∣∣〈l|ψN 〉∣∣2 .

The measure µ assigns probabilities to sequences. With the probabilities pj =
|〈ϕ(j)

1 |ψ(j)
l(j)〉|2 for the values A

(j)
l(j) = 1 for N independent A-values the measure

µ reads
µ

(
s{l} : A

(1)
l(1) = α(1), · · ·A(N)

l(N) = α(N)
)

= p
α(1)
1 (1 − p1)1−α(1) · · · pα(N)

N (1 − pN )1−α(N) .

We are now in the position to discuss the main problem. Let P(1/2) be the
projection operator of the “probability p = 1/2 law of large number property”
of a sequence s{l}:

F (1/2)(s{l}) = 1 if lim
N→∞

1/N
∑

A
(i)
l(i) =

1
2

and F (1/2)(s{l}) = 0 otherwise .

This situation is realised, for example, if all systems Si are prepared in states

ψ(n) =
1
2
(1 + eiπ/2)ϕ(n)

A +
1
2
(1 − eiπ/2)ϕ(n)

¬A

and P (A)(n) is measured. The post-premeasurement mixed states read in this
case

W
(n)′

S =
1
2
P [ϕ(n)

A ] + 1/2P [ϕ(n)
¬A]

and the probability p to find the A-value A(n) = 1 is then given by p =
|〈ϕ(n)

1 |ψ(n)〉|2 = 1/2 for each n. The classical law of large numbers asserts
in this case that the probability for the relative frequency 1/2 for the value
A = A1 = 1 in a sequence s{l} is equal to 1, i.e.∫

F (1/2)(s{l})dµ(s{l}) = 1
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This means that the relative frequency of A = 1 for almost all sequences
amounts 1/2. Together with equation (∗) derived above we get the relation
|P (1/2)(ψ)∞|2 = 1 and thus

P (1/2)(ψ)∞ = 1 · (ψ)∞.

According to the realistic interpretation of quantum mechanics this eigenvalue
equation means that the compound system S(∞) possesses the property given
by P (1/2). Hence this property, or the relative frequency value 1/2 property,
pertains to the system without any reference to probability.

It has been pointed out by Gutmann, l.c. that this way of reasoning can be
applied to any “tail-property” with probability 1, e.g. to randomness. Within
the context of the present problem this means, that in quantum mechanics the
probabilistic way of speaking can be replaced by statements, which do not re-
fer to probability. This result justifies the interpretation of the more technical
results of the present Chapter. Whereas in classical probability theory prob-
abilistic statements like p = 1/2 can never be reduced to statements which,
for an arbitrary large ensemble, hold with certainty but only to statements
which are almost true, in quantum mechanics probability statements can be
replaced by propositions which hold without reference to probability.

Concluding Remarks

In a photon split beam experiment for an individual system it is objectively
undetermined whether the photon has the property A or the counter property
¬A. However, in spite of the objective indeterminacy of each individual sys-
tem, for a sufficiently large ensemble of photons we observe a strict law. The
relative frequency of systems with property A is given by p1(δ) = cos2 δ/2
where δ is the phase in the preparation state.

This statistical law proves to be a “law without law”. Indeed, for an
ensemble S(N) of N identically prepared systems in state ϕ, in the post-
premeasurement state the relative frequency fN

A of property A is in general
not an objective property. However, in the limit N → ∞ the relative frequency
of A becomes an objective property of the compound system with the value
p(ϕ, A) = cos2 δ/2.

Formally this means that the probability for observing the relative A-
frequency cos2 δ/2 in a sequence of A-measurements is equal to 1. In terms
of quantum mechanics this means that the “probability p = cos2 δ/2 law of
large numbers property” pertains to the system S(∞) as an objective prop-
erty. In this way the statistical laws of quantum mechanics emerge from the
probability free theory and are – in Wheelers terminology – laws without laws.
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Quantum Logic

Why are laws of nature valid? This general question in the title of Part III will
be applied in this chapter to the laws of quantum logic. In this field we are
confronted with a new situation and with new possible answers to the main
question of this chapter. We will investigate here two questions, which, at first
glance, seem to be alternative. Firstly we ask, whether the laws of quantum
logic are genuine laws of nature that can be verified or falsified exclusively
by experimental evidence. If a law of nature holds rigorously but only for
empirical reasons then we will call it a proper law of nature. Proper laws of
nature are contingent laws, which hold strictly but without logical necessity.
Hence, our first question is whether the laws of quantum logic are proper laws
of nature.

There are, however, also laws that hold not only rigorously in nature but
also for a priori reasons. A law of this kind, which is not contingent but
necessary will be called an improper law of nature. In the preceding chapters
we found various improper laws of nature in logic, arithmetic, geometry, and
statistics. In all these cases the laws hold with necessity, but the particular
reasons for their validity are quite different. Hence, our second question will
be whether the laws of quantum logic are improper laws of nature in the sense
mentioned above. Quantum logic is often considered as a new logic that holds
in the domain of quantum physics and must be used in this realm instead of the
old classical logic. Hence we will ask whether quantum logic is a genuine logic
which can be justified as other logical systems by purely a priori reasoning. If
this were the case, then the laws of quantum logic would be improper laws of
nature.

13.1 Are the Laws of Quantum Logic Laws of Nature?

13.1.1 Arguments Pro – What is Quantum Logic?

At first we will discuss the preliminary question what quantum logic is and we
will give a preliminary answer. The final answer to this question will be given
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at the end of this section, when the various arguments pro and contra have
been discussed. In the first paper on this topic by Birkhoff and von Neumann1

quantum logic is characterised as an atomic and orthomodular lattice, which
fulfils the covering law. This view of the problem was further elaborated by
Piron2, Jauch3 and others. According to these investigations quantum logic is
a formal structure of quantum mechanics of an objects system S formulated in
a Hilbert space HS . Indeed, from quantum mechanics in Hilbert space we can
obtain the lattice LH of closed linear manifolds in that Hilbert space and this
lattice turns out to be an atomic and orthomodular lattice L∗

Q which fulfils
the covering law.

The name “quantum logic” comes from a formal analogy between the
Hilbert lattice LH of and the Boolean lattice LC of classical logic. Moreover,
the elements of the lattices LH , the subspaces of Hilbert space correspond to
projection operators, i.e. to observables with two values (eigenvalues) 0 and 1.
Hence, these observables or properties are related to propositions with truth
values 1 (yes) and 0 (no). If the property in question pertains to the quantum
system, the corresponding proposition is said to be true, and if the counter
property pertains to the system, the proposition is said to be false.

For more details let us consider a Hilbert space HS and subspaces MA,
MB ,. . . with MA ⊆ HS , MB ⊆ HS, . . . etc. To every subspace and to every
element f ∈ HS there exists a unique decomposition of f such that

f = fA + f¬A with fA ∈ MA and f¬A ∈ M¬A

where M¬A is the subspace, which is completely orthogonal to MA, i.e.

M¬A := {f ∈ HS : (f, g) = 0} for all g ∈ MA.

The element fA is called the projection of f onto MA. The function PA :=
HS → MA with PAf = fA defines an operator PA, the projection operator
which maps an element f ∈ HS into its projection fA ∈ MA. The operator
PA has two eigenvalues 1 and 0 such that

PAf = f if and only if f ∈ MA; PAf = 0 if and only if f ∈ M¬A

Since the observable PA has two eigenvalues we will call it also a “property”
P(A).

For a given system S with the pure state ϕ ∈ HS the concept of an ele-
mentary proposition A can then be defined by

A is true ⇔ P(A) pertains to S ⇔ ϕ ∈ MA

A is false ⇔ P (A) pertains to S ⇔ ϕ ∈ MA .

1 Birkhoff, von Neumann (1936, LQM).
2 Piron (1964, AQu).
3 Jauch (1968. FQM).
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Here we introduced the counter proposition A of A, where A is true iff A is
false, and A is false iff A is true. An elementary proposition can be tested by
measuring the observable PA. Since the result of this measurement is either
the value 1 or the value 0 the proposition A is either true or false. Elementary
propositions of this kind are called to be value definite. They have always a
well-defined truth value.

On the set LH = {Mλ}λ of subspaces we will define now some operations
and one relation which lead to an interesting algebraic structure.

(α) A binary relation R ⊆ LH × LH which is given by the set-theoretical
inclusion “⊆” between subspaces;

(β) The one-place operation Θ¬ : LH → LH which is given by the completely
orthogonal subspace, i.e. Θ¬(MA) = M¬A.

(γ) The two place operation Θ∩ : LH× LH → LH which is given by the
intersection of two subspaces MA and MB , i.e. Θ∩(MA, MB) = MA∩MB

= {f ∈ HS : f ∈ MA and f ∈ MB}.
(δ) The two-place operation Θ∪: LH ×LH → LH which is given by the span

of two subspaces MA and MB , i.e. Θ∪(MA, MB) = MA∪MB = {f ∈ HS :
f = αg + βh} with g ∈ MA, h ∈ MB and complex numbers α and β.

The structure which is induced on the set LH of subspaces by the relation R
and the three operations mentioned is the Hilbert lattice LH = {LH ; ⊆, ∩, ∪,
¬}. Apart from many other properties, LH is an atomic orthomodular lattice,
which fulfils the covering law. A lattice of this kind will be denoted here by
L∗

Q.
Subspaces correspond to projection operators and projection operators

correspond to value definite propositions. Hence, the lattice structure which
is generated on the set of subspaces by the relation ⊆ and the operations ∩,
∪, and ¬ induces a lattice structure on the set of propositions. The lattice of
propositions is an orthomodular lattice LQ with a zero element Λ and a unit
element V. In addition, it is atomic and it fulfils the covering law. If these
properties are included the lattice will be denoted by L∗

Q. Within the lattice
of propositions we make use of a new notation and replace the relation ⊆ by
≤ and the operations ∩ and ∪ by ∧ and ∨, respectively. If we interpret “∧”
by “and”, “∨” by “or”, “¬” by “not”, and “≤” by an implication, then the
lattice L∗

Q shows many similarities with the well known Boolean lattice LC

of classical logic. This analogy between LC and L∗
Q was the reason for many

authors to call the lattice L∗
Q of quantum propositions “quantum logic”

The lattices LQ and L∗
Q of propositions can be characterised by the fol-

lowing axioms:

LQ(1) A ≤ A
A ≤ B, B ≤ C ⇒ A ≤ C
A ≤ B, B ≤ A ⇒ A = B

With respect to the implication “≤” LQ is a partially ordered set (poset).
The third law defines the equivalence relation “=”.
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LQ(2) A ∧ B ≤ A
A ∧ B ≤ B
C ≤ A,C ≤ B ⇒ C ≤ A ∧ B

LQ(3) A ≤ A ∨ B
B ≤ A ∨ B
A ≤ C, B ≤ C ⇒ A ∨ B ≤ C

According to these axioms LQ(2) and LQ(3) A ∧ B is the infimum and
A ∨ B the supremum of A and B with respect to the implication relation.4

Hence for any two elements A and B there exists an infimum and a supremum.
A partially ordered set with this property is called a lattice.

LQ(4) Λ ≤ A,A ≤ V for allA ∈ LQ

A ∧ ¬A ≤ Λ
V ≤ A ∨ ¬A
A = ¬(¬A)
A ≤ B ⇒ ¬B ≤ ¬A

If in a lattice with a zero element Λ and a unit element V an automor-
phism A → ¬A is defined which fulfils LQ(4) then this lattice is said to be
orthocomplemented. An orthocomplemented lattice will be denoted by LO.
The propositions Λ and V are defined here as the smallest and largest propo-
sitions of LO with respect to the implication relation. Hence Λ (falsum) is the
false proposition and V (verum) the true proposition. Accordingly, by means
of these special propositions one can express the truth and the falsity of a
proposition A by

V ≤ A (A is logically true), A ≤ Λ (A is logically false) .

LQ(5) B ≤ A,C ≤ ¬A ⇒ A ∧ (B ∨ C) ≤ B (Orthomodularity)

An orthocomplemented lattice which fulfils axiom LQ(5) is called ortho-
modular. It is denoted here by LQ. In the lattice LQ an element α �= Λ is
called an atom if for any X ∈ LQ,Λ ≤ X ≤ α implies either X = Λ or X = α.

LQ(6) For any element A ∈ LQ there exists an atom α with α ≤ A.

A lattice which fulfils LQ(6) is called atomic (atomicity).

LQ(7) Let α ∈ LQ be an atom. For all elements A and X of LQ

A ≤ X ≤ A ∨ α implies X = A or X = A ∨ α (covering law) .

A lattice LQ that is atomic and fulfils the covering law will be denoted by
L∗

Q.

4 The physical meaning of the operations A ∧ B and A ∨ B in particular for in-
commensurable propositions A and B will be explained in Sects. 13.1.2.2 and
13.2.1.1.
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On the basis of these results and analogies the lattices LQ and L∗
Q of

quantum mechanical propositions could be considered as a purely empirical
structure. With respect to the Hilbert space background of LQ and LH Put-
nam5 says that we can “read the logic off from the Hilbert space”. Hence, one
gets the impression that the question in the title of Putnam’s article “Is logic
empirical?” should be answered in the positive sense, at least in the context of
quantum logic. If this way of reasoning were the only way for justifying quan-
tum logic, then quantum logic would indeed be a contingent formal structure
of physics, which could be falsified or verified by experience. In this case quan-
tum logic would be a proper law of nature. Hence our first and preliminary
conclusion is that in spite of some formal similarities between the lattices L∗

Q

and LC the laws of quantum logic are laws of nature.

13.1.2 Objections Against 13.1.1

There are, however, important arguments against our first conclusion. The
similarity between the lattices L∗

Q of quantum logic and the Boolean lattice
LC of classical logic is not only a vague formal analogy but a strong indication
that also L∗

Q is a genuine logic. The relation between classical mechanics and
classical logic can illustrate this conjecture and thus serve as a guiding princi-
ple for the interpretation of the abstract lattice L∗

Q. The detailed comparison
of the lattices L∗

Q and LC then shows that there is more agreement than
disagreement and there are only small, though important differences between
these two lattices.

13.1.2.1 The Logic of Classical Mechanics

In classical mechanics an object system S with n degrees of freedom is de-
scribed by a phase space ΓS with 2n coordinates {qi, pi} which correspond
to generalised position and momentum coordinates. The state of S at a time
t0 is given by a point X(t0) = X0 = {q0

i , p0
i } of ΓS . Observables are given

by functions which map ΓS into a real space RN , e.g. the position q of a
mass point is a function q : ΓS → R3. Properties are the simplest observables
that take only two values 0 and 1, say. Properties are given by subspaces ΓA

S ,
ΓB

S , . . . of ΓS and will be denoted by P (A), P (B), . . ., respectively. Hence, a
property is a function P (A): ΓA

S →{0, 1} with P (A)(X) = 1 if X ∈ ΓA
S and

P (A)(X) = 0 if X /∈ ΓA
S . We say that the observable take the value 1 or the

property P (A) pertains to S at time t0 if X0 ∈ ΓA
S , and that P (A) does not

pertain to S if X0 /∈ ΓA
S . In terms of propositions A, B, . . . this means that a

proposition A is true if the property P (A) pertains to S.
Similarly as in the case of quantum logic we are no longer interested in the

space ΓS but in the algebraic structure of the set {ΓA
S } of subsets of ΓS , i.e.

5 Putnam (1969, ILE).
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in the structure of the set P (S) of propositions about system S. With respect
to the relation ≤, which is given by the set theoretical inclusion we have

LC(1) A ≤ A
A ≤ B, B ≤ C ⇒ A ≤ C
A ≤ B, B ≤ A ⇒ A = B

i.e. P (S) is a partially ordered set where the third law defines the equivalence
of propositions. With respect to the two-place operations A∧B, given by the
set theoretical intersection and A ∨ B, given by the set theoretical union, we
have

LC(2) A ∧ B ≤ A
A ∧ B ≤ B
C ≤ A,C ≤ B ⇒ C ≤ A ∧ B

LC(3) A ≤ A ∨ B
B ≤ A ∨ B
A ≤ C, B ≤ C ⇒ A ∨ B ≤ C

According to these axioms for any two elements A,B ∈ P (S) with respect
to the relation “≤” there exists an infimum A∧B and a supremum A∨B. Hence
P (S) is a complete lattice denoted here by LC . In LC there exists a minimal
element Λ which corresponds to the empty space Γ0

S = Ø and a maximal
element V which corresponds to the entire phase space ΓS . Accordingly, for
any A ∈ LC it holds Λ ≤ A ≤ V .

Furthermore, in a lattice LC with elements Λ and V an automorphism
A → ¬A is defined which fulfils the laws

LC(4) Λ ≤ A, A ≤ V for allA ∈ LC

A ∧ ¬A ≤ Λ
V ≤ A ∨ ¬A
A = ¬(¬A)
A ≤ B ⇒ ¬B ≤ ¬A

For a proposition A which corresponds to a subspace ΓA
S ⊆ ΓS the proposi-

tion ¬A corresponds to the complementary subspace Γ¬A
S = ΓS \ΓA

S . A lattice
which fulfils the laws LC(4) is called orthocomplemented and the element ¬A
is said to be the orthocomplement to A.

Up to this point the lattice LC given by LC(1–4) fulfils the same laws as the
lattice LQ of quantum mechanical propositions. The following law provides,
however, remarkable differences between the two lattice structures. The lattice
LC of propositions is distributive, i.e. for any three elements A,B,C ∈ LC we
have

LC(5) A ∧ (B ∨ C) ≤ (A ∧ B) ∨ (A ∧ C)

that corresponds to the well known set theoretical relation A ∩ (B ∪ C) =
(A ∩ B) ∪ (A ∩ C). It is obvious that the distributive law LC(5) is stronger
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than the corresponding orthomodular law LQ(5), since in L∗
Q distributivity

implies LQ(5), but the inverse is not true. A more profound comparison of
LQ(5) and LC(5) will be presented below.

In LC a proposition A �= Λ is called an atom, if for any X ∈ LC ,Λ ≤ X ≤ A
implies X = Λ or X = A. The atoms of LC correspond to points in the phase
space ΓS . Hence we have

LC(6) For any A ∈ LC there exists an atom α with α ≤ A (atomicity).
In terms of phase space this means that any subspace contains at least one
point. Furthermore we have the corollary

LC(7) Let α be an atom. For all propositions A, X of LC

A ≤ X ≤ A ∨ α implies X = A or X = A ∨ α (covering law) .

The complete, orthocomplemented, distributive and atomic lattice LC is
called a Boolean propositional lattice.

LC is the lattice of classical propositional logic. Here we obtained this lat-
tice by investigating the phase space of classical mechanics and by making use
of a correspondence between mechanical yes–no propositions and subspaces
of the phase space ΓS of a system S. Hence, in the sense of Putnam6 we could
say that we can “read the classical logic off from the phase space”. Clearly,
this is correct but it does not imply that classical logic is empirical and thus
a proper law of nature. It is well known that there are other strategies for
establishing the propositional lattice LC without explicit recourse to physical
experience, which allow for a logical interpretation of the lattice LC .7 These
arguments show that also in the case of quantum logic the derivation of the
lattice L∗

Q from Hilbert space must not be considered as a sufficient reason
for the statement that quantum logic is empirical and thus a proper law of
nature.

13.1.2.2 Comparison of the Lattices L∗
Q and LC

The Boolean lattice LC admits a logical interpretation. Since the lattice L∗
Q

has a very similar structure as the lattice LC one could guess that also L∗
Q

admits a logical interpretation which is, perhaps, slightly different from the
interpretation of LC . For the test of this conjecture we will briefly investigate
some differences between LC and L∗

Q.
In LC we can define a new two-place operation A → B, the material

implication, by the laws
A ∧ (A → B) ≤ B (1)

A ∧ X ≤ B ⇒ X ≤ A → B . (2)

Hence, A → B is the largest element which satisfies the modus ponens relation
A∧X ≤ B and it is uniquely defined by (1) and (2) in LC . The element A → B
can be expressed by the other operations according to
6 Putnam (1969, ILE).
7 E.g. Lorenzen (1980, MeM).
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A → B = ¬A ∨ B . (3)

The denotation “material implication” is motivated by the fact that the propo-
sition A → B is true if and only if the relation A ≤ B holds, i.e.

V ≤ A → B ⇔ A ≤ B . (4)

The existence of a material implication is often considered as an inevitable
property of a lattice which allows for a logical interpretation since any logical
inference makes use of the “modus ponens” law. In the orthomodular lattice
L∗

Q an element A → B which fulfils (1) and (2) does not exist. This deficiency
of a material implication in L∗

Q was often considered as a striking argument
that L∗

Q cannot be interpreted as a logic.8 In particular, without a material
implication the modus ponens law A∧ (A → B) ≤ B cannot be formulated as
an implication.

We can, however, overcome this problem in the following way. In L∗
Q we

define an operation A → B by the two laws

A ∧ (A → B) ≤ B (1*)

A ∧ X ≤ B ⇒ ¬A ∨ (A ∧ X) ≤ A → B (2*)

This “material quasi implication” fulfils the modus ponens law (1∗) and it is
uniquely defined in L∗

Q by (1∗) and (2∗). In L∗
Q the element A → B can be

expressed by the other operations as

A → B = ¬A ∨ (A ∧ B) . (3*)

Furthermore, from (1∗) and (2∗) it follows

V ≤ A → B ⇔ A ≤ B (4*)

which means again that A → B is true iff A ≤ B holds.
It should be emphasised that the conditions (1∗), (2∗), and (3∗) are re-

laxations of the conditions (1), (2), and (3) which are satisfied in a Boolean
lattice LC . In fact, in an orthocomplemented lattice LO the conditions (1) and
(2) imply the weaker conditions (1∗) and (2∗). In addition, in LO the material
implication ¬A ∨ B and the material quasi implication ¬A∨(A ∧ B) are in
general only connected by the implication ¬A∨(A∧B) ≤ ¬A∨B, whereas in
a Boolean lattice LC distributivity implies ¬A∨(A ∧ B) = ¬A ∨ B and thus
the elements agree. Hence, the material quasi implication seems to be a very
convenient generalisation of the classical material implication, which fulfils
the syntactical requirements for a logical interpretation of the lattice L∗

Q.
The difference between the lattices LC and L∗

Q can be further illustrated
by the following observation. In an orthocomplemented lattice LO we can
define a binary relation K ⊆ LO × LO called commensurability by
8 Jauch, Piron (1970,WQL), pp. 173–174.
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(A, B) ∈ K ⇔ A = (A ∧ B) ∨ (A ∧ ¬B) (5*)

and denote it by A ∼ B. (Note, that in LC this relation holds for any pair
(A,B).) The name “commensurability” is motivated by the realisation of the
lattice LO by subspaces of a Hilbert space. In fact, the relation K holds for two
subspaces MA and MB if and only if the corresponding projection operators
PA and PB commute, i.e. the observables PA and PB are commensurable in
the usual sense of quantum mechanics. Here, however, we are not concerned
with subspaces and consider the relation K as a purely abstract relation de-
fined by (5∗).

From this definition it follows that in LO the partial ordering relation R
is contained in K, i.e. R ⊆ K ⊆ LO ×LO. Hence, for any pair (A,B) we have
A ≤ B ⇒ A ∼ B. In LO the relation K is, in general, not symmetric. The
symmetry is rather a condition, which is fulfilled if and only if the lattice LO

is orthomodular. Hence, in an orthomodular lattice L∗
Q we have A ∼ B ⇒

B ∼ A. According to its physical meaning the relation of commensurability
should be symmetric. Hence it is obvious that in the Hilbert lattice LH the
relation K is in fact symmetric. It is an interesting result that precisely the
orthomodular law LQ(5) is necessary and sufficient for the symmetry of K in
LO.

The relation A ∼ B of commensurability can also be expressed by a “com-
mensurability proposition”

k(A,B) := (A ∧ B) ∨ (A ∧ ¬B) ∨ (¬A ∧ B) ∨ (¬A ∧ ¬B) .

which is true if and only if A ∼ B holds, i.e.

V ≤ k(A,B) ⇔ A ∼ B . (6*)

Accordingly, the proposition “incommensurability” is given by k(A,B) =
¬k(A,B). On the basis of these definitions we can now answer the question
raised in footnote 4. If A and B are incommensurable, then A∧B is false and
A ∨ B is true irrespective of the content of the propositions A and B, i.e.

V ≤ k(A, B) ⇒ A ∧ B ≤ Λ and V ≤ A ∨ B . (7*)

This result is further illustrated in Sect. 13.2.1.1 by means of the proof trees
Fig. 13.3 and Fig. 13.4.

In order to further explain the meaning of the commensurability relation,
we investigate the relation between commensurability and distributivity. The
lattice L∗

Q is not distributive, i.e. the distributive law A∧ (B∨C) = (A∧B)∨
(A ∧ C) does not hold generally (in the direction “≤”) in the orthomodular
lattice L∗

Q. However, if the elements B and C are both commensurable with
A, distributivity can be demonstrated, i.e. in L∗

Q we have

A ∼ B, A ∼ C ⇒ A ∧ (B ∨ C) = (A ∧ B) ∨ (A ∧ C) . (8*)
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This law of “weak distributivity” shows again that the orthomodular lattice
L∗

Q is a relaxation of the orthocomplemented and distributive lattice LC . The
meaning of “weak distributivity” is further illustrated by the fact that the
relation K of commensurability is closed with respect to the lattice operations
∧, ∨, and ¬, i.e.

A ∼ B, A ∼ C ⇒ A ∼ (B ∧ C), A ∼ (B ∨ C), A ∼ ¬A . (9*)

It follows from this closure property of the relation K together with the “weak
distributivity” law that three elements A,B,C ∈ L∗

Q which are pairwise com-
mensurable will generate a sublattice L(A,B,C) ⊆ L∗

Q which is orthocomple-
mented and distributive, i.e. a Boolean sublattice.

13.1.3 Preliminary Answer

These considerations show that the orthomodular lattice L∗
Q is a relaxation

of the Boolean lattice LC which preserves several properties of LC which
are indispensable for a logical interpretation, at least in a weakened version.
There is a uniquely defined material quasi implication, which allows for logical
inferences by means of the modus ponens law. The weak distributivity law
shows that whenever propositions are mutually commensurable all the laws
of classical logic are preserved in a Boolean sublattice of L∗

Q. On the basis of
these results our preliminary answer to the question in the title of Chap. 13.1
“are the laws of quantum logic laws of nature” is, that the laws of quantum
logic hold as laws of nature but that a logical interpretation of these laws
and thus an “a priori” justification which is independent of experience is still
possible and has not been excluded.

13.2 Are the Laws of Quantum Logic a priori Valid?

13.2.1 Arguments Pro – On the a priori Justification
of Quantum Logic

In order to demonstrate the a priori validity of quantum logic we will show
that within the framework of a scientific language the laws of quantum logic
follow from the most general pragmatic preconditions of this language. Hence
we will show that the propositions of this language are governed by the laws
of quantum logic irrespective of any physical experience. This is the usual
meaning of the term “a priori”. Accordingly, our task will consist of two parts.
Firstly, we have to constitute a formal language of physical propositions and
secondly, we have to establish the formal propositional logic of this language
and to show that this logic agrees with quantum logic.
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13.2.1.1 The Formal Language of Quantum Physics

We consider a scientific language SQ with elementary propositions A = A(S)
which state that a property P (A) pertains to the object system S. Accord-
ingly, the proof of the elementary proposition A consists in a measurement
of property P (A) with positive outcome. The general possibilities for quan-
tum measurements allow for the assumption that after the measurement of
P (A) we obtain either a positive or negative result.9,10 Hence, an elementary
proposition A can either be proved (result A) or disproved (result A), where
A is the counter proposition, and are thus value-definite. Furthermore, if after
a successful proof of A a new proof attempt for A is made, then one obtains
again the result A, if the applied measurement process is repeatable. However,
if after a successful proof of A another elementary proposition B is proved,
then a new proof attempt for proposition A will in general not lead to the
previous positive result. Hence, two propositions A and B are in general not
simultaneously decidable. This is only the case if the corresponding proper-
ties P (A) and P (B) are “commensurable”. In this case we will call also the
propositions A and B “commensurable”.

One could think that the restrictions of simultaneous measurability men-
tioned represent an empirical element that is incorporated here into the lan-
guage SQ. Indeed, these restrictions are motivated by the well-known discovery
of incommensurable properties in quantum mechanics. However, for the con-
stitution of the formal language we have not made use of new empirical results,
but we have rather dispensed with the assumption, which is tacitly made in
the language SC of classical physics, that arbitrary pairs of propositions can
simultaneously be tested by measurements. Hence, the pragmatic precondi-
tions of proving or disproving propositions which we assumed here, are based
on less empirical assumptions than the pragmatics used in a language SC of
classical physics. This means that we presuppose here a quantum pragmatics
which is weaker than the pragmatics of classical language and classical logic.
As to the semantics, an elementary proposition A(S) will be called to be true
if in a measurement process the property P (A) was shown to pertain to the
system S. A proposition is said to be false if the counter proposition A was
shown to be true, i.e. if the property P (A ) was shown to pertain to system
S. Conversely, the truth of A implies that proposition A is false. Since the
concepts of truth and falsity are based here on the results of measurement
processes for the set Se

q of elementary propositions we have here a realistic
semantics in the spirit of Aristotle and Tarski.

Elementary propositions A, B, . . . are assumed here to be incommensu-
rable in general, i.e. not simultaneously or jointly decidable. If proposition A,
say, was shown to be true, then after a proof attempt of B and irrespective
of the result (B or B), a new proof attempt of A will in general not lead to
9 Busch et al. (1996, QTM).

10 For a more general language without this assumption cf. Mittelstaedt (1978,
QuL).
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the previous result. Instead, this result is available after the B-test only if A
and B are commensurable. In a sequence of proofs the results are only re-
strictedly available, where the restrictions are given by incommensurabilities.
For the definition of the connectives the restricted availability is very impor-
tant. Compound propositions, i.e. the connectives will be defined here by the
possibilities to prove or to disprove the propositions in question. For the se-
quential propositions the temporal order of proofs counts whereas for logical
propositions the order of proofs is irrelevant. The most simple connective, the
“sequential conjunction” A " B (A and then B) is defined by the following
attack and defence schema,

connective denotation attacks defences

A� B “A and then B” 1. A?, 2.B? 1.A!, 2.B!

where A? means the challenge to prove A, and A! the successful proof. This
attack and defence scheme can be illustrated most conveniently by a proof tree
which is chronologically ordered.11,12 The first branching point corresponds
to the test of A at t1, the second one corresponds to the B-test at t2.

A

A

B
A B

B

t1 t2 t

Fig. 13.1. Proof tree for the sequential conjunction A � B

The temporal order is fixed here, but the time difference δt = t2 − t1 > 0
may assume arbitrary positive values. There is one branch of success. In a
similar way the one place operation “negation” may be introduced by the
proof three for ¬A (not A) with one branch for success and one branch for
loss.

Obviously, the restricted availability of elementary propositions does not
invalidate the definitions of the negation ¬A and the sequential conjunction
A " B. The negation is defined by one proof attempt and the sequential con-
junction by two subsequent proof attempts. In both cases the restricted avail-
ability does not matter since repeated proof attempts do not occur here.
11 Mittelstaedt (1978, QuL).
12 Stachow (1980, LFQ).
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A
A

t

A

Fig. 13.2. Proof tree for the negation ¬A

However, the restrictions do matter if one tries to define the other connec-
tives.13,14

The logical conjunction A ∧ B is defined here by the following attack and
defence scheme.

connective denotation attacks defences

A ∧ B A and B A?, B? A!, B!

Since the propositions are only restrictedly available, the proof tree for A∧
B consists of an infinite number of steps and cannot be reduced to two steps.
If, however, A and B were commensurable, then it would be possible to reduce
the proof tree to one A-proof and one B-proof. In order to achieve generally at
a finite proof tree we make use of the commensurability proposition k(A,B)
which is defined to be true if and only if A and B are commensurable.The
counter proposition is denoted here by k(A,B).15 The logical conjunction
A∧B is then true if in addition to A and B also k(A,B) is shown to be true.
Hence, we have a proof tree with three subsequent tests at time values t1, t2,
t3. Since the conjunction A ∧ B is understood as a simultaneous connective,
the time differences t3 − t2 and t2 − t1 must be sufficiently small (Fig. 13.3).

The commensurability propositions k(A,B) and k(A,B) are contingent
propositions whose truth must be shown by a convenient sequence of mea-
surements. We will not go into detail here. By means of the commensurability
propositions k(A,B) and k(A,B) one can define also the logical disjunction
A ∨ B and the material implication A → B by proof trees with a finite num-
ber of steps. (Fig. 13.4) It should be emphasised, that we make use here of
a semantics of truth which consists of two parts, the realistic semantics of
elementary propositions and the proof tree semantics of the compound propo-
sitions. In order to incorporate both the measurements process and the attack
and defence process into a unified semantical concept, we speak of a process
semantics.
13 Mittelstaedt, Stachow (1978, PEM).
14 Stachow (1980, LFQ).
15 Mittelstaedt (1978, QuL), (1986, SRP).
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Fig. 13.3. Proof tree for the logical conjunction

A v B
A v B

A v B

A

B

A

A

A

B

A   B

A   B

k

k

_
k

_
k

Fig. 13.4. Proof trees for the logical disjunction A∨B and the material implication
A → B

Furthermore, we can define here binary relations between propositions.
The proof equivalence A ≡ B means that A can be replaced in any proof
tree by B without thereby changing the result of the proof tree. The binary
relation of value equivalence A = B means that A is true if and only if B is
true.16 The relation of implication A ≤ B can then be defined by A ≡ A∧B.
Finally, we mention that A → B is true if and only if A ≤ B holds and that
the commensurability proposition is true if and only if A ≤ (A∧B)∨(A∧¬B)
holds.

The full language SQ of quantum physics can then inductively be defined
by the set S

(e)
Q of elementary propositions, the commensurability propositions

k and k and the connectives mentioned. Together with the relations “≡”, “=”,
and “≤” the quantum language SQ reads

SQ = {S(e)
Q ; k, k;",∧,∨,→,¬;≡,=,≤ }

16 If two propositions are proof equivalent, then they are also value equivalent. The
inverse is not generally true. However, in classical language the two equivalence
relations coincide.
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13.2.1.2 Quantum Logic

Quantum logic is the formal logic of the quantum language SQ and its syntax.
The term “formal logic” is understood here as the totality of all formally true
propositions. A proposition A is called “formally true” if it is true in the sense
of the process semantics irrespective of the truth or falsity of the elementary
propositions contained in the compound proposition A. It turns out that in
quantum language SQ there are less formally true propositions than in classical
language SC . In order to make these preliminary remarks more precise we will
express the totality of all formally true propositions of quantum language by
a calculus, the calculus LQ of quantum logic.

There are, first of all, many formally true propositions of classical lan-
guage SC that are also formally true in quantum language SQ. The value
definiteness of elementary propositions implies that also all finitely connected
propositions are value definite,17 i.e. the proposition A∨¬A, the tertium non
datur law, is formally true. The precondition that measurements are repeat-
able in principle implies that k(A,A) is always true and hence A → A, the law
of identity, is formally true. In a similar way, it follows that ¬(A ∧ ¬A), the
law of contradiction, is formally true in quantum logic. The three cases men-
tioned are not very surprising since these formally true propositions contain
only one proposition A. Hence, commensurability problems cannot appear.
There are, however, also formally true propositions in quantum logic that
contain two or more elementary propositions, where nothing is presupposed
about their mutual commensurability. An example of this kind is the propo-
sition (A ∧ (A → B)) → B, the modus ponens law, which is formally true
in quantum logic irrespective of the truth or falsity of the commensurability
proposition k(A,B).

More important for the characterisation of quantum logic are those propo-
sitions which are formally true in classical logic but not in quantum logic. The
shortest and in addition most important proposition which is formally true
in classical logic but not in quantum logic is the proposition A → (B → A).
In classical logic, i.e. under the assumption of unrestricted availability of all
propositions the proof tree for A → (B →A) contains only branches of success.

In quantum logic the situation is more complicated since the proof tree
contains also the test of commensurability propositions k(A,B). Only if the
commensurability of A and B were presupposed, then the proof tree would
contain only successful branches. This means that in general the proposition
A → (B → A) is not true and thus not formally true.

The totality of all propositions which are formally true even under the
restrictions that are provided by the commensurability tests is called quantum
logic. There are – as in classical logic – infinitely many propositions that are
formally true in the sense of quantum logic. They can be summarised in a
quantum logical calculus LQ, which contains “beginnings” ⇒ A ≤ B and

17 Mittelstaedt, Stachow (1978, PEM).
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“rules” of the form A ≤ B ⇒ C ≤ D. For the formulation of this calculus
we make again use of the two special propositions V (verum) and Λ (falsum)
such that for all propositions A ∈ SQ the relations Λ ≤ A ≤ V hold. If
A → (B → A) is true then the relation A ≤ (B → A) holds. A ≤ B → A
implies B≤ A → B and vice versa and A ≤ B → A holds if and only if
k(A,B) is true. Hence, in a calculus of quantum logic the commensurability
propositions k(A, B) can be eliminated by this implication and will no longer
appear in its final formulation. The calculus LQ of quantum logic reads:

The calculus of quantum logic
1.1. ⇒ A ≤ A
1.2. A ≤ B; B ≤ C ⇒ A ≤ C

2.1 ⇒ A ∧ B ≤ A
2.2. ⇒ A ∧ B ≤ B
2.3. C ≤ A; C ≤ B ⇒ C ≤ A ∧ B

3.1. ⇒ A ≤ A ∨ B
3.2. ⇒ B ≤ A ∨ B
3.3. A ≤ C; B ≤ C ⇒ A ∨ B ≤ C

4.1. ⇒ A ∧ (A → B) ≤ B
4.2. A ∧ C ≤ B ⇒ A → C ≤ A → B
4.3. A ≤ B → A ⇒ B ≤ A → B
4.4. B ≤ A → B; C ≤ A → C ⇒ B ∗ C ≤ A → B ∗ C

∗ ∈ {∧,∨,→ }
5.0 ⇒ Λ ≤ A,⇒ A ≤ V
5.1. ⇒ A ∧ ¬A ≤ Λ
5.2. A ∧ C ≤ Λ ⇒ A → C ≤ ¬A
5.3. A ≤ B → A ⇒ ¬A ≤ B → ¬A
5.4. ⇒ V ≤ A ∨ ¬A

The Lindenbaum–Tarski algebra of the calculus LQ is given by a complete
orthomodular lattice LQ. Subsets of mutual commensurable propositions con-
stitute Boolean sublattices L

(i)
B ⊆ LQ of the lattice LQ.18 Moreover, if the

entire quantum language SQ refers to one quantum system S, then the lattice
LQ is atomic and fulfils the covering law.19 Hence we arrive at the lattice L∗

Q

which we obtained from Hilbert space in Sect. (13.1.1). This means that we
have reconstructed this lattice operationally and shown in this way that L∗

Q

allows for a logical interpretation.
These results show that quantum logic, which is represented by a lattice

L∗
Q, is not only an empirical structure which – in the sense of Putnam – can be

“read off from Hilbert space” but also a priori valid in the usual sense of this
term. Indeed, quantum logic follows from the general pragmatic preconditions
of a formal language of quantum physics independent of any empirical result.
18 Birkhoff, von Neumann (1936, LQM).
19 Stachow (1984, QLI).
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Moreover, comparing quantum logic and classical logic shows that all propo-
sitions that are formally true in quantum logic are also formally true in clas-
sical logic, but the inverse is not true. There are infinitely many formally true
propositions in classical logic that are not formally true in quantum logic. The
reason for this important observation is, that quantum logic is based on the
pragmatic precondition of the restricted availability of quantum propositions
which is weaker and more restrictive than the corresponding precondition of
unrestricted availability of all propositions of classical logic. Hence, compared
with classical logic quantum logic is the weaker structure but for this reason
also less dependent on empirical premises than classical logic.

13.2.2 Objections Against 13.2.1

The formal system of quantum logic which is represented by the orthomodular
lattice L∗

Q was reconstructed in 13.2.1 as the formal logic of the language SQ

of quantum propositions. The formally true propositions of this logic are true
in the sense of the used process semantics irrespective of the truth or falsity of
the elementary propositions contained in it. Hence, the laws of quantum logic
hold for all propositions of SQ without any recourse to physical experience.
For this reason the laws of quantum logic were considered as a priori valid.

However, the laws of quantum logic are dependent on the pragmatic pre-
conditions of the language SQ and hence on the underlying ontology OQ.
This dependence becomes obvious if one compares quantum logic with clas-
sical logic and quantum pragmatics with classical pragmatics, respectively.
Since the pragmatic preconditions on the languages SQ and SC are based on
the respective ontologies OQ and OC the formal logic of the languages SQ and
SC will finally depend on the ontologies OQ and OC , respectively. Hence we
should formulate our result in (13.2.1) more precisely and say that the laws
of quantum logic hold a priori with respect to the ontological preconditions
of quantum language, i.e. with respect to the quantum ontology OQ.

On the basis of these arguments it becomes obvious that the a priori valid-
ity of quantum logic does not mean independence of any experience. Quantum
logic is independent of the special experimental information that is contained
in the elementary propositions. However, it is dependent on the most general
experience that constitutes the quantum ontology OQ. We mention here in
particular the pragmatic precondition of the “restricted availability” which
turned out to be the reason for the difference between quantum logic and
classical logic.

The comparison between quantum logic and classical logic leads us to
the final and most important argument. The laws of quantum logic hold a
priori with respect to the quantum pragmatics and quantum ontology OQ.
Whenever quantum ontology is presupposed, quantum logic is valid for arbi-
trary propositions of the language SQ. (The laws of classical logic hold in the
same sense a priori with respect to classical pragmatics and classical ontology
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OC .) As mentioned above classical and quantum ontology are not alterna-
tive ontologies, which belong to different worlds, but quantum ontology OQ

is merely a relaxation of the stronger classical ontology OC . For this reason,
quantum logic is weaker than classical logic but more general. It holds also
in the domain of classical ontology. Consequently, quantum logic depends on
less empirical presuppositions than classical logic and is thus valid in a wider
region of application than classical logic. It is, however, not unrestrictedly
valid.

13.2.3 Answer to Question 13.2

Are the laws of quantum logic a priori valid? The operational reconstruction
of the orthomodular lattice of quantum logic leads to a twofold answer to
this question. Firstly, the laws of quantum logic are a priori valid in the
same sense as the laws of classical logic with the remarkable difference, that
quantum logic is even “more a priori” than classical logic since it depends
on weaker ontological preconditions. Secondly, the apriority of quantum logic
refers only to possible substitutions of truth values of elementary propositions
– but not to the experience contained in the ontology. Quantum logic as well
as classical logic depend on empirical ontological premises.

13.3 Concluding Answer to Question 13.1

Are the laws of quantum logic laws of nature? On the one hand, we could
show (in 13.1.) that the lattice L∗

Q of quantum logic is an abstract structure
of quantum mechanics in Hilbert space. Hence, the laws of quantum logic can
be confirmed and shown to be satisfied by experiments and are – in this weak
sense – laws of nature. On the other hand, we could also show (in 13.2.) that
the laws of quantum logic follow from the pragmatic preconditions of the lan-
guage of quantum physics and are, for that reason, a priori valid. Hence, they
must not be considered as proper laws of nature. However, the apriority of
quantum logic is somewhat invalidated by the fact that the pragmatic precon-
ditions ( value definiteness, repeatability, restricted availability etc.) and the
underlying ontology depend – as in case of classical logic – on experience. For
that reason the laws of quantum logic are a priori valid and thus not genuine
laws of nature but with a small empirical impurity, which makes them – in a
weak sense – being laws of nature.
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Boltzmann, L. (1897, MSP) Über einen mechanischen Satz Poincaré’s. In:
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Collected Works, Vol. I ed. by S. Feferman et al., Oxford 1986.
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Wigner, E.P. (1932, OZQ) Über die Operation der Zeitumkehr in der Quan-
tenmechanik. Göttinger Nachrichten 31, pp. 546–559.



References 367

Wigner, E.P. (1967, SRf) Symmetries and Reflections. Scientific Essays of
Eugene P. Wigner. Ed. by Moore, W.J. and Scriven, M., Indiana U.P.,
Bloomington.

Wigner, E.P. (1972, TEU) On the Time Energy Uncertainty Relation. In:
Salam, A., Wigner, E.P. (1972, AQT), pp. 237–247.

Wittgenstein, L. (1960, PhI) Philosophische Untersuchungen, Schriften 1,
Suhrkamp, Frankfurt/M. English Transl. by G.E.M. Anscombe, Blackwell,
Oxford 1958.

Wittgenstein, L. (1960, TLP) Tractatus Logico Philosophicus, Schriften 1,
Suhrkamp, Frankfurt/M. (Annalen der Naturphilosophie 14, 1921) English
Transl. by F.P. Ramsey, Routledge & Kegan Paul Ltd., London, 1922.

Wittgenstein, L. (1974, GdM) Bemerkungen über die Grundlagen der Math-
ematik, Schriften 6, Suhrkamp, Frankfurt/M., English Transl. by G.H.
Wright, R. Rhees, and G.E.M. Anscombe, Blackwell, Oxford 1956.

Wolters, G. (1987, MER) Mach I, Mach II, Einstein und die Rela-
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theory 310
theory of everything f. 304
thermodynamics f. 147
thing 268
time ff. 104, 107
time as chronology 114
time as physical time 115
time flows ff. 166
time flows equably 168
time flows unequably 168
time measurement f. 105, f. 110
time orientable 244
time presupposes change 106, 167
time reversal symmetry 81, 132, 137,

157
time reversibility 147, ff. 157
time reversibility, violation of 160
time translation symmetry 80, ff. 95,

ff. 104, 114, f. 120, 284
time, beginning of f. 69
time, continuity of 105
time, definition of 104
time, relative 103, 108
time-like geodesic 169
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time-symmetric field 181
translation symmetry in space 80
tunnelling process 249

UL 27
UN 27
undecidable propositions 296
undetermined, objectively 156
uniqueness 274
unitary representations 278
universality 15, 309
universe (world) finite in time 107
universe of discourse (UL) 27, 41
unrestricted availability 345

value definite 331
value equivalence 342
variables entering a law f. 85
velocity symmetry 80
verisimilitude f. 19

weak distributivity 338
weak objectification 319
weaker logics f. 32
weakly objectified 318
world (universe) finite in time 107

Zeeman theorem 242
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