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INTRODUCTION

William Aspray recorded the first use of computers for scientific usage
between 1952 and 1957. By June of 1952, the IAS computer was finished
and ready to be tested; although it needed some extra months for repair
and general maintenance, the major issue for the team of scientists and
engineers was to understand the new instrument. The digital computer,
built and designed on solid theoretical foundations, presented a significant
challenge; namely, it was necessary to dedicate some extra time to learn
the operation of the machine, identify appropriate algorithms, and
determine the range of mathematical applications within the computer’s
capacity (1990, 155). By the time the computer became a more
knowledgeable and reliable instrument, scientists and engineers began to
use it with great success in specific scientific applications. By 1954, the
calculation of the energy band structure of iron that would test the theory
of ferromagnetism became the first scientific application to run on a digital
computer (1990, 159).

In the years following 1954, the digital computer proved to be a
fundamental tool for the development and advancement of scientific
understanding. Today, despite their short history, computers are leaving an
indelible mark on numerous and disparate scientific disciplines such as
particle physics, astronomy, behavioral science, psychology, sociology,
and economics. Arguably, there is virtually no scientific discipline that has
not been involved, in one way or another, with the digital computer. This
durable presence extends widely along the uses and needs of scientific
practice. For instance, the numerical experiment of calculating the energy
band structure of iron qualifies, in contemporary parlance, as a computer
simulation. The main topic of this book is precisely to address the uses of
and needs for computer simulations in contemporary scientific practice. In
this context, computer simulations are discussed from a philosophical,
historical, and scientific point of view.

Nowadays, there is a renewed interest in understanding the role that
computer simulations play in scientific practice. Do computer simulations
belong with the calculator and the test tube, or do they belong higher in the
epistemic hierarchy, closer to theories and experiments? Are they just
scientific models implemented on the digital computer, or do they
represent a novel way of doing science? Given the centrality of the issue, it
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is not surprising to find that there have been many attempts to theorize
about the nature of computer simulations as experimental devices.
Admittedly, these questions have been around for quite some time. As
early as 1967, Naylor, Burdick and Sasser, define a computer simulation
as:

A numerical technique for conducting experiments with certain types of
mathematical and logical models describing the behavior of an economic
system on a digital computer over extended periods of time (...) The
principal difference between a simulation experiment and a ‘real world’
experiment is that with simulation the experiment is conducted with a
model of the economic system rather than with the actual economic system
itself (1967, 1316).

It is astonishing to note the similarity of this quotation with more
contemporary literature on the topic. Current philosophical inquiry also
engages in similar efforts, such as distinguishing between a computer
simulation and a ‘real world’ experiment, or exploring the methodological
implications of implementing a scientific model as a computer simulation.

Yet, despite these few similarities, much of the contemporary
philosophical investigation is simply not the same as in the late 1960s.
From a historical perspective, the introduction of silicon based circuits,
and the subsequent standardization of the circuit board significantly helped
the industry and the growth in the computational power of computers.
Such growth in speed of calculation, size of memory, or the number of
programming languages forcefully challenged the established ideas and
encouraged the seeking of new questions and answers.

One of the leading questions on this issue has been whether computer
simulations stand for a new way of conducting scientific practices, or if
they simply represent another computational method subsidiary of
experimentation. The work of Rohrlich (1990) sets the grounds in this
direction. He argues, computer simulations do provide a qualitatively new
methodology for the physical sciences, lying somewhere intermediate
between theoretical physics and empirical methods of experimentation.

However, Frigg and Reiss (2009) deliver the most pressing contemporary
discussion on the philosophical relevance of computer simulations. The
authors understand computer simulations in the context of the philosophy
of models and, as such, with no significant distinctions from other uses of
modeling in experimental practice. Humphreys (2009) answers their
skepticism by indicating that the way the argument is presented is
misleading, for it illuminates only computer simulations from the
perspective of a philosophy of models. To Humphreys’ mind, computer
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simulations raise questions that cannot be answered by a familiar
philosophy, but rather need to be addressed at face value.

Beyond the specific contribution that this discussion can offer to the
philosophical study of computer simulations, there is general agreement
that computer simulations raise important questions for the general
philosophy of science. One interesting example is the search for general
criteria that distinguish computer simulations from experiments. Such a
search has ramifications on studies about the epistemic power of computer
simulations, the ontological and epistemological status of simulation data,
the importance of new methodologies involved in the design and building
of a computer simulation, and similar questions.

From September 21% to September 23™ 2011, the interdisciplinary
workshop “Computer Simulations and the Changing Face of Scientific
Experimentation,” sponsored by the University of Stuttgart and the
Stuttgart Research Center for Simulation Technology (SRC SimTech),
brought together philosophers, historians, sociologists, and scientists into a
common discussion with the purpose of revisiting some of the questions
here mentioned, and addressing the new challenges that computer
simulations pose to scientific practice.

We have divided this book into three mutually related parts. Part One
(Theory) is dedicated to the theoretical understanding of the relation
between simulations and experiments in the current philosophy of science.
Part Two (Practice) fleshes out some of the theoretical conceptualizations
presented in Part One by illustrating case studies from current scientific
research on computer simulations. These case studies highlight the shift
from experiments to computer simulations that is observed in current
scientific practice, and describe the patterns of interaction between
simulation methods and experimental methods in current scientific
research. Part Three (History) broadens the perspective by offering case
studies on the historical development of “computer experiments” as a
research method.

The first part of the book is dedicated to the diversity of views among
philosophers regarding existing distinctions between computer simulations
and experiments, the epistemic power of computer simulations, and the
new methodologies that they represent.

In the first contribution (“What Are Data About?”), Paul Humphreys
calls our attention to the discussion about the status of data produced by a
computer simulation. His paper focuses on the content of data produced,
instead of the source that produces such data. According to the author, the
origins and modes of production of these data show that the empiricist
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point of view is no longer an attainable position in the philosophy of
science. This argument derives its force from what the author calls ‘causal-
computational instruments’; that is, an instrument that relies on a causal
process that links the data source in nature with the measurement, but that
also requires further post-processing for rendering reliable data. In
Humphrey’s mind, then, such causal-computational instruments cannot be
interpreted in the same way as Hacking discusses microscopes, where a
realist interpretation of the images is justified by the independent access to
the same phenomenon through different observational instruments. The
decisive point here is that the data delivered by a causal-computational
instrument, like a CT scan, are the result of deliberate engineering.
Depending on the particular purpose, say, whether the data is meant to be
“read” by a human agent or further processed in the computer, the
appearance of the engineered data may differ considerably. In order to
determine its representational content, it is therefore central to take into
account the origin of the data as well as the engineering steps by which it
is formed (and transformed). Causal-computational instruments, then, pose
a significant challenge for philosophers interested in traditional problems
of empiricism, realism, and the notion of data.

If Humphreys reminds us that there is a considerable amount of
engineering involved in the production of the empirical data by causal-
computational instruments, Anounk Barberousse and Marion Vorms
(“Computer Simulations and Empirical Data”) attack the problem from the
opposite side; that is, by examining whether the data produced by a
genuine computer simulation can, with any good reason, be considered
empirical data. Starting from the assumption that empirical data are about
physical systems, Barberousse and Vorms challenge the opinion that the
data produced by computer simulations cannot be new or surprising. It is
frequently assumed that computer simulations, because they rely heavily
on pre-existing theoretical background knowledge of the simulated
objects, are less capable of producing genuinely novel and surprising
insights about their target system than observations or traditional
experimentation. The authors support the claim that this assertion is
mistaken with the example of computer simulations of deterministic
chaos.

While this conclusion emphasizes the capacity of computer simulations
to produce empirical data that are as novel and surprising as that of
experiments or observations, Eckhart Arnold points out the differences
that remain between simulations and experiments as scientific methods
(“Experiment and Simulations: Do They Fuse?”’). Most notably, he argues
that the results produced by computer simulations cannot go beyond what
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lies in the deductive closure of their premises. According to Arnold, a
simulation, unlike a material experiment, cannot be employed as an
experimentum crucis. The chapter therefore contains an elaborated criticism
of some, in Arnold’s opinion, misguided philosophical conceptualizations
of computer simulations. With respect to the borderline between simulations
and experiments, however, one question remains that is not so easily
dismissed: How can a measurement that involves the computational
refinement of its data properly be distinguished from a computer
simulation that makes use of input data of empirical origin? To this
question, Arnold gives a tentative answer based on the measuring a cause
by its effect pattern, a pattern that is typical for many traditional
measurement methods already.

The contribution by Juan M. Durdn (“The Use of the ‘Materiality
Argument’ in the Literature on Computer Simulations”) continues the
discussion on the differences between computer simulations and
experiments, but this time from a meta-critical point of view. Durdn’s main
concern is to unpack the underlying rationale that has been guiding the
argumentation in current literature. By addressing the so-called “materiality
argument” present in three different conceptualizations, the author shows
that there is a common argumentative structure that inevitably shapes the
final epistemological evaluation of computer simulations. Specifically,
Durén presents what he calls ‘the materiality aftermath,” a meta-criticism
that exposes the rationale underlying the arguments in the current literature
on simulations. In the author’s mind, ‘the materiality aftermath’ is the
result of the philosopher’s ontological commitment to computer simulations,
from which epistemological consequences are drawn. The author believes
that adapting the philosophical investigation to this rationale leads to a
conceptual corset in the inquiry of the epistemology of computer
simulations. Durdn’s conclusion is sober, and aims at endorsing the
philosophical investigation on computer simulations as neither restricted
by, nor limited to, ontological commitments, but rather addressed at face
value.

The contribution by Pio Garcia and Marisa Velasco (“Exploratory
Strategies: Experiments and Simulations”) turns the discussion to a notion
of ‘exploratory strategy’ applicable to computer simulations. Particularly,
the authors analyze exploratory strategies in experiments and computer
simulations, and elucidate the methodological and epistemological role in
both domains. Their proposal, then, consists first in drawing some
distinctions between computer simulations and experiments. Second, the
authors make explicit the concept of ‘exploratory strategy,” establishing a
further distinction between exploratory experiments and other types of
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experiments. This second step allows them to present their own proposal
as a different way to approach the epistemic and methodological aspects of
scientific practices, particularly, computer simulations. Some relevant
cases of experimental and simulation activity are considered in the context
of ‘exploratory strategies.’

In the second part of the book, the focus is shifted from the abstract
and theoretical philosophical discussion to the analysis of concrete
examples. The first of these papers is the study of simulations of cardiac
electro-physiology by Annamaria Carusi, Blanca Rodriguez and Kevin
Burrage (“Model Systems in Computational System Biology”). Their case
study concerns multi-scale models of cardiac electro-physiology. These
models represent a challenge from a technical as well as a philosophical
point of view. Defying any sharp distinction between simulations and
experiments, the authors claim that “the basic unit of analysis when
considering questions of the validation and epistemic warrant of
computational methods in systems biology” is the model-simulation-
experiment-system (MSE). In particular, the target system cannot be
understood simply as a given reality, rather it is co-constructed with the
MSE system. The construction of the target domain is inevitable because
the validation data need to be comparable to the MSE system. However,
the term ‘construction’” must not be misunderstood as implying a
relativistic understanding of science in this context. The validation
experiments remain independent in the sense that they do not make use of
any data that have been used for model construction.

Anne Marcovich and Terry Shinn’s contribution (“Computer Simulation
and the Growth of Nanoscale Research in Biology”) explores three links
between computer simulations and nanobiology research. First, they show
that there is a correlation between nano-related biology publications in the
early 1990s and the introduction of computer simulations in scientific
practice. Second, computer based research contributes to the cognition of
nanobiology through the creation, organization, and consultation of
databases. Finally, the authors show that “simulation molecular graphics
generate images that are informationally and analytically rich, and that
offer a fundamental input into novel forms of epistemology.” Their
contribution shows not only how the academic agenda is strongly driven
by the introduction of new technologies, but also how computer
simulations can provide a genuine understanding of their simulated target
system, requiring a novel form of epistemology.

In their contribution, Lucia Ayala and Jaime Forero-Romero
(“Computer Simulations in a Cosmological Context”) discuss the case of
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testing hypotheses in cosmology. Physical cosmology represents a special
case in the natural sciences with regard to the available methods for testing
a hypothesis. Since direct experiments are excluded, observations and
simulations must carry out this testing function. In their contribution, the
authors discuss the special case of numerical simulations as an essential
tool for understanding the observed large-scale structures in the Universe.
This discussion is followed by a description of the limitations of
simulations in understanding such large-scale structures. For instance, the
physical nature of computer simulations becomes a limitation. As the
authors point out, time, data storage, and data transfer rates are restricted.
Ultimately, theory, observations, and simulations work together and, with
their different potentials and limitations, mutually complement each other
in contemporary astronomy.

Muniza Rehman traces the latest developments in the use of
simulations and experiments in the pharmaceutical industry (“Experimentation
and Simulations in the Pharmaceutical Industry”). Rehman places
simulations between traditional experimentation and theoretical accounts.
To the author’s mind, two kinds of simulation studies are common in the
pharmaceutical industry: Computer-assisted trial designs (CATD) and
computer-simulated clinical trials (CSCT). The former are employed to
study the experimental design of clinical studies, before they are
conducted. The latter are used to estimate the outcome of clinical trials,
potentially rendering some of these trials unnecessary and thus reducing
the number of clinical trials that actually have to be conducted. Some
philosophers have disputed that simulations provide a true novelty over
traditional modes of modeling and theoretical exploration. Nevertheless,
given how strongly the use of computer simulations has affected the
practice of drug testing in the pharmaceutical industry, Rehman concludes
that from this perspective simulations are indeed a sui generis activity in a
Humphreyan sense.

The third and last part completes the book with historical case studies.
Wolfgang Brand (“Designing the Membrane Roof of the Munich Olympic
Stadium using Supercomputers”) presents a historical case study of the
deployment of the first supercomputers in architecture and civil
engineering. The events around the design of the tent-shaped membrane
roof of the Munich Olympic Stadium for the 1972 Olympic Games
demonstrates how physical models of constructions enable technologies
for the construction of naturally shaped buildings. It is argued that the
1960s mark the period in which the usage of high performance computers
triggered the change toward architectural design processes. The technology



8 Introduction

available had already reached a state where model building was no longer
necessary. It is shown how two groups using different methods on the
same computing infrastructure designed the roofs inspired by the ideas of
Frei Otto. They developed wide-spanning lightweight structures consisting
of pre-stressed cable nets covered by transparent tiles. The group of John
H. Argyris relied on the Finite Element Method, which he co-invented.
While another group headed by Klaus Linkwitz used least-square fitting
and developed the new Force Density Method, all influenced by geodesic
methods. Both attempts were successful and led to the landmark Olympic
Stadium in Munich, as we know it today.

A somewhat different perspective on simulations is introduced by
Michael Resch (“What’s the Result? Thoughts of a Center Director on
Simulations”). As head of the high-performance computing center in
Stuttgart, Resch addresses the technological procedures (and their
limitations) by which simulations are implemented and executed on the
computer. In this respect, Resch proposes an addition to Winsberg's (2010)
layered model of simulations, which also includes numerical schemes,
program structures, programming models, and hardware architectures. All
of these influence the capabilities as well as the limitations of the
simulation approach. Resch, then, embeds his ‘prototypical workflow’ into
a broad philosophical perspective, covering the question of verification
and validation, as well as the need for rendering simulation results
comprehensible to human beings. The latter issue does not only concern
the specialist user of simulations, but also is of interest for society —as the
example of climate simulations may illustrate.

We hope that readers from different humanistic and scientific fields
that concern themselves with computer simulations find the broad
perspective of our book useful. The editors would like to thank the
University of Stuttgart and the SRC SimTech for financial support that
made the workshop possible. This book is a publication of the papers
presented at that workshop. We are in debt to the participants for making
the workshop a successful event. Most of all, we would also like to thank
all the authors that, with their excellent contributions, made this book
possible.

Juan M. Duran and Eckhart Arnold
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PARTI:

THEORY



CHAPTER ONE

WHAT ARE DATA ABOUT?

PAUL W. HUMPHREYS
UNIVERSITY OF VIRGINIA

Empiricism is no longer a tenable position in the philosophy of
science. As a result, it is worth examining what it was that made
empiricism such an attractive position for so long and if anything valuable
can be salvaged from that tradition. The debates about empiricism usually
contrasted knowledge obtained from observation and experiment on the
one hand with knowledge obtained from theories on the other. Because
computer simulations are firmly entrenched as a third mode of pursuing
scientific inquiry, one way to explore what made empiricism important is
by contrasting data that are provided by experiments and observations
with data that are generated by computer simulations. In doing so, my
paper will indirectly address one of the original philosophical issues about
computer simulations: in what ways, if at all, do computer simulations
differ from scientific theories on the one hand and experiments on the
other?' Early in the discussions, claims were made that simulations had
some kind of intermediate status between theory and experiment, while
also standing as sui generis methods. More recently, claims have been
made that simulations can be used in place of material experiments under
certain circumstances.” Although it is true that there are similarities
between certain aspects of simulations and experiments, pointing out
analogies between laboratory experiments and computer simulations, such
as the ability to manipulate variables and control for confounders, do not
address one of the central epistemological questions that arise once

' This issue was present almost from the inception of computer simulations.
Explicit attitudes towards it can be found in (Ord-Smith and Stephenson, 1975, 3),
(Rohrlich, 1991), (Humphreys, 1994).

% See Norton and Suppe (2001), Winsberg (2003), Parker (2009).
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simulations are brought into the picture. This question is: Are the data
produced by computer simulations different in kind and in content from
experimental and observational data, and from data generated by
traditional scientific or mathematical theories? If we have reasons to agree
that they are different in a scientifically relevant way, then that is one
dimension along which simulations occupy a distinct scientific niche.
Empiricists have usually treated the issue of the empirical source of data
within a methodological context such as confirmation, verification, or
falsification. I shall focus instead on content. One important question is
this: what is it for a datum to have empirical content?’ An answer to that
question is provided in (Humphreys forthcoming); here we can make
additional progress by addressing a related question: what are various
kinds of data about?

What are Data?

In order to remain as ontological neutral as possible about data, I take a
datum to be the value of a variable. The term ‘variable’ will be used here
in a way that is neutral between items such as a mathematical function that
represents a property and the property itself.* This dual use carries with it
certain dangers because the role of representations in computer
simulations is crucial, but where appropriate I shall explicitly note which
use is in play. The variable can be scalar and discrete valued, which covers
situations in which the datum concerns a qualitative monadic property
such as “is red,” or it can be vector and continuous valued, capturing
relational features such as “has velocity v with respect to frame F.” Other
possibilities can be accommodated. I shall not distinguish between atomic
and non-atomic data because nothing that follows depends upon making
that distinction. Finally, although the expression “data” often carries the
force of something given, something fundamental, those connotations
must be rejected. Data can be the result of processing, transformations,
and interpretation, and we can and often do question the data.’

3 There are other epistemological issues about simulations and experiments
including: 1) the a priori versus the a posteriori content of data from each, 2) the
empirical versus the formal content of data from each, and 3) the relative rates of
reliability as truth generators for data from each.

* The variable can be purely formal and hence represent nothing.

5 The distinction between data and phenomena drawn in Bogen and Woodward
(1988) and other papers is compatible with the definition of a datum given here,
although their emphasis on the causal production of data perhaps indicates a
narrower use of the term “data” than is considered here.
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Data can be assessed on their own terms, without regard for what
generated them and an important aspect of our definition is that it does not
mention the origins of a datum, allowing data to originate from
computational processes, from experiments, from theory, and perhaps
other sources. Yet, if we are to address the question of what the data are
about we must solve the inverse inference problem. The inverse inference
problem consists in making, and providing a justification for, an inference
from the data to its source. In the debates between scientific realists and
empiricists, the issue is usually cast as one of whether terms in scientific
theories that purport to refer to unobservables genuinely refer, but it can be
recast as the problem of what objects’ and properties’ existence can
justifiably be inferred from the empirical data. In these terms, inferring the
existence of Saturn’s rings and their properties from what is observed
through a low powered telescope is an inverse inference problem, as is
inferring the existence of a virus from an electron microscope image. The
converse of the inverse inference problem, the direct inference problem, is
the problem of what data will be available given the existence of the
source.

To see how addressing the inverse inference problem and assessing the
content of data make a difference to how we evaluate data, consider the
traditional division between empiricism and rationalism.® For empiricists,
data that are the result of direct perceptual experience, or on a slightly
more liberal agenda, data that are a result of observations by elementary
equipment that include the human senses, are the most desirable and, for
many, are the only source of genuine knowledge. The reasons for this
desirability vary. On the one hand there is a widely shared belief that the
origins of the data in the causal world make their content more desirable
than the content of data whose origins are whatever produces a priori
knowledge. On the other hand the empiricists’ starting point was the
content of the datum and not its origin, an orientation that deliberately left
open the possibility that the external world might not be the source of the
empirical datum and might not even exist, leading either to a lack of
commitment to the existence of that data’s origins, as in constructive
empiricism, or to an outright denial, as in idealism.

® What constitutes empiricism and rationalism is, and probably forever will be, a
matter of scholarly dispute. I am using the terms here as surrogates for broad
epistemic attitudes that I assume most philosophical readers will recognize. For the
record, I subscribe to the view that although it is often a matter of historical
contingencies when a particular philosophical issue is raised and becomes the
subject of focused discussion, the issue itself transcends those historical
contingencies.
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Empiricists have granted privileged status to observational data for a
number of other reasons. One was that data about directly observable
entities seem to have the certainty that was lacking in data that were about
unobservables. This certainty was a reason for refusing to provide a
solution to the inverse inference problem and it was the intrinsic content of
the data to which any certainty attached. A second reason was that data
about observables were supposed to act as a theory independent basis for
deciding between rival theories. On what might now seem to be rather
naive grounds for taking the intrinsic content of a datum to be theory-
independent, this gave privileged status to such content, and a bonus was
that by avoiding making inverse inferences, no theory was needed in that
capacity either. A third reason was that empirical data were taken to be the
only reliable source of information about contingencies existing in our
world; a priori methods were incapable of that degree of specificity. For
various reasons, all of which are plausible, the first and second of these
reasons no longer have the force once attributed to them and in light of the
well-known arguments formulated by Quine (1951), the distinction
between the a priori and the a posteriori is now seen to be a much more
difficult distinction to make than was originally imagined.

It is a different issue that lies behind some of the difficulties in assessing the
status of data from simulations and experiments. The issue is the extent to which
inverse inference problems need to be solved in order to decide what the data are
about. One set of solutions to this problem, following the empiricist tradition,
attempts to attribute content to the data without taking into account their origins.
This approach starts with data and avoids making inferences about their origins
as far as is possible. If the content of data from simulations and from
experiments is equivalent under this approach, then data from the two classes are
inter-substitutable. Thus, if a simulation of independent tosses of a coin with
parameter p is based on an accurate model of a sequence of tosses of a real coin
with that degree of bias, the data from the simulation can replace the data from
the experiment and we can ignore the origins of the data.” Another set of
solutions suggests that the origins of data in material systems make those data
about something different than data coming from a computer simulation and so
inferences that are often not easy to justify are required to use data from
simulations in place of data from experiments. These are complicated issues and
I can only sketch a solution here, but the overall view is that the origins and
mode of production of data must be taken into account.

" This is the position taken by Késtner and Arnold (2012) in which well-confirmed
theories play a central role. See also Winsberg (2009)
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Simulations and Experiments

In recent years, there has been considerable discussion about whether
computer simulations can serve as a replacement for material experiments.
Those who have argued for relevant similarities between simulations and
experiments tend to emphasize methodological considerations.®
Barberousse, Franceschelli and Imbert (2009) (hereafter BFI) have drawn
an important distinction between two types of data, datag and data,. BFI
define datag as being ‘of empirical origin, namely produced by physical
interactions with measuring or detection devices’ (2009, 560). It seems
clear from this definition, and also from the examples used to illustrate the
definition, that datag are data produced by purely causal instruments. In
contrast, data, are about a physical system. BFI note that datay, may be
produced by datag ‘but also via other processes, among them analytical or
numerical pen-and pencil-computed solutions of systems of equations
representing the target systems, and computer simulations’ (2009, 560) In
the present context I shall take simulations to be like traditional pencil and
paper solutions in the sense that they are drawing out consequences of
formal representations.’

The distinction drawn by BFI is important and helpful and their
insistence that it is the representational aspects of computer simulations
that constitute the dividing line between experiments and simulations is
exactly right, but we shall need to see how the distinction plays out in the
realm of causal-computational instruments (see section “Causal-computational
instruments” below). The distinction also opens up some important

8 In this paper, ‘simulation’ refers to a digital computer simulation and
‘experiment’ refers to a laboratory experiment. In the latter, all known relevant
variables except for explicitly specified independent variables are controlled and
the manipulations of the independent variables are epistemically transparent in the
sense that the causal effects of the manipulations on those variables are known.
The point of the experiment is then to identify the causal effects of the independent
variables on the dependent variables. The situation with a single independent
variable and a single dependent variable is a special case.

® This assertion is consistent with my position (Humphreys 1994, 2004) that the
physical implementation of computer simulations places constraints on simulation
methods that are not present in traditional a priori mathematics and that epistemic
opacity, including the need to make inductive inferences in place of deductive
inferences, is usually present. Despite some claims in the literature to the contrary,
I have never endorsed the view that running simulations on material computers is
itself a reason to justify substituting data from simulations for data from
experiments. Numerical experiments are significantly different from material
experiments.
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philosophical questions. One is how to interpret data that have
transformations applied to them after their origination. Suppose we grant
that we can correctly specify what counts as a measurement or a detection
device.!"” Then, in the case of datag, consider what happens when a
representation of an empirical datum has a formal transformation applied
to it. Suppose that we have a square divided into two so that the left hand
side is white and the right hand side is black. An imaging device (consider
a digital camera for simplicity) takes a photograph of the square and forms
a digital visual image that duplicates the original square. The image is
unquestionably a representation of the square and the data, which are a
spatial array of black and white pixels, are about that square. It is easy to
perform a formal transformation on that data set so that all of the pixels on
the right hand side are transformed from black to white and all of the
pixels on the left hand side are transformed from white to black. What is
this second image a representation of and what is it about? Exactly the
same image could have been obtained by a purely causal process by using
a mirror to produce the left-right inversion. So one answer to these
questions is that it is a mirror image of the original square, hence a
representation of it and that the data, are about the original square. Now
consider the case where only the formal transformation of the right hand
side from black to white is carried out. The resulting image is a completely
white square. What is this a representation of and what is it about? A
variety of answers are plausible. To preserve consistency with the first and
second cases, it seems we should give the same answers: The purely white
square is a representation of the original square and the data are about it.
Yet, it is such an extremely poor representation that one wonders in what
sense it counts as a representation at all.

To see more clearly what is at issue, suppose that we have a digital
photograph of a couple, Jack and Jill, against a white background. A
computer algorithm removes the pixels representing Jack, replacing them
with white pixels, leaving only a visible image of Jill. This image contains
datag according to the above definition, and this is surely correct, but what
is it about? Most people would say that the image, which consists of a
spatial data array, is about Jill. Clear enough, although this answer
deviates from the criteria we used for the black and white squares
example. So now consider a parallel example in which the original
photograph is of Jill alone, but an algorithm transforms white pixels into a
colored array that is a representation of Jack. What is this new image
about? It is a representation of Jack and Jill, and it is therefore about Jack

1% This is not at all easy and I shall not attempt to solve the problems here.
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and Jill, although it is a photograph of Jill only and so, on an origins view
of data content, about Jill only."" The pixels that make up the image of Jill
are all datag as well as data,, whereas the pixels that make up the image of
Jack are data, only.

We have here a familiar set of philosophical issues. Data, can be about the
causal sources that give rise to datag. Emphasis on the causal origins of the data,
typified by causal theories of reference and perception, lead to one set of
answers regarding what data, are about. But what data, are about can have
nothing to do with the relevant datag and the interpretation is imposed by the
intentions of an interpreter of the data. We thus need to say more regarding what
the data, are about. Under the causal view, for an individual datum we can
plausibly say that it is about whatever gave rise to that datum regardless of the
accuracy of its content. In this there is an echo of the causal theory of reference
in that all of the descriptive content of a piece of referential apparatus can be
wrong and yet that apparatus can successfully refer. Thus, rather than begin with
the datum itself, we begin with a realist attribution of the existence of the source.
The inverse inference to that source is underdetermined, but this is an additional
complication that is unavoidable and I set it aside here.'” The underlying
problem here is this: when philosophers still believed in pure observations, the
idea was that such things gave us direct access to what was being observed. In
contrast, we required inverse inferences to know what the referents of theoretical
terms were. That view about direct access seems quite naive now, but we can
retain one element by highlighting the fact that there is a causal pathway
connecting the observation with the entity observed. Yet, we lose that causal
pathway not only with simulations but also with a widely used class of imaging
devices. The point here is that what data are about is a vexed and complicated
issue that is intimately tied to an adequate theory of reference. BFI were right to
draw our attention to this aspect of the simulations versus experiments debate.
The origins of the data, whether material or not, are insufficient to determine the
content of data,. So let us generalize the concept of datag to datag where datag
are data generated either by causal or computational sources. Here the ‘O’
indicates that the origin of the data be included in a specification of the data.

" Definitions of ‘photograph’ stipulate that the image must have been formed by
electromagnetic radiation (usually visible light) falling on some recording device.
"2 This is not to suggest that underdetermination problems in inverse inference
methods are unimportant. Both theoretically and in practice solutions to these
problems must be found.
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Causal-Computational Instruments

To help clarify matters, it is useful to consider a particular type of
instrument, those that I shall call causal-computational instruments.
Almost all discussions of scientific instruments implicitly restrict
themselves to what I shall call non-computational instruments.'* By a non-
computational instrument I mean that the instrument receives some
physical process as an input, the instrument causally interacts with the
input to transform it, the instrument’s output is another physical process,
and none of these processes or interactions is a computation.'* All of the
familiar scientific instruments discussed in the philosophical literature are
of the non-computational kind: optical telescopes and microscopes,
magnetometers, oscilloscopes, and so on." In the last fifty years or so, a
potentially different class of instruments has been developed that I shall
call causal-computational instruments. These take physical processes as
inputs and at some point in the operation of the instrument, they convert
physical states into digital representations that undergo computational
transformations before producing the instrument’s output.'® Of course,
these causal-computational instruments have causal aspects not only
because of their inputs but because the implementation of the
computations is carried out by causal processes. Yet, causal-computational
instruments fall into a class intermediate between purely causal
instruments and computer simulations because inferences and
representations play a crucial role in their operation but, unlike pure
simulations, the causal inputs to the physical device also play a central role
in the interpretation of the output.

'3 One of the few exceptions is Israel-Jost (2011).

' For our present purposes, what counts as a computation will involve only those
in the class of Turing computable discrete functions. This rules out the view that
all physical processes are computations and provide the basis for a principled
distinction between computational and non-computational instruments.

'3 1 am in this paper excluding the human perceptual system as an example of a
scientific instrument because it is too difficult to disentangle interpretations of the
datum from the causal processes that lead to the datum, although in a more general
context there are epistemological advantages to viewing the human perceptual
apparatus as simply another instrument that produces data.

' Many traditional instruments now use digital displays for their outputs but that
does not by itself introduce a computational element into the instrument. Although
the distinction is perhaps not easy to make completely clear, an instrument in
which the display types are antecedently fixed does not count. Under
computational theories of vision, parts of the human perceptual system may count
as a computationally enhanced instrument.
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I shall take as examples of causal-computational instruments the
category of medical imaging devices that includes computed tomography
(CT) and positron emission tomography (PET) instruments.'” Although
the physical operation of specific types of instruments is crucial for
understanding how they produce data, most of the philosophical points I
make here generalize from the specific examples discussed. A generic
diagram of scientific instruments is given in Figure 1-1.

processed datum

source

Input datum receiver

processor

source datum

accessible datum

outputdatum

Figure 1-1

What 1 have called the processor can be either a purely causal
transformation device, such as a telescope lens, or a computational device.
The generic case that I consider has the source as an object with a single
spatially varying quantitative property represented by a continuous or
discrete function f{s) on the space R? or R3. Values of f are the source data.
For concreteness, take as the running example the situation in which f
represents the intensity of X-rays in a spatial region or the spatial
distribution of some radioactive biological marker, where the spatial
region includes some target such as a human body. The task is then to
estimate the mathematical form of f or specified values of f using the
receiver data. The input data are often the result of complex physical

' The principal use of PET scans is for imaging of brain tumors, epilepsy, strokes,
and Alzheimer’s disease. Magnetic resonance imaging (MRI) devices use different
methods than do PET and CT devices.
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processes within the system that must be modeled in order to infer both the
general form and the specific values of f.

Both CT and PET instruments construct a two dimensional (sometimes
three dimensional) image from a sequence of one dimensional projections.
The construction process, which is inescapably computational, involves a
set of inverse inferences from the receiver data to the source of that data.
A number of different mathematical techniques are used for these
inferences (here I shall discuss one of the most frequently used methods,
filtered backprojection). Although such inferences run against the primary
direction of causation from input to output, this does not violate the causal
component of these instruments. Similar inverse inferences are made in
purely causal instruments, such as refracting telescopes, to the conclusion
that the image at the eyepiece is an image of the source object.

In two dimensional computerized tomography instruments, X-rays,
collimated to lie in a plane, traverse the object to be imaged and impinge
on detectors on the far side of the object.'® Each detector receives a one
dimensional projection of the target object along a given ray, and the
computational algorithms combine all the projections around a 180° arc to
construct a two dimensional image of a cross section of the target. The
energy of the X-rays is attenuated by traveling through the object, and the
degree of attenuation depends upon the densities of the materials through
which the X-ray is traveling. Although Hounsfield’s CT prototype used
matrix inversion methods, these are no longer used to recover the values of
attenuation coefficients because there is a relatively high level of noise in
the projections and this can cause instabilities in direct inversion
techniques. In addition, the large amount of data collected makes the
computational load on matrix inversion methods infeasible. The choice of
mathematical techniques is thus affected by both technological constraints,
and the fact that the physical system does not satisfy the idealizations
needed for matrix inversion to be effective. Instead, backprojection
algorithms or iterative methods are used.

The backprojection methods that make inverse inferences from the
detected intensities to the attenuation coefficients use inverse Radon
transforms.'® The basic idea is that the total attenuation along a ray is the
sum of the attenuations in each pixel, and the backprojection method adds
back the attenuation in each voxel by performing a line integral along the
direction of the ray. By taking rays in many different directions, the 2-D

'8 For simplicity, I take the X-rays to be parallel rather than distributed in a fan-
shaped beam.

' 1 note that some of these mathematical techniques had been developed
previously for use in astronomical imaging using radio telescopes.
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matrix of pixels can be reconstructed. But the bare mathematical method
assumes that the physical processes are idealized in certain ways and in
order to eliminate artifacts one needs to know how the image was
constructed.

In order to argue for the view that the generating conditions of the data
must be known, consider an argument that lan Hacking (1983) has used in
favor of entity realism. The argument goes like this for the case of
microscopes. It is sometimes possible to observe the same structure with
the aid of microscopes that use different, independent, physical processes,
such as ordinary optical microscopes, fluorescent microscopes,
interference microscopes, polarizing microscopes, and so on. Hacking
argues that it would be incredible to assert that there was no common
physical structure that was giving rise to these common observations from
different instruments: “If the same structure can be discerned using many
of these different aspects of light waves, we cannot seriously suppose that
the structure is an artifact of all the different physical systems” (Hacking,
1983, 147). This argument is flawed because it does not properly take into
account the fact that the observed structure is deliberately engineered.”
We can easily see this in the case of the medical imaging techniques
discussed here. Consider the example of a sinogram, which is a
representation of the raw data produced from a CT scan with the frame of
reference attached to the detectors and which rotates around the target
object. The intensity of the radiation received at a detector is plotted
against the angle of rotation of the radiation source relative to a fixed
baseline in the object’s frame of reference.”’ To almost all readers of this
essay, sinograms do not represent anything familiar. However, when
inverse Radon transforms are applied to the pixels constituting the
sinogram, it is transformed into something familiar, such as an image of a
human skull but that familiar image has its ‘obvious’ representational
structure imposed by choices of the instrument designers. The intentional
content is useful to us because of the perceptual apparatus of human
observers, but for a computer, the sinogram is at least as useful a
representational device and results from a coordinate transformation
between the two frames of reference. We could say that the sinogram and
the familiar image of the skull are both in an equivalence class of
representations where the equivalence relation is determined by a set of

2% For arguments that this point also applies to traditional causal instruments, see
(Humphreys, 2004, 33-37). One difference between causal and causal-
computational instruments in this regard is the relative ease with which images can
be constructed in the latter instruments.

2! For images of sinograms see Webb (2003).



What are Data About? 23

transformations on the set of individual data points. If so, what those
images are about cannot be determined from the output of the instrument
alone or from the intentions of the observer. Decisions about data, require
knowledge of what causal processes were involved in producing the
individual data and what transformations have been performed on the
individual data points.

This simple example illustrates the point that images from causal-
computational instruments are deliberately constructed, and the ‘structure’
that is allegedly invariant across different imaging devices is the result of
deliberate engineering. There are no limitations on how the individual
pixels in a data, representation generated by a causal-computational
instrument can be computationally re-arranged to form an output image.
This construction process does not mean that the resultant image is
arbitrary. The output will be tailored to the needs of the data user, whether
it is a human scientist, an automated scientist, or some other epistemic
agent. Since truth is an epistemic goal for most scientific enterprises,
representations of the target object that systematically misled the users of
the instrument should be avoided, although other situations, such as one in
which the intelligence services of a country insert rogue software into an
enemy’s spy satellites, would not be subject to this constraint. Further
discussion of these issues is contained in the section on artifacts below.

This ability to construct the output image is also present in purely
causal instruments although these are constrained by laws of nature in
ways that the computational components of causal-computational
instruments are not. In order to obtain useable outputs from such
instruments, a great deal of deliberate engineering is required. This tends
to be disguised by the fact that the physical design of the instrument
produces the constructed image automatically, and correction mechanisms,
such as those for chromatic aberration, are physically built into the
instrument. One reason Hacking’s argument seems plausible is that we can
appeal to optical laws such as that light travels in straight lines and is
refracted and diffracted in regular ways that allow gross spatial structure to
be preserved. In the case of CT images, for each datum, we can make a
case that a datum j is about a cylinder of tissue lying along the ray
traversed by the X-rays detected by detector j. The causal relations
between the adjoining spatial parts of tissue are, in the idealized models,
absent in both the data, and in the datag and this is why it is initially not
obvious what the collective datay are about. Although this lack of
determination of the collective representation by the local data has always
been present, the ability to easily rearrange the data, in computerized
instruments makes this problem much more pressing for those
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instruments. Similar considerations show that what, collectively, the data
points in a sonogram are about is not determined by what the individual
data points are about but requires knowledge of what transformations have
been performed on the detector data.

Artifacts

We have seen that with all causal-computational instruments the final
image is constructed and cannot be taken as a ‘given.” What I want to
suggest is that although all data collected from these instruments requires
interpretation, simply noting that such data is ‘theory-laden’ is
uninformative. What is important is that with sufficient knowledge of the
causal and computational processes that generated the data, data can be
corrected to eliminate, or partially eliminate, artifacts.

In CT imaging devices an artifact is a systematic discrepancy between
the real attenuation values and the values inferred from the measurements
taken at the CT detectors.”> Although artifacts of an instrument are often
considered as properties of the output of the instrument, in the present case
the artifacts can be considered as properties of a numerical data set just as
much as a feature of a graphical image. It is probably not possible to
provide a sharp division between a misrepresentation and an artifact, but
there is an important conceptual difference that should be maintained.
There are two kinds of artifacts to consider — artifacts that are the result of
causal interactions and computational artifacts that result from
approximations in the numerical methods. A standard example of the
former are lines present in an image due to beam hardening, which is the
progressive increase in mean X-ray energies due to the total absorption of
lower energy rays by tissue. This can be corrected for either by physically
filtering out lower energy X-rays before the beam enters a target region or
by using software correction algorithms.

An example of the second occurs in continuous helical scans. Because
the plane of the beam is tilted at an angle to the target due to the helical
path, when traversing an object with a non-uniform cross-section, the
beam will present a slightly different set of projections at an angle of (6 +
n) than it will at 6. This results in a distortion of the shape of the cross-
section that in the case of liver scans; for example, can be mistaken for a
tumor and the errors must be corrected by software.

We can now ask the question: is an image of an artifact a
representation and if so, of what? To answer this question, recall the

22 Barrett and Keat (2004).
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earlier point that what data, are about can result from two quite different
sources — the origins of the data or from an interpretation that is
independent of the origins. Taking the definition of an artifact, if we
emphasize the data, as resulting from datag then the image of an artifact
represents the systematic error. In contrast, if the interpretation of the
data, is made without consideration of the datag, the data, can be taken to
represent not an error, but a non-existent entity such as a liver tumor.
Similar issues arise for computational artifacts that occur in simulations of
fluid dynamics.

Issues about distinguishing what is real from what is an artifact thus
hinge on whether data, are interpreted with reference to datag or not. It is
the ability to distinguish between artifacts and genuine features of the
target system, not the existence of the ‘unobservable’ processes used to
construct the representation that is the important issue here. No operator of
computed tomography instruments doubts the existence of X-rays,
radioactive matter, biological cells, cancerous tissue, and so on. The issue
is one of accurate representation, not of the existence of ‘unobservables.’

The model dependence of data might be thought to have the
consequence that there is an inseparable mixture of theory and observation
in the data. This created a serious problem for empiricists in two cases.
One was when the user of the data was unaware of what the theoretical
component was, a situation that can occur when a theory or paradigm is so
dominant that its effects have become invisible to practitioners in the field.
The second case occurs when the data user cannot separate and remove the
effects of the theory or model. This can occur when we do not have a good
theory of how an instrument works, as well as in the first kind of case.
But when the methods used in the models are explicit and invertible, the
effects of theory and modeling can be corrected. The computed
tomography example is valuable because there are many models
embedded in the processing of the data and we can correct for most of
them. Indeed, many correction algorithms are used in modern instruments
ranging from image stabilization methods in digital cameras to optical
enhancement algorithms for telescopes. Similar remarks can be made
about simulation artifacts, which are a problem in molecular dynamics
simulations, simulations with periodic boundary conditions, fluid
dynamics, and some other areas. They often result from numerical
integration methods and finite size effects.

It has also been suggested that instruments have theory built into them.
Whether or not this is correct for purely causal instruments, it is clearly
true for causal-computational instruments in the sense that correction
models based on knowledge of the physical and computational processes
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occurring within the instrument are frequently used.” Empiricists extolled
the virtues of direct, theory-free access to data, and the use of models can
seem to degrade our access to the world. There are identifiable dangers of
using models to correct data sets, but unmediated access to an object is not
always epistemically superior to access mediated by physical or
mathematical intermediaries. Look at the windshield of a car on a bright
day with your unaided vision. Then don a pair of polarizing sunglasses.
You will be now able to see objects inside the car that were not previously
visible. If you believe these objects are artifacts of the polarizers plus
windshield, simply remove the sunglasses, open the car door, and use your
unaided senses, including touch. The important thing is to know how the
instrument works. With the computational parts we have this knowledge
because we have designed them.

Could we avoid needing to know how an instrument works by
accumulating inductive evidence of successful uses? Eckhart Arnold has
suggested the following thought experiment.** Suppose a working CT
scanner with a generator is washed up on the shore of an island the
inhabitants of which have never seen such an instrument and know
nothing of modern physics. After experimenting with placing various
familiar objects into the scanner and seeing that their internal structure is
reproduced accurately, they are in a position to use the scanner in similar
ways to their own visual sense, the workings of which they also do not
understand. This is an ingenious suggestion, but the situation with respect
to CT images and artifacts is not quite so straightforward. Because the
inverse Radon transform that is used to obtain the value of the function f
within a given pixel is constructed by backprojecting all of the rays
received at detectors between 0 and m, each reconstructed point is
dependent upon the whole data set. This means that artifacts produced by
factors in one part of the target can produce errors in another part.
Although it is possible that inductive evidence could be obtained about the
appearance of such artifacts, there would need to be a sample base of
objects sufficiently similar to each future object used in the instrument in
order for such artifacts to be recognized in each case.

What does all of this say about simulations? Much of what I have said
about imaging devices transfers, with obvious modification, to the
simulation case. A decision must be made regarding whether what the data
are about is determined by reference to the origins of the simulation data,
which will be the (interpreted) model upon which the simulation is based

2 Morrison (2009) has noted that instruments often require models in order to
extract meaningful data.
 Personal communication.
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if one exists, or is determined by an intentional attribution to the output
from the simulation. I have argued that an informed attribution under the
second method cannot be made without knowledge of the generating
conditions of the output data, in which case the origins of the simulation
data also play a role in this approach. It is an unfortunate fact that in the
philosophy of reference an emphasis on the conventionality of object-sign
relations and social accounts of meaning has distracted attention from
other, more refined, ways of representing the world.”
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Introduction

Because computer simulations are intensively used in most parts of
contemporary science, both as substitutes for, and complements to,
laboratory experiments and field observations, the question arises whether
they are able to produce empirical data and, if they are, whether the quality
of these data is similar to that of data produced via experiments. Can a
computer provide us with empirical evidence? Aren’t experiments and
observations our main sources of empirical data, and the most legitimate
ones?

The comparison between computer simulations and experiments has
recently been explored in a number of papers (Guala, 2002; Morgan, 2002;
Winsberg, 2003, 2009; Parker 2008, 2009; Barberousse et al., 2009;
Morrison, 2009). These papers mostly focus on the building of empirical
knowledge from the outputs of computer simulations. They address
questions such as: How are the results of simulations validated? What is
the role of models in the confirmation process when applied to the results
of experiments? These questions have received various answers. In the
present paper, we focus on the production of data by contrast to the
production of knowledge. We explore how data are produced within
contemporary science and how they are transformed into pieces of
knowledge.

For a computer simulation user in the empirical sciences, the questions
mentioned in the first paragraph may seem surprising, as her work is based
on the assumption that computer simulations do provide empirical data.
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On the other hand, simulation non-users often rely on the opposite
assumption, as testified by the following dialogue (reconstructed from a
discussion on ScienceBlogs):

Scientist#1 (defending the privilege of experiments): “Can any scientist
really doubt that models and simulations have lesser status, scientifically,
than observational/experimental data? This is THE cornerstone of
empiricism and science. [...] Yeah, there is a whole spectrum here, since
extracting data from observations/experiments usually takes some kind of
models, but the general rule is pretty simple - each step away from direct
observation, each layer of theory, model or simulation, lowers the
reliability of the conclusions.”

Scientist#2 (defending the legitimacy of simulations): “You have a bias
here towards observational data. Need to recognize that a lot of data comes
from models and analyses.”

Scientist#3 (denying the legitimacy of the distinction with respect to data):
“As a professional data torturer, I don’t see any difference in principle
between ‘real’ and simulated data: it’s all information that is to be
processed.”

Consequently, the debate remains open even among practitioners of
science. In this context, the aim of the present paper is to assess whether
there are any reasons to give epistemological precedence to data produced
through experiments with respect to data produced through computer
simulations. In “Empirical data,” we analyze what empirical data are. In
“Comparing measurement results and simulation outputs,” we draw a
systematic comparison between data produced through experiments and
data produced through simulations. The criteria of comparison on which
we focus are evidential features, reliability, and novelty of data.

Empirical Data
Definitions

In order to compare computer simulations and experiments as far as the
production of empirical data is concerned, it is first necessary to say a few
words about what are called “empirical data.” The word “data” itself,
although intensively used in contemporary science, has a rather vague
meaning. We propose the following working definition, which is meant to
hold in the context of empirical investigation:
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Working Definition 1: Data are elements of information that are taken for
granted at a given step of a specific investigation, and on which one can
rely in the course of the ongoing investigation.

Let us take an elementary example. When a magnet comes close to
iron fillings, they move toward it and align themselves perpendicular to its
surface. This observation can be made an indefinite number of times; it
can constitute a set of data for the further investigation of magnetic
phenomena. From these data and others, an elementary knowledge of the
origin and properties of magnetic fields can be built up. During this
process, the behavior of iron fillings and magnets will be considered as a
piece of information that remains stable and unquestioned insofar as no
contrary observation occurs. In contrast, hypotheses about the cause of the
alignment of fillings, the intensity of the magnetic field, etc. may vary
during the knowledge-building process. The main difference between data
and hypotheses is thus that data are not susceptible to being modified
during the investigation. Data are associated with some notion of
epistemic stability, at least at a given step of an investigation. This does
not mean that the validity of these elements of information cannot be re-
assessed in future steps.

Working Definition 1 is functional: it is based on the role data play in
empirical investigation, without any commitment toward their constitutive
nature. Functionally, data are the building blocks of scientific knowledge.
As the notion of information is intentional, the notion of data is intentional
as well: data are basically representations (cf. van Fraassen, 2008, for
whom measurement outputs are representations). It follows that what
counts as data are relative to (1) a given context of inquiry, and (2) the
scientists leading the inquiry.

In physics and in many domains of biology, “raw data” consist of (very
large) series of numbers, which are usually automatically generated by
detection or measurement instruments. Raw data cannot be identified with
the usable pieces of information that are the object of Working Definition
1. Raw data are not usable at all by the human mind. They have to be
heavily processed in order to become usable; that is, to participate in
knowledge-building. Once processed, they achieve the status of data as
defined above.

Let us now turn to empirical data. Our next working definition is as
non-committal as possible about the meaning of empiricity, because we do
not want to beg the question of the relationship between empiricity and the
presence of physical interactions:
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Working Definition 2: Empirical data are elements of information about
physical (biological, social, ...) systems that are taken for granted at a
given step of a specific investigation, and on which one can rely in the
course of the ongoing investigation.

Just as it is clear from the definition, we consider empiricity (with
respect to data) as an intentional notion. This feature results from our
decision not to include the origin of data in the definition. Traditionally,
the precise way empirical data are produced (their “origin”) is considered
as an essential element of this notion. Causal interactions are thus often
referred to when empiricity is defined. In contrast, our purpose is to
explore whether it is possible to do without the mention of causal
interactions in the definition of empirical data. This is the reason why
Working Definition 2 is intentional. In the remainder of this section, we
argue for the legitimacy and interest of this purpose.

Let us focus on empirical data produced through experiments or field
observations. In this case, empirical data are series of numbers produced in
the course of physical interactions between instruments and the
investigated phenomena. The crucial point is that these series of numbers
need to be interpreted in order to be considered as empirical data. Without
this interpretative step, no empirical information, and no information of
any sort, would be available. This aspect of the production of data in the
context of experiments or field observations leads us to adopt a definition
of “empirical data” that is non-committal with respect to the origin of data.
As our aim is to focus on the uses of data in the context of scientific
inquiry, the interpretative step is at least as important for us as the step
resulting in raw data. In fact, our bet is that the precise way in which raw
data are produced may be left open in the definition of empirical data. This
view thus differs from Humphreys’ (this volume), who maintains that the
origin of data must be taken into account.

By emphasizing the importance of interpretation in the epistemic
process ending with empirical data, we do not mean to underestimate the
role of physical interactions between a detection or measurement
instrument and the investigated process, but we want to insist that physical
interactions are not sufficient to obtain data. We want to emphasize that
the interpretative process that allows for the production of empirical data
is a central part of the scientific investigation itself. It is open to discussion
and criticism, and overtly revisable.

Certainly, Working Definition 2, because of its neutrality with respect
to the origin of data, might look surprising, if not shocking. In the
remainder of the paper, we argue that it is not. Our strategy is as follows.
In section “Comparing measurement results and simulation outputs,” we
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examine three epistemic features of empirical data that seem to advocate
the privilege of data coming from experiments: evidential features,
reliability, and novelty. Whereas it is relatively easy to admit that
outcomes of computer simulations can be as evidential and as reliable as
data coming from experiments, it seems very difficult to accept that
genuinely novel data can emerge from computer simulations. The capacity
to yield new empirical data seems to be exclusive to experiments. In
section “Novelty,” we present arguments against this view. For the time
being, we further explore the notion of empirical data.

What are Empirical Data About?

In the preceding section we suggested that, in order to assess whether
computer simulations can yield empirical data, it is better to define
“empirical data” as neutrally as possible in regards to their origin, and to
focus on the intentional aspect of the notion. We now have to be more
precise with respect to the elements upon which empirical data rest, and to
the inferences that have to be drawn in order to acquire the desired
information.

When analyzing experiments, it is common to introduce a distinction
between the “object” of the experiment and its “target.” The object is the
material system, which is manipulated during the course of the
experiment, or the parts of it that interact with detection or measuring
instruments. It is spatio-temporally localized. In contrast, the target of the
experiment is the system about which the scientists look for new or more
reliable information. It may be the same as the object of the experiment,
for instance when physicians look for information about a tumor in a
patient. In many cases, however, the object and the target of the
experiment are different systems. It also happens that the target is not a
particular system but rather a class of systems.

Whatever the specific relationship between the object and the target,
the series of numbers that are gathered during the experiment need both
automatic and human-inferential processing before they can be further
used as data. That is, there are many inferences to be drawn before we can
be sure that these numbers (once automatically processed in order to
acquire a readable format) provide scientists with the information they
desire. This inferential task is usually extremely difficult to fulfill. Most of
these inferences are grounded on, and warranted by, background
information about both the object and the target; they are of course,
fallible. The most important question to assess is whether the object is
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representative of the target; that is, to what extent the information gained
about the object can be interpreted as also having a bearing on the target.

Let us now compare the epistemic situation obtaining in experiments
with the use of computer simulations. In the case of computer simulations,
it is unclear whether there is an object of any experiment, but the targets
are of the same type as the targets of experiments. What is different is the
way in which the inferences from the outputs of the simulation to the
target are warranted. Here, the crucial aspect is whether the computer
model correctly represents the target. The important relation is, thus, the
relation of representation. The quality of the representation is itself
grounded on, and warranted by, background knowledge on the computer
program and on the target.

Let us further develop the comparison between experiments and
computer simulations with respect to the inferences they allow us to draw
about the target. The assessment of the representative quality of the object
of experiments with respect to the target is usually based on several
models, at least a model of the object and a model of the target, and more
often than not a model of the experimental setup; namely, of the way in
which the instruments acquire data. Models are, thus, central to data
production both through experiments and through computer simulations,
as emphasized by Morrison (2009). As a result, the representative
character of the object of the experiment cannot be warranted unless there
is a way to draw inferences about the model of the target, from the model
of the object.

It might seem that when the object is one member of the target class;
that is, when it is made from the same material, the inferences drawn from
the object about the target would be easier to assess. Even in this case,
however, scientists usually rely on a model of the investigated system (that
is, a model of both the object and the target) and on a model of the
experimental setup (that is, of the interactions between the object and the
instruments).

The example of model organisms illustrates this point. In this case, a
specific organism, or set of organisms, let us say mice, are submitted to
various modifications, say genetic modifications. The experiment aims at
discovering the effects of these modifications on the mice phenotypes. The
observed modifications are then interpreted in order to assess which part
of the genetic manipulations is responsible, and to what extent, for the
phenotypic modifications. Such a judgment relies on detailed models of
the mouse’s genome, genetic-phenotypic path, physiology, etc. Now, the
target of the experiment is usually not the specific mouse (or set of mice)
whose genome has been modified. The models are thus used for inferences
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about further mice: first, other laboratory mice and, second, wild mice,
which are known to differ significantly from their more artificial siblings,
and which are also known through (less precise) models. In some cases,
the inferences are extended to a larger class, like mammals, including
humans. Models of the differences between the relevant features of mice
and humans are then used. What is true of experiments with model
organisms is also true of experiments on inanimate properties and their
relations. In both cases, the fact that the object and the target are of the
same substance (they are both mice, or both mammals, or both made of
iron) is not a sufficient condition for the drawing of reliable inferences
about the target. The quality of these inferences is based on the validity
both of the underlying model of the target and of the model of the
experimental setup.

Does this mean that measurement results, produced by physical
interactions, play a minor role in experiments? Of course not; by insisting
on the fact that reliance on models is pervasive both in experiments and in
computer simulations, we want to emphasize that measurement results
make only sense in the context of the above-mentioned models.
Measurement results provide data (usually after heavy computer
processing) in cases where the underlying models are valid. Otherwise,
they do not. In the same way, simulation outputs are only likely to deliver
data if the underlying model of the target is valid. In order to establish
whether this condition is sufficient, we now turn to a systematic
comparison between measurement results and simulation outputs.

Comparing Measurement Results and Simulation Outputs

In this section, we investigate the epistemic features of measurement
results and simulation outputs according to three dimensions: their
evidential character, their reliability, and their novelty. Evidential
character, reliability, and novelty appear as crucial features of empirical
data originating from physical interactions. In the building process of
scientific knowledge, data may be used to establish (or refute) the validity
of hypotheses; in this case, they need both to provide evidence about the
investigated phenomenon and to be reliable. Data may also be used to
improve detection or measurement instruments; in this case, their
reliability is indispensable. Evidential character and reliability are,
therefore, important epistemic properties of data. The capacity to provide
scientists with new knowledge is also a highly desirable property.

Our strategy is to explore the conditions under which empirical data
originated by physical interactions are evidential, reliable, and new, in
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order to assess whether these conditions also obtain for simulation outputs.
We begin with the first two criteria, leaving novelty for section “Novelty.”
As mentioned above, our aim is to explore whether it is possible to remain
neutral with respect to origin in the definition of empirical data. At first
glance, it seems that: (1) physical interactions are required in order to
confirm hypotheses; (2) data coming from physical interactions are
necessarily more reliable than data coming from computer simulations;
and (3) computer simulations are totally unable to yield new empirical
data. As we shall see, intuitions (1) and (2) are relatively easy to criticize.
In contrast, intuition (3) seems particularly robust. The capacity to yield
new empirical data seems exclusive to experiments. By further developing
our analysis of computer simulations, however, we suggest that this might
not be so clear.

Evidential Features and Reliability

How are reliability and evidential features of measurement results
established in an experiment? A major part of this task lies in the control
of the experimental setup, especially through benchmarking procedures.
The essential thing is to check whether the experimental setup yields
correct data in known cases. This is usually a matter of delicate and
lengthy tuning operations, involving both manipulations and modeling.

Besides the control of the experimental setup, many underlying
assumptions have to be assessed in order for the resulting data to be
evidential and reliable: for instance, the assumption that the measurement
procedures allow scientists to make the measurement they had in mind, or
that they are as precise as required. Checking whether information is
gained on the right aspect of the object with sufficient precision might also
require lengthy tuning and modeling. More generally, the presence of
artifacts of any kind has to be checked and eliminated.

An important aspect of the control procedures that are needed to
warrant the evidential feature and reliability of the measurement results is
that their implementation relies on models. At this point of our analysis, it
is important for us to define what we call a “model” in our general
analysis of empirical data produced through experiments. We propose the
following working definition:

Working Definition 3: A model is any coherent set of detailed hypotheses
about the investigated phenomena (usually at least three models are
available: of the object, of the target, and of the experimental setup).
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Models guide the building of the experimental setup as well as the
various actions that need to be performed in order to obtain the relevant
information. Therefore, the final judgment about the quality of the
produced data depends on the quality of the involved models.

Let us now turn to computer simulations. The evidential character and
the reliability of their outputs are also established by comparison with
results already known. The benchmarking procedures play no lesser role
than in the case of experiments even though they are different, only
involving the transformation and checking of lines of code. Two other
kinds of procedures are currently used in order to assess the validity,
evidential character, and reliability of the outputs, called “validation” and
“verification.” The aim of the validation procedure is to check whether the
underlying theoretical model, as transformed into algorithms and lines of
code, is valid for the investigated phenomenon. The verification procedure
guarantees the consistency and “good behavior” of the computation. It is
necessary in order to avoid abrupt stops or breakdowns of the
computation, as well as abnormal results owed to cutting-off, round-up
errors, and other sources of bugs. These procedures involve delicate tuning
of the computer program; their implementation can be very lengthy.

Many aspects of the assessment of evidential character and validity are
common to experiments and computer simulations. They involve checking
that the apparatus (a set of laboratory instruments or the computer program
as it is implemented on a particular machine) is functioning well; that is,
that it delivers the expected information. Although the checking
procedures fall under the same heading, they seem to correspond to highly
different types of activity: material object-oriented on the one hand,
strictly intellectual on the other. Let us analyze this difference further.

In the case of experiments, the control procedures usually rely on
manipulating pieces of apparatus, aligning them, purifying chemical
material, maintaining pressure at a low level, etc. They require specific
skills in terms of coping with reluctant artifacts as well as highly situated
know-how. All these activities require scientists and technicians to
collaborate and coordinate themselves in situ. They are entirely different
from what is involved in checking and rewriting lines of code.

In the case of computer simulations, the material aspect of the control
procedures is limited to typing on the keyboard and eye-checking on the
screen, by scrutinizing series of symbols or images. The core of this
activity is symbolic: it has to do with the writing, deleting, and
transforming of meaningful series of symbols, not with the handling of
material objects. What is relevant here is abstract; it lies in the realm of
meanings and computation.



38 Chapter Two

Are these differences more important than the common goal of these
control procedures; namely, assessing the epistemic quality of resulting
data? The question we want to tackle here is whether the fact that material
interactions are involved in the case of experiment makes a difference to
the assessment of evidential character and reliability (Tal, 2011 also
tackles this question from a different perspective). Undoubtedly, as we
have emphasized, it makes a difference to the involved activities of the
scientists and technicians, but it seems to us that the common goal of these
activities; namely, warranting that the resulting data are evidential and
reliable, counts more than the differences in the ways in which this goal is
implemented. To put it another way, we argue that the right way to
analyze the differences in the involved human activities is functional. All
these activities, which seem at first sight entirely different in nature, are
ways to fulfill the same epistemic function; namely, retrieving useful
information about the target of the experiment (or of the computer
simulation).

The next step in our argument is to assess whether or not, by
functionalizing the analysis of the control of data production, we beg the
question of the (un)importance of materiality in data production. In the
current discussion about the status of computer simulations as compared
with experiments, the most difficult but most important task is to avoid
begging the question of whether physical interactions are necessary to
produce data. In functionalizing the analysis of the control of data
production, do we not beg the question the other way round, by assuming
that the weight of physical interactions is less than their epistemic
function? Our answer is that if one accepts the working definitions we
have proposed so far for “data” and “empirical data,” one cannot but
accept our functional analysis.

Novelty

It might seem that only experiments, because they involve physical
interactions, are likely to yield new empirical data; in contrast, the outputs
of computer simulations are somehow already contained in the inputs. In
this section, we probe this widely shared intuition. In order to analyze it
further, we first try to isolate the conditions in which the comparison
between experiments and computer simulations is relevant when it comes
to the production of new empirical data. There are obvious cases in which
experiments are the only way to obtain new empirical data; however, the
question remains whether there are also other cases in which this is less
clear. Our second task is to distinguish between types of computer
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simulations: simulations based on the discretization of differential
equations perform differently from cellular automata and agent-based
models with respect to the theme of epistemic novelty. Third, we
distinguish between the various meanings that the term “new” in “new
empirical data” can take. At the end of the section, we reveal the reasons
why, and the circumstances in which, new empirical data emerge from
computer simulations.

Is the Question ever Meaningful?

There are domains of phenomena of which we know a few regularities
and not much else. For instance, at the end of the 1960s, liquid crystals
were known to exist and some of their properties had been observed, but
condensed matter physicists had no idea of the underlying laws governing
their behavior. In such domains, computer simulations will probably yield
hardly any empirical data. They will at most inform us about the general,
structural features of these phenomena, but will be unable to provide us
with any prediction about a particular phenomenon. Field observations and
experiments are the only ways to obtain empirical data, because these
domains still need to be further explored. They are terrae incognitae. In
these domains, the question of whether computer simulations can yield
new empirical data is meaningless; it does not arise.

There are also domains of phenomena about which we know a lot,
however. We know many regularities and how they operate, sometimes
forming hierarchical relations. This knowledge enables us to model
particular phenomena and to achieve precise predictions. We have
obtained these delicately articulated pieces of knowledge through
observations and experiments; that is, by deliberately producing highly
specific physical interactions the effects of which we were able to interpret
as measurement results. The sets of measurement results have been further
interpreted as indicating, or testifying to, regularities at various levels. In
those domains, the question whether computer simulations are able to
yield newer empirical data is meaningful. We address this at the end of
this section.

Finally, there are intermediate domains where some pieces of
knowledge are available. It seems to us that in these domains the question
of whether computer simulations can yield new empirical data is
legitimate, particularly for those areas where there is enough knowledge to
render empirical exploration unnecessary.
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Types of Computer Simulations

As we have argued above, the question of whether computer
simulations can yield new empirical data is only meaningful in limited
domains. We must further emphasize that its meaning not only depends on
the domain of investigation but also on the type of computer simulations at
hand. As far as we can see, computer simulations based on cellular
automata and agent-based models, which are based on discrete, local rules,
are more susceptible to being considered as yielding novelty. Their outputs
are often qualified as “emergent,” a term including a sense of novelty.'

Even if one considers the outputs of cellular automata and agent-based
models as emergent, it is still unclear in which conditions they might count
as empirical and, further, as data. We leave this discussion for a future
occasion. In the rest of this paper, we focus on computer simulations based
on discretized differential equations, because they are probably the hardest
case: whereas the association of cellular automata and agent-based models
with novelty seems natural enough, simulations based on discretized
differential equations are usually associated with a symbolic process in
which nothing new can occur.

The Meanings of Novelty

We have begun our analysis of the question whether computer
simulations can yield new empirical data by first restricting its scope and,
second, by distinguishing between types of computer simulations. We
need to introduce further distinctions about the meaning of “new” in order
to analyze the expression “new empirical data.” Our discussion will be
entirely general, returning to computer simulations only at the end in order
to keep different questions strictly separate.

Let us first note that the most straightforward sense of “new” occurs in
the terra incognita context, when the information about the domain of
phenomena is scarce, and when systematic exploration is the only way to
obtain it. Let us call this sense the “primary sense” of epistemic novelty.
As we have already mentioned, the primary sense cannot possibly apply to
computer simulations. Using this as our base, we introduce other senses.

The first distinction that seems important to us is the distinction
between surprising and unsurprising or expected novelty. To our mind,

! The outputs of computer simulations based on discretized differential equations
are sometimes said to be “emergent” in a rather different sense, related to
computational irreducibility. It is unclear whether computational irreducibility is
related to epistemic novelty.



Computer Simulations and Empirical Data 41

novelty in the primary sense is surprising by default, because in the case of
novelty in the primary sense, scientists have no expectations about what
they are going to learn. In contrast, there are cases in which they learn new
information through experiment and this information does not come as a
surprise: for instance, when they already had an idea of the range of the
values they obtained in the experiment. These are cases where the
achieved epistemic novelty is unsurprising.

It might be argued that “unsurprising novelty” is an oxymoron, a
juxtaposition of words that does not carry any genuine meaning. We
maintain, however, that when the value of a given variable in a specific
situation is learned by experiment to a certain degree of precision, whereas
the available hypotheses could only allow a range of values for this
variable, something genuinely new has been obtained. The resulting value
falling within the predicted range does not ignore the fact that the available
hypotheses did not explain how to reduce the range, so that when the
experiment allowed such a reduction, it resulted in a new piece of
information.

Now that we have introduced the distinction between surprising and
unsurprising novelty, we might wonder in what situations surprising
novelty can obtain, except in terrae incognitac. Can surprising novelty
occur in domains of phenomena whose main regularities are well
established? It might seem that in those cases, of which particle physics is
a paradigm example, experiments can only yield expected results. The
experimental setups are built precisely to yield the values scientists want
to know about; this can only be achieved if they already know, or can
reasonably predict, the range of these values. One could even claim that if
an experiment yielded an unexpected value, it would be considered as a
failure and the scientists would immediately check the setup in order to
discover where the error originated. It thus seems that in the domains of
phenomena about which a lot is known, surprising novelty is highly ...
unexpected. Is it really the case?

In order to answer this question, we introduce a second distinction that
pertains to the case we have just discussed, the distinction between
surprising novelty arising within the available theoretical framework and
surprising novelty arising outside the available theoretical framework. By
“theoretical framework™ we mean the set of all available knowledge about
the domain of phenomena at hand, be it of theoretical or empirical origin.
It is the set of all that is known or expected, based on theoretical reasons.
We have indicated above that the case of surprising novelty arising within
the theoretical framework seems less likely than surprising novelty arising
outside the framework. To put it another way, in domains already
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endowed with a rich theoretical framework, surprising novelty seems more
likely to come from theoretical change than from experiments. Moreover,
it also seems that computer simulations are even less likely to yield
surprising novelty in such domains. There is, however, at least one well-
known example in which surprising novelty occurs within a rich
theoretical framework, by the use of computers.

To our mind, the study of deterministic chaos as performed in the
1970s through digital computation exemplifies the notion of surprising
novelty within the available theoretical framework. The theoretical
framework is differential calculus augmented by Poincaré’s topological
innovations at the end of the nineteenth century, a rather old framework.
What scientists discovered, however, when they implemented a system of
non-linear differential equations on their computers, astonished them.

The computer-aided study of deterministic chaos is a nice illustration
of surprising novelty arising within an available theoretical framework.
Moreover, this novelty was achieved by the use of computers. Even
though it is questionable whether the results are empirical as opposed to
mathematical, this example shows that surprising novelty can obtain
within an established theoretical framework and that machine computation
is by no means an obstacle. Why is it that computer simulations based on
discretized differential equations are commonly thought of as forbidding
the production of surprising epistemic novelty? We answer this question in
the following section.

Machine Computation and Human Reasoning

The main reason why machine computation is usually conceived as
incapable of producing surprising novelty lies in the way in which
machine computation (including computer simulation) is commonly
analyzed. Machine computation is correctly described as a series of
deductions in the sense that the series of physical states instantiated by the
computer are systematically interpreted as logical states. Given this
description, it is tempting to infer that the outcomes of any specific
computation are “already contained” in the inputs, so that nothing new can
occur in the computational process. Our main thesis is that one should
refrain from such an inference as it relies on confusion about the notion of
“content.”

Let us make it clear why such confusion arises. When the notion of
deduction is applied to human reasoning, it is commonly associated with
the notion of the conclusion being already “contained” in the premise. In
this sense, the conclusion of a deduction is not supposed to be “new” in
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any interesting sense. Of course (paper and pencil) mathematical calculation
provides an example of series of deductions yielding new results in the
sense that they were unknown beforehand, but this novelty is usually
judged uninteresting, because the word “novelty” is commonly associated
with “discovery” and not with reasoning.

The underlying assumption is that when the conclusion is already
“contained” in the premise, it is only necessary to perform mechanical
actions to find it. This is precisely what computers are supposed to do. It
seems to us, however, that it is a mistake to analyze machine computation
on the model of human reasoning: what counts as “mechanical actions” for
human beings (for instance, the basic operations of arithmetic) is different,
as far as the production of knowledge is concerned, from the transition of
one physical state of a computer to another. These “mechanical” actions,
as fulfilled by human beings, are “mechanical” only in a metaphorical
sense, whereas the physical transitions within a computer are truly
mechanical. When a human being makes an arithmetical operation, s/he
keeps track of its meaning to her/him; it is inseparable from her/his
epistemic aim. In this sense, it is not “mechanical.” To put it briefly, we
claim that it is a mistake to compare machine computation with human
reasoning when it comes to analyzing the notion of epistemic novelty. It is
unlikely that a surprising novelty can result from deductions made by
human beings, but this does not preclude surprising novelty resulting from
a computational process.

Another way to formulate the above analysis is to question the
relevance of the notion of “deductive closure.” It might seem that the
frontier between uninteresting and genuine novelty can be defined in terms
of the deductive closure of a set of premises: what is inside might be new
to a particular person, but it is not new in the genuine sense of the term. If
one demarcates trivial and genuine novelty at this point, then it is true that
computer simulations cannot possibly yield any genuinely novel empirical
data. In contrast, our proposal is to shift the boundary and to count some
elements that fall within the deductive closure of a set of premises as
genuinely novel, as explained above.”

In this section, we have tried to explain why computer simulations
based on discretized differential equations are usually considered as
incapable of providing scientists with surprising epistemic novelty. Two
reasons can be cited. First is the fact that these simulations are
paradigmatically set up within a rich theoretical framework, which seems

2 We warmly thank Eckhart Arnold for a challenging e-mail about deductive
closure.
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to exclude the possibility of surprising novelty. As we suggested in the
preceding section, however, surprising novelty can occur even in rich
theoretical frameworks. Second is the equivocality of the description of
computer simulations as series of deductions. It appears that the word
“deduction” does not have the same epistemological meaning when it
applies to human reasoning and to the description of a computational
process. When these two meanings are confused, it appears that no
surprising novelty can emerge from a computational process.
Distinguishing between the epistemological significance of deductions for
human beings and that for computers shows, however, that nothing
precludes computational processes yielding surprising novelty, as the
example of deterministic chaos attests. It seems to us that the arguments
we put forward at the beginning of section “Comparing measurement
results and simulation outputs” suggest that nothing precludes
computational processes yielding surprisingly new empirical data.

Conclusion

Starting with an analysis of the notions of data and empirical data, we
have investigated the question of whether computer simulations are
capable of yielding empirical data. We have focused on a systematic
comparison between the results of experiments and the outputs of
computer simulations with respect to three criteria: Evidential features,
reliability, and epistemic novelty. Our conclusion is that the outputs of
computer simulations, once relevantly processed, are capable of counting
as genuine empirical data in terms of these criteria. Our analysis of the
question of whether computer simulations can provide scientists with new
results allowed us to shed light on some conceptual obstacles explaining
why computer simulations are usually conceived of as incapable of
yielding new empirical data.
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CHAPTER THREE

EXPERIMENTS AND SIMULATIONS:
Do THEY FUSE?

ECKHART ARNOLD
UNIVERSITY OF STUTTGART — SRC SIMTECH

Introduction

In today’s science, computers have become an indispensable tool. They
are used for the evaluation of scientific data, for storing data, for the
preparation of results, and for communication among scientists. However,
computers are not only tools that help scientists to process and evaluate
scientific data, but also they produce scientific data when they are used for
running computer simulations. This raises the question of whether the data
that computer simulations produce is the same as other kinds of scientific
data, in particular experimental data. What speaks for this assumption is
that the data produced by simulations are usually previously unknown to
the scientists, often cannot be derived mathematically, and may yield the
same or at least similar kinds of information about a simulated empirical
system as an experiment yields. What speaks against this assumption is the
fact that simulation data stems from a calculation performed with a
computer and that it is not the result of an empirical measurement, or not
directly the result. This is also the stance that I am going to take in this
chapter.

I will set out the reasons for taking this stance in detail in the following
section, when I review the debate on the relation of simulations and
experiments. In particular, I will argue that computer simulations are not
material in any sense that would liken them to experiments (as maintained
by Parker, 2009) and that experiments are not intertwined with models to
such a degree that the function of models in experiments becomes
indistinguishable from the function of models in simulations (as
maintained by Morrison, 2009).

But there is also a further possible line of reasoning against a strict
separation of simulations and experiments that is not so easily dismissed.
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According to this line of reasoning, simulations and experiments cannot
strictly be separated because, at least in some instances, the role that
empirical data take can appear indistinguishable in simulations and
experiments. The question arises for those simulations that do in one way
or another make use of empirical input data, and for those experiments that
in one way or another involve the computational post-processing of the
measured data. In both cases, the computer produces some kind of output
data by processing empirical input data. The question, then, is precisely:
what kind of output data?

We can define those scientific procedures that involve both empirical
input data and computational processing of these data collectively as
hybrid methods. The problem of hybrid methods can then be formulated as
follows:

What, if anything, distinguishes a computer simulation that makes use of
empirical input data from a measurement that involves the computational
refinement of empirical data?

It is not entirely clear whether this question is the right way of
formulating the problem. I will briefly discuss different alternatives in the
third section of this chapter as well. The answer to the problem of hybrid
methods that is advocated here treats it as a partly conventional matter
whether the outcome of hybrids is considered as empirical data or as
theoretical data (which includes simulation data). The convention
proposed here is that hybrids should be considered as empirical methods,
if

1. The output data represents quantities that are either causally

responsible for the wvalues of the input data or that are
mathematically connected to them.
It may appear paradoxical that the output should be causally
responsible for the input, but a simple example suffices to explain
what is meant: assume that you measure force with a simple spring.
Then what you actually measure is the extension of the spring
(input data) and the scale on the spring allows you to “compute”
the force in Newton (output data). Now, it is of course the force
(i.e. the output) that is causally responsible for the extension (i.e.
the input). At the same time, it is true that the output value depends
on the input value, but this dependence is computational and not
causal. I hold that this pattern is typical for any measurement where
the quantity that is measured is only indirectly accessible.
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2. And the output data characterizes factors that operate in close
spatiotemporal proximity to the input data or, more precisely, to the
source data.

In order to defend this convention, I am going to argue that it is in
harmony with the self-ascription by the scientists using these methods,
with the traditional understanding of measurements, and with our intuition.

The Current State of the Debate

The philosophical debate on the epistemic status of computer
simulations can be traced back at least until the early 1990s. One of the
popular slogans that already appeared as early as that in the debate was
that of simulations as a “third way of doing science” (Axelrod, 2006;
Kiippers and Lenhard, 2005; Rohrlich, 1990), indicating that computer
simulations neither fully resemble material experiments nor conventional
forms of theory or model building, but that they are something in between.
While this is a fair characterization of the activity of conducting computer
simulations, which in many ways resembles experimentation but also
requires specific practical skills and virtues that differ from those of
experimenters, it is doubtful whether computer simulations can be
characterized as a “third way” in an epistemological sense. For scientists
themselves it has been clear most of the time that computer simulations
are not an empirical method of science, even though they resemble
experiments, and that therefore computer simulations, just like theories
and models, are in need of empirical validation themselves, rather than
being able to confer empirical validation on theories (Gilbert and
Troitzsch, 2005; Heath, Hill and Ciarello, 2009). This view is also
reflected in much of the philosophical literature on computer simulations
of the 2000s (Guala, 2002; Humphreys, 2004; Morgan, 2003).

However, in the latest installments of the philosophy of simulations,
this view has come under attack. In the context of a sometimes confused
debate about the alleged materiality of simulations, philosophers have
denied that there is any fundamental or epistemologically relevant
difference between simulations and experiments. Or, if there is, then at
least “any epistemically relevant differences between experiment and
simulation [are] very difficult to articulate” (Morrison, 2009, 48). I am
convinced that this is a mistake. First, therefore, I am going to set out
some of the core arguments against the epistemic difference between
simulations and experiments and I will try to show why all of them are
wrong, some of them quite obviously so. Then, I am going to put forward
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positive arguments for the differences between simulations and experiments.
Finally, I explain why, in spite of the clear conceptual distinction, hybrids
still provide a challenge for the epistemology of simulations.

Arguments against the Difference
between Simulations and Experiments

The philosophers who are the most critical of the attempts to draw a
clear distinguishing line between simulations and experiments are Wendy
Parker (2009), Eric Winsberg (2009, 2010) and Margaret Morrison (2009).
Wendy Parker argues that simulations in a sense are also “material” and
that at any rate what matters is not materiality but “relevant similarity”
(Parker, 2009, 484), which can be quite independent from the material
status of the experiment or simulation. Winsberg does not go quite as far
as Parker, but he, too, argues that simulations and experiments cannot be
sharply distinguished by their materiality or by any similar criteria. The
only distinction he concedes is that the way in which scientists justify their
belief that the object under study (in a simulation or an experiment) can
stand in for the target differs between simulations and experiments. As we
shall see, he cannot advocate this view without contradiction, because the
justifications cannot differ without referring to some other difference on
which the different justifications are based. But then, the different kind of
justification is not the only difference any more.

Morrison, in contrast to Parker, does not diminish the difference
between simulations and experiments by arguing that simulations are also
somehow material and, thus, somehow like experiments. But, quite the
contrary, she argues that experiments in advanced science are somehow
like simulations, because “the way models function as the primary source
of knowledge in each of the (...) contexts [simulation and experimental] is
not significantly different” (Morrison, 2009, 43). As we shall see, she
overlooks the simple fact that in simulations a model also functions as the
source of data while in experiments, the data is at least coproduced by
nature.

I will now explain the flaws of the central arguments by Parker,
Winsberg, and Morrison in more detail." Parker offers several arguments,
which are partly independent from each other. As mentioned, one
argument is that simulations like experiments are also “in a sense”
material. The sense in which simulations are material is this:

! Still I have to confine myself to the most important points here. For an even more
detailed criticism see the working paper by Késtner and Arnold (2012).



50 Chapter Three

The experimental system in a computer experiment is the programmed
digital computer — a physical system made of wire, plastic, etc. As
described in the last section, a computer simulation study involves putting
a computing system into an initial state, triggering its subsequent evolution
(the simulation), and collecting information regarding various features of
that evolution, as indicated by print-outs, screen displays, etc. It is those
data regarding the behavior of the computing system that constitute the
immediate results of the study. In a computer simulation study, then,
scientists learn first and foremost about the behavior of the programmed
computer. (Parker, 2009, 488ff)

But, obviously, the kind of materiality that computer simulations enjoy
because they are run on a material system (i.e., the computer hardware)
does not at all liken them to real material experiments. It is misleading to
say that the data that is presented on the printouts and screen displays is
“data regarding the behavior of the computing system.” For the data of a
simulation usually does not convey any information about the computer on
which it was produced, but only information about the simulated system. It
would be equally awkward if someone makes a calculation with pen and
paper to consider the resulting figure as data regarding the pen and the
paper. In particular, the person could potentially perform the same
calculation with the same result in her head, which would imply that the
result written on the paper must also be data regarding the brain of the
person. Clearly, this is absurd. But then it is also wrong to say that the data
that results from calculations performed on a computer is data regarding
the computer. If this is not true, then also Parker’s basic contention that
“any computer simulation study classified as an experiment is first and
foremost a material experiment” loses its ground.

The same confusion of different levels of consideration (i.e., the
symbolic or, if preferred, the “semantic level” (Barberousse, Franceschelli,
and Imbert, 2009)) on which a computer simulation operates and the
material level of the hardware on which it is implemented, is carried over
by Parker to her reading of intervention. In Parker’s opinion, intervention
in a computer simulation study occurs when the user sets up the simulation
and puts it into an initial state, for which purpose the user has to interact
materially with the computer. What Parker appears to misunderstand at
this point is that it is not the interaction between the experimenter and the
experimental machinery that is at stake when one speaks of material
experiments in contradistinction to computer simulations or computer
experiments but the interaction between the investigated experimental
object and either the machinery or the experimenter or both. Now, in a
computer simulation, the experimental object is either a fictional symbolic
object or a symbolic (or “semantic” for that matter) representation of a
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material object. In any case, intervention on the “experimental” object of a
computer simulation always occurs on the symbolic level (e.g., by
assigning certain values to certain control variables). Thus, if one classifies
computer simulation studies as experiments on the grounds that they
involve intervention—which is, admittedly, one of several typical (though
not exclusive) characteristics of experiments —then one still must concede
that there exists an important difference between simulations and
experiments regarding the type and kind of this intervention: in computer
simulations, it remains purely symbolic and only in experiments it is
material.

That is not to say that Parker is entirely unaware of the representational
nature of computer simulations. At one point Parker even contrasts the
representational quality of computer simulations with the property of
involving interventions that experiments have:

These characterizations imply at least the following fundamental difference
between simulations and experiments: while a simulation is a type of
representation — one consisting of a time-ordered sequence of states — an
experiment is an investigative activity involving intervention. (Parker,
2009, 487)

However, apart from the fact that the there is at least a counterpart to
the representational quality of the simulation model; namely, the
representative quality of the experimental object, it is not at all clear why a
simulation does not involve intervention. In both the simulation and the
experiment, intervention consists in setting or changing certain conditions
of the experimental system in a controlled way. Moreover, for both
simulations and experiments there exist examples where this kind of
intervention is achieved by: a) determining the boundary conditions
through the setup before the experiment or simulation starts, or by b) user
interaction during the simulation or experiment. While this line of
reasoning might appear to strengthen Parker’s point about the
comparability of simulations and experiments as scientific methods, it still
does not alleviate the counterargument that experiments operate on
material objects while simulations operate on symbolic representations.

If we say that the experimental object is a representative, this means
that it is a part or an instance of the target system of the experiment (i.e.,
the system in nature) the investigation of which was the purpose of the
experiment. It is clear that the programmed model that represents the
target system in nature in a computer simulation can never be a
representative in this sense. On the other hand, there exist experiments
where the object is also not a representative, but merely is some kind of
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representation. An example would be a ripple tank that is used to study
such phenomena as reflection and interference of waves. Although the
waves in the ripple tank are water waves, the ripple tank could also be
used to learn something about waves of another kind, like sound waves or
light waves. In this case, the waves in the ripple tank are not an instance of
the target system and therefore the experimental object would not be
called a representative of the target system. One can, in this special case,
speak of the experiment as an analog simulation and consider the
experimental object as a representation of the target system, just as in the
case of a computer simulation. There still remains one obvious and one
more subtle difference, nevertheless: the object of an analog simulation
remains a material object, while the object of a computer simulation is
always symbolic. This difference does not have any epistemic relevance in
the case of analog simulations. The more subtle, but potentially
epistemically relevant difference is that in the case of the analog
simulations, there is still some kind of isomorphism involved between the
object and the target, while in the case of computer simulations the
relation remains purely representative.

Experiments

computer simulation | analog simulation | plain experiment

‘ materiality of object semantic ‘ material

| relation to target representation representative

Simulations
Figure 1: Conceptual relation of simulations and experiments

The different types of simulations and experiments that have just been
described are summarized in Figure 3-1. Failure to distinguish properly
between computer simulations and analog simulations is a constant source
of error in both Parker’s and Winsberg’s treatment of simulations. For
example, Parker complains “the proposed distinction implies that no study
as a whole can be simultaneously both a simulation of some target system
T and an experiment undertaken to learn about that same target system T,
since the required relationships with T are mutually exclusive” (2009,
486). Then, she continues by presenting an example of a study that
according to her interpretation is simultaneously an experiment and a
simulation. Not surprisingly, her example of the San Francisco Bay Model
concerns an analog simulation. However, this merely shows that the



Experiments and Simulations: Do They Fuse? 53

categories of simulations and experiments are not mutually exclusive in
the first place. At the same time, it does not imply that there is no
epistemically relevant difference between (computer) simulations and
experiments that are not analog simulations, which is the conclusion that
Parker suggests. In a similar vein, Winsberg (2009) complains that “if we
can never be sure if something is an experiment or a simulation” it would
not be worth knowing that, as Mary S. Morgan (2003) maintains,
“experiments are more epistemically powerful than simulation” (Winsberg,
2009, 582). However, doubts whether something is an experiment or a
simulation can arise only in the case of analog simulations. Even here it is
possible to distinguish analog simulations from plain experiments by their
relation to the target system, as depicted in Figure 3-1.

Another point that Parker makes deserves more consideration; namely,
that “what is ultimately of interest when it comes to justifying inferences
about target systems is not materiality, but relevant similarity” (Parker,
2009). This is quite true, because material similarity does not
automatically transform into epistemic reliability. In addition, numerical
representations of nature in computer simulations can be quite accurate at
times. Still, being of the same material stuff can be a good reason to
assume relevant similarity (which Parker concedes); in some cases, it may
be the sole reason. It must be expected that this is particularly true for
those processes in nature about which we do not yet have comprehensive
theoretical background knowledge in terms of either fundamental laws or
at least well-tested phenomenological laws. Parker seems to be faintly
aware of the connection between the existence of background knowledge
and the possibility to simulate: “especially when scientists as yet know
very little about a target system, their best strategy may well be to
experiment on a system made of the ‘same stuff’” (Parker, 2009, 494).
However, she does not seem to be aware that in this case it is not just an
option (“best strategy”) but a necessity to conduct real material
experiments. As the frontier of science is being pushed forward, one can
assume that greater and greater regions of nature fall into the realm of
what can reliably be simulated based on our scientific background
knowledge. However, there will always remain scientific questions for
which material experimentation is unavoidable.

Winsberg, in his paper entitled “A Tale of Two Methods” (2009),
maintains that simulations and experiments can only be distinguished by
how scientists argue for their validity. He does not notice that it would be
impossible to argue in different ways for the validity of either simulations
or experiments if there did not exist other differences on which the
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different arguments could be founded.” Indeed he implicitly admits this
when he says of the experimenter that “She believes the inferences she
will make are legitimate because she is prepared to argue that the two
systems are, in relevant respects, the same kind of system, made out of the
same material, and can be expected to exhibit relevantly similar behavior”
(Winsberg, 2009, 590). However, this means that the experimenter relies
on a relevant material similarity. So then, relevant material similarity must
be another difference between simulations and experiments, besides the
different justifications given for the respective methods. If it were not, it
would not be understandable why the simulationist should not appeal to
the same reason when justifying his or her procedure. Regarding the
simulationist, Winsberg claims that he or she “will want to argue . . . that
the computational model of his computer is relevantly similar to a good
model of the behavior of the gas jets that interest him” (Winsberg, 2009,
590). However, this is an argument based on formal similarity, which
means that formal similarity in contrast to material similarity must be an
exclusive feature of simulations, if the justification based on formal
similarity is to be exclusive to the simulationist. Otherwise, Winsberg’s
thesis that simulations and experiments differ by the way they are justified
would be empty. Thus, Winsberg is forced to admit the validity of Guala’s
(2002) distinction between material and formal similarity that he tries to
deny in his paper.

This is not the only contradiction in Winsberg’s paper. In order to
explain his point, Winsberg sets out with the thought experiments of two
physicists, one using a tank of fluid, the other using a digital computer to
study fluid interaction. In other words, one scientist is conducting a
material experiment; the other, a computer simulation. At one point he
concretizes his story as follows: “what if we were to find that both of our
original physicists’ primary area of interest is astrophysics? The systems
that actually interest them are supersonic gas jets that are formed when
gasses are drawn into the gravitational well of a black hole” (Winsberg,
2010). With respect to this setting, Winsberg remarks: “neither physicist,
then, is actually manipulating his or her actual system of interest. Neither

% Against this criticism of Winsberg, an anonymous referee objects, “two claims
can be justified in different ways but have the same epistemic warrant.” However,
since the epistemic justification of a scientific procedure usually consists in ex-
plaining or pointing out what its epistemic warrants are, it is hard to see how this is
possible in this context. Moreover, as the passages quoted in the following pages
from Winsberg demonstrate, he is unable to uphold his position that simulationists
and experimenters rely on the same epistemic warrants when they justify their
method.
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one is even manipulating a system of the same type, on any reasonably
narrow sense of the term” (2010, 52). Thus, we are to assume that
simulation and experiment cannot be distinguished by whether the actual
system of interest is manipulated. However, only a few lines later
Winsberg maintains exactly the opposite: “in some respects, the physicist’s
tank is an instance of the system of interest, since it is in fact an instance
of a supersonic interaction of a pair of fluids.” Now, how can a system that
is not a “system of the same type, on any reasonably narrow sense of the
term” be at the same time an “instance of the system of interest”?
Winsberg denies that there exists a distinction between simulations and
experiments that is more fundamental than the different kinds of
justification for experiments and simulations respectively. It seems,
however, that this denial rests in part on a self-contradictory analysis of the
central thought experiment of his paper.

Another objection that Winsberg raises against the distinction is “on
the Simon/Guala definitions of simulation and experiment, they are both
success terms. An investigation will count as an experiment only if it is
successful in the sense that the relevant material similarity between object
and target actually obtain” (Winsberg, 2009). He concludes from this that
in this definition if an experiment failed to establish a relevant material
similarity then it would not be a failed experiment but it would simply fall
into the other category (i.e. simulation), which seems wrong to Winsberg.
With respect to this, he worries that “if experiment and simulation are
success terms, then investigators may never be in a position to know if
they are conducting a simulation or an experiment.” However, Winsberg
(2009), following a suggestion from Parker, already offers the obvious
counterargument against his objection; namely that “simulation studies are
characterized by the fact that the investigators aim for their objects to have
relevant formal similarities to their targets and that ordinary experiments
are characterized by the fact that the investigators aim for their objects to
have relevant material similarities to their targets.” Winsberg never
answers this counterargument. Instead, he continues: “I do not think this
works. I think the whole idea of formal versus material similarity is
confused, no matter how much it is tempered by ‘relevant,” ‘aimed for,” or
whatever.” That is, Winsberg reasserts his opinion but does not offer an
argument.

Margaret Morrison does not buy Parker’s argument that computer
simulations are also somehow material: “locating the materiality of
computer experiments in the machine itself, however, carries with it no
epistemological significance,” she notes (2009). Nevertheless, she reaches
the similar conclusion that “the modeling features of simulation are co-
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extensive with its experimental character making any epistemically
relevant differences between experiment and simulation very difficult to
articulate.” More precisely, her claim is “that the way models function as
the primary source of knowledge (...) is not significantly different”
(Morrison, 2009). But this is obviously false, because in a simulation it is
a model that produces the data, which is impermissible in a material
experiment.’ In a similar vein, Morrison maintains “experimental
measurement is a highly complex affair where appeals to materiality as a
method of validation are outstripped by an intricate network of models and
inference” (Morrison, 2009). However, one of her own examples,
magnetic resonance imaging (MRI), suggests the opposite. For, in order to
validate that an MRI scanner works correctly, it is, among other things,
tested with material objects. And when it is put to use in medicine, it is
done so because it is able to reveal material features of the body or body
part under examination and thus is able to validate or refute assumptions
about health or illness by an appeal to materiality.* Because devices like an
MRI scanner are diligently built to determine material properties of the
objects under study, one could say that the “intricate network of models
and inference” is tailored to the expression of the materiality of the object,
rather than outstripping the appeal to materiality.

As we have mentioned earlier, with the scientific frontier moving
onward, it is imaginable that increasing ranges of natural phenomena can
be simulated, thereby potentially outstripping the need for experiments.
This is, however, something completely different from maintaining that
the appeal to materiality can be outstripped by models and inference in
those cases where material experiments are still conducted. One might

3 See also Peschard (forthcoming) who utters a very similar criticism of Morrison
and nicely summarizes her complaints: “Admittedly, we ‘know’ of the features of
the system that affect the instrument only in so far as we ‘know’ of the relation
between these features and the state of the instrument; that is, only in so far as we
have and are justified in using a given model of the instrument. But to say that this
mediating role of model makes causal interaction in experimentation epistemically
irrelevant looks like saying that the role of language in expressing our sensory
experience makes the sensory character of this experience epistemically irrele-
vant.”

* According to an anonymous referee I have misunderstood the point that Morrison
wanted to make with her example of MRI. I am aware that Morrison has several
things to say about MRI. It is just this specific consequence about the relative epis-
temic weight of material factors and models that I intend to criticize. In the worst
case my criticism only touches an unfortunate formulation by Morrison. Because
Morrison formulates more or less the same idea in different ways at several points
of her paper, I am inclined to believe that she means what she says at this point.
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speculate that in future science there will be a growing dependence on
observations that are made with intricate and highly technicized
measurement devices and continuously less reliance on ordinary sense
perception. However, it is doubtful whether the point where sense
perception becomes superfluous as a means of scientific investigation will
ever be reached. One can say with Humphreys (2004) that this increases
the epistemic opacity or that a greater and greater part of the epistemic
processes that lead to knowledge will take place hidden from our eyes. But
even then, humans will remain in the epistemic center, because it is
humans that build and design the epistemic machinery that they make use
of. However, the path—or, more likely, some of the paths—to the
periphery where the epistemic machinery gets into contact with the world
will continuously be extended.

Morrison may have been mislead into likening experiments to models
by her own historical example, which she presents at the beginning of her
paper. For the purpose of commenting on the contemporary discussion
about models and experiments, this example unfortunately does not appear
to be particularly well chosen. The example concerns Lord Kelvin’s
interpretation of electrodynamics. “As I mentioned at the outset, Kelvin
saw mechanical models as intimately connected to measurement and
experiment. He considered numerical calculation measurement as long as
it was performed in the context of model construction, testing, and
manipulation. All of these features enabled one to know an object
‘directly’ rather than simply becoming acquainted with a mere
representation.” (Morrison, 2009). This can be misleading if applied to the
contemporary discussion, because it seems that Kelvin’s notion of
knowing an object “directly” rests entirely on an ontological commitment
of Kelvin’s in favor of mechanical models and explanations. Other than
that, his jelly bowl (Morrison, 2009, 37) is just another example of what
we call analog simulations and as such, it is just as remote from its target
system as Maxwell’s mathematical equations. Therefore, the example of
Kelvin is not a good example for showing, as Morrison seems to intend,
that material experiments do not have a more direct relation to their target
systems than simulations and that appeals to “knowing an object directly”
through a certain kind of scientific method are badly founded. The appeal
is merely badly founded in Kelvin’s case. Incidentally, we see again how
important the clear distinction between plain experiments and analog
simulations is for the whole discussion.

Briefly summing it up: none of the arguments against the separation of
simulations and experiments by Parker, Winsberg, and Morrison appear to
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be pervasive.” However, there is one point by Parker that ought be kept in
mind; namely, that in any concrete case what ultimately matters is not the
materiality of the procedure nor primarily whether the relation to the target
system is a material or a formal similarity, but whether a relevant
similarity can be established.

Arguments for the Difference
between Simulations and Experiments

Having refuted the arguments against making a difference between
simulations and experiments, the question remains: what positive
arguments are there for drawing a strict distinction between simulations
and experiments? There appear to be at least three fundamental and
important differences between simulations and experiments, which I will
discuss below.

Only experiments can operate on a representative of the target system

Operating on a representative of the target system means that the object
that is manipulated and studied in the experiment is either a part of or an
instance of the target system or is the target system itself. In contrast, both
analog and computer simulations operate only on a representation of the
target system. In the case of analog simulations, this is true in virtue of the
definition of an analog simulation as an experiment that operates on a
representation of, rather than on a representative of, the target system. In
the case of computer simulations, this is true by necessity as long as the
target system is a target system in nature.’ Both the relation of being
representative of and that of being a representation of a target system raise

3 According to an anonymous referee, this misrepresents Winsberg’s, Parker’s and
Morrison’s position, because none of them believes that simulations and experi-
ments are one and the same thing, but only that in some cases they may have the
same epistemic warrants. My primary goal is not to criticize Winsberg, Parker and
Morrison, but to refute those arguments that have been put forward against the
difference between simulations and experiments. I have pointed out above some of
the few concessions these authors make in the discussed papers in favor of the
distinction between simulations and experiments. In no way do the discussed pa-
pers support the conclusion that Winsberg, Parker, and Morrison restrict them-
selves to some cases only. But even if restricted to some cases, most of their argu-
ments remain false and seriously misleading.

® One can also conceive of a model as a target system of a computer simulation.
But this is a special case which in an epistemic connection is not at all comparable
to the case where the target system is a system in the real world.
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the analogous question of whether the respective relation truly holds. But
this does not mean that both questions are one and the same. For
establishing either of these relations provides a different challenge.
Generally speaking, establishing the relation of representation requires
comprehensive background knowledge about the target system, while the
relation of being a representative can be established (though, as always,
with a probability of error) on the basis of other indicators. For example, if
one wants to know whether some kind of wood burns at 250°C it suffices
to take a piece of that wood to establish the relation of representative of (in
this case, in the sense of being part of it). However, before one could be
sure that a certain computer model of a piece of wood is truly a
representation of that kind of wood, one would either need a
comprehensive knowledge of the chemical structure of the kind of wood in
question and of the chemical laws guiding oxidation, or one would at least
need to know sufficiently detailed phenomenological laws about the
burning of wood as to allow one to draw conclusions about the
temperature at which the particular kind of wood in question starts to burn.
Thus, the difference between representation of and representative of is a
highly relevant epistemic difference.

This difference in relation to the target system can also be described as
the difference between material similarity and formal similarity (Guala,
2002). Material similarity is the relation between the experimental system
and the target system in the case of an experiment. Formal similarity holds
between the simulation system and the target system in the case of
computer simulations.

The case of analog simulations is ambiguous with respect to this
terminology, and requires clarification as to whether material similarity
also covers the similarity of different materials that obey the same laws. If
this clarification is made or if the case of analog simulations is excluded,
then Winsberg’s (2009) criticism of this terminology can be circumvented.
Another phrase that has been used to describe material similarity is the
phrase “same stuff.” This phrase is less ambiguous than the phrase
“material similarity,” because it clearly suggests that the material must be
the same.

Only experiments can deliver knowledge to us that goes beyond
what is implied in our background knowledge

Because computers are merely calculating machines, they cannot
provide us with any knowledge about the world beyond what is implied in
the premises of a computer simulation. As the premises must be rooted in
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our prior knowledge, the insights one can gain from computer simulations
is limited to this prior knowledge and its implications.” The same does not
necessarily need to be true of analog simulations. In order to be
meaningful, an analog simulation only requires that the mapping relation
(typically an isomorphism) between the object that serves as a stand-in for
the target and the target system itself is known, but not that the laws of
nature that govern the object are known as well. Therefore, the object
could potentially reveal a behavior that is not merely a logical
consequence of our prior knowledge. If we assume that the mapping
relation is applicable nonetheless, then the novelty exposed by the object’s
behavior carries over to the target system as well. It may of course be
disputed whether this assumption is true or whether it has much practical
impact. But the case is at least imaginable.

Because of this limitation, computer simulations can be best thought of
as tools for evaluating the consequences of an existing stock of knowledge.
But only experiments (potentially including analog simulations in the
hypothetical case just described) can break through the epistemic barrier
that is determined by our prior knowledge and to which computer
simulations are inevitably confined.

One can speculate whether one day our background knowledge will be
so complete that we can deduce any possible further knowledge about the
world from it. This, however, is pure science fiction and it seems as good
as impossible within the limitations of the conditio humana that it should
ever become real.

Only experiments can be used to test fundamental theories

Can simulations be used to test hypotheses? They can, but only against
the background of an existing theory. It may be the case that this theory
can in turn be tested via simulations against another more fundamental
theory. But at some point we reach a most fundamental theory, which
cannot be tested by a simulation any more, because no theories or
principles remain upon which such a simulation could be built. Thus, it is
for basic reasons impossible to replace an experimentum crucis by a
simulation. And this is true for both computer simulations and analog

"1t is important here to understand the difference among a) things that are not logi-
cally implied in our prior knowledge, b) things that are logically implied in our
prior knowledge but unknown to us and c) things that are logically implied in our
prior knowledge and known to us. For category a, simulations cannot help us, only
experiments can help. For category b, simulations and experiments can help us.
Finally, for category c neither is needed because we know it already.
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simulations, because an experimentum crucis requires that the investigated
object be a representative of the target system, the particular nature of
which is in question.

What counts as fundamental theory is, of course, historically relative.
For example, Galileo’s laws of motion and Kepler’s laws of the movement
of the planets were both fundamental theories at the time of their
invention. Both, however, can be derived from Newtonian mechanics and,
therefore, they lost the status of fundamental theories, which was then
taken by Newtonian mechanics. Once Newtonian mechanics were accepted,
Kepler’s laws could also be tested by simulation (though this is strictly
speaking unnecessary, because they could be derived mathematically
already). But then this simulation does not replace an experimentum crucis
of a fundamental theory anymore. Since at any past, present, or future
point in the history of science there will exist at least one theory that is the
most fundamental theory, material experiments will still be needed to test
at least this fundamental theory. Even if we assume the hypothetical
scenario above, where humanity has accumulated sufficient knowledge to
derive everything else that is worth knowing from this knowledge,
material experiments would still be needed to justify the fundamental
theories that are part of this set of knowledge.

Further differences and conclusions

One can easily think of further differences between simulations and
experiments: as mentioned earlier, experiments are material in the sense
that the object under investigation is a material object. Simulations in
contrast are virtual in the sense that the object that is investigated is a
semantic representation. The criterion of materiality should not be
confused with the relation of material similarity. Materiality as such
concerns only the object under investigation and not the relation between
object and target (see Figure 3-1). With respect to the relation of material
similarity, materiality is a necessary but not a sufficient condition, because
an analog simulation is also material but not of the “same stuff” as its
target. Since it does not allow us to distinguish analog simulations from
other experiments, materiality alone is a comparatively less important
criterion for the distinction than, say, material similarity.

Yet, another difference is that experiments are an empirical method
while computer simulations remain purely theoretical. Again, the case of
analog simulations may be a cause of ambiguity, because by virtue of the
materiality of their object, analog simulations could be considered
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empirical just like ordinary experiments, but they do not deliver empirical
knowledge about the target system to us.

Overall, we find that there are sufficiently many and sufficiently
important differences to warrant an epistemological distinction between
simulation methods and experimental methods. This said, it cannot be
denied that it is a fact that in modern science both methods, the
experimental method and the simulation method, are frequently used in
close connection with each other. Does this mean that they merge into
complexes where simulations and experiments become indistinguishable?
We will now turn our attention to this question.

The Challenge of Hybrid Methods

In contemporary science, experimental methods are often closely
intertwined with simulations or with simulation-like computational
procedures. Simulations can be wused to determine the optimal
experimental design before experiments are carried out (Kramer and
Radde, 2010). Computational methods can be used to select experimental
data for further analysis while the experiment is run, as is done in particle
accelerator experiments (CERN, 2011). They can furthermore be
employed to post-process the raw data from measurements as, for
example, in computed tomography (Lee and Carroll, 2010). In economics,
experiments usually involve real human subjects that are placed in an
artificial environment that differs substantially from the sort of real-world
environments to which scientists try to apply results from the experiments
and draw conclusions (Guala, 2002, 2012). Sometimes the artificial
environment contains computer agents that interact with humans in the
experiment. In the natural sciences, we also frequently encounter cases
where empirical measurements and simulation methods jointly function as
sources of data. Multiscale models of electrocardiac physiology, described
by Annamaria Carusi, Kevin Burrage, and Blanca Rodriguez in another
chapter of this book as model-simulation experiment systems, may serve
as an example.

To give a name to these kinds of sophisticated procedures, we can
speak of them as hybrids of simulations and experiments. Hybrid methods
constitute a challenge for the philosophy of science in several respects.
They challenge the distinction between simulations and experiments that
has been defended above. Doing so, hybrid methods also challenge the
logic of scientific research in general. For the logic of scientific research,
as understood by most scientists and by many philosophers of science,
rests on the testing of hypotheses against empirical data. This presupposes,
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one should assume, a clear distinction between the empirical and the
theoretical. To put it in another way, if we cannot uphold the distinction
between the theoretical and the empirical, then we would have to
reconstruct the whole logic of scientific research.

The distinguishing features between simulations and experiments
presented earlier do not really solve the problem of hybrids, because they
only tell us what the difference between the categories of experiment and
simulation are. However, they do not allow us in all cases to decide
whether a particular procedure belongs to the class of simulations or to
that of experiments. If we follow the reasoning of the first part of this
chapter, then we know that only experiments can operate directly on the
target system. But we may not be sure in a particular case whether some
scientific procedure that makes scant use of some sort of empirical data
and heavy use of computation falls into this category.

To solve the problem of hybrids, several quite different approaches are
imaginable. One can even say that so far neither the framing nor the exact
formulation of the question is clear. I am not going to attempt to give a
comprehensive list of approaches to the problem of hybrids that have been
proposed so far or that appear imaginable, but I will confine myself to the
discussion of three approaches. Other authors have suggested two of these
approaches; I briefly present them here since I consider these promising.
After that I am going to present my own best guess at how the problem of
hybrids could be solved.

Hybrids as Mixtures of Empirical and Virtual Data Sources
(Zacharias/Lenel)

Guala (2002) considers as hybrid methods economic experiments
where real human agents act in an artificial laboratory situation. Let us, for
the sake of simplicity, imagine an experiment where human agents interact
with computer agents. Generalizing from this case and adjusting it to the
terminology developed in the first part of the paper, this leads to one
possible definition of hybrids as procedures where the data source is partly
empirical and partly virtual.

How does this relate to our earlier distinction between simulations and
experiments in light of the material or formal similarity of object and
target? Well, the example shows that both the object under study and the
target can be complex entities that are made of different components. The
material similarity that makes the method an experiment may hold only for
some components of the object and target but not for others.



64 Chapter Three

As a consequence of this, the differences between simulations and
experiments that have been described earlier apply only insofar as such
components of the object under investigation are concerned that do
actually bear a material similarity to (parts of) the target system. One
could classify hybrids (in the just-defined sense) as experiments, if one
were willing to weaken the formulations of the differences a bit; for
example, by allowing that it suffices that at least one component of the
object is a part of or an instance of some part of the target system.
However, this would be a somewhat strained attempt to keep up a strict
dichotomy between simulations and experiments.

A much better solution has been proposed by Moritz Lenel and
Sebastian Zacharias (unpublished). They give up the strict dichotomy in
favor of a cross-classification of simulations and experiments (first
dimension) and of laboratory and field methods (second dimension). In
order to do, so they drop the idea of a monolithic target system. Instead,
they differentiate between the target object and the target situation.
Experiments and simulations are then distinguished by whether they
operate directly on the target object or on a representation thereof.
Laboratory research is distinguished from field research by whether it
takes place in the target situation or in an artificially crafted laboratory
environment. This classification scheme works quite well for economic
experiments and simulations and for the social sciences in general.
Economic experiments would most of the time fall under the category of
laboratory experiments, but there is also room for laboratory simulations,
field simulations, and field experiments.

It is an open question how well this or a similar scheme could work in
the natural sciences. In addition, the case where human agents act together
with computer agents in the same situation on an economic experiment
might strain the classification. Still, it is so far one of the most convincing
answers to the problem of hybrids.

Classification in Terms of the Degree of Materiality (Morgan)

A quite natural approach would be to examine to what extent the
method employed depends on materiality (i.e., material data sources,
material interaction, material output) throughout the course of the
simulation or experiment in question. This is the approach that Mary S.
Morgan (2003) has taken. Doing so, she reaches a fine-grained
classification that ranges from lab experiments over “virtually
experiments,” “virtual experiments” (which are not the same as “virtually
experiments”!) to mathematical model experiments. Morgan takes into
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account the material status of input, intervention, and output, but also the
relation between object and target where, again, she carefully distinguishes
between “representative of,” “representative for,” and “representation of.”
Morgan’s “Experiments without material intervention” (2003) is also one
of the few attempts to explicitly deal with hybrid methods. I will not
attempt to do justice to her careful and well-reasoned examination here.
However, a few remarks are in order.

First, while it seems reasonable to consider the materiality or
nonmateriality of the intervention for distinguishing degrees of virtuality,
it is not equally clear why the material or nonmaterial status of the inputs
or outputs should really matter. A simulation can start with empirical input
data of some system and then calculate the future evolution of the system.
However, this would not make the simulation any more experimental. The
most that can be said is that materiality of input data is a necessary but not
sufficient requirement for a procedure to be an experiment or empirical
measurement. As will be argued below, it is, if anything at all, the relation
between the input and the output what makes a hybrid an experiment or a
simulation.

Mary Morgan’s distinction between representative and representation
is more convincing. Although it is very helpful for distinguishing
experiments from simulations, it does not seem fit to solve the problem of
hybrid methods, because—as has been argued above—the problem arises
when both relations are present in the course of one and the same
procedure. As sample cases, Morgan examines two different simulations of
hipbones. They differ in the way the model of the hipbone is obtained on
which the simulation is carried out. In one case, the model is obtained by
cutting one particular hipbone into slices and determining the three-
dimensional structure of the hipbone from these slices. In the other case,
the scientists started with a stylized bone model that is then refined: “the
individual side elements within the grid are given assorted widths based on
averages of measurements of internal strut widths (taken from several real
cow bones) and are gently angled in relation to each other by use of a
random-assignment process” (Morgan, 2003, 222). Only in the first case is
the input data clearly of empirical origin. The other case could— from the
description given by Morgan—alternatively be interpreted as an example
of a theoretical model that is adjusted or corrected with empirical data. For
Morgan, the first simulation is therefore more like a material experiment
than the second, and both lie somewhere between pure material
experiments and pure mathematical modeling.

The stance I have adopted leads to a different evaluation, though.
According to the view I advocate, both examples are clearly simulations.
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The reason is that the empirical origin of the input data alone is not
sufficient to classify a procedure as experimental, or even partially
experimental. In either of the two cases described by Morgan, it is only the
input data what is empirical. The object that is manipulated during the
study, however, is obviously a model. According to Morgan’s description,
“in both cases (...) the experiment consists of the ‘application’ of a
conventionally accepted (...) mathematical version of the laws of
mechanics (...) The computer experiment calculates the effects of the
‘force’ on individual elements in the grid and assembles the individual
effects into an overall measure of the strength due to structure” (2003,
221).

The last description seems to fit one of our earlier characterizations of
simulations in contrast to experiments quite well; namely that in a
simulation it is a model and not a material object that produces the
simulation data. This characterization is not as clear as it may seem at first
glance though, because it requires that we can always distinguish the case
where a model that is set up with empirical parameter values produces
simulation data from cases of mere refinement of empirical input data,
like, for example, by noise reduction algorithms. In the examples that
Morgan presents, however, it seems clear enough that the data is produced
by programmed models in a way that goes beyond the typical inferential
patterns that can be found in measurements. That the models have been
created from empirical data does not contradict this finding.

Classification in Terms of the Relation
between Input and Output

In the following, I present my own best guess at how to answer the
problem of hybrids. As stated earlier, the best way of framing the question
in my opinion is to ask how computer simulations that make use of
empirical input data can be distinguished from empirical measurements
that involve the computational refinement of raw data. The difference can,
I believe, easily be made clear with the help of examples.

Think for example of a climate simulation: a climate simulation
calculates the future development of the climate. In order to do so it is fed
empirical data. Thus, both components of a hybrid—empirical input data
and the computational processing of this data—are present. Yet, it is clear
that a climate simulation is a simulation and not a measurement, because it
is impossible to measure something that lies in the future.

Now take as another example an MRI scan: again both components of
a hybrid are present: the object or the person in the scanner from which the
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empirical input data is recorded in form of electromagnetic waves that are
emitted in response to the prior excitation of its H-atoms and the
computational processing, which in this case produces a visual image of
the internal structure of the object from the input data. While the
classification may be not quite as indisputable as the example of the
climate simulation, it still appears reasonably clear that this is an empirical
measurement, because the object’s structure is reconstructed from data that
reflects this structure.

As clear as the example cases may be, it is more difficult to find
general criteria by which to decide whether a particular method or
procedure belongs to the class of simulations or to that of measurements
(or experiments for that matter). In the following, I am going to attempt an
answer in two steps. The uniting idea for both steps is the assumption that
the difference between simulation-like hybrids and measurement-like
hybrids can best be spelled out in terms of the relation that exists between
quantities that the output data represents and the quantities that the input
data measures®

A first approach: The same-system formula

Following the idea that one feature that distinguishes experiments from
simulations is that experiments can operate on the physical target system
itself, one can formulate the following criterion:

Same-system formula: a hybrid procedure is a measurement if its output
data describes the same system in the same state as its input data.’

One can easily check that this criterion works well with the two
examples given above: the output of the MRI scan is obviously data about
the very system that the input data is taken from, and it is about the system
in exactly that state in which the input data was recorded. Although in the
case of the climate simulation one could say that the input and output

8 The relation between input and output that is meant here is not to be confused
with the transformation function that transforms the input data into output data.
Rather it concerns the relation of the input and output values within the target sys-
tem. Examining the nature of the transformation from input to output might pro-
vide yet another alternative way to deal with the problem of hybrids. Nevertheless,
this alternative is not examined here.

° It might be worthy of notice that the input of the computational part of a hybrid
always has a precisely and unambiguously defined magnitude; namely the digital
data as it is entered into the computer (either by hand or by a digitizing device)
before any calculations on this data have been carried out.



68 Chapter Three

system is the same; namely, the climate system, the output clearly
concerns the system in a future state and therefore in another state than the
input. The same-system formula therefore correctly places it in the class of
simulations.

The same-system formula works well enough in many cases, but
unfortunately not in all cases. Imagine a similar case as Mary Morgan
(2003) discusses: we determine empirically the structure of a particular
hipbone. Then, we run simulations where pressure is put on the hipbone in
order to estimate the strength of this hipbone. The hipbone’s strength is
thus inferred by a calculation from its structure. Now, measurements often
involve some kind of inference, but usually this is backward inference,
where we measure the deeper causes of a phenomenon by some overt
phenomenon (e.g., we measure the temperature by the extension of the
liquid in a thermometer). However, in the case of the hipbone, the
inference goes in the other direction. It therefore appears very doubtful
whether one could call this a measurement of the hipbone’s strength.

A second approach: The measuring-the-cause-by-its-effects pattern

Since the same system formula fails as a sufficient criterion for
classifying hybrids, a subtler criterion is needed. Spelling out the same
idea that only experiments operate on the physical target system itself, I
propose the following two criteria for classifying hybrid procedures as
measurements:

1. Spatiotemporal concordance of source and output: the output
values have the same spatiotemporal location as the source values.

2. Causal dependency of input on output: the output values are either
a necessary (!) cause for the input values, or the output values are
linked by definitions or mathematical laws to the input values.

The first criterion makes sure that neither prognoses nor retrodictions
(i.e., inferences about past events based on present observations) are
accidentally classified as measurements. The second criterion reflects the
well-known pattern of measuring a magnitude by its causal effects. For
example, if one measures the force through the expansion of a spring. The
further qualification that a link by definition or mathematical laws suffices
is meant to capture such simple cases such as measuring the density by
measuring and then dividing the weight and the volume of an object. If a
hybrid procedure is found to be a measurement by these criteria, then we
can also speak of the input data as raw data and the output data as refined
data, thereby indicating that in the case of a (computationally enhanced)
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measurement, the input and the output data still concern one and the same
thing. There exists an overlap between both criteria insofar they exclude
prognoses, although this overlap is harmless. One can easily verify that
neither criterion is superfluous in the sense of preempting the other
criterion.

We speak here of “values” rather than “data,” because data is, strictly
speaking, an entity located in a computer and causally linked to the
software that processes it. What matters here, however, are the magnitudes
in nature that the data informs us about. We understand “values” as always
having the time, location, and causal connection to their occurrence in
nature. In addition, it should be noted that in the first criterion we do not
refer to input values but to source values.'® This accounts for the fact that
the measuring device can be located more or less remotely from its object.
For example, a person observing an explosion may hear a noise and see a
flash of light, both of which occur at a different time to the observer.
Because of this, it would not be useful to require spatiotemporal
concordance of the input values. Admittedly, introducing the concept of
source values here raises questions regarding the relation between source
values and input values. Since the source values cannot directly be
observed, it requires at least a further inferential step to reconstruct the
source values from the input values. It would take us too far afield to go
into this problem here. Therefore, it must be noted as an open question.

In order justify the proposed criteria for classifying hybrid methods,
we will briefly go through a number of typical examples of hybrid
methods and try to show that the classification according to these criteria
is sound in the sense of matching the intuitions one might have about the
particular examples.

I have already mentioned climate simulations as probably the most
well known example of simulations in science. Climate simulations are
based on empirical input data, but clearly they do not constitute
experiments or empirical measurements themselves. The output of climate
simulations concerns the future development of the earth’s climate. It
would seem awkward to consider climate simulations as a measurement of
the possible future climate. As the output does not fall into the same
spatiotemporal region as the source, climate simulations are also not
measurements according to our two criteria listed above. Thus, the
classification of climate simulations according to our criteria is in
harmony with our intuition and the self-ascription by scientists.

1 This distinction relates to Paul Humphreys’ distinction between source data and
accessible data. See Figure 1-1 of Humphreys’ article in this volume.
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Another famous example of the most advanced kind of “technoscience”
is the Large Hadron Collider (LHC). An interesting peculiarity of the
Large Hadron Collider is that from the enormous number of events
occurring during one second in the collider, only a number of events that is
several magnitudes smaller is preselected'’ by automatic procedures for
further examination (CERN, 2011). This nicely illustrates the idea of
epistemic opacity, which, according to Humphreys (2004), is one of the
characteristic features of modern computer-based science: It is the
computer that decides which data will be selected and it is in principle
impossible for any human agent to double-check each individual decision,
even though the algorithms for that decision were of course developed by
humans.

According to our criteria, which remain neutral with respect to the
selection and preselection of data, the LHC data still counts as
experimentally measured data. This is in accordance with the self-
description of the LHC project, which also speaks of experiments. It is
reasonable to do so, because the events selected by the computer for
further analysis are still empirical events that occurred in the collider
itself.

It is more difficult to decide how computational post-processing of
data affects its status as empirical data. In magnetic resonance imaging,
the raw data obtained from the electromagnetic signals emitted by the
previously stimulated protons of the body are turned into an image by
means of various highly sophisticated computations (Lee and Carroll,
2010). According to our criteria, magnetic resonance imaging falls still
into the category of experimental measurement, because the output is an
image of the structure of the body, but it is just that structure of the body
that determines what the electromagnetic signals (i.e., the raw data) are
like. In this sense, the output values are causally responsible for the input
values. Simultaneously, both output values and source values lie in the
same spatiotemporal region. But not only according to our criteria—
intuitively it also makes sense to consider magnetic resonance imaging as
a measurement. For it bears a strong similarity to photography. And it can
be verified by dissection that the images it produces resemble the object
under study and thus are not fabricated by a model.

Simulations are a very popular tool in astronomy. One reason for this is
that it is impossible to carry out material experiments with stars and
galaxies. However, the fact that it is impossible to study, say, the collision

" LHC terminology speaks of “reprocessing” of data. However, since the data is
not changed but merely is a subset of data filtered from a larger set of data, we use
the term “pre-selection” here to avoid misunderstanding.
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of galaxies experimentally does not turn a simulation of the collision of
galaxies into an experimental procedure, other than in a purely
metaphorical sense of the word “experimental.” If we consider such
examples, then these are not experimental measurements according to our
criteria, because clearly the input data is not empirical, but is model data
about hypothetical galaxies (Struck, 1997). In this case, the simulation
would not even be classified as a hybrid in the first place.

There are of course other kinds of simulations in astronomy that make
heavy use of empirical input data, like the Bolshoi simulation (HIPACC,
2011). The Bolshoi simulation is a simulation by our criteria because the
output of the simulation (evolution of the universe or, rather, of regions of
the universe) is not a cause of the initial state nor is it located at the same
time and place. The classification of the Bolshoi simulation as a simulation
and not as an experiment is in agreement with the self-ascription by its
creators, and it is intuitively plausible that it is a simulation and not an
experiment.

This brief survey of examples indicates that our criteria for distinguishing
experimental measurements that involve the computational refinement of
data from simulations based on empirical input data can account for many
prominent examples of advanced science. This in turn suggests that the
criteria articulate at least an implicit standing convention for
distinguishing data-based simulations from empirical measurements. It
still leaves open the philosophical question whether and how this practice
can be justified epistemologically. However, this answer to the problem of
hybrids builds on a structural feature that is already present in traditional
measurement instruments and that has been described here as the
measuring the cause by its effects pattern. Therefore, I conjecture that the
problem of justifying it is either exactly the same or very similar to that of
justifying traditional measurement or observation methods which rely on
this pattern. For example, we say we measure the temperature, when in
fact we are measuring the extension of the volume of a liquid in a
thermometer and infer the temperature with the help of a scale. Still, we
consider the temperature value as empirical data and I believe we do so
because the kind of inference we make adheres to the two conditions
stated above.

Summary and Open Questions

In this chapter I have argued that experiments and simulations and, by
the same token, empirical measurements and theoretical calculations are
clearly separate and well-distinguished categories. I have defended this
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distinction against what appears to me to be a strong tendency towards the
contrary in the newer philosophy of simulation literature. However, the
problem of hybrid methods (i.e., methods that combine empirical
measurement of data with the computational processing of this data) raises
conceptual problems that are not so easily solved. There are different
possible approaches to solving these problems. In my opinion, the best
way to frame these problems is by asking the question: what distinguishes
a computer simulation based on empirical input data from an empirical
measurement that involves the computational refinement of data? My
answer consisted in transferring a typical of pattern of traditional
measurement methods to the case of hybrids.

Several questions remain open, however. First, as the approach
proposed by me is not the only possible or promising approach, it can still
turn out that other approaches work better. Alternatively, it could turn out
that no universal answer can be given, but only different answers for
different subject areas. For the area of economic simulations, in particular,
the approach proposed by Sebastian Zacharias and Moritz Lenel appears
to be the best suited and promising.

However, there are also other open questions. The definition of hybrids
that I have used more or less silently assumes that the output data really is
computed from the input data and not ignored or dropped or the influence
of the empirical component changing over time. However, plausible cases
where this does not hold can at least be imagined: imagine, for example, a
control device that regulates a machine based on data it receives from
sensors. Let us assume that since the sensors tend to be unreliable from
time to time, the regulatory device runs a simulation of the machine
alongside the sensors. Whenever some kind of plausibility test shows that
the sensors have delivered unreliable data, the machine switches to the
simulation. Otherwise, it uses the sensor data as input and updates the
simulation with the measured state of the machine. While it is not possible
to tell whether the data produced by the device is empirical or not, this
case turns out to be rather unproblematic upon closer inspection. For lack
of another word, we could describe the data produced by this device as
potentially empirical data. Now regarding the epistemic potential of this
data, it is clear that this data can only be used in those contexts where in
principle simulation data also would suffice (provided it is accurate
enough), but not in those contexts, like empirical theory testing or model
validation, where real empirical data is indispensable.

Similarly unproblematic is the case where a switch between empirical
and simulation sources of input data does not occur, but where empirical
and simulation sources are merged. This case is already covered by the
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theory of hybrids proposed here: as long the empirical data source has any
significant influence on the computed output, the procedure can be
classified as empirical data. In principle, it is suitable for all purposes for
which real empirical data is needed. Of course, the details still matter. If a
theory is to be tested, then the validity of any model that is required for
producing (or better, revealing) the empirical data against which it is to be
tested must be independent from the theory. This must of course already
be considered in the case of conventional measurements. It does not
constitute a novel or singular problem of computationally enhanced
measurement techniques.
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THE USE OF THE ‘MATERIALITY ARGUMENT’
IN THE LITERATURE ON COMPUTER
SIMULATIONS

JUAN M. DURAN
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Introduction

Much of the current philosophical interest in computer simulations
stems from their extended presence in scientific practice. This interest has
centered on studies of the experimental character of computer simulations
and, as such, on the differences (and similarities) between computer
simulations and laboratory experiments. The philosophical effort, then, has
been primarily focused on establishing the basis of this contrast;
specifically by means of comparing the epistemic power of a computer
simulation with that of a laboratory experiment. The basic intuition has
been that if computer simulations resemble laboratory experiments in
relevant epistemic respects, then they too can be sanctioned as a means of
providing understanding of the world.

The literature on the topic distinguishes computer simulations from
laboratory experiments on both ontological and representational grounds.
The fact that a computer simulation is an abstract entity, and therefore
bears only a formal relation to the system being investigated, contrasts
with a laboratory experiment, which typically has a causal connection to
the target system. These ontological and representational differences have
suggested to some philosophers that establishing external validity is a
much more difficult task for computer simulations than for laboratory
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experiments. For others, however, it has been a motivation to reconsider
experimental practice, and see it as a broader activity that also includes
simulations as a new scientific tool. These two approaches, I claim, share a
common rationale that imposes restrictions on the epistemological analysis
of computer simulations. In this paper I propose to discuss this claim.

The most well-known criterion for distinguishing between computer
simulations and laboratory experiments is given by the so-called
materiality argument. Parker has provided a helpful account of this
argument:

In genuine experiments, the same ‘material’ causes are at work in the
experimental and target systems, while in simulations there is merely
formal correspondence between the simulating and target systems [...]
inferences about target systems are more justified when experimental and
target systems are made of the ‘same stuff” than when they are made of
different materials (as is the case in computer experiments). (2009, 484)

Two claims are being made here. The first is that computer simulations
are abstract entities, whereas experiments share the same material
substratum as the target system.' The second, which is essentially epistemic,
is that inferences about empirical target systems are more justified by
experiments than by computer simulations due to the material relations
that the former bears with the world.

Current literature has combined these two claims into two different
proposals: either one accepts both claims and encourages the view that
being material better justifies inferences about the target system than being
abstract and formal (Guala 2002, Morgan 2005); or one rejects both claims
and encourages the view that computer simulations are genuine forms of
experimentation and, as such, epistemically on a par with experimental
practices (Morrison 2009, Winsberg 2009, Parker 2009). I claim that these
two groups of philosophers, that superficially seem to disagree, actually
share a common rationale in their argumentation. Concretely, they all
argue for ontological commitments that ground their epistemic evaluations
on computer simulations. I will refer to this rationale as the materiality
principle.

" Some of the terminology in the literature remains unspecified, such as ‘material’
causes or ‘stuff’ (Guala, 2002). I here take them to mean physical causal relations,
as described, for instance, by Dowe (2000). In the same vein, when I refer to
causes, causality, and similar terms, they should be interpreted in the way here
specified.
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In order to show that the materiality principle is at work in most of the
philosophical literature on computer simulations, I discuss three distinctive
viewpoints:

a) Computer simulations and experiments are ontologically similar
(both share the same materiality with the target system); hence,
they are epistemically on a par (Parker, 2009);

b) Computer simulations and experiments are ontologically
dissimilar. Whereas the former is abstract in nature, the latter shares
the same materiality with the phenomenon under study; hence, they
are epistemically different (Guala 2002, Giere 2009, Morgan 2003,
2005);

¢) Computer simulations and experiments are ontologically similar
(both are ‘model-shaped’); hence, they are epistemically on a par
(Morrison 2009, Winsberg 2009).

With these three viewpoints in mind, the materiality principle can be
reframed from another perspective: it is due to the philosophers’
commitment to the abstractness (or materiality) of computer simulations
that inferences about the target system are more (or less thereof) justified
than laboratory experiments.

The principal aim of this paper is to show that philosophers of
computer simulations do adhere, in one way or another, to the materiality
principle. I am also interested in outlining some of the consequences of
adopting this rationale. In particular, I am convinced that grounding the
philosophical analysis on the materiality principle, as most of current
literature seems to do, places a conceptual corset on the study on the
epistemological power of computer simulations. The philosophical study
on computer simulations must not be restricted to, not limited by, a priori
ontological commitments. By analyzing themes in the literature, then, I
show that the materiality principle does not engender a helpful
conceptualization of the epistemic power of computer simulations. I will
also give some suggestions as to how to circumvent this issue and address
the epistemology of computer simulations at face value.

The paper is divided in a way that corresponds to the three uses of the
materiality argument listed above. The section entitled ‘the identity of the
algorithm’ discusses option a); the section entitled ‘material stuff as
criterion’ addresses option b), which comes in two versions, the strong
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version and the weak version; and finally option c) is addressed in the
section entitled ‘models as (total) mediators.’

The Identity of the Algorithm

Wendy Parker’s formulation of the materiality argument has a
prominent place in the recent literature on computer simulation. Following
Hartmann (1995), Parker defines a computer simulation as a time-ordered
sequence of states that abstractly represents a set of desired properties of
the target system. Experimentation, on the other hand, is the activity of
putting the experimental setup into a particular state by means of
intervening in it, and studying how certain properties of interest in the
setup change as a consequence of that intervention (Parker 2009, 486).”

Parker’s goal is to show that computer simulations and experiments
share the same ontological basis, and to use this basis as justification for
the claim that computer simulations and experiments are epistemically on
a par. To her mind, the central problem is that current definitions of
computer simulation do not qualify as an experiment because they lack the
crucial intervening mechanisms. Indeed, it is the abstract character of the
model that prevents computer simulations from serving as intervening
systems. The solution to this issue consists in construing the notion of
computer simulation studies as a computer simulation where an
intervention is made into the physical computer itself. So defined, a
computer simulation study does qualify as an experiment.

A computer simulation study [...] consists of the broader activity that
includes setting the state of the digital computer from which a simulation
will evolve, triggering that evolution by starting the computer program that
generates the simulation, and then collecting information regarding how
various properties of the computer system, such as the values stored in
various locations in its memory or the colors displayed on its monitor,
evolve in light of the earlier intervention. (2009, 488)

The notion of intervention is now defined as the activity of setting the
initial state of the computing system and triggering its subsequent
evolution. Thus understood, a computer simulation study is an experiment
in a straightforward sense, for now the system intervened is the
programmed digital computer (2009, 488). On this basis, Parker claims
that there is ontological equivalency between computer simulations and

2 “Intervention’ is conceived of as the manipulation of physical causal relations in
the experimental setup.
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experiments, and this in turn allows her to claim an equivalency in their
epistemic power.

Notably, she does not explain what it means for a computer simulation
study to be epistemically powerful. Instead, she limits the argument to
asserting that an epistemology of computer simulations should reflect the
fact that it is the observed behavior of the computer system that makes
them experiments on a real material system (and therefore epistemically
powerful).

The influence of the materiality principle can be made yet more
explicit. First, Parker conceives of the digital computer as the ‘substratum’
for the simulated system, thus claiming ontological equivalence between
computer simulation studies and experiments. Since the computer
simulation study is the activity of putting the physical computer into an
initial state, triggering the evolution of the simulation, and collecting
physical data as indicated by prints-outs, screen displays, etc. (2009, 489),
then the epistemic value of computer simulation studies also corresponds
to that of experiments. The evolution in the behavior of the programmed
computer represents material features of the simulated phenomenon. Our
understanding of such a phenomenon, then, is justified by this evolution
on the physical computer. Computer simulation studies and experiments
are, then, ontologically on a par, and so is their epistemological power.

Here I have briefly outline Parker’s main claims. The problem is that it
is still not clear which are the reasons for considering the materiality of the
digital computer as the relevant player in the epistemology of computer
simulations. Let me put this concern in other terms. To my mind, Parker’s
motivations are to subvert the materiality argument by showing that
computer simulations and experiments are ontologically on a par (and so is
their epistemic power). This move, as I have argued, is grounded on a
rationale behind the same materiality argument that she is trying to
overthrown. The question, then, is what role does the materiality of the
digital computer play in the evaluation of the epistemic power of computer
simulation studies? Let me now reconstruct three interpretations of
Parker’s argument.

First, Parker takes the materiality of the digital computer to play some
relevant role in the interpretations of results (2009, 490). Under this
interpretation, hardware failure, round-off errors, and analogous sources of
miscalculation affect the results of the simulation in different ways. This is
true of computers and of computation, and it does not call for any special
terminology or treatment. It is then doubtful that Parker is grounding her
ontological claim on the fact that a digital computer is prone to errors that
might affect the final results.
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A second possible interpretation is that the system of interest is the
physical computer itself, regardless of the represented empirical system. In
this scenario, the researcher runs her simulations as usual, only paying
attention to the changes in the behavior of the physical computer. These
behavioral changes become the substance of the scientist’s inquiry,
whereas the target system is only regarded as the initial point of reference
for the construction of the simulation model. In this context, the researcher
learns first and foremost from collecting information on the properties of
the physical computer—the values in its memory and the colors on the
monitor (Parker 2009, 488).” If this is the correct interpretation, then it is
incumbent upon Parker to show that the scientist can cognitively access
the various physical states of the computer, something that she fails to do.
Philosophers have discussed whether it is possible to access different
locations inside a computer—the memory, the processor, the computer
bus, etc.—and the general agreement is that these are cognitively
inaccessible for the unaided human. There is a guiding principle of
epistemic opacity ascribed to computational process which rules out any
possibility of cognitively accessing the internal states of the physical
computer (see Humphreys 2004, 2009). Moreover, even if scientists could
actually access these locations (say, if they were aided by another
computer), it is still not clear why accessing these locations would be of
any relevance for the understanding the simulated phenomenon.

To my mind, neither of the above interpretations is correct. Rather,
Parker should be interpreted as taking the materiality of the digital
computer as playing the fundamental role of ‘bringing about’ the target
system (i.e., brings into causal existence the phenomenon simulated). In
other words, the behavioral changes that the scientist observes in the
physical computer are instantiations of the representations built into the
computer simulation.* Such representations are, naturally, representations
of a target system. In this way, the digital computer behaves as if it were
the empirical phenomenon simulated in the programmed computer. I refer

3 Eckhart Arnold (this volume, 50) interprets Parker in a similar way. As he puts it:
“the data of a simulation usually does not convey any information about the
computer on which it was produced, but only information about the simulated
system.”

* Note that appealing purely to the visual behavior of the machine is not enough for
claiming that computer simulation studies are ontologically on a par to
experiments. Moreover, Parker is clearly thinking of causal relations originating in
the machine: “The experimental system in a computer experiment is the
programmed digital computer (a physical system made of wire, plastic, etc.)”
(2009, 488-489).
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to this interpretation metaphorically as the ‘phenomenon in the machine.’
Let me now explore this possibility a little further.

No Phenomenon in the Machine

Parker’s main strategy consists in locating the notion of physical
causality in the digital computer, and assuming that the evolution of the
simulation (represented by the physical states of the digital computer)
corresponds to the physical evolution of the target system. In the same
vein, intervention in the computational system corresponds to intervention
in the target system. Taking this interpretation to be correct, I will now
object that there is a principle of multi-realizability in computer software
that prevents us relating the physical states of the computer with the target
system simulated. Unlike experiments, where the scientist assumes
consistency in the causal relations at work in the phenomenon, the
physical states of the computer are not constantly the same; rather, they
change with each run and for each type of computer architecture. It
follows that the physical computer cannot work as the basis for the target
system in the same way as materiality works as the basis of the
phenomenon.

Let me begin by pointing out some basic modes of operation of the
computer. The physical state of the computer is understood as the
electronic configuration that the computer has at a given time. Such a
configuration is provided by the state of the memory, the state of the
computer bus, the I/O devices, and of every other physical component of
the computer. Parker refers to this electronic configuration as the
materiality of the computer.

Now, Parker’s argument requires that a set of sufficiently similar
physical states of the digital computer is instantiated by the same computer
program. To put the same idea slightly different: a computer program must
instantiate sufficiently similar physical configuration of the digital
computer over each run of the program. This assumption must be met
otherwise Parker has no grounds for claiming for the epistemological
value of computer simulations (2009, 489). The misunderstanding from
Parker is that the physical states of the digital computer are rarely, if ever,
similar between multiple instantiations of the same computer program.
Indeed, the simulation is not the only process running on the digital
computer for it must share the digital computer with the operating system,
the processes in charge of running the physical machine, and other user
process. Moreover, with a computer processor switching back and forth
among all the processes that are running, the rate at which a process
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performs its computation is not uniform, and therefore not reproducible on
the same machine (Tanenbaum and Woodhull 2006, 56).

To illustrate this point, consider the unique case of one computer
program running once on the same machine. A general setup would be: let
P, be the logical state to which a computer program enters when running at
time z. In this sense, P, could be the if ... then clause, a loop, or simply an
instruction for printing out some data. Since the computer process is
implemented on the physical computer, P, instantiates the physical state of
the computer at time ¢, let us call it M,. Now, there is a unique mapping
relation from P, to M, described by F; which takes as its argument the state
of the computer program at time ¢ and matches it with the physical state of
the computer at the same time ¢ (Tanenbaum and Woodhull 2006, 56).

Consider now the situation where the same computer program is
executed on the same machine, although multiple times. This situation
looks very much like Figure 4-1. Using the previous notation: there exists
a P, such that, for each execution 1 <7 <» on M, and for each F;,, there
exists an Fj,, 1 <i<nandi#}, such that F;,# F;, and M;,# M;, . In other
words, if we run the same instruction on multiple occasions, the internal
behavior of the computer will be to create different mappings to different
physical states of the same machine.

If we were to draw an analogy with experiments, we would be
envisaging something along the following lines: intervention on the same
variables instantiates different causal relationships, despite which we
obtain the same set of results. This is an unacceptable consequence,
because it shows that it is impossible to identify one set of causal relations
that is consistent for a given phenomenon.

Figure 4-1: Program P at time ¢ running on multiple occasions on the same
machine M
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Similarly, if the same computer program is run on different physical
computers, there are no reasons for thinking that will instantiate the same
physical state across the different machines. This situation is illustrated in
Figure 4-2.
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Figure 4-2: Program P at time ¢ running on multiple machines M'"

In addition, it is a common practice to upgrade hardware by adding
new components, or to completely renew the architecture of the computer.
For this latter case, take M, as the machine i/ running at time ¢. Then M}
differs from M/, for all 1 <i,j <n, i # (see Figure 4-2).

With these ideas in mind, any attempt to recreate the ‘phenomenon in
the machine’ is fundamentally flawed for it contradicts basic principles of
computer architecture. As [ have said, however, this is only an
interpretation of Parker’s central thesis. Whether correct or not, it should
not affect our main claim that her account of computer simulation studies
follows the dictates of the materiality principle. This is the case because,
as I argued before, Parker takes it that the epistemology of computer
simulations is restricted to the conditions imposed by laboratory
experiments. The epistemological value of computer simulations is
established, therefore, by arguing that the ontology of simulations is
equivalent to the ontology of experiments.

Material ‘Stuff’ as Criterion

The idea of ‘material stuff as criterion’ is perhaps the most faithful
account of the materiality argument.” According to this view, there are

5 There is a generalized and, to my mind, imprudent use of the word ‘stuff’ in
current literature. In this section, however, I use it in the same context and in the
same sense as the authors.
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fundamental and irreconcilable ontological differences between computer
simulations and experiments, the latter being epistemically superior. There
are two versions of this account: a strong version and a weak version.

The strong version holds that the causal relations responsible for
bringing about the phenomenon must also be present in the experimental
setup. This means that the experiment must replicate the causal relations
present in the empirical system. According to the strong version, then, the
experiment is a ‘piece’ of the world.

Take as an example a beam of light used for understanding the nature
of the propagation of light. In such a case, the experimental setup is
identical to the target system; that is, it simply is the empirical system
under study. It follows that any manipulation of the experimental setup
does address the same causes as the phenomenon, and that an insight into
the nature of light can be delivered by our understanding of the controlled
experiment (i.e., the beam of light (Guala 2002)).

Applied to computer simulations, the strong version takes it that the
merely formal correspondence between the computer and the target system
provides a sufficient basis for downplaying their status as epistemic
devices. If there are no causal relations acting, then the epistemic power of
inferences thereby made about the world is conceptually downgraded.

The weak version, on the other hand, relaxes some of the conditions
imposed by the strong version on experimentation. According to this view,
a controlled experiment requires only the set of relevant causal relationships
that bring the phenomenon about. In this vein, the proponents of the weak
version do not commit themselves to a complete reproduction of the
phenomenon under study, as the strong version does, but rather to the set of
relevant causes that characterize the behavior of the phenomenon.

Let us illustrate the weaker version with a simple example: a ripple-
tank can be used as a material representation of light, thus providing
insight into its nature as a wave. To the proponent of the weaker version, it
is enough to have a representative collection of causal correspondences
between the experimental setup and the target system in order for the
former to provide some insight into the latter. The relation between the
experiment and the real-world phenomenon, then, is one of causal
similarity: a cloud chamber detects alpha and beta particles, just as a
Geiger counter can measure them. But neither instrument is a ‘piece’ of
the phenomenon under study nor fully interacts with all kinds of particles.
It follows that experimental practice, as exemplified by the detection and
measurement of particles, depends on a complex system of actual causal
relations between the experimental setup and the target system.
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Applied to the general evaluation of computer simulations, the weak
version presents a more complex and rich picture, which affords of
degrees of materiality being ascribed to computer simulations.

Despite these differences, however, both versions share the same
viewpoint regarding computer simulations; namely, that they are
epistemically inferior to experiments. This claim follows from the
ontological conceptualization previously depicted, and stems from the
same rationale as underlies the materiality principle. To show this, I
discuss arguments provided by two authors.

The Strong Version

Francesco Guala champions the defense of the strong version. He
assumes from the outset the existence of fundamental differences between
computer simulations and experiments grounded on causality.

The difference lies in the kind of relationship existing between, on the one
hand, an experimental and its target system, and, on the other, a simulating
and its target system. In the former case, the correspondence holds at a
‘deep’, ‘material’ level, whereas in the latter the similarity is admittedly
only ‘abstract’ and ‘formal’ [..] In a genuine experiment the same
‘material’ causes as those in the target system are at work; in a simulation
they are not, and the correspondence relation (of similarity or analogy) is
purely formal in character. (Guala 2002, 66-67)

Guala conceives the experiment as one that reproduces the causal
relations present in the phenomenon. The author emphasizes the changes
of materiality by appeal to the concepts of ‘same’ and ‘different stuff.” The
case of the ripple-tank is paradigmatic in this sense. According to Guala,
the media in which the waves travel are made of ‘different stuff’ (and
therefore so are the equations of force): while one medium is water, the
other is light. The ripple-tank, then, is a representation of the wave nature
of light only because there are similarities in the behavior at a very
abstract level (i.e., at the level of Maxwell’s equations, D’Alambert’s
wave equation, and Hook’s law). The two systems obey the same laws and
can be represented by the same set of equations, despite their being made
of “different stuff.” However, water waves are not light waves (2002, 66),
and a difference in the materiality presupposes a difference in the
epistemic insight into nature. Indeed, Guala straightforwardly admits that
the ontological difference between experiments and simulations grounds
epistemological differences (2002, 63). His loyalty to the materiality
principle is unquestionable: there is a clear distinction between what we
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can learn and understand by direct experimentation and what we can learn
by mediated simulation. The epistemic payoff of the latter is less than the
former, and this is because, on this view, there is an ontological
commitment to causality as epistemically superior that determines the
downplaying of the epistemology of computer simulations.

Let me now consider a few objections to Guala’s point of view. Parker
has objected that his position is too restrictive for experiments, as well as
for computer simulations (Parker 2009, 485). 1 agree with her on this
point. Guala’s conceptualization of experiments and computer simulations
imposes artificial restrictions on both that are difficult to back up with
examples in scientific practice. Moreover, and complementary to Parker’s
objection, I believe that Guala is adopting a perspective that takes both
activities as chronologically mutually exclusive: that is, the computer
simulation becomes a relevant tool when the experimentation cannot be
implemented. STRATAGEM, a computer simulation of stratigraphy,
provides us with an example here: when geologists are faced with
difficulties in carrying out controlled experiments about strata formation,
they appeal to computer simulations as the most efficacious replacement
(2002, 68).° Such a tendency towards a disjunctive assessment of the two
activities is a natural consequence of taking computer simulations to be
epistemically inferior to experimentation. In other words, it is a natural
consequence of adopting the materiality principle.

The Weak Version

For a proponent of the weak version, 1 turn to the work of Mary
Morgan. She has presented the richest and most exhaustive analysis
currently to be found in the literature regarding the differences between
experiments and computer simulations.

Morgan’s primary concern is with so-called vicarious experiments, that
is:

Experiments that involve elements of nonmateriality either in their objects
or in their interventions and that arise from combining the use of models
and experiments, a combination that has created a number of interesting
hybrid forms. (2003, 217)

% Guala allows that experiments and computer simulations are appropriate research
tools, knowledge-producers as he calls them, although only for different contexts
(2002, 70).
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Having thus set out the features of vicarious experiments, she then
turns to the question of how they provide an epistemic basis for empirical
inference. Briefly, the more ‘stuff’ is involved in the vicarious experiment,
the more epistemically reliable it becomes. In plain words, degrees of
materiality determine degrees of reliability. As Morgan comments: “on
grounds of inference, experiment remains the preferable mode of enquiry
because ontological equivalence provides epistemological power” (2005,
326).

Morgan thus adheres to the weak version, because a vicarious
experiment is characterized by different degrees of materiality, as opposed
to the strong version that holds that experiments must be a ‘piece’ of the
world. In terms of the materiality principle, however, there are no
fundamental differences between the two versions: she also considers
ontology to determine the epistemological value of computer simulations.
The difference lies, again, in the detailed analysis of the different kinds of
experiments involved in scientific practice. Let me now briefly address her
account.

As noted above, vicarious experiments can be classified according to
their degree of materiality; that is, the different degrees to which the
materiality of an object is present in the experimental setup. Table 4-1
summarizes four classes of experiments: Ideal laboratory experiment (also
referred as a material experiment), two kinds of hybrid experiments, and
finally mathematical model experiment. As the table indicates, the
classification is in terms of the kind of control exerted on the class of
experiment, the methods for demonstrating the reliability of the results
obtained, the degree of materiality, and the representativeness of each
class.

The first and last classes are already well known to us: an example of
an ideal laboratory experiment is the beam of light, for it requires effort by
the scientist to isolate the system, rigorous attention to the control of the
interfering circumstances, and intervention under these conditions of
control. An example of the mathematical model experiment, on the other
hand, would be the famous mathematical problem of the seven bridges of
Konigsberg; that is, a class of experiment whose control requirements are
achieved by simplifying assumptions, whose demonstration method is via
a deductive mathematical/logical method, and one whose materiality is, as
expected, inexistent (2003, 218).

Among the number of ways in which these two classes of experiment
differ, Morgan emphasizes those constraints imposed naturally via
physical causality, and those imposed artificially via assumptions:
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The agency of nature creates boundaries and constraints for the
experimenter. There are constraints in the mathematics of the model, too,
of course, but the critical point is whether the assumptions that are made
there happen to be the same as those of the situation being represented and
there is nothing in the mathematics itself to ensure that they are. (2003,
220)

Ideal lab Mathematical
experiment Hybrid experiments model experiment
Virtually Virtual
Controls on:
Inputs experimental experimental on assumed assumed
Intervention experimental inputs; assumed assumed assumed
Environment experimental on intervention assumed assumed

and environment

Demonstration experimental simulation: experimental/ deductive

method in laboratory mathematical using model object in model

Degree of materiality of:

Inputs material semimaterial nonmaterial mathematical
Intervention material nonmaterial nonmaterial mathematical
Outputs material nonmaterial non- or mathematical

pseudo-material

Representing representative of... representation of-..
and Inference ... to same in world ... back to other kinds of
Relations representative for... things in the world

... to similar in world

Table 4-1: Types of experiment: Ideal laboratory, hybrids, and
mathematical models with representing relations (Morgan, 2003, 231)

Hybrid experiments, meanwhile, can be conceived as experiments in-
between the other two: they are neither material nor mathematical.” The
class of virtually experiments, then, are understood as those “in which we
have nonmaterial experiments on (or with) semimaterial objects,” whereas
virtual experiments are those “in which we have nonmaterial experiments
but which may involve some kind of mimicking of material objects”

7 “By analyzing how these different kinds of hybrid experiments work, we can
suggest a taxonomy of hybrid things in between that include virtual experiments
(entirely nonmaterial in object of study and in intervention but which may involve
the mimicking of observations) and virtually experiments (almost a material
experiment by virtue of the virtually material object of input)” (2003, 232).
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(2003, 216). Table 4-1 again summarizes the properties of all four kinds of
vicarious experiments showing their representing and inference relations.

The differences between virtually and virtual experiments can be
illustrated with the example of a cow hipbone used as surrogate for the
internal structure of human bones. In this context, there are two
alternatives: one can use a high-quality 3-D image of the hipbone that
creates a detailed map of the bone structure, or, alternatively, a
computerized 3-D image of the stylized bone; that is, a computerized 3-D
grid representing the structure of the stylized bone. According to Morgan,
the 3-D image has a higher degree of verisimilitude to the structure of the
real hipbone because it is a more faithful representation of it, as opposed
to the mathematization represented by the computerized 3-D grid (2003,
230). The former is referred to as virtually an experiment, whereas the
latter are called virtual experiments.

What are the differences among the kinds of experiment? As
expounded in Table 4-1, whereas a virtually experiment is semi- or
nonmaterial, an ideal laboratory experiment is strictly material. Also the
demonstration methods are also significantly different. The distinction
between a virtual experiment and a mathematical model, on the other
hand, seems to be located solely in the method of demonstration, which is
experimental for the former and deductive for the latter. Morgan also
shows how models of stock market prices, despite being mathematical
models simulated on a computer, can also be classed as a virtual
experiment on account of the input data and the observation of results
(2003, 225). The boundaries between all four classes of experiment,
however, seem to be unfixed and dependent on factors external to the
experiment in question. For instance, if a 3-D grid of the cow bone makes
use of real measurements of the cow bone as input data, then what was
originally a virtual experiment becomes virtually an experiment.

The epistemological analysis, on the other hand, is a function of the
degree of materiality of the class of experiment: “ontological equivalence
provides epistemological power” (2005, 326), as Morgan indicates. Back
inference to the world from an experimental system can be better justified
when the experiment and the target system are of the same material. As
Morgan explains: “the ontology matters because it affects the power of
inference” (2005, 324). A computer simulation, for instance, cannot test
theoretical assumptions of the represented system because it has been
designed for delivering results consistent with built-in assumptions. A
laboratory experiment, on the other hand, has been explicitly designed for
letting the facts about the target system ‘talk’ by themselves. According to
Morgan, then, it is the material substratum underlying an experiment that
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is responsible for its epistemic power. Hence, the ideal laboratory
experiment is epistemically more powerful than a virtually experiment; in
turn, a virtually experiment is more powerful than a virtual experiment,
and so on. Since computer simulations can only be conceived as hybrid
experiments or as mathematical experiments, it follows that they are
always less epistemically powerful than ideal laboratory experiments. To
Morgan’s mind, therefore, there are degrees of materiality that determine
the degrees of epistemic power.

In this context, Morgan uses the terms surprise and confound to depict
the epistemic states of the scientist regarding the results of a computer
simulation and of a material experiment, respectively. Results of a
computer simulation can only surprise the scientist because its behavior
can be traced back to, and re-explained in terms of, the underlying model.
A material experiment, on the other hand, can surprise as well as confound
the scientist, for it can bring up new and unexpected patterns of behavior
inexplicable from the point of view of current theory (2005, 325; 2003,
219). The materiality of the experiment, then, works as the epistemic
guarantee that the results may be novel, as opposed to the simulation,
which takes results as capable of being explained in terms of the
underlying model.

This shows how Morgan’s ideas regarding experiments and computer
simulations bear the stamp of the materiality principle. It exhibits the same
rationale, putting materiality as the predominant feature for epistemic
evaluation. Despite Morgan’s strong emphasis on the place that materiality
has in the discovery of new phenomena, there are examples of virtual
experiments whose epistemic power is clearly superior to any ideal
laboratory experiment. Take as a simple example the dynamics of the
micro fracture of materials. It is virtually impossible to know anything
about micro fractures without the aid of computers. Indeed, only the
computational efficiency of finite element methods and multi-scale strong
discontinuity can tell us something about the micro fractures of materials
(Linder 2012). The lesson is that understanding something about the world
do not necessarily comes from material experiments, or from any degree
of materiality whatsoever. Neither a field experiment nor a high-definition
3-D image would provide the understanding about the dynamics of micro
fractures that can be provided by an accurate mathematical model. The
conclusion is that the rationale behind the materiality argument is once
more misdirecting us regarding the epistemic power of computer
simulations.
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Models as (Total) Mediators

The last account in my list is the one I called ‘models as (total)
mediators.” As the title suggests, this account is directly influenced by
Morgan and Morrison’s Models as Mediators (2009). Briefly, their book is
a defense of the mediating role of models in scientific practice. It
considers that scientific practice is neither driven by theories, nor is purely
about direct manipulation of Nature. Instead, scientific practice needs the
mediation of models in order to be successful in achieving its goals. A
theory, then, cannot be directly applied to the phenomenon, but only by
means of the mediation of a model; similarly, in experimental practice,
models render data from measurements and observations in a form that is
available for scientific use. In the following, I focus on the mediating role
of models in experimental practice, since the proponent of the models as
(total) mediators approach is more interested in analyzing computer
simulations in the light of experiments. I will thus leave the mediating role
of models in the context of theory unanalyzed.

Now, according to the proponent of the models as (total) mediators
account, experimental practice consists in obtaining, by manipulation of
the phenomenon, data that inform us about certain properties of interest.
This data, however, is in such a raw state that it is impossible to consider it
reliable or representative of the properties measured or observed. Rather,
for these raw data to be of any scientific use, it is necessary to further
process it by filtering out noise, correcting values, implementing error-
correcting techniques, and so forth. These correcting techniques are
conducted by theoretical models and, as such, are responsible for rendering
reliable data.

Scientific practice, then, is conceived as strongly mediated by models;
and scientific knowledge is no longer obtained uniquely by our
intervention into the world, but also by the conceptual mediation that the
model-world relation represents. In this vein, the epistemic analysis now
concerns the data filtered out, corrected, and refined by models, rather than
the raw data collected by directly manipulating Nature.

Computer simulations should easily fit into this new image of scientific
practice. One might think that since they are conceived as models
implemented on the digital computer, then their results must be data
produced by a reliable model in a straightforward sense. Unfortunately this
is not what the proponent of models as (total) mediators has in mind. To
them, it is correct to say that computer simulations are models running on
a digital computer, and it is also correct to say that there is no intervention
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into the world in the empiricist’s sense.® Nevertheless the data obtained by
running a simulation are ‘raw’ in the same sense as the data collected by a
scientific instrument.” The reason for this is that there are material features
of the target system that are being modeled into the simulation, and thus
represented in the final simulated data (Morrison 2009, 53). Simulated
data, then, need to be post-processed by a further theoretical model, just in
the same way as raw data. In other words, simulated data must also be
filtered, corrected, and refined by another set of models in order to
produce data that can be reliably used in scientific practice. Ontologically
speaking, then, there are no differences between data produced by a
scientific instrument and data produced by a computer simulation. In
addition, the proponent of this approach takes that there are no epistemic
differences between these two kinds of data either.

Let me now elaborate on these points by appealing to the work of
Margaret Morrison. In 2009, she published a fundamental contribution to
the debate on measurement in the context of computer simulations. In that
work, she claimed that certain types of computer simulations have the
same epistemic status as experimental measurements precisely because
both kinds of data are ontologically and epistemically comparable.

To illustrate this point, let us briefly consider her example of
measuring the force g.'® In an experimental measurement, Morrison
argues, a scientific instrument measures a physical property up to a certain
degree of precision, although such measurement will not necessarily
reflect an accurate value of that property. The difference between precision
and accuracy is of paramount importance for Morrison here: whereas the
former is related to the experimental practice of intervening in nature (or
computing the model in the simulation), the latter is related to the
mediation of models as rendering reliable data. In this context, a precise
measurement consists of a set of results wherein the degree of uncertainty
in the estimated value is relatively small (2009, 49); on the other hand, an
accurate measurement consists of a set of results that are close to the true
value of the measured physical property."’

8 I am using the term empiricists in a rather loose way. Here, I refer only to the
epistemic attitude of knowing the world by causally intervening or manipulating it.
% In order to keep these two notions of data separate, I will continue referring to
data collected by the scientific instrument as ‘raw data,” while I will refer to the
data obtained by running the computer simulation as ‘simulated data.’

1% Morrison also discusses the more sophisticated example of spin measurement
(2009, 51).

' The difference between precision and accuracy is framed by Franklin in the
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The distinction between these two concepts constitutes the cornerstone
of Morrison’s strategy: data collected from experimental instruments only
provide precise measurements of g, whereas reliable measurements must
first and foremost be accurate representations of the value measured. It is
in this context that Morrison considers that raw data must be post-
processed in the search for accuracy (for the particular case of measuring
g, Morrison proposes the ideal point pendulum as theoretical model).

From Morrison’s perspective, then, the reliability of the measured data
is a function of the level of accuracy, which depends on a theoretical
model rather than on the scientific instrument or on the computer
simulation.

The calculation generates a large amount of data which requires that they
be appropriately modelled in order to render them interpretable. Only by
doing that can we say that the computer experiment, like an ordinary
experiment, has measured a particular quantity. In both cases models are
crucial. And, just as in the pendulum example where we are interested in
both the precision and accuracy, similar concerns arise for simulation
where the precision of the machine and the behaviour of apparatus is
related to the observed properties of the microscopic system. (2009, 53)

Computer simulations, just like scientific instruments, share the same
fate of being precise but not accurate—for the latter, it is because of the
physical constraints related to manipulating the real world; for the former,
it is because of the fact that a computer simulation implements the
physical constraints of the target system as well as the physical constraints
of the machine itself (e.g., round-off errors, truncation errors, and so
forth). The precision/accuracy dichotomy, then, applies to computer
simulations just as it does to experimental measurement, making both
practices ontologically equal at the level of precise data, and epistemically
equal at the level of accurate data. The materiality argument is also present
here: equal ontology determines equal epistemology. And this was
precisely the intention behind Morrison’s analysis: “the connection
between models and measurement is what provides the basis for treating
certain types of simulations outputs as epistemically on a par with
experimental measurements, or indeed as measurements themselves”
(2009, 36).

following example: “a measurement of the speed of light, ¢ = (2.000000000 +
0.000000001) x 10" em/s is precise but inaccurate, while a measurement ¢ = (3.0
£ 0.1) x 10" cm/s is more accurate but has a lower precision” (Franklin 1981,
367nl).
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Thus interpreted, Morrison is applying a philosophy of modeling and
experimentation onto a philosophy of computer simulations. This is also a
consequence of following the materiality principle; that is, there is no
analysis provided of computer simulations in itself, but only in the light of
a more familiar philosophy. By making raw data and simulated data
ontologically equal, and the post-processing a further epistemic step,
Morrison is applying model techniques to computer simulations,
regardless of the particularities of the latter. With this move in mind,
Morrison also narrows down the class of computer simulations to those
that are used as measuring devices; and in doing so, she is narrowing
down the epistemic analysis to those simulations.

There is a further concern about Morrison’s argument. According to it,
simulated data need post-processing. The claim considers simulated data
as if they were not model data in a straightforward sense, but rather raw
data as obtained by experimentation. A computer simulation, however,
consists of a series of nested models that produce a final output, and
therefore the data produced by a simulation is already accurate as regards
the value measured. In this vein, there is no need to postulate any further
post-processing step, as Morrison does. However, let us accept for a
moment the argument that simulated data needs to be post-processed. If
this were the case, Morrison’s argument faces another challenge. Given
the fact that computer simulations produce vast amounts of data, arguing
for a separate correcting process such as post-processing begs the question
about a possible ‘computer regress’; that is, the need for another computer
model capable of processing the initial simulated data. This new computer
model would fix some inaccuracies in the original data, but would also
introduce new ones, since the same physical constraints apply to this new
processing stage. It then seems reasonable to be concerned about a
possible infinite regress of post-processing simulated data. To my mind,
there are no other motivations for thinking about post-processed simulated
data except for Morrison’s interest in analyzing computer simulations in
the light of scientific experimentation, which is an unnecessary
precondition for the epistemological analysis of computer simulations.

Conclusions

I have discussed three different views of how philosophers currently
understand the epistemological study of computer simulations. I have
shown that all three make use of the same rationale as the guide for their
argumentation. I called this rationale the materiality principle, and 1
conceptualize it as the philosophers’ commitment to an ontological
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account of computer simulations (and experimentation) that determines
the evaluation of their epistemic power.

The aim of this paper was to show that the materiality principle is a
rationale shared by many philosophers working on the epistemology of
computer simulations. It was also the aim of this paper to alert us to the
possible consequences of allowing the philosophical discussion to be so
diverted. In this vein, I have suggested that adapting our philosophical
investigations in line with the materiality principle might be placing a
conceptual corset on inquiries regarding the epistemology of computer
simulations. In this context, I distinguished three viewpoints that conform
to this rationale, and set out the various restrictions that they place on the
epistemological analysis of computer simulations.

The first two views were rejected on the grounds that they purport
internal inconsistencies in the conceptualizations of experiments and
computer simulations. The objection to the ‘identity of the algorithm’ is
that it makes implausible claims regarding the ontology of computing
machines; whereas the objection to the strong version of the ‘materiality
stuff as criterion’ is that misplaces the role of computer simulations in
scientific practice. I also claimed that the materiality principle is the
underlying motive for these inconsistencies. On the other hand, the weak
version of the ‘materiality stuff as criterion’ and the ‘models as (total)
mediators’ views are, to my mind, the most promising interpretations of
experimental as well as computational practice. However, as I showed,
neither account directly addresses the epistemology of computer
simulations. Rather, they reduce it to the epistemology of semi-material
experiments (weak version of the ‘materiality stuff as criterion’), or to
scientific modeling via measurement (‘models as (total) mediators”).

The conclusion is that philosophers who accept the materiality
principle are less likely to recognize what is distinctive about the
epistemology of computer simulations than those who do not. Of course, I
am not urging the adoption of an entirely new epistemology, enlightened
and guided by computer simulation, as Frigg and Reiss have proposed
(2009). My conclusion is more modest, and aims to encourage certain
changes in the philosophical inquiry on computer simulations. For
instance, Barberousse et al. (2009) have made a central contribution to the
notion of computer-simulated data, and Humphreys has followed their
work by analyzing the notion of data in more detail (this volume).
Nevertheless, more work needs to be done and, to my mind, it must begin
by reconsidering certain classic topics in the philosophy of science
through the lens of computer simulations. In this sense, a review of
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traditional notions of explanation, prediction, confirmation, evidence, and
the like might work as the starting point.

Evidently, there is a way of doing philosophy of science that is
strongly grounded on empirical inquiry exemplified by experimentation.
The guiding epistemic principle is that the ultimate source of knowledge is
given by interaction with and manipulation of the world. However, the
continuous success of computer simulations is calling these principles into
question: first, there is a growing tendency towards representing rather
than intervening into the world; second, computational methods are
pushing humans away from the center of the epistemological enterprise
(Humphreys 2009, 616). The philosophical inquiry on the epistemological
power of computer simulations has thus been misguided, for some
philosophers are still maintaining a false dichotomy between experiment
and computer simulation while ignoring the fact that scientific practice has
already transcended this division.
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CHAPTER FIVE

EXPLORATORY STRATEGIES:
EXPERIMENTS AND SIMULATIONS

Pio GARCIA AND MARISA VELASCO
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Introduction

The use of computer simulations in different scientific activities has
increased considerably in the last few years. However, philosophical
reflection on computer simulations is rather scarce, partly due to the
relative novelty of this type of activity, and partly due to complexity of the
subject. What aspects should be taken into account, and what perspectives
must be adopted for the investigation are among the most important
questions to ask when analyzing computer simulations from a
philosophical point of view.

In the present work, we suggest that an analysis based on exploratory
strategies can be used to illuminate and characterize epistemic and
methodological aspects of computer simulations. Putting the focus on the
exploratory strategies implies adopting a perspective that, albeit it is
relevant to the experiments and simulation analysis, is not limited to any
of these areas. Exploratory strategies can be found in very diverse
scientific practices. Notwithstanding, they can be used to underline
relevant philosophical aspects of experimental practices and computer
simulation practices alike. In this way, our proposal explicitly surpasses
the comparison between experiments and simulations, albeit we are
convinced that analyzing exploratory strategies in experiments and
simulations helps substantially in the elucidation of their methodological
and epistemological roles.

The elucidation of the role of the exploratory strategies in computer
simulations and experiments would contribute to the philosophy of both
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activities. Because the relation between computer simulation and
experimentation has been understood in a very different way by the
philosophical literature, a brief revision of some of the central issues will
be needed. In addition, philosophical literature on exploratory experiments
presupposes, although it rarely makes it explicit, an exploration notion that
we will briefly address in this article. It is important to note that in their
original contexts, both discussions have the pretension of drawing limits
between simulations and experiments or between exploratory experiments
and other experiments. On the contrary, as we repeatedly say in this paper,
instead of stipulating limits for each type of practice, we propose to
establish a ‘topology’ of the ways science tests, searches, and explores.
We organize our work in the following way. First, we will
schematically describe the way in which computer simulations are
compared with experiments to establish the differences with the
perspective defended in this paper. Second, we will address the distinction
between exploratory experiments and other types of experiments. We will
analyze exploratory strategies in experiments and simulations with the sole
purpose of making our argument clearer; it is also important to keep a
certain similarity to the way this matter has been questioned in philosophy.
However, in most scientific practices, boundaries are not so clear. More
than being a difficulty for the chosen cases, this seems to be the way in
which contemporary scientific activity is organized. We think this could
be an additional advantage of adopting the perspective of exploratory
strategies, because it is neither centered on the distinction between
experiment and simulation nor restricted only to experimental practices.

Philosophy of Computer Simulations:
Experiments and Simulations

Experiments have been compared to simulations taking into account
ontological and inferential aspects on one hand, and representative or
interventional aspects on the other. So, although there are many ways of
implementing a simulation on a computer, they can be characterized as a
sequence of time ordered states that represent another sequence of time
ordered states (Cfr. (Guala 2002), (Hartmann, 1996), (Parker, 2009)).
Representation and imitation seem to be the main concepts. On the other
hand, an experiment is usually characterized as an interventional activity.

A main concern in reflections on these subjects is usually the question
of the validity of the simulations or, in more general terms, their epistemic
credentials. At the same time, the discussion of ontological and epistemic
problems usually assumes a basic scheme: simulations are seen as systems
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characterized principally by some model that typically refers to another
system (usually called target system). In this way, the question about the
validity is set forth in terms of the relation between a given system and the
target system, as well as the possibility of generalizing these results or
connecting them to other systems. Accordingly, Francesco Guala (2002)
has proposed that the differences between an experiment and a simulation
can be understood by appealing to the type of justification of the
inferences that relate the different systems. The inferential link that can
relate the experimental result of a system A with the result of another
system B can be very strongly justified, according to Guala, if both
systems are operating under the same causes. Here one must suppose that
there is only an abstract and formal correspondence between a computer
simulation and a simulated system, while between an experiment and a
target system there usually is a correspondence at a deep level. In this
second case, the same causes should be operating in the experiment as
well as in the target system." A main concern in reflections on these
subjects is usually the question of the validity of the simulations or, in
more general terms, their epistemic credentials. At the same time, the
discussion of ontological and epistemic problems usually assumes a basic
scheme: simulations are seen as systems characterized mainly by some
model that typically refers to another system (usually called target
system). In this way, the question about the validity is set forth in terms of
the relation between a given system and the target system, as well as the
possibility of generalizing these results or connecting them to other
systems. Accordingly, Francesco Guala (2002) has proposed that the
differences between an experiment and a simulation can be understood by
appealing to the type of justification of the inferences that relate the
different systems. The inferential link that can relate the experimental
result of a system A with the result of another system B can be very
strongly justified, according to Guala, if both systems are operating under
the same causes. Here, one must assume that there is only an abstract and
formal correspondence between a computer simulation and a simulated
system, whereas between an experiment and a target system there is a
correspondence at a deep level. In this second case, the same causes

! Parker argues that Guala’s proposal is too restrictive in his experimental notion,
even though she accepts that Guala doesn’t mean to say all material causes are
relevant in this case, but only the ones that are ‘closer.” Well then, scientists that
are trying new drugs on mice are experimenting, even though the results on
humans later turn out to be different. Also, Guala’s proposal is very restrictive
when it refers to simulations, because it is too strong to say that there are ‘never’
common material causes. (Parker, 2009)
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should be operating in the experiment as well as in the target system.”
Gilbert Troitzsch (1999) also seems to implicitly presuppose the relation
between an experimental or computer system, on the one hand, and a
target system on the other. Such relation underlines the differences
between a simulation and an experiment, although it focuses on purely
interventional aspects. These authors point out that in the case of an
experiment one is handling a real object, while in a simulation if anything
is to be handled it is a model:

While in an experiment one is controlling the actual object of interest (for
example, in a chemistry experiment, the chemicals under investigation), in
a simulation one is experimenting with a model rather than the
phenomenon itself (Gilbert & Troitzsch, 1999, 14)

It is probable that the same type of intuition that is sustaining the
notion of materiality, or the correspondence on a deep level, is operating
behind the notion of the real object. Parker (2009) suggests that the notion
that must be considered is the one of relevant similarity, instead of the one
of materiality. As we have already said above, if a simulation is
understood as a representative system, an experiment is characterized as
“an investigative activity that involves intervening on a system in order to
see how properties of interest of the system change, if at all, in light of that
intervention” (Parker, 2009, 487). When a simulation is arranged on a
digital device we have a “computer simulation.” Although a computer
simulation is characterized in terms of representation, a “computer
simulation study” can be seen as an interventional activity inasmuch as
one requires “setting the state of the digital computer from which a
simulation will evolve, and triggering that evolution by starting the
computer program that generates the simulation” (Parker, 2009, 488).
Parker believes that this way of characterizing a “computer simulation
study” allows us to talk of an interventional activity and therefore of an
experiment, because the focus is not on the model but on a programmed
digital computer. Although Parker’s proposal seems interesting because it
tries to account for the difference between mere modeling and computer

% Parker argues that Guala’s proposal is too restrictive in his experimental notion,
even though she accepts that Guala doesn’t mean to say all material causes are
relevant in this case, but only the ones that are ‘closer.” Well then, scientists that
are trying new drugs on mice are experimenting, even though the results on
humans later turn out to be different. Also, Guala’s proposal is very restrictive
when it refers to simulations, because it is too strong to say that there are ‘never’
common material causes. (Parker, 2009)
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simulation, it does not appear that the sole act of pointing out an
interventional aspect is enough to qualify a “computer simulation study”
as an experiment in a relevant sense.

There are other philosophers, such as Winsberg (2009), that suggest
that instead of considering ontological aspects to distinguish experiments
from simulations, one must pay attention to the type of inference made and
the role taken by the background knowledge. In the case of simulations,
this background knowledge allows us to build models that can later be
taken as the object of investigation. Consequently:

When an investigation fundamentally requires, by way of relevant
background knowledge, possession of principles deemed reliable for
building models of the target systems, and the purported reliability of those
principles, such as it is, is used to justify using the object to stand in for the
target, when a belief in the adequacy of those principles is used to sanction
the external validity of the study, then the activity in question is a
simulation. Otherwise, it is an experiment. (Winsberg, 2009, 586)

In an analogous way of thinking, Morgan (2005; 2003) argues not only
about the material but also the inferential aspects of simulations.
Experiments and simulations should have different “epistemic power”: the
inferences on experimental systems can be better justified when the
experiment and the target system that the experiment refers to are made of
the same “stuff.” Morgan supposes that traditional experiments have
greater epistemic power than simulations because as long as the latter
depend completely on a model they cannot confuse or surprise scientists.
Here the notion of confusion is not taken in a psychological sense but in
an epistemic one: the phenomenon in question is somewhat “surprising” as
it cannot be accounted for with the available theoretical resources. Morgan
(2003) also points to the material aspect as discriminatory criteria, but now
between two types of experiments (material and non-material).
Simulations would be among the latter (non-material experiments). In fact,
one of the most interesting suggestions from these accounts is that the
usual situations in science are “hybrid” scenarios, where a clear distinction
between experiments and simulations are not easy to draw.

Taking a different perspective to the one we have quoted up to now,
Morrison (2009) emphasizes the functional dimension of simulations and
experiments. Somehow, she also tries to clarify the conception of
experiment by describing some experimental activities such as
measurements. This change in perspective allows her to argue about some
ways of creating a model with similar functions to a measuring instrument.
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In this sense, and for some cases, we could speak of simulations as
experimental measuring instruments.

Typically, by comparing experiments and simulations one tries to build
a philosophy of computer simulations based on ontological, inferential,
representational, interventional, or functional aspects. They could serve to
establish limits between experimental and simulative activities. However,
to some extent, ontological aspects could play an important role in the
comprehension of simulations. Beyond the intrinsic virtues of this way of
approaching simulations, our proposal can be taken as a move from
ontological to methodological and epistemological problems through the
consideration of exploratory strategies. In this sense, most of the ideas
quoted in this section allow us to underline differences with our
exploratory strategies proposal.

Considering that the notion of exploration has been mainly used in the
philosophy literature on experiments, in the following section we will
begin with this discussion to continue later with the notion of exploratory
strategy.

From Exploratory Experiments to Exploratory Strategies

The notion of exploration in science has not received a great deal of
attention in the philosophical literature. Nevertheless, among the diverse
proposals to classify scientific experiments it is possible to find reflections
about the role of exploration in science. The category of “exploratory
experiment” is quite common among the various experiment classifications.
In this way, the attempt to elucidate exploratory experiments presupposes
characterizations about exploration (for example, cf. (Burian, 2007);
(Elliott, 2007); (Franklin, 2005); (O’Malley, 2007); (Peschard, 2009);
(Steinle, 1997, 2002); (Waters, 2007)). Although we will show that the
diverse characterizations of exploratory experiments do not achieve
adequate discrimination of these experiments, the analysis of the different
proposals will allow us to show some of the characteristics of exploration.
However, these exploration characteristics would not be useful to do an
adequate taxonomy of the experiments; they will be the basis of our
characterization of “exploratory strategies.” In this sense, it is important to
remember that exploratory strategies are not specific to the exploratory
experiments, but they do constitute a relevant aspect of the best part of
scientific activity, including experimentation and scientific simulation.

It has been suggested that exploratory experiments can be understood
based on the contrast with experiments where the relevance of theory is
substantive. In most of the classifications, this is a distinctive feature.
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Franklin (2005), for instance, holds that exploratory experiments are the
ones scientists do without considering a particular theory. This concerns
the effects of their intervention on the values they are measuring. In a
similar way, Steinle suggests there are experimental designs that are
guided by theory (i.e. theory driven) and others which are not, the latter
being the exploratory experiments. Thus, exploratory experiments could
be characterized by their relative independence to strong theoretical
restrictions (Cf. (Franklin, 2005, 888); (Steinle, 1997, S69; 2002, 418)).

In the same sense, Steinle (1997) maintains that the standard
perspective on experimentation typically considers those cases that are
theory driven as the only type of experimentation. Accordingly, experimental
activity is understood in terms of: “a theory that led to expecting a certain
effect; the expectation led to designing and conducting an experiment; and
the success of experiment counted as support for the theory” (Steinle,
2002, 418). However, from this author’s perspective, exploratory
experimentation “typically takes place in those periods of scientific
development in which — for whatever reasons — no well-formed theory or
even no conceptual framework is available or regarded as reliable”
(Steinle, 1997, S71). Even those authors that do not explicitly uphold this
idea seem to keep this way of understanding exploratory experiments in
mind, inasmuch as they choose examples from the initial stages of
scientific disciplines.

However, the related literature, which sees the discriminatory criteria
in the theoretical guide, also underlines other aspects that are important for
characterization, such as the purpose of these experiments, their use or the
experimenter’s expectations. For example, the variety of epistemic goals
present in the exploratory experiments becomes relevant:

The contrast of exploratory experimentation to the theory-driven type, as
understood as the standard view, is not only visible in the different
epistemic goals (search for regularities vs. test of expectations), but also in
the character of the guidelines of the experimental activity. (Steinle, 2002,
422)

Likewise, we must remark that the exploratory experiments are not
circumscribed to a particular historical or theoretical context:

(...) exploratory experimentation is not so much bound to certain historical
periods, fields of research, or scientific traditions, but first and foremost to
specific epistemic situations: those situations namely in which, for reasons
whatsoever, the very concepts by which a certain field is treated have been
destabilized and become open for revision. Situations in which theories
and well-formed expectations are tested, in contrast, require a well-



106 Chapter Five

elaborated conceptualization, a stable language by which the expectation
can be expressed in the first place. Exploratory and theory-driven
experimentation are connected to different constellations and situations of
our knowledge, to different regimes of stability on a conceptual level.
(Steinle, 2002, 425-426)

Finally, some philosophers underline the relation between the
experimental activity’s purposes and its results:

Roughly speaking, the aim of exploratory experiments is to generate
significant findings about phenomena without appealing to a theory about
these phenomena for the purpose of focusing experimental attention on a
limited range of possible findings. The findings might be significant with
respect to a variety of goals ranging from the practical goal to learn how to
manipulate a phenomenon to the theoretical goal to develop a conceptual
framework that will help focus future experimental attention. (Waters,
2007, 5)

It is important to note that the previous three quotations correspond to
authors that defend the theoretical dependency criteria for the distinction
of exploratory experiments. However, in all three one can notice that other
characteristics are the ones that stand out in this type of experiments.

When exploration is taken as a distinctive characteristic of some
experiments, it does not appear to be adequately characterized by its
dependency on the theory. In fact, whoever tries to defend this idea should
be able to explain the different levels of theory involved in an experiment,
and determine which of these levels is or are relevant to the “theoretical
guidance.”

To say that an experiment is guided by a theory means that the
expectations regarding its results are theoretical, or that the design of the
experiment depends on a theory, or that the instruments used are theory
dependent, etc. It is possible that a large part of the difficulty of the
characterization, in terms of theoretical dependence of the exploratory
experiments, is due to the lack of a sophisticated notion of theory and of
levels of theory involved in the design, execution, and analysis of
experimental results.’ However, the perspective of the dependency to
theory, even when attention has been paid to the previous observation,
does not reflect important epistemological and methodological aspects of
exploration in science.

A first approach to the different types and levels of theory involved in an
experiment can be found in (Hacking, 1992).
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In this sense, Steinle himself states that in exploratory experiments we
can distinguish the following activities as typical methodological
practices:

Varying a large number of different experimental parameters,

e  Determining which of the different experimental conditions are
indispensable, which are only modifying,
Looking for stable empirical rules,

e Finding appropriate representations by means of which those rules
can be formulated,

e Forming experimental arrangements that involve only the
indispensable conditions, thus presenting the rule in particular
clarity. Those experiments are typically characterized as “simple,”
“elementary,” or “pure case” (Steinle, 1997, S70).

One of the activities pointed out as typical in an exploratory
experiment is the variation of parameters. This is usually a regular
procedure in experiments, not only exploratory but also in general. The
variation of parameters can be done with different aims in mind: from the
calibration of a measuring instrument to the intention of obtaining some
empirical regularity. Now, the purpose of an experiment can turn the
variation of parameters into an exploratory experiment even though it is
carried out under strong theoretical restrictions. This makes one believe
that an exploratory experiment is best characterized by its purpose rather
than by its particular relation to theoretical aspects. This relationship with
theory can only be understood if no qualification appears as an inadequate
characterization.

In addition, emphasizing the aims and the roles of the experiments
helps us to distinguish between exploratory strategies that not only form
part of exploratory experiments but also of experiments with different
purposes, such as hypothesis confirmation. This point seems relevant for
different reasons. In the analysis of cases that usually accompanies the
characterization of exploratory experiments, there is confusion between
what we could call the exploratory experiment typology and the searching
and exploring strategies. However, it seems clear that there are exploring
strategies belonging to non-exploratory experiments, as they are also part
of other non-experimental scientific practices.

Yet, it is necessary to point out that search strategies or exploratory
restrictions do not seem to be the defining feature of exploratory
experiments. However, their consideration allows a more adequate
description of certain aspects of scientific and experimental practices in
particular.



108 Chapter Five

Exploratory Strategies in Scientific Practices

We organize this section in the following way: first, we will make
explicit what we understand as an exploratory strategy; then we will show
some examples that will permit us to contextualize our proposal. Finally,
we will analyze some cases regarding exploratory experiments presented
by the literature to show the advantages of our proposal. In particular, we
will show how adopting the point of view of the exploratory strategy leads
to a more direct relationship with computer simulations.

In this paper, we will consider any activity or resource that allows us to
do an exploration as an ‘“exploratory strategy.” These activities or
resources can be very different, but as long as they perform the function of
allowing us to question, search, probe, or explore, we will call them
“exploratory strategies.” It is important not to restrict the notion of a
strategy by setting rules or any other structure implying a procedure. The
relevance of this point will become evident in the following paragraphs as
we present the ways in which exploratory strategies can be instantiated.

A first way of characterizing exploratory strategies is in terms of what
they are looking for (what they explore), the way in which they do this
operation (how they explore) and to what end they are doing it (what they
explore for).

A second way of characterizing exploratory strategies would be paying
attention to the structure of the search —or, if you prefer, to the restrictions
in the “searcher”— and the structure of the media in which one is searching
—the restrictions in the search space. We could have searches with few
restrictions — for them to be as adequate as possible — or searches with
strongly selective criteria. This way of understanding exploratory
strategies can be instantiated as searching rules or heuristics. The structure
of the searching rule will let us account for part of the restrictive capacity
of the exploratory strategy. We can call this way of understanding
exploratory strategies as ‘type 1. We can also explore using judicious
construction of an exploration space or by limiting the size of this space.
This way of understanding exploratory strategies we will call ‘type 2’
strategies. We are using, although in an indirect way, the metaphor that
distinguishes between the search strategy and the space where the strategy
takes place. In the same way that we talk of restrictions in the type 1
strategies, we can suppose that the space structure involves, among other
things, graduating the restrictions. One could argue that the distinction
between type 1 and type 2 strategies is not genuine because type 2
strategies can be rewritten in terms of type 1. Although in principle it
seems possible to do this rewriting task and eventually reduce one type to
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the other, this perspective does not look adequate when we are trying to
account for epistemic and methodical aspects associated to the description
of scientific practices. In this ‘reduction’ task, the specific ways in which
the exploration is being done, within the simulations or the experiments,
would not be adequately shown.

Before continuing, let us see some examples that help put our
discussion in context. The first case involves the so-called combinatory
chemistry and high-throughput screening. Combination chemistry can be
described, in very general and schematic terms, by methods associated
with combinatory synthesis and high-throughput screening. According to
Valerie Gillet, an investigator in this area, combinatory chemistry “refers
to the synthesis of large numbers of compounds in parallel where product
molecules are formed as combinations of available reagents or buildings
blocks” (Andrew R. Leach & Gillet, 2007, 617). High-throughput
screening “is an automated process whereby a large number of compounds
(104 — 105) are rapidly scree