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INTRODUCTION 

 
 
 

William Aspray recorded the first use of computers for scientific usage 
between 1952 and 1957. By June of 1952, the IAS computer was finished 
and ready to be tested; although it needed some extra months for repair 
and general maintenance, the major issue for the team of scientists and 
engineers was to understand the new instrument. The digital computer, 
built and designed on solid theoretical foundations, presented a significant 
challenge; namely, it was necessary to dedicate some extra time to learn 
the operation of the machine, identify appropriate algorithms, and 
determine the range of mathematical applications within the computer’s 
capacity (1990, 155). By the time the computer became a more 
knowledgeable and reliable instrument, scientists and engineers began to 
use it with great success in specific scientific applications. By 1954, the 
calculation of the energy band structure of iron that would test the theory 
of ferromagnetism became the first scientific application to run on a digital 
computer (1990, 159). 

In the years following 1954, the digital computer proved to be a 
fundamental tool for the development and advancement of scientific 
understanding. Today, despite their short history, computers are leaving an 
indelible mark on numerous and disparate scientific disciplines such as 
particle physics, astronomy, behavioral science, psychology, sociology, 
and economics. Arguably, there is virtually no scientific discipline that has 
not been involved, in one way or another, with the digital computer. This 
durable presence extends widely along the uses and needs of scientific 
practice. For instance, the numerical experiment of calculating the energy 
band structure of iron qualifies, in contemporary parlance, as a computer 
simulation. The main topic of this book is precisely to address the uses of 
and needs for computer simulations in contemporary scientific practice. In 
this context, computer simulations are discussed from a philosophical, 
historical, and scientific point of view. 

Nowadays, there is a renewed interest in understanding the role that 
computer simulations play in scientific practice. Do computer simulations 
belong with the calculator and the test tube, or do they belong higher in the 
epistemic hierarchy, closer to theories and experiments? Are they just 
scientific models implemented on the digital computer, or do they 
represent a novel way of doing science? Given the centrality of the issue, it 
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is not surprising to find that there have been many attempts to theorize 
about the nature of computer simulations as experimental devices. 
Admittedly, these questions have been around for quite some time. As 
early as 1967, Naylor, Burdick and Sasser, define a computer simulation 
as: 

 
A numerical technique for conducting experiments with certain types of 
mathematical and logical models describing the behavior of an economic 
system on a digital computer over extended periods of time (…) The 
principal difference between a simulation experiment and a ‘real world’ 
experiment is that with simulation the experiment is conducted with a 
model of the economic system rather than with the actual economic system 
itself (1967, 1316). 
 
It is astonishing to note the similarity of this quotation with more 

contemporary literature on the topic. Current philosophical inquiry also 
engages in similar efforts, such as distinguishing between a computer 
simulation and a ‘real world’ experiment, or exploring the methodological 
implications of implementing a scientific model as a computer simulation.  

Yet, despite these few similarities, much of the contemporary 
philosophical investigation is simply not the same as in the late 1960s. 
From a historical perspective, the introduction of silicon based circuits, 
and the subsequent standardization of the circuit board significantly helped 
the industry and the growth in the computational power of computers. 
Such growth in speed of calculation, size of memory, or the number of 
programming languages forcefully challenged the established ideas and 
encouraged the seeking of new questions and answers. 

One of the leading questions on this issue has been whether computer 
simulations stand for a new way of conducting scientific practices, or if 
they simply represent another computational method subsidiary of 
experimentation. The work of Rohrlich (1990) sets the grounds in this 
direction. He argues, computer simulations do provide a qualitatively new 
methodology for the physical sciences, lying somewhere intermediate 
between theoretical physics and empirical methods of experimentation.  

However, Frigg and Reiss (2009) deliver the most pressing contemporary 
discussion on the philosophical relevance of computer simulations. The 
authors understand computer simulations in the context of the philosophy 
of models and, as such, with no significant distinctions from other uses of 
modeling in experimental practice. Humphreys (2009) answers their 
skepticism by indicating that the way the argument is presented is 
misleading, for it illuminates only computer simulations from the 
perspective of a philosophy of models. To Humphreys’ mind, computer 
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simulations raise questions that cannot be answered by a familiar 
philosophy, but rather need to be addressed at face value.  

Beyond the specific contribution that this discussion can offer to the 
philosophical study of computer simulations, there is general agreement 
that computer simulations raise important questions for the general 
philosophy of science. One interesting example is the search for general 
criteria that distinguish computer simulations from experiments. Such a 
search has ramifications on studies about the epistemic power of computer 
simulations, the ontological and epistemological status of simulation data, 
the importance of new methodologies involved in the design and building 
of a computer simulation, and similar questions.  

From September 21st to September 23rd 2011, the interdisciplinary 
workshop “Computer Simulations and the Changing Face of Scientific 
Experimentation,” sponsored by the University of Stuttgart and the 
Stuttgart Research Center for Simulation Technology (SRC SimTech), 
brought together philosophers, historians, sociologists, and scientists into a 
common discussion with the purpose of revisiting some of the questions 
here mentioned, and addressing the new challenges that computer 
simulations pose to scientific practice.  

We have divided this book into three mutually related parts. Part One 
(Theory) is dedicated to the theoretical understanding of the relation 
between simulations and experiments in the current philosophy of science. 
Part Two (Practice) fleshes out some of the theoretical conceptualizations 
presented in Part One by illustrating case studies from current scientific 
research on computer simulations. These case studies highlight the shift 
from experiments to computer simulations that is observed in current 
scientific practice, and describe the patterns of interaction between 
simulation methods and experimental methods in current scientific 
research. Part Three (History) broadens the perspective by offering case 
studies on the historical development of “computer experiments” as a 
research method. 

 
The first part of the book is dedicated to the diversity of views among 

philosophers regarding existing distinctions between computer simulations 
and experiments, the epistemic power of computer simulations, and the 
new methodologies that they represent. 

In the first contribution (“What Are Data About?”), Paul Humphreys 
calls our attention to the discussion about the status of data produced by a 
computer simulation. His paper focuses on the content of data produced, 
instead of the source that produces such data. According to the author, the 
origins and modes of production of these data show that the empiricist 
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point of view is no longer an attainable position in the philosophy of 
science. This argument derives its force from what the author calls ‘causal-
computational instruments’; that is, an instrument that relies on a causal 
process that links the data source in nature with the measurement, but that 
also requires further post-processing for rendering reliable data. In 
Humphrey’s mind, then, such causal-computational instruments cannot be 
interpreted in the same way as Hacking discusses microscopes, where a 
realist interpretation of the images is justified by the independent access to 
the same phenomenon through different observational instruments. The 
decisive point here is that the data delivered by a causal-computational 
instrument, like a CT scan, are the result of deliberate engineering. 
Depending on the particular purpose, say, whether the data is meant to be 
“read” by a human agent or further processed in the computer, the 
appearance of the engineered data may differ considerably. In order to 
determine its representational content, it is therefore central to take into 
account the origin of the data as well as the engineering steps by which it 
is formed (and transformed). Causal-computational instruments, then, pose 
a significant challenge for philosophers interested in traditional problems 
of empiricism, realism, and the notion of data. 

If Humphreys reminds us that there is a considerable amount of 
engineering involved in the production of the empirical data by causal-
computational instruments, Anounk Barberousse and Marion Vorms 
(“Computer Simulations and Empirical Data”) attack the problem from the 
opposite side; that is, by examining whether the data produced by a 
genuine computer simulation can, with any good reason, be considered 
empirical data. Starting from the assumption that empirical data are about 
physical systems, Barberousse and Vorms challenge the opinion that the 
data produced by computer simulations cannot be new or surprising. It is 
frequently assumed that computer simulations, because they rely heavily 
on pre-existing theoretical background knowledge of the simulated 
objects, are less capable of producing genuinely novel and surprising 
insights about their target system than observations or traditional 
experimentation. The authors support the claim that this assertion is 
mistaken with the example of computer simulations of deterministic 
chaos. 

While this conclusion emphasizes the capacity of computer simulations 
to produce empirical data that are as novel and surprising as that of 
experiments or observations, Eckhart Arnold points out the differences 
that remain between simulations and experiments as scientific methods 
(“Experiment and Simulations: Do They Fuse?”). Most notably, he argues 
that the results produced by computer simulations cannot go beyond what 
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lies in the deductive closure of their premises. According to Arnold, a 
simulation, unlike a material experiment, cannot be employed as an 
experimentum crucis. The chapter therefore contains an elaborated criticism 
of some, in Arnold’s opinion, misguided philosophical conceptualizations 
of computer simulations. With respect to the borderline between simulations 
and experiments, however, one question remains that is not so easily 
dismissed: How can a measurement that involves the computational 
refinement of its data properly be distinguished from a computer 
simulation that makes use of input data of empirical origin? To this 
question, Arnold gives a tentative answer based on the measuring a cause 
by its effect pattern, a pattern that is typical for many traditional 
measurement methods already. 

The contribution by Juan M. Durán (“The Use of the ‘Materiality 
Argument’ in the Literature on Computer Simulations”) continues the 
discussion on the differences between computer simulations and 
experiments, but this time from a meta-critical point of view. Durán’s main 
concern is to unpack the underlying rationale that has been guiding the 
argumentation in current literature. By addressing the so-called “materiality 
argument” present in three different conceptualizations, the author shows 
that there is a common argumentative structure that inevitably shapes the 
final epistemological evaluation of computer simulations. Specifically, 
Durán presents what he calls ‘the materiality aftermath,’ a meta-criticism 
that exposes the rationale underlying the arguments in the current literature 
on simulations. In the author’s mind, ‘the materiality aftermath’ is the 
result of the philosopher’s ontological commitment to computer simulations, 
from which epistemological consequences are drawn. The author believes 
that adapting the philosophical investigation to this rationale leads to a 
conceptual corset in the inquiry of the epistemology of computer 
simulations. Durán’s conclusion is sober, and aims at endorsing the 
philosophical investigation on computer simulations as neither restricted 
by, nor limited to, ontological commitments, but rather addressed at face 
value.  

The contribution by Pío García and Marisa Velasco (“Exploratory 
Strategies: Experiments and Simulations”) turns the discussion to a notion 
of ‘exploratory strategy’ applicable to computer simulations. Particularly, 
the authors analyze exploratory strategies in experiments and computer 
simulations, and elucidate the methodological and epistemological role in 
both domains. Their proposal, then, consists first in drawing some 
distinctions between computer simulations and experiments. Second, the 
authors make explicit the concept of ‘exploratory strategy,’ establishing a 
further distinction between exploratory experiments and other types of 
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experiments. This second step allows them to present their own proposal 
as a different way to approach the epistemic and methodological aspects of 
scientific practices, particularly, computer simulations. Some relevant 
cases of experimental and simulation activity are considered in the context 
of ‘exploratory strategies.’ 

 
In the second part of the book, the focus is shifted from the abstract 

and theoretical philosophical discussion to the analysis of concrete 
examples. The first of these papers is the study of simulations of cardiac 
electro-physiology by Annamaria Carusi, Blanca Rodriguez and Kevin 
Burrage (“Model Systems in Computational System Biology”). Their case 
study concerns multi-scale models of cardiac electro-physiology. These 
models represent a challenge from a technical as well as a philosophical 
point of view. Defying any sharp distinction between simulations and 
experiments, the authors claim that “the basic unit of analysis when 
considering questions of the validation and epistemic warrant of 
computational methods in systems biology” is the model-simulation-
experiment-system (MSE). In particular, the target system cannot be 
understood simply as a given reality, rather it is co-constructed with the 
MSE system. The construction of the target domain is inevitable because 
the validation data need to be comparable to the MSE system. However, 
the term ‘construction’ must not be misunderstood as implying a 
relativistic understanding of science in this context. The validation 
experiments remain independent in the sense that they do not make use of 
any data that have been used for model construction. 

Anne Marcovich and Terry Shinn’s contribution (“Computer Simulation 
and the Growth of Nanoscale Research in Biology”) explores three links 
between computer simulations and nanobiology research. First, they show 
that there is a correlation between nano-related biology publications in the 
early 1990s and the introduction of computer simulations in scientific 
practice. Second, computer based research contributes to the cognition of 
nanobiology through the creation, organization, and consultation of 
databases. Finally, the authors show that “simulation molecular graphics 
generate images that are informationally and analytically rich, and that 
offer a fundamental input into novel forms of epistemology.” Their 
contribution shows not only how the academic agenda is strongly driven 
by the introduction of new technologies, but also how computer 
simulations can provide a genuine understanding of their simulated target 
system, requiring a novel form of epistemology. 

In their contribution, Lucía Ayala and Jaime Forero-Romero 
(“Computer Simulations in a Cosmological Context”) discuss the case of 
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testing hypotheses in cosmology. Physical cosmology represents a special 
case in the natural sciences with regard to the available methods for testing 
a hypothesis. Since direct experiments are excluded, observations and 
simulations must carry out this testing function. In their contribution, the 
authors discuss the special case of numerical simulations as an essential 
tool for understanding the observed large-scale structures in the Universe. 
This discussion is followed by a description of the limitations of 
simulations in understanding such large-scale structures. For instance, the 
physical nature of computer simulations becomes a limitation. As the 
authors point out, time, data storage, and data transfer rates are restricted. 
Ultimately, theory, observations, and simulations work together and, with 
their different potentials and limitations, mutually complement each other 
in contemporary astronomy. 

Muniza Rehman traces the latest developments in the use of 
simulations and experiments in the pharmaceutical industry (“Experimentation 
and Simulations in the Pharmaceutical Industry”). Rehman places 
simulations between traditional experimentation and theoretical accounts. 
To the author’s mind, two kinds of simulation studies are common in the 
pharmaceutical industry: Computer-assisted trial designs (CATD) and 
computer-simulated clinical trials (CSCT). The former are employed to 
study the experimental design of clinical studies, before they are 
conducted. The latter are used to estimate the outcome of clinical trials, 
potentially rendering some of these trials unnecessary and thus reducing 
the number of clinical trials that actually have to be conducted. Some 
philosophers have disputed that simulations provide a true novelty over 
traditional modes of modeling and theoretical exploration. Nevertheless, 
given how strongly the use of computer simulations has affected the 
practice of drug testing in the pharmaceutical industry, Rehman concludes 
that from this perspective simulations are indeed a sui generis activity in a 
Humphreyan sense. 

 
The third and last part completes the book with historical case studies. 

Wolfgang Brand (“Designing the Membrane Roof of the Munich Olympic 
Stadium using Supercomputers”) presents a historical case study of the 
deployment of the first supercomputers in architecture and civil 
engineering. The events around the design of the tent-shaped membrane 
roof of the Munich Olympic Stadium for the 1972 Olympic Games 
demonstrates how physical models of constructions enable technologies 
for the construction of naturally shaped buildings. It is argued that the 
1960s mark the period in which the usage of high performance computers 
triggered the change toward architectural design processes. The technology 
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available had already reached a state where model building was no longer 
necessary. It is shown how two groups using different methods on the 
same computing infrastructure designed the roofs inspired by the ideas of 
Frei Otto. They developed wide-spanning lightweight structures consisting 
of pre-stressed cable nets covered by transparent tiles. The group of John 
H. Argyris relied on the Finite Element Method, which he co-invented. 
While another group headed by Klaus Linkwitz used least-square fitting 
and developed the new Force Density Method, all influenced by geodesic 
methods. Both attempts were successful and led to the landmark Olympic 
Stadium in Munich, as we know it today.  

A somewhat different perspective on simulations is introduced by 
Michael Resch (“What’s the Result? Thoughts of a Center Director on 
Simulations”). As head of the high-performance computing center in 
Stuttgart, Resch addresses the technological procedures (and their 
limitations) by which simulations are implemented and executed on the 
computer. In this respect, Resch proposes an addition to Winsberg's (2010) 
layered model of simulations, which also includes numerical schemes, 
program structures, programming models, and hardware architectures. All 
of these influence the capabilities as well as the limitations of the 
simulation approach. Resch, then, embeds his ‘prototypical workflow’ into 
a broad philosophical perspective, covering the question of verification 
and validation, as well as the need for rendering simulation results 
comprehensible to human beings. The latter issue does not only concern 
the specialist user of simulations, but also is of interest for society –as the 
example of climate simulations may illustrate. 

  
We hope that readers from different humanistic and scientific fields 

that concern themselves with computer simulations find the broad 
perspective of our book useful. The editors would like to thank the 
University of Stuttgart and the SRC SimTech for financial support that 
made the workshop possible. This book is a publication of the papers 
presented at that workshop. We are in debt to the participants for making 
the workshop a successful event. Most of all, we would also like to thank 
all the authors that, with their excellent contributions, made this book 
possible. 

 
Juan M. Durán and Eckhart Arnold 
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PART I: 

THEORY 



CHAPTER ONE 

WHAT ARE DATA ABOUT? 

PAUL W. HUMPHREYS 
UNIVERSITY OF VIRGINIA 

 
 
 
Empiricism is no longer a tenable position in the philosophy of 

science. As a result, it is worth examining what it was that made 
empiricism such an attractive position for so long and if anything valuable 
can be salvaged from that tradition. The debates about empiricism usually 
contrasted knowledge obtained from observation and experiment on the 
one hand with knowledge obtained from theories on the other. Because 
computer simulations are firmly entrenched as a third mode of pursuing 
scientific inquiry, one way to explore what made empiricism important is 
by contrasting data that are provided by experiments and observations 
with data that are generated by computer simulations. In doing so, my 
paper will indirectly address one of the original philosophical issues about 
computer simulations: in what ways, if at all, do computer simulations 
differ from scientific theories on the one hand and experiments on the 
other?1 Early in the discussions, claims were made that simulations had 
some kind of intermediate status between theory and experiment, while 
also standing as sui generis methods. More recently, claims have been 
made that simulations can be used in place of material experiments under 
certain circumstances.2 Although it is true that there are similarities 
between certain aspects of simulations and experiments, pointing out 
analogies between laboratory experiments and computer simulations, such 
as the ability to manipulate variables and control for confounders, do not 
address one of the central epistemological questions that arise once 

                                                 
1 This issue was present almost from the inception of computer simulations. 
Explicit attitudes towards it can be found in (Ord-Smith and Stephenson, 1975, 3), 
(Rohrlich, 1991), (Humphreys, 1994). 
2 See Norton and Suppe (2001), Winsberg (2003), Parker (2009).  
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simulations are brought into the picture. This question is: Are the data 
produced by computer simulations different in kind and in content from 
experimental and observational data, and from data generated by 
traditional scientific or mathematical theories? If we have reasons to agree 
that they are different in a scientifically relevant way, then that is one 
dimension along which simulations occupy a distinct scientific niche. 
Empiricists have usually treated the issue of the empirical source of data 
within a methodological context such as confirmation, verification, or 
falsification. I shall focus instead on content. One important question is 
this: what is it for a datum to have empirical content?3 An answer to that 
question is provided in (Humphreys forthcoming); here we can make 
additional progress by addressing a related question: what are various 
kinds of data about? 

What are Data? 
In order to remain as ontological neutral as possible about data, I take a 

datum to be the value of a variable. The term ‘variable’ will be used here 
in a way that is neutral between items such as a mathematical function that 
represents a property and the property itself.4 This dual use carries with it 
certain dangers because the role of representations in computer 
simulations is crucial, but where appropriate I shall explicitly note which 
use is in play. The variable can be scalar and discrete valued, which covers 
situations in which the datum concerns a qualitative monadic property 
such as “is red,” or it can be vector and continuous valued, capturing 
relational features such as “has velocity v with respect to frame F.” Other 
possibilities can be accommodated. I shall not distinguish between atomic 
and non-atomic data because nothing that follows depends upon making 
that distinction. Finally, although the expression “data” often carries the 
force of something given, something fundamental, those connotations 
must be rejected. Data can be the result of processing, transformations, 
and interpretation, and we can and often do question the data.5  

                                                 
3 There are other epistemological issues about simulations and experiments 
including: 1) the a priori versus the a posteriori content of data from each, 2) the 
empirical versus the formal content of data from each, and 3) the relative rates of 
reliability as truth generators for data from each.   
4 The variable can be purely formal and hence represent nothing. 
5 The distinction between data and phenomena drawn in Bogen and Woodward 
(1988) and other papers is compatible with the definition of a datum given here, 
although their emphasis on the causal production of data perhaps indicates a 
narrower use of the term “data” than is considered here. 
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Data can be assessed on their own terms, without regard for what 
generated them and an important aspect of our definition is that it does not 
mention the origins of a datum, allowing data to originate from 
computational processes, from experiments, from theory, and perhaps 
other sources. Yet, if we are to address the question of what the data are 
about we must solve the inverse inference problem. The inverse inference 
problem consists in making, and providing a justification for, an inference 
from the data to its source. In the debates between scientific realists and 
empiricists, the issue is usually cast as one of whether terms in scientific 
theories that purport to refer to unobservables genuinely refer, but it can be 
recast as the problem of what objects’ and properties’ existence can 
justifiably be inferred from the empirical data. In these terms, inferring the 
existence of Saturn’s rings and their properties from what is observed 
through a low powered telescope is an inverse inference problem, as is 
inferring the existence of a virus from an electron microscope image. The 
converse of the inverse inference problem, the direct inference problem, is 
the problem of what data will be available given the existence of the 
source. 

To see how addressing the inverse inference problem and assessing the 
content of data make a difference to how we evaluate data, consider the 
traditional division between empiricism and rationalism.6 For empiricists, 
data that are the result of direct perceptual experience, or on a slightly 
more liberal agenda, data that are a result of observations by elementary 
equipment that include the human senses, are the most desirable and, for 
many, are the only source of genuine knowledge. The reasons for this 
desirability vary. On the one hand there is a widely shared belief that the 
origins of the data in the causal world make their content more desirable 
than the content of data whose origins are whatever produces a priori 
knowledge. On the other hand the empiricists’ starting point was the 
content of the datum and not its origin, an orientation that deliberately left 
open the possibility that the external world might not be the source of the 
empirical datum and might not even exist, leading either to a lack of 
commitment to the existence of that data’s origins, as in constructive 
empiricism, or to an outright denial, as in idealism. 

                                                 
6 What constitutes empiricism and rationalism is, and probably forever will be, a 
matter of scholarly dispute. I am using the terms here as surrogates for broad 
epistemic attitudes that I assume most philosophical readers will recognize. For the 
record, I subscribe to the view that although it is often a matter of historical 
contingencies when a particular philosophical issue is raised and becomes the 
subject of focused discussion, the issue itself transcends those historical 
contingencies. 
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Empiricists have granted privileged status to observational data for a 
number of other reasons. One was that data about directly observable 
entities seem to have the certainty that was lacking in data that were about 
unobservables. This certainty was a reason for refusing to provide a 
solution to the inverse inference problem and it was the intrinsic content of 
the data to which any certainty attached. A second reason was that data 
about observables were supposed to act as a theory independent basis for 
deciding between rival theories. On what might now seem to be rather 
naive grounds for taking the intrinsic content of a datum to be theory-
independent, this gave privileged status to such content, and a bonus was 
that by avoiding making inverse inferences, no theory was needed in that 
capacity either. A third reason was that empirical data were taken to be the 
only reliable source of information about contingencies existing in our 
world; a priori methods were incapable of that degree of specificity. For 
various reasons, all of which are plausible, the first and second of these 
reasons no longer have the force once attributed to them and in light of the 
well-known arguments formulated by Quine (1951), the distinction 
between the a priori and the a posteriori is now seen to be a much more 
difficult distinction to make than was originally imagined. 

It is a different issue that lies behind some of the difficulties in assessing the 
status of data from simulations and experiments. The issue is the extent to which 
inverse inference problems need to be solved in order to decide what the data are 
about. One set of solutions to this problem, following the empiricist tradition, 
attempts to attribute content to the data without taking into account their origins. 
This approach starts with data and avoids making inferences about their origins 
as far as is possible. If the content of data from simulations and from 
experiments is equivalent under this approach, then data from the two classes are 
inter-substitutable. Thus, if a simulation of independent tosses of a coin with 
parameter p is based on an accurate model of a sequence of tosses of a real coin 
with that degree of bias, the data from the simulation can replace the data from 
the experiment and we can ignore the origins of the data.7 Another set of 
solutions suggests that the origins of data in material systems make those data 
about something different than data coming from a computer simulation and so 
inferences that are often not easy to justify are required to use data from 
simulations in place of data from experiments. These are complicated issues and 
I can only sketch a solution here, but the overall view is that the origins and 
mode of production of data must be taken into account. 

                                                 
7 This is the position taken by Kästner and Arnold (2012) in which well-confirmed 
theories play a central role. See also Winsberg (2009) 
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Simulations and Experiments 

In recent years, there has been considerable discussion about whether 
computer simulations can serve as a replacement for material experiments. 
Those who have argued for relevant similarities between simulations and 
experiments tend to emphasize methodological considerations.8 
Barberousse, Franceschelli and Imbert (2009) (hereafter BFI) have drawn 
an important distinction between two types of data, dataE and dataA. BFI 
define dataE as being ‘of empirical origin, namely produced by physical 
interactions with measuring or detection devices’ (2009, 560). It seems 
clear from this definition, and also from the examples used to illustrate the 
definition, that dataE are data produced by purely causal instruments. In 
contrast, dataA are about a physical system. BFI note that dataA may be 
produced by dataE ‘but also via other processes, among them analytical or 
numerical pen-and pencil-computed solutions of systems of equations 
representing the target systems, and computer simulations’ (2009, 560) In 
the present context I shall take simulations to be like traditional pencil and 
paper solutions in the sense that they are drawing out consequences of 
formal representations.9 

The distinction drawn by BFI is important and helpful and their 
insistence that it is the representational aspects of computer simulations 
that constitute the dividing line between experiments and simulations is 
exactly right, but we shall need to see how the distinction plays out in the 
realm of causal-computational instruments (see section “Causal-computational 
instruments” below). The distinction also opens up some important 

                                                 
8 In this paper, ‘simulation’ refers to a digital computer simulation and 
‘experiment’ refers to a laboratory experiment. In the latter, all known relevant 
variables except for explicitly specified independent variables are controlled and 
the manipulations of the independent variables are epistemically transparent in the 
sense that the causal effects of the manipulations on those variables are known. 
The point of the experiment is then to identify the causal effects of the independent 
variables on the dependent variables. The situation with a single independent 
variable and a single dependent variable is a special case. 
9 This assertion is consistent with my position (Humphreys 1994, 2004) that the 
physical implementation of computer simulations places constraints on simulation 
methods that are not present in traditional a priori mathematics and that epistemic 
opacity, including the need to make inductive inferences in place of deductive 
inferences, is usually present. Despite some claims in the literature to the contrary, 
I have never endorsed the view that running simulations on material computers is 
itself a reason to justify substituting data from simulations for data from 
experiments. Numerical experiments are significantly different from material 
experiments.  
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philosophical questions. One is how to interpret data that have 
transformations applied to them after their origination. Suppose we grant 
that we can correctly specify what counts as a measurement or a detection 
device.10 Then, in the case of dataE, consider what happens when a 
representation of an empirical datum has a formal transformation applied 
to it. Suppose that we have a square divided into two so that the left hand 
side is white and the right hand side is black. An imaging device (consider 
a digital camera for simplicity) takes a photograph of the square and forms 
a digital visual image that duplicates the original square. The image is 
unquestionably a representation of the square and the data, which are a 
spatial array of black and white pixels, are about that square. It is easy to 
perform a formal transformation on that data set so that all of the pixels on 
the right hand side are transformed from black to white and all of the 
pixels on the left hand side are transformed from white to black. What is 
this second image a representation of and what is it about? Exactly the 
same image could have been obtained by a purely causal process by using 
a mirror to produce the left-right inversion. So one answer to these 
questions is that it is a mirror image of the original square, hence a 
representation of it and that the dataA are about the original square.  Now 
consider the case where only the formal transformation of the right hand 
side from black to white is carried out. The resulting image is a completely 
white square. What is this a representation of and what is it about? A 
variety of answers are plausible. To preserve consistency with the first and 
second cases, it seems we should give the same answers: The purely white 
square is a representation of the original square and the data are about it. 
Yet, it is such an extremely poor representation that one wonders in what 
sense it counts as a representation at all. 

To see more clearly what is at issue, suppose that we have a digital 
photograph of a couple, Jack and Jill, against a white background. A 
computer algorithm removes the pixels representing Jack, replacing them 
with white pixels, leaving only a visible image of Jill. This image contains 
dataE according to the above definition, and this is surely correct, but what 
is it about? Most people would say that the image, which consists of a 
spatial data array, is about Jill. Clear enough, although this answer 
deviates from the criteria we used for the black and white squares 
example. So now consider a parallel example in which the original 
photograph is of Jill alone, but an algorithm transforms white pixels into a 
colored array that is a representation of Jack. What is this new image 
about? It is a representation of Jack and Jill, and it is therefore about Jack 

                                                 
10 This is not at all easy and I shall not attempt to solve the problems here. 
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and Jill, although it is a photograph of Jill only and so, on an origins view 
of data content, about Jill only.11 The pixels that make up the image of Jill 
are all dataE as well as dataA, whereas the pixels that make up the image of 
Jack are dataA only. 

We have here a familiar set of philosophical issues. DataA can be about the 
causal sources that give rise to dataE. Emphasis on the causal origins of the data, 
typified by causal theories of reference and perception, lead to one set of 
answers regarding what dataA are about. But what dataA are about can have 
nothing to do with the relevant dataE and the interpretation is imposed by the 
intentions of an interpreter of the data. We thus need to say more regarding what 
the dataA are about. Under the causal view, for an individual datum we can 
plausibly say that it is about whatever gave rise to that datum regardless of the 
accuracy of its content. In this there is an echo of the causal theory of reference 
in that all of the descriptive content of a piece of referential apparatus can be 
wrong and yet that apparatus can successfully refer. Thus, rather than begin with 
the datum itself, we begin with a realist attribution of the existence of the source. 
The inverse inference to that source is underdetermined, but this is an additional 
complication that is unavoidable and I set it aside here.12 The underlying 
problem here is this: when philosophers still believed in pure observations, the 
idea was that such things gave us direct access to what was being observed. In 
contrast, we required inverse inferences to know what the referents of theoretical 
terms were. That view about direct access seems quite naive now, but we can 
retain one element by highlighting the fact that there is a causal pathway 
connecting the observation with the entity observed. Yet, we lose that causal 
pathway not only with simulations but also with a widely used class of imaging 
devices. The point here is that what data are about is a vexed and complicated 
issue that is intimately tied to an adequate theory of reference. BFI were right to 
draw our attention to this aspect of the simulations versus experiments debate. 
The origins of the data, whether material or not, are insufficient to determine the 
content of dataA.  So let us generalize the concept of dataE to dataO where dataO 
are data generated either by causal or computational sources. Here the ‘O’ 
indicates that the origin of the data be included in a specification of the data. 

                                                 
11 Definitions of ‘photograph’ stipulate that the image must have been formed by 
electromagnetic radiation (usually visible light) falling on some recording device. 
12 This is not to suggest that underdetermination problems in inverse inference 
methods are unimportant. Both theoretically and in practice solutions to these 
problems must be found. 
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Causal-Computational Instruments 

To help clarify matters, it is useful to consider a particular type of 
instrument, those that I shall call causal-computational instruments. 
Almost all discussions of scientific instruments implicitly restrict 
themselves to what I shall call non-computational instruments.13 By a non-
computational instrument I mean that the instrument receives some 
physical process as an input, the instrument causally interacts with the 
input to transform it, the instrument’s output is another physical process, 
and none of these processes or interactions is a computation.14 All of the 
familiar scientific instruments discussed in the philosophical literature are 
of the non-computational kind: optical telescopes and microscopes, 
magnetometers, oscilloscopes, and so on.15 In the last fifty years or so, a 
potentially different class of instruments has been developed that I shall 
call causal-computational instruments. These take physical processes as 
inputs and at some point in the operation of the instrument, they convert 
physical states into digital representations that undergo computational 
transformations before producing the instrument’s output.16 Of course, 
these causal-computational instruments have causal aspects not only 
because of their inputs but because the implementation of the 
computations is carried out by causal processes. Yet, causal-computational 
instruments fall into a class intermediate between purely causal 
instruments and computer simulations because inferences and 
representations play a crucial role in their operation but, unlike pure 
simulations, the causal inputs to the physical device also play a central role 
in the interpretation of the output. 

                                                 
13 One of the few exceptions is Israel-Jost (2011). 
14 For our present purposes, what counts as a computation will involve only those 
in the class of Turing computable discrete functions. This rules out the view that 
all physical processes are computations and provide the basis for a principled 
distinction between computational and non-computational instruments.   
15 I am in this paper excluding the human perceptual system as an example of a 
scientific instrument because it is too difficult to disentangle interpretations of the 
datum from the causal processes that lead to the datum, although in a more general 
context there are epistemological advantages to viewing the human perceptual 
apparatus as simply another instrument that produces data.  
16 Many traditional instruments now use digital displays for their outputs but that 
does not by itself introduce a computational element into the instrument. Although 
the distinction is perhaps not easy to make completely clear, an instrument in 
which the display types are antecedently fixed does not count. Under 
computational theories of vision, parts of the human perceptual system may count 
as a computationally enhanced instrument. 
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I shall take as examples of causal-computational instruments the 
category of medical imaging devices that includes computed tomography 
(CT) and positron emission tomography (PET) instruments.17 Although 
the physical operation of specific types of instruments is crucial for 
understanding how they produce data, most of the philosophical points I 
make here generalize from the specific examples discussed. A generic 
diagram of scientific instruments is given in Figure 1-1.  

 

 
Figure 1-1 

 

What I have called the processor can be either a purely causal 
transformation device, such as a telescope lens, or a computational device. 
The generic case that I consider has the source as an object with a single 
spatially varying quantitative property represented by a continuous or 
discrete function f(s) on the space Թʹ or Թ͵. Values of f are the source data. 
For concreteness, take as the running example the situation in which f 
represents the intensity of X-rays in a spatial region or the spatial 
distribution of some radioactive biological marker, where the spatial 
region includes some target such as a human body. The task is then to 
estimate the mathematical form of f or specified values of f using the 
receiver data. The input data are often the result of complex physical 

                                                 
17 The principal use of PET scans is for imaging of brain tumors, epilepsy, strokes, 
and Alzheimer’s disease. Magnetic resonance imaging (MRI) devices use different 
methods than do PET and CT devices. 
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processes within the system that must be modeled in order to infer both the 
general form and the specific values of f.  

Both CT and PET instruments construct a two dimensional (sometimes 
three dimensional) image from a sequence of one dimensional projections. 
The construction process, which is inescapably computational, involves a 
set of inverse inferences from the receiver data to the source of that data. 
A number of different mathematical techniques are used for these 
inferences (here I shall discuss one of the most frequently used methods, 
filtered backprojection). Although such inferences run against the primary 
direction of causation from input to output, this does not violate the causal 
component of these instruments. Similar inverse inferences are made in 
purely causal instruments, such as refracting telescopes, to the conclusion 
that the image at the eyepiece is an image of the source object. 

In two dimensional computerized tomography instruments, X-rays, 
collimated to lie in a plane, traverse the object to be imaged and impinge 
on detectors on the far side of the object.18 Each detector receives a one 
dimensional projection of the target object along a given ray, and the 
computational algorithms combine all the projections around a 180º arc to 
construct a two dimensional image of a cross section of the target. The 
energy of the X-rays is attenuated by traveling through the object, and the 
degree of attenuation depends upon the densities of the materials through 
which the X-ray is traveling. Although Hounsfield’s CT prototype used 
matrix inversion methods, these are no longer used to recover the values of 
attenuation coefficients because there is a relatively high level of noise in 
the projections and this can cause instabilities in direct inversion 
techniques. In addition, the large amount of data collected makes the 
computational load on matrix inversion methods infeasible. The choice of 
mathematical techniques is thus affected by both technological constraints, 
and the fact that the physical system does not satisfy the idealizations 
needed for matrix inversion to be effective. Instead, backprojection 
algorithms or iterative methods are used.  

The backprojection methods that make inverse inferences from the 
detected intensities to the attenuation coefficients use inverse Radon 
transforms.19 The basic idea is that the total attenuation along a ray is the 
sum of the attenuations in each pixel, and the backprojection method adds 
back the attenuation in each voxel by performing a line integral along the 
direction of the ray. By taking rays in many different directions, the 2-D 

                                                 
18 For simplicity, I take the X-rays to be parallel rather than distributed in a fan-
shaped beam. 
19 I note that some of these mathematical techniques had been developed 
previously for use in astronomical imaging using radio telescopes.  
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matrix of pixels can be reconstructed. But the bare mathematical method 
assumes that the physical processes are idealized in certain ways and in 
order to eliminate artifacts one needs to know how the image was 
constructed. 

In order to argue for the view that the generating conditions of the data 
must be known, consider an argument that Ian Hacking (1983) has used in 
favor of entity realism. The argument goes like this for the case of 
microscopes. It is sometimes possible to observe the same structure with 
the aid of microscopes that use different, independent, physical processes, 
such as ordinary optical microscopes, fluorescent microscopes, 
interference microscopes, polarizing microscopes, and so on. Hacking 
argues that it would be incredible to assert that there was no common 
physical structure that was giving rise to these common observations from 
different instruments: “If the same structure can be discerned using many 
of these different aspects of light waves, we cannot seriously suppose that 
the structure is an artifact of all the different physical systems” (Hacking, 
1983, 147). This argument is flawed because it does not properly take into 
account the fact that the observed structure is deliberately engineered.20 
We can easily see this in the case of the medical imaging techniques 
discussed here. Consider the example of a sinogram, which is a 
representation of the raw data produced from a CT scan with the frame of 
reference attached to the detectors and which rotates around the target 
object. The intensity of the radiation received at a detector is plotted 
against the angle of rotation of the radiation source relative to a fixed 
baseline in the object’s frame of reference.21 To almost all readers of this 
essay, sinograms do not represent anything familiar. However, when 
inverse Radon transforms are applied to the pixels constituting the 
sinogram, it is transformed into something  familiar, such as an image of a 
human skull but that familiar image has its ‘obvious’ representational 
structure imposed by choices of the instrument designers. The intentional 
content is useful to us because of the perceptual apparatus of human 
observers, but for a computer, the sinogram is at least as useful a 
representational device and results from a coordinate transformation 
between the two frames of reference. We could say that the sinogram and 
the familiar image of the skull are both in an equivalence class of 
representations where the equivalence relation is determined by a set of 

                                                 
20 For arguments that this point also applies to traditional causal instruments, see 
(Humphreys, 2004, 33-37). One difference between causal and causal-
computational instruments in this regard is the relative ease with which images can 
be constructed in the latter instruments. 
21 For images of sinograms see Webb (2003). 
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transformations on the set of individual data points. If so, what those 
images are about cannot be determined from the output of the instrument 
alone or from the intentions of the observer. Decisions about dataA require 
knowledge of what causal processes were involved in producing the 
individual data and what transformations have been performed on the 
individual data points. 

This simple example illustrates the point that images from causal-
computational instruments are deliberately constructed, and the ‘structure’ 
that is allegedly invariant across different imaging devices is the result of 
deliberate engineering. There are no limitations on how the individual 
pixels in a dataA representation generated by a causal-computational 
instrument can be computationally re-arranged to form an output image. 
This construction process does not mean that the resultant image is 
arbitrary. The output will be tailored to the needs of the data user, whether 
it is a human scientist, an automated scientist, or some other epistemic 
agent. Since truth is an epistemic goal for most scientific enterprises, 
representations of the target object that systematically misled the users of 
the instrument should be avoided, although other situations, such as one in 
which the intelligence services of a country insert rogue software into an 
enemy’s spy satellites, would not be subject to this constraint. Further 
discussion of these issues is contained in the section on artifacts below. 

This ability to construct the output image is also present in purely 
causal instruments although these are constrained by laws of nature in 
ways that the computational components of causal-computational 
instruments are not. In order to obtain useable outputs from such 
instruments, a great deal of deliberate engineering is required. This tends 
to be disguised by the fact that the physical design of the instrument 
produces the constructed image automatically, and correction mechanisms, 
such as those for chromatic aberration, are physically built into the 
instrument. One reason Hacking’s argument seems plausible is that we can 
appeal to optical laws such as that light travels in straight lines and is 
refracted and diffracted in regular ways that allow gross spatial structure to 
be preserved. In the case of CT images, for each datum, we can make a 
case that a datum j is about a cylinder of tissue lying along the ray 
traversed by the X-rays detected by detector j. The causal relations 
between the adjoining spatial parts of tissue are, in the idealized models, 
absent in both the dataA and in the dataE and this is why it is initially not 
obvious what the collective dataA are about. Although this lack of 
determination of the collective representation by the local data has always 
been present, the ability to easily rearrange the dataA in computerized 
instruments makes this problem much more pressing for those 
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instruments. Similar considerations show that what, collectively, the data 
points in a sonogram are about is not determined by what the individual 
data points are about but requires knowledge of what transformations have 
been performed on the detector data. 

Artifacts 

We have seen that with all causal-computational instruments the final 
image is constructed and cannot be taken as a ‘given.’ What I want to 
suggest is that although all data collected from these instruments requires 
interpretation, simply noting that such data is ‘theory-laden’ is 
uninformative. What is important is that with sufficient knowledge of the 
causal and computational processes that generated the data, data can be 
corrected to eliminate, or partially eliminate, artifacts.  

In CT imaging devices an artifact is a systematic discrepancy between 
the real attenuation values and the values inferred from the measurements 
taken at the CT detectors.22 Although artifacts of an instrument are often 
considered as properties of the output of the instrument, in the present case 
the artifacts can be considered as properties of a numerical data set just as 
much as a feature of a graphical image. It is probably not possible to 
provide a sharp division between a misrepresentation and an artifact, but 
there is an important conceptual difference that should be maintained. 
There are two kinds of artifacts to consider – artifacts that are the result of 
causal interactions and computational artifacts that result from 
approximations in the numerical methods. A standard example of the 
former are lines present in an image due to beam hardening, which is the 
progressive increase in mean X-ray energies due to the total absorption of 
lower energy rays by tissue. This can be corrected for either by physically 
filtering out lower energy X-rays before the beam enters a target region or 
by using software correction algorithms.  

An example of the second occurs in continuous helical scans. Because 
the plane of the beam is tilted at an angle to the target due to the helical 
path, when traversing an object with a non-uniform cross-section, the 
beam will present a slightly different set of projections at an angle of (ș + 
ʌ) than it will at ș. This results in a distortion of the shape of the cross-
section that in the case of liver scans; for example, can be mistaken for a 
tumor and the errors must be corrected by software.  

We can now ask the question: is an image of an artifact a 
representation and if so, of what? To answer this question, recall the 

                                                 
22  Barrett and Keat (2004). 
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earlier point that what dataA are about can result from two quite different 
sources – the origins of the data or from an interpretation that is 
independent of the origins. Taking the definition of an artifact, if we 
emphasize the dataA as resulting from dataO then the image of an artifact 
represents the systematic error. In contrast, if the interpretation of the 
dataA is made without consideration of the dataO, the dataA can be taken to 
represent not an error, but a non-existent entity such as a liver tumor. 
Similar issues arise for computational artifacts that occur in simulations of 
fluid dynamics. 

Issues about distinguishing what is real from what is an artifact thus 
hinge on whether dataA are interpreted with reference to dataO or not. It is 
the ability to distinguish between artifacts and genuine features of the 
target system, not the existence of the ‘unobservable’ processes used to 
construct the representation that is the important issue here. No operator of 
computed tomography instruments doubts the existence of X-rays, 
radioactive matter, biological cells, cancerous tissue, and so on. The issue 
is one of accurate representation, not of the existence of ‘unobservables.’ 

The model dependence of data might be thought to have the 
consequence that there is an inseparable mixture of theory and observation 
in the data. This created a serious problem for empiricists in two cases. 
One was when the user of the data was unaware of what the theoretical 
component was, a situation that can occur when a theory or paradigm is so 
dominant that its effects have become invisible to practitioners in the field. 
The second case occurs when the data user cannot separate and remove the 
effects of the theory or model. This can occur when we do not have a good 
theory of how an instrument works, as well as in the first kind of case.  
But when the methods used in the models are explicit and invertible, the 
effects of theory and modeling can be corrected. The computed 
tomography example is valuable because there are many models 
embedded in the processing of the data and we can correct for most of 
them.  Indeed, many correction algorithms are used in modern instruments 
ranging from image stabilization methods in digital cameras to optical 
enhancement algorithms for telescopes. Similar remarks can be made 
about simulation artifacts, which are a problem in molecular dynamics 
simulations, simulations with periodic boundary conditions, fluid 
dynamics, and some other areas. They often result from numerical 
integration methods and finite size effects.  

It has also been suggested that instruments have theory built into them. 
Whether or not this is correct for purely causal instruments, it is clearly 
true for causal-computational instruments in the sense that correction 
models based on knowledge of the physical and computational processes 
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occurring within the instrument are frequently used.23 Empiricists extolled 
the virtues of direct, theory-free access to data, and the use of models can 
seem to degrade our access to the world. There are identifiable dangers of 
using models to correct data sets, but unmediated access to an object is not 
always epistemically superior to access mediated by physical or 
mathematical intermediaries. Look at the windshield of a car on a bright 
day with your unaided vision. Then don a pair of polarizing sunglasses. 
You will be now able to see objects inside the car that were not previously 
visible. If you believe these objects are artifacts of the polarizers plus 
windshield, simply remove the sunglasses, open the car door, and use your 
unaided senses, including touch. The important thing is to know how the 
instrument works. With the computational parts we have this knowledge 
because we have designed them.  

Could we avoid needing to know how an instrument works by 
accumulating inductive evidence of successful uses? Eckhart Arnold has 
suggested the following thought experiment.24 Suppose a working CT 
scanner with a generator is washed up on the shore of an island the 
inhabitants of which have never seen such an instrument and know 
nothing of modern physics. After experimenting with placing various 
familiar objects into the scanner and seeing that their internal structure is 
reproduced accurately, they are in a position to use the scanner in similar 
ways to their own visual sense, the workings of which they also do not 
understand. This is an ingenious suggestion, but the situation with respect 
to CT images and artifacts is not quite so straightforward. Because the 
inverse Radon transform that is used to obtain the value of the function f 
within a given pixel is constructed by backprojecting all of the rays 
received at detectors between 0 and ʌ, each reconstructed point is 
dependent upon the whole data set. This means that artifacts produced by 
factors in one part of the target can produce errors in another part. 
Although it is possible that inductive evidence could be obtained about the 
appearance of such artifacts, there would need to be a sample base of 
objects sufficiently similar to each future object used in the instrument in 
order for such artifacts to be recognized in each case.  

What does all of this say about simulations? Much of what I have said 
about imaging devices transfers, with obvious modification, to the 
simulation case. A decision must be made regarding whether what the data 
are about is determined by reference to the origins of the simulation data, 
which will be the (interpreted) model upon which the simulation is based 
                                                 
23 Morrison (2009) has noted that instruments often require models in order to 
extract meaningful data.  
24 Personal communication. 
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if one exists, or is determined by an intentional attribution to the output 
from the simulation. I have argued that an informed attribution under the 
second method cannot be made without knowledge of the generating 
conditions of the output data, in which case the origins of the simulation 
data also play a role in this approach. It is an unfortunate fact that in the 
philosophy of reference an emphasis on the conventionality of object-sign 
relations and social accounts of meaning has distracted attention from 
other, more refined, ways of representing the world.25 
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Introduction 

Because computer simulations are intensively used in most parts of 
contemporary science, both as substitutes for, and complements to, 
laboratory experiments and field observations, the question arises whether 
they are able to produce empirical data and, if they are, whether the quality 
of these data is similar to that of data produced via experiments. Can a 
computer provide us with empirical evidence? Aren’t experiments and 
observations our main sources of empirical data, and the most legitimate 
ones? 

The comparison between computer simulations and experiments has 
recently been explored in a number of papers (Guala, 2002; Morgan, 2002; 
Winsberg, 2003, 2009; Parker 2008, 2009; Barberousse et al., 2009; 
Morrison, 2009). These papers mostly focus on the building of empirical 
knowledge from the outputs of computer simulations. They address 
questions such as: How are the results of simulations validated? What is 
the role of models in the confirmation process when applied to the results 
of experiments? These questions have received various answers. In the 
present paper, we focus on the production of data by contrast to the 
production of knowledge. We explore how data are produced within 
contemporary science and how they are transformed into pieces of 
knowledge. 

For a computer simulation user in the empirical sciences, the questions 
mentioned in the first paragraph may seem surprising, as her work is based 
on the assumption that computer simulations do provide empirical data. 
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On the other hand, simulation non-users often rely on the opposite 
assumption, as testified by the following dialogue (reconstructed from a 
discussion on ScienceBlogs): 

 
Scientist#1 (defending the privilege of experiments): “Can any scientist 
really doubt that models and simulations have lesser status, scientifically, 
than observational/experimental data? This is THE cornerstone of 
empiricism and science. […] Yeah, there is a whole spectrum here, since 
extracting data from observations/experiments usually takes some kind of 
models, but the general rule is pretty simple - each step away from direct 
observation, each layer of theory, model or simulation, lowers the 
reliability of the conclusions.” 
 
Scientist#2 (defending the legitimacy of simulations): “You have a bias 
here towards observational data. Need to recognize that a lot of data comes 
from models and analyses.” 
 
Scientist#3 (denying the legitimacy of the distinction with respect to data): 
“As a professional data torturer, I don’t see any difference in principle 
between ‘real’ and simulated data: it’s all information that is to be 
processed.” 
 
Consequently, the debate remains open even among practitioners of 

science. In this context, the aim of the present paper is to assess whether 
there are any reasons to give epistemological precedence to data produced 
through experiments with respect to data produced through computer 
simulations. In “Empirical data,” we analyze what empirical data are. In 
“Comparing measurement results and simulation outputs,” we draw a 
systematic comparison between data produced through experiments and 
data produced through simulations. The criteria of comparison on which 
we focus are evidential features, reliability, and novelty of data. 

Empirical Data 

Definitions 

In order to compare computer simulations and experiments as far as the 
production of empirical data is concerned, it is first necessary to say a few 
words about what are called “empirical data.” The word “data” itself, 
although intensively used in contemporary science, has a rather vague 
meaning. We propose the following working definition, which is meant to 
hold in the context of empirical investigation: 

 



Computer Simulations and Empirical Data 31

Working Definition 1: Data are elements of information that are taken for 
granted at a given step of a specific investigation, and on which one can 
rely in the course of the ongoing investigation. 
 
Let us take an elementary example. When a magnet comes close to 

iron fillings, they move toward it and align themselves perpendicular to its 
surface. This observation can be made an indefinite number of times; it 
can constitute a set of data for the further investigation of magnetic 
phenomena. From these data and others, an elementary knowledge of the 
origin and properties of magnetic fields can be built up. During this 
process, the behavior of iron fillings and magnets will be considered as a 
piece of information that remains stable and unquestioned insofar as no 
contrary observation occurs. In contrast, hypotheses about the cause of the 
alignment of fillings, the intensity of the magnetic field, etc. may vary 
during the knowledge-building process. The main difference between data 
and hypotheses is thus that data are not susceptible to being modified 
during the investigation. Data are associated with some notion of 
epistemic stability, at least at a given step of an investigation. This does 
not mean that the validity of these elements of information cannot be re-
assessed in future steps. 

Working Definition 1 is functional: it is based on the role data play in 
empirical investigation, without any commitment toward their constitutive 
nature. Functionally, data are the building blocks of scientific knowledge. 
As the notion of information is intentional, the notion of data is intentional 
as well: data are basically representations (cf. van Fraassen, 2008, for 
whom measurement outputs are representations). It follows that what 
counts as data are relative to (1) a given context of inquiry, and (2) the 
scientists leading the inquiry. 

In physics and in many domains of biology, “raw data” consist of (very 
large) series of numbers, which are usually automatically generated by 
detection or measurement instruments. Raw data cannot be identified with 
the usable pieces of information that are the object of Working Definition 
1. Raw data are not usable at all by the human mind. They have to be 
heavily processed in order to become usable; that is, to participate in 
knowledge-building. Once processed, they achieve the status of data as 
defined above. 

Let us now turn to empirical data. Our next working definition is as 
non-committal as possible about the meaning of empiricity, because we do 
not want to beg the question of the relationship between empiricity and the 
presence of physical interactions: 
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Working Definition 2: Empirical data are elements of information about 
physical (biological, social, …) systems that are taken for granted at a 
given step of a specific investigation, and on which one can rely in the 
course of the ongoing investigation. 
 
Just as it is clear from the definition, we consider empiricity (with 

respect to data) as an intentional notion. This feature results from our 
decision not to include the origin of data in the definition. Traditionally, 
the precise way empirical data are produced (their “origin”) is considered 
as an essential element of this notion. Causal interactions are thus often 
referred to when empiricity is defined. In contrast, our purpose is to 
explore whether it is possible to do without the mention of causal 
interactions in the definition of empirical data. This is the reason why 
Working Definition 2 is intentional. In the remainder of this section, we 
argue for the legitimacy and interest of this purpose. 

Let us focus on empirical data produced through experiments or field 
observations. In this case, empirical data are series of numbers produced in 
the course of physical interactions between instruments and the 
investigated phenomena. The crucial point is that these series of numbers 
need to be interpreted in order to be considered as empirical data. Without 
this interpretative step, no empirical information, and no information of 
any sort, would be available. This aspect of the production of data in the 
context of experiments or field observations leads us to adopt a definition 
of “empirical data” that is non-committal with respect to the origin of data. 
As our aim is to focus on the uses of data in the context of scientific 
inquiry, the interpretative step is at least as important for us as the step 
resulting in raw data. In fact, our bet is that the precise way in which raw 
data are produced may be left open in the definition of empirical data. This 
view thus differs from Humphreys’ (this volume), who maintains that the 
origin of data must be taken into account. 

By emphasizing the importance of interpretation in the epistemic 
process ending with empirical data, we do not mean to underestimate the 
role of physical interactions between a detection or measurement 
instrument and the investigated process, but we want to insist that physical 
interactions are not sufficient to obtain data. We want to emphasize that 
the interpretative process that allows for the production of empirical data 
is a central part of the scientific investigation itself. It is open to discussion 
and criticism, and overtly revisable. 

Certainly, Working Definition 2, because of its neutrality with respect 
to the origin of data, might look surprising, if not shocking. In the 
remainder of the paper, we argue that it is not. Our strategy is as follows. 
In section “Comparing measurement results and simulation outputs,” we 
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examine three epistemic features of empirical data that seem to advocate 
the privilege of data coming from experiments: evidential features, 
reliability, and novelty. Whereas it is relatively easy to admit that 
outcomes of computer simulations can be as evidential and as reliable as 
data coming from experiments, it seems very difficult to accept that 
genuinely novel data can emerge from computer simulations. The capacity 
to yield new empirical data seems to be exclusive to experiments. In 
section “Novelty,” we present arguments against this view. For the time 
being, we further explore the notion of empirical data. 

What are Empirical Data About? 

In the preceding section we suggested that, in order to assess whether 
computer simulations can yield empirical data, it is better to define 
“empirical data” as neutrally as possible in regards to their origin, and to 
focus on the intentional aspect of the notion. We now have to be more 
precise with respect to the elements upon which empirical data rest, and to 
the inferences that have to be drawn in order to acquire the desired 
information. 

When analyzing experiments, it is common to introduce a distinction 
between the “object” of the experiment and its “target.” The object is the 
material system, which is manipulated during the course of the 
experiment, or the parts of it that interact with detection or measuring 
instruments. It is spatio-temporally localized. In contrast, the target of the 
experiment is the system about which the scientists look for new or more 
reliable information. It may be the same as the object of the experiment, 
for instance when physicians look for information about a tumor in a 
patient. In many cases, however, the object and the target of the 
experiment are different systems. It also happens that the target is not a 
particular system but rather a class of systems. 

Whatever the specific relationship between the object and the target, 
the series of numbers that are gathered during the experiment need both 
automatic and human-inferential processing before they can be further 
used as data. That is, there are many inferences to be drawn before we can 
be sure that these numbers (once automatically processed in order to 
acquire a readable format) provide scientists with the information they 
desire. This inferential task is usually extremely difficult to fulfill. Most of 
these inferences are grounded on, and warranted by, background 
information about both the object and the target; they are of course, 
fallible. The most important question to assess is whether the object is 
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representative of the target; that is, to what extent the information gained 
about the object can be interpreted as also having a bearing on the target. 

Let us now compare the epistemic situation obtaining in experiments 
with the use of computer simulations. In the case of computer simulations, 
it is unclear whether there is an object of any experiment, but the targets 
are of the same type as the targets of experiments. What is different is the 
way in which the inferences from the outputs of the simulation to the 
target are warranted. Here, the crucial aspect is whether the computer 
model correctly represents the target. The important relation is, thus, the 
relation of representation. The quality of the representation is itself 
grounded on, and warranted by, background knowledge on the computer 
program and on the target. 

Let us further develop the comparison between experiments and 
computer simulations with respect to the inferences they allow us to draw 
about the target. The assessment of the representative quality of the object 
of experiments with respect to the target is usually based on several 
models, at least a model of the object and a model of the target, and more 
often than not a model of the experimental setup; namely, of the way in 
which the instruments acquire data. Models are, thus, central to data 
production both through experiments and through computer simulations, 
as emphasized by Morrison (2009). As a result, the representative 
character of the object of the experiment cannot be warranted unless there 
is a way to draw inferences about the model of the target, from the model 
of the object. 

It might seem that when the object is one member of the target class; 
that is, when it is made from the same material, the inferences drawn from 
the object about the target would be easier to assess. Even in this case, 
however, scientists usually rely on a model of the investigated system (that 
is, a model of both the object and the target) and on a model of the 
experimental setup (that is, of the interactions between the object and the 
instruments).  

The example of model organisms illustrates this point. In this case, a 
specific organism, or set of organisms, let us say mice, are submitted to 
various modifications, say genetic modifications. The experiment aims at 
discovering the effects of these modifications on the mice phenotypes. The 
observed modifications are then interpreted in order to assess which part 
of the genetic manipulations is responsible, and to what extent, for the 
phenotypic modifications. Such a judgment relies on detailed models of 
the mouse’s genome, genetic-phenotypic path, physiology, etc. Now, the 
target of the experiment is usually not the specific mouse (or set of mice) 
whose genome has been modified. The models are thus used for inferences 
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about further mice: first, other laboratory mice and, second, wild mice, 
which are known to differ significantly from their more artificial siblings, 
and which are also known through (less precise) models. In some cases, 
the inferences are extended to a larger class, like mammals, including 
humans. Models of the differences between the relevant features of mice 
and humans are then used. What is true of experiments with model 
organisms is also true of experiments on inanimate properties and their 
relations. In both cases, the fact that the object and the target are of the 
same substance (they are both mice, or both mammals, or both made of 
iron) is not a sufficient condition for the drawing of reliable inferences 
about the target. The quality of these inferences is based on the validity 
both of the underlying model of the target and of the model of the 
experimental setup.  

Does this mean that measurement results, produced by physical 
interactions, play a minor role in experiments? Of course not; by insisting 
on the fact that reliance on models is pervasive both in experiments and in 
computer simulations, we want to emphasize that measurement results 
make only sense in the context of the above-mentioned models. 
Measurement results provide data (usually after heavy computer 
processing) in cases where the underlying models are valid. Otherwise, 
they do not. In the same way, simulation outputs are only likely to deliver 
data if the underlying model of the target is valid. In order to establish 
whether this condition is sufficient, we now turn to a systematic 
comparison between measurement results and simulation outputs. 

Comparing Measurement Results and Simulation Outputs 

In this section, we investigate the epistemic features of measurement 
results and simulation outputs according to three dimensions: their 
evidential character, their reliability, and their novelty. Evidential 
character, reliability, and novelty appear as crucial features of empirical 
data originating from physical interactions. In the building process of 
scientific knowledge, data may be used to establish (or refute) the validity 
of hypotheses; in this case, they need both to provide evidence about the 
investigated phenomenon and to be reliable. Data may also be used to 
improve detection or measurement instruments; in this case, their 
reliability is indispensable. Evidential character and reliability are, 
therefore, important epistemic properties of data. The capacity to provide 
scientists with new knowledge is also a highly desirable property. 

Our strategy is to explore the conditions under which empirical data 
originated by physical interactions are evidential, reliable, and new, in 
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order to assess whether these conditions also obtain for simulation outputs. 
We begin with the first two criteria, leaving novelty for section “Novelty.” 
As mentioned above, our aim is to explore whether it is possible to remain 
neutral with respect to origin in the definition of empirical data. At first 
glance, it seems that: (1) physical interactions are required in order to 
confirm hypotheses; (2) data coming from physical interactions are 
necessarily more reliable than data coming from computer simulations; 
and (3) computer simulations are totally unable to yield new empirical 
data. As we shall see, intuitions (1) and (2) are relatively easy to criticize. 
In contrast, intuition (3) seems particularly robust. The capacity to yield 
new empirical data seems exclusive to experiments. By further developing 
our analysis of computer simulations, however, we suggest that this might 
not be so clear. 

Evidential Features and Reliability 

How are reliability and evidential features of measurement results 
established in an experiment? A major part of this task lies in the control 
of the experimental setup, especially through benchmarking procedures. 
The essential thing is to check whether the experimental setup yields 
correct data in known cases. This is usually a matter of delicate and 
lengthy tuning operations, involving both manipulations and modeling. 

Besides the control of the experimental setup, many underlying 
assumptions have to be assessed in order for the resulting data to be 
evidential and reliable: for instance, the assumption that the measurement 
procedures allow scientists to make the measurement they had in mind, or 
that they are as precise as required. Checking whether information is 
gained on the right aspect of the object with sufficient precision might also 
require lengthy tuning and modeling. More generally, the presence of 
artifacts of any kind has to be checked and eliminated. 

An important aspect of the control procedures that are needed to 
warrant the evidential feature and reliability of the measurement results is 
that their implementation relies on models. At this point of our analysis, it 
is important for us to define what we call a “model” in our general 
analysis of empirical data produced through experiments. We propose the 
following working definition: 

 
Working Definition 3: A model is any coherent set of detailed hypotheses 
about the investigated phenomena (usually at least three models are 
available: of the object, of the target, and of the experimental setup). 
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Models guide the building of the experimental setup as well as the 
various actions that need to be performed in order to obtain the relevant 
information. Therefore, the final judgment about the quality of the 
produced data depends on the quality of the involved models. 

Let us now turn to computer simulations. The evidential character and 
the reliability of their outputs are also established by comparison with 
results already known. The benchmarking procedures play no lesser role 
than in the case of experiments even though they are different, only 
involving the transformation and checking of lines of code. Two other 
kinds of procedures are currently used in order to assess the validity, 
evidential character, and reliability of the outputs, called “validation” and 
“verification.” The aim of the validation procedure is to check whether the 
underlying theoretical model, as transformed into algorithms and lines of 
code, is valid for the investigated phenomenon. The verification procedure 
guarantees the consistency and “good behavior” of the computation. It is 
necessary in order to avoid abrupt stops or breakdowns of the 
computation, as well as abnormal results owed to cutting-off, round-up 
errors, and other sources of bugs. These procedures involve delicate tuning 
of the computer program; their implementation can be very lengthy. 

Many aspects of the assessment of evidential character and validity are 
common to experiments and computer simulations. They involve checking 
that the apparatus (a set of laboratory instruments or the computer program 
as it is implemented on a particular machine) is functioning well; that is, 
that it delivers the expected information. Although the checking 
procedures fall under the same heading, they seem to correspond to highly 
different types of activity: material object-oriented on the one hand, 
strictly intellectual on the other. Let us analyze this difference further. 

In the case of experiments, the control procedures usually rely on 
manipulating pieces of apparatus, aligning them, purifying chemical 
material, maintaining pressure at a low level, etc. They require specific 
skills in terms of coping with reluctant artifacts as well as highly situated 
know-how. All these activities require scientists and technicians to 
collaborate and coordinate themselves in situ. They are entirely different 
from what is involved in checking and rewriting lines of code.  

In the case of computer simulations, the material aspect of the control 
procedures is limited to typing on the keyboard and eye-checking on the 
screen, by scrutinizing series of symbols or images. The core of this 
activity is symbolic: it has to do with the writing, deleting, and 
transforming of meaningful series of symbols, not with the handling of 
material objects. What is relevant here is abstract; it lies in the realm of 
meanings and computation. 
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Are these differences more important than the common goal of these 
control procedures; namely, assessing the epistemic quality of resulting 
data? The question we want to tackle here is whether the fact that material 
interactions are involved in the case of experiment makes a difference to 
the assessment of evidential character and reliability (Tal, 2011 also 
tackles this question from a different perspective). Undoubtedly, as we 
have emphasized, it makes a difference to the involved activities of the 
scientists and technicians, but it seems to us that the common goal of these 
activities; namely, warranting that the resulting data are evidential and 
reliable, counts more than the differences in the ways in which this goal is 
implemented. To put it another way, we argue that the right way to 
analyze the differences in the involved human activities is functional. All 
these activities, which seem at first sight entirely different in nature, are 
ways to fulfill the same epistemic function; namely, retrieving useful 
information about the target of the experiment (or of the computer 
simulation). 

The next step in our argument is to assess whether or not, by 
functionalizing the analysis of the control of data production, we beg the 
question of the (un)importance of materiality in data production. In the 
current discussion about the status of computer simulations as compared 
with experiments, the most difficult but most important task is to avoid 
begging the question of whether physical interactions are necessary to 
produce data. In functionalizing the analysis of the control of data 
production, do we not beg the question the other way round, by assuming 
that the weight of physical interactions is less than their epistemic 
function? Our answer is that if one accepts the working definitions we 
have proposed so far for “data” and “empirical data,” one cannot but 
accept our functional analysis. 

Novelty 

It might seem that only experiments, because they involve physical 
interactions, are likely to yield new empirical data; in contrast, the outputs 
of computer simulations are somehow already contained in the inputs. In 
this section, we probe this widely shared intuition. In order to analyze it 
further, we first try to isolate the conditions in which the comparison 
between experiments and computer simulations is relevant when it comes 
to the production of new empirical data. There are obvious cases in which 
experiments are the only way to obtain new empirical data; however, the 
question remains whether there are also other cases in which this is less 
clear. Our second task is to distinguish between types of computer 
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simulations: simulations based on the discretization of differential 
equations perform differently from cellular automata and agent-based 
models with respect to the theme of epistemic novelty. Third, we 
distinguish between the various meanings that the term “new” in “new 
empirical data” can take. At the end of the section, we reveal the reasons 
why, and the circumstances in which, new empirical data emerge from 
computer simulations. 

Is the Question ever Meaningful? 

There are domains of phenomena of which we know a few regularities 
and not much else. For instance, at the end of the 1960s, liquid crystals 
were known to exist and some of their properties had been observed, but 
condensed matter physicists had no idea of the underlying laws governing 
their behavior. In such domains, computer simulations will probably yield 
hardly any empirical data. They will at most inform us about the general, 
structural features of these phenomena, but will be unable to provide us 
with any prediction about a particular phenomenon. Field observations and 
experiments are the only ways to obtain empirical data, because these 
domains still need to be further explored. They are terrae incognitae. In 
these domains, the question of whether computer simulations can yield 
new empirical data is meaningless; it does not arise. 

There are also domains of phenomena about which we know a lot, 
however. We know many regularities and how they operate, sometimes 
forming hierarchical relations. This knowledge enables us to model 
particular phenomena and to achieve precise predictions. We have 
obtained these delicately articulated pieces of knowledge through 
observations and experiments; that is, by deliberately producing highly 
specific physical interactions the effects of which we were able to interpret 
as measurement results. The sets of measurement results have been further 
interpreted as indicating, or testifying to, regularities at various levels. In 
those domains, the question whether computer simulations are able to 
yield newer empirical data is meaningful. We address this at the end of 
this section. 

Finally, there are intermediate domains where some pieces of 
knowledge are available. It seems to us that in these domains the question 
of whether computer simulations can yield new empirical data is 
legitimate, particularly for those areas where there is enough knowledge to 
render empirical exploration unnecessary. 
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Types of Computer Simulations 

As we have argued above, the question of whether computer 
simulations can yield new empirical data is only meaningful in limited 
domains. We must further emphasize that its meaning not only depends on 
the domain of investigation but also on the type of computer simulations at 
hand. As far as we can see, computer simulations based on cellular 
automata and agent-based models, which are based on discrete, local rules, 
are more susceptible to being considered as yielding novelty. Their outputs 
are often qualified as “emergent,” a term including a sense of novelty.1  

Even if one considers the outputs of cellular automata and agent-based 
models as emergent, it is still unclear in which conditions they might count 
as empirical and, further, as data. We leave this discussion for a future 
occasion. In the rest of this paper, we focus on computer simulations based 
on discretized differential equations, because they are probably the hardest 
case: whereas the association of cellular automata and agent-based models 
with novelty seems natural enough, simulations based on discretized 
differential equations are usually associated with a symbolic process in 
which nothing new can occur. 

The Meanings of Novelty 

We have begun our analysis of the question whether computer 
simulations can yield new empirical data by first restricting its scope and, 
second, by distinguishing between types of computer simulations. We 
need to introduce further distinctions about the meaning of “new” in order 
to analyze the expression “new empirical data.” Our discussion will be 
entirely general, returning to computer simulations only at the end in order 
to keep different questions strictly separate. 

Let us first note that the most straightforward sense of “new” occurs in 
the terra incognita context, when the information about the domain of 
phenomena is scarce, and when systematic exploration is the only way to 
obtain it. Let us call this sense the “primary sense” of epistemic novelty. 
As we have already mentioned, the primary sense cannot possibly apply to 
computer simulations. Using this as our base, we introduce other senses. 

The first distinction that seems important to us is the distinction 
between surprising and unsurprising or expected novelty. To our mind, 
                                                 
1 The outputs of computer simulations based on discretized differential equations 
are sometimes said to be “emergent” in a rather different sense, related to 
computational irreducibility. It is unclear whether computational irreducibility is 
related to epistemic novelty. 
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novelty in the primary sense is surprising by default, because in the case of 
novelty in the primary sense, scientists have no expectations about what 
they are going to learn. In contrast, there are cases in which they learn new 
information through experiment and this information does not come as a 
surprise: for instance, when they already had an idea of the range of the 
values they obtained in the experiment. These are cases where the 
achieved epistemic novelty is unsurprising.  

It might be argued that “unsurprising novelty” is an oxymoron, a 
juxtaposition of words that does not carry any genuine meaning. We 
maintain, however, that when the value of a given variable in a specific 
situation is learned by experiment to a certain degree of precision, whereas 
the available hypotheses could only allow a range of values for this 
variable, something genuinely new has been obtained. The resulting value 
falling within the predicted range does not ignore the fact that the available 
hypotheses did not explain how to reduce the range, so that when the 
experiment allowed such a reduction, it resulted in a new piece of 
information. 

Now that we have introduced the distinction between surprising and 
unsurprising novelty, we might wonder in what situations surprising 
novelty can obtain, except in terrae incognitae. Can surprising novelty 
occur in domains of phenomena whose main regularities are well 
established? It might seem that in those cases, of which particle physics is 
a paradigm example, experiments can only yield expected results. The 
experimental setups are built precisely to yield the values scientists want 
to know about; this can only be achieved if they already know, or can 
reasonably predict, the range of these values. One could even claim that if 
an experiment yielded an unexpected value, it would be considered as a 
failure and the scientists would immediately check the setup in order to 
discover where the error originated. It thus seems that in the domains of 
phenomena about which a lot is known, surprising novelty is highly … 
unexpected. Is it really the case? 

In order to answer this question, we introduce a second distinction that 
pertains to the case we have just discussed, the distinction between 
surprising novelty arising within the available theoretical framework and 
surprising novelty arising outside the available theoretical framework. By 
“theoretical framework” we mean the set of all available knowledge about 
the domain of phenomena at hand, be it of theoretical or empirical origin. 
It is the set of all that is known or expected, based on theoretical reasons. 
We have indicated above that the case of surprising novelty arising within 
the theoretical framework seems less likely than surprising novelty arising 
outside the framework. To put it another way, in domains already 
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endowed with a rich theoretical framework, surprising novelty seems more 
likely to come from theoretical change than from experiments. Moreover, 
it also seems that computer simulations are even less likely to yield 
surprising novelty in such domains. There is, however, at least one well-
known example in which surprising novelty occurs within a rich 
theoretical framework, by the use of computers.  

To our mind, the study of deterministic chaos as performed in the 
1970s through digital computation exemplifies the notion of surprising 
novelty within the available theoretical framework. The theoretical 
framework is differential calculus augmented by Poincaré’s topological 
innovations at the end of the nineteenth century, a rather old framework. 
What scientists discovered, however, when they implemented a system of 
non-linear differential equations on their computers, astonished them. 

The computer-aided study of deterministic chaos is a nice illustration 
of surprising novelty arising within an available theoretical framework. 
Moreover, this novelty was achieved by the use of computers. Even 
though it is questionable whether the results are empirical as opposed to 
mathematical, this example shows that surprising novelty can obtain 
within an established theoretical framework and that machine computation 
is by no means an obstacle. Why is it that computer simulations based on 
discretized differential equations are commonly thought of as forbidding 
the production of surprising epistemic novelty? We answer this question in 
the following section. 

Machine Computation and Human Reasoning 

The main reason why machine computation is usually conceived as 
incapable of producing surprising novelty lies in the way in which 
machine computation (including computer simulation) is commonly 
analyzed. Machine computation is correctly described as a series of 
deductions in the sense that the series of physical states instantiated by the 
computer are systematically interpreted as logical states. Given this 
description, it is tempting to infer that the outcomes of any specific 
computation are “already contained” in the inputs, so that nothing new can 
occur in the computational process. Our main thesis is that one should 
refrain from such an inference as it relies on confusion about the notion of 
“content.” 

Let us make it clear why such confusion arises. When the notion of 
deduction is applied to human reasoning, it is commonly associated with 
the notion of the conclusion being already “contained” in the premise. In 
this sense, the conclusion of a deduction is not supposed to be “new” in 
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any interesting sense. Of course (paper and pencil) mathematical calculation 
provides an example of series of deductions yielding new results in the 
sense that they were unknown beforehand, but this novelty is usually 
judged uninteresting, because the word “novelty” is commonly associated 
with “discovery” and not with reasoning. 

The underlying assumption is that when the conclusion is already 
“contained” in the premise, it is only necessary to perform mechanical 
actions to find it. This is precisely what computers are supposed to do. It 
seems to us, however, that it is a mistake to analyze machine computation 
on the model of human reasoning: what counts as “mechanical actions” for 
human beings (for instance, the basic operations of arithmetic) is different, 
as far as the production of knowledge is concerned, from the transition of 
one physical state of a computer to another. These “mechanical” actions, 
as fulfilled by human beings, are “mechanical” only in a metaphorical 
sense, whereas the physical transitions within a computer are truly 
mechanical. When a human being makes an arithmetical operation, s/he 
keeps track of its meaning to her/him; it is inseparable from her/his 
epistemic aim. In this sense, it is not “mechanical.” To put it briefly, we 
claim that it is a mistake to compare machine computation with human 
reasoning when it comes to analyzing the notion of epistemic novelty. It is 
unlikely that a surprising novelty can result from deductions made by 
human beings, but this does not preclude surprising novelty resulting from 
a computational process. 

Another way to formulate the above analysis is to question the 
relevance of the notion of “deductive closure.” It might seem that the 
frontier between uninteresting and genuine novelty can be defined in terms 
of the deductive closure of a set of premises: what is inside might be new 
to a particular person, but it is not new in the genuine sense of the term. If 
one demarcates trivial and genuine novelty at this point, then it is true that 
computer simulations cannot possibly yield any genuinely novel empirical 
data. In contrast, our proposal is to shift the boundary and to count some 
elements that fall within the deductive closure of a set of premises as 
genuinely novel, as explained above.2 

In this section, we have tried to explain why computer simulations 
based on discretized differential equations are usually considered as 
incapable of providing scientists with surprising epistemic novelty. Two 
reasons can be cited. First is the fact that these simulations are 
paradigmatically set up within a rich theoretical framework, which seems 

                                                 
2 We warmly thank Eckhart Arnold for a challenging e-mail about deductive 
closure. 
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to exclude the possibility of surprising novelty. As we suggested in the 
preceding section, however, surprising novelty can occur even in rich 
theoretical frameworks. Second is the equivocality of the description of 
computer simulations as series of deductions. It appears that the word 
“deduction” does not have the same epistemological meaning when it 
applies to human reasoning and to the description of a computational 
process. When these two meanings are confused, it appears that no 
surprising novelty can emerge from a computational process. 
Distinguishing between the epistemological significance of deductions for 
human beings and that for computers shows, however, that nothing 
precludes computational processes yielding surprising novelty, as the 
example of deterministic chaos attests. It seems to us that the arguments 
we put forward at the beginning of section “Comparing measurement 
results and simulation outputs” suggest that nothing precludes 
computational processes yielding surprisingly new empirical data. 

Conclusion 

Starting with an analysis of the notions of data and empirical data, we 
have investigated the question of whether computer simulations are 
capable of yielding empirical data. We have focused on a systematic 
comparison between the results of experiments and the outputs of 
computer simulations with respect to three criteria: Evidential features, 
reliability, and epistemic novelty. Our conclusion is that the outputs of 
computer simulations, once relevantly processed, are capable of counting 
as genuine empirical data in terms of these criteria. Our analysis of the 
question of whether computer simulations can provide scientists with new 
results allowed us to shed light on some conceptual obstacles explaining 
why computer simulations are usually conceived of as incapable of 
yielding new empirical data. 
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CHAPTER THREE 

EXPERIMENTS AND SIMULATIONS: 
DO THEY FUSE? 

ECKHART ARNOLD 
UNIVERSITY OF STUTTGART – SRC SIMTECH 

Introduction 

In today’s science, computers have become an indispensable tool. They 
are used for the evaluation of scientific data, for storing data, for the 
preparation of results, and for communication among scientists. However, 
computers are not only tools that help scientists to process and evaluate 
scientific data, but also they produce scientific data when they are used for 
running computer simulations. This raises the question of whether the data 
that computer simulations produce is the same as other kinds of scientific 
data, in particular experimental data. What speaks for this assumption is 
that the data produced by simulations are usually previously unknown to 
the scientists, often cannot be derived mathematically, and may yield the 
same or at least similar kinds of information about a simulated empirical 
system as an experiment yields. What speaks against this assumption is the 
fact that simulation data stems from a calculation performed with a 
computer and that it is not the result of an empirical measurement, or not 
directly the result. This is also the stance that I am going to take in this 
chapter. 

I will set out the reasons for taking this stance in detail in the following 
section, when I review the debate on the relation of simulations and 
experiments. In particular, I will argue that computer simulations are not 
material in any sense that would liken them to experiments (as maintained 
by Parker, 2009) and that experiments are not intertwined with models to 
such a degree that the function of models in experiments becomes 
indistinguishable from the function of models in simulations (as 
maintained by Morrison, 2009). 

But there is also a further possible line of reasoning against a strict 
separation of simulations and experiments that is not so easily dismissed. 
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According to this line of reasoning, simulations and experiments cannot 
strictly be separated because, at least in some instances, the role that 
empirical data take can appear indistinguishable in simulations and 
experiments. The question arises for those simulations that do in one way 
or another make use of empirical input data, and for those experiments that 
in one way or another involve the computational post-processing of the 
measured data. In both cases, the computer produces some kind of output 
data by processing empirical input data. The question, then, is precisely: 
what kind of output data?   

We can define those scientific procedures that involve both empirical 
input data and computational processing of these data collectively as 
hybrid methods. The problem of hybrid methods can then be formulated as 
follows:  

What, if anything, distinguishes a computer simulation that makes use of 
empirical input data from a measurement that involves the computational 
refinement of empirical data? 

It is not entirely clear whether this question is the right way of 
formulating the problem. I will briefly discuss different alternatives in the 
third section of this chapter as well. The answer to the problem of hybrid 
methods that is advocated here treats it as a partly conventional matter 
whether the outcome of hybrids is considered as empirical data or as 
theoretical data (which includes simulation data). The convention 
proposed here is that hybrids should be considered as empirical methods, 
if  

1. The output data represents quantities that are either causally 
responsible for the values of the input data or that are 
mathematically connected to them. 

 It may appear paradoxical that the output should be causally 
responsible for the input, but a simple example suffices to explain 
what is meant: assume that you measure force with a simple spring. 
Then what you actually measure is the extension of the spring 
(input data) and the scale on the spring allows you to “compute” 
the force in Newton (output data). Now, it is of course the force 
(i.e. the output) that is causally responsible for the extension (i.e. 
the input). At the same time, it is true that the output value depends 
on the input value, but this dependence is computational and not 
causal. I hold that this pattern is typical for any measurement where 
the quantity that is measured is only indirectly accessible. 
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2. And the output data characterizes factors that operate in close 
spatiotemporal proximity to the input data or, more precisely, to the 
source data.  

In order to defend this convention, I am going to argue that it is in 
harmony with the self-ascription by the scientists using these methods, 
with the traditional understanding of measurements, and with our intuition. 

The Current State of the Debate 

The philosophical debate on the epistemic status of computer 
simulations can be traced back at least until the early 1990s. One of the 
popular slogans that already appeared as early as that in the debate was 
that of simulations as a “third way of doing science” (Axelrod, 2006; 
Küppers and Lenhard, 2005; Rohrlich, 1990), indicating that computer 
simulations neither fully resemble material experiments nor conventional 
forms of theory or model building, but that they are something in between. 
While this is a fair characterization of the activity of conducting computer 
simulations, which in many ways resembles experimentation but also 
requires specific practical skills and virtues that differ from those of 
experimenters, it is doubtful whether computer simulations can be 
characterized as a “third way” in an epistemological sense. For scientists 
themselves it has been clear most of the time that computer simulations 
are not an empirical method of science, even though they resemble 
experiments, and that therefore computer simulations, just like theories 
and models, are in need of empirical validation themselves, rather than 
being able to confer empirical validation on theories (Gilbert and 
Troitzsch, 2005; Heath, Hill and Ciarello, 2009). This view is also 
reflected in much of the philosophical literature on computer simulations 
of the 2000s (Guala, 2002; Humphreys, 2004; Morgan, 2003). 

However, in the latest installments of the philosophy of simulations, 
this view has come under attack. In the context of a sometimes confused 
debate about the alleged materiality of simulations, philosophers have 
denied that there is any fundamental or epistemologically relevant 
difference between simulations and experiments. Or, if there is, then at 
least “any epistemically relevant differences between experiment and 
simulation [are] very difficult to articulate” (Morrison, 2009, 48). I am 
convinced that this is a mistake. First, therefore, I am going to set out 
some of the core arguments against the epistemic difference between 
simulations and experiments and I will try to show why all of them are 
wrong, some of them quite obviously so. Then, I am going to put forward 
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positive arguments for the differences between simulations and experiments. 
Finally, I explain why, in spite of the clear conceptual distinction, hybrids 
still provide a challenge for the epistemology of simulations. 

Arguments against the Difference 
between Simulations and Experiments 

The philosophers who are the most critical of the attempts to draw a 
clear distinguishing line between simulations and experiments are Wendy 
Parker (2009), Eric Winsberg (2009, 2010) and Margaret Morrison (2009). 
Wendy Parker argues that simulations in a sense are also “material” and 
that at any rate what matters is not materiality but “relevant similarity” 
(Parker, 2009, 484), which can be quite independent from the material 
status of the experiment or simulation. Winsberg does not go quite as far 
as Parker, but he, too, argues that simulations and experiments cannot be 
sharply distinguished by their materiality or by any similar criteria. The 
only distinction he concedes is that the way in which scientists justify their 
belief that the object under study (in a simulation or an experiment) can 
stand in for the target differs between simulations and experiments. As we 
shall see, he cannot advocate this view without contradiction, because the 
justifications cannot differ without referring to some other difference on 
which the different justifications are based. But then, the different kind of 
justification is not the only difference any more. 

Morrison, in contrast to Parker, does not diminish the difference 
between simulations and experiments by arguing that simulations are also 
somehow material and, thus, somehow like experiments. But, quite the 
contrary, she argues that experiments in advanced science are somehow 
like simulations, because “the way models function as the primary source 
of knowledge in each of the (…) contexts [simulation and experimental] is 
not significantly different” (Morrison, 2009, 43). As we shall see, she 
overlooks the simple fact that in simulations a model also functions as the 
source of data while in experiments, the data is at least coproduced by 
nature. 

I will now explain the flaws of the central arguments by Parker, 
Winsberg, and Morrison in more detail.1 Parker offers several arguments, 
which are partly independent from each other. As mentioned, one 
argument is that simulations like experiments are also “in a sense” 
material. The sense in which simulations are material is this: 

                                                           
1 Still I have to confine myself to the most important points here. For an even more 
detailed criticism see the working paper by Kästner and Arnold (2012). 
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The experimental system in a computer experiment is the programmed 
digital computer – a physical system made of wire, plastic, etc. As 
described in the last section, a computer simulation study involves putting 
a computing system into an initial state, triggering its subsequent evolution 
(the simulation), and collecting information regarding various features of 
that evolution, as indicated by print-outs, screen displays, etc. It is those 
data regarding the behavior of the computing system that constitute the 
immediate results of the study. In a computer simulation study, then, 
scientists learn first and foremost about the behavior of the programmed 
computer. (Parker, 2009, 488ff) 

But, obviously, the kind of materiality that computer simulations enjoy 
because they are run on a material system (i.e., the computer hardware) 
does not at all liken them to real material experiments. It is misleading to 
say that the data that is presented on the printouts and screen displays is 
“data regarding the behavior of the computing system.” For the data of a 
simulation usually does not convey any information about the computer on 
which it was produced, but only information about the simulated system. It 
would be equally awkward if someone makes a calculation with pen and 
paper to consider the resulting figure as data regarding the pen and the 
paper. In particular, the person could potentially perform the same 
calculation with the same result in her head, which would imply that the 
result written on the paper must also be data regarding the brain of the 
person. Clearly, this is absurd. But then it is also wrong to say that the data 
that results from calculations performed on a computer is data regarding 
the computer. If this is not true, then also Parker’s basic contention that 
“any computer simulation study classified as an experiment is first and 
foremost a material experiment” loses its ground. 

The same confusion of different levels of consideration (i.e., the 
symbolic or, if preferred, the “semantic level” (Barberousse, Franceschelli, 
and Imbert, 2009)) on which a computer simulation operates and the 
material level of the hardware on which it is implemented, is carried over 
by Parker to her reading of intervention. In Parker’s opinion, intervention 
in a computer simulation study occurs when the user sets up the simulation 
and puts it into an initial state, for which purpose the user has to interact 
materially with the computer. What Parker appears to misunderstand at 
this point is that it is not the interaction between the experimenter and the 
experimental machinery that is at stake when one speaks of material 
experiments in contradistinction to computer simulations or computer 
experiments but the interaction between the investigated experimental 
object and either the machinery or the experimenter or both. Now, in a 
computer simulation, the experimental object is either a fictional symbolic 
object or a symbolic (or “semantic” for that matter) representation of a 
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material object. In any case, intervention on the “experimental” object of a 
computer simulation always occurs on the symbolic level (e.g., by 
assigning certain values to certain control variables). Thus, if one classifies 
computer simulation studies as experiments on the grounds that they 
involve intervention—which is, admittedly, one of several typical (though 
not exclusive) characteristics of experiments—then one still must concede 
that there exists an important difference between simulations and 
experiments regarding the type and kind of this intervention: in computer 
simulations, it remains purely symbolic and only in experiments it is 
material. 

That is not to say that Parker is entirely unaware of the representational 
nature of computer simulations. At one point Parker even contrasts the 
representational quality of computer simulations with the property of 
involving interventions that experiments have:  

These characterizations imply at least the following fundamental difference 
between simulations and experiments: while a simulation is a type of 
representation — one consisting of a time-ordered sequence of states — an 
experiment is an investigative activity involving intervention. (Parker, 
2009, 487) 

However, apart from the fact that the there is at least a counterpart to 
the representational quality of the simulation model; namely, the 
representative quality of the experimental object, it is not at all clear why a 
simulation does not involve intervention. In both the simulation and the 
experiment, intervention consists in setting or changing certain conditions 
of the experimental system in a controlled way. Moreover, for both 
simulations and experiments there exist examples where this kind of 
intervention is achieved by: a) determining the boundary conditions 
through the setup before the experiment or simulation starts, or by b) user 
interaction during the simulation or experiment. While this line of 
reasoning might appear to strengthen Parker’s point about the 
comparability of simulations and experiments as scientific methods, it still 
does not alleviate the counterargument that experiments operate on 
material objects while simulations operate on symbolic representations.  

If we say that the experimental object is a representative, this means 
that it is a part or an instance of the target system of the experiment (i.e., 
the system in nature) the investigation of which was the purpose of the 
experiment. It is clear that the programmed model that represents the 
target system in nature in a computer simulation can never be a 
representative in this sense. On the other hand, there exist experiments 
where the object is also not a representative, but merely is some kind of 
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representation. An example would be a ripple tank that is used to study 
such phenomena as reflection and interference of waves. Although the 
waves in the ripple tank are water waves, the ripple tank could also be 
used to learn something about waves of another kind, like sound waves or 
light waves. In this case, the waves in the ripple tank are not an instance of 
the target system and therefore the experimental object would not be 
called a representative of the target system. One can, in this special case, 
speak of the experiment as an analog simulation and consider the 
experimental object as a representation of the target system, just as in the 
case of a computer simulation. There still remains one obvious and one 
more subtle difference, nevertheless: the object of an analog simulation 
remains a material object, while the object of a computer simulation is 
always symbolic. This difference does not have any epistemic relevance in 
the case of analog simulations. The more subtle, but potentially 
epistemically relevant difference is that in the case of the analog 
simulations, there is still some kind of isomorphism involved between the 
object and the target, while in the case of computer simulations the 
relation remains purely representative. 

 

 
 
The different types of simulations and experiments that have just been 

described are summarized in Figure 3-1. Failure to distinguish properly 
between computer simulations and analog simulations is a constant source 
of error in both Parker’s and Winsberg’s treatment of simulations. For 
example, Parker complains “the proposed distinction implies that no study 
as a whole can be simultaneously both a simulation of some target system 
T and an experiment undertaken to learn about that same target system T, 
since the required relationships with T are mutually exclusive” (2009, 
486). Then, she continues by presenting an example of a study that 
according to her interpretation is simultaneously an experiment and a 
simulation. Not surprisingly, her example of the San Francisco Bay Model 
concerns an analog simulation. However, this merely shows that the 
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categories of simulations and experiments are not mutually exclusive in 
the first place. At the same time, it does not imply that there is no 
epistemically relevant difference between (computer) simulations and 
experiments that are not analog simulations, which is the conclusion that 
Parker suggests. In a similar vein, Winsberg (2009) complains that “if we 
can never be sure if something is an experiment or a simulation” it would 
not be worth knowing that, as Mary S. Morgan (2003) maintains, 
“experiments are more epistemically powerful than simulation” (Winsberg, 
2009, 582). However, doubts whether something is an experiment or a 
simulation can arise only in the case of analog simulations. Even here it is 
possible to distinguish analog simulations from plain experiments by their 
relation to the target system, as depicted in Figure 3-1. 

Another point that Parker makes deserves more consideration; namely, 
that “what is ultimately of interest when it comes to justifying inferences 
about target systems is not materiality, but relevant similarity” (Parker, 
2009). This is quite true, because material similarity does not 
automatically transform into epistemic reliability. In addition, numerical 
representations of nature in computer simulations can be quite accurate at 
times. Still, being of the same material stuff can be a good reason to 
assume relevant similarity (which Parker concedes); in some cases, it may 
be the sole reason. It must be expected that this is particularly true for 
those processes in nature about which we do not yet have comprehensive 
theoretical background knowledge in terms of either fundamental laws or 
at least well-tested phenomenological laws. Parker seems to be faintly 
aware of the connection between the existence of background knowledge 
and the possibility to simulate: “especially when scientists as yet know 
very little about a target system, their best strategy may well be to 
experiment on a system made of the ‘same stuff’” (Parker, 2009, 494). 
However, she does not seem to be aware that in this case it is not just an 
option (“best strategy”) but a necessity to conduct real material 
experiments. As the frontier of science is being pushed forward, one can 
assume that greater and greater regions of nature fall into the realm of 
what can reliably be simulated based on our scientific background 
knowledge. However, there will always remain scientific questions for 
which material experimentation is unavoidable. 

Winsberg, in his paper entitled “A Tale of Two Methods” (2009), 
maintains that simulations and experiments can only be distinguished by 
how scientists argue for their validity. He does not notice that it would be 
impossible to argue in different ways for the validity of either simulations 
or experiments if there did not exist other differences on which the 
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different arguments could be founded.2 Indeed he implicitly admits this 
when he says of the experimenter that “She believes the inferences she 
will make are legitimate because she is prepared to argue that the two 
systems are, in relevant respects, the same kind of system, made out of the 
same material, and can be expected to exhibit relevantly similar behavior” 
(Winsberg, 2009, 590). However, this means that the experimenter relies 
on a relevant material similarity. So then, relevant material similarity must 
be another difference between simulations and experiments, besides the 
different justifications given for the respective methods. If it were not, it 
would not be understandable why the simulationist should not appeal to 
the same reason when justifying his or her procedure. Regarding the 
simulationist, Winsberg claims that he or she “will want to argue . . . that 
the computational model of his computer is relevantly similar to a good 
model of the behavior of the gas jets that interest him” (Winsberg, 2009, 
590). However, this is an argument based on formal similarity, which 
means that formal similarity in contrast to material similarity must be an 
exclusive feature of simulations, if the justification based on formal 
similarity is to be exclusive to the simulationist. Otherwise, Winsberg’s 
thesis that simulations and experiments differ by the way they are justified 
would be empty. Thus, Winsberg is forced to admit the validity of Guala’s 
(2002) distinction between material and formal similarity that he tries to 
deny in his paper. 

This is not the only contradiction in Winsberg’s paper. In order to 
explain his point, Winsberg sets out with the thought experiments of two 
physicists, one using a tank of fluid, the other using a digital computer to 
study fluid interaction. In other words, one scientist is conducting a 
material experiment; the other, a computer simulation. At one point he 
concretizes his story as follows: “what if we were to find that both of our 
original physicists’ primary area of interest is astrophysics? The systems 
that actually interest them are supersonic gas jets that are formed when 
gasses are drawn into the gravitational well of a black hole” (Winsberg, 
2010). With respect to this setting, Winsberg remarks: “neither physicist, 
then, is actually manipulating his or her actual system of interest. Neither 

                                                           
2 Against this criticism of Winsberg, an anonymous referee objects, “two claims 
can be justified in different ways but have the same epistemic warrant.” However, 
since the epistemic justification of a scientific procedure usually consists in ex-
plaining or pointing out what its epistemic warrants are, it is hard to see how this is 
possible in this context. Moreover, as the passages quoted in the following pages 
from Winsberg demonstrate, he is unable to uphold his position that simulationists 
and experimenters rely on the same epistemic warrants when they justify their 
method. 
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one is even manipulating a system of the same type, on any reasonably 
narrow sense of the term” (2010, 52). Thus, we are to assume that 
simulation and experiment cannot be distinguished by whether the actual 
system of interest is manipulated. However, only a few lines later 
Winsberg maintains exactly the opposite: “in some respects, the physicist’s 
tank is an instance of the system of interest, since it is in fact an instance 
of a supersonic interaction of a pair of fluids.” Now, how can a system that 
is not a “system of the same type, on any reasonably narrow sense of the 
term” be at the same time an “instance of the system of interest”? 
Winsberg denies that there exists a distinction between simulations and 
experiments that is more fundamental than the different kinds of 
justification for experiments and simulations respectively. It seems, 
however, that this denial rests in part on a self-contradictory analysis of the 
central thought experiment of his paper. 

Another objection that Winsberg raises against the distinction is “on 
the Simon/Guala definitions of simulation and experiment, they are both 
success terms. An investigation will count as an experiment only if it is 
successful in the sense that the relevant material similarity between object 
and target actually obtain” (Winsberg, 2009). He concludes from this that 
in this definition if an experiment failed to establish a relevant material 
similarity then it would not be a failed experiment but it would simply fall 
into the other category (i.e. simulation), which seems wrong to Winsberg. 
With respect to this, he worries that “if experiment and simulation are 
success terms, then investigators may never be in a position to know if 
they are conducting a simulation or an experiment.” However, Winsberg 
(2009), following a suggestion from Parker, already offers the obvious 
counterargument against his objection; namely that “simulation studies are 
characterized by the fact that the investigators aim for their objects to have 
relevant formal similarities to their targets and that ordinary experiments 
are characterized by the fact that the investigators aim for their objects to 
have relevant material similarities to their targets.” Winsberg never 
answers this counterargument. Instead, he continues: “I do not think this 
works. I think the whole idea of formal versus material similarity is 
confused, no matter how much it is tempered by ‘relevant,’ ‘aimed for,’ or 
whatever.” That is, Winsberg reasserts his opinion but does not offer an 
argument. 

Margaret Morrison does not buy Parker’s argument that computer 
simulations are also somehow material: “locating the materiality of 
computer experiments in the machine itself, however, carries with it no 
epistemological significance,” she notes (2009). Nevertheless, she reaches 
the similar conclusion that “the modeling features of simulation are co-
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extensive with its experimental character making any epistemically 
relevant differences between experiment and simulation very difficult to 
articulate.” More precisely, her claim is “that the way models function as 
the primary source of knowledge (…) is not significantly different” 
(Morrison, 2009). But this is obviously false, because in a simulation it is 
a model that produces the data, which is impermissible in a material 
experiment.3 In a similar vein, Morrison maintains “experimental 
measurement is a highly complex affair where appeals to materiality as a 
method of validation are outstripped by an intricate network of models and 
inference” (Morrison, 2009). However, one of her own examples, 
magnetic resonance imaging (MRI), suggests the opposite. For, in order to 
validate that an MRI scanner works correctly, it is, among other things, 
tested with material objects. And when it is put to use in medicine, it is 
done so because it is able to reveal material features of the body or body 
part under examination and thus is able to validate or refute assumptions 
about health or illness by an appeal to materiality.4 Because devices like an 
MRI scanner are diligently built to determine material properties of the 
objects under study, one could say that the “intricate network of models 
and inference” is tailored to the expression of the materiality of the object, 
rather than outstripping the appeal to materiality. 

As we have mentioned earlier, with the scientific frontier moving 
onward, it is imaginable that increasing ranges of natural phenomena can 
be simulated, thereby potentially outstripping the need for experiments. 
This is, however, something completely different from maintaining that 
the appeal to materiality can be outstripped by models and inference in 
those cases where material experiments are still conducted. One might 

                                                           
3 See also Peschard (forthcoming) who utters a very similar criticism of Morrison 
and nicely summarizes her complaints: “Admittedly, we ‘know’ of the features of 
the system that affect the instrument only in so far as we ‘know’ of the relation 
between these features and the state of the instrument; that is, only in so far as we 
have and are justified in using a given model of the instrument. But to say that this 
mediating role of model makes causal interaction in experimentation epistemically 
irrelevant looks like saying that the role of language in expressing our sensory 
experience makes the sensory character of this experience epistemically irrele-
vant.” 
4 According to an anonymous referee I have misunderstood the point that Morrison 
wanted to make with her example of MRI. I am aware that Morrison has several 
things to say about MRI. It is just this specific consequence about the relative epis-
temic weight of material factors and models that I intend to criticize. In the worst 
case my criticism only touches an unfortunate formulation by Morrison. Because 
Morrison formulates more or less the same idea in different ways at several points 
of her paper, I am inclined to believe that she means what she says at this point. 
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speculate that in future science there will be a growing dependence on 
observations that are made with intricate and highly technicized 
measurement devices and continuously less reliance on ordinary sense 
perception. However, it is doubtful whether the point where sense 
perception becomes superfluous as a means of scientific investigation will 
ever be reached. One can say with Humphreys (2004) that this increases 
the epistemic opacity or that a greater and greater part of the epistemic 
processes that lead to knowledge will take place hidden from our eyes. But 
even then, humans will remain in the epistemic center, because it is 
humans that build and design the epistemic machinery that they make use 
of. However, the path—or, more likely, some of the paths—to the 
periphery where the epistemic machinery gets into contact with the world 
will continuously be extended. 

Morrison may have been mislead into likening experiments to models 
by her own historical example, which she presents at the beginning of her 
paper. For the purpose of commenting on the contemporary discussion 
about models and experiments, this example unfortunately does not appear 
to be particularly well chosen. The example concerns Lord Kelvin’s 
interpretation of electrodynamics. “As I mentioned at the outset, Kelvin 
saw mechanical models as intimately connected to measurement and 
experiment. He considered numerical calculation measurement as long as 
it was performed in the context of model construction, testing, and 
manipulation. All of these features enabled one to know an object 
‘directly’ rather than simply becoming acquainted with a mere 
representation.” (Morrison, 2009). This can be misleading if applied to the 
contemporary discussion, because it seems that Kelvin’s notion of 
knowing an object “directly” rests entirely on an ontological commitment 
of Kelvin’s in favor of mechanical models and explanations. Other than 
that, his jelly bowl (Morrison, 2009, 37) is just another example of what 
we call analog simulations and as such, it is just as remote from its target 
system as Maxwell’s mathematical equations. Therefore, the example of 
Kelvin is not a good example for showing, as Morrison seems to intend, 
that material experiments do not have a more direct relation to their target 
systems than simulations and that appeals to “knowing an object directly” 
through a certain kind of scientific method are badly founded. The appeal 
is merely badly founded in Kelvin’s case. Incidentally, we see again how 
important the clear distinction between plain experiments and analog 
simulations is for the whole discussion. 

Briefly summing it up: none of the arguments against the separation of 
simulations and experiments by Parker, Winsberg, and Morrison appear to 
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be pervasive.5 However, there is one point by Parker that ought be kept in 
mind; namely, that in any concrete case what ultimately matters is not the 
materiality of the procedure nor primarily whether the relation to the target 
system is a material or a formal similarity, but whether a relevant 
similarity can be established. 

Arguments for the Difference 
between Simulations and Experiments 

Having refuted the arguments against making a difference between 
simulations and experiments, the question remains: what positive 
arguments are there for drawing a strict distinction between simulations 
and experiments? There appear to be at least three fundamental and 
important differences between simulations and experiments, which I will 
discuss below. 

Only experiments can operate on a representative of the target system 

Operating on a representative of the target system means that the object 
that is manipulated and studied in the experiment is either a part of or an 
instance of the target system or is the target system itself. In contrast, both 
analog and computer simulations operate only on a representation of the 
target system. In the case of analog simulations, this is true in virtue of the 
definition of an analog simulation as an experiment that operates on a 
representation of, rather than on a representative of, the target system. In 
the case of computer simulations, this is true by necessity as long as the 
target system is a target system in nature.6 Both the relation of being 
representative of and that of being a representation of a target system raise 
                                                           
5 According to an anonymous referee, this misrepresents Winsberg’s, Parker’s and 
Morrison’s position, because none of them believes that simulations and experi-
ments are one and the same thing, but only that in some cases they may have the 
same epistemic warrants. My primary goal is not to criticize Winsberg, Parker and 
Morrison, but to refute those arguments that have been put forward against the 
difference between simulations and experiments. I have pointed out above some of 
the few concessions these authors make in the discussed papers in favor of the 
distinction between simulations and experiments. In no way do the discussed pa-
pers support the conclusion that Winsberg, Parker, and Morrison restrict them-
selves to some cases only. But even if restricted to some cases, most of their argu-
ments remain false and seriously misleading.  
6 One can also conceive of a model as a target system of a computer simulation. 
But this is a special case which in an epistemic connection is not at all comparable 
to the case where the target system is a system in the real world. 
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the analogous question of whether the respective relation truly holds. But 
this does not mean that both questions are one and the same. For 
establishing either of these relations provides a different challenge. 
Generally speaking, establishing the relation of representation requires 
comprehensive background knowledge about the target system, while the 
relation of being a representative can be established (though, as always, 
with a probability of error) on the basis of other indicators. For example, if 
one wants to know whether some kind of wood burns at 250°C it suffices 
to take a piece of that wood to establish the relation of representative of (in 
this case, in the sense of being part of it). However, before one could be 
sure that a certain computer model of a piece of wood is truly a 
representation of that kind of wood, one would either need a 
comprehensive knowledge of the chemical structure of the kind of wood in 
question and of the chemical laws guiding oxidation, or one would at least 
need to know sufficiently detailed phenomenological laws about the 
burning of wood as to allow one to draw conclusions about the 
temperature at which the particular kind of wood in question starts to burn. 
Thus, the difference between representation of and representative of is a 
highly relevant epistemic difference. 

This difference in relation to the target system can also be described as 
the difference between material similarity and formal similarity (Guala, 
2002). Material similarity is the relation between the experimental system 
and the target system in the case of an experiment. Formal similarity holds 
between the simulation system and the target system in the case of 
computer simulations. 

The case of analog simulations is ambiguous with respect to this 
terminology, and requires clarification as to whether material similarity 
also covers the similarity of different materials that obey the same laws. If 
this clarification is made or if the case of analog simulations is excluded, 
then Winsberg’s (2009) criticism of this terminology can be circumvented. 
Another phrase that has been used to describe material similarity is the 
phrase “same stuff.” This phrase is less ambiguous than the phrase 
“material similarity,” because it clearly suggests that the material must be 
the same. 

Only experiments can deliver knowledge to us that goes beyond  
what is implied in our background knowledge 

Because computers are merely calculating machines, they cannot 
provide us with any knowledge about the world beyond what is implied in 
the premises of a computer simulation. As the premises must be rooted in 
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our prior knowledge, the insights one can gain from computer simulations 
is limited to this prior knowledge and its implications.7 The same does not 
necessarily need to be true of analog simulations. In order to be 
meaningful, an analog simulation only requires that the mapping relation 
(typically an isomorphism) between the object that serves as a stand-in for 
the target and the target system itself is known, but not that the laws of 
nature that govern the object are known as well. Therefore, the object 
could potentially reveal a behavior that is not merely a logical 
consequence of our prior knowledge. If we assume that the mapping 
relation is applicable nonetheless, then the novelty exposed by the object’s 
behavior carries over to the target system as well. It may of course be 
disputed whether this assumption is true or whether it has much practical 
impact. But the case is at least imaginable. 

Because of this limitation, computer simulations can be best thought of 
as tools for evaluating the consequences of an existing stock of knowledge. 
But only experiments (potentially including analog simulations in the 
hypothetical case just described) can break through the epistemic barrier 
that is determined by our prior knowledge and to which computer 
simulations are inevitably confined. 

One can speculate whether one day our background knowledge will be 
so complete that we can deduce any possible further knowledge about the 
world from it. This, however, is pure science fiction and it seems as good 
as impossible within the limitations of the conditio humana that it should 
ever become real. 

Only experiments can be used to test fundamental theories 

Can simulations be used to test hypotheses? They can, but only against 
the background of an existing theory. It may be the case that this theory 
can in turn be tested via simulations against another more fundamental 
theory. But at some point we reach a most fundamental theory, which 
cannot be tested by a simulation any more, because no theories or 
principles remain upon which such a simulation could be built. Thus, it is 
for basic reasons impossible to replace an experimentum crucis by a 
simulation. And this is true for both computer simulations and analog 

                                                           
7 It is important here to understand the difference among a) things that are not logi-
cally implied in our prior knowledge, b) things that are logically implied in our 
prior knowledge but unknown to us and c) things that are logically implied in our 
prior knowledge and known to us. For category a, simulations cannot help us, only 
experiments can help. For category b, simulations and experiments can help us. 
Finally, for category c neither is needed because we know it already. 
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simulations, because an experimentum crucis requires that the investigated 
object be a representative of the target system, the particular nature of 
which is in question. 

What counts as fundamental theory is, of course, historically relative. 
For example, Galileo’s laws of motion and Kepler’s laws of the movement 
of the planets were both fundamental theories at the time of their 
invention. Both, however, can be derived from Newtonian mechanics and, 
therefore, they lost the status of fundamental theories, which was then 
taken by Newtonian mechanics. Once Newtonian mechanics were accepted, 
Kepler’s laws could also be tested by simulation (though this is strictly 
speaking unnecessary, because they could be derived mathematically 
already). But then this simulation does not replace an experimentum crucis 
of a fundamental theory anymore. Since at any past, present, or future 
point in the history of science there will exist at least one theory that is the 
most fundamental theory, material experiments will still be needed to test 
at least this fundamental theory. Even if we assume the hypothetical 
scenario above, where humanity has accumulated sufficient knowledge to 
derive everything else that is worth knowing from this knowledge, 
material experiments would still be needed to justify the fundamental 
theories that are part of this set of knowledge. 

Further differences and conclusions 

One can easily think of further differences between simulations and 
experiments: as mentioned earlier, experiments are material in the sense 
that the object under investigation is a material object. Simulations in 
contrast are virtual in the sense that the object that is investigated is a 
semantic representation. The criterion of materiality should not be 
confused with the relation of material similarity. Materiality as such 
concerns only the object under investigation and not the relation between 
object and target (see Figure 3-1). With respect to the relation of material 
similarity, materiality is a necessary but not a sufficient condition, because 
an analog simulation is also material but not of the “same stuff” as its 
target. Since it does not allow us to distinguish analog simulations from 
other experiments, materiality alone is a comparatively less important 
criterion for the distinction than, say, material similarity. 

Yet, another difference is that experiments are an empirical method 
while computer simulations remain purely theoretical. Again, the case of 
analog simulations may be a cause of ambiguity, because by virtue of the 
materiality of their object, analog simulations could be considered 
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empirical just like ordinary experiments, but they do not deliver empirical 
knowledge about the target system to us. 

Overall, we find that there are sufficiently many and sufficiently 
important differences to warrant an epistemological distinction between 
simulation methods and experimental methods. This said, it cannot be 
denied that it is a fact that in modern science both methods, the 
experimental method and the simulation method, are frequently used in 
close connection with each other. Does this mean that they merge into 
complexes where simulations and experiments become indistinguishable? 
We will now turn our attention to this question. 

The Challenge of Hybrid Methods 
In contemporary science, experimental methods are often closely 

intertwined with simulations or with simulation-like computational 
procedures. Simulations can be used to determine the optimal 
experimental design before experiments are carried out (Kramer and 
Radde, 2010). Computational methods can be used to select experimental 
data for further analysis while the experiment is run, as is done in particle 
accelerator experiments (CERN, 2011). They can furthermore be 
employed to post-process the raw data from measurements as, for 
example, in computed tomography (Lee and Carroll, 2010). In economics, 
experiments usually involve real human subjects that are placed in an 
artificial environment that differs substantially from the sort of real-world 
environments to which scientists try to apply results from the experiments 
and draw conclusions (Guala, 2002, 2012). Sometimes the artificial 
environment contains computer agents that interact with humans in the 
experiment. In the natural sciences, we also frequently encounter cases 
where empirical measurements and simulation methods jointly function as 
sources of data. Multiscale models of electrocardiac physiology, described 
by Annamaria Carusi, Kevin Burrage, and Blanca Rodriguez in another 
chapter of this book as model-simulation experiment systems, may serve 
as an example. 

To give a name to these kinds of sophisticated procedures, we can 
speak of them as hybrids of simulations and experiments. Hybrid methods 
constitute a challenge for the philosophy of science in several respects. 
They challenge the distinction between simulations and experiments that 
has been defended above. Doing so, hybrid methods also challenge the 
logic of scientific research in general. For the logic of scientific research, 
as understood by most scientists and by many philosophers of science, 
rests on the testing of hypotheses against empirical data. This presupposes, 
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one should assume, a clear distinction between the empirical and the 
theoretical. To put it in another way, if we cannot uphold the distinction 
between the theoretical and the empirical, then we would have to 
reconstruct the whole logic of scientific research.  

The distinguishing features between simulations and experiments 
presented earlier do not really solve the problem of hybrids, because they 
only tell us what the difference between the categories of experiment and 
simulation are. However, they do not allow us in all cases to decide 
whether a particular procedure belongs to the class of simulations or to 
that of experiments. If we follow the reasoning of the first part of this 
chapter, then we know that only experiments can operate directly on the 
target system. But we may not be sure in a particular case whether some 
scientific procedure that makes scant use of some sort of empirical data 
and heavy use of computation falls into this category. 

To solve the problem of hybrids, several quite different approaches are 
imaginable. One can even say that so far neither the framing nor the exact 
formulation of the question is clear. I am not going to attempt to give a 
comprehensive list of approaches to the problem of hybrids that have been 
proposed so far or that appear imaginable, but I will confine myself to the 
discussion of three approaches. Other authors have suggested two of these 
approaches; I briefly present them here since I consider these promising. 
After that I am going to present my own best guess at how the problem of 
hybrids could be solved. 

Hybrids as Mixtures of Empirical and Virtual Data Sources 
(Zacharias/Lenel) 

Guala (2002) considers as hybrid methods economic experiments 
where real human agents act in an artificial laboratory situation. Let us, for 
the sake of simplicity, imagine an experiment where human agents interact 
with computer agents. Generalizing from this case and adjusting it to the 
terminology developed in the first part of the paper, this leads to one 
possible definition of hybrids as procedures where the data source is partly 
empirical and partly virtual. 

How does this relate to our earlier distinction between simulations and 
experiments in light of the material or formal similarity of object and 
target? Well, the example shows that both the object under study and the 
target can be complex entities that are made of different components. The 
material similarity that makes the method an experiment may hold only for 
some components of the object and target but not for others.  
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As a consequence of this, the differences between simulations and 
experiments that have been described earlier apply only insofar as such 
components of the object under investigation are concerned that do 
actually bear a material similarity to (parts of) the target system. One 
could classify hybrids (in the just-defined sense) as experiments, if one 
were willing to weaken the formulations of the differences a bit; for 
example, by allowing that it suffices that at least one component of the 
object is a part of or an instance of some part of the target system. 
However, this would be a somewhat strained attempt to keep up a strict 
dichotomy between simulations and experiments. 

A much better solution has been proposed by Moritz Lenel and 
Sebastian Zacharias (unpublished). They give up the strict dichotomy in 
favor of a cross-classification of simulations and experiments (first 
dimension) and of laboratory and field methods (second dimension). In 
order to do, so they drop the idea of a monolithic target system. Instead, 
they differentiate between the target object and the target situation. 
Experiments and simulations are then distinguished by whether they 
operate directly on the target object or on a representation thereof. 
Laboratory research is distinguished from field research by whether it 
takes place in the target situation or in an artificially crafted laboratory 
environment. This classification scheme works quite well for economic 
experiments and simulations and for the social sciences in general. 
Economic experiments would most of the time fall under the category of 
laboratory experiments, but there is also room for laboratory simulations, 
field simulations, and field experiments. 

It is an open question how well this or a similar scheme could work in 
the natural sciences. In addition, the case where human agents act together 
with computer agents in the same situation on an economic experiment 
might strain the classification. Still, it is so far one of the most convincing 
answers to the problem of hybrids. 

Classification in Terms of the Degree of Materiality (Morgan) 

A quite natural approach would be to examine to what extent the 
method employed depends on materiality (i.e., material data sources, 
material interaction, material output) throughout the course of the 
simulation or experiment in question. This is the approach that Mary S. 
Morgan (2003) has taken. Doing so, she reaches a fine-grained 
classification that ranges from lab experiments over “virtually 
experiments,” “virtual experiments” (which are not the same as “virtually 
experiments”!) to mathematical model experiments. Morgan takes into 
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account the material status of input, intervention, and output, but also the 
relation between object and target where, again, she carefully distinguishes 
between “representative of,” “representative for,” and “representation of.” 
Morgan’s “Experiments without material intervention” (2003) is also one 
of the few attempts to explicitly deal with hybrid methods. I will not 
attempt to do justice to her careful and well-reasoned examination here. 
However, a few remarks are in order. 

First, while it seems reasonable to consider the materiality or 
nonmateriality of the intervention for distinguishing degrees of virtuality, 
it is not equally clear why the material or nonmaterial status of the inputs 
or outputs should really matter. A simulation can start with empirical input 
data of some system and then calculate the future evolution of the system. 
However, this would not make the simulation any more experimental. The 
most that can be said is that materiality of input data is a necessary but not 
sufficient requirement for a procedure to be an experiment or empirical 
measurement. As will be argued below, it is, if anything at all, the relation 
between the input and the output what makes a hybrid an experiment or a 
simulation.  

Mary Morgan’s distinction between representative and representation 
is more convincing. Although it is very helpful for distinguishing 
experiments from simulations, it does not seem fit to solve the problem of 
hybrid methods, because—as has been argued above—the problem arises 
when both relations are present in the course of one and the same 
procedure. As sample cases, Morgan examines two different simulations of 
hipbones. They differ in the way the model of the hipbone is obtained on 
which the simulation is carried out. In one case, the model is obtained by 
cutting one particular hipbone into slices and determining the three-
dimensional structure of the hipbone from these slices. In the other case, 
the scientists started with a stylized bone model that is then refined: “the 
individual side elements within the grid are given assorted widths based on 
averages of measurements of internal strut widths (taken from several real 
cow bones) and are gently angled in relation to each other by use of a 
random-assignment process” (Morgan, 2003, 222). Only in the first case is 
the input data clearly of empirical origin. The other case could— from the 
description given by Morgan—alternatively be interpreted as an example 
of a theoretical model that is adjusted or corrected with empirical data. For 
Morgan, the first simulation is therefore more like a material experiment 
than the second, and both lie somewhere between pure material 
experiments and pure mathematical modeling. 

The stance I have adopted leads to a different evaluation, though. 
According to the view I advocate, both examples are clearly simulations. 
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The reason is that the empirical origin of the input data alone is not 
sufficient to classify a procedure as experimental, or even partially 
experimental. In either of the two cases described by Morgan, it is only the 
input data what is empirical. The object that is manipulated during the 
study, however, is obviously a model. According to Morgan’s description, 
“in both cases (…) the experiment consists of the ‘application’ of a 
conventionally accepted (…) mathematical version of the laws of 
mechanics (…) The computer experiment calculates the effects of the 
‘force’ on individual elements in the grid and assembles the individual 
effects into an overall measure of the strength due to structure” (2003, 
221). 

The last description seems to fit one of our earlier characterizations of 
simulations in contrast to experiments quite well; namely that in a 
simulation it is a model and not a material object that produces the 
simulation data. This characterization is not as clear as it may seem at first 
glance though, because it requires that we can always distinguish the case 
where a model that is set up with empirical parameter values produces 
simulation data from cases of mere refinement of empirical input data, 
like, for example, by noise reduction algorithms. In the examples that 
Morgan presents, however, it seems clear enough that the data is produced 
by programmed models in a way that goes beyond the typical inferential 
patterns that can be found in measurements. That the models have been 
created from empirical data does not contradict this finding. 

Classification in Terms of the Relation  
between Input and Output 

In the following, I present my own best guess at how to answer the 
problem of hybrids. As stated earlier, the best way of framing the question 
in my opinion is to ask how computer simulations that make use of 
empirical input data can be distinguished from empirical measurements 
that involve the computational refinement of raw data. The difference can, 
I believe, easily be made clear with the help of examples.  

Think for example of a climate simulation: a climate simulation 
calculates the future development of the climate. In order to do so it is fed 
empirical data. Thus, both components of a hybrid—empirical input data 
and the computational processing of this data—are present. Yet, it is clear 
that a climate simulation is a simulation and not a measurement, because it 
is impossible to measure something that lies in the future.  

Now take as another example an MRI scan: again both components of 
a hybrid are present: the object or the person in the scanner from which the 
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empirical input data is recorded in form of electromagnetic waves that are 
emitted in response to the prior excitation of its H-atoms and the 
computational processing, which in this case produces a visual image of 
the internal structure of the object from the input data. While the 
classification may be not quite as indisputable as the example of the 
climate simulation, it still appears reasonably clear that this is an empirical 
measurement, because the object’s structure is reconstructed from data that 
reflects this structure. 

As clear as the example cases may be, it is more difficult to find 
general criteria by which to decide whether a particular method or 
procedure belongs to the class of simulations or to that of measurements 
(or experiments for that matter). In the following, I am going to attempt an 
answer in two steps. The uniting idea for both steps is the assumption that 
the difference between simulation-like hybrids and measurement-like 
hybrids can best be spelled out in terms of the relation that exists between 
quantities that the output data represents and the quantities that the input 
data measures.8 

A first approach: The same-system formula 

Following the idea that one feature that distinguishes experiments from 
simulations is that experiments can operate on the physical target system 
itself, one can formulate the following criterion: 

Same-system formula: a hybrid procedure is a measurement if its output 
data describes the same system in the same state as its input data.9  

One can easily check that this criterion works well with the two 
examples given above: the output of the MRI scan is obviously data about 
the very system that the input data is taken from, and it is about the system 
in exactly that state in which the input data was recorded. Although in the 
case of the climate simulation one could say that the input and output 

                                                           
8 The relation between input and output that is meant here is not to be confused 
with the transformation function that transforms the input data into output data. 
Rather it concerns the relation of the input and output values within the target sys-
tem. Examining the nature of the transformation from input to output might pro-
vide yet another alternative way to deal with the problem of hybrids. Nevertheless, 
this alternative is not examined here. 
9 It might be worthy of notice that the input of the computational part of a hybrid 
always has a precisely and unambiguously defined magnitude; namely the digital 
data as it is entered into the computer (either by hand or by a digitizing device) 
before any calculations on this data have been carried out. 
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system is the same; namely, the climate system, the output clearly 
concerns the system in a future state and therefore in another state than the 
input. The same-system formula therefore correctly places it in the class of 
simulations. 

The same-system formula works well enough in many cases, but 
unfortunately not in all cases. Imagine a similar case as Mary Morgan 
(2003) discusses: we determine empirically the structure of a particular 
hipbone. Then, we run simulations where pressure is put on the hipbone in 
order to estimate the strength of this hipbone. The hipbone’s strength is 
thus inferred by a calculation from its structure. Now, measurements often 
involve some kind of inference, but usually this is backward inference, 
where we measure the deeper causes of a phenomenon by some overt 
phenomenon (e.g., we measure the temperature by the extension of the 
liquid in a thermometer). However, in the case of the hipbone, the 
inference goes in the other direction. It therefore appears very doubtful 
whether one could call this a measurement of the hipbone’s strength. 

A second approach: The measuring-the-cause-by-its-effects pattern 

Since the same system formula fails as a sufficient criterion for 
classifying hybrids, a subtler criterion is needed. Spelling out the same 
idea that only experiments operate on the physical target system itself, I 
propose the following two criteria for classifying hybrid procedures as 
measurements:  

1. Spatiotemporal concordance of source and output: the output 
values have the same spatiotemporal location as the source values. 

2. Causal dependency of input on output: the output values are either 
a necessary (!) cause for the input values, or the output values are 
linked by definitions or mathematical laws to the input values. 

The first criterion makes sure that neither prognoses nor retrodictions 
(i.e., inferences about past events based on present observations) are 
accidentally classified as measurements. The second criterion reflects the 
well-known pattern of measuring a magnitude by its causal effects. For 
example, if one measures the force through the expansion of a spring. The 
further qualification that a link by definition or mathematical laws suffices 
is meant to capture such simple cases such as measuring the density by 
measuring and then dividing the weight and the volume of an object. If a 
hybrid procedure is found to be a measurement by these criteria, then we 
can also speak of the input data as raw data and the output data as refined 
data, thereby indicating that in the case of a (computationally enhanced) 
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measurement, the input and the output data still concern one and the same 
thing. There exists an overlap between both criteria insofar they exclude 
prognoses, although this overlap is harmless. One can easily verify that 
neither criterion is superfluous in the sense of preempting the other 
criterion. 

We speak here of “values” rather than “data,” because data is, strictly 
speaking, an entity located in a computer and causally linked to the 
software that processes it. What matters here, however, are the magnitudes 
in nature that the data informs us about. We understand “values” as always 
having the time, location, and causal connection to their occurrence in 
nature. In addition, it should be noted that in the first criterion we do not 
refer to input values but to source values.10 This accounts for the fact that 
the measuring device can be located more or less remotely from its object. 
For example, a person observing an explosion may hear a noise and see a 
flash of light, both of which occur at a different time to the observer. 
Because of this, it would not be useful to require spatiotemporal 
concordance of the input values. Admittedly, introducing the concept of 
source values here raises questions regarding the relation between source 
values and input values. Since the source values cannot directly be 
observed, it requires at least a further inferential step to reconstruct the 
source values from the input values. It would take us too far afield to go 
into this problem here. Therefore, it must be noted as an open question. 

In order justify the proposed criteria for classifying hybrid methods, 
we will briefly go through a number of typical examples of hybrid 
methods and try to show that the classification according to these criteria 
is sound in the sense of matching the intuitions one might have about the 
particular examples. 

I have already mentioned climate simulations as probably the most 
well known example of simulations in science. Climate simulations are 
based on empirical input data, but clearly they do not constitute 
experiments or empirical measurements themselves. The output of climate 
simulations concerns the future development of the earth’s climate. It 
would seem awkward to consider climate simulations as a measurement of 
the possible future climate. As the output does not fall into the same 
spatiotemporal region as the source, climate simulations are also not 
measurements according to our two criteria listed above. Thus, the 
classification of climate simulations according to our criteria is in 
harmony with our intuition and the self-ascription by scientists. 

                                                           
10 This distinction relates to Paul Humphreys’ distinction between source data and 
accessible data. See Figure 1-1 of Humphreys’ article in this volume. 



Chapter Three 70

Another famous example of the most advanced kind of “technoscience” 
is the Large Hadron Collider (LHC). An interesting peculiarity of the 
Large Hadron Collider is that from the enormous number of events 
occurring during one second in the collider, only a number of events that is 
several magnitudes smaller is preselected11 by automatic procedures for 
further examination (CERN, 2011). This nicely illustrates the idea of 
epistemic opacity, which, according to Humphreys (2004), is one of the 
characteristic features of modern computer-based science: It is the 
computer that decides which data will be selected and it is in principle 
impossible for any human agent to double-check each individual decision, 
even though the algorithms for that decision were of course developed by 
humans. 

According to our criteria, which remain neutral with respect to the 
selection and preselection of data, the LHC data still counts as 
experimentally measured data. This is in accordance with the self-
description of the LHC project, which also speaks of experiments. It is 
reasonable to do so, because the events selected by the computer for 
further analysis are still empirical events that occurred in the collider 
itself.  

It is more difficult to decide how computational post-processing of 
data affects its status as empirical data. In magnetic resonance imaging, 
the raw data obtained from the electromagnetic signals emitted by the 
previously stimulated protons of the body are turned into an image by 
means of various highly sophisticated computations (Lee and Carroll, 
2010). According to our criteria, magnetic resonance imaging falls still 
into the category of experimental measurement, because the output is an 
image of the structure of the body, but it is just that structure of the body 
that determines what the electromagnetic signals (i.e., the raw data) are 
like. In this sense, the output values are causally responsible for the input 
values. Simultaneously, both output values and source values lie in the 
same spatiotemporal region. But not only according to our criteria— 
intuitively it also makes sense to consider magnetic resonance imaging as 
a measurement. For it bears a strong similarity to photography. And it can 
be verified by dissection that the images it produces resemble the object 
under study and thus are not fabricated by a model. 

Simulations are a very popular tool in astronomy. One reason for this is 
that it is impossible to carry out material experiments with stars and 
galaxies. However, the fact that it is impossible to study, say, the collision 
                                                           
11 LHC terminology speaks of “reprocessing” of data. However, since the data is 
not changed but merely is a subset of data filtered from a larger set of data, we use 
the term “pre-selection” here to avoid misunderstanding. 
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of galaxies experimentally does not turn a simulation of the collision of 
galaxies into an experimental procedure, other than in a purely 
metaphorical sense of the word “experimental.” If we consider such 
examples, then these are not experimental measurements according to our 
criteria, because clearly the input data is not empirical, but is model data 
about hypothetical galaxies (Struck, 1997). In this case, the simulation 
would not even be classified as a hybrid in the first place.  

There are of course other kinds of simulations in astronomy that make 
heavy use of empirical input data, like the Bolshoi simulation (HIPACC, 
2011). The Bolshoi simulation is a simulation by our criteria because the 
output of the simulation (evolution of the universe or, rather, of regions of 
the universe) is not a cause of the initial state nor is it located at the same 
time and place. The classification of the Bolshoi simulation as a simulation 
and not as an experiment is in agreement with the self-ascription by its 
creators, and it is intuitively plausible that it is a simulation and not an 
experiment.  

This brief survey of examples indicates that our criteria for distinguishing 
experimental measurements that involve the computational refinement of 
data from simulations based on empirical input data can account for many 
prominent examples of advanced science. This in turn suggests that the 
criteria articulate at least an implicit standing convention for 
distinguishing data-based simulations from empirical measurements. It 
still leaves open the philosophical question whether and how this practice 
can be justified epistemologically. However, this answer to the problem of 
hybrids builds on a structural feature that is already present in traditional 
measurement instruments and that has been described here as the 
measuring the cause by its effects pattern. Therefore, I conjecture that the 
problem of justifying it is either exactly the same or very similar to that of 
justifying traditional measurement or observation methods which rely on 
this pattern. For example, we say we measure the temperature, when in 
fact we are measuring the extension of the volume of a liquid in a 
thermometer and infer the temperature with the help of a scale. Still, we 
consider the temperature value as empirical data and I believe we do so 
because the kind of inference we make adheres to the two conditions 
stated above. 

Summary and Open Questions 

In this chapter I have argued that experiments and simulations and, by 
the same token, empirical measurements and theoretical calculations are 
clearly separate and well-distinguished categories. I have defended this 
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distinction against what appears to me to be a strong tendency towards the 
contrary in the newer philosophy of simulation literature. However, the 
problem of hybrid methods (i.e., methods that combine empirical 
measurement of data with the computational processing of this data) raises 
conceptual problems that are not so easily solved. There are different 
possible approaches to solving these problems. In my opinion, the best 
way to frame these problems is by asking the question: what distinguishes 
a computer simulation based on empirical input data from an empirical 
measurement that involves the computational refinement of data? My 
answer consisted in transferring a typical of pattern of traditional 
measurement methods to the case of hybrids. 

Several questions remain open, however. First, as the approach 
proposed by me is not the only possible or promising approach, it can still 
turn out that other approaches work better. Alternatively, it could turn out 
that no universal answer can be given, but only different answers for 
different subject areas. For the area of economic simulations, in particular, 
the approach proposed by Sebastian Zacharias and Moritz Lenel appears 
to be the best suited and promising. 

However, there are also other open questions. The definition of hybrids 
that I have used more or less silently assumes that the output data really is 
computed from the input data and not ignored or dropped or the influence 
of the empirical component changing over time. However, plausible cases 
where this does not hold can at least be imagined: imagine, for example, a 
control device that regulates a machine based on data it receives from 
sensors. Let us assume that since the sensors tend to be unreliable from 
time to time, the regulatory device runs a simulation of the machine 
alongside the sensors. Whenever some kind of plausibility test shows that 
the sensors have delivered unreliable data, the machine switches to the 
simulation. Otherwise, it uses the sensor data as input and updates the 
simulation with the measured state of the machine. While it is not possible 
to tell whether the data produced by the device is empirical or not, this 
case turns out to be rather unproblematic upon closer inspection. For lack 
of another word, we could describe the data produced by this device as 
potentially empirical data. Now regarding the epistemic potential of this 
data, it is clear that this data can only be used in those contexts where in 
principle simulation data also would suffice (provided it is accurate 
enough), but not in those contexts, like empirical theory testing or model 
validation, where real empirical data is indispensable.  

Similarly unproblematic is the case where a switch between empirical 
and simulation sources of input data does not occur, but where empirical 
and simulation sources are merged. This case is already covered by the 
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theory of hybrids proposed here: as long the empirical data source has any 
significant influence on the computed output, the procedure can be 
classified as empirical data. In principle, it is suitable for all purposes for 
which real empirical data is needed. Of course, the details still matter. If a 
theory is to be tested, then the validity of any model that is required for 
producing (or better, revealing) the empirical data against which it is to be 
tested must be independent from the theory. This must of course already 
be considered in the case of conventional measurements. It does not 
constitute a novel or singular problem of computationally enhanced 
measurement techniques. 
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Introduction 

Much of the current philosophical interest in computer simulations 
stems from their extended presence in scientific practice. This interest has 
centered on studies of the experimental character of computer simulations 
and, as such, on the differences (and similarities) between computer 
simulations and laboratory experiments. The philosophical effort, then, has 
been primarily focused on establishing the basis of this contrast; 
specifically by means of comparing the epistemic power of a computer 
simulation with that of a laboratory experiment. The basic intuition has 
been that if computer simulations resemble laboratory experiments in 
relevant epistemic respects, then they too can be sanctioned as a means of 
providing understanding of the world. 

The literature on the topic distinguishes computer simulations from 
laboratory experiments on both ontological and representational grounds. 
The fact that a computer simulation is an abstract entity, and therefore 
bears only a formal relation to the system being investigated, contrasts 
with a laboratory experiment, which typically has a causal connection to 
the target system. These ontological and representational differences have 
suggested to some philosophers that establishing external validity is a 
much more difficult task for computer simulations than for laboratory 
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experiments. For others, however, it has been a motivation to reconsider 
experimental practice, and see it as a broader activity that also includes 
simulations as a new scientific tool. These two approaches, I claim, share a 
common rationale that imposes restrictions on the epistemological analysis 
of computer simulations. In this paper I propose to discuss this claim. 

The most well-known criterion for distinguishing between computer 
simulations and laboratory experiments is given by the so-called 
materiality argument. Parker has provided a helpful account of this 
argument:  

 
In genuine experiments, the same ‘material’ causes are at work in the 
experimental and target systems, while in simulations there is merely 
formal correspondence between the simulating and target systems [...] 
inferences about target systems are more justified when experimental and 
target systems are made of the ‘same stuff’ than when they are made of 
different materials (as is the case in computer experiments). (2009, 484) 
 
Two claims are being made here. The first is that computer simulations 

are abstract entities, whereas experiments share the same material 
substratum as the target system.1 The second, which is essentially epistemic, 
is that inferences about empirical target systems are more justified by 
experiments than by computer simulations due to the material relations 
that the former bears with the world. 

Current literature has combined these two claims into two different 
proposals: either one accepts both claims and encourages the view that 
being material better justifies inferences about the target system than being 
abstract and formal (Guala 2002, Morgan 2005); or one rejects both claims 
and encourages the view that computer simulations are genuine forms of 
experimentation and, as such, epistemically on a par with experimental 
practices (Morrison 2009, Winsberg 2009, Parker 2009). I claim that these 
two groups of philosophers, that superficially seem to disagree, actually 
share a common rationale in their argumentation. Concretely, they all 
argue for ontological commitments that ground their epistemic evaluations 
on computer simulations. I will refer to this rationale as the materiality 

principle.  

                                                 
1 Some of the terminology in the literature remains unspecified, such as ‘material’ 
causes or ‘stuff’ (Guala, 2002). I here take them to mean physical causal relations, 
as described, for instance, by Dowe (2000). In the same vein, when I refer to 
causes, causality, and similar terms, they should be interpreted in the way here 
specified. 
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In order to show that the materiality principle is at work in most of the 
philosophical literature on computer simulations, I discuss three distinctive 
viewpoints: 

 
a) Computer simulations and experiments are ontologically similar 
(both share the same materiality with the target system); hence, 
they are epistemically on a par (Parker, 2009); 
 
b) Computer simulations and experiments are ontologically 
dissimilar. Whereas the former is abstract in nature, the latter shares 
the same materiality with the phenomenon under study; hence, they 
are epistemically different (Guala 2002, Giere 2009, Morgan 2003, 
2005);  
 
c) Computer simulations and experiments are ontologically similar 
(both are ‘model-shaped’); hence, they are epistemically on a par 
(Morrison 2009, Winsberg 2009). 
 
With these three viewpoints in mind, the materiality principle can be 

reframed from another perspective: it is due to the philosophers’ 
commitment to the abstractness (or materiality) of computer simulations 
that inferences about the target system are more (or less thereof) justified 
than laboratory experiments.  

 
The principal aim of this paper is to show that philosophers of 

computer simulations do adhere, in one way or another, to the materiality 
principle. I am also interested in outlining some of the consequences of 
adopting this rationale. In particular, I am convinced that grounding the 
philosophical analysis on the materiality principle, as most of current 
literature seems to do, places a conceptual corset on the study on the 
epistemological power of computer simulations. The philosophical study 
on computer simulations must not be restricted to, not limited by, a priori 
ontological commitments. By analyzing themes in the literature, then, I 
show that the materiality principle does not engender a helpful 
conceptualization of the epistemic power of computer simulations. I will 
also give some suggestions as to how to circumvent this issue and address 
the epistemology of computer simulations at face value. 

The paper is divided in a way that corresponds to the three uses of the 
materiality argument listed above. The section entitled ‘the identity of the 
algorithm’ discusses option a); the section entitled ‘material stuff as 
criterion’ addresses option b), which comes in two versions, the strong 
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version and the weak version; and finally option c) is addressed in the 
section entitled ‘models as (total) mediators.’  

The Identity of the Algorithm 

Wendy Parker’s formulation of the materiality argument has a 
prominent place in the recent literature on computer simulation. Following 
Hartmann (1995), Parker defines a computer simulation as a time-ordered 
sequence of states that abstractly represents a set of desired properties of 
the target system. Experimentation, on the other hand, is the activity of 
putting the experimental setup into a particular state by means of 
intervening in it, and studying how certain properties of interest in the 
setup change as a consequence of that intervention (Parker 2009, 486).2 

Parker’s goal is to show that computer simulations and experiments 
share the same ontological basis, and to use this basis as justification for 
the claim that computer simulations and experiments are epistemically on 
a par. To her mind, the central problem is that current definitions of 
computer simulation do not qualify as an experiment because they lack the 
crucial intervening mechanisms. Indeed, it is the abstract character of the 
model that prevents computer simulations from serving as intervening 
systems. The solution to this issue consists in construing the notion of 
computer simulation studies as a computer simulation where an 
intervention is made into the physical computer itself. So defined, a 
computer simulation study does qualify as an experiment. 

 
A computer simulation study […] consists of the broader activity that 
includes setting the state of the digital computer from which a simulation 
will evolve, triggering that evolution by starting the computer program that 
generates the simulation, and then collecting information regarding how 
various properties of the computer system, such as the values stored in 
various locations in its memory or the colors displayed on its monitor, 
evolve in light of the earlier intervention. (2009, 488) 
 
The notion of intervention is now defined as the activity of setting the 

initial state of the computing system and triggering its subsequent 
evolution. Thus understood, a computer simulation study is an experiment 
in a straightforward sense, for now the system intervened is the 
programmed digital computer (2009, 488). On this basis, Parker claims 
that there is ontological equivalency between computer simulations and 

                                                 
2 ‘Intervention’ is conceived of as the manipulation of physical causal relations in 
the experimental setup. 
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experiments, and this in turn allows her to claim an equivalency in their 
epistemic power.  

Notably, she does not explain what it means for a computer simulation 
study to be epistemically powerful. Instead, she limits the argument to 
asserting that an epistemology of computer simulations should reflect the 
fact that it is the observed behavior of the computer system that makes 
them experiments on a real material system (and therefore epistemically 
powerful).  

The influence of the materiality principle can be made yet more 
explicit. First, Parker conceives of the digital computer as the ‘substratum’ 
for the simulated system, thus claiming ontological equivalence between 
computer simulation studies and experiments. Since the computer 
simulation study is the activity of putting the physical computer into an 
initial state, triggering the evolution of the simulation, and collecting 
physical data as indicated by prints-outs, screen displays, etc. (2009, 489), 
then the epistemic value of computer simulation studies also corresponds 
to that of experiments. The evolution in the behavior of the programmed 
computer represents material features of the simulated phenomenon. Our 
understanding of such a phenomenon, then, is justified by this evolution 
on the physical computer. Computer simulation studies and experiments 
are, then, ontologically on a par, and so is their epistemological power. 

Here I have briefly outline Parker’s main claims. The problem is that it 
is still not clear which are the reasons for considering the materiality of the 
digital computer as the relevant player in the epistemology of computer 
simulations. Let me put this concern in other terms. To my mind, Parker’s 
motivations are to subvert the materiality argument by showing that 
computer simulations and experiments are ontologically on a par (and so is 
their epistemic power). This move, as I have argued, is grounded on a 
rationale behind the same materiality argument that she is trying to 
overthrown. The question, then, is what role does the materiality of the 
digital computer play in the evaluation of the epistemic power of computer 
simulation studies? Let me now reconstruct three interpretations of 
Parker’s argument. 

First, Parker takes the materiality of the digital computer to play some 
relevant role in the interpretations of results (2009, 490). Under this 
interpretation, hardware failure, round-off errors, and analogous sources of 
miscalculation affect the results of the simulation in different ways. This is 
true of computers and of computation, and it does not call for any special 
terminology or treatment. It is then doubtful that Parker is grounding her 
ontological claim on the fact that a digital computer is prone to errors that 
might affect the final results. 
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A second possible interpretation is that the system of interest is the 
physical computer itself, regardless of the represented empirical system. In 
this scenario, the researcher runs her simulations as usual, only paying 
attention to the changes in the behavior of the physical computer. These 
behavioral changes become the substance of the scientist’s inquiry, 
whereas the target system is only regarded as the initial point of reference 
for the construction of the simulation model. In this context, the researcher 
learns first and foremost from collecting information on the properties of 
the physical computer—the values in its memory and the colors on the 
monitor (Parker 2009, 488).3 If this is the correct interpretation, then it is 
incumbent upon Parker to show that the scientist can cognitively access 
the various physical states of the computer, something that she fails to do. 
Philosophers have discussed whether it is possible to access different 
locations inside a computer—the memory, the processor, the computer 
bus, etc.—and the general agreement is that these are cognitively 
inaccessible for the unaided human. There is a guiding principle of 
epistemic opacity ascribed to computational process which rules out any 
possibility of cognitively accessing the internal states of the physical 
computer (see Humphreys 2004, 2009). Moreover, even if scientists could 
actually access these locations (say, if they were aided by another 
computer), it is still not clear why accessing these locations would be of 
any relevance for the understanding the simulated phenomenon. 

To my mind, neither of the above interpretations is correct. Rather, 
Parker should be interpreted as taking the materiality of the digital 
computer as playing the fundamental role of ‘bringing about’ the target 
system (i.e., brings into causal existence the phenomenon simulated). In 
other words, the behavioral changes that the scientist observes in the 
physical computer are instantiations of the representations built into the 
computer simulation.4 Such representations are, naturally, representations 
of a target system. In this way, the digital computer behaves as if it were 
the empirical phenomenon simulated in the programmed computer. I refer 

                                                 
3 Eckhart Arnold (this volume, 50) interprets Parker in a similar way. As he puts it: 
“the data of a simulation usually does not convey any information about the 
computer on which it was produced, but only information about the simulated 
system.” 
4 Note that appealing purely to the visual behavior of the machine is not enough for 
claiming that computer simulation studies are ontologically on a par to 
experiments. Moreover, Parker is clearly thinking of causal relations originating in 
the machine: “The experimental system in a computer experiment is the 
programmed digital computer (a physical system made of wire, plastic, etc.)” 
(2009, 488-489). 
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to this interpretation metaphorically as the ‘phenomenon in the machine.’ 
Let me now explore this possibility a little further.  

No Phenomenon in the Machine 

Parker’s main strategy consists in locating the notion of physical 
causality in the digital computer, and assuming that the evolution of the 
simulation (represented by the physical states of the digital computer) 
corresponds to the physical evolution of the target system. In the same 
vein, intervention in the computational system corresponds to intervention 
in the target system. Taking this interpretation to be correct, I will now 
object that there is a principle of multi-realizability in computer software 
that prevents us relating the physical states of the computer with the target 
system simulated. Unlike experiments, where the scientist assumes 
consistency in the causal relations at work in the phenomenon, the 
physical states of the computer are not constantly the same; rather, they 
change with each run and for each type of computer architecture. It 
follows that the physical computer cannot work as the basis for the target 
system in the same way as materiality works as the basis of the 
phenomenon. 

Let me begin by pointing out some basic modes of operation of the 
computer. The physical state of the computer is understood as the 
electronic configuration that the computer has at a given time. Such a 
configuration is provided by the state of the memory, the state of the 
computer bus, the I/O devices, and of every other physical component of 
the computer. Parker refers to this electronic configuration as the 
materiality of the computer. 

Now, Parker’s argument requires that a set of sufficiently similar 
physical states of the digital computer is instantiated by the same computer 
program. To put the same idea slightly different: a computer program must 
instantiate sufficiently similar physical configuration of the digital 
computer over each run of the program. This assumption must be met 
otherwise Parker has no grounds for claiming for the epistemological 
value of computer simulations (2009, 489). The misunderstanding from 
Parker is that the physical states of the digital computer are rarely, if ever, 
similar between multiple instantiations of the same computer program. 
Indeed, the simulation is not the only process running on the digital 
computer for it must share the digital computer with the operating system, 
the processes in charge of running the physical machine, and other user 
process. Moreover, with a computer processor switching back and forth 
among all the processes that are running, the rate at which a process 



The Use of the ‘Materiality Argument’ 83

performs its computation is not uniform, and therefore not reproducible on 
the same machine (Tanenbaum and Woodhull 2006, 56). 

To illustrate this point, consider the unique case of one computer 
program running once on the same machine. A general setup would be: let 
Pt be the logical state to which a computer program enters when running at 
time t. In this sense, Pt could be the if … then clause, a loop, or simply an 
instruction for printing out some data. Since the computer process is 
implemented on the physical computer, Pt instantiates the physical state of 
the computer at time t, let us call it Mt. Now, there is a unique mapping 
relation from Pt to Mt described by Ft which takes as its argument the state 
of the computer program at time t and matches it with the physical state of 
the computer at the same time t (Tanenbaum and Woodhull 2006, 56).  

Consider now the situation where the same computer program is 
executed on the same machine, although multiple times. This situation 
looks very much like Figure 4-1. Using the previous notation: there exists 
a Pt such that, for each execution 1 � i � n on M, and for each Fi,t, there 
exists an Fj,t, 1 � i � n and i � j, such that Fi,t � Fj,t and Mi,t � Mj,t . In other 
words, if we run the same instruction on multiple occasions, the internal 
behavior of the computer will be to create different mappings to different 
physical states of the same machine. 

If we were to draw an analogy with experiments, we would be 
envisaging something along the following lines: intervention on the same 
variables instantiates different causal relationships, despite which we 
obtain the same set of results. This is an unacceptable consequence, 
because it shows that it is impossible to identify one set of causal relations 
that is consistent for a given phenomenon. 

 
 

 
 
Figure 4-1: Program P at time t running on multiple occasions on the same 
machine M 
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Similarly, if the same computer program is run on different physical 
computers, there are no reasons for thinking that will instantiate the same 
physical state across the different machines. This situation is illustrated in 
Figure 4-2. 

 

 
Figure 4-2: Program P at time t running on multiple machines M1...n 

In addition, it is a common practice to upgrade hardware by adding 
new components, or to completely renew the architecture of the computer. 
For this latter case, take Mi

t as the machine i running at time t. Then Mi
t 

differs from Mj
t, for all 1 � i, j � n, i � j (see Figure 4-2). 

With these ideas in mind, any attempt to recreate the ‘phenomenon in 
the machine’ is fundamentally flawed for it contradicts basic principles of 
computer architecture. As I have said, however, this is only an 
interpretation of Parker’s central thesis. Whether correct or not, it should 
not affect our main claim that her account of computer simulation studies 
follows the dictates of the materiality principle. This is the case because, 
as I argued before, Parker takes it that the epistemology of computer 
simulations is restricted to the conditions imposed by laboratory 
experiments. The epistemological value of computer simulations is 
established, therefore, by arguing that the ontology of simulations is 
equivalent to the ontology of experiments.  

Material ‘Stuff’ as Criterion 

The idea of ‘material stuff as criterion’ is perhaps the most faithful 
account of the materiality argument.5 According to this view, there are 

                                                 
5 There is a generalized and, to my mind, imprudent use of the word ‘stuff’ in 
current literature. In this section, however, I use it in the same context and in the 
same sense as the authors. 
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fundamental and irreconcilable ontological differences between computer 
simulations and experiments, the latter being epistemically superior. There 
are two versions of this account: a strong version and a weak version. 

The strong version holds that the causal relations responsible for 
bringing about the phenomenon must also be present in the experimental 
setup. This means that the experiment must replicate the causal relations 
present in the empirical system. According to the strong version, then, the 
experiment is a ‘piece’ of the world. 

Take as an example a beam of light used for understanding the nature 
of the propagation of light. In such a case, the experimental setup is 
identical to the target system; that is, it simply is the empirical system 
under study. It follows that any manipulation of the experimental setup 
does address the same causes as the phenomenon, and that an insight into 
the nature of light can be delivered by our understanding of the controlled 
experiment (i.e., the beam of light (Guala 2002)).  

Applied to computer simulations, the strong version takes it that the 
merely formal correspondence between the computer and the target system 
provides a sufficient basis for downplaying their status as epistemic 
devices. If there are no causal relations acting, then the epistemic power of 
inferences thereby made about the world is conceptually downgraded. 

The weak version, on the other hand, relaxes some of the conditions 
imposed by the strong version on experimentation. According to this view, 
a controlled experiment requires only the set of relevant causal relationships 
that bring the phenomenon about. In this vein, the proponents of the weak 
version do not commit themselves to a complete reproduction of the 
phenomenon under study, as the strong version does, but rather to the set of 
relevant causes that characterize the behavior of the phenomenon.  

Let us illustrate the weaker version with a simple example: a ripple-
tank can be used as a material representation of light, thus providing 
insight into its nature as a wave. To the proponent of the weaker version, it 
is enough to have a representative collection of causal correspondences 
between the experimental setup and the target system in order for the 
former to provide some insight into the latter. The relation between the 
experiment and the real-world phenomenon, then, is one of causal 
similarity: a cloud chamber detects alpha and beta particles, just as a 
Geiger counter can measure them. But neither instrument is a ‘piece’ of 
the phenomenon under study nor fully interacts with all kinds of particles. 
It follows that experimental practice, as exemplified by the detection and 
measurement of particles, depends on a complex system of actual causal 
relations between the experimental setup and the target system. 
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Applied to the general evaluation of computer simulations, the weak 
version presents a more complex and rich picture, which affords of 
degrees of materiality being ascribed to computer simulations. 

Despite these differences, however, both versions share the same 
viewpoint regarding computer simulations; namely, that they are 
epistemically inferior to experiments. This claim follows from the 
ontological conceptualization previously depicted, and stems from the 
same rationale as underlies the materiality principle. To show this, I 
discuss arguments provided by two authors.  

The Strong Version 

Francesco Guala champions the defense of the strong version. He 
assumes from the outset the existence of fundamental differences between 
computer simulations and experiments grounded on causality. 

 
The difference lies in the kind of relationship existing between, on the one 
hand, an experimental and its target system, and, on the other, a simulating 
and its target system. In the former case, the correspondence holds at a 
‘deep’, ‘material’ level, whereas in the latter the similarity is admittedly 
only ‘abstract’ and ‘formal’ [...] In a genuine experiment the same 
‘material’ causes as those in the target system are at work; in a simulation 
they are not, and the correspondence relation (of similarity or analogy) is 
purely formal in character. (Guala 2002, 66-67)  
 
Guala conceives the experiment as one that reproduces the causal 

relations present in the phenomenon. The author emphasizes the changes 
of materiality by appeal to the concepts of ‘same’ and ‘different stuff.’ The 
case of the ripple-tank is paradigmatic in this sense. According to Guala, 
the media in which the waves travel are made of ‘different stuff’ (and 
therefore so are the equations of force): while one medium is water, the 
other is light. The ripple-tank, then, is a representation of the wave nature 
of light only because there are similarities in the behavior at a very 
abstract level (i.e., at the level of Maxwell’s equations, D’Alambert’s 
wave equation, and Hook’s law). The two systems obey the same laws and 
can be represented by the same set of equations, despite their being made 
of ‘different stuff.’ However, water waves are not light waves (2002, 66), 
and a difference in the materiality presupposes a difference in the 
epistemic insight into nature. Indeed, Guala straightforwardly admits that 
the ontological difference between experiments and simulations grounds 
epistemological differences (2002, 63). His loyalty to the materiality 
principle is unquestionable: there is a clear distinction between what we 
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can learn and understand by direct experimentation and what we can learn 
by mediated simulation. The epistemic payoff of the latter is less than the 
former, and this is because, on this view, there is an ontological 
commitment to causality as epistemically superior that determines the 
downplaying of the epistemology of computer simulations. 

Let me now consider a few objections to Guala’s point of view. Parker 
has objected that his position is too restrictive for experiments, as well as 
for computer simulations (Parker 2009, 485). I agree with her on this 
point. Guala’s conceptualization of experiments and computer simulations 
imposes artificial restrictions on both that are difficult to back up with 
examples in scientific practice. Moreover, and complementary to Parker’s 
objection, I believe that Guala is adopting a perspective that takes both 
activities as chronologically mutually exclusive: that is, the computer 
simulation becomes a relevant tool when the experimentation cannot be 
implemented. STRATAGEM, a computer simulation of stratigraphy, 
provides us with an example here: when geologists are faced with 
difficulties in carrying out controlled experiments about strata formation, 
they appeal to computer simulations as the most efficacious replacement 
(2002, 68).6 Such a tendency towards a disjunctive assessment of the two 
activities is a natural consequence of taking computer simulations to be 
epistemically inferior to experimentation. In other words, it is a natural 
consequence of adopting the materiality principle. 

The Weak Version 

For a proponent of the weak version, I turn to the work of Mary 
Morgan. She has presented the richest and most exhaustive analysis 
currently to be found in the literature regarding the differences between 
experiments and computer simulations. 

Morgan’s primary concern is with so-called vicarious experiments, that 
is: 

Experiments that involve elements of nonmateriality either in their objects 
or in their interventions and that arise from combining the use of models 
and experiments, a combination that has created a number of interesting 
hybrid forms. (2003, 217) 
 

                                                 
6 Guala allows that experiments and computer simulations are appropriate research 
tools, knowledge-producers as he calls them, although only for different contexts 
(2002, 70). 
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Having thus set out the features of vicarious experiments, she then 
turns to the question of how they provide an epistemic basis for empirical 
inference. Briefly, the more ‘stuff’ is involved in the vicarious experiment, 
the more epistemically reliable it becomes. In plain words, degrees of 
materiality determine degrees of reliability. As Morgan comments: “on 
grounds of inference, experiment remains the preferable mode of enquiry 
because ontological equivalence provides epistemological power” (2005, 
326).  

Morgan thus adheres to the weak version, because a vicarious 
experiment is characterized by different degrees of materiality, as opposed 
to the strong version that holds that experiments must be a ‘piece’ of the 
world. In terms of the materiality principle, however, there are no 
fundamental differences between the two versions: she also considers 
ontology to determine the epistemological value of computer simulations. 
The difference lies, again, in the detailed analysis of the different kinds of 
experiments involved in scientific practice. Let me now briefly address her 
account. 

As noted above, vicarious experiments can be classified according to 
their degree of materiality; that is, the different degrees to which the 
materiality of an object is present in the experimental setup. Table 4-1 
summarizes four classes of experiments: Ideal laboratory experiment (also 
referred as a material experiment), two kinds of hybrid experiments, and 
finally mathematical model experiment. As the table indicates, the 
classification is in terms of the kind of control exerted on the class of 
experiment, the methods for demonstrating the reliability of the results 
obtained, the degree of materiality, and the representativeness of each 
class.  

The first and last classes are already well known to us: an example of 
an ideal laboratory experiment is the beam of light, for it requires effort by 
the scientist to isolate the system, rigorous attention to the control of the 
interfering circumstances, and intervention under these conditions of 
control. An example of the mathematical model experiment, on the other 
hand, would be the famous mathematical problem of the seven bridges of 
Königsberg; that is, a class of experiment whose control requirements are 
achieved by simplifying assumptions, whose demonstration method is via 
a deductive mathematical/logical method, and one whose materiality is, as 
expected, inexistent (2003, 218).  

Among the number of ways in which these two classes of experiment 
differ, Morgan emphasizes those constraints imposed naturally via 
physical causality, and those imposed artificially via assumptions:  
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The agency of nature creates boundaries and constraints for the 
experimenter. There are constraints in the mathematics of the model, too, 
of course, but the critical point is whether the assumptions that are made 
there happen to be the same as those of the situation being represented and 
there is nothing in the mathematics itself to ensure that they are. (2003, 
220) 

 
 Ideal lab   Mathematical  

 experiment  Hybrid experiments  model experiment  

  Virtually  Virtual   
     
Controls on:      
Inputs  experimental  experimental on  assumed  assumed  
Intervention  experimental  inputs; assumed  assumed  assumed  
Environment  experimental  on intervention  assumed  assumed  
  and environment    
     
Demonstration  experimental  simulation: experimental/  deductive  

method  in laboratory  mathematical using model object  in model  
     
Degree of materiality of:  
Inputs  material  semimaterial  nonmaterial  mathematical  
Intervention  material  nonmaterial  nonmaterial  mathematical  
Outputs  material  nonmaterial  non- or  mathematical  
   pseudo-material  
    
Representing  representative of...   representation of...  
and Inference  ... to same in world  ... back to other kinds of  
Relations  representative for...   things in the world  
 ... to similar in world   
 
Table 4-1: Types of experiment: Ideal laboratory, hybrids, and 
mathematical models with representing relations (Morgan, 2003, 231)  

Hybrid experiments, meanwhile, can be conceived as experiments in-
between the other two: they are neither material nor mathematical.7 The 
class of virtually experiments, then, are understood as those “in which we 
have nonmaterial experiments on (or with) semimaterial objects,” whereas 
virtual experiments are those “in which we have nonmaterial experiments 
but which may involve some kind of mimicking of material objects” 

                                                 
7 “By analyzing how these different kinds of hybrid experiments work, we can 
suggest a taxonomy of hybrid things in between that include virtual experiments 
(entirely nonmaterial in object of study and in intervention but which may involve 
the mimicking of observations) and virtually experiments (almost a material 
experiment by virtue of the virtually material object of input)” (2003, 232). 
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(2003, 216). Table 4-1 again summarizes the properties of all four kinds of 
vicarious experiments showing their representing and inference relations. 

The differences between virtually and virtual experiments can be 
illustrated with the example of a cow hipbone used as surrogate for the 
internal structure of human bones. In this context, there are two 
alternatives: one can use a high-quality 3-D image of the hipbone that 
creates a detailed map of the bone structure, or, alternatively, a 
computerized 3-D image of the stylized bone; that is, a computerized 3-D 
grid representing the structure of the stylized bone. According to Morgan, 
the 3-D image has a higher degree of verisimilitude to the structure of the 
real hipbone because it is a more faithful representation of it, as opposed 
to the mathematization represented by the computerized 3-D grid (2003, 
230). The former is referred to as virtually an experiment, whereas the 
latter are called virtual experiments. 

What are the differences among the kinds of experiment? As 
expounded in Table 4-1, whereas a virtually experiment is semi- or 
nonmaterial, an ideal laboratory experiment is strictly material. Also the 
demonstration methods are also significantly different. The distinction 
between a virtual experiment and a mathematical model, on the other 
hand, seems to be located solely in the method of demonstration, which is 
experimental for the former and deductive for the latter. Morgan also 
shows how models of stock market prices, despite being mathematical 
models simulated on a computer, can also be classed as a virtual 
experiment on account of the input data and the observation of results 
(2003, 225). The boundaries between all four classes of experiment, 
however, seem to be unfixed and dependent on factors external to the 
experiment in question. For instance, if a 3-D grid of the cow bone makes 
use of real measurements of the cow bone as input data, then what was 
originally a virtual experiment becomes virtually an experiment. 

The epistemological analysis, on the other hand, is a function of the 
degree of materiality of the class of experiment: “ontological equivalence 
provides epistemological power” (2005, 326), as Morgan indicates. Back 
inference to the world from an experimental system can be better justified 
when the experiment and the target system are of the same material. As 
Morgan explains: “the ontology matters because it affects the power of 
inference” (2005, 324). A computer simulation, for instance, cannot test 
theoretical assumptions of the represented system because it has been 
designed for delivering results consistent with built-in assumptions. A 
laboratory experiment, on the other hand, has been explicitly designed for 
letting the facts about the target system ‘talk’ by themselves. According to 
Morgan, then, it is the material substratum underlying an experiment that 
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is responsible for its epistemic power. Hence, the ideal laboratory 
experiment is epistemically more powerful than a virtually experiment; in 
turn, a virtually experiment is more powerful than a virtual experiment, 
and so on. Since computer simulations can only be conceived as hybrid 
experiments or as mathematical experiments, it follows that they are 
always less epistemically powerful than ideal laboratory experiments. To 
Morgan’s mind, therefore, there are degrees of materiality that determine 
the degrees of epistemic power. 

In this context, Morgan uses the terms surprise and confound to depict 
the epistemic states of the scientist regarding the results of a computer 
simulation and of a material experiment, respectively. Results of a 
computer simulation can only surprise the scientist because its behavior 
can be traced back to, and re-explained in terms of, the underlying model. 
A material experiment, on the other hand, can surprise as well as confound 
the scientist, for it can bring up new and unexpected patterns of behavior 
inexplicable from the point of view of current theory (2005, 325; 2003, 
219). The materiality of the experiment, then, works as the epistemic 
guarantee that the results may be novel, as opposed to the simulation, 
which takes results as capable of being explained in terms of the 
underlying model. 

This shows how Morgan’s ideas regarding experiments and computer 
simulations bear the stamp of the materiality principle. It exhibits the same 
rationale, putting materiality as the predominant feature for epistemic 
evaluation. Despite Morgan’s strong emphasis on the place that materiality 
has in the discovery of new phenomena, there are examples of virtual 
experiments whose epistemic power is clearly superior to any ideal 
laboratory experiment. Take as a simple example the dynamics of the 
micro fracture of materials. It is virtually impossible to know anything 
about micro fractures without the aid of computers. Indeed, only the 
computational efficiency of finite element methods and multi-scale strong 
discontinuity can tell us something about the micro fractures of materials 
(Linder 2012). The lesson is that understanding something about the world 
do not necessarily comes from material experiments, or from any degree 
of materiality whatsoever. Neither a field experiment nor a high-definition 
3-D image would provide the understanding about the dynamics of micro 
fractures that can be provided by an accurate mathematical model. The 
conclusion is that the rationale behind the materiality argument is once 
more misdirecting us regarding the epistemic power of computer 
simulations. 
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Models as (Total) Mediators  

The last account in my list is the one I called ‘models as (total) 
mediators.’ As the title suggests, this account is directly influenced by 
Morgan and Morrison’s Models as Mediators (2009). Briefly, their book is 
a defense of the mediating role of models in scientific practice. It 
considers that scientific practice is neither driven by theories, nor is purely 
about direct manipulation of Nature. Instead, scientific practice needs the 
mediation of models in order to be successful in achieving its goals. A 
theory, then, cannot be directly applied to the phenomenon, but only by 
means of the mediation of a model; similarly, in experimental practice, 
models render data from measurements and observations in a form that is 
available for scientific use. In the following, I focus on the mediating role 
of models in experimental practice, since the proponent of the models as 
(total) mediators approach is more interested in analyzing computer 
simulations in the light of experiments. I will thus leave the mediating role 
of models in the context of theory unanalyzed. 

Now, according to the proponent of the models as (total) mediators 
account, experimental practice consists in obtaining, by manipulation of 
the phenomenon, data that inform us about certain properties of interest. 
This data, however, is in such a raw state that it is impossible to consider it 
reliable or representative of the properties measured or observed. Rather, 
for these raw data to be of any scientific use, it is necessary to further 
process it by filtering out noise, correcting values, implementing error-
correcting techniques, and so forth. These correcting techniques are 
conducted by theoretical models and, as such, are responsible for rendering 
reliable data. 

Scientific practice, then, is conceived as strongly mediated by models; 
and scientific knowledge is no longer obtained uniquely by our 
intervention into the world, but also by the conceptual mediation that the 
model–world relation represents. In this vein, the epistemic analysis now 
concerns the data filtered out, corrected, and refined by models, rather than 
the raw data collected by directly manipulating Nature. 

Computer simulations should easily fit into this new image of scientific 
practice. One might think that since they are conceived as models 
implemented on the digital computer, then their results must be data 
produced by a reliable model in a straightforward sense. Unfortunately this 
is not what the proponent of models as (total) mediators has in mind. To 
them, it is correct to say that computer simulations are models running on 
a digital computer, and it is also correct to say that there is no intervention 
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into the world in the empiricist’s sense.8 Nevertheless the data obtained by 
running a simulation are ‘raw’ in the same sense as the data collected by a 
scientific instrument.9 The reason for this is that there are material features 
of the target system that are being modeled into the simulation, and thus 
represented in the final simulated data (Morrison 2009, 53). Simulated 
data, then, need to be post-processed by a further theoretical model, just in 
the same way as raw data. In other words, simulated data must also be 
filtered, corrected, and refined by another set of models in order to 
produce data that can be reliably used in scientific practice. Ontologically 
speaking, then, there are no differences between data produced by a 
scientific instrument and data produced by a computer simulation. In 
addition, the proponent of this approach takes that there are no epistemic 
differences between these two kinds of data either.  

 
Let me now elaborate on these points by appealing to the work of 

Margaret Morrison. In 2009, she published a fundamental contribution to 
the debate on measurement in the context of computer simulations. In that 
work, she claimed that certain types of computer simulations have the 
same epistemic status as experimental measurements precisely because 
both kinds of data are ontologically and epistemically comparable. 

To illustrate this point, let us briefly consider her example of 
measuring the force g.10 In an experimental measurement, Morrison 
argues, a scientific instrument measures a physical property up to a certain 
degree of precision, although such measurement will not necessarily 
reflect an accurate value of that property. The difference between precision 
and accuracy is of paramount importance for Morrison here: whereas the 
former is related to the experimental practice of intervening in nature (or 
computing the model in the simulation), the latter is related to the 
mediation of models as rendering reliable data. In this context, a precise 

measurement consists of a set of results wherein the degree of uncertainty 
in the estimated value is relatively small (2009, 49); on the other hand, an 
accurate measurement consists of a set of results that are close to the true 
value of the measured physical property.11 

                                                 
8 I am using the term empiricists in a rather loose way. Here, I refer only to the 
epistemic attitude of knowing the world by causally intervening or manipulating it. 
9 In order to keep these two notions of data separate, I will continue referring to 
data collected by the scientific instrument as ‘raw data,’ while I will refer to the 
data obtained by running the computer simulation as ‘simulated data.’ 
10 Morrison also discusses the more sophisticated example of spin measurement 
(2009, 51). 
11 The difference between precision and accuracy is framed by Franklin in the 
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The distinction between these two concepts constitutes the cornerstone 
of Morrison’s strategy: data collected from experimental instruments only 
provide precise measurements of g, whereas reliable measurements must 
first and foremost be accurate representations of the value measured. It is 
in this context that Morrison considers that raw data must be post-
processed in the search for accuracy (for the particular case of measuring 
g, Morrison proposes the ideal point pendulum as theoretical model). 

From Morrison’s perspective, then, the reliability of the measured data 
is a function of the level of accuracy, which depends on a theoretical 
model rather than on the scientific instrument or on the computer 
simulation. 

 
The calculation generates a large amount of data which requires that they 
be appropriately modelled in order to render them interpretable. Only by 
doing that can we say that the computer experiment, like an ordinary 
experiment, has measured a particular quantity. In both cases models are 
crucial. And, just as in the pendulum example where we are interested in 
both the precision and accuracy, similar concerns arise for simulation 
where the precision of the machine and the behaviour of apparatus is 
related to the observed properties of the microscopic system. (2009, 53) 
 
Computer simulations, just like scientific instruments, share the same 

fate of being precise but not accurate—for the latter, it is because of the 
physical constraints related to manipulating the real world; for the former, 
it is because of the fact that a computer simulation implements the 
physical constraints of the target system as well as the physical constraints 
of the machine itself (e.g., round-off errors, truncation errors, and so 
forth). The precision/accuracy dichotomy, then, applies to computer 
simulations just as it does to experimental measurement, making both 
practices ontologically equal at the level of precise data, and epistemically 
equal at the level of accurate data. The materiality argument is also present 
here: equal ontology determines equal epistemology. And this was 
precisely the intention behind Morrison’s analysis: “the connection 
between models and measurement is what provides the basis for treating 
certain types of simulations outputs as epistemically on a par with 
experimental measurements, or indeed as measurements themselves” 
(2009, 36).  

                                                                                                      
following example: “a measurement of the speed of light, c = (2.000000000 ± 

0.000000001) x 1010 cm/s is precise but inaccurate, while a measurement c = (3.0 

± 0.1) x 1010 cm/s is more accurate but has a lower precision” (Franklin 1981, 
367n1). 
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Thus interpreted, Morrison is applying a philosophy of modeling and 
experimentation onto a philosophy of computer simulations. This is also a 
consequence of following the materiality principle; that is, there is no 
analysis provided of computer simulations in itself, but only in the light of 
a more familiar philosophy. By making raw data and simulated data 
ontologically equal, and the post-processing a further epistemic step, 
Morrison is applying model techniques to computer simulations, 
regardless of the particularities of the latter. With this move in mind, 
Morrison also narrows down the class of computer simulations to those 
that are used as measuring devices; and in doing so, she is narrowing 
down the epistemic analysis to those simulations.  

There is a further concern about Morrison’s argument. According to it, 
simulated data need post-processing. The claim considers simulated data 
as if they were not model data in a straightforward sense, but rather raw 
data as obtained by experimentation. A computer simulation, however, 
consists of a series of nested models that produce a final output, and 
therefore the data produced by a simulation is already accurate as regards 
the value measured. In this vein, there is no need to postulate any further 
post-processing step, as Morrison does. However, let us accept for a 
moment the argument that simulated data needs to be post-processed. If 
this were the case, Morrison’s argument faces another challenge. Given 
the fact that computer simulations produce vast amounts of data, arguing 
for a separate correcting process such as post-processing begs the question 
about a possible ‘computer regress’; that is, the need for another computer 
model capable of processing the initial simulated data. This new computer 
model would fix some inaccuracies in the original data, but would also 
introduce new ones, since the same physical constraints apply to this new 
processing stage. It then seems reasonable to be concerned about a 
possible infinite regress of post-processing simulated data. To my mind, 
there are no other motivations for thinking about post-processed simulated 
data except for Morrison’s interest in analyzing computer simulations in 
the light of scientific experimentation, which is an unnecessary 
precondition for the epistemological analysis of computer simulations. 

Conclusions 

I have discussed three different views of how philosophers currently 
understand the epistemological study of computer simulations. I have 
shown that all three make use of the same rationale as the guide for their 
argumentation. I called this rationale the materiality principle, and I 
conceptualize it as the philosophers’ commitment to an ontological 
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account of computer simulations (and experimentation) that determines 
the evaluation of their epistemic power. 

The aim of this paper was to show that the materiality principle is a 
rationale shared by many philosophers working on the epistemology of 
computer simulations. It was also the aim of this paper to alert us to the 
possible consequences of allowing the philosophical discussion to be so 
diverted. In this vein, I have suggested that adapting our philosophical 
investigations in line with the materiality principle might be placing a 
conceptual corset on inquiries regarding the epistemology of computer 
simulations. In this context, I distinguished three viewpoints that conform 
to this rationale, and set out the various restrictions that they place on the 
epistemological analysis of computer simulations. 

The first two views were rejected on the grounds that they purport 
internal inconsistencies in the conceptualizations of experiments and 
computer simulations. The objection to the ‘identity of the algorithm’ is 
that it makes implausible claims regarding the ontology of computing 
machines; whereas the objection to the strong version of the ‘materiality 
stuff as criterion’ is that misplaces the role of computer simulations in 
scientific practice. I also claimed that the materiality principle is the 
underlying motive for these inconsistencies. On the other hand, the weak 
version of the ‘materiality stuff as criterion’ and the ‘models as (total) 
mediators’ views are, to my mind, the most promising interpretations of 
experimental as well as computational practice. However, as I showed, 
neither account directly addresses the epistemology of computer 
simulations. Rather, they reduce it to the epistemology of semi-material 
experiments (weak version of the ‘materiality stuff as criterion’), or to 
scientific modeling via measurement (‘models as (total) mediators’). 

The conclusion is that philosophers who accept the materiality 
principle are less likely to recognize what is distinctive about the 
epistemology of computer simulations than those who do not. Of course, I 
am not urging the adoption of an entirely new epistemology, enlightened 
and guided by computer simulation, as Frigg and Reiss have proposed 
(2009). My conclusion is more modest, and aims to encourage certain 
changes in the philosophical inquiry on computer simulations. For 
instance, Barberousse et al. (2009) have made a central contribution to the 
notion of computer-simulated data, and Humphreys has followed their 
work by analyzing the notion of data in more detail (this volume). 
Nevertheless, more work needs to be done and, to my mind, it must begin 
by reconsidering certain classic topics in the philosophy of science 
through the lens of computer simulations. In this sense, a review of 
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traditional notions of explanation, prediction, confirmation, evidence, and 
the like might work as the starting point. 

Evidently, there is a way of doing philosophy of science that is 
strongly grounded on empirical inquiry exemplified by experimentation. 
The guiding epistemic principle is that the ultimate source of knowledge is 
given by interaction with and manipulation of the world. However, the 
continuous success of computer simulations is calling these principles into 
question: first, there is a growing tendency towards representing rather 
than intervening into the world; second, computational methods are 
pushing humans away from the center of the epistemological enterprise 
(Humphreys 2009, 616). The philosophical inquiry on the epistemological 
power of computer simulations has thus been misguided, for some 
philosophers are still maintaining a false dichotomy between experiment 
and computer simulation while ignoring the fact that scientific practice has 
already transcended this division. 
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CHAPTER FIVE 

EXPLORATORY STRATEGIES: 
EXPERIMENTS AND SIMULATIONS 

PÍO GARCÍA AND MARISA VELASCO 
UNIVERSIDAD NACIONAL DE CORDOBA 

Introduction 

The use of computer simulations in different scientific activities has 
increased considerably in the last few years. However, philosophical 
reflection on computer simulations is rather scarce, partly due to the 
relative novelty of this type of activity, and partly due to complexity of the 
subject. What aspects should be taken into account, and what perspectives 
must be adopted for the investigation are among the most important 
questions to ask when analyzing computer simulations from a 
philosophical point of view. 

In the present work, we suggest that an analysis based on exploratory 
strategies can be used to illuminate and characterize epistemic and 
methodological aspects of computer simulations. Putting the focus on the 
exploratory strategies implies adopting a perspective that, albeit it is 
relevant to the experiments and simulation analysis, is not limited to any 
of these areas. Exploratory strategies can be found in very diverse 
scientific practices. Notwithstanding, they can be used to underline 
relevant philosophical aspects of experimental practices and computer 
simulation practices alike. In this way, our proposal explicitly surpasses 
the comparison between experiments and simulations, albeit we are 
convinced that analyzing exploratory strategies in experiments and 
simulations helps substantially in the elucidation of their methodological 
and epistemological roles. 

The elucidation of the role of the exploratory strategies in computer 
simulations and experiments would contribute to the philosophy of both 
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activities. Because the relation between computer simulation and 
experimentation has been understood in a very different way by the 
philosophical literature, a brief revision of some of the central issues will 
be needed. In addition, philosophical literature on exploratory experiments 
presupposes, although it rarely makes it explicit, an exploration notion that 
we will briefly address in this article. It is important to note that in their 
original contexts, both discussions have the pretension of drawing limits 
between simulations and experiments or between exploratory experiments 
and other experiments. On the contrary, as we repeatedly say in this paper, 
instead of stipulating limits for each type of practice, we propose to 
establish a ‘topology’ of the ways science tests, searches, and explores. 

We organize our work in the following way. First, we will 
schematically describe the way in which computer simulations are 
compared with experiments to establish the differences with the 
perspective defended in this paper. Second, we will address the distinction 
between exploratory experiments and other types of experiments. We will 
analyze exploratory strategies in experiments and simulations with the sole 
purpose of making our argument clearer; it is also important to keep a 
certain similarity to the way this matter has been questioned in philosophy. 
However, in most scientific practices, boundaries are not so clear. More 
than being a difficulty for the chosen cases, this seems to be the way in 
which contemporary scientific activity is organized. We think this could 
be an additional advantage of adopting the perspective of exploratory 
strategies, because it is neither centered on the distinction between 
experiment and simulation nor restricted only to experimental practices. 

Philosophy of Computer Simulations: 
Experiments and Simulations 

Experiments have been compared to simulations taking into account 
ontological and inferential aspects on one hand, and representative or 
interventional aspects on the other. So, although there are many ways of 
implementing a simulation on a computer, they can be characterized as a 
sequence of time ordered states that represent another sequence of time 
ordered states (Cfr. (Guala 2002), (Hartmann, 1996), (Parker, 2009)). 
Representation and imitation seem to be the main concepts. On the other 
hand, an experiment is usually characterized as an interventional activity.  

A main concern in reflections on these subjects is usually the question 
of the validity of the simulations or, in more general terms, their epistemic 
credentials. At the same time, the discussion of ontological and epistemic 
problems usually assumes a basic scheme: simulations are seen as systems 
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characterized principally by some model that typically refers to another 
system (usually called target system). In this way, the question about the 
validity is set forth in terms of the relation between a given system and the 
target system, as well as the possibility of generalizing these results or 
connecting them to other systems. Accordingly, Francesco Guala (2002) 
has proposed that the differences between an experiment and a simulation 
can be understood by appealing to the type of justification of the 
inferences that relate the different systems. The inferential link that can 
relate the experimental result of a system A with the result of another 
system B can be very strongly justified, according to Guala, if both 
systems are operating under the same causes. Here one must suppose that 
there is only an abstract and formal correspondence between a computer 
simulation and a simulated system, while between an experiment and a 
target system there usually is a correspondence at a deep level. In this 
second case, the same causes should be operating in the experiment as 
well as in the target system.1 A main concern in reflections on these 
subjects is usually the question of the validity of the simulations or, in 
more general terms, their epistemic credentials. At the same time, the 
discussion of ontological and epistemic problems usually assumes a basic 
scheme: simulations are seen as systems characterized mainly by some 
model that typically refers to another system (usually called target 
system). In this way, the question about the validity is set forth in terms of 
the relation between a given system and the target system, as well as the 
possibility of generalizing these results or connecting them to other 
systems. Accordingly, Francesco Guala (2002) has proposed that the 
differences between an experiment and a simulation can be understood by 
appealing to the type of justification of the inferences that relate the 
different systems. The inferential link that can relate the experimental 
result of a system A with the result of another system B can be very 
strongly justified, according to Guala, if both systems are operating under 
the same causes. Here, one must assume that there is only an abstract and 
formal correspondence between a computer simulation and a simulated 
system, whereas between an experiment and a target system there is a 
correspondence at a deep level. In this second case, the same causes 

                                                 
1 Parker argues that Guala’s proposal is too restrictive in his experimental notion, 
even though she accepts that Guala doesn’t mean to say all material causes are 
relevant in this case, but only the ones that are ‘closer.’ Well then, scientists that 
are trying new drugs on mice are experimenting, even though the results on 
humans later turn out to be different. Also, Guala’s proposal is very restrictive 
when it refers to simulations, because it is too strong to say that there are ‘never’ 
common material causes. (Parker, 2009) 
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should be operating in the experiment as well as in the target system.2 
Gilbert Troitzsch (1999) also seems to implicitly presuppose the relation 
between an experimental or computer system, on the one hand, and a 
target system on the other. Such relation underlines the differences 
between a simulation and an experiment, although it focuses on purely 
interventional aspects. These authors point out that in the case of an 
experiment one is handling a real object, while in a simulation if anything 
is to be handled it is a model:  

 
While in an experiment one is controlling the actual object of interest (for 
example, in a chemistry experiment, the chemicals under investigation), in 
a simulation one is experimenting with a model rather than the 
phenomenon itself (Gilbert & Troitzsch, 1999, 14) 
 
It is probable that the same type of intuition that is sustaining the 

notion of materiality, or the correspondence on a deep level, is operating 
behind the notion of the real object. Parker (2009) suggests that the notion 
that must be considered is the one of relevant similarity, instead of the one 
of materiality. As we have already said above, if a simulation is 
understood as a representative system, an experiment is characterized as 
“an investigative activity that involves intervening on a system in order to 
see how properties of interest of the system change, if at all, in light of that 
intervention” (Parker, 2009, 487). When a simulation is arranged on a 
digital device we have a “computer simulation.” Although a computer 
simulation is characterized in terms of representation, a “computer 
simulation study” can be seen as an interventional activity inasmuch as 
one requires “setting the state of the digital computer from which a 
simulation will evolve, and triggering that evolution by starting the 
computer program that generates the simulation” (Parker, 2009, 488). 
Parker believes that this way of characterizing a “computer simulation 
study” allows us to talk of an interventional activity and therefore of an 
experiment, because the focus is not on the model but on a programmed 
digital computer. Although Parker’s proposal seems interesting because it 
tries to account for the difference between mere modeling and computer 

                                                 
2 Parker argues that Guala’s proposal is too restrictive in his experimental notion, 
even though she accepts that Guala doesn’t mean to say all material causes are 
relevant in this case, but only the ones that are ‘closer.’ Well then, scientists that 
are trying new drugs on mice are experimenting, even though the results on 
humans later turn out to be different. Also, Guala’s proposal is very restrictive 
when it refers to simulations, because it is too strong to say that there are ‘never’ 
common material causes. (Parker, 2009) 
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simulation, it does not appear that the sole act of pointing out an 
interventional aspect is enough to qualify a “computer simulation study” 
as an experiment in a relevant sense. 

There are other philosophers, such as Winsberg (2009), that suggest 
that instead of considering ontological aspects to distinguish experiments 
from simulations, one must pay attention to the type of inference made and 
the role taken by the background knowledge. In the case of simulations, 
this background knowledge allows us to build models that can later be 
taken as the object of investigation. Consequently: 

 
When an investigation fundamentally requires, by way of relevant 
background knowledge, possession of principles deemed reliable for 
building models of the target systems, and the purported reliability of those 
principles, such as it is, is used to justify using the object to stand in for the 
target, when a belief in the adequacy of those principles is used to sanction 
the external validity of the study, then the activity in question is a 
simulation. Otherwise, it is an experiment. (Winsberg, 2009, 586) 
 
In an analogous way of thinking, Morgan (2005; 2003) argues not only 

about the material but also the inferential aspects of simulations. 
Experiments and simulations should have different “epistemic power”: the 
inferences on experimental systems can be better justified when the 
experiment and the target system that the experiment refers to are made of 
the same “stuff.” Morgan supposes that traditional experiments have 
greater epistemic power than simulations because as long as the latter 
depend completely on a model they cannot confuse or surprise scientists. 
Here the notion of confusion is not taken in a psychological sense but in 
an epistemic one: the phenomenon in question is somewhat “surprising” as 
it cannot be accounted for with the available theoretical resources. Morgan 
(2003) also points to the material aspect as discriminatory criteria, but now 
between two types of experiments (material and non-material). 
Simulations would be among the latter (non-material experiments). In fact, 
one of the most interesting suggestions from these accounts is that the 
usual situations in science are “hybrid” scenarios, where a clear distinction 
between experiments and simulations are not easy to draw. 

Taking a different perspective to the one we have quoted up to now, 
Morrison (2009) emphasizes the functional dimension of simulations and 
experiments. Somehow, she also tries to clarify the conception of 
experiment by describing some experimental activities such as 
measurements. This change in perspective allows her to argue about some 
ways of creating a model with similar functions to a measuring instrument. 
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In this sense, and for some cases, we could speak of simulations as 
experimental measuring instruments. 

Typically, by comparing experiments and simulations one tries to build 
a philosophy of computer simulations based on ontological, inferential, 
representational, interventional, or functional aspects. They could serve to 
establish limits between experimental and simulative activities. However, 
to some extent, ontological aspects could play an important role in the 
comprehension of simulations. Beyond the intrinsic virtues of this way of 
approaching simulations, our proposal can be taken as a move from 
ontological to methodological and epistemological problems through the 
consideration of exploratory strategies. In this sense, most of the ideas 
quoted in this section allow us to underline differences with our 
exploratory strategies proposal.  

Considering that the notion of exploration has been mainly used in the 
philosophy literature on experiments, in the following section we will 
begin with this discussion to continue later with the notion of exploratory 
strategy. 

From Exploratory Experiments to Exploratory Strategies 

The notion of exploration in science has not received a great deal of 
attention in the philosophical literature. Nevertheless, among the diverse 
proposals to classify scientific experiments it is possible to find reflections 
about the role of exploration in science. The category of “exploratory 
experiment” is quite common among the various experiment classifications. 
In this way, the attempt to elucidate exploratory experiments presupposes 
characterizations about exploration (for example, cf. (Burian, 2007); 
(Elliott, 2007); (Franklin, 2005); (O’Malley, 2007); (Peschard, 2009); 
(Steinle, 1997, 2002); (Waters, 2007)). Although we will show that the 
diverse characterizations of exploratory experiments do not achieve 
adequate discrimination of these experiments, the analysis of the different 
proposals will allow us to show some of the characteristics of exploration. 
However, these exploration characteristics would not be useful to do an 
adequate taxonomy of the experiments; they will be the basis of our 
characterization of “exploratory strategies.” In this sense, it is important to 
remember that exploratory strategies are not specific to the exploratory 
experiments, but they do constitute a relevant aspect of the best part of 
scientific activity, including experimentation and scientific simulation. 

It has been suggested that exploratory experiments can be understood 
based on the contrast with experiments where the relevance of theory is 
substantive. In most of the classifications, this is a distinctive feature. 
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Franklin (2005), for instance, holds that exploratory experiments are the 
ones scientists do without considering a particular theory. This concerns 
the effects of their intervention on the values they are measuring. In a 
similar way, Steinle suggests there are experimental designs that are 
guided by theory (i.e. theory driven) and others which are not, the latter 
being the exploratory experiments. Thus, exploratory experiments could 
be characterized by their relative independence to strong theoretical 
restrictions (Cf. (Franklin, 2005, 888); (Steinle, 1997, S69; 2002, 418)). 

In the same sense, Steinle (1997) maintains that the standard 
perspective on experimentation typically considers those cases that are 
theory driven as the only type of experimentation. Accordingly, experimental 
activity is understood in terms of: “a theory that led to expecting a certain 
effect; the expectation led to designing and conducting an experiment; and 
the success of experiment counted as support for the theory” (Steinle, 
2002, 418). However, from this author’s perspective, exploratory 
experimentation “typically takes place in those periods of scientific 
development in which – for whatever reasons – no well-formed theory or 
even no conceptual framework is available or regarded as reliable” 
(Steinle, 1997, S71). Even those authors that do not explicitly uphold this 
idea seem to keep this way of understanding exploratory experiments in 
mind, inasmuch as they choose examples from the initial stages of 
scientific disciplines. 

However, the related literature, which sees the discriminatory criteria 
in the theoretical guide, also underlines other aspects that are important for 
characterization, such as the purpose of these experiments, their use or the 
experimenter’s expectations. For example, the variety of epistemic goals 
present in the exploratory experiments becomes relevant: 

 
The contrast of exploratory experimentation to the theory-driven type, as 
understood as the standard view, is not only visible in the different 
epistemic goals (search for regularities vs. test of expectations), but also in 
the character of the guidelines of the experimental activity. (Steinle, 2002, 
422) 

 
Likewise, we must remark that the exploratory experiments are not 

circumscribed to a particular historical or theoretical context: 
 
(…) exploratory experimentation is not so much bound to certain historical 
periods, fields of research, or scientific traditions, but first and foremost to 
specific epistemic situations: those situations namely in which, for reasons 
whatsoever, the very concepts by which a certain field is treated have been 
destabilized and become open for revision. Situations in which theories 
and well-formed expectations are tested, in contrast, require a well-
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elaborated conceptualization, a stable language by which the expectation 
can be expressed in the first place. Exploratory and theory-driven 
experimentation are connected to different constellations and situations of 
our knowledge, to different regimes of stability on a conceptual level. 
(Steinle, 2002, 425–426) 
 
Finally, some philosophers underline the relation between the 

experimental activity’s purposes and its results: 
 
Roughly speaking, the aim of exploratory experiments is to generate 
significant findings about phenomena without appealing to a theory about 
these phenomena for the purpose of focusing experimental attention on a 
limited range of possible findings. The findings might be significant with 
respect to a variety of goals ranging from the practical goal to learn how to 
manipulate a phenomenon to the theoretical goal to develop a conceptual 
framework that will help focus future experimental attention. (Waters, 
2007, 5) 
 
It is important to note that the previous three quotations correspond to 

authors that defend the theoretical dependency criteria for the distinction 
of exploratory experiments. However, in all three one can notice that other 
characteristics are the ones that stand out in this type of experiments. 

When exploration is taken as a distinctive characteristic of some 
experiments, it does not appear to be adequately characterized by its 
dependency on the theory. In fact, whoever tries to defend this idea should 
be able to explain the different levels of theory involved in an experiment, 
and determine which of these levels is or are relevant to the “theoretical 
guidance.” 

To say that an experiment is guided by a theory means that the 
expectations regarding its results are theoretical, or that the design of the 
experiment depends on a theory, or that the instruments used are theory 
dependent, etc. It is possible that a large part of the difficulty of the 
characterization, in terms of theoretical dependence of the exploratory 
experiments, is due to the lack of a sophisticated notion of theory and of 
levels of theory involved in the design, execution, and analysis of 
experimental results.3 However, the perspective of the dependency to 
theory, even when attention has been paid to the previous observation, 
does not reflect important epistemological and methodological aspects of 
exploration in science. 

                                                 
3 A first approach to the different types and levels of theory involved in an 
experiment can be found in (Hacking, 1992). 
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In this sense, Steinle himself states that in exploratory experiments we 
can distinguish the following activities as typical methodological 
practices: 

 
x Varying a large number of different experimental parameters, 
x Determining which of the different experimental conditions are 

indispensable, which are only modifying, 
x Looking for stable empirical rules, 
x Finding appropriate representations by means of which those rules 

can be formulated, 
x Forming experimental arrangements that involve only the 

indispensable conditions, thus presenting the rule in particular 
clarity. Those experiments are typically characterized as “simple,” 
“elementary,” or “pure case” (Steinle, 1997, S70). 

 
One of the activities pointed out as typical in an exploratory 

experiment is the variation of parameters. This is usually a regular 
procedure in experiments, not only exploratory but also in general. The 
variation of parameters can be done with different aims in mind: from the 
calibration of a measuring instrument to the intention of obtaining some 
empirical regularity. Now, the purpose of an experiment can turn the 
variation of parameters into an exploratory experiment even though it is 
carried out under strong theoretical restrictions. This makes one believe 
that an exploratory experiment is best characterized by its purpose rather 
than by its particular relation to theoretical aspects. This relationship with 
theory can only be understood if no qualification appears as an inadequate 
characterization. 

In addition, emphasizing the aims and the roles of the experiments 
helps us to distinguish between exploratory strategies that not only form 
part of exploratory experiments but also of experiments with different 
purposes, such as hypothesis confirmation. This point seems relevant for 
different reasons. In the analysis of cases that usually accompanies the 
characterization of exploratory experiments, there is confusion between 
what we could call the exploratory experiment typology and the searching 
and exploring strategies. However, it seems clear that there are exploring 
strategies belonging to non-exploratory experiments, as they are also part 
of other non-experimental scientific practices. 

Yet, it is necessary to point out that search strategies or exploratory 
restrictions do not seem to be the defining feature of exploratory 
experiments. However, their consideration allows a more adequate 
description of certain aspects of scientific and experimental practices in 
particular. 
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Exploratory Strategies in Scientific Practices 

We organize this section in the following way: first, we will make 
explicit what we understand as an exploratory strategy; then we will show 
some examples that will permit us to contextualize our proposal. Finally, 
we will analyze some cases regarding exploratory experiments presented 
by the literature to show the advantages of our proposal. In particular, we 
will show how adopting the point of view of the exploratory strategy leads 
to a more direct relationship with computer simulations. 

In this paper, we will consider any activity or resource that allows us to 
do an exploration as an “exploratory strategy.” These activities or 
resources can be very different, but as long as they perform the function of 
allowing us to question, search, probe, or explore, we will call them 
“exploratory strategies.” It is important not to restrict the notion of a 
strategy by setting rules or any other structure implying a procedure. The 
relevance of this point will become evident in the following paragraphs as 
we present the ways in which exploratory strategies can be instantiated. 

A first way of characterizing exploratory strategies is in terms of what 
they are looking for (what they explore), the way in which they do this 
operation (how they explore) and to what end they are doing it (what they 
explore for). 

A second way of characterizing exploratory strategies would be paying 
attention to the structure of the search –or, if you prefer, to the restrictions 
in the “searcher”– and the structure of the media in which one is searching 
–the restrictions in the search space. We could have searches with few 
restrictions – for them to be as adequate as possible – or searches with 
strongly selective criteria. This way of understanding exploratory 
strategies can be instantiated as searching rules or heuristics. The structure 
of the searching rule will let us account for part of the restrictive capacity 
of the exploratory strategy. We can call this way of understanding 
exploratory strategies as ‘type 1.’ We can also explore using judicious 
construction of an exploration space or by limiting the size of this space. 
This way of understanding exploratory strategies we will call ‘type 2’ 
strategies. We are using, although in an indirect way, the metaphor that 
distinguishes between the search strategy and the space where the strategy 
takes place. In the same way that we talk of restrictions in the type 1 
strategies, we can suppose that the space structure involves, among other 
things, graduating the restrictions. One could argue that the distinction 
between type 1 and type 2 strategies is not genuine because type 2 
strategies can be rewritten in terms of type 1. Although in principle it 
seems possible to do this rewriting task and eventually reduce one type to 
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the other, this perspective does not look adequate when we are trying to 
account for epistemic and methodical aspects associated to the description 
of scientific practices. In this ‘reduction’ task, the specific ways in which 
the exploration is being done, within the simulations or the experiments, 
would not be adequately shown. 

Before continuing, let us see some examples that help put our 
discussion in context. The first case involves the so-called combinatory 
chemistry and high-throughput screening. Combination chemistry can be 
described, in very general and schematic terms, by methods associated 
with combinatory synthesis and high-throughput screening. According to 
Valerie Gillet, an investigator in this area, combinatory chemistry “refers 
to the synthesis of large numbers of compounds in parallel where product 
molecules are formed as combinations of available reagents or buildings 
blocks” (Andrew R. Leach & Gillet, 2007, 617). High-throughput 
screening “is an automated process whereby a large number of compounds 
(104 – 105) are rapidly screened for biological activity” (Andrew R. Leach 
& Gillet, 2007, 617). This focus on synthesis and screening, more than a 
new methodology, represents an automation of traditional methods with 
the help of new instrumental resources. Combinatory synthesis can be seen 
as a procedure to construct, in different ways and suppositions, a ‘search 
area.’ The high-throughput screening can be seen, not only by its design 
but also by its application, as a ‘search strategy.’ Let us have a look at 
these two types of analysis. 

Starting with high-throughput screening one can understand the types 
of search involved here from their historical evolution. During the 80s it 
was taken as an advantage for this search to be as little restricted as 
possible, so as to be able to obtain the largest number of candidates for a 
new drug (leads), by the sole record of the force of automation. 
Sometimes, this way of search is described as “serendipity” (Cf. García, 
2009). With time it became clear, from the poor results obtained, that a 
more selective search was required. Therefore, restrictions were added to 
the type of mechanism that was desirable in a drug precursor. Among the 
restrictions for selecting drugs candidates, we can quote the Lipinski’s rule 
of 5 (Lipinski, 1995) –a set of desirable characteristics in drug, such as 
solubility or permeability. However, there are also other types of 
restrictions that may take the form of superposition or adjustment between 
molecular structures. This way of understanding high-throughput screening 
is sometimes called “rational” or “design” to mark its differences to a 
search without too many restrictions.  

The increase of restrictions in the search was not the only resource 
used to improve the performance of these systems. The use of combinatory 
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chemistry to design libraries of compounds has become more sophisticated 
since the 90s. This aspect can be seen as an instantiation of the second 
criteria to classify exploratory strategies. In fact, the construction of 
libraries of substances seems like a way to restrict or guide the search by 
means of a rational structuring of the problem’s space. This began the 
discussion about the way one could obtain libraries of substances with a 
sufficient degree of variation to make the search interesting. This supposes 
a relevant notion of “variation.” Although this notion can be instantiated 
differently according to the case, the construction of a more general notion 
has been attempted. A standard way of understanding this notion is to link 
the concept of “diversity” to that of similarity. In the context of the 
construction of libraries, what one needs is some codification of the 
substances in question (molecular descriptors are usually used) to be able 
to later define a measure that can be taken as a degree of similitude. In this 
way, one can determine if a sample of substances is more “diverse” than 
another in terms of some quantifiable criteria (Cf. Bleicher et. al., 2003). 

In several of the more interesting stages of work in combinatory 
chemistry, simulation, experimentation, and exploration strategy practices 
are involved. This makes it far from simple – and probably inconvenient – 
to make differences between experiments and simulations when 
investigation processes are under consideration rather than their constituent 
parts. For instance, one can take not only the construction but also the 
search in virtual libraries (an approximation sometimes called in silico). 
In this case, libraries of aspects and properties of the substances with 
relevant descriptions are constructed, and the search is done in these 
virtual spaces. Thus “in silico” screening “refers to the use of 
computational techniques to select compounds, either from existing 
libraries…or from virtual libraries that represent the compounds that could 
potentially be made via combinatorial synthesis” (Andrew R. Leach & 
Gillet, 2007, 618). If what interests the researchers involves the known 
links (“ligands”) for a compound with a certain “target,” then you can 
build a “pharmacophore” model to account for the compounds structural 
aspects. It is important to point out that “a pharmacophore does not 
represent a real molecule or a real association of functional groups, but a 
purely abstract concept that accounts for the common molecular 
interaction capacities of a group of compounds towards their target 
structure” (IUPAC Recommendation cited by A. R Leach, et. al., 2010, 
539). For this reason, this type of model is usually used for virtual 
searches (virtual screening) and predictive “docking” models in general; 
that is, rational design models that in some way allow to have expectations 
on candidate ligand receptors (Andrew R. Leach & Gillet, 2007, 166ff). 
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One way to systematize the virtual search types is to consider the amount 
of structural information and biological activity available (Andrew R. 
Leach & Gillet, 2007, 158ff).  

First, if what is known is only a single active molecule, virtual search 
will generally be based on the possibility of binding. Second, if there are 
various active molecules, you can build a pharmacophore model and then 
search using 3D properties. Third, a neural network can be used when 
there is sufficient information about active and inactive structures. Finally, 
when the 3D structure of a protein is known, “protein-ligand docking can 
be employed” in the search (Andrew R. Leach & Gillet, 2007, 160). Thus, 
the virtual search involved in this type of computer simulation depends on 
the type and the amount of information available on the chemical 
compound’s space. Any results that may be of interest can become part of 
experiments in real libraries. 

The virtual library search can hardly be seen as an exploratory 
experiment; in this case, however, it is clear that exploratory strategies are 
used. Moreover, it is possible that similar strategies are used in both the 
virtual and real experimental spaces. Considering the discussion in the 
previous section, here we would have experiments using exploratory and 
search strategies in contexts where the goals can be confirmatory. An 
example of this would be the search process that is triggered when it is 
estimated an achieved precursor or a more or less reliable candidate for a 
drug. The process in this scenario is a type of search, although for 
confirming a promising result. This is a good example of situations that 
Morrison called “hybrid,” which are so common in current scientific 
practices. 

Shown in this schematic presentation are some of the advantages of 
our proposed characterizations. However, it is clear that such 
characterizations require a more careful elucidation. Returning to the first 
characterization of exploratory strategies, it could be endorsed that the 
functional aspects of these strategies are only linked with the third item 
(what they explore for) of the first characterization. However, to account 
properly for the functional aspects requires an explanation of the ways in 
which the exploration is performed and certainly of its goal. In turn, the 
first aspect of the first characterization of exploratory strategies (what are 
they looking for?) could be understood as referring to the particular 
scientific discipline in which they are used – chemical, physical, or 
otherwise – or the main purpose of the experiment or activity performed. 
Yet, this does not seem to be its primary meaning. If an experimental 
design uses a variation of parameters in order to calibrate an instrument, 
then the alleged exploratory strategy here seems to be aimed at the 
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instrument itself (or at least at some relevant contexts to increase the 
precision or accuracy of the instrument). From this point of view, we can 
see that exploration activities are also involved in the different aspects of 
design and execution of an experiment or other scientific activities. 
Among the latter, we can point out the situation in which models are 
explored; that is, we explore the limits of a model, the empirical 
approximation of a model, the adjustment of a model to other models, etc. 
This aspect of exploratory strategies can also have a more sophisticated 
network. For example, when we consider the field of computer simulations, 
we have, and typically this is the case, exploratory strategies at different 
levels, in this sense, the question about what these strategies look for, has 
a different response at each of these levels. The scientists have general 
goals that characterize the computer simulation’s main objective. 
However, this central goal does not invalidate the aims of other strategies 
at lower levels. Thus, we can have a computer simulation whose main 
objective is to explore a model in a certain way, but which also has 
different exploratory strategies in its “lower” levels. This complexity is not 
necessarily a difficulty, since it allows us to explain the relative 
independence – at least in a certain sense – between each of these 
exploration strategies. Depending on the type of problem in which we are 
interested, we can distinguish different strategies at different levels. 

Regarding the second aspect of the first characterization of exploratory 
strategies – how to perform the exploration – here one can consider 
different types of search, exploration and inquiry. Virtually all we have 
considered in type 1 and 2 strategies could come into this point, taking 
into account the restrictions on the search and the structuring of the space 
where the search is made. Either way, it is possible that this approach can 
be developed in the future by checking other aspects through which the 
types of search can be seen, or by specifying the types of restrictions that 
are taken into account. For example, returning to the case of high-
throughput screening, one could take into account the differences between 
the exploration based on structural aspects (such as “host-based coupling”) 
and those based on properties. The latter could include the aforementioned 
rule of Lipinski. A compound can have “drug-likeness” if it has certain 
properties, such as absorption or permeability (which is unlikely if the 
compound in question has a molecular weight greater than 500). While 
what we might call structural searches also have the goal of finding 
compounds that may be plausible candidates for a new drug, the type of 
restriction that guides the search is very different. The methods called 
“molecular docking” would fall into this category. In general, what is 
intended to be found in the “docking” experiments is the 3D structure 
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resulting from two or more molecules. Computational methods involved 
here are concentrated on two tasks: exploring the space of possible 
“protein-ligand geometries” (Andrew R. Leach & Gillet, 2007, p. 161) and 
the weighted evaluation of these geometries to enable them to “identify the 
most likely binding model for each compound and to assign a priority 
order to the molecules.” (Andrew R. Leach & Gillet, 2007, p. 161). To a 
large extent, the difficulty of this task lies in the degrees of freedom in 
rotation and translation of molecules – in relation to other molecules – 
which affect their geometrical configuration. For this reason, the biggest 
effort is often in the design and implementation of algorithms that account 
for this problem. 

The third aspect of the first characterization of exploratory strategies 
(what is the exploration performed for?) is important because it allows us 
to highlight another angle of the relationship between exploratory 
strategies and other scientific activities and experiments. One might 
suppose that this appearance coincides with the one that allowed us to 
distinguish between exploratory experiments and confirmatory experiments. 
However, as we saw above, the goal of an overall activity is not the reason 
for the exploratory strategies involved. Continuing with the aforementioned 
example we mentioned above, we might have an experiment whose design 
or calibration assumed exploratory strategies, but whose ultimate goal is to 
test or confirm a given hypothesis. At least in principle, given the 
complexity of current experimental designs and the different levels 
sometimes involved, there may be exploratory strategies at an execution 
level, although the aim of the experiment itself is another. 

From this characterization, taking some cases from the literature on 
exploratory experiments, exploratory strategies can be analyzed in a new 
light. As noted in the previous section, the concern about drawing a line 
between exploratory experiments and other interventional practices has 
left in the background other interesting aspects of these scientific 
practices. In order to show the advantages of our proposal we discuss 
some of these examples. In our analysis, we will focus on what we called 
type 2 strategies that is in the form in which the exploration space is 
selected and configured. In a complementary way, we highlight the 
importance of instruments in these cases. Franklin (2005) noted that the 
adoption of certain instruments is often accompanied by an increase in 
experimental “exploratory practices.” The impact of the instruments is 
similarly highlighted by several of the philosophers who analyze 
exploratory experiments. However, it can be argued that not only are there 
methodological strategies associated with the mere adoption of an 
instrument to carry out a task, but also with its configuration and use. 
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Moreover, the notion of instrument, understood from the methodological 
resources, can serve to understand the role of computer simulations. 
O’Malley (2007) presents a case within the scope of what is often called 
“metagenomics.” This case is related to the discovery of proteorhodopsin 
in marine bacteria gene (in the Monterey Bay). Metagenomics can be 
characterized by the manner in which the samples to be examined are 
selected. Under the assumption that genomic diversity is not sufficiently 
represented by the crop cloning methods used to sequence the genetic 
information, samples taken from some “natural” environment that is 
relevant to the investigation are used. In this way of selecting the samples, 
we can see a first sense of exploration linked to the selection of the space 
where the investigation is to be performed. This consideration is 
reinforced when comparing the sample “area” to the cultivated samples 
space where experimental protocols tend to favor their “isolation.” 
O’Malley also highlights this aspect, as it allows him to describe a form of 
exploratory experiment. However, beyond this first exploratory direction 
presented by O’Malley, one might suggest a second direction associated 
with the sequencing of the samples.4 For several years, a parallel 
sequencing technique (“shotgun” Sanger sequencing or massively parallel 
pyrosequencing) is being used, and is often seen as a suitable complement 
to the objectives of metagenomics. It seems clear that there is a sense of 
exploration involved in the parallelism in this type of method (Eisen, 
2007).  

Franklin quotes another case in the literature on exploratory 
experiments, which concerns the use of what is called "microarrays" 
(DNA chips). Franklin underlines the use of this tool in the investigation 
of the role of certain proteins in the cell cycle. This instrument consists of 
a “plate” of a material that can serve as a “grid” for samples to be 
analyzed. These plates must be constructed of a material that allows DNA 
binding. Due to the parallel nature of this technique, it is often used to 
investigate “the differential expression of the genes.” The level of gene 
expression is measured by a “probe,” which is added to the sample to be 
investigated and that has been “marked” (with a fluorescent or radioactive 
tracer). These marks are analyzed in an image that indicates the level of 
gene expression. The differential aspect of gene expression can be 
investigated by changing the conditions in cells (with or without a 
particular alteration). The first exploratory aspect that can be noted in this 
context has to do with the configuration of the space in which the 

                                                 
4 The use of shotgun sequencing is quoted in O’Malley´s work, although its 
methodological importance isn´t highlighted in terms of exploratory strategies. 
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sequencing will be done. This point becomes clearer when comparing this 
technique with that which gave rise to it: Northern and Southern blot. In 
principle, the only difference between the two techniques is that the latter 
only allows the study of genes “one at a time.” Yet there is another aspect 
of the exploration that can be pointed out here, related to the design of the 
configuration of the DNA chip samples. Because of the amount of samples 
available, the design of these early stages is usually done with the help of 
specialized software that allows putting into practice strategies that are 
considered appropriate for the exploration. Thus, one can take any 
diversity criterion – for example, by homology – and apply it to construct 
a sample. In this sense, it seems that there is a relationship between sample 
design and the ways to explore. 

Final Words 

We have tried to explain how an insight into exploratory strategies 
allows us to show different methodological and epistemological aspects of 
computer simulations in science and scientific experimentation. Our 
intention has been to collaborate in the construction of theoretical tools 
that help to analyze and highlight the epistemological and methodological 
richness of certain aspects of these practices that have been overlooked in 
philosophical research. In this sense, we believe that the activities of 
exploring and searching have not received sufficient attention in the field 
of the philosophy of science. 

The analysis of exploratory strategies has allowed us, through the 
presentation of some cases, to show the different levels at which 
exploration is relevant in scientific practices. However, this is only a first 
approach to the characterization of a concept that we believe is promising 
for the task of understanding, from a philosophical point of view, the role 
of computer simulation and scientific experimentation in scientific 
practices.  
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Systems Biology is gaining momentum in a wide sphere of biological 
sciences, although the exact meaning of the term has not yet been 
universally agreed upon.1 Although there is agreement that systems 
biology involves a shift of focus from individual components to the inter-
relations between components and levels in biological processes, with the 
potential of illuminating non-linear causality and phenomena of 
emergence, there are important differences between those who hold that it 
is a methodological approach, such as Kohl and Noble (2009), and those 
instead who claim that the enterprise of systems biology is a far more 
theoretical one, aimed at arriving at biological laws (Westerhoff et al., 
2010). It is also closely related and sometimes indistinguishable from its 
apparently more pragmatic partners, such as synthetic biology, and from 
other research for pragmatic purposes such as drug development, or 
medical diagnosis and treatment (for example, Byrne, 2006; Rodriguez et 
al., 2010).  There are also differences between the use computational 
technologies in systems biology, with one mode of systems biology being 
closely related to data-intensive research, and the search for statistical 

                                                           
1 See Breitling (2010), Boogerd et al. (2007), Gunawardena (2010), Kupiec (2009), 
Kohl et al. (2010), Lesne (2009), O’Malley and Dupré, (2005), Sage et al. (2009) 
for an array of definitions offered by scientists and philosophers of science. See 
Powell et al. (2007) for the origins of the term.  
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correlations between genomic, proteomic, and metabolomic datasets 
(Boogerd et al., 2007; Kitano, 2002; Calvert and Fujimara, 2011), and 
another mode being more closely related to the use of computational 
modelling and simulations with the aim of investigating underlying 
physiological processes (See Sage et al. 2009; Kohl and Noble, 2009). In 
this article, we make no attempt to encompass all of systems biology, but 
discuss only computational systems biology of the latter type. The 
methodology of computational modelling and simulation with a view to 
mimicking the mechanisms of physiological processes viewed as complex 
systems is challenging and difficult, and has not received as much 
attention as other forms of modelling in systems biology in the 
philosophical literature. The possible benefits of this methodology are 
scientific (since, in principle, they could enable greater understanding of 
complex biological systems and processes which are difficult to 
understand experimentally), pragmatic (since, again in principle, they 
could allow for experiments that are difficult or impossible to carry out in 
laboratories with existing techniques and equipment), and increasingly 
important, ethical (since, once again in principle they could replace 
experiments carried out on animals or humans). Some of the most 
advanced uses of computational modelling and simulations in systems 
biology settings are multi-scale models, which integrate data from 
different aspects of a biological system relevant to the understanding of 
specific processes, thus allowing for an understanding of the interactions 
and feedback loops between different levels.  

Even though the words ‘model’ and ‘modelling’ are used in the 
practice of computational systems biology research, it is not at all clear 
that they mean, in their everyday use, the same as what is meant by these 
words in other sciences, such as physics, or in the philosophy of 
modelling. In his overview of models in biology, Odenbaugh (2008) 
mentions computational models, but does not consider them as a specific 
category of models in biology.  This also holds for Darden, in her 
treatment of the role of models in understanding biological mechanisms, 
and ends her essay on mechanisms with mention of mathematical and 
computational models (Darden, 2007). In their overview of systems 
biology, O’Malley and Dupré point out the importance of computational 
methods, and call for philosophical scrutiny of the modelling tools used by 
systems biologists (2005, 1272). Bechtel and Abrahamsen (2010) give a 
detailed account of computational modelling of circadian rhythms and 
possible applications of this approach in cognitive sciences. The case that 
we consider is an integrative multi-scale model, which brings complexities 
that have not yet been considered.  It is partly to the opening of this 
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blackbox of modelling tools and techniques that this paper aims to 
contribute.  

As in many other scientific contexts, it is common for the type of 
models that are used for computational modelling and simulations to be 
described as representations among systems biologists.2 At least it is 
common that the word is used, while less clear are the understandings of 
what constitutes representation. That is, answers to the question what is 
the relationship between a model and its target, such that the model can be 
said to represent its target, are less forthcoming and when they are, they 
are often inconsistent. Our combined experience and fieldwork in the field 
of systems biology show that there is great variation regarding the need for 
models to be complete in order to be considered representational, while 
others are satisfied with a more instrumental and heuristic view of 
models.3 The fact that this is a relatively less prevalent voiced attitude to 
models may be due to the fact that the term ‘representation’ is sometimes 
used as shorthand for what is in practice much closer to an instrumentalist 
approach. The focus of scientific publications is not on the conceptual 
framework of the methodology used, and they are likely simply to use the 
term that others use.  Moreover, what exactly it is in the whole 
computational process of modelling that is being described as a 
representation, replica, or instrument is not clear, particularly when there is 
the added factor of the relation between mathematical models, simulations, 
and experiments. There is a large literature on the philosophy of models, 
which rarely finds its way into the practice of scientific modelling. 
Recently, philosophers have turned their attention to simulations. A 
selection of recent work shows a great deal of variation: some claim that 
simulations are merely models in another guise (Frigg and Reiss, 2009), 
whereas others claim that simulations bring about a quantum difference in 
the scientific method as well as in the philosophical conception of models 
(Humphreys, 2004). There is also controversy over whether the physical 
form of the computational system makes a difference to the role of 
simulations in scientific research (Barberousse et al., 2008), and what 
exactly is the relationship between model and simulation (Humphreys, 
2004, Varenne, 2007).  As is to be expected from such a wide variety of 
views regarding the nature of simulations, there is also controversy over 
the epistemology of simulations, with some claiming that when it comes to 
an account of the epistemic warrant of simulations, a deferential attitude to 
                                                           
2 One example is Kohl and Noble (2010), but this is widespread in publications, in 
workshops, and in daily discourse. 
3 See for example the discussion transcribed in Carusi, Rodriguez, Wakefield et al. 
(2009).  
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the beliefs that scientists bring to the simulating process might be 
necessary (Winsberg, 2009) and others instead taking a more sceptical 
attitude (Parker, 2009). If there is one thing that is clear, it is that there is a 
great deal of uncertainty surrounding this methodology, which is to an 
important extent shared by philosophers and scientists alike.  

Thus, the questions relating to computational modelling and simulation 
in systems biology are of interest both for debates on systems biology and 
for debates in the philosophy of modelling, and the challenges on the two 
fronts need to be confronted at the same time, and optimally, in the very 
practice of science. As both systems biology and its methodology are 
unfolding programmes of research, one finds that the philosophical 
questions are being posed within scientific practice all the time. There is 
no standard practice and there are no ready answers, and scientists’ 
philosophical conception of the domains they are studying is being 
stretched to its limit. On the side of philosophy of modelling, it is not clear 
that we can apply tried and tested conceptual frameworks for 
understanding the role of models to this new domain. 

In Models as Mediators, Morgan and Morrison (1999) point out that if 
attention is paid to the actual construction of models and their uses in 
science, it becomes evident that models are partially autonomous both of 
theory and of reality, and that they have a variety of roles: instrumental, 
representational, and as learning enablers. We take our queue from this 
approach, and in this paper, focus on the construction of a particular type 
of model in systems biology. From this detailed account, we outline some 
of the main implications for an understanding of the pragmatics of 
modelling and simulation in systems biology. 

The models that we describe are multiscale models of cardiac 
electrophysiology. In part, our choice is motivated by our own expertise as 
authors of this paper (Rodriguez is a specialist in cardiac modelling, and 
Burrage is a specialist in the mathematical techniques used in 
computational biology).  However, it is also motivated by the fact that 
cardiac electrophysiology is one of the most mature areas where 
computational methods and a systems approach have been used, and is 
perhaps the most advanced area of computational physiology. Fifty years 
ago, Denis Noble (1962) published the first mathematical model of the 
electrical excitation in a single cardiac cell. Noble’s work showed that the 
work by Hodgkin and Huxley could be extended to other areas of 
physiology and provided the foundation for the emergence of 
mathematical modelling and simulation in physiology. Since then there 
have been many advances and a developing refinement in mathematical 
models and simulation tools used in physiology, and in particular in 
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cardiac electrophysiology. Cardiac modelling and simulation are 
extensively used in basic science investigations and have been crucial to 
improving the understanding of the mechanisms of arrhythmias, 
electrotherapy, and the electrocardiogram. Over forty mathematical 
models of the electrical excitation and excitation-contraction coupling in 
single cardiac cells are now available for different cell types and animal 
species (see CellML repository at www.cellml.org). Anatomical models of 
the ventricles and the atria have also been constructed based on a variety 
of imaging modalities applied to hearts of different animal species 
(Seemann et al., 2006; Potse et al., 2006; TenTusscher, 2007; 
Vadakkumpadan et al., 2010; Bordas et al. 2011; Bishop et al., 2010). 
Sophisticated software has been developed using advanced computational 
and software engineering techniques to simulate propagation of the 
electrical excitation through cardiac tissue often using high performance 
computing facilities. Using those tools, it is now possible to perform 
computationally-expensive multiscale simulations of the effect of 
mutations and drugs at the ion channel level on the electrical activity of 
the human ventricles (Potse et al., 2006; TenTusscher, 2007; Zemzemi et 
al., 2011). In great contrast with the sole authorship of Noble in his first 
paper, modelling and simulation in electrophysiology now seem to have 
entered the ‘big science’ era, with large interdisciplinary teams involved in 
research.  

Using these models as our exemplar of modelling in systems biology 
therefore means that we are considering models at an advanced stage of 
development and are less likely to be side-tracked by questions which 
arise at less mature stages. While they do have a long line of development, 
the programme of research in which the models are embedded are also 
meeting new interlinked challenges: first, relating to the very possibility of 
constructing integrative multi-scale models; and second, relating to the 
possibility of validating these models against the domains which they 
claim to represent.  

The challenge of these models starts out right at the outset, before the 
question how they are related to – how they represent, or are an instrument 
for probing – the domain of cardiac electrophysiology. Indeed, it begins 
with the question: what, exactly is the model, and what does it comprise? 
This question is introduced in the first section of this paper (“What is the 
model?”) in order to set the scene for the following sections, in which we 
describe the construction of the models, and consider what is the source 
(section “The construction of the model”), target (section “The target”) 
and the relationship between the two (section “The source-target relation”). 
In these sections we build a case for a systems understanding of the 
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computational models used in systems biology. Just as systems biology is 
a systems approach, so must the models used in this approach be viewed 
as systems rather than as discrete atomistic entities.  We propose that the 
model-simulation-experiment system or MSE system is the basic unit of 
analysis when considering questions of the validation and epistemic 
warrant of computational methods in systems biology (section 
“Validation”), while the relationship to theory is considered in the section 
titled “Theory.”  

What is the Model? 

In this section we consider the question of what, in the array of 
epistemic tools and other items (including theories, principles, laws, etc.) 
at the disposal of computational systems biology, is a model.  

Leaving aside for the moment the question of how a model relates to 
theory, generally a model is seen as consisting of three main parts: the 
source, the target, and the relationship between them.   Among many 
possibilities, the most well-known accounts of what the relationship 
consists in are possibly a relation of isomorphism (van Fraassen, 1994), of 
analogy (Hesse, 1967), of exemplification (Goodman, 1976). 

However, the question we are starting with is what is the source? In the 
domain of cardiac modelling – and many other domains – the word 
‘model’ used by scientists might refer to the mathematical formulations, in 
the form of ordinary and partial differential equations, which are solved 
through the simulation. In this case, when the ‘validation of the model’ is 
spoken of, it seems that what is at issue is only the equations, in a kind of 
face-off between suitably solved equations and reality. However, this 
skews the actual practice of validation, as well as the epistemological 
account of the whole process of modelling and simulating. To reduce the 
model to the equations is of course a caricature, and in fact, often the word 
‘model’ is shorthand for something far more complex, although the details 
and possible inconsistencies are often hidden from sight behind tacit 
expectations of consensus. In the philosophical literature, the work of Eric 
Winsberg and Paul Humphreys among others has done much to extend 
traditional accounts of models to a consideration of computational 
modelling and simulation. Humphreys (2004) offers an extremely useful 
breakdown of the component parts of a computational model, which 
according to him consists of 1) a computational template (consisting of a 
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set of equations)4; 2) construction assumptions; 3) a correction set 
(understanding of how the model can be adjusted); 4) an interpretation 
(relating the model to a specific domain); 5) the initial justification of the 
template; 6) an output representation (2004, 102-3). Thus, Humphreys’ 
view already broadens out the understanding of what a model is. We 
follow his approach to computational models in spirit if not in the detail.  
We shall return to the main differences between our account and that of 
Humphreys in the section titled “The source-target relation.” 

Before going on to an account of the construction of the models, 
however, it is useful to recall the asymmetrical relation between the source 
and the target. Sources represent targets, and not vice versa. This fits in 
with the view that models are classified with other intentional items, 
which have meaning in terms of their being about other items, and this 
aboutness is a major determinant of the meaning of the model source. The 
intentional relation is key here, as has been pointed out by Suarez (2003) 
and Giere (2002) in the context of philosophy of modelling, but this is not 
an unfamiliar position in semiotically inspired theories such as those of 
Charles Peirce, Nelson Goodman, and Umberto Eco. This is a conceptual 
point with a bearing on accounts of intentionality generally, but it is also 
one which it is worth emphasizing in this context of scientific practice, 
where the targeting is very active indeed, and which serves to illuminate a 
central aspect of these models: that is, that they certainly do bear all the 
hallmarks of active construction in an iterated process of refining the 
targeting of a domain.5  

We now turn to the construction of the model source in the next sec-
tion.  

The Construction of the Model 

The models we consider in this paper are multi-scale models relating to 
cardiac electrophysiology, from the sub-cellular level to the level of the 
whole organ. The aim is to gain an understanding of the mechanisms of 
electrical propagation across the heart. A wide array of techniques goes 
into constructing these models: experimental (wetlab), imaging, 
                                                           
4 The template equations are not identifiable with a model since a model is more 
specific than a template, according to Humphreys.  
5 There is a convergence between these non-naturalistic, pragmatic views of the 
ways in which models represent, and Humphreys’ insistence that computational 
models ought not to be separated from their intended interpretations. For his 
criticism of the ‘detachable interpretation’ and of the ‘no-ownership’ view, see 
Humphreys (2004, 80). 
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mathematical, numerical, computational techniques are all used, and there 
are many subdivisions to be made within those broad categories. There are 
three main parts to be considered: the equations, parameter values 
obtained from experiments, and the simulations; but these have 
intermediary and bridging stages too, such as the construction of the mesh, 
and the use of simulations for multiple purposes. After a discussion of 
each of these and the inter-relationships between them,6 we will conclude 
that the model source is the whole system of model-simulation-
experiment, or what we have called, the MSE system.  

Equations 

In cardiac electrophysiology, electrical propagation in ventricular 
tissue is often simulated using bidomain equations. Two fundamental laws 
are used to derive the bidomain equations: the Ohm law (to relate 
electrical potential to flow of transmembrane, intracellular and 
extracellular currents) and the Kirchhoff law for conservation of charges 
(Keener & Sneyd, 1998). The equations describe electrical propagation in 
an electrical model of cardiac tissue, which include three main types of 
mechanisms: ion channels, exchangers, and pumps. Equations are based 
on knowledge of the biophysical processes underlying ionic transport. 
However, uncertainty in the understanding of those biophysical processes 
means that often several mathematical formulations could be used in the 
models. In those cases, often the equation that allows best fit between 
simulation results and experimental data with similar conditions imposed 
is chosen. In view of the complexity of measuring and modelling the bio-
physical detail of ionic currents, simplified phenomenological models are 
sometimes also used.  

Parameter Values 

Whereas the mathematical framework described above is generic for 
cardiac tissue, the models aim at being specific; for example, of a 
particular animal species or spatial location within the heart (i.e. dog 
versus rabbit, atria versus ventricles). Data obtained from wetlab 
experiments are the second input into models, and are the means whereby 
the generic and abstract mathematical equations are related to specific and 
particular cardiac physiological features and processes. Parameter values 
in the models are obtained directly from experimental measurements 

                                                           
6 For a more detailed discussion, please see Carusi, Burrage and Rodriguez (2012).  
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(when possible) or indirectly by minimizing the difference between 
simulated and mean experimental behaviour using similar conditions in 
both cases. Two factors are to be noted: first, parameter values can come 
from a wide variety of data sets; second, parameter values need to be 
interpreted against the background context of which model organisms 
were used, including for example, gender and age, and which experimental 
techniques were used. For example, cells used in experiments using a 
voltage clamp protocol are isolated, and in the process, are damaged. For 
modelling purposes, it is assumed that the dynamics of ion channels is not 
affected by the isolating procedure. Further information for the models 
relates to the fibre architecture and to conductivity values.  

The initial stage of the mathematical formulation for membrane 
kinetics is determined by background assumptions, existing knowledge 
and hypotheses about the biophysical functioning of ion channels such as 
the existence of voltage or concentration-dependent mechanisms of 
channel opening, closing or inactivation, or possible states of the protein) 
and also assumptions about best fit between experimental data and 
simulation results under similar conditions and how to achieve 
correspondence between mathematical formulations and biological 
processes (for example, related to ion channel kinetics). At this stage, there 
is an abstraction, in that only the functioning of ion channels is selected, 
excluding other processes, such as mechanics, metabolism, genetics and so 
on. Importantly in a multi-scale model, experimental data recorded in 
different cells and hearts are integrated in the model, from the ionic to the 
whole organ level: that is, from the sub-cellular, cellular, tissue, and organ 
levels. The equations and parameter values allow simulation of 
electrophysiological function in cardiac tissue.  The spatial characteristics 
of the tissue (such as its geometry) are defined by the mesh, which is 
discussed in the next section. 

Mesh 

In order for the simulation to be carried out, it is necessary to ensure 
that a further relation to actual cardiac physiology is forged; that is, to the 
anatomy and geometry of the cardiac tissue. In the case of whole-organ 
level models, this is carried out in the construction of anatomically-based 
meshes, and in the case of cardiac electrophysiological activity, this will 
concentrate on the anatomy of the upper or lower chambers of the heart 
(i.e. whole-atria or whole-ventricles models). The process for arriving at 
the mesh is itself a complex one, originating in the wetlab procedures of 
histology and MRI. Computational segmentation techniques are used in 
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order to obtain a binary image that defines the boundaries of the 
ventricular wall, abstracting it from the surrounding media (see for 
example, Plotkowiak et al., 2008; Plank et al., 2009; Vadakkumpadan et 
al., 2010). The 2D binary image is then used to generate a 3D volumetric 
mesh by applying a discretisation process in space. This anatomically-
based 3D volumetric mesh comprises the elements or points in the cardiac 
domain over which the solution to the bidomain equation discussed above 
is calculated. The volumetric mesh is therefore defined by the image-based 
anatomy and the numerical method used in the simulations to solve the 
bidomain equations. This means that the mesh is then also part of the 
model and an important component in determining simulation output.  

The mesh can be seen as a bridge point between the models (in the 
form of parameterized equations) and simulations. It also acts as a 
mediator between these two stages of the whole process, since it also is the 
means whereby there is interplay between them as each is adjusted to the 
other. It is important to note that there is no universal mesh, since meshes 
need to be constructed in terms of specific research questions embedded in 
specific models. 

The mesh also allows for the visual representation of the model and 
simulation results in spatial and temporal terms – these have a crucial role 
in the whole modelling and simulating processes (Winsberg, 1999; 
Humphreys, 2004; Hartmann, 1996; Carusi, 2011) with important 
consequences for how representation is understood in the domain as a 
whole and for model validation, which has not yet been well understood. 

Simulations 

The parameterized equations are solved through the simulations. 
However, this statement of their relationship to the model in the form of a 
parameterized equation (the ‘computational model’ in Humphreys’ 
terminology) makes it appear as an entirely separate process from the 
modelling process, and obscures its other roles in the overall process. In 
our example of models of cardiac electrophysiology, simulations have 
three roles: 

 
(i) To build the models themselves and determine equations and pa-

rameter values by minimizing the difference between simulations 
and experimental data; 

(ii) For model validation purposes by comparing simulation results 
with independent experimental datasets (that are not used in mod-
el construction);  
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(iii) To investigate the electrophysiological phenomena under study.  
 
It is important to note that there is an interplay between the simulations 

and the parameterized equations as described in (i). In addition, the 
numerical techniques used in the simulations also determine key features 
of the anatomically-based mesh, as the spatial discretization is performed 
by breaking the tissue geometry into smaller spatial steps using finite 
difference, finite elements or finite volumes. The aim is to obtain a 
numerical solution of the bidomain equations at every node of the mesh. 
However, the nodes of the mesh are determined by the need to achieve a 
convergence of numerical algorithms and has no relationship with the size 
of the cells. The entire myocardium consists of about 10^10 cells and it is 
not computationally feasible to simulate, in a bottom up fashion, the 
electrical propagation through this number of cells. Instead, the bidomain 
model represents a middle out approach, which arises by assuming a 
homogenization principle in which the smallest unit is a block of cells.    

Thus, the underlying model is a discrete one, which is turned into a 
continuous model through the homogenization principle.  However, 
computational simulation requires that the bidomain equations be turned 
back into a discrete model via a discretization process based on the 
numerical technique. 

Depending on the questions being addressed, parallel computers or 
supercomputers may be necessary to deal with the sheer size of the model 
and the data that they generate. Simulation complexity is addressed in 
various ways, all of which involve a trade off between efficiency, 
robustness, and accuracy within the numerical routines. There are subtle 
interplays between the spatial resolutions and temporal resolutions and 
these interplays are different from method to method and mesh to mesh. 

The simulation techniques are essentially a three-way negotiation 
between the equations, computational tractability, and existing knowledge 
of the domain to be modelled, involving adjustments between these, 
including, it must be stressed, between the equations and the numerical 
techniques. There is therefore a feedback from the simulation back to the 
equations. The results of these techniques need to be interpreted, in the 
strong sense of the word: there is not a single way in which they can be 
read, and their background and context need to be taken into account.  As 
mentioned, the visualization of the simulation plays a crucial role in this 
process of interpretation. 

Any diagrammatic illustration of this whole process will tend to isolate 
each stage that we have described, and even the device of bidirectional 
arrows does not show the extent to which they are interconnected. The 
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different aspects of this process are not chronologically distinct, and they 
are not distinct entities, in that they are shaped in answer to each other. 
Indeed, we could say that these models display at the level of methodology 
some of the features of biological phenomena as understood by systems 
biology, in that the process of modelling and simulation occurs in a system 
where local and global properties inter-inform each other, and distinctions 
– between stages or levels – are fairly artificial. 

Back to the Question: What is the Model Source? 

Returning now to the question of what is the model source in the case 
of multi-scale models of cardiac electrophysiology, we conclude that it is 
not possible to identify the model with the equations alone, since there is 
not a principled way in which they can be distinguished from the 
experimental data, the mesh, the simulation, and the visualization. In this 
domain, models are constructed not to remain at the formal mathematical 
level, but in order to gain traction on a physical domain, by incorporating 
data from the physical domain. The word ‘incorporate’ is meant literally 
here, in that what is important about the process we have described in the 
previous system is that the parameterized model is simulated on a physical 
entity, the computer, with a physical qualitative and quantitative output. 
This does not imply that there need be a relation of isomorphism between 
the physical computer and the model results,7 yet the physicality of the 
computer does make a difference; for example to computational 
tractability, and to the computational input and output.  In her analysis of 
the Repressilator, a synthetic model incorporating mathematical model and 
cellular structures, Loettgers writes that these ‘can be best described as 
hybrid systems, consisting of models and experiments’  (2007,121). The 
systems we are discussing here are similar to these hybrid systems, except 
that the matter in which the mathematical model and the experiment are 
hybridized is in silico rather than in vivo. As a way of keeping the hybrid 
and complex nature of the model system in the forefront, we suggest that 
in computational physiology research using modelling and simulation, the 
model source should be identified with the Model-Simulation-Experiment-
System, or the MSE-system.  

This brings us to the next component part of all models, the target.  

                                                           
7 A view rightly criticised by Barberousse, Franceschelli and Imbert (2008).  
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The Target 

The target of the MSE system is constructed at the same time as the 
source.  First of all, because of the E in MSE system, the target is already 
in the source. In this respect, the MSE system as a model source shares 
features with its target.8 However, there is also a great deal about the target 
domain that is unknown, and the point of these models is to try to 
construct a system which, when probed, will provide answers to questions 
about unknown or currently little understood aspects of the target domain.9 
It is in this sense, at least initially, that the MSE system represents the 
target: that is, in probing the MSE system, one learns something about its 
target. In the practice of cardiac modelling, what this means is that a 
‘match’ is sought between source and target. This is clear from the earliest 
use of the computational modelling method in cardiac electrophysiology, 
by Denis Noble who wrote in the paper which can be seen as an important 
initiator of this research programme: “It can be seen that the general shape 
of the action potential (A) corresponds very closely to that observed 
experimentally in Purkinje fibres” and “Nevertheless, the sensitivity of the 
computed pacemaker potential to changes in ionic conductance has been 
shown to correspond quite well with the experimental information 
available” (Noble, 1962).  Since that time, the programme can be seen as a 
way of deepening the understanding of what such correspondence consists 
in. The correspondence referred to by Noble was a qualitative one, judged 
through observation of trends and visual outputs. Although there is a drive 
to quantitative matches (discussed further in the section titled 
“Validation”), the source and the target are not comparable independently 
of constructing both in such a way that comparisons can be drawn between 
them. This is what it means for the target domain to be co-constructed with 
the model source: before two things can be compared there must be some 
ground of comparison between them.  Thus, an appropriate target domain 
for the model, understood as the MSE system, emerges at the same time as 
the MSE system is constructed. For example, the target is constructed as 
an abstracted cell/tissue/organ containing only those features relevant to 
electrophysiology, building on the electrical model of cells as consisting of 
ion channels, exchangers, and pumps that are used for the bidomain 
equations. From this point onwards, there is an adequation between the 
model and the target domain. Consider, for example, the correspondence 
                                                           
8 It is (partially) the type of model that Harré identified as a homoemorph, by 
abstraction (see Rothbart, 2004, 6). 
9 And in this respect they are more like Harré’s paramorphic models (Rothbart, 
2004, 8). 
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posited between each node of the mesh and cell size. In the previous 
section, we saw that the spatial granularity of the mesh does not 
correspond to actual cell size, but depends on the numerical techniques 
used. In this step – taken for a number of reasons – the target is similarly 
constructed as a domain where cell size is, to some extent, not a priority 
for electrophysiological activity, in the sense that it will not affect the 
interpretation of whether there is a match with the target domain. The 
target domain is not the reality of electrophysiological activity in physical 
or in vivo hearts, but it is a construct where some features – in this 
example, cell size – are put in the background, and others – ion channels – 
are put in the foreground. Which features should be in the foreground and 
which can be relegated to the background can shift and change, depending 
on, for example, changes in research question, in computational power, or 
in the understanding of the underlying processes. Because there is not 
comparability between the MSE system and reality in and of itself, what is 
occurring in this process – which is fundamental for the validation of the 
MSE system – is the construction of a target domain, which is comparable 
to the MSE system. The grounds for comparability between the MSE 
system and the target domain are at the same time the grounds for 
understanding the MSE system as a representation, and the grounds of the 
validation of the MSE system as a model system.  

The Source-Target Relation 

The process of constructing the MSE system as a model system for a 
particular domain – in our case, the domain of cardiac electrophysiology – 
is a process of constructing the grounds for comparability between the 
MSE system and that domain. Such a process must occur before it is 
possible to say that the MSE system is a representation of the target 
domain. The grounds of comparability fix the criteria for judging whether 
an MSE system is a representation of the target domain.  These grounds of 
comparability are not a pre-established fact. It is precisely for this reason 
that this is a research programme, not a fait accompli.   

A comparison with the account of computational models by Paul 
Humphreys’ (2004) will clarify this point.  

As we have already mentioned, our approach has much in common 
with Humphreys’ definition of what a computational model comprises, 
except for two main differences: first, Humphreys sees a more linear 
progression between simulation and computational model, and does not 
take into account the active role of simulation and experiment in 
constructing the computational model. Second, while Humphreys’ account 
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accentuates the fact that computational models must be seen from the 
standpoint of the process-of-construction rather than that of the context-of-
discovery, he goes too far in the direction of divorcing the process of 
construction from the context of discovery towards which it is geared (at 
least in the case of the kind of models we are considering here). For 
example, Humphreys includes in the computational model ‘an 
interpretation,’ which connects the [functions of an] equation with specific 
properties or specific contexts of the target domain (he gives the example 
of the function u(x,t) representing the temperature gradient in a perfectly 
insulated cylindrical conductor for a diffusion equation (2004, 80)). As we 
discussed in the previous section, in the models we are considering, there 
is an interpretation that connects the bidomain equations with specific 
properties of cells, understood in terms of an electrical model. Even 
though this interpretation provides a frame for the rest of the MSE system, 
it underdetermines it. This underdetermination occurs because the MSE 
system is still in a process of construction, and it is possible for new 
discoveries about the relation between source and target still to make an 
input into it and change the interpretation relating to the MSE system as a 
whole. Thus, we would say that discovery is not entirely separate from the 
process of construction and the justifications for idealizations, 
approximations, and principles cannot always be had by considering the 
computational model (in Humphreys’ terms) or MSE system (in ours) as 
autonomous systems.  

On our account, the relation between source and target is one of 
searching for and building up grounds of comparability, which are at the 
same time the grounds for being able to say that the MSE system is a 
representation of the target domain. The target domain is a combination of 
research questions and area of investigation. It can be either experimentally 
or clinically defined; are either of these ‘real’ electrophysiology? We 
would argue that this question is badly posed, for reasons that will become 
clearer at the end of the next section on validation.  

Before moving on to this section, we make one further point: what is 
meant by representation in the practice of modelling and simulation can 
still be relatively indeterminate, or can vary in determinacy across the 
different modalities that are integrated in the MSE system. For example, it 
is rather unproblematic to say that the equations represent physical laws 
relating to electrical currents. However, these equations represent the 
physics of electrical currents and not the full picture of the physiology of 
electrical currents in the heart, where multiple ionic mechanisms comprise 
multiple feedback loops between the molecular level, and the cell, whole-
organ, and organism levels. Thus to the extent that we can say that the 
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equations are representations in advance of the modelling and simulating 
process, they are not representations of anything specifically biological or 
physiological. Whether they are representations of electrophysiology (in 
the target domain or in the ‘real’) depends on establishing the extent to 
which there is a match between the MSE system as an instantiation of 
specific cases of electrical current in the heart; for example, whether the 
modelling and simulation of an arrhythmia matches what occurs in actual 
relevantly similar arrhythmias.  In the use of modelling and simulation in 
cardiac modelling (as one example among many in computational 
science), the aim of modelling and simulating –that is, the aim of the MSE 
system in our terms – is to construct a source system that represents its 
target. Whether it does or not cannot be declared, but has to be evaluated. 
‘Representation’ here is a success term, and one cannot say in advance of 
evaluation that the model is a representation. Representation and 
validation, the prime tool of evaluation, are for this reason conceptually 
connected. 

This brings in the role of validation, which we consider in the next 
section.  

Validation 

In the previous sections we have stressed the fact that MSE systems are 
constructed in an iterative process between each of their component parts, 
and crucially this involves incorporating experimental data sets. New 
experiments to probe different aspects of the target domain in virtue of 
research questions thrown up by the developing MSE system are 
conducted, and data are gathered from other sources and integrated.  

Validation is an ongoing process and not one discrete event. However, 
experiments specifically geared at validation occur when the output of the 
MSE system is compared with independent experimental data that have 
not been used in the construction of the system. This is done in two ways 
(and often a combination of both): quantitative, by checking that the value 
for a specific electro-physiological property (such as action potential 
duration) in simulations is within the range reported in experiments (see 
for example, Romero et al., 2009), or qualitatively, by observing the visual 
outcome of simulations (Xie et al., 2004). However, qualitative and 
quantitative matches are relative to the grounds of comparability discussed 
above. In the case of multiscale systems, such as the one we are 
considering in this paper, the data sets for construction and for validation 
have been acquired at different functional levels from ionic to whole 
organ, in different preparations and using different techniques (Pueyo et 
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al., 2010; Rodriguez et al., 2005). Each of the datasets provides 
complementary information to compose the mosaic of knowledge required 
to construct the ventricular model. However, it must also be remembered 
that each experimental technique also involves a modification of the 
preparation with respect to its in vivo state (e.g. isolation procedure), and 
also introduces artifacts that are due to the recording procedure (e.g. 
insertion of microelectrodes, photon scattering in optical mapping 
experiments).  

At various points, we have mentioned the importance of visualizations 
to the process of interpreting the computational model and simulation. The 
visualizations and other qualitative outputs, such as graphs showing 
trends, also play a role in validation, albeit a contested one. It is often 
expected that ‘real’ validation can only be achieved quantitatively, but this 
is an object of an ongoing research, and it is also questionable to what 
extent it is appropriate to expect numerical validation (see Sage et. al. 
(2009) for an example of the use of qualitative validation). This is not a 
topic that can be fully explored here, but clearly, there is a need to get a 
better understanding of the relation between qualitative and quantitative 
validation – and that is, what is the significance of a qualitative or 
quantitative match (or lack thereof). 

Lastly, and most importantly, the pervasive variability of biological 
systems must be taken into account. Variability is a huge challenge for 
modelling and simulating of biological systems, and makes further 
demands on the comparability between the experimental data for model 
construction and for model validation. MSE systems need to refer to 
specific targets that are as similar as possible, both with respect to 
preparation and techniques. However, even aiming at identical targets, 
stochastic events would rule out arriving at precisely identical targets in 
every respect. This needs to be considered in the definition of the 
validation criteria (for example, in the definition of error tolerances10) and 
the interpretation of the validation output. 

In view of the above, it is a question what a match of experimental and 
simulation outputs actually means in terms of the validation of the MSE 
system. If there is a match, it is possible that the MSE system has captured 
the relevant features of the target, at least for one possible scenario of the 
target system. The lack of a match cannot be interpreted as a failure of the 
MSE system as a whole. Instead, the lack of a match normally sets in 
motion a further round of iterations and refinements. However, in both 
cases, both false positives and false negatives are possible, given the 
factors that we have already mentioned. The context against which 
                                                           
10 Which Humphreys refers to as the ‘correction set’ (2004, 78-9).   
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validation results are judged includes a variety of factors, including the 
following: 

 
1) Appropriate comparability between the experimental ensemble that 

has informed the construction of the MSE system and the target against 
which it is validated. Even differences in the age of the animals from 
which the data are obtained, or in the experimental techniques or 
preparations used can affect comparability.  

 
2) Appropriate comparability between the integration of the data from 

different data sets, and at different functional levels in the MSE system in 
the target system.  

 
3) The variability in biological systems, referred to above, means that 

MSE system and target system need to be in the similar scenario states.  
 
4) The numerical techniques and software for simulations must be 

validated for the whole MSE system in which they participate to be 
validated.  

 
5) The error margins must be set correctly, not too stringent and not 

too broad. A quantitative match is evaluated using error tolerances (e.g. the 
maximum difference between simulation and experimental results) defined 
by the end user and therefore varying error tolerances might provide 
different outcomes for the validation. Error tolerances in validation need to 
be related to the variability observed in the experimental results. 

 
6) The description of the model itself can be too broad – that is, what 

the model is a model of –, encompassing different scenarios that the target 
could instantiate. For example, the fact that there are different models 
described as ‘rabbit action potential models’ raises questions regarding the 
reasons why they are so different (yet described in the same terms), and 
why different models describe specific instances of the target better. It may 
well be the case that different models are actually of different aspects of 
the broad category ‘rabbit action potential.’  

 
Thus, even though validation experiments use independent data that 

have not been used for model construction, these data need to be 
comparable with the MSE system in the same way as the data used for 
experiment construction. All of points 1-6 above are ways of checking 
whether the data are indeed comparable, and without these checks it 
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becomes almost impossible to arrive at a proper interpretation of the 
validation experiment. While the validation experiment is independent, it 
must still cohere with the MSE system, at least to the extent of being 
commensurable with it.  Moreover, validation experiments become 
absorbed into the MSE system through the further iterations that they set 
off.  

This also holds for validation experiments that use data gathered from 
in vivo electrophysiology of actual human hearts. However, these data are 
also gathered using one or other intervention method, in specific types of 
context (healthy hearts or already diseased hearts, in hospital or other 
contexts, and so on). To the extent that the data obtained from these 
interventions are even comparable to the MSE system, they need to be 
rendered commensurable with it, and therefore must be on the same terms 
as the MSE system. To this extent, even this form of target domain is co-
constructed with the MSE system. 

Clearly, the process of validation needs to consider the MSE system 
against the background of its construction, in order to be able to interpret 
the results of the attempted validation and in order to evaluate those 
results. In many respects, this is no different from wetlab experimental 
biology and physiology where the interpretation of experiment results 
depends on a precise knowledge and often first-hand familiarity with the 
entire history of the samples, starting from the choice of animal model to 
all the techniques used for producing and experimenting on samples.  

There is another way in which the multi-scale systems that we are 
considering are continuous with other modes of experimental science, 
while also constituting a departure from them. In the case of multi-scale 
systems integrating experimental data from different functional levels and 
from disparate sources, what can constitute adequate grounds of 
comparability has the added complexity that a match must be sought 
against experimental data which do not come in an integrated form – or at 
least not in the construct that is the initial target system of the MSE system 
(validation against ‘real’ hearts in non-invasive non-experimental 
circumstances is the ultimate aim, but is not as yet on the cards). Of 
course, experimental and clinical electrophysiologists have traditionally 
carried out this integration of knowledge intuitively, using diagrams and 
other visual aids. The novelty and usefulness of these multi-scale MSE 
systems is that they allow for this integration in a form that lends itself to 
active interaction on the part of the scientist who can run simulations any 
number of times, and stop and examine them at specific points, change 
parameters, and otherwise manipulate them. The multi-scale MSE system 
also probes and explores the target system in different ways, with a view 
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to an integrated, systems view.  As Morgan and Morrison (1999, 10-12) 
point out, models can and do function as both interventions and 
representations. The models we have been describing intervene in order to 
construct a representation of a domain, actively probing and targeting that 
domain. In addition, they are highly manipulable themselves, allowing for 
a high degree of interaction. It is this manipulability that, in the terms of 
Morgan and Morrison, makes it possible ‘for us to learn how and why our 
interventions work’ (Morgan and Morrison, 1999, 12). 

Finally, what kind of epistemology does this picture of computational 
modelling and simulating call for?  This is an important question, both 
philosophically and pragmatically, though it is not always a question on 
which the philosophy and the practice of modelling converge. The way in 
which the term ‘validation’ is generally (although not exclusively) used 
among scientists is captured in this definition: 
 

Validation: The process of determining the degree to which a model is an 
accurate representation of the real world from the perspective of the in-
tended uses of the model.11 
 
That this definition is quoted in a recent report commissioned by the 

National Research Council in the US on Assessing the Reliability of 
Complex Models: Mathematical and Statistical Foundations of 
Verification, Validation, and Uncertainty Quantification (2012) is an 
indication of how entrenched this meaning of the term is in the scientific 
community. Yet, this term is far more problematic for many philosophers. 
For example: 

 
“[…] the term validation is used even more misleadingly to suggest that 
the model is an accurate representation of physical reality. The implication 
is that validated models tell us how the world really is” (Oreskes et al, 642) 

 
Oreskes et al go on to give reasons that most philosophers of science 

will recognize and find non-contentious. First: validity is a question of 
well formedness, internal consistency, and the absence of detectable flaws, 
but with arguments as beset with implicit assumptions and possibly hidden 
auxiliary hypotheses as modelling, none of these conditions can be known 
to have been met. Second: models are underdetermined by data and 
therefore more than one model could match a physical system. Third: the 

                                                           
11 Quoting American Institute for Aeronautics and Astronautics. 1998. Guide for 
the Verification and Validation of Computational Fluid Dynamics Simulations. 
Reston, Va.: American Institute for Aeronautics and Astronautics. 
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well-known fallacy of affirming the consequent occurs on a hypothetico-
deductive construal of scientific experiments, where the hypothesis is that 
the model is correct and the test implications are that a match with 
experimental data will occur. Their conclusion is that ‘the establishment 
that a model accurately represents the “actual processes occurring in a real 
system12” is not even a theoretical possibility’ (642), and go on to suggest 
that the more appropriate term for (positive) results of tests of the accuracy 
of models as representations of physical reality is confirmation, 
probabilistically expressed. 

However, we would like to suggest that there is a way in which the 
notion of validation does hold of models considered as MSE Systems. 
Oreskes et al. make a normative recommendation about how terms should 
and definitely should not be used. However, it is unlikely to result in the 
term ‘validation’ being dropped by scientists in modelling communities, 
for a number of reasons, not least of which is that it is by now firmly 
entrenched. As Peter Galison has pointed out, from the start of the use of 
the Monte Carlo simulations in physics, the mathematicians in the research 
teams were still striving to achieve the gold standard of deductive 
validation even when other scientists more used to dealing with 
experimental science in the lab did not hold it to be appropriate (Galison, 
2006). The field of computational electrophysiology has many similarities 
with the situation described by Galison, and there are still disagreements 
among scientists from multiple disciplinary backgrounds who collaborate 
in modelling and simulating projects, concerning whether deductive 
validity is the right way to think of validation. 

A further approach is to consider how the terms of traditional 
epistemology do apply but in different and unexpected ways. For 
philosophers, validity normally indicates a virtue relating to internal 
consistency and a lack of flaws such as contradiction, incoherence, or 
irrelevance. Validity – admittedly a slightly looser sense than strict logical 
validity governed by rules of deduction – has to do with the ways in which 
the premises and conclusions of an argument are internally related.  

Now we see that there is, after all, a way in which this understanding 
of the term ‘validation’ does hold of computational models and 
simulations understood as an MSE System. As a system of inter-related 
parts, validation can be thought of not as a face-off between the model and 
external reality in a single event, but as an ongoing process with the 
objective of attaining maximal coherence between models, simulations, 

                                                           
12 Quoting “Radioactive waste management glossary,” IAEA-TECDOC-264 
(International Atomic Energy Agency, Vienna, 1982).  
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and experiments. That is, a coherentist epistemology of models, rather 
than a correspondence epistemology of models.13 

Earlier, we described the process of validation as a process of ‘looking 
for a match,’ and elsewhere we have described the process as seeking a 
‘stability of matches’ (Carusi, Burrage, and Rodriguez, 2012), and we have 
discussed matches in the terms of resemblances and iconicity, and pointed 
out the necessity of understanding what these actually could mean in 
quantitative or qualitative terms.  However, we have also stressed the 
importance of making the quantitative and qualitative outputs along the 
whole cycle of the process of modelling and simulating comparable; that 
is, of building up grounds of comparison between them.  This is not a 
matter of correspondence between two externally related items, but a 
matter of seeing them as coherent and consistent. This occurs between 
each of the stages of the MSE System, but also at points of validation 
experiments that aim to show a coherence between MSE System and 
experiment output. Like Winsberg’s notion of ‘reliability without truth,’ 
this understanding of validation allows scientists to get on with most of the 
epistemic and pragmatic tasks that are related to modelling and 
simulation.14  

Theory 

The models discussed in this paper are not derived from biological 
theory, in the way that models in physics may be derived from theory of 
physics. They are far closer to being experimental models than theoretical 
models, and are developed mostly with an eye to applications, such as for 
testing of drugs or other clinical interventions. However, models such as 
these are central to the domain of systems biology and what their 
theoretical import might be is still an open question. Not only is there an 
absence of a clear pre-existing biological theory from which the model is 
derived deductively, particularly in terms of formal theories, but also 
systems theory is seeking new forms of theories that may emerge from the 
use of modelling and simulating. In the models we have considered in this 
paper, there is a core of formal models that are derived from theory, but 
from physics, not physiology. In models of cardiac electrophysiology, it is 
crucially the cell structure in its interactions across the system, which 
                                                           
13 This position cannot be worked out in detail here, but it has affinities with 
Joseph Rouse’s notion of laboratory fictions (Rouse, 2009).  
14 A comparison between this understanding of validation and the reliability 
without truth advocated by Winsberg (2006) to account for the epistemology of 
simulations will be undertaken elsewhere.  
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introduces a physiological level. Modelling these interactions across levels 
and function requires a step-change in the nature of models and the 
computational algorithms to solve them. The philosopher Franck Varenne 
provides an illuminating discussion of the role of theories in systems 
biology (Varenne, 2010) and suggests that contemporary systems 
biologists are following three main routes: turning to probabilistic 
formalizations (J-J Kupiec), neutralizing conceptual imports from models 
in physics (Lesne), or contesting them through conceptually audacious and 
creative mathematics (Bailly and Longo). However, he also notes that the 
aim of much research in this domain is not to construct theoretical models, 
nor even primarily to mathematize biological processes. Computational 
simulations for Varenne are not simple numerical solvers of equations that 
cannot be solved analytically. They are ‘machines for interlacing, at 
different levels and from different points of view, sub-models of a global 
phenomenon which does not have a formal homogeneity’ (2010, 350), for 
which trying out and honing concepts is the primary aim (2010, 347).  As 
we have tried to bring to the fore in this paper, it is this combinatory and 
integrative aspect of MSE systems that are their central characterizing 
feature. 

Conclusion 

This paper has considered the question ‘what is the model?’ in a 
specific example of the use of computational modelling and simulation in 
systems biology, multi-scale models of cardiac electrophysiology. A 
detailed account of the construction of the computational models and 
simulations in these contexts shows that the modelling and simulating 
process is itself better understood as a hybrid and dynamic system of 
interacting models (in equation form), simulations and experiments, or 
what we have called the MSE system. That is, the MSE system is a system 
both as model source and with respect to the biological systems that they 
target.  

We have argued that the process of constructing the MSE system as a 
model system is a process of constructing the grounds for comparability 
between the MSE system and the target domain. The ‘systems’ nature of 
the MSE system is foregrounded by validation experiments, which 
demand consideration of the whole system in order to be interpreted. Like 
other models, the MSE system has interconnected instrumental and 
representational roles, fulfilling its role as an instrument through a 
representational modality, and what it represents is determined in a holistic 
fashion through the relationships within the MSE system and through 
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validation experiments (which themselves may come to be incorporated in 
it). We have also proposed that validation is a process rather than a result, 
and that it consists in seeking maximal coherence and consistency within 
the MSE system, and across it and validation experimental outputs. In 
addition, these models invert the relationship between theory and model 
that holds on traditional views of models in science, according to which 
models are derived from theory, and seek to derive theory from models.  

References 

Barberousse, A., Franceschelli, S., Imbert, C. “Computer simulations as 
experiments”. Synthese 169, no. 3, (2008): 557-574. 

Bechtel, W., Abrahamsen, A. “Dynamic Mechanistic Explanation: 
Computational Modeling of Circadian Rhythms as an Exemplar for 
Cognitive Science”. Studies in the History and Philosophy of Science 
Part A 41, no. 3, (2010): 321-333. 

Bishop, M. J., et. al. “Development of an anatomically detailed MRI-
derived rabbit ventricular model and assessment of its impact on 
simulations of electrophysiological function”. Am J Physiol Heart Circ 
Physiol 298, (2010): H699–H718. 

Bordas, R., et. al. “Full Rabbit-Specific Ventricular Model of Cardiac 
Electrophysiological Function including Specialized Conduction 
System”. Prog. Biophys Mol Biol 107, (2011):90-100.  

Boogerd, F., et. al. Systems Biology: Philosophical Foundations. 
Amsterdam, Elsevier, 2007. 

Breitling, R. What is systems biology? Front Physiol 1, (2010): 9. 
Byrne, H. M., et. al. “Modelling aspects of cancer dynamics: a review”. 

Philosophical Transactions of the Royal Society 364, (2006): 1563-
1578. 

Calvert, J. and Fujimura, J. H. “Calculating life? Duelling discourses in 
interdisciplinary systems biology”.  Studies in history and philosophy 
of biological and biomedical sciences 42, no. 2, (2011): 155-163. 

Carusi, A., Burrage, K., Rodriguez, B. “Bridging experiments, models and 
simulations: an integrative approach to validation in computational 
cardiac electrophysiology”, Am J Physiol Heart Circ Physiol, 303, no. 
2, (2012):H144-55. 

Carusi, A., Rodriguez, B., Wakefield, J. et al. “Forum for Scientific 
Method in Biology: Transcript”, University of Oxford e-Research 
Centre, 2009. 

—. “Computational Biology and the Limits of Shared Vision.” 
Perspectives on Science 19, no. 3, (2011): 300-336. 



Chapter Six 142

Darden, L. “Mechanisms and Models”. In Cambridge Companion to the 
Philosophy of Biology, edited by D. L. Hull, Ruse, M., 139-159. 
Cambridge, Cambridge University Press, 2007. 

van Fraassen, B. “Interpretation of science: science as interpretation”, In 
Physics and Our View of the World, edited by J. Hilgevoor. Cambridge: 
Cambridge University Press, 1994. 

Frigg, R., Reiss, J. “The Philosophy of Simulation: Hot New Issues or 
Same Old Stew?”. Synthese 169, no. 3, (2009): 593-613. 

Galison, P. “Computer Simulations and the Trading Zone”. In The Disunity 
of Science: Boundaries, Contexts, and Power, edited by P. Galison, 
Stump, D.J., 118-157. Stanford, California, Stanford University Press, 
1996. 

Giere, R. N. “How Models are Used to Represent Reality”. Philosophy of 
Science 71, no. 5, (2002): 742-752. 

Goodman, Nelson. Languages of Art: An Approach to a Theory of 
Symbols. Indianapolis: Hackett Publishing Company, 1976. 

Gunawardena, J. “Biological Systems Theory”. Science 328, (2010): 581–
582.  

Hartmann, S. “The World as Process: Simulations in the Natural and 
Social Sciences”. In Modelling and Simulations in the Social Sciences 
from the Philosophy of Science Point of View, edited by R. 
Hegselmann, Mueller, U., Troitzsch, K., 77-100. Dordrecht, Kluwer 
Academic Press, 1996. 

Hesse, M. Models and Analogies in Science. Notre Dame, University of 
Indiana Press, 1967.  

Humphreys, P. Extending Ourselves: Computational Science, Empiricism, 
and Scientific Method. Oxford:Oxford University Press, 2004. 

Keener, J., Sneyd, J. Mathematical Physiology (2nd ed.). New York: 
Springer, 1998. 

Kitano, H. “Systems Biology: The Genome, Legome and Beyond”. 
Science 295, (2002): 1662-1664. 

Kohl, P., Noble, D. “Systems biology and the virtual physiological 
human”. Molecular Systems Biology 5, no. 269, (2009). 

Kohl, P., et. al. “Systems biology: an approach”. Clin Pharmacol Ther 88, 
(2010): 25–33. 

Kupiec, J.-J. L'origine des individus. Paris, Fayard, 2009. 
Lesne, A. “Biologie des systèmes: L'organisation multiéchelle des 

systèmes vivants”. Médécine/Sciences 25, (2009): 585-587. 
Loettgers, A. “Getting Abstract Mathematical Models in Touch with 

Nature”. Science in Context 20, no. 1, (2007): 97-124. 



Model Systems in Computational Systems Biology 143

Morgan, M. and Morrison, M. Models as Mediators: Perspectives on 
Natural and Social Science. Cambridge, Cambridge University Press, 
1999. 

National Research Council. Assessing the Reliability of Complex Models: 
Mathematical and Statistical Foundations of Verification, Validation, 
and Uncertainty Quantification. Washington, D.C.: The National 
Academies Press, 2012. 

Noble, D. “A modification of the Hodgkin-Huxley equations applicable to 
Purkinje fibre action and pacemaker potentials”. Journal Physiology 
160, (1962): 317–352. 

O’Malley, M. and Dupré, J. “Fundamental issues in systems biology”. 
Bioessays 27, (2005): 1270–1276. 

Odenbaugh, J. “Models”. In Blackwell companion to the philosophy of 
biology, edited by S. P., Sarkar, A., Blackwell Press, 2008. 

Oreskes, N., Shrader-Frechette, K., Belitz, K. “Verification, Validation, 
and Confirmation of Numerical Models in Earth Sciences”. Science 
263, no. 5147, (1994):641–646. 

Parker, W. “Computer Simulation through an Error-Statistical Lens”. 
Synthese 163, no. 3, (2009): 371–384. 

Plank, G., et. al. “Generation of histo-anatomically representative models 
of the individual heart: tools and application”. Phil Trans Roy Soc (A), 
367, (2009): 2257-2292. 

Plotkowiak, M., et. al. “High performance computer simulations of cardiac 
electrical function based on high resolution MRI datasets”. Lecture 
Notes in Computer Science, 5101, (2008): 571–580. 

Potse, M., et. al. “A comparison of monodomain and bidomain reaction-
diffusion models for action potential propagation in the human heart”. 
IEEE Trans Biomed Eng. 53(12 Pt 1), (2006):2425-35. 

Powell, A., et. al. “Disciplinary Baptisms: A Comparison of the Naming 
Stories of Genetics, Molecular Biology, Genomics and Systems 
Biology”.  History and Philosophy of the Life Sciences 29, no. 1, 
(2007). 

Pueyo, E., et. al. “Mechanisms of ventricular rate adaptation as a predictor 
of arrhythmic risk”. Am J Physiol Heart Circ, 298, (2010):1577-1587. 

Rodríguez, B. et. al. “Differences between LV and RV chamber geometry 
affect cardiac vulnerability to electric shocks”. Circ Res, 97, 
(2005):168-175.  

Rodríguez, B. et. al. “The systems biology approach to drug development: 
application to toxicity assessment of cardiac drugs”. Clin Pharmacol 
Ther 88, (2010): 130–134. 



Chapter Six 144

Romero. L. et. al. “Impact of biological variability on human ventricular 
cellular electrophysiology”. Am J Physiol Heart Circ, 297 (2009): 
H1436–H1445. 

Rothbart, D., ed. Modeling: Gateway to the Unknown. A Work by Rom 
Harré. Amsterdam: Elsevier, 2004. 

Rouse, J. “Laboratory Fictions”. In Fictions in Science: Philosophical 
Essays in Modelling and Idealization. Abingdon: Routledge, 35-53, 
2009. 

Sage, A., et. al. “Systems Biology of Vascular Calcification”.  Trends 
Cardiovasc Med 19, no. 4, (2009): 118-123. 

Seemann, G., et. al. “Heterogeneous three-dimensional anatomical and 
electrophysiological model of human atria”. Philos Transact A Math 
Phys Eng Sci. 364, no. 1843, (2006):1465-81. 

Suarez, M. “Scientific representation: against similarity and 
isomorphism”. International Studies in the Philosophy of Science 17, 
no. 3, (2003): 225-244. 

Ten Tusscher, K.H., Hren, R., Panfilov, A.V. “Organization of ventricular 
fibrillation in the human heart”. Circ Res. 100, no. 12, (2007):e87-101. 

Vadakkumpadan, F., et. al. “Image-based models of cardiac structure in 
health and disease”. WIREs Syst Biol Med 2, no. 4, (2010):489-506. 

Varenne, F. Du Modèle à la Simulation Informatique. Paris, Vrin, 2007. 
—. Formaliser le vivant: Lois, Théories, Modèles. Paris, Hermann, 2010. 
Westerhoff, H. V., et. al. “Systems biology: the elements and principles of 

life”. FEBS letters 583, no. 24, (2009): 3882-3890. 
Winsberg, E. “Sanctioning Models: The Epistemology of Simulation”. 

Science in Context 12, no. 2, (1999): 275-292.  
—. “Models of Success Versus the Success of Models: Reliability without 

Truth”, Synthese, 152, (2006): 1-19.  
—.“A tale of two methods”. Synthese 169, no. 3, (2009): 575-592. 
Xie, F., Qu, et. al. “A simulation study of the effects of cardiac anatomy in 

ventricular fibrillation” Journal of Clinical Investigations 113, no. 5, 
(2004): 686-693. 

Zemzemi, N., Bernabeu, M., Saiz, J., Rodriguez B. “Simulating drug-
induced effects on the heart: from ion channel to body surface 
electrocardiogram”. Lecture Notes in Computer Science, 6666/2011, 
(2004): 259–266.  



CHAPTER SEVEN 

COMPUTER SIMULATION AND THE GROWTH 
OF NANOSCALE RESEARCH IN BIOLOGY1 

ANNE MARCOVICH AND TERRY SHINN 
GEMASS. MAISON DES SCIENCES DE L’HOMME 

Introduction 

This chapter explores three links between simulation and nanobiology 
research. First, the massive growth of nano-related biology publications of 
the early 1990’s strongly coincides with the incorporation of simulation 
practices. To some extent, availability of simulation algorithms, skills, and 
hardware promoted nano research. Simulation operates on a par with 
metrological instruments. They often function in tandem and together 
comprise a powerful combination. The computational instrumentation of 
simulation has become as important as metrological instrumentation. 
Second computational based research contributes to the cognition of 
nanobiology through the creation, organization, and consultation of 
databases. An additional important input to learning lies in the categories 
and the amount of information that simulation provides, particularly 
concerning morphology and sequencing. Finally, simulation molecular 
graphics generate images that are informational and analytically rich and 
that offer a fundamental input into novel forms of epistemology.  

What is Nanobiology? 

Nanoscale research in biology is defined by a scale, and by dint of this 
to a specific set of materials, to their structures, functions and dynamical 

                                                           
1 We wish to thank Alexandra Frenod (GEMASS-CNRS) for editorial contribution 
to this text. 



Chapter Seven 146

processes, and to the control over the relevant range of bio substances. Six 
parameters, and the relations between them, effectively delimit and 
characterize the interests and much of the laboratory work of scientists 
associated with nanobiology. Research in nano-related bio fields has 
grown amazingly over the past twenty years, due partly to an 
instrumentation revolution in metrological devices and to the generalized 
introduction of computational-based research in the form of simulation. 
Characteristic of bio nano research is the investigation at the level of a 
single bio molecule versus a smaller scale such as the atom, or to larger 
scale objects such as cells, membranes etc. Nanoscale bio investigation 
nevertheless contributes to the understanding of such larger objects 
through examining them in terms of molecular components. 

Nano-bio research can be regarded as an extension of molecular 
biology, which dates back to the 1940s and even before. Despite the fact 
that nanobiology explores the same objects as molecular biology, some of 
the questions asked, the way that they are investigated, the fashion that 
objects are handled, and the importance of control, are all different.  

The biological objects most central to contemporary research are by 
dint of their very scale a privileged terrain of nanoscale research. DNA 
measures 2.5 nm in width, and the average length of a pair of bases in 
DNA is 0.33 nm. Amino acids that constitute the components of proteins 
and peptides are also nanometric. 

Questions which are associated with the origins, evolution and 
functioning of life routinely include objects and forces situated at the 
nanoscale. The famous chemist Linus Pauling (1901-1994, Nobel Prize in 
chemistry 1954) who worked on hemoglobin in the 1930’s and 40’s, 
acknowledged the necessity to reflect in terms of a reduced biological 
scale that for some purposes extended from ten to the minus seven meters 
down to the angstrom. At this reduced scale, it is possible to determine by 
calculation the angles formed between two atoms in a molecule, and thus 
to predict the configuration and shape of molecules. The study of form in 
nano research goes further by identifying details inside an object, and then 
presenting a synthetic overview of a landscape by revealing relations, and 
sometimes the dynamics inside the biological material. In biology, nano-
based information thus provides synthesis and fine resolution through 
technologies of integration.  

In biological research, the structures of DNA and proteins are today 
often depicted and understood in terms of form. Issues of biological 
control and manipulation of the shape and function of molecules are today 
central, and have been so, particularly since the 1990’s. Nanoscale control 
is emblematically expressed in work on protein design and engineering, in 
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the building of scaffolding with DNA or proteins, and in the development 
of entirely new biological structures. Control and manipulation as well as 
enhanced power of description of molecules are in large part the 
outgrowth of the development of a range of new metrological and 
numerical instruments. 

Investigations carried out in biology on the nanoscale essentially deal 
with two large categories of objects: proteins and enzymes or fragments of 
proteins (peptides) and their amino acids on the one hand, and nucleic 
acids (DNA and RNA) on the other. Biological objects such as the cell, 
membranes, organelles (ribosome, mitochondria, endoplasmic reticulum, 
Golgi bodies...), are studied at the nanoscale uniquely with reference to 
their components. In the nanoscale perspective, they are observed, 
manipulated, and discussed in terms of architecture, form, and function. 

We suggest that the presence, convergence, and intertwining of six 
specific elements characterize nanoscale research in biology: 1. Form / 
structure; 2. Three dimensionality; 3. Binding; 4. Function; 5. 
Environment; and 6. Control.  

1. Form and structure refer to the scaffolding and the architecture of 
the object on the molecular level, and to the external surface topology and 
internal structures. 2. The three dimensional representations provide 
invaluable spatial information of objects, which can then be studied in 
terms of their volume and of the room that they occupy in the space. 
Volume necessitates taking into account the spatial constraints linked to it. 
These three dimensions also serve as a point of departure for reasoning 
where calculations derived from three-dimensional coordinates elucidate 
intrinsic dynamical forces and interactions. 3. Binding refers to the 
capacity of two different biological molecules to connect with one another, 
or alternatively, for one molecule to change shape as one internal element 
connects to another. This is referred to as folding. Both categories of 
binding are constrained by structure and form, and they are also directed 
by forces of different categories such as Van Der Waals forces, or 
hydrogen bindings. 4. Function refers to the specific actions of a biological 
substance in connection with the system (be it the set of molecules in 
which it is integrated or a more complex unit) in which it operates. 5. 
Binding and function are affected by characteristics (electronic, chemical, 
thermodynamic, hydrometric) of the surroundings of the biological 
molecular substance. 6. Nanoscale research in biology entails the capacity 
of scientists to control the substances, structure, form, binding, and 
environment. 

Simulation constitutes one major motor that drives the research 
subsumed in these six elements. Even the results of metrological 
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experimentations often serve the needs of simulation and help it to 
improve research programs. One can argue that the multiple foci of these 
six nanobiology parameters are today available to researchers, thanks to 
the development of new categories of technologies and their powerful 
combination with older devices.  

Connections between the six aforementioned parameters are often 
acute and decisive. It is the linkages and interactions between the six that 
allow us to speak of an integrated nanobiology hexagon that finds 
expression in much nanoscale investigation. It is not the presence of a 
particular set of elements in the hexagon that proves decisive: it is instead 
their co-appearance and notably their collective interaction. 

 

 
 

Nanobiology Hexagon 
 

For example, protein binding is governed by three-dimensional 
properties of materials and by the characteristics of the environment such 
as thermal values, acidity, humidity, and packing conditions. The 
combined considerations of three dimensionality and binding govern the 
conformation of the molecule and therefore its function. Through 
controlling molecular conformation, it becomes possible to control 
bindings that affect their function. 

Control is particularly important. What distinguishes nanobiology from 
other contemporary biological research is the association and integration 
of the six above indicated points. While questions of function and binding 
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have been explored since the 1930’s and even before, and three-
dimensional models arose in the 1940’s, 50’s and 1960’s, it is only in the 
framework of nanoscale research that all of the elements are combined. 
The essential ingredient is the capacity to study processes at the molecular 
level, to “see” the molecules, to predict their configurations, and 
behaviors, and to control outcomes. By defining nanoscale research in 
biology in these terms, we emphasize two characteristics; namely, the 
combination of resources in research, and their expression as synergies 
resulting in constant expansion and acceleration. 

Post 1990 Discontinuities: 
Parallel Growth in Nanobio and Simulation Publication  

A remarkable discontinuity in the quantity of biology publications on 
molecular objects occurred circa 1991. Between 1991 and 2010, the 
amount of annually published articles related to many biological 
substances has grown up to one hundred full. To imply that all of this 
expansion represents the level of research activity in nanobiology would 
be misleading. Nevertheless, nanobiology does comprise an important 
stream in the flow. Since 2000 a large part of the Feynman Nanotechnology 
Prizes, established in 1993 (Marcovich and Shinn 2010a, 2010b), has been 
accorded to individuals whose work involved biological questions and 
biomaterials. As will be suggested below, the overall increase in biology 
research funding explains much in the field’s research output. Long 
standing participants in nanobiology benefited from the largesse. Equally 
important, general budgetary creation and money coming specifically from 
the U.S. Nano Initiative attracted biologists to the nano paradigm of 
biological inquiry. Again in the U.S., DARPA programs have proven 
active in support of nanobiology.2 The international genome project was 
launched in 1988, principally by the American National Institute of Health 
and the Department of Energy. Funding of biology related research 
rocketed in the USA. Spending stood at $ 27.9 million in 1988, at $ 86.7 
million in 1990, rising to $ 134.8 million in 1991, and to $ 437million in 
2003, the year when the human genome code was totally identified. 
Finance in Canada, Japan, the UK, France, Sweden, China, Korea, 
Australia followed. In 2000, global spending attained $ 1,805,325,883.3 
The launching of the U.S. National Nano Initiative in 2000 provided 

                                                           
2 Interview of Homme Hellinga at Duke University by Anne Marcovich and Terry 
Shinn 20 June 2010. 
3 http://www.stanford.edu/class/siw198q/websites/genomics/entry.htm 
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funding specifically for nano research, and not least of all for biology. The 
overall budget in 2009 stood at $1.5 billion. Again in the United States, the 
National Science Foundation similarly earmarked money for nanobiology 
exploration. The ascending trajectory of nanobiology research is 
connected to the conjunction of two additional elements. During the mid 
to late 1980’s, many families of new metrological instruments became 
available that directly or indirectly suited biological research. Some nano 
instruments were specifically conceived, designed and commercialized for 
nanobiological work. In parallel, computational research has developed 
both in terms of hardware and software. The following tables show the 
extent of the expansion of nanoscale research related biology work. The 
topics are selected in the light of the six features represented in the 
hexagon. 

The values in Table 7-1 document the importance of protein in 
molecular research, and more particularly the growing interest for their 
conformational structures and dynamics, as well as the significance of 
aspects linked to control. It signals the recently acquired possibility to 
detect regions of folding and to characterize them. Note that the 
discontinuity in publications between 1990 and 1991 is a four-fold 
increase.  

Since the origins of biochemistry in the early twentieth century, 
proteins have been studied with reference to their chemical composition 
and function (Debru 1983; Kay 1993). However, the possibility to analyze 
precisely their internal activity in terms of physical operations, properties, 
and morphology is recent and overlaps with the birth and rise of 
nanobiology. The emergence of nanoscale technology has allowed the 
study of relationships between protein function and their active sites. It 
similarly elucidates some relationships between function and environment.  

The large number of publications can also be explained by huge 
protein data banks whose complexities and possibilities can be 
systematically explored using computational instruments. This, in itself, 
assumes an industrial scale.  
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Table 7-1: Topics: protein* and function*: 768 711 items4 

2010 43072

2000 25644

1992 11160

1991 10000

1990 1159

1989 414

 
 

It is necessary to identify precisely the contributions of nanoscale 
research to the broader wave of molecular biology related investigations. 
Specifically, nano inquiry can naturally be related to the scale of 
observation, to the presence of methodological materials such as quantum 
dots, nano particles, or nanotubes, and to use of certain combinations of 
metrological or computational devices.  

 

                                                           
4 ISI Web of Science (26/10/2011) 
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Table 7-2: Topics: nano* and protein*: 36 543 items5 

2010 5454

2005 2417

2002 1065

1995   341

1990     12

 
 
As suggested above, the dramatic growth of DNA sequencing between 

1990 and 1991 is in large measure attributable to the financing associated 
with the international human genome project. Sequencing constituted the 
very heart of this project (Gilbert 1980; Garcia-Sancho unpublished). The 
studies on the human genome were accompanied by studies of non-human 
species and led to the creation of unprecedented huge databases. 
 

                                                           
5 ISI Web of Science 26/09/2011 
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Table 7-3. Topics: DNA* and sequencing*: 43 341 items6 

 

2010 3430

2000 2080

1992 1204

1991 1061

1990 134

1989 76

 
 

Computational instruments that produce simulation of physical and 
biological phenomena and therewith description and prediction of 
properties and dynamics, have operated as an additional motor to the 
dramatic acceleration of biological research during the 1990’s and beyond. 
The place of simulation is shown in tables 7-4 and 7-5.  

One can reasonably assume that many of the articles counted in Table 
7-2 on protein and nano also figure in the articles indicated in Table 7-4 on 
simulation and protein. The explosion in the number of simulations in 
biology depends on the development of a critical mass of information on 
the one hand, and on the development of advanced computational 
technologies on the other, including algorithms.  

                                                           
6 ISI Web of Science 23.06.2011 
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Table 7-4: Topics: protein* and simulation*: 29 678 items7  

 

2010 2961

2000 922

1991 325

1989 21

 
 

Note that the form of the curves in Tables 7-4 and 7-5 are almost 
identical. After the discontinuity of around 1990, the curve follows the 
same slope. When one compares the amount of articles on proteins 
entailing simulation with publications on proteins based on the Atomic 
Force Microscope technology, the power of simulation becomes manifest. 
As shown in Table 4 simulation appears in 29 678 protein related pieces 
versus 4 406 for the AFM.8 

The dramatic post 1990 acceleration in molecule centered research in 
biology is a product of synergies between different fields of investigation 
and combinatorial between program orientations, new instruments and 
methods, and new ways of seeing the molecules. In the pages that follow, 
we examine the profusion of novel instruments that have contributed to 
metrological, experimental results and to computational biology and 
simulation.  

                                                           
7 ISI Web of Science 23.06.2011 
8 ISI Web of Science: topics: AFM* and protein*, 9/05/2012. 
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Table 7-5: DNA* and Simulation* : 10 3909 

 

2010  1010

2000      409

1991  114

1990  20

1989  6

 

Instrumentations 

What has allowed the rapid post-1990 rise of nanobiology? The 
introduction of much improved or novel families of metrological and 
computational, simulation instrumentation proved essential. 
Computational and metrological devices often operate in tandem, and this 
gives rise to a form of synergy that contributes to the expansion of 
research expectations, the contraction of frustrating temporality and 
acceleration of discoveries.  

Metrological Instrumentation 

The aforementioned dramatic rise in publications after 1990 of 
nanoscale research is attributable to an instrumentation revolution of the 

                                                           
9 ISI Web of Science : 22.06.2011 
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1980’s, and to the combination resulting from integration of new 
instruments with previous generations of devices. The capability to 
measure objects at this scale in an aqueous milieu is very important 
because it corresponds to the quasi totality of biological conditions. This is 
an advantage over other instruments such as the Electron Microscope that 
often requires destructive sample preparation, notably by drying them and 
by placing them in a vacuum. 

The Atomic Force Microscope (AFM), invented in 1986, offers 
important possibilities for the investigation of DNA condensates. It is 
capable of viewing the structure of the delivery vehicle in its hydrated 
state, as it occurs in cells. Based on AFM nanoscale resolution, one can 
image the DNA strands and see how they react and connect to a particular 
other polymer. Among other applications, the AFM can be used as a gene 
delivery vehicle. The AFM can observe in real time nanoscale processes in 
vivo. This possibility is recent in biological research, and particularly 
pronounced in the capability of measurement of nanoscale apparatus and 
research findings.  

Three additional instruments developed circa 1990, are also prevalent 
in nanobiology work. Near Field Optical Microscopy capable of 
nanometric, measurements of biological materials in their natural 
environment arose during the same period. Using near-field optical 
techniques, researchers currently resolve features in the order of tens of 
nanometers in size. This makes it possible to study large macromolecules 
and assemblies of molecules. Nevertheless, intramolecular observations 
remain restricted. On a different register, a new form of mass spectroscopy 
was developed. A novel nano sensitive spectroscopy system was invented 
at the Japanese instrumentation firm “Shimadzu Corporation” by Koichi 
Tanaka, 2002 Nobel Prize winner in physics, specifically for biology 
research that was viewed as the wave of the future. Tanaka’s project 
Metric Assisted Laser Desorption Ion Time of Light Spectroscopy 
(MALDITOF) began in 1987 and was commercialized in 1993. It 
constitutes a cornerstone of today’s nanobio instrumentation revolution 
(Tanaka, 2002).  

The conclusion that developments in entirely novel metrological 
instrumentation, and in the emergence of new instrument combinations for 
the rise of nanobiology, is inescapable. It is through such devices that 
single molecule observation and analysis has become possible during the 
last twenty years. It is the recent capacity to see inside molecules and to 
explore dynamical processes, such as folding, which is constitutive of 
nano in the life sciences.   
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Although the post 1990 acceleration in bio related research is built on 
the combinatorial of metrological devices developed during the instrument 
revolution of the 1980’s, we will see below that acceleration also revolves 
around a second instrument combinatorial consisting of both metrological 
apparatus and computational instruments. Operating alone, the metrological 
devices of the revolution would neither suffice to explain the massive 
increase in nano-related bio molecular investigation, nor would it take into 
account the richness of nanobiology, its complexities, and analytic 
possibilities. Perhaps most central, as it will be shown, the conjunction of 
computational and metrological instrumentations yields a central 
component of research epistemology, which proved to be particularly 
significant and potent in nano research.   

Computational Instruments 

Historically, the emergence of simulation was linked to the Manhattan 
project and the study of nuclear detonation dynamics, and to the 
introduction of electronic tube computers (Galison, 1997; Casti, 1996; 
Lenhard, Küppers and Shinn, 2006). Advanced computational modeling in 
the domains of the physical and life sciences, expanded in the 1970’s, 80’s 
and 90’s with the advent of three principal conditions: 1. The invention of 
the microprocessor and development of enhanced electronic memory 
beginning in the 1970’s and 80’s (Lécuyer and Brock). 2. Creation of ab 
initio methods and Density Functional Theory (DFT) between the 1960’s 
and 80’s permitting the prediction of physical properties through 
mathematically driven deductive influences based on the atomic number 
of elements appearing in the Mendeleyev table (Lenhard unpublished). 3. 
The massive diffusion of low cost, user-friendly, powerful desktop 
computers and specialized computer programs in science research 
laboratories requiring no specialist learning.  Simulation of bio molecules 
allows the calculation and prediction of energy levels and other physical 
characteristics, which in turn affect the internal organization of molecules 
sometimes expressed in their structure and form. This is a key signature of 
nanoscale research especially in biology. Based on some equations and 
semi empirical evidence, simulations can predict the features and 
dynamics of biological molecules. 

Among the simulation tools used in bio simulation, algorithms are of 
foremost importance. The number of simulation algorithms multiplied 
during the 1990’s and subsequently, and their capacity for manifold 
parameter analysis and precision expanded in a variety of biological 
domains. This evolution was built on a virtuous circle where informatics-



Chapter Seven 158

organized data is collected in coherent databanks, and on the basis of these 
databanks, simulations are performed whose results in turn extend the 
databanks.  

This dynamic is exemplified by the Basic Local Alignment Search 
Tool (BLAST), created in 1990, on the eve of the vast dilation of bio 
nanoscale research (Altschul et al, 1990). BLAST is a frequently 
employed algorithm that enables comparison of primary biological 
sequence information, like amino-acid sequences of different proteins or 
the nucleotides of DNA sequences. Another possibility offered by BLAST 
permits a researcher to compare a query sequence with a library or 
databank of sequences, and thus to identify library sequences that 
resemble the query sequence above a certain probability threshold. 
Different types of BLASTs are available according to the query sequences. 
For example, following the discovery of a previously unknown gene in the 
mouse, a scientist will typically perform a BLAST search of the human 
genome to see whether humans carry a similar gene; BLAST will identify 
sequences in the human genome that resemble the mouse gene based on 
similarity of sequence. While BLAST is mainly a databank construction 
and search device, it is nevertheless clear that it is inextricably associated 
with more strictly simulation work.  

Finally, the Rosetta simulation program offers a second example of the 
operation of computation in bioresearch and its immense importance. It 
was developed specifically with nanobiology investigations in mind. 
Rosetta was created for the prediction and design of protein sequences, 
and to anticipate the native structures of various proteins, using spatial 
computer protein structure prediction algorithms. Introduced in 1995 by 
David Baker at the University of Washington, in 1999 it was used by only 
three nanobiologists for single molecule nano protein studies. In 2009, 
Rosetta was being employed by over one hundred nanobiology 
practitioners. The nano research algorithm is presently freeware on the 
Internet. Since relations inside proteins are so very complex, an empirical, 
semi trial and error approach remains productive. The many permutations 
offered by Rosetta permit taking into account in a very systematic and 
rigorous way, a huge amount of parameters. Non-biologists in the broad 
public are invited to use Rosetta to try to find protein pathways through 
modifying protein forms in a myriad of ways that are consistent with 
internal molecular forces and changing internal physical environments, but 
that are so complex that they are not necessarily covered by even the best 
existing algorithm.   

At the core of Rosetta are potential functions for computing the 
energies of interactions within and between biomacromolecules. One of 
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the principal aims of Rosetta is the identification of the lowest energy 
structure for a protein sequence. Simulation feedback from the prediction 
and design tests is used continually to improve the potential functions and 
the search for new algorithms (see the text below, and the text located in 
next section). 
 

Brian Kuhlman’s research on nanoprotein design is emblematic of 
nanoscale investigations. Kuhlman is co-laureate with David Baker of the 
2004 Feynman Nanotechnology Prize.10 Dr David Baker and Dr. Brian 
Kuhlman, professor at the University of North Carolina, (Department of 
Biochemistry and Biophysics), received the theory prize for their 
development of the afore mentioned Rosetta Design program. This 
program has a high success rate for the design of stable protein structures 
with a specified backbone folding profile. Kuhlman and Baker’s goal is the 
design of new forms of proteins.  

“These proteins we make are very complicated things. They’re a 
hundred amino acids that we want to fold into a particular shape (…). 
Folding is not simply a question of directly sticking together two 
components of an object. It implies to take into account the cumbrances 
that must be overcome in order to ensure that the components to converge 
spatially, and this may entail twisting pathways. It is also a problem of 
matching physical interfaces.  This is one aspect of the problem of 
appropriate atomic and molecular packing. For all of these reasons folding 
is observed in terms of forms, and needless to say, as three dimensional 
form. We have projects where we’re just trying to build a certain shape. 
That’s kind of like learning how to build a bridge before I even care about 
what the bridge is going to connect”.11 

This introduces one notion of control which focuses on the mastery of 
understanding. Here, control does not refer to achieving some wanted 
effect – some intended output. In the following passage, control assumes a 
second form. It consists of generating wanted material effects.  

 “We go experimentally, we make the protein, and it doesn’t fold into 
that shape, or it does something bad, like it aggregates, which means it just 
clumps together and falls out of solution. Unfortunately, it’s very difficult 
from that failed experiment to know exactly what was wrong with your 
computational sequence. Actually, a little disappointing for me, as most of 
the feedback for improving our simulations doesn’t come necessarily from 
the limited number of experiments we do, but rather it comes from -well, 
maybe this isn’t disappointing- what we do is we gather all the 
experimental data that’s out there, from all the labs, and we use that to train 
our software. And if our own experiments aren't working, we then say, “oh 

                                                           
10 http://www.foresight.org/FI/2004Feynman.html#2004Winners 
11 Interview of B. Kuhlman by A.Marcovich and T.Shinn University of North 
Carolina Chapel Hill. 17 June 2010. 
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we need to train our software more, with more data that’s out there”. So 
that’s the process we use. I guess, what we use our experimental results for 
is kind of knocking ourselves on the head and saying, “we really need to be 
doing more training of our software. We need to be doing more testing of 
our software compared to all the data that’s out there, not just ours.”  

This final passage expresses two related fundamental orientations. 
First, empirical information is employed to train future simulation 
programs. Second, the activities of bio informatics as expressed in 
databanks merge with simulation programming and results.  
 
Beyond BLAST and Rosetta, there exists a host of additional 

simulation programs in nano biology. Among them, the Lamarckian 
algorithm (1998) analyzes the docking mechanisms of protein-ligand 
complexes. The Genetic Algorithm for protein Design (EGAD)12 is an 
algorithm for the simulation of mutation effects on protein folding 
stabilities and binding affinities. EGAD can also calculate multiple 
structures for designing specific binding proteins or locking proteins into 
specific conformational states simultaneously. Note that many of these 
nanobiology simulation instruments are intended to promote 
understandings and practices where molecular prediction, design, and 
engineering comprise the foremost concern. As argued above, these 
algorithms are one of the key aspects and aspirations of nanobiology 
research. Precise examples of this as work strategy and operations inside 
laboratories will be described below.   

Computational experiments and metrological experiments exhibit two 
different logics, which are mutually reinforcing. Results from simulation 
research based on models subsequently nourish a databank that then inputs 
into another set of models. The computational system thus consists of 
cycling between model conception and application, the constant 
enrichment of databases, and the genesis of new models.  In the case of 
metrological instruments, it is the object of study and its corresponding 
problematic that temporarily underpin the gathering of different, otherwise 
independent, instruments. In the case of computational devices, it is the 
logic of each system (algorithm, model…) that fuels them. Through 
developing more and more descriptive and analytic possibilities, the 
understandings of biological objects in terms of systems expand and 
encompass other systems in an ascending spiral. The outcome of this is a 
constant acceleration in the pace of research and the growth of knowledge. 

In conclusion, the instrumentation revolutions of the 1980’s and 1990’s 
have produced a series of devices that today permit the investigation of 

                                                           
12 http://egad.ucsd.edu/EGAD_manual/index.htm 
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new biological parameters that can be observed and understood in novel 
terms. The new devices allow scientists to see and analyze objects on the 
nanoscale and in some instances to control them. 

Some Impacts of Simulation on Nanobiology Research? 

In the 1980’s and 90’s, computational biology developed two different 
roles. First, computation based research in nanobiology entails the 
creation, organization, and consultation of databases, algorithms, 
computational and statistical techniques and theory to solve formal and 
practical problems arising from the management and analysis of vast 
quantities of biological data. The domain of bioinformatics matured with 
the institutionalization of the human genome program. Along with 
metrological experiments, bioinformatics computer programs made it 
possible to stock, manage, and manipulate a huge amount of DNA 
sequence-related data. Major research efforts in bioinformatics include 
sequence alignment, gene finding, genome assembly, drugs design, drug 
discovery, protein structure, protein prediction, prediction of gene 
expression, and protein-protein interactions, genome-wide association 
studies and the modeling of evolution. Related to this, computational 
research in nanobiology focuses on the representation and analysis of 
various types of data, including nucleotide and amino acid sequences, 
protein domains,13 and protein structures. One aim consists of engineering 
and manufacturing de novo nucleic acids as well as proteins. This requires 
precise control at the molecular level which often entails simulation (see 
insert 2 below). 

  
The 2005 Feynman Nanotechnology Prize laureate, Christian 

Schafmeister, professor at Temple University in biochemistry, works on 
“universal scaffolding” of artificial proteins synthesized through building 
blocks that are intended to create specific functionalities in these proteins. 
In his work two types of control, control for understanding and control for 
effects are interlaced. Schafmeister constructs an universal scaffolding 
from crystals. This technique is present in medicine but is not so frequent 
in nanoscale research. The protein here remains stable even when 

                                                           
13 A domain is a physical biological object consisting of a protein unit that resides 
inside protein polymers and that has its own autonomous specific structure and 
function that contribute to the determination of the properties of the 
macromolecule. A specific domain may be present in a host of proteins that induce 
similar characteristics. Domains figure in data banks where they are classified in 
terms of their functions and are used in the engineering and fabrication of de novo 
proteins. 
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additional components are introduced. Structural instability is the habitual 
condition of proteins under changing conditions. Schafmeister’s objective 
is the production of a designed function. For Schafmeister, the form of the 
protein remains central, but it is a means to an end. It is not a target of 
investigation per se. Otherwise stated, he does not want to understand 
form. Schafmeister simply changes form to achieve function.14 To these 
scaffolds are attached a number of specific amino acids. Depending on 
their relative position on the scaffold (this expressed in three dimensional 
space), they generate particular function such as those induced by acidity 
or hydrogen bonds.  

“Actually, what we’re trying to do is, we know what these groups, 
amino acid side chains, do by themselves. We know a lot about how they 
can catalyze reactions by acting as acids, acting as bases, acting as 
hydrogen bonding groups. We know how they can coordinate with metals 
and metals can activate things. What we’re trying to do is put these 
functions together so they can work simultaneously and act in concert, get 
a synergy, get an additive greater than the sum of their parts. If you have a 
group here that’s acting as a base, while over here there’s a group that’s 
acting as an acid, and over here you have something activating by 
hydrogen bonding, and they’re all held in the right constellation, then when 
the molecule diffuses in there, it’ll be like it’s completing a circuit. The 
electrons will flow, and atoms will move and outcome the products. That’s 
our hypothesis.”  

This citation draws attention to the systemic character of 
Schafmeister’s macromolecular construction. The functions of the system 
result from the relations between its components and their environment. 
The stability that he can impose on his constructions gives these systems 
the possibility to have dynamical interactions with their environment.  

The scaffold can adopt a variety of forms, which also depend on the 
function of the whole molecular construction. Here the most relevant unit 
of form is the relationship between elements. For Schafmeister an 
important part of the work consists of writing simulation codes that will 
allow him to design the protein and then to adapt it in the light of 
experimental observations with Nuclear Magnetic Resonance and X-ray 
diffraction. Schafmeister produces control in the sense of pure 
understanding of biological objects by handling molecules; he obtains 
control in the sense of effects (outputs) by producing new functionalities, 
which are created through a triangular system of structure, form and 
function. 

 
A second highly important bio-computation domain consists of visual 

molecular dynamics often referred to as molecular graphics. Computational 
graphics have allowed biologists to express as visual representations the 
                                                           
14 Interview of Christian Schafmeister by Anne Marcovich and Terry Shinn at 
Temple University 15 June 2010. 
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structures and dynamics proposed by the above discussed molecular 
simulation. Advanced graphics enable researchers to manipulate their 
representations (rotate them, change the angle of their axis, obtain an 
alternative angle of observation, penetrate beneath the surface of a 
molecule in order to better observe packing etc.) in innumerable ways. 
Through computer graphics, they can also modify the morphology 
exhibited in the representations to determine the extent to which such 
modifications are compatible with the molecules’ internal organization 
and forces. This activity is summarized in the expression of interactive 
molecular graphics and is highly represented in studies on protein 
structure and design, or on DNA conformations. 

Reflections on Images 

Simulation images yield an exceptionally precise, rich, and complex 
landscape. The DNA simulation image presented below (see figure 7-1) 
contains four sets of information: 1. The double spiral of DNA is clearly 
composed of strands (in medium gray and dark gray). 2. The atoms and 
their intermeshing relations as well as their organization that constitutes 
the strands, are clearly given. This image does not indicate the relative size 
of the atoms of different elements such as hydrogen versus carbon. A key 
feature of simulation images is that by opting for a particular algorithm 
and by setting appropriate values, the scientist selects the particular object 
to be represented. 3. It is suggested that the DNA spiral is enveloped in a 
sheath (proteins), composed of highly organized layers of atoms (in bright 
gray). This is projected as a longitudinal section of a tube. 4. The 
environment of the DNA strand and of the protein is indicated by the 
presence of suspension (brighter and darker gray spheres near the DNA).  

As in simulation images, in metrology-based images at the nanoscale, 
objects can be “seen” atom by atom, molecule by molecule. But compared 
to simulation images, in the latter case, this makes it very difficult to 
isolate, identify, and hierarchize the different items included in the image. 
Atoms, molecules, or bigger parts of each entity can appear in such a 
mixed, jumbled way that the edges and contours of these units are 
indistinct and fuzzy (see figure 7-2). 
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Figure 7-115 

 
 
Figure 7-216 

                                                           
15 Image by the Theoretical and Computational Biophysics Group from NIH 
Center for Macromolecular Modeling & Bioinformatics of the University of 
Illinois at Urbana-Champaign, http://www.ks.uiuc.edu/Research/gpu/. (Original 
image is colored.) 
16 Reprinted (adapted) with permission from (A.Laisne, M.Ewald, T.Ando, 
E.Lesniewska, D.Pompon “ Self-Assembly Properties and Dynamics of Synthetic 
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The gathering of diversified data available through simulation images 
often surpasses what is usually achieved by metrology-based images, and 
this introduces two powerful potentials: 

1. Research sometimes entails comparison of metrological images and 
simulation images where the ideal is a perfect match or at least strong 
overlapping items across two pictures. The relationship between 
metrological and computational images is reciprocal testing, correcting, 
and, eventually, validating. This is an iterative process in which concepts 
and algorithmic models are fuelled by experimental data and where 
experiments can be piloted by simulation findings. 

2. Simulation images are an integration of the experimental 
information, originating in metrology research an immense variety and 
quantity of information (sometimes entailing millions of calculation 
operations) in the guise of position and relation that is deduced from the 
simulation algorithms. Computational representations introduce features, 
forces, relations, and environments that are not necessarily accessible to 
metrological investigations. They assemble a broad landscape of 
parameters that conceive the object as a complex integrated component 
specific whole (electric field, magnetic charge, valence forces, acidity, the 

                                                                                                                         
Proteo_Nucleic Building Blocks in Solution and on Surfaces” Bioconjugate 
Chem., 22 (2011): 1824–1834). Copyright (2012) American Chemical Society. 
Original image is colored. The following abstract explains the image: 
ABSTRACT: Synthetic proteo_nucleic structures (PDNAs) encompassing a 
single-stranded DNA sequence covalently attached to a redox protein domain able 
to interact with surface or matrix were designed and characterized. They constitute 
versatile building blocks alternative to regular DNA for creating scaffolds with 
optical, electrical, or catalytic properties. PDNAs self-assemble in the presence of 
complementary oligonucleotides, to form a network of protein domains linked by 
double-stranded DNA segments. Electrophoretic and hydrodynamic behaviors of 
PDNAs and corresponding DNA were compared under electrophoresis and gel 
filtration conditions. Hybridization rates between small and large assemblies were 
characterized by rapidmixing experiments. Results showed that the protein part 
significantly contributes to hydrodynamic behaviors of structures but marginally 
affects the conformation and hybridization properties of the nucleic domain. 
PDNA metal-mediated complexes with nitriloacetate-modified phospholipids can 
diffuse and interact at the surface of vesicles or supported membranes. Surface 
plasmon resonance analysis of membrane_PDNA interactions indicated that two 
protein units are required to allow stable surface association and that surface 
occupancy constrains assembly sizes. High-speed atomic force microscopy 
illustrated rapid lateral diffusion of assemblies on mica, revealing transient 
association between noncomplementary PDNA extremities and frequent trapping 
by surface defects. Regularly organized protein domains were visualized using a 
larger DNA framework. 
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degree of acquiesces, distance between elements, relations between the 
interior of a molecule and its surface, chemical bonding properties etc.). 
All these items thus introduce new information in order to explore the 
probability of alternative scenarios and their material consequences. These 
calculations sometimes depict changing states in a biological system. The 
quantities of temporality are particularly depicted in simulation imagery. 
The images are sometimes so exact and densely informative that they are 
referred to as “realistic simulation images,” and such images are often 
viewed as more realistic than many metrological representations. The 
difference between the two categories is sometimes difficult to establish, 
particularly for a none-expert. The interesting question is not “reality” but 
is instead the effectiveness of the representation in the ongoing work of 
research. Here, simulation images are sometimes viewed as most 
informative even by metrology instrument practitioners.  

Epistemology 

Three-dimensional images provide a powerful observational window 
into the structure of bio molecules, and they offer a stimulating 
epistemological platform. Structure can be thought of in terms of 
quantities, different categories of objects, and relations between classes; 
the structures exhibited in three-dimensional images directly or indirectly 
convey all of these categories of information, and with reference to very 
specific and relevant entities. The entities in these images can be grasped 
on one level at single glance, and on another level, can be disaggregated 
into units whose interactions can be gauged. Three dimensionality enables 
the observer to see more detail, to see things from alternative or even 
contradictory perspectives, to see local and general configurations and the 
links between the local and the general, and to see connections between 
internal components and external shapes. The relationship between 
structure, function, and effects in terms of temporality is sometimes 
present in images. Today, images are a particularly growing feature of 
simulation where they are rendered in a three-dimensional perspective and 
sometimes exhibited as a film. 

It is similarly possible to select some regional components of the 
molecule and to change simply with a computer click some of its relations 
with the environment or neighboring components. The shape of the 
molecule can be modified (played with), through the game of possibilities 
of binding, mostly depending on the energy levels involved in the 
bindings.  
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Why are images so important to epistemology? Images can be 
considered not only as one of the final products of a scientific 
investigation, but perhaps even more so as a point of departure of 
reasoning, and an indispensable resource to which one constantly returns 
that is enriched and adjusted in the process of scientific work. At the 
nanoscale, form is privileged as a device for understanding. Form is 
central because it supplies direct information about position, size, and 
geometry. The form is the image. It constitutes one of the primary vehicles 
of physical information, and it dominates the description and the 
discussion. Changes in the form of an object provide information about the 
intensity and nature of forces acting on or within objects. Finally, through 
the observation of form, scientists can determine the kind and the nature of 
perturbation that connects the force and the form. The form of the objects 
under study (for example protein molecules and the way they fold) fully 
participates in the explanation. The notion of form is then an assembling 
concept that permits framing of questions related to structure, dynamics, 
and function. The alignment of these orientations lies at the heart of 
calculating and representations of simulation. 

Conclusion 

Our study of simulation and nanobiology invites some general 
reflections. We have shown that the importance of computation-based 
experimentation is constantly accelerating in nanobiology, and it is 
interesting to ask whether this is true for fields like chemistry, physics, and 
beyond. In nanobiology, it is notable that the rate of acceleration is still on 
the rise. To what is this attributable? Is it due to the progress of 
knowledge, to instrument innovation, or to simply to changing practices in 
publication strategy? 

On another register, metrological and computational instrumentation 
often operate in tandem in nanobiology. The connection between the two 
is circular: there exists a type of synergistic relations where one nourishes 
the other. Simulation and metrological devices both generate images. 
These images are frequently complementary. Simulation selects and 
emphasizes intended features of a phenomenon that allows an alternative 
perspective to the more detailed, often encumbered and inclusive 
observations offered by metrological instrumentation. The first insists on 
structure, whereas the second privileges exhaustive depiction. It is equally 
true that simulation generates results that are not expressed as images. In 
this case, how tight is the linkage and what is the nature of the relation 
between simulation and metrology results? 
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Finally, we ask whether simulation and its relations with metrology do 
not introduce a novel epistemological ingredient. One thing is certain: 
simulation is frequently accompanied by prediction to a much greater 
extent than metrology based experimentation. This is rendered possible by 
two elements. First, simulation can take into account many experimental 
findings and thereby, it can attempt to determine which information is 
most decisive. Second, simulation can inexpensively and swiftly 
investigate a vast number of permutations and possibilities. This facilitates 
the task of suggesting which undiscovered outcomes are latent in the 
presence of specific physical constraints. This is the essence of prediction. 
The validation of prediction is frequently contingent on metrological 
findings. Here is another instance of simulation / metrology circularity. 
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Introduction 

Physical cosmology refers to the branch of astrophysics focused on the 
study of the Universe on a large scale or, more precisely, on the largest 
scales we can handle. It deals fundamentally with the universe structure, 
analyzing the distribution of matter and celestial objects, and considering 
the processes that shaped this specific configuration. This makes structure 
formation and cosmic evolution key subjects in physical cosmology. 

The study of these topics is not a recent phenomenon. Ideas on the 
origin and development of the Universe also played an important role in 
other periods of our history. Past notions differ in many aspects from 
current theories, but they share essential questions and, sometimes, similar 
answers. In fact, these questions and answers are intrinsic to the Western 
worldview. In the incipient emergence of science in ancient Greece, 
natural philosophers like Thales of Miletus attempted to shape a scientific 
explanation of the primordial matter that constituted the cosmos, while 
trying to identify its visible effects on certain contemporary physical 
phenomena. He saw the cosmos as emerging from fluid matter, and it is 
this primeval fluidity that sheds light on the physical constitution of the 
world we live in. Whereas mythology attributed the origins of the cosmos 
to the actions and affairs of gods, Thales initiated the theoretical trend of 
attributing them to scientific principles. Since then, these two paths, the 
mythological or religious and the scientific, have run in parallel, 
sometimes mixing their arguments and conclusions and sometimes 
clashing. 
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Medieval Europe pushed the origin of the Universe to the forefront of 
theological concerns, since the book of Genesis was crucial in defining the 
principles of the Judeo-Christian worldview. Besides the theoretical 
debates, as part of the religious propaganda many artists were commissioned 
to visualize each stage in the world’s formation according to the Biblical 
account of creation. As a result, a number of reliefs in cathedrals and 
churches and miniatures in illustrated manuscripts reveal how the creation, 
evolution, and formation of the Universe were visually conceived at that 
time. 

With the emergence of the modern era, scientific arguments regained a 
dominant position in terms of explaining cosmic origins. One of the 
triggers of the new impulse of cosmology during this period was the 
French philosopher and theoretical physicist René Descartes. In Le Monde 
(1989) and Principia philosophiae (1644), he described in detail how the 
universe evolved from a dense, compressed primordial matter to its current, 
transitory state. We will come back to Descartes’s ideas in the section “The 
necessity of Simulations,” which is devoted to the significance of simulations 
in cosmology. For now, it is important to remember that he gave the first 
influential cosmological account in modern science, exerting a direct 
influence on later authors who were consequently also interested in the 
physical origins of the Universe. 

During the eighteenth and nineteenth centuries, the main hypotheses in 
this context mostly relied on the cosmogonical explanations of the 
Swedish scientist and theologian Emanuel Swedenborg and their later re-
elaboration by the Frenchman Pierre-Simon Laplace. He refined 
Swedenborg’s ideas and shaped the nebular hypothesis for planetary 
system formation in modern terms. 

Cosmology was revived once more in the first decades of the twentieth 
century, culminating in the Big Bang theory and the idea of an expanding 
universe in the global framework of general relativity. The term physical 
cosmology usually refers to this new phase in cosmological theories, when 
the contemporary worldview started to be consolidated in the 1900s. Since 
the 1980s cosmology has undergone a new revolution, this time strongly 
determined by the introduction of simulation techniques as research tools. 
The following pages deal with this latest attempt at a reasonable physical 
explanation of the formation and evolution of the Universe on a large 
scale. 



Chapter Eight 172

Significance of Simulations in Physical Cosmology 

In the context of physical cosmology, simulations are unique if we 
compare them with other branches of science. They actually represent a 
special case in contemporary science. Their most remarkable aspect is the 
essential function they perform in shaping theories, owing to the lack of 
feasible experiments. This section reflects on the relevance of simulations 
in cosmology (“The necessity for simulations”) and describes their most 
striking effects on the development of science today (“Simulations and the 
rise of dark fluid skies”). 

The Necessity for Simulations 

Physics and astronomy have historically dealt consistently with the 
large-scale structure of the observable Universe available at the time. This 
task of analyzing and comprehending the cosmos in its largest 
configuration involves difficult problems when approached in a scientific 
context. Many of these difficulties arise owing to a general and obvious 
feature: the incommensurability of the object of study. This factor challenged 
astronomers in the past and is still challenging them today, though in a 
very different way. Historically, the problem consisted in not being able to 
observe the entire existing space, but only the tiny portion perceived by 
the naked eye or revealed by optical telescopes. Scientists were aware of 
the immense dimensions of the Universe, but their observational tools 
were unable to take measurements that offered even tentative proof of the 
general structure. Space remained mostly incommensurable. 

Nowadays, astronomy has apparently overcome many of the previous 
obstacles. Observational techniques have considerably improved their 
scope of measurement, so that the produced data give an account of very 
remote confines of the Universe. In particular, larger sets of observational 
data reveal how the Universe looks like beyond the boundaries of our own 
galaxy. The problem of incommensurability has paradoxically emerged 
again, however, owing to the improvements in observation methods. 
Contemporary astrophysicists and astronomers are faced with an 
enormous amount of gathered data, which they must scrutinize. Whereas 
the problem originally constituted gathering data from an immense space, 
today the main difficulty consists in processing the huge amount of 
information provided by sophisticated telescopes. The information we 
receive from cosmic space remains incommensurable. Regarding 
cosmology in a scientific context, humankind finds limitations again and 
again. In the past, they were of a perceptual nature (the impossibility of 
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observing the entirety of space) whereas, at present, they are operational 
(the impossibility of fully exploring large amounts of observational data). 

 Cosmology has always faced the problems mentioned above, which 
seem to be an intrinsic and insurmountable part of the field itself. 
Notwithstanding these obstacles, science does not shrink from the search 
for physical laws, which define theoretical models of the Universe in 
terms of its structure, formation, and evolution. The main challenge for 
contemporary cosmology consists in developing alternative research 
strategies within a realm excluded by definition from traditional ways of 
experimentation. We should remember that the task is to provide general 
laws working on a cosmic scale in such a way that the ‘object’ of study is 
the entire Universe. Traditionally, science elaborates a hypothesis whose 
principles are tested by means of experiments, and simulations can be used 
as additional aids to support or challenge the results obtained in these 
experiments. In cosmology, the conventional process for proving the 
theories cannot be applied, since experiments are completely excluded 
from it as they are impossible to realize in this context. The reason is 
obvious: one cannot accommodate the whole Universe in the lab to 
conduct an experiment. In this situation, when the subject of study is 
totally beyond our grasp, simulation techniques provide the only available 
solution for testing the theories against available observations. The large-
scale structure must be simulated if we want to apply more than a purely 
abstract approach. 

Given the long history of cosmological concerns, neither this problem 
nor its solution is completely new. Several aspects of the current 
investigations into the large-scale structure of the Universe were also 
investigated in the past, obviously not in exactly the same way as they are 
tackled today, but still determined by the corresponding temporal context. 
One of the most significant examples in this regard was Descartes’s 
physics, set out first in Le Monde (Descartes, 1989). In this text, which 
was guided by his scientific thoughts and free from religious pressure,1 
                                                           
1 It was written between 1629 and 1633 but not published until 1644, since he 
decided to postpone its public release because of his anxiety about the trouble 
Galileo was having with the Inquisition. When decades later he developed his 
physical theories in an extended, “politically correct” version, many allusions to 
the role of God, as well as many arguments compatible with Roman Catholic 
ideology, were introduced. This updated, more acceptable, version was published 
under the title Principia Philosophiae in 1644. Nevertheless, Descartes did have 
Roman Catholic convictions, although he seemed to differentiate them from his 
scientific theories. He accepted the idea of God, which influenced his 
philosophical ideas. In the first version of his physical model in Le Monde, God 
was almost totally excluded from the explanations, apart from being the creator of 
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Descartes expounded his hypotheses regarding the physical principles 
explaining the formation and evolution of the Universe. Before going to 
the heart of the question, he warned the reader: 

 
For a short time, then, allow your thought to wander beyond this world to 
view another, wholly new one, which I shall cause to unfold before it in 
imaginary spaces (Descartes, 1989, 99).  
 
In order to present his physical model, the French philosopher put into 

practice an epistemological strategy: to explain and test his ideas in 
“imaginary spaces” instead of directly acting upon the actual world. He 
insisted on this starting-point as a precondition for approaching the subject 
he wanted to discuss, specifying that 

 
... my plan is not to set out (as they –the philosophers or scientists– do) the 
things that are in fact in the true world, but only to make up as I please 
from [this matter] a [world] in which there is nothing that the densest 
minds are not capable of conceiving, and which nevertheless could be 
created exactly the way I have made it up (1989, 107).2 
 
Descartes probably avoided dealing directly with the “true” world in 

part because of the risk of being censored by the religious authorities, a far 
from trivial threat, as the case of Galileo demonstrated just after the 
completion of Le Monde when the Italian astronomer was prosecuted. 
Besides, the specific socio-political context, the intrinsic difficulties of the 
subject itself could also have led him to apply for this epistemological 
strategy. Viewed through the lens of the history of cosmology, Descartes’s 
modus operandi can be compared with current simulations to a certain 
extent, since both of them resort to other simulated worlds to test their 
hypotheses on a large scale.3 Descartes’s method can be summarized as 
follows: 

                                                                                                                         
primordial matter and the cause of the first motion at the beginning of the 
Universe. Once matter was created and put into motion by Him, it continued 
evolving owing to physical laws acting autonomously, without any divine 
interference. 
2 Translations based on the text by Michael S. Mahoney. See  
http://www.princeton.edu/~hos/Mahoney/ 
3 For a more detailed comparison between Descartes’s theory of vortices and 
current cosmological simulations, see Ayala and Forero-Romero (2011). 
Descartes’s method of testing hypotheses is usually known as thought experiment.  
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Step 1 Defining an “imaginary space” as the scenario for unfolding his 
physical model.  

 
Step 2 Setting out the initial conditions (a certain type of matter) and 

preconditions (concrete physical laws acting on it) that would generate 
a new universe independent of the actual world.  

 
Step 3 Letting this new universe evolve according to the parameters 

above. 
  
Step 4 Observing, describing, and analyzing the different stages in the 

formation and evolution of the universe resulting from these processes. 
  
Step 5 Finally, comparing it with the “true” world to verify how they 

actually coincide. Descartes considered his hypothesis as valid if the 
imagined and true world are alike. 

 
The way in which Descartes presented his cosmological hypotheses is 

comparable with contemporary computational astrophysics in certain basic 
aspects. In both cases, the cosmological models are tested by means of 
theoretical tools and not by experiments. Be it in the internal logic of the 
philosopher’s reasoning, or in the internal logic of computers and 
programmers, a series of physical principles is activated in order to 
generate astronomical phenomena whose status of reality remains within a 
purely theoretical realm. This does not hinder the production of “true” 
results, as the successful comparison with the observed world 
demonstrates. Descartes did not simulate the universe in the current sense 
of producing a computer model, but he did operate following a similar 
logic. The epistemological difference between Descartes’s methodology 
and contemporary simulations is more a question of degree than essential 
divergences. Whereas Descartes used his mind as a tool for developing the 
process, today we use computers as external tools to help us to perform the 
calculations that our minds are unable to do with such efficiency. 

By stressing this resemblance, we do not expect to obtain a facile 
anachronistic identification of these two historical moments since, 
obviously, they belong to different contexts each characterized by 
particular scientific and cultural backgrounds. It is, however, important to 
note the continuities underlying the study of the large-scale structure of the 
Universe in the last centuries. As we mentioned before, this field has its 
own intrinsic difficulties, and it is not surprising that in different epochs 
similar or comparable solutions appeared. Testing scientific hypothesis in 
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the specific realm of cosmological theories about the Universe on a large 
scale demands simulation strategies as a sine qua non condition. Although 
this necessity was envisioned in the past, nowadays it has become a clear 
requirement of this field. 

Simulations and the Rise of Dark Fluid Skies 

Simulations have been determinant in the recent development of 
physical cosmology to such an extent that they have become the trigger for 
the latest cosmological theories. Our current picture of the large-scale 
structure of the Universe was shaped in the light of the results of computer 
simulations in the early 1980s. Consequently, large-scale structure studies 
have entered a new historical paradigm. 

The starting-point of contemporary physical cosmology is Albert 
Einstein’s theory of general relativity. Its relevance in this context is 
essentially its provision of the best description of gravity so far, meaning 
that it passes the most stringent observational tests on a wide range of 
physical scales. Einstein’s theory of gravity is linked to two key entities: 
space-time and matter-energy. According to Newtonian gravity, the 
movement of a planet around a star is owed to gravitational force; 
however, from the Einsteinian point of view, this phenomenon is an 
unperturbed path in the space-time continuum that has been deformed by 
the matter-energy contents of the star. 

The cosmos is now described as an expanding accelerating universe 
mostly composed of dark matter and dark energy. Theories around dark 
matter are especially important in this context, since simulations have been 
the leading factor defining them. Dark matter was first conjectured by the 
Swiss astronomer Fritz Zwicky in 1933, when he concluded that the total 
mass of the Coma galaxy cluster should be much greater than the mass 
directly derived from its luminosity. Otherwise, individual galaxies within 
the cluster would fly apart, since they are moving very fast. Yet, no galaxy 
escaped from the cluster, so he inferred the necessity of the presence of “a 
vast and large density of dark matter,” which would bind the galaxies 
together. He found the “surprising result ... that dark matter should exist in 
a much larger density than luminous matter” (1933, 125).4 

Years later, in the 1970s, the US astronomer Vera Rubin made the first 
measurements of the dynamics of disk galaxies, finding that regions far 
from the center were moving at the same speed regardless of their 
distances from the center (Rubin and Ford, 1970). This discovery was 
                                                           
4 “...würde sich also das überraschende Resultat ergeben, dass dunkle Materie in 
sehr viel grösserer Dichte vorhanden ist als leuchtende Materie.” 
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surprising, since at that time it was assumed that the distribution of mass 
in a galaxy would correspond to the distribution of light. In other words, 
the brighter area in the center of a galaxy should have more mass and, 
consequently, there should be a decrease as we observe regions even more 
distant from the center. Rubin’s measurements proved the opposite: all the 
regions were moving at a constant speed. Consequently, Rubin arrived at 
similar conclusions to Zwicky: there must be additional, non-visible 
matter holding up the galaxy in one piece.  

Besides these first evidences of the necessity for a new kind of non-
visible matter, the seminal breakthrough came when theorists dared to 
speculate about the structure of the Universe on very large scales. In a 
solitary endeavor, the Canadian theoretical astrophysicist Jim Peebles 
developed in the 1970s a theoretical framework according to which 
structures in the Universe could evolve as an aggregation of smaller 
structures, with dark matter as the driving element.5 

The definitive shift took place between the end of that decade and the 
beginning of the 1980s, when a handful of theorists started to realize that 
numerical computations could be used to trace the evolution of the density 
field in the Universe. Two notable pioneers in the early 1980s were the 
Russian astrophysicists Anatoly Klypin and Sergei Shandarin who 
performed, during the Cold War era, one of the first computer-assisted 
calculations for the evolution of a three-dimensional matter distribution on 
a cosmological scale (Klypin and Shandarin, 1983). Their simulation 
clearly showed a filamentary structure. Almost simultaneously, Marc 
Davis and collaborators at the Center for Astrophysics at Harvard 
University published the results of their observations measuring the 
distances to galaxies listed in a catalog compiled by Zwicky. The catalog 
included galaxies with an average receding velocity of 5000 km/s, the 
deepest available data at that time (Davis et. al., 1982). This was the first 
conclusive observational evidence of the distribution of galaxies around 
us. For the first time in the history of humankind, we were able to explore 
a large part of space, considerably improving what had been achieved by 
thousands of years of astronomical observation. The data from these 
observations were revolutionary, not only because of their historical 
significance, but also because of the information they provided. To the 
astonishment of many theoreticians who expected a homogeneous 
distribution, the observations reported a network of filaments, the same 
result expected by the analytical calculations and simulations of the 
Russian School. After these conclusive evidences, the filamentary 

                                                           
5 For a complete set of references, see the Introduction in (White and Frenk, 1991). 
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distribution of galaxies, now dubbed the cosmic web, was generally 
accepted. 

In a historic paper published in 1984, Marc Davis teamed up with the 
astrophysicists George Efstathiou, Carlos Frenk and Simon White to tackle 
the same problem as Klypin and Shandarin earlier, but this time using 
improved numerical techniques (Davis et. al., 1985). They had the 
additional advantage of having the latest observational data from Davis, 
which allowed comparison with the results of their simulations. The initial 
conditions in their simulations implicitly contained elements that 
described cold dark matter, which is physically conceptualized as a non-
collisional fluid that only interacts through gravity, and they found that it 
provided the best match with the observations. In parallel, other 
astrophysicists adduced powerful analytical arguments for the need for 
density fluctuations provided by dark matter to explain observational data 
(Peebles, 1984; Blumenthal et. al., 1984). 

After the favorable outcomes of these pioneering simulations, which 
matched the data from observations, cold dark matter started to be 
considered as one of the main components of the Universe. This paved the 
way for the general paradigm still valid today. An additional consequence 
of these scientific endeavors, perhaps as important as the actual discovery, 
was the cultural change that they implied. Thanks to these successful 
investigations, numerical simulations were accepted as one of the most 
effective workhorses for astrophysics, since they proved their usefulness in 
moving theories forward. 

Motivated by these achievements, the field of computational cosmology 
started to attract attention during the rest of the 1980s. The algorithms 
were improved and the computing power increased. However, the 
scientific advances were not as impressive as the first ones owing to the 
lack of new observational data. Therefore, at that time there were too 
many different kinds of universes that were allowed by the available 
observations. As a consequence, the work by theoreticians did not manage 
to appeal to the observers: the discussions seemed too theoretical with no 
bearing on observations. Scientists understood that any further progress 
had to come from new observational data, since better observational 
constraints could narrow down the different kinds of universes dreamt up 
by theoreticians, making the work more interesting for observers. This 
lack of empirical data had a stagnating effect on the relevance of a dark 
matter universe paradigm. 

In the early 1990s, two events completely changed the scene by 
making galaxy evolution an observational science. First and foremost, the 
emergence of charge-coupled devices (CCDs) allowed astronomers to take 
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detailed images of the sky. As a consequence of their precision in 
gathering data, the quality of the spectra of distant galaxies was 
considerably improved. As a result, CCDs started to give accurate 
information about the matter distribution of the Universe on larger scales. 
The second groundbreaking event, also related to the introduction of CCD 
techniques, was the launch of the Hubble Space Telescope (HST) in 1990, 
which significantly enhanced the scope of observations. Five years later, it 
was possible to observe very distant galaxies and to see the evolution of 
their properties.  

The usefulness of the HST was not limited to observing new galaxies. 
The telescope also helped in the determination of cosmological 
parameters, which were one of the largest impediments to theoretical 
progress. For instance, by 2001 the data taken with the HST helped to 
resolve a 70-year-old dispute on the value of the Hubble constant, which 
quantifies the expansion of the Universe. This constant relates the 
observed receding velocity of galaxies to their distance from us. Fixing its 
observational value had a bearing on the inferred age of the Universe and 
the allowed range of other cosmological parameters (Freedman et. al., 
2001). 

The first decade of the year 2000 saw an explosion in the number of 
observational campaigns that helped to improve the characterization of 
galaxy populations, and to determine very precisely the cosmological 
parameters needed to define the matter-energy contents of the Universe we 
live in. A key role in this process was played by the Wilkinson Microwave 
Anisotropy Probe (WMAP)6, the spacecraft that measures the tiny 
differences in the cosmic microwave background (CMB) radiation, which 
is thought to be the remnant radiation from the Big Bang. Data from 
WMAP helped to establish the standard model of cosmology, in which the 
energy contents of the Universe are dominated by dark energy, and the 
matter content is dominated by dark matter.  

Another milestone in the study of the Universe on large scales was 
achieved by the Sloan Digital Sky Survey (SDSS). This project used a 
dedicated 2.5 meter telescope in New Mexico, which started collecting 
data in 2000 and is still active, to image a quarter of the sky. The SDSS 
also took spectra of nearly one million objects in the sky, allowing the 
distribution of matter on large scales to be mapped with unprecedented 
accuracy. Another key feature of this project is its promise to make all the 
                                                           
6 The spacecraft was launched in 2001 and it is still taking data. The scientists 
working on the Cosmic Background Explorer (COBE), the predecessor of WMAP 
in 1989, received the 2006 Nobel Prize in physics “for their discovery of the 
blackbody form and anisotropy of the cosmic microwave background radiation.” 
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gathered data available. The latest public data release of SDSS, which was 
the ninth release (DR9), took place on July 31, 2012. 

This steady improvement in observations forced the theorists to 
develop new tools able to produce at least the same kind and amount of 
data as the one provided – or expected to be provided – by telescopes. This 
demand represented a huge theoretical barrier, however, since optical 
observations detect light, whereas theoretical (i.e. computational) 
astrophysics at that time relied on dark matter, which does not emit 
photons. To bypass this problem, it was developed a semi-analytic 
approach for modeling the properties of large numbers of galaxies. The 
next section explains the most important features of this technique. 

Today, the majority of astronomers and physicists have embraced the 
idea of dark matter as the underlying reason for the evolution of galaxies. 
Many observational astronomers have become avid consumers of the 
results of simulations of dark matter-dominated universes. This has had the 
interesting effect of pressing theorists to make the data public in open 
databases (following the example set by SDSS), which encourages their 
usability by a wider community. As a result, public databases have become 
a common prerequisite if a group of computational astrophysicists want to 
be noticed by the scientific community (Riebe et. al., 2011). This event 
has, however, been widely criticized because of a negative spin-off: many 
users blindly use the data without really reflecting on their limitations and 
range of validity and, therefore, they risk misinterpreting the results. 

The consolidation of the current model of our Universe was made 
possible thanks to the implementation of simulations as a reliable 
scientific tool. Dark matter still lacks a conclusive description in terms of 
fundamental particle physics, however. Its effects can only be inferred by 
its gravitational effects since it is postulated that it does not interact with 
electromagnetic waves (i.e. light). Discovering the physical nature of this 
collision-less fluid of dark matter confronts physics with one of the biggest 
puzzles of the twenty-first century. 

The Simulation Process: Computation, Verification  
and Visualization 

In this section, we focus on two kinds of simulations that are central to 
the contemporary work on physical cosmology: N-body simulations and 
semi-analytic models. In both cases, three main steps are needed to 
produce scientific results: (1) defining the initial conditions and the 
relevant parameters that describe the model universe, (2) verifying that the 
codes produce reliable results within the range of parameters already 
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chosen, and (3) visualizing the simulated data in order to process them and 
draw conclusions. 

N-Body and Semi-Analytic Simulations 

N-body simulations and semi-analytic models (SAMs) are radically 
different, though complementary, techniques to simulate the universe. N-
body simulations resolve the fundamental physical equations that describe 
the gravitational interaction in an expanding universe. On the other hand, 
SAMs describe the interaction of different physical processes (i.e. gas 
dynamics, star formation, black hole formation) through very simple 
analytical prescriptions; they are based on observations and good feeling, 
without any ambition to address equations solving fundamental physical 
laws. 

In N-body simulations the relevant differential equations are integrated 
in the computing through a process of discretization of space, mass, and 
time. Therefore, achieving a solution as accurate as possible requires a 
good capacity to carry out this discretization. In other words, it requires a 
large number of points to sample the spatial and temporal dimensions, 
which are only possible with the aid of substantial computational 
resources. In the case of large-scale structure studies, N-body simulations 
aim ideally at representing larger patches of the universe by means of a 
large number of points that sample the underlying matter distribution. In 
other words, the goal is to simulate larger volumes of the universe with as 
much spatial detail as possible. In the case of cosmological simulations 
including only a dark matter component, this level of detail depends on the 
number of particles participating in the calculations: the more particles we 
include in the computation, the more accurate the results we obtain. 
Consequently, increasing the number of particles in the computations has 
been one of the most important challenges in the classical cold dark matter 
simulations (Klypin et. al., 1999). In fact, it has generated a race among 
scientists to achieve even more powerful calculations; that is, to obtain 
even more detailed representations of larger volumes of the universe. 
Whereas in the 1980s only a few thousand particles could be included in 
the computations, at the end of the last century their number increased to 
billions. This competition was largely impelled by the growth in 
computing power, improved super-computer architectures and more 
efficient algorithms (Klypin et. al., 2011). 

Notwithstanding the relevance of the number of computed particles, N-
body simulations can only provide partial information. In the case of dark-
matter-only simulations, they present the spatial distribution of matter 
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produced under the action of gravity, but they do not reveal the properties 
of the numerical galaxies that could form in this specific matter 
distribution. This would imply introducing gas and stars as key factors of 
the simulations, which involve tackling hydrodynamics and the reciprocal 
influence of radiation and matter. The algorithms required to perform these 
calculations would be extremely complex and consequently very 
expensive. Furthermore, a huge amount of time and energy would be 
required for computing physical details that are irrelevant in view of the 
general processes taking place. For these reasons, semi-analytic models 
are used as a complementary method of computing. These models avoid 
deriving a physical description from fundamental laws and instead are 
based on phenomenological approximations: they assume certain observed 
facts without trying to perform a detailed computation (Baugh, 2006). 

At first glance, SAMs appear as a deceptive, simple, and rough 
approach to complex problems, since they do not try rigorously to describe 
physical processes from fundamental considerations. They introduce free 
parameters; that is, certain values that do not immediately correspond to 
fundamental physical quantities, but that assume the results of a process as 
given. Thanks to this strategy, SAMs make feasible the simulation of 
complex processes that otherwise would be excluded from computational 
astrophysics, since fundamental laws are not enough to predict their 
results; N-body simulations including hydrodynamics and other processes 
would be insufficient to achieve any satisfactory result. Without SAMs, 
the effects of key galaxy formation processes could not be calculated 
through simulations. As a result, SAMs open new possibilities in 
theoretical astrophysics. For instance, to model the effect of a supernova 
exploding in a galaxy, SAMs simplify the problem with a handful of free 
parameters describing the final outcome, whereas N-body simulations 
would try to solve each relevant equation of hydrodynamics and chemical 
reactions, making the calculation impracticable owing to its complexity 
and, in any case, unattainable owing to the high computational costs 
(Scannapieco et. al., 2012). 

A crucial achievement of SAMs is that they made possible statistical 
comparison between simulated and observed galaxies, therefore 
constituting a fundamental tool for studying the evolution of galaxies in 
cold dark matter universes. These models can predict observable 
properties of galaxy populations, which essentially mean predicting the 
total amount of light emitted by every single galaxy. Since these 
simulations are based on light values, it is possible immediately to contrast 
their results with data obtained in actual observations. In the case of a 
disadvantageous comparison, different sets of free parameters can be 
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corrected until they match the observed values. Consequently, these 
comparisons result in the refinement of the theoretical grounds defining 
the model. Even though the parameters cannot be interpreted in physical 
terms, this kind of reasoning has pushed the development of important 
theories in cosmology. An example especially relevant in this context is 
the role of supermassive black holes in the evolution of galaxies. The 
results of SAMs that include the alleged effect of black holes on galaxy 
evolution provide a much better match with observational data than 
models without that effect (Croton et. al., 2006). 

Protocols for Verifying Simulations 

Verifying cosmological simulations of large-scale structure involves 
two different stages. First, the scientist has to be sure that the code 
accurately solves the equations it was designed for. This accuracy can be 
quantified by comparing the numerical solutions with the results 
calculated through analytical considerations used in very simplified 
configurations. In the specific case of simulations that only include dark 
matter, this first step in the verification process means ensuring that the 
code accurately calculates gravitational forces. To this end, several 
techniques have recently been developed, each algorithm having a 
different degree of accuracy for a given computational cost. Among them, 
the most popular are the Particle-Mesh (PM), the Tree algorithm, and the 
hybrid Tree Particle-Mesh (TreePM).7 

In a second stage, the results of the code are tested for numerical 
convergence. This involves making sure that the computation does not 
depend on the particular numerical implementation of the model, but only 
on the basic physics that is expected to drive the results. Such 
differentiation between computation/physics is not as clear-cut as one 
might think. In many cases, the numerical implementation and the 
physical model are strongly connected. For instance, in the case of N-body 
simulations there is a trade-off between the volume of universe patch that 
can be simulated and the minimum mass used to discretize the matter 
distribution in the computational volume. Both the volume and the 
minimum discretization mass are computational parameters, which 
nevertheless are related to physical quantities. A convergence test in this 
case implies running a simulation of the same volume, but with the matter 
distribution discretized in a larger number of discrete mass elements 
                                                           
7 Section 3 in Springel (2005) provides a good account of the kind of convergence 
tests that can be performed on a code aiming at describing gravitational interaction 
for the purposes of cosmological simulations. 
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(called particles). One would expect the results for the higher resolution 
simulation (larger number of particles) to be compatible with the lower 
resolution computation (lower number of particles). Only the properties 
that are the same in the two simulations are considered robust and reliable. 
These two steps in the verification process are also performed in other 
kinds of simulations that include computations of the fundamental 
equations describing hydrodynamics, gravity, and the interaction of 
radiation with matter. 

Albeit some recent exceptions exist (Benson et. al., 2012), SAMs are 
usually not verified. This circumstance is partially owed to the lack of 
significant analytical expressions to describe the result of a SAM 
simulation, but mostly because there is no standard way to implement a 
SAM model. A consequence of this peculiarity of SAMs is its neglect by 
some of the astrophysical community who regard these codes as opaque 
tools that do not provide any physical insight into the problem of galaxy 
formation. In spite of this, the results obtained by SAMs are widely used 
both by observers and by theorists.8 

The Role of Visualizations 

Be they N-body simulations or semi-analytic models, all the results of 
a simulation must be visualized: astronomy is essentially a visual science 
dominated by observation. An important traditional research method in 
astronomy consists in analyzing images; that is, observing them to gain 
information. With the introduction of the telescope astronomers ceased to 
look at the sky directly with their naked eyes. They no longer look at the 
sky but at images containing information about it – information that can be 
provided by telescopes or, more recently, by simulations. In any case, 
nowadays the daily work of many astronomers largely consists of looking 
at the screen of their computers. Even if they are observational 
astronomers, instead of being seated at the telescope looking through the 
eyepiece, they are more commonly seated at a desk working with digital 

                                                           
8 In 2008 there was a workshop called “Semi-analytic models – are we kidding 
ourselves?” (http://www.sr.bham.ac.uk/workshop/2008/) with the following 
scientific rationale: “This semi-analytic approach allows baryon physics to be 
incorporated in a way which, compared to hydrodynamical simulations, is fast, 
transparent, and easily modified, and arguably provides greater physical insight 
into the results. The contrary view is that semi-analytic models contain so many 
adjustable features that their optimization constitutes little more than an 
underdetermined fitting operation, resulting in models, which are non-unique and 
have little predictive power.” 
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data and digital images received from the device. Under these circumstances, 
it is not surprising that data from simulations are naturally visualized so 
that the information can be processed. 

Another reason for the necessity of visualizing simulations is its 
usefulness. Comparison of different simulated results is easily done, as a 
first approximation, by “direct inspection” of visualizations. Nevertheless, 
comparing raw data requires the design of an appropriate mathematical 
tool to quantify a given effect. Looking at images guides the development 
of such tools. Consequently, visualization is still a practical step in 
cosmological simulations to analyze and interpret data, although 
quantitative analysis has an increasing role in the comparison of different 
models. 

In general, images are especially useful in this field because in most 
cases the simulated processes and phenomena cannot be observed in the 
physical world. For instance, the gradual collision of galaxies, the early 
stages of the Universe, or its large-scale structure become visible to us 
only by means of simulations. Since the first attempts in the modern era to 
define the large-scale structure and the processes that took place at this 
level, scientists have indeed made use of images to support their theories 
and hypotheses. The special case of Descartes mentioned above is not an 
exception. In his scientific books, he took special care to include a rich 
number of images associated with each important explanation.9 Following 
the internal logic of his epistemological strategy, the images of Le Monde 
and the Principia can be seen as screenshots of the sort of simulation (the 
“imaginary spaces”) he proposes. Only through these woodcuts and 
engravings, the process of formation of the large-scale structure of the 
universe becomes visible. In a similar way, contemporary simulations also 
offer the opportunity to analyze the large scale by using images that 
otherwise would be impossible to achieve. As in the case of Descartes, 
today it is not the whole simulation process that is visualized, but only 
certain selected moments. In both cases, what we obtain is a kind of 
sample image of a more complex process that largely remains on a 
theoretical (non-visualized) level. 

In contemporary simulations, the quality of the visualizations is 
correlated with the degree of detail of the conclusions drawn from them. 
As mentioned before, in the 1980s only a few thousand particles were 
computed. Consequently, at the beginning of the simulation era the images 
                                                           
9 The artist and mathematician Frans van Schooten the Younger was commissioned 
to make the images of Descartes’s Principia Philosophiae. The philosopher 
worked closely with him to achieve images as faithful to his ideas as possible (see 
Zittel, 2009). 
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obtained from the computations were very rough, only consisting of a 
small number of dots. The computing power progressively increased with 
the passing of time and, with it, the complexity of the resulting images. 
Whereas earlier visualizations only showed a very simple dot distribution, 
currently they give much more detailed information, making visible 
textures, and nuances previously impossible to achieve. As a result, 
today’s simulations provide much more information about the Universe, 
also because we understand better than ever before how to program the 
code and how to interpret the resulting data. Notwithstanding the 
refinement of visualizations derived from the general improvements in the 
field, the fundamental physical effects were already present in the early 
examples. 

Limitations of Simulations 

Simulations are used as tools to explore the consequences of a theory. 
Therefore, they are only as convenient and informative about the Universe 
as the theoretical concepts included in the model. If a simulation 
successfully reproduces some feature of the observed Universe, one can 
only see this result as circumstantial evidence proving the relevance of a 
given theoretical component in the description of the Universe. This 
limitation of simulations is often forgotten by routine and convention. 

A second limitation is their physicality: time, data storage, and data 
transfer rates are restricted. There is an upper limit to the amount of time a 
simulation can run, since they do not run for years in a row. The runtime 
of a simulation is largely restricted by the short lifetime of the machines 
themselves, which is in the order of just a few years. Another aspect of 
physicality consists of the space that can be allocated to store the 
simulation results: hard disks are limited in terms of both number and 
capacity. Finally, nowadays, in the era of networked science, there is an 
additional limitation: the transfer rate of data around the globe is not 
unlimited. If an international collaboration wants to have access to the 
same results, there is a minimum non-negligible time lapse in the transfer 
of the data. All these limitations are taken into account in the design of a 
code and a simulation. 

Eventually, these physical limitations produce a digital divide that 
clearly defines the kind of science that different groups can make. At one 
end of the spectrum is science based on large amounts of data, with 
powerful supercomputers, and fast network connections; at the other end 
are groups aiming at exploiting the complexity of the algorithms and the 
novelty of the physics to be probed, with codes that can run on modest 
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computers and produce results that can be instantaneously shared with 
colleagues around the world. 

Finally, in relation to the fast pace of scientific collaboration, there is 
another physical limitation: the amount of time a human can invest in 
analyzing the data. The rhythm of scientific research funded by large 
institutions (universities, companies, and scientific foundations) imposes a 
quick turnover of ideas and people. The results must be obtained and 
published in the literature as quickly as possible. This is seen by many as 
the real bottleneck in progress in computational cosmology, since tasks 
have to be finished on timescales of a few months or years, providing little 
motivation to do long-term work such as finding new algorithms, rewriting 
codes to improve computational efficiency or even trying out new ideas. 

Simulating the Right Universe 

We have seen how N-body simulations of structure formation in a 
dark-matter-dominated universe have played a central role in the 
emergence of a standard cosmological model. The main factors for the 
construction of such a robust computational framework were the 
refinement of numerical models and their comparison against observations 
that were developed during more than three decades. However, this 
development does not imply conclusive proof that the Universe is indeed 
well represented by the physics commonly included in the simulations; 
namely, general relativity and dark matter. 

In 2010, during a debate over the existence of dark matter, Simon 
White – one of the early proponents of the concept of cold dark matter – 
was confronted with the following question: what observational or 
experimental result would convince him to change his mind about cold 
dark matter?  He answered that only a theoretical model providing a better 
match with observations could persuade him to ignore cold dark matter.10 
Purely observational or experimental evidence alone is no longer decisive 
in terms of discarding or accepting a model in physical cosmology. A 
hypothetical competing model has to reach the same degree of 
sophistication as cold dark matter, with accurate N-body simulations and 
flexible semi-analytic models, to be able to stand comparison with a 
wealth of observational data. This position reveals the particular state of 
affairs in contemporary large-scale structure studies.  
                                                           
10 The debate took place on November 18, 2010, at the Physikalisches Institut in 
Bonn. This debate can be viewed here:  
http://www.uni-bonn.tv/podcasts/20101201_Bethe_Debate.mp4/view.  
The question is asked around 29 minutes and 34 seconds into the video. 
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The current standard model that explains the emergence of structure in 
the Universe has two unsettling elements: dark matter and dark energy. To 
make advances in the nature of dark energy, the astrophysical community 
has agreed that we require measurements that are accurate within a 
fraction of a few percent, which has served to coin the term precision 
cosmology. It means that we are looking for effects that are small 
deviations from the results derived by simulations in the standard model. 
If such precision is achieved, it also implies that it will be possible to look 
for small deviations beyond general relativity and the standard 
cosmological model. This realization has motivated the study of 
computational models beyond the standard cold dark matter model. 

Such deviations from the mainstream of research, in spite of being 
minority tendencies, are progressively gaining attention. In fact, some of 
the current simulations are based on different kinds of gravity or different 
kinds of dark matter. This wide range of possibilities is affecting 
confidence in our own picture of the cosmos: we do not know whether we 
are simulating the right universe! We can only wait until these new 
theories find their way into computational models and, in parallel, until 
observational probes diversify and improve their precision. In the next 
decades, we expect renewed interplay between simulations and 
observations to solve these questions at least partially. 

Coda 

Studies of the large-scale structure of the Universe have three main 
components; namely, theory, observations, and simulations. They are 
interconnected and mutually influenced: new theories trigger new 
observational strategies, simulations are essential for refining theoretical 
concepts and, at the same time, they are also essential for interpreting 
observations. 

Each of these epistemic genres can act as a solution when the others 
reach their limits. This is the case with simulations able to explore beyond 
the boundaries of observations. Some simulations therefore acquire such 
complexity that it becomes impossible to manage all the data produced. At 
this stage, scientists, in an attempt to find new valuable information, start 
to observe the simulations themselves. 
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CHAPTER NINE 

EXPERIMENTATION AND SIMULATIONS  
IN THE PHARMACEUTICAL INDUSTRY 

MUNIZA REHMAN 
ROSKILDE UNIVERSITY 

Introduction 

Computers have revolutionized the past century in terms of social 
interaction, knowledge, and especially science. Several scientific areas 
have evolved to the point that now they can solve previously unsolvable 
theoretical problems, mainly because of the increase in computational 
power, combined with necessary model simplifications. In other areas, the 
technological development has enabled scientific disciplines to work 
together in defining new approaches to gaining knowledge of the world. 
Models are implemented on computers, which execute the calculations 
and have thus become an important instrument. One field where models 
have gained ground and are used for simulations is the pharmaceutical 
industry. 

In this paper, the focus will be on some of the different kinds of 
models that are used in simulations with different purposes. Some of them 
are more mechanistic and related to the physiology of the body 
incorporating empirical constants, while others serve a more instrumental 
purpose such as optimizing clinical trials with regard to a chosen dosing 
regimen. Both types of models are based on what are called 
‘pharmacokinetic’1/‘pharmacodynamic’2 (PK/PD) models, but with a 
different detailed relation to the human body. 

                                                 
1 Pharmacokinetics is the study of what the body does to a drug in terms of 
degradation. 
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The physiological models are more detailed and incorporate 
mechanisms that are relevant for the developed drug. The more 
instrumental and simpler models are known as ‘compartment’ models and 
these mathematical models, combined with statistics, give rise to a novel 
scientific area known as ‘pharmacometrics.’ This is a combination of PK 
and PD models, which involves modern graphical methods, stochastic 
simulations, and computer programming. These models aid in 
understanding the impact of varying dosing strategies, and patient 
selection criteria, improve population dosing strategies, and are useful 
when customization of patients’ dosing strategy is needed through 
therapeutic drug monitoring (Rowland, 2009). 

Before going into the role of the models and their relation to 
experimentation, I will introduce the pharmaceutical industry and 
elucidate the regulations and historical background of the current drug 
development process.  

The Pharmaceutical Industry 

In the pharmaceutical industry, it is crucial to develop new drugs that 
are effective and safe. In order to get a drug on the market it has to be 
approved by the national agency in the country where approval is sought. 
One of the heavyweights in the world of agencies is the Food and Drug 
Administration (FDA) in the US. The US is a very large market for many 
companies and the FDA has issued many guidelines that clarify current 
expectations for areas in the development process. 

Some of the key elements for drug approval from the agencies’ 
perspective are: ensuring the safety and efficacy of a drug, assessment of 
whether the drug candidate is safe and effective for human testing, and 
eventually assessment of the quality of the drug when manufactured on a 
large scale. In recent years, there has been an increased focus on better 
prognostic tools to improve the efficiency and cost in developing safe and 
efficacious drugs. The FDA has identified model-based drug development, 
simulation of clinical trials and assessment of variability by 
pharmacometrics as some of those tools and issued guidelines or 
regulations to ensure a minimum level of research, reliability, and ethics. 

There are different stages of drug development; I will try to sketch the 
process in the following, although depending on accessibility of data for a 
given drug in development there can be certain variations in the course of 

                                                                                                      
2 Pharmacodynamics is the study of what a drug does to the body in terms of 
physiological effects. 
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events; however, the description still gives an insight into the realm of 
drug development. On average, it takes a drug 7-12 years before it is ready 
for the market and the cost is between 0.802 and 1.7 billion dollars (Ette 
and Williams, 2007). 

 The first stage is the ‘discovery’, where different compounds are 
synthesized, targeted for a disease. Prior knowledge about the disease 
mechanism is useful (often necessary) for the development of a new drug. 
The different compounds are tested on animals to exclude the toxic 
candidates; this is also known as the ‘preclinical phase.’ In vitro testing is 
also of great importance as it can contribute to the understanding of drug 
mechanisms. After that, there are phase 1 clinical trials in healthy 
volunteers, phase 2 clinical trials with a larger number of participants, and 
finally phase 3 trials in patients. Phase 1 studies identify well-tolerated 
doses, and sometimes the maximum tolerated dose. The PK is studied for 
single doses and multiple doses (accumulation taken into account) to gain 
initial knowledge of the exposure-response relationship. Food and gender 
effects on the PK can sometimes be determined. 

Phase 2 focuses on the ‘proof of concept’ that the drug is capable of 
being effective. These phases also aim to define the most likely safe and 
effective dosage regimen for phase 3 trials by determining the maximum 
tolerated dose if this has not already been done. Phase 2 also provides 
mechanistic information, and identifies and quantifies the magnitude and 
causes of variability in pharmacokinetics. In many cases, phase 3 trials 
evaluate several doses to define benefits and risks further, and, more 
specifically, dose-response relations are investigated. This is the pivotal 
phase for the registration of a drug. 

 

 
 
Figure 9-1: Drug Development  
 

As mentioned, a drug is approved by a national medicinal agency 
before it is launched on the market. Agencies examine the produced data 
thoroughly and, in the case of deficiencies, they can demand further 
investigations. After the approval, the drug is still monitored, as there can 
be adverse effects that take years to develop and caution is therefore 
needed. There is communication between agencies and the pharmaceutical 
companies during the whole development process in which feedback is 
given to the companies. 
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Not long ago, regulatory agencies were not part of this process and 
pharmaceutical companies had full autonomy to conduct research as they 
wished. The need for such agencies was evoked by several historical 
tragedies, which I will go through to give an idea of the risks associated 
with drug development. 

Historical Perspective on Experimentation and Agency 

The establishment of agencies as we know them today is rooted in 
accumulated historical mishaps that led to the more formal institutions and 
current rules in force. The origins of the FDA can be traced back to 1848; 
however, it was not known by its present name until 1930, and the modern 
regulatory function of the FDA began with the passing of the 1906 Pure 
Food and Drug Act. In 1937, 107 people died in the US of diethylene 
glycol poisoning due to the consumption of sulfanilamide elixir used as a 
chemical solvent without safety testing. This led to the Federal Food, 
Drug, and Cosmetic Act in 1938 (Lembit Rägo, 2008; FDA, 2010). The 
law authorized the FDA to demand evidence of the safety of new drugs, 
issue standards for food and to conduct factory inspections. 

Some of the key features for clinical testing3 include informed consent 
and a required research protocol, which have to be approved by an ethical 
committee before the study begins. The informed consent discussion 
gained momentum after the Second World War when prisoners in Nazi 
concentration camps were used for medical experimentation by German 
physicians (Shuster, 1997). The justification of the doctors conducting the 
trials was that they served the state by developing medication to save the 
lives of German fliers and soldiers. This led to the emergence of the 
Nuremberg Code in 1947 which, among other principles, introduced the 
principle of the informed consent of human research subjects before 
participation in a clinical trial through which a protection of human 
research subjects was ensured by focusing on their human rights instead of 
than focusing on the consequences or a greater good. 

Another drug disaster that had a severe impact on regulations 
concerned Thalidomide, which was approved in the late 1950s in Europe 
as a sedative and against nausea during pregnancy. The FDA did not 
approve it in the US, and it was tested on animals and gave to patients 
without this approval and without obtaining informed consent. 
Thalidomide was approved as a racemic blend, meaning that it was 

                                                 
3 This is, experimenting with dosing of a drug on human subjects in specifically 
designed trials. 
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approved as containing both left- (S) and right- (R) handed isomers4 in 
equal amounts. The R enantiomer5 was effective against nausea whereas 
the S enantiomer was a teratogenic agent, meaning that it disturbed the 
development of the embryo or fetus. It was estimated that more than 
10,000 children have been born with Thalidomide-related deformities in 
the world. If the drug had been tested on pregnant animals it would never 
have been approved as the teratogenic effects would have emerged as they 
did subsequently; however, Shuster argued that scientists did know and 
tested whether the drug could cross the placenta, but this is not the opinion 
found in the majority of the available literature (Shuster, 1997). 

The difficulty with Thalidomide is that it does not cause the same types 
of deformity across animal species, and in general, they are different from 
the effects seen in human subjects. The types of deformity, which would 
have been observed if testing had been done on pregnant mice, are not 
necessarily as severe as in humans due to differences in hepatic 
metabolism. Thalidomide is broken down into many different molecules in 
the body and some metabolites can be toxic as well, so metabolic 
differences can have severe implications for toxicity. It was found that the 
drug had a much shorter half-life in mice than in humans. However, there 
is no doubt that given the complications, fetus research across species 
would have prevented the catastrophe as the development would have 
been stopped due to some observed deformities, albeit not as severe as in 
humans, as it would have raised some red flags. 

 This disaster had a great impact in the pharmaceutical world and 
together with many other events led to the formation of the Helsinki 
Declaration in 1964. This was established by the World Medical 
Association (WMA) and emphasized the respect for and autonomy of 
human research subjects and the obligation of physicians to the patients. 
Though it is not a legally binding document, most regulatory agencies or 
national laws consider it when regulating research practices. The 
document is still revised from time to time in order to meet developing 
trends within medical research. 

As mentioned earlier, all sorts of guidelines and regulations exist today 
to ensure the safety and efficacy of new drugs, ranging from the 
preclinical and clinical development to manufacturing. The historical 
perspective brings to light the importance of experimentation and 
observations in drug development, and it is inescapable as the human body 

                                                 
4 Compounds with the same molecular but different structural formulas. 
5 The two mirror images of a chiral molecule. 
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is complex and the risk of adverse events is high due to the complexity 
and relatively scarce knowledge of physiological mechanisms. 

Even today, drug disasters take place, but mostly this is because the 
knowledge gathered from experimentation is ignored or downplayed. A 
relatively recent major drug disaster is the case of the anti-inflammatory 
and pain-relieving drug Vioxx developed by Merck (Houlton, 2007). The 
company pulled it from the market in 2004 as they discovered an 
increased risk of adverse cardiovascular events such as strokes and heart 
attacks. The FDA approved it in 1999, and Merck initiated post-approval 
clinical testing. This study showed that the risk of adverse effects was 
greater for Vioxx than from the older drug Naproxen. Some of the study 
results were omitted and Merck was accused of hiding the side effects, 
though the company claimed it was because they were seen after the trial 
cut-off date. The FDA was also accused of not acting on behalf of public 
health but on behalf of corporate interests (Pai, 2005).  

Such drug disasters are wake-up calls for regulators to be more vigilant 
when it comes to drug safety. Knowledge of how the drug works in the 
human body is crucial to make sure it is approved and stays on the market. 
However, knowledge in itself is not enough; it is important, but it is even 
more important to be aware of what we do with the knowledge gained. In 
the Vioxx example the knowledge was there as study results had indicated 
the higher risk of cardiovascular events, but Merck chose not to act upon 
the knowledge gained.  

There is a great deal of unpredictability, and to minimize that it is, and 
always will be, necessary to test new molecular entities on human 
subjects. Drugs are not like ordinary consumer products such as shampoo, 
iPhones etc., as consumers in the case of drugs are in a risk zone if they 
take matters into their own hands and decide when and how to take the 
drugs, and they do not have the knowledge to weigh the benefits against 
the risks of different possible uses. With ordinary consumer products, 
desires and needs were dominant, and the personal freedom is larger than 
with drugs since, in the latter case, the implications of wrong use can be 
severe. 

Normative elements are associated with drugs as professional advice 
from experts with specific knowledge of the drug is a necessity to use the 
drug correctly and without causing harm to oneself (from a patient 
perspective). As some put it in studies of technology, there is a use form 
attached to the drug, a prescription telling the patient how to use the drug, 
but more importantly the side effects that might occur. Such knowledge is 
largely gathered from experimentation, which in the past was the only 
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approach to acquire the knowledge; combined with a more reckless 
attitude towards patients it resulted in many drug disasters. 

However, the obligation to act upon the knowledge is still crucial and 
this depends on the experts who are the pharmaceutical companies in this 
case. For now, the focus will be on the approach to knowledge gathering, 
where simulations play an increasingly important role. Before the age of 
simulations in the pharmaceutical industry, the approach to dose selection 
only took a point of departure in experiments where the highest tolerable 
dose was determined. A typical study could consist of a parallel-dose 
clinical trial where two groups are given two different doses, the outcomes 
are compared, and the dose with the most favorable outcomes is chosen 
for further investigation (Bonate, 2007). The patient groups in such studies 
are often homogenous in terms of demographics, age, disease progression 
etc. and only a few outcomes are recorded and observed, often at the 
beginning or end of a trial. The analysis of the observations is traditional 
hypothesis testing with a null hypothesis claiming no difference between 
the two dosing regimens. In this way, the dosing regimen determined is the 
one resulting in the best outcomes, which are minimum toxicity and 
maximum effect. 

However, as the starting point is the highest tolerable dose, the dose 
selection is often too high. Sheiner et al. (2001) point to a survey 
conducted on 354 evaluable drug labels out of 499 drugs approved in the 
US in the period 1980-1999, and the fact that 25% of the formal labeling 
for doses was changed (80% was a reduction) for new chemical entities 
suggests that it surely is the case that excessive doses are settled upon. The 
need for a better approach to dose selection was evoked by leading 
scientists such as Lewis B. Sheiner and they had a great impact on 
introducing PK/PD modeling and statistics as a more effective and safe 
means of dose selection in the industry. In the following, it will be 
elaborated how specific types of models are used for simulations to gather 
crucial information in deciding on the normative aspects of drug use. 

The models and their role - the current state 

The types of model that are the focus of this article are known as 
‘compartment’ models and they are combined with statistical methods to 
account for the variability in responses to drugs and the kinetic properties 
of the drug that is seen in patients. The differences can be due to specific 
genetic dispositions or varying capacities of the liver or other organs to 
metabolize the drug; weight and age are also of great importance. 
However, the compartment modeling approach is used to model drug 
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passage in the human body by representing it by one or several (mostly 
two or three) compartments (see Appendix A for more details). These 
models enable modelers to predict the drug passage (kinetic properties) for 
different dosing regimens and they are known as pharmacokinetic (PK) 
compartment models. Another type of model is the pharmacodynamic 
(PD) model. PD is concerned with what the drug does to the body, the 
responses it elicits: for instance, a drug could have an agonistic6 or 
antagonistic7 effect on cell receptors, triggering or inhibiting a certain 
response. Data from trials consist of both, measurement of drug 
concentration in the blood plasma to determine the kinetic properties of 
the drug and of measurement of other factors to determine the body’s 
response to the drug. There is a great variation in individual 
pharmacokinetics due to age, genetics, gender, weight (prognostic factors) 
etc. Pharmacodynamics is determined by kinetics, as response depends on 
the drug exposure, which results in a similar variation in PD; all in all, 
variation gives rise to noisy data. When the two model types are 
combined, a relationship between dose and response is established, which 
Sheiner argued was a key method of turning noisy data into a signal. For 
instance, if the combined model is based on data from a study where 
patients have been given 200mg of a drug every 6 hours and responses are 
observed, the final model could be used to simulate what the drug-
response profile would look like if 400mg were to be given every 12 
hours. 

The models are used in two different ways during the drug development 
in the different phases, either in a learning, or a confirming mode. The 
statistical approaches to analysis of clinical data, the goals and the study 
design, combined with the structural PK/PD model, differ between the 
learning and confirming mode as will be described in the following. The 
goal of learning is to estimate the benefits, regimen, and prognostic factors 
resulting in variation. The more the knowledge of a drug that is gained, the 
more capable the company is of controlling sources of variation; and the 
latter is important – as it results in stability, reliability, and less 
unpredictability, it is often associated with less risk. The analysis mode of 
data from clinical trials is probabilistic, often Bayesian, where prior 
knowledge (for instance, knowing a two-compartment model is suitable, 
or a certain mathematical relation between clearance and age) is 
incorporated when updating beliefs with current data from trials. Many 
different regimens are chosen, and the study design is not necessarily 

                                                 
6 Activates or stimulates a response. 
7 Inhibits a response. 
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symmetrical. An asymmetrical design means that the number of patients 
assigned to different dosing regimens need not be the same, and the reason 
for this is that learning is achieved best when diversity is explored. The 
types of patient included in the learning design are heterogeneous in terms 
of age, sex, demographics etc. because this allows the variation in dose 
response to be discovered. To get a grasp of drug exposure, plasma 
concentration as a function of time is of interest. Therefore, compliance 
(individual PK and drug-taking behavior) is taken into account, as the goal 
is to correctly attribute response differences to variation in actual regimens. 

Contrary to learning, the goal of the confirming phase is to falsify that 
treatment efficacy is absent or more generally that there is no difference 
between two dosing regimens.8 Because the goal is more specific, the 
statistical analysis is traditional hypothesis testing and the selected patient 
group is homogenous and specified with regard to prognostic factors. The 
study designs are more symmetrical in the sense that a typical 
confirmation design could be a randomization of patients into two equally 
large treatment groups, which could be the test and the control group 
(often placebo). The test group (not placebo) is often assigned as high a 
dose as possible, a dose that is unlikely to induce toxicity, which makes 
sense as the goal is to show that there is a drug-related benefit which is 
more likely the higher the doses that are given (falsification of null 
hypothesis). In the confirmation study, the assigned treatment is taken into 
account and not the actual adherence to the assigned treatment. It is 
assumed that all patients have taken the assigned doses. The observational 
strategy (outcomes) is often restricted to one or two clinical measures.9 
However, a confirmation design study can easily be used for learning 
analysis if a few additional extra measurements are taken into account in 
the observation strategy. When developing a drug, there are alternate 
cycles of learning and confirming in the development process (see figure 
9-1). After a learning trial, a confirmation trial is initiated, possibly with 
learning elements to confirm what has been learned and to learn new 
things. This is also why this paradigm is called the ‘learn-confirm-learn’ 
paradigm, because learning is still possible for confirmatory studies and 
examples of this are given in literature (Sheiner, 1997). 

As outlined above, the models can differ in complexity and be used in 
different ways. There are empirical models that are data-driven and simply 

                                                 
8 Each of these could be taken to be the null hypothesis in statistical hypothesis 
testing. 
9 If the confirmatory trial is conducted with respect to toxicity, a large number of 
toxicity outcomes are observed and the analysis itself will be a learning analysis 
where toxicity is understood better. 
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describe the data at hand, which is the case with compartment models. 
Then there are mechanistic models that incorporate mechanisms known to 
be relevant for the system – these could be blood flow, saturable protein 
binding etc. The kind of model chosen depends on the questions that the 
company seeks answers for; for instance, sometimes the purpose is to 
characterize data in terms of a few kinetic parameters (volume of 
distribution, clearance etc.10) for individuals from the drug concentration-
time profile. If the goal is to understand the factors affecting drug 
efficiency (genetics, renal or hepatic impairment, concurrent diseases etc.), 
models that are more mechanistic are useful. To account for the variability, 
which can be due to individual PK differences, random statistical methods 
are combined with the models. In the next section, different ways of using 
these models for simulations will be covered. 

Simulations 

The models are used for simulations. Most of the cost in drug 
development is related to clinical trials, and so successful trials are a key 
to keeping the costs down. If the models are used alone without statistical 
methods, they are what it is called ‘deterministic of nature.’ It could be 
that a model is developed based on a single-dose trial and used to simulate 
the concentration-time profile for a repeated multiple dosing scheme to 
assess the steady-state11 concentration in the body. However, these kinds 
of simulations do not play a large role in the effectiveness of drug 
development; rather it is the type that simulates the costly clinical trials 
what has great value. These simulations protect the company from failed 
clinical trials where no learning or confirming is gained, which is why 
they have great value. The simulations could be stochastic, where error is 
introduced into the structural model as a randomly draw from the 
statistical probability distribution or statistical model. Such simulations are 
also used in other scientific areas and go under the name ‘Monte Carlo 
simulations.’ They can be used to estimate the percentage of patients 
experiencing an adverse effect by defining an adverse effect cut-off in a 
fixed dosing regimen, and depending on such results, the dose can be 
adjusted. One cannot be certain of the estimates, as there is some measure 
of imprecision in their values. A possibility for accounting for such 
imprecision is to use Bayesian simulation where an additional level of 

                                                 
10 For further information, see Appendix A. 
11 The rates of drug administration and drug elimination are equal. 
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uncertainty is introduced; however for now the statistical details will be 
left out (further reading (Bonate, 2007)). 

Simulations consist of an input-output (could be a PK model linked to 
a PD model) model and a covariate model coupled to a trial-execution 
model. A covariate model relates kinetic parameters to covariates such as 
age, weight etc. A trial-execution model is part of the input-output model 
in the sense that it defines how the clinical trial is conducted (dosing 
regimen). The trial can now be simulated either once or several times 
iteratively. It is recommended that the simulation has a few replicate runs 
to confirm that it is working before letting it run many times, as stochastic 
simulations can be quite time-consuming and this ensures that problems 
are detected early. One of the challenges with stochastic simulations is to 
know how many iterations run or how long to run the whole simulation, 
and this depends very much on the goal of the simulation. If an estimation 
of average outcomes is sought, relatively few iterations (in the order of 
fifty or so) could be sufficient, but if the goal is to observe rare events, a 
large number of iterations are necessary to detect them.12 These 
simulations provide guidance for future clinical trials, allowing the 
modeler to ‘test’ a clinical study design before conducting it. This 
simulation is of the type called ‘computer-assisted trial designs’ (CATDs). 
It could be that two different dosing regimens for an approved drug show 
the same efficacy, which can be confirmed by one trial resulting in a label 
change. Another type of simulation is ‘computer-simulated clinical trials’ 
(CSCTs), used to determine the clinical trial outcomes without ever having 
to conduct the study and serve as a justification for not doing such a trial. 
An example could be that it is simulated that no change in exposure occurs 
due to 50% decreased metabolic capacity and thus a study in patients with 
such a deficiency is argued to be unnecessary from a company perspective. 

In the philosophy of science, a discussion on the nature of computer 
simulations has raged in recent years. There are many opinions between 
two extreme poles claiming that they are a completely new method in 
science or that simulations contain no philosophical novelties 
(Humphreys, 2009; Frigg and Reiss, 2008; Lenhard, 2007). Humphreys 
claims that computational science is a sui generis activity that gives rise to 
new philosophical issues and requires a non-anthropocentric epistemology 
and a new account of how theories and models are applied. Moreover, he 
says (Humphreys, 2009): 

 
 

                                                 
12 These are ad hoc rules based on statistical theorems and inequalities (Bonate, 
2007). 
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[…] computer simulations often use elements of theories in constructing 
the underlying computational models and they can be used in ways that are 
analogous to experiments. 
 
The simulation types outlined above are related to experimentation in 

different ways. CATD simulations exist in interplay with traditional 
experimentation. Part of the underlying model is constructed based on data 
from clinical trials together with elements from pharmacokinetics or 
pharmacodynamics (could be both), and the model is then applied to a 
scenario where initial conditions are changed to simulate a possible future 
trial. The changing of initial conditions to simulate future trials is a kind of 
theoretical experiment, where outcomes are predicted and form the basis 
for deciding upon design choices in clinical trials. Theoretical experiments 
differ from classical experiments, as the element of measuring or 
physically observing is not present. In these experiments, the observations 
are on a computer, where the parameters typically measured or physically 
observed are estimated based on a theoretical model. 

These two kinds of simulations, CATD and CSCT, are related to 
traditional experimentation in completely different ways. In CATD 
simulations the theoretical observations are followed up by traditional 
experiments, so-called ‘confirmation trials’, which confirm the simulated 
results, or perhaps the trials reveal a need for adjusting the model in case a 
good match between theoretical and observed results is not obtained. Such 
semi-theoretical simulations I call ‘cooperative simulations’ as these gain 
credibility through the relationship to traditional experimentation. They 
are thus intertwined with empirical work. They are evaluated, and gain 
validity by fulfilling certain criteria ensuring goodness of fit to data. Such 
things are sometimes specified in guidelines: for instance, the FDA has 
issued guidelines on population modeling where such criteria are specified 
(FDA Guidance for Industry Population Pharmacokinetics). The purpose 
of simulations is very often to make better, more informed decisions on 
traditional experimentation designs and they serve as a pre-evaluation, 
which is later, confirmed by experiments. It could be that a new dosage is 
simulated in human subjects, and because it shows promising results, it is 
decided to run a clinical trial with that particular dose. Results from that 
trial can then confirm the simulation. 

CSCT simulations are more theoretical as they are not followed up by 
traditional experimentation because the purpose of these theoretical 
experiments is to avoid the traditional approach. These simulations 
detached from traditional experimentation are called ‘non-cooperative 
simulations.’ Here credibility is not needed in the same way as the 
simulated results in these cases are outside the region of desired results 
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and thus give reason to avoid the investment in experimentation as a 
confirmation of undesirable results is a waste of money. These simulations 
thus create distances to experimentation in the sense that they are grounds 
for not performing experiments. They do not serve the purpose of being an 
evaluation prior to experiments; rather these simulations are substitutions 
for the scenario that is simulated as no confirmation is sought. Without a 
doubt one could say that both types of simulation have contributed to new 
aspects in the pharmaceutical industry, so to say that there is no 
philosophical novelty related to them would be to undermine the effects 
and purpose of them. They have brought novelties to the industry when it 
comes to optimizing experimentation and, in general, to understanding 
drug effects, and thus simulations are truly sui generis in a Humphreyan 
sense, requiring a new epistemology also from an agency perspective. 

Future Simulations 

With the increasing computational power, the possibilities for complex 
underlying models are enabling simulations of even more complex 
phenomena. One of the more complex approaches within the field of PK 
and PD is the physiologically based pharmacokinetic approach (PBPK), 
where the body is represented mathematically in a way that is closer to 
reality. The number of compartments here is larger as all the organs 
important for the drug mechanism, and different biochemical and 
physiological processes are included. These models can enable simulations 
across species or extrapolation to other conditions, for instance change of 
dose. Recently, an entire book has been launched which is dedicated to 
PBPK modeling (Peters, 2012) and this shows an increasing interest in this 
more complicated approach, which accompanies the technological 
advances. 

It is a difficult process to develop such models as they often require PK 
data and parameters that are beyond the realm of available procedures, for 
instance extensive tissue sampling, which can be problematic for patients 
enrolled in trials. In vitro13 testing is important when trying to determine 
specific parameters as binding coefficients. In a way, this simulation 
method requires more experimentation, and so the bond between 
simulations and experiments grows stronger as this tendency gains inertia. 
When dealing with drugs, I believe that simulations will never become 
completely independent from experimentation; also due to the many 

                                                 
13 In vitro testing is outside a living organism. Cells are isolated and testing is done 
in the laboratory. 
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uncertainties related to human physiology. The historical mishaps have 
also scared the industry and affected the trust in drug development. 
Traditional experimentation will be difficult to evade and the need for 
clinical and laboratory testing will very likely remain in the future despite 
the propagated use of simulations. 

The increasing complexity of simulations does not come without 
troubling implications. Computers that are more powerful can be 
problematic in the sense that there are always hardware faults, and the 
number of hardware failures is proportional to the number of components, 
which increases with computational power. The development within 
computers shows that there has been an exponential increase in the 
number of components in computers in recent decades. This is briefly 
touched upon to elucidate the possible challenges of future simulations, 
and this very big subject deserves a complete paper of its own, but for now 
this will do. 

Hardware can give rise to different kinds of errors, which can either 
result in crashes or be silent and pass undetected. The latter are potentially 
more harmful as the effects of such errors are unknown, whereas a crash is 
detected and corrected. The impact of such errors on simulation results 
remains unexplored, and thus caution is needed when evaluating results 
from simulations where powerful computers are used, especially when the 
outcomes have a high societal impact as with drug development. However, 
this is something that the industry as a whole must face, whether it be 
companies, agencies, or the particular modeler working with this. A 
systematic approach to error detection and an awareness of possible effects 
on results is needed. As these results are closely linked to experimentation 
design it is important not to undermine the optimizing aspects of 
simulations by a naive belief in results when they fulfill defined criteria. 
How the pharmaceutical realm will face the challenges of increasing 
computational power and validity of results remains to be seen. 
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Appendix A 

A typical model could be a two-compartment model with intravenous 
administration where the body is represented by two compartments, one 
central, and one peripheral. In the following this model will be elaborated 
(Rowland, 2009; Peters, 2012). 

 
 

 
Figure 9-2: 2-compartment representation; k 12  and k 21  can be determined in the 

2-compartment model. 
 

 
Mathematically differential equations describing the change in the 

amount of drug in each compartment are solved to get the 2-compartment 
model. 
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The exponents14 are expressed in terms of the rate constants in the 
following way:  

 

  

(2) 

 

  

(3) 

 
In this model there is an initial volume of distribution which is 

obtained by setting t = 0 and isolating V1 (Rowland, 2009). 
 

  

(4) 

 
The initial volume of distribution does not sufficiently describe the 

distribution as the plasma concentration declines more rapidly in the initial 
phase in the body, and as the drug distributes into the slowly equilibrating 
tissues, equilibrium is established slowing down the elimination. The 
effective volume of distribution increases with time, and when the 
equilibrium is reached, which is the case in the terminal phase (the decline 
in tissue is parallel with that in plasma), a volume of distribution can be 
calculated. This is why the volume of distribution in the two-compartment 
case is defined from the terminal phase. 

 
 
Amount of drug in the body, terminal phase = 
 

        V·C�V·C 2·e�Ǌ 2·t

                                             (5)
 
 
Extrapolating to time zero and matching the amount V· C2 by an equal 

amount eliminated given as the product of clearance and area (C2 / Ȝ2) it 
follows that 

                                                 
14 The unit is time-1 (hours or min) 
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(6) 

 
for the two-compartment intravenous case. A quick reflection on the units 
confirms the accuracy of the relation as: 

 

  

(7) 

The Cl is:  
 

 

(8) 
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CHAPTER TEN 

DESIGNING THE MEMBRANE ROOF  
OF THE MUNICH OLYMPIC STADIUM  

USING SUPERCOMPUTERS 

WOLFGANG BRAND 
UNIVERSITY OF STUTTGART 

Prologue 

After the 1936 Summer and Winter Olympic Games in Berlin and 
Garmisch-Parten kirchen, respectively, Germany was selected to host the 
Olympic Games for a second time in the 20th century. In 1966, Munich 
was named host of the XXth Summer Olympic Games in 1972. Not only 
most of the public, but also the architects, were eagerly expecting this 
epochal event. It provided the opportunity to open a showcase of German 
culture and architecture to the world. While the 1936 Olympic Games 
were overshadowed by the repressions of the Nazi regime, the 1972 
Olympic Games were meant to represent the new liberal, democratic, and 
open-minded postwar West German spirit. The official motto, The Happy 
Games, reflected this new attitude and was to be complemented by a novel 
and natural architecture. However, on the openness and happiness of the 
1972 Olympic Games fell the dark shadow of the assault on the Israeli 
team, claiming many lives. Nevertheless, the constructions of the Munich 
Olympic Park proved to be landmark architecture of their time in the same 
way as, for example, the Atomium in Brussels, which was erected for the 
Expo ’58 world exhibition in 1958 (Diem, 1937; Fort, 1936; N.N., 1972a; 
Schiller and Young, 2010). 

The Olympic Stadium, the multipurpose Olympic Hall, the Olympic 
Swimming Hall, and the home of the athletes – the Olympic Village – are 
all situated in a wide and open park surrounded by a lot of water and 
greenery. The objective of the design by the head architect Günther 
Behnisch was to present Munich and Germany as open and easy-going. 
The Spiritus Rector of this novel architecture of natural constructions was 
Frei Otto, one of the most influential architects of the 20th century. The 
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roofs of the Olympic Stadium, resembling the Alps, visible from Munich 
on clear days, and the Olympic Swimming Hall were designed to provide 
the impression of a natural lightness. In particular, the tent-shaped 
membrane roof of the Olympic Stadium, made of acrylic glass overlays on 
a metal cable net and hanging solely from a few pillars, still impresses 
visitors to Munich with its airiness (Jaeger, 2005; Luce, 2009; N.N., 
1972b). 

Impressive and lasting architecture means teamwork. Many different 
disciplines contribute to a lasting building. One of these disciplines is civil 
engineering. Without the ability to compute the statics of constructions, no 
design idea can be put into reality. One of the experts, well known for 
many innovative constructions, was Jörg Schlaich who was the main civil 
engineer for the Olympic Site in Munich and professor of civil engineering 
at the University of Stuttgart. Among other things, he and his group were 
in charge of doing all the calculations to determine the shape and layout of 
the roof of the Olympic Stadium. However, it turned out that this task 
required additional expertise and resources not available to them at that 
time. Never before had such large-scale light-weight structures been 
designed and therefore no methods to do the calculations were readily 
available. To minimize the risk of failure and to guarantee timely delivery 
of the required results, this task was assigned to two groups led by John H. 
Argyris and Klaus Linkwitz, respectively. Both were also professors at the 
University of Stuttgart. By training, John H. Argyris was a civil engineer 
and, since 1959, director of the Institute of Statics and Dynamics of 
Aerospace Structures (ISD), and Klaus Linkwitz who represented geodesy, 
was the head of the Institute for the Applications of Geodesy in Civil 
Engineering (IAGB). The collaboration between the parties involved was 
facilitated by the fact that the architects, Frei Otto and Günther Behnisch, 
were also professors at the University of Stuttgart. They and their working 
groups formed a network, which enabled the easy interchange of 
information and data to comply with the tight temporal constraints. 

The following sections of this article tell the story of how the first 
supercomputer available, the Control Data CDC 6600, made the design of 
the tent-shaped roof of the Munich Olympic Stadium feasible. The focus 
will be on the group of Klaus Linkwitz, where least-square error and curve 
fitting methods were applied to determine the shape of the pre-stressed 
cable nets that are at the core of the roof’s construction. Starting from this 
‘ansatz’, the Force Density Method was developed, which offered an even 
more elegant way to do the required calculations. It is shown what 
obstacles had to be overcome and in which environment these events 
unfolded. That period in architecture marks the transition period from 
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building physical models to determine properties of constructions to more 
computational, computer-based approaches. This contribution argues that 
the period of the 1960s marks the point of transformation where the usage 
of high-performance computers altered the architectural design processes. 
Computing technology had reached a level where model building was no 
longer necessary. 

Architecture in the 1960s 
Architecture is the art of transforming fleeting mental images and ideas 

of form and shape into real things. It is also a visual art and science, where 
sketches and drawings are iteratively refined until a final visual 
representation is obtained. This process is often augmented by the 
construction of physical models. These are not only means to provide a 
three-dimensional impression of the buildings to be erected, but serve also 
as tools to support the design process and to study the complex behavior of 
various construction materials under realistic conditions. Depending on 
their purpose, models are made of paper, wood, metal, or even textiles. 
They are also used to determine the static of constructions and to collect 
data under changing conditions, such as wind or snow load, earthquakes, 
or vibrations. Another area where building models is employed is “form 
finding.” The impact of gravity on the shape of flexible and lightweight 
structures is highly non-linear and complex. Before computers became 
available, the only means available to architects and civil engineers to 
design such constructions were rough calculations using slide rules, tables, 
diagrams, and electromechanical calculators. Many models of different 
sizes had to be built to study different effects, which resulted in a lengthy 
and expensive process with many iterations and dead ends. Under these 
circumstances, the design of complex shapes like canopy roofs or cable 
nets where the construction materials are continually under stress was 
nearly impossible (Gründig, 2011; Gründig et al., 2000; Luce, 2009). 

In the decade after the Second World War, computers slowly started to 
penetrate new application areas such as architecture. In the early 1960s, 
the first Computer Aided Architectural Design (CAAD) systems became 
available. The first systems did no more good than to draw simple objects 
and construction plans, and many architects and designers felt more 
comfortable with their traditional drawing boards. A lot of civil engineers 
and architects also had the impression that numerical calculations and 
simulations on digital computers, where there was a loss of information 
due to their discrete nature, could not properly represent the many-layered 
and complex behavior of constructions under real conditions. Back in 
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those days, physical models still seemed to be an integral part of all stages 
of the architectural design process. When the first high-performance 
computers became available, new computational methods and their 
implementation in sophisticated software packages shifted physical model 
building to the early stages of the design process. Physical models were 
being substituted by software models and simulations. The trust in 
computer-based calculations and simulations began to grow, and physical 
models were reduced to material representations of architectural design 
ideas, such as drawings and sketches (Gründig, 2011; Streich and 
Weisgerber, 1996). 

Computer Technology after the Second World War 
Even in ancient times, humans tried to simplify the tedious work of 

counting and calculating. The abacus is one of the first witnesses of the 
attempt to mechanize numerical calculations. Employing machines not 
only increases the speed of calculations, but also reduces dramatically the 
chance of miscalculations. This proved not only attractive to merchants, 
but also to scientists. In the 16th and 17th centuries, Pascal, Napier, 
Leibniz, and Schickardt made the first attempts to mechanize logic and 
calculation. They did not stop at theoretical musings and started to build, 
more or less successfully, the first mechanical calculation machines. These 
devices were often quite expensive, of limited use, and lacked the most 
important property of today’s computers; that is, programmability. Using 
tables containing pre-calculated results such as logarithms or trigonometric 
function values to reduce the burden of calculation remained the only 
feasible alternative for most scientists for the next few centuries 
(Friedewald, 2009; Wurster, 2002). 

When the scientific progress during the 19th century revealed the 
nature of electromagnetism, and the formulas of James Clerk Maxwell 
allowed for a quantitative description of effects; the emerging discipline of 
electrical engineering offered new ways to implement calculation devices. 
The failure of Charles Babbage to build a programmable mechanical 
computer clearly demonstrated the need for a new technology. The road to 
computers, as we know them today, started with electromechanical 
designs. By the early 20th century, technology had advanced to electronic 
components such as vacuum tubes. The invention of the transistor in 1947 
and the integrated circuit (IC) in 1958 increased the capabilities of the first 
computers dramatically. At the same time, theoretical insights gained by 
Turing, Church, von Neumann, and others during the 1930s and 40s 
created the architecture of computer systems as we know them today. 
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Computers were no longer solely used for the purpose of doing numerical 
calculations. They developed into universal machines ranging from tiny 
embedded devices to large-scale solitary number crunchers performing 
numerical computations at a speed never heard of before. The computers 
of the 1920s and 30s, mostly female operators of electromechanical 
calculators, transformed into the freely programmable tools most people 
take for granted today (Aspray, 1990; Friedewald, 2009; Hodges, 1994; 
Wurster, 2002; Zuse, 1993). 

Newly emerging technologies usually produce a quickly increasing 
number of commercial entities, which are keen to take advantage of new 
market opportunities. After the end of the Second World War, and with the 
advent of the Cold War, a large number of computer manufacturers were 
founded. Although most of them were located in the United States, some 
European firms also tried to build computers. Examples are Ferranti in the 
UK and Zuse in Germany. By far the most successful was IBM, the 
International Business Machines Corp. of Armonk, New York, focusing on 
the market of commercial computers with applications such as inventory 
management, record keeping, and databases. During the 1950s, IBM 
managed to dominate the market of mainframe computers on a global 
basis. However, such a success story also attracted potential competitors. 
During the final years of the 1950s, Control Data Corporation (CDC) of 
Minneapolis, USA, entered the market. While IBM’s computer designs 
were based on an extensive and universal instruction set to cover all 
possible application areas, the chief designer of Control Data, Seymour 
Roger Cray, later to be known as the Father of Supercomputers, decided to 
focus on systems for numerical and scientific applications. The numerical 
capabilities of his CDC 6XXX line of machines were far superior to 
IBM’s, and so Control Data swiftly gained a dominating market share in 
scientific computing. Later attempts by Control Data to challenge IBM in 
the market segment of commercial computers resulted in a legal battle 
with IBM over anti-trust regulations and proved to be a landmark legal 
case. Finally, these developments led to the decline of Control Data into 
obsolescence (Lutz, 1966; Murray, 1997; Zuse, 1993). 

Today, when people talk about computers, they are talking about 
digital computers based on the canonical Byte and Word design introduced 
by IBM in the System 360. In the early days of computing, there was not 
only competition between different manufacturers but also between digital 
and analog computers. Already the first computing aids could be grouped 
into either digital (for example, Napier’s bones) or analog (slide rules) 
devices. The technological advances in the form of vacuum tubes, 
transistors, and integrated circuits enabled both digital and analog 
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computers. Using the newly invented operational amplifier, able to 
multiply, subtract, and add signals, electrical engineers could build analog 
computers to solve complex and coupled differential equations in a quite 
efficient manner. These machines were used for special calculations right 
into the early 1980s. The main disadvantage of such devices was the way 
that they were programmed. Each new program was implemented by 
rewiring parts of the machine and this took quite some time. Eventually, 
the increasing speed and memory capacity of digital computers and their 
versatile programmability with high-level programming languages brought 
this era to an end (Ammon, 1966; Zuse, 1993). 

The Emergence of High-Performance Computers 
Most scientific problems can be expressed in the form of equations or 

systems thereof. However, only the simplest problems have analytical 
solutions (i.e. the solution can be expressed as a formula). In nearly all 
realistic scenarios, numerical calculations are the only way to obtain a 
solution. Therefore, powerful numerical computers proved to be essential 
for progress in science and engineering. Each new and enhanced 
generation of computers stimulated the demand of the users for even more 
advanced computing machines. Over the years, a new breed of computers 
appeared: the supercomputer (Aspray, 1990; Hodges, 1994; Murray, 1997; 
Zuse, 1993). 

Control Data Corporation (CDC) of Minneapolis, USA, started to 
develop computers for military purposes in the 1950s. One of their most 
talented designers was Seymour Roger Cray, who, by 1957, would start to 
create a completely new family of high-performance computers, dubbed 
the CDC 6XXX series. In particular, the model CDC 6600, regarded by 
many as the world’s first true supercomputer, and later on the numerous 
Cray machines, made him the undisputed Father of Supercomputers. 
Supercomputers, or high-performance computers, are designed to dedicate 
substantial amounts of computing power to one specific task on a 
continuous basis. This ability opens the gate to new classes of problems 
which cannot be handled by just combining the computing power of a 
group of less powerful machines. The main design decision made by Cray 
was to reduce the instruction set and tailor the remaining instructions to 
numerical computing. He also used the latest developments in hardware, 
such as silicon transistors and integrated circuits, to increase the speed of 
his machines. New elements of computer architecture such as vector or 
parallel data handling resulted in a substantial increase in performance. 
When Control Data presented, in 1964, their new flagship model CDC 
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6600, they offered a 50-fold increase in calculation speed over all other 
machines available in the market (Murray, 1997). 

In the second half of the 1960s, Control Data was able to sell over one 
hundred copies of the CDC 6600, a history of success that triggered the 
corporate management of Control Data to attack new commercial market 
segments and eventually led to the demise of the whole company. The 
decline of Control Data was accelerated by the fact that the chief engineer, 
Seymour Roger Cray, had left the firm over a dispute on the next 
generation of computer systems and had set up his own company, Cray 
Research, Inc., to build even more powerful number-crunching computers. 
As a technical artifact, the CDC 6600 proved to be one of the most 
innovative designs. It was equipped with two core memories having a 
capacity of 128,000 and 500,000 words, respectively. Each word was sixty 
bits wide and ten integrated peripheral units would address a dozen 
communication channels independently. The system had a modular and 
extendible layout. The customers could choose between plotters, printers, 
high-speed card readers and punchers, magnetic tape stations, and one of 
the first hard disk storage devices. The system was designed to provide 
interactive user sessions, which displayed their output on cathode ray tube 
monitors. Access for remote users was provided via telephone and 
dedicated data lines. Approximately one million floating-point operations 
per second (MFLOPS) catapulted the CDC 6600 to the top of the 
performance list in the 1960s (Almond, 1970; Murray, 1997). 

The term supercomputer is a relative measure that fades away very 
quickly over time when new, more powerful, systems enter the arena of 
competition. Pushing memory size, the speed of data buses and processing 
speed to the limits of technology provide not only a quantitative increase, 
but also qualitative enhancements. Graphical or even animated output in 
real time is more attractive to humans than long columns of figures. 
Higher computing power also means more user-friendliness and an 
increase in epistemic power. 

Soon, not only scientists and engineers would be users of such devices, 
but also new user groups took advantage of these machines to widen the 
limits of their disciplines. Sketches, drawings, and graphics being essential 
tools of their trade, architects became attracted quite early to the 
possibilities that high-performance computers had to offer. For architects, 
powerful computers offered a new way of model building and manipulation. 
Virtual models, existing only as bits and bytes in a computer memory, 
were more flexible, less expensive, and considerably reduced the time 
needed for finishing a design. Over time, the growing confidence in the 
capabilities of computers and simulation software reduced the number of 
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physical models being built considerably. Today, it is a rare event to see 
any physical models being built (Murray, 1997; Streich and Weisgerber, 
1996). 

Designing the Home of the Olympic Games 
On 13th October 1967, the chairman of the jury, Egon Eiermann, 

declared the architects Behnisch & Partner to be the winners of the first 
prize of the competition to design the Olympic buildings of the 1972 
Olympic Games in Munich. Günther Behnisch had prevailed over one 
hundred one other submissions, and yet, at that point in time, the jury had 
not reached a final verdict on the design of the membrane roofs for the 
three main sports facilities. Encouraged by Frei Otto, the mastermind 
behind natural constructions, Behnisch had decided to equip the buildings 
with lightweight membrane roofs. Eventually, when the contracts to the 
architects –still without the roofs– were awarded on 1st March 1968,  “(…) 
no one from the jury actually believed that the proposed design of the 
lightweight structure, covering an area of 75,000 m2, could be realized” 
(Phocas, 2005, 99), and the decision on the roofs was further delayed until 
21st June 1968. Nearly one year of intensive discussions had not been able 
to silence the critics, and as late as 18th August 1968, the board of 
directors of the Olympia Baugesellschaft (the company set up to erect the 
Olympic Site) discussed what kind of roof should be built. However, at 
that point, it was too late to change directions, and it was decided to give 
the ambitious plans of Behnisch a try. These delays required the 
construction process to be started in parallel with the design works and 
later on led to many problems for all parties involved (Gründig, 2011; 
Linkwitz, 1971, 1). 

Advised by Günther Behnisch, the Olympia Baugesellschaft commissioned 
the task to design the roofs to two groups headed by John H. Argyris and 
Klaus Linkwitz, respectively. Both were experienced in managing large 
projects under time pressure and had the necessary expertise to do the 
structural engineering calculations. The actual computations would be 
done on a Control Data CDC 6600, the most powerful computer available 
around 1970. Two years earlier, John H. Argyris had bought a CDC 6600 
machine for his Regionales Rechenzentrum (Regional Computing Centre) 
at the University of Stuttgart. Splitting the design contract between two 
different groups helped to reduce the risk of failure and provided the 
potential to regain some of the time lost during the lengthy discussions 
following the architectural design competition. Both teams had to use the 
same infrastructure to do their computations and were based at the 
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University of Stuttgart, where the group leaders were professors. John H. 
Argyris, the co-inventor of the Finite Element Method (FEM), modified 
his method to cope with the non-linear aspects of the membrane roofs, 
whereas Klaus Linkwitz and his team relied on proven algorithms for 
surface and curve fitting from geodesy. Lothar Gründig, who had a 
diploma in geodesy, adapted these methods for the form-finding process in 
structural analysis and wrote most of the programs to perform the 
calculations. Hans-Jörg Schek, a mathematician and member of the 
Linkwitz group, would develop the Force Density Method (FDM) to 
design lightweight structures, while working on the Olympia project 
(Gründig, 2011; Phocas, 2005). 

 

 
 
Figure 10-1: Building of Frei Otto’s institute at the University of Stuttgart in 
Stuttgart-Vaihingen. This construction served as a test case for the German 
pavilion for the Expo 67 in Montral (photography taken by the author in August 
2012). 
 

The tent-shaped roof of the Olympic Stadium consisted of a covered 
pre-stressed cable net with a total length of 210 kilometers hanging from 
masts rising up to 80 meters. The first ideas of the architects centered 
around using a shell made of timber or covering a cable net with timber 
and perlite concrete. Neither material was flexible enough to withstand 
movements and vibrations caused by the wind, hence a cover of acrylic 
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glass was selected. The acrylic tiles measured 2.9 meters in each direction 
and were separated by continuous neoprene joints to allow for a buffered 
connection to the cables (Fang, 2009; Gründig, 1976, 2011; Linkwitz, 
1971; Phocas, 2005). 

The group around Linkwitz started using the same methods as in the 
design of the German pavilion for the Expo 67 in Montreal. The starting 
point was the construction of tulle models of the roof. Tulle is a flexible, 
semi-transparent fabric, which allowed the architects and civil engineers to 
find an optimal shape for the roof by experimenting. This was a design 
process typical of Frei Otto, who had mastered finding the form of 
lightweight structures by deploying physical models. In a second step, 
models made of piano wire (mostly scaled 1:125) were built. They were 
referred to as measuring models. Piano strings had roughly the same 
properties as the actual cables to be used. It was intended to collect the 
necessary data for the construction of the cable nets from these models and 
to simply scale them up. The models were measured for the first time 
using high-resolution photogrammetry to avoid perturbing the structures. 
The measurement errors were well below 1 millimeter, but still too large to 
be used for cutting the cable segments. Structures under stress and exposed 
to heavy wind and snow loads are vulnerable to internal tensions, and 
deviations of several centimeters in the final construction would have been 
fatal. Adding additional parts, such as masts, and their locations on the 
construction site, the models were used by the architects and civil 
engineers to generate the first estimates of the static properties of the 
buildings. These preliminary data were also utilized by the construction 
companies to order construction materials (Linkwitz, 1971, 1–3). 

The third round of model building by Frei Otto produced physical 
models, which resembled the cable nets with their varying mesh sizes as 
accurately as possible. These models served as pattern models. The most 
critical part of the design problem was to determine the exact cutting 
pattern of the cable segments, because the interior sections of the cable 
nets consisted of an equally spaced mesh, whereas the outer parts used 
cable segments of differing length. To reduce the level of complexity in 
the models, only every fourth cable was modeled, resulting in a mesh 
width of 24 mm or 3 m in reality. To obtain the coordinates of the left-out 
cables for the required 75 cm spacing of the mesh, interpolation 
algorithms had to be developed (Gründig, 2011; Linkwitz, 1971, 2–3). 

Again, the positions of the intersection points of the cable nets were 
collected from the pattern models by photogrammetric measurements. 
This time the Linkwitz group relied mainly on a Zeiss comparator PSK, an 
optical precision instrument for survey photography in minute detail. The 
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photogrammetrically registered co-ordinates of the intersection points 
were used as starting values for the calculations to obtain correct cutting 
patterns. It soon turned out that the precision of these final models was 
also not sufficient to determine the pattern without further processing of 
the data. To arrive at the final virtual model of the cable nets the erroneous 
data had to be corrected. At that stage, the errors were treated like errors in 
geodesy. The aim of the data processing was to obtain an “ideal theoretical 
model” (Linkwitz, 1971, 4). However, the problem was that this ideal 
model was not known in advance. It had to be found by modifying the co-
ordinates using “geometric and plausibility criteria” (Linkwitz, 1971, 4). 
The first step was to produce an equally meshed net in the interior area of 
the roof using an adjustment program called Äquidistanz. In a second step, 
the cables at the edges were smoothed to produce a concave curvature 
between the cable’s end-points connected to the supporting masts. The 
next step included a three-dimensional interpolation of the data points to 
get a 75 cm cable net. This mesh was then projected onto a plane and 
plotted using a Kingmatic drafting machine. The area close to an edge 
cable usually consisted of 8 to 10 individual printouts (Gründig, 2011; 
Linkwitz, 1971, 3–4). 

However, Linkwitz had to accept that this heuristic, geometric-
mathematical method to compute the patterns was not sufficient to 
produce an exact net. The noisy measurements could not be improved by 
plausibility arguments alone. What was needed were “mathematic-static 
computational methods” (Linkwitz, 1971, 4). 

From a mathematical point of view, the main characteristic of this kind 
of structure is the combination of concave and convex curvatures in one 
surface structure. The vertical cable net segments form a concave line in 
three-dimensional space, while the horizontal segments show a convex 
curvature. All interconnection points of the cable segments had to be in 
equilibrium. Each interconnection point could be described by three non-
linear equilibrium conditions. The number of equations to be solved was, 
therefore, triple the number of interconnection points. After linearizing the 
equations, a curve finding algorithm using least-squares fitting was 
applied to the problem (Linkwitz, 1971, 4–5). 

The implementation of this algorithm was programmed in FORTRAN 
IV to run on the CDC 6600 of the Regional Computing Center at Stuttgart. 
The linear equation systems had a size of up to 8,000 variables. All nine 
roof sections of the stadium and their connecting intermediate roof 
sections were computed in this way. The results were documented on 
approximately 3800 square meters of construction drawings (scaled 1:10) 
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for the construction companies in Munich (Gründig, 2011; Linkwitz, 1971, 
5). 

 

 
 
Figure 10-2: The Munich Olympic Stadium of 1972. The roof resembles the 
Bavarian Alps and is supported by just a few pillars. The two smaller inserts cover 
details of the construction of the glass-covered cable-net structures (photography 
taken by the author in November 2012). 

 
Deploying the more traditional methods that civil engineers and 

architects were accustomed to around 1970 would not have been sufficient 
to accomplish this major construction task at all, let alone in this tight time 
frame. Model building and experimentation, rather simple calculations 
using slide rules, logarithmic tables, and small electronic computers did 
not suffice anymore for a construction project of this proportion. Only the 
most powerful computer of those days, the CDC 6600, provided enough 
computational power to enhance and refine the available measurement 
data to draft the ideal model to build the real roof in Munich. In any case, 
building the 1972 Olympic Games Site in Munich was an endeavor 
stretching the boundaries in many aspects. The calculated construction 
costs rose from an estimated amount of 17 million German Marks to 190 
million German Marks. However, most Germans welcomed the Olympic 
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Games and all relevant social and political groups supported the project 
(Gründig, 1976, 2011; Phocas, 2005). 

John Hadji Argyris, the Finite Element Method,  
and the Supercomputer 

John H. Argyris was born on 19th August 1913 in the small Greek port 
town of Volos, located approximately 300 kilometers north of Athens. His 
parents were members of the Greek Orthodox Church and traced their 
ancestry back to ancient times. His mother’s family had ancient Byzantine 
roots, his father was the descendant of a Greek independence fighter, and 
many of his relatives had been poets, scientists, and politicians – ambitions 
also inherited by John Argyris. However, his main field of interest soon 
became mathematics, in which he showed an extraordinary talent. Perhaps 
his talent was inherited from his uncle, Constantin Carathéodory, who was 
a famous professor of mathematics in Munich. 

The Argyris family relocated in 1919 to Athens, where he attended a 
classical high school. After graduating from high school, he started 
training as a civil engineer at the National Technical University of Athens. 
Two years into his studies, he moved to the Technical University of 
Munich where, in 1936, he completed his education with a diploma in 
civil engineering and the degree of Diplom-Ingenieur. Argyris had passed 
all his exams with distinction and could expect a brilliant and smooth 
academic career. However, his destination was to lead an unsettled and 
restless life with varying positions over half of Europe. At the Imperial 
College London, he would meet his second wife, Inga-Lisa, a Swede, and 
would have a son with her (Hughes, Oden and Papadrakakis, 2004, 3764, 
3766; Phocas, 2005, 97; Universitätsarchiv, 1991). 

Argyris’ first position after graduating from the university was with a 
German company by the name of J. Gollnow & Sohn in Stettin (now 
Szczecin in Poland). J. Gollnow & Sohn had a long tradition in steel 
construction and engineering. Founded in 1833, they had built numerous 
bridges and towers made of various metals, and Argyris was able to collect 
his first hands-on experience in the design of complex metal structures. 
Between 1937 and 1939, he worked as a project leader and was involved 
in the construction of a tall radio antenna mast 320 meters high. During 
this period, he earned a reputation for being the man for unsolvable 
problems (Doltsinis, 2004, 665; ZEIT, 1950). 

In 1939, Argyris joined the Technical University of Berlin to earn a 
doctorate but was soon arrested because of his opposition to the Nazi 
regime. He managed to escape from prison and fled to Switzerland, 
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crossing the river Rhine during a nightly allied bomb raid holding his 
passport in his teeth (see the dramatic report by Hughes, Oden and 
Papadrakakis, 2004, 3764). He continued his studies at the ETH Zürich in 
1941/42 (Kurrer, 2008, 713), but soon moved on to England to work as a 
technical officer at the Royal Aeronautical Society in London. Beginning 
in May 1943, he studied the stiffness of airplane wings and fuselages for 
civil and military aircraft. He stayed at this institution until 1949. His work 
was at the boundary of theory and applications and inspired him to do 
preliminary work on the Finite Element Method, which would earn him 
later on so much reputation (Universitätsarchiv, 1991). 

During 1949, Argyris was a senior lecturer at the Imperial College of 
Science and Technology. The next year brought him a promotion to reader 
in the Theory of Aeronautical Structures, and in 1955 he became professor 
of Aeronautical Structures (Doltsinis, 2004, 665; Phocas, 2005, 97). 
Argyris proved to be a talented member of the faculty who knew how to 
get his way. He managed to establish a nearly independent sub-department 
but remained as demanding as ever. Already in 1957, he had asked for a 
Ferranti Pegasus computer whose price tag was well beyond the budget of 
the university. At this time, he had already recognized the potential in the 
deployment of high-speed computers in aerospace engineering. After 
joining the then Technische Hochschule Stuttgart in 1959 as director of the 
Institute of Statics and Dynamics of Aerospace Structures (ISD), he stayed 
at the Imperial College until he became emeritus in 1975. This led to a 
sometimes fruitful exchange between the two universities (Gay, 2007, 
331–332). 

In the early years after the Second World War, the Technische 
Hochschule Stuttgart tried to reposition itself. The aerospace department 
was restructured to reflect the latest technological developments. Starting 
in 1954, John Argyris had made a name for himself by publishing a series 
of research articles on the application of the Finite Element Method to 
aerospace engineering (Doltsinis, 2004, 666). Both the State Government 
of Baden-Württemberg and the Technische Hochschule Stuttgart identified 
Argyris as a potential candidate for a chair in aeronautical engineering. 
After the negotiations with the State of Baden-Württemberg had lasted for 
quite some time, the Große Senat (Great Senate) of the Technische 
Hochschule Stuttgart discussed his status during its session on 24th July 
1957. The Senate accepted the condition of John Argyris to retain a 
maximum of independence and agreed to keep all negotiations confidential 
to avoid weakening John Argyris’ position in London (Universitätsarchiv, 
1956–57, 29). It took another two years until John Argyris finally came as 
director of the Institute of Statics and Dynamics of Aerospace Structures 
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(ISD) to Stuttgart. He held this position until 1984 and then became the 
director of the Institute of Computer Applications (ICA) for the next 10 
years (Phocas, 2005, 98). 

The Finite Element Method 

Having its earliest roots in the 19th century, the Finite Element Method 
(FEM) is a numerical algorithm to calculate solutions for a wide range of 
problems. Complex structural elements, such as bridges, airplane wings, or 
fuselages, can all be modeled using (systems of) differential equations. 
Usually, these equations have no analytical solution; that is, there is no 
solution that can be expressed using standard functions. The only way to 
solve these equations is by numerical computation, and this requires 
powerful computers (Huebner et al., 2001, 3–16). 

The Finite Element Method models complex structural elements with 
irregular shape by dividing them into interconnected simpler elements 
possessing a regular shape. The behavior of a complex object can be 
approximated by a large number of combined simple elements and their 
interactions. Points within the elements or the boundary (vertices) can be 
modeled by analytical functions. Combing the geometry of these elements 
and the functions, one describes the whole problem. The combination of 
partial solutions yields the complete solution (Kaiser, 2008). 

Starting in 1954, John H. Argyris published a series of papers offering 
efficient methods for the computation of solutions using the matrix 
calculus (matrix displacement method). Computers manipulated matrices 
very efficiently, and were therefore the ideal tools to automate the 
processing of Finite Element calculations deploying high-level 
programming languages like FORTRAN (FORmula TRANslation). The 
bigger the problems modeled by the Finite Element Method, the bigger the 
computers to manipulate them had to be and vice versa. Ray Clough, 
another co-inventor of the Finite Element Method, named it, in one of his 
publications, instead of the Finite Element Method, the “Argyris Method” 
(Hughes, Oden and Papadrakakis, 2004, 3766). In 1964, when the CDC 
6600 supercomputer became available, the first commercially marketed 
Finite Element software package also emerged. This triggered a spiral of 
ever-increasing performance that is still active today (Huebner et al., 2001, 
3–16). 
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The First Supercomputer in Stuttgart 

John H. Argyris worked not only on theoretical aspects of the Finite 
Element Method but also on the solution of practical problems. One of his 
preconditions to accept the chair in Stuttgart was the availability of 
sufficient computing power at his institute. Since 1963, the Technische 
Hochschule Stuttgart had had a UNIVAC 1107 which could no longer 
fulfill all user requirements. His institute was the largest user of this 
machine, and he saw the necessity to expand the computing capacities at 
Stuttgart. John Argyris was very enthusiastic about the latest developments 
in high-performance computing, and in 1968 he managed to buy a CDC 
6600. This made him the founding father of high-performance computing 
in Stuttgart (Grieger, 2004; Murray, 1997; N.N., 1971). 

Besides using the computers for extensive calculations, Argyris and the 
members of his institute worked on system programs and new 
programming languages for their machines. This convinced Control Data 
to deliver the CDC 6600 to Stuttgart at a huge discount. Argyris’ institute 
received a 50 percent discount on the list price and an additional five years 
of free maintenance. The overall value of this package amounted to five 
million German Marks (Universitätsarchiv, 1965–68). After serving the 
Stuttgart scientific community from 1968 to 1984, the CDC 6600 was 
finally decommissioned. The successor was a Cray 1 made by Cray 
Research, Inc., building the second element in a yet unbroken chain of 
supercomputers in Stuttgart (Rühle, 2011). 

In honor of his contributions, John Argyris received numerous awards 
during his lifetime. He had over 400 publications to his credit and was at 
the center of a closely knit network of scholars always ready to defend and 
promote their scientific ideas to the world (Universitätsarchiv, 1991). 

John H. Argyris passed away on 2nd April 2004, aged 91, at Stuttgart. 
He was laid to rest at the Sankt Jörgens Cemetery in Varberg, 
approximately 60 kilometers south of Gothenburg, Sweden (Hughes, Oden 
and Papadrakakis, 2004, 3763). 

Klaus Linkwitz and the Force Density Method 
Klaus Linkwitz was born on 3rd July 1927 in Bad Oeynhausen/Westfalia, 

in the north of Germany. He graduated from high school in 1947 after 
having served in the Second World War. After high school, he studied 
geodesy from 1948 to 1952 in Stuttgart and Munich. His next career step 
brought him to the construction company C. Baresel AG in Stuttgart for 
whom he worked from 1953 to 1959 as a civil engineer in Afghanistan and 
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India. In 1960, he became partner in an engineering company in Munich 
where he planned and supervised various road construction projects in 
Lebanon, Iran, Saudi Arabia, and Cameroon. Beginning in 1959, he was 
working in parallel on his doctoral thesis at the Technische Hochschule 
Munich where he got his Dr.-Ingenieur in 1961. For his thesis, he studied 
curve-fitting methods on networks, which formed a preliminary work on 
the Force Density Method developed in the late 1960s. 

In 1964, he became director of the Institute for the Applications of 
Geodesy in Civil Engineering (IAGB). He combined his hands-on 
experience collected in many projects with the results he had obtained in 
his thesis and tried to refine and improve the methods he had developed. 
In the mid 1960s, there were two major technological changes underway 
in geodesy. The first laser systems appeared and brought a substantial 
enhancement to measurement precision, and computers altered the way in 
which data were handled and processed. Yet, they were not powerful 
enough to deal with substantial amounts of data. This would change with 
the appearance of the CDC 6600 at the University of Stuttgart in 1968. 

Like John Argyris, Klaus Linkwitz was looking into ways to handle 
complex non-linear calculational problems in an efficient way based on 
sound theoretical foundations. His field of expertise was geodesy, where 
straight lines and right angles are rarely found, and he wanted to apply his 
results to sophisticated civil engineering problems. With this background, 
it became quite natural that he and his institute were commissioned by 
Günther Behnisch to work on the 1972 Olympic Games project. 

However, his ideas were not yet so established and fully developed as 
to be readily applicable. Two young and ambitious graduate students who 
had joined his institute in the late 1960s came to his rescue: Hans-Jörg 
Schek, a mathematician who later became professor for geospatial 
databases at the ETH Zürich, and Lothar Gründig who became head of the 
geodesy department at the Technical University of Berlin. They were very 
open to the new possibilities that fast computers would provide for their 
work. 

In 1971, Linkwitz and Schek developed the Force Density Method, 
which offered a new and computationally more efficient way to determine 
the equilibrium of forces necessary at connecting points in pre-stressed 
cable nets. In the meantime, Lothar Gründig was successfully applying his 
method to the shape finding of pre-stressed cable nets and membranes 
using least-square error or curve fitting methods. Although he had the 
most powerful computer of his time at hand, he was forced to develop 
sophisticated methods and software to handle real-world problems such as 
finding the form of the membrane roof of the Munich Olympic Stadium. 
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Klaus Linkwitz became emeritus in 1995 and is still active both as a 
lecturer at the university and as a consulting engineer. In the meantime, 
Hans-Jörg Schek and Lothar Gründig are also retired (Albertz et al., 2002; 
Gründig, 2011; Gründig et al., 2000, 270). 

All Roads Lead to Rome 

After the two groups headed by John Argyris and Klaus Linkwitz were 
commissioned for the shape finding and design of disjunct parts of the pre-
stressed cable net-supported membrane roof of the Munich Olympic 
Stadium, both groups worked largely independently from each other and in 
parallel. 

The route taken by each group clearly reflects the background and 
training of their leaders. The trained geodesist Linkwitz was accustomed 
to starting with a terrain where measurements could be taken. Due to the 
limited accuracy of the available measuring instruments, it was necessary 
to eliminate measurement errors to obtain a (nearly perfect) representation 
of the real world. The models provided by Frei Otto were a perfect fit for 
this approach. The sensitivity and fragility of the fabric and wire 
constructs made it necessary to use a contactless photogrammetric 
measurement procedure – an approach not uncommon in geodesy with the 
exception that the size of the object was considerably smaller than usual. 
The shape was already there. The only thing to be done was to measure 
and refine it (Gründig, 2011; Gründig et al., 2000). 

With his strong mathematical background, John Argyris was used to 
taking another route. He could even start with a flat and shapeless cable 
net without any measurements and models –an object far from its final 
shape; the same way as an aeronautical engineer starts designing an 
aircraft, an empty piece of paper in front of him ready to see how things 
will evolve. Although aeronautical engineers deploy models, they are 
usually introduced at a later stage in the design process. The Finite 
Element Method was modified by the Argyris group in such a way that an 
iterative process was developed in which the supports of the roof were 
(virtually) moved, and the resulting equilibrium recalculated until the final 
shape of the roof was found (Argyris, Angelopoulos and Bichat, 1974; 
Phocas, 2005). 

The methods applied by the Linkwitz group tried to refine an already 
existing solution: the model. The modified Finite Element Method of 
Argyris created a new (virtual) structure. Both methods were able to solve 
the task, which not only consisted in designing the membrane roof resting 
on groups of parallel and each other crossing pre-stressed cable segments, 



Chapter Ten 228

but also demanded solutions ready for production under very restrictive 
conditions. 

To facilitate the construction of the building, both groups had to deliver 
detailed lists specifying the length of the cable segments and their 
positions in the net. It was desirable to have as many cable segments of 
equal length as possible to reduce assembling complexity, decrease the 
complexity of the logistical processes on the construction site, allow for 
easy prefabrication, reduce costs, and improve aesthetics. 

All these boundary conditions could be handled by the methods and 
the software packages that implemented them. Essentially, both 
approaches delivered on their promises and could be used interchangeably. 
This provided a comforting redundancy regarding potential failures or 
delays. The fact that core parts of the programs are still in use today 
demonstrates their quality and performance. 

The only non-redundant element, which both groups had to rely on, 
was the computing resources provided by the CDC 6600 at the University 
of Stuttgart. Both teams used the same infrastructure and had to compete 
for resources such as runtime or storage capacity. 

The programming was done using FORTRAN IV, and to achieve this 
level of performance the code was tailored to the architecture of this 
specific machine. The software stretched the capabilities of the computer 
to the limit and allowed the processing of nets with up to 10,000 nodes 
where each node had three degrees of spatial freedom. 

The real bottleneck in this project was the available runtime on the 
computer. Had this machine failed or had there not been enough memory, 
the whole project might have collapsed. In those days, computers were not 
as reliable as today. After a few days, a maintenance shift was necessary 
where technicians tried to fix minor problems. The typical runtime of 
programs started at 200–300 seconds and larger nets took several hours to 
compute. 

When the machine became unavailable because of a longer downtime, 
the Linkwitz group tried to secure runtime on a CDC 6600 in The 
Netherlands. The importance of this project, and the pressure under which 
the work was performed, is also demonstrated by another event. Early 
versions of the programs produced suboptimal solutions. Instead of 
improving the programs and rerunning the calculations, Linkwitz managed 
to organize a group of soldiers from the German Army (Bundeswehr) who 
would select the useful results and discard the useless ones by hand 
(Gründig, 2011; Linkwitz, 1970). 

However, when asked about the self-perception of the work that had 
been performed, one of the participants expressed the feeling that there 
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were just more and better calculations using newer tools, but not a new 
quality of scientific achievements (for these paragraphs, Gründig, 2011). 

Conclusions 
This historical case study unfolded the events behind the design of the 

Munich Olympic Stadium membrane roof for the 1972 Olympic Games 
and demonstrated how two groups with different approaches successfully 
completed the task to design their assigned segments of the roof. Both 
groups gave their best in order to transform the ideas of Frei Otto into 
glass and steel and prevailed. 

The group headed by Klaus Linkwitz started with a physical model of 
the roof provided by Frei Otto. By modifying and transferring methods 
and concepts from one discipline (geodesy) to another (civil engineering 
and architecture) they developed the Force Density Method, a new way to 
efficiently design membrane roofs. 

John H. Argyris’ group developed a modified Finite Element Method 
and started with a purely mathematical model. They showed that physical 
model building was no longer necessary, even for designs with such a high 
degree of complexity. 

Both examples also show how the professional background and 
training influenced the mode of work. One group tried to refine an already 
existing solution: the model. The other group created a new structure. 

In the end, both methods proved to be more or less equivalent in power 
and demanded approximately the same amount of computing resources. 

Neither of these two attempts would have been possible without the 
first supercomputer: the CDC 6600. The advent of high-performance 
computing capabilities drew a new line. Using models might still be useful 
but was no longer necessary. If required, all modeling could be done on 
the computer. The decade of the 1960s also marked the diffusion of high-
performance computing capabilities into non-traditional application areas, 
such as architecture and design –a still ongoing process. 

When asked, participants of these developments regarded the novel 
approach based on extensive numerical calculations merely as a more 
intensive computational process without new epistemic aspects. This is an 
interesting result, which could be the starting point for further 
investigations. 

The case study also showed how progress in this area rested on a 
combination of new mathematical methods, advanced technology and the 
willingness of society and politics to provide the necessary funding to 
facilitate change within such a short time frame. 
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THOUGHTS OF A CENTER DIRECTOR  
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Introduction 

Simulation has become a widespread tool not only in science but also 
beyond. The performance of high-performance computing systems drags 
the performance of smaller systems and provides simulation power to the 
average human being. The questions that arise for a practitioner –as the 
director of a supercomputing center– are manifold. In this article, I address 
some of them. I look at the workflow of a simulation and try to connect it 
to some philosophical aspects of simulation. I present a prototypical 
workflow and compare it to a concept recently introduced by Eric 
Winsberg. Our focus is on the practical aspects of simulation. Therefore, I 
also address the issue of interpretation – though this is limited to the 
technical possibilities of interpretation, leaving out the epistemological 
issues. 

Before getting into the core of our subject, I admit that this article and 
our work in the field of philosophical examinations of the process of 
simulation are heavily influenced by some recent and some not so recent 
work. Educated as a mathematician, I very much rely on Ludwig 
Wittgenstein’s understanding of mathematics and hope to extract some 
understanding of simulation from this. Furthermore, I am influenced by 
the most recent discussions about simulation and philosophy as expressed 
in the works of Winsberg (2010), Gramelsberger (2010), Greco (2011), 
Elgin (2011), and others. In general, I follow a concept of information that 
is inspired by Vilem Flusser (1999) and Peter Janich (2006). Both state 
that “information” cannot only be defined in terms of a communication 
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theory as described by Shannon and Weaver (1963) and then be transferred 
to other fields. Flusser explicitly traces the term “information” back to its 
Latin roots and emphasizes the aspect of “formation” or “putting form into 
something.” Janich emphasizes the technical origin of the term 
“information” and argues against its “naturalization.” 

Finally, I have to note that I make use of the language of my original 
field, which is mathematics, computer science, and engineering. Language 
forms our thoughts, and our thoughts form language. The reader should 
keep this in mind. 

What is Simulation? 

Simulation is not a well-defined term. It is even used in different ways 
in the scientific community. It can mean the mathematical description and 
computing of a physical phenomenon in order to understand a process. It 
can, however, also mean an attempt to create a virtual reality environment 
(simulate reality) in order to train pilots or drivers. I have therefore 
undertaken to find some definitions of the term “simulation” that may help 
to better understand the phenomenon. 

Thomas Junker –a well-known evolutionary biologist– gives a clear 
and simple link between thought and simulation by saying: 

 
Denn was ist Denken anderes als Simulation?1 

 
In this sense, simulation is not a special technique that humans have 

developed but rather it is what actually defines the status of a human 
being. I think, therefore, I simulate. Keeping this in mind, one might have 
to distinguish between an explicit simulation (or for that matter a technical 
one) and an implicit one – which according to Junker has become second 
nature for us. This paper will focus on the explicit type of simulation but 
will keep in mind that thinking and simulating are close relatives. 

Sigmund Freud is another source of inspiration when it comes to 
simulation as he states that simulation is 

 
…probeweises Handeln mit kleinen Energiemengen, ähnlich wie die 
Verschiebung kleiner Figuren auf der Landkarte, ehe der Feldherr seine 
Truppenmassen in Bewegung setzt.2 

                                                           
1 “For what is thinking other than simulation?” (Junker, 2006) 
2 “… acting on trial with small energy quanta, like the relocation of tin soldiers on 
a map, before the general sets his troops in motion” (Freud, 1933, 96). 
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At this point, we might note the similarities between Junker and Freud. 
It remains to be investigated what Junker means by “Denken” (thinking), 
and whether this coincides with what Freud calls “probeweises Handeln” 
(acting on trial). For the purpose of this paper, it is enough to state that 
simulation is a process that at least starts with thinking and is part of 
human nature. 

Nevertheless, I continue the investigation by looking up the term 
“simulation” in dictionaries – without trying to be comprehensive but 
rather aiming at a number of facets of the term “simulation” that may help 
to better understand what we as scientists are doing. As little as 
dictionaries may have to do with philosophy, they reflect the common 
understanding of terms in their respective language community. We find 
for an English definition of simulation: 

 
Produce a computer model of a process3 

 
This brings in the computer as a tool to use for simulation, and it 

introduces the term “model” into our discussion. In this sense, we first 
look at the computer as a tool to extend our thinking. The focus now is 
clearly on the machine as a tool and on a “process” that is handled by the 
simulation. Taking a look at an Italian dictionary we find: 

 
Analisi di un fenomeno, di un processo, o di un sistema effettuata 
attraverso la costruzione di un modello matematico che lo simuli 4 
 
This definition brings back the notion of analysis, which can be found 

in Junker and Freud. However, it combines it with the mathematical model 
and it states – which is interesting to note – that the mathematical model 
simulates the process or system. This emphasis on mathematics is to be 
found later on in other concepts and already shows that simulation is very 
often taken to be applied to mathematics only. 

From all of the above suggestions and my own work I deduce the 
following concept for simulation through asking questions to myself and 
providing technical answers: 

 
 

                                                           
3 Concise Oxford Dictionary, 8th Ed., 1990. 
4 “The analysis of a phenomenon, a process or a system that is accomplished by 
constructing a mathematical model that simulates it” (Dizionari Garzanti – 
Italiano, Prima edizione, 1994). 
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What is our purpose? 
We would like to understand a natural/technical process in order to 
predict the behavior of a system AND to take measures to optimize 
the result of such a process. 

 
What do we mean by prediction? 

The intention is not to exactly predict the future but to get a better 
understanding of the behavior of a system both quantitatively and 
qualitatively. 

 
What do we mean by system? 

A system is a structure that is too complex to be easily understood. 
 
What do we mean by optimizing? 

Optimization is the process of minimizing or maximizing a given set of 
qualities under certain boundary conditions. 

 
What do we mean by simulation? 

Simulation describes natural/technical processes in a computer 
program and computes the results. 
 
This is a technical approach that serves its purpose for teaching classes 

on simulation. It remains to be discussed whether it is enough to fully 
grasp the extent to which simulation is part of our technical and natural 
life. 

Simulation Failures 
In order to better understand a concept, I tend to look at its failures. 

The history of simulation is full of success stories, and as the director of a 
national high-performance computing center, I am inclined to add a few of 
our own success stories to this. However, it helps more to look at the 
failures. 

Financial Markets 

The simulation of financial markets is based on the assumption of 
rational behavior and on the necessity for quick decisions. It comes as no 
surprise that making quick decisions requires rapid processing of available 
data, fast simulation of future scenarios and immediate decision-making. 
All of this can be achieved by using high-performance computers that are 



What’s The Result? 237

fed with all the necessary data. They, then, simulate a number of scenarios 
and make buying or selling decisions within microseconds. Banks and 
insurance companies have thus become big players in high-performance 
computing and networking in recent years. The models that had been used 
were sophisticated in nature, and mathematically they were certainly state 
of the art. However, when the financial crisis hit the markets in 2008, all of 
these models failed to foresee the unforeseeable. 

One may resort to the basic fact that human beings do not always 
behave rationally, or, as the Austrian author Peter Handke put it: 

 
Was unter Menschen geschehen wird, die, wie man sagt, ihre Taten nicht 
nach den Naturgesetzen einrichten, ist nicht berechenbar.5 

Technical Simulations 

However, we are also facing problems in technical simulations where 
we tend to believe that simulation is able to predict material behavior. I 
point to the fatigue cracks in the Airbus 380 engines and wings (NYT Feb. 
8th, 2012; ATSB, 2010) and a Boeing fuselage (NTSB, 2011) detected 
recently. In both cases, it seems to be obvious that simulations were 
carried out. Increasingly, also, technical simulation is turning from an “a 
posteriori” analysis to an “a priori” analysis. Technical processes and 
design increasingly rely on the validity of simulation. Verification and 
validation also become ethically and economically important issues. 

Verification & Validation 

Simulations are always viewed as some sort of representation of the 
real world. However, they require an understanding of whether the 
representation is adequate. In simulation technology, the two concepts of 
verification and validation have been established over the years. I follow 
Eric Winsberg here in defining verification as follows: 

 
Verification … is the process of determining whether or not the output of 
the simulation approximates the true solutions to the differential equations 
of the original model (Winsberg, 2010, 19-20). 
 
While Winsberg has a focus on the mathematical side of this definition, 

I will later show that it has to be extended also to the computational side. 
                                                           
5 “What is going to happen among people who, as it is said, do not direct their 
deeds to natural laws, cannot be calculated” (Handke, 1977, 230). 
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Nevertheless, verification seems to be the part of the process that is open 
to notions like “proof” and it seems to be the technical part of any 
simulation. 

 
Validation is the process of determining whether or not the chosen model 
is a good enough representation of the real-world system for the purpose of 
the simulation (Winsberg, 2010, 19-20). 
 
It becomes immediately obvious that by asking for a “good enough 

representation” we require a definition of “good.” Validation is obviously 
the more difficult part of the two concepts, as it requires a comparison to 
be made between the real world and the simulated world. This is typically 
done using pictures and movies or extracting significantly computed data 
that are then compared to measured data. The role of pictures and movies 
is far from being well understood yet. However, it is not further discussed 
here. The interested reader is pointed to Vilem Flusser (1999) who 
provides an interesting concept for technical pictures. 

A Simulation Framework 

In order to work out a simulation framework I provide two different 
approaches. Both lead to the same concept of simulation, but both also 
give a different angle of view. I first look at a schematic view of 
simulation. This approach states that simulation is a series of 
transformations, each of which brings us closer to the understanding of 
reality. I compare my own approach with a concept from Eric Winsberg to 
show the difference in understanding simulation between a technical and a 
philosophical approach. 

For a better understanding I have a more detailed look at my own 
scheme. It all starts with reality and a perception of reality. I leave out all 
the discussion about perception and reality and, for the sake of focusing on 
the simulation aspect, assume that we can actually somehow understand 
and measure what happens in reality. From this I derive a physical model, 
which is a description of the interaction that takes place in reality. From 
this physical model, I move on to a mathematical model. One may argue 
that the mathematical model is but a mathematical description of the 
physical model. However, any mathematical description is a very exact 
description and what we typically do when we move from physical data to 
mathematical models is to find a best fit – but usually not an exact fit. So I 
think that the distinction between a physical and a mathematical model is 
not only valid but also important. 
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Once I have a mathematical model, I have to find a solution for that 
model. The simulation typically comes into play when I cannot find an 
exact mathematical solution for the problem. In that case, I need a 
numerical scheme and a computer. Having defined the numerical scheme, 
I have to translate into a program structure. This means that I translate the 
numerical scheme into a logical computer-readable scheme. It is obvious 
that this cannot be done by a simple translation that would keep all the 
properties of the numerical scheme. Issues like computer accuracy and 
order of execution of numerical operations come into play. The name 
“FORTRAN” (Formula Translation) for one of the first programming 
languages in that sense was completely misleading. In the next step, I turn 
to what I call the programming model. Having moved from classical John 
von Neumann machines with a single processor and a single memory to 
massively parallel machines, I have to find a way to map the 
computational work on these massively parallel architectures. Only after 
that have I successfully mapped whatever I perceive to be real onto 
whatever kind of hardware architecture I am using. 

Three things are immediately obvious. First, my own schematic view 
ignores what Winsberg calls “treatment.” According to Winsberg, this 
includes the setting of mathematical boundary conditions and further 
mathematical groundwork. This could be thought to be hidden in my 
numerical scheme. Nevertheless, the omission makes clear the neglect of 
mathematical boundary conditions in my very much computer science-
driven view. Second, the concept of Winsberg takes the computation as a 
given thing, and hence does not put any emphasis on the issues of 
programming. This may reflect the more logical and mathematical 
approach of a philosopher. A combination of both approaches should come 
closer to a realistic description of a schematic simulation view. Finally, it 
is noteworthy that Winsberg indicates a direction of development that goes 
from the theory towards the results, and gives no indications of getting 
back to the initial assumptions. Pointing at both directions in my approach, 
on the other hand, indicates the possibility of also working in both 
directions. 

In simulations, we also see the approach of starting with a given 
hardware and then looking for adequate models that could fit to the 
hardware. This is not a very common approach today. Starting from reality 
and successively mapping models until one has found a mapping to the 
existing hardware is a historically more “natural” approach. We saw 
mathematical models before we developed numerical methods. We had 
numerical methods before we had computers and computer programs. The 
reverse order of mapping might, however, make sense. It is sometimes 
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used as an escape from reality when large-scale systems grow out of 
programmability, and national centers are desperately looking for codes 
that might fit the architecture and hence justify the investment. Such an a 
posteriori justification of supercomputer investments is becoming common 
but is not recommended. The large investments in supercomputers (about 
250 million US dollars for the Blue Waters system in the US and about 
600 million Euro for the most recent Japanese supercomputer) should be 
justified by a preparatory analysis of existing problems and a search for 
the right hardware solution. 

 
Figure 11-1: On the right, an approach following E. Winsberg; on the left, the 
author’s approach. 
 

 
 

However, starting from hardware is scientifically interesting. 
Following that approach, one would first analyze very carefully the 
potential of the hardware and identify programming models and 
programming structures that best fit the architecture. One would then look 
for numerical schemes to make best use of the programming models and 
structures. This would lead us to mathematical models that best fit the 
numerical scheme, and finally to physical models that best fit the selected 
mathematical approaches. The final issue is: how do the physical models 
that we derive from this synchronize with reality? It seems to be a fruitful 
approach to work through these models and mapping operations both 
directions at a time in order to find a best fit that best brings together the 
computer and reality. 
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Figure 11.2: Process driven approach simulation 
 

 
 
Thinking about the notion of “direction” of workflow in simulation, a 

second way of looking at simulation is through a process-driven approach. 
Figure 11-2 describes such a process-driven flow. It indicates that going 
through the various steps in a simulation we repeatedly have to go through 
a verification phase. At each of these steps of verification, we need to be 
able to jump back to a previous modeling step in order to correct errors. 
Furthermore, the proposed process model indicates that once we have 
gone through a validation process we need to be able to restart the 
simulation process at every intermediate step. This highlights that errors 
can occur at any given intermediate step. 

Finally, we need to discuss the errors that may occur during the 
“computation” step. We typically assume that computers do not make 
mistakes. This is not the case. The most famous case is a bug that was 
found in 1994 in the Intel Pentium processor (Cipra, 1995). The Pentium 
processor was estimated to make one error for every 9,000,000,000 
calculations. Methods to test and check hardware have improved since 
then and we can estimate that the error rate is a factor of 10–100 better 
now. However, the increase in operations may lead to problems here. If we 
assume that in the year 2020 the error rate for a single processor will be 
about 1 error for every trillion operations (1012 operations), we can make a 
simple calculation to understand the problem. In 2020, we expect systems 
that are able to perform one Exaflop – this translates to 1018 operations per 
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second. As a result, we would have to expect about one million errors per 
second. To make the estimation more realistic we can assume that such 
systems will actually only deliver between 1% and 10% of their peak 
performance. For a sustained performance of 1%, we would still have to 
expect about 10,000 errors per second. For an eight-hour simulation, this 
would result in about 300 million errors for such a simulation. Modern 
microprocessors do have error correction detection and correction 
methods. However, the huge numbers will be a problem and will have to 
be considered when it comes to checking the results of a large-scale 
simulation. 

Simulation Results & Interpretation 
When looking at the results of a simulation we have to go back to the 

start of the simulation. Which questions did we ask the simulation? Which 
input data did we provide? Which model did we use? All of these 
questions are at the core of an interpretation of the results. After all, the 
results of a simulation are functions of the answers to these questions. 

Interpreting the results that we receive requires looking at the “hard” 
results of a simulation. Usually these are data. In order to make these data 
comprehensible for human beings we have developed a variety of 
technologies. The most typical ones are: 

 
x Number  
x Diagrams  
x Pictures  
x Movies  
x Virtual Reality  
x Mixed Reality 

 
This is not the place to discuss in detail all of the above-mentioned 

representations of information. However, I would like to note two things 
here that seem to be relevant for practical purposes in a simulation 
environment. 

The first issue that I consider important is well described by the 
“Thomas theorem.” Although developed for sociological analysis it can be 
applied to the interpretation of results as well. The Thomas theorem states: 

 
If men define situations as real, they are real in their consequences 
(Thomas & Thomas, 1928). 
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Taking this concept for the visualization of simulation results, we 
understand that when we visualize simulation results we typically create 
“realities” for the non-experienced users. The visualization defines truth 
by making things visible and making them look real. 

Catherine Elgin proposes the second concept that I consider very 
relevant: 

 
Understanding is often couched in and conveyed by symbols that are not, 
and do not purport to be, true. Where such symbols are sentential, I call 
them felicitous falsehoods (Elgin, 2004). 
 
The concept of felicitous falsehoods may be fruitful for the 

interpretation of simulation results if we are able to understand the 
meaning of such falsehoods and if we know how to integrate them into our 
interpretation of simulation results. It remains to be seen how such 
concepts can be discussed in the purely technical context in which 
simulation typically resides. 

Furthermore, we have to consider a number of cases in which our 
process model of simulation with its concepts of verification and 
validation through experiments or comparison with the real world either 
fail to work or partially do not fit the underlying simulation concepts. Such 
cases are simulations where the problems… 

 
x … are too small to be validated by experiments  

     (e.g. nanotechnology)  
x … are too big to be validated by experiments 

     (e.g. world climate)  
x … last too long to be validated by experiments  

     (e.g. black hole collision)  
x … last too short to be validated by experiments  

     (particle collision)  
x … are too dangerous to be validated by experiments  

     (e.g. Tchernobyl-type experiments)  
x … are too expensive to be validated by experiments  

     (e.g. plane crashes) 
 
For all these cases we need to reconsider the notion of “validation” 

and will have to work with concepts that rely entirely on verification. 
Usually that means that we have to accept uncertainty. It would go too far 
for this paper to discuss this special topic. 
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Open Questions 

While scientific papers in the field of simulation technology usually 
come up with some conclusions, I will rather point at some of the 
questions that I consider relevant in the discussion between philosophy 
and simulation technology. 

The Simulation Act 

The key question is: What do we (human beings) do when we 
simulate? Following the models presented here, some of the follow-on 
questions are: How do we go through a modeling chain? What are the 
consequences of such a modeling chain? Does it make sense to simulate 
what can never be validated? Does it make sense to talk about “numerical 
experiments”? 

By following a model that assumes a chain of steps, we give 
simulation a certain framework in which we operate. It is an open question 
whether such an approach actually describes the mental –scientific– 
process that happens in simulation. It seems to be worthwhile to rethink 
our technical activities considering further options for simulation 
frameworks. It furthermore seems to be worthwhile to get a philosophical 
and a technical view on simulation frameworks and to work out how the 
different views can fruitfully be employed to allow both sides a better 
understanding. The rather critical problem is the lack of validation for the 
many kinds of simulation that increasingly fill our supercomputing 
systems. Science has always worked with unproven assumptions but –as 
we see later– simulation has left the premises of science and we have to 
understand what a lack of validation can mean in this context. Finally, we 
need to better understand the meaning of the notion of “numerical 
experiment.” The wording has been used a lot over time without 
specifying exactly what we mean by it. 

The Interpretation of Simulation Results 

The next question is: What happens when we interpret simulation 
results? The follow-on questions are many, but two of them seem to be 
very important here. First, we should be able to understand what the 
physiological reaction to visualization is. Visualization of simulation 
results goes beyond the classical perception of the real world. We are able 
to “add” information and to “highlight” information and the human being 
is exposed to what is often called “virtual reality.” We need to better 
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understand the consequences of this exposure. Furthermore, we need to 
look at the framework in which we interpret visualized results. So far, this 
framework has been very much a scientific one and there is little work 
about the framework of interpretation for simulation results. In the future, 
simulation will be more pervasive in society –which brings us to the third 
set of questions. 

The Public Understanding of Simulations 

The final issue is: What happens when technical simulation becomes 
“public”? Simulation has by now already become part of the work of a 
variety of people who are not involved in the production process of 
simulation. This is already a problem, as many end-users do not 
understand the meaning of a simulation. The problem will become more 
difficult once we move from “experts” to “laypeople.” At this point, a 
simulation will become –and is already gradually becoming today – part of 
the work and entertainment of people who are consumers. Among the 
many issues that will arise, “truth” is a very important one. What is the 
“truth” of a simulation? When can we say/discover/judge that a simulation 
is true or not true? Finally, we will come to the point –which we have 
already partially reached in the climate change discussion –where we 
disagree. If our discussions are based on simulation results, we will have 
to find ways to handle disagreement.  
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