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Preface

In an era with a plethora of high-throughput biological technologies, biomedical
researchers are investigating more comprehensive aspects of cancer with ever-finer
resolution. Not only does this result in large amount of data but also data with hun-
dreds if not thousands of dimensions.

Multivariate analysis is a mainstay of statistical tools in the analysis of biomed-
ical data. It concerns with associating data matrices of n rows by p columns, with
rows representing samples or patients and columns attributes, to certain response
or outcome variables. Classically, the sample size n is much larger than the num-
ber of attributes p. The theoretical properties of statistical models have mostly been
discussed under the assumption of fixed p and infinite n. However, the advance of bi-
ological sciences and technologies has revolutionized the process of investigations
in cancer. The biomedical data collection has become much more automatic and
much more extensive. We are in the era of p as a large fraction of n, or even much
larger than n, which poses challenges to the classical statistical paradigm. Take pro-
teomics as an example. Although proteomic techniques have been researched and
developed for many decades to identify proteins or peptides uniquely associated
with a given disease state, until recently this has mostly been a laborious process,
carried out one protein at a time. The advent of highthroughput proteome-wide tech-
nologies such as liquid chromatography-tandem mass spectroscopy make it possible
to generate proteomic signatures that facilitate rapid development of new strategies
for proteomics-based detection of disease. This poses new challenges and calls for
scalable solutions to the analysis of such high-dimensional data.

In this volume, we present current analytical approaches as well as systematic
strategies to the analysis of correlated and high-dimensional data.

The volume is intended as a reference book for researchers, statisticians, bioin-
formaticians, graduate students, and data analysts working in the field of cancer re-
search. Our aim is to present methodological topics of important relevance to such
analyses, and in a single volume such as this we do not attempt to exhaust all the
analytical tools that have been developed so far.

This volume contains seven chapters. They do not necessarily cover all topics rel-
evant to high-dimensional data analysis in cancer research. Instead, we have aimed
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to choose those fields of research that are either relatively mature, but may not have
been well read in applied statistics, such as risk estimation, or those fields that are
fast developing and also have obtained substantial newer results that are reasonably
well understood for practical use, such as variable selection. On the other hand, we
have omitted such an important topic as multiple comparisons, which is currently
undergoing much theoretical development (as reflected in the August 2007 issue of
Annals of Statistics, for example), and we find it possibly difficult to provide an
accurate stationary yet updated picture for the moment. Such topic, however, can
be found in several other recently published books that contain its classical results
ready for practical use. All the chapters included in this book contain practical ex-
amples to illustrate the analysis methods. In addition, they also reveal the types of
research that are involved in developing these methods.

The opening chapter provides an overview of the various high-dimensional data
sources, the challenges in analyzing such data, and in particular, strategies in the de-
sign phase, as well as possible future directions. Chapter 2 discusses methodologies
and issues surrounding variable selection and model building, including postmodel
selection inference. These have always been important topics in statistical research,
and even more so in the analysis of high-dimensional data. Chapter 3 is devoted to
the topic of multivariate nonparametric regression. Multivariate problems are com-
mon in oncological research, and often the relationship between the outcome of
interest and its predictors is either nonlinear, or nonadditive, or both. This chapter
focuses on the methods of regression trees and spline models. Chapter 4 discusses
the more fundamental problem of risk estimation. This is the basis of many proce-
dures and, in particular, model selection. It reviews the two major approaches to risk
estimation, i.e., covariance penalty and resampling, and summarizes empirical eval-
uations of these approaches. Chapter 5 focuses on tree-based methods. After a brief
review of classification and regression trees (CART), the chapter presents in more
detail tree-based ensembles, including boosting and random forests. Chapter 6 is on
support vector machines (SVMs), one of the methodologies stemming from the ma-
chine learning field that has gained popularity for classification of high dimensional
data. The chapter discusses both two-class and multiclass classification problems,
and linear and nonlinear SVM. For high-dimensional data, a particularly important
aspect is sparse learning, that is, only a relatively small subset of the predictors are
truly involved with the classification boundary. Variable selection is then again a
critical step, and various approaches associated with SVM are described. The last,
but by no means the least, chapter, presents Bayesian approaches to the analyses
of microarray gene expression data. The emphasis is on nonparametric Bayesian
methods, which allow flexible modeling of the data that might arise from underly-
ing heterogeneous mechanisms. Computational algorithms are discussed.

It has been an exciting experience editing this volume. We thank all the authors
for their excellent contributions.

Boston, MA Xiaochun Li
La Jolla, CA Ronghui Xu
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Chapter 1
On the Role and Potential of High-Dimensional
Biologic Data in Cancer Research

Ross L. Prentice

1.1 Introduction

I am pleased to provide a brief introduction to this volume of “High-Dimensional
Data Analysis in Cancer Research”. The chapters to follow will focus on data analy-
sis aspects, particularly related to regression model selection and estimation with
high-dimensional data of various types. The methods described will have a major
emphasis on statistical innovations that are afforded by high-dimensional predictor
variables.

While many of the motivating applications and datasets for these analytic de-
velopments arise from gene expression data in therapeutic research contexts, there
are also important applications, and potential applications, in risk assessment,
early diagnosis and primary disease prevention research, as will be elaborated in
Section 1.2. With this range of applications as background, some preliminary com-
ments are made on related statistical challenges and opportunities (Section 1.3) and
on needed future developments (Section 1.4).

1.2 Potential of High-Dimensional Data in Biomedical Research

1.2.1 Background

The unifying goal of the various types of high-dimensional data being generated in
recent years is the understanding of biological processes, especially processes that
relate to disease occurrence or management. These may involve, for example, char-
acteristics such as single nucleotide polymorphisms (SNPs) across the genome to be
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related to the risk of a disease; gene expression patterns in tumor tissue to be related
to the risk of tumor recurrence; or protein expression patterns in blood to be related
to the presence of an undetected cancer. Cutting across the biological processes
related to carcinogenesis, or other chronic disease processes, are high-dimensional
data related to treatment or intervention effects. These may include, for example,
study of changes in the plasma proteome as a result of an agent having chronic dis-
ease prevention potential; or changes in gene expression in tumor tissue as a result
of exposure to a therapeutic regimen, especially a molecularly targeted regimen. It
is the confluence of novel biomarkers of disease development and treatment, with
biomarker changes related to possible interventions that have great potential to en-
hance the identification of novel preventative and therapeutic interventions. Further-
more, biological markers that are useful for early disease detection open the door to
reduced disease mortality, using current or novel therapeutic modalities. The tech-
nology available for these various purposes in human studies depends very much
on the type of specimens available for study, with white blood cells and their DNA
content, tumor tissue and its mRNA content, or blood serum or plasma and its pro-
teomic and metabolomic (small molecule) content, as important examples. The next
subsections will provide a brief overview of the technology for assessment of certain
key types of high-dimensional biologic data.

1.2.2 High-Dimensional Study of the Genome

The study of genotype in relation to the risk of specific cancers or other chronic
diseases has traditionally relied heavily on family studies. Such studies often in-
volve families having a strong history of the study disease to increase the proba-
bility of harboring disease-related genes. A study may involve genotyping family
members for a panel of genetic markers and assessing whether one or more mark-
ers co-segregate with disease among family members. This approach uses the fact
that chromosomal segments are inherited intact, so that markers over some distance
from a disease-related gene can be expected to associate with disease risk within
families. Following the identification of a “linkage” signal with a genetic marker,
some form of fine mapping is needed to close in on disease-related loci. There are
many variations in ascertainment schemes and analysis procedures that may differ in
efficiency and robustness (e.g., Ott, 1991; Thomas, 2004) with case–control family
studies having a prominent role in recent years.

Markers that are sufficiently close on the genome tend to be correlated, depend-
ing somewhat on a person’s evolutionary history (e.g., Felsenstein, 2007). The iden-
tification of several million SNPs across the human genome (e.g., Hinds et al., 2005)
and the identification of tag SNP subsets (The International HapMap Consortium,
2003) that convey most genotype information as a result of such correlation (linkage
disequilibrium) have opened the way not only to family-based studies that involve a
very large number of genomic markers, but also to direct disease association studies
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among unrelated individuals. For example, the latter type of study may simulta-
neously relate 100,000 or more tag SNPs to disease occurrence in a study cohort,
typically using a nested case–control or case-cohort design.

However, for this type of association study to be practical, there needs to be
reliable, high-throughput genotyping platforms having acceptable costs. Satisfying
this need has been a major technology success story over the past few years, with
commercially available platforms (Affymetrix, Illumina) having 500,000–1,000,000
well-selected tagging SNPs, and genotyping costs reduced to a few hundred dollars
per specimen. These platforms, similar to the gene expression platforms that pre-
ceded them, rely on chemical coupling of DNA from target cells to labeled probes
having a specified sequence affixed to microarrays, and use photolithographic meth-
ods to assess the intensity of the label following hybridization and washing. In ad-
dition to practical cost, these platforms can accommodate the testing of thousands
of cases and controls in a research project in a matter of a few weeks or months.

The results of very high-dimensional SNP studies of this type have only recently
begun to emerge, usually from large cohorts or cohort consortia, in view of the large
sample sizes needed to rule out false positive associations. Novel genotype associa-
tions with disease risks have already been established for breast cancer (e.g., Easton
et al., 2007; Hunter et al., 2007) and prostate cancer (Amundadottir et al., 2006;
Freedman et al., 2006; Yeager et al., 2007), as well as for several other chronic dis-
eases (e.g., Samani et al., 2007, for coronary heart disease). Although it is early to
try to characterize findings, novel associations for complex common diseases tend
to be weak, and mostly better suited to providing insight into disease processes and
pathways, than to contributing usefully to risk assessment. The prostate cancer as-
sociations cited include well-established SNP associations that are not in proximity
to any known gene, providing the impetus for further study of genomic structure
and characteristics in relation to gene and protein expression.

1.2.3 High-Dimensional Studies of the Transcriptome

Studies of gene expression patterns in tumor tissue from cancer patients provided
some of the earliest use of microarray technologies in biomedical research, and con-
stituted the setting that motivated much of the statistical design and analysis devel-
opments to date for high-dimensional data studies. Gene expression can be assessed
by the concentration of mRNA (transcripts) in cells, and many applications to date
have focused on studies of tumors or other tissue, often in a therapeutic context.
mRNA hybridizes with labeled probes on a microarray, with a photolithographic as-
sessment of transcript abundance through label intensity. A microarray study may,
for example, compare transcript abundance between two groups for 10,000 or more
human genes.

Studies of the transcription pattern of specific tumors provide a major tool for
assessing recurrence risk, and prognosis more generally, and for classifying patients
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into relatively homogenous groups (e.g., Golub et al., 1999) according to tumor
characteristics, for tailored molecularly targeted treatment. Examples of molecu-
larly targeted cancer therapies, developed in recent years, include imatinib mesylate
(Gleevec) for the treatment of chronic myeloid leukemia (e.g., Druker et al., 2006),
and trastuzumab (Herceptin) for the treatment of HER-2 positive breast cancer
(Piccart-Gebhart et al., 2005; Rouzier et al., 2005). This is an enterprise that can
be expected to profoundly affect tumor classification and cancer patient manage-
ment in the upcoming years. The related literature is already quite extensive and
will not be summarized here. Other papers in this volume will bring out cancer
therapy-related applications of gene expression data.

There is also a valuable emerging bioinformatics literature on inferring func-
tion and pathways from gene expression microarray data patterns (e.g., Khatri and
Draghici, 2005).

1.2.4 High-Dimensional Studies of the Proteome

The technology for simultaneous study of the expression of a large number of pro-
teins in tumor tissue, blood, or other body compartment is less developed than is
the case for gene expression. However, technology developments are being vig-
orously pursued, and the potential for biomedical research is enormous. Proteins
undergo a wide variety of modifications following transcription and translation, and
post-translational modifications may greatly influence function, and potentially con-
tribute to carcinogenesis and other disease processes. Of potential importance for
early detection and risk assessment purposes, protein expression can be assessed
using stored blood products (serum or plasma) in the form typically included in bi-
ological repositories associated with cohort studies or prevention clinical trials. One
could also study the effects of, say, a dietary or physical activity intervention on a
high-dimensional subset of the plasma proteome. When combined with data to de-
scribe the association of plasma protein concentrations with the risk of a range of
clinical outcomes, such proteomic data have potential to invigorate the preventive
intervention development enterprise, and perhaps avoid the late discovery of adverse
effects that can eliminate the practical value of an otherwise promising intervention.

A particular challenge in plasma proteomics is the very broad range of concen-
trations of circulating proteins. For example, it may be that novel proteins in small
malignant tumors that have yet to surface clinically are shed in minute quantities
into blood. Identification of such proteins in plasma could be quite valuable for the
early detection of latent cancers. To do so, however, may require the ability to iden-
tify and quantify proteins whose abundance is 10 orders of magnitude less than that
of the most abundant proteins.

Accordingly, the type of liquid chromatography (LC) and mass spectrometry
(MS) platforms that have been developed for this purpose mostly begin by im-
munodepletion of the few most abundant proteins, followed by varying degrees
of fractionation to reduce the number of proteins in each fraction. The proteins
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in each fraction are then trypsin-digested; and mass spectrometry is used to iden-
tify the peptides in a fraction. A second mass spectrometry step is then used to
sequence and identify the peptides showing peaks in the first set of mass spectra, af-
ter which proteins present in the original sample are bioinformatically reconstructed
from databases linking proteins to the peptides they contain. There are many vari-
ants on the LC-MS/MS approaches just alluded to, with differing degrees of ini-
tial immunodepletion, differing labeling strategies for relative protein quantitation
(e.g., to quantitatively compare a diseased case to a matched control; or to compare
a post-treatment to a pre-treatment plasma specimen from the same study subject),
and differing fractionation schemes. In addition, some platforms digest proteins into
peptides before fractionation.

To cite a specific example, the intact protein analysis system (e.g., Faca et al.,
2006) of my colleague, Dr. Samir Hanash, immunodepletes the six most abundant
proteins, applies either a light or a heavy acrylamide label to the members of a
pair of samples to be compared, mixes the labeled samples, separates first by anion
exchange chromatography, then by reverse phase chromatography, typically gener-
ating about 100 fractions, followed by trypsin digestion and tandem mass spectrom-
etry in each fraction. This methodology may identify about 2,500 unique proteins
from a sample pair, and provide relative abundance quantitation for a subset of 1,000
cysteine containing proteins (to which the acrylamide label binds).

Proteomic platforms involving antigen or antibody arrays are also under inten-
sive development. For example, epitopes from a larger number of proteins may be
spotted onto a microarray. The affinity and label luminescence of corresponding
autoantibodies then reflect the presence and quantity of proteins included in the
test sample. For example, Wang et al. (2005) report an autoantibody signature for
prostate cancer from this type of approach. Arrays containing as many as 8,000
distinct epitopes have been developed and are becoming commercially available.

1.2.5 Other Sources of High-Dimensional Biologic Data

There are quite a number of additional sources of high-dimensional biologic data.
For example, in addition to their use for studying SNPs, gene expression, and
antigen-antibody profiles, microarrays are in use for studying DNA methylation
patterns, DNA copy number changes (through comparative genomic hybridiza-
tion), and microRNAs. This range of applications is likely to grow. Moreover,
high-throughput DNA sequencing is rapidly developing, and data sets containing
millions of short reads will soon become available. Methods for investigating the
metabolome are also under rapid development, using the same type of LC-MS/MS
technology sketched above, or other (e.g., Shurubor et al., 2005) methods. Impor-
tant high-dimensional data also derive from various types of scans (e.g., PET scans
or mammograms) with various applications in cancer research.
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1.3 Statistical Challenges and Opportunities
with High-Dimensional Data

1.3.1 Scope of this Presentation

Statistical aspects of the analysis and use of high-dimensional biologic data is the
major focus of this volume. The attraction of such data, of course, is the potential
to be rather thorough in studying the association between an outcome variable Y
and a set of “predictor” variables X1, . . . ,Xp that may include a fairly comprehen-
sive assessment of variables of interest within a targeted compartment. On the other
hand, the high-dimensionality implies that many of the associations examined will
meet conventional significance testing criteria by chance alone, so a major chal-
lenge is to rule out the “false positives” in an efficient and convincing manner, in a
setting where there may be complex correlation patterns among predictor variables.
Here only a brief introduction will be provided of some of the statistical concepts
involved, with few citations. Subsequent chapters will provide a detailed account
of statistical considerations and approaches to the analysis of certain types of high-
dimensional data.

1.3.2 Two-Group Comparisons

Many “discovery-type” applications of high-dimensional data involve a binary Y ,
and a predictor variable array X1, . . . ,Xp, with p very large. Logistic regression
methods are frequently used to compare cases (Y = 1) to controls (Y = 0), or
post-treatment (Y = 1) to pre-treatment (Y = 0) groups, with respect to the elements
(one-at-a-time) of this array, usually with the control for other potentially confound-
ing factors. Tests based on linear regression are also widely used, as are two-sample
nonparametric tests. Under the assumption that at most a small fraction of predictor
variables relate to Y , the array data may first be “normalized” by relocation and/or
rescaling to reduce measurement variation between arrays.

While testing at a nominal level would generate many “associations” even under
a global null hypothesis, the other extreme of ensuring an experiment-wise error
rate below a certain α-level (e.g., using a Bonferroni correction) is typically far too
stringent for discovery work. Hence, the false discovery rate (FDR) approach of con-
trolling the expected fraction of discoveries that are false (Benjamini and Hochberg,
1995) provides a valuable alternative in many applications. Even then, however, the
fact that many elements of an array may have limited plausibility for association
with Y suggests that the power of discovery research may be enhanced by some
external “filtering” of the elements of the array. For example, primary testing in hu-
mans could be based on the subset of an array for which there is evidence of asso-
ciation with a comparable response variable in the mouse or other model system, or
high-dimensional human protein expression comparisons may benefit by restriction
to proteins that derive from genes that express in a manner that is associated with Y .
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An interesting analytic idea (Efron, 2004), again deriving from the assumption
that only a small fraction of the elements of an array are plausibly associated with
Y , involves using the empirical distribution of standardized test statistics to generate
basis for judging statistical significance, rather than using the theoretical null dis-
tribution (e.g., normal or t-distribution). This approach has the potential to preserve
desired error rates, for example, through the adaptability of the “empirical null” dis-
tribution, even in the presence of uncontrolled confounding of certain types. Permu-
tation tests, formed by comparing a test statistic to the distribution of test statistics
that arise by randomly reallocating response values (Y = 1 or Y = 0) also have util-
ity in this type of setting, particularly if the sample size (e.g., number of arrays)
is small and the asymptotic null distributional approximations may be inadequate.
Classification error probabilities and ROC curves (with quantitative X variables),
among other classification and predictiveness techniques, also have a useful role in
the analysis of this type of data. There is also a useful place for testing and esti-
mating methods that “borrow strength” across predictor variables (e.g., empirical
Bayes’ methods), especially if the study involves a small number of independent
samples.

1.3.3 Study Design Considerations

A typical analysis of a high-dimensional data set with binary Y begins by scan-
ning through the elements of the array, or a filtered subset thereof, one-at-a-time to
identify “biomarkers” of interest for further evaluation. In some settings (e.g., SNP-
disease association studies), the associations being sought are likely to be weak
(e.g., odds ratios of 1.1 or 1.2 for presence of minor SNP allele) requiring enormous
sample sizes for definitive testing. In other settings (e.g., plasma proteome disease
associations), available technology may be low throughput and expensive. In either
case, there may be important efficiencies and cost savings by using a multi-staged
design, or using a specimen pooling strategy.

The NCI-sponsored Cancer Genetic Epidemiology Markers of Susceptibility
(C-GEMS) program illustrates the multi-stage design approach. For example, an
on-going C-GEMS breast cancer case–control study involved about 1,200 white
cases and controls from the Nurses Health Study and Illumina’s 550,000 SNP set at
a first stage, and applied a likelihood ratio test to the minor allele counts (X = 0,1,
or 2) at each SNP. In spite of the large number of SNPs tested, there was strong
enough evidence for association with one particular SNP to report an association
based primarily on first-stage data (Hunter et al., 2007). A second stage is currently
underway using DNA from about 3,000 white cases and controls from the Women’s
Health Initiative cohort study. This second stage includes about 30,000 SNPs se-
lected primarily based on empirical evidence for an association from the first stage.
Testing the initial 550,000 SNPs in all first- and second-stage cases and controls
would have doubled or tripled the genotyping costs for this project, with little corre-
sponding gain in power. The study design calls for two or three subsequent stages,
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each with some thousands of cases and controls to rule out false positives and thor-
oughly identify breast cancer-related SNPs.

Multi-stage SNP studies of breast cancer, coronary heart disease, and stroke are
also nearing completion, each involving 2000–4000 cases and controls from the
Women’s Health Initiative. As a cost-saving device, the first stage in these multi-
stage efforts involved pooled DNA, with pools formed from 125 cases or 125
matched controls (Prentice and Qi, 2006). DNA pooling reduced project genotyping
costs by a factor of about 25. In theory, such cost reduction should be accommodated
by fairly modest power reductions under additive or dominant genetic models for an
SNP (but with major power reductions under a recessive genetic model), but avail-
able data to evaluate the role of pooling are limited, and genotyping costs continue
to drop rapidly. Hence, while the issue cannot be said to be resolved, it is likely that
large-scale SNP studies of the future will mostly use individual-level genotyping.

Multi-stage designs also have a fundamental role in proteomic discovery re-
search, and specimen pooling for LC-MS/MS platforms has important practical
and cost advantages in early detection, risk assessment, and preventive interven-
tion development contexts. To cite a particular example, Women’s Health Initiative
investigators, in collaboration with Dr. Samir Hanash, have recently completed a
comparison between the baseline and 1 year from randomization proteomes for
50 women assigned to estrogen plus progestin (Writing Group for the Women’s
Health Initiative Investigators, 2002) and 50 women assigned to estrogen alone
(The Women’s Health Initiative Steering Committee, 2004) using the Intact Pro-
tein Analysis System. In each case baseline and 1-year serum pools from sets of 10
women were analyzed and provided FDRs of interest for a sizeable number of the
approximately 1,000 baseline to 1-year proteomic changes quantified. These data
are being filtered by corresponding pooled data from breast cancer cases and con-
trols to identify a small number of proteins that may be able to explain estrogen
plus progestin effects on breast cancer risk, and differences in risk between estro-
gen plus progestin and estrogen alone. This small number of proteins will then be
validated in an independent set of cases and controls using an individual-level (e.g.,
ELISA) test as a second stage. These collective data will also be used to ask whether
hormone therapy clinical trial results on breast cancer, coronary heart disease, and
stroke could have been anticipated by changes in the serum proteome, as a test case
for the role of proteomic changes in prevention, intervention, development, and ini-
tial evaluation.

1.3.4 More Complex High-Dimensional Data Analysis Methods

The binary response (Y = 0 or 1) discussion above readily applies to case and con-
trol data from cohort studies with time to event responses, upon matching cases and
controls on pertinent time variables. Other applications could involve other quanti-
tative response variables, for which many of the same considerations would apply,
perhaps using generalized linear models to derive test statistics.
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Regardless of the nature of the response variable Y , additional important analytic
topics include statistical methods for model building to relate multiple elements of
an array X = (X1, . . . ,Xp) simultaneously to Y , including the study of interactions
among elements of X (in relation to Y ), and the study of interactions between the
elements of an array and a set of “environmental” factors. With large p, the fitting
of each of the potential (2p) regression models of this type may well exceed mod-
ern computing power, and the ability to distinguish empirically among fitted models
may be limited. Various approaches can be considered to these difficult and thorny
modeling topics, with some form of cross-validation typically being crucial to the
establishment of a specific regression model association. Additionally, specialized
regression methods (e.g., Tibshirani, 1996; Ruczinski et al., 2003) have been pro-
posed to enhance sensitivity to identifying combinations of specific types of predic-
tor variables that may associate with an outcome. Often data analytic methods focus
on X variables having evidence of association with Y marginally, to reduce the pre-
dictor variable space for gene–gene, or gene–environment interaction testing. These
are topics that will be discussed in detail in the subsequent chapters.

1.4 Needed Future Research

It is still too early to ascertain and use many types of high-dimensional data. While
the technology for high-dimensional SNP and gene expression studies has devel-
oped nicely, the sample sizes typically applied for the two types of studies differ to a
surprising degree. While genome-wide association of SNP studies take a brute force
approach with thousands of cases and controls to establish specific SNP-disease as-
sociations, gene expression comparisons (e.g., patients with or without relapse) have
mostly relied on very small sample sizes (at most a few hundred) with focus on the
entire expression profile or pattern. The underlying assumption seems to be, for
example, that tumor recurrence includes a number of steps resulting in expression
changes that are fairly common among patients, or that involve a small number of
classes of patients with common expression profiles within classes. Additional re-
search would seem to be needed to establish that biologic differences among patients
do not dominate the expression pattern comparisons with such small sample sizes.

Proteomic technologies are still at an intermediate stage of development, with
differences of opinion concerning the most promising platforms. The LC-MS/MS
platforms, which seem to have the most potential at present, are decidedly low
throughput, limiting their applications to date. The concept of plasma proteomics
discovery for the early detection of cancer has yet to be firmly established. A re-
lated important research question concerns whether researchers can work in a suf-
ficiently powerful manner from stored blood specimens alone for early detection
discovery work, or whether it is necessary to work first with blood obtained at diag-
nosis, and with tumor tissue, where the proteins being sought may be comparatively
abundant. Good quality prediagnostic blood specimens are well suited to serum or
plasma proteomic discovery research, whereas it may be difficult to obtain blood
having equivalent handling and storage from a suitable control group to compare
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with blood specimens obtained at diagnosis for cancer patients and, of course, suit-
able control group tissue specimens may not often be available in human studies. It
would considerably simplify proteomic early detection discovery research if predi-
agnostic stored blood specimens turn out to be sufficiently sensitive, but this issue
is yet to be resolved.

The assessment technology for high-dimensional metabolomic data is at a quite
early stage of development, and may ultimately be needed for the development of a
sufficiently comprehensive understanding of disease and intervention pathways and
networks.

A more technical statistical need relates to estimation methods with high-
dimensional data. Typically in high-dimensional SNP studies, for example, odds
ratios will be presented only for a small number of SNPs meeting stringent statisti-
cal selection criteria. The uncorrected odds ratio estimates may be severely biased
away from the null as a result of this extreme selection, and methods for odds ratio
correction under single or multi-stage designs are needed for study reporting.

Finally, there is a growing need for methods to integrate data across multiple
types of high-dimensional biologic data (e.g., SNPs, gene expression, protein ex-
pression, . . .) to obtain a more comprehensive picture of the regulatory processes
and networks that may be pertinent to disease processes, or intervention effects,
under study.

Statisticians and bioinformaticians have much to contribute to these burgeoning
enterprises over upcoming years.
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Chapter 2
Variable Selection in Regression – Estimation,
Prediction, Sparsity, Inference

Jaroslaw Harezlak, Eric Tchetgen, and Xiaochun Li

2.1 Overview of Model Selection Methods

Over the past 30 years, variable selection has become a topic of central importance
to regression modeling. In recent years, its primary relevance to empirical methods
for cancer research has further been underscored with the now routine collection of
data from high-throughput technologies such as microarrays and mass spectrometry.
In general, one is interested in the selection of a few explanatory variables in a
regression problem with a large set of potential covariates. This chapter concerns
variable selection in generalized linear models, a problem that is in fact common
to “-omics” technologies used in cancer research (e.g., genomics and proteomics),
where the number of possible explanatory variables p often surpasses the number
of available observations n.

Let Y = {y1,y2, . . . ,yn}
′

denote the outcome vector and X = [xi j], i = 1, . . . ,n;
j = 1, . . . , p denote the matrix of possible explanatory variables with i indexing
subjects and j indexing covariates. In general, the outcome may be quantitative
(e.g., tumor size), or binary (e.g., “case” or “control”). To focus our exposition, the
first six sections below consider only the linear regression setting; we briefly discuss
extensions to generalized linear models in Section 2.7.

Consider the standard linear model

yi =
p

∑
j=1

xi jβ j + εi, (2.1)

where the errors εi have mean 0 and common variance σ2. Without loss of
generality, assume that ∑i xi j = 0,∑i x2

i j = 1, and ∑i yi = 0.
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In the classical setting of ordinary least-squares regression (OLS) with the num-
ber of variables much less than the sample size, that is, p � n, βββ is typically es-
timated by minimizing the residual sum of squares (RSS). If the columns of X are
linearly independent, the OLS estimate of βββ is (X′X)−1X′Y. When p > n, the design
matrix X can no longer be full rank. As a result there is no unique OLS solution. If
̂βββ 0 is a solution, then ̂βββ 1 = ̂βββ 0 +ααα is also a solution, where ααα is in the null space of
X. Although ̂βββ 0 and ̂βββ 1 differ nontrivially in the parameter space, they give exactly
the same prediction X̂βββ 1 = X̂βββ 0. When the purpose of the model selection is to ob-
tain a good prediction of a future patient’s outcome, the focus is on minimizing the
risk E(E(y|x)−x′βββ )2 by selecting a sparse regression model with minimal bias and
variance. The bias here comes from the fact that the linear regression model need
not hold. On the other hand, the estimation of βββ itself may be of interest, for exam-
ple, if one is willing to assume that the posited regression model holds with only few
nonzero coefficients, then identifying the corresponding relevant covariates and re-
porting confidence intervals centered at their estimated effects becomes the primary
objective. A model selection procedure that achieves this goal has been referred to in
the literature as consistent (e.g., see Knight and Fu, 2000, for the LASSO case). One
should note that a model selection procedure leading to optimal prediction need not
yield optimal estimates of βββ under the model and vice versa, see Leng et al. (2006)
for a discussion of the case of LASSO.

In Section 2.2, we briefly review some classical subset selection methods. These
methods typically attempt to find the “best” of the 2p possible models using an auto-
mated search through a model space. Due to their intense combinatorial nature, best
subset regression methods do not scale well with the size of the full model, and can
become computationally intractable for even moderately sized regressions. In the
p � n setting, where no unique OLS solution exists and subset regression no longer
applies, a remedy recently advocated in the literature on model selection is that of
regularized estimation via a method of penalization. Below, we review this approach
for a variety of penalties, though our interest is primarily in penalties that lead to
sparse regularized solutions with few nonzero estimated coefficients. We do not at-
tempt to discuss all recent proposals in this chapter. Interested readers can refer to
the book by Miller (2002) or a more recent article by Fan and Li (2006). We provide
details on four particular methods: LASSO (Tibshirani, 1996), SCAD (Fan and Li,
2001), LARS (Efron et al., 2004), and the Dantzig selector (Candes and Tao, 2007);
we also mention certain interesting extensions of these initial proposals. Finally, we
address the following two topics:

1. In Section 2.5, we discuss the distinction between optimal model selection
gauged toward prediction versus optimality in terms of estimation; the former
is related to model selection persistence (Greenshtein and Ritov, 2004), whereas
as stated earlier, the latter has been referred to as model selection consistency
(Knight and Fu, 2000).

2. In Section 2.6, we summarize some known limitations of post-model selection
inference on βββ when using a procedure based on sparsity (Leeb and Pötscher,
2008b).
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In the next section, we describe a data example used to illustrate various model
selection methods.

2.1.1 Data Example

To illustrate the use of the variable selection methods, we use the data coming from
a study by Stamey et al. (1989), which collected a number of clinical variables
in men who were to receive a radical prostatectomy. The dataset contains the fol-
lowing variables, log(prostate specific antigen) (lpsa), log(cancer volume) (lcavol),
log(prostate weight) (lwight), age, log(benign prostatic hyperplasia amount)(lbph),
seminal vesicle invasion (svi), log(capsular penetration) (lcp), gleason score (glea-
son), and percentage Gleason scores 4 or 5 (pgg45). We fit a linear regression model
to log(cancer volume) with the regressors consisting of polynomial terms of a maxi-
mum degree 2 and allowing for at most two-way interactions between the covariates.

2.1.2 Univariate Screening of Variables

In the simple case of an orthonormal design matrix X, one can show that several
optimal variable selectors essentially base the inclusion of a given covariate into
the model, solely on the marginal association between the outcome and the can-
didate covariate (Tibshirani, 1996) with no consideration given to the other vari-
ables. Unfortunately, in the “-omics” studies that interest us, we can never hope to
even approximate this idealized orthonormal design setting, as covariates in X are
typically highly correlated, sometimes with a few pairwise correlations exceeding
0.9 for instance for gene expressions on the same pathway. The following example
demonstrates that in such a setting, a procedure that ignores the dependence among
the covariates can lead to a suboptimal variable selector. Our example concerns the
undesirable features of univariate screening of variables as reported in the paper by
Paul et al. (2008) on pre-selection of variables using univariate tests.

Define (Y,X1,X2,X3) to follow a multivariate normal distribution with mean
μμμ = 0 and the variance–covariance matrix

Σ =

⎛

⎜

⎜

⎝

1 −0.5 −0.5 0
−0.5 1 0.5 −0.5
−0.5 0.5 1 −0.5

0 −0.5 −0.5 1

⎞

⎟

⎟

⎠

.

Also, let (X4, . . . ,X300) be additional predictors normally distributed with mean
zero and identity covariance matrix. The true regression coefficients are βββ =
(−1,−1,−1,0,0, . . . ,0) and the marginal correlations of each predictor with the re-
sponse are given by ρρρ = (−0.5,−0.5,0,0,0, . . . ,0). In this case, the covariate X3 is
uncorrelated with Y , but it has nonzero partial correlation with Y when conditioning
on other covariates. Thus, by univariate screening of the covariates, we would falsely
exclude X3 from further analysis.
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In the following section, we improve on univariate screening methods with the
use of subset selection.

2.1.3 Subset Selection

Traditional strategies for the selection of important covariates include best subset
selection, forward, backward, and stepwise selection procedures, which are all com-
binatorial in nature. Given k ∈ {1,2, . . . , p}, best subset selection finds a subset of
variables of size k that gives the smallest empirical loss (e.g. R2). Furnival and Wil-
son (1974) developed an efficient algorithm, “leaps and bounds procedure,” for best
subset selection. Though subset selection procedures produce interpretable and pos-
sibly sparse models, they tend to be very discrete and discontinuous in the data,
leading to highly unstable solutions. Furthermore, proposed algorithms can typi-
cally not handle over 40 potential covariates.

Backward stepwise selection can only be used when p < n, since the first model
that is considered contains all possible covariates. Variables are excluded from the
model according to an “exit” criterion, e.g., an exclusion threshold for p-values
associated with individual coefficients. In contrast, both forward and stepwise se-
lection start with a model consisting of a single covariate, and the covariates are
subsequently added to the model according to an “entry” criterion of similar nature
to that used in backward selection. In stepwise selection, a backward step is typically
performed after a variable is entered into the model. The immense computational
burden of these methods severely limits their applicability to large data sets encoun-
tered in cancer research; in view of this limitation, we turn next to model selection
via penalization, an approach which has recently gained wide appeal among statis-
tical analysts facing the multiple modeling challenges of high-dimensional data.

2.2 Multivariable Modeling: Penalties/Shrinkage

2.2.1 Penalization

The general form of penalized methods for standard linear model (2.1) is given by

̂βββ = argmin
βββ

⎧

⎨

⎩

∑
i

(

yi −
p

∑
j=1

xi jβ j

)2
⎫

⎬

⎭

+Pλ (βββ ), (2.2)

where Pλ (βββ ) is the penalty and λ ≥ 0. Popular penalties include λ ∑ j |β j|m, where
the choice m = 0 yields the so-called L0 penalty λ ∑ j I(|β j| �= 0) common to classi-
cal methods such as AIC and BIC.
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Fan and Li (2006) argue that the penalized criterion (2.2) encompasses the L0
penalty with the choice of tuning parameter λ corresponding asymptotically to the
classical maximization of the adjusted R2 given by

1− RSSk/(n− k)
RSS1/(n−1)

,

where RSSk is the residual sum of squares for a model with k covariates and the
tuning parameter λ = σ2/(2n). Generalized cross-validation (GCV)

GCV(k) =
nRSSk

(n− k)2

offers another example of (2.2) with corresponding tuning parameter λ = σ2/n.
In general, for powers 0 < m ≤ 1, the penalized criterion automatically performs

variable selection due to the penalty’s singularity at zero. Powers m ≥ 1 result in so
called “bridge regression models” (Fu, 1998) which include LASSO for m = 1 and
ridge regression for m = 2.

2.2.2 Ridge Regression and Nonnegative Garrote

We begin with ridge regression which was introduced by Hoerl and Kennard (1970)
and corresponds to using the penalty Pλ (βββ ) = λ ∑ j β 2

j . One of its attractive features
is that unlike best subset selection, it is continuous in the data. The ridge estimator
takes the form:

̂βββ
ridge

= (X
′
X+λ I)−1X

′
Y,

where I is an identity matrix. Ridge regression has been shown to give more ac-
curate predictions than the best subset regression, unless the true model is sparse.
Moreover, it is easy to show that the ridge estimator generally has smaller variance
than the OLS estimator achieved by shrinking the OLS estimates toward zero. Note
however, that none of the coefficients are estimated as exactly zero which makes
the interpretation of the model difficult. Building on shrinkage estimators via ridge
regression, Breiman (1995) proposed the nonnegative garrote defined as

̂βββ
NG

= argmin
βββ

⎧

⎨

⎩

∑
i

(

yi −
p

∑
j=1

c j
̂β o

j xi j

)2
⎫

⎬

⎭

subject to c j ≥ 0 and ∑
j

c j ≤ t,

where ̂β o
j are the OLS estimates, which are scaled by nonnegative c j whose sum is

constrained by t. The solution to the minimization problem can be written as: ̂β j =
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ĉ j
̂β o

j , where ĉ j is only available in closed form in the simple case of an orthogonal
design matrix:

ĉ j = (1−λ/(̂β o
j )

2)+, j = 1, . . . , p,

where (x)+ = x for x > 0 and is 0 otherwise. Breiman (1995) showed that this esti-
mator has lower prediction error than best subset selection procedures and performs
as well as ridge regression; although unlike the latter, the garrote can produce esti-
mates of exactly zero. Unfortunately, the original garrote is vulnerable to instabili-
ties in the preliminary least squares estimates, particularly in the presence of highly
correlated covariates where OLS is known to break down. Moreover, computing the
solution path of the garrote using standard quadratic programming techniques as
originally proposed can be computationally demanding and impractical. Finally, the
garrote is limited in the number of covariates (p ≤ n) that may be used in fitting the
procedure. To remedy the first limitation, Yuan and Lin (2007) recently proposed
to substitute the ridge estimator for the OLS plug-in, and show that the modified
estimator is far more stable. In the same manuscript, the authors offer a compu-
tational algorithm that obtains the entire solution path of the nonnegative garrote
with computational load comparable to that of OLS regression, thereby resolving
the second major limitation of the original garrote. In addition, they prove that the
nonnegative garrote can be a consistent model selection procedure under fairly gen-
eral conditions; model selection consistency of a procedure states that it estimates
zero coefficients exactly with probability tending to one as sample size grows to
infinity.

2.2.3 LASSO: Definition, Properties and Some Extensions

The least absolute shrinkage and selection operator (LASSO), introduced by
Tibshirani (1996), was motivated by the aforementioned Breiman’s nonnegative gar-
rote estimator. The procedure shrinks some coefficients toward zero and sets some
to be exactly zero; thereby combining the favorable features of best subset selection
and ridge regression. The LASSO penalty term is given by Pλ (βββ ) = λ ∑ j |β j|. In
the simple case of an orthogonal design matrix X, one gets an explicit solution to
the minimization problem (2.2):

̂β LASSO
j = sign(̂β o

j )(|̂β o
j |−λ/2)+, j = 1, . . . , p,

where ̂β o
j is the OLS solution. For nonorthogonal designs, there exist efficient

quadratic programming algorithms to find LASSO solutions for a given value of
λ . More generally, the least angle regression (LARS) algorithm can find the whole
LASSO solution path (all λ > 0) with the same computational load as the OLS so-
lution (see Section 2.3). It is important to note that the original LASSO cannot make
use of more than n covariates and it is highly sensitive to high correlations among
covariates.
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A major challenge not yet addressed in this chapter is the selection of an optimal
tuning parameter λ . Among others, Leng et al. (2006) address this issue, and show
that when the prediction accuracy is used as a criterion to choose the tuning para-
meter in penalized procedures, these procedures will generally fail to be consistent.
In fact, in the simple orthogonal design case, they show that the probability of cor-
rectly identifying the model via LASSO is bounded above by a constant c < 1,
uniformly in n.

For a fixed number of parameters p, Zou (2006) shows that LASSO is in general
not consistent. In particular, he shows that the probability that zero coefficients are
estimated as zero is generally less than 1. In Zhao and Yu (2006), “irrepresentability
conditions” on the design matrix which we discuss below, provide an almost nec-
essary and sufficient condition for LASSO to be consistent. However, the tuning
parameter λ required for selection consistency can excessively shrink the nonzero
coefficients leading to asymptotically biased estimates.

Irrepresentability conditions on the design matrix can be summarized as follows:
let C = X

′
X , and divide C into blocks corresponding to the s covariates with non-

zero coefficients and d = p− s covariates with zero coefficients resulting in:

C =
(

C11 C12
C21 C22

)

Assume that C11 is invertible, then for a positive constant vector η

|C21(C11)−1sign(βββ (s))| ≤ 1−η ,

where βββ (s) = (β1, . . . ,βs) and β j �= 0 for j = 1, . . . ,s is the strong irrepresentabil-
ity condition. There is also a weak irrepresentability condition which changes the
inequality to < 1.

Examples of the conditions on the design matrix X implying strong irrepre-
sentability include:

1. Constant positive correlation: 0 < ρi j ≤ 1/(1+ cs), where c > 0,
2. Bounded correlation: |ρi j| ≤ c/(2s−1) for a constant 0 ≤ c < 1 (also called

coherence in Donoho et al., 2006),
3. Power decay correlation: ρi j = ρ |i− j|.

A fascinating property of LASSO-like procedures is that of persistence
(Greenshtein and Ritov, 2004); which entails the asymptotic equivalence of
the L2 risk evaluated at the LASSO estimated parameters and the smallest achiev-
able L2 risk on a particular restricted parameter space (e.g., regression coefficients
with bounded L1 norm) in a model of very high dimension. We shall return to
persistence in Section 2.5 where more details are provided.

To alleviate the major limitations of LASSO, there have been proposals to ex-
tend L1 penalization. A prominent proposal made by Zou (2006) is the “Adaptive
LASSO” which makes use of data dependent weights. The penalty takes the form

Pλ (βββ ) = λ
p

∑
j=1

|β j|
|̂β I

j |γ
,
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where ̂β I
j is an initial estimator of β j and γ > 0, hence large coefficients are

shrunk less and small coefficients are shrunk more than in the LASSO solution.
For fixed p, adaptive LASSO yields selection consistency of nonzero estimates of
coefficients with asymptotic distribution equal to that obtained in the model with
prior knowledge of the location of zero parameters. This latter property has been
described as a desirable “oracle” property (Fan and Li, 2001). In fact, Huang et al.
(2007) showed that the adaptive LASSO maintains the oracle property for pn →∞ as
n → ∞ under general conditions on the design matrices which we do not reproduce
here.

Other extensions to LASSO include

• “Elastic net penalty” (Zou and Hastie, 2005) with penalty taking the form

Pλ (βββ ) = λ1

p

∑
j=1

|β j|+λ2

p

∑
j=1

|β j|2,

where λ1 and λ2 are tuning parameters. Elastic net alleviates the limitation on
the maximum number of parameters chosen by LASSO. Zou and Hastie (2005)
show in simulations that highly correlated variables are grouped, and are either
selected or removed from the model as a group.

• “Fused LASSO” (Tibshirani et al., 2005)-a generalization to LASSO exploiting
the ordering of the regression coefficients. The penalty takes the form

Pλ (βββ ) = λ1

p

∑
j=1

|β j|+λ2

p

∑
j=2

|β j −β j−1|.

Its solutions are sparse in the original coefficients, that is, nonzero estimates of
coefficients are few, as well as in the differences between the coefficients, pro-
moting the equality of the neighboring coefficients.

The penalized methods thus far discussed share the nice feature of being convex
optimization problems. In the following section, we discuss a generalized penalized
method with some additional appealing statistical properties.

2.2.4 Smoothly Clipped Absolute Deviation (SCAD)

Fan and Li (2001) proposed three desirable properties that penalized methods should
fulfil:

a. Sparsity. An estimator should accomplish variable selection by automatically set-
ting small coefficients to zero.

b. Unbiasedness. An estimator should have low bias, especially for large true coef-
ficients β j.

c. Continuity. An estimator should be continuous in data to avoid instability in
model prediction.
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The penalty methods given in Sections 2.2.1, 2.2.2, and 2.2.3 fail to simultane-
ously satisfy properties a, b, and c. For example the L0 penalty does not satisfy the
continuity condition, and the L1 penalty violates the unbiasedness condition. Fan
and Li (2001) construct a penalized estimator called the smoothly clipped absolute
deviation (SCAD) to fulfill all three properties. The SCAD penalty is given by

Pλ (βββ ) = λ
{

I(|β j| ≤ λ )+
(aλ −β j)+
(a−1)λ

I(|β j| > λ )
}

,

for some a > 2 (the original paper suggested using a = 3.7) and λ , a tuning para-
meter. The SCAD solution in the simple orthogonal design case corresponds to

̂βββ
SCAD

=

⎧

⎨

⎩

sign(x)(|x|−λ )+, for |x| ≤ 2λ ;
{(a−1)x− sign(x)aλ}/(a−2), for 2λ < |x| ≤ aλ ;
x, for |x| > aλ .

SCAD has two major advantages over best subset selection: it offers a lower compu-
tational cost and provides continuous solutions. SCAD is similar in spirit to LASSO,
though it generally yields smaller bias. Moreover, as proved by Fan and Li, SCAD
enjoys the particular oracle property described in the previous section, whereby, the
estimator performs as well as an optimal estimator in a model where all zero coef-
ficients are known to the analyst. In Section 2.6, we give a detailed discussion on
known limitations of this property, particularly, as it pertains to post-model selection
inference.

2.3 Least Angle Regression

The LARS algorithm recently proposed by Efron et al. (2004) is a model selection
and fitting algorithm for model (2.2) with three important properties: (i) a simple
modification of the LARS algorithm implements the LASSO estimator, (ii) a dif-
ferent modification efficiently implements Forward Stagewise linear regression (yet
another model selection procedure), and (iii) a simple approximation for the de-
grees of freedom of a LARS estimate is available, allowing for the straightforward
derivation of a Cp estimate of prediction error. The current section gives a general
description of the LARS procedure, and solely emphasizes property (i), while (ii)
and (iii) are discussed in detail in the original manuscript by Efron et al. (2004).

We begin with an informal description of the steps that constitute the LARS so-
lution. Starting with μ̂0 = 0, find the index j1 = argmax

j

〈

Y,x j
〉

of the covariate with

maximal correlation with the outcome. Next, take the largest possible step in the x j1
direction until some other predictor, say x j2 has the same amount of correlation with
the current residual; that is until max

j �= j1

∣

∣

〈

Y − γ̂1x j1 ,x j
〉∣

∣=
∣

∣

〈

Y − γ̂1x j1 ,x js
〉∣

∣ ,s = 1,2.

Write μ̂1 = μ̂0 + γ̂1x j1 . Next, follow the direction equiangular between x j1 and x j2 ,
which we denote u2 (defined below), until a third covariate x j3 enters the most
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correlated set so that μ̂2 = μ̂1 + γ̂2u2, max
j �= j1, j2

∣

∣

〈

Y − μ̂2,x j
〉∣

∣ =
∣

∣

〈

Y − μ̂2,x js
〉∣

∣ ,s =

1,2,3; then continue along the equiangular direction u3 between x j1 ,x j2 , and x j3 ,
and so on for s = 4, . . . ,m ≤ p.

The appealing feature of LARS is that it is fairly easy to calculate the step sizes
γ̂1, γ̂2, . . . . In the case of linearly independent columns of X, an explicit formula for
γ̂γγ was derived in Efron et al. (2004).

We now discuss property (i) of LARS. For A ⊂ {1, . . . , p} , let XA =

(. . . ,s jx j, . . .) j∈A, where s j = ±1,GA = X′
AXA,AA =

(

1′
AG−1

A 1A
)−1/2

, where

1A = (1, ...,1)′ ∈ R
|A| then the equiangular vector uA = XAwA, where wA =

AAG−1
A 1A is the unit vector making equal angles, less than 90◦, with the columns

of XA,X′
AuA = AA1A and ‖uA‖2 = 1. The main idea is that the nonzero compo-

nents ̂β j of a LASSO solution ̂βββ can be shown to satisfy the following:

sign
(

̂β j

)

= sign(ĉ j) = s j, (2.3)

where ĉ j is the jth component of a vector of correlations ĉ = X′ (Y − μ̂A) with μ̂A

a LARS estimate based on A covariates, and s j = sign(ĉ j). Note that this restriction
is not imposed by LARS, however, (2.3) is easily incorporated into the LARS steps.
Define μ (γ) = μ̂A+γuA, so that β j (γ) = ̂β j +γs jwA j for j ∈A, also showing that
β j (γ) will switch sign at γ j = ̂β j (s jwA j)

−1 . Under the “one at a time” assumption
that all increases and decreases of the active set involve at most one index j, the
equivalence between LARS and LASSO solution paths is obtained by stopping an
ongoing LARS step at γ = γ̃ = min

j∈A
(γ j) if γ̃ < γ̂, and removing ˜j from the calcula-

tion of the next equiangular direction: μA+ = μ̂A + γ̃uA and A+ = A−
{

˜j
}

. An
immediate consequence of this modification is that the solution path of LASSO will
typically involve more steps than that of the original LARS procedure, as the ac-
tive set of LARS grows monotonically whereas the LASSO modification allows A
to decrease. However, the modified LARS calculates all possible LASSO estimates
for a given problem in computing time of the same order of magnitude as that of
least squares in the full model.

2.4 Dantzig Selector

The Dantzig selector (henceforth DS) of Candes and Tao (2007) is a novel approach
recently proposed for performing variable selection and model fitting in precisely
those scientific settings where p � n, but where only a few of the regression coef-
ficients are expected to be nonzero. In this section, we give an overview of the DS,
and some of its important statistical properties. We discuss conditions under which
the DS is known to be optimal in a sense defined hereafter.
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The Dantzig selector is defined as the solution to the convex problem:

min
βββ

‖βββ‖1 subject to
∥

∥X′ (Y −Xβββ )
∥

∥

∞ := sup
1≤ j≤p

∣

∣

∣

[

X′ (Y −Xβββ )
]

j

∣

∣

∣≤ λσ , (2.4)

where λ > 0 is the tuning parameter. In a fashion similar to the LASSO, the L1
minimization (2.4) yields some coefficient estimates of exactly zero and thus makes
the DS very useful for variable selection. A more general comparison to the LASSO
solution (Tibshirani, 1996) is possible if we write (2.4) in its equivalent form given
by Efron et al. (2007):

min
βββ

∥

∥X′ (Y −Xβββ )
∥

∥

∞ subject to ‖βββ‖1 < s (2.5)

for some s > 0. In this latter form, with a bound on the L1 norm of βββ , the DS
minimizes the maximum component of the gradient of the squared error function,
while the LASSO solution (Tibshirani, 1996) directly minimizes the squared error.
The nature of the constraint in (2.4) is essential to guarantee that the residuals are
within the noise level while ensuring that the estimation procedure remains invariant
with respect to orthonormal transformations applied to the data. In their manuscript,
Candes and Tao (2007) describe the minimization (2.4) as looking for the vector ̂βββ
with minimum complexity measured by the L1-norm among all coefficient vectors
consistent with the data.

An astonishing theoretical result on the DS is that even when p is much larger
than the sample size n, the L2 error in the estimated coefficients can remain within
a log(p) of the one that could be achieved had the locations of the sparse nonzero
coefficients been known. This oracle property realizes the analyst’s ultimate desire
to use the data at hand, to adapt to an existing parsimonious model. The DS achieves
this goal without incurring too much of a cost in the L2 estimation error, reflected
by the log(p) factor, which increases very slowly in p. To make a more formal
statement on the accuracy of the DS, suppose that βββ is s−sparse; that is at most s
of the regression coefficients are nonzero. Furthermore, assume the error ε follows
a normal distribution and that the design matrix X obeys “Uniform Uncertainty
Principle,” which is defined formally in Candes and Tao (2007) and summarized
below. Then, by using λ =

√

(1+a) log p in solving(2.4) with a ≥ 0, they proved
that the following nonasymptotic bound on the L2 error of the resulting DS ̂βββ holds:

∥

∥

∥

̂βββ −βββ
∥

∥

∥

2

2
≤C (1+a)sσ2 log(p) (2.6)

with probability exceeding 1−
(

pa√π log p
)−1 and C > 0 a constant that depends

on X.
“Uniform Uncertainty Principle” is defined in terms of properties of the design

matrix X and its submatrices. The first property, the “s−restricted isometry hy-
pothesis,” quantified as δs means that every set of columns of X with cardinality
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less that s behaves approximately as an orthonormal system. The second property,
“restricted orthogonality,” expressed as θs,2s puts a restriction on the disjoint subsets
of covariates resulting in the subsets spanning nearly orthogonal subspaces.

Candes and Tao (2007) showed that it is sufficient to require

δs +θs,2s ≤ 1, (2.7)

which in effect restricts the result to design matrices endowed with certain attributes
that make them sufficiently close to orthonormal matrices as reflected by a small
constant δs + θs,2s. Assuming that (2.7) is satisfied, we may ask what makes (2.6)
either a reasonable or desirable bound. To answer this question, consider an “oracle”
who happens to know the exact locations of the nonzero coefficients, say T0. This
clairvoyant analyst could use this information to construct a least-squares estimator

βββ ∗
T0

=
(

X′
T0

XT0

)−1 X′
T0

Y = βββ +
(

X′
T0

XT0

)−1 X′
T0

ε

with mean standard error (MSE) given by E
∥

∥

∥βββ ∗
T0
−βββ
∥

∥

∥

2

2
= σ2trace

[

(

X′
T0

XT0

)−1
]

≥

σ2/(1+δs)s. This confirms the claim that the DS achieves the oracle MSE up to
the factor log(p)C (1+a).

Though a remarkable result, (2.6) may be in some instances a little mislead-
ing, as in the revealing case where β j � σ for all coordinates j of βββ . Since, by
setting βββ = 0, the squared error loss simply becomes ∑

j
β 2

j , which is potentially

much smaller than the number of nonzero covariates times the variance. This sim-
ple example corresponds to a setting where the variance is clearly much greater
than the squared bias. A less extreme and more common situation often encoun-
tered in data, is one where some components of βββ exceed the noise level but most
do not. To reduce the squared error loss an optimal estimator must now carefully
trade off squared bias with variance. This can be done, for instance by estimating
small coefficients (β j < σ) with exactly zero, which results in small squared bias β 2

j
with no associated variance, while unbiasedly estimating large coefficients (β j > σ)
and therefore incurring a variance of σ2 with each estimated component. One
can easily show that this strategy yields an estimator with risk ∑ j min

(

β 2
j ,σ2
)

=

min
I⊂{1, ... ,p}

‖βββ −βββ I‖2 + |I|σ2, which has a natural interpretation in terms of least

squared bias and variance. Moreover, one can show that this risk also has an in-
teresting relationship with that of an ideal but infeasible least squares estimator

βββ I∗ = (X′
I∗XI∗)

−1 X′
I∗Y, where I∗ = argmin

I⊂{1, ... ,p}

∥

∥

∥βββ − (X′
IXI)

−1 X′
IY
∥

∥

∥

2
. More specif-

ically Candes and Tao proved that E ‖βββ I∗ −βββ‖ ≥ 1/2
[

∑ j min
(

β 2
j ,σ2
)]

, so that
the “ideal” risk among least squares estimators is bounded below by the risk that
in a sense minimizes both squared bias and variance. On the basis of this last
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observation, it is possible to improve on (2.6) by showing that if βββ is s−sparse,
and X satisfies δs +θs,2s < 1− t for t > 0, then the DS with λ :=

√
2log p obeys:

∥

∥

∥

̂βββ −βββ
∥

∥

∥

2

2
≤C log(p)

(

σ2 +∑
j

min
(

β 2
j ,σ2)

)

, (2.8)

where C > 0 depends on δs,θs,2s. In other words, the estimator nearly adapts to the
ideal risk achieved by a least squares estimator that minimizes both squared bias and
variance in model (2.1). Due to space limitations, we refer the reader to Candes and
Tao (2007) for more on oracle inequalities as well as for an overview of efficient
fitting procedures for the DS.

2.5 Prediction and Persistence

In preceding sections, we have focused on model consistency and estimation er-
ror as measures of performance of a given procedure. Another optimality paradigm
widely used in statistics is that of model prediction. The classical example of predic-
tion mean squared error has a long history in the model selection literature, and has
recently been used to study sparse estimators. In fact, Greenshtein and Ritov (2004)
and Greenshtein (2006) discuss linear models (2.1) from a prediction loss perspec-
tive that departs from the assumption of the existence of a “true” model; instead they
consider predictor selection in a framework where the number of potential predictors
increases with the sample size; it is in this setting that they introduce the concept
of “persistence,” which we now discuss. Let zi = (yi,xi1, . . . ,xip), i = 1, . . . ,n, be
i.i.d. random vectors with zi ∼ Fn. The goal is to predict Y by a linear combination
of columns of X, i.e., ∑β jx j, where (β1, . . . ,βp) ∈ Bn, and Bn are restricted by the
maximum of n nonzero coefficients or the L1-norm of the coefficients. The setup al-
lows for a number of predictors p much larger than sample size (i.e., p = nα ,α > 1).
Denote

LF(βββ ) = EF

(

Y −
p

∑
j=1

β jx j

)2

. (2.9)

Let βββ �
Fn

= argminβββ∈Bn
LFn(βββ ). Given a sequence of sets of predictors Bn, the se-

quence of procedures ̂βββ
n

is called persistent if, for every sequence Fn,

LFn(̂βββ
n
)−LFn(βββ

�
Fn

) P→ 0.

Greenshtein and Ritov (2004) argue that by using the distance between the L(·)
functions, and not between the regression coefficients, they are directly targeting
the problem of prediction, and not of estimation. In fact, an immediate advantage of
this approach is that the collinearity of the columns of X is of no relevance, since
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only the linear combination of covariates is evaluated. In addition, this approach is of
particular appeal in situations where LFn(βββ

�
Fn

) actually does not converge to 0, which
is not uncommon. Greenshtein and Ritov (2004) study two types of sets Bn ⊂ R

p.
The first type contains vectors βββ = (β1, . . . ,βp) with at most k(n) nonzero entries
(“model selection” type), and the second contains vectors βββ with an L1-norm of βββ
less than b(n) (“LASSO” type). Their results for LASSO-type methods are loosely
described as follows; under boundedness assumptions on certain second and third
moments of the data, for any sequence Bn ⊂R

p, where Bn consists of all vectors with
L1 norm less than b(n) = o((n/log(n)))1/4, they prove that there exist a persistent
sequence of procedures. In fact, they show that ̂βββ

n
, the minimizer of (2.9) on the

subsets Bn ⊂ R
p, is persistent.

Despite these remarkable findings, there is growing evidence that model consis-
tency and optimal model prediction may not always be reconcilable, particularly if
prediction performance is judged from a minimax perspective. The manuscript by
Yang (2007) provides interesting results and a revealing discussion on this subject.
In the next section, we tackle the related problem of post-model selection inference.

2.6 Difficulties with Post-Model Selection Inference

Hitherto, our exposition on model selection methods for (2.1) with potentially high-
dimensional covariates has emphasized the pointwise behavior of sparse estimators
that yield only few nonzero estimated coefficients, while saying little of these esti-
mators’ performance uniformly over the model. Specifically, oracle properties that
suggest one can essentially adapt to the true sparsity of the regression model are
statements about the error and other properties of sparse estimators evaluated in a
pointwise fashion (i.e., at an unknown fixed parameter value βββ at a time), and fail to
provide an assessment of the proposed methods uniformly over the model (maximal
error over all allowed parameter values of βββ ). A uniform (over the posited model)
assessment of an estimation procedure is fundamental to statistical inference and is
broadly recognized as yielding a more realistic evaluation of the overall performance
of a proposed method, particularly with some of the poignant questions the statisti-
cian must routinely face, for instance: “How large an n is sufficient for asymptotics
to yield a good approximation to the finite sample behavior of ̂βββ independently of
the value of βββ?” This last question is especially relevant when the analysis goal in-
cludes the construction of valid asymptotic confidence sets for a subset of nonzero
estimates of regression coefficients (as confidence sets are defined uniformly over
the model).

Next, we point out an important pitfall related to the concept of the oracle prop-
erty as it pertains to model selection and argue that there are unbridgeable dif-
ferences between model-selection via sparsity and sound statistical inference on
selected parameters. We emphasize that the problem is neither due to the high di-
mensionality of the data nor to any particular method used to obtain a sparse solu-
tion, but rather to the use of sparsity as a vehicle for model selection.
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To proceed, we denote by m(βββ ) the indicator vector with components m j (βββ ) = 1
if β j �= 0 and m j (βββ ) = 0 if β j = 0 and restrict attention to estimators ̂βββ known to
satisfy the following sparsity condition; for all βββ in R

p,

Pr
{

m
(

̂βββ
)

≤ m(βββ )
}

→
n→∞

1.

Evidently, the previous display is satisfied by the so-called consistent model selec-
tion procedures that meet the stronger condition

Pr
{

m
(

̂βββ
)

= m(βββ )
}

→
n→∞

1.

Let the scaled mean squared error of ̂βββ be defined as

MSEn

(

̂βββ ,βββ
)

= En,βββ

[

n
(

̂βββ −βββ
)′(
̂βββ −βββ

)

]

.

Leeb and Pötscher (2008a) show that

sup
βββ∈Rp

MSEn

(

̂βββ ,βββ
)

→ ∞,

in short, the maximal scaled MSE of any sparse estimator diverges to infinity
with increasing sample size. This result can be generalized to other loss functions
(Leeb and Pötscher, 2008a) and remains true even under conditions where ordinary
least squares has bounded maximal scaled MSE (well-conditioned covariate design
matrix).

A regular estimator is roughly a locally uniform estimator of which the scaled
mean squared error with respect to Pitman alternatives does not blow up. The lack
of uniformity in the performance of sparse estimators, which are no longer regu-
lar, becomes quite apparent under “Pitman” parameter values local to zero, such
as under the model sequence βββ n = C/

√
n (where C is a constant). For large n, βββ n

lies in the neighborhood of zero and thus is likely to be estimated as exactly zero
by a given sparse procedure. The resulting unbounded, scaled squared bias C2 re-
flects an additional cost associated with the use of sparsity, typically not captured
by oracle statements; so that we may conclude that any such statement must be in-
terpreted carefully, as contrary to the popular belief, sparse estimators do not truly
perform (not even nearly) as if the underlying parsimonious regression model was
known ahead of time. It also follows that any confidence interval centered around a
nonzero component of a sparse estimator will fail to cover the truth at its nominal
level uniformly over the model, and would therefore not be valid.

Other important implications for post-model selection (via sparsity) can be found
in a series of manuscripts by Leeb and Potscher (2005, 2006, 2008b); see also,
Kabaila and Leeb (2006), and Yang (2005).
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2.7 Penalized Likelihood for Generalized Linear Models

As mentioned in Section 2.1, the penalized least squares criterion can be extended
to discrete response variables. Let g(x) be a known inverse link function. We define
a penalized log-likelihood function as

LP(βββ ) =
n

∑
i=1

log f (g(x
′
iβββ ,yi))−

p

∑
j=1

Pλ (βββ ),

where f (·) is a density of yi conditional on xi. The above penalized likelihood in-
cludes among others logistic regression and Poisson regression. Again, maximizing
the above likelihood function with, for example, a LASSO penalty, results in sparse
solutions for ̂βββ .

2.8 Simulation Study

In order to evaluate the performance of model selection procedures with a badly
conditioned design matrix X, we performed a Monte Carlo simulation study of the
LASSO applied to the linear model (2.1) with s nonzero coefficients.

We follow the general setup of the simulation studies in Donoho and Stodden
(2006) and summarize our simulation results in a Phase Diagram (Donoho and
Stodden, 2006).

The simulation data are generated as follows.

1. Generate data from a model Y = Xβββ + εεε , where βββ = [βββ s,βββ p−s], s < p with
βββ s = [β1, . . . ,βs] and β j �= 0 for j = 1, . . . ,s, βββ p−s = [βs+1, . . . ,βp] and β j = 0 for
s < j ≤ p, εεε ∼ N(0,Iσ2) with σ = 2.

2. Run a LASSO model selection procedure to estimate ̂βββ ,
3. Evaluate the performance of the procedure by

L2 =
||̂βββ −βββ ||2
||βββ ||2

. (2.10)

We selected a compound symmetry correlation structure for the columns of X,
i.e., corr(xi,x j) = ρ for i, j ∈ {1, . . . , p}. In our simulations, we set p = 100, β j
was generated from Uni f (0,100) for j ∈ {1, . . . ,s}, and ρ was chosen as one of
(0,0.3,0.6,0.9).

Define the level of indeterminateness as n/p and the sparsity level as s/n. We
evaluate the performance of variable selection procedures as a function of δ = n/p
and τ = s/n. Figure 2.1 displays the average normalized L2 errors for 50 simulated
data sets for each combination of indeterminateness(δ ) and sparsity (τ). The areas
of the Figure 2.1 in dark blue indicate the region where the LASSO procedure recov-
ered the true βββ ’s with the error close to zero. Other colors above the diagonal show
the area where the model selection procedure was unable to provide good estimates
of the regression coefficients.
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Fig. 2.1 Phase transition diagram with the sparse model recovered by LASSO with the tuning
parameter selected by AIC. The number of variables is kept constant at p = 100. Columns of X
exhibit compound symmetry correlation structure with ρ = 0, .3, .6, and .9.

Figure 2.2 displays the differences in the estimation errors between the models
with correlated columns of X and the independent case (left panel) and between
the models with correlated columns of X with increasing correlations (right panel).
The performance of LASSO in the region of good signal recovery (approximately
below the main diagonal) deteriorates as the correlation ρ increases. Surprisingly,
the errors are lower for the X with correlated columns in the region immediately
above the diagonal. The errors worsen with the increasing correlation between the
columns of X. This is especially visible in the lower right corner of Figure 2.2 for the
transition from ρ = 0.3 to ρ = 0.9. Additionally, the transition of the model selection
from penalized methods to combinatorial search happens at an earlier stage for the
nonorthogonal X.
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Fig. 2.2 Differences between the scaled estimation bias for the models estimated with LASSO,
and the design matrix X exhibiting compound symmetry correlation structure with ρ = 0, .3, .6,
and .9. The notation Lρ

2 indicates the the scaled bias L2 with the correlation ρ .

2.9 Application of the Methods to the Prostate Cancer Data Set

To illustrate the variable selection techniques we discussed in Sections 2.2.3-2.4, we
consider a regression problem where we model the log(cancer volume) using other
variables in the prostate cancer data set, including their power terms and interactions
(p = 43).

First, a linear regression was performed with an L1 constraint imposed on the
coefficients (Tibshirani, 1996), using the R package lars. The L1 constraint ex-
pressed as a proportion of the OLS solution |βββ |/max |βββ | = 0.0325 was selected
using the 20-fold CV. Next, we used an adaptive LASSO based on the algorithm
of Zou (2006), with the weights set as either the inverses of the OLS coefficient
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estimates, or the ridge regression estimates. Finally, we used the Dantzig selector
using the R function dd developed by James and Radchenko (2008).

The LASSO solution contained 18 nonzero coefficients, while the Adaptive
LASSO solution had more coefficients shrunk to be zero, resulting in 8 (OLS) and
15 (ridge) nonzero coefficient estimates. Solution according to the Dantzig selector
contained 14 nonzero coefficients.

Interestingly, only one covariate was chosen by all four considered fitting meth-
ods, lcp:lpsa (the interaction term of log(capsular penetration) and log(prostate spe-
cific antigen)). There was more agreement between the three methods based on
LASSO where the same covariate was chosen in four instances. The summary of
the results is presented in Table 2.1.

Table 2.1 Nonzero coefficients for the model relating the log(cancer volume) and explanatory
covariates in the Prostate cancer data set.

Covariate LASSO ALas (OLS) ALas (RR) Dantzig

age 0.0166 0.0248 0.2583 0
lbph 0 −0.0827 −0.2062 0
svi 0 0 −0.0335 0
lcp 0.1395 0.5121 0.8905 0
gleason 0.0622 0.1385 0 0
lpsa 0.4272 0.5463 0 0.6483
lweight2 −0.0080 0 0 −0.0132
lbph2 0.0390 0 0 0.0546
lcp2 0.0420 0 0 0.0530
lpsa2 0 0 0.1066 0
lweight:age 0 −0.0013 −0.0380 0
lweight:lbph 0 0 0.0282 0
lweight:lcp 0.0982 0 0 0.1651
lweight:gleason 0 0 0.3618 0
age:lbph −0.0009 0 0 0
age:gleason 0 0 −0.0161 0.0019
age:pgg45 0 −0.0001 −0.0001 0
age:lpsa 0 0 0 −0.0006
lbph:svi 0.0572 0 0 0.1069
lbph:pgg45 −0.0012 0 −0.0007 −0.0023
lbph:lpsa −0.0072 0 0 −0.0238
svi:lcp 0 0 0.2987 0
svi:pgg45 −0.0024 0 −0.0084 0
svi:lpsa 0 0 0 −0.0191
lcp:pgg45 0.0024 0 0.0054 0.0026
lcp:lpsa −0.0852 −0.0620 −0.2737 −0.1206
gleason:lpsa 0.0183 0 0 0
pgg45:lpsa 0 0 0 −0.0023
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2.10 Conclusion

Model selection methods proposed in the past 15 years provide an exciting array
of choices. However, the selection of an appropriate method and associated tuning
parameters depends on the problem at hand. It is important to remember that the
selection of a model for predictive accuracy versus sparsity are two very different
and possibly irreconcilable goals. As an off-the-shelf method, LASSO provides a
computationally convenient and reasonable method for choosing among models.
Several extensions to the LASSO might be better suited to specific setups. For in-
stance, SCAD is a promising method that achieves sparsity with lower bias in the
nonzero estimated coefficients than LASSO; however, it remains computationally
more challenging. The Dantzig selector, a more recent addition to the model se-
lection literature has recently drawn much attention. Another important, but often
neglected issue is that of post-model selection inference where a recent emergence
of work points to unresolvable difficulties with making inferences through the use
of sparsity-based procedures.
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Chapter 3
Multivariate Nonparametric Regression

Charles Kooperberg and Michael LeBlanc

As in many areas of biostatistics, oncological problems often have multivariate pre-
dictors. While assuming a linear additive model is convenient and straightforward,
it is often not satisfactory when the relation between the outcome measure and the
predictors is either nonlinear or nonadditive. In addition, when the number of predic-
tors becomes (much) larger than the number of independent observations, as is the
case for many new genomic technologies, it is impossible to fit standard linear mod-
els. In this chapter, we provide a brief overview of some multivariate nonparametric
methods, such as regression trees and splines, and we describe how those methods
are related to traditional linear models. Variable selection (discussed in Chapter 2)
is a critical ingredient of the nonparametric regression methods discussed here; be-
ing able to compute accurate prediction errors (Chapter 4) is of critical importance
in nonparametric regression; when the number of predictors increases substantially,
approaches such as bagging and boosting (Chapter 5) are often essential. There are
close connections between the methods discussed in Chapter 5 and some of the
methods discussed in Section 3.8.2. In this chapter, we will briefly revisit those top-
ics, but we refer to the respective chapters for more details. Support vector machines
(Chapter 6), which are not discussed in this chapter, offer another approach to non-
parametric regression.

We start this chapter by discussing an example that we will use throughout the
chapter. In Section 3.2 we discuss linear and additive models. In Section 3.3 we gen-
eralize these models by allowing for interaction effects. In Section 3.4 we discuss
basis function expansions, which is a form in which many nonparametric regres-
sion methods, such as regression trees (Section 3.5), splines (Section 3.6) and logic
regression (Section 3.7) can be written. In Section 3.8 we discuss the situation in
which the predictor space is high dimensional. We conclude the chapter with dis-
cussing some issues pertinent to survival data (Section 3.9) and a brief general dis-
cussion (Section 3.10).

C. Kooperberg
Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave
N, M3-A410 Seattle, WA 98109-1024, USA
email: clk@fhcrc.org

X. Li, R. Xu (eds.), High-Dimensional Data Analysis in Cancer Research, Applied 35
Bioinformatics and Biostatistics in Cancer Research, DOI 10.1007/978-0-387-69765-9 3,
c© Springer Science+Business Media LLC 2009



36 C. Kooperberg and M. LeBlanc

3.1 An Example

We illustrate the methods in this chapter using data from patients diagnosed with
multiple myeloma, a cancer of the plasma cells found in the bone marrow. The
data were obtained from three consecutive clinical trials evaluating aggressive
chemotherapy regiments in conjunction with autologous transplantation conducted
at the Myeloma Institute for Research and Therapy, University of Arkansas for Med-
ical Sciences (Barlogie et al., 2006). The outcome for patients with myeloma is
known to be variable and is associated with clinical and laboratory measures (Greipp
et al., 2005). In this data set, potential predictors include several laboratory measures
measured at the baseline of the trials, age, gender, and genomic features, including
a summary of cytogenetic abnormalities and approximately 350 single nucleotide
polymorphisms (SNPs) for candidate genes representing functionally relevant poly-
morphisms playing a role in normal and abnormal cellular functions, inflammation,
and immunity, as well as for some genes thought to be associated with differential
clinical outcome response to chemotherapy.

In most of our analysis we analyze the binary outcome whether there was dis-
ease progression after 2 years, using the laboratory measures, age, and gender as
predictors. In Sections 3.7 and 3.8 we also analyze the SNP data; in Section 3.9 we
analyze time to progression and survival using a survival analysis approach.

3.2 Linear and Additive Models

Let Y be a numerical response, and let x = (x1, . . . ,xp)′ be a set of predictors span-
ning a covariate space X . We assume that the regression model Y takes the form of
a generalized linear model

g(E(Y |x)) = η(x), (3.1)

where g(·) is some appropriate link function and

η(x) = β0 +
k

∑
i=1

βixi. (3.2)

In this chapter, we mostly assume that Y is a continuous random variable and that
g(·) is the identity function so that (3.1) is a linear regression model or that Y is a
binary random variable and that g(·) is the logit function so that (3.1) is a logistic
regression model, but most of the approaches that are discussed in this chapter are
also applicable to other generalized linear models. In Section 3.9, we discuss some
modifications that make these approaches applicable to survival data.

Estimation via the method of maximum likelihood (or least squares) is well es-
tablished. Many nonparametric regression methods generalize the model in (3.2).
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In particular, we can replace the linear functions xi in (3.2) by smooth nonlinear
functions fi(xi). Now (3.2) becomes

η(x) = β0 +
k

∑
i=1

fi(xi). (3.3)

The functions fi(·) are usually obtained by local linear regression (loess, e.g.,
Loader, 1999) or smoothing splines (e.g., Green and Silverman, 1994). The model
(3.3) is known as a generalized additive model (Hastie and Tibshirani, 1990).

3.2.1 Example Revisited

Of the 778 subjects with complete covariate data in the multiple myeloma data,
171 subjects had progressed after 2 years while 570 subjects had not. Another 37
subjects were censored sufficiently early that we chose not to include them in our
analysis to retain a binary regression strategy. These 37 subjects are included in
the survival analysis (Section 3.9). We used nine predictors: age, gender, lactate de-
hydrogenase (ldh), C-reactive protein (crp), hemoglobin, albumin, serum β2 mi-
croglobulin (b2m), creatnine, and anyca (an indicator of cytogenetic abnormality).
The transformed values of ldh, crp, b2m, and creatnine on the logarithmic scale were
used in the analysis. In a linear logistic regression model, anyca has a Z-statistic of
4.8 (p = 10−6), log(b2m) has a Z-statistic of 2.7 (p = 0.007), and log(ldh), albumin,
and gender are significant at levels between 0.02 and 0.04.

We then proceeded to fit a generalized additive model, using a smoothing spline
to model each of the continuous predictors. We used the R-function gam(), which
selects the smoothing parameter using generalized cross-validation, and provides
approximate inference over the “significance” of the non-nonlinear components.
Three predictors were deemed significantly nonlinear at p = 0.05: age, log(crp),
and log(b2m), all at significance levels between 0.015 and 0.05. Note that these
significance levels are approximate, and they should be treated with caution. The
most interesting significant nonlinearity was probably in log(b2m). In Figure 3.1
we show the fitted component with a band of width twice the approximate standard
errors. It appears that the effect of log(b2m) is only present when log(b2m) is above
1, which is approximately the median in our data set.

3.3 Interactions

Nonadditive regression models (models for η(x) containing effects of interactions
between predictors) occur frequently in oncology. Such models may be needed be-
cause additive models, as discussed above, may not provide an accurate fit to the
data, but they may also be of interest to answer specific questions. For example,
models containing interactions may be used to identify groups of patients that are
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Fig. 3.1 The component of log(serum β2 microglobulin) in the generalized additive model for
progression after 2 years in the multiple myeloma data.

at especially high or low risk (e.g., LeBlanc et al., 2005), they may be of interest to
identify subgroup effects in clinical trials (e.g., Singer, 2005), or to identify gene ×
environment interactions (e.g., Board on health sciences policy, 2002).

In the following several sections, we will discuss general models for interactions
in a regression context. There are, however, special cases in which dedicated meth-
ods are more appropriate. For example, if the goal is to only identify patients at
especially high risk, we may not feel a need to model the risk (regression function)
for patients at low risk accurately (LeBlanc et al., 2006). When we know that some
predictors are independent of each other, as is sometimes the case for gene × envi-
ronment interactions or for nested case–control studies within clinical trials, more
efficient estimation algorithms are possible (Dai et al., 2008). We will not discuss
these situations in this chapter.

The most straightforward interaction model is to include all linear interactions up
to a particular level in model (3.2); for example, a model with two- and three-level
interactions is

η(x) = β0 +
k

∑
i=1

βixi + ∑
1≤i< j≤k

βi jxix j + ∑
1≤i< j<l≤k

βi jlxix jxl .

It is clear that with this approach the number of coefficients becomes very large
quickly. The problems that this causes are even worse when we generalize the
smooth model (3.3). This explosion of the size of the model is sometimes known
as the “curse of dimensionality,” and it can be formalized by establishing the con-
vergence rates of parameters in such models under appropriate conditions (Stone,
1994). Instead we may want to include only those interactions that are really needed
to accurately model the regression function η(x). Often this is done using some form
of stepwise regression. It turns out that approach can be generalized conveniently
using a basis function approach.
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3.4 Basis Function Expansions

The linear model (3.1) can also be used as the starting point for nonlinear, nonaddi-
tive, multivariate regression methods. Assume that the regression function η(x) is
in some p-dimensional linear space B(X ), and let B1(x), . . . ,Bp(x) be a basis for
B(X ). Then we can write

η(x) =
p

∑
i=1

βiBi(x). (3.4)

For a given set of basis functions B1(·), . . . ,Bp(·) estimation in (3.4) is a straightfor-
ward extension of (3.2).

Several nonparametric multivariate regression methodologies use a basis func-
tion approach, but rather than fixing the space B(X ) these approaches select
the space at the same time as the coefficients of the basis functions are esti-
mated. Three of the methodologies that are discussed later in this chapter use this
approach.

• Regression tree methods, such as classification and regression trees (CART,
Breiman et al., 1984). The basis functions that are used for tree methods are
indicator functions corresponding to rectangular regions of the predictor space.
Tree methods are discussed in Section 3.5.

• Multivariate adaptive regression splines (MARS, Friedman, 1991) and related
spline methods (e.g., Kooperberg et al., 1995; Stone et al., 1997). The basis func-
tions that are used for MARS and related methods are piecewise polynomials
(splines) and their tensor products. We discuss spline methods in Section 3.6.

• Logic regression (Ruczinski et al., 2003) is discussed in Section 3.7. The basis
functions that are used for logic regression are Boolean combinations of binary
predictors.

Stepwise regression methods provide useful tools for model selection using ba-
sis functions. As an example, suppose that we consider two linear spaces to model
η(x): a p-dimensional space Bp(X ) that is a sub-space of a (p+1)-dimensional
space Bp+1(X ). After we fit model (3.4) using basis functions for the smaller space
Bp(X ) we can compute a score test (Rao statistic, Rao, 1973) to evaluate how much
better η(x) would be modeled if we would require that η(x) ∈ Bp+1(X ) instead.
Similarly, after we fit model (3.4) using basis functions for the larger space Bp+1(X )
we can compute a Wald statistic to evaluate how much worse η(x) would be mod-
eled if we would require that η(x) ∈ Bp(X ). If these would be prespecified spaces
the score and Wald statistics could be compared with standard parametric distribu-
tions, similar to what is done in stepwise variable selection methods (see Chapter 2).
The adaptivity of these approaches does typically require other approaches to obtain
significant levels and prediction errors though (see Chapter 4).

We can generalize this stepwise procedure to an algorithm for stepwise model
building, that is used both in tree and in spline methods.
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1. Start with modeling η(x)∈Bp
a . A common situation is that p = 1 and B1

a consists
of only constant functions.

2. Stepwise addition: replace Bp
a by a (p + 1)-dimensional space Bp+1

a of which
Bp

a is a subspace by considering a (large) set of candidate spaces Bp+1
a

that satisfy some method-dependent regularity conditions. Select the “best”
Bp+1

a for example, by selecting the Bp+1
a corresponding to the largest score

statistic.
3. Continue adding dimensions until either a prespecified dimension p∗ is reached,

or until the improvement in the fit between successive models becomes very
small.

4. Set Bp∗
d = Bp∗

a .
5. Proceed with stepwise deletion: replace Bp

d by a (p− 1)-dimensional subspace
Bp−1

d that satisfies some method-dependent regularity conditions. Select the
“best” Bp−1

d , for example, by selecting the candidate corresponding to the small-
est Wald statistic.

6. Continue until p reaches some minimum dimension (e.g., p = 1).
7. Out of all the linear spaces considered B1

a, . . . ,B
p∗
a = Bp∗

d , . . . ,B1
d , select one

either using some penalized likelihood like the Akaike information criterion
(Akaike, 1974) or the Bayesian information criterion (BIC, Schwarz, 1978), or
an honest method to estimate the prediction error, such as cross-validation.

3.5 Regression Tree Models

3.5.1 Background

Regression and classification trees are primarily known for their easy-to-understand
geometric representation. While a binary regression tree provides a simple descrip-
tion of groups of subjects, the model can also be cast in a regression spline form sim-
ilar to the methods presented in Section 3.6. The CART algorithm (Breiman et al.,
1984) is probably the best-known implementation of tree-based methods in the sta-
tistical literature and generally motivates the basics given in this section. There has
also been extensive research of tree-structured methods in machine learning, for
instance the C4.5 algorithm of Quinlan (1993). When extended to survival data, re-
gression trees have found a significant following in medicine because the sequence
of binary decisions leads to simple representation for prognostic groups of patients
treated in a similar fashion. Most tree-based methods for survival data have adopted
at least some aspects of the CART algorithm (Gordon and Olshen, 1985; Ciampi
et al., 1986; Segal, 1988; LeBlanc and Crowley, 1993). Some recent examples in
survival analysis using regression trees include Greipp et al. (2005), London et al.
(2005), Farag et al. (2006), and Gimotty et al. (2007).
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3.5.2 Model Building

3.5.2.1 Model Basis Set as Partition Function

A tree model can be represented as a binary tree T , where the set of terminal nodes ˜T
corresponds to the partition of the covariate space X into a number of M(˜T ) disjoint
subsets. A tree model can also be expressed by a basis function representation

η(x) = ∑
h∈˜T

ηhBh(x),

(compare with (3.4)) where Bh(x) = I{x ∈ Rh}, Rh is the region corresponding to a
terminal node h, and ηh is a vector of parameters (e.g., a mean, a clinical response
probability, or a higher-dimensional object such as a survival function S(t|η(x))
corresponding to a terminal region. For instance, the survival function could be of
semiparametric form S0(t)exp(η(x)) as in the proportional hazards model. We outline
important components of algorithms used to construct regression trees, including
specifying the types of partitions that are permitted; rules to prune the tree back;
and methods to choose model or tree size.

3.5.2.2 Splitting or Basis Selection

Trees represent a sequence of splits of the data or predictor space where each split is
induced by a rule of the form “x ∈ S” where S ⊂ X . Typically, splits are dependent
on a single covariate, so we may have S = {x : x j ≤ c} for an ordered predictor, or
S is a subset S ⊂ B = {v1,v2, ...,vr} of the r values of x j for categorical variables.

The tree model is grown in a forward stepwise fashion, similar to the stepwise
algorithm described in Section 3.4. Starting with the entire data set and predictor
space, each variable and potential split point is evaluated. The split point and vari-
able that leads to the “best” split (as described below) is chosen. The data and the
predictor space are partitioned into two groups. The same algorithm is then recur-
sively applied to each of the resulting groups. Therefore, at any point on the regres-
sion tree, a split at a node h yields two nodes which can also be represented with the
pair of basis functions

b+
h( j)(x) = I{xh( j) ∈ Sh( j)} and b−h( j)(x) = I{xh( j) /∈ Sh( j)}.

Each step in the growing process geometrically replaces a current node h with a left
and right daughter nodes l(h) and r(h) or equivalently a current basis function Bh(x)
for node h with the basis functions

Bl(h)(x) = Bh(x)b+
h( j)(x) and Br(h)(x) = Bh(x)b−h( j)(x).

Most tree algorithms use error, likelihood, or partial likelihood (or score tests such
as the logrank test) to select split points (or knots). The improvement for a split at
node h into left and right daughter nodes can be represented by
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G(h) = D(h)− [D(l(h))+D(r(h))],

where D(h) is the residual error at a node. For uncensored continuous response
problems, D(h) is typically the mean residual sum of squares or mean absolute
error or for binary data it is typically binomial deviance. For survival data, it would
be reasonable to use the deviance corresponding to the assumed survival model. For
instance, the exponential model deviance for node h is

D(h) = ∑2

[

δi log

(

δi

̂λhti

)

− (δi −̂λhti)

]

,

where δi = 1 if the ith observation was a failure, and δi = 0 if the observation was
censored, and ̂λh is the maximum likelihood estimate of the hazard rate in node h
(Davis and Anderson, 1989). Alternatively G(h) can be an appropriate score test
statistic, for example the logrank test statistic.

Typically a large tree is grown to avoid missing structure and then pruned back
using a method described below.

3.5.3 Backwards Selection (Pruning)

Many stepwise regression methods utilize variations of backwards selection to select
more simple models (see Section 3.4). The local nature of the tree-based methods
leads to a fast backwards method, called cost complexity pruning in the CART algo-
rithm, for evaluating all possible submodels. The cost-complexity objective function
is defined as a penalized measure of fit

Dα(T ) = ∑
h∈˜T

D(t)+αM(˜T ),

where α is a nonnegative complexity parameter, D(h) is the estimated cost or im-
purity of a node, and M(˜T ) is the number of terminal nodes or constant regression
regions Rh. Therefore, the cost-complexity measure controls the trade-off between
the size or complexity of the tree, and how well the tree fits the data. Then, for any
value of α the goal is to find T (α): the tree that minimizes Dα(T ) among all pruned
subtrees of T . The algorithm finds the sequence of optimally pruned subtrees by
repeatedly deleting branches of the tree for which the average reduction in resid-
ual error per split in the branch is small. The process yields a nested sequence of
optimal subtrees T (α) = T (αl) = Tl for αl ≤ α < αl+1. The removal of a branch
can again be viewed in regression context as replacing each of the basis functions
corresponding to the pruned branch with the sum of the basis functions

Bl(x) = ∑
h∈Ql

Bh(x)
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where Ql represent the nodes in a branch rooted at node l. The final tree size is
selected by resampling (often K-fold cross-validation is used), although some diffi-
culties arise for semiparametric survival regression models.

3.5.4 Example Revisited

Using the example data set and variables described earlier, we constructed a regres-
sion tree to characterize the probability of death or progression within 2 years of reg-
istration. Figure 3.2 show a large tree constructed on the available predictors. Below
each terminal node is an estimate of the probability of progression or death. Since
the tree likely over-fits the data, a pruned tree is selected using cost-complexity
pruning and ten fold cross-validation of binomial deviance. The resulting tree
model is presented in Figure 3.3; it includes just two splits on variables serum β2

b2m<10.2

ldh<222

age<67.8

ldh<160

crp<25.3

albumin<3.6

0.235 0.560

0.2930.163 0.552

0.654 0.320

Fig. 3.2 An unpruned regression tree constructed to characterize 2-year progression probability
for the multiple myeloma data.

b2m<10.2

ldh<222

0.184 0.365

0.490

Fig. 3.3 A pruned regression tree constructed to characterize 2-year progression probability for
the multiple myeloma data.
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microglobulin and lactate dehydrogenase and identifies three outcome groups. Sub-
jects with serum β2 microglobulin ≥ 10.2 have the worst outcome with 49% having
either progressed or died within 2 years.

3.5.5 Issues and Connections

An often cited limitation of regression trees is that they are piecewise constant func-
tions when typically the underlying conditional distribution function of the outcome
is a smooth function of the predictors. If interest is in studying groups of patients,
this is not really a problem, other than the difficulty in specifying a specific frac-
tion of patients to be indicated by the prognostic rule. However, for prediction
applications the nonsmoothness does lead to reduced performance. Ensembles of
trees, through boosting, bagging, and Random Forests (Freund and Schapire, 1996;
Breiman, 1996; Friedman et al., 2000) have been used to circumvent this discrete-
ness at the cost of losing the simple decision rules. Alternatively, spline methods
such as HARE or MARS described in Section 3.6 can lead to substantially improved
predictions.

In part because of their nonsmoothness and the stepwise selection method, trees
are subject to considerable variability. An important parameter to control variability
is the minimum number of observations in a node (or uncensored observations in the
case of censored survival data). This issue connects to the importance of avoiding
placing knots in regression splines too close to the edge of the covariate distribution.
Again, ensembles of trees have been used to reduce variability (sometimes dramati-
cally) but again at the loss of the simple decision rule properties. Retaining decision
rule but somewhat smoother methods have been proposed, such as rule induction
via the PRIM method (Friedman and Fisher, 1999).

3.6 Spline Models

3.6.1 One Dimensional

Spline models are primarily used for the approximation of smooth univariate and
multivariate functions. In univariate problems, splines are piecewise polynomial
functions, that satisfy some regularity conditions. In particular, let t0 < t1 < · · ·< tK
be a set of K knots. A function f (x) is a cubic spline if in each of the intervals
(tk−1, tk), k = 1, . . . ,K, the function f (x) is a cubic polynomial, and it is twice dif-
ferentiable everywhere. Different spline models may have boundary restrictions for
f (x) on the intervals (−∞, t0] and [tK ,∞), but when there are no boundary conditions
it is easy to see that these cubic spline functions form a linear space, with basis

1,x,x2,x3,(x− tk)3
+, k = 0, . . . ,K, (3.5)
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where x+ = x if x > 0 and 0 otherwise. Cubic spline functions can approximate
functions very well, often with a small number of knots (Figure 3.4).

Similarly to cubic splines, a function f (x) is a linear spline if it is continuous and
linear on each of the intervals (tk−1, tk). A basis for linear spline functions is

1,x,(x− tk)+, k = 0, . . . ,K. (3.6)

Regression tree functions in one dimension can be seen as piecewise constant
splines. Linear and piecewise constant splines are not as good as cubic splines in ap-
proximating smooth curves, but they are often easier to deal with algorithmically. As
splines form a linear space, the spline model can be written in the form (3.4). Note
that in most situations (3.5) and (3.6) are not the bases used for computations, as
they are numerically very instable; instead usually a B-spline basis is used (de Boor,
1978).

Spline models naturally arise as solutions for some penalized regression prob-
lems. For example, based on regression data (Yi,xi), i = 1, . . . ,n, the solution of the
minimization problem

argmin
f (x)

∑
i
(Yi − f (xi))2 +λ

∫
(

d2 f (x)
dx2

)2

dx (3.7)

is a (natural) cubic spline with knots at every unique data point xi (Green and
Silverman, 1994). In practice, having a model with so many knots causes problems
in many nonlinear and high-dimensional problems. Instead, several other approaches
use spline methods with fewer knots.
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• Instead of using n knots, express f (x) as a spline function with a fairly large
number of knots, that is still much smaller than n, and then use a penalized op-
timization like (3.7) (O’Sullivan, 1988; Eilers and Marx, 1996). This approach
works fairly well in more complicated one-dimensional problems, as well as for
generalized additive models, in particular with automatic rules to select smooth-
ing parameters.

• Use a much smaller number of pre-specified knots, and carry out estimation with-
out penalty terms. The advantage is that the resulting problem is fully paramet-
ric, and that inference is thus well established. Estimation problems are often
small (and easy). See Quantin et al. (1999) for an application in oncology. The
disadvantage is that selection of the location of the knots can be arbitrary, and
generalizations to nonadditive models are not immediate.

• A third alternative is to use a stepwise algorithm like the one described in Sec-
tion 3.4 using knots and basis functions from (3.5). This approach was first used
in univariate regression by Smith (1982) and is behind algorithms like MARS
(Friedman, 1991) for linear regression, HARE (Kooperberg et al., 1995) for sur-
vival data, and Polyclass (Kooperberg et al., 1997) for logistic regression and
classification. We will discuss those in more detail for multivariate models be-
low. See Polesel et al. (2005) for an application in oncology.

3.6.2 Higher-Dimensional Models

The common approach to using regression splines in higher dimensions is to use
basis functions that are tensor products of basis functions in one dimension. For ex-
ample, if B1(x) = g1(xk) and B2(x) = g2(xl) are two basis functions that depend on
a single predictor, then B3(x) = g1(xk)g2(xl) is a tensor product basis function that
depends on two predictors. For high-dimensional problems, it is common to con-
sider only a few selected lower-order interactions. This has a variety of advantages:
(1) lower-dimensional components are typically easier to interpret, interactions in
models that do not contain the corresponding main effects are particularly difficult to
interpret; (2) using all (higher order) tensor products of lower-order basis functions
would yield an extremely large number of basis functions and may cause numerical
instability, and (3) from a theoretical perspective, it has been established that spline
functions have faster convergence rates if the largest order of interactions in models
is small (Stone, 1994). The exact restrictions on when tensor product basis functions
are allowed in spline models differs from one methodology to the other: for exam-
ple, MARS (Friedman, 1991) has fewer restrictions than HARE (Kooperberg et al.,
1995), Polyclass, and Polymars (Kooperberg et al., 1997). Here we will describe the
Polyclass algorithm for logistic regression as an example.

Assume that we have an i.i.d. sample of size n with a binary response vari-
able Y and a p-dimensional vector of predictors x = (x1, . . .xp)′. Polyclass uses
linear splines, and uses interactions involving at most two predictors (although
the generalization to higher-dimensional interactions is immediate). An allowable
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linear space B(§) can have basis functions 1, xi, (xi − tki)+, xix j, (xi − tki)+x j, and
(xi − tki)+(x j − tk j)+, with i �= j ∈ {1, . . . , p}, where the tki are knots in the range of
xi, with the additional conditions that

• B(x) = xix j can only be in B(§) if B(x) = xi and B(x) = x j are in B(§);
• B(x) = (xi − tki)+ can only be in B(§) if B(x) = xi is in B(§);
• B(x) = (xi − tki)+x j can only be in B(§) if B(x) = xix j and B(x) = (xi − tki)+ are

in B(§); and
• B(x) = (xi − tki)+(x j − tk j)+ can only be in B(§) if B(x) = xi(x j − tk j)+ and

B(x) = (xi − tki)+x j are in B(§).
The algorithm then proceeds with the stepwise algorithm in Section 3.4. The final
model is selected as the one that minimizes

AICα = −̂�(B(§);Yi,xi, i = 1, . . . ,n)+α p, (3.8)

where ̂�(B(§);Yi,xi, i = 1, . . . ,n) is the fitted log-likelihood for one of the models (of
dimension p) that was considered, and α is a penalty parameter, or that maximizes
the cross-validated likelihood.

3.6.3 Example Revisited

We applied the Polyclass methodology to the multiple myeloma data. The polyclass
model with the default penalty parameter of α = logn ≈ 6.66 (3.8) only involved
the two predictors log(b2m) and anyca in a linear fashion:

logit(P(progression)) = 2.19−0.99log(b2m)−0.50anyca.

The model with α = 4, while likely overfitting the data somewhat, is more interest-
ing, as it also involves age, gender, log(ldh), log(creatinine), a knot in age, log(ldh),
and log(b2m), and an interaction between age and gender. In Figure 3.5 we show a
contour plot for the fitted 2-year progression probabilities as a function of creatinine
and age, separately for men and women, when the other predictors are held at their
median values. The figure indicates that while older ages lead to quite similar pro-
gression proportions, younger females tend to have higher risk than younger males.

3.7 Logic Regression

Logic regression is a generalized regression methodology that is particularly suited
for situations in which (most) predictors are binary. Clearly this is the case when
predictors are single nucleotide polymorphisms (SNPs), as is the case for the
multiple myeloma data and many other oncological problems. The logic regression
model is
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Fig. 3.5 Fitted 2-year progression probabilities for a Polyclass model selected with penalty α = 4
as a function of creatinine and age, separately for men and women, when the other predictors are
held at their median values.

η(x) = β0 +
m

∑
i=1

βiLi(x). (3.9)

Each of the Li is a Boolean combination of binary predictors x j, j = 1, . . . ,J such as

Li = [(x7 and xc
13) or x5],

where “1” equals “true,” “0” equals “false,” and c refers to the complement. Ad-
ditional predictors Z or components to correct for population stratification can be
included additively in model (3.9).

Logic regression is an adaptive algorithm which selects those logic terms Li that
minimize the residual sum of squares or maximize the log-likelihood corresponding
to the model (3.9). Typically in logic regression the number of logic terms m is small
(between 1 and 3), and the logic terms can be interpreted as “risk factors.” The
optimization of the logic regression model is carried out using a greedy stepwise
algorithm or a stochastic simulated annealing algorithm.

For this simulated annealing algorithm it turns out to be very convenient to repre-
sent a logic expression Li(x) in a logic tree form (Figure 3.6). During the simulated
annealing algorithm, at each step one of the logic trees is replaced by another logic
tree using one of the operations displayed in Figure 3.7. Based on the new tree the
likelihood of η(x) is evaluated. If the new model is an improvement over the exist-
ing model the new model is retained; if the old model was better the new model is
retained with a probability that depends on the difference between the old and new
log-likelihood and the stage of the algorithm: early on almost all new models are ac-
cepted, while toward the end of the algorithm only improved models are accepted.
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Fig. 3.7 Changes in logic regression trees considered during the simulated annealing algorithm.

3.7.1 Example Revisited

We applied logic regression to the 348 SNPs of the multiple myeloma data, using
again 2-year progression as the outcome. Each of the 348 SNPs was recoded as two
binary predictors corresponding to a dominant and a recessive effect. In Figure 3.8
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Fig. 3.8 Cross-validation (test set) deviance for the logic regression analysis of the multiple
myeloma data. The white numbers in the black squares refer to the number of logic terms in
the logic regression model, the model size refers to the total number of leaves in these models
combines.

we show the test set deviance from tenfold cross-validation of the logic regression
analysis of this data. We note from this figure that based purely on deviance, none
of the models is better than the null-model. The model with two SNPs, however, has
a deviance that is not much worse than the null-model, and may thus be of interest
for further investigation. This model includes a logic regression term

rs4148737D∨ rs1143627Rc,

(rs1922242D was identical to rs4148737D) on this data. We will see the same SNPs
appear in the analysis in the next section.

3.8 High-Dimensional Data

With the development of new genomic technologies, very high-dimensional data
sets are now generated for oncological data. Data sets using gene expression data
may have data on tens of thousands of genes (e.g., Rosenwald et al., 2002), data sets
for whole genome association studies may have data on hundreds of thousands of
SNPs (e.g., Easton et al., 2007; Yeager et al., 2007). The traditional statistical para-
digm, where the number of cases n is much larger than the number of predictors p
no longer holds in this situation. Typical statistical methods for this type of data in-
volve substantial amounts of model selection, as well as shrinkage of the parameter
estimates.
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3.8.1 Variable Selection and Shrinkage

In moderate to high-dimensional predictor settings it is desirable to have parsimo-
nious or sparse representations of prediction models. In the previous sections we
have discussed stepwise basis function selection strategies. Alternatively, one can
investigate smoother model selection methods.

3.8.2 LASSO and LARS

Consider the linear regression setting, where there are n independent observations
(yi,xi1, . . . ,xik) of the response and k predictor variables. A technique proposed by
Tibshirani (1996) introduces an L1-penalty on the regression coefficients which leads
to both shrinkage and variable selection called least absolute shrinkage and selection
operator (LASSO). This is in contrast to ridge regression (Hoerl and Kennard,
1970) which minimizes the residual error subject to an L2-penalty which does not
lead to variable selection. The LASSO estimate ˜β = (β̃1, . . . , ˜βm)′ is defined as the
minimizer of

g(β ) =
n

∑
i=1

(yi −∑
k

βkxik)2 +λ1 ∑ |βk|1,

where λ1 is a nonnegative penalty parameter. Often the response and predictors are
standardized so that ∑

i
yi = 0 and ∑

i
xik = 0 and ∑

i
x2

ik = 1. This estimator has the

attractive property that as λ1 increases minimizing g(β ) with respect to β leads
to some of the βk set to zero and hence variable selection. For fixed λ1, for opti-
mization quadratic programming techniques or alternatives more efficient methods
by Osborne et al. (2004) can be used. A related and highly efficient algorithm, the
least angle regression algorithm (LARS, Efron et al., 2004), leads to efficient esti-
mation and links forward stage-wise methods and LASSO. LASSO and LARS are
discussed in more detail in Chapter 2.

LARS gives answers that are often close to LASSO; they are identical if the
predictors are orthogonal. However, the estimation algorithm aligns closely with the
forward stepwise model building strategies described in earlier sections. An outline
of the algorithm is given below:

1. Start with r = y, ̂β j = 0, j = 1, . . . , p. Assume that the x j are standardized.
2. Find the predictor xk that is most correlated with r.
3. Increase ̂βk in the direction of sign(cor(r,xk)) until another predictor x j has equal

correlation to r as it does with xk. Put j in set of active predictors, S.
4. Move (̂βk : k ∈ S) in the joint least squares direction for (xk : k ∈ S) until yet

another predictor has equal correlation with the current residual.
5. Repeat Step 4 until cor(r,xk) = 0 for all k.
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Note that the model can include at most min(p,n) variables. One strategy to alle-
viate this potential problem is the “elastic net” proposed by Zou and Hastie (2005).
The elastic net can be expressed as an optimization problem with the objective func-
tion with both squared and absolute penalty terms

g(β ) =
N

∑
i=1

(yi −∑
k

βkxik)2 +λ1 ∑ |βk|1 +λ2 ∑ |βk|2.

Their simulations show that the elastic net method leads to grouping of variables
where strongly correlated variables are either in or removed from the model as the
penalty parameters λ1 and λ2 are increased.

Note, that in this section we have described these methods in terms of the original
predictors xk; we could generalize to sets of regression spline or regression tree basis
functions, B j(x), j = 1, . . . , p as described in the previous section.

3.8.3 Dedicated Methods

While the methods described above directly lead to dimension reduction, there are a
large number of other methods which can be viewed as two-stage procedures that at
the first stage reduce the set of original variables xi to a small number of combina-
tions zi and then at the second phase uses those combinations in further regression
modeling. Many of the techniques can be viewed as generalizations or parallels to
either principal components regression, which uses only the joint distribution of the
xi at the first stage, or partial least squares which constructs linear combinations of
the predictors but also guides the selection by also using the outcome Y .

For instance, many gene expression modeling applications in oncology have
used clustering of genes to derive predictor variables for association modeling.
Jointly using outcome and expression was used by Hastie et al. (2001) and Det-
tling and Bühlmann (2002) and others. An important consideration when using both
the joint distribution of outcome and predictors at the first stage is that appropriate
assessment of prediction error and model fit is incorporated (for instance by cross-
validation) and included in the modeling building.

3.8.4 Example Revisited

We applied a generalization of the LARS regression method appropriate for binary
data (Park and Hastie, 2006) to the 2-year progression-free survival outcome, and
the multiple myeloma SNP data. Each of the SNPs was coded in dominant and
recessive form. In the Figure 3.9, we show the first few steps of the coefficient path.
Three SNPs appear to enter the model early, “rs1143627R,” “rs2756109D,” and
“rs703842R.” Note that the SNPs that were selected by logic regression entered



3 Multivariate Nonparametric Regression 53

**********************

0.0 0.1 0.2 0.3

−
0.

10
−

0.
08

−0
.0

6
−0

.0
4

−0
.0

2
0.

00
0.

02

|β|

S
ta

nd
ar

di
ze

d 
co

ef
fic

ie
nt

s

********************** ********************** ********************** ********************** **************** *

** * * *

********************** ***********************

*

**
*

***

** * *
**

* *
*

** * * *

********************** *********************** * ** * ***

** * *
**

* *
*

** * * *

********************** ********************** ********************** ********************** ********************** ********************** ********************** ********************** ********************** ********************** ********************** ************
**

**
*

** * * *

********************** *********************** * **
*

***

** * *
**

* *
*

** * * *

********************** ********************** ********************** ********************** ********************** ********************** ********************** *********************** * ** * *** ** * *
**

* *
*

** * * *

********************** ********************** ********************** ********************** ********************** ********************** ********************** ********************** ********************** ********************** *********************** * ** *

***
** * * ** * * *

** * * *

* * ** *

***
** * * ** * * *

** * * *

**************
* *

*
** * * *

* *

**
*

***

** * *
**

* *
*

** * * *

********************** ********************** ********************** ****************** * * * *********************** ********************** ********************** *********************** * ** * ***

** * *
**

* *
*

** * * *

********************** ****************
*

** * * *

********************** **********************

rs1143627R

rs2756109D

rs703842R

rs2181874R
rs2808668R

rs238417D

51 SNPs
rs2287499D
rs4077829R

rs4645943D

rs1922242D/4148737D
rs7252741D
rs2853749R

1 2 3 4/5 67 8 9 10 11 12 1314

Fig. 3.9 Coefficient path for myeloma SNP data.

the model as the first, fourth, and fifth SNP. Cross-validating the model building
process leads to the conclusion that the cross-validated estimates of deviance are
relatively flat with respect to model complexity and then start to increase for models
with larger numbers of predictors. Therefore, there is not strong evidence that the
combination of SNPs are significantly associated with disease progression.

Often there is interest in assessing if genomic information adds to prediction
beyond traditional laboratory measures. This can be easily incorporated by adjust-
ing for known myeloma clinical variables then fitting SNP data using the Park and
Hastie algorithm. This was done for the above example and while not unexpected
given the earlier analysis, it suggested no additional impact with SNP data on pre-
diction over the laboratory variables previously described.

3.9 Survival Data

An important goal in survival regression analysis is to determine how the distribu-
tion of survival times depends on the predictors. A complication in analyzing sur-
vival data in the context of oncology trials is that typically not all patients have died
(or progressed) by the time the analysis for the study is completed. Those patients
alive at the time of analysis are called censored.
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We denote the true survival time as a positive random variable T , whose distri-
bution may depend on a set of predictors x = (x1, . . . ,xk)′. Often it can be assumed
that the censoring mechanism is independent which facilitates likelihood construc-
tion and inference. Let the observed data be denoted by (Ti,δi,xi), i = 1, . . . ,n.

While one can express the conditional survival distribution using an accelerated
failure time specification which links the log(T ) to a linear model of the predictors,
log(T ) = a+b′X +e, hazard function modeling is most often used. The conditional
hazard function is defined as

λ (t|x) = lim
Δ→0

P(t ≤ T < t +Δ |t ≤ T ;x)
Δ

.

Here, we limit discussion to predictors which are real values measured at baseline; in
some survival settings they may represent time-dependent functions, x1(t), . . . ,xk(t),
as well. For instance, they may be measures of health status of the patient evolving
over time. The (conditional) hazard function can be interpreted as the probability
that someone dies in the next time interval of infinitesimal length Δ , given that he
is alive at time t. It is convenient to specify models on the logarithm scale so we
denote the logarithm of the hazard function as

α(t|x) = logλ (t|x).

If one assumes an additive model on the log scale,

α(t|x) = f (t)+η(x)

implies a proportional hazards assumption which is a focus of the model of Cox
(1972), which also assumes the baseline hazard function to be an unspecified non-
parametric function. Estimation in that case utilizes the partial likelihood. Note that
η(x) can represent a simple linear model or more flexible models depending on a re-
gression spline basis described in earlier sections. For instance, let B1(x), . . . ,Bp(x)
be a basis for B(X ). Then we can write

η(x) =
p

∑
i=1

βiBi(x). (3.10)

Within the proportional hazards class, tree-based or logic regression models can
be used to characterize the basis section used in the above expression.

However, regression models can be more general. For instance, the HARE model
(Kooperberg et al., 1995), can link both time and the predictors using a model spec-
ified as

α(t|x) = ∑
i

βiBi(t|x). (3.11)

The basis functions Bi(t|x) in HARE can depend solely on time or a predictor or
both on time and a predictor which allows specification on nonproportional hazards
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models. The basis functions are selected with an algorithm similar to the Polyclass
algorithm in Section 3.6.2.

Modeling the full survival distribution is slightly more general than modeling
within the proportional hazards framework. But there are also disadvantages: co-
efficients in model (3.10) are interpretable as log-relative risk estimates, while the
nonproportionality in (3.11) removes this interpretation. Computationally the partial
likelihood computations for (3.10) are much easier than the full likelihood compu-
tations for (3.11), as these later require integrating the conditional survival function
for every unique set of covariates x which, except for piecewise linear splines, be-
comes very demanding.

We end this section by noting that a simple transformation of the survival times
may facilitate modeling. Suppose that T is a continuous random variable having
distribution function F . Then U = F(T ) has a standard uniform distribution and
log(U) = Λ(T ), where Λ represents the cumulative hazard function, has a standard
exponential distribution and thus a constant hazard function. In the context of haz-
ard function modeling with HARE, the regression model applied to survival times
transformed by the marginal cumulative hazard function tends to require fewer
knots applied to the time variable allowing more focus on the impact of predictors
on the (transformed) outcome. The overall transformation applied to the data can be
semiparametric, for instance using a regression spline model for the hazard function
(the HEFT method of Kooperberg et al., 1995) or non-parametric using the em-
pirical cumulative hazard function estimate. This transformation can facilitate the
use of other flexible regression procedures utilizing exponential model likelihood,
which typically allows for much faster computation than partial likelihood. For
instance, after transforming the survival times by the cumulative hazard transfor-
mation, the survival times may be sufficiently well approximated by an exponential
distribution, so that a regression tree program based on the exponential likelihood
may perform well.

3.9.1 Example Revisited

The multiple myeloma data set included both overall survival and progression-free
survival endpoint data. In this analysis, we consider all 778 subjects with com-
plete covariate data. The HARE analysis of the time to progression is very similar
to the Polyclass analysis presented in Section 3.6.3. The analysis of the survival
time turned out more interesting, as it depended on serum β2 microglobulin, anyca,
log(ldh), and age, and included a nonproportionality component for log(ldh). In
Figure 3.10, we show the fitted hazard function for a person of age 56, with a
log(b2m) of 1, no anyca, and log(ldh) values of 4, 5, and 6, which roughly cor-
respond to the 25th, 50th, and 75th percentile of the log(ldh).
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Fig. 3.10 Fitted hazard functions for the HARE analysis of the multiple myeloma data.

3.10 Discussion

Many choices exist for flexible regression modeling of patient data from oncology
studies. Selection of appropriate methods, of course, depends on the goals in the
particular analysis. For instance, it could be best to characterize the risk of progres-
sion as a smooth function of a single important prognostic variable or to develop a
more general risk models using multiple predictors and variable selection. Adaptive
regression spline methods such as HARE are well suited to such problems. Alter-
natively, one may want to characterize groups of patients or subjects, or identify
interactions of binary predictor variables. Tree-based methods or logic regression
are two tools useful for such problems.

A common aspect of cancer data is that the strength of associations between
predictors and patient outcome is quite weak as demonstrated with the myeloma
data. While sometimes it is useful to slightly overfit the data to suggest models that
may be worth investigating further, in general we should prevent selecting regression
models that are not supported by the data. Therefore, using methods to obtain honest
prediction error to help avoid over-fitting is critical.
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Chapter 4
Risk Estimation

Ronghui Xu and Anthony Gamst

In this chapter we discuss the concept and various aspects of loss and risk, and why
they are important and interesting. We start with the perhaps well-known fact that
naive estimates of risk tend to be biased, and that improvements are possible. There
are a variety of loss functions one might use, and it is important to understand the
differences and the fact that they may well imply different optimal estimates, in fi-
nite samples as well as asymptotically. On the other hand, risk estimates for a large
class of loss functions, the q-class, are all based on a similar construction. For any
loss function in the q-class, the bias correction for the risk estimate is a covariance
term. Depending on the loss, this covariance estimate may be computed in a simple
way, such as Cp, AIC, or Stein’s estimator. These also have a close connection with
the concept of degrees of freedom. Regardless of the loss function (and fitting proce-
dure), other techniques such as parametric bootstrap or cross-validation can also be
used to estimate the risk, some to better effect than others. We summarize empirical
studies of risk estimation in the literature, and show some applications, both theo-
retical, such as adaptive model selection and Stein estimation, and practical, such as
gene ranking.

4.1 Risk

Data analysis is about fitting models to data, usually, with the goal of summariza-
tion, prediction, or inference. In the analysis of oncology data, for example, we often
analyze databases with the goal of using demographic, clinical, and biological mark-
ers to build prognostic models. Another typical analysis uses data generated from a
high-throughput technology to classify tumors or subpopulations of patients. In all
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such practices, it is important that the model we build has as small a prediction error
as possible. This error itself, of course, is unknown to us and has to be estimated
from the data at hand. Although it is possible (and encouraged) to collect future
data and evaluate the prediction error or validate the model in an independent study,
here we concern ourselves with the estimation of prediction error as an integral part
of the model building and model selection process.

Prediction error is closely related to risk. Let Y = (y1, ...,yn)′ denote the ob-
served data. Let μ̂ = μ̂(Y ) = (μ̂1, ..., μ̂n)′ be an estimate or prediction for a “future”
Y 0, independent of, but from the same distribution as, Y . Depending on the goal, a
nonnegative loss function L(Y 0, μ̂) can be, for example,

⎧

⎨

⎩

‖Y 0 − μ̂‖2
2,

‖Y 0 − μ̂‖1,
−2{log f (Y 0; μ̂)− log f (Y 0; μ)};

these are, respectively, squared error loss, L1 loss, and deviance loss. A loss function
measures the distance (or divergence) between the true data generating mechanism
and the fitted model in terms of goals at hand. The risk function is then the expected
loss:

R(Y 0, μ̂) = E0{L(Y 0, μ̂)}, (4.1)

where E0 is taken with respect to Y 0. It is clear that a good choice of μ̂ should
minimize the risk.

4.2 Covariance Penalty

Notice that E0{L(Y 0, μ̂)} is a random quantity, involving the original data Y . To
approximate E0{L(Y 0, μ̂)}, or, to estimate EE0{L(Y 0, μ̂)} where E(·) is taken with
respect to Y , we start with the “apparent” loss L(Y, μ̂) = ∑n

i=1 L(yi, μ̂i). It is known
that L(Y, μ̂) generally underestimates the risk (Efron, 1983, 1986). This can be seen
from the derivation of the unbiased estimate of the risk below, as well as the empir-
ical studies mentioned later.

The difference between the actual risk and apparent loss, E0{L(Y 0, μ̂)}−L(Y, μ̂),
is termed the optimism of the apparent loss. The bias of the apparent loss in estimat-
ing EE0{L(Y 0, μ̂)} is then the expected optimism. To correct for this bias or opti-
mism, various methods have been proposed in the literature and adopted in practice.
These include a well-known example in the case of deviance loss: the Akaike (1973)
information criterion (AIC).

4.2.1 Continuous Outcomes

Denote μ = (μ1, ...,μn)′ = E(Y ) = E0(Y 0). If the quadratic loss is used, then
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EE0{L(Y 0, μ̂)} =
n

∑
i=1

EE0(y0
i − μ̂i)2

=
n

∑
i=1

EE0{(y0
i −μi)2 +2(y0

i −μi)(μi − μ̂i)+(μi − μ̂i)2}

=
n

∑
i=1

E{(yi −μi)2 +(μi − μ̂i)2}

=
n

∑
i=1

E{(yi − μ̂i)2 +2(μ̂i −μi)(yi −μi)}

= E{L(Y, μ̂)+2
n

∑
i=1

Cov(yi, μ̂i)} (4.2)

The last line above gives the covariance penalty (Stein, 1981; Efron, 2004). In the
linear case this relates directly to the trace of the “hat” matrix; that is, if μ̂ = HY
is linear in Y , the covariance term is equal to σ2trace(H), where σ2 = Var(yi).
Assuming that σ2 is known, L(Y, μ̂)+ 2σ2trace(H) provides an unbiased estimate
of the risk, and is known as Mallows’ Cp (Mallows, 1973). When σ2 is unknown,
a modified estimate can be obtained. The trace of the “hat” matrix is also used to
define the degrees of freedom in generalized linear models (Hastie and Tibshirani,
1990), hierarchical, and other richly parameterized models (Hodges and Sargent,
2001). It is clear that if we know the degrees of freedom, which might involve the
true but unknown parameters, and know how to estimate the unknown parameters,
then we can estimate the corresponding risk.

The covariance Cov(yi; μ̂i) is generally unknown. In the Gaussian homoscedas-
tic case where Y ∼ N(μ ,σ2I), and assuming a differentiability condition on the
mapping M : Y → μ̂ , Stein (1981) using integration by parts, and the fact that
∂φ(z)/∂ z = −zφ(z) for the standard normal density φ(·) showed that

Cov(Yi; μ̂i) = σ2E
{

∂ μ̂i

∂yi

}

. (4.3)

This was used in Ye (1998) to define general degrees of freedom for the mapping
M, by the sum of sensitivity of each μ̂i to perturbation in yi. Note that ∂ μ̂i/∂yi is
computable, and this leads to Stein’s unbiased risk estimate (SURE)

L(Y, μ̂)+2σ2
n

∑
i=1

∂ μ̂i

∂yi
. (4.4)

An application of SURE is discussed in Section 4.4.

4.2.2 Binary Outcomes

Many loss functions can be approximated, at least locally, by some version of
weighted least-squares, and a covariance penalty similar to the one derived earlier
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for squared loss can be applied in many cases (Efron, 2004). Consider, for exam-
ple, loss functions defined by Bregman divergence (Bregman, 1967). A divergence
D(y,μ) is similar to a metric, in that D(y,μ)≥ 0 and D(y,μ) = 0 if and only if y = μ ,
but D need not be symmetric, so that D(y,μ) �= D(μ ,y), and may not satisfy the tri-
angle inequality. The q-class (Efron, 1986) of Bregman divergences is generated by
strictly concave functions q as defined below.

Suppose that y is a random variable taking on values 0 or 1. In logistic regression

P(y = 1) = π =
1

1+ exp(β ′x)
, (4.5)

where x is a vector of p covariates, and β is the vector of regression coefficients.
Given data Y = (y1, ...,yn)′, using the maximum likelihood estimate β̂ of β , we
obtain the estimated probabilities π̂i = P̂(yi = 1), i = 1, ...,n. The prediction μ̂i of
yi is usually made by μ̂i = 1 if π̂i > C for some constant C, and 0 otherwise. The
default choice of C is 1/2, for example.

Let L(y, μ̂) be a measure of prediction error, i.e. the loss function. In addition to
the examples of loss functions given earlier, for binary outcomes we may also use
counting error: L(yi, μ̂i) = 1 if yi �= μ̂i, and 0 otherwise. To derive the expected loss
as previously done for continuous outcomes, Efron (1986) defined the q class of
loss functions. Let q(μ) be a concave function for μ ∈ [0,1], with q(0) = q(1) = 1.
Then define

L(y, μ̂) = q(μ̂)+ q̇(μ̂)(y− μ̂), (4.6)

where q̇ is the derivative of q (or the left limit of the derivative where it is discontin-
uous). For the counting error above, q(μ) = min(μ ,1−μ). For the squared loss, i.e.
L(y, μ̂) = (y− μ̂)2, we have q(μ) = μ(1−μ). Finally, for the deviance loss function,
L(y, μ̂) = −2log{μ̂y(1− μ̂)1−y} and q(μ) = −2{μ log(μ)+(1−μ) log(1−μ)}.

Let Y 0 again be a future vector of outcomes, independent but from the same
distribution as Y . Let

ζ̂i = −q̇(μ̂i). (4.7)

Using (4.6) Efron (1986) showed the expected optimism, i.e. the expected difference
between the risk and the apparent loss

EE0{L(Y 0, μ̂)}−E

{

n

∑
i=1

L(yi, μ̂i)

}

= E

{

n

∑
i=1

ζ̂i(yi −πi)

}

=
n

∑
i=1

Cov(yi, ζ̂i). (4.8)
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For counting error, ζ̂i = sign(2μ̂i − 1); for squared error ζ̂i = 2μ̂i − 1; and for the
deviance loss ζ̂i = 2log{μ̂i/(1− μ̂i)}. So we see that for the squared error, (4.8) is
the same as (4.2).

Efron (1986) extended the above result to generalized linear models and expo-
nential families. Briefly, suppose that yi comes from a one-parameter exponential
family

fμ(y) = exp{λy−b(λ )},
where μ = E(y) = g(λ ) = db(λ )/dλ is the expectation parameter, λ is the natural
or canonical parameter, b is the normalizing function (which ensures that the density
integrates to 1), and g is the (inverse) link function. Then, taking

q(μ) = 2{b[λ (μ)]− yλ (μ)}

makes L(y, μ̂) the deviance loss function (Efron, 1986; Zhang, 2004).

4.2.3 A Connection with AIC

When deviance loss and the maximum likelihood estimate are used in curved expo-
nential families, the covariance penalty derivation gives rise to the well-known AIC
(Akaike, 1973; Efron, 1986, 2004). That is, the estimated risk is −2log f (Y ; μ̂)+2p
plus a constant, so that the criterion picks the model with the largest maximized like-
lihood penalized by the number of parameters p. In this simple case the covariance
correction is a constant that does not depend on the parameters of the model. How-
ever, for more complex models, such as those with mixed effects, the correction
term in AIC could involve parameters of the model as well as the design matrix. See
the next subsection on correlated outcomes.

4.2.4 Correlated Outcomes

The covariance penalty above holds when the yis are correlated, since the derivation
does not require independence. However, for estimation of the covariance penalty,
most work, including resampling methods, has made use of an independence as-
sumption (Zhang, 2004). Here we would like to briefly consider the case of clus-
tered outcome data that often arise in cancer and other areas of biomedical research.
Two types of approaches are commonly used: marginal and conditional. In the mar-
ginal approach, the parameters of the marginal distributions are of primary interest
and are often estimated using generalized estimating equations, while the correla-
tion structures are typically modeled as working assumptions (Diggle et al., 2002).
In the conditional or random effects model approach, both the correlation and the
cluster-specific parameters are of interest.
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The AIC has been extended to both approaches mentioned here. Pan (2001) pro-
posed an AIC for estimating equations in the marginal approach, the theory of which
is based on an asymptotically quadratic approximation to the quasi-likelihood func-
tion. The equivalent of the number of degrees of freedom is computed as the trace
of a matrix related to the sandwich estimate of the variances. For random effects
models, Vaida and Blanchard (2005) proposed the concept of conditional Akaike
information, which is defined as

cAI = −2EEY 0|b log f (Y 0|b̂; θ̂), (4.9)

where the future data Y 0 is sampled with the same (unobserved) random effects b
as the original data Y , and θ denotes the population parameters in the model. The
relevant likelihood here is the conditional likelihood of the observed data given the
random effects. The emphasis here is on inference for both the fixed and the random
effects, so that the corresponding conditional AIC (cAIC) can be used to compare
models that treat the cluster effects as fixed effects with those that treat the cluster
effects as random effects. The cAIC, the estimator of cAI, so far has been derived
one model at a time. For the linear mixed-effects model, Vaida and Blanchard (2005)
showed that the estimated optimism equals to the effective degrees of freedom of
Hodges and Sargent (2001).

The covariance penalty argument appears in the derivation of cAIC, but it does
not seem straightforward to use it for computation in practice.

4.2.5 Nuisance Parameters

Here we briefly discuss the types of data that are often modeled semiparametrically,
such as survival outcomes. We use the more general framework of models with
nuisance parameters, which includes parametric models as well.

Defining and estimating risks aimed at parameters of interest, and model selec-
tion based on that, was only developed rather recently. Hjort and Claeskens (2003)
and Claeskens and Hjort (2003) considered parametric models and defined the lim-
iting risk as mean squared error of the estimated parameter of interest under se-
quences of locally misspecified models (at the root-n rate). Claeskens and Carroll
(2007) extended the result to semiparametric models, where the maximum likeli-
hood estimators for parametric models are replaced by semiparametrically efficient
profile estimators.

In the following we describe a risk function that is defined directly using the pro-
file likelihood of the parameters of interest. Consider a family of models M parame-
terized by θ = (φ ,λ ), where φ ∈Φ is the parameter of interest, and λ ∈ΛΛΛ is the nui-
sance parameter, possibly of infinite dimension. As in the deviance loss, the classical
“distance” from the true distribution f to a member gθ = g(·|φ ,λ ) of M is given
by the Kullback-Leibler information (KL), KL( f ,gθ ) = E{log f (Y )− loggθ (Y )}.
When the focus is on φ alone, the relevant distance is that between f and the
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subfamily of models {gφ ,λ : λ ∈ ΛΛΛ}: minλ∈ΛΛΛ KL( f ,gφ ,λ ). Suppose that the mini-
mum is attained at some λ = λ̃ (φ) for each φ , λ̃ (φ) is in fact a least favorable curve
under smoothness conditions (Severini and Wong, 1992; Fan and Wong, 2000), and
gφ = g(·|φ , λ̃ (φ)) is the theoretical equivalent of the profile likelihood pl(Y ;φ)
where the nuisance parameter λ is profiled out. Xu et al. (2008) shows that the
minimum KL leads to the profile Akaike information

pAI = −2EE0{pl(Y 0; φ̂(Y ))}, (4.10)

which is estimated by a profile Akaike information criterion that uses as penalty the
dimension of φ under suitable conditions. Note that pl(Y 0; φ̂(Y )) in (4.10) is differ-
ent from the log-likelihood function computed at the maximum likelihood estimate
(φ̂ , λ̂ ), since it allows maximizing the likelihood over λ based on the new data Y 0.

4.3 Resampling Methods

Using the covariance penalty, the risks above can be estimated whenever the co-
variance penalty can be estimated. Another approach to risk estimation, different
from covariance penalty techniques, involves the use of (nonparametric) resampling
methods to directly estimate the prediction error. In the following we give a brief
description of a few resampling methods commonly used in estimating prediction
error, and then discuss the parametric bootstrap for estimating the covariance.

Cross-validation

Although most readers of this book are probably familiar with the cross-validation
procedure, for completeness we give a very brief description here. A K-fold cross-
validation (randomly) divides the original sample into K approximately equal-sized
parts, and takes turns using each of these parts as a test sample, with the rest as the
training sample. The K-fold cross-validation estimate of the risk is

LCV =
n

∑
i=1

L(yi, μ̂i(Y−k(i))), (4.11)

where Y−k(i) denotes the training sample with the part containing yi removed. The
special case of K = n is also called leave-one-out cross-validation.

Leave-one-out cross-validation provides an approximately unbiased estimate of
risk; however, it has been shown to have large variance because the training samples
are largely the same, one to another. On the other hand, K-fold cross-validation with
smaller K tends to have smaller variance, at the expense of larger training-set-size
bias; that is, the risk depends on the sample size of the training set. An illustration
of such dependence can be found in Figure 7.8 of Hastie et al. (2001).
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Nonparametric bootstrap

Another commonly used resampling method is bootstrap. For the deviance loss, for
example, bootstrap methods have been shown to be asymptotically equivalent to the
covariance penalty estimates for AIC (Shibata, 1997), but possibly with less bias in
small samples (Cavanaugh and Shumway, 1997; Pan, 1999; Shang and Cavanaugh,
2008).

The nonparametric bootstrap estimate resamples with replacement and probabil-
ity 1/n from the original n data points. The direct bootstrap estimate of the risk is

Lboot = E∗{L(Y, μ̂(Y ∗))}, (4.12)

where Y is the original data, Y ∗ is the bootstrapped data, and E∗ is with respect to
the bootstrap distribution, i.e., averaged over the bootstrap samples. On the other
hand, a bias-corrected bootstrap estimate of the expected optimism for i.i.d. data is

Ô = E∗{L(Y, μ̂(Y ∗))−L(Y ∗, μ̂(Y ∗))}, (4.13)

so that the bias-corrected bootstrap estimate of the risk is L(Y, μ̂)+ Ô. Figure 4.1
shows the convergence of these two bootstrap estimates as functions of the number
of bootstrap resamples. It is perhaps not surprising that the bias-corrected bootstrap
takes longer to converge in comparison, since there is an extra term to be averaged
in (4.13). We can also see what appears to be a bias correction effect in the plot.

Note that compared with the definition of loss, where Y 0 denotes future data
independent of the original Y , the bootstrapped data Y ∗ are guaranteed to have some
overlap with Y . In fact,

P(yi ∈ a bootstrapped sample) = 1− (1− 1
n
)n ≈ 1− e−1 = 0.632.
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Fig. 4.1 Convergence of bootstrap estimates. Solid line: Bias-corrected; dashed line: Direct
bootstrap.
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This overlap can lead to underestimation of the risk. To improve on the bootstrap
estimate (4.13), we can try to use only those data points that are not contained in a
particular bootstrap sample to assess the error. The leave-one-out bootstrap estimate
is given by

L(1) =
n

∑
i=1

1
|B−i| ∑

b∈B−i

L(yi, μ̂i(Y b)), (4.14)

where B−i is the set of bootstraps that do not contain observation i in the samples,
and | · | denotes the size of a finite set. The leave-one-out bootstrap is analogous
to cross-validation. Alternatively, Pan (1999) proposed a bootstrap-smoothed cross-
validation (BCV) estimator:

LBCV = E∗
{

n
|Y −Y ∗| ∑

i∈Y−Y ∗
L(yi, μ̂i(Y ∗))

}

, (4.15)

where Y −Y ∗ denote the set of observations in Y that are not in the bootstrapped
sample Y ∗. Pan (1999) applied (4.15) to the deviance. One advantage of (4.15), as
compared with (4.14), appears to be for loss functions that are not sums of i.i.d.
terms, like the Cox (1975) partial likelihood.

Both of the above, however, suffer from the training-set-size bias mentioned
above. Typically, this bias leads to overestimation of the risk. To correct for this
bias, the .632 estimator (Efron, 1983) uses

0.368L(Y, μ̂)+0.632L(1); (4.16)

and similarly, the .632 BCV estimator is

0.368L(Y, μ̂)+0.632LBCV. (4.17)

Parametric bootstrap

Finally, as mentioned before, the parametric or model-based bootstrap can be used
to estimate the covariance penalty. This type of bootstrap can also be useful for es-
timating certain risk functions directly, when the nonparametric bootstrap runs into
difficulties due to small subsample sizes, for example (Donohue et al., 2007). An
immediate question is what model to use to generate the bootstrap samples. Since
we do not know or assume a true model in this case, the idea is to take a “moderately
large” model. For Gaussian data, for example, we would want to generate bootstrap
data from some N(μ̃, σ̃2I), where μ̃ and σ̃2 are obtained from fitting some large
model to the data (Efron, 2004). A large model could be one that incorporates many
predictors, or a smooth fit, etc. The “ultimate” large model is N(Y, σ̃2I), which is in
fact “model-free”. This relates to the data perturbation (little bootstrap) techniques
of Breiman (1992), Ye (1998), and Shen and Ye (2002), which generates data from
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N(Y,cσ̃2I) with c < 1. According to Efron (2004), the exact choice of the model is
often unimportant. On the other hand, Shen et al. (2004) postulates that the result-
ing risk estimate and model selection will depend on the bootstrap model. So far
we have not seen extensive studies in the literature on the effect of different model
choices for generating parametric bootstrap data in the context of risk estimation,
and future research on the topic remains an open area.

4.3.1 Empirical Studies

Various empirical studies of risk estimates can be found in the literature. One inter-
esting, albeit perhaps unfortunate, phenomenon that has been repeatedly observed
is that the actual optimism of the apparent loss tends to correlate negatively with
its estimates. For example, Efron (1982), Table 7.2, illustrated this point in the ten
trial runs of simulation, estimating the optimism using bootstrap, cross-validation,
or jackknife. Efron (1983) observed the same phenomenon. Therefore the best one
can hope for is to estimate the expected optimism (Efron, 2004).

With high-dimensional data in mind, a rather extensive simulation study can be
found in Braga-Neto and Dougherty (2004). The context they considered was us-
ing microarray gene expression data for class prediction, and so the loss function
was counting error. The authors compared three methods of estimating the risk: the
apparent loss, cross-validation, and the bootstrap. For cross-validation the compari-
son included leave-one-out, fivefold (CV5), tenfold (CV10), and a repeated CV10,
which averaged 10 runs of tenfold cross-validation with randomly picked folds. For
the bootstrap they considered two nonparametric methods: the bias-corrected boot-
strap of (4.13) and the .632 estimator.

Three classification methods were considered as examples: linear discriminant
analysis (LDA), 3-nearest-neighbor (3NN), and classification trees (CART); more
details on the methods can be found in their paper and relevant chapter(s) of this
monograph. Similar to the Efron simulations mentioned earlier, the authors studied
the difference between an error estimate and the true error rate of a classifier on a
given (simulated) dataset. This difference was termed the deviation, and summary
statistics and plots were given of the distribution of deviations. The true error rate
was computed exactly for LDA, and by Monte-Carlo for 3NN and CART.

Their experiments included six different sample sizes: 20, 40, 60, 80, 100, and
120, and two different dimensionalities (number of genes): p = 2 and 5. For each
case three different combinations of class separation and variance are used, corre-
sponding to Bayes error rates of ∼0.1, 0.15, and 0.2, given equal prior probabilities
of the two classes. Clear distinctions exist among the seven methods for estimat-
ing risk with the smaller sample sizes, especially with n = 20 and 40. For n ≥ 100,
the variances of the deviation distributions are essentially the same, with the .632
bootstrap having the smallest variance; their means are also essentially zero with the
exception of the apparent loss.
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Fig. 4.2 Beta-fits of empirical deviation distribution. resub: “apparent” estimate; loo: leave-one-
out; cv10r: repeated CV10; bbc: bias-corrected bootstrap; b632: .632 bootstrap.
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Fig. 4.3 Plots of the empirical deviation distribution.

For the smaller sample sizes, the cross-validation estimates are seen to have
rather high variability, although all the cross-validation methods appear to perform
similarly. Figures 4.2 and 4.3 showcase one such experiment (“Experiment 3” in
Braga-Neto and Dougherty, 2004). The classifier here is LDA. Note that, in their
published paper, the fitted curves using a Beta distribution for n = 20 were slightly
in error. The figures here are kindly provided by the authors and are the same as the
correct version, on the companion Web site for their paper. In the experiments, the
cross-validation methods also tend to produce large outliers, which in practice could
lead to wrong conclusions. The distinction between cross-validation estimates and
the other estimates increases with the complexity of the classification, from LDA
(simplest) to CART (most complex). On the other hand, the .632 bootstrap estima-
tor has the best overall performance in the simulations. This, of course, comes with
an increased computational cost, which could be substantial when the dimension
of data (number of genes) is high. The computation time, along with other detailed
summaries of all simulation scenarios, are also given on their paper’s companion
Web site.
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4.4 Applications of Risk Estimation

In this section we discuss a few different applications of risk estimation. In addition
to practical applications, we also present some theoretical ones, in the first two sub-
sections. For these theoretical applications, instead of a technical in-depth treatment,
we aim to give the reader a taste of the material.

4.4.1 SURE and Admissibility

Let R(θ ,δ ) = Eθ L[θ ,δ (X)] be the risk in using δ , as an estimator of the parameter
θ . An estimator δ is minimax, when supθ∈Θ R(θ ,δ ) = infδ ′ supθ∈Θ R(θ ,δ ′), where
the inf is computed over all measurable δ ′. An estimator δ ′ is said to be inadmissi-
ble, if there is an estimator δ , where R(θ ,δ ) ≤ R(θ ,δ ′), for all θ ∈ Θ , with strict
inequality for at least one θ . An admissible estimator is any estimator that is not
inadmissible. Stein (1973) showed that risk estimates could be used to prove the in-
admissibility of standard estimators in a variety of multivariate estimation problems.

Suppose that we are interested in estimating a mean vector μ based on n-variate
Gaussian data y∼N(μ ,σ2In), where In is the n-by-n identity matrix, using estimates
of the form μ̂(y) = y+ γ(y). Stein’s identity

E{(yi −μi)γi(y)} = σ2E
{

∂γi

∂yi

}

implies that the risk of the estimator is

n

∑
i=1

E(yi −μi + γi(y))2 = nσ2 +2
n

∑
i=1

E{(yi −μi)γi(y)}+E‖γ(y)‖2

= nσ2 +2σ2 E{divγ(y)}+E‖γ(y)‖2,

where divγ(y) = ∑n
i=1 ∂γ/∂yi, so that an unbiased estimate of the risk is nσ2 +

2σ2 divγ(y)+‖γ(y)‖2.
It is known that if, for every y ∈ Rn,

2σ2 divγ(y)+‖γ(y)‖2 ≤ 0,

then μ̂ is minimax, with risk smaller than y. Such γ’s exist, as solutions to the dif-
ferential inequality above, demonstrating that y is not an admissible estimate of μ
in the Gaussian case (with n ≥ 3; see below).

The function

γ(y) =
(

2−n
‖y‖2

)

y

satisfies the differential inequality above (for n ≥ 3) and leads to the James-Stein
estimate
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μ̂(y) =
(

1− n−2
‖y‖2

)

y.

Formal Bayes estimates of μ with prior π and posterior m are of the form y +
∇log(m(y)), where ∇ f is the gradient of a function f . In this case, Stein’s condition
for minimaxity becomes Δ

√

m(y) ≤ 0, where Δ f is the Laplacian of f , with Δ =
∑n

i=1 ∂ 2/∂x2
i . A function f for which Δ f ≤ 0 is called superharmonic.

The superharmonicity of
√

m, required above, can be difficult to verify. Although
superharmonicity of m implies the superharmonicity of

√
m, if one uses a proper

prior π , the induced marginal (posterior) cannot be superharmonic (Fourdrinier
et al., 1998). In fact, Strawderman (1971) shows that proper minimax Bayes esti-
mates of the multivariate normal mean do not exist for n < 5, but do exist whenever
n ≥ 5, in which case the Cauchy prior can be used.

The James-Stein estimate is dominated by its positive part version

μ̂(y) =
(

1− n−2
‖y‖2

)

+
y,

which avoids sign changes. It turns out that neither the James-Stein estimate nor
its positive part version is admissible, the former because it is dominated by the
latter and the latter because it is nondifferentiable, but improving on the positive
part version is quite difficult.

If the dimension n ≥ 3 + k for some integer k > 0, it is also possible to develop
estimators that shrink toward a k-dimensional subspace. Thus, if n ≥ 4, there is an
estimator

μ̂(x) = x̄1+
(

1− n−3
‖x− x̄1‖2

)

(x− x̄1)

that shrinks toward the grand mean. This has applications in the analysis of hierar-
chical linear models, where, for example, it can be shown that certain fixed effects
models are inadmissible.

Stein’s identity can be extended to other exponential families (Brown, 1986). In-
deed, shrinkage is generally applicable in multidimensional estimation problems,
and is also useful in nonparametric regression (Johnstone, 2002; Candès, 2006).
Consider, for example, an orthogonal transformation of independent Gaussian data
y into some other basis. By orthogonality, the resulting transformed random vari-
able also consists of independent Gaussian components and we can apply SURE
to shrink the coefficient estimates toward zero. Of course, if we choose a basis in
which only a few of the components are likely to be nonzero – that is, a basis in
which the unknown mean μ is sparse – then other techniques that take this knowl-
edge into account, for example, using a double exponential prior on the coefficients,
rather than the Gaussian prior implicitly used in the James-Stein estimate, lead to
improvements. Silverman (1984) explains the connection between kernel, spline,
and orthogonal series estimates.
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4.4.2 Finite Sample Risk and Adaptive Regression Estimates

Risk estimates can also be used to derive nonparametric penalized empirical loss
estimates, which adapt to the unknown smoothness of the function of interest. See
Barron et al. (1999) for more details.

Suppose that we have i.i.d. pairs (xi,yi) with yi = g(xi) + εi, where the εi are
mean 0, variance σ2 and uniformly subgaussian or, supi P(|εi| > t) < C exp(−t2/2)
for some 0 < C < ∞ (van der Vaart and Wellner, 1996). Our goal is to find the best
estimate of g from a class M = Mn of (linear) models indexed by m, for example,
splines or orthogonal series. More precisely, denote by um = Hmu the projection of
a vector u on the space defined by the (linear) model m. Let ‖u‖2 = (u,u), with
(u,v) = n−1 ∑uivi, and dm = trace(Hm) be the dimension of the model m. Again let
Y = (y1, ...,yn)′ and with a slight abuse of notation, let g = (g(x1), ...,g(xn)). Then
we want to find m∗ ∈M such that

m∗ = arginfM E‖Ym −g‖2

= arginfM

{

‖gm −g‖2 +σ2 dm

n

}

.

This perspective of simply searching for the minimum risk model in some class
of models has its advantages: There is no need to assume that any of the models is
“correct”; that is, there may be no model m in the class M with g a fitted version
of m. For example, M may be the class of piecewise constant regression estimates
(regressograms) with g continuous and nonconstant. Even if there is a model m∈M
with g ∈ m, it may be the case that m∗ �= m. For example, M may be the class of
linear combinations of sinusoids with g a very high frequency sine-function; in small
samples it may be impossible to resolve g and the risk-minimizing model m∗ would
be the sample mean.

We know from above that Mallows’ Cp

‖Y −Ym‖2 +2σ2 dm

n
(4.18)

is unbiased for the finite sample risk

E‖Ym −g‖2 +σ2, (4.19)

which is (essentially) what we want to minimize. This suggests that we look at
penalized least squares estimates of g, with penalty terms that look something like
2σ2dm/n. This technique would work perfectly, if we could guarantee that (4.18) is
uniformly close to (4.19). Unfortunately, this is not always the case. So, we aim for
a more realistic goal: We look for penalties pen(m) ≥ 2σ2dm/n such that

E‖Ŷ −g‖2 ≤C inf
M

{

‖gm −g‖2 +pen(m)
}

+O
(

1
n

)

(4.20)

for some C < ∞, where
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m̂ = arginfM
{

‖Y −Ym‖2 +pen(m)
}

and Ŷ = Ym̂. Note that an estimate satisfying such a bound would be optimal in a
nonasymptotic sense and the class M = Mn of models can change with n.

In an effort to be more precise about the meaning of models and classes of mod-
els, consider the class M of piecewise constant regression estimates

f̂ (x) =
k

∑
j=1

f̂ j ·1{x ∈ I j}

where I j is the interval from t j−1 to t j, and the f̂ js are parameter estimates. This
is the class of regressograms (Tukey, 1961). Each model in this class is identified
with a unique sequence of knots {t j} and estimation in that model corresponds to
the construction of estimates for each of the regression parameters { f j}. The class
is formed by considering all possible sequences of knots of a certain size. Regular
regressograms are those for which the bin width h j = t j − t j−1 is constant in j. A
locally adaptive regressogram has variable width bins. The dimension of a regres-
sogram corresponds to the number of intervals I j in the model. Regular regresso-
grams have only one model for each dimension k; locally adaptive regressograms
can have more than one. Our model selection problem for regressograms becomes:
How many knots should there be? And, in the case of locally adaptive regresso-
grams, where should they be?

Let m∗ = infM
{

‖g−gm‖2 +pen(m)
}

with pen(m) arbitrary at this point and
take g∗ = gm∗ . By definition, our minimum penalized least-squares estimator Ŷ sat-
isfies the basic inequality

‖Y − Ŷ‖2 + p̂en ≤ ‖Y −g∗‖2 +pen∗ (4.21)

where p̂en = pen(m̂) and pen∗ = pen(m∗).
Expanding the above inequality about g implies

‖Y −g‖2 ≤ 2(ε,Ŷ −g∗)+‖g∗ −g‖2 +pen∗ − p̂en, (4.22)

and we want to bound the expected value of the left hand side of (4.22) by something
like the right hand side of (4.20). That is, we want (ε,Ŷ −g∗) to be uniformly close
to something like

C
[{

‖Ŷ −g‖2 +‖g∗ −g‖2}+ p̂en
]

.

To that end, define p(m) = σ2pen(m)/n and for arbitrary s > 0,

w(um) =
1
2

[

1
2
{

‖um −g‖2 +‖g∗ −g‖2}+pen(m)+
σ2

n
s
]

≥ 1
2

[

1
2
‖um −g‖2 +pen(m)+

σ2

n
s
]

≥ σ√
2
‖um −g‖

[

p(m)+ s
n

] 1
2
.
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Take Z(um) = (ε,um−g∗)/w(um). The uniform subgaussianity of the εi implies that

P
(

sup
u

Z(um) > λ
)

≤ P

(

sup
u

(ε,um −g∗)
σ‖um −g∗‖ >

λ√
2

[

p(m)+ s
n

] 1
2
)

≤ P
(

‖ε‖2

σ2 >
λ 2

2
p(m)+ s

n

)

≤ Aexp
(

−λ 2

2
p(m)
)

exp
(

−λ 2

2
s
)

,

so that if we take p(m) large enough that

∑
m∈M

exp
(

− p(m)
2

)

≤C, (4.23)

and let V (s) be the event that supm supu Z(um) > 1, then

PV (s) ≤ ∑
m∈M

P
(

sup
u

Z(um) > 1
)

≤ ∑
m∈M

Aexp
(

− p(m)
2

)

exp
(

− s
2

)

≤ AC exp
(

− s
2

)

and, on V (s)c, we have

2(ε,Ŷ −g) ≤ 1
2
{

‖Ŷ −g‖2 +‖g∗ −g‖2}+ p̂en+
σ2

n
s,

or

‖Ŷ −g‖2 ≤ 3
{

‖g∗ −g‖2 +pen∗
}

+2
σ2

n
s. (4.24)

Now all we need to do to prove the bound is to integrate over s. Indeed, if we take

R =
(

‖Ŷ −g‖2 −3
{

‖g∗ −g‖2 +pen∗
})

+ ≥ 0

where (x)+ = max(x,0), then

P(R > r) ≤C exp
(

− nr
4σ2

)

with r = 2σ2s/n, and

E(R) =
∫ ∞

0
P(R > r)dr ≤ D

σ2

n
.
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This gives us the bound

E‖Ŷ −g‖2 ≤ 3
{

‖g∗ −g‖2 +pen∗
}

+D
σ2

n
. (4.25)

So, what is the point of all this?
Suppose that we are interested in using regular regressograms to estimate the

regression function g. If we knew that g satisfied a Hölder condition of the form
‖g(s)−g(t)‖ ≤ M|s− t|α , then we could construct a regressogram estimate achiev-
ing the minimax rate of O

(

n−
2α

2α+1

)

by carefully selecting the number of bins k in
the estimate (Birman and Solomjak, 1967). The problem is that α is usually un-
known. Of course, approximation theory tells us that

‖gm −g‖2 = O
(

k−2α)

and, using the argument above, if we take pen(m) = 2σ2k/n, then the constraint
(4.23) is satisfied, and we have

E‖Ŷ −g‖2 ≤ 3min
k

{

C0k−2α +C1
k
n

}

+O
(

1
n

)

= O
(

n−
2α

2α+1

)

. (4.26)

This implies that we can use penalized least squares to obtain a regressogram with
the minimax rate of convergence without having to know much about the smooth-
ness of the underlying regression function g. That is, the penalized least-squares
estimate adapts to the unknown smoothness in g.

If we consider a broader class of functions g and locally adaptive regresso-
grams, we find that we need a stronger penalty and the corresponding penalized
least squares estimates come within a log factor of the minimax rates. Indeed, if
g is known to have finite α-variation (Mammen and van de Geer, 1997; Barron
et al., 1999), then the minimax rate of convergence is O

(

n−
2α

2α+1

)

as before, but it
is known that a locally adaptive estimate is required to achieve this rate. Approxi-
mation theory (DeVore, 1998) tells us that

min
dm=k

‖gm −g‖2 = O
(

k−2α) ,

but now there are Γ (n)/Γ (k)Γ (n−k) models of size k. So, for the constraint (4.23)
to be satisfied, we have to use a penalty such as pen(m) = 2σ2k logn/n. This esti-
mate achieves a

E‖Ŷ −g‖2 = O

(

[

n
logn

]− 2α
2α+1
)

rate of convergence, which is within a log factor of the minimax rate. Unfortunately,
the corresponding model selection problem is NP-hard (Natarajan, 1995), and we
have to look at other techniques for (nearly) adaptive estimation of functions of
finite α-variation. Regression tree approaches look promising in this regard.

Of course, there are many extensions of the ideas above. An easy extension is
to (nearly) adaptive penalized quasi-likelihood estimators. The theory can also be
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extended, with some difficulty, to continuously parameterized models, for example,
kernel estimates.

The theory for general loss functions and nonlinear models is worked out in
detail in Barron et al. (1999), where an example very similar to the problem above
is worked out, as well.

4.4.3 Model Selection

The most obvious practical application of risk estimation is model selection. Ac-
curate risk estimation aids in accurate model selection, although in some cases, for
example, considering models of only a certain restricted size, even the apparent loss
might work well. But more generally, a reliable risk estimation method is a prereq-
uisite for reliable model selection. Some important methods of variable selection
are described in Chapter 2.

An interesting aspect is the comparison of estimated risks from different models.
Since the estimated risks themselves are subject to random variation, for a given
set of models the ranking of the estimated risks may not reflect the ranking of the
underlying true errors. From this point of view, it is useful to assess the significance
of the estimated risk differences. This appears to be an underdeveloped field. For
AIC, Burnham and Anderson (2002) recommended a difference of at least two as
evidence in favor of the model with the smaller AIC; a more rigorous theory on the
differences in AICs can be found in Vuong (1989).

There are broader aspects of model fitting, selection, and validation. Hand (2006)
cautions that there are important aspects of “real problems” to be accounted for in
addition to the statistical estimation of prediction error. These include the fact that
model-fitting itself is a sequential process of progressive refinement, the assump-
tion that the current data are randomly drawn from the same distribution as future
data, error or change in class labels, the choice of loss function, and limitations
of empirical evaluation such as the particular data sets used and the experience of
the researcher. In the context of biomarker discovery and validation, Feng et al.
(2004) summarized research issues and possible strategies for genomic and pro-
teomic studies.

4.4.4 Gene Ranking

There is a close relationship between gene ranking and model selection, as the for-
mer is a special case of the latter. Braga-Neto et al. (2004) considered the ranking
of small gene feature sets, consisting of three or four genes, using different methods
to estimate the prediction error. Xu and Li (2003) and Lu et al. (2007) considered
ranking of genes one-by-one.
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For ranking genes one-by-one, p-values are often used, computed either directly
under parametric assumptions or based on permutation tests. The p-values under
parametric models are equivalent, for example, to the deviance loss, if the likelihood
ratio test is used. For permutation tests, there is also a model for the loss although it
is more complicated, depending on the design and assumptions such as symmetry,
homoscedasticity, etc. (Hajek et al., 1999; Romano, 1990). Once again, a question
that needs to be addressed is the variability associated with the ranking. Zhang et al.
(2006) addressed the problem in a hypothesis testing framework. Xu and Li (2003)
described the concept of rediscovery as a way to summarize such variability. The
rediscovery rate, for an integer k > 0, is defined as the probability that the k-th top
ranked gene will have a rank of at least k in an independently replicated experiment.
Xu and Li (2003) proposed a nonparametric bootstrap method to estimate the redis-
covery rate. In their example of short time course leukemia cell line data, parametric
(assuming normality of regression errors) and permutation F-statistics were used to
rank the candidate genes. For k ≤ 100, they found that the parametric method had a
rediscovery rate of only about 10% (Figure 4.4b), while the permutation method had
a higher rediscovery rate of 53%. Note that the width of the confidence intervals in
Figure 4.4b depends only on the number of bootstrap samples, an increase of which
could lead to substantial computational burden when the permutation tests are used.

Lu et al. (2007) further developed the concept of rediscovery. Their definition of
the rediscovery rate was slightly different, as the probability of the top k genes from
the original data being selected among top k again in an independently replicated ex-
periment. They also proposed using the bootstrap to estimate the rediscovery rates,
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Fig. 4.4 Rediscovery rates estimated using bootstrap: (a) 5 individual runs; (b) estimated redis-
covery rates and their 95% confidence intervals.
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Fig. 4.5 RDCurve of gene selection associated with ER status and lymph node metastasis status,
and a random data set. (a) RDCurve of gene selection for ER status; (b) RDCurve of gene selection
for lymph metastasis status; (c) RDCurve of gene selection from noninformative data set. The
vertical lines correspond to the number of genes selected with FDR < 0.05.

plotting them against k to obtain rediscovery curves (RDCurves). Figure 4.5 shows
an example from a breast cancer data set. In the data set the genes are ranked ac-
cording to their differential expressions under two conditions separately: estrogen
receptor (ER) status and lymph node metastasis status. It is known that microarray
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gene expressions are often informative of a patient’s ER status. On the other hand,
the lymph node metastasis is more of a “downstream” event, with much weaker
molecular signals. Figure 4.5 shows that the rediscovery rates (using t-statistic, me-
dian difference, fold change, or random forest to rank the genes) are much higher for
ranking according to differential expressions between ER positive and ER negative
patients, but substantially lower for ranking according to differential expressions be-
tween the lymph node metastasis status. The latter is in fact similar to the RDCurves
for a simulated noninformative data set. This example illustrates the RDCurves as a
means of depicting the signal-to-noise ratio in a given data set.
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Chapter 5
Tree-Based Methods

Adele Cutler, D. Richard Cutler, and John R. Stevens

Data analysts in many disciplines are increasingly faced with high-dimensional data
that would have been unthinkable just a few years ago, and nowhere is this more
prevalent than oncology. Technological advances such as microarrays, mass spec-
trometry, and genome-wide single nucleotide polymorphism (SNP) analysis offer
immense potential to investigate the genetic foundations of disease, to explore gene–
gene and gene–environment interactions, and ultimately to improve diagnosis and
treatment options. However, these technologies give rise to data for which the num-
ber of predictor variables (genes, peaks, SNPs) can far exceed the sample size. Bet-
ter statistical tools are needed to deal with such data, and tree-based methods are
among the most effective methods currently available. This chapter is an overview
of tree-based methods including boosting and Random Forests.1

5.1 Chapter Outline

This chapter contains a brief introduction to classification and regression trees in
Section 5.3 followed by an overview of tree-based ensembles including bagging,
Random Forests, and boosting, in Section 5.4. Section 5.5 provides some practical
advice for using Random Forests, including how to deal with unequal class sizes.
Several tree-based ensemble methods are compared on some high-dimensional on-
cology data in Section 5.6 and the chapter concludes with a summary of recent re-
search in this area.

A. Cutler
Department of Mathematics and Statistics, Utah State University, 3900 Old Main Hill, Logan,
UT 84322-3900, USA
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1Random Forests is a trademark of Leo Breiman and Adele Cutler and is licensed exclusively to
Salford Systems.
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5.2 Background

Tree-based methods may be used for classification and regression problems in which
a number of predictor variables, e.g., genes, peaks in spectra, SNPs, and a response
variable are measured for each subject, e.g., person, tissue sample, organism, in the
sample. Regression is used to model and predict a continuous response variable.
Classification deals with categorical response variables. That is, each observation is
known to come from one of a number of distinct groups or classes, and the goal is to
use the predictor variables to classify unlabeled observations. In some situations, the
analyst may also want to determine “variable importance,” namely, which predictors
are associated with the response, how they relate, and perhaps even which predictor
variables interact with others in predicting the response.

5.2.1 Microarray Data

In the microarray context, the observations typically represent the microarrays them-
selves, or the patients from whom they are obtained, and the predictors are the genes,
or more specifically the genes’ expression levels. For example, the analyst may have
microarrays for cancer patients and controls and may want to classify a new person
into one of these two groups based on their microarray results. More importantly, the
analyst may also want to determine which genes on the microarray are useful in dis-
tinguishing between patients and controls, with the idea of developing a more effi-
cient diagnostic tool or giving useful information about the genetic foundation of the
disease. In a more complicated situation, the microarray data may be accompanied
by environmental predictors and it may be of interest to detect gene–environment
interactions that help separate patients from controls. In this chapter, we assume that
all microarray data have been appropriately normalized. The tree-based methods we
discuss are invariant under monotone transformations of the predictor variables, so
the data do not need to be log-transformed, although transformation may be advis-
able for numerical reasons.

5.2.2 Mass Spectrometry Data

In mass spectrometry analysis, the observations again represent people or tissue
samples that have been evaluated using mass spectrometry, yielding a spectrum for
each subject. A peak detection algorithm may be used to pre-process the spectra,
but there may be a large number of peaks. The response variable might be disease
state, in which case the problem is one of classification, or a continuous measure of
outcome such as the level of an antigen, which is a regression problem.
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5.2.3 Traditional Approaches to Classification and Regression

Traditional statistical methods for regression include linear regression and various
nonlinear methods such as splines, wavelets, kernel methods, and generalized additive
models, while those for classification include linear discriminant analysis and logistic
regression(Hastieetal.,2001, forexample).Forhigh-dimensionaldata, thesemethods
are not directly applicable because the number of predictor variables is too large.

5.2.4 Dimension Reduction

Oneway todealwith thehighdimensionality is touseoneormorepreprocessingmeth-
ods, followed by a regression or classification method suitable for low-dimensional
data. For example, t-tests may be used to determine a small set of predictors that
can then be used in a logistic regression. Similarly, variables can be screened for
regression by only considering those that are individually correlated with the re-
sponse. In practice, many of these methods are not properly cross-validated and can
lead to overfitting and highly optimistic estimates of generalization error. Moreover,
these forms of dimension reduction ignore the multivariate structure of the data and
may sacrifice valuable predictive information. A multivariate approach would be to
use principal components analysis or a singular value decomposition to reduce the
dimensionality of the data before doing regression or classification. One problem
with this is that principal components analysis concentrates on finding linear com-
binations of predictors with large variance, which may not have a great deal to do
with the response variable (Cutler and Stevens, 2006).

Although the combination of a dimension-reduction step and a standard statis-
tical regression or classification procedure may suffice for some problems, greater
accuracy, and possibly greater insight, may be possible with some of the newer
techniques such as the tree-based methods described in this chapter. These methods
can be used for either regression or classification and do not require dimension-
reduction preprocessing, although such may be desirable for computational feasi-
bility. All the tree-based methods described in the chapter require choice of one or
more tuning parameters, which may be chosen using cross-validation as described
in Chapter 4 of this volume. Compared to other machine-learning methods such as
neural nets, trees need relatively few tuning parameters and tend to be relatively in-
sensitive to the choice of these parameters. In fact, it is not uncommon for tree-based
methods to perform well with default values, with no need for additional tuning.

5.3 Classification and Regression Trees

Tree-based methods for classification and regression were introduced from a sta-
tistical perspective by Breiman et al. (1984). Regression trees are used when the
response variable is continuous, while classification trees are used for a categorical
response.
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A tree is grown by first considering a “root” node containing all the observa-
tions. Observations in this node are sent to one of two descendant nodes, one left
and one right, using a “split” on a single predictor variable. For a continuous pre-
dictor variable, a split is determined by a single split-point; observations for which
the predictor is smaller than the split-point go to the left, the rest go to the right.
For a categorical predictor variable, a split sends a subset of categories to the left
and the rest to the right. The particular split a tree uses to partition a node into its
two descendants is chosen by considering every possible split on every predictor
variable. The predictor and split combination giving the “best” value according to
some criterion is used to partition the node. Examples of splitting criteria are given
in Breiman et al. (1984) and include sums of squared residuals for regression trees
and measures of homogeneity, such as the Gini index and entropy, for classifica-
tion trees. The same procedure is applied in turn to the descendant nodes, some-
times called “recursive partitioning.” Usually, the trees are grown until a stopping
criterion is met, for example, all nodes contain fewer than some fixed number of
cases, then “pruned” back to prevent overfitting (Breiman et al., 1984). Once a tree
has been grown and possibly pruned, it will have some nonpartitioned nodes called
“terminal nodes.” Predicted values are obtained from the observations in a terminal
node by averaging the response for regression problems or computing either class
membership proportions or the most frequent class for classification problems.

5.3.1 Example: Regression Tree for Prostate Cancer Data

The top panel of Figure 5.1 shows a regression tree for data from the prostate cancer
study of Stamey et al. (1989), also studied in Hastie et al. (2001). The response vari-
able is the level of prostate-specific antigen (lpsa). For illustrative purposes, only
two predictors are included, namely log cancer volume (lcavol) and log prostate
weight (lweight). At each node, cases that satisfy the inequality go to the left, while
ones that do not satisfy the inequality go to the right. Each terminal node results in a
single predicted value, namely the average value of the response for the observations
falling into the node. At the bottom left, Figure 5.1 shows a perspective plot of the
piecewise linear regression surface corresponding to the regression tree in the top
panel. On the bottom right, Figure 5.1 shows the partitioning of the predictor space.
For continuous predictors, the splits are parallel to the coordinate axes and the pre-
dictor space is divided into (hyper-) rectangles, each with a single predicted value.

5.3.2 Properties of Trees

Trees are popular for a wide range of problems, in part because trees can cap-
ture complex interactions. The rank-based nature of the splits makes trees robust
to outliers and insensitive to monotone transformations of the predictor variables.
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Fig. 5.1 Regression tree for two-dimensional prostate cancer data. The top panel shows the tree
diagram, the bottom left contains a perspective plot of the fitted regression surface, the bottom right
shows the partitioning of the predictor space.

A summary of the characteristics that make trees popular, even for low-dimensional
problems, is (Hastie et al., 2001, Section 10.7) that trees:

• Can capture interactions
• Naturally handle both continuous and categorical predictor variables
• Handle missing values in the predictor variables
• Are robust to outliers in the predictor variables
• Are insensitive to monotone transformations of the predictor variables
• Scale well for large sample sizes
• Deal well with irrelevant predictor variables

Neither support vector machines nor neural networks rate highly on any of the
above characteristics (Hastie et al., 2001, Section 10.7). On the downside, regression
trees have sharp jumps in the predictions at the edges of the nodes, which may be
overcome by Friedman’s MARS algorithm (Friedman, 1991). Also, trees:

• Are not good at capturing linear combinations of predictor variables
• Are known to be unstable in the sense that if the data are perturbed slightly, the

tree can change a lot
• Are not as accurate as some of the more recently developed methods
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Trees enjoy a mixed reception when it comes to interpretability. Tree diagrams
are easily understood, but interpretation can be difficult because adjacent or nearby
rectangles can appear in quite distant parts of the tree. A less obvious problem occurs
when two or more predictor variables are highly correlated within a node. Such
variables are called surrogates, and lead to similar splits of the node. However, they
make interpretation more difficult because different surrogates may be selected for
splits at this and descendant nodes. If there are only a few predictor variables, good
software can help keep track of surrogates, but in very high-dimensional examples
the task becomes much more difficult and it may be impossible to extract a coherent
story from the tree diagram.

Perhaps the single largest drawback of trees is that they are not as accurate as
more recently developed methods. In particular, more accurate results can be ob-
tained by combining a variety of suitably chosen trees, leading to methods known
as tree-based ensembles.

5.4 Tree-Based Ensembles

Tree-based ensembles combine the predictions of many different trees to give an
aggregated prediction. To obtain the different trees, some ensemble methods use
randomness in the tree-fitting procedure, others fit nonrandom trees to different ver-
sions of the data set, and some employ both of these strategies (Dietterich, 2000).
Methods also differ in how the predictions are aggregated. In regression, a simple
aggregates prediction is the average of the predictions from the individual trees. A
simple version for classification is to use the most frequently predicted class, in a
procedure known as “voting” the trees.

Ensembles can give improved prediction accuracy over individual trees. An intu-
itive idea behind the improved accuracy of ensemble classifiers is that if the individ-
ual classifiers tend to make prediction errors in different regions of predictor space,
then the incorrect predictors may be “outvoted” by the correct ones. So, for exam-
ple, if 3 trees each have an error rate of 1/3 but the errors are on three disjoint sets of
observations, the voted classifier will predict the correct class for every observation.
Reality is not so simple because the “hard to classify” cases tend to be the same for
all the trees. Moreover, it is possible to construct examples to show that voting bad
classifiers can make them even worse (Hastie et al., 2001, Section 8.7.1).

Another intuitive way to see why ensembles may give more accurate predic-
tions is to think of them as a way of “smoothing” individual trees, giving smoother
regression predictions and smoother boundaries for classification. A less heuristic
rationale in the regression context is provided by the concepts of bias and variance.
If an ensemble is comprised of trees which have low bias and high variance, then ag-
gregating their predictions can give an ensemble predictor with lower variance than
the individual trees, while maintaining low bias (Hastie et al., 2001, Section 8.7.1).
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5.4.1 Bagged Trees

Bagging (Breiman, 1996) stands for “bootstrap aggregating” and denotes ensem-
bles built by fitting predictors to bootstrap samples from the original data. In this
context, bootstrapping is done by randomly sampling cases with replacement, until
the bootstrap sample has the same number of cases as the original data. Some of
the original cases will not appear in the bootstrap sample. Others will appear once,
twice, or even more often. Predictions are combined by averaging for regression and
voting for classification.

5.4.1.1 Example: Bagged Regression Trees for Prostate Cancer Data

Figure 5.2 shows the regression surface for bagging 100 regression trees for the two-
dimensional prostate cancer data example described in Section 5.3. The surface is
noticeably smoother than the one in Figure 5.1. Using the same random split of the
data as that used by Hastie et al. (2001) gives a training set of size 67 and a test set of
size 30. Fitting to the training data and using the test set to estimate error rates gives
an error rate of 0.435 for the single tree and 0.432 for the bagged tree. In fact, it is
not clear that either method is significantly “better” than ordinary linear regression;
the point of this example is simply to illustrate the nature of the regression surface
for the two methods.

5.4.1.2 Properties of Bagged Trees

Bagged trees retain the positive characteristics of trees listed in Section 5.3, but they
are computationally slower and more difficult to interpret.

lca
vo

l

lweight

lpsa

Fig. 5.2 Regression surface for bagging 100 regression trees, two-dimensional prostate cancer
data.
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Breiman (1996) suggests that bagging can substantially increase the predictive
accuracy of an unstable predictor, namely, one for which small changes in the data
set can result in large changes in the predictions. Trees are well known to be un-
stable, and empirical evidence suggests that bagged trees seldom do worse than an
individual tree. Whereas, individual trees are frequently less accurate than the more
sophisticated tree-based ensembles presented later in this chapter and for problems
with thousands of predictors, such as those arising from microarrays, SNPs, and
mass spectrometry, bagging can be prohibitively slow.

5.4.2 Random Forests

Random Forests (RF) (Breiman, 2001) are tree-based ensembles that use bootstrap
samples and randomness in the tree-building procedure. In Random Forests, trees
are fit to bootstrap samples using a random sample of m predictors on which to
split each node. The value of m is a tuning parameter of the method; m is chosen to
be much smaller than the total number of predictors. The m predictors are chosen
independently for each node, and the best split for the selected predictors is used to
split the node, where “best” is determined as for a single tree (Breiman et al., 1984).
The trees are grown large, and not pruned; for classification, the trees are grown
until each terminal node contains members of only one class, while for regression
they are grown until each terminal node contains a small number of cases.

5.4.2.1 Properties of Random Forests

Random Forests inherit the positive characteristics of trees listed in Section 5.3.
Although bagged trees are technically a special case of Random Forests in which m
is chosen equal to the number of predictor variables, the small values of m typically
used by Random Forests can lead to strikingly different properties; Random Forests
are considerably faster than bagged trees and frequently more accurate.

The key to the accuracy of Random Forest predictions is low bias and low cor-
relation among trees (Breiman, 2001). Low bias is achieved by growing large trees;
low correlation results from making the trees as dissimilar as possible, while still
maintaining low bias. In bagging, the trees differ only because they are fit to dif-
ferent bootstrap samples. Intuitively, this gives trees that are too similar to give low
correlation because they tend to make mistakes in similar places. In Random Forests,
random sampling of a small number (m) of predictors at each node forces the trees
to be quite different, reducing correlation and improving predictive power.

Other properties that make Random Forests attractive for high-dimensional on-
cology data analysis are that they:

• Have an inbuilt method of assessing generalization error
• Do not require tuning of many parameters
• Provide measures of variable importance
• Can be used for very unbalanced data sets
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• Can handle high-dimensional data without formal variable selection
• Provide proximities that can be used for clustering data

Each of these points is addressed in more detail in the remainder of this section.

5.4.2.2 Generalization Error

When a bootstrap sample is taken from the data, some observations do not make it
into the bootstrap sample. These are called “out-of-bag data,” and can be used to
give an internal estimate of generalization error. To get this out-of-bag error rate,
each tree is used to predict the response variable for the out-of-bag data and these
predictions are saved. At any point, generalization error can be estimated for each
observation by averaging the error rate of the predictions from the trees for which
it was out-of-bag. For classification, class-wise error rates are computed by aver-
aging over observations from the same class. An overall error rate is computed by
averaging over all the observations.

5.4.2.3 Tuning Parameters

There are two obvious tuning parameters for Random Forests, namely the number
of trees and m, the number of variables to sample at each node. However, in practice,
Random Forests are not particularly sensitive to the choice of either of these para-
meters and the default choices of 500 trees and m =

√
p, where p is the total number

of predictors, work well for many classification problems. In fact, Breiman (2001)
shows that adding more trees to a Random Forest does not lead to overfitting, so
the only real concern with the number of trees is that it should be large enough, and
this can be checked using the out-of-bag error rate. The value of m may be chosen
by fitting the first few trees in the forest and selecting m using the out-of-bag data
described in the previous paragraph.

There is some risk that using the out-of-bag data to pick the number of trees and
m may compromise the estimate of generalization error (see more discussion on this
topic in Chapter 4 of this volume). However, Random Forests are not very sensitive
to these tuning parameters, so fine-tuning is not required and the effects should be
relatively small, as demonstrated by Diaz-Uriarte and Alvarez de Andres (2006).

Other tuning parameters may be necessary for specialized problems. In regres-
sion, it is necessary to control the depth of the trees or the minimum number of cases
in the terminal nodes. Again, out-of-bag data can be used with care, understanding
that over-tuning will lead to bias in the out-of-bag error rate estimate.

5.4.2.4 Variable Importance

Random Forests use an unusual but intuitive measure of variable importance. To
measure the importance of variable k for a single tree in the forest, the out-of-bag
observations are passed down the tree and the predicted values are computed. Next,
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the values of variable k are randomly permuted, keeping all the other predictor vari-
ables fixed. These modified out-of-bag data are passed down the tree and the pre-
dicted values are computed. This process is repeated for all the trees, giving two sets
of out-of-bag predictions for each observation: one set obtained from real data, the
other set from variable-k-permuted data. The difference between the error rate from
the modified data and the error rate for the real data gives a measure of variable
importance for the observation. For classification, class-wise variable importance
is computed by averaging over observations from the same class. Overall variable
importance is computed by averaging over all the observations.

Intuitively, the permutation-based importance of variable k is an estimate of how
much the prediction error on a test set would increase if the value of variable k were
randomly permuted in the test set. In this sense, it is similar to the coefficient-based
measures of importance used in methods such as linear regression or logistic re-
gression – they measure how much the prediction would change if the value of the
predictor increased by one unit. Quite a different measure is obtained, for both Ran-
dom Forests and classical methods, if variable k is removed and the model is refit.

If an important predictor variable is correlated with other predictor variables,
Random Forests sometimes splits on one and sometimes on another, due to the ran-
dom choice of predictors at each node. Therefore, Random Forests tends to identify
all of the correlated predictors as important if any one of them is important.

One attractive feature of all tree-based methods is their ability to capture complex
interactions between predictors. If Random Forests captures such an interaction, the
variables involved are likely to show up as “important” because randomly permuting
one of them destroys the predictive power of the interaction.

5.4.2.5 Unequal Class Sizes

Unbalanced data sets, where some classes are much smaller than others, present a
challenge to many classifiers. A naive classifier will work on getting the large classes
right while allowing a high error rate on the small classes. Random Forests has an
effective method for weighting the classes to give balanced results in unbalanced
data (http://www.math.usu.edu/∼adele/forests). One reason to do this is
that the important predictor variables may be different when the method is forced to
pay greater attention to the small class. Even in the balanced case, the weights can
be adjusted to give lower error rates to decisions that have a high misclassification
cost. For example, it is often more serious to incorrectly conclude that someone is
healthy than it would be to incorrectly conclude that someone is ill.

5.4.2.6 Proximities

One of the difficult aspects of high-dimensional data analysis is that it is not obvious
how to get a good “feel” for the data. Are there interesting patterns or structures,
such as sub-groups within the known classes? Are there outliers? In a multiclass
situation, are some of the groups separated while others overlap? Random Forests
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Fig. 5.3 MDS plot from the Random Forests proximities (left) and from Euclidean distance (right).
Solid circles represent cancer cases, open circles represent controls.

provide a way to look at the data to give some insight into these questions. This
is done by computing a measure of proximity between each pair of observations.
The proximity between two observations is the proportion of the time that they end
up in the same terminal node, where the proportion is taken over the trees in the
forest. If two observations are always in the same terminal node, their proximity
will be 1. If they are never in the same terminal node, their proximity will be 0.
A distance matrix is derived from the proximities, and classical multidimensional
scaling is used to obtain a two- or three-dimensional plot. Each point on the plot
represents one of the observations and the distances between the points reproduce,
as closely as possible, the proximity-based distances. Such a plot can be used to pick
out subgroups of cases that almost always stay together in the trees, or outliers that
are almost always alone in a terminal node.

A natural question at this point is whether it would be just as good to use multidi-
mensional scaling on a conventional distance, such as Euclidean distance or one of
the other distances commonly used in cluster analysis. This can certainly be done,
but one of the difficulties is that a conventional distance can be dominated by noisy
and uninformative predictors that may drown out the effects of the predictors that
are important.

Figure 5.3 illustrates a proximity plot and the corresponding Euclidean distance
MDS plot for the prostate cancer microarray data described in Section 5.5. The prox-
imity plot reveals much more structure than the plot based on Euclidean distances,
including an outlier that could be of interest to the investigators.

5.4.2.7 Missing Value Imputation

Random Forests imputes missing values using the proximities described above. The
procedure is iterative: an initial forest is built using median imputation, proximities
are calculated, and new imputations are obtained by a proximity-weighted average
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for a continuous predictor or a proximity-weighted vote for a categorical predictor.
A new forest is built, giving new proximities and imputations. Usually five or six
iterations are sufficient to give stable imputations. Although no formal analysis has
been done, the fact that the method uses proximity-based nearest neighbors suggests
that it will be valid if values of the predictors are missing at random.

5.4.3 Boosted Trees

The idea behind boosted tree classifiers is to form an ensemble by fitting trees to
weighted versions of the data. Initially, all observations have the same weight. As
the ensemble grows, the weights are adjusted based on knowledge of the problem.
The weights of frequently misclassified observations are increased, while those of
seldom-misclassified observations are decreased. Heuristically, the trees are encour-
aged to tailor themselves to the difficult cases. The various algorithms differ in their
choice of their:

• Individual trees
• Method of changing the weights
• Procedure for combining to give the final prediction

The trees used in boosting are typically small, sometimes as small as “stumps,”
which have only one split. Typically, the trees are combined by weighted voting
or averaging, with highly accurate trees getting more weight than do less accurate
ones. More sophisticated boosting methods use shrinkage methods such as the lasso
(Tibshirani, 1996) to select this second set of weights.

In this section, two boosting methods are presented, namely AdaBoost, for his-
torical reasons, and Gradient boosting. Only the classification context is discussed
in this chapter. For more details on boosting for regression, see Chapter 10 of Hastie
et al. (2001).

5.4.3.1 Adaboost

Boosting originated with the AdaBoost classifier of Freund and Schapire (1996).
Consider a 2-class problem with data (xi,yi), i = 1, . . . ,n, where xi denotes the pre-
dictor variables and yi denotes the class variable for the ith subject, with yi = −1 or
yi = 1 to represent the class. AdaBoost fits J classifiers as follows:

Adaboost Algorithm

1. Initialize the weights wi = 1/n, for i = 1, . . . ,n.
2. For j = 1, . . . ,J :

a) Fit a classifier Cj(x) using weights wi for i = 1, . . . ,n.
b) Find predicted values ŷi = Cj(xi), for i = 1, . . . ,n.
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c) Compute the weighted error rate: e j = ∑n
i=1 wiI(ŷi �= yi)/∑n

i=1 wi.
d) Let α j = log((1− e j)/e j).
e) If case i was misclassified in step 2b), multiply its weight by exp(α j).

3. AdaBoost predicts class −1 if ∑J
j=1 α jCj(x) < 0 and class 1 otherwise.

Note that α j is small if the weighted error rate at step j is large, so that α j is
larger for more accurate classifiers in step 3. In step 3, the values α1, . . . ,αJ could be
normalized without changing the predictions, so the α j are referred to as “weights”
even though they are not normalized.

Adaboost uses very simple classifiers in step 2(a). A popular choice is a tree with
just a single split, leading to the name “boosted stumps.” At first it was believed
that AdaBoost could not overfit, even if the number of trees, J, was increased indef-
initely. In fact, this claim turns out to be incorrect, and there are examples for which
generalization error decreases for a while but ultimately starts to increase as J be-
comes very large. Therefore, J should be chosen using some form of cross-validated
estimate of generalization error.

5.4.3.2 Gradient Boosting Machines

Friedman et al. (2000) show that AdaBoost fits an additive model by stage-wise
optimization of an objective function. This work was extended by Friedman (2001)
resulting in methods called “Gradient Boosting Machines.”

Gradient boosting seeks to find f �(x) to minimize E(L(y, f (x))) with respect to
f for some loss function L, where the expectation is taken over the joint distribution
of x and y. Typical loss functions are least squares for regression and the negative
log-likelihood for the multinomial for classification.

Gradient boosting approximates f �(x) by an additive expression of the form

f̂ (x) =
J

∑
j=0

ρ jT (x,a j)

where T (x,a j) is a simple function of x with parameters a j. The parameters ρ j and
a j, j = 1, . . . ,J are estimated using the following procedure.

Gradient Boosting Machines

1. Initialize f0(x) = arg minβ ∑n
i=1 L(yi,β ).

2. For j = 1, . . . ,J :

a) ỹi = −
[

∂L(yi, f (xi))
∂ f (xi)

]

f (x)= f j−1(x)
for i = 1, . . . ,n.

b) Fit T (x,a) to (xi, ỹi), i = 1, . . . ,n and denote the estimated parameters a j.
c) Let ρ j = arg minρ ∑n

i=1 L(yi, f j−1(xi))+ρT (xi,a j).
d) Let f j(x) = f j−1(x)+ρ jT (x,a j).
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Step 2(a) requires the loss function L to be differentiable and computes “pseudo-
residuals” in the direction of the negative gradient of the loss at the current f̂ (x).
In step 2(b) the fitting is typically done by least squares. A further modification
known as “stochastic gradient boosting” (Friedman, 2002) fits T (x,a) to a random
subsample from the data in step 2(b). For trees, step 2(b) involves fitting a tree, and
in step 2(c) a value of ρ j is found separately for each node of the tree T (x,a j), with
corresponding modifications to step 2(d). Finally, a shrinkage parameter λ can be
used in step 2(d) to give f j(x) = f j−1(x)+ λρ jT (x,a j). The value of λ is a tuning
parameter of the method. In general, smaller values of λ will require more trees,
that is, larger J, to give comparable accuracy.

Properties of Gradient Boosting Machines

Like Random Forests, tree-based Gradient Boosting Machines (GBM) share many
of the positive characteristics of trees listed in Section 5.3 and they are extremely
powerful predictors. The jury is out on whether they are generally more power-
ful than Random Forests; sometimes they are, sometimes not. They do appear to
require more tuning than Random Forests and the effects of this are illustrated in
Section 5.5. Like Random Forests, Gradient Boosting Machines provide measures
of variable importance and cross-validated estimates of generalization error. They
also provide partial dependence plots and an ANOVA decomposition to aid inter-
pretation.

5.5 Example: Prostate Cancer Microarrays

Random Forests and Gradient Boosting Machines are illustrated using a data set on
prostate cancer (Singh et al., 2002). These data have 6,033 gene expression values
for 102 arrays, namely 50 normal samples and 52 tumor samples. Of interest with
these data was predicting disease class, normal or tumor, based on the gene expres-
sion values. The data were preprocessed by Dettling (2004). All computations were
performed in R (R Development Core Team, 2007) using randomForest (Liaw and
Wiener, 2002), and gbm (Ridgeway, 2007).

Initially, RF and GBM were run with randomly selected subsets of predictors
to get an idea of CPU times in terms of the number of predictors. All parameters
except the number of trees were set at default values and the gbm.fit function was
used instead of gbm itself to avoid the formula interface, which can slow down the
methods considerably. CPU times, measured by the average of 5 runs on a 2GHz
machine, are given in Table 5.1. The actual values are machine dependent, but for
both methods, CPU increases proportionally to the number of predictors. Times for
GBM are slightly higher than for RF, and both methods increase proportionally to
the number of predictors.

To evaluate accuracy, tenfold cross-validation was performed for both methods,
repeated ten times, and averaged. Default values were chosen for all parameters. The
average error rates were 9.4% and 14.23% for RF and GBM, respectively. When the
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Table 5.1 CPU time (seconds) for RF and GBM.

Method Number
of trees

Number of predictors

1,000 2,000 3,000 4,000 5,000 6,000

RF 100 1.1 2.3 3.5 4.6 5.7 6.6
GBM 100 4.2 8.3 12.6 16.9 21.1 24.9
RF 500 5.5 11.1 17.0 22.2 28.2 32.2
GBM 500 8.2 16.2 24.2 32.5 40.4 47.8
RF 1,000 10.7 22.2 34.1 44.4 56.2 65.2
GBM 1,000 13.3 26.1 38.9 52.0 64.8 76.6

Table 5.2 Sensitivity to tuning parameter choice. Table gives number of errors for prostate cancer
data, computed by tenfold cross-validation with the specified choice of tuning parameters and
everything else set at default values.

Number of Trees

100 250 500 750 1,000

Random m
Forests 25 13 13 10 10 12

50 12 9 8 9 7
75 9 10 8 9 9

100 7 9 7 7 7
150 8 8 7 7 7
200 9 7 7 7 7
300 7 7 8 7 7

Gradient Shrinkage
Boosting 0.0001 50 43 25 14 12
Machines 0.0005 27 13 11 11 10

0.0010 13 11 10 9 9
0.0015 14 11 10 10 9
0.0020 11 10 11 9 8
0.0025 9 11 9 7 7
0.005 10 9 7 6 6

0.01 11 7 6 6 6
0.05 7 6 6 6 6
0.1 5 7 6 6 6
0.5 9 7 7 12 15
1.0 19 9 18 18 20

number of trees for GBM was increased to 1,000, its average error rate dropped to
10.2% and when the number of trees was increased to 1,500, the average error rate
was 9.6%.

To get an idea of how sensitive the methods are to tuning parameter choice,
tenfold cross-validation was used to estimate the generalization error for different
choices of the number of trees and of m for RF, and shrinkage for GBM. The results
are presented in Table 5.2. Default values are shown in bold with the default value
of m =

√
6033 approximated to 75. For RF, results are similar for all values of m

greater than the default, and for all numbers of trees. There is some suggestion that
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100 trees is not quite enough, and that m = 25 is also not enough. Nonetheless, the
ratio of largest error rate to smallest error rate is less than 2.

Examination of the GBM algorithm suggests that the number of trees affects the
amount of shrinkage required. For a large number of trees, smaller values of the
shrinkage parameter may give good results, while for fewer trees, a larger value of
the shrinkage parameter is necessary. Table 5.2 confirms these ideas. For a small
number of trees, too little or too much shrinkage gives poor results. Similarly, for
a fixed amount of shrinkage there is some evidence that fitting either too few or
too many trees gives poor results. There is a large middle ground, where GBM
give results that are comparable to, or a little better than, RF. Nonetheless, finding
that middle ground is time consuming for large data sets, since the number of trees
required for good performance tends to be greater for GBM than for RF.

Variable importance was computed for RF, but could not be computed for GBM
due to problems with the R formula interface for large numbers of predictors. To
evaluate variable importance for the two methods, the data set was first reduced to
the 500 most important predictors according to the RF permutation variable impor-
tance. RF and GBM were used to select the 50 most important predictors from this
reduced data set, with default values for RF and 500 trees with shrinkage = 0.05 for
GBM. Error rates for the methods using the 50 selected predictors were estimated
using ten repetitions of tenfold cross-validation. For RF the average error rate was
5.8% and for GBM it was 4.6%. Of course, these estimates are biased due to the
fact that the predictors were chosen using the data at hand, but they suggest that if
the number of predictors is sufficiently small, GBM may do slightly better than RF.

5.6 Software

Commercial software for classification and regression trees, Random Forests,
and gradient boosting is available from http://www.salford-systems.com. R pack-
ages include rpart (Therneau and Atkinson., 2007), randomForest (Liaw
and Wiener, 2002), and gbm (Ridgeway, 2007), and these, along with R (R
Development Core Team, 2007), are available from the CRAN Web site
http://www.cran.r-project.org. Open source FORTRAN software for Ran-
dom Forests is available from http://www.math.usu.edu/∼adele/forests.
This is the only available version that uses class weighting to deal with unequal
class sizes.

5.7 Recent Research and Oncology Applications

Wu et al. (2003) compared a variety of classification methods for mass spectrom-
etry data of ovarian cancer samples. The paper provides an overview of linear
and quadratic discriminant analysis, k-nearest neighbors, bagging, boosting, and
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Random Forest algorithms. These methods were applied to the mass spectrome-
try data consisting of spectra on each of 47 ovarian cancer patients and 44 normal
patients, and each method was used to predict cancer status. The Random Forest
classifier outperformed the other methods, providing the lowest prediction error rate.

Shi et al. (2005) demonstrated the ability of Random Forests to successfully dif-
ferentiate renal cell carcinoma sample classes (clear vs. nonclear tumors in 366
patients) based on tissue protein abundance microarray data. The Random Forests
method was also used to discover “clinically well-defined” subgroups, including
low- and high-grade clear cell patients, within these sample classes based on rela-
tively few protein-level markers.

In an early study on microarray data Dudoit et al. (2002) compared Random
Forests to other classifiers for three cancer data sets. The work was extended by Lee
et al. (2005), who compared 21 methods on 7 data sets, of which 6 were cancer data.
Although Lee et al. (2005) did no formal testing, their results for Random Forests
were almost always better than the other tree-based methods they considered, in-
cluding two versions of boosted trees, and similar to those from SVMs for all of
the cancer data sets. As part of their comparison, Lee et al. (2005) used three forms
of gene selection to reduce the number of genes to 50 before using the classifiers.
Random Forests does not require this sort of variable selection preprocessing, and
may have given even better results if it had been used without variable selection.

Diaz-Uriarte and Alvarez de Andres (2006) presented a user-friendly web inter-
face http://genesrf.bioinfo.cnio.es to the RF algorithm for classification
based on gene expression microarray data. Their application supported the com-
petitive results of Random Forests compared to other methods such as diagonal
linear discriminant analysis, k-nearest neighbor, and support vector machines. They
conclude “random forest and gene selection using random forest should probably
become part of the ‘standard tool-box’ of methods for class prediction and gene se-
lection with microarray data.” Application of Random Forests to breast cancer was
presented by some of the same authors in Alvarez et al. (2005).

Variations of boosting to classify tumors using gene expression data were consid-
ered by Dettling and Buhlmann (2003). In Dettling (2004), Random Forests com-
pared favorably to two boosting methods for six cancer microarray data sets.

Bureau et al. (2005) used Random Forests’ variable importance to identify SNPs
predictive of phenotypes, and Heidema et al. (2006) found that Random Forests
were able to handle a large number of predictors and that they were useful in variable
reduction.

In addition to the classification of phenotypes or treatment conditions, Pang et al.
(2006) employed Random Forests with gene expression microarray data to identify
important pathways relevant to the phenotype differences. A pathway is a set of
genes that together serve a common biological function. One benefit to focusing
on pathway analysis is that the final set of important variables, namely the selected
genes, are more easily interpretable because of their shared membership in a specific
pathway. The authors compared Random Forests with linear discriminant analysis,
neural network, bagging, support vector machines, k-nearest neighbor, and naive
Bayes. Random Forests performed favorably, with the lowest or second-lowest error
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rates, when applied to a variety of data sets, including three cancer data sets – one
involving breast cancer and two involving lung cancer.

After identifying recurrent expression patterns across many human gene expres-
sion microarray data sets, Huang et al. (2007) identified thousands of potential func-
tional modules, or groups of functionally related genes. They then used Random
Forests to make functional predictions for 779 and 116 unknown genes, with a vali-
dation accuracy of 70%.

Munro et al. (2006) used Random Forests to predict the presence of transitional
cell carcinoma (TCC) in proteomic (SELDI) profiles, with good reproducibility in a
validation set collected 6 months after the initial analysis.
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Chapter 6
Support Vector Machine Classification
for High-Dimensional Microarray Data
Analysis, With Applications in Cancer Research

Hao Helen Zhang

In a classification problem, we are given a set of labeled samples from two or more
distinctive classes, e.g., different cancer types. The task is to learn a rule that can
categorize these samples based on their attributes such as diagnostic indicators or
gene expression profiles. A good classification rule should generalize well, i.e., it
ought to be able to accurately classify new unlabeled samples taken from the same
target population.

High-dimensional expression microarray data have been rapidly accumulated in
the field of cancer research in recent years. They impose new challenges to con-
ventional classification methods, mainly due to their unique “high dimension low
sample size” data structure. That is, these data in general contain large numbers
of variables, typically tens of thousands of genes, but much smaller numbers of
assayed tumor samples which are often less than hundreds. Effective and reliable
classification methods are hence demanded to discover hidden patterns in these
high-dimensional data.

In the past decade, the support vector machine (SVM) has become a powerful
classification tool used in various research fields, due to its superior prediction
accuracy, nonlinear classification feature, and ability to handle high-dimensional
data. In this chapter, we first review the basic principles of the SVM and its
variant formulations, then demonstrate how these methods overcome the curse
of dimensionality and thus, become suitable to accurately identify differentially
expressed gene signatures and build reliable classification models in cancer
research.
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6.1 Classification Problems: A Statistical Point of View

6.1.1 Binary Classification Problems

We start with the simple case of two-class or binary classification. In general, we
are given a training set consisting of n labeled data points

D = {(x1,y1), . . . ,(xn,yn)}, xi ∈Rd , yi ∈ {−1,+1},

from which the classification rule is induced. Here xi is a d-vector of input variables
or predictors, and the label yi indicates which class the ith data point belongs to.
Our task is to construct a classifier rule φ which separates the positive class from
the negative class. Mathematically, the classifier φ is a mapping

φ : Rd −→ {−1,+1},

which assigns a class label to a sample based on its input vector. In practice, we
generally train a real-valued function f : Rd −→R from the training set, and then
construct the associated classification rule as φ(x) = sign[ f (x)].

Any binary classifier may make one of two possible types of incorrect decisions:
classifying a sample from −1 class to +1 class, or vice versa. They are, respectively,
the false positive decision and the false negative decision. Each mistaken decision
is typically associated with a cost or penalty C. In particular, let C(y1,y2) be the
cost paid for classifying a sample from class y1 to class y2. In the binary case, we
have C(−1,+1) for the false positive cost, C(+1,−1) for the false negative cost,
and C(+1,+1) = C(−1,−1) = 0 because no cost is paid for correct classifications.
We normally do not require that C(+1,−1) = C(−1,+1), since one type of mis-
classification may be more costly than the other. The generalization performance of
any classifier φ is measured by its overall cost on the target population, which will
be described more rigorously in the following statistical framework.

6.1.2 Bayes Rule for Binary Classification

From the statistical perspective, the training samples {xi,yi}, i = 1, · · · ,n can be
regarded as n independent realizations from a unknown joint distribution P(X,Y ).
Define

p(x) = Pr(Y = +1|X = x),

which is the conditional probability of a random sample (X,Y ) from the target pop-
ulation belonging to +1 class given X = x.

For any classifier φ , its loss at the data pair (x,y) is C(y,φ(x)). The generaliza-
tion performance of φ is typically measured by its risk function, or the expected
(average) cost over the target population,
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R(φ) = E [C(Y,φ(X)] .

Here the expectation is taken with respect to the joint distribution P(X,Y ). General
theoretical and empirical methods for risk estimation are reviewed in Chapter 4. The
Bayes classification rule, φB, is the optimal rule which minimizes the risk function
R(φ), i.e., φB(x) = argminφ R(φ). For a binary classification associated with the cost
C, it is easy to show that the Bayes rule is given by

φB(x) = sign
[

p(x)− C(−1,+1)
C(−1,+1)+C(+1,−1)

]

. (6.1)

In practice, a simple choice of C is the 0−1 cost: C(y,φ(x)) = 1 if y �= φ(x); = 0
otherwise. Here C can also be expressed as a function of the quantity yφ(x), i.e.,

C (y,φ(x)) = [−yφ(x)]∗ , where [τ]∗ = 1 if τ > 0; = 0 otherwise. (6.2)

In this special case, the Bayes rule minimizes the expected misclassification rate
(EMR) E [−Y φ(X)]∗ and the resulting optimal rule is

φB(x) = sign
[

p(x)− 1
2

]

. (6.3)

Note (6.3) is true as long as equal costs C(−1,+1) = C(+1,−1) are used. Hand
(1997) and Lin et al. (2002) give more results on the Bayes rule in other nonstandard
classification settings.

We would like to point out that the Bayes rule is the golden rule for a particular
problem, which in general is not available without the knowledge of p(x). There-
fore, most classification methods attempt to approximate the Bayes rule, by either
estimating p(x) or directly estimating sign

[

p(x)− 1
2

]

, based on the training data.
For example, the logistic regression belongs to the former type, and the SVM algo-
rithm belongs to the latter type.

6.1.3 Multiclass Classification Problems

In multiclass classification problems, the training set consists of n samples from k
distinctive classes (k ≥ 3),

D = {(x1,y1), · · · ,(xn,yn)}, xi ∈Rd , yi ∈ {1, · · · ,k}.

The task is to learn a classification rule φ(x) : Rd → {1, · · · ,k} from the training
set. In this case, the misclassification cost C can be represented as a k× k matrix,
with the entry C(l,m) representing the cost of classifying a sample from class l to
class m for l,m = 1, . . . ,k. We have C(l, l) = 0 for all l = 1, . . . ,k because correct
decisions are not penalized.
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To achieve a multiclass classification, each classifier φ(x) is inherently associated
with a set of k functions

f(x) = ( f1(x), . . . , fk(x)),

where fl(x) : Rd → R indicates the strength of evidence that x belongs to class l.
The decision rule is defined as

φ(x) = arg max
l=1,...,k

fl(x). (6.4)

6.1.4 Bayes Rule for Multiclass Classification

Assume that the samples in the training set are independently drawn from a joint
probability distribution P(x,y). Let

pl(x) = Pr(Y = l|X = x), for l = 1, . . . ,k,

where pl(x) is the conditional probability of a random sample (X,Y ) belonging to
class l given X = x. For a classifier φ , its loss at the data point (x,y) is C(y,φ(x)),
and its generalization performance is measured by the expected (average) misclas-
sification cost over the target population:

E [C(Y,φ(X))] = EX

[

k

∑
l=1

C(l,φ(X))pl(X)

]

. (6.5)

The multiclass Bayes rule which minimizes (6.5) is then given by

φB(x) = argminm=1,...,k

[

k

∑
l=1

C(l,m)pl(x)

]

. (6.6)

In the simple case of (equal) 0−1 cost, C(l,m) = I(l �= m), where I is the indicator
function. The cost matrix is a k× k matrix filled with 1’s except the entries on the
main diagonal which are zeros. The Bayes rule, which minimizes the generalization
error E[I(Y �= φ(X))] = Pr(Y �= φ(X)), is given by

φB(x) = argmaxl=1,...,k pl(x). (6.7)

Therefore the Bayes rule assigns x to its most likely class.
Similar to the binary case, the Bayes rule is available only if all the underlying

conditional distribution pl(x)’s are known, which however is not true in practice.
Many statistical methods have been proposed to approximate the Bayes rule based
on the training data. Classical statistical methods are designed to estimate pl(x)’s
and then assign x to the class corresponding to the highest probability. One such
example is the multicategory logit models (Agresti, 2002). An alternative class of
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methods are the large-margin methods such as the multiclass SVMs, which directly
target on the Bayes rule (6.6) and (6.7). The second class of methods tend to deliver
better performance in practice, since estimating φB(x) is essentially estimating the
relative rank of pl(x)’s, which in general is an easier task than estimating pl(x)’s
themselves.

6.2 Support Vector Machine for Two-Class Classification

The support vector machine (SVM), proposed by Boser et al. (1992), Cortes and
Vapnik (1995), and Vapnik (1998), is one type of large margin classifiers. It was
originally motivated by maximizing the geometric margin of a separating hyperplane
for linearlyseparablebinaryclassificationproblems. Itwas thengeneralized to linearly
nonseparable problems and nonlinear classification problems. The SVM is attractive
in its ability to condense the information contained in the training set and find a
decision surface determined by certain points in the training set. It has proven to be
effective in achieving the state-of-the-art performance in various applications. See
Burges (1998) and Cristianini and Shawe-Taylor (2000) for a tutorial on the basic
concept of the binary SVM.

6.2.1 Linear Support Vector Machines

The linear SVM attempts to find a linear function f (x) = w′x+b from the training
set in some optimal sense, where w = (w1, . . . ,wd)′. The classification rule is then
constructed as φ(x) = sign[ f (x)]. There are two types of linear SVM classifiers: the
hard margin SVM and the soft margin SVM, depending on whether the training
data is linearly separable or not.

6.2.1.1 Separable Case

Consider the simple classification problem where the training data can be perfectly
separated into their classes by some hyperplane w′x+b = 0. Here w ∈Rd is normal
to the hyperplane and b ∈R is the intercept. For any separating hyperplane, we de-
fine its geometric margin as d+ +d−, where d+ and d− are, respectively, the shortest
distances from the closest positive data point and the closest negative data point to
the hyperplane. The linear SVM is proposed to seek the optimal margin classifier in
the following sense: the separating hyperplane perfectly separates the training data
and has the largest geometric margin. In other words, the SVM classifier solves the
following problem:

min
w,b

1
2 w′w (6.8)

subject to yi(w′xi +b) ≥ 1, i = 1, . . . ,n.
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Denote the optimal solution to (6.8) by (ŵ, b̂). The resulting classification rule
is then φ(x) = sign[ŵ′x + b̂], which is called the hard margin linear SVM
classifier.

The problem in (6.8) is a convex and quadratic programming (QP) problem. Clas-
sical Lagrange duality theory (Fletcher, 1987) can transform the original problem
(6.8) to its Wolf dual problem, which is easier to solve than the original problem
in this case. The dual problem of (6.8), involved with the Lagrange multiplies
αi ≥ 0, i = 1, . . . ,n, can be expressed as

min
α

1
2

n

∑
i=1

n

∑
j=1

αiα jyiy jx′ix j −
n

∑
i=1

αi, (6.9)

subject to
n

∑
i=1

αiyi = 0; αi ≥ 0, i = 1, . . . ,n,

where α = (α1, . . . ,αn)′. Denote the solution to (6.9) as α̂ . The inputs xi for which
α̂i > 0 are called support vectors. From the Karush–Kuhn–Tucker (KKT) condition
(Fletcher, 1987), the optimal hyperplane must satisfy the following equations:

α̂i[yi(ŵ′xi + b̂)−1] = 0, i = 1, . . . ,n.

Therefore, all the support vectors must lie on the margins of the SVM classifier,
since they meet the equality constraint yi[ŵ′xi + b̂] = 1. After α̂ is solved from (6.9),
we can compute the normal vector of the optimal hyperplane as

ŵ =
n

∑
i=1

α̂iyixi. (6.10)

The intercept b̂ can be derived using the KKT condition, and any support vector
with α̂i > 0 may be used to solve b̂ as b̂ = yi − ŵ′xi. For numerical stability, Lin
et al. (2002) suggested an equivalent but more robust formula to compute b̂ as

b̂ =

n
∑

i=1
α̂i(1− α̂i)[yi − ŵ′xi]

n
∑

i=1
α̂i(1− α̂i)

.

Let N be the number of support vectors, then the linear SVM solution can be ex-

pressed as f̂ (x) =
N
∑

i=1
α̂iyixi + b̂.

6.2.1.2 Nonseparable Case

In general situations, the training data is not necessarily linearly separable, i.e.,
there may not exist any hyperplane which perfectly separates the training points
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into two classes. Therefore, no hyperplane will satisfy the constraints specified in
(6.8). Cortes and Vapnik (1995) suggested introducing the nonnegative slack vari-
ables ξi’s to relax the constraints in (6.8) as

yi(w′xi +b) ≥ 1−ξi, ξi ≥ 0, i = 1, . . . ,n.

If a data point (xi,yi) is misclassified, we must have ξi > 1, so the quantity ∑n
i=1 ξi

actually forms an upper bound on the training error ∑n
i=1[−yi f (xi)]∗. Recall that the

function [τ]∗ was defined in (6.2). Naturally, a small ∑n
i=1 ξi is preferred. This leads

to the following soft margin linear SVM optimization problem:

min
w,b,ξ

n

∑
i=1

ξi +
λ
2

w′w, (6.11)

subject to yi(w′xi +b) ≥ 1−ξi, i = 1, . . . ,n.

ξi ≥ 0, i = 1, . . . ,n.

The constant λ > 0 is a tuning parameter which controls the penalty imposed on the
training error. The larger λ is, the smaller penalty is imposed on the upper bound of
the training error.

Notice the two constraints in (6.11) can be combined as

ξi ≥ max{0,1− yi(w′xi +b)} = [1− yi(w′xi +b)]+, i = 1, . . . ,n,

where [τ]+ = τ if τ ≥ 0; = 0 otherwise. Therefore, we have the following equivalent
formulation of (6.11):

min
w,b

n

∑
i=1

[

1− yi(w′xi +b)
]

+ +
λ
2

w′w. (6.12)

The function [1− y f ]+ is termed as the hinge loss function in literature. Similar to
the separable case, (6.11) can be solved by its dual problem

min
α

1
2

n

∑
i=1

n

∑
j=1

αiα jyiy jx′ix j −
n

∑
i=1

αi, (6.13)

subject to
n

∑
i=1

αiyi = 0; 0 ≤ αi ≤ λ−1, i = 1, . . . ,n.

Denote the solution to (6.13) as α̂i’s. The SVM classifier is then given by:

ŵ =
n

∑
i=1

α̂iyixi, (6.14)

b̂ = yi − ŵ′xi, for some 0 < α̂i < λ−1.

Numerically, it is wise to compute b̂ by taking the average over all the training points
satisfying 0 < α̂i < λ−1.
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6.2.2 Nonlinear Support Vector Machines

As suggested in Cortes and Vapnik (1995) and Vapnik (1998), the linear SVM can
be generalized to the nonlinear SVM by first mapping the input vector x into a high-
dimensional feature space F , often infinite dimensional, and then fitting a linear
SVM in F . Define the map ψ : Rd →F . The nonlinear SVM then solves

min
w,b

n

∑
i=1

[

1− yi(w′ψ(xi)+b)
]

+ +
λ
2

w′w, (6.15)

where w is the normal vector of the hyperplane w′ψ(xi) + b = 0 constructed in
F . The map ψ is usually chosen to enrich the features used for classification by
introducing nonlinear transformations of x. For example, a polynomial map

ψ(x) = (x2
1, . . . ,x

2
d ,x1x2, . . . ,xdxd−1), (6.16)

increases the number of features from d to d2 by including all the second degree
polynomials of x.

The optimization problem (6.15) can be solved through its dual problem:

min
α

1
2

n

∑
i=1

n

∑
j=1

αiα jyiy jψ(xi)′ψ(x j)−
n

∑
i=1

αi, (6.17)

subject to
n

∑
i=1

αiyi = 0; 0 ≤ αi ≤ λ−1, i = 1, . . . ,n.

To classify a future unlabeled sample with input x, we apply the decision rule

sign
[

f̂ (x)
]

= sign

[

n

∑
i=1

α̂iyiψ(xi)′ψ(x)+ b̂

]

. (6.18)

Minimizing the objective function in (6.17) and evaluating the decision rule
(6.18) both require the computation of inner products ψ(xi)′ψ(x) in a high-
dimensional space, not requiring the knowledge of the explicit function form ψ .
Therefore, these expensive calculations can be significantly reduced by using a
positive definite kernel function K, which satisfies

K(x,z) = ψ(x)′ψ(z), ∀x,z ∈Rd .

For example, the kernel K(x,z) = (x′z)2 = ψ(x)′ψ(z) holds for the second degree
polynomial map in (6.16). Vapnik (1998), Schölkopf and Smola (2002), and Shawe-
Taylor and Cristianini (2004) give a very detailed treatment on the kernel SVM.
A special strength of using a kernel trick is to introduce nonlinearity and to deal
with arbitrarily structured data. In practice, a variety of kernels have been used to
construct different SVM classifiers, including
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K(x,z) = (x′z+1)m, (mth degree polynomial kernel)
K(x,z) = exp(‖x− z‖2/2σ2), (Gaussian kernel)

and the Sobolev space kernel (Wahba, 1990). The feature space F corresponding to
the latter two types of kernels is of infinite dimension. Given a kernel function K,
the SVM prediction can be easily done using the sign of

f̂ (x) =
N

∑
i=1

α̂iyiK(xi,x)+ b̂,

where N is the number of support vectors.

6.2.3 Regularization Framework for SVM

It was shown by Wahba (1999) and Evgeniou et al. (1999) that the SVM can be
derived as the solution to a regularization problem in a reproducing kernel Hilbert
space (RKHS). For an introduction on the RKHS theory, see Wahba (1990). Let HK
be an RKHS with the reproducing kernel K(x,z),x,z ∈ Rd . Wahba (1999) proved
that the SVM classifier associated with the kernel K solves the following variational
problem in HK :

min
f

n

∑
i=1

[1− yi f (xi)]+ +λ‖h‖2
HK

, (6.19)

over all the functions with the form f (x) = h(x) + b, h ∈ HK and b ∈ R. Here
‖h‖2

HK
is a penalty functional measuring the roughness of f , and the regularization

parameter λ > 0 controls the trade-off between the training error upper bound and
the classifier complexity. Using the representer theorem of Kimeldorf and Wahba
(1971), it is easy to show the minimizer of (6.19) lies in a finite dimensional space
and has the representation

f̂λ (x) =
n

∑
i=1

ĉiK(xi,x)+ b̂.

Statistical properties of the SVM were carefully studied in Lin (2002) and Zhang
(2004). In particular, the following lemma reveals the connection between the SVM
classifier and the Bayes rule.

Lemma 1. (Lin et al., 2002) Let C be the misclassification cost for a binary classi-
fier f . The minimizer of E[1−Y f (X)]+ is sign

[

p(x)− C(−1,+1)
C(−1,+1)+C(+1,−1)

]

.

Lemma 1 shows that the population minimizer for the hinge loss function is the
Bayes rule φB(x). In other words, if the reproducing kernel Hilbert space is rich
enough such that the sign function, which is generally not smooth, can be approxi-
mated arbitrarily well in the L2 norm by the functions in the RKHS, then the SVM
solution f̂λ (x) directly approaches the Bayes rule φB(x) as n → ∞. This property
is known as Fisher consistent for classification and holds for any fixed d. There is
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a large body of literature on the method of regularization in function estimation.
Cox and O’Sullivan (1990) provides a general framework for studying the asymp-
totic properties of such methods. The convergence rate of the SVM in the standard
data setting with d fixed can be found in Lin (2002) and Zhang (2004). For high-
dimension low sample size data with d >> n, Hall et al. (2005) recently revealed
some properties of the SVM classifier based on the geometric representation of data
in the new asymptotic sense, which assumes d → ∞ with n fixed.

6.3 Support Vector Machines for Multiclass Problems

6.3.1 One-versus-the-Rest and Pairwise Comparison

One common strategy for a multiclass classification problem is to transform the
multiclass problem into a series of binary problems. Two popular choices are the
one-versus-rest approach and the pairwise comparison; see a detailed review in
Weston and Watkins (1999) and Schölkopf and Smola (2002).

The one-versus-the-rest approach is designed to train k binary SVM classifiers
f1, . . . , fk, with each fl separating class l from the remaining classes. These binary
classifiers are then combined to make a final prediction according to the maximal
output, i.e., φ(x) = argmaxl=1,...,k fl(x). The one-versus-the-rest approach is very
easy to implement in practice, so it is widely used in practice. However, this method
may give poor classification performance in the absence of a dominating class (Lee
et al., 2004). In other words, when none of pl(x)’s is greater than 1/2, the approach
may break down. Another disadvantage of the one-versus-the-rest approach is that
the resulting binary problems may be very unbalanced (Fung and Mangasarian,
2001). For example, if the number of classes is large, the class containing a smaller
fraction of training data tends to be ignored in nonseparable cases, which may de-
grade the generalization performance of the classifier.

The pairwise comparison approach also trains multiple classifiers, each separat-
ing a pair of classes from each other. For a problem with k classes, this results in
totally k(k− 1)/2 binary classifiers, and the final decision rule is then constructed
by a voting scheme among all the classifiers. One concern about this approach is
that a large number of training tasks may be involved. For example, if k = 10, then
we need to train 45 binary classifiers. The individual classifiers, however, usually
solve smaller and easier optimization problems than in the one-versus-the-rest ap-
proach, because smaller training sets are involved and the classes have less overlap
(Schölkopf and Smola, 2002).

6.3.2 Multiclass Support Vector Machines (MSVMs)

Arguably the most elegant scheme for multiclass problems is to construct a multiclass
classifier which separates k classes simultaneously. The binary SVM objective
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function has been modified in various ways for discriminating k classes at the
same time, including Vapnik (1998), Weston and Watkins (1999), Bredensteiner
and Bennett (1999), Guermeur (2002), Lee et al. (2004), Liu et al. (2004), and
Wang and Shen (2007). The multiclass SVM (MSVM) generally requires the joint
estimation of multiple functions f(x) = ( f1(x), . . . , fk(x)), each real-valued function
fl(x) indicating the strength of evidence that x belongs to class l, and assigns x to
a class with the largest value of fl(x).

Given an arbitrary sample point (x,y), a reasonable decision vector f(x) should
encourage a large value for fy(x) and small values for fl(x), l �= y. Define the vector
of relative differences as

g = ( fy(x)− f1(x), . . . , fy(x)− fy−1(x), fy(x)− fy+1(x), . . . , fy(x)− fk(x)) .

Liu et al. (2004) called the vector g(f(x),y) the generalized functional margin of f,
which characterizes the correctness and strength of classification of x by f. For ex-
ample, f indicates a correct classification of (x,y) if g(f(x),y) > 0k−1.

The basic idea of the multiclass SVM is to impose a penalty based on the val-
ues of fy(x)− fl(x)’s. In Weston and Watkins (1999), a penalty is imposed only if
fy(x) < fl(x)+2 for l �= y. This implies that even if fy(x) < 1, a penalty is not im-
posed as long as fl(x) is sufficiently small for l �= y; similarly, if fl(x) > 1 for l �= y,
we do not pay a penalty if fy(x) is sufficiently large. In summary, this loss function
can be represented as

L(y, f(x)) = ∑
l �=y

[2− ( fy(x)− fl(x))]+ . (6.20)

In Lee et al. (2004), a different loss function was used

L(y, f(x)) = ∑
l �=y

[ fl(x)+1]+. (6.21)

Liu and Shen (2006) suggested

L(y, f(x)) = [1−min
l
{ fy(x)− fl(x)}]+, (6.22)

To avoid the redundancy, a sum-to-zero constraint
k
∑

l=1
fl = 0 is sometimes enforced

as in Guermeur (2002), Lee et al. (2004), and Liu et al. (2004).
For linear classification problems, we have fl(x) = w′

lx + bl , l = 1, · · · ,k. The
sum-to-zero constraint can be replaced by

k

∑
l=1

bl = 0,
k

∑
l=1

wl = 0. (6.23)
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To achieve the nonlinear classification, we assume fl(x) = w′
lψ(x)+bl , where ψ(x)

represents the basis functions in the feature space F . Similar to the binary classifi-
cation, the nonlinear MSVM can be conveniently solved using a kernel function.

Furthermore, we can represent the MSVM as the solution to an optimization
problem in the RKHS. Assume that f(x) = ( f1(x, . . . , fk(x))∈∏k

l=1({1}+HK) with
the sum-to-zero constraint. Then an MSVM classifier can be derived by solving

min
f

n

∑
i=1

L(yi, f(xi))+λ
k

∑
l=1

‖hl‖2
HK

, (6.24)

where fl(x) = hl(x)+bl ,hl ∈HK , bl ∈R, and L(·, ·) is the loss function defined in
(6.20), (6.21), or (6.22). The following lemma establishes the connection between
the MSVM classifier and the Bayes rule.

Lemma 2. (Lee et al., 2004): Let f(x) = ( f1(x), . . . , fk(x)) be the minimizer of
E [L(Y, f(x))] defined in (6.21) under the sum-to-zero constraint. Then

arg max
l=1,...,k

fl(x) = φB(x).

6.4 Parameter Tuning and Solution Path for SVM

6.4.1 Tuning Methods

To implement the SVM classification, one needs to prespecify the values for the
tuning parameters, including the regularization parameter λ and the parameters in-
volved in the kernel function. For example, σ2 in the Gaussian kernel is a tun-
ing parameter. Selection of the tuning parameters is critical to the performance of
SVMs, since their values have a direct impact on the generalization accuracy of a
classifier. Most software packages provide a common or default value for the tun-
ing parameters, which however is not necessarily the best choice given a particular
problem. In practice, the adaptive tuning is often preferred, which is generally done
by minimizing an estimate of the generalization error or some other related perfor-
mance measures. Numerically, the adaptive tuning can be implemented either by
a gradient descent algorithm or by a grid search over a wide range of parameter
values.

There have been a host of tuning methods proposed for parameter tuning in
the SVMs, including the leave-out-one cross-validation (LOOCV), fivefold cross-
validation (5-CV), generalized cross-validation (GCV; Wahba et al., 2000), and the
ξ α bound method (Joachims, 2000). Duan et al. (2001) gives a thorough evalua-
tion and comparison for these tuning measures in various settings. Parameter tuning
can be time-consuming when there are multiple parameters involved in the train-
ing. Chaplle et al. (2002) proposed a feasible approach for tuning a large number of
parameters.
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6.4.2 Entire Solution Path for SVM

Given a fixed tuning parameter λ , solving the SVM problem defined in (6.8), (6.11),
and (6.19) requires quadratic programming. The computation cost can be large when
a grid search for λ is needed. Hastie et al. (2004) developed an efficient algorithm
which can derive the entire path of SVM solutions with essentially the computa-
tional cost of a single fit. One important discovery in their paper is that the SVM
solution [ŵ(λ ), b̂(λ )] has a piecewise linear trajectory in 1/λ . So by identifying the
break points along the path, their algorithm can get the exact SVM solution for any
value of λ rapidly. This path-finder algorithm greatly speeds up the adaptive selec-
tion of tuning parameters. The solution path of the multiclass SVM was recently
derived by Lee and Cui (2006).

6.5 Sparse Learning with Support Vector Machines

Since its invention, the SVM has been widely applied to many real-world prob-
lems and demonstrated superior performance, especially for high-dimensional and
low sample size data. However, there are two limitations in the standard SVM ap-
proaches. Firstly, the prediction accuracy of SVMs may suffer from the presence
of redundant variables, as shown by Hastie et al. (2001) and Guyon et al. (2002).
One main reason is the decision rule of the SVM utilizes all the variables with-
out discrimination. Secondly, when the true model is sparse, i.e., only a subset of
input variables are involved with the underlying classification boundary, the SVM
solution is less attractive in providing insight on individual variable effects since its
decision rule is hardly sparse across variables.

In the modern age, new technologies of data collection and management are
rapidly producing data sets of ever increasing samples sizes and dimensions (the
number of variables), which often include superfluous variables. To enhance the
generalization performance of a learning algorithm, it is important to identify im-
portant variables and build parsimonious classifiers with high interpretability and
improved prediction performance (Kittler, 1986). Take for example the cancer clas-
sification using microarray gene expression data. Accurate identification of differ-
ent cancer types is critical to achieve effective treatment and longer survival time
of patients. Each type of cancer may be characterized by a group of abnormally ex-
pressed genes, called a “signature.” Since gene expression arrays measure tens of
thousands of genes, choosing the ones that comprise a signature that can accurately
classify cancer subtypes remains a major challenge. It is therefore desired to im-
prove the standard SVM by adding the feature of variable selection, which helps to
build highly interpretable classifiers with competitive generalization performance.

General methods for variable selection in regression settings are reviewed in
Chapter 2. For the SVM, one popular class of variable selection methods have been
proposed based on learning with some shrinkage penalty (Bradley and Mangasarian,
1998; Gunn and Kandola, 2002; Zhu et al., 2003; Bach et al., 2004; Zou and Yuan,
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2008; Zhang et al., 2006). Another class of methods are kernel scaling methods
including Weston et al. (2000) and Grandvalet and Canu (2002). A special issue on
variable and feature selection published by Journal of Machine Learning Research in
2003 introduced other approaches like Bi et al. (2003) and Rakotomamonjy (2003).
These methods build automatic dimension reduction into classification, so they do
not require a variable prescreening process such as the gene screening process often
used in cancer classification with microarray data (Dudoit et al., 2002).

6.5.1 Variable Selection for Binary SVM

6.5.1.1 L1 SVM

Linear Classification

The L1 SVM was proposed by Bradley and Mangasarian (1998) and Zhu et al.
(2003) to achieve simultaneous variable selection and classification. The idea of
the L1 SVM is to replace the squared L2 norm of w in (6.12) with the L1 norm:

min
w,b

n

∑
i=1

[

1− yi(w′xi +b)
]

+ +λ‖w‖1, (6.25)

where ‖w‖1 = ∑d
j=1 |w j|. The L1 penalty, also known as the LASSO penalty, was

first studied by Tibshirani (1996) for regression problems. With a sufficiently large
value of λ , this penalty can shrink small coefficients to exactly zeros and hence
achieve a continuous variable selection.

Different from the standard L2 SVM which requires quadratic programming tech-
niques, the problem (6.25) is solved using linear programming. Zhu et al. (2003)
studied the solution property of the L1 SVM by considering the following equiva-
lent formulation of (6.25)

min
w,b

n

∑
i=1

[1− yi(w′xi +b)]+, subject to ‖w‖1 ≤ s, (6.26)

where s > 0 is the tuning parameter which has the same role as λ . They showed that
the solution path [ŵ(s), b̂(s)] to (6.26) is a piecewise linear function in the tuning
parameter s, and proposed an efficient algorithm to compute the whole solution path
for the L1 SVM. Furthermore, the numerical results in Zhu et al. (2003) suggested
that the L1 SVM may outperform the standard SVM for high-dimensional problems,
especially when there are redundant noise features. Recently, Fung and Mangasarian
(2004) developed a fast Newton algorithm to solve the dual problem of (6.25) by
only using a linear equation solver. Their algorithm was shown to be very effective
for high-dimensional input space, even when d � n.
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Nonlinear Classification

There are two ways to generalize the linear L1 SVM for nonlinear classifications.
The first way is to map the input vector into a high-dimensional feature space F and
fit the linear L1 SVM in F . Define the map ψ : Rd →F , and the nonlinear L1 SVM
is obtained by solving

min
w,b

n

∑
i=1

[

1− yi(w′ψ(xi)+b)
]

+ +λ‖w‖1. (6.27)

The resulting classifier is sign
[

ŵ′ψ(x)+ b̂
]

. This formulation was used in Zhu et al.
(2003).

The second approach to formulate the nonlinear L1 SVM is through a regularization
in the RKHS framework. Instead of applying the L1 penalty to the normal vector w,
Zhang (2006) suggested to impose a penalty functional on the functions. They first
consider the function ANOVA decomposition for the nonlinear classifier f ,

f (x) = b+
d

∑
j=1

f j(x j)+ ∑
j<k

f jk(x j,xk)+ all higher-order interactions, (6.28)

where b is constant, f j’s are the main effects, f jk’s are the two-factor interactions,
and so on. The identifiability of the components in the right side of (6.28) is assured
by side conditions through averaging operators. In practice, we generally truncate
the decomposition (6.28) by retaining low-order interaction terms for easy computa-
tion and interpretation. Correspondingly, the entire space is truncated to its subspace
H= {1}⊕q

j=1H j, where H j’s are q orthogonal subspaces. The space H is an RKHS
with the induced norm ‖ · ‖H. Zhang (2006) then proposed to solve

min
f∈H

n

∑
i=1

[1− yi f (xi)]+ +λ
q

∑
j=1

‖P j f‖H, (6.29)

where P j f is the projection of f onto the subspace H j. The penalty in (6.29), first
proposed by Lin and Zhang (2006) for nonparametric regression and termed as the
COSSO penalty, applies a soft-thresholding operation to functional components and
hence achieves sparse solutions. In the special case of additive models, f (x) = b +
∑d

j=1 f j(x j), (6.29) becomes

min
f∈H

n

∑
i=1

[1− yi f (xi)]+ +λ
d

∑
j=1

‖ f j‖H,

therefore the selection of main effect components is equivalent to variable selection.
The empirical performance of the SVM with COSSO penalty was demonstrated in
Zhang (2006) in term of its classification and variable selection accuracy. Gunn and
Kandola (2002) also suggested a general framework to build interpretable classifiers
with sparse kernels.



118 H.H. Zhang

6.5.1.2 SCAD SVM

Recently Zhang et al. (2006) considered the sparse SVM with another type of
penalty form: smoothly clipped absolute deviation (SCAD; Fan and Li, 2001). In
linear regression models, Fan and Li (2001) first proposed the SCAD penalty for
linear regression and argued that it can overcome the bias issue of the L1 penalty.
Essentially, it has been shown that the SCAD penalty produces sparse solutions
by thresholding small estimates to zero and provides nearly unbiased estimates for
large coefficients. Mathematically, the SCAD penalty function is expressed as

pλ (|w|) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

λ |w| if |w| ≤ λ ,

− (|w|2−2aλ |w|+λ 2)
2(a−1) if λ < |w| ≤ aλ ,

(a+1)λ 2

2 if |w| > aλ ,

(6.30)

where a > 2 and λ > 0 are tuning parameters. The SCAD function, plotted in Fig-
ure 6.1, is a quadratic spline function with two knots at λ and aλ . Except for the sin-
gularity at 0, the function pλ (w) is symmetric and nonconvex, and has a continuous
first-order derivative. Though having the same form as the L1 penalty around zero,
the SCAD applies a constant penalty to large coefficients, whereas the L1 penalty
increases linearly as |w| increases. It is this feature that guards the SCAD penalty
against producing biases for estimating large coefficients. The linear SCAD SVM
solves

min
w,b

n

∑
i=1

[1− yi(w′xi +b)]+ +
d

∑
j=1

pλ (|w j|). (6.31)

There are two tuning parameters: λ and a in (6.31). Here λ balances the trade-
off between data fitting and the model parsimony: a too small λ may lead to an
overfitted classifier with little sparsity; while a too large λ may produce a very sparse
classifier but with poor classification accuracy. Parameter tuning is thus needed to
ensure a proper solution. Fan and Li (2001) showed that a = 3.7 is a good choice
for most problems in practice. The nonlinear SCAD SVM can be easily extended as

−2 −1 0 1 2
w

L(
w

)
0.

4
0.

3
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2
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1
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0

Fig. 6.1 The SCAD penalty function with λ = 0.4 and a = 3.
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min
w,b

n

∑
i=1

[1− yi(w′ψ(xi)+b)]+ +
d

∑
j=1

pλ (|w j|). (6.32)

6.5.2 Variable Selection for Multiclass SVM

For multiclass classification problems, variable selection becomes more complex
than in the binary case, since fitting the MSVM requires the estimation of mul-
tiple discriminating functions and each function has its own subset of important
predictors. Recall that for k-class classification, we need to train the function vec-
tor f(x) = ( f1(x), . . . , fk(x), where fl(x) = w′

lψ(x)+bl and wl = (wl1, . . . ,wld)′ for
l = 1, . . . ,k. The final classification rule is φ(x) = argmaxl=1,...,k fl(x).

6.5.2.1 L1 Multiclass SVM

To achieve variable selection, Wang and Shen (2007) proposed to impose the L1
penalty on the coefficients of the MSVM and solve

min
wl ,bl ;l=1,...,k

n

∑
i=1

L(yi, f (xi))+λ
k

∑
l=1

d

∑
j=1

|wl j|, (6.33)

under the sum-to-zero constraint
k
∑

l=1
bl = 0,

k
∑

l=1
wl = 0. In (6.33), the loss function L

is a generalized hinge loss defined in (6.20), (6.21), or (6.22). Wang and Shen (2007)
developed a statistical learning theory for the optimal solution to (6.33), quantifying
the convergence rate of the generalization error of the L1-MSVM. They also derived
the entire solution path for the linear L1 MSVM. Lee and Cui (2006) provided a
framework to generalize the linear L1 MSVM for nonlinear classification using the
COSSO penalty (Lin and Zhang, 2006).

6.5.2.2 Supnorm Multiclass SVM

The L1 penalty used in (6.33) does not distinguish the source of coefficients, i.e.,
it treats all the coefficients equally and totally ignores whether they correspond to
the same variable or different variables. Intuitively, if one variable is not impor-
tant, it would be desired to shrink all the coefficients associated with that variable
to zeros simultaneously. Motivated by this, Zhang et al. (2008) proposed the Sup-
norm MSVM, which penalizes the supnorm of the coefficients associated with a
certain variable. In particular, for each variable x j, define the collection of all the
coefficients associated with it as a vector w( j) = (w1 j, . . . ,wk j)′, and its supnorm
as ‖w( j)‖∞ = maxl=1,...,k |wl j|. In this way, the importance of x j is measured by its
largest absolute coefficient. The Supnorm MSVM was proposed to solve
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min
wl ,bl ;l=1,...,k

n

∑
i=1

L(yi, f(xi))+λ
d

∑
j=1

‖w( j)‖∞,

subject to
k

∑
l=1

bl = 0,
k

∑
l=1

wl = 0. (6.34)

For three-class problems, the Supnorm MSVM is equivalent to the L1 MSVM after
adjusting the tuning parameters. Empirical studies in Zhang et al. (2008) showed
that the Supnorm MSVM tends to achieve a higher degree of model parsimony than
the L1 MSVM without compromising the classification accuracy.

In (6.34), the same tuning parameter λ is used for all the terms ‖w( j)‖∞ in the
penalty, which may be too restrictive. Zhang et al. (2008) further suggested penaliz-
ing different variables with different penalties according to their relative importance.
Ideally, larger penalties should be imposed on redundant variables to eliminate them
from the final model more easily, while smaller penalties are used for important
variables to retain them in the fitted classifier. In particular, the adaptive Supnorm
MSVM solves the following problem:

min
wl ,bl ;l=1,...,k

n

∑
i=1

L(yi, f(xi))+λ
d

∑
j=1

τ j‖w( j)‖∞,

subject to
k

∑
l=1

bl = 0,
k

∑
l=1

wl = 0, (6.35)

where the weights τ j ≥ 0 are adaptively chosen such that large values are used for
unimportant variables and small values for important variables. Let (w̃1, . . . , w̃d) be
the standard MSVM solution. Zhang et al. (2008) used

τ j =
1

‖w̃( j)‖∞
, j = 1, . . . ,d,

which were shown to perform well in their numerical examples. If ‖w̃( j)‖∞ = 0,
which implies an infinite penalty imposed on wl j’s, then all the coefficients ŵl j, l =
1, . . . ,k, associated with x j, are shrunk to zero altogether.

6.6 Cancer Data Analysis Using SVM

Modern DNA microarray technologies make it possible to monitor mRNA expres-
sions of thousands of genes simultaneously. The gene expression profiles have been
used for classification and diagnostic prediction of cancers recently. The SVM has
been successfully applied to cancer classification and demonstrated high prediction
accuracy. Since each type of cancer is often characterized by a group of abnormally
expressed genes, an effective approach to gene selection helps to classify different
cancer types more accurately and lead to a better understanding of genetic signatures
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in cancers, In the following, we demonstrate the applications of the standard SVM
and sparse SVMs to two data sets: one for two-type cancer classification and the
other for multitype cancer classification. Interestingly, when d > n, a linear classi-
fier often shows better performance than a nonlinear classifier (Hastie et al., 2001),
even though nonlinear classifiers are known to be more flexible.

6.6.1 Binary Cancer Classification for UNC Breast Cancer Data

In the following, we present the performance of SCAD SVM on a real data set.
More detailed analysis can be found in Zhang et al. (2006). These data consist
of three public microarray gene expression data sets, respectively, from Stanford
(Perou et al., 2000), Rosetta (Veer et al., 2002), and Singapore (Sotiriou et al.,
2003), combined into a large data set. The original three data sets have, respec-
tively, 5,974 genes and 104 patients, 24,187 genes and 97 patients, and 7,650 genes
and 99 patients. In Hu et al. (2005), the three data sets are imputed for missing val-
ues, combined, and then corrected to adjust the batch bias, and the final combined
set (provided by Dr. C. M. Perou from UNC) contains 2,924 genes and 300 patients.
The primary interest is to select important genes and use them to distinguish two
subtypes of breast cancer: Luminal and non-Luminal. We separate the whole data
into three folds according to their source information. The binary SVM, L1 SVM,
SCAD SVM classifiers are all trained on two folds and tested on the remaining one.
Tenfold cross-validation within the training set is used to choose λ .

Table 6.1 reports the cross-validation error in each learning and the average error
rate is given in the last column. The first two rows are the error rates of the binary
SVM classifiers trained, respectively, with the top 50 and 100 genes, which are
ranked and selected using the t-test (Pan, 2002; Furey et al., 2000). The third row is
the result for the binary SVM with all of the 2,924 genes. Note the gene preselection
is not needed for the L1 SVM and the SCAD-SVM. In the learning from Stanford
data, the SCAD SVM has the lowest error rate 0.115. In the learning from Rosetta
data, the SCAD SVM and the SVM with all genes are equally best. In the learning
from Singapore data, the SVM with all genes is best and the SCAD SVM is the
second best. The SVMs with top 50 and 100 genes do not perform so well, which
may be due to the fact that the ranking method selects individual genes separately
and ignore their correlations. Overall speaking, the SCAD SVM gives the lowest
average error rate among all the methods.

Table 6.1 Cross-validation error rates for UNC breast cancer data.

Stanford Rosetta Singapore Average

SVM (with top 50) 0.202 0.217 0.192 0.203
SVM (with top 100) 0.192 0.206 0.111 0.170
SVM (with all genes) 0.154 0.175 0.051 0.127
L1 SVM 0.125 0.216 0.081 0.141
SCAD SVM 0.115 0.175 0.061 0.117
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Table 6.2 Number of selected genes for UNC breast cancer data.

Stanford Rosetta Singapore Average

L1 SVM 59 63 72 65
SCAD SVM 15 19 31 22

Table 6.2 gives the number of genes selected by the L1 SVM and the SCAD
SVM. In summary, the L1 SVM selects 59∼ 72 genes in three runs, while the SCAD
SVM only selects 15 ∼ 31 genes. Therefore, the SCAD SVM builds a more parsi-
monious prediction model but with a higher classification accurate than the L1 SVM
for this data set. In Zhang et al. (2006), Figure 5 lists the UniGene identifiers of all
the genes that are most frequently selected by the three methods and the classical
t-test procedure.

6.6.2 Multi-type Cancer Classification for Khan’s Children
Cancer Data

Four different MSVMs are applied to the children cancer data set of Khan et al.
(2001), available at http://research.nhgri.nih.gov/microarray/Supplement/. The data
set consists of a training set of size 63 and a test set of size 20, and contains to-
tally 2,308 genes. Khan et al. (2001) classified the small round blue cell tumors
(SRBCTs) of childhood into four classes: neuroblastoma (NB), rhabdomyosarcoma
(RMS), non-Hodgkin lymphoma (NHL), and the Ewing family of tumors (EWS)
using cDNA gene expression profiles. The distribution of the four tumor categories
in the training and test sets is given in Table 6.3. Note that Burkitt lymphoma (BL)
is a subset of NHL.

To analyze the data, we first standardize the data sets by applying a simple linear
transformation based on the training data. Consequently, the standardized observa-
tions have mean 0 and variance 1 across genes. Then we rank all genes using their
marginal relevance in class separation by adopting a simple criterion used in Dudoit
et al. (2002). In particular, the relevance measure for gene g is defined to be the ratio
of between classes sum of squares to within class sum of squares as follows:

R(g) =

n
∑

i=1

k
∑

l=1
I(yi = l)(x̄(l)

·g − x̄·g)2

n
∑

i=1

k
∑

l=1
I(yi = l)(xig − x̄(l)

·g )2
,

where n is the size of the training set, x̄(l)
·g denotes the average expression level of

gene g for class l observations, and x̄·g is the overall mean expression level of gene
g in the training set. To compare the variable selection performance of different
methods, we select the top 100 genes which have the largest R values and bottom
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Table 6.3 Distribution of four tumor categories for children cancer data.

Data set NB RMS BL EWS Total

Training set 12 20 8 23 63
Test set 6 5 3 6 20

Table 6.4 Classification and gene selection results for children cancer data.

Number of Selected Genes Error

Top 100 Bottom 100 LOOCV Test

MSVM 100 100 0 0
L1 MSVM 62 1 0 1
Supnorm MSVM 53 0 0 1
Adaptive Supnorm MSVM 50 0 0 1

100 genes which have the smallest R values, and build each classifier with these 200
genes. We would like to point out that the relevance measure R is equivalent to the F
statistic for ANOVA problems. The classification errors and the selection frequency
of these 200 genes are reported for each method.

Table 6.4 shows that all the four MSVMs have zero LOOCV error, and 0 or 1
misclassification error on the testing set. In terms of gene selection, two Supnorm
MSVMs are able to eliminate all the bottom 100 genes, and they use around 50
genes out of the top 100 genes to build classifiers with competitive classification
performance to other methods. The standard SVM does not have a feature of gene
selection. This data set has been analyzed by many other methods, including Khan
et al. (2001), Lee and Lee (2003), Dudoit et al. (2002), Tibshirani et al. (2002), and
Tang and Zhang (2005), and nearly all of them yield 0 or 1 test error.
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Chapter 7
Bayesian Approaches: Nonparametric Bayesian
Analysis of Gene Expression Data

Sonia Jain

Microarray gene expression experiments in molecular oncology studies are escalat-
ing in popularity. As a result, there is a growing need for flexible statistical methods
to reliably extract biologically important information from the massive amount of
data obtained from these high-throughput assays. The clustering of gene expression
profiles to identify sets of genes that exhibit similar expression patterns is of particu-
lar interest in determining gene co-expression and co-regulation. In this chapter, we
review Bayesian approaches to analyze microarray data, such as EBArrays (Newton
et al., 2004), probability of expression (POE) (Garrett and Parmigiani, 2003), and
infinite Bayesian mixture models (Medvedovic and Sivaganesan, 2002). Later in
the chapter, we specifically focus on a model-based latent class approach to clus-
tering gene expression profiles. A nonparametric Bayesian mixture model is used
to model microarray data that are assumed to arise from underlying heterogeneous
mechanisms. To compute these Bayesian models, split–merge Markov chain Monte
Carlo is employed to avoid computational problems such as poor mixing and slow
convergence to the posterior distribution. We demonstrate the utility of split–merge
methods in this high-dimensional application by considering data from a leukemia
microarray study.

7.1 Introduction

The analysis of gene expression microarray data in oncology is a fertile area of
research that has bred a wide assortment of statistical data mining techniques for
a variety of genomic applications, such as gene identification, drug discovery, dis-
ease diagnosis, and of course, profiling gene expression patterns. The advent of
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microarray technology allows biologists to study the expression profiles of thou-
sands of genes simultaneously, which can provide a better picture of genetic path-
ways by elucidating genes that are co-regulated or redundant. From a statistical
perspective, the vast amount of potentially highly correlated data leads to some in-
teresting methodological questions regarding experimental design and the analysis
of large and complex data sets. Statistical techniques that have been developed to
analyze microarray data have played an important role in the discovery and under-
standing of the molecular basis of disease, particularly cancer. Examples include
Eisen et al. (1998) and Golub et al. (1999).

Before discussing Bayesian methodology, a brief introduction to genomic termi-
nology is given. Griffiths et al. (1996) provides a thorough introduction. The most
basic unit of heredity is the gene, which is a sequence of nucleotides (a segment of
DNA or deoxyribonucleic acid) located in a specific position on a particular chro-
mosome that encodes a genetic product, usually a protein. Often, researchers are
interested in gene expression, a process by which a gene’s coded information is con-
verted into one of its products. Expressed genes include those that are transcribed
into mRNA (messenger ribonucleic acid) and subsequently translated into a pro-
tein. Expressed genes at the transcription level are usually the focus of microarray
experiments, since expressed genes are a good indication of a cell’s activity.

Without going into the functional details, a microarray is a large collection of
DNA templates to which unknown samples of mRNA are matched based on base-
pairing rules of nucleotides (known as hybridization) by some automated process.
These experiments monitor mRNA expression of thousands of genes in a single
experiment. There are several types of microarray experiments, of which cDNA
(complementary DNA) microarrays and high-density oligonucleotide arrays are the
most common (see Schena, 1999, for further details).

Parametric and nonparametric Bayesian models are a critical tool in analyzing
high-dimensional data sets, particularly in the context of DNA microarrays, in which
the data is potentially highly correlated. In Section 7.2, we provide an overview of
some Bayesian methods that have been applied to gene expression analysis, such as
EBArrays (Newton et al., 2001), (POE) (Garrett and Parmigiani, 2003), and infinite
Bayesian mixture models (Medvedovic and Sivaganesan, 2002).

Later in the chapter, we focus on a particular aspect of microarray analysis:
clustering gene expression profiles to determine genetic co-expression and co-
regulation. Cluster analysis is often considered the last “stage” of analysis in a
microarray experiment (after experimental design, image analysis, pre-processing,
normalization, and determination of differential gene expression) and is sometimes
considered exploratory. Model-based approaches to clustering, in which the prob-
ability distribution of observed data is estimated by a statistical model, have been
shown empirically to frequently outperform traditional clustering methods, such as
agglomerative hierarchical algorithms and k-means clustering (Yeung et al., 2003).

We model gene expression microarray data as arising from a mixture of normal
distributions and place a Dirichlet process prior on the mixing distribution, so that a
countably infinite number of mixture components can be modeled. We compute this
Dirichlet process mixture via a nonconjugate form of Gibbs sampling (Neal, 2000)
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and a nonincremental split–merge Metropolis–Hastings technique (Jain, 2002; Jain
and Neal, 2004, 2007). Because gene expression data are both high dimensional
and highly correlated, the incremental Gibbs sampler exhibits convergence prob-
lems such as poor mixing and slow convergence. The nonincremental split–merge
technique overcomes these problems by moving groups of observations in a sin-
gle update and avoiding low probability states. We demonstrate the improved per-
formance of the split–merge technique in Section 7.5 by considering a leukemia
data set.

This chapter is organized as follows. Section 7.2 provides an overview of
Bayesian approaches to high-dimensional microarray data analysis. In Section 7.3,
we present the Dirichlet process mixture model used for statistical inference in the
clustering of gene expression data. Section 7.4 describes the split–merge Markov
chain Monte Carlo technique that estimates the Dirichlet process mixture model.
Section 7.5 illustrates the application of the nonparametric Bayesian mixture model
in analyzing leukemia microarray data. Section 7.6 provides concluding remarks.

7.2 Bayesian Analysis of Microarray Data

The role that Bayesian methods play in biomedical applications has increased over
the past decade (Beaumont and Rannala, 2004). The Bayesian paradigm is often
considered an appealing choice for modeling, since historical and prior knowledge
can be naturally incorporated into the Bayesian framework via the prior distribution.
Due to advances in statistical computation, in particular, Markov chain Monte Carlo
(see Tierney, 1994; Gilks et al., 1996), it is now feasible to estimate empirically
these analytically intractable models.

Bayesian inference provides a flexible framework for high-dimensional and com-
plex data analysis. Bayesian methods have been widely used in genomic appli-
cations such as gene expression microarray analysis, SNP analysis, protein mass
spectrometry, and serial analysis of gene expression (SAGE). An excellent recent
reference that describes only Bayesian approaches to microarray and proteomic
analyses is Do et al. (2006). The focus of this chapter is on DNA microarray
analysis.

Aside from the high dimensionality inherent in microarray data, this type of data
also poses challenges due to its complex hierarchical error structure (potential con-
tamination due to biological noise and equipment/calibration error), variability of
expression levels across genes, and lack of information regarding the number of
expected clusters. A hierarchical Bayesian model can be used to model these com-
plexities by specifying appropriate prior distributions and combining the priors with
the observed microarray data to yield a posterior clustering allocation of the ob-
servations to mixture components. Here, we outline several Bayesian approaches
to microarray analysis, including EBArrays (Newton et al., 2004), POE (Garrett
and Parmigiani, 2003), and infinite Bayesian mixture models (Medvedovic and
Sivaganesan, 2002).
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7.2.1 EBarrays

EBarrays is a parametric empirical Bayes approach proposed by Newton and
Kendziorski (2003), Kendziorski et al. (2003), and Newton et al. (2001); Newton
et al. (2004); Newton et al. (2006). This approach takes a hierarchical mixture model
approach to address the issue of differential gene expression. The model is consid-
ered hierarchical since at the lower level of this mixture model, the mixture com-
ponent distributions model the conditional variation in the expression profiles given
their expected means. At higher levels of this hierarchy, there is an overlying distri-
bution that describes the variation in the expected means. This allows for sharing of
properties across genes, since the genes are connected by having expression values
drawn from a common probability distribution.

Specifically, the model represents the probability distribution of expression inten-
sities y j = (y j1, . . . ,y jI) measured on gene j, where I is the total number of samples.
When studying differential gene expression between two groups, it is possible that
the I samples are exchangeable and that the distribution of the gene expression in-
tensities is not influenced by group membership. In this case, the authors denote this
as “equivalent expression” or EE j for gene j. Formally, they consider the gene ex-
pression intensities y ji as independent random departures from a gene-specific mean
μ j; that is, the intensities are drawn from an observation distribution fobs(·|μ j).

On the other hand, if the group membership impacts the distribution of the gene
intensities, then this is “differential expression” or DE j, and two distinct means, μ j1
and μ j2, are necessary for each group. Kendziorski and colleagues assume that the
gene intensities are independent and identically distributed from a common distri-
bution π(μ), such that information sharing across genes may occur. Note that if
the μ j’s are fixed effects, then borrowing information across genes would not be
possible.

A second component to this model is the discrete mixing weight, p, which spec-
ifies the proportion of genes that are differentially expressed (DE). Hence, 1− p
represents the proportion of genes equivalently expressed (EE). The distribution for
data y j = (y j1, . . . ,y jI) arising from EE gene j is:

f0(y j) =
∫

(

I

∏
i=1

fobs(y ji|μ)

)

π(μ)dμ (7.1)

If, on the other hand, gene j is differentially expressed, then the data follow the
following distribution:

f1(y j) = f0(y j1) f0(y j2) (7.2)

because different means characterize the two distinct subsets of data y j1 and y j2.
The marginal distribution of the data is given as:

p f1(y j)+(1− p) f0(y j) (7.3)
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Using Bayes’ rule, Kendziorski et al. (2003) show that the posterior probability
of differential expression is then:

p f1(y j)
p f1(y j)+(1− p) f0(y j)

(7.4)

The EBarrays method can be extended to beyond two groups to handle multiple
patterns of expression. If there are m+1 distinct patterns of expression possible for
data y j = (y j1, . . . ,y jI) including the null pattern of equivalent expression across all
samples, then (7.3) can be generalized to the following mixture model:

m

∑
k=0

pk fk(y j) (7.5)

where pk are the mixing weights, and component densities, fk, represent the predic-
tive distribution of measurements for each distinct pattern. The posterior probability
of expression for pattern k generalizes to:

P(k|y j) ∝ pk fk(y j). (7.6)

The posterior probabilities provides the basis for statistical inference for each gene’s
expression pattern and can be used to classify genes into clusters.

This method is implemented in the Bioconductor package called EBarrays for
two types of models: log-normal model and Gamma–Gamma model. Both of these
models assume a constant coefficient of variation, which needs to be verified by
model diagnostics. One of the benefits of the EBarrays approach is that the sources
of variability for the entire gene expression profile is modeled simultaneously rather
than applying a basic statistical test (e.g., modified t-test) repeatedly for each gene
and then drawing inferences by a post-hoc statistical adjustment.

7.2.2 Probability of Expression

Another well-known Bayesian approach to microarray analysis is probability of ex-
pression (POE) first described by Parmigiani et al. (2002). Other POE references
include Garrett and Parmigiani (2003) and Garrett-Mayer and Scharpf (2006). POE
is a powerful microarray meta-analysis tool. Often, data from different microarray
platforms are not directly comparable. POE takes continuous gene expression data
from any array platform and reexpresses it on a three-component categorical scale,
so that the data may be easily compared.

The data are categorized as either over-expressed, under-expressed, or no change.
Garrett and Parmigiani (2003) use the following notation to represent these cate-
gories: e ji = −1 if gene j is under-expressed in sample i, e ji = 0 if gene j has
baseline (no change) expression in sample i, and e ji = 1 if gene j is over-expressed
in sample i.
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For each gene j, the probability distribution of data y ji given e ji is denoted by
fe, j, where

y ji|(e ji = e) ∼ fe, j(·) (7.7)

where e ∈ {−1,0,1}.
A mixing weight is defined to represent the proportion of over-expressed samples

in gene j, denoted as, π+
j . Under-expressed samples are represented by π−

j . The
proportion of all differentially expressed samples is then π j = π+

j + π−
j . The e ji’s

are assumed to be independent, conditional on the π j’s and f ’s.
Bayes’ rule is utilized to estimate the probability of over- or under-expression for

each gene. Specifically, the probability that a gene is over-expressed (p+
ji) is

p+
ji = P(e ji = 1|y ji,ω)

=
π+

j f1, j(y ji)
π+

j f1, j(y ji)+π−
j f−1, j(y ji)+(1−π+

j −π−
j ) f0, j(y ji)

(7.8)

where ω denotes all unknown parameters.
Similarly, the probability that a gene is under-expressed (p−ji) is:

p−ji = P(e ji = 1|y ji,ω)

=
π−

j f−1, j(y ji)
π+

j f1, j(y ji)+π−
j f−1, j(y ji)+(1−π+

j −π−
j ) f0, j(y ji)

. (7.9)

POE uses a latent variable approach, in which a parametric Bayesian hier-
archical mixture model is employed. Currently, the authors have implemented
their technique using the uniform distribution for f1, j and f−1, j, and a normal
distribution for f0, j. Model identifiability limits the choices for these densities.
Gene-specific parameters are created so that information may be borrowed across
genes.

Markov chain Monte Carlo methods are used to estimate the Bayesian mixture
model. In particular, the Metropolis–Hastings method is utilized (Metropolis et al.,
1953; Hastings, 1970). Once this model has been fit, a POE scale is created as a
function of the posterior estimates of the model parameters. The POE scale is de-
fined as the differences in the values of p+

ji and p−ji ; hence, the POE scale is de-
fined from −1 to 1. Genes with positive probability of over-expression have a POE
range between 0 and 1, while genes with positive probability of under-expression
have a POE value between −1 and 0. Note that in this representation, it is not
possible for a particular y ji to have positive probability of both over- and under-
expression.

The POE value for gene j in sample i is represented as:

p ji = p+
ji + p−ji (7.10)
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Since gene expression experiments are expensive and studies are often conducted
on a small number of samples, combining data statistically across experiments
and platforms is advantageous. POE is implemented as a library in the statistical
software, R.

7.3 Nonparametric Bayesian Mixture Model

Yeung et al. (2003) showed empirically that model-based approaches to cluster-
ing, such as finite mixture models, in which the probability distribution of ob-
served data is estimated by a statistical model, frequently outperform traditional
clustering methods. The criteria used in these comparisons were cluster accuracy
and cluster stability. Further, Medvedovic and Sivaganesan (2002) and Medvedovic
et al. (2004) demonstrated that a Bayesian clustering approach, via infinite mixture
models, produces more realistic clustering allocations compared to finite mixture
models. Medvedovic and Sivaganesan (2002) and Medvedovic et al. (2004) applied
a Dirichlet process mixture model (similar to Neal, 2000) to microarray data and es-
timated the posterior distribution via Gibbs sampling. Please note that the Dirichlet
process mixture model is commonly referred to as a nonparametric Bayesian model,
even though it has a countably infinite number of parameters. The term nonparamet-
ric in this context refers to the types of applications that these Bayesian models can
be applied to, such as density estimation and scatterplot smoothing. Medvedovic
et al. (2004) have noted that more efficient sampling schemes other than traditional
Gibbs sampling, such as Jain and Neal (2004), required further investigation to de-
termine if this would improve convergence to the posterior distribution. The purpose
of the remainder of this chapter is to examine this proposition.

We will consider the following Dirichlet process mixture model, where we as-
sume that the observations arise from an underlying mixture of simple parametric
distributions having the form F(θ). In particular, we assume that each observation
is drawn from a normal distribution and that the elements are independent and iden-
tically distributed.

We will assume that the component normal distribution’s parameters, the mean
μ and variance τ−1, are independently drawn from some mixing distribution G. In-
stead of requiring G to take a parametric form, we place a Dirichlet process prior
(Antoniak, 1974; Blackwell and MacQueen, 1973; Ferguson, 1983), a distribution
over the space of distribution functions, on G. This produces the following hierar-
chical mixture model:

yih | μih, τih ∼ F(yih ; μih,τih) = N(yih; μih,τ−1
ih I)

(μih, τih) | G ∼ G

G ∼ DP(G0,α)
G0 = N(μ ; w,B−1) · Gamma(τ ; r,R)

(7.11)
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where G0 and α are the two Dirichlet process prior parameters. G0 is the base mea-
sure, while α is a concentration or “smoothing” parameter that takes values greater
than zero. The parameter α determines the extent that the observations are clustered
together, and may be either fixed to a particular value or treated as a random variable
and given a hyperprior. If α is large, we expect a large number of distinct clusters
drawn from the prior. If α is small, however, then there is high probability that we
will fit a smaller number of mixture components; that is, there is a high probabil-
ity that a class indicator will be drawn from a previously used component. Here,
subscript i refers to attributes rather than different observations. Under G0, which
is the prior over the entire vector over attributes, the model parameters (μh,τh) are
independent.

The probability density function for the prior distribution of μ given in (7.11) is

f (μ |w,B) =
(

B
2π

) 1
2
exp
(

−B
2

(μ −w)2
)

(7.12)

where B is a precision parameter.
The probability density function for the prior for τ is

f (τ |r,R) =
1

Rr Γ (r)
τr−1exp

(

−τ
R

)

. (7.13)

This parameterization of the Gamma density is adopted throughout this chapter.
Hyperpriors could be placed on w,B,r, and R to add another stage to this hierar-

chy if desired.
Equation (7.11) represents a countably infinite mixture model (Ferguson, 1983).

When we integrate G over the Dirichlet process prior, the model parameters fol-
low a generalized Pólya urn scheme (see Blackwell and MacQueen, 1973). As
Neal (2000) showed, by integrating over G, the clustering property of the Dirichlet
process is evident, since there is positive probability that some of the model para-
meters are identical. Thus, we can group identical model parameters into clusters,
denoted ci, which represents the latent class associated with observation i. That is,
the sampling scheme for the stochastic class indicator, ci, is

P(ci = c | c1, . . . ,ci−1) =
ni,c

i−1+α
, for c ∈ {c j} j<i

P(ci �= c j for all j< i | c1, . . . ,ci−1) =
α

i−1+α

(7.14)

where ni,c is the number of ck for k < i that are equal to c. The labeling of the
indicator ci is irrelevant in the above probabilities; all that matters is which ci’s are
equal to each other. The probabilities shown in (7.14) define the Dirichlet process
model.
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7.4 Posterior Inference of the Bayesian Model

Posterior inference of the Dirichlet process mixture model is conducted via Markov
chain Monte Carlo. Markov chain Monte Carlo methods were first used in statistical
physics problems, but are now commonly employed in statistical modeling. In par-
ticular, Bayesian computations can often be complex due to high dimensionality or
complexity of the posterior distribution, so direct sampling is infeasible. The basic
idea of Markov chain Monte Carlo is simply performing Monte Carlo integration
using Markov chains. Monte Carlo integration draws samples from the required dis-
tribution and forms sample averages to approximate expectations. It would be ideal
if the samples generated are independent, but that is not necessary. The novelty of
Markov chain Monte Carlo is to cleverly construct a Markov chain so that it has
the distribution of interest, say π , as its stationary distribution. For a comprehensive
review of Markov chain sampling methods, refer to Gilks et al. (1996) and Tierney
(1994). In the following, we compare the performance of Gibbs sampling (Neal,
2000) to split–merge Markov chain Monte Carlo (Jain and Neal, 2004, 2007).

7.4.1 Gibbs Sampling

Following the articles by Geman and Geman (1984) and Gelfand and Smith (1990),
Gibbs sampling became a very popular Markov chain Monte Carlo algorithm among
Bayesian statisticians. Suppose that the distribution of interest is the joint distribu-
tion, π(x), where x = (x1, . . . ,xn). Each component could be a scalar, vector, or
matrix. When direct sampling of π(x) is not possible, but the conditional distribu-
tion for each xi is available, Gibbs sampling is appropriate. A Gibbs sampling scan
updates each xi according to its conditional distribution given the current value of
all the other x j where j �= i, which is denoted as x−i:

π(xi|x−i) = π(xi|x1, . . . ,xi−1,xi+1, . . . ,xn)

The new value for xi is selected without reference to the former value that it replaces,
and this new value is used immediately when drawing a value for the next compo-
nent, xi+1. The transition kernel is a product of these full conditional distributions
for each individual update required to produce a single iteration of Gibbs sampling.
The components may be updated via a random scan or systematic scan. The random
scan satisfies detailed balance, but the systematic scan does not. However, π is an
invariant distribution for the systematic scan Markov chain since it is an invariant
distribution for each individual xi update.

When G0 is not a conjugate prior for F , we cannot analytically compute the in-
tegral

∫

F(yi,φ)dG0(φ). This leads to numerous computational difficulties. West
et al. (1994) suggest numerical integration, but if the parameters, φc, are high-
dimensional, this can become rather cumbersome. Another recommendation on how
to calculate the integral is Monte Carlo integration based on samples from G0, but as
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MacEachern and Müller (1998) argue, this approximation can be quite inaccurate.
Instead, MacEachern and Müller (1998) propose an exact Gibbs sampling algorithm
that employs the addition of auxiliary parameters, which Neal (2000) (Algorithm 8)
further improves upon to make the algorithm more efficient. Here, Neal’s auxiliary
method, which is used later in this chapter, is briefly described. Consult Neal (2000)
for further details.

Auxiliary variable methods sample from a distribution πx for x by sampling from
some distribution πxy for (x,y), with respect to which the marginal distribution of x
is πx. Neal extends this idea by considering the auxiliary variable y to be temporary
during the Markov chain simulation.

This idea is utilized when updating the ci to avoid integrating with respect to G0.
The permanent state of the Markov chain consists of ci and the φc. However, when ci
is updated, temporary auxiliary variables are introduced that represent values for the
parameters of components which have no other observations associated with them.
Then, Gibbs sampling is performed to update the ci, but with respect to the distri-
bution including these auxiliary parameters. The number of auxiliary components
(and corresponding auxiliary parameters) is a tuning parameter, designated here by
v (corresponding to m in Neal, 2000).

The conditional prior used in this version of Gibbs sampling will depend on
whether ci is associated with an existing or an auxiliary component. The probability
of ci being equal to a c in {1, . . . ,k} will be n−i,c/(n−1+α), where k is the number
of distinct c j for j �= i and n−i,c is the number of times c occurs among the c j for
j �= i. The probability of ci having some other value will be α/(n−1+α), which is
split equally among the v auxiliary components.

If ci = c j for some j �= i, the auxiliary parameters are drawn independently from
G0. But, if ci �= c j for all j �= i, then it is associated with one of the v auxiliary
parameters. The corresponding φ is equal to the existing φci . The φ values for the
other auxiliary components are drawn independently from G0.

A Gibbs sampling update for ci is performed by drawing a new value from its
conditional distribution using the following probabilities:

P(ci = c | c−i, yi, φ1, . . . ,φ(k+v))=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

b
n−i,c

n−1+α
F(yi,φc), 1 ≤ c ≤ k

b
α/v

n−1+α
F(yi,φc), k< c ≤ (k+v)

(7.15)

where n−i,c is the number of c j for j �=i that are equal to c, k is the number of distinct
c j for j �= i, v is the number of auxiliary parameters, F(yi,φc) is the likelihood for
observation i, and b is the appropriate normalizing constant. After this update, all φ
not associated with a mixture component are discarded. The remaining φc can then
be updated via Gibbs sampling or some other Markov chain update that leaves the
posterior distribution invariant.
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7.4.2 Split–Merge Markov Chain Monte Carlo

Jain and Neal have developed split–merge Metropolis–Hastings procedures for both
conjugate and nonconjugate Dirichlet process mixture models (Jain and Neal, 2004,
2007). A model is considered conjugate if G0 is a conjugate prior for F . A specific
type of nonconjugate prior that we will consider is the conditionally conjugate fam-
ily of priors. In conditionally conjugate models, the pair, F and G0, is conditionally
conjugate in one model parameter if the remaining parameters are held fixed. Here,
we employ the nonconjugate version of this technique, and assume that F is condi-
tionally conjugate to G0 in (7.11), so the model parameters, φci , cannot be integrated
away. The state of the Markov chain consists of the mixture component indicators,
ci, and the model parameters.

The Jain and Neal (2007) sampler offers nonincremental moves that yield sig-
nificant changes to the allocation of observations to mixture components in a single
iteration. A split move involves separating a single mixture component into two dis-
tinct components, while a merge move combines two distinct mixture components
together. The split–merge proposal densities are evaluated by a Metropolis–Hastings
procedure (Metropolis et al., 1953; Hastings, 1970) in which split or merge propos-
als are constructed by exploiting properties of a restricted Gibbs sampling scan on
the component indicators, ci and model parameters. The Gibbs sampling scan is
restricted in that it is only performed on a subset of the data (i.e., observations asso-
ciated with the merged component that is proposed to be split) and will only allocate
observations between two mixture components.

To achieve more reasonable split proposals, several intermediate restricted Gibbs
sampling scans are conducted prior to the final restricted Gibbs sampling scan,
which is used to calculate the Metropolis–Hastings acceptance probability. The re-
sult of the last intermediate Gibbs sampling scan is denoted as the random launch
state, from which the restricted Gibbs sampling transition probability is explicitly
calculated. The number of intermediate restricted Gibbs sampling scans is consid-
ered a tuning parameter of this algorithm.

For a merge proposal, there are several ways to combine items in two components
to one component, and intermediate restricted Gibbs sampling scans are utilized to
obtain an appropriate merge launch state. A description of the steps involved in this
algorithm, details to compute the Metropolis–Hastings acceptance probability, and
a discussion of the validity of the conjugate version of the split–merge Metropolis–
Hastings algorithm are provided in Jain and Neal (2007).

We employ the nonconjugate split–merge procedure as an exploratory technique
to sift out potential clusters and subclusters. In the following, we will consider the
nonconjugate split–merge procedure as a method to cluster genomics data and will
compare this method’s performance to Neal’s auxiliary Gibbs sampling method
(Neal, 2000). We intend to demonstrate that our method can detect patterns in high
dimensions that perhaps might be overlooked by standard Markov chain Monte
Carlo techniques.
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7.5 Leukemia Gene Expression Example

In this section, we describe data from Golub et al. (1999) and apply the Dirichlet
process mixture model to cluster gene expression profiles. The performances of
two computational methods, Gibbs sampling and split–merge Markov chain Monte
Carlo, are compared.

7.5.1 Leukemia Data

The microarray data will consist of an n×m matrix, where n denotes the experi-
mental condition (e.g., patients) and m represents the number of genes. Typically,
n < m. If yi j is the expression level of gene j for experimental condition i, then
yi = (yi1, . . . ,yim) represents the expression profile for the ith subject. In the mix-
ture model setting, we will assume that each observed patient expression profile
arises from an underlying mixture of simple parametric distributions having the
form F(θ). That is, each expression profile arises from an unknown latent class.
Expression profiles generated from the same pattern form clusters of similar expres-
sion profiles. For microarray data, we will assume that each element of the patient’s
expression profile arises from a normal distribution and that the elements are inde-
pendent and identically distributed. The normal mixture model is a realistic choice
here because of its flexibility in modeling a number of heterogeneous populations
simultaneously and its simplicity in constructing conditional distributions.

The Golub et al. (1999) data compares gene expression in two types of leukemia:
acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) for 72
patients. The microarrays used were Affymetrix high-density oligonucleotide arrays
consisting of 6,817 human genes. The patients were classified as 47 cases of ALL
(38 B-cell ALL and 9 T-cell ALL) and 25 cases of AML. Originally, these data were
split into a training and test set, but for our purposes, we combine the two.

Data from microarrays require some processing to yield a normalized matrix of
intensity values. Following the exact process described by Dudoit et al. (2002b),
three procedures were applied to the data: “(i) thresholding: floor of 100 and ceil-
ing of 16,000; (ii) filtering: exclusion of genes with max/min ≤ 5 and (max−min)
≤ 500, where max and min refer respectively to the maximum and minimum ex-
pression levels of a particular gene across mRNA samples; (iii) base 10 logarithmic
transformation.” The observations were further transformed by standardizing the pa-
tients (observations) to have mean 0 and variance 1 across the genes as suggested
by Dudoit et al. (2002a), which differs from Golub et al. (1999). According to Yang
et al. (2002), a scale adjustment is necessary “to prevent the expression levels in
one particular array from dominating the average expression levels across arrays.”
These transformations produce a 72×3,571 matrix with no missing values. We will
consider a random subset of 100 genes in this analysis. We further transformed this
data by standardizing the expression levels for each gene to have a mean of 0 and a
variance of 1.
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Our objective is to classify the patients according to leukemia type by using in-
formation revealed by the gene expression data. The goal is to obtain a similar clas-
sification based on clinical findings as described by Golub et al. (1999), but perhaps
further subclassification of the patients is possible. A countably infinite number of
components mixture model is ideal in this situation, since we usually do not know
a priori how many clusters are present in the data. Furthermore, in disease clas-
sification, such as types of tumors, we may wish to detect subcategories within a
particular class of tumors that may arise, for instance, due to differences in gen-
der, molecular structure, or time of onset. Bayesian methods naturally handle genes
that may overlap among the components, which allows the detection of different,
interacting genetic pathways that contribute to disease.

7.5.2 Implementation

Auxiliary Gibbs sampling is compared to split–merge Markov chain Monte Carlo.
For each algorithm, all observations were assigned to the same mixture component
for the initial state, and each algorithm was run for 10,000 iterations, but the first
5,000 iterations are shown in the trace plots (i.e., sampled values in the Markov
chain vs. iteration number). All simulations were performed on Matlab.

Performance measures that were considered include trace plots over time and
computation time per iteration. The trace plots show three values which represent
the fractions of observations associated with the most common, two most common,
and three most common mixture components.

The split–merge algorithm has four adjustable parameters, in which a specific
version of the algorithm is denoted as follows: Split–Merge (·, ·, ·, ·). The first num-
ber in parentheses is the number of intermediate Gibbs sampling scans to reach the
launch state for the split proposal, the second is the number of Metropolis–Hastings
updates in a single iteration, the third is the number of complete incremental sam-
pling scans after the final Metropolis–Hastings update, and the final parameter is
the number of intermediate Gibbs sampling scans to reach the launch state for the
merge proposal.

7.5.3 Results

The priors were set as follows: The Dirichlet process parameter, α , was set to one
for all simulations. The parameters for the priors of the parameters have been set to
the same values over all genes as follows: w = 0, B = 1, r = 1, and R = 5, where
μ ∼Normal(w,B−1) and τ ∼Gamma(r,R). It would be wise to set these parameters
using prior knowledge obtained from the oncologists, since it is unlikely that each
gene has the same likelihood of being expressed. Alternatively, the model could be
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extended to allow the hyperparameters to vary. We provide results for the noncon-
jugate split–merge procedure, Split–Merge (50,1,1,30), and Gibbs sampling with
v = 3 auxiliary parameters.

Since the classification described by Golub et al. (1999) is based on preexist-
ing clinical data, we do not expect to obtain an identical classification of tumors.
However, we do believe that similarities should be observed. From Figure 7.1, it is
evident that Gibbs Sampling is not able to separate the data and leaves all obser-
vations in the same mixture component. Gibbs Sampling will take much longer to
reach equilibrium as it is stuck in a single component. On the other hand, Split–
Merge splits the data into two major clusters. These groups correspond to the clini-
cal classification in that the ALL and AML groups have been separated into distinct
clusters. The subgroup ALL-T consisting of nine patients has not been distinguished
from the ALL-B group, but that may be simply due to the randomized selection of
the 100 genes or unrealistic priors.

Table 7.1 shows a contingency table comparing the clinical classification of the
tumors to the two clusters obtained from the split–merge procedure at iteration 9000.
McNemar’s test is performed, in which groups ALL-T and ALL-B have been com-
bined. The p-value for this test is 0.2373, indicating the difference in distributions
between the split–merge clusters and clinical findings is not significant.

It has been noted that the data are merged from a training and test set, where the
data were obtained from two different labs at different times. According to Dudoit
et al. (2002b), the test set (consisting of 34 patients) is more heterogeneous and
includes a broader range of samples that were subjected to different preparation
protocols. This may also have some bearing as to why ALL-T is consistently merged
with ALL-B.

As a final check, the simulations were repeated by starting the simulation from
a typical state of the competing method’s equilibrium distribution. Gibbs sampling
stayed in the two-component state that it was started from. This suggests that the
two-component split–merge state has high posterior probability; that is, the split
was not due to any problem with the split–merge procedure.

When the initial state was changed so that each observation was assigned to a
different mixture component, the two samplers again produced conflicting results.
Figure 7.2 shows that Gibbs sampling is stuck in three components, while split–
merge finds two major components. Note that this version of split–merge has been
slightly modified by adding 20 restricted Gibbs sampling scans for only the para-
meters prior to the usual 50 intermediate Gibbs sampling scans when conducting a
split proposal. These additional scans are intended to improve the split proposals.
By inspection, the classifications obtained by both Gibbs sampling and split–merge
seem quite reasonable. Tables 7.2 and 7.3 show contingency tables comparing each
sampler’s clusters (at iteration 5000) to the clinical classification.

To determine if these configurations are high-probability states from the pos-
terior distribution, each sampler was started from a typical state from the other
sampler. Gibbs sampling remains in the three-component configuration as before.
However, split–merge quickly moves (within one hundred iterations) from the three-
component configuration to two components. This indicates that the two-component
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Fig. 7.1 Trace plots comparing Gibbs sampling to split–merge Metropolis–Hastings using leukemia
microarray data. The initial state consists of all observations in the same mixture component.

state has high probability given the priors, while the three-component state is quite
unlikely. Once again, Gibbs sampling is stuck in an atypical configuration, where it
is unable to delete a component.
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Table 7.1 2×2 contingency table comparing a clinical classification of tumors to clusters obtained
from the split–merge procedure.

Tumor Split–merge cluster 1 Split–merge cluster 2

AML 1 24
ALL 34 13

From Tables 7.1 and 7.3, it is apparent that the two slightly different split–
merge techniques with different initialization states produce different clusterings.
To determine if the additional scans improve the split–merge technique’s conver-
gence, each split–merge procedure was initialized from a typical state from the
other method. Results indicate that there is no obvious improvement by the addi-
tion of extra Gibbs sampling scans for the parameters only. Each split–merge sam-
pler remained in its initialization state for approximately 2,000 iterations. While the
two different states obtained by the two split–merge procedures are high-probability
configurations, it is not clear that either split–merge technique has indeed converged
to the correct equilibrium distribution yet. Perhaps additional restricted Gibbs sam-
pling scans for the split proposals are necessary to improve mixing between these
high-probability states.

Since the analysis is performed under a Bayesian paradigm, it would be benefi-
cial to obtain more guidance or perform sensitivity analysis regarding the choice of
priors in these situations. Alternatively, when no prior information is available, ad-
ditional stages may be added to this hierarchical model to estimate priors. The priors
chosen in this chapter were selected so that the range of data would be covered with
little prior opinion, and we assumed that each gene had the same prior distribution
(which is likely untrue). It seems natural to choose a prior that would favor genes
known to be important.

7.6 Discussion

In conclusion, this chapter provides a brief overview of some parametric and non-
parametric Bayesian approaches to high-dimensional gene expression analysis. We
briefly reviewed EBArrays (Newton et al., 2004), POE (Garrett and Parmigiani,
2003), and infinite Bayesian mixture models (Medvedovic and Sivaganesan, 2002),
and focused on a specific nonparametric Bayesian model, the Dirichlet process mix-
ture model, to analyze patients’ gene expression profiles via split–merge Markov
chain Monte Carlo. The Bayesian paradigm provides a flexible framework for high-
dimensional statistical inference in the presence of strongly correlated data.

In particular, the split–merge techniques seem to be a promising tool that should
be added to the statistical genomics repository. As an exploratory tool, it is useful
in detecting clusters that other incremental Markov chain methods may not. Gibbs
sampling is a popular Markov chain sampling scheme, since the full conditional
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Table 7.2 Contingency table comparing a clinical classification of tumors to clusters obtained
from the Gibbs sampling (GS) procedure.

Tumor GS cluster 1 GS cluster 2 GS cluster 3

AML 23 2 0
ALL-B 0 17 21
ALL-T 0 2 7

Table 7.3 Contingency table comparing a clinical classification of tumors to clusters obtained
from the split–merge procedure.

Tumour Split–merge cluster 1 Split–merge cluster 2 Other split–merge clusters

AML 2 23 0
ALL 39 4 4

distributions are often simple to compute. Because the split–merge techniques em-
ploy Gibbs sampling to obtain an appropriate proposal density, it is actually quite
straightforward to construct the split–merge techniques too. When clusters over-
lap in high dimensions, Gibbs sampling is not always a feasible solution. Since
split–merge techniques are constructed to frequently split and merge components,
these methods are recommended, even though they can be quite computationally
intensive.
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Fig. 4.4 Rediscovery rates estimated using bootstrap: (a) 5 individual runs; (b) estimated redis-
covery rates and their 95% confidence intervals.
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Fig. 4.5 RDCurve of gene selection associated with ER status and lymph node metastasis status,
and a random data set. (a) RDCurve of gene selection for ER status; (b) RDCurve of gene selection
for lymph metastasis status; (c) RDCurve of gene selection from noninformative data set. The
vertical lines correspond to the number of genes selected with FDR < 0.05.




