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Preface

Optimization has become pervasive in medicine. The application of computing
to medical applications has opened many challenging issues and problems for
both the medical computing field and the mathematical community. Mathe-
matical techniques (continuous and discrete) are playing a key role with
increasing importance in understanding several fundamental problems in
medicine. Naturally, optimization is a fundamentally important tool due to the
limitation of the resources involved and the need for better decision making.

The book starts with two papers on Intensity Modulated Radiation Ther-
apy (IMRT). The first paper, by R. Acosta, M. Ehrgott, A. Holder, D. Nevin,
J. Reese, and B. Salter, discusses an important subproblem in the design of
radiation plans, the selection of beam directions. The manuscript compares
different heuristic methods for beam selection on a clinical case and stud-
ies the effect of various dose calculation grid resolutions. The next paper, by
M. Ehrgott, H. W. Hamacher, and M. Nußbaum, reviews several contributions
on the decomposition of matrices as a model for rearranging leaves on a multi-
leaf collimator. Such a process is essential for block radiation in IMRT in order
to achieve desirable intensity profiles. Additionally, they present a new ap-
proach for minimizing the number of decomposition segments by sequentially
solving this problem in polynomial time with respect to fixed decomposition
times.

The book continues with a paper by G. Deng and M. Ferris on the
formulation of the day-to-day radiation therapy treatment planning problem
as a dynamic program. The authors consider errors due to variations in the
positioning of the patient and apply neuro-dynamic programming to compute
approximate solutions for the dynamic optimization problems. The fourth
paper, by H. Fohlin, L. Kliemann, and A. Srivastav, considers the seed recon-
struction problem in brachytherapy as a minimum-weight perfect matching
problem in a hypergraph. The problem is modeled as an integer linear program
for which the authors develop an algorithm based on a randomized rounding
scheme and a greedy approach.
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The book also covers other types of medical applications. For instance, in
the paper by S. Sabesan, N. Chakravarthy, L. Good, K. Tsakalis, P. Pardalos,
and L. Iasemidis, the authors propose an application of global optimization
in the selection of critical brain sites prior to an epileptic seizure. The pa-
per shows the advantages of using optimization (in particular nonconvex
quadratic programming) in combination with measures of EEG dynamics,
such as Lyapunov exponents, phase and energy, for long-term prediction of
epileptic seizures.

E. K. Lee presents the optimization-classification models within discrim-
inant analysis, to develop predictive rules for large heterogeneous biological
and medical data sets. As mentioned by the author, classification models are
critical to medical advances as they can be used in genomic, cell molecular,
and system level analysis to assist in early prediction, diagnosis and detec-
tion of diseases, as well as for intervention and monitoring. A wide range of
applications are described in the paper.

This book also includes two papers on inverse problems with applications
to medical imaging. The paper by A. K. Louis presents an overview of several
techniques that lead to robust algorithms for imaging reconstruction from the
measured data. In particular, the inversion of the Radon transform is con-
sidered as a model case of inversion. In this paper, a reconstruction of the
inside of a surprise egg is presented as a numerical example for 3D X-Ray
reconstruction from real data. In the paper by M. Malinen, T. Huttunen, and
J. Kaipio, an inverse problem related to ultrasound surgery is considered in an
optimization framework that aims to control the optimal thermal dose to ap-
ply, for instance, in the treatment of breast cancer. Two alternative procedures
(a scanning path optimization algorithm and a feedforward-feedback control
method) are discussed in detail with numerical examples in 2D and 3D.

We would like to thank the authors for their contributions. It would not
have been possible to reach the quality of this publication without the
contributions of the many anonymous referees involved in the revision and
acceptance process of the submitted manuscripts. Our gratitude is extended
to them as well.

This book was generated mostly from invited talks given at the Work-
shop on Optimization in Medicine, July 20-22, 2005, which took place at the
Institute of Biomedical Research in Light and Image (IBILI), University of
Coimbra, Portugal. The workshop was organized under the auspices of the
International Center for Mathematics (CIM, http://www.cim.pt) as part of
the 2005 CIM Thematic Term on Optimization.

Finally, we would like to thank Ana Lúısa Custódio (FCT/UNL) for her
help in the organization of the workshop and Pedro C. Martins (ISCAC/IPC)
and João M. M. Patŕıcio (ESTT/IPT) for their invaluable editorial support.

Coimbra, C. J. S. Alves
May 2007 P. M. Pardalos

L. N. Vicente
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The influence of dose grid resolution on beam
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Summary. The design of a radiotherapy treatment includes the selection of beam
angles (geometry problem), the computation of a fluence pattern for each selected
beam angle (intensity problem), and finding a sequence of configurations of a mul-
tileaf collimator to deliver the treatment (realization problem). While many math-
ematical optimization models and algorithms have been proposed for the intensity
problem and (to a lesser extent) the realization problem, this is not the case for the
geometry problem. In clinical practice, beam directions are manually selected by
a clinician and are typically based on the clinician’s experience. Solving the beam
selection problem optimally is beyond the capability of current optimization algo-
rithms and software. However, heuristic methods have been proposed. In this paper
we study the influence of dose grid resolution on the performance of these heuris-
tics for a clinical case. Dose grid resolution refers to the spatial arrangement and
size of dose calculation voxels. In particular, we compare the solutions obtained by
the heuristics with those achieved by a clinician using a commercial planning sys-
tem. Our results show that dose grid resolution has a considerable influence on the
performance of most heuristics.

Keywords: Intensity modulated radiation therapy, beam angle selection,
heuristics, vector quantization, dose grid resolution, medical physics, optimi-
zation.
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1 Introduction

Radiotherapy is the treatment of cancerous and displasiac tissues with ionizing
radiation that can damage the DNA of cells. While non-cancerous cells are
able to repair slightly damaged DNA, the heightened state of reproduction
that cancerous cells are in means that small amounts of DNA damage can
render them incapable of reproducing. The goal of radiotherapy is to exploit
this therapeutic advantage by focusing the radiation so that enough dose is
delivered to the targeted region to kill the cancerous cells while surrounding
anatomical structures are spared and maintained at minimal damage levels.

In the past, it was reasonable for a clinician to design radiotherapy treat-
ments manually due to the limited capabilities of radiotherapy equipment.
However, with the advent of intensity modulated radiotherapy (IMRT), the
number of possible treatment options and the number of parameters have
become so immense that they exceed the capabilities of even the most ex-
perienced treatment planner. Therefore, optimization methods and computer
assisted planning tools have become a necessity. IMRT treatments use mul-
tileaf collimators to shape the beam and control, or modulate the dose that
is delivered along a fixed direction of focus. IMRT allows beams to be de-
composed into a (large) number of sub-beams, for which the intensity can
be chosen individually. In addition, movement of the treatment couch and
gantry allows radiation to be focused from almost any location on a (virtual)
sphere around the target volume. For background on radiotherapy and IMRT
we refer to [24] and [29].

Designing an optimal treatment means deciding on a huge number of pa-
rameters. The design process is therefore usually divided into three phases,
namely 1) the selection of directions from which to focus radiation on the
patient, 2) the selection of fluence patterns (amount of radiation delivered)
for the directions selected in phase one, and 3) the selection of a mechani-
cal delivery sequence that efficiently administers the treatment. Today there
are many optimization methods for the intensity problem, with suggested
models including linear (e.g., [21, 23]), integer (e.g., [13, 19]), and nonlinear
(e.g., [15, 27]) formulations as well as models of multiobjective optimization
(e.g., [7, 9, 22]).

Similarly, algorithms have been proposed to find good multileaf collimator
sequences to reduce treatment times and minimize between-leaf leakage and
background dose [3, 25, 31]. Such algorithms are in use in existing radiotherapy
equipment. Moreover, researchers have studied the mathematical structure of
these problems to improve algorithm design or to establish the optimality of
an algorithm [1, 2, 11].

In this paper we consider the geometry problem. The literature on this
topic reveals a different picture than that of the intensity and realization
problems. While a number of methods were proposed, there was a lack of
understanding of the underlying mathematics. The authors in [4] propose a
mathematical framework that unifies the approaches found in the literature.
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The focus of this paper is how different approximations of the anatomical dose
affect beam selection.

The beam selection problem is important for several reasons. First, chang-
ing beam directions during treatment is time consuming, and the number of
directions is typically limited to reduce the overall treatment time. Since most
clinics treat patients steadily throughout the day, patients are usually treated
in daily sessions of 15-30 minutes to make sure that demand is satisfied. More-
over, short treatments are desirable because lengthy procedures increase the
likelihood of a patient altering his or her position on the couch, which can lead
to inaccurate and potentially dangerous treatments. Lastly, and perhaps most
importantly, beam directions must be judiciously selected so as to minimize
the radiation exposure to life-critical tissues and organs, while maximizing the
dose to the targeted tumor.

Selecting the beam directions is currently done manually, and it typically
requires several trial-and-error iterations between selecting beam directions
and calculating fluence patterns until a satisfactory treatment is designed.
Hence, the process is time intensive and subject to the experience of the
clinician. Finding a suitable collection of directions can take as much as several
hours. The goal of using an optimization method to identify quality directions
is to remove the dependency on a clinician’s experience and to alleviate the
tedious repetitive process of selecting angles.

To evaluate the dose distribution in the patient, it is necessary to calculate
how radiation is deposited into the patient. There are numerous dose models
in the literature, with the gold standard being a Monte Carlo technique that
simulates each particle’s path through the anatomy. We use an accurate 3D
dose model developed in [18] and [17]. This so-called finite sized pencil beam
approach is currently in clinical use in numerous commercial planning systems
in radiation treatment clinics throughout the world.

Positions within the anatomy where dose is calculated may be referred to
as dose points. Because each patient image represents a slice of the anatomy of
varying thickness, and hence, each dose point represents a 3D hyper-rectangle
whose dimensions are decided by both the slice thickness and the spacing of
the dose points within a slice, such dose calculation points are also referred to
as voxels in recognition of their 3D, or volumetric, nature. We point out that
the terms dose point and dose voxel are used interchangeably throughout this
text.

The authors in [16] study the effects of different dose (constraint) point
placement algorithms on the optimized treatment planning solution (for given
beam directions) using open and wedged beams. They find very different dose
patterns and conclude that 2000-9000 points are needed for 10 to 30 CT slices
in order to obtain good results. The goal of this paper is to evaluate the
influence of dose voxel spacing on automated beam selection.

In Section 2 we introduce the beam selection problem, state some of its
properties and define the underlying fluence map optimization problem used in
this study. In Section 3 we summarize the beam selection methods considered
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in the numerical experiments. These are set covering and scoring methods
as well as a vector quantization technique. Section 4 contains the numerical
results and Section 5 briefly summarizes the achievements.

2 The beam selection problem

First we note that throughout this paper the terms beam, direction, and angle
are used interchangeably. The beam selection problem is to find N positions
for the patient and gantry from which the treatment will be delivered. The
gantry of a linear accelerator can rotate around the patient in a great circle and
the couch can rotate in the plane of its surface. There are physical restrictions
on the directions that can be used because some couch and gantry positions
result in collisions.

In this paper we consider co-planar treatments. That is, beam angles are
chosen on a great circle around the CT-slice of the body that contains the
center of the tumor. We let A = {aj : j ∈ J} be a candidate collection of
angles from which we will select N to treat the patient, where we typically
consider A = {iπ/36 : i = 0, 1, 2, . . . , 71}. To evaluate a collection of angles, a
judgment function is needed that describes how well a patient can be treated
with that collection of angles [4].

We denote the power set of A by P(A) and the nonnegative extended reals
by R∗

+. A judgment function is a function f : P(A) → R∗
+ with the property

that A′ ⊇ A′′ implies f(A′) ≤ f(A′′). The value of f(A′) is the optimal value
of an optimization problem that decides a fluence pattern for angles A′, i.e.,
for any A′ ∈ P(A),

f(A′) = min{z(x) : x ∈ X(A′)}, (1)

where z maps a fluence pattern x ∈ X(A′), the set of feasible fluence patterns
for angles A′, into R∗

+. As pointed out above, there is a large amount of
literature on modeling and calculating f , i.e., solving the intensity problem.
In fact, all commercial planning systems use an optimization routine to decide
a fluence pattern, but the model and calculation method differ from system
to system [30].

We assume that if a feasible treatment cannot be achieved with a given
set of angles A′ (X(A′) = ∅) then f(A′) = ∞. We further assume that x
is a vector in R|A|×I , where I is the number of sub-beams of a beam, and
make the tacit assumptions that x(a,i) = 0 for all sub-beams i of any angle
a ∈ A \ A′. The non-decreasing behavior of f with respect to set inclusion is
then modeled via the set of feasible fluence patterns X(A) by assuming that
X(A′′) ⊆ X(A′) whenever A′′ ⊆ A′. We say that the fluence pattern x is
optimal for A′ if f(A′) = z(x) and x ∈ X(A′). All fluence map optimization
models share the property that the quality of a treatment cannot deteriorate
if more angles are used. The result that a judgment function is non-decreasing
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with respect to the number of angles follows from the definition of a judgment
function and the above assumptions, see [4].

A judgment function is defined by the data that forms the optimization
problem in (1). This data includes a dose operator D, a prescription P , and an
objective function z. We let d(k,a,i) be the rate at which radiation along sub-
beam i in angle a is deposited into dose point k, and we assume that d(k,a,i)

is nonnegative for each (k, a, i). These rates are patient-specific constants and
the operator that maps a fluence pattern into anatomical dose (measured
in Grays, Gy) is linear. We let D be the matrix whose elements are d(k,a,i),
where the rows are indexed by k and the columns by (a, i). The linear operator
x �→ Dx maps the fluence pattern x to the dose that is deposited into the
patient (see, e.g., [12] for a justification of the linearity). To avoid unnecessary
notation we use

∑
i to indicate that we are summing over the sub-beams in

an angle. So,
∑

i x(a,i) is the total exposure (or fluence) for angle a, and∑
i d(k,a,i) is the aggregated rate at which dose is deposited into dose point k

from angle a.
There are a variety of forms that a prescription can have, each dependent

on what the optimization problem is attempting to accomplish. Since the
purpose of this paper is to compare the effect of dose point resolution on
various approaches to the beam selection problem, we focus on one particular
judgment function. Let us partition the set of dose voxels into those that are
being targeted for dose deposition (i.e., within a tumor), those that are within
a critical structure (i.e., very sensitive locations, such as brainstem, identified
for dose avoidance), and those that represent normal tissue (i.e., non-specific
healthy tissues which should be avoided, but are not as sensitive or important
as critical structures). We denote the set of targeted dose voxels by T , the
collection of dose points in the critical regions by C, and the remaining dose
points by N . We further let DT , DC , and DN be the submatrices of D such
that DT x, DCx, and DNx map the fluence pattern x into the targeted region,
the critical structures, and the normal tissue, respectively. The prescription
consists of TLB and TUB, which are vectors of lower and upper bounds on the
targeted dose points, CUB, which is a vector of upper bounds on the critical
structures, and NUB, which is a vector of upper bounds on the normal tissue.
The judgment function is defined by the following linear program [8].

f(A′) = minωα + β + γ
TLB − eα ≤ DT x

DT x ≤ TUB
DCx ≤ CUB + eβ
DNx ≤ NUB + eγ
TLB ≥ eα

−CUB ≤ eβ
x, γ ≥ 0∑

i x(a,i) = 0 for all a ∈ A\A′.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2)
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Here e is the vector of ones of appropriate dimension. The scalars α, β, and γ
measure the worst deviation from TLB, CUB, and NUB for any single dose
voxel in the target, the critical structures, and the normal tissue, respectively.

For a fixed judgment function such as (2), the N -beam selection problem is

min{f(A′) − f(A) : A′ ∈ P(A), |A′| = N}
= min{f(A′) : A′ ∈ P(A), |A′| = N} − f(A). (3)

Note that the beam selection problem is the minimization of a judgment
function f . The value of the judgment function itself is the optimal value of
an optimization problem such as (2) that in turn has an objective function
z(x) to be minimized.

The minimization problem (3) can be stated as an extension of the opti-
mization problem that defines f using binary variables. Let

ya =

{
1 angle a is selected,
0 otherwise.

Then the beam selection problem becomes

min z(x)∑
a∈A ya = N∑
i x(i,a) ≤ Mya for all a ∈ A

x ∈ X(A),

⎫⎪⎪⎬⎪⎪⎭ (4)

where M is a sufficiently large constant.
While (4) is a general model that combines the optimal selection of beams

with the optimization of their fluence patterns, such problems are currently
intractable because they are beyond modern solution capabilities. Note that
there are between 1.4×107 and 5.4×1011 subsets of {iπ/36 : i = 0, 1, 2, . . . , 71}
for clinically relevant values of N ranging from 5 to 10. In any study where the
solution of these MIPs is attempted [5, 13, 14, 19, 28], the set |A| is severely
restricted so that the number of binary variables is manageable. This fact has
led researchers to investigate heuristics.

In the following section we present the heuristics that we include in our
computational results in the framework of beam selectors introduced in [4].
The function g : W → V is a beam selector if W and V are subsets of P(A) and
g(W ) ⊆ W for all W ∈ W. A beam selector g : W → V maps every collection
of angles in W to a subcollection of selected angles. An N -beam selector is a
beam selector with | ∪W∈W g(W )| = N . A beam selector is informed if it is
defined in terms of the value of a judgment function and it is weakly informed
if it is defined in terms of the data (D, P, z). A beam selector is otherwise
uninformed. If g is defined in terms of a random variable, then g is stochastic.

An important observation is that for any collection of angles A′ ⊂ A there
is not necessarily a unique optimal fluence pattern, which means that informed
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beam selectors are solver dependent. An example in Section 5 of [4] shows how
radically different optimal fluence patterns obtained by different solvers for
the same judgment function can be.

There are several heuristic beam selection techniques in the literature.
Each heuristic approach to the problem can be interpreted as choosing a best
beam selector of a specified type as described in [4]. Additional references on
methods not used in this study and methods for which the original papers do
not provide sufficient detail to reproduce their results can be found in [4].

3 The beam selection methods

We first present the set covering approach developed by [5]. An angle a covers
the dose point k if

∑
i d(k,a,i) ≥ ε. For each k ∈ T , let Aε

k = {a ∈ A :
a cover dose point k}. A (set-covering) SC-N -beam selector is an N -beam
selector having the form

gsc : {Aε
k : k ∈ T } →

⋃
k∈T

(P(Aε
k)\∅) .

Two observations are important:

1. We have Aε
k = A for all k ∈ T if and only if 0 ≤ ε ≤ ε∗ := min{

∑
i d(k,a,i) :

k ∈ T, a ∈ A}. The most common scenario is that each targeted dose
point is covered by every angle.

2. Since gsc cannot map to ∅, the mapping has to select at least one angle
to cover each targeted dose point.

It was shown in [4] that for 0 ≤ ε ≤ ε∗, the set covering approach to beam
selection is equivalent to the beam selection problem (3). This equivalence
means that we cannot solve the set-covering beam selection problem efficiently.
However, heuristically it is possible to restrict the optimization to subsets of
SC-N -beam selectors. This was done in [5]. The second observation allows the
formulation of a traditional set covering problem to identify a single gsc. For
each targeted dose point k, let q(k,a,i) be 1 if sub-beam i in angle a covers
dose point k, and 0 otherwise. For each angle a, define

ca =

{ ∑
k∈C

∑
i

q(k,a,i)

CUBk
if C �= ∅,

0 if C = ∅,
(5)

and

ĉa =

{ ∑
k∈C

∑
i

q(k,a,i)·d(k,a,i)

CUBk
if C �= ∅,

0 if C = ∅,
(6)

where CUB is part of the prescription in (2). The costs ca and ĉa are large
if sub-beams of a intersect a critical structure that has a small upper bound.
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Cost coefficients ĉa are additionally scaled by the rate at which the dose is
deposited into dose point k from sub-beam (a, i).

The associated set covering problems are

min

{∑
a

caya :
∑

a

q(k,a)ya ≥ 1, k ∈ T,
∑

a

ya = N, ya ∈ {0, 1}
}

(7)

and

min

{∑
a

ĉaya :
∑

a

q(k,a)ya ≥ 1, k ∈ T,
∑

a

ya = N, ya ∈ {0, 1}
}

. (8)

The angles for which y∗
a = 1 in an optimal solution y∗ of (7) or (8) are selected

and define a particular SC-N -beam selector. Note that such N -beam selectors
are weakly informed, if not at all informed, as they use the data but do not
evaluate f .

These particular set covering problems are generally easy to solve. In fact,
in the common situation of Aε

k = A for k ∈ T , (7) and (8) reduce to selecting
N angles in order of increasing ca or ĉa, respectively. This leads us to scoring
techniques for the beam selection problem.

We can interpret ca or ĉa as a score of angle a. A (scoring) S-N -beam
selector is an N -beam selector gs : {A} → P(A). It is not surprising that the
scoring approach is equivalent to the beam selection problem. The difficulty
here lies in defining scores that accurately predict angles that are used in an
optimal treatment.

The first scoring approach we consider is found in [20], where each angle
is assigned the score

ca =
1
|T |
∑
k∈T

∑
i

(
d(k,a,i) · x̂(a,i)

TG

)2

, (9)

where

x̂(a,i) = min{min{CUBk/d(k,a,i) : k ∈ C}, min{NUBk/d(k,a,i) : k ∈ N}}

and TG is a goal dose to the target and TLB ≤ TG ≤ TUB. An angle’s
score increases as the sub-beams that comprise the angle are capable of deliv-
ering more radiation to the target without violating the restrictions placed on
the non-targeted region(s). Here, high scores are desirable. The scoring tech-
nique uses the bounds on the non-targeted tissues to form constraints, and
the score represents how well the target can be treated while satisfying these
constraints. This is the reverse of the perspective in (7) and (8). Nevertheless,
mathematically, every scoring technique is a set covering problem [4].

Another scoring method is found in [26]. Letting x∗ be an optimal fluence
pattern for A, the authors in [26] define the entropy of an angle by δa :=
−
∑

i x∗
(a,i) lnx∗

(a,i) and the score of a is
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ca = 1 − δa − min{δa : a ∈ A}
max{δa : a ∈ A} . (10)

In this approach, an angle’s score is high if the optimal fluence pattern of an
angle’s sub-beams is uniformly high. So, an angle with a single high-fluence
sub-beam would likely have a lower score than an angle with a more uniform
fluence pattern. Unlike the scoring procedure in [20], this technique is informed
since it requires an evaluation of f .

The last of the techniques we consider is based on the image compression
technique called vector quantization [10] (see [6] for further information on
vector quantization). A′ is a contiguous subset of A if A′ is an ordered subset
of the form {aj, aj+1, . . . , aj+r}. A contiguous partition of A is a collection of
contiguous subsets of A that partition A, and we let Wvq(N) be the collection
of N element contiguous partitions of A. A VQ-N -beam selector is a function
of the form

gvq : {Wj : j = 1, 2, . . . , N} → {{aj} : aj ∈ Wj},

where {Wj : j = 1, 2, . . . , N} ∈ Wvq(N).
The image of Wj is a singleton {aj}, and we usually write aj instead of

{aj}. The VQ-N -beam selector relies on the probability that an angle is used
in an optimal treatment. Letting α(a) be this probability, we have that the
distortion of a quantizer is

N∑
j=1

∑
a∈Wj

α(a) · ‖a − gvq(Wj)‖2.

Once the probability distribution α is known, a VQ-N -beam selector is calcu-
lated to minimize distortion. In the special case of a continuous A, the authors
in [6] show that the selected angles are the centers-of-mass of the contiguous
sets. We mimic this behavior in the discrete setting by defining

gvq(Wj) =

∑
a∈Wj

a · α(a)∑
a∈Wj

α(a)
. (11)

This center-of-mass calculation is not exact for discrete sets since the center-
of-mass may not be an element of the contiguous set. Therefore angles not in
A are mapped to their nearest neighbor, with ties being mapped to the larger
element of A.

Vector quantization heuristics select a contiguous partition from which a
single VQ-N -beam selector is created according to condition (11). The pro-
cess in [10] starts by selecting the zero angle as the beginning of the first
contiguous set. The endpoints of the contiguous sets are found by forming the
cumulative density and evenly dividing its range into N intervals. To improve
this, we could use the same rule and rotate the starting angle through the 72
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candidates. We could then evaluate f over these sets of beams and take the
smallest value.

The success of the vector quantization approach directly relies on the abil-
ity of the probability distribution to accurately gauge the likelihood of an
angle being used in an optimal N -beam treatment. An immediate idea is to
make a weakly informed probability distribution by normalizing the scoring
techniques in (5), (6) and (9). Additionally, the scores in (10) are normal-
ized to create an informed model of α. We test these methods in Section 4.
An alternative informed probability density is suggested in [10], where the au-
thors assume that an optimal fluence pattern x∗ for f(A) contains information
about which angles should and should not be used. Let

α(a) =

∑
i

x∗
(a,i)∑

a∈A

∑
i

x∗
(a,i)

.

Since optimal fluence patterns are not unique, these probabilities are solver-
dependent. In [4] an algorithm is given to remove this solver dependency.
The algorithm transforms an optimal fluence x∗ into a balanced probability
density α, i.e., one that is as uniform as possible, by solving the problem

lexmin (z(x), sort(x)) , (12)

where sort is a function that reorders the components of the vector x in a
non-increasing order. The algorithm that produces the balanced solution it-
eratively reduces the maximum exposure time of the sub-beams that are not
fixed, which intuitively means that we are re-distributing fluence over the re-
maining sub-beams. As the maximum fluence decreases, the fluences for some
angles need to increase to guarantee an optimal treatment. The algorithm
terminates as soon as the variables that are fixed by this “equalizing” process
attain one of the bounds that describe an optimal treatment. At the algo-
rithm’s termination, a further reduction of sub-beam fluences whose α value
is high will no longer allow an optimal treatment.

4 Numerical comparisons

In this section we numerically compare how the resolution of the dose
points affects set cover (SC), scoring (S), and vector quantization (VQ)
9-beam selectors. The Radiotherapy optimAl Design software (RAD) at
http://www.trinity.edu/aholder/research/oncology/rad.html was al-
tered to accommodate the different beam selectors. This system is written
in Matlab c© and links to the CPLEX c© solvers (CPLEX v. 6.6. was used).
The code, except for commercial packages, and all figures used in this paper
(and more) are available at http://lagrange.math.trinity.edu/tumath/
research/reports/misc/report97.
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Fig. 1. The target is immediately to the left of the brainstem. The critical structures
are the brain stem and the two eye sockets.

The clinical example is an acoustic neuroma in which the target is im-
mediately adjacent to the brain stem and is desired to receive between 48.08
and 59.36 Gy. The brain stem is restricted to no more than 50 Gy and the
eye sockets to less than 5 Gy. Each image represents a 1.5 mm swath of the
patient, and the 7 images in Figure 1 were used, creating a 10.5 mm thickness.
The full clinical set contained 110 images, but we were unable to handle the
full complement because of inherent memory limitations in Matlab.

Angles are selected from {iπ/36 : i = 1, 2, . . . , 71}. These candidate an-
gles were assigned twelve different values as follows. An optimal treatment
(according to judgment function (2)) for the full set of candidate angles was
found with CPLEX’s primal, dual, and interior-point methods and a balanced
solution according to (12) was also calculated. The angle values were either
the average sub-beam exposure or the maximal sub-beam exposure. So, “Bal-
ancedAvg” indicates that the angle values were created from the balanced
solution of a 72-angle optimal treatment, where the angle values were the ave-
rage sub-beam exposure. Similar nomenclature is used for “DualMax,” “Pri-
malAvg,” and so on. This yields eight values. The scaled and unscaled set cover
values in (5) and (6) were also used and are denoted by “SC1” and “SC2.”
The informed entropy measure in (10) is denoted by “Entropy,” and the scor-
ing technique in (9) is denoted by “S.” We used TG = 0.5(TLB + TUB) in
(9). So, in total we tested twelve different angle values for each of the beam
selectors.

The dose points were placed on 3 mm and 5 mm grids throughout the
3D patient space, and each dose point was classified by the type of tissue it
represented. Since the images were spaced at 1.5 mm, we point out that dose
points were not necessarily centered on the images in the superior inferior
direction. The classification of whether or not a dose point was targeted,
critical, or normal was accomplished by relating the dose point to the hyper-
rectangle in which it was contained. In a clinical setting, the anatomical dose
is typically approximated by a 1 to 5 mm spacing, so the experiments are
similar to clinical practice. However, as with the number of images, Matlab’s
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Fig. 2. The isodose contours for
the balanced 72-angle treatment with
5 mm spacing.
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Fig. 3. The DVH for the balanced 72-
angle treatment with 5 mm spacing.
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Fig. 4. The isodose contours for
the balanced 72-angle treatment with
3 mm spacing.
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Fig. 5. The DVH for the balanced 72-
angle treatment with 3 mm spacing.

memory limitation did not allow us to further increase the resolution (i.e.,
decrease the dose point spacing).

Treatments are judged by viewing the level curves of the radiation per
slice, called isodose curves, and by their cumulative dose volume histogram
(DVH). A dose volume histogram is a plot of percent dose (relative to TLB)
versus the percent volume. The isodose curves and DVHs for the balanced 72-
angle treatment are shown for the 3 mm and 5 mm resolutions in Figures 2
through 5. An ideal DVH would have the target at 100% for the entire vol-
ume and then drop immediately to zero, indicating that the target is treated
exactly as specified with no under or over dosing. The curves for the crit-
ical structures would instead drop immediately to zero, meaning that they
receive no radiation. The DVHs in Figures 3 and 5 follow this trend and are,
therefore, clinically reasonable. The curves from upper-right to lower left are
for the target, the brain stem, normal tissue, and the eye sockets. The eye
socket curves drop immediately to zero as desired and appear on the axes.
The 3 mm brain stem curve indicates that this structure is receiving more ra-
diation than with the 5 mm resolution. While the fluence maps generated for
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Fig. 6. The isodose contours for a
clinical serial tomotherapy treatment.

Fig. 7. The DVH for a clinical serial
tomotherapy treatment.

these two treatments are different, the largest part of this discrepancy is likely
due to the 3 mm spacing more accurately representing the dose variation.

Figures 6 and 7 are from a commercially available, clinically used serial
tomotherapy treatment system (Corvus v6.1 – Nomos Inc., Cranberry Town-
ship, PA), which uses 72 equally spaced angles (the curve for the normal
tissue is not displayed). Two observations are important. First, the similarity
between the DVHs of our computed solutions and Corvus’ DVHs suggests that
our dose model and judgment function are reasonable. Second, if our resolu-
tions were decreased to 2 or 1.5 mm, it is likely that we would observe a brain
stem curve more closely akin to that in Corvus’ DVH. We point out that the
judgment function and solution procedure are different for the Corvus system
(and are proprietary).

A natural question is whether or not the dose point resolution affects the
angle values. We expected differences, but were not clear as to how much of
an effect to expect. We were intrigued to see that some of the differences were
rather dramatic. The 3 mm and 5 mm “average” values are shown in Table 1.

The selected angles and solution times are shown in Tables 2 and 3. The
angles vary significantly from beam selector to beam selector and for the same
beam selector with different resolutions. This variability of performance of the
heuristics explored here is likely attributable to the redefinition of the solution
space that occurs when the judgment function is made “aware” of dose voxels
at the interface region of targeted and avoided structures.

Measuring the quality of the selected angles is not obvious. One measure
is of course the value of the judgment function. This information is shown in
Table 4.

The judgment values indicate that the 5 mm spacing is too course for the
fluence model to adequately address the trade-offs between treating the tumor
and not treating the brain stem. The 5 mm spacing so crudely approximates



14 R. Acosta et al.

Table 1. The angle values. The top rows are with 5 mm resolution and the bottom
rows are with 3 mm resolution.
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the anatomical structures that it was always possible to design a 9-beam treat-
ment that treated the patient as well as a 72-beam treatment. The problem
is that the boundaries between target and critical structures, which is where
over and under irradiating typically occurs, are not well defined, and hence,
the regions that are of most importance are largely ignored. These boundaries
are better defined by the 3 mm grid, and a degradation in the judgment value
is observed.

Judgment values do not tell the entire story, though, and are only one of
many ways to evaluate the quality of treatment plans. The mean judgment
values of the different techniques all approach the goal value of −5.0000, and
claiming that one technique is better than another based on these values is
tenuous. However, there are some outliers, and most significantly the scoring
values did poorly with a judgment value of 3.0515 in the scoring and set cover
beam selectors. The resulting 3 mm isodose curves and DVH for the scoring
9-beam selector are seen in Figures 8 and 9. These treatments are clearly less
than desirable, especially when compared to Figures 4 and 5.

Besides the judgment value, another measure determines how well the
selected angles represent the interpretation of the angle values. If we think of
the angle values as forming a probability density, then the expected value of
the nine selected angles represents the likelihood of the angle collection being
optimal. These expected values are found in Table 5.
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Table 2. The angles selected by the different beam selectors with 3 mm resolution.
The times are in seconds and include the time needed to select angles and design a
treatment with these angles.

Selector Angle Value Selected Angles Time

Set Cover BalancedAvg 15 20 25 55 60 65 70 85 240 113.51
BalancedMax 10 15 20 95 190 195 200 275 340 126.23
PrimalAvg 15 125 155 230 235 240 250 300 340 43.96
PrimalMax 15 25 125 155 170 230 235 250 300 45.52
DualAvg 10 15 55 95 100 275 295 315 320 34.02
DualMax 15 55 95 100 110 275 295 315 320 68.80
InteriorAvg 15 20 25 55 60 65 70 85 240 115.75
InteriorMax 10 15 20 95 190 195 200 275 340 128.66
SetCover 1 20 145 150 155 200 320 325 330 335 90.91
SetCover 2 20 140 145 150 155 200 325 330 335 134.43
Scoring 245 255 260 265 270 275 280 285 290 108.19
Entropy 10 15 20 25 55 60 195 200 240 144.43

Scoring BalancedAvg 15 20 25 55 60 65 70 75 85 104.93
BalancedMax 10 15 20 25 95 190 195 200 340 108.29
PrimalAvg 15 125 155 230 235 240 250 300 340 48.59
PrimalMax 15 25 125 155 170 230 235 250 300 46.22
DualAvg 10 15 55 95 100 275 295 315 320 36.24
DualMax 15 55 95 100 110 275 295 315 320 66.56
InteriorAvg 15 20 25 55 60 65 70 75 85 105.91
InteriorMax 10 15 20 25 95 190 195 200 340 107.92
SetCover1 20 145 150 155 200 320 325 330 335 83.87
SetCover2 20 140 145 150 155 200 325 330 335 104.36
Scoring 245 255 260 265 270 275 280 285 290 122.59
Entropy 10 15 20 25 55 60 190 195 200 235.84

VQ BalancedAvg 30 60 90 120 155 205 255 295 340 197.62
BalancedMax 20 50 85 130 175 205 245 295 345 71.93
PrimalAvg 35 90 135 190 235 250 280 320 350 55.27
PrimalMax 20 70 125 160 205 245 275 305 340 121.91
DualAvg 35 80 115 180 255 280 290 310 345 115.53
DualMax 35 80 105 155 225 265 290 310 340 126.94
InteriorAvg 30 60 90 120 155 205 255 295 340 198.43
InteriorMax 20 50 85 130 175 205 245 295 345 71.98
SetCover1 40 75 115 150 190 225 265 300 340 52.56
SetCover2 40 75 110 145 185 230 265 300 340 187.10
Scoring 50 95 135 185 230 260 285 305 340 134.33
Entropy 15 40 65 90 130 175 220 275 340 56.14

The trend to observe is that the set cover and scoring techniques select
angles with higher expected values than the vector quantization technique,
meaning that the angles selected more accurately represent the intent of the
angle values. This is not surprising, as the set cover and scoring methods can
be interpreted as attempting to maximize their expected value. However, if
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Table 3. The angles selected by the different beam selectors with 5 mm resolution.
The times are in seconds and include the time needed to select angles and design a
treatment with these angles.

Selector Angle Value Selected Angles Time

Set Cover BalancedAvg 55 70 75 110 155 250 260 330 335 4.32
BalancedMax 110 120 155 225 245 250 260 295 300 4.46
PrimalAvg 45 55 100 150 190 250 260 275 305 4.81
PrimalMax 45 55 100 150 190 250 260 275 305 4.89
DualAvg 20 45 110 160 230 250 255 260 275 4.96
DualMax 20 45 110 160 230 250 255 260 275 5.04
InteriorAvg 55 70 75 110 155 250 260 330 335 4.67
InteriorMax 110 120 155 225 245 250 260 295 300 4.90
SetCover 1 20 145 150 155 200 320 325 330 335 5.43
SetCover 2 20 140 145 150 155 200 325 330 335 5.79
Scoring 95 185 230 260 265 270 275 280 320 5.10
Entropy 70 75 110 155 225 250 260 335 340 5.32

Scoring BalancedAvg 55 70 75 110 155 250 260 330 335 2.12
BalancedMax 110 120 155 225 245 250 260 295 300 2.34
PrimalAvg 45 55 100 150 190 250 260 275 305 2.68
PrimalMax 45 55 100 150 190 250 260 275 305 2.72
DualAvg 20 45 110 160 230 250 255 260 275 2.88
DualMax 20 45 110 160 230 250 255 260 275 2.94
InteriorAvg 55 70 75 110 155 250 260 330 335 2.48
InteriorMax 110 120 155 225 245 250 260 295 300 2.78
SetCover1 20 145 150 155 200 320 325 330 335 3.31
SetCover2 20 140 145 150 155 200 325 330 335 3.53
Scoring 95 185 230 260 265 270 275 280 320 3.01
Entropy 70 75 110 155 225 250 260 335 340 3.24

VQ BalancedAvg 40 75 105 140 185 230 270 305 345 3.77
BalancedMax 40 80 115 145 190 235 270 300 340 3.41
PrimalAvg 40 85 105 130 175 225 265 290 330 3.32
PrimalMax 30 80 105 130 175 225 260 270 320 4.11
DualAvg 20 75 130 160 205 245 260 265 315 3.99
DualMax 20 75 130 160 205 245 260 265 315 4.11
InteriorAvg 40 75 105 140 185 230 270 305 345 4.40
InteriorMax 40 80 115 145 190 235 270 300 340 4.03
SetCover1 40 75 110 145 185 225 265 300 340 4.70
SetCover2 40 75 110 145 185 230 265 300 340 4.88
Scoring 185 190 195 200 240 280 285 290 330 5.58
Entropy 45 75 105 140 195 240 270 305 345 4.75

the angle assignments do not accurately gauge the intrinsic value of an angle,
such accuracy is misleading. As an example, both the set cover and scoring
methods have an expected value of 1 with respect to the scoring angle values
in the 5 mm case. In this case, the only angles with nonzero values are 185
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Table 4. The judgment values of the selected angles.

SC S VQ
3 mm 5 mm 3 mm 5 mm 3 mm 5 mm 3 mm Mean

BalancedAvg -5.0000 -5.0000 -5.0000 -5.0000 -4.9194 -5.0000 -4.9731
BalancedMax -4.8977 -5.0000 -4.8714 -5.0000 -5.0000 -5.0000 -4.9230
PrimalAvg -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000
PrimalMax -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000
DualAvg -5.0000 -5.0000 -5.0000 -5.0000 -3.5214 -5.0000 -4.5071
DualMax -5.0000 -5.0000 -5.0000 -5.0000 -4.8909 -5.0000 -4.9636
InteriorAvg -5.0000 -5.0000 -5.0000 -5.0000 -4.9194 -5.0000 -4.9731
InteriorMax -4.8977 -5.0000 -4.8714 -5.0000 -5.0000 -5.0000 -4.9230
SC1 -4.9841 -5.0000 -4.9841 -5.0000 -5.0000 -5.0000 -4.9894
SC2 -4.9820 -5.0000 -4.9820 -5.0000 -4.9984 -5.0000 -4.9875
S 3.0515 -5.0000 3.0515 -5.0000 -4.9967 -5.0000 0.3688
Entropy -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000

Mean -4.3092 -5.0000 -4.3048 -5.0000 -4.8538 -5.0000

Table 5. The expected values of the selected angles.

SC S VQ
3 mm 5 mm 3 mm 5 mm 3 mm 5 mm

BalancedAvg 0.2157 0.2059 0.2176 0.2059 0.1506 0.1189
BalancedMax 0.2613 0.3045 0.2673 0.3045 0.1234 0.1344
PrimalAvg 0.4191 0.8189 0.4191 0.8189 0.1600 0.0487
PrimalMax 0.4194 0.7699 0.4194 0.7699 0.1362 0.0429
DualAvg 0.6144 0.7443 0.6144 0.7443 0.0394 0.3207
DualMax 0.5264 0.7443 0.5264 0.7443 0.0359 0.3207
InteriorAvg 0.2157 0.2059 0.2176 0.2059 0.1506 0.1189
InteriorMax 0.2613 0.3045 0.2673 0.3045 0.1234 0.1344
SC1 0.1492 0.1461 0.1492 0.1461 0.1251 0.1248
SC2 0.1523 0.1491 0.1523 0.1491 0.1234 0.1273
S 0.2352 1.0000 0.2352 1.0000 0.1673 0.5058
Entropy 0.3176 0.3320 0.3303 0.332 0.1399 0.1402

and 275, and the perfect expected value only indicates that these two angles
are selected. A scoring technique that only scores 2 of the 72 possible angles
is not meaningful, and in fact, the other 7 angles could be selected at random.

The expected values in Table 5 highlight how the angle assignments differ
in philosophy. The weakly informed angle values attempt to measure each
angle’s individual worth in an optimal treatment, regardless of which other
angles are selected. The informed values allow the individual angles to compete
through the optimization process for high values, and hence, these values are
tempered with the knowledge that other angles will be used. The trend in
Table 5 is that informed expected values are lower than weakly informed
values, although this is not a perfect correlation.
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Fig. 8. The 3 mm isodose contours for
the balanced treatment when 9 angles
were selected with a scoring method
and scoring angle values.
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Fig. 9. The 3 mm DVH for the bal-
anced treatment when 9 angles were
selected with a scoring method and
scoring angle values.

From the previous discussions, it is clear that beam selectors depend on
the dose point resolution, but none of this discussion attempts to quantify
the difference. We conclude with such an attempt. For each of the selected
sets of angles, we calculated (in degrees) the difference between consecu-
tive angles. These distances provide a measure of how the angles are spread
around the great circle without a concern about specific angles. These val-
ues were compared in the 3 mm and 5 mm cases. For example, the nine
angles selected by the VQ selector with the BalancedAvg angle values were
{30, 60, 90, 120, 155, 205, 255, 295, 340} and {40, 75, 105, 140, 185, 230, 270, 305,
345} for the 3 mm and 5 mm cases, respectively. The associated relative spac-
ings are {30, 30, 30, 35, 50, 50, 40, 45, 50} and {35, 30, 35, 45, 45, 40, 35, 40, 55}.
This information allows us to ask whether or not one set of angles can be
rotated to obtain the other. We begin by taking the absolute value of the
corresponding relative spacings, so for this example the differences are

3 mm Relative Spacing 30 30 30 35 50 50 40 45 50
5 mm Relative Spacing 35 30 35 45 45 40 35 40 55

Difference 5 0 5 10 5 10 5 5 5

Depending on how the angles from the 3 mm and 5 mm cases interlace, we
rotate (or shift) the first set to either the left or the right and repeat the
calculation. In our example, the first angle in the 3 mm selection is 30, which
is positioned between angles 40 and 345 in the 5 mm case. So we shift the
3 mm relative spacings to the left to obtain the following differences (notice
that the first 30 of the 3 mm above is now compared to the last 55 of the 5
mm case).

3 mm Relative Spacing 30 30 35 50 50 40 45 50 30
5 mm Relative Spacing 35 30 35 45 45 40 35 40 55

Difference 5 0 0 5 5 0 10 10 25
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Table 6. The mean and standard deviation of the (minimum) difference between
the 3 mm and 5 mm cases.

Mean Variance
SC S VQ SC S VQ

BalancedAvg 45.56 47.78 5.55 2465.30 4706.90 9.03
BalancedMax 40.00 45.56 11.11 2125.00 3346.50 73.61
PrimalAvg 28.89 28.89 14.44 236.11 236.11 165.28
PrimalMax 16.67 16.67 13.33 325.00 325.00 131.25
DualAvg 37.78 37.78 16.67 1563.20 1563.20 150.00
DualMax 36.67 36.67 15.56 1050.00 1050.00 84.03
InteriorAvg 45.56 47.78 5.56 2465.30 4706.90 9.03
InteriorMax 40.00 45.56 11.11 2125.00 3346.50 73.61
SC1 0.00 0.00 1.11 0.00 0.00 4.86
SC2 0.00 0.00 0.00 0.00 0.00 0.00
S 40.00 40.00 35.56 3481.20 3481.20 1909.00
Entropy 44.44 44.44 13.33 1259.00 1552.80 81.25

Mean 31.30 32.59 11.94 1424.60 2026.30 224.25

The smallest aggregate difference, which is 50 in the first comparisons versus
60 in the second, is used in our calculations. We do not include all possible
shifts of the first set because some spatial positioning should be respected, and
our calculation honors this by comparing spacing between neighboring angles.

Table 6 contains the means and standard deviations of the relative spacing
differences.

A low standard deviation indicates that the selected angles in one case are
simply rotated versions of the other. For example, the VQ selector with the
InteriorAvg angle values has a low standard deviation of 9.03, which means
that we can nearly rotate the 3 mm angles of {30, 60, 90, 120, 155, 205, 255, 295,
340} to obtain the 5 mm angles of {40, 75, 105, 140, 185, 230, 270, 305, 345}.
In fact, if we rotate the first set 15 degrees, the average discrepancy is the
stated mean value of 5.56. A low mean value but a high standard deviation
means that it is possible to rotate the 3 mm angles so that several of the angles
nearly match but only at the expense of making the others significantly differ-
ent. Methods with high mean and standard deviations selected substantially
different angles for the 3 mm and 5 mm cases.

The last row of Table 6 lists the column averages. These values lead us to
speculate that the VQ techniques are less susceptible to changes in the dose
point resolution. We were surprised that the SC1 and SC2 angle values were
unaffected by the dose point resolution, and that each corresponding beam
selector chose (nearly) the same angles independent of the resolution. In any
event, it is clear that the dose point resolution generally affects each of the
beam selectors.

Besides the numerical comparisons just described, a basic question is
whether or not the beam selectors produce clinically adequate angles. Figures
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Fig. 10. Isodose contours for initial
design of a nine angle clinical treat-
ment plan.

Fig. 11. The DVH for the balan-
ced 72-angle treatment with 5 mm
spacing.

Fig. 12. The isodose contours for a
clinically designed treatment based on
the 9 angles selected by the set cover
method with BalancedAvg angle val-
ues and 3 mm spacing.

Fig. 13. The DVH for a clinically de-
signed treatment based on the 9 an-
gles selected by the set cover method
with BalancedAvg angle values and
3 mm spacing.

10 and 11 depict the isodose contours and a DVH of a typical clinical 9-angle
treatment. This is not necessarily a final treatment plan, but rather what
might be typical of an initial estimate of angles to be used. Treatment plan-
ners would typically adjust these angles in an attempt to improve the design.
Using the BalancedAvg angle values, we used Nomos’ commercial software to
design the fluence patterns for 9-angle treatments with the angles produced
by the three different techniques with 3 mm spacing. Figures 12 through 17
contain the isodose contours and DVHs from the Corvus software.

The set cover and scoring treatment plans in Figures 12 through Figures 15
are clearly inferior to the initial clinical design in that they encroach signif-
icantly onto critical structures and normal healthy tissue with high isodose
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Fig. 14. The isodose contours for a
clinically designed treatment based on
the 9 angles selected by the scoring
method with BalancedAvg angle val-
ues and 3 mm spacing.

Fig. 15. The DVH for a clinically de-
signed treatment based on the 9 an-
gles selected by the scoring method
with BalancedAvg angle values and
3 mm spacing.

Fig. 16. The isodose contours for a
clinically designed treatment based on
the 9 angles selected by the vector
quantization method with Balance-
dAvg angle values and 3 mm spacing.

Fig. 17. The DVH for a clinically
designed treatment based on the 9
angles selected by the vector quanti-
zation method with BalancedAvg an-
gle values and 3 mm spacing. with 5
mm spacing.

levels. The problem is that the 9 angles are selected too close to each other.
The fact that these are similar treatments is not surprising since the angle sets
only differed by one angle. The vector quantization treatment in Figures 16
and 17 appears to be clinically relevant in that it compares favorably with
the initial design of the 9 angle clinical plan (i.e., Figures 10 to 16 comparison
and Figures 11 to 17 comparison).

5 Conclusions

We have implemented several heuristic beam selection techniques to investi-
gate the influence of dose grid resolution on these automated beam selection
strategies. Testing the heuristics on a clinical case with two different dose point
resolutions we have for the first time studied this effect and have found it to be
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significant. We have also (again for the first time) compared the results with
those from a commercial planning system. We believe that the effect of dose
grid resolution becomes smaller as resolution increases, but further research
is necessary to test that hypothesis.
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Summary. Multileaf Collimators (MLC) consist of (currently 20-100) pairs of mov-
able metal leaves which are used to block radiation in Intensity Modulated Radia-
tion Therapy (IMRT). The leaves modulate a uniform source of radiation to achieve
given intensity profiles. The modulation process is modeled by the decomposition
of a given non-negative integer matrix into a non-negative linear combination of
matrices with the (strict) consecutive ones property.

In this paper we review some results and algorithms which can be used to mini-
mize the time a patient is exposed to radiation (corresponding to the sum of coeffi-
cients in the linear combination), the set-up time (corresponding to the number of
matrices used in the linear combination), and other objectives which contribute to
an improved radiation therapy.

Keywords: Intensity modulated radiation therapy, multileaf collimator,
intensity map segmentation, complexity, multi objective optimization.

1 Introduction

Intensity modulated radiation therapy (IMRT) is a form of cancer therapy
which has been used since the beginning of the 1990s. Its success in fighting
cancer is based on the fact that it can modulate radiation, taking specific
patient data into consideration. Mathematical optimization has contributed
considerably since the end of the 1990s (see, for instance, [31]) concentrating
mainly on three areas,
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(DFG) grant HA 1737/7 “Algorithmik großer und komplexer Netzwerke” and by
New Zealand’s Julius von Haast Award.



26 M. Ehrgott et al.

Fig. 1. Realization of an intensity matrix by overlaying radiation fields with different
MLC segments.

• the geometry problem,
• the intensity problem, and
• the realization problem.

The first of these problems finds the best selection of radiation angles, i.e.,
the angles from which radiation is delivered. A recent paper with the most up
to date list of references for this problem can be found in [17]. Once a solution
of the geometry problem has been found, an intensity profile is determined
for each of the angles. These intensity profiles can be found, for instance,
with the multicriteria approach of [20] or many other intensity optimization
methods (see [30] for more references). In Figure 1, an intensity profile is
shown as greyscale coded grid. We assume that the intensity profile has been
discretized such that the different shades in this grid can be represented by
non-negative integers, where black corresponds to 0 and larger integers are
used for lighter colors. In the following we will therefore think of intensity
profiles and N × M intensity matrices A as one and the same.

In this paper, we assume that solutions for the geometry and intensity
problems have been found and focus on the problem of realizing the intensity
matrix A using so-called (static) multileaf collimators (MLC). Radiation is
blocked by M (left, right) pairs of metal leaves, each of which can be posi-
tioned between the cells of the corresponding intensity profile. The opening
corresponding to a cell of the segment is referred to as a bixel or beamlet. On
the right-hand-side of Figure 1, three possible segments for the intensity profile
on the left of Figure 1 are shown, where the black areas in the three rectan-
gles correspond to the left and right leaves. Radiation passes (perpendicular
to the plane represented by the segments) through the opening between the
leaves (white areas). The goal is to find a set of MLC segments such that
the intensity matrix A is realized by irradiating each of these segments for a
certain amount of time (2, 1, and 3 in Figure 1).
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In the same way as intensity profiles and integer matrices correspond to
each other, each segment in Figure 1 can be represented by a binary M × N
matrix Y = (ymn), where ymn = 1 if and only if radiation can pass through
bixel (m, n). Since the area left open by each pair of leaves is contiguous, the
matrix Y possesses the (strict) consecutive-ones (C1) property in its rows,
i.e., for all m ∈ M := {1, . . . , M} and n ∈ N := {1, . . . , N} there exists a pair
lm ∈ N , rm ∈ N ∪ {N + 1} such that

ymn = 1 ⇐⇒ lm ≤ n < rm. (1)

Hence the realization problem can be formulated as the following C1 de-
composition problem. Let K be the index set of all M × N consecutive-ones
matrices and let K′ ⊆ K. A C1 decomposition (with respect to K′) is defined
by non-negative integers αk, k ∈ K′ and M × N C1 matrices Y k, k ∈ K′ such
that

A =
∑
k∈K′

αkY k. (2)

The coefficients αk are often called the monitor units, MU, of Y k. In order to
evaluate the quality of a C1 decomposition various objective functions have
been used in the literature.

The beam-on-time (BOT), total number of monitor units, or decomposition
time (DT) objective

DT (α) :=
∑
k∈K′

αk (3)

is a measure for the time a patient is exposed to radiation. Since every change
from one segment of the MLC to another takes time, the number of segments
or decomposition cardinality (DC)

DC(α) := |{αk : αk > 0}| (4)

is used to evaluate the (constant) set-up time

SUconst(α) := τDC(α) (5)

for the MLC. Here we assume that it takes constant time τ to move from one
segment to the next. If, on the other hand, τkl is a variable time to move from
Y k to Y l and Y 1, . . . , Y K are the C1 matrices used in a decomposition, then
one can also consider the variable set-up time

SUvar(α) =
K−1∑
k=1

τπ(k),π(k+1). (6)

Obviously, this objective depends on the sequence π(1), . . . , π(K) of these C1
matrices. The treatment time is finally defined for each radiation angle by

TT (α) := DT (α) + SU(α), (7)
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where SU(α) ∈ {SUvar(α), SUconst(α)}. Since the set-up time SU(α) can be
of the constant or variable kind, two different definitions of treatment time
are possible.

For therapeutic and economic reasons, it is desirable to find decompo-
sitions with small beam-on, set-up, and treatment times. These will be the
optimization problems considered in the subsequent sections.

In this paper we will summarize some basic results and present the ideas
of algorithms to solve the decomposition time (Section 2) and the decomposi-
tion cardinality (Section 3) problem. In Section 4 we will deal with combined
objective functions and mention some current research questions.

2 Algorithms for the decomposition time problem

In this section we consider a given M × N non-negative integer matrix A
corresponding to an intensity profile and look for the decomposition (2) of A
into a non-negative linear combination A =

∑
k∈K′ αkY k of C1 matrices such

that the decomposition time (3) DT (α) :=
∑

k∈K′ αk is minimized. First, we
review results of the unconstrained DT problem in which all C1 matrices can
be used, i.e., K′ = K. Then we discuss the constrained DT problem, where
technical requirements exclude certain C1 matrices, i.e., K′ � K.

2.1 Unconstrained DT problem

The most important argument in the unconstrained case is the fact that it
suffices to solve the DT problem for single row matrices.

Lemma 1. A =
∑

k∈K αkY k is a decomposition with decomposition time
DT (α) :=

∑
k∈K αk if and only if each row Am of A has a decomposi-

tion Am =
∑

k∈K αkmY k
m into C1 row matrices with decomposition time

DT (αm) :=
∑

k∈K αkm , such that

DT (α) :=
M

max
m=1

DT (αm). (8)

The proof of this result follows from the fact that in the unconstrained
DT problem, the complete set of all C1 matrices can be used. Hence, the
decomposition of the row with largest DT (αm) can be extended in an arbitrary
fashion by decompositions of the other rows to yield a decomposition of the
matrix A with DT (α) = DT (αm).

The most prominent reference in which the insight of Lemma 1 is used
is [8], which introduces the sweep algorithm. Each row is considered indepen-
dently and then checked from left to right, if a position of a left or right leaf
needs to be changed in order to realize given intensities amn. While most prac-
titioners agree that the sweep algorithm provides decompositions with short
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(a) (b)

left trajectory

right trajectory

Fig. 2. Representation of intensity row Am = (2, 3, 3, 5, 2, 2, 4, 4) by rods (a) and
the corresponding left and right trajectories (b).

DT (α), the optimality of the algorithm was only proved several years later.
We will review some of the papers containing proofs below.

An algorithm which is quoted very often in the MLC optimization liter-
ature is that of [32]. Each entry amn of the intensity map is assigned to a
rod, the length of which represents the value amn (see Figure 2). The stan-
dard step-and-shoot approach, which is shared by all static MLC algorithms,
is implemented in two parts, the rod pushing and the extraction. While the
objective in [32] is to minimize total treatment time TTvar, the proposed
algorithm is only guaranteed to find a solution that minimizes DT (α).

The authors in [1] prove the optimality of the sweep algorithm by trans-
forming the DT problem into a linear program. The decomposition of a row
Am into C1 row-matrices is first reformulated in a transposed form, i.e., the
column vector AT

m is decomposed into C1 column-matrices (columns with 1s
in a single block). This yields a linear system of equations, where the columns
of the coefficient matrix are all possible N(N − 1)/2 C1 column-matrices, the
variables are the (unknown) decomposition times and the right-hand-side vec-
tor is the transpose AT

m of row Am. The objective of the linear program is the
sum of the MUs. Such a linear program is well known (see [2]) to be equiva-
lent to a network flow problem in a network with N nodes and N(N − 1)/2
arcs. The authors in [1] use the special structure of the network and present a
shortest augmenting path algorithm which saturates at least one of the nodes
in each iteration. Since each of the paths can be constructed in constant time,
the complexity for computing DT (αm) is O(N). This algorithm is applied to
each of the rows of A, such that Lemma 1 implies the following result.

Theorem 1 ( [1]). The unconstrained decomposition time problem for a given
non-negative integer M × N matrix A can be solved in O(NM) time.

It is important to notice that the identification of the flow augmenting
path and the determination of the flow value which is sent along this path
can be interpreted as the two phases of the step-and-shoot process in the
sweep algorithm of [8], thus establishing its optimality.

An alternative optimality proof of the sweep algorithm can be found in [23].
Their methodology is based on analyzing the left and right leaf trajectories for
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each row Am, m ∈ M. These trajectory functions are at the focus of research
in dynamic MLC models. For static MLC in which each leaf moves from left to
right, they are monotonously non-decreasing step functions with an increase
of |am,n+1−am,n| in the left or right trajectory at position n if am,n+1−am,n

increases or decreases, respectively. Figure 2 illustrates an example with row
Am = (2, 3, 3, 5, 2, 2, 4, 4), the representation of each entry amn as rod, and
the corresponding trajectories. By proving that the step size of the left leaf
trajectory in any position n is an upper bound on the number of MUs of
any other feasible decompositions, the authors in [23] establish the optimality
of the decomposition delivered by their algorithm SINGLEPAIR for the case
of single row DT problems. In combination with Lemma 1, this yields the
optimality of their solution algorithm MULTIPAIR for the unconstrained DT
problem, which is, again, a validity proof of the sweep algorithm.

The same bounding argument as in [23] is used by the author in [18]
in his TNMU algorithm (total number of monitor units). Instead of using
trajectories, he bases his work directly on the M × (N + 1) difference matrix

D = (dmn) with dmn := amn − am(n−1)

for all m = 1, . . . , M, n = 1, . . . , N + 1. (9)

Here, am0 := am(n+1) := 0. In each iteration, the TNMU algorithm reduces
the TNMU complexity of A

C(A) := max
m∈M

Cm(A), (10)

where Cm(A) :=
∑N+1

n=1 max{0, dm,n} is the row complexity of row Am. More
precisely, in each iteration the algorithm identifies some integer p > 0 and
some C1 matrix Y such that A′ = A − pY has non-negative entries and its
TNMU complexity satisfies C(A′) = C(A) − p. Various strategies are recom-
mended to find suitable p and Y , one version of which results in an O(N2M2)
algorithm. As a consequence of its proof, the following closed form expression
for the optimal objective value of the DT problem in terms of the TNMU
complexity is attained.

Theorem 2 ( [18]). The unconstrained decomposition time problem for a giv-
en non-negative integer M×N matrix A has optimal objective value DT (α) =
C(A).

As will be seen in Section 3.2, this idea also leads to algorithms for the
decomposition cardinality problem.

2.2 Constrained DT problem

Depending on the type of MLC, several restrictions may apply to the choice of
C1 matrices Y k which are used in decomposition (2), i.e. K′ � K. For example,
the mechanics of the multileaf collimator may require that left and right leaf
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pairs (lm−1, rm−1) and (lm, rm) in adjacent rows Ym−1 and Ym of any C1
matrix Y must not overlap (interleaf motion constraints). More specifically,
we call a C1 matrix Y shape matrix if

lm−1 ≤ rm and rm−1 ≥ lm (11)

holds for all m = 2, . . . , M . The matrix

Y =

⎛⎜⎜⎝
0 1 1 0 0 0 0
0 0 0 0 1 1 0
0 0 1 1 1 0 0
1 0 0 0 0 0 0

⎞⎟⎟⎠
is, for instance, a C1 matrix, but not a shape matrix, since there are two
violations of (11), namely r1 = 4 < 5 = l2 and l3 = 3 > 2 = r4. By drawing
the left and right leaves corresponding to the left and right sets of zeros in
each row of Y , it is easy to understand why the constraints (11) are called
interleaf motion constraints.

Another important restriction is the width or innerleaf motion constraint

rm − lm ≥ δ for all m ∈ M, (12)

where δ > 0 is a given (integer) constant.
A final constraint may be enforced to control tongue-and-groove (T&G)

error which often makes the decomposition model (2) inaccurate. Since sev-
eral MLC types have T&G joints between adjacent leaf pairs, the thinner
material in the tongue and the groove causes a smaller or larger radiation
than predicted in model 2 if a leaf covers bixel m, n (i.e., ymn = 0), but not
m + 1, n (i.e., ym+1,n = 1), or vice versa. Some of this error is unavoidable,
but a decomposition with yk

mn = 1, yk
m+1,n = 0 and yk′

mn = 0, yk′
m+1,n = 1 can

often be avoided by swapping the mth rows of Y k and Y k′
.

The authors in [7] present a polynomial algorithm for the DT problem with
interleaf motion and width constraints by reducing it to a network flow prob-
lem with side constraints. They first construct a layered graph G = (V, E),
the shape matrix graph which has M layers of nodes. The nodes in each layer
represent left-right leaf set-ups in an MLC satisfying the width constraint
or — equivalently — a feasible row in a shape matrix (see Figure 3). More
precisely, node (m, l, r) stands for a possible row m in a C1 matrix with left
leaf in position l and right leaf in position r, where the width constraint is
modeled by allowing only nodes (m, l, r) with r − l ≥ δ. Hence, in each layer
there are O(N(N − 1)) nodes, and the network has O(MN2) nodes. Interleaf
motion constraints are modeled by the definition of the arc set E according
to ((m, l, r), (m + 1, l′, r′)) ∈ E if and only if r′ − l ≥ δ and r − l′ ≥ δ.

It should be noted that the definition of the arcs can also be adapted to
include the extended interleaf motion constraint
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Fig. 3. Shape matrix graph with two paths corresponding to two shape matrices.
(Both paths are extended by the return arc (D′, D).)

rm − lm−1 ≥ γ and lm − rm−1 ≥ γ for all m ∈ M, (13)

where γ > 0 is a given (integer) constant. Also, T&G constraints can be
modeled by the network structure. If we add a supersource D and a supersink
D′ connected to all nodes (1, l, r) of the first layer and from all nodes (M, l, r)
of the last layer, respectively (see Figure 3), the following result is easy to
show.

Lemma 2 ( [7]). Matrix Y with rows y1, . . . , yM is a shape matrix satisfying
width (with respect to given δ) and extended interleaf motion (with respect to
given γ) constraints if and only if P (Y ) is a path from D to D′ in G where
node (m, l, r) in layer m corresponds to row m of matrix Y .

In the example of Figure 3 the two paths correspond to the two shape
matrices

Y k =

⎛⎜⎜⎝
1 0
0 1
1 1
1 0

⎞⎟⎟⎠ and Y k′
=

⎛⎜⎜⎝
0 1
1 1
1 0
0 1

⎞⎟⎟⎠ .

Since paths in the shape matrix graph are in one-to-one correspondence
with shape matrices, the scalar multiplication αkY k in decomposition (2) is
equivalent to sending αk units of flow along path PY k from D to D′. Hence,
the DT problem is equivalent to a network flow problem.
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Theorem 3 ( [7]). The decomposition time problem with respect to a given
non-negative integer valued matrix A is equivalent to the decomposition net-
work flow problem: Minimize the flow value from source D to sink D′ subject
to the constraints that for all m ∈ M and n ∈ N , the sum of the flow through
nodes (m, l, r) with l ≤ n < r equals the entry am,n. In particular, the DT
problem is solvable in polynomial time.

The polynomiality of the decomposition network flow algorithm follows,
since it is a special case of a linear program. Its computation times are very
short, but it generally produces a non-integer set of decomposition times as
solution, while integrality is for various practical reasons a highly desirable
feature in any decomposition. The authors in [7] show that there always exists
an alternative integer solution, which can, in fact, be obtained by a modifica-
tion of the shape matrix graph. This version of the network flow approach is,
however, not numerically competitive.

An improved network flow formulation is given by [4]. A smaller network is
used with O(MN) nodes instead of the shape matrix graph G with O(MN2)
nodes. This is achieved by replacing each layer of G by two sets of nodes,
representing a potential left and right leaf position, respectively. An arc be-
tween two of these nodes represents a row of a C1 matrix. The resulting linear
programming formulation has a coefficient matrix which can be shown to be
totally unimodular, such that the linear program yields an integer solution.
Numerical experiments show that this double layer approach improves the
running time of the algorithm considerably.

In [5] a further step is taken by formulating a sequence of integer pro-
grams, each of which can be solved by a combinatorial algorithm, i.e., does
not require any linear programming solver. The variables in these integer pro-
grams correspond to the incremental increases in decomposition time which
are caused by the interleaf motion constraint. Using arguments from multicri-
teria optimization, the following complexity result shows that compared with
the unconstrained case of Theorem 1, the complexity only worsens by a factor
of M .

Theorem 4 ( [5]). The constrained decomposition time problem with (ex-
tended) interleaf and width constraint can be solved in O(NM2) time.

While the preceding approaches maintain the constraints throughout the
course of the algorithm, [23, 24] solve the constrained decomposition time
problem by starting with a solution of the unconstrained problem. If this
solution satisfies all constraints it is obviously optimal. If the optimal so-
lution violates the width constraint, there does not exist a solution which
does. Violations of interleaf motion and tongue-and-groove constraints are
eliminated by a bounded number of modification steps. A similar correction
approach is taken by [32] starting from his rod-pushing and extraction algo-
rithm for the unconstrained case.
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In the paper of [22] the idea of the unconstrained algorithm of [18] is carried
over to the case of interleaf motion constraints. First, a linear program (LP) is
formulated with constraints (2). Hence, the LP has an exponential number of
variables. Its dual is solved by a maximal path problem in an acyclic graph.
The optimal dual objective value is proved to correspond to a feasible C1
decomposition, i.e., a primally feasible solution of the LP, thus establishing
the optimality of the decomposition using the strong LP duality theorem.

3 Algorithms for the decomposition cardinality problem

3.1 Complexity of the DC problem

In contrast to the decomposition time problem, we cannot expect an efficient
algorithm which solves the decomposition cardinality problem exactly.

Theorem 5. The decomposition cardinality problem is strongly NP-hard even
in the unconstrained case. In particular, the following results hold.

1. [5] The DC problem is strongly NP-hard for matrices with a single row.
2. [14] The DC problem is strongly NP-hard for matrices with a single col-

umn.

The first NP-hardness proof for the DC problem is due to [9], who shows
that the subset sum problem can be reduced to the DC problem. His proof
applies to the case of matrices A with at least two rows. Independently, the au-
thors in [12] use the knapsack problem to prove the (non-strong) NP-hardness
in the single-row case. The stronger result of Theorem 5 uses a reduction from
the 3-partition problem for the single row case. The result for single column
matrices uses a reduction from a variant of the satisfiability problem, NAE-
3SAT(5).

A special case, for which the DC problem can be solved in polynomial
time, is considered in the next result.

Theorem 6 ( [5]). If A = pB is a positive integer multiple of a binary matrix
B, then the C1 decomposition cardinality problem can be solved in polynomial
time for the constrained and unconstrained case.

If A is a binary matrix, this result follows from the polynomial solvability
of DT (α), since αk is binary for all k ∈ K′ and thus DT (α) = DC(α). If
A = pB with p > 1, it can be shown that the DC problem for A can be
reduced to the solution of the DT problem for B.

Theorem 6 is also important in the analysis of the algorithm of [33]. The
main idea is to group the decomposition into phases where in phase k, only
matrix elements with values amn ≥ 2R−k are considered, i.e., the matrix ele-
ments can be represented by ones and zeros depending on whether amn ≥ 2k
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or not (R = log2(max amn)). By Theorem 6 each of the decomposition car-
dinality problems can be solved in polynomial time using a DT algorithm.
Hence, the Xia-Verhey algorithm runs in polynomial time and gives the best
decomposition cardinality, but only among all decompositions with the same
separation into phases.

In view of Theorem 5, most of the algorithms in the literature are heuristic
or approximative (with performance guarantee). Most often, they guarantee
minimal DT (α) and minimize DC(α) heuristically or exactly subject to DT
optimality. The few algorithms that are able to solve the problem exactly
have exponential running time and are limited to small instances, as evident
in Section 5.

3.2 Algorithms for the unconstrained DC problem

The author in [18] applies a greedy idea to his TNMU algorithm. In each of
his extraction steps A′ = A − pY , p is computed as maximal possible value
such that the pair (p, Y ) is admissible, i.e., a′

mn ≥ 0 for all m, n and C(A′) =
C(A)−p. Since the algorithm is a specialized version of Engel’s decomposition
time algorithm, it will only find good decomposition cardinalities among all
optimal solutions of the DT problem. Note, however (see Example 1), that
none of the optimal solutions of the DT problem may be optimal for the DC
problem.

The author in [21] shows the validity of an algorithm which solves the lexi-
cographic problem of finding among all optimizers of DT one with smallest de-
composition cardinality DC. The complexity of this algorithm is O(MN2L+2),
i.e., it is polynomial in M and N , but exponential in L (where L is a bound
for the entries amn of the matrix A). It should be noted that this algorithm
does not, in general, solve DC. This is due to the fact that among the optimal
solutions for DT there may not be an optimal solution for DC (see Sections
4 and 5).

The idea of Kalinowski’s algorithm can, however, be extended to solve
DC. The main idea of this approach is to treat the decomposition time as
a parameter c and to solve the problem of finding a decomposition with
smallest cardinality such that its decomposition time is bounded by c. For
c = minDT (α), this can be done by Kalinowski’s algorithm in O(MN2L+2).
For c = 1, . . . , MNL, the author in [28] shows that the complexity increases
to O((MN)2L+2). We thus have the following result.

Theorem 7 ( [28]). The problem of minimizing the decomposition cardinality
DC(α) in an unconstrained problem can be solved in O((MN)2L+3).

The authors in [27] present approximation algorithms for the uncon-
strained DC problem. They define matrices Pk whose elements are the kth

digits in the binary representation of the entries in A. The (easy) segmentation
of Pk for k = 1, . . . , log L then results in a O(MN log(L)) time (log�L� + 1)-
approximation algorithm for DC. They show that the performance guarantee
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can be improved to �log D� + 1 by choosing D as the maximum of a set of
numbers containing all absolute differences between any two consecutive row
entries over all rows and the first and last entries of each row. In the context
of approximation algorithms we finally mention the following result by [6].

Theorem 8. The DC problem is APX-hard even for matrices with a single
row with entries polynomially bounded in N .

3.3 Algorithms for the constrained DC problem

A similar idea as in [18] is used in [5] for the constrained decomposition
cardinality problem. Data from the solution of the DT problem (see Section
2) is used as input for a greedy extraction procedure. The author in [22] also
generalizes the idea of Engel to the case of DC problems with interleaf motion
constraints.

The authors in [10–13] consider the decomposition cardinality problem
with interleaf motion, width, and tongue-and-groove constraints. The first two
groups of constraints are considered by a geometric argumentation. The given
matrix A is — similar to [32] — interpreted as a 3-dimensional set of rods,
or as they call it a 3D-mountain, where the height of each rod is determined
by the value of its corresponding matrix entry amn. The decomposition is
done by a mountain reduction technique, where tongue-and-groove constraints
are taken into consideration using a graph model. The underlying graph is
complete with its node set corresponding to all feasible C1 matrices. The
weight of the edges is determined by the tongue-and-groove error occurring
if both matrices are used in a decomposition. Matching algorithms are used
to minimize the tongue-and-groove error. In order to speed up the algorithm,
smaller graphs are used and the optimal matchings are computed using a
network flow algorithm in a sparse graph.

The authors in [19] propose a difference-matrix metaheuristic to obtain
solutions with small DC as well as small DT values. The metaheuristic uses a
multiple start local search with a heuristic that sequentially extracts segments
Yk based on results of [18]. They consider multiple constraints on the segments,
including interleaf and innerleaf motion constraints. Reported results clearly
outperform the heuristics implemented in the Elekta MLC system.

4 Combined objective functions

A first combination of decomposition time and cardinality problems is the
treatment time problem with constant set-up times TT (α) := DT (α) +
SU(α) = DT (α) + τDC(α). For τ suitably large, it is clear that the DC
problem is a special case of the TT problem. Thus the latter is strongly NP-
hard due to Theorem 5.
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The most versatile approach to deal with the TT problem including differ-
ent kinds of constraints, is by integer programming as done by [25]. They first
formulate the decomposition time problem as an integer linear program (IP),
where interleaf motion, width, or tongue-and-groove constraints can easily be
written as linear constraints. The optimal objective z = DT (α) can then be
used in a modified IP as upper bound for the decomposition time which is now
treated as variable (rather than objective) and in which the number of C1 ma-
trices is to be minimized. This approach can be considered as an ε-constraint
method to solve bicriteria optimization problems (see, for instance, [16]). The
solutions in [25] can thus be interpreted as Pareto optimal solutions with re-
spect to the two objective functions DT (α) and DC(α). Due to the large
number of variables, the algorithm presented in [25] is, however, not usable
for realistic problem instances.

The importance of conflict between the DT and DC objectives has not
been investigated to a great extent. The author in [3] showed that for ma-
trices with a single row there is always a decomposition that minimizes both
DC(α) and DT (α). The following examples show that the optimal solutions
of the (unconstrained) DT , DC and TTvar problems are in general attained
in different decompositions. As a consequence, it is not enough to find the
best possible decomposition cardinality among all decompositions with min-
imal decomposition time as is done in most papers on the DC problem (see
Section 3). We will present next an example which is the smallest possible one
for different optimal solutions of the DT and DC problems.

Example 1. Let

A =
(

3 6 4
2 1 5

)
.

Since the entries 1, . . . , 6 can only be uniquely represented by the numbers
1, 2 and 4, the unique optimal decomposition of the DC problem is given by
A = 1Y 1 + 2Y 2 + 4Y 3 where

Y 1 =
(

1 0 0
0 1 1

)
, Y 2 =

(
1 1 0
1 0 0

)
, and Y 3 =

(
0 1 1
0 0 1

)
.

Hence, the optimal value of the DC problem is 3, with DT = 7. Since the
optimal solution of the DT problem has DT = 6, we conclude that DC ≥ 4.

It is not clear whether this example is of practical value. In Section 5 we
see that in our tests the optimal solution of the DC problem examples was
not among the DT optimal solutions in only 5 out of 32 examples. In these
cases the difference in the DC objective was only 1. This is also emphasized
by [26] who confirm that the conflict between DT and DC is often small in
practice.
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Another possible combination of objective functions is the treatment time
problem with variable set-up time TTvar(α) := DT (α)+SUvar(α) = DT (α)+∑K−1

k=1 τπ(k),π(k+1) (see (6)). Minimizing TTvar(α) is strongly NP-hard when
looking at the special case τkl = τ for all k, l, which yields the objective
function of TTconst(α). Here, we consider

τπ(k),π(k+1) = max
m∈M

max
{
|lπ(k)

m − lπ(k+1)
m |, |rπ(k)

m − rπ(k+1)
m |

}
, (14)

i.e., the maximal number of positions any leave moves between two consecutive
matrices Y π(k) and Y π(k+1) in the sequence.

Extending Example 1, the following example shows that the three objective
functions DT (α), DC(α), and TTvar(α) yield, in general, different optimal
solutions.

Example 2. Let

A =
(

8 5 6
5 3 6

)
.

The optimal decomposition for DC is

A = 5
(

1 1 0
1 0 0

)
+ 3
(

1 0 0
0 1 0

)
+ 6
(

0 0 1
0 0 1

)
.

This decomposition yields DT = 14, DC = 3 and TTvar = DT + SUvar =
14 + 3 = 17, where SUvar = 1 + 2 = 3. The optimal decomposition for DT is

A = 3
(

1 0 0
0 0 1

)
+
(

0 0 1
0 1 1

)
+ 3
(

1 1 1
1 0 0

)
+ 2
(

1 1 1
1 1 1

)
.

Here we obtain DT = 9, DC = 4, SUvar = 2+2+2 = 6 and thus TTvar = 15.
The optimal decomposition for TTvar is

A = 2
(

0 0 1
1 1 1

)
+ 3
(

1 0 0
1 0 0

)
+
(

1 1 0
0 1 0

)
+ 4
(

1 1 1
0 0 1

)
.

We get DT = 10, DC = 4 and SUvar = 2 + 1 + 1 = 4, leading to TTvar = 14.

If the set of C1 matrices Y 1, . . . , Y K in the formulation TTvar(α) is given,
one can apply a traveling salesman algorithm to minimize SUvar(α). Since the
number L of C1 matrices is in general rather small, the TSP can be solved
exactly in reasonable time. If the set of C1 matrices is not given, the prob-
lem becomes a simultaneous decomposition and sequencing problem which is
currently under research.
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5 Numerical results

Very few numerical comparisons are available in the literature. The author
in [29] compares in his numerical investigations eight different heuristics for
the DC problem. He concludes that the Algorithm of Xia and Verhey [33]
outperforms its competitors. With new algorithms developed since the ap-
pearance of Que’s paper, the dominance of the Xia-Verhey algorithm is no
longer true, as observed by [15] and seen below.

In this section we present results obtained with the majority of algorithms
mentioned in this paper for constrained and unconstrained problems. We con-
sider only interleaf motion constraints, since these are the most common and
incorporated in most algorithms. As seen in Section 2 the unconstrained and
constrained DT problems can be solved in O(NM), respectively O(NM2)
time. Moreover, we found that algorithms that guarantee minimal DT (α) and
include a heuristic to reduce DC(α) do not require significantly higher CPU
time. Therefore we exclude algorithms that simply minimize DT (α) without
control over DC(α). Table 1 shows the references for the algorithms, and some
remarks on their properties.

We used 47 clinical examples varying in size from 5 to 23 rows and 6
to 30 columns, with L varying between 9 and 40. In addition, we used 15
instances of size 10×10 with entries randomly generated between 1 and 14.
In all experiments we have applied an (exact) TSP algorithm to the resulting
matrices to minimize the total treatment time for the given decomposition.
Table 2 presents the results for the unconstrained and Table 3 presents those
for the constrained problems. All experiments were run on a Pentium 4 PC
with 2.4 GHz and 512 MB RAM. In both tables we first show the number of
instances for which the algorithms gave the best values for DT, DC and TTvar

after application of the TSP to the matrices produced by the algorithms.
Next, we list the maximal CPU time (in seconds) the algorithm took for any
of the instances. The next four rows show the minimum, maximum, median,
and average relative deviation from the best DC value found by any of the
algorithms. The next four rows show the same for TTvar. Finally, we list the
improvement of variable setup time according to (14) obtained by applying
the TSP to the matrices found by the algorithms.

Table 1. List of algorithms tested.

Algorithm Problem Remarks

Baatar et al. [5] unconstrained guarantees min DT , heuristic for DC
Engel [18] unconstrained guarantees min DT , heuristic for DC
Xia and Verhey [33] unconstrained heuristic for DC
Baatar et al. [5] constrained guarantees minDT , heuristic for DC
Kalinowski [22] constrained guarantees min DT , heuristic for DC
Siochi [32] constrained guarantees minDT , heuristic for TT
Xia and Verhey [33] constrained heuristic for DC



40 M. Ehrgott et al.

Table 2. Numerical results for the unconstrained algorithms.

Baatar et al. [5] Engel [18] Xia and Verhey [33]

Best DT 62 62 0
Best DC 7 62 1
Best TTvar 38 17 9
Best CPU 0 21 45

Max CPU 0.1157 0.0820 0.0344

∆ DC Min 0.00% 0.00% 0.00%
Max 33.33% 0.00% 86.67%
Median 18.18% 0.00% 36.93%
Mean 17.08% 0.00% 37.82%

∆ TT Min 0.00% 0.00% 0.00%
Max 21.30% 42.38% 83.82%
Median 0.00% 5.66% 14.51%
Mean 3.14% 8.74% 17.23%

∆ SU Min 0.83% 1.43% 7.89%
Max 37.50% 27.27% 43.40%
Median 14.01% 10.46% 25.41%
Mean 13.91% 12.15% 25.74%

Table 3. Numerical results for the constrained algorithms.

Baatar et al. Kalinowski Siochi Xia and Verhey
[5] [22] [32] [33]

Best DT 62 62 62 0
Best DC 1 62 1 0
Best TTvar 12 43 11 0
Best CPU 0 0 0 62

Max CPU 0.2828 0.8071 1.4188 0.0539

∆ DC Min 0.00% 0.00% 0.00% 11.11%
Max 160.00% 0.00% 191.67% 355.56%
Median 70.71% 0.00% 108.12% 70.71%
Mean 71.37% 0.00% 102.39% 86.58%

∆ TT Min 0.00% 0.00% 0.00% 10.66%
Max 50.74% 45.28% 26.47% 226.42%
Median 5.23% 0.00% 8.49% 51.03%
Mean 7.97% 4.95% 8.26% 61.56%

∆ SU Min 0.00% 2.27% 0.00% 5.00%
Max 18.18% 35.25% 20.00% 24.05%
Median 4.45% 22.45% 2.11% 14.20%
Mean 5.34% 21.66% 3.24% 14.42%
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Table 4. Comparison of Kalinowski [21] and Nußbaum [28]. A * next to the DC
value indicates a difference between the algorithms.

Data Sets Kalinowski [21] Nußbaum [28]

DT DC TT CPU DT DC TT CPU

Clinical 1 27 7 49 0 27 7 49 0
Clinical 2 27 6 43 1 27 6 43 1
Clinical 3 24 8 59 2 28 7* 56 213
Clinical 4 33 6 48 1 33 6 48 1
Clinical 5 41 9 76 41 44 8* 73 134
Clinical 6 13 8 125 8 13 8 125 8
Clinical 7 12 9 134 27 12 9 134 27
Clinical 8 12 8 153 15 12 8 153 15
Clinical 9 12 9 118 174 12 9 118 174
Clinical 10 11 9 108 133 11 9 108 133
Clinical 11 11 6 97 0 11 6 97 0
Clinical 12 10 7 99 0 10 7 99 0
Clinical 14 17 8 48 0 17 8 48 0
Clinical 15 19 7 54 0 19 7 54 0
Clinical 16 15 7 46 0 15 7 46 0
Clinical 17 16 7 48 0 16 7 48 0
Clinical 18 20 8 50 4 20 8 50 9
Clinical 19 16 7 51 0 16 7 51 0
Clinical 20 18 7 47 0 18 7 47 0
Clinical 21 22 8 65 1 22 8 65 1
Clinical 22 22 10 74 10 25 9* 81 23
Clinical 23 26 9 76 24 26 9 76 24
Clinical 24 23 9 63 6 23 9 63 7
Clinical 25 23 9 75 12 23 9 75 13
Clinical 26 22 9 68 2 22 9 68 2
Clinical 39 28 10 88 149 28 10 88 149
Clinical 40 26 8 60 2 27 7* 55 3
Clinical 41 20 7 46 1 20 7 46 1
Clinical 42 23 8 55 0 23 8 55 0
Clinical 45 21 6 42 0 21 6 42 0
Clinical 46 19 9 65 10 21 8* 59 40
Clinical 47 24 10 85 1 24 10 85 1

Table 2 shows that Xia and Verhey [33] is the fastest algorithm. However,
it never found the optimal DT value and found the best DC value for only
one instance. Since the largest CPU time is 0.116 seconds, computation time
is not an issue. Thus we conclude that Xia and Verhey [33] is inferior to the
other algorithms. Baatar et al. [5] and Engel [18] are roughly equal in speed.
Both guarantee optimal DT , but the latter performs better in terms of DC,
finding the best value for all instances. However, the slightly greater amount
of matrices used by the former method appears to enable better TTvar values
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and a slightly bigger improvement of the variable setup time by reordering the
segments. We observe that applying a TSP algorithm is clearly worthwhile,
reducing the variable setup time by up to 40%.

The results for the constrained problems underline that the algorithm
of [33], despite being the fastest for all instances, is not competitive. It did
not find the best DT, DC, or TTvar values for any example. The other three
algorithms guarantee DT optimality. The algorithm of [22] performs best,
finding the best DC value in all cases, and the best TTvar value in 43 of the
62 tests. Baatar et al. [5] and Siochi [32] are comparable, with the former being
slightly better in terms of DC, TTvar and CPU time. Again, the application
of a TSP algorithm is well worth the effort to reduce the variable setup time.

Finally, the results of comparing the algorithm of [21] with its new iterative
version of [28] on a subset of the clinical instances are given in Table 4. These
tests were performed on a PC with Dual Xeon Processor, 3.2 GHz and 4 GB
RAM. In the comparison of 32 clinical cases there were only five cases (3,
5, 22, 40, 46) where the optimal solution of the DC problem was not among
the optimal solutions of the DT problem — and thus found by the algorithm
of [21]. In these five cases, the DC objective was only reduced by a value of
1. Since the iterative algorithm performs at most NML−DT applications of
Kalinowski-like procedures, the CPU time is obviously considerably larger.
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Appendix: The instances

Tables 5 and 6 show the size (N, M, L) of the instances, the optimal value of
DT (α) in the constrained and unconstrained problems, and the best DC(α)
and TTvar(α) values found by any of the tested algorithms, with a * indicating
proven optimality for DC in the unconstrained case.
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Table 5. The 15 random instances.

Data Set Size Unconstrained Constrained

M N L DT DC TT DT DC TT

Random 1 10 10 14 37 11 107 39 16 110
Random 2 10 10 14 30 11 102 33 13 100
Random 3 10 10 14 36 11 103 37 16 106
Random 4 10 10 14 37 11 114 37 12 99
Random 5 10 10 14 46 12 120 46 16 107
Random 6 10 10 14 45 12 123 45 14 112
Random 7 10 10 14 41 11 117 47 16 122
Random 8 10 10 14 41 12 119 41 15 106
Random 9 10 10 14 33 11 102 33 13 98
Random 10 10 10 14 34 10 94 40 15 102
Random 11 10 10 14 41 11 113 41 14 102
Random 12 10 10 14 35 11 106 37 15 102
Random 13 10 10 14 32 11 105 32 13 99
Random 14 10 10 14 43 11 114 43 18 112
Random 15 10 10 14 36 10 109 37 14 107

Table 6. The 47 clinical instances.

Data Set Size Unconstrained Constrained

M N L DT DC TT DT DC TT

Clinical 1 5 6 23 27 7* 49 27 8 51
Clinical 2 5 7 27 27 6* 43 27 8 48
Clinical 3 5 8 18 24 7* 54 24 8 53
Clinical 4 5 7 30 33 6* 48 33 8 51
Clinical 5 5 8 25 41 8* 73 41 10 73
Clinical 6 16 29 10 13 8* 125 13 9 132
Clinical 7 16 27 10 12 9* 122 12 9 138
Clinical 8 16 30 10 12 8* 135 15 11 163
Clinical 9 15 28 9 12 9* 118 12 9 151
Clinical 10 16 28 10 11 9* 108 11 10 106
Clinical 11 20 23 10 11 6* 96 11 7 136
Clinical 12 16 28 10 10 7* 99 13 10 130
Clinical 13 20 25 9 17 11 151 17 12 130
Clinical 14 9 9 10 17 8* 38 17 9 50
Clinical 15 9 10 10 19 7* 53 19 11 62
Clinical 16 10 9 10 15 7* 44 18 9 50
Clinical 17 10 9 10 16 7* 45 16 8 47
Clinical 18 9 9 10 20 8* 50 20 10 49
Clinical 19 10 10 10 16 7* 50 16 8 57
Clinical 20 10 9 10 18 7* 47 18 9 56

(continued)
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Table 6. Continued.

Data Set Size Unconstrained Constrained

M N L DT DC TT DT DC TT

Clinical 21 14 10 10 22 8* 65 23 13 73
Clinical 22 14 10 10 22 9* 74 22 11 79
Clinical 23 14 10 10 26 9* 76 30 15 89
Clinical 24 14 10 10 23 9* 63 24 11 79
Clinical 25 14 10 10 23 9* 74 23 12 84
Clinical 26 14 10 10 22 9* 68 22 10 70
Clinical 27 22 23 24 33 14 165 34 17 158
Clinical 28 23 17 27 46 15 184 46 17 186
Clinical 29 23 16 33 35 12 155 48 17 174
Clinical 30 22 21 31 50 15 197 58 21 196
Clinical 31 22 22 22 47 15 205 58 21 201
Clinical 32 22 15 26 33 11 134 42 16 142
Clinical 33 22 18 24 41 13 186 41 18 175
Clinical 34 9 13 29 45 13 147 45 15 129
Clinical 35 9 10 40 59 11 103 69 14 124
Clinical 36 9 12 26 45 12 131 45 14 111
Clinical 37 9 10 35 46 11 115 46 12 116
Clinical 38 11 11 19 35 9 68 35 10 79
Clinical 39 11 11 22 28 10* 84 33 14 91
Clinical 40 11 12 19 26 7* 55 27 10 75
Clinical 41 11 9 16 20 7* 46 22 8 52
Clinical 42 11 9 14 23 8* 55 23 10 58
Clinical 43 11 12 26 43 11 101 49 16 119
Clinical 44 10 15 26 49 13 137 54 16 114
Clinical 45 11 8 21 21 6* 48 21 9 49
Clinical 46 11 12 16 19 8* 42 19 10 66
Clinical 47 11 14 22 24 10* 59 38 15 105
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Summary. We investigate an on-line planning strategy for the fractionated radio-
therapy planning problem, which incorporates the effects of day-to-day patient mo-
tion. On-line planning demonstrates significant improvement over off-line strategies
in terms of reducing registration error, but it requires extra work in the replanning
procedures, such as in the CT scans and the re-computation of a deliverable dose
profile. We formulate the problem in a dynamic programming framework and solve
it based on the approximate policy iteration techniques of neuro-dynamic program-
ming. In initial limited testing, the solutions we obtain outperform existing solutions
and offer an improved dose profile for each fraction of the treatment.

Keywords: Fractionation, adaptive radiation therapy, neuro-dynamic pro-
gramming, reinforcement learning.

1 Introduction

Every year, nearly 500,000 patients in the United States are treated with
external beam radiation, the most common form of radiation therapy. Before
receiving irradiation, the patient is imaged using computed tomography (CT)
or magnetic resonance imaging (MRI). The physician contours the tumor
and surrounding critical structures on these images and prescribes a dose
of radiation to be delivered to the tumor. Intensity-Modulated Radiotherapy
(IMRT) is one of the most powerful tools to deliver conformal dose to a tumor
target [6, 17, 23]. The treatment process involves optimization over specific
parameters, such as angle selection and (pencil) beam weights [8, 9, 16,
18]. The organs near the tumor will inevitably receive radiation as well; the
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Scientific Research Grant FA9550-04-1-0192.



48 G. Deng and M.C. Ferris

physician places constraints on how much radiation each organ should receive.
The dose is then delivered by radiotherapy devices, typically in a fractionated
regime consisting of five doses per week for a period of 4-9 weeks [10].

Generally, the use of fractionation is known to increase the probability of
controlling the tumor and to decrease damage to normal tissue surrounding
the tumor. However, the motion of the patient or the internal organs between
treatment sessions can result in failure to deliver adequate radiation to the
tumor [14, 21]. We classify the delivery error in the following types:

1. Registration Error (see Figure 1 (a)). Registration error is due to the
incorrect positioning of the patient in day-to-day treatment. This is the
interfraction error we primarily consider in this paper. Accuracy in pa-
tient positioning during treatment set-up is a requirement for precise de-
livery. Traditional positioning techniques include laser alignment to skin
markers. Such methods are highly prone to error and in general show a

(a) Registration error (b) Internal organ shifts

(c) Tumor area shrinks (d) Non-rigid organ transformation

Fig. 1. Four types of delivery error in hypo-fraction treatment.
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displacement variation of 4-7mm depending on the site treated. Other
advanced devices, such as electronic portal imaging systems, can reduce
the registration error by comparing real-time digital images to facilitate
a time-efficient patient repositioning [17].

2. Internal Organ Motion Error, (Figure 1 (b)). The error is caused by the
internal motion of organs and tissues in a human body. For example,
intracranial tissue shifts up to 1.5 mm when patients change position
from prone to supine. The use of implanted radio-opaque markers allows
physicians to verify the displacement of organs.

3. Tumor Shrinkage Error, (Figure 1 (c)). This error is due to tumor area
shrinkage as the treatment progresses. The originally prescribed dose de-
livered to target tissue does not reflect the change in tumor area. For
example, the tumor can shrink up to 30% in volume within three treat-
ments.

4. Non-rigid Transformation Error, (Figure 1 (d)). This type of intrafrac-
tion motion error is internally induced by non-rigid deformation of or-
gans, including for example, lung and cardiac motion in normal breathing
conditions.

In our model formulation, we consider only the registration error between
fractions and neglect the other three types of error. Internal organ motion error
occurs during delivery and is therefore categorized as an intrafraction error.
Our methods are not real-time solution techniques at this stage and conse-
quently are not applicable to this setting. Tumor shrinkage error and non-rigid
transformation error mainly occur between treatment sessions and are there-
fore called interfraction errors. However, the changes in the tumor in these
cases are not volume preserving, and incorporating such effects remains a
topic of future research. The principal computational difficulty arises in that
setting from the mapping of voxels between two stages.

Off-line planning is currently widespread. It only involves a single planning
step and delivers the same amount of dose at each stage. It was suggested
in [5, 15, 19] that an optimal inverse plan should incorporate an estimated
probability distribution of the patient motion during the treatment. Such
distribution of patient geometry can be estimated [7, 12], for example, using
a few pre-scanned images, by techniques such as Bayesian inference [20]. The
probability distributions vary among organs and patients.

An alternative delivery scheme is so called on-line planning, which in-
cludes multiple planning steps during the treatment. Each planning step uses
feedback from images generated during treatment, for example, by CT scans.
On-line replanning accurately captures the changing requirements for radia-
tion dose at each stage, but it inevitably consumes much more time during
every replanning procedure.

This paper aims at formulating a dynamic programming (DP) framework
that solves the day-to-day on-line planning problem. The optimal policy is
selected from several candidate deliverable dose profiles, compensating over
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time for movement of the patient. The techniques are based on neuro-dynamic
programming (NDP) ideas [3]. In the next section, we introduce the model
formulation and in Section 3, we describe serval types of approximation ar-
chitecture and the NDP methods we employ. We give computational results
on a real patient case in Section 4.

2 Model formulation

To describe the problem more precisely, suppose the treatment lasts N periods
(stages), and the state xk(i), k = 0, 1, . . . , N, i ∈ T , contains the actual dose
delivered to all voxels after k stages (xk is obtained through a replanning
process). Here T represents the collection of voxels in the target organ. The
state evolves as a discrete-time dynamic system:

xk+1 = φ(xk, uk, ωk), k = 0, 1, . . . , N − 1, (1)

where uk is the control (namely dose applied) at the kth stage, and ωk is
a (typically three dimensional) random vector representing the uncertainty
of patient positioning. Normally, we assume that ωk corresponds to a shift
transformation to uk. Hence the function φ has the explicit form

φ(xk(i), uk(i), ωk) = xk(i) + uk(i + ωk), ∀i ∈ T . (2)

Since each treatment is delivered separately and in succession, we also assume
the uncertainty vector ωk is i.i.d. In the context of voxelwise shifts, ωk is
regarded as a discretely distributed random vector. The control uk is drawn
from an applicable control set U(xk).

Since there is no recourse for dose delivered outside of the target, an in-
stantaneous error (or cost) g(xk, xk+1, uk) is incurred when evolving between
stage xk and xk+1. Let the final state xN represent the total dose deliv-
ered on the target during the treatment period. At the end of N stages,
a terminal cost JN (xN ) will be evaluated. Thus, the plan chooses controls
uuu = {u0, u1, . . . , uN−1} so as to minimize an expected total cost:

J0(x0) = min E

[
N−1∑
k=0

g(xk, xk+1, uk) + JN (xN )
]

s.t. xk+1 = φ(xk, uk, ωk),

uk ∈ U(xk), k = 0, 1, . . . , N − 1.

(3)

We use the notation J0(x0) to represent an optimal cost-to-go function that
accumulates the expected optimal cost starting at stage 0 with the initial
state x0. Moreover, if we extend the definition to a general stage, the cost-to-
go function Jj defined at jth stage is expressed in a recursive pattern,
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Jj(xj)

= min E

⎡⎣N−1∑
k=j

g(xk, xk+1, uk) + JN (xN )
xk+1 = φ(xk, uk, ωk),

uk ∈ U(xk), k = j, . . . , N − 1

⎤⎦
= min E [g(xj , xj+1, uj) + Jj+1(xj+1) | xj+1 = φ(xj , uj, ωj), uj ∈ U(xj)] .

For ease of exposition, we assume that the final cost function is a linear com-
bination of the absolute differences between the current dose and the ideal
target dose at each voxel. That is

JN (xN ) =
∑
i∈T

p(i)|xN (i) − T (i)|. (4)

Here, T (i), i ∈ T in voxel i represents the required final dosage on the target,
and the vector p weights the importance of hitting the ideal value for each
voxel. We typically set p(i) = 10, for i ∈ T , and p(i) = 1 elsewhere, in our
problem to emphasize the importance of target volume. Other forms of final
cost function could be used, such as the sum of least squares error [19].

A key issue to note is that the controls are nonnegative since dose cannot
be removed from the patient. The immediate cost g at each stage is the amount
of dose delivered outside of the target volume due to the random shift,

g(xk, xk+1, uk) =
∑

i+wk /∈T
p(i + ωk)uk(i + ωk). (5)

It is clear that the immediate cost is only associated with the control uk and
the random term ωk. If there is no displacement error (ωk = 0), the immediate
cost is 0, corresponding to the case of accurate delivery.

The control most commonly used in the clinic is the constant policy, which
delivers

uk = T/N

at each stage and ignores the errors and uncertainties. (As mentioned in the
introduction, when the planner knows the probability distribution, an opti-
mal off-line planning strategy calculates a total dose profile D, which is later
divided by N and delivered using the constant policy, so that the expected
delivery after N stages is close to T .) We propose an on-line planning strategy
that attempts to compensate for the error over the remaining time stages. At
each time stage, we divide the residual dose required by the remaining time
stages:

uk = max(0, T − xk)/(N − k).

Since the reactive policy takes into consideration the residual at each time
stage, we expect this reactive policy to outperform the constant policy. Note
the reactive policy requires knowledge of the cumulative dose xk and replan-
ning at every stage — a significant additional computation burden over current
practice.
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We illustrate later in this paper how the constant and reactive heuristic
policies perform on several examples. We also explain how the NDP approach
improves upon these results. The NDP makes decisions on several candidate
policies (so-called modified reactive policies), which account for a variation of
intensities on the reactive policy. At each stage, given an amplifying parameter
a on the overall intensity level, the policy delivers

uk = a · max(0, T − xk)/(N − k).

We will show that the amplifying range of a > 1 is preferable to a = 1,
which is equivalent to the standard reactive policy. The parameter a should
be confined with an upper bound, so that the total delivery does not exceed
the tolerance level of normal tissue.

Note that we assume these idealized policies uk (the constant, reactive and
modified reactive policies) are valid and deliverable in our model. However,
in practice they are not because uk has to be a combination of dose profiles
of beamlets fired from a gantry. In Voelker’s thesis [22], some techniques to
approximate uk are provided. Furthermore, as delivering devices and planning
tools become more sophisticated, such policies will become attainable.

So far, the fractionation problem is formulated in a finite horizon3 dynamic
programming framework [1, 4, 13]. Numerous techniques for such problems can
be applied to compute optimal decision policies. But unfortunately, because
of the immensity of these state spaces (Bellman’s “curse of dimensionality”),
the classical dynamic programming algorithm is inapplicable. For instance,
in a simple one-dimensional problem with only ten voxels involving 6 time
stages, the DP solution times are around one-half hour. To address these
complex problems, we design sub-optimal solutions using approximate DP
algorithms — neuro-dynamic programming [3, 11].

3 Neuro-dynamic programming

3.1 Introduction

Neuro-dynamic programming is a class of reinforcement learning methods
that approximate the optimal cost-to-go function. Bertsekas and Tsitsiklis [3]
coined the term neuro-dynamic programming because it is associated with
building and tuning a neural network via simulation results. The idea of an
approximate cost function helps NDP avoid the curse of dimensionality and
distinguishes the NDP methods from earlier approximation versions of DP
methods. Sub-optimal DP solutions are obtained at significantly smaller com-
putational costs.

The central issue we consider is the evaluation and approximation of the
reduced optimal cost function Jk in the setting of the radiation fractionation
3 Finite horizon means finite number of stages.
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problem — a finite horizon problem with N periods. We will approximate a
total of N optimal cost-to-go functions Jk, k = 0, 1, . . . , N − 1, by simulation
and training of a neural network. We replace the optimal cost Jk(·) with an
approximate function J̃k(·, rk) (all of the J̃k(·, rk) have the same parametric
form), where rk is a vector of parameters to be ascertained from a train-
ing process. The function J̃k(·, rk) is called a scoring function, and the value
J̃k(x, rk) is called the score of state x. We use the optimal control ûk that
solves the minimum problem in the (approximation of the) right-hand-side of
Bellman’s equation defined using

ûk(xk) ∈
argmin

uk∈U(xk)

E[g(xk, xk+1, uk) + J̃k+1(xk+1, rk+1)|xk+1 = φ(xk, uk, ωk)]. (6)

The policy set U(xk) is a finite set, so the best ûk is found by the direct
comparison of a set of values. In general, the approximate function J̃k(·, rk)
has a simple form and is easy to evaluate. Several practical architectures of
J̃k(·, rk) are described below.

3.2 Approximation architectures

Designing and selecting suitable approximation architectures are important
issues in NDP. For a given state, several representative features are extracted
and serve as input to the approximation architecture. The output is usually
a linear combination of features or a transformation via a neural network
structure. We propose using the following three types of architecture:

1. A neural network/multilayer perceptron architecture. The input state x is
encoded into a feature vector f with components fl(x), l = 1, 2, . . . , L,
which represent the essential characteristics of the state. For example, in
the fractionation radiotherapy problem, the average dose distribution and
standard deviation of dose distribution are two important components of
the feature vector associated with the state x, and it is a common practice
to add the constant 1 as an additional feature. A concrete example of such
a feature vector is given in Section 4.1.
The feature vector is then linearly mapped with coefficients r(j, l) to P
‘hidden units’ in a hidden layer,

L∑
l=1

r(j, l)fl(x), j = 1, 2, . . . , P, (7)

as depicted in Figure 2.
The values of each hidden unit are then input to a sigmoidal function that
is differentiable and monotonically increasing. For example, the hyperbolic
tangent function



54 G. Deng and M.C. Ferris

Fig. 2. An example of the structure of a neural network mapping.

σ(ξ) = tanh(ξ) =
eξ − e−ξ

eξ + e−ξ
,

or the logistic function

σ(ξ) =
1

1 + e−ξ

can be used. The sigmoidal functions should satisfy

−∞ < lim
ξ→−∞

σ(ξ) < lim
ξ→∞

σ(ξ) < ∞.

The output scalars of the sigmoidal function are linearly mapped again to
generate one output value of the overall architecture,

J̃(x, r) =
P∑

j=1

r(j)σ

(
L∑

l=1

r(j, l)fl(x)

)
. (8)

Coefficients r(j) and r(j, l) in (7) are called the weights of the network.
The weights are obtained from the training process of the algorithm.

2. A feature extraction mapping. An alternative architecture directly com-
bines the feature vector f(x) in a linear fashion, without using a neu-
ral network. The output of the architecture involves coefficients r(l), l =
0, 1, 2, . . . , L,

J̃(x, r) = r(0) +
L∑

l=1

r(l)fl(x). (9)

An application of NDP that deals with playing strategies in a Tetris game
involves such an architecture [2]. While this is attractive due to its simplic-
ity, we did not find this architecture effective in our setting. The principal
difficulty was that the iterative technique we used to determine r failed
to converge.
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3. A heuristic mapping. A third way to construct the approximate struc-
ture is based on existing heuristic controls. Heuristic controls are easy
to implement and produce decent solutions in a reasonable amount of
time. Although not optimal, some of the heuristic costs Hu(x) are likely
to be fairly close to the optimal cost function J(x). Hu(x) is evaluated
by averaging results of simulations, in which policy u is applied in every
stage. In the heuristic mapping architecture, the heuristic costs are suit-
ably weighted to obtain a good approximation of J . Given a state x and
heuristic controls ui, i = 1, 2, . . . , I, the approximate form of J is

J̃(x, r) = r(0) +
I∑

i=1

r(i)Hui (x), (10)

where r is the overall tunable parameter vector of the architecture.
The more heuristic policies that are included in the training, the more
accurate the approximation is expected to be. With proper tuning of the
parameter vector r, we hope to obtain a policy that performs better than
all of the heuristic policies. However, each evaluation of Hui(x) is poten-
tially expensive.

3.3 Approximate policy iteration using Monte-Carlo simulation

The method we consider in this subsection is an approximate version of pol-
icy iteration. A sequence of policies {uk} is generated and the corresponding
approximate cost functions J̃(x, r) are used in place of J(x). The NDP al-
gorithms are based on the architectures described previously. The training of
the parameter vector r for the architecture is performed using a combination
of Monte-Carlo simulation and least squares fitting.

The NDP algorithm we use is called approximate policy iteration (API)
using Monte-Carlo simulation. API alternates between approximate policy
evaluation steps (simulation) and policy improvement steps (training). Poli-
cies are iteratively updated from the outcomes of simulation. We expect the
policies will converge after several iterations, but there is no theoretical guar-
antee. Such an iteration process is illustrated in Figure 3.

Simulation step

Simulating sample trajectories starts with an initial state x0 = 0, correspond-
ing to no dose delivery. At the kth stage, an approximate cost-to-go function
J̃k+1(xk+1, rk+1) for the next stage determines the policy ûk via the Equation
(6), using the knowledge of the transition probabilities. We can then simulate
xk+1 using the calculated ûk and a realization of ωk. This process can be re-
peated to generate a collection of sample trajectories. In this simulation step,
the parameter vectors rk, k = 0, 1, . . . , N − 1, (which induce the policy ûk)
remain fixed as all the sample trajectories are generated.
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Fig. 3. Simulation and training in API. Starting with an initial policy, the Monte-
Carlo simulation generates a number of sample trajectories. The sample costs at
each stage are input into the training unit in which rks are updated by minimizing
the least squares error. New sample trajectories are simulated using the policy based
on the approximate structure J̃(·, rk) and (6). This process is repeated.

Simulation generates sample trajectories {x0,i = 0, x1,i, . . . , xN,i}, i =
1, 2, . . . , M . The corresponding sample cost-to-go for every transition state
is equal to the cumulative instantaneous costs plus a final cost,

c(xk,i) =
N−1∑
j=k

g(xj,i, xj+1,i, ûj) + JN (xN,i).

Training step

In the training process, we evaluate the cost and update the rk by solving a
least squares problem at each stage k = 0, 1, . . . , N − 1,

min
rk

1
2

M∑
i=1

|J̃k(xk,i, rk) − c(xk,i)|2. (11)

The least squares problem (11) penalizes the difference of approximate cost-
to-go estimation J̃k(xk,i, rk) and sample cost-to-go value c(xk,i). It can be
solved in various ways.

In practice, we divide the M generated trajectories into M1 batches, with
each batch containing M2 trajectories.

M = M1 ∗ M2.

The least squares formulation (11) is equivalently written as

min
rk

M1∑
m=1

⎛⎝1
2

∑
xk,i∈Batchm

|J̃k(xk,i, rk) − c(xk,i)|2
⎞⎠ . (12)

We use a gradient-like method that processes each least squares term
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1
2

∑
xk,i∈Batchm

|J̃k(xk,i, rk) − c(xk,i)|2 (13)

incrementally. The algorithm works as follows: Given a batch of sample state
trajectories (M2 trajectories), the parameter vector rk is updated by

rk := rk − γ
∑

xk,i∈Batchm

∇J̃k(xk,i, rk)
(
J̃(xk,i, rk) − c(xk,i)

)
,

k = 0, 1, . . . , N − 1. (14)

Here γ is a stepsize length that should decrease monotonically as the number
of batches used increases (see Proposition 3.8 in [3]). A suitable step length
choice is γ = α/m, m = 1, 2, . . . , M1, in the mth batch, where α is a constant
scalar. The summation in the right-hand side of (14) is a gradient evaluation
corresponding to (13) in the least squares formulation. The parametric vec-
tors rk are updated via the iteration (14), as a batch of trajectories become
available. The incremental updating scheme is motivated by the stochastic
gradient algorithm (more details are given in [3]).

In API, the rks are kept fixed until all the M sample trajectories are
generated. In contrast to this, another form of the NDP algorithm, called
optimistic policy iteration (OPI), updates the rk more frequently, immediately
after a batch of trajectories are generated. The intuition behind OPI is that
the new changes on policies are incorporated rapidly. This ‘optimistic’ way of
updating rk is subject to further investigation.

Ferris and Voelker [10] applied a rollout policy to solve this same problem.
The approximation is built by applying the particular control u at stage k
and a control (base) policy at all future stages. This procedure ignores the
training part of our algorithm. The rollout policy essentially suggests a simple
form of

J̃(x) = Hbase(x).

The simplification results in a biased estimation of J(x), because the optimal
cost-to-go function strictly satisfies J(x) ≤ Hbase(x). In our new approach,
we use an approximate functional architecture for the cost-to-go function, and
the training process will determine the parameters in the architecture.

4 Computational experimentation

4.1 A simple example

We first experiment on a simple one dimensional fractionation problem with
several variations of the approximating architectures described in the preced-
ing section. As depicted in Fig. 4, the setting consists of a total of 15 voxels



58 G. Deng and M.C. Ferris

Fig. 4. A simple one-dimension problem. xk is the dose distribution over voxels in
the target: voxels 3, 4, . . . , 13.

{1, 2, . . . , 15}, where the target voxel set, T = {3, 4, . . . , 13}, is located in the
center. Dose is delivered to the target voxels, and due to the random position-
ing error of the patient, a portion of dose is delivered outside of the target.
We assume a maximum shift of 2 voxels to the left or right.

In describing the cost function, our weighting scheme assigns relatively
high weights on the target, and low weights elsewhere:

p(i) =

⎧⎨⎩10, i ∈ T ,

1, i /∈ T .

Definitions of final error and one step error refer to (4) and (5).
For the target volume above, we also consider two different probability

distributions for the random shift ωk. In the low volatility examples, we have

ωk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2, with probability 0.02

−1, with probability 0.08

0, with probability 0.8

1, with probability 0.08

2, with probability 0.02,

for every stage k. The high volatility examples have
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ωk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2, with probability 0.05

−1, with probability 0.25

0, with probability 0.4

1, with probability 0.25

2, with probability 0.05,

for every stage k. While it is hard to estimate the volatilities present in the
given application, the results are fairly insensitive to these choices.

To apply the NDP approach, we should provide a rich collection of policies
for the set U(xk). In our case, U(xk) consists of a total number of A modified
reactive policies,

U(xk) = {uk,1, uk,2, . . . , uk,A| uk,i = ai · max(0, T − xk)/(N − k)}, (15)

where ai is a numerical scalar indicating an augmentation level to the standard
reactive policy delivery; here A = 5 and

aaa = {1, 1.4, 1.8, 2.2, 2.6}.

We apply two of the approximation architectures in Section 3.2: the neu-
ral network/multilayer (NN) perceptron architecture and linear architecture
using a heuristic mapping. The details follow.

1. API using Monte-Carlo simulation and neural network architecture.
For the NN architecture, after experimentation with several different sets
of features, we used the following six features fj(x), j = 1, 2, . . . , 6:
a) Average dose distribution in the left rind of the target organ:

mean of {x(i), i = 3, 4, 5}.

b) Average dose distribution in the center of the target organ:

mean of {x(i), i = 6, 7, . . . , 10}.

c) Average dose distribution in the right rind of the target organ:

mean of {x(i), i = 11, 12, 13}.

d) Standard deviation of the overall dose distribution in the target.
e) Curvature of the dose distribution. The curvature is obtained by fitting

a quadratic curve over the values {xi, i = 3, 4, . . . , 13} and extracting
the curvature.

f) A constant feature f6(x) = 1.
In features (a)-(c), we distinguish the average dose on different parts of the
structure, because the edges commonly have both underdose and overdose
issues, while the center is delivered more accurately.
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In the construction of neural network formulation, a hyperbolic tangent
function was used as the sigmoidal mapping function. The neural network
has 6 inputs (6 features), 8 hidden sigmoidal units, and 1 output, such
that weight of neural network rk is a vector of length 56.
In each simulation, a total of 10 policy iterations were performed. Running
more policy iterations did not show further improvement. The initial pol-
icy used was the standard reactive policy uuu: uk = max(0, T −xk)/(N −k).
Each iteration involved M1 = 15 batches of sample trajectories, with
M2 = 20 trajectories in each batch to train the neural network.
To train the rk in this approximate architecture, we started with rk,0 as
a vector of ones, and used an initial step length γ = 0.5.

2. API using Monte-Carlo simulation and the linear architecture of heuristic
mapping.
Three heuristic policies were involved as base policies: (1) constant pol-
icy uuu1: u1,k = T/N, for all k; (2) standard reactive policy uuu2: u2,k =
max(0, T − xk)/(N − k), for all k; (3) modified reactive policy uuu3 with
the amplifying parameter a = 2 applied at all stages except the last one.
For the stage k = N − 1, it simply delivers the residual dose:

u3,k =

⎧⎨⎩ 2 · max(0, T − xk)/(N − k), k = 0, 1, . . . , N − 2,

max(0, T − xk)/(N − k), k = N − 1.

This third choice facilitates a more aggressive treatment in early stages.
To evaluate the heuristic cost Hui(xk), i = 1, 2, 3, 100 sub-trajectories
starting with xk were generated for periods k to N . The training scheme
was analogous to the above method. A total of 10 policy iterations were
performed. The policy used in the first iteration was the standard reactive
policy. All iterations involved M1 = 15 batches of sample trajectories, with
M2 = 20 trajectories in each batch, resulting in a total of 300 trajectories.
Running the heuristic mapping architecture entails a great deal of compu-
tation, because it requires evaluating the heuristic costs by sub-simulations.

The fractionation radiotherapy problem is solved using both techniques
with N = 3, 4, 5, 10, 14 and 20 stages. Figure 5 shows performance of API
using a heuristic mapping architecture in a low volatility case. The starting
policy is the standard reactive policy, that has an expected error (cost) of 0.48
(over M = 300 sample trajectories). The policies uk converge after around 7
policy iterations, taking around 20 minutes on a PIII 1.4GHz machine. After
the training, the expected error decreases to 0.30, which is reduced by about
40% compared to the standard reactive policy.

The main results of training and simulation with two probability distribu-
tions are plotted in Figure 6. This one-dimension example is small, but the
revealed patterns are informative. For each plot, the results of the constant
policy, reactive policy and NDP policy are displayed. Due to the significant
randomness in the high volatility case, it is more likely to induce underdose in
the rind of target, which is penalized heavily with our weighting scheme. Thus,
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Fig. 5. Performance of API using heuristic cost mapping architecture, N = 20. For
every iteration, we plot the average (over M2 = 20 trajectories) of each of M1 = 15
batches. The broken line represents the mean cost in each iteration.
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(a) NN architecture in low volatility.
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(b) NN architecture in high volatility.
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(c) Heuristic mapping architecture
in low volatility.
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(d) Heuristic mapping architecture in
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Fig. 6. Comparing the constant, reactive and NDP policies in low and high volatility
cases.
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as volatility increases, so does the error. Note that in this one-dimensional
problem, an ideal total amount of dose delivered to target is 11, which can
be compared with the values on the vertical axes of the plots (which are
multiplied by the vector p).

Comparing the figures, we note remarkable similarities. Common to all
examples is the poor performance of the constant policy. The reactive policy
performs better than the constant policy, but not as well as the NDP policy in
either architecture. The constant policy does not change much with number
of total fractions. The level of improvement depends on the NDP approxi-
mate structure used. The NN architecture performs better than the heuristic
mapping architecture when N is small. When N is large, they do not show
significant difference.

4.2 A real patient example: head and neck tumor

In this subsection, we apply our NDP techniques to a real patient problem
— a head and neck tumor. In the head and neck tumor scenario, the tumor
volume covers a total of 984 voxels in space. As noted in Figure 7, the tumor
is circumscribed by two critical organs: the mandible and the spinal cord. We
will perform analogous techniques as in the above simple example. The weight
setting is the same:

p(i) =

⎧⎨⎩10, i ∈ T ,

1, i /∈ T .

Fig. 7. Target tumor, cord and mandible in the head and neck problem scenario.
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In our problem setting, we do not distinguish between critical organs and
other normal tissue. In reality, a physician also takes into account radiation
damage to the surrounding critical organs. For this reason, a higher penalty
weight is usually assigned on these organs.

ωk are now three-dimension random vectors. By assumption of indepen-
dence of each component direction, we have

Pr(ωk = [i, j, k]) = Pr(ωk,x = i) · Pr(ωk,y = j) · Pr(ωk,z = k). (16)

In the low and high volatility cases, each component of ωk follows a discrete
distribution (also with a maximum shift of two voxels),

ωk,i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2, with probability 0.01

−1, with probability 0.06

0, with probability 0.86

1, with probability 0.06

2, with probability 0.01,

and

ωk,i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2, with probability 0.05

−1, with probability 0.1

0, with probability 0.7

1, with probability 0.1

2, with probability 0.05.

We adjust the ωk,i by smaller amounts than in the one dimension problem,
because the overall probability is the product of each component (16); the
resulting volatility therefore grows.

For each stage, U(xk) is a set of modified reactive policies, whose augmen-
tation levels include

aaa = {1, 1.5, 2, 2.5, 3}.
For the stage k = N − 1 (when there are two stages to go), setting the
augmentation level a > 2 is equivalent to delivering more than the residual
dose, which is unnecessary for treatment. In fact, the NDP algorithm will
ignore these choices.

The approximate policy iteration algorithm uses the same two architec-
tures as in Section 4.1. However, for the neural network architecture, we need
an extended 12 dimensional input feature space:

(a) Features 1-7 are the mean values of the dose distribution of the left, right,
up, down, front, back and center parts of the tumor.

(b) Feature 8 is the standard deviation of dose distribution in the tumor
volume.
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(c) Features 9-11. We extract the dose distribution on three lines through the
center of the tumor. Lines are from left to right, from up to down, and
from front to back. Features 9-11 are the estimated curvature of the dose
distribution on the three lines.

(d) Feature 12 is a constant feature, set as 1.

In the neural network architecture, we build 1 hidden layer, with 16 hidden
sigmoidal units. Therefore, each rk for J̃(x, rk) is of length 208.

We still use 10 policy iterations. (Later experimentation shows that 5 pol-
icy iterations are enough for policy convergence.) In each iteration, simula-
tion generates a total of 300 sample trajectories that are grouped in M1 = 15
batches of sample trajectories, with M2 = 20 in each batch, to train the
parameter rk.

One thing worth mentioning here is the initial step length scaler γ in (14)
is set to a much smaller value in the 3D problem. In the head and neck case,
we set γ = 0.00005 as compared to γ = 0.5 in the one dimension example. A
plot, Figure 8, shows the reduction of expected error as the number of policy
iteration increases.

The alternative architecture for J̃(x, r) using a linear combination of
heuristic costs is implemented precisely as in the one dimension example.
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Fig. 8. Performance of API using neural-network architecture, N = 11. For every
iteration, we plot the average (over M2 = 20 trajectories) of each of M1 = 15
batches. The broken line represents the mean cost in each policy iteration.
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The overall performance of this second architecture is very slow, due to
the large amount of work in evaluation of the heuristic costs. It spends a
considerable time in the simulation process generating sample sub-trajectories.
To save computation time, we propose an approximate way of evaluating each
candidate policy in (6). The expected cost associated with policy uk is

E[g(xk, xk+1, uk) + J̃k+1(xk+1, rk+1)]

=
2∑

ωk,1=−2

2∑
ωk,2=−2

2∑
ωk,2=−2

Pr(ωk)[g(xk, xk+1, uk) + J̃k+1(xk+1, rk+1)].

For a large portion of ωk, the value of Pr(ωk) almost vanishes to zero when
it makes a two-voxel shift in each direction. Thus, we only compute the sum
of costs over a subset of possible ωk,

1∑
ωk,1=−1

1∑
ωk,2=−1

1∑
ωk,2=−1

Pr(ωk)[g(xk, xk+1, uk) + J̃k+1(xk+1, rk+1)].

A straightforward calculation shows that we reduce a total of 125(= 53) eval-
uations of state xk+1 to 27(= 33). The final time involved in training the
architecture is around 10 hours.

Again, we plot the results of constant policy, reactive policy and NDP
policy in the same figure. We still investigate on the cases where N =
3, 4, 5, 14, 20. As we can observe in all sub-figures in Figure 9, the constant
policy still performs the worst in both high and low volatility cases. The reac-
tive policy is better and the NDP policy is best. As the total number of stages
increases, the constant policy remains almost at the same level, but the reac-
tive and NDP continue to improve. The poor constant policy is a consequence
of significant underdose near the edge of the target.

The two approximating architectures perform more or less the same,
though the heuristic mapping architecture takes significantly more time to
train. Focusing on the low volatility cases, Figure 9 (a) and (c), we see the
heuristic mapping architecture outperforms the NN architecture when N is
small, i.e., N = 3, 4, 5, 10. When N = 20, the expected error is reduced to
the lowest, about 50% from reactive policy to NDP policy. When N is small,
the improvement ranges from 30% to 50%. When the volatility is high, it
undoubtedly induces more error than in low volatility. Not only the expected
error, but the variance escalates to a large value as well.

For the early fractions of the treatment, the NDP algorithm intends to
select aggressive policies, i.e., the augmentation level a > 2, while in the later
stage time, it intends to choose more conservative polices. Since the weighting
factor for target voxels is 10, aggressive policies are preferred in the early stage
because they leave room to correct the delivery error on the target in the later
stages. However, it may be more likely to cause delivery error on the normal
tissue.
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(a) NN architecture in low volatility.
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(b) NN architecture in high volatility.
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(c) Heuristic mapping architecture in
low volatility.
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(d) Heuristic mapping architecture in
high volatility.

Fig. 9. Head and neck problem — comparing constant, reactive and NDP policies
in two probability distributions.

4.3 Discussion

The number of candidate policies used in training is small. Once we have the
optimal rk after simulation and training procedures, we can select uk from
an extended set of policies U(xk) (via (6)) using the approximate cost-to-go
functions J̃(x, rk), improving upon the current results.

For instance, we can introduce a new class of policies that cover a wider
delivery region. This class of clinically favored policies includes a safety margin
around the target. The policies deliver the same dose to voxels in the margin
as delivered to the nearest voxels in the target. As an example policy in the
class, a constant-w1 policy (where ‘w1’ means ‘1 voxel wider’) is an extension
of the constant policy, covering a 1-voxel thick margin around the target. As in
the one-dimensional example in Section 4.1, the constant-w1 policy is defined
as:
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(a) Heuristic mapping architecture in
low volatility.
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(b) Heuristic mapping architecture in
high volatility.

Fig. 10. In the one-dimensional problem, NDP policies with extended policy set
U(xk).

uk(i) =

⎧⎪⎪⎨⎪⎪⎩
T (i)/N, for i ∈ T ,

T (3)/N = T (13)/N, for i = 2 or 14,

0, elsewhere,

where the voxel set {2, 14} represents the margin of the target. The reactive-
w1 policies and the modified reactive-w1 policies are defined accordingly. (We
prefer to use ‘w1’ policies rather than ‘w2’ policies because ‘w1’ policies are
observed to be uniformly better.)

The class of ‘w1’ policies are preferable to apply in the high volatility case,
but not in the low volatility case (see Figure 10). For the high volatility case,
the policies reduce the underdose error significantly, which is penalized 10
times as heavy as the overdose error, easily compensating for the overdose
error they introduce outside of the target. In the low volatility case, when
the underdose is not as severe, they inevitably introduce redundant overdose
error.

The NDP technique was applied to an enriched policy set U(xk), including
the constant, constant-w1, reactive, reactive-w1, modified reactive and mod-
ified reactive-w1 policies. It automatically selected an appropriate policy at
each stage based on the approximated cost-to-go function, and outperformed
every component policy in the policy set. In Figure 10, we show the result
of the one-dimensional example using the heuristic mapping architecture for
NDP. As we have observed, in the low volatility case, the NDP policy tends
to be the reactive or the modified reactive policy, while in the high volatility
case is more likely to be the reactive-w1 or the modified reactive-w1 policy.
Comparing to the NDP policies in Figure 6, we see that increasing the choices
of policies in U(xk), the NDP policy generates a lower expected error.
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Fig. 11. Head and neck problem. Using API with a neural network architecture, in
a low volatility case, with identical weight on the target and normal tissue.

Another question concerns the amount of difference that occurs when
switching to another weighting scheme. Setting a high weighting factor on
the target is rather arbitrary. This will also influence the NDP in selecting
policies. In addition, we changed the setting of weighting scheme to

p(i) =

⎧⎨⎩1, i ∈ T ,

1, i /∈ T ,

and ran the experiment on the real example (Section 4.2) again. In Figure 11,
we discovered the same pattern of results, while this time, all the error curves
were scaled down accordingly. The difference between constant and reactive
policy decreased. The NDP policy showed an improvement of around 12%
over the reactive policy when N = 10.

We even tested the weighting scheme

p(i) =

⎧⎨⎩1, i ∈ T ,

10, i /∈ T ,

which reverted the importance of the target and the surrounding tissue. It
resulted in a very small amount of delivered dose in the earlier stages, and at
the end the target was severely underdosed. The result was reasonable because
the NDP policy was cautious to deliver any dose outside of the target at each
stage.

5 Conclusion

Solving an optimal on-line planning strategy in fractionated radiation treat-
ment is quite complex. In this paper, we set up a dynamic model for the
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day-to-day planning problem. We assume that the probability distribution of
patient motion can be estimated by means of prior inspection. In fact, our
experimentation on both high and low volatility cases displays very similar
patterns.

Although methods such as dynamic programming obtain exact solutions,
the computation is intractable. We exploit neuro-dynamic programming tools
to derive approximate DP solutions that can be solved with much fewer com-
putational resources. The API algorithm we apply iteratively switches between
Monte-Carlo simulation steps and training steps, whereby the feature based
approximating architectures of the cost-to-go function are enhanced as the
algorithm proceeds. The computational results are based on a finite policy set
for training. In fact, the final approximate cost-to-go structures can be used
to facilitate selection from a larger set of candidate policies extended from the
training set.

We jointly compare the on-line policies with an off-line constant policy
that simply delivers a fixed dose amount in each fraction of treatment. The
on-line policies are shown to be significantly better than the constant policy
in terms of total expected delivery error. In most of the cases, the expected
error is reduced by more than half. The NDP policy performs preferentially,
enhancing the reactive policy for all our tests. Future work needs to address
further timing improvement.

We have tested two approximation architectures. One uses a neural
network and the other is based on existing heuristic policies, both of which
perform similarly. The heuristic mapping architecture is slightly better than
the neural network based architecture, but it takes significantly more com-
putational time to evaluate. As these examples have demonstrated, neuro-
dynamic programming is a promising supplement to heuristics in discrete
dynamic optimization.

References

1. D. P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific,
Belmont, Massachusetts, 1995.

2. D. P. Bertsekas and S. Ioffe. Temporal differences-based policy iteration and
applications in neuro-dynamic programming. Technical report, Lab. for Infor-
mation and Decision Systems, MIT, 1996.

3. D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena
Scientific, Belmont, Massachusetts, 1996.

4. J. R. Birge and R. Louveaux. Introduction to Stochastic Programming. Springer,
New York, 1997.

5. M. Birkner, D. Yan, M. Alber, J. Liang, and F. Nusslin. Adapting inverse plan-
ning to patient and organ geometrical variation: Algorithm and implementation.
Medical Physics, 30:2822–2831, 2003.

6. Th. Bortfeld. Current status of IMRT: physical and technological aspects. Ra-
diotherapy and Oncology, 61:291–304, 2001.



70 G. Deng and M.C. Ferris

7. C. L. Creutzberg, G. V. Althof, M. de Hooh, A. G. Visser, H. Huizenga,
A. Wijnmaalen, and P. C. Levendag. A quality control study of the accuracy
of patient positioning in irradiation of pelvic fields. International Journal of
Radiation Oncology, Biology and Physics, 34:697–708, 1996.

8. M. C. Ferris, J.-H. Lim, and D. M. Shepard. Optimization approaches for
treatment planning on a Gamma Knife. SIAM Journal on Optimization, 13:921–
937, 2003.

9. M. C. Ferris, J.-H. Lim, and D. M. Shepard. Radiosurgery treatment planning
via nonlinear programming. Annals of Operations Research, 119:247–260, 2003.

10. M. C. Ferris and M. M. Voelker. Fractionation in radiation treatment planning.
Mathematical Programming B, 102:387–413, 2004.

11. A. Gosavi. Simulation-Based Optimization: Parametric Optimization Tech-
niques and Reinforcement Learning. Kluwer Academic Publishers, Norwell, MA,
USA, 2003.

12. M. A. Hunt, T. E. Schultheiss, G. E. Desobry, M. Hakki, and G. E. Hanks. An
evaluation of setup uncertainties for patients treated to pelvic fields. Interna-
tional Journal of Radiation Oncology, Biology and Physics, 32:227–233, 1995.

13. P. Kall and S. W. Wallace. Stochastic Programming. John Wiley & Sons,
Chichester, 1994.

14. K. M. Langen and T. L. Jones. Organ motion and its management. International
Journal of Radiation Oncology, Biology and Physics, 50:265–278, 2001.

15. J. G. Li and L. Xing. Inverse planning incorporating organ motion. Medical
Physics, 27:1573–1578, 2000.

16. A. Niemierko. Optimization of 3D radiation therapy with both physical and
biological end points and constraints. International Journal of Radiation On-
cology, Biology and Physics, 23:99–108, 1992.

17. W. Schlegel and A. Mahr, editors. 3D Conformal Radiation Therapy - A Mul-
timedia Introduction to Methods and Techniques. Springer-Verlag, Berlin, 2001.

18. D. M. Shepard, M. C. Ferris, G. Olivera, and T. R. Mackie. Optimizing the
delivery of radiation to cancer patients. SIAM Review, 41:721–744, 1999.

19. J. Unkelback and U. Oelfke. Inclusion of organ movements in IMRT treatment
planning via inverse planning based on probability distributions. Institute of
Physics Publishing, Physics in Medicine and Biology, 49:4005–4029, 2004.

20. J. Unkelback and U. Oelfke. Incorporating organ movements in inverse plan-
ning: Assessing dose uncertainties by Bayesian inference. Institute of Physics
Publishing, Physics in Medicine and Biology, 50:121–139, 2005.

21. L. J. Verhey. Immobilizing and positioning patients for radiotherapy. Seminars
in Radiation Oncology, 5:100–113, 1995.

22. M. M. Voelker. Optimization of Slice Models. PhD thesis, University of
Wisconsin, Madison, Wisconsin, December 2002.

23. S. Webb. The Physics of Conformal Radiotherapy: Advances in Technology.
Institute of Physics Publishing Ltd., 1997.



Randomized algorithms for mixed matching
and covering in hypergraphs in 3D seed
reconstruction in brachytherapy

Helena Fohlin2, Lasse Kliemann1∗, and Anand Srivastav1

1 Institut für Informatik
Christian–Albrechts–Universität zu Kiel
Christian-Albrechts-Platz 4, D–24098 Kiel, Germany
{lki,asr}@numerik.uni-kiel.de

2 Department of Oncology
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Summary. Brachytherapy is a radiotherapy method for cancer. In its low dose ra-
diation (LDR) variant a number of radioactive implants, so-called seeds, are inserted
into the affected organ through an operation. After the implantation, it is essential
to determine the locations of the seeds in the organ. A common method is to take
three X-ray photographs from different angles; the seeds show up on the X-ray pho-
tos as small white lines. In order to reconstruct the three-dimensional configuration
from these X-ray photos, one has to determine which of these white lines belong to
the same seed. We model the problem as a mixed packing and covering hypergraph
optimization problem and present a randomized approximation algorithm based on
linear programming. We analyse the worst-case performance of the algorithm by
discrete probabilistic methods and present results for data of patients with prostate
cancer from the university clinic of Schleswig-Holstein, Campus Kiel. These exam-
ples show an almost optimal performance of the algorithm which presently cannot
be matched by the theoretical analysis.

Keywords: Prostate cancer, brachytherapy, seed reconstruction, combinato-
rial optimization, randomized algorithms, probabilistic methods, concentra-
tion inequalities.

1 Introduction

Brachytherapy is a method developed in the 1980s for cancer radiation in or-
gans like the prostate, lung, or breast. At the Clinic of Radiotherapy (radioon-
cology), University Clinic of Schleswig-Holstein, Campus Kiel, among others,
∗ Supported by the Deutsche Forschungsgemeinschaft (DFG), Grant Sr7-3.



72 H. Fohlin et al.

low dose radiation therapy (LDR therapy) for the treatment of prostate cancer
is applied, where 25-80 small radioactive seeds are implanted in the affected
organ. They have to be placed so that the tumor is exposed with sufficiently
high radiation and adjacent healthy tissue is exposed to as low a radiation
dose as possible. Unavoidably, the seeds can move due to blood circulation,
movements of the organ, etc. For the quality control of the treatment plan,
the locations of the seeds after the operation have to be checked. This is done
by taking usually 3 X-ray photographs from three different angles (so-called
3-film technique). On the films the seeds appear as white lines. To determine
the positions of the seeds in the organ the task now is to match the three
different images (lines) representing the same seed.

1.1 Previous and related work

The 3-film technique was independently applied by Rosenthal and Nath [22],
Biggs and Kelley [9] and Altschuler, Findlay, Epperson [2], while Siddon and
Chin [12] applied a special 2-film technique that took the seed endpoints as
image points rather than the seed centers. The algorithms invoked in these
papers are matching heuristics justified by experimental results. New algo-
rithmic efforts were taken in the last 5 years. Tubic, Zaccarin, Beaulieu and
Pouliot [8] used simulated annealing, Todor, Cohen, Amols and Zaider [3] com-
bined several heuristic approaches, and Lam, Cho, Marks and Narayanan [13]
introduced the so-called Hough transform, a standard method in image pro-
cessing and computer vision for the seed reconstruction problem. Recently,
Narayanan, Cho and Marks [14] also addressed the problem of reconstruction
with an incomplete data set. These papers essentially focus on the improve-
ment of the geometric projections. From the mathematical programming side,
branch-and-bound was applied by Balas and Saltzman [7] and Brogan [10].
These papers provide the link to integer programming models of the problem.

None of these papers give a mathematical analysis or provable performance
guarantee of the algorithms in use. In particular, since different projection
techniques essentially result in different objective functions, it would be de-
sirable to have an algorithm which is independent of the specific projection
technique and thus is applicable to all such situations. Furthermore, it is today
considered a challenging task in algorithmic discrete mathematics and theo-
retical computer science to give fast algorithms for NP -hard problems, which
provably (or at least in practice) approximate the optimal solution. This is
sometimes a fast alternative to branch-and-bound methods.

A comprehensive treatment of randomized rounding algorithms for packing
and covering integer programs has been given by Srivastav [27] and Srivastav
and Stangier [28].

The presented algorithm has also been studied in [15]. Experimental re-
sults on an algorithm based on a different LP formulation combined with a
visualization technique have recently been published [26].
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1.2 Our contribution

In this paper we model the seed reconstruction problem as a minimum-weight
perfect matching problem in a hypergraph: we consider a complete 3-uniform
hypergraph, where its nodes are the seed images on the three films, and each
of its hyperedges contains three nodes (one from each X-ray photo). We define
a weight function for the hyperedges, which is close to zero if the three lines
from a hyperedge belong to the same seed and increases otherwise. The goal
is to find a matching, i.e., a subset of pairwise disjoint hyperedges, so that
all nodes are covered and the total weight of these hyperedges is minimum.
This is nothing other than the minimum-weight perfect matching problem
in a hypergraph. Since this problem generalizes the NP -hard 3-dimensional
assignment problem (see [16]), it is NP -hard as well. Thus we can only hope
to find an algorithm which solves the problem approximately in polynomial
time, unless P = NP .

We model the problem as an integer linear program. To solve this integer
program, an algorithm based on the so-called randomized rounding scheme
introduced by Raghavan and Thompson [24] is designed and applied. This al-
gorithm is not only very fast, but accessible at least in part for a mathematical
rigorous analysis. We give a partial analysis of the algorithm combining prob-
abilistic and combinatorial methods, which shows that in the worst-case the
solution produced is in some strong sense close to a minimum-weight perfect
matching. The heart of the analytical methods are tools from probability the-
ory, like large deviation inequalities. All in all, our algorithm points towards
a mathematically rigorous analysis of heuristics for the seed reconstruction
problem and is practical as well. Furthermore, the techniques developed here
are promising for an analysis of mixed integer packing and covering problems,
which are of independent interest in discrete optimization.

Moreover, we show that an implementation of our algorithm is very ef-
fective on a set of patient data from the Clinic of Radiotherapy, University
Clinic of Schleswig-Holstein, Campus Kiel. In fact, the algorithm for a certain
choice of parameters outputs optimal or nearly optimal solutions where only a
few seeds are unmatched. It is interesting that the practical results are much
better than the results of the theoretical analysis indicate. Here we have the
challenging situation of closing the gap between the theoretical analysis and
the good practical performance, which should be addressed in future work.

In conclusion, while in previous work on the seed reconstruction problem
only heuristics were used, this paper is a first step in designing mathematical
analyzable and practically efficient algorithms.

The paper is organized as follows.
In Section 2 we describe the seed reconstruction problem more precisely

and give a mathematical model. For this we introduce the notion of (b, k)-
matching which generalizes the notions of b-matching in hypergraphs and
partial k-covering in hypergraphs. In fact, a (b, k)-matching is a b-matching,
i.e., a subset of hyperedges such that no node is incident in more than b of
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them, covering at least k nodes. So for a hypergraph with n nodes, (1, n)-
matching is a perfect matching problem. Furthermore, some large deviation
inequalities are listed as well.

In Section 3 we give an integer linear programming formulation for the
(b, k)-matching problem and state the randomized rounding algorithm. This
algorithm solves the linear programming (LP) relaxation up to optimality
and then generates an integer solution by picking edges with the probabilities
given by the optimal LP-solution. After this procedure we remove edges in a
greedy way to get a feasible b-matching.

In Section 4 we analyze the algorithm with probabilistic tools.
In Section 5 we test the practical performance of the algorithm on real

patient data for five patients treated in the Clinic of Radiotherapy in Kiel.
The algorithm is implemented in C++, and is iterated for each patient data
set 100 times. For most of the patients all seeds are matched if we choose good
values of the parameters, i.e., letting them be close to the values enforcing a
minimum-weight perfect matching. The algorithm is very fast: within a few
seconds of CPU time on a PC, it delivers the solution.

2 Hypergraph matching model of 3D seed reconstruction

Brachytherapy is a cancer radiation therapy developed in the 1980s. In the
low dose variant of brachytherapy, about 25 to 80 small radioactive implants
called seeds are placed in organs like the prostate, lung or breast, and remain
there. A seed is a titan cylinder of length approximately 4.5 mm encapsulating
radioactive material like Iod-125 or Pd-103.

The method allows an effective continuous radiation of tumor tissue with
a relatively low dose for a long time in which radiation is delivered at a
very short distance to the tumor by placing the radioactive source in the
affected organ. Today it is a widely spread technique and an alternative to
the usual external radiation. A benefit for the patient is certainly that he/she
does not have to suffer from a long treatment with various radiation sessions.
For the treatment of prostate cancer, brachytherapy has been reported as a
very effective method [6]. At the Clinic of Radiotherapy, University Clinic
of Schleswig-Holstein, Campus Kiel, brachytherapy has become the standard
radiation treatment of prostate cancer.

2.1 The optimization problem

In LDR brachytherapy with seeds two mathematical optimization problems
play a central role:

Placement problem

The most important problem is to determine a minimum number of seeds
along with their placement in the organ. The placement must be such that
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a) the tumor tissue is exposed with sufficient dose avoiding cold spots (regions
with insufficient radiation) and hot spots (regions with too much radiation)
and

b) normal tissue or critical regions like the urethra are exposed with a mini-
mum possible, medical tolerable dose.

The problem thus appears as a combination of several NP -hard multi-
criteria optimization problems, e.g., set covering and facility location with
restricted areas. Since the dose distribution emitted by the seeds is highly
nonlinear, the problem is further complicated beyond set covering with regular
geometric objects, like balls, ellipsoids, etc. An intense research has been done
in this area in the last 10 years. Among the most effective placement tools
are the mixed-integer programming methods proposed by Lee [20]. At the
Clinic of Radiotherapy, University Clinic of Schleswig-Holstein, Campus Kiel,
a commercial placement software (VariSeed R© of the company VARIAN) is
applied. The software offers a two-film and a three-film technique. According
to the manual of the software, the three-film technique is an ad hoc extension
of the two-film technique of Chin and Siddon [12].

3D seed reconstruction problem

After the operative implantation of the seeds, due to blood circulation and
movements of the organ or patient, the seeds can change their original po-
sition. Usually 1-2 hours after the operation a determination of the actual
seed positions in the organ is necessary in order to control the quality and
to take further steps. In the worst case a short high dose radiation (HDR
brachytherapy) has to be conducted.

The seed locations are determined by three X-ray films of the organ taken
from three different angles, see Figures 1, 2, and 3. This technique was intro-
duced by Amols and Rosen [4] in 1981. The advantage of the 3-film technique
compared with the 2-film technique is that it seems to be less ambiguous
in identifying seed locations. So, each film shows the seeds from a different
3-dimensional perspective. The task is to determine the location of the seeds
in the organ by matching seed images on the three films.

To formalize the seed reconstruction problem, an appropriate geometrical
measure as a cost function for matching three seed images from each film is
introduced. We now show how the cost function is computed for the upper
endpoint of the seed (see Figure 4). The cost of the lower endpoint is calculated
in the same way.

For the three seed images we have three lines P1, P2, P3 connecting the
lower respectively upper endpoint of the seed images with the X-ray source.
We determine the shortest connections between the lines Pi and Pj for all i, j.
Let ri = (xi, yi, zi) be the centers of the shortest connections and let x, y, z be
the mean values of the x, y, z coordinate of r1, r2, r3. We define the standard
deviation
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Fig. 1. X-ray, 0 degrees. Figures 1, 2, and 3 were provided by Dr. F.-A. Siebert,
Clinic of Radiotherapy, University Clinic of Schleswig-Holstein, Campus Kiel, Kiel,
Germany.

∆r =

√√√√1
3

3∑
i=1

(xi − x)2 +

√√√√1
3

3∑
i=1

(yi − y)2 +

√√√√1
3

3∑
i=1

(zi − z)2.

The cost for the upper (respectively lower) endpoint of any choice of three
seed images from the three X-ray photos is the ∆r of the associated lines. It
is clear that ∆r is close to zero if the three seed images represent the same
seed.
The total cost for three seed images is the sum of the standard deviation ∆r
for the upper endpoint and the standard deviation for the lower endpoint.3

An alternative cost measure can be the area spanned by the triangle
r1, r2, r3. But in this paper this cost function is not considered.

3 By appropriate scaling ∆r to ∆r/α, with some α ≥ 1, one can assume that the
total cost is in [0, 1].
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Fig. 2. X-ray, 20 degrees.

If the cost function is well posed, the optimal solution of the problem
should be in one-to-one correspondence to the real seed locations in the organ.
Thus the problem reduces to a three-dimensional assignment (or matching)
problem, where we minimize the cost of the matching. In the literature the
problem is also noted as the AP3 problem, which is NP -hard. Thus under
the hypothesis P �= NP , we cannot expect an efficient, i.e., polynomial time
algorithm solving the problem to optimality.

2.2 Hypergraph matching and seed reconstruction

We use the standard notion of graphs and hypergraphs. A finite graph G =
(V, E) is a pair of a finite set V (the set of vertices or nodes) and a subset
E ⊆

(
V
2

)
, where

(
V
2

)
denotes the set of all 2−element subsets of V . The



78 H. Fohlin et al.

Fig. 3. X-ray, 340 degrees.

elements of E are called edges. A hypergraph (or set system) H = (V, E) is a
pair of a finite set V and a subset E of the power set P(V ). The elements of
E are called hyperedges.

Let H = (V, E) be a hypergraph. For v ∈ V we define

deg(v) := |{E ∈ E ; v ∈ E}| and ∆ = ∆(H) := max
v∈V

deg(v).

We call deg(v) the vertex-degree of v and ∆(H) is the maximum vertex degree
of H.

The hypergraph H is called r−regular respectively s−uniform, if deg(v)=r
for all v ∈ V respectively |E| = s for all E ∈ E . It is convenient to or-
der the vertices and hyperedges, V = {v1, · · · , vn} and E = {E1, · · · , Em},
and to identify vertices and edges with their indices. The hyperedge-vertex
incidence matrix of a hypergraph H = (V, E), with V = {v1, · · · , vn} and
E = {E1, · · · , Em}, is the matrix A = (aij) ∈ {0, 1}m×n, where aij = 1 if
vj ∈ Ei, and 0 else. Sometimes the vertex-hyperedge incidence matrix AT is
used.
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Fig. 4. Cost function for the upper endpoint.

We proceed to the formulation of a mathematical model for the seed re-
construction problem.

Definition 1. Let H = (V, E) be a hypergraph with |V | = n, |E| = m.
Let w : E → Q ∩ [0, 1] be a weight function. Let b, k ∈ N.

(i) A b-matching in H is a subset E∗ ⊆ E such that each v ∈ V is contained
in at most b edges of E∗.

(ii) A (b, k)-matching E∗ is a b-matching, such that at least k vertices are
covered by edges of E∗.

(iii) For a subset E∗ ⊆ E, we define its weight w(E∗) as the sum of the weights
of the edges from E∗.

We consider the following optimization problem.

Problem 1. Min-(b, k)-Matching:
Find a (b, k)-matching with minimum weight, if such a matching exists.

This problem, for certain choices of b and k, specializes to well-known
problems in combinatorial optimization:

1. Min-(1, n)-Matching is the minimum-weight perfect matching problem in
hypergraphs.

2. Min-(m, n)-Matching is the set covering problem in hypergraphs.
3. Min-(m, k)-Matching is the partial set covering (or k-set covering) problem

in hypergraphs.
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The seed reconstruction problem can be modeled as a minimum-weight
perfect matching problem in a 3-uniform hypergraph as follows: let V1, V2, V3

be the seed images on the X-ray photos 1, 2, 3. With V = V1 ∪ V2 ∪ V3 and
E = V1 × V2 × V3, the hypergraph under consideration is H=(V, E). Given a
weight function w : E → Q∩ [0, 1], the seed reconstruction problem is just the
problem of finding the minimum-weight perfect matching in H.

2.3 Some probabilistic tools

Throughout this article we consider only finite probability spaces (Ω,P),
where Ω is a finite set and P is a probability measure with respect to the
power set P(Ω) as the sigma field. We recall the basic Markov and Cheby-
shev inequalities.

Theorem 1 (Markov Inequality). Let (Ω,P) be a probability space and
X : Ω −→ R+ a random variable with expectation E(X) < ∞. Then for any
λ ∈ R+

P[X ≥ λ] ≤ E(X)
λ

.

An often sharper bound is the well-known inequality of Chebyshev:

Theorem 2 (Chebyshev Inequality). Let (Ω,P) be a probability space and
X : Ω −→ R a random variable with finite expectation E(X) and variance
Var(X). Then for any λ ∈ R+

P[|X −E(X)| ≥ λ
√

Var(X)] ≤ 1
λ2

.

For one-sided deviation the following Chebyshev-Cantelli inequality (see
[1]) gives better bounds:

Theorem 3. Let X be a non-negative random variable with finite expectation
E(X) and variance Var(X). Then for any a > 0

P[X ≤ E(X) − a] ≤ Var(X)
Var(X) + a2

.

The following estimate on the variance of a sum of dependent random
variables can be proved as in [1], Corollary 4.3.3.

Let X be the sum of any 0/1 random variables, i.e., X = X1 + . . . + Xn,
and let pi = E(Xi) for all i = 1, . . . , n. For a pair i, j ∈ {1, . . . , n} we write
i ∼ j, if Xi and Xj are dependent. Let Γ be the set of all unordered dependent
pairs i, j, i.e., the 2-element sets {i, j}, and let

γ =
∑

{i,j}∈Γ

E(XiXj).
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Proposition 1.
Var(X) ≤ E(X) + 2γ.

Proof. We have

Var(X) =
n∑

i=1

Var(Xi) +
∑
i�=j

Cov[Xi, Xj ], (1)

where the second sum is over ordered pairs.
Since X2

i = Xi, and Var(Xi) = E(X2
i ) − E(Xi)2 = E(Xi)(1 − E(Xi)) ≤

E(Xi), (1) gives

Var(X) ≤ E(X) +
∑
i�=j

Cov[Xi, Xj ]. (2)

If i � j, then Cov[Xi, Xj ] = 0. For i ∼ j we have

Cov[Xi, Xj] = E(XiXj) −E(Xi)E(Xj) ≤ E(XiXj), (3)

so (3) implies the assertion of the proposition. �

We proceed to the statement of standard large deviation inequalities for a
sum of independent random variables.

Let X1, . . . , Xn be 0/1 valued mutually independent (briefly: independent)
random variables, where

P[Xj = 1] = pj , P[Xj = 0] = 1 − pj

for probabilities pj ∈ [0, 1] for all 1 ≤ j ≤ n. For 1 ≤ j ≤ n let wj denote
rational weights with

0 ≤ wj ≤ 1

and let

X =
n∑

j=1

wjXj .

The sum

X =
n∑

j=1

wjXj with wj = 1 ∀ j ∈ {1, . . . , n} (4)

is the well-known binomially distributed random variable with mean np. The
inequalities given below can be found in the books of Alon, Spencer and
Erdős [1], Habib, McDiarmid, Ramirez-Alfonsin and Reed [17], and Janson,
�Luczak, Ruciński [19].

The following basic large deviation inequality is implicitly given in
Chernoff [11] in the binomial case. In explicit form it can be found in Okamoto
[23]. Its generalization to arbitrary weight is due to Hoeffding [18].
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Theorem 4 ( [18]). Let λ > 0 and let X be as in (4). Then

(a) P(X > E(X) + λ) ≤ e−
2λ2

n .
(b) P(X < E(X) − λ) ≤ e−

2λ2
n .

In the literature Theorem 4 is well known as the Chernoff bound. For small
expectations, i.e., E(X) ≤ n

6 , the following inequalities due to Angluin and
Valiant [5] give better bounds.

Theorem 5. Let X1, . . . , Xn be independent random variables with 0 ≤
Xi ≤ 1 and E(Xi) = pi for all i = 1, . . . , n. Let X =

∑n
i=1 Xi and µ = E(X).

For any β > 0

(i) P[X ≥ (1 + β) · µ] ≤ e
− β2µ

2(1+β/3) .

(ii) P[X ≤ (1 − β) · µ] ≤ e−
β2µ
2 .

Note that for 0 ≤ β ≤ 3/2 the bound in (i) is at most exp(−β2µ/3).

We will also need the Landau symbols O, o, Θ and Ω.

Definition 2. Let f : N → R≥0, g : N → R≥0 be functions. Then

• f(n) = O(g(n)) if ∃ c1, c2 ∈ R>0, such that

f(n) ≤ c1g(n) + c2 for all n ∈ N.

• f(n) = Ω(g(n)) if g(n) = O(f(n)).
• f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n)).

• f(n) = o(g(n)) if
f(n)
g(n)

n→∞−→ 0 (provided that g(n) �= 0 for all n large

enough).

3 Simultaneous matching and covering algorithms

In this section we present a randomized algorithm for the (b, k)-matching
problem.

3.1 Randomized algorithms for (b, k)-matching

Let H = (V, E), |V | = n, |E| = m be a hypergraph. We identify the nodes and
edges of H by their indices, so V = {1, . . . , n} and E = {1, . . . , m}. Let b ≥ 1.

Anintegerprogramming formulationoftheminimum-weight(b, k)-matching
is the following:
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Min-(b, k)-ILP min
m∑

i=1

wiXi

m∑
i=1

aijXi ≤ b ∀j ∈ {1, . . . , n} (5)

m∑
i=1

aijXi ≥ Yj ∀j ∈ {1, . . . , n} (6)

n∑
j=1

Yj ≥ k (7)

Xi, Yj ∈ {0, 1} ∀i ∈ {1, . . . , m} ∀j ∈ {1, . . . , n}. (8)

Note that Min-(b, n)-ILP is equivalent to the minimum-weight perfect
b-matching problem and Min-(b, k)-ILP is a b-matching problem with a
k-partial covering of the vertices.

For the minimum-weight perfect b-matching problems in hypergraphs,
where a perfect b-matching exists, for example the 3-uniform hypergraph
associated to the seed reconstruction problem, an alternative integer linear
programming formulation using local covering conditions is useful.

We add the condition
∑m

i=1 aijXi ≥ θ for some θ ∈ (0, 1] for all j ∈
{1, . . . , n} to Min-(b, k)-ILP. Then, by integrality all vertices are covered and
any feasible solution of such an ILP is a perfect b-matching. For the integer
program the additional condition is redundant, but since the LP-relaxation of
Min-(b, k)-ILP together with the inequality has a smaller feasible region than
the LP-relaxation of Min-(b, k)-ILP, the gap between the integer optimum
and the feasible LP-optimum might be smaller as well. This leads to a better
“approximation” of the integer optimum by the LP-optimum.

Furthermore, we will see in the theoretical analysis (Section 4) that we
can cover significantly more nodes if we add this condition.

Min-(b, k, θ)-ILP min
m∑

i=1

wiXi

m∑
i=1

aijXi ≤ b ∀j ∈ {1, . . . , n} (9)

m∑
i=1

aijXi ≥ Yj ∀j ∈ {1, . . . , n} (10)

m∑
i=1

aijXi ≥ θ ∀j ∈ {1, . . . , n} (11)

n∑
j=1

Yj ≥ k (12)

Xi, Yj ∈ {0, 1} ∀i ∈ {1, . . . , m} ∀j ∈ {1, . . . , n}. (13)
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We have

Proposition 2. Let H = (V, E) be a hypergraph with edge weights w :E → Q+
0 .

The integer linear programs Min-(b, n)-ILP and Min-(b, k, θ)-ILP, θ > 0, are
equivalent to the minimum-weight perfect b-matching problem in H.

In the following we need some notations which we fix through the next
remark.

Remark 1. Let Min-(b, k, θ)-LP be the linear programming relaxation of Min-
(b, k, θ)-ILP. Let (b, k, θ)-ILP be the system of inequalities built by the con-
straints (9) - (13) of Min-(b, k, θ)-ILP, and let (b, k, θ)-LP be the LP-relaxation
of (b, k, θ)-ILP, where Xi ∈ [0, 1] ∩Q and Yj ∈ Q+

0 for all i, j.

3.2 The randomized algorithm

Before we state the randomized algorithm, we have to ensure whether or not
a Min-(b, k, θ)-matching exists. For a given b, a choice of k = 0 and θ = 0
always makes the problem feasible. However, for some k and θ there might be
no solution. Then we would like to find the maximum k such that a solution
exists, given b and θ. Actually, for the integer programs we have to distinguish
only between the cases θ = 0 and θ > 0 (which is the perfect b-matching
problem).

Algorithm LP-Search(θ)
Input: θ ≥ 0.

1) Test the solvability of (b, 0, θ)-LP. If it is not solvable, return “(b, 0, θ)-LP
is not feasible.” Otherwise set k := 1 and go to 2.

2) a) Test solvability of (b, k, θ)-LP and (b, k + 1, θ)-LP.
b) If both are solvable, set k := k + 2 and go to 2a. If (b, k, θ)-LP is

solvable, but (b, k + 1, θ)-LP is not solvable, return k. �

If (b, 0, θ)-LP is solvable, we define

k∗ := max {k ∈ N ; k ≤ n ; (b, k, θ)-LP has a solution}.

Obviously we have

Proposition 3. The algorithm LP-Search (θ) either outputs “(b, 0, θ)-LP is
not feasible” or solving at most n LPs, it returns k∗.

It is clear that the number of iterations can be dropped to at most �log(n)�
using binary search.

In the following we work with a k ∈ N, returned by the algorithm
LP-Search(θ), if it exists. The randomized rounding algorithm for the Min-
(b, k, θ)-matching problem is the following:
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Algorithm Min-(b, k, θ)-RR

1. Solve the LP-relaxation Min-(b, k, θ)-ILP optimally, with solutions x∗ =
(x∗

1, . . . , x
∗
m) and y∗ = (y∗

1 , . . . , y∗
n). Let OPT ∗ =

∑m
i=1 wix

∗
i .

2. Randomized Rounding: Choose δ ∈ (0, 1]. For i = 1, . . . , m, independently
set the 0/1 random variable Xi to 1 with probability δx∗

i and to 0 with
probability 1− δx∗

i . So
Pr[Xi = 1] = δx∗

i and Pr[Xi = 0] = 1 − δx∗
i , ∀i ∈ {1, . . . , m}.

3. Output X1, . . . , Xm, the set of hyperedges M′ = {i ∈ E ; xi = 1}, and its
weight w(M′). �

One can combine the algorithm Min-(b, k, θ)-RR with a greedy approach
in order to get a feasible b-matching:

Algorithm Min-(b, k, θ)-Round

1) Apply the algorithm Min-(b, k, θ)-RR and output a set of hyperedges M′.
2) List the nodes in a randomized order. Passing through this list and arriving

at a node for which the b-matching condition is violated, we enforce the
b-matching condition at this node by removing incident edges from M′

with highest weights.
3) Output is the so obtained set M ⊆ M′. �

Variants of this algorithm are possible, for example, one can remove edges
incident in many nodes, etc..

4 Main results and proofs

4.1 The main results

We present an analysis of the algorithm Min-(b, k, θ)-RR. Our most general
result is the following theorem. C1 and C2 are positive constants depending
only on l, δ, and θ. They will be specified more precisely later.

Theorem 6. Let δ ∈ (0, 1) and OPT ∗ ≥ 2
3 ln(4)(1 + 2δ)(1 − δ)−2. For λ =√

m
2 ln(4n) we have:

(a) Let ∆ ≤ c1 · k
b . For θ = 0, the algorithm Min-(b, k, θ)-RR returns a

(δb + λ)-matching M′ in H of weight w(M′) ≤ OPT ∗ which covers at
least

k

b
(1 − e−δb)

(
1 −
√

3b(∆(l − 1) + 3)
2k(1 − e−δb)

)
(14)

nodes of H with a probability of at least 1/4.
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(b)Let ∆ ≤ c2 ·n. For θ > 0 the algorithm Min-(b, k, θ)-RR returns a (δb+λ)-
matching M′ in H of weight w(M′) ≤ OPT ∗ which covers at least

0.632δθn

(
1 −
√

2.38(∆(l − 1) + 3)
δθn

)
(15)

nodes of H with a probability of at least 1/4.

For special b, we have a stronger result.

Theorem 7. Let δ ∈ (0, 1). Assume that

i) b ≥ 2
3 ln(4n)(1 + 2δ)(1 − δ)−2.

ii) OPT ∗ ≥ 2
3 ln(4)(1 + 2δ)(1 − δ)−2.

(a) Let ∆ ≤ c1 · k
b . For θ = 0, the algorithm Min-(b, k, θ)-RR returns a

b-matching M′ in H of weight w(M′) ≤ OPT ∗ which covers at least

k

b
(1 − e−δb)

(
1 −

√
3b(∆(l − 1) + 3)

2k(1 − e−δb)

)

nodes of H with a probability of at least 1/4.
(b)Let ∆ ≤ c2 · n. For θ > 0 the algorithm Min-(b, k, θ)-RR returns a

b-matching M′ in H of weight w(M′) ≤ OPT ∗ which covers at least

0.632δθn

(
1 −
√

2.38(∆(l − 1) + 3)
δθn

)

nodes of H with a probability of at least 1/4.

Remark 2. In Theorem 7 (a), for fixed δ, we have b = Ω(ln(n)). For b =
Θ(ln(n)), and k = Ω(n) and ∆ ≤ c1 · k

b , the number of covered nodes is at
least

Ω

(
n

ln(n)
(1 − o(1))

)
. (16)

In this case we have an approximation of the maximum number of covered
nodes k up to a factor of 1/ ln(n). From the techniques applied so far it is not
clear whether the coverage can be improved towards Ω(k).

4.2 Proofs

We will first prove Theorem 7 and then 6. We start with a technical lemma.

Lemma 1. Let X1, . . . , Xm be independent 0/1 random variables with E(Xi)=
pi ∀i = 1, . . . , m. For wi ∈ [0, 1], i = 1, . . . , n, w(X) :=

∑m
i=1 wiXi. Let z ≥ 0

be an upper bound on E(w(X)), i.e., E(w(X)) ≤ z. Then
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i) P[w(X) ≥ z(1 + β)] ≤ e−
β2z

2(1+β/3) for any β > 0.

ii) P[w(X) ≥ z(1 + β)] ≤ e−
β2z
3 for 0 ≤ β ≤ 1.

Proof. Let z′ := �z −E(w(X))�, p = z −E(w(X))− z′, and let Y0, Y1, . . . , Yz′

be independent 0/1 random variables with E(Y0) = p and Yj = 1 ∀j ≥ 1.
The random variable X ′ := w(X) + Y0 + Y1 + . . . + Yz′ satisfies E(X ′) = z
and X ′ ≥ w(X) and we may apply the Angluin-Valiant inequality (Theorem
5) to it:

i) For any β > 0 we have

P[w(X) ≥ z(1 + β)] ≤ P[X ′ ≥ z(1 + β)] ≤ e
− β2z

2(1+β/3) .

ii) For 0 ≤ β ≤ 1 it is easy to see that e−
β2z

2(1+β/3) ≤ e−
β2z
3 . �

Let X1, . . . , Xm and M′ be the output of the algorithm Min-(b, k, θ)-RR.
Further let OPT and OPT ∗ be the integer respectively LP-optima for Min-
(b, k, θ)-ILP.

Lemma 2. Suppose that δ ∈ (0, 1) and b ≥ 2
3 ln(4n)(1 + 2δ)(1 − δ)−2. Then

P

[
∃ j ∈ V :

m∑
i=1

aijXi ≥ b

]
≤ 1

4
.

Proof. First we compute the expectation

E

(
m∑

i=1

aijXi

)
=

m∑
i=1

aijE(Xi) =
m∑

i=1

aijδx
∗
i = δ ·

m∑
i=1

aijx
∗
i ≤ δb. (17)

Set β := 1
δ − 1. With Lemma 1 we get:

P

[
m∑

i=1

aijXi ≥ b

]
= P

[
m∑

i=1

aijXi ≥ (1 + β)δb

]

≤ exp
(

−β2δb

2(1 + β/3)

)
= exp

(
−3

2
· (1 − δ)2

1 + 2δ
· b
)

≤ 1
4n

(using the assumption on b).

So

P

[
∃ j ∈ V :

m∑
i=1

aijXi ≥ b

]
≤

n∑
j=1

P

[
m∑

i=1

aijXi ≥ b

]
≤ n ·

(
1
4n

)
=

1
4
. �
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Lemma 3. Suppose that δ ∈ (0, 1) and OPT ∗ ≥ 2
3 ln(4)(1 + 2δ)(1 − δ)−2.

Then

P

[
m∑

i=1

wiXi ≥ OPT ∗

]
≤ 1

4
.

Proof. We have

E

(
m∑

i=1

wiXi

)
=

m∑
i=1

wiE(Xi) =
m∑

i=1

wiδx
∗
i = δ ·

m∑
i=1

wix
∗
i = δ · OPT ∗. (18)

Choose β = 1
δ − 1. Then

P

[
m∑

i=1

wiXi ≥ OPT ∗

]
= P

[
m∑

i=1

wiXi ≥ δ(1 + β) OPT ∗

]

= P

[
m∑

i=1

wiXi ≥ E

(
m∑

i=1

wiXi

)
(1 + β)

]

≤ exp
(
−β2E(

∑m
i=1 wiXi)

2(1 + β/3)

)
(Theorem 5(i))

= exp
(
−β2 δ OPT ∗

2(1 + β/3)

)
≤ 1

4

where the last inequality follows from the assumption on OPT ∗. �

We now come to a key lemma, which controls the covering quality of the
randomized algorithm.

Let Yj :=
∑m

i=1 aijXi for all j and Y :=
∑n

j=1 Yj .

Lemma 4. For any δ ∈ (0, 1],

i) E(Y ) ≥ n −
∑n

j=1 e−δ
∑m

i=1 aijx∗
i ,

ii) If θ > 0, then E(Y ) ≥ n(1 − e−δθ) ≥ 0.632δθn,
iii) For Min-(b, k, θ)-RR with θ = 0 we have E(Y ) ≥ k

b (1 − e−δb).

Proof. i) Define Ej := {E ∈ E ; j ∈ E}. We have

E(Y ) = E

⎛⎝ n∑
j=1

Yj

⎞⎠ =
n∑

j=1

E(Yj) =
n∑

j=1

P[Yj = 1]

=
n∑

j=1

(1 −P[Yj = 0]) = n −
n∑

j=1

P[Yj = 0]. (19)
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Now

P[Yj = 0] = P

[
m∑

i=1

aijXi = 0

]
= P[(a1jX1 = 0) ∧ . . . ∧ (amjXm = 0)]

=
m∏

i=1

P[aijXi = 0]

=
∏
i∈Ej

P[Xi = 0]

=
∏
i∈Ej

(1 − δx∗
i ). (20)

For u ∈ R we have the inequality 1 − u ≤ e−u. Thus∏
i∈Ej

(1 − δx∗
i ) ≤

∏
i∈Ej

e−δx∗
i = e−δ·

∑m
i=1 aijx∗

i . (21)

Hence, with (19),(20) and (21)

E(Y ) ≥ n −
n∑

j=1

e−δ·
∑m

i=1 aijx∗
i . (22)

ii) Since
∑m

i=1 aijx
∗
i ≥ θ for all j ∈ {1, . . . , n}, the first inequality im-

mediately follows from (i). For the second inequality, observe that for
x ∈ [0, 1], e−x ≤ 1 − x + x/e. This is true, because the linear function
1 − x + x/e is an upper bound for the convex function e−x in [0, 1]. So
E(Y ) ≥ (1 − e−δθ)n ≥ (1 − 1/e)δθn ≥ 0.632δθn.

iii) Since e−x is convex, the linear function 1 − x(δb)−1 + xe−δb(δb)−1 is an
upper bound for e−x in [0, δb]. With (22) we get

E(Y ) ≥ n − n + (1 − e−δb)δ(δb)−1
n∑

j=1

m∑
i=1

aijx
∗
i︸ ︷︷ ︸

≥k

≥ (1 − e−δb) · k

b
. �

An upper bound for the variance of Y can be computed directly, via co-
variance and dependent pairs:

Lemma 5. Let ∆ be the maximum vertex degree of H and let l be the maxi-
mum cardinality of a hyperedge. Then

Var(Y ) ≤ 1
2
· (∆(l − 1) + 3)E(Y ).
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Proof. By Proposition 1

Var(Y) ≤ E(Y) + 2γ (23)

where γ is the sum of E(YiYj) of all unordered dependent pairs i, j. Since the
Yis are 0/1 random variables, we have for pairs {i, j} with i ∼ j

E(YiYj) = P[(Yi = 1) ∧ (Yj = 1)]
≤ min(P[Yi = 1],P[Yj = 1])

≤ 1
2
(P[Yi = 1] + P[Yj = 1])

=
1
2
(E(Yi) + E(Yj)).

Hence

γ =
∑

{i,j}∈Γ

E(YiYj) ≤
1
2

∑
{i,j}∈Γ

(E(Yi) + E(Yj))

≤ 1
4

n∑
i=1

⎛⎝E(Yi) +
∑
j∼i

E(Yj)

⎞⎠ =
1
4
E(Y ) +

1
4

n∑
i=1

∑
j∼i

E(Yj)

≤ 1
4
E(Y ) +

1
4

n∑
i=1

E(Yi)∆(l − 1) =
1
4
E(Y ) +

1
4
∆(l − 1)E(Y )

=
1
4
(∆(l − 1) + 1)E(Y ),

and (23) concludes the proof. �

Let c1 and c2 be positive constants depending only on l, δ, and θ such that
for ∆ ≤ c1 · k

b respectively ∆ ≤ c2 · n we have√
3b(∆(l − 1) + 3)

2k(1 − e−δb)
< 1 respectively

√
2.38(∆(l − 1) + 3)

δθn
< 1. (24)

Note that in the following we assume l, δ, and θ to be constants.

Lemma 6.

i) For a :=
√

3
2 (∆(l − 1) + 3)E(Y ) : P[Y ≤ E(Y ) − a] ≤ 1

4 .

ii) Let ∆ ≤ c1 · k
b . Then

E(Y ) − a ≥ k

b
(1 − e−δb)

(
1 −
√

3b(∆(l − 1) + 3)
2k(1 − e−δb)

)
if θ = 0.
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iii) Let ∆ ≤ c2 · n. Then

E(Y ) − a ≥ 0.632δθn

(
1 −
√

2.38(∆(l − 1) + 3)
δθn

)
if θ > 0.

Proof. i) With the Chebyshev-Cantelli inequality (Theorem 3) we have

P[Y ≤ E(Y ) − a] ≤ Var(Y )
Var(Y ) + a2

=
1

1 + a2

Var(Y)

≤ 1
1 + a2

0.5(∆(l−1)+3) (Y )

(Lemma 5)

=
1

1 + 1.5(∆(l−1)+3) (Y )
0.5(∆(l−1)+3) (Y )

=
1
4
.

ii) and iii):

E(Y ) − a = E(Y )

⎛⎝1 −

√
3
2 (∆(l − 1) + 3)E(Y )

E(Y )

⎞⎠ (25)

= E(Y )

(
1 −

√
3(∆(l − 1) + 3)√

2E(Y )

)
(26)

≥

⎧⎪⎪⎨⎪⎪⎩
k
b (1 − e−δb)

(
1 −
√

3b(∆(l−1)+3)
2k(1−e−δb)

)
if θ = 0,

0.632δθn

(
1 −
√

2.38(∆(l−1)+3)
δθn

)
if θ > 0.

(27)

Note that to the upper bound condition for ∆, the lower bounds in (27) are
positive. �

Proof (Theorem 7). Lemma 2, 3 and 6 imply Theorem 7. �

This theorem holds only for b = Ω(ln(n)). In the rest of this section we
give an analysis also for the case of arbitrary b, losing a certain amount of
feasibility.

Lemma 7. Let δ > 0, µj = E(
∑m

i=1 aijXi) for all j, and λ =
√

m
2 ln(4n).

Then

P

[
∃ j :

m∑
i=1

aijXi > δb + λ

]
≤ 1

4
.

E

E
E
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Proof. As in (17), µj = E(
∑m

i=1 aijXi) ≤ δb for all j. With the Chernoff-
Hoeffding bound (Theorem 4)

P

[
m∑

i=1

aijXi > δb + λ

]
≤ P

[
m∑

i=1

aijXi > µj + λ

]

≤ exp
(
−2λ2

m

)
= exp (− ln(4n)) =

1
4n

.

So,

P

[
∃ j ∈ V :

m∑
i=1

aijXi > δb + λ

]

≤
n∑

j=1

P

[
m∑

i=1

aijXi > δb + λ

]
≤ n ·

(
1
4n

)
=

1
4
. �

Proof (Theorem 6). Lemma 3, 6 and 7 imply Theorem 6. �

5 Experimental results

5.1 Implementation

We run the algorithm Min-(b, k, θ)-Round for different values of b, k, and θ
in a C++-implementation.

Recall that the algorithm Min-(b, k, θ)-Round has 3 steps:

1. It solves the linear program and delivers a fractional solution,
2. applies randomized rounding on the fractional solution and delivers an

integer solution, which we call primary solution,
3. removes edges from the primary solution.

In the primary solution the nodes might be covered by more than b edges.
The superfluous edges are removed in step 3. Edges are removed in a ran-
domized greedy approach. The nodes are chosen in a randomized order and
if the considered node is covered by more than one edge, the ones with the
greatest cost are removed. In the following tables we use 100 runs of the ran-
domized rounding algorithm. As the final solution, we choose the one with
the fewest number of uncovered nodes. (If this choice is not unique, we pick
one with the smallest cost.) The LPs are solved with a simplex-method with
the CLP-solver from the free COIN-OR library [21].
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The columns in the tables in Sections 5.2 and 5.3 are organized as follows:

1: represents patient data
(Patients 1-5 are real patient data, whereas Patient 6 is a phantom.)

2: represents number of seeds to be matched
3: represents the cost of the LP-solution
4: represents the cost of the matching returned by the algorithm
5: represents the running time in CPU seconds of the program
6: represents number of unmatched seeds

5.2 Results for the algorithm MIN-(b, k, θ)-ROUND

Table 1. b = 1.20, k = 0.90 · n, θ = 0.00.

Patient Seeds LP-OPT Cost Time Unmatched

1 67 54.31 48.30 14.23 12

2 67 77.03 66.02 14.61 14

3 31 17.08 16.62 1.01 4

4 22 17.96 17.18 0.32 3

5 43 72.39 53.43 3.40 13

6 25 5.30 4.42 0.50 6

Table 2. b = 1.20, k = 1.00 · n, θ = 0.00.

Patient Seeds LP-OPT Cost Time Unmatched

1 67 67.77 58.20 14.73 7

2 67 93.32 78.22 14.54 9

3 31 21.18 19.44 1.02 2

4 22 21.94 19.24 0.33 2

5 43 91.34 55.33 3.59 14

6 25 6.51 5.44 0.51 4
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Table 3. b = 1.10, k = 0.90 · n, θ = 0.00.

Patient Seeds LP-OPT Cost Time Unmatched

1 67 56.40 54.11 14.23 9

2 67 80.20 75.61 14.60 10

3 31 17.41 16.62 1.00 4

4 22 18.20 17.18 0.32 3

5 43 79.77 63.41 3.61 11

6 25 5.71 4.91 0.52 5

Table 4. b = 1.10, k = 1.00 · n, θ = 0.00.

Patient Seeds LP-OPT Cost Time Unmatched

1 67 71.59 63.12 15.23 5

2 67 98.13 88.89 15.52 5

3 31 21.84 20.97 1.01 1

4 22 22.78 21.50 0.34 1

5 43 103.85 68.53 4.10 12

6 25 7.22 6.69 0.51 2

Table 5. b = 1.00, k = 0.90 · n, θ = 0.00.

Patient Seeds LP-OPT Cost Time Unmatched

1 67 58.91 60.56 14.81 6

2 67 84.17 86.11 14.34 6

3 31 17.80 17.94 1.01 3

4 22 18.83 19.24 0.34 2

5 43 91.67 66.53 3.95 13

6 25 6.37 6.69 0.51 2
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Table 6. b = 1.00, k = 1.00 · n, θ = 0.00.

Patient Seeds LP-OPT Cost Time Unmatched

1 67 80.60 80.60 15.59 0

2 67 170.27 119.53 33.48 8

3 31 22.58 22.58 1.01 0

4 22 23.82 23.82 0.33 0

5 43 199.65 199.65 7.40 0

6 25 8.85 8.85 0.54 0

5.3 Results for the algorithm MIN-(b, k, θ)-ROUND with θ > 0

Table 7. b = 1.20, k = 0.90 · n, θ = 0.20.

Patient Seeds LP-OPT Cost Time Unmatched

1 67 55.27 55.10 14.26 9

2 67 80.33 74.11 14.34 11

3 31 17.29 18.57 1.01 3

4 22 18.17 19.24 0.33 2

5 43 74.77 51.90 3.49 14

6 25 5.51 3.99 0.52 7

Table 8. b = 1.20, k = 1.00 · n, θ = 0.20.

Patient Seeds LP-OPT Cost Time Unmatched

1 67 68.25 60.76 14.31 6

2 67 96.20 78.11 14.73 9

3 31 21.22 20.97 1.01 1

4 22 21.94 19.24 0.33 2

5 43 92.77 55.19 3.70 13

6 25 6.66 4.91 0.52 5
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Table 9. b = 1.10, k = 0.90 · n, θ = 0.20.

Patient Seeds LP-OPT Cost Time Unmatched

1 67 57.41 57.01 14.17 8

2 67 83.51 75.54 14.48 11

3 31 17.61 19.73 1.01 2

4 22 18.45 19.24 0.32 2

5 43 81.39 55.20 3.64 13

6 25 5.89 4.48 0.51 6

Table 10. b = 1.10, k = 1.00 · n, θ = 0.20.

Patient Seeds LP-OPT Cost Time Unmatched

1 67 71.79 63.12 14.88 5

2 67 100.78 93.04 15.32 4

3 31 21.85 22.58 1.02 0

4 22 22.79 23.82 0.33 0

5 43 104.57 72.66 3.89 13

6 25 7.32 6.69 0.52 2

Table 11. b = 1.00, k = 0.90 · n, θ = 0.20.

Patient Seeds LP-OPT Cost Time Unmatched

1 67 59.93 63.64 14.19 5

2 67 87.51 87.97 14.43 6

3 31 17.94 20.97 1.02 1

4 22 18.92 21.56 0.33 1

5 43 92.40 58.17 3.91 15

6 25 6.48 6.69 0.52 2
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Table 12. b = 1.00, k = 1.00 · n, θ = 0.20.

Patient Seeds LP-OPT Cost Time Unmatched

1 67 80.60 80.60 15.92 0

2 67 170.27 115.10 31.82 8

3 31 22.58 22.58 1.01 0

4 22 23.82 23.82 0.33 0

5 43 199.65 199.65 7.77 0

6 25 8.85 8.85 0.52 0

Table 13. b = 1.20, k = 0.90 · n, θ = 1.00.

Patient Seeds LP-OPT Cost Time Unmatched

1 67 79.80 76.20 14.49 1

2 67 122.16 111.16 15.96 2

3 31 22.58 22.58 1.01 0

4 22 23.78 23.82 0.33 0

5 43 129.47 77.03 4.58 12

6 25 8.80 0.52 0

Table 14. b = 1.20, k = 1.00 · n, θ = 1.00.

Patient Seeds LP-OPT Cost Time Unmatched

1 67 79.80 76.20 14.83 1

2 67 122.16 111.16 16.34 2

3 31 22.58 22.58 1.04 0

4 22 23.78 23.82 0.34 0

5 43 129.47 77.62 4.54 12

6 25 8.80 8.85 0.53 0
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Table 15. b = 1.10, k = 0.90 · n, θ = 1.00.

Patient Seeds LP-OPT Cost Time Unmatched

1 67 80.20 80.60 14.49 0

2 67 125.93 108.72 16.90 3

3 31 22.58 22.58 1.01 0

4 22 23.80 23.82 0.34 0

5 43 142.54 92.19 5.09 11

6 25 8.83 8.85 0.50 0

Table 16. b = 1.10, k = 1.00 · n, θ = 1.00.

Patient Seeds LP-OPT Cost Time Unmatched

1 67 80.20 80.60 15.37 0

2 67 125.93 108.72 17.42 3

3 31 22.58 22.58 1.04 0

4 22 23.80 23.82 0.33 0

5 43 142.54 90.05 4.98 11

6 25 8.83 8.85 0.52 0

Table 17. b = 1.00, k = 0.90 · n, θ = 1.00.

Patient Seeds LP-OPT Cost Time Unmatched

1 67 80.60 80.60 14.74 0

2 67 170.27 111.85 25.48 8

3 31 22.58 22.58 1.01 0

4 22 23.82 23.82 0.33 0

5 43 199.65 199.65 6.50 0

6 25 8.85 8.85 0.52 0
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Table 18. b = 1.00, k = 1.00 · n, θ = 1.00.

Patient Seeds LP-OPT Cost Time Unmatched

1 67 80.60 80.60 14.24 0

2 67 170.27 113.91 25.65 7

3 31 22.58 22.58 0.99 0

4 22 23.82 23.82 0.32 0

5 43 199.65 199.65 6.48 0

6 25 8.85 8.85 0.51 0

5.4 Discussion — implementation vs. theory

With the algorithm Min-(b, k, θ)-Round for θ = 0, we get optimal results
(except Patient 2) if the constraints are most restrictive: b = 1.00, k = 1.00 ·n,
see Table 6. With the algorithm Min-(b, k, θ)-Round for θ > 0, the same
observation holds: optimal results (except Patient 2) are achieved with the
most restrictive constraints: b = 1.00, k = 1.00 ·n, θ = 0.2 (Table 12) and b =
1.00, k = 1.00 ·n, θ = 1.00 (Table 18). Obviously, a high θ can compensate for
a low k, and vice versa (see Table 5 in comparison to 17, and 5 in comparison
to 6).

This clearly shows that the practical results for the instances are much
better than the analysis of Section 4 indicates. However, to close the gap
between theory and practice seems to be a challenging problem in the area
of randomized algorithms, where the so far developed probabilistic tools seem
to be insufficient.

The non-optimal results for Patient 2 could be explained by the bad image
quality of the X-rays and movement of the patient in the time between taking
two different X-rays.

Since it is important to find the correct matching of the seeds and not just
any minimum-weight perfect matching, the question of whether this is the
right matching is legitimate. This is difficult to prove, but results with help
of a graphical 3D-program seem to be promising: we take the proposed seed
positions in 3D and produce pictures, showing how the seeds would lie on the
X-rays if these were the real positions. A comparison between the pictures
and the real X-rays shows that the positions agree.

This observation is supported by the results for the phantom (Patient
6), where we know the seed positions, and where the algorithm returns the
optimal solution, see, e.g., Table 18.

The running times of our algorithm are of the same order of magnitude
as those of the commercial software VariSeed R© presently used at the Clinic
of Radiotherapy. These range between 4 and 20 seconds for instances with
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43 to 82 seeds respectively. However — due to technical and licensing issues —
we had to measure these times on a different computer (different CPU and
operating system, but approximately the same frequency) than the one where
the tests for our algorithm were performed, and we also had no exact method
of measurement available (just a stopwatch). As we are dealing with an of-
fline application, a few seconds in running time are unimportant. Also our
implementation can likely be improved (especially the part for reading in the
large instance files) to gain even a few seconds in running time and possibly
outperform the commercial software with respect to running time.

Our main advantage, however, lies in the quality of the solution delivered.
Our algorithm also delivered the correct solution in certain cases where the
commercial one failed. As shown by Siebert et al. [25], VariSeed R© (versions
6.7/7.1) can compute wrong 3D seed distributions if seeds are arranged in
certain ways, and these errors cannot be explained by the ambiguities inher-
ent to the three-film technique. Our algorithm, however, performs well on the
phantom instance studied in [25] (as well as on the tested patient data, except
for Patient 2, which had a poor image quality). As a consequence, the immi-
gration of our algorithm in the brachytherapy planning process at the Clinic
of Radiotherapy in Kiel is planned.

6 Open problems

Most interesting are the following problems, which we leave open but would
like to discuss in future work.

1. At the moment, we can analyze the randomized rounding algorithm, but
we are not able to analyze the repairing step of the algorithm Min-(b, k, θ)-
Round. But this of course is a major challenge for future work.

2. Can the coverage of Ω
(

k
b

)
in Theorem 7 be improved towards Ω(k)?

3. Can the b-matching lower bound assumption b = Ω(ln(n)) in Theorem 7
be dropped towards b = O(1)?

4. What is the approximation complexity of the minimum-weight perfect
matching problem in hypergraphs? Is there a complexity-theoretic
threshold?
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Summary. Epileptic seizures are manifestations of intermittent spatiotemporal
transitions of the human brain from chaos to order. In this paper, a compara-
tive study involving a measure of chaos, in particular the short-term Lyapunov
exponent (STLmax), a measure of phase (φmax) and a measure of energy (E) is
carried out to detect the dynamical spatial synchronization changes that precede
temporal lobe epileptic seizures. The measures are estimated from intracranial elec-
troencephalographic (EEG) recordings with sub-dural and in-depth electrodes from
two patients with focal temporal lobe epilepsy and a total of 43 seizures. Techniques
from optimization theory, in particular quadratic bivalent programming, are applied
to optimize the performance of the three measures in detecting preictal synchro-
nization. It is shown that spatial synchronization, as measured by the convergence
of STLmax, φmax and E of critical sites selected by optimization versus randomly
selected sites leads to long-term seizure predictability. Finally, it is shown that the
seizure predictability period using ST lmax is longer than that of the phase or energy
synchronization measures. This points out the advantages of using synchronization
of the ST lmax measure in conjunction with optimization for long-term prediction of
epileptic seizures.

Keywords: Quadratic bivalent programming, dynamical entrainment, spa-
tial synchronization, epileptic seizure predictability.



104 S. Sabesan et al.

1 Introduction

Epilepsy is among the most common disorders of the nervous system. It occurs
in all age groups, from infants to adults, and continues to be a considerable
economic burden to society [6]. Temporal lobe epileptic seizures are the most
common types of seizures in adults. Seizures are marked by abrupt transitions
in the electroencephalographic (EEG) recordings, from irregular (chaotic) pat-
terns before a seizure (preictal state) to more organized, rhythmic-like behav-
ior during a seizure (ictal state), causing serious disturbances in the normal
functioning of the brain [10]. The epileptiform discharges of seizures may begin
locally in portions of the cerebral hemispheres (partial/focal seizures, with a
single or multiple foci), or begin simultaneously in both cerebral hemispheres
(primary generalized seizures). After a seizure’s onset, partial seizures may
remain localized and cause relatively mild cognitive, psychic, sensory, motor
or autonomic symptoms (simple partial seizures), or may spread to cause al-
tered consciousness, complex automatic behaviors, bilateral tonic-clonic (con-
vulsive) movements (complex partial seizures) etc.. Generalized seizures cause
altered consciousness at the onset and are associated with a variety of motor
symptoms, ranging from brief localized body jerks to generalized tonic-clonic
activity. If seizures cannot be controlled, the patient experiences major limita-
tions in family, social, educational, and vocational activities. These limitations
have profound effects on the patient’s quality of life, as well as on his or her
family [6]. In addition, frequent and long, uncontrollable seizures may produce
irreversible damage to the brain. A condition called status epilepticus, where
seizures occur continuously and the patient typically recovers only under ex-
ternal treatment, constitutes a life-threatening situation [9].

Until recently, the general belief in the medical community was that epilep-
tic seizures could not be anticipated. Seizures were assumed to occur randomly
over time. The 80s saw the emergence of new signal processing methodologies,
based on the mathematical theory of nonlinear dynamics, optimal to deal with
the spontaneous formation of organized spatial, temporal or spatiotemporal
patterns in various physical, chemical and biological systems [3–5, 13, 40].
These techniques quantify the signal structure and stability from the per-
spective of dynamical invariants (e.g., dimensionality of the signal using the
correlation dimension, or divergence of signal trajectories using the largest
Lyapunov exponent), and were a drastic departure from the signal processing
techniques based on the linear model (Fourier analysis). Applying these tech-
niques on EEG data recorded from epileptic patients, a long-term, progressive,
preictal dynamical change was observed [26, 27]. This observation triggered a
special interest in the medical field towards early prediction of seizures with
the expectation that it could lead to prevention of seizures from occurring,
and therefore to a new mode of treatment for epilepsy. Medical device compa-
nies have already started off designing and implementing intervention devices
for various neurodegenerative diseases (e.g., stimulators for Parkinsonian pa-
tients) in addition to the existing ones for cardiovascular applications (e.g.,



Global optimization and spatial synchronization 105

pacemakers, defibrillators). Along the same line, there is currently an explo-
sion of interest for epilepsy in academic centers and medical industry, with
clinical trials underway to test potential seizure prediction and intervention
methodology and devices for Food and Drug Administration (FDA) approval.

In studies on seizure prediction, Iasemidis et al. [28] first reported a
progressive preictal increase of spatiotemporal entrainment/synchronization
among critical sites of the brain as the precursor of epileptic seizures. The
algorithm used was based on the spatial convergence of short-term maxi-
mum Lyapunov exponents (STLmax) estimated at these critical electrode
sites. Later, this observation was successfully implemented in the prospective
prediction of epileptic seizures [29, 30]. The key idea in this implementation
was the application of global optimization techniques for adaptive selection
of groups of electrode sites that exhibit preictal (before a seizure’s onset)
entrainment. Seizure anticipation times of about 71.7 minutes with a false
prediction rate of 0.12 per hour were reported across patients with temporal
lobe epilepsy.

In the present paper, three different measures of dynamical synchroniza-
tion/entrainment, namely amplitude, phase and STLmax are compared on
the basis of their ability to detect these preictal changes. Due to the current
interest in the field, and the proposed measures of energy and phase as alter-
natives to STLmax [33–36] for seizure prediction, it was deemed important
to comparatively evaluate all three measures’ seizure predictability (antici-
pation) capabilities in a retrospective study. Quadratic integer programming
techniques of global optimization were applied to select critical electrode sites
per measure for every recorded seizure. Results following such an analysis with
43 seizures recorded from two patients with temporal lobe epilepsy showed
that: 1) Critical electrode sites selected on the basis of their synchronization
per measure before a seizure outperform randomly selected ones in the abil-
ity to detect long-term preictal entrainment, and 2) critical sites selected on
the basis of STLmax have longer and more consistent preictal trends before
a majority of seizures than the ones from the other two measures of syn-
chronization. We describe the three measures of synchronization utilized in
the analysis herein in Section 2. In Section 3 we explain the formulation of
a quadratic integer programming problem to select critical electrode sites for
seizure prediction by each of the three measures. Statistical yardsticks used
to quantify the performance of each measure in detecting preictal dynamics
are given in Section 4. Results from the application of these methods to EEG
are presented in Section 5, followed by conclusions in Section 6.

2 Synchronization changes prior to epileptic seizures

There has not been much of an effort to relate the measurable changes that
occur before an epileptic seizure to the underlying synchronization changes
that take place within areas and/or between different areas of the epileptic
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brain. Such information can be extracted by employing methods of spatial
synchronization developed for coupled dynamical systems.

Over the past decade, different frameworks for the mathematical descrip-
tion of synchronization between dynamical systems have been developed,
which subsequently have led to the proposition of different concepts of syn-
chronization [12, 14, 19, 21]. Apart from the case of complete synchronization,
where the state variables x1 and x2 of two approximately identical, strongly
coupled systems 1 and 2 attain identical values (x1(t) = x2(t)), the term lag
synchronization has been used to describe the case where the state variables
of two interacting systems 1 and 2 attain identical values with a time lag
(x1(t) = x2(t + τ)) [42, 43]. The classical concept of phase synchronization
was extended from linear to nonlinear and even chaotic systems by defining
corresponding phase variables φ1, φ2 (see Section 2.2) [43]. The concept of
generalized synchronization was introduced to cope with systems that may
not be in complete, lag or phase synchronization, but nevertheless depend
on each other (e.g., driver-response systems) in a more complicated manner.
In this case, the state variables of the systems are connected through a par-
ticular functional relationship [2, 44]. Finally, a new type of synchronization
that is more in alignment with the generalized synchronization was introduced
through our work on the epileptic brain [24, 39]. We called it dynamical en-
trainment (or dynamical synchronization). In this type of synchronization,
measures of dynamics of the systems involved attain similar values. We have
shown the existence of such a behavior through measures of chaos (STLmax)
at different locations of the epileptic brain long prior to the onset of seizures.
Measures for each of these types of synchronization have been tested on mod-
els and real systems. In the following subsections, we present three of the
most frequently utilized dynamical measures of EEG and compare their per-
formance in the detection of synchronization in the epileptic human brain.

2.1 Measure of energy (E) profiles

A classical measure of a signal’s strength is calculated as the sum of its am-
plitudes squared over a time period T = N∆t,

E =
T∑

k=1

x2 (i · ∆t) (1)

where ∆t is the sampling period, t = i · ∆t and xi are the amplitude values
of a scalar, real valued, sampled x signal in consideration. For EEG analysis,
the Energy (E) values are calculated over consecutive non-overlapping win-
dows of data, each window of T second in duration, from different locations in
the brain over an extended period of time. Examples of E profiles over time
from two electrode sites that show entrainment before a seizure are given in
Figures 1(a) and 2(a) (left panels) for Patient 1 and 2 respectively. The highest
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Fig. 1. Long-term synchronization prior to a seizure (Patient 1; seizure 15). Left
Panels: (a) E profiles over time of two electrode sites (LST1, LOF2) selected to be
mostly synchronized 10 min prior to the seizure. (b) φmax profiles of two electrode
sites (RST1, ROF2) selected to be mostly synchronized 10 min prior to the seizure.
(c) STLmax profiles of two electrode sites (RTD3, LOF2) selected to be mostly syn-
chronized 10 min prior to the seizure (seizure’s onset is depicted by a vertical line).
Right Panels: Corresponding T-index curves for the sites and measures depicted
in the left panels. Vertical lines illustrate the period over which the effect of the
ictal period is present in the estimation of the T-index values, since 10 min windows
move forward in time every 10.24 sec over the values of the measure profiles in the
left panels. Seizure lasted for 2 minutes, hence the period between vertical lines is
12 minutes.

E values were observed during the ictal period. This pattern roughly corre-
sponds to the typical observation of higher amplitudes in the original EEG
signal ictally (during a seizure). As we show below (Section 3), even though
no other discernible characteristics exist in each individual E profile per elec-
trode, synchronization trends between the E profiles across electrodes over
time in the preictal period exist.

2.2 Measure of maximum phase (φmax) profiles

The notion of phase synchronization was introduced by Huygens [22] in the
17th century for two coupled frictionless harmonic oscillators oscillating at
different angular frequencies of ω1 and ω2 respectively, such thatω1

ω2
= m

n . In
this classical case, phase synchronization is usually defined as the locking of
the phases of the two oscillators:

ϕn,m = nφ1(t) − mφ2(t) = constant (2)
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Fig. 2. Long-term synchronization prior to a seizure (Patient 2; seizure 5). Left
Panels: (a) E profiles over time of two electrode sites (RST1, LOF2) selected to be
mostly synchronized 10 min prior to the seizure. (b) φmax profiles of two electrode
sites (RTD1, LOF3) selected to be mostly synchronized 10 min prior to the seizure.
(c) STLmax profiles of two electrode sites (RTD2, ROF3) selected to be mostly syn-
chronized 10 min prior to the seizure (seizure’s onset is depicted by a vertical line).
Right Panels: Corresponding T-index curves for the sites and measures depicted
in the left panels. Vertical lines illustrate the period over which the effect of the ictal
period is present in the estimation of the T-index values, since 10 min windows move
forward every 10.24 sec over the values of the measures in the left panels. Seizure
lasted 3 minutes, hence the period between vertical lines is 13 minutes.

where n and m are integers, φ1 and φ2 denote the phases of the oscillators,
and ϕn,m is defined as their relative phase. In order to investigate synchro-
nization in chaotic systems, Rosenblum et al. [42] relaxed this condition of
phase locking by a weaker condition of phase synchronization (since ω1

ω2
may

be an irrational real number and each system may contain power and phases
at many frequencies around one dominant frequency):

|ϕn,m| = |nφ1(t) − mφ2(t)| < constant. (3)

The estimation of instantaneous phases φ1(t) and φ2(t) is nontrivial for many
nonlinear model systems, and even more difficult when dealing with noisy time
series of unknown characteristics. Different approaches have been proposed
in the literature for the estimation of instantaneous phase of a signal. In the
analysis that follows, we take the analytic signal approach for phase estimation
[15, 38] that defines the instantaneous phase of an arbitrary signal s(t) as

φ(t) = arctan
s̃(t)
s(t)

(4)
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where

s̃(t) =
1
π

P.V.

∫ +∞

−∞

s(τ)
t − τ

dτ (5)

is the Hilbert transform of the signal s(t) (P.V. denotes the Cauchy Principal
Value). From Equation (5), the Hilbert transform of the signal can be inter-
preted as a convolution of the signal s(t) with a non-causal filter h(t) = 1/πt.
The Fourier transform H(ω) of h(t) is −jsgn(ω) where sgn(ω) is often called
the signum function and

sgn(ω) =

⎧⎪⎪⎨⎪⎪⎩
1, ω > 0,

0, ω = 0,

1, ω < 0.

(6)

Hence, Hilbert transformation is equivalent to a type of filtering of s(t) in
which amplitudes of the spectral components are left unchanged, while their
phases are altered by π/2, positively or negatively according to the sign of
ω. Thus, s̃(t) can then be obtained by the following procedure. First, a one-
sided spectrum Z(ω) in which the negative half of the spectrum is equal to
zero is created by multiplying the Fourier transform S(ω) of the signal s(t)
with that of the filter H(ω) (i.e., Z(ω) = S(ω)H(ω)). Next, the inverse Fourier
transform of Z(ω) is computed to obtain the complex-valued “analytic” signal
z(t). Since Z(ω) only has a positive-sided spectrum, z(t) is given by:

z(t) =
1
2π

∫ +∞

−∞
Z(ω)dω =

1
2π

∫ +∞

0

Z(ω)dω. (7)

The imaginary part of z(t) then yields s̃(t). Mathematically, s̃(t) can be com-
pactly represented as

s̃(t) = −i
1
2π

∫ +∞

0

(S(ω)H(ω))dω. (8)

It is important to note that the arctangent function used to estimate the
instantaneous phase in Equation (4) could be either a two-quadrant inverse
tangent function (ATAN function in MATLAB) or a four-quadrant inverse
tangent function (ATAN2 function in MATLAB). The ATAN function gives
phase values that are restricted to the interval [−π/2, +π/2] and, on exceeding
the value of +π/2, fall to the value of −π/2 twice in each cycle of oscillation,
while the ATAN2 function when applied to the same data gives phase values
that are restricted to the interval [−π, +π] and, on exceeding the value of +π,
fall to the value of −π once during every oscillation’s cycle. In order to track
instantaneous phase changes over long time intervals, this generated disjoint
phase sequence has to be “unwrapped” [41] by adding either π, when using
the ATAN function, or 2π, when using the ATAN2 function, at each phase
discontinuity. Thus a continuous phase profile φ(t) over time can be generated.
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The φ(t) from EEG data were estimated within non-overlapping moving
windows of 10.24 seconds in duration per electrode site. Prior to the calcula-
tion of phase, to avoid edge effects in the estimation of the Fourier transform,
each window was tapered with a Hamming window before Fourier transform-
ing the data. Per window, a set of phase values are generated that are equal
in number to the number of data points in this window. The maximum phase
value (φmax), minimum phase value (φmin), mean phase value (φmean) and
the standard deviation of the phase values (φstd) were estimated per win-
dow. Only the dynamics of φmax were subsequently followed over time herein,
because they were found to be more sensitive than the other three phase
measures to dynamical changes before seizures.

Examples of synchronized φmax profiles over time around a seizure in Pa-
tients 1 and 2 are given in the left panels of Figures 1(b) and 2(b) respectively.
The preictal, ictal and postictal states correspond to medium, high and low
values of φmax respectively. The highest φmax values were observed during
the ictal period, and higher φmax values were observed during the preictal
period than during the postictal period. This pattern roughly corresponds to
the typical observation of higher frequencies in the original EEG signal ictally,
and lower EEG frequencies postictally.

2.3 Measure of chaos (STLmax) profiles

Under certain conditions, through the method of delays described by Packard
et al. [37] and Takens [46], sampling of a single variable of a system over
time can determine all state variables of the system that are related to the
observed state variable. In the case of the EEG, this method can be used to
reconstruct a multidimensional state space of the brain’s electrical activity
from a single EEG channel at the corresponding brain site. Thus, in such
an embedding, each state in the state space is represented by a vector X(t),
whose components are the delayed versions of the original single-channel EEG
time series x(t), that is:

X(t) = (x(t), x(t + τ), . . . , x(t + (d − 1)τ)) (9)

where τ is the time delay between successive components of X(t) and d is
a positive integer denoting the embedding dimension of the reconstructed
state space. Plotting X(t) in the thus created state space produces the state
portrait of a spatially distributed system at the subsystem (brain’s location)
where x(t) is recorded from. The most complicated steady state a nonlinear
deterministic system can have is a strange and chaotic attractor, whose com-
plexity is measured by its dimension D, and its chaoticity by its Kolmogorov
entropy (K) and Lyapunov exponents (Ls) [16, 17]. A steady state is chaotic
if at least the maximum of all Lyapunov exponents (Ls) is positive.

According to Takens, in order to properly embed a signal in the state space,
the embedding dimension d should at least be equal to (2D +1). Of the many
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different methods used to estimate D of an object in the state space, each
has its own practical problems [32]. The measure most often used to estimate
D is the state space correlation dimension ν. Methods for calculating ν from
experimental data have been described in [1] and were employed in our work to
approximate D in the ictal state. The brain, being nonstationary, is never in a
steady state at any location in the strict dynamical sense. Arguably, activity at
brain sites is constantly moving through “steady states,” which are functions
of certain parameter values at a given time. According to bifurcation theory
[18], when these parameters change slowly over time, or the system is close to
a bifurcation, dynamics slow down and conditions of stationarity are better
satisfied. In the ictal state, temporally ordered and spatially synchronized
oscillations in the EEG usually persist for a relatively long period of time (in
the range of minutes). Dividing the ictal EEG into short segments ranging
from 10.24 sec to 50 sec in duration, the estimation of ν from ictal EEG
has produced values between 2 and 3 [25, 45], implying the existence of a
low-dimensional manifold in the ictal state, which we have called “epileptic
attractor.” Therefore, an embedding dimension d of at least 7 has been used
to properly reconstruct this epileptic attractor.

Although d of interictal (between seizures) “steady state” EEG data is
expected to be higher than that of the ictal state, a constant embedding
dimension d = 7 has been used to reconstruct all relevant state spaces over
the ictal and interictal periods at different brain locations. The advantages
of this approach are that a) existence of irrelevant information in dimensions
higher than 7 might not influence much the estimated dynamical measures,
and b) reconstruction of the state space with a low d suffers less from the short
length of moving windows used to handle stationary data. The disadvantage
is that relevant information to the transition to seizures in higher dimensions
may not be captured.

The Lyapunov exponents measure the information flow (bits/sec) along
local eigenvectors of the motion of the system within such attractors. Theoret-
ically, if the state space is of d dimensions, we can estimate up to d Lyapunov
exponents. However, as expected, only D + 1 of these will be real. The others
are spurious [38]. Methods for calculating these dynamical measures from ex-
perimental data have been published in [26, 45]. The estimation of the largest
Lyapunov exponent (Lmax) in a chaotic system has been shown to be more
reliable and reproducible than the estimation of the remaining exponents [47],
especially when D is unknown and changes over time, as in the case of high-
dimensional and nonstationary EEG data. A method developed to estimate an
approximation of Lmax from nonstationary data is called STL (Short-term
Lyapunov) [25, 26]. The STLmax, defined as the average of the maximum
local Lyapunov exponents in the state space, can be calculated as follows:

STLmax =
1

Na∆t

Na∑
i=1

log2
|δXi,j(∆t)|
|δXi,j(0)| (10)
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where δXi,j(0) = X(ti)−X(tj) is the displacement vector at time ti, that is,
a perturbation of the vectors X(ti) in the fiducial orbit at ti, and δXi,j(∆t) =
X(ti + ∆t) − X(tj + ∆t) is the evolution of this perturbation after time ∆t.
∆t is the evolution time for δXi,j , that is, the time one allows for δXi,j to
evolve in the state space. Temporal and spatial constraints for the selection of
the neighbor X(tj) of X(ti) are applied in the state space. These constraints
were necessary for the algorithm to work under the presence of transients in
the EEG (e.g., epileptic spikes) (for details see [25]). If the evolution time ∆t
is given in seconds, STLmax has units of bits per second. Na is the number
of local Lyapunov exponents that are estimated within a duration T of the
data segment. Therefore, if ∆t is the sampling period for the time domain
data, T = (N −1)∆t ≈ Na∆t− (d−1)τ . The STLmax algorithm is applied to
sequential EEG epochs of 10.24 seconds recorded from electrodes in multiple
brain sites to create a set of STLmax profiles over time (one STLmax profile
per recording site) that characterize the spatio-temporal chaotic signature
of the epileptic brain. Long-term profiles of STLmax, obtained by analysis of
continuous EEG at two electrode sites in patients 1 and 2, are shown in the left
panels of Figures 1(c) and 2(c) respectively. These figures show the evolution
of STLmax as the brain progresses from interictal to ictal to postictal states.
There is a gradual drop in STLmax values over tens of minutes preceding
a seizure at some sites, with no observable gradual drops at other sites. The
seizure is characterized by a sudden drop in STLmax values with a consequent
steep rise in STLmax. This behavior of STLmax indicates a gradual preictal
reduction in chaoticity at some sites, reaching a minimum within the seizure
state, and a postictal rise in chaoticity that corresponds to the reversal of the
preictal behavior. What is most interesting and consistent across seizures and
patients is an observed synchronization of STLmax values between electrode
sites prior to a seizure. We have called this phenomenon preictal dynamical
entrainment, and it has constituted the basis for the development of epileptic
seizure prediction algorithms [7, 23, 29–31].

2.4 Quantification of synchronization

A statistical distance between the values of dynamical measures at two chan-
nels i and j estimated per EEG data segment is used to quantify the synchro-
nization between these channels. Specifically, the Tij between electrode sites
i and j for each measure STLmax, E and φmax at time t is defined as:

T t
ij =

|Dt

ij |
σ̂t

ij/
√

m
(11)

where D
t

ij and σ̂t
ij denote the sample mean and standard deviation respec-

tively of all m differences between a measure’s values at electrodes i and j
within a moving window wt = [t − m ∗ 10.24sec] over the measure profiles.
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If the true mean µt
ij of the differences Dt

ij is equal to zero, and σt
ij are in-

dependent and normally distributed, T t
ij is asymptotically distributed as the

t-distribution with (m − 1) degrees of freedom. We have shown that these
independence and normality conditions are satisfied [30]. We define desyn-
chronization between electrode sites i and j when µt

ij is significantly different
from zero at a significance level α. The desynchronization condition between
the electrode sites i and j, as detected by the paired t-test, is

T t
ij > tα/2,m−1 = Tth (12)

where tα/2,m−1 is the 100(1 − α/2) critical value of the t-distribution with
m−1 degrees of freedom. If T t

ij ≤ tα/2,m−1 (which means that we do not have
satisfactory statistical evidence at the α level for the differences of values of a
measure between electrode sites i and j within the time window wt to be not
zero), we consider sites i and j to be synchronized with each other at time t.
Using α = 0.01 and m = 60, the threshold Tth = 2.662. It is noteworthy that
similar STLmax, E or φmax values at two electrode sites do not necessarily
mean that these sites also interact. However, when there is a progressive con-
vergence over time of the measures at these sites, the probability that they
are unrelated diminishes. This is exactly what occurs before seizures, and it is
illustrated in the right panels of Figures 1 and 2 for all the three measures con-
sidered herein. A progressive synchronization in all measures, as quantified by
Tij , is observed preictally. Note that synchronization occurs at different sites
per measure. The sites per measure are selected according to the procedure
described below in Section 3.

3 Optimization of spatial synchronization

Not all brain sites are progressively synchronized prior to a seizure. The se-
lection of the ones that do (critical sites) is a global optimization problem
that minimizes the distance between the dynamical measures at these sites.
For many years, the Ising model [8] has been a powerful tool for studying
phase transitions in statistical physics. The model is described by a graph
G(V, E) having n vertices {v1, . . . , vn} with each edge e(i, j) ∈ E having a
weight Jij (interaction energy). Each vertex vi has a magnetic spin variable
σi ∈ {−1, +1} associated with it. A spin configuration σ of minimum energy
is obtained by minimizing the Hamiltonian:

H(σ) =
∑

1≤i≤j≤n

Jijσiσj over all σ ∈ {−1, +1}n
. (13)

This optimization problem is equivalent to the combinatorial problem of
quadratic bivalent programming. Its solution gives vertices with proper spin at
the global minimum energy. Motivated by the application of the Ising model
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to phase transitions, we have adapted quadratic bivalent (zero-one) program-
ming techniques to optimally select the critical electrode sites during the pre-
ictal transition [23, 30] that minimize the objective function of the distance
of STLmax, E or φmax between pairs of brain sites.

More specifically, we considered the integer bivalent 0-1 problem:

min xtTx with x ∈ (0, 1)n s.t.
n∑

i=1

xi = k (14)

where n is the total number of available electrode sites, k is the number of
sites to be selected, and xi are the (zero/one) elements of the n-dimensional
vector x. The elements of the T matrix, Tij , i = 1, . . . , n and j = 1, . . . , n
were previously defined in Equation (10). If the constraint in Equation (12)
is included in the objective function xtTx by introducing the penalty

µ =
n∑

j=1

n∑
i=1

|Tij | + 1, (15)

the above optimization problem in Equation (12) becomes equivalent to an
unconstrained global optimization problem

min

⎡⎣xtTx + µ

(
n∑

i=1

xi − k

)2
⎤⎦ , where x ∈ (0, 1)n . (16)

The electrode site i is selected if the corresponding element x∗
i in the

n-dimensional solution x∗ of Equation (14) is equal to 1.
The optimization for the selection of critical sites was performed in the

preictal window w1(t∗) = [t∗, t∗ − 10 min] over a measure’s profiles, where
t∗ is the time of a seizure’s onset, separately for each of the three considered
measures. For k = 5, the corresponding T-index is depicted in Figures 3 and
4. After the optimal sites selection, the average T-index across all possible
pairs of the selected sites is generated and followed backward in time from
each seizure’s onset t∗. In the following sections, for simplicity, we denote
these spatially averaged T-index values by“T-index.” In the estimation of the
average T-index curves depicted in Figures 3 and 4 for a seizure recorded from
Patients 1 and 2, the 5 critical sites selected from the E profiles were [LST1,
LOF2, ROF1, RST1, ROF2] and [LST1, LOF2, LST3, RST1, RTD1]; from
the STLmax profiles [RST1, ROF2, RTD2, RTD3, LOF2] and [RST3, LOF3,
RTD3, RTD4, ROF2], and [LST2, LOF2, ROF2, RTD1, RTD2] and [LOF1,
LOF2, LTD1, RST2, RTD3] from the φmax profiles (see Figure 6 for the elec-
trode montage). These T-index trends are then compared with the average

T-index of 100 non-optimal sites, selected randomly over the space of
(n
5
)

tuples of five sites (n is the maximum amount of available recording sites).

The algorithm for random selection of one tuple involves generation of
(n
5
)
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Fig. 3. Dynamical synchronization of optimal vs. non-optimal sites prior to a seizure
(Patient 1; seizure 15). (a) The T-index profile generated by the E profiles of five
optimal (critical) electrode sites selected by the global optimization technique 10
minutes before the seizure (solid line) and the average of the T-index profiles of 100
tuples of five randomly selected ones (non-optimal) (dotted line). (b) The T-index
profile generated by the φmax profiles of five optimal (critical) electrode sites selected
by the global optimization technique 10 minutes before the seizure (solid line) and
the average of the T-index profiles of 100 tuples of five randomly selected ones (non-
optimal) (dotted line). (c) The T-index profile generated by the STLmax profiles of
five optimal (critical) electrode sites selected by the global optimization technique 10
minutes before the seizure (solid line) and, for illustration purposes only, the average
of the T-index profiles of 100 tuples of five randomly selected ones (non-optimal)
(dotted line). Vertical lines in the figure represent the ictal state of the seizure that
lasted -2 minutes.

Gaussian random numbers between 0 and 1 and reordering of the T-indices of
tuples of five sites according to the order indicated by the generated random
number values, and finally, selection of the top tuple from the sorted list of
tuples. Repetition of the algorithm with 100 different SEEDs gives 100 differ-
ent randomly selected tuples of 5 sites per seizure. For comparison purposes,
the T-index profile of these non-optimal tuples of sites, averaged across all
100 randomly selected tuples of sites, is also shown in Figures 3 and 4.
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Fig. 4. Dynamical synchronization of optimal vs. non-optimal sites prior to a seizure
(Patient 2; seizure 5). (a) The T-index profile generated by the E profiles of five
optimal (critical) electrode sites selected by the global optimization technique 10
minutes before the seizure (solid line) and the average of the T-index profiles of
100 tuples of five randomly selected ones (non-optimal) (dotted line). (b) The T-
index profile generated by the φmax profiles of five optimal (critical) electrode sites
selected by the global optimization technique 10 minutes before the seizure (solid
line) and the average of the T-index profiles of 100 tuples of five randomly selected
ones (non-optimal) (dotted line). (c) The T-index profile generated by the STLmax

profiles of five optimal (critical) electrode sites selected by the global optimization
technique 10 minutes before the seizure (solid line) and, for illustration purposes
only, the average of the T-index profiles of 100 tuples of five randomly selected ones
(non-optimal) (dotted line). Vertical lines in the figure represent the ictal state of
the seizure, that lasted 3 minutes.

4 Estimation of seizure predictability time

The predictability time Tp for a given seizure is defined as the period be-
fore a seizure’s onset during which synchronization between critical sites is
highly statistically significant (i.e., T-index< 2.662 = Tth). Each measure of
synchronization gives a different Tp for a seizure. To compensate for possible
oscillations of the T-index profiles, we smooth it with a window w2(t) moving
backward in time from the seizure’s onset. The length of this window is the
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Fig. 5. Estimation of the seizure predictability time Tp. The time average T-index
within the moving window w2(t) on the T-index profiles of the critical sites selected
as being mostly entrained in the 10-min preictal window w1(t) is continuously
estimated moving backwards from the seizure onset. When the time average T-index
is > Tth = 2.662, Tp is set equal to the right endpoint of w2.

same as the one of w1(t), in order for the Tth to be the same. Then Tp is
estimated by the following procedure:

The time average of the T-index within a 10 minute moving window,
w2(t) = [t, t − 10 min] (the t decreases from the time t∗ of the seizure’s
onset up to (t∗ − t) = 3 hours) is continuously estimated until the average
of the T-index within a window w2(t) is less than or equal to Tth. When
t = t0 : T-index > Tth, the Tp = t∗− t0. This predictability time estimation is
portrayed in Figure 5. The longer the Tp, the longer the observed synchroniza-
tion prior to a seizure. Comparison of the estimated Tp by the three measures
STLmax, E, φmax is given in the next section.

5 Results

5.1 EEG data

A total of 43 seizures (see Table 1) from two epileptic patients with temporal
lobe epilepsy were analyzed by the methodology described above. The EEG
signals were recorded from six different areas of the brain by 28 electrodes (see
Figure 6 for the electrode montage). Typically, 3 hours before (preictal period)
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Table 1. Patients and EEG data characteristics.

Patient ID Number of
electrode sites

Location of
epilepto-
genic
focus

Seizure
types

Duration
of EEG
recordings
(days)

Number
of seizures
recorded

1 28 RTD C 9.06 24

2 28 RTD C & SC 6.07 17

Fig. 6. Schematic diagram of the depth and subdural electrode placement. This view
from the inferior aspect of the brain shows the approximate location of depth elec-
trodes, oriented along the anterior-posterior plane in the hippocampi (RTD - right
temporal depth, LTD - left temporal depth), and subdural electrodes located be-
neath the orbitofrontal and subtemporal cortical surfaces (ROF - right orbitofrontal,
LOF left orbitofrontal, RST- right subtemporal, LST- left subtemporal).

and 1 hour after (postictal period) each seizure were analyzed with the meth-
ods described in Sections 2, 3 and 4, in search of dynamical synchronization
and estimation of seizure predictability periods.

The patients in the study underwent a stereotactic placement of bilateral
depth electrodes (RTD1 to RTD6 in the right hippocampus, with RTD1 ad-
jacent to right amygdala; LTD1 to LTD6 in the left hippocampus with the
LTD1 adjacent to the left amygdala; the rest of the LTD, RTD electrodes
are extending posterior through the hippocampi. Two subdural strip elec-
trodes were placed bilaterally over the orbitofrontal lobes (LOF1 to LOF4
in the left and ROF1 to ROF4 in the right lobe, with LOF1, ROF1 being
most mesial and LOF4, ROF4 most lateral). Two subdural strip electrodes
were placed bilaterally over the temporal lobes (LST1 to LST4 in the left and
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RST1 to RST4 in the right, with LST1, RST1 being more mesial and LST4
and RST4 being more lateral). Video/EEG monitoring was performed using
the Nicolet BMSI 4000 EEG machine. EEG signals were recorded using an
average common reference with band pass filter settings of 0.1 Hz - 70 Hz. The
data were sampled at 200Hz with a 10-bit quantization and recorded on VHS
tapes continuously over days via three time-interleaved VCRs. Decoding of
the data from the tapes and transfer to computer media (hard disks, DVDs,
CD-ROMs) was subsequently performed off-line. The seizure predictability
analysis also was performed retrospectively (off-line).

5.2 Predictability of epileptic seizures

For each of the 43 recorded seizures, the five most synchronized sites were
selected within 10 minutes (window w1(t)) prior to each seizure onset by the
optimization procedure described in Section 3 (critical sites). The spatially
averaged T-index profiles over these critical sites were estimated per seizure.
Then, the predictability time of Tp for each seizure and dynamical measure,
according to the procedure described in Section 4, was estimated. Using Equa-
tion (15), predictability times were obtained for all 43 recorded seizures from
the two patients for each of the three dynamical measures. The algorithm
for estimation of Tp delivered visually agreeable predictability times for all
profiles that decrease in a near-monotonic fashion. The average predictability
time obtained across seizures in our analysis for Patients 1 and 2 were 61.6
and 71.69 minutes respectively (see Table 3). The measure of classical energy,
applied to single EEG channels, was shown before to lack consistent predica-
tive ability for a seizure [11, 20]. Furthermore, its predictive performance was
shown to deteriorate by postictal changes and changes during sleep-wake cy-
cles [34]. By studying the spatiotemporal synchronization of the energy profiles
between multiple EEG signals, we found average predictability times of 13.72
and 27.88 minutes for Patients 1 and 2 respectively, a significant improvement
in their performance over what has been reported in the literature. For the
measure of phase synchronization, the average predictability time values were
39.09 and 47.33 minutes for Patients 1 and 2 respectively. The study of the
performance of all the three measures in a prospective fashion (prediction) is
currently underway.

Improved predictability via global optimization

Figures 3 and 4 show the T-index profiles generated by STLmax, E and φmax

profiles (solid line) of five optimal (critical) electrode sites selected by the
global optimization technique and five randomly selected ones (non-optimal)
(dotted line) before a seizure. In these figures, a trend of T-index profiles
toward low values (synchronization) can be observed preictally only when
optimal sites were selected for a synchronization measure. The null hypoth-
esis that the obtained average value of Tp from the optimal sites across all
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seizures is statistically smaller or equal to the average Tp from the randomly
selected ones was then tested. Tp values were obtained for a total of 100 ran-
domly selected tuples of five sites per seizure per measure. Using a two-sample
t-test for every measure, the null hypothesis that the Tpopt values (Average
Tp values obtained from optimal electrode sites) were greater than the mean
of the Tprandom values (Average Tp values obtained from randomly selected
electrode sites) was tested at α = 0.01 (2422 degrees of freedom for the t-test
in Patient 1, that is 100 random tuples of sites per seizure for all 24 seizures -
1 (2399 degrees of freedom) + one optimal tuple of sites per seizure for all
24 seizures-1 (23 degrees of freedom); similarly 1917 degrees of freedom for
Patient 2). The Tpopt values were significantly larger than the Tprandom values
for all three measures (see Tables 2 and 3). This result was consistent across
both patients and further supports the hypothesis that the spatiotemporal
dynamics of synchronization of critical (optimal) brain sites per synchroniza-
tion measure should be followed in time to observe significant preictal changes
predictive of an upcoming seizure.

Table 2. Mean and standard deviation of seizure predictability time Tp of 100
groups of five randomly selected sites per seizure and measure in Patients 1 and 2.

Tprandom(minutes)

Measure Patient 1(24 seizures) Patient 2(19 seizures)

Mean std. Mean std.

STLmax 7.60 9.50 10.69 12.62

E 6.72 7.10 7.98 8.97

φmax 7.09 6.05 7.03 9.04

Table 3. Mean and standard deviation of seizure predictability time Tp of optimal
sites per measure across all seizures in Patients 1 and 2. Statistical comparison with
Tp from 100 groups of non-optimal sites.

Tpopt(minutes)

Measure Patient 1(24 seizures) Patient 2(19 seizures)

Mean std. P (Tpopt ≤ Tprandom) Mean std. P (Tpopt ≤ Tprandom)

STLmax 61.60 45.50 P < 0.0005 71.69 33.62 P < 0.0005

E 13.72 11.50 P < 0.002 27.88 26.97 P < 0.004

φmax 39.09 20.88 P < 0.0005 47.33 33.34 P < 0.0005
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Comparative performance of energy, phase and STLmax measures
in detection of preictal synchronization

Dynamical synchronization using STLmax consistently resulted to longer pre-
dictability times Tp than the ones by the other two measures (See Table 3).
Among the other two measures, the phase synchronization measure outper-
formed the linear, energy-based measure and, for some seizures, it even had
comparable performance to that of STLmax-based synchronization. These re-
sults are consistent with the synchronization observed in coupled non-identical
chaotic oscillator models: an increase in coupling between two oscillators
initiates generalized synchronization (best detected by STLmax), followed
by phase synchronization (detected by phase measures), and upon further
increase in coupling, amplitude synchronization (detected by energy mea-
sures) [2, 14, 42, 43].

6 Conclusion

The results of this study show that the analyzed epileptic seizures could be
predicted only if optimization and synchronization were combined. The key
underlying principle for such a methodology is the existence of dynamical
entrainment among critical sites of the epileptic brain prior to seizures. Syn-
chronization of non-critical sites does not show any statistical significance for
seizure prediction and inclusion of these sites may mask the phenomenon. This
study suggests that it may be possible to predict focal-onset epileptic seizures
by analysis of linear, as well as nonlinear, measures of dynamics of multi-
channel EEG signals (namely the energy, phase and Lyapunov exponents),
but at different time scales.

Previous studies by our group have shown that a preictal transition ex-
ists, in which the values of the maximum Lyapunov exponents (STLmax) of
EEG recorded from critical electrode sites converge long before a seizure’s
onset [26]. The electrode sites involved in such a dynamical spatiotemporal
interaction vary from seizure to seizure even in the same patient. Thus, the
ability to predict a given seizure depends upon the ability to identify the
critical electrode sites that participate in the preictal period of that seizure.
Similar conclusions can be derived from the spatiotemporal analysis of the
EEG with the measures of energy and phase employed herein.

By applying a quadratic zero-one optimization technique for the selection
of critical brain sites from the estimated energy and the maximum phase pro-
files, we demonstrated that mean predictability times of 13 to 20 minutes for
the energy and 36 to 43 minutes for the phase are attained, which are smaller
than the ones obtained from the employment of the STLmax measure. For
example, the mean predictability time across the two patients for the mea-
sure of phase (43.21 minutes) and energy (20.88 minutes) was worse than that
of the STLmax (66.64 minutes). In the future, we plan to further study the
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observed spatiotemporal synchronization and the long-term predictability pe-
riods before seizures. For example, it would be worthy to investigate if similar
synchronization exists at time points of the EEG recordings unrelated to the
progression to seizures. Such a study will address how specific our present
findings are to epileptic seizures. The proposed measures may also become
valuable for on-line, real-time seizure prediction. Such techniques could be in-
corporated into diagnostic and therapeutic devices for long-term monitoring
and treatment of epilepsy. Potential diagnostic applications include a seizure
warning system from long-term EEG recordings in a hospital setting (e.g., in
a diagnostic epilepsy monitoring unit). This type of system could be used to
timely warn the patient or professional staff of an impending seizure in order
to take precaution measures or to trigger certain preventive action. Also, such
a seizure warning algorithm, being implemented in digital signal processing
chips, could be incorporated into implantable therapeutic devices to timely
activate deep brain stimulators (DBS) or implanted drug-release reservoirs
to interrupt the route of the epileptic brain towards seizures. These types of
devices, if they are adequately sensitive and specific to impending seizures,
could revolutionize the treatment of epilepsy.
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Summary. We present novel optimization-based classification models that are gen-
eral purpose and suitable for developing predictive rules for large heterogeneous
biological and medical data sets. Our predictive model simultaneously incorporates
(1) the ability to classify any number of distinct groups; (2) the ability to incorporate
heterogeneous types of attributes as input; (3) a high-dimensional data transforma-
tion that eliminates noise and errors in biological data; (4) the ability to incorporate
constraints to limit the rate of misclassification, and a reserved-judgment region
that provides a safeguard against over-training (which tends to lead to high mis-
classification rates from the resulting predictive rule); and (5) successive multi-stage
classification capability to handle data points placed in the reserved judgment re-
gion. Application of the predictive model to a broad class of biological and medical
problems is described. Applications include: the differential diagnosis of the type of
erythemato-squamous diseases; genomic analysis and prediction of aberrant CpG
island meythlation in human cancer; discriminant analysis of motility and morphol-
ogy data in human lung carcinoma; prediction of ultrasonic cell disruption for drug
delivery; identification of tumor shape and volume in treatment of sarcoma; mul-
tistage discriminant analysis of biomarkers for prediction of early atherosclerosis;
fingerprinting of native and angiogenic microvascular networks for early diagnosis of
diabetes, aging, macular degeneracy and tumor metastasis, and prediction of pro-
tein localization sites. In all these applications, the predictive model yields correct
classification rates ranging from 80% to 100%. This provides motivation for pursuing
its use as a medical diagnostic, monitoring and decision-making tool.

Keywords: Classification, prediction, predictive health, discriminant analy-
sis, machine learning, discrete support vector machine, multi-category classi-
fication models, optimization, integer programming, medical diagnosis.
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1 Introduction

A fundamental problem in discriminant analysis, or supervised learning, con-
cerns the classification of an entity into one of G(G ≥ 2) a priori, mutually
exclusive groups based upon k specific measurable features of the entity. Typ-
ically, a discriminant rule is formed from data collected on a sample of entities
for which the group classifications are known. Then new entities, whose classi-
fications are unknown, can be classified based on this rule. Such an approach
has been applied in a variety of domains, and a large body of literature on
both the theory and applications of discriminant analysis exists (e.g., see the
bibliography in [60]).

In experimental biological and medical research, very often, experiments
are performed and measurements are recorded under different conditions
and/or on different cells/molecules. A critical analysis involves the discrim-
ination of different features under different conditions that will reveal po-
tential predictors for biological and medical phenomena. Hence, classification
techniques play an extremely important role in biological analysis, as they
facilitate systematic correlation and classification of different biological and
medical phenomena. A resulting predictive rule can assist, for example, in
early disease prediction and diagnosis, identification of new target sites (ge-
nomic, cellular, molecular) for treatment and drug delivery, disease prevention
and early intervention, and optimal treatment design.

There are five fundamental steps in discriminant analysis: a) Determine
the data for input and the predictive output classes. b) Gather a training set
of data (including output class) from human experts or from laboratory ex-
periments. Each element in the training set is an entity with a corresponding
known output class. c) Determine the input attributes to represent each en-
tity. d) Identify discriminatory attributes and develop the predictive rule(s);
e) Validate the performance of the predictive rule(s).

In our Center for Operations Research in Medicine, we have developed
a general-purpose discriminant analysis modeling framework and computa-
tional engine for various biological and biomedical informatics analyses. Our
model, the first discrete support vector machine, offers distinct features (e.g.,
the ability to classify any number of groups, management of the curse of di-
mensionality in data attributes, and a reserved judgment region to facilitate
multi-stage classification analysis) that are not simultaneously available in
existing classification software [27, 28, 49, 42, 43]. Studies involving tumor
volume identification, ultrasonic cell disruption in drug delivery, lung tumor
cell motility analysis, CpG island aberrant methylation in human cancer,
predicting early atherosclerosis using biomarkers, and fingerprinting native
and angiogenic microvascular networks using functional perfusion data indi-
cate that our approach is adaptable and can produce effective and reliable
predictive rules for various biomedical and bio-behavior phenomena [14, 22,
23, 44, 46, 48, 50].
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Section 2 briefly describes the background of discriminant analysis. Section
3 describes the optimization-based multi-stage discriminant analysis predic-
tive models for classification. The use of the predictive models on various
biological and medical problems are presented in Section 4. This is followed
by a brief summary in Section 5.

2 Background

The main objective in discriminant analysis is to derive rules that can be used
to classify entities into groups. Discriminant rules are typically expressed in
terms of variables representing a set of measurable attributes of the entities in
question. Data on a sample of entities for which the group classifications are
known (perhaps determined by extraordinary means) are collected and used
to derive rules that can be used to classify new yet-to-be-classified entities.
Often there is a trade-off between the discriminating ability of the selected
attributes and the expense of obtaining measurements on these attributes.
Indeed, the measurement of a relatively definitive discriminating feature may
be prohibitively expensive to obtain on a routine basis, or perhaps impossible
to obtain at the time that classification is needed.

Thus, a discriminant rule based on a selected set of feature attributes
will typically be an imperfect discriminator, sometimes misclassifying entities.
Depending on the application, the consequences of misclassifying an entity
may be substantial. In such a case, it may be desirable to form a discrimination
rule that allows less specific classification decisions, or even non-classification
of some entities, to reduce the probability of misclassification.

To address this concern, a number of researchers have suggested methods
for deriving partial discrimination rules [10, 31, 35, 63, 65]. A partial discrimi-
nation rule allows an entity to be classified into some subset of the groups (i.e.,
rule out membership in the remaining groups), or be placed in a “reserved-
judgement” category. An entity is considered misclassified only when it is
assigned to a nonempty subset of groups not containing the true group of the
entity. Typically, methods for deriving partial discrimination rules attempt to
constrain the misclassification probabilities (e.g., by enforcing an upper bound
on the proportion of misclassified training sample entities). For this reason,
the resulting rules are also sometimes called constrained discrimination rules.

Partial (or constrained) discrimination rules are intuitively appealing.
A partial discrimination rule based on relatively inexpensive measurements
can be tried first. If the rule classifies the entity satisfactorily according to the
needs of the application, then nothing further needs to be done. Otherwise,
additional measurements — albeit more expensive — can be taken on other,
more definitive, discriminating attributes of the entity.

One disadvantage of partial discrimination methods is that there is no
obvious definition of optimality among any set of rules satisfying the con-
straints on the misclassification probabilities. For example, since some correct
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classifications are certainly more valuable than others (e.g., classification into
a small subset containing the true group versus a large subset), it does not
make sense to simply maximize the probability of correct classification. In
fact, to maximize the probability of correct classification, one would merely
classify every entity into the subset consisting of all the groups — clearly, not
an acceptable rule.

A simplified model, whereby one incorporates only the reserved-judgment
region (i.e., an entity is either classified as belonging to exactly one of the given
a priori groups, or it is placed in the reserved-judgment category), is amenable
to reasonable notions of optimality. For example, in this case, maximizing the
probability of correct classification is meaningful. For the two-group case,
the simplified model and the more general model are equivalent. Research
on the two-group case is summarized in [60]. For three or more groups, the
two models are not equivalent, and most work has been directed towards
the development of heuristic methods for the more general model (e.g., see
[10, 31, 63, 65]).

Assuming that the group density functions and prior probabilities are
known, the author in [1] showed that an optimal rule for the problem of max-
imizing the probability of correct classification subject to constraints on the
misclassification probabilities must be of a specific form when discriminating
among multiple groups with a simplified model. The formulae in Anderson’s
result depend on a set of parameters satisfying a complex relationship be-
tween the density functions, the prior probabilities, and the bounds on the
misclassification probabilities. Establishing a viable mathematical model to
describe Anderson’s result, and finding values for these parameters that yield
an optimal rule are challenging tasks. The authors in [27, 28] presented the
first computational model for Anderson’s results.

A variety of mathematical-programming models have been proposed for
the discriminant-analysis problem [2–4, 15, 24, 25, 30, 32–34, 37, 54, 56, 58, 64,
70, 71]. None of these studies deal formally with measuring the performance
of discriminant rules specifically designed to allow allocation to a reserved-
judgment region. There is also no mechanism employed to constrain the level
of misclassifications for each group.

Many different techniques and methodologies have contributed to adv-
ances in classification, including artificial neural networks, decision trees,
kernel-based learning, machine learning, mathematical programming, statis-
tical analysis, and support vector machines [5, 8, 19, 20, 55, 61, 73]. There are
some review papers for classification problems with mathematical program-
ming techniques. The author in [69] summarizes basic concepts and ideas
and discusses potential research directions on classification methods that op-
timize a function of the Lp-norm distances. The paper focuses on continuous
models and includes normalization schemes, computational aspects, weighted
formulations, secondary criteria, and extensions from two-group to multi-
group classifications. The authors in [77] review the research conducted on the
framework of the multicriteria decision aiding, covering different classification
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models. The author in [57] and the authors in [7] give an overview of using
mathematical programming approaches to solve data mining problems. Most
recently, the authors in [53] provide a comprehensive overview of continuous
and discrete mathematical programming models for classification problems.

3 Discrete support vector machine predictive models

Since 1997, we have been developing in our computational center a general-
purpose discriminant analysis modeling framework and a computational engine
that is applicable to a wide variety of applications, including biological,
biomedical and logistics problems. Utilizing the technology of large-scale dis-
crete optimization and support-vector machines, we have developed novel pre-
dictive models that simultaneously include the following features: 1) the ability
to classify any number of distinct groups; 2) the ability to incorporate hetero-
geneous types of attributes as input; 3) a high-dimensional data transforma-
tion that eliminates noise and errors in biological data; 4) constraints to limit
the rate of misclassification, and a reserved-judgment region that provides a
safeguard against over-training (which tends to lead to high misclassification
rates from the resulting predictive rule); and 5) successive multi-stage clas-
sification capability to handle data points placed in the reserved judgment
region. Based on the descriptions in [27, 28, 42, 43, 49], we summarize below
some of the classification models we have developed.

3.1 Modeling of reserved-judgment region for general groups

When the population densities and prior probabilities are known, the con-
strained rules with a reject option (reserved-judgment), based on Anderson’s
results, calls for finding a partition {R0, ..., RG} of Rk that maximizes the
probability of correct allocation subject to constraints on the misclassification
probabilities; i.e.,

max
G∑

g=1

πg

∫
Rg

fg(w) dw (1)

s.t.
∫

Rg

fh(w)dw ≤ αhg, h, g = 1, ..., G, h �= g, (2)

where fh, h = 1, ..., G, are the group conditional density functions, πg de-
notes the prior probability that a randomly selected entity is from group g,
g = 1, ..., G, and αhg, h �= g are constants between zero and one. Under quite
general assumptions, it was shown that there exist unique (up to a set of
measure zero) nonnegative constants λih, i, h ∈ {1, ..., G}, i �= h, such that
the optimal rule is given by

Rg = {x ∈ Rk : Lg(x) = maxh∈{0,1,...,G}Lh(x)}, g = 0, ..., G (3)
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where

L0(x) = 0 (4)

Lh(x) = πhfh(x) −
G∑

i=1,i�=h

λihfi(x), h = 1, ..., G. (5)

For G = 2 the optimal solution can be modeled in a rather straightforward
manner. However, finding optimal λih’s for the general case G ≥ 3 is a difficult
problem, with the difficulty increasing as G increases. Our model offers an
avenue for modeling and finding the optimal solution in the general case. It
is the first such model to be computationally viable [27, 28].

Before proceeding, we note that Rg can be written as Rg = {x ∈ Rk :
Lg(x) ≥ Lh(x) for all h = 0, ..., G}. So, since Lg(x) ≥Lh(x) if, and only if,
(1�

∑G
t=1 ft(x))Lg(x) ≥ (1�

∑G
t=1 ft(x))Lh(x), the functions Lh, h = 1, ..., G

can be redefined as

Lh(x) = πhph(x) −
G∑

i=1,i�=h

λihpi(x), h = 1, ..., G (6)

where pi(x) = fi(x)�
∑G

t=1 ft(x). We assume that Lh is defined as in equation
(6) in our model.

3.2 Mixed integer programming formulations

Assume that we are given a training sample of N entities whose group clas-
sifications are known; say ng entities are in group g, where

∑G
g=1 ng = N .

Let the k dimensional vectors xgj , g = 1, ..., G, j = 1, ..., ng, contain the
measurements on k available characteristics of the entities. Our procedure for
deriving a discriminant rule proceeds in two stages. The first stage is to use
the training sample to compute estimates, f̂h, either parametrically or non-
parametrically, of the density functions fh (e.g., see [60]) and estimates, π̂h, of
the prior probabilities πh, h = 1, ..., G. The second stage is to determine the
optimal λihs given these estimates. This stage requires being able to estimate
the probabilities of correct classification and misclassification for any candi-
date set of λihs. One could, in theory, substitute the estimated densities and
prior probabilities into equations (5), and directly use the resulting regions
Rg in the integral expressions given in (1) and (2). This would involve, even
in simple cases such as normally distributed groups, the numerical evalua-
tion of k-dimensional integrals at each step of a search for the optimal λihs.
Therefore, we have designed an alternative approach. After substituting the
f̂hs and π̂hs into equation (5), we simply calculate the proportion of training
sample points which fall in each of the regions R1, ..., RG. The mixed integer
programming (MIP) models discussed below attempt to maximize the propor-
tion of training sample points correctly classified while satisfying constraints



Optimization-based predictive models in medicine and biology 133

on the proportions of training sample points misclassified. This approach has
two advantages. First, it avoids having to evaluate the potentially difficult
integrals in Equations (1) and (2). Second, it is nonparametric in controlling
the training sample misclassification probabilities. That is, even if the den-
sities are poorly estimated (by assuming, for example, normal densities for
non-normal data), the constraints are still satisfied for the training sample.
Better estimates of the densities may allow a higher correct classification rate
to be achieved, but the constraints will be satisfied even if poor estimates are
used. Unlike most support vector machine models that minimize the sum of
errors, our objective is driven by the number of correct classifications, and will
not be biased by the distance of the entities from the supporting hyperplane.

A word of caution is in order. In traditional unconstrained discriminant
analysis, the true probability of correct classification of a given discriminant
rule tends to be smaller than the rate of correct classification for the training
sample from which it was derived. One would expect to observe such an effect
for the method described herein as well as an analogous effect with regard to
constraints on misclassification probabilities — the true probabilities are likely
to be greater than any limits imposed on the proportions of training sample
misclassifications. Hence, the αhg parameters should be carefully chosen for
the application in hand.

Our first model is a nonlinear 0/1 MIP model with the nonlinearity ap-
pearing in the constraints. Model 1 maximizes the number of correct clas-
sifications of the given N training entities. Similarly, the constraints on the
misclassification probabilities are modeled by ensuring that the number of
group g training entities in region Rh is less than or equal to a pre-specified
percentage, αhg(0 < αhg < 1), of the total number, ng, of group g entities,
h, g ∈ {1, ..., G}, h �= g.

For notational convenience, let G = {1, ..., G} and Ng = {1, ..., ng},
for g ∈ G. Also, analogous to the definition of pi, define p̂i by p̂i =
f̂i(x)�

∑G
t=1 f̂t(x). In our model, we use binary indicator variables to denote

the group classification of entities. Mathematically, let uhgj be a binary vari-
able indicating whether or not xgj lies in region Rh; i.e., whether or not the
jth entity from group g is allocated to group h. Then Model 1 can be written
as follows:

max
∑
g∈G

∑
j∈Ng

uggj

s.t.
Lhgj = π̂hp̂h(xgj) −

∑
i∈G\h

λihp̂i(xgj), h, g ∈ G, j ∈ Ng (7)

ygj = max{0, Lhgj : h = 1, ..., G}, g ∈ G, j ∈ Ng (8)

ygj − Lggj ≤ M(1 − uggj), g ∈ G, j ∈ Ng (9)

ygj − Lhgj ≥ ε(1 − uhgj), h, g ∈ G, j ∈ Ng, h �= g (10)
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j∈Ng

uhgj ≤ �αhgng�, h, g ∈ G, h �= g (11)

−∞ < Lhgj < ∞, ygj ≥ 0, λih ≥ 0, uhgj ∈ {0, 1}.

Constraint (7) defines the variable Lhgj as the value of the function Lh

evaluated at xgj . Therefore, the continuous variable ygj , defined in constraint
(8), represents max{Lh(xgj) : h = 0, ..., G}; and consequently, xgj lies in
region Rh if, and only if, ygj = Lhgj . The binary variable uhgj is used to in-
dicate whether or not xgj lies in region Rh; i.e., whether or not the jth entity
from group g is allocated to group h. In particular, constraint (9), together
with the objective, force uggj to be 1 if, and only if, the jth entity from group
g is correctly allocated to group g; and constraints (10) and (11) ensure that
at most �αhgng� (i.e., the greatest integer less than or equal to αhgng) group
g entities are allocated to group h, h �= g. One caveat regarding the indicator
variables uhgj is that although the condition uhgj = 0, h �= g, implies (by
constraint (10)) that xgj /∈ Rh, the converse need not hold. As a consequence,
the number of misclassifications may be overcounted. However, in our pre-
liminary numerical study we found that the actual amount of overcounting
is minimal. For example, one could force the converse (thus, uhgj = 1 if and
only if xgj ∈ Rh) by adding constraints ygj −Lhgj ≤ M(1−uhgj). Finally, we
note that the parameters M and ε are extraneous to the discriminant analysis
problem itself, but are needed in the model to control the indicator variables
uhgj . The intention is for M and ε to be, respectively, large and small positive
constants.

3.3 Model variations

We explore different variations in the model to grasp the quality of the solution
and the associated computational effort.

A first variation involves transforming Model 1 to an equivalent linear
mixed integer model. In particular, Model 2 replaces the N constraints defined
in (8) with the following system of 3GN + 2N constraints:

ygj ≥ Lhgj, h, g ∈ G, j ∈ Ng (12)

ỹhgj − Lhgj ≤ M(1 − vhgj), h, g ∈ G, j ∈ Ng (13)

ỹhgj ≤ π̂hp̂h(xgj)vhgj , h, g ∈ G, j ∈ Ng (14)∑
h∈G

vhgj ≤ 1, g ∈ G, j ∈ Ng (15)

∑
h∈G

ỹhgj = ygj , g ∈ G, j ∈ Ng (16)

where ỹhgj ≥ 0 and vhgj ∈ {0, 1}, h, g ∈ G, j ∈ Ng. These constraints, to-
gether with the non-negativity of ygj force ygj = max{0, Lhgj : h = 1, ..., G}.
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The second variation involves transforming Model 1 to a heuristic linear
MIP model. This is done by replacing the nonlinear constraint (8) with ygj ≥
Lhgj , h, g ∈ G, j ∈ Ng, and including penalty terms in the objective function.
In particular, Model 3 has the objective

max
∑
g∈G

∑
j∈Ng

βuggj −
∑
g∈G

∑
j∈Ng

γygj ,

where β and γ are positive constants. This model is heuristic in that there is
nothing to force ygj = max{0, Lhgj : h = 1, ..., G}. However, since in addition
to trying to force as many uggjs to one as possible, the objective in Model
3 also tries to make the ygjs as small as possible, and the optimizer tends
to drive ygj towards max{0, Lhgj : h = 1, ..., G}. We remark that β and γ
could be stratified by a group (i.e., introduce possibly distinct βg, γg, g ∈ G)
to model the relative importance of certain groups to be correctly classified.

A reasonable modification to Models 1, 2 and 3 involves relaxing the con-
straints specified by (11). Rather than placing restrictions on the number of
type g training entities classified into group h, for all h, g ∈ G, h �= g, one
could simply place an upper bound on the total number of misclassified train-
ing entities. In this case, the G(G − 1) constraints specified by (11) would be
replaced by the single constraint∑

g∈G

∑
h∈G\{g}

∑
j∈Ng

uhgj ≤ �αN� (17)

where α is a constant between 0 and 1. We will refer to Models 1, 2 and 3,
modified in this way, as Models 1T, 2T and 3T, respectively. Of course, other
modifications are also possible. For instance, one could place restrictions on
the total number of type g points misclassified for each g ∈ G. Thus, in
place of the constraints specified in (17), one would include the constraints∑

h∈G\{g}
∑

j∈Ng
uhgj ≤ �αgN�, g ∈ G, where 0 < αg < 1.

We also explore a heuristic linear model of Model 1. In particular, consider
the linear program (DALP):

max
∑
g∈G

∑
j∈Ng

(c1wgj + c2ygj) (18)

s.t.
Lhgj = πhp̂h(xgj) −

∑
i∈G\h

λihp̂i(xgj), h, g ∈ G, j ∈ Ng (19)

Lggj − Lhgj + wgj ≥ 0, h, g ∈ G, h �= g, j ∈ Ng (20)

Lggj + wgj ≥ 0, g ∈ G, j ∈ Ng, (21)

−Lhgj + ygj ≥ 0, h, g ∈ G, j ∈ Ng, (22)

−∞ < Lhgj < ∞, wgj , ygj , λih ≥ 0.
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Constraint (19) defines the variable Lhgj as the value of the function Lh

evaluated at xgj . As the optimization solver searches through the set of feasible
solutions, the λih variables will vary, causing the Lhgj variables to assume
different values. Constraints (20), (21) and (22) link the objective-function
variables with the Lhgj variables in such a way that correct classification of
training entities, and allocation of training entities into the reserved-judgment
region, are captured by the objective-function variables. In particular, if the
optimization solver drives wgj to zero for some g, j pair, then constraints (20)
and (21) imply that Lggj = max{0, Lhgj : h ∈ G}. Hence, the jth entity from
group g is correctly classified. If, on the other hand, the optimal solution yields
ygj = 0 for some g, j pair, then constraint (22) implies that max{0, Lhgj : h ∈
G} = 0. Thus, the jth entity from group g is placed in the reserved-judgment
region. (Of course, it is possible for both wgj and ygj to be zero. One should
decide prior to solving the linear program how to interpret the classification
in such cases.) If both wgj and ygj are positive, the jth entity from group g is
misclassified.

The optimal solution yields a set of λihs that best allocates the training
entities (i.e., “best” in terms of minimizing the penalty objective function).
The optimal λihs can then be used to define the functions Lh, h ∈ G, which in
turn can be used to classify a new entity with feature vector x ∈ Rk by simply
computing the index at which max{Lh(x) : h ∈ {0, 1, ..., G}} is achieved.

Note that Model DALP places no a priori bound on the number of misclas-
sified training entities. However, since the objective is to minimize a weighted
combination of the variables wgj and ygj , the optimizer will attempt to drive
these variables to zero. Thus, the optimizer is, in essence, attempting either to
correctly classify training entities (wgj = 0), or to place them in the reserved-
judgment region (ygj = 0). By varying the weights c1 and c2, one has a means
of controlling the optimizer’s emphasis for correctly classifying training enti-
ties versus placing them in the reserved-judgment region. If c2/c1 < 1, the
optimizer will tend to place a greater emphasis on driving the wgj variables
to zero than driving the ygj variables to zero (conversely, if c2/c1 > 1). Hence,
when c2/c1 < 1, one should expect to get relatively more entities correctly
classified, fewer placed in the reserved-judgment region, and more misclassi-
fied, than when c2/c1 > 1. An extreme case is when c2 = 0. In this case, there
is no emphasis on driving ygj to zero (the reserved-judgment region is thus
ignored), and the full emphasis of the optimizer is on driving wgj to zero.

Table 1 summarizes the number of constraints, the total number of vari-
ables, and the number of 0/1 variables in each of the discrete support vector
machine models and in the heuristic LP model (DALP). Clearly, even for
moderately-sized discriminant analysis problems, the MIP instances are rela-
tively large. Also, note that Model 2 is larger than Model 3, both in terms of
the number of constraints and the number of variables. However, it is impor-
tant to keep in mind that the difficulty of solving an MIP problem cannot,
in general, be predicted solely by its size; problem structure has a direct and
substantial bearing on the effort required to find optimal solutions. The LP
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Table 1. Model size.

Model Type Constraints Total Variables 0/1

Variables

1 nonlinear MIP 2GN + N + G(G − 1) 2GN + N + G(G − 1) GN

2 linear MIP 5GN + 2N + G(G − 1) 4GN + N + G(G − 1) 2GN

3 linear MIP 3GN + G(G − 1) 2GN + N + G(G − 1) GN

1T nonlinear MIP 2GN + N + 1 2GN + N + G(G − 1) GN

2T linear MIP 5GN + 2N + 1 4GN + N + G(G − 1) 2GN

3T linear MIP 3GN + 1 2GN + N + G(G − 1) GN

DALP linear program 3GN NG + N + G(G − 1) 0

relaxation of these MIP models pose computational challenges as commer-
cial LP solvers return (optimal) LP solutions that are infeasible due to the
equality constraints and the use of big M and small ε in the formulation.

It is interesting to note that the set of feasible solutions for Model 2 is
“tighter” than that for Model 3. In particular, if Fi denotes the set of feasible
solutions of Model i, then

F1 = {(L, λ, u, y) : there exists ỹ, v such that (L, λ, u, y, ỹ, v) ∈ F2} � F3.
(23)

Novelties of the classification models developed herein: 1) they are suitable
for discriminant analysis given any number of groups, 2) they accept hetero-
geneous types of attributes as input, 3) they use a parametric approach to
reduce high-dimensional attribute spaces, and 4) they allow constraints on
the number of misclassifications and utilize a reserved judgment to facilitate
the reduction of misclassifications. The latter point opens the possibility of
performing multistage analyses.

Clearly, the advantage of an LP model over an MIP model is that the asso-
ciated problem instances are computationally much easier to solve. However,
the most important criterion in judging a method for obtaining discriminant
rules is how the rules perform in correctly classifying new unseen entities.
Once the rule is developed, applying it to a new entity to determine its group
is trivial. Extensive computational experiments have been performed to gauge
the qualities of solutions of different models [28, 49, 42, 43, 12, 13].

3.4 Computational strategies

The mixed integer programming models described herein offer a computa-
tional avenue for numerically estimating optimal values for the λih param-
eters in Anderson’s formulae. However, it should be emphasized that mixed
integer programming problems are themselves difficult to solve. Anderson [1]
himself noted the extreme difficulty of finding an optimal set of λihs. Indeed,
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MIP is an NP-hard problem (e.g., see [29]). Nevertheless, due to the fact that
integer variables — and in particular, 0/1 variables — are a powerful model-
ing tool, a wide variety of real-world problems have been modeled as mixed
integer programs. Consequently, much effort has been invested in developing
computational strategies for solving MIP problem instances.

The numerical work reported in Section 4 is based on an MIP solver which
is built on top of a general-purpose mixed integer research code, MIPSOL [38].
(A competitive commercial solver (CPLEX) was not effective in solving the
problem instances considered.) The general-purpose code integrates state-of-
the-art MIP computational devices such as problem preprocessing, primal
heuristics, global and local reduced-cost fixing, and cutting planes into a
branch-and-bound framework. The code has been shown to be effective in
solving a wide variety of large-scale real-world instances [6]. For our MIP in-
stances, special techniques such as variable aggregation, a heuristic branching
scheme, and hypergraphic cut generations are employed [28, 21, 12].

4 Classification results on real-world applications

The main objective in discriminant analysis is to derive rules that can be
used to classify entities into groups. Computationally, the challenge lies in the
effort expended to develop such a rule. Once the rule is developed, applying
it to a new entity to determine its group is trivial. Feasible solutions obtained
from our classification models correspond to predictive rules. Empirical re-
sults [28, 49] indicate that the resulting classification model instances are
computationally very challenging, and even intractable by competitive com-
mercial MIP solvers. However, the resulting predictive rules prove to be very
promising, offering correct classification rates on new unknown data ranging
from 80% to 100% on various types of biological/medical problems. Our re-
sults indicate that the general-purpose classification framework that we have
designed has the potential to be a very powerful predictive method for clinical
settings.

The choice of mixed integer programming (MIP) as the underlying model-
ing and optimization technology for our support vector machine classification
model is guided by the desire to simultaneously incorporate a variety of impor-
tant and desirable properties of predictive models within a general framework.
MIP itself allows for the incorporation of continuous and discrete variables and
linear and nonlinear constraints, providing a flexible and powerful modeling
environment.

4.1 Validation of model and computational effort

We performed ten-fold cross validation, and designed simulation and compar-
ison studies on our preliminary models. The results, reported in [28, 49], show
the methods are promising, based on applications to both simulated data and
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datasets from the machine learning database repository [62]. Furthermore,
our methods compare well and at times superior to existing methods, such as
artificial neural networks, quadratic discriminant analysis, tree classification,
and other support vector machines, on real biological and medical data.

4.2 Applications to biological and medical problems

Our mathematical modeling and computational algorithm design shows great
promise as the resulting predictive rules are able to produce higher rates of
correct classification on new biological data (with unknown group status)
compared to existing classification methods. This is partly due to the trans-
formation of raw data via the set of constraints in (7). While most support
vector machines [53] directly determine the hyperplanes of separation using
raw data, our approach transforms the raw data via a probabilistic model, be-
fore the determination of the supporting hyperplanes. Further, the separation
is driven by maximizing the sum of binary variables (representing correct or
incorrect classification of entities), instead of maximizing the margin between
groups, or minimizing a sum of errors (representing distances of entities from
hyperplanes) as in other support vector machines. The combination of these
two strategies offers better classification capability. Noise in the transformed
data is not as profound as in raw data. And the magnitudes of the errors do
not skew the determination of the separating hyperplanes, as all entities have
equal importance when correct classification is being counted.

To highlight the broad applicability of our approach, in this paper we
briefly summarize the application of our predictive models and solution al-
gorithms to eight different biological problems. Each of the projects was car-
ried out in close partnership with experimental biologists and/or clinicians.
Applications to finance and other industry applications are described else-
where [12, 28, 49].

Determining the type of Erythemato-Squamous disease

The differential diagnosis of erythemato-squamous diseases is an important
problem in dermatology. They all share the clinical features of erythema and
scaling, with very little differences. The six groups are psoriasis, seboreic der-
matitis, lichen planus, pityriasis rosea, chronic dermatitis, and pityriasis rubra
pilaris. Usually a biopsy is necessary for the diagnosis, but unfortunately these
diseases share many histopathological features as well. Another difficulty for
the differential diagnosis is that a disease may show the features of another
disease at the beginning stage and may have the characteristic features at the
following stages [62].

The six groups consist of 366 subjects (112,61,72,49,52,20 respectively)
with 34 clinical attributes. Patients were first evaluated clinically with 12 fea-
tures. Afterwards, skin samples were taken for the evaluation of 22 histopatho-
logical features. The values of the histopathological features are determined
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by an analysis of the samples under a microscope. The 34 attributes include
1) clinical attributes: erythema, scaling, definite borders, itching, koebner
phenomenon, polygonal papules, follicular papules, oral mucosal involvement,
knee and elbow involvement, scalp involvement, family history, age; and 2)
histopathological attributes: melanin incontinence, eosinophils in the infil-
trate, PNL infiltrate, fibrosis of the papillary dermis, exocytosis, acantho-
sis, hyperkeratosis, parakeratosis, clubbing of the rete ridges, elongation of
the rete ridges, thinning of the suprapapillary epidermis, spongiform pustule,
munro microabcess, focal hypergranulosis, disappearance of the granular layer,
vacuolisation and damage of basal layer, spongiosis, saw-tooth appearance of
retes, follicular horn plug, perifollicular parakeratosis, inflammatory monolu-
clear infiltrate, band-like infiltrate.

Our multi-group classification model selected 27 discriminatory attributes,
and successfully classified the patients into six groups, each with an unbiased
correct classification of greater than 93% (with 100% correct rate for groups
1, 3, 5, 6) with an average overall accuracy of 98%. Using 250 subjects to de-
velop the rule, and testing the remaining 116 patients, we obtain a prediction
accuracy of 91%.

Predicting aberrant CpG island methylation in human
cancer [22, 23]

Epigenetic silencing associated with aberrant methylation of promoter region
CpG islands is one mechanism leading to loss of the tumor suppressor func-
tion in human cancer. Profiling of CpG island methylation indicates that
some genes are more frequently methylated than others, and that each tu-
mor type is associated with a unique set of methylated genes. However, little
is known about why certain genes succumb to this aberrant event. To ad-
dress this question, we used Restriction Landmark Genome Scanning (RLGS)
to analyze the susceptibility of 1749 unselected CpG islands to de novo
methylation driven by overexpression of DNMT1. We found that, whereas
the overall incidence of CpG island methylation increased in cells overex-
pressing DNMT1, not all loci were equally affected. The majority of CpG
islands (69.9%) were resistant to de novo methylation, regardless of DNMT1
overexpression. In contrast, we identified a subset of methylation-prone CpG
islands (3.8%) that were consistently hypermethylated in multiple DNMT1
overexpressing clones. Methylation-prone and methylation-resistant CpG is-
lands were not significantly different with respect to size, C+G content, CpG
frequency, chromosomal location, or gene- or promoter-association. To dis-
criminate methylation-prone from methylation-resistant CpG islands, we de-
veloped a novel DNA pattern recognition model and algorithm [45], and
coupled our predictive model described herein with the patterns found. We
were able to derive a classification function based on the frequency of seven
novel sequence patterns that was capable of discriminating methylation-
prone from methylation-resistant CpG islands with 90% correctness upon
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cross-validation, and 85% accuracy when tested against blind CpG islands
unknown to us on the methylation status. The data indicate that CpG islands
differ in their intrinsic susceptibility to de novo methylation, and suggest that
the propensity for a CpG island to become aberrantly methylated can be
predicted based on its sequence context.

The significance of this research is two-fold. First, the identification of se-
quence patterns/attributes that distinguish methylation-prone CpG islands
will lead to a better understanding of the basic mechanisms underlying aber-
rant CpG island methylation. Because genes that are silenced by methylation
are otherwise structurally sound, the potential for reactivating these genes
by blocking or reversing the methylation process represents an exciting new
molecular target for chemotherapeutic intervention. A better understanding of
the factors that contribute to aberrant methylation, including the identifica-
tion of sequence elements that may act to target aberrant methylation, will be
an important step in achieving this long-term goal. Secondly, the classification
of the more than 29,000 known (but as yet unclassified) CpG islands in hu-
man chromosomes will provide an important resource for the identification of
novel gene targets for further study as potential molecular markers that could
impact both cancer prevention and treatment. Extensive RLGS fingerprint
information (and thus potential training sets of methylated CpG islands) al-
ready exists for a number of human tumor types, including breast, brain, lung,
leukemias, hepatocellular carcinomas, and PNET [17, 18, 26, 67]. Thus, the
methods and tools developed are directly applicable to CpG island methyla-
tion data derived from human tumors. Moreover, new microarray-based tech-
niques capable of ’profiling’ more than 7000 CpG islands have been developed
and applied to human breast cancers [9, 74, 75]. We are uniquely poised to
take advantage of the tumor CpG island methylation profile information that
will likely be generated using these techniques over the next several years.
Thus, our general-predictive modeling framework has the potential to lead to
improved diagnosis and prognosis and treatment planning for cancer patients.

Discriminant analysis of cell motility and morphology data
in human lung carcinoma [14]

This study focuses on the differential effects of extracellular matrix proteins
on the motility and morphology of human lung epidermoid carcinoma cells.
The behavior of carcinoma cells is contrasted with that of normal L-132 cells,
resulting in a method for the prediction of metastatic potential. Data collected
from time-lapsed videomicroscopy were used to simultaneously produce quan-
titative measures of motility and morphology. The data were subsequently
analyzed using our discriminant analysis model and algorithm to discover re-
lationships between motility, morphology, and substratum. Our discriminant
analysis tools enabled the consideration of many more cell attributes than is
customary in cell motility studies. The observations correlate with behaviors
seen in vivo and suggest specific roles for the extracellular matrix proteins and
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their integrin receptors in metastasis. Cell translocation in vitro has been as-
sociated with malignancy, as has an elongated phenotype [76] and a rounded
phenotype [66]. Our study suggests that extracellular matrix proteins con-
tribute in different ways to the malignancy of cancer cells, and that multiple
malignant phenotypes exist.

Ultrasonic assisted cell disruption for drug delivery [48]

Although biological effects of ultrasounds must be avoided for safe diagnostic
applications, an ultrasound’s ability to disrupt cell membranes has attracted
interest in it as a method to facilitate drug and gene delivery. This preliminary
study seeks to develop rules for predicting the degree of cell membrane disrup-
tion based on specified ultrasound parameters and measured acoustic signals.
Too much ultrasound destroys cells, while cell membranes will not open up for
absorption of macromolecules when too little ultrasound is applied. The key
is to increase cell permeability to allow absorption of macromolecules, and to
apply ultrasound transiently to disrupt viable cells so as to enable exogenous
material to enter without cell damage. Thus our task is to uncover a “predic-
tive rule” of ultrasound-mediated disruption of red blood cells using acoustic
spectrums and measurements of cell permeability recorded in experiments.

Our predictive model and solver for generating prediction rules are applied
to data obtained from a sequence of experiments on bovine red blood cells. For
each experiment, the attributes consist of 4 ultrasound parameters, acoustic
measurements at 400 frequencies, and a measure of cell membrane disruption.
To avoid over-training, various feature combinations of the 404 predictor vari-
ables are selected when developing the classification rule. The results indicate
that the variable combination consisting of ultrasound exposure time and
acoustic signals measured at the driving frequency and its higher harmonics
yields the best rule. Our method compares favorably with the classification
tree and other ad hoc approaches, with a correct classification rate of 80%
upon cross-validation and 85% when classifying new unknown entities. Our
methods used for deriving the prediction rules are broadly applicable, and
could be used to develop prediction rules in other scenarios involving different
cell types or tissues. These rules and the methods used to derive them could be
used for real-time feedback about ultrasound’s biological effects. For example,
it could assist clinicians during a drug delivery process, or could be imported
into an implantable device inside the body for automatic drug delivery and
monitoring.

Identification of tumor shape and volume in treatment
of sarcoma [46]

This project involves the determination of tumor shape for adjuvant brachyth-
erapy treatment of sarcoma, based on catheter images taken after surgery. In
this application, the entities are overlapping consecutive triplets of catheter
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markings, each of which is used for determining the shape of the tumor con-
tour. The triplets are to be classified into one of two groups: Group 1 = [triplets
for which the middle catheter marking should be bypassed], and Group 2 =
[triplets for which the middle marking should not be bypassed]. To develop
and validate a classification rule, we used clinical data collected from fifteen
soft tissue sarcoma (STS) patients. Cumulatively, this comprised 620 triplets
of catheter markings. By careful (and tedious) clinical analysis of the geometry
of these triplets, 65 were determined to belong to Group 1, the “bypass” group,
and 555 were determined to belong to Group 2, the “do-not-bypass” group.

A set of measurements associated with each triplet is then determined. The
choice of what attributes to measure to best distinguish triplets as belonging
to Group 1 or Group 2 is non trivial. The attributes involved distance be-
tween each pair of markings, angles, and curvature formed by the three triplet
markings. Based on the selected attributes, our predictive model was used to
develop a classification rule. The resulting rule provides 98% correct classifica-
tion on cross-validation, and was capable of correctly determining/predicting
95% of the shape of the tumor on new patients’ data. We remark that the
current clinical procedure requires manual outline based on markers in films
of the tumor volume. This study was the first to use automatic construction
of tumor shape for sarcoma adjuvant brachytherapy [46, 47].

Discriminant analysis of biomarkers for prediction of early
atherosclerosis [44]

Oxidative stress is an important etiologic factor in the pathogenesis of vascular
disease. Oxidative stress results from an imbalance between injurious oxidant
and protective antioxidant events in which the former predominate [59, 68].
This results in the modification of proteins and DNA, alteration in gene
expression, promotion of inflammation, and deterioration in endothelial func-
tion in the vessel wall, all processes that ultimately trigger or exacerbate the
atherosclerotic process [16, 72]. It was hypothesized that novel biomarkers of
oxidative stress would predict early atherosclerosis in a relatively healthy non-
smoking population who are free from cardiovascular disease. One hundred
and twenty seven healthy non-smokers, without known clinical atherosclero-
sis had carotid intima media thickness (IMT) measured using ultrasound.
Plasma oxidative stress was estimated by measuring plasma lipid hydroper-
oxides using the determination of reactive oxygen metabolites (d-ROMs)
test. Clinical measurements include traditional risk factors such as age, sex,
low density lipoprotein (LDL), high density lipoprotein (HDL), triglycerides,
cholesterol, body-mass-index (BMI), hypertension, diabetes mellitus, smoking
history, family history of CAD, Framingham risk score, and Hs-CRP.

For this prediction, the patients are first clustered into two groups: (Group
1: IMT >= 0.68, Group 2: IMT < 0.68). Based on this separator, 30 patients
belong to Group 1 and 97 belong to Group 2. Through each iteration, the clas-
sification method trains and learns from the input training set and returns the
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most discriminatory patterns among the 14 clinical measurements; ultimately
resulting in the development of a prediction rule based on observed values
of these discriminatory patterns among the patient data. Using all 127 pa-
tients as a training set, the predictive model identified age, sex, BMI, HDLc,
Fhx CAD < 60, hs-CRP and d-ROM as discriminatory attributes that to-
gether provide unbiased correct classification of 90% and 93%, respectively,
for Group 1 (IMT >= 0.68) and Group 2 (IMT < 0.68) patients. To fur-
ther test the power of the classification method for correctly predicting the
IMT status on new/unseen patients, we randomly selected a smaller patient
training set of size 90. The predictive rule from this training set yields 80%
and 89% correct rates for predicting the remaining 37 patients into Group
1 and Group 2, respectively. The importance of d-ROM as a discriminatory
predictor for IMT status was confirmed during the machine learning process.
This biomarker was selected in every iteration as the “machine” learned and
trained to develop a predictive rule to correctly classify patients in the train-
ing set. We also performed predictive analysis using Framingham Risk Score
and d-ROM; in this case the unbiased correct classification rates (for the 127
individuals) for Groups 1 and 2 are 77% and 84%, respectively. This is the
first study to illustrate that this measure of oxidative stress can be effectively
used along with traditional risk factors to generate a predictive rule that can
potentially serve as an inexpensive clinical diagnostic tool for the prediction
of early atherosclerosis.

Fingerprinting native and angiogenic microvascular networks
through pattern recognition and discriminant analysis
of functional perfusion data [50]

The cardiovascular system provides oxygen and nutrients to the entire body.
Pathological conditions that impair normal microvascular perfusion can result
in tissue ischemia, with potentially serious clinical effects. Conversely, devel-
opment of new vascular structures fuels the progression of cancer, macular de-
generation and atherosclerosis. Fluorescence-microangiography offers superb
imaging of the functional perfusion of new and existent microvasculature, but
quantitative analysis of the complex capillary patterns is challenging. We de-
veloped an automated pattern-recognition algorithm to systematically analyze
the microvascular networks, and then apply our classification model herein to
generate a predictive rule. The pattern-recognition algorithm identifies the
complex vascular branching patterns, and the predictive rule demonstrates
100% and 91% correct classification on perturbed (diseased) and normal tis-
sue perfusion, respectively. We confirmed that transplantation of normal bone
marrow to mice in which genetic deficiency resulted in impaired angiogenesis
eliminated predicted differences and restored normal-tissue perfusion patterns
(with 100% correctness). The pattern recognition and classification method of-
fers an elegant solution for the automated fingerprinting of microvascular net-
works that could contribute to better understanding of angiogenic mechanisms



Optimization-based predictive models in medicine and biology 145

and be utilized to diagnose and monitor microvascular deficiencies. Such in-
formation would be valuable for early detection and monitoring of functional
abnormalities before they produce obvious and lasting effects, which may in-
clude improper perfusion of tissue, or support of tumor development.

The algorithm can be used to discriminate between the angiogenic response
in a native healthy specimen compared to groups with impairment due to age,
chemical or other genetic deficiency. Similarly, it can be applied to analyze
angiogenic responses as a result of various treatments. This will serve two im-
portant goals. First, the identification of discriminatory patterns/attributes
that distinguish angiogenesis status will lead to a better understanding of
the basic mechanisms underlying this process. Because therapeutic control of
angiogenesis could influence physiological and pathological processes such as
wound and tissue repairing, cancer progression and metastasis, or macular
degeneration, the ability to understand it under different conditions will of-
fer new insight in developing novel therapeutic interventions, monitoring and
treatment, especially in aging, and heart disease. Thus, our study and the re-
sults form the foundation of a valuable diagnostic tool for changes in the
functionality of the microvasculature and for discovery of drugs that alter the
angiogenic response. The methods can be applied to tumor diagnosis, mon-
itoring and prognosis. In particular, it will be possible to derive microan-
giographic fingerprints to acquire specific microvascular patterns associated
with early stages of tumor development. Such “angioprinting” could become
an extremely helpful early diagnostic modality, especially for easily accessible
tumors such as skin cancer.

Prediction of protein localization sites

The protein localization database consists of 8 groups with a total of 336
instances (143, 77, 52, 35, 20, 5, 2, 2, respectively) with 7 attributes [62].
The eight groups are eight localization sites of protein, including cp (cyto-
plasm), im (inner membrane without signal sequence), pp (perisplasm), imU
(inner membrane, uncleavable signal sequence), om (outer membrane), omL
(outer membrane lipoprotein), imL (inner membrane lipoprotein), and imS
(inner membrane, cleavable signal sequence). However, the last four groups
are taken out from our classification experiment since the population sizes are
too small to ensure significance.

The seven attributes include mcg (McGeoch’s method for signal sequence
recognition), gvh (von Heijne’s method for signal sequence recognition), lip
(von Heijne’s Signal Peptidase II consensus sequence score), chg (Presence of
charge on N-terminus of predicted lipoproteins), aac (score of discriminant
analysis of the amino acid content of outer membrane and periplasmic pro-
teins), alm1 (score of the ALOM membrane spanning region prediction pro-
gram), and alm2 (score of ALOM program after excluding putative cleavable
signal regions from the sequence).
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In the classification we use 4 groups, 307 instances, with 7 attributes. Our
classification model selected the discriminatory patterns mcg, gvh, alm1, and
alm2 to form the predictive rule with unbiased correct classification rates of
89%, compared to the results of 81% by other classification models [36].

5 Summary and conclusion

In the article, we present a class of general-purpose predictive models that
we have developed based on the technology of large-scale optimization and
support-vector machines [28, 49, 42, 43, 12, 13]. Our models seek to maximize
the correct classification rate while constraining the number of misclassifica-
tions in each group. The models incorporate the following features: 1) the
ability to classify any number of distinct groups; 2) allowing incorporation of
heterogeneous types of attributes as input; 3) a high-dimensional data trans-
formation that eliminates noise and errors in biological data; 4) constraining
the misclassification in each group and a reserved-judgment region that pro-
vides a safeguard against over-training (which tends to lead to high misclassi-
fication rates from the resulting predictive rule); and 5) successive multi-stage
classification capability to handle data points placed in the reserved-judgment
region. The performance and predictive power of the classification models is
validated through a broad class of biological and medical applications.

Classification models are critical to medical advances as they can be used
in genomic, cell, molecular, and system level analyses to assist in early pre-
diction, diagnosis and detection of disease, as well as for intervention and
monitoring. As shown in the CpG island study for human cancer, such pre-
diction and diagnosis opens up novel therapeutic sites for early intervention.
The ultrasound application illustrates its application to a novel drug delivery
mechanism, assisting clinicians during a drug delivery process, or in devising
implantable devices into the body for automated drug delivery and monitor-
ing. The lung cancer cell motility offers an understanding of how cancer cells
behave under different protein media, thus assisting in the identification of
potential gene therapy and target treatment. Prediction of the shape of a
cancer tumor bed provides a personalized treatment design, replacing manual
estimates by sophisticated computer predictive models. Prediction of early
atherosclerosis through inexpensive biomarker measurements and traditional
risk factors can serve as a potential clinical diagnostic tool for routine physical
and health maintenance, alerting doctors and patients to the need for early
intervention to prevent serious vascular disease. Fingerprinting of microvascu-
lar networks opens up the possibility of early diagnosis of perturbed systems
in the body that may trigger disease (e.g., genetic deficiency, diabetes, aging,
obesity, macular degeneracy, tumor formation), identifying the target site for
treatment, and monitoring the prognosis and success of treatment. Thus, clas-
sification models serve as a basis for predictive medicine where the desire is
to diagnose early and provide personalized target intervention. This has the
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potential to reduce healthcare costs, improve the success of treatment and
quality-of-life of patients.

In [11], we have showed that our multi-category constrained discrimination
analysis predictive model is strongly universally consistent. Further theoretical
studys will be performed on these models to understand their characteristics
and the sensitivity of the predictive patterns to model/parameter variations.
The modeling framework for discrete support vector machines offers great flex-
ibility, enabling one to simultaneously incorporate the features as listed above,
as well as many other features. However, deriving the predictive rules for such
problems can be computationally demanding, due to the NP-hard nature of
mixed integer programming [29]. We continue to work on improving optimiza-
tion algorithms utilizing novel cutting plane and branch-and-bound strategies,
fast heuristic algorithms, and parallel algorithms [6, 21, 38–41, 51, 52].
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Summary. In this paper we present techniques for deriving inversion algorithms in
medical imaging. To this end we present a few imaging technologies and their math-
ematical models. They essentially consist of integral operators. The reconstruction
is then recognized as the solution of an inverse problem. General strategies, the so-
called approximate inverse, for deriving a solution are adapted. Results from real
data are presented.

Keywords: 3D-Tomography, optimal algorithms (accuracy, efficiency, noise
reduction), error bounds for influence of data noise, approximate inverse.

1 Introduction

The task in medical imaging is to provide, in a non-invasive way, information
about the internal structure of the human body. The basic principle is that
the patient is scanned by applying some sort of radiation and its interaction
with the body is measured. This result is the data whose origin has to be
identified. Hence we face an inverse problem.

There are several different imaging techniques and also different ways to
characterize them. For the patient, a very substantial difference is whether the
source is inside or outside the body, whether we have emission or transmission
tomography.

From the diagnostic point of view the resulting information is a way to
distinguish the different techniques. Some methods provide information about
the density of the tissue as x-ray computer tomography, ultrasound computer
tomography, or diffuse tomography. A distinction between properties of the
tissues is possible with magnetic resonance imaging and impedance computer
tomography. Finally the localization of activities is possible with biomag-
netism, (electrical activities), and emission computer tomography, (nuclear
activities of injected pharmaceuticals).
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From a physical point of view the applied wavelengths can serve as a clas-
sification. The penetration of electromagnetic waves into the body is sufficient
only for wavelengths smaller than 10−11m or larger than a few cm respectively.
In the extremely short ranges are x rays, single particle emission tomography
and positron emission computer tomography. MRI uses wavelengths larger
than 1m; extremely long waves are used in biomagnetism. In the range of a
few mm to a few cm are microwaves, ultrasound and light.

In this paper we present some principles in designing inversion algorithms
in tomography. We concentrate on linear problems arising in connection with
the Radon and the x-ray transform. In the original 2D x-ray CT problem, the
Radon transform served as a mathematical model. Here one integrates over
lines and the problem is to recover a function from its line integrals. The same
holds in the 3D x-ray case, but in 3D the Radon transform integrates over
planes, in general over N −1 - dimensional hyperplanes in RN . Hence here the
so-called x-ray transform is the mathematical model. Further differences are in
the parametrization of the lines. The 3D - Radon transform merely appears
as a tool to derive inversion formula. In the early days of MRI (magnetic
resonance imaging), in those days called NMR, nuclear magnetic resonance,
it served as a mathematical model, see for example Marr-Chen-Lauterbur [26].
But then, due to the limitations of computer power in those days one changed
the measuring procedure and scanned the Fourier transform of the searched-
for function in two dimensions. The Radon transform has reappeared, now in
three and even four dimensions as a mathematical model in EPRI (electron
parametric resonance imaging) where spectral-spatial information is the goal,
see, e.g., Kuppusamy et al. [11]. Here also incomplete data problems play a
central role, see e.g. [12, 23].

The paper is organized as follows. We start with a general principle for
reconstruction information from measured data, the so-called approximate
inverse, see [16, 20]. The well-known inversion of the Radon transform is con-
sidered a model case for inversion. Finally, we consider a 3D x-ray problem
and present reconstructions from real data.

2 Approximate inverse as a tool for deriving inversion
algorithms

The integral operators appearing in medical imaging are typically compact op-
erators between suitable Hilbert spaces. The inverse operator of those compact
operators with infinite dimensional range are not continuous, which means
that the unavoidable data errors are amplified in the solution. Hence one has
to be very careful in designing inversion algorithms has to balance the demand
for highest possible accuracy and the necessary damping of the influence of
unavoidable data errors. From the theoretical point of view, exact inversion
formulae are nice, but they do not take care of data errors. The way out of
this dilemma is the use of approximate inversion formulas whose principles
are explained in the following.
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For approximating the solution of

Af = g

we apply the method of approximate inverse, see [16]. The basic idea works as
follows: choose a so-called mollifier eγ(x, y) which, for a fixed reconstruction
point x, is a function of the variable y and which approximates the delta
distribution for the point x. The parameter γ acts as regularization parameter.
Simply think in the case of one spatial variable x of

eγ(x, y) =
1
2γ

χ[x−γ,x+γ](y)

where χΩ denotes the characteristic function of Ω. Then the mollifier fulfills∫
eγ(x, y)dy = 1 (1)

for all x and the function

fγ(x) =
∫

f(y)eγ(x, y)dy

converges for γ → 0 to f . The larger the parameter γ, the larger the interval
where the averaging takes place, and hence the stronger the smoothing. Now
solve for fixed reconstruction point x the auxiliary problem

A∗ψγ(x, ·) = eγ(x, ·) (2)

where eγ(x, ·) is the chosen approximation to the delta distribution for the
point x, and put

fγ(x) = 〈f, eγ(x, ·)〉
= 〈f, A∗ψγ(x, ·)〉 = 〈Af, ψγ(x, ·)〉 = 〈g, ψγ(x, ·)〉
=: Sγg(x).

The operator Sγ is called the approximate inverse and ψγ is the reconstruc-
tion kernel. To be precise it is the approximate inverse for approximating the
solution f of Af = g. If we choose instead of eγ fulfilling (2.1) a wavelet,
then fγ can be interpreted as a wavelet transform of f . Wavelet transforms
are known to approximate in a certain sense derivatives of the transformed
function f , see [22]. Hence this is a possibility to find jumps in f as used in
contour reconstructions, see [16, 21].

The advantage of this method is that ψγ can be pre-computed indepen-
dently of the data. Furthermore, invariances and symmetries of the operator
A∗ can be directly transformed into corresponding properties of Sγ as the
following consideration shows, see Louis [16]. Let T1 and T2 be two operators
intertwining with A∗

A∗T2 = T1A
∗ .
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If we choose a standard mollifier E and solve A∗Ψ = E then the solution of
Equation (2) for the special mollifier eγ = T1E is given as

ψγ = T2Ψ.

As an example we mention that if A∗ is a translation invariant; i.e., T1f(x) =
T2f(x) = f(x − a), then the reconstruction kernel is also a translation
invariant.

Sometimes it is easier to cheque these conditions for A itself. Using AT ∗
1 =

T ∗
2 A we get the above relations by using the adjoint operators.

This method is presented in [17] as a general regularization scheme to solve
inverse problems. Generalizations are also given. The application to vector
fields is derived by Schuster [31].

If the auxiliary problem is not solvable then its minimum norm solution
leads to the minimum norm solution of the original problem.

3 Inversion of the Radon transform

We apply the above approach to derive inversion algorithms for the Radon
transform. This represents a typical behaviour for all linear imaging problems.
The Radon transform in RN is defined as

Rf(θ, s) =
∫

RN

f(x)δ(s − x�θ) dx

for unit vectors θ ∈ SN−1 and s ∈ R. Its inverse is

R−1 = cNR∗I1−N (3)

where R∗ is the adjoint operator from L2 to L2, also called the backprojection,
defined as

R∗g(x) =
∫

SN−1
g(θ, x�θ)dθ,

Iα is the Riesz potential defined via the Fourier transform as

(̂Iαg)(ξ) = |ξ|−αĝ(ξ),

acting on the second variable of Rf and the constant

cN =
1
2
(2π)1−N ,

see, e.g., [27]. We start with a mollifier eγ(x, ·) for the reconstruction point x
and get

R∗ψγ(x, ·) = eγ(x, ·)
= cNR∗I1−NReγ(x, ·)
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leading to
ψγ(x; θ, s) = cNI1−NReγ(x; θ, s).

The Radon transform for fixed θ is translational invariant; i.e., if we denote
by Rθf(s) = Rf(θ, s), then

RθT
a
1 f = T a�θ

2 Rθf

with the shift operators T a
1 f(x) = f(x− a) and T t

2g(s) = g(s− t). If we chose
a mollifier ēγ supported in the unit ball centered around 0 that is shifted to
x as

eγ(x, y) = 2−N ēγ(
x − y

2
)

then also eγ is supported in the unit ball and the reconstruction kernel fulfills

ψγ(x; θ, s) =
1
2
ψ̄γ(θ,

s − x�θ

2
)

as follows from the general theory in [16] and as was used for the 2D case
in [24].

Furthermore, the Radon transform is invariant under rotations; i.e.,

RT U
1 = T U

2 R

for the rotation T U
1 f(x) = f(Ux) with unitary U and T2

Ug(θ, s) = g(Uθ, s).
If the mollifier is invariant under rotation; i.e.,

ēγ(x) = ēγ(‖x‖)

then the reconstruction kernel is independent of θ leading to the following
observation.

Theorem 1. Let the mollifier eγ(x, y) be of the form

eγ(x, y) = 2−N ēγ(‖x − y‖/2)

then the reconstruction kernel is a function only of the variable s and the
algorithm is of filtered backprojection type

fγ(x) =
∫

Sn−1

∫
R

ψγ(x�θ − s)Rf(θ, s)dsdθ . (4)

First references to this technique can be found in the work of Grünbaum [2]
and Solmon [8].

Lemma 1. The function fγ from Theorem 3.1 can be represented as a smoo-
thed inversion or as a reconstruction of smoothed data as

fγ = R−1
γ g = MγR−1g = R−1M̃g (5)
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where
Mγf(x) = 〈f, eγ(x, ·)〉

and
M̃γg(θ, s) =

∫
R

g(θ, t)ẽγ(s − t)dt

where
ẽγ(s) = Reγ(s)

for functions eγ fulfilling the conditions of Theorem 3.1.

4 Optimality criteria

There are several criteria which have to be optimized. The speed of the recon-
struction is an essential issue. The scanning time has to be short for the sake
of the patients. In order to guarantee a sufficiently high patient throughput,
the time for the reconstruction cannot slow down the whole system, but has
to be achieved in real-time. The above mentioned invariances adapted to the
mathematical model give acceptable results. The speed itself is not sufficient,
therefore the accuracy has to be the best possible to ensure the medical diag-
nosis. This accuracy is determined by the amount of data and of unavoidable
noise in the data.

To optimise with respect to accuracy and noise reduction, we consider the
problem in suitable Sobolev spaces Hα = Hα(RN )

Hα = {f ∈ S′ : ‖f‖2
Hα =

∫
RN

(1 + |ξ|2)α|f̂(ξ)|2dξ < ∞}.

The corresponding norm on the cylinder CN = SN−1 × R is evaluated as

‖g‖2
Hα(CN ) =

∫
SN−1

∫
R

(1 + |σ|2)α|ĝ(θ, σ)|2dσdθ

where the Fourier transform is computed with respect to the second variable.
We make the assumption that there is a number α > 0 such that

c1‖f‖−α ≤ ‖Af‖L2 ≤ c2‖f‖−α

for all f ∈ N(A)⊥. For the Radon transform in RN this holds with α =
(N − 1)/2, see, e.g., [14, 27].

We assume the data to be corrupted by noise; i.e.,

gε = Rf + n

where the true solution
f ∈ Hβ
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and the noise
n ∈ Ht

with t ≤ 0. In the case of white noise, characterized by equal intensity at all
frequencies, see, e.g., [10, 15], we hence have |n̂(θ, σ)| = const, and this leads
to n ∈ Ht with t < −1/2.

As mollifier we select a low-pass filter in the Fourier domain, resulting
in two dimensions in the so-called RAM-LAK-filter. Its disadvantages are
described in the next section. The theoretical advantage is that we get in-
formation about the frequencies in the solution and therefore the achievable
resolution.

This means we select a cut-off 1/γ for γ sufficiently small and

ˆ̃eγ(σ) = (2π)−1/2χ[−1/γ,1/γ](σ)

where χA denotes the characteristic function of A.

Theorem 2. Let the true solution be f ∈ Hβ with ‖f‖β = ρ and the noise be
n ∈ Ht(CN ) with ‖n‖t = ε.

Then the total error in the reconstruction is for s < β

‖R−1
γ gε − f‖s ≤ c‖n‖(β−s)/(β−t+(N−1)/2)

t ‖f‖(s−t+(N−1)/2)/(β−t+(N−1)/2)
β (6)

when the cut-off frequency is chosen as

γ = η

(
‖n‖t

‖f‖β

)1/(β−t+(N−1)/2)

. (7)

Proof. We split the error in the data error and the approximation error as

‖R−1
γ gε − f‖s ≤ ‖R−1

γ n‖s + ‖R−1
γ Rf − f‖s.

In order to estimate the data error we introduce polar coordinates and apply
the so-called projection theorem

f̂(σθ) = (2π)(1−N)/2R̂f(θ, σ) (8)

relating Radon and Fourier transform. With ̂̃Mγg = (2π)1/2 ̂̃eγ ĝ we get

‖R−1
γ n‖2

s = (2π)1−N

∫
SN−1

∫
R

(1 + |σ|2)sσN−1|R̂R−1
γ n|2dσdθ

= (2π)1−N

∫
SN−1

∫
R

(1 + |σ|2)s−tσN−1(1 + |σ|2)t|̂̃Mγn|2dσdθ

≤ (2π)1−N sup
|σ|≤1/γ

((1 + |σ|2)s−t|σ|N−1)‖n‖2
t

= (2π)1−N (1 + γ−2)s−tγ1−N‖n‖2
t

≤ (2π)1−N2s−tγ2(t−s)+1−N‖n‖2
t
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where we have used γ ≤ 1. Starting from ˆ̃eγ = Reγ we compute the Fourier
transform of eγ via the projection theorem as êγ(ξ) = (2π)−Nχ[0,1/γ](|ξ|) and
compute the approximation error as

‖R−1
γ Rf − f‖s =

∫
RN

(1 + |ξ|2)s|f̂(ξ)|2dξ

=
∫
|ξ|≥1/γ

(1 + |ξ|2)(s−β)(1 + |ξ|2)β |f̂(ξ)|2dξ

≤ sup
|ξ|≥1/γ

(1 + |ξ|2)(s−β)‖f‖2
β

≤ γ2(β−s)‖f‖2
β.

The total error is hence estimated as

‖R−1
γ gε − f‖s ≤ (2π)(1−N)/22(s−t)/2γ(t−s)+(1−N)/2‖n‖t + γ(β−s)‖f‖β.

Next we minimize this expression with respect to γ where we put with a =
s − t + (N − 1)/2 and

ϕ(γ) = c1γ
−aε + γβ−sρ.

Differentiation leads to the minimum at

γ =
(

c1aε

(β − s)ρ

)1/(β−s+a)

.

Inserting in ϕ completes the proof. �

This result shows that if the data error goes to zero, the cut-off goes to
infinity. It is related to the inverse of the signal-to-noise ratio.

5 The filtered backprojection for the Radon transform
in 2 and 3 dimensions

In the following we describe the derivation of the filtered backprojection, see
Theorem 3.1, for two and three dimensions. As seen in Formula (3.1) the
inverse operator of the Radon transform in RN has the representation

R−1 = R∗B

with
B = cNI1−N .

Hence, using
e = R−1Re = R∗BRe = R∗ψ
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this can easily be solved as

ψγ = cNI1−NReγ . (9)

As mollifier we choose a translational and rotational invariant function

ēγ(x, y) = eγ(‖x − y‖)

whose Radon transform then is a function of the variable s only. Taking the
Fourier transform of Equation (4.1) we get

ψ̂γ(σ) = cN
̂(I1−N (Reγ))(σ)

=
1
2
(2π)(1−N)/2|σ|N−1êγ(σ),

where in the last step we have again used the projection theorem

f̂(σθ) = (2π)(1−N)/2R̂θf(σ).

So, we can proceed in the following two ways. Either we prescribe the mollifier
eγ , where the Fourier transform is then computed to

êγ(σ) = σ1−N/2

∫ ∞

0

eγ(s)sN/2JN/2−1(sσ)ds

where Jν denotes the Bessel function of order ν. On the other hand we pre-
scribe

êγ(σ) = (2π)−N/2Fγ(σ)

with a suitably chosen filter Fγ leading to

ψ̂γ(σ) =
1
2
(2π)1/2−N |σ|N−1Fγ(σ).

If Fγ is the ideal low-pass; i.e., Fγ(σ) = 1 for |σ| ≤ γ and 0 otherwise, then
the mollifier is easily computed as

eγ(x, y) = (2π)−N/2γN JN/2(γ‖x − y‖)
(γ‖x − y‖)N/2

.

In the two-dimensional case, the calculation of ψ leads to the so called RAM-
LAK filter, which has the disadvantage of producing ringing artefacts due to
the discontinuity in the Fourier domain.

More popular for 2D is the filter

Fγ(σ) =

⎧⎨⎩ sincσπ
2γ , |σ| ≤ γ,

0, |σ| > γ.
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From this we compute the kernel ψγ by inverse Fourier transform to get γ =
π/h where h is the stepsize on the detector; i.e., h = 1/q if we use 2q + 1
points on the interval [−1, 1] and s = s� = �h, � = −q, . . . , q

ψγ(s�) =
γ2

π4

1
1 − 4�2

,

known as Shepp-Logan kernel.
The algorithm of filtered backprojection is a stable discretization of the

above described method using the composite trapezoidal rule for computing
the discrete convolution. Instead of calculating the convolution for all points
θ�x, the convolution is evaluated for equidistant points �h and then a linear
interpolation is applied. Nearest neighbour interpolation is not sufficiently
accurate, and higher order interpolation is not bringing any improvement be-
cause the interpolated functions are not smooth enough. Then the composite
trapezoidal rule is used for approximating the backprojection. Here one in-
tegrates a periodic function, hence, as shown with the Euler-Maclaurin sum-
mation formula, this formula is highly accurate. The filtered backprojection
then consists of two steps. Let the data Rf(θ, s) be given for the directions
θj = (cosϕj , sinϕj), ϕj = π(j − 1)/p, j = 1, ..., p and the values sk = kh,
h = 1/q and k = −q, ..., q.

Step 1: For j=1,...,p, evaluate the discrete convolutions

vj,� = h

q∑
k=−q

ψγ(s� − sk)Rf(θj , sk), � = −q, ..., q. (10)

Step 2: For each reconstruction point x compute the discrete backprojection

f̃(x) =
2π

p

p∑
j=1

(
(1 − η)vj,� + ηvj,�+1 (11)

where, for each x and j, � and η are determined by

s = θ�j x, � ≤ s/h < � + 1, η = s/h − �

see, e.g., [27].
In the three-dimensional case we can use the fact, that the operator I−2

is local,

I−2g(θ, s) =
∂2

∂s2
g(θ, s).

If we want to keep this local structure in the discretization we choose

Fγ(σ) = 2(1 − cos(hσ))/(hσ)2

leading to
ψγ(s) = (δγ − 2δ0 + δ−γ) (s). (12)
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Hence, the application of this reconstruction kernel is nothing but the central
difference quotient for approximating the second derivative. The correspond-
ing mollifier then is

eγ(y) =

⎧⎨⎩ (2π)−1h−2|y|−1, for |y| < h,

0, otherwise,

see [13]. The algorithm has the same structure as mentioned above for the 2D
case.

In order to get reconstruction formulas for the fan beam, geometry coor-
dinate transforms can be used, and the structure of the algorithms does not
change.

6 Inversion formula for the 3D cone beam transform

In the following we consider the X-ray reconstruction problem in three di-
mensions when the data is measured by firing an X-ray tube emitting rays
to a 2D detector. The movement of the combination source-detector deter-
mines the different scanning geometries. In many real-world applications the
source is moved on a circle around the object. From a mathematical point of
view this has the disadvantage that the data are incomplete and the condition
of Tuy-Kirillov is not fulfilled. This condition says that essentially the data
are complete for the three-dimensional Radon transform. More precisely, all
planes through a reconstruction point x have to cut the scanning curve Γ . We
base our considerations on the assumptions that this condition is fulfilled, the
reconstruction from real data is then nevertheless from the above described
circular scanning geometry, because other data is not available to us so far.

A first theoretical presentation of the reconstruction kernel was given by
Finch [5], and invariances were then used in the group of the author to speed-
up the computation time considerably, so that real data could be handled,
see [18]. See also the often used algorithm from Feldkamp et al. [4] and the con-
tribution of Defrise and Clack [3]. The approach of Katsevich [9] differs from
our approach in that he avoids the Crofton symbol by restricting the back-
projection to a range dependent on the reconstruction point x. An overview
of the so far existing reconstruction algorithms is given by [34], it is based on
a relation between the Fourier transform and the cone beam transform, de-
rived by Tuy [33] generalizing the so-called projection theorem for the Radon
transform, see Formula (4.3).

The presentation follows Louis [19].
The mathematical model here is the so-called X-ray transform, where we

denote with a ∈ Γ the source position, Γ ⊂ R3 is a curve, and θ ∈ S2 is the
direction of the ray:

Df(a, θ) =
∫ ∞

0

f(a + tθ)dt.
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The adjoint operator of D as mapping from L2(R3) −→ L2(Γ ×S2) is given as

D∗g(x) =
∫

Γ

|x − a|−2g

(
a,

x − a

|x − a|

)
da.

Most attempts to find inversion formulae are based on a relation between
X-ray transform and the 3D Radon transform, the so-called Formula of
Grangeat, first published in Grangeat’s PhD thesis [6], see also [7]:

∂

∂s
Rf(ω, a�ω) = −

∫
S2

Df(a, θ)δ′(θ�ω)dθ.

Proof. We copy the proof from [28]. It consists of the following two steps.
i) We apply the adjoint operator of Rθ∫

IR

Rf(θ, s)ψ(s)ds =
∫

IR3
f(x)ψ(x�θ)dx.

ii) Now we apply the adjoint operator D for fixed source position a∫
S2

Df(a, θ)h(θ)dθ =
∫

IR3
f(x)h

( x − a

|x − a|
)
|x − a|−2dx.

Putting in the first formula ψ(s) = δ′(s − a�ω), using in the second h(θ) =
δ′(θ�ω), and the fact that δ′ is homogeneous of degree −2 in IR3, then this
completes the proof. �

We note the following rules for δ′:
i) ∫

S2
ψ(a�ω)δ′(θ�ω)dω = −a�θ

∫
S2∩θ⊥

ψ′(a�ω)dω.

ii) ∫
S2

ψ(ω)δ′(θ�ω)dω = −
∫

S2∩θ⊥

∂

∂θ
ψ(ω)dω.

Starting point is now the inversion formula for the 3D Radon transform

f(x) = − 1
8π2

∫
S2

∂2

∂s2
Rf(ω, x�ω)dω (13)

rewritten as

f(x) =
1

8π2

∫
S2

∫
R

∂

∂s
Rf(ω, s)δ′(s − x�ω)dsdω.

We assume in the following equation that the Tuy-Kirillov condition is ful-
filled. Then we can change the variables as: s = a�ω, n is the Crofton symbol;
i.e., the number of source points a ∈ Γ such that a�ω = x�ω, m = 1/n
and get
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f(x) =
1

8π2

∫
S2

∫
Γ

(Rf)′(ω, a�ω)δ′((a − x)�ω)|a′�ω|m(ω, a�ω)dadω

= − 1
8π2

∫
S2

∫
Γ

∫
S2

Df(a, θ)δ′(θ�ω)dθδ′((a−x)�ω)|a′�ω|m(ω, a�ω)dadω

= − 1
8π2

∫
Γ

|x − a|−2

∫
S2

∫
S2

Df(a, θ)δ′(θ�ω)dθδ′

(
(x − a)
|x − a|

�
ω

)
×|a′�ω|m(ω, a�ω)dadω

where again δ′ is homogeneous of degree −2. We now introduce the following
operators

T1g(ω) =
∫

S2
g(θ)δ′(θ�ω)dθ (14)

and we use T1 acting on the second variable as

T1,ag(ω) = T1g(a, ω) .

We also use the multiplication operator

MΓ,ah(ω) = |a′�ω|m(ω, a�ω)h(ω), (15)

and state the following result.

Theorem 3. Let the condition of Tuy-Kirillov be fulfilled. Then the inversion
formula for the cone beam transform is given as

f = − 1
8π2

D∗T1MΓ,aT1Df (16)

with the adjoint operator D∗ of the cone beam transform and T1 and MΓ,a as
defined above.

Note that the operators D∗ and M depend on the scanning curve Γ .
This form allows for computing reconstruction kernels. To this end we have

to solve the equation

D∗ψγ = eγ

in order to write the solution of Df = g as

f(x) = 〈ψγ(x, ·)〉.

In the case of exact inversion, formula eγ is the delta distribution. In the case
of the approximate inversion formula it is an approximation of this distribu-
tion, see the method of approximate inverse. Using D−1 = − 1

8π2 D∗T1MΓ,aT1

we get

D∗ψ = δ = − 1
8π2

D∗T1MΓ,aT1Dδ
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Fig. 1. Reconstruction of a surprise egg with a turtle inside.

and hence
ψ = − 1

8π2
T1MΓ,aT1Dδ. (17)

We can explicitly give the form of the operators T1 and T2 = MT1. The
index at ∇ indicates the variable with respect to how the differentiation is
performed.

T1g(a, ω) =
∫

S2
g(a, θ)δ′(θ�ω)dθ

= −ω�
∫

S2∩ω⊥
∇2g(a, θ)dθ

and

T1MΓ,ah(a, α) =
∫

S2
δ′(ω�α)|a′�ω|m(ω, a�ω)h(a, ω)dω

= −a′�α

∫
S2∩α⊥

sign(a′�ω)m(ω, a�ω)h(a, ω)dω

−α�
∫

S2∩α⊥
|a′�α|∇1m(ω, a�ω)h(a, ω)dω

−a�α

∫
S2∩α⊥

|a′�ω|∇2m(a, a�ω)h(a, ω)dω

−
∫

S2∩α⊥
|a′�ω|m(ω, a�ω)

∂

∂α
h(a, ω)dω.

Note that the function m is piecewise constant and the derivatives are then
Delta-distributions at the discontinuities with factor equal to the height of
the jump; i.e., 1/2.
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Depending on the scanning curve Γ , invariances have to be used. For the
circular scanning geometry this leads to similar results as mentioned in [18].
In Fig. 1 we present a reconstruction from data provided by the Fraunhofer
Institut for Nondestructive Testing (IzfP) in Saarbrücken. The detector size
was (204.8mm)2 with 5122 pixels and 400 source positions on a circle around
the object. The number of data is 10.4 million. The mollifier used is

eγ(y) = (2π)−3/2γ−3 exp
(
−1

2

∣∣∣ y
γ

∣∣∣2).
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28. F. Natterer and F. Wübbeling. Mathematical Methods in Image Reconstruction.
SIAM, Philadelphia, 2001.

29. E. T. Quinto. Tomographic reconstruction from incomplete data – numerical
inversion of the exterior Radon transform. Inverse Problems, 4:867–876, 1988.

30. A. Rieder. Principles of reconstruction filter design in 2d-computerized tomog-
raphy. Contemporary Mathematics, 278:207–226, 2001.

31. T. Schuster. The 3D-Doppler transform: elementary properties and computation
of reconstruction kernels. Inverse Problems, 16:701–723, 2000.

32. D. Slepian. Prolate spheroidal wave functions, Fourier analysis and uncertainty
- V: the discrete case. Bell System Technical Journal, 57:1371–1430, 1978.

33. H. K. Tuy. An inversion formula for the cone-beam reconstruction. SIAM
Journal on Applied Mathematics, 43:546–552, 1983.

34. S. Zhao, H. Yu, and G. Wang. A unified framework for exact cone-beam recon-
struction formulas. Medical Physics, 32:1712–1721, 2005.



Optimal control in high intensity focused
ultrasound surgery

Tomi Huttunen, Jari P. Kaipio, and Matti Malinen

Department of Physics, University of Kuopio, P.O. Box 1627, FIN-70211, Finland
Matti.Malinen@uku.fi

Summary. When an ultrasound wave is focused in biological tissue, a part of the
energy of the wave is absorbed and turned into heat. This phenomena is used as a dis-
tributed heat source in ultrasound surgery, in which the aim is to destroy cancerous
tissue by causing thermal damage. The main advantages of the ultrasound surgery
are that it is noninvasive, there are no harmful side effects and spatial accuracy is
good. The main disadvantage is that the treatment time is long for large cancer
volumes when current treatment techniques are used. This is due to the undesired
temperature rise in healthy tissue during the treatment. The interest for optimiza-
tion of ultrasound surgery has been increased recently. With proper mathematical
models and optimization algorithms the treatment time can be shortened and tem-
perature rise in tissues can be better localized. In this study, two alternative control
procedures for thermal dose optimization during ultrasound surgery are presented.
In the first method, the scanning path between individual foci is optimized in order
to decrease the treatment time. This method uses the prefocused ultrasound fields
and predetermined focus locations. In the second method, combined feedforward and
feedback controls are used to produce desired thermal dose in tissue. In the feed-
forward part, the phase and amplitude of the ultrasound transducers are changed
as a function of time to produce the desired thermal dose distribution in tissue.
The foci locations do not need to be predetermined. In addition, inequality con-
straint approximations for maximum input amplitude and maximum temperature
can be used with the proposed method. The feedforward control is further expanded
with a feedback controller which can be used during the treatment to compensate
the modeling errors. All of the proposed control methods are tested with numerical
simulations in 2D or 3D.

Keywords: Ultrasound surgery, optimal control, minimum time control,
feedforward control, feedback control.

1 Introduction

In high intensity focused ultrasound surgery (HIFU), the cancerous tissue in
the focal region is heated up to 50–90◦C. Due to the high temperature, thermal
dose in tissue raises in a few seconds to the level that causes necrosis [43, 44].
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Furthermore, the effect of the diffusion and perfusion can be minimized with
high temperature and short sonication time [26]. In the current procedure of
ultrasound surgery, the tissue is destroyed by scanning the cancerous volume
point by point using predetermined individual foci [14]. The position of the
focus is changed either by moving the transducer mechanically, or by chang-
ing the phase and amplitude of individual transducer elements when a phased
array is used. The thermal information during the treatment is obtained via
magnetic resonance imaging (MRI) [7]. This procedure is efficient for the
treatment of small tumor volumes. However, as the tumor size increases and
treatment is accomplished by temporal switching between foci, the temper-
ature in healthy tissue accumulates and can cause undesired damage [9, 17].
This problem has increased the interest toward the detailed optimization of the
treatment. With control and optimization methods, it is possible to decrease
the treatment time as well as to control the temperature or thermal dose in
both healthy and cancerous tissue.

The different approaches have been proposed to control and optimize tem-
perature or thermal dose in ultrasound surgery. For temperature control, a
linear quadratic regulator (LQR) feedback controller was proposed in [21]. In
that study, controller parameters were adjusted as a function of time accord-
ing to absorption in focus. The controller was designed to keep temperature in
focus point at a desired level. Another LQR controller was proposed in [46].
That controller was also designed to keep the temperature in single focus
point at a predetermined level, and the tissue parameters for the controller
were estimated with MRI temperature data before the actual treatment.

The direct control of the thermal dose gives several advantages dur-
ing ultrasound surgery. These advantages are reduced peak temperature,
decreased applied power and decreased overall treatment time [13]. The pro-
posed thermal dose optimization approaches include power adjusted focus
scans [47], weighting approach [22] and temporal switching between single [17]
or multiple focus patterns [13]. In all of these studies, only a few predeter-
mined focus patterns were used, i.e., thermal dose was optimized by choosing
the treatment strategy from the small set of possible paths or focus distri-
butions. Finally, model predictive control (MPC) approach for thermal dose
optimization was proposed in [1]. In the MPC approach, the difference be-
tween the desired thermal dose and current thermal dose was weighted with
a quadratic penalty. Furthermore, the modeling errors in perfusion can be
decreased with MRI temperature data during the control. However, the MPC
approach was proposed for the predetermined focus points and scanning path,
and it is computationally expensive, especially in 2D and 3D.

In this study, alternative methods for optimization and control of the ther-
mal dose are presented. The first method concerns scanning path optimiza-
tion between individual foci. In this approach, the cancer volume is filled
with a predetermined set of focal points, and focused ultrasound fields are
computed for each focus. The optimization algorithm is then constructed
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as the minimum time formulation of the optimal control theory [20, 42].
The proposed algorithm optimizes the scanning path, i.e., finds the order
in which foci are treated. The proposed optimization method uses the linear
state equation and it is computationally easy to implement to current clini-
cal machinery. The scanning path optimization method can be also used with
MRI temperature feedback. The details of this method can be found from [34].
The simulations from the optimized scanning path show that treatment time
can be efficiently decreased as compared to the current scanning technique.
In the current technique, the treatment is usually started from the outermost
focus and foci are scanned by the decreasing order of the distance between
the outermost focus and transducer.

The second method investigated here is a combination of model based
feedforward control and feedback control to compensate modeling errors. In
feedforward control the thermal dose distribution in tissue is directly opti-
mized by changing the phase and amplitude of the ultrasound transducers
as a function of time. The quadratic penalty is used to weight the difference
between the current thermal dose and desired thermal dose. The inequal-
ity constraint approximations for the maximum input amplitude and maxi-
mum temperature are included in the design. This approach leads to a large
dimension nonlinear control problem which is solved using gradient search [42].
The proposed feedforward control method has several advantages over other
optimization procedures. First, the thermal dose can be optimized in both
healthy and cancerous tissue. Second, the variation of diffusion and perfusion
values in different tissues is taken into account. Third, the latent thermal dose
which accumulates after the transducers have been turned off can be taken
into account. The feedforward control method is discussed in detail in [32]
for temperature control and in [33] for thermal dose optimization. In the sec-
ond part of the overall control procedure, a linear quadratic Gaussian (LQG)
controller with Kalman filter for state estimation is used to compensate the
modeling errors which may appear in the feedforward control. The tempera-
ture data for the feedback can be adopted from MRI during the treatment.
The feedback controller is derived by linearizing the original nonlinear con-
trol problem with respect to the feedforward trajectories for temperature and
control input. The LQG controller and Kalman filter are then derived from
these linearized equations. The details of the LQG feedback control can be
found in [31].

In this study, numerical examples for each control procedure are presented.
All examples concern the ultrasound surgery of breast cancer, and the mod-
eling is done either in 2D or 3D. The potential of ultrasound surgery for
the treatment of breast cancer is shown in clinical studies in [18] and [27].
Although all examples concern the ultrasound surgery of the breast, there are
no limitations to using derived methods in the ultrasound surgery of other
organs, see for example [33].
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2 Mathematical models

2.1 Wave field model

The first task in the modeling of ultrasound surgery is to compute the
ultrasound field. If acoustic parameters of tissue are assumed to be homoge-
neous, the time harmonic ultrasound field can be computed from the Rayleigh
integral [39]. If the assumption of the homogeneity is not valid, the pressure
field can be obtained as a solution of the Helmholtz equation. The Helmholtz
equation in inhomogeneous absorbing media can be written as

∇ ·
(

1
ρ
∇p

)
+

κ2

ρ
p = 0, (1)

where ρ is density, c is the speed of sound and κ = 2πf/c+ iα, where f is the
frequency and α is the absorption coefficient [4].

The Helmholtz equation with suitable boundary conditions can be solved
with a variety of methods. Traditional approaches include the low-order
finite element method (FEM) and the finite difference method (FD) [28].
The main limitation of these methods is that they require several elements
per wavelength to obtain a reliable solution. At high frequency ultrasound
computations, this requirement leads to very large dimensional numerical
problems. To avoid this problem ray approximations have been used to com-
pute ultrasound field [5, 16, 29]. However, the complexity of ray approxima-
tion increases dramatically in complex geometries in the presence of multiple
material interfaces.

An alternative approach for ultrasound wave modeling is to use the
improved full wave methods, such as the pseudo-spectral [48] and k-space
methods [35]. In addition, there are methods in which a priori information of
the approximation subspace can be used. In the case of the Helmholtz equa-
tion, a priori information is usually plane wave basis which is a solution of the
homogeneous Helmholtz equation. The methods which use plane wave basis
include the partition of unity method (PUM) [2], least squares method [37],
wave based method (Trefftz method) [45] and ultra weak variational formu-
lation (UWVF) [6, 24].

In this study, the Helmholtz equation (1) is solved using the UWVF. The
computational issues of UWVF are discussed in detail in [24], and UWVF
approximation is used in the related ultrasound surgery control problems in
[32] and [33]. The main idea in UWVF is to use plane wave basis functions from
different directions in the elements of standard FEM mesh. The variational
form is formulated in the element boundaries, thus reducing integration task
in assembling the system matrices. Finally, the resulting UWVF matrices have
a sparse block structure. These properties make the UWVF a potential solver
for high frequency wave problems.
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2.2 Thermal evolution model

The temperature in biological tissues can be modeled with the Pennes bioheat
equation [38]

ρCT
∂T

∂t
= ∇ · k∇T − wBCB(T − TA) + Q, (2)

where T = T (r, t) is the temperature in which r = r(x, y, z) is the spatial
variable. Furthermore, in Equation (2) CT is the heat capacity of tissue, k is
the diffusion coefficient, wB is the arterial perfusion, CB is the heat capacity
of blood, TA is the arterial blood temperature and Q is the heat source term.
The heat source for time-harmonic acoustic pressure can be defined as [39]

Q = α
|p|2
ρc

. (3)

If the wave fields for the heat source are computed from the Helmholtz equa-
tion, the heat source term can be written as

Q =
α(r)

ρ(r)c(r)
|p(r, t)|2 =

α(r)
ρ(r)c(r)

∣∣∣∣∣
m∑

k=1

ũk(t)C̃k(r)

∣∣∣∣∣
2

, (4)

where ũk(t) ∈ C determines the amplitude and phase of the transducer num-
ber k and C̃k(r) ∈ CN is the time-harmonic solution of the Helmholtz problem,
where N is the number of spatial discretization points.

The bioheat equation can be solved using the standard FEM [12, 36] or
FD-time domain methods [8, 11]. In this study, the semi-discrete FEM with
the implicit Euler time integration is used to solve the bioheat equation. The
detailed FEM formulation of the bioheat equation can be found in [32] and
[33]. The implicit Euler form of the bioheat equation can be written as

Tt+1 = ATt + P + MD(But)2, (5)

where Tt ∈ RN is the FEM approximation of temperature, matrix A ∈ RN×N

arises from the discretization of FEM and vector P is related to perfusion term.
The heat source term MD(But)2 ∈ RN is constructed from the precomputed
ultrasound fields as follows. The real and imaginary parts of the variable ũk(t)
in Equation (4) are separated as uk = Re ũk and um+k = Im ũk, k = 1, ..., m,
resulting in the control variable vector u(t) ∈ R2m. Furthermore, solutions
of the Helmholtz problem are arranged as Ĉk = (C̃k(r1), ..., C̃k(rN ))T and
Ĉ = (Ĉ1, ..., Ĉm) ∈ CN×m. For control purposes, the matrix Ĉ is written in
the form where real and imaginary parts of the wave fields are separated as

B =

⎛⎝Re Ĉ −Im Ĉ

Im Ĉ Re Ĉ

⎞⎠ ∈ R2N×2m. (6)
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In Equation (5), matrix MD ∈ RN×2m is the modified mass matrix which
is constructed as MD = [I, I]M , where I is the unit matrix. In addition, the
square of the heat source term in Equation (5) is computed element wisely.
With this procedure, it is possible to control the real and imaginary parts
(phase and amplitude) of each transducer element separately. For detailed
derivation of the heat source term, see example [33].

In this study, the boundary condition for the FE bioheat equation (5) was
chosen as the Dirichlet condition in all simulations. In the Dirichlet condition,
the temperature on the boundaries of the computational domain was set to
37◦C. Furthermore, the initial condition for the implicit Euler iteration was
set as T0 = 37◦C in all simulated cases.

2.3 Thermal dose model

The combined effect of the temperature and the treatment time can be eval-
uated using the thermal dose. For biological tissues thermal dose is defined
as [40]

D(T (r, ·)) =
∫ tf

0

R

(
43−T (r,t)

)
dt , whereR =

{
0.25 for T (r, t) < 43◦C
0.50 for T (r, t) ≥ 43◦C

(7)

and tf is the final time where thermal dose is integrated. The unit of the
thermal dose is equivalent minutes at 43◦C. In most of the soft tissues the
thermal dose that causes thermal damage is between 50 and 240 equivalent
minutes at 43◦C [10, 11].

3 Control and optimization algorithms for ultrasound
surgery

In the following, different control and optimization algorithms for thermal dose
and temperature control in ultrasound surgery are presented. The numerical
simulations are given after the theoretical part of each algorithm.

3.1 Scanning path optimization method

In the scanning path optimization algorithm, the heat source term in the
implicit Euler FEM form of the bioheat equation (5) is linearized. In this
case, a new matrix B̃ ∈ RN×Nf is constructed from focused ultrasound fields,
where the number of foci is Nf . The mass matrix M is also included to matrix
the B̃. With these changes, the bioheat equation is written as

Tt+1 = ATt + P + B̃tut, (8)
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where B̃t ∈ RN is the active field at time t and ut is the input power. The
active field (B̃t) at time t is taken as a column from the matrix B̃ in which
focused fields for predetermined foci are set as columns. The cost function for
the scanning path optimization can be set as a terminal condition

J(D) = (D − Dd)T W (D − Dd), (9)

where the difference between thermal dose and desired thermal dose Dd is
penalized using positive definite matrix W . The Hamiltonian form for the
state equation (8) and the cost function (9) can be written as [38]

H(D, T, u) = ‖D − Dd‖2
W + λT

t (ATt − P + B̃ut), (10)

where λt ∈ RN is the Lagrange multiplier for the state equation. The opti-
mization problem can be solved from the costate equation [42]

λt−1 =
∂H

∂Tt
= AT λt + log(R)R43−Tt � W (D − Dd), (11)

where � is the element wise (Hadamard) product of two vectors. The costate
equation is computed backwards in time. The focus which minimizes the cost
function (9) at time t can be found as

min{λT
t B̃}, (12)

so the focus which is chosen makes Equation (12) most negative at time t
[20, 42]. The feedback law can be chosen as maximum effort feedback

ut+1 =

{
Td − Ti,t, ifλT

t B̃ < 0,

0, ifλT
t B̃ ≥ 0,

(13)

where Ti,t is temperature at ith focus point at time t, and Td is the desired
temperature in the cancer region. In this study, the desired temperature in
the cancer region was set to Td=70◦C.

The scanning path optimization algorithm consists of the following steps:
1) Solve the state equation (8) from time t upwards in a predetermined time
window. 2) Solve the Lagrange multiplier from Equation (11) backwards in
the same time window. 3) Find the next focus point from Equation (12). 4)
Compute the input value from Equation (13). If the target is not fully treated,
return to step 1).

3.2 Scanning path optimization simulations

The scanning path optimization method was evaluated in two schematic 3D
geometries, which are shown in Figure 1. In both geometries, the ultrasound
surgery of the breast was simulated. In the first geometry, there are skin,
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Fig. 1. Computation domains for scanning path optimization. Left: Domain with
the slice target. Right: Domain with the sphere target. The subdomains from left to
right are skin, healthy breast and cancer.

Table 1. Thermal parameters for subdomains.

Subdomain α(Nep/m) k(W/mK) CT(J/kgK) wB(kg/m3s)

skin 30 0.5 3770 1

breast 5 0.5 3550 0.5

cancer 5 0.5 3770 10

healthy breast and slice shaped target, with the radius of 1 cm. In the second
geometry, the subdomains are the same, but the target is a sphere with the
radius of 1 cm. Both targets were located so that the center of the target was
at the point (12,0,0) cm. The computation domains were partitioned into the
following meshes. With the slice target, the mesh consists of 13,283 vertices
and the 70,377 elements and with the spherical target the mesh consists of
24,650 vertices and 13,4874 elements.

The transducer system in simulations was a 530-element phased array
(Figure 2). The transducer was located so that the center of the target was
in the geometrical focus. The ultrasound fields with the frequency of 1 MHz
were computed for each element using the Rayleigh integral. The acoustical
properties of tissue were set as c=1500 m/s, ρ=1000 kg/m3 and α=5 Nep/m
[15, 19]. The thermal properties of tissue are given in Table 1, and these
properties were also adopted from the literature [25, 30, 41].

In the control problem, the objective was to obtain the thermal dose of 300
equivalent minutes at 43◦C in the whole target domain and keep the thermal
dose in healthy regions as low as possible. A transition zone with the thickness
of 0.5 cm was used around the target volume. In this region, the thermal dose
was not limited. The maximum temperature in healthy tissue was limited to
44◦C. If this temperature was reached, the tissue was allowed to cool to 42.5◦C
or below.
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Fig. 2. 530-element phased array used in simulations.

The weighting matrix W for the thermal dose difference was set to a diag-
onal matrix. The weights on the diagonal were set adaptively in the following
way. The total number of foci was denoted with Nf and the number of foci in
which the desired thermal dose was reached was denoted with Nd. The vertices
in healthy subdomains were weighted with the function 10, 000×(1−Nd/Nf )2,
and the vertices in the cancerous domain with (1−Nd/Nf )−2, i.e., the weight-
ing from the healthy region was decreased and correspondingly increased
in the target during the treatment. In addition, when the thermal dose of
300 equivalent minutes was reached, the weighting from this focus was rem-
oved. The implicit Euler form of the bioheat equation (8) was adopted by
setting the time step as h=0.25 s for the slice target and h=0.5 s for the
sphere target. The scanning path was chosen using the algorithm described in
the previous section. The time window for state and costate equations were
chosen to be 10 s upwards from the current time.

Simulated results were compared to the treatment where scanning is
started from the outermost focus (in x-coordinate) and the target volume
is then scanned in decreasing order of the x-coordinate. For example, in the
3D case, the outermost untreated location in the x-coordinate was chosen
and then the corresponding slice in y- and z-directions was sonicated. The
feedback law and temperature constraints were the same for the optimized
scanning path and this reference method. Furthermore, if the dose at the next
focus location was above the desired level, this focus was skipped (i.e., power
was not wasted). In the following, the results from this kind of sonication are
referred to as “standard sonication.” For both of the methods, the treatment
was terminated when the thermal dose of 300 equivalent minutes was reached
in the whole target.

The foci in target volumes were chosen so that the minimum distance in
each direction from focus to focus was 1 mm. For the slice target, the foci
were located in z=0 plane, while with the spherical target, the whole volume
was covered with foci.



178 T. Huttunen et al.

Table 2. Results from the scanning path optimization. The number of the foci in
target is Nf and t is the treatment time. Subscript O refers to optimized scanning
path and S to standard sonication.

Case Nf tO (s) tS (s)

Slice 158 41 58

Sphere 816 493 866

Fig. 3. Thermal dose contours for the slice scan in xy-plane. Left: Thermal dose
contours with optimized scanning path. Right: Thermal dose contours with standard
sonication. The contour lines are for 240 and 120 equivalent minutes at 43◦C.

The treatment times for the optimized scanning path and standard soni-
cation are given in Table 2. The sonication time is 30% shorter for the slice
target and 44% shorter for the sphere shaped target as compared to standard
sonication. The treatment time is reduced more for the spherical target, since
the degrees of freedom for the optimization algorithm are increased in 3D.

The thermal dose contours in xy-plane for the slice shaped target are
shown in Figure 3. With both of the methods, the desired thermal dose is
achieved well into the target region. In addition, the thermal dose decreases
efficiently in the transition zone and there are no undesired thermal doses in
healthy regions.

The maximum temperature trajectories for the target and healthy domains
for the slice target are shown in Figure 4. This figure shows that the whole
target volume can be treated using a single sonication burst with both of
the methods. With scanning path optimization, the maximum temperature in
healthy domains is smaller than with the standard sonication.

The thermal dose contours for the spherical target in different planes are
shown in Figure 5. Again, the therapeutically relevant thermal dose is achieved
in the whole target volume, and there are no big differences in dose contours
between optimized and standard scanning methods.
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Fig. 4. Maximum temperatures for the slice scan. Left: Maximum temperature in
cancer. Right: Maximum temperature in healthy tissue. Solid line is for optimized
scan and dotted for standard sonication.

Fig. 5. Thermal dose contours for the spherical scan in different planes. Left col-
umn: Thermal dose contours from optimized scanning path. Right column: Thermal
dose contours from the standard sonication. The contour lines are for 240 and 120
equivalent minutes at 43◦C.

The maximum temperature trajectories for the target and healthy tissue
from the spherical scan are shown in Figure 6. This figure indicates that the
treatment can be accomplished much faster by using the optimized scanning
path. The optimized scanning path needs three sonication bursts to treat the
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Fig. 6. Maximum temperatures for the sphere scan. Left: Maximum temperature in
cancer. Right: Maximum temperature in healthy tissue. Solid line is for optimized
scan and dotted for standard sonication.

whole cancer, while seven bursts are needed with the standard sonication. This
is due to the fact that temperature in healthy tissue rises more rapidly with
standard sonication, and tissue must be allowed to cool to prevent undesired
damage.

3.3 Feedforward control method

The first task in the feedforward control formulation is to define the cost
function. In the thermal dose optimization, the cost function can be written as

J(D, u̇; t) =
1
2
(D − Dd)T W (D − Dd) +

1
2

∫ tf

0

u̇T
t Su̇t dt, (14)

where the difference between the accumulated thermal dose D and the desired
thermal dose Dd is weighted with the positive definite matrix W and the
time derivative of the input is penalized with the positive definite matrix
S. The maximum input amplitude of ultrasound transducers is limited. This
limitation can be handled with an inequality constraint approximation, in
which kth component c1,k(ut) is

c1,k(ut) = c1,m+k(ut) (15)

=

⎧⎨⎩K
((

u2
k,t + u2

m+k,t(t)
)1/2 − umax,i

)2

, if
(
u2

k,t + u2
m+k,t

)1/2 ≥ umax,i ,

0, if
(
u2

k,t + u2
m+k,t

)1/2
< umax,i,

where K is the weighting scalar, uk,t and um+k,t are the real and imaginary
parts of the control input for the kth transducer, respectively, umax,i is the
maximum amplitude during the ith interval of the sonication and k = 1, . . . , m.
With this manner it is possible to split treatment into several parts when
transducers are alternatively on or off. For example, when large cancer volumes
are treated, the healthy tissue can be allowed to cool between the sonication
bursts. Furthermore, in feedforward control, it is useful to set the maximum
amplitude limitation lower than what transducers can actually produce. With
this manner it is possible to leave some reserve power for feedback purposes
to compensate for the modeling errors.
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In practice, there are also limitations for the maximum temperature in
both healthy and cancerous tissue. The pain threshold is reported to be
approximately 45◦C. In addition, the temperature in cancerous tissue must
be below the water boiling temperature (100◦C). These limitations can be
made in the form of an inequality constraint approximation c2, whose ith

component is

c2,i(Tt) =

⎧⎪⎪⎨⎪⎪⎩
K(Ti,t − Tmax,C)2, if Ti,t ∈ ΩC andTi,t ≥ Tmax,ΩC ,

K(Ti,t − Tmax,H)2, if Ti,t ∈ ΩH andTi,t ≥ Tmax,ΩH ,

0, otherwise.

(16)

where Ti is the temperature in the FE vertex i, the subset of the vertices in
cancerous region is denoted by ΩC and the subset of the vertices in the healthy
region is denoted by ΩH . The maximum allowed temperature is denoted in
cancerous and healthy tissue by Tmax,ΩC and Tmax,ΩH , respectively.

The feedforward control problem solution can be obtained via the
Hamiltonian form [42]. Combining equations (14), (5), (15) and (16) gives
the Hamiltonian

H(T, u, u̇; t) =
1
2

(
(D − Dd)T W (D − Dd) +

∫ tf

0

u̇T
t Su̇tdt

)
+λT

t

(
ATt − P − MD(But)2

)
+ µT

t c1

(
ut

)
+ νT

t c2

(
Tt

)
, (17)

where µt is the Lagrange multiplier for the control input inequality constraint
approximation and νt is the Lagrange multiplier for the temperature inequal-
ity constraint approximation.

The feedforward control problem can be now solved by using a gradi-
ent search algorithm. This algorithm consists of following steps: 1) Compute
the state equation (5). 2) Compute the Lagrange multiplier for the state as
−λt = ∂H/∂Tt backwards in time. 3) Compute the Lagrange multiplier for
the control input inequality constraint as µt = (∂c1/∂ut)−1(∂H/∂ut). 4) Com-
pute the Lagrange multiplier for the temperature inequality constraint using
the penalty function method as νt = ∂c2/∂Tt. 5) Compute the stationary con-
dition. For the �th iteration round, the stationary condition (input update)
can be computed as u

(�+1)
t = u

(�)
t + ε(�)∂H/∂ut

(�), where ε(�) is the iteration
step length. 6) Compute the value of the cost function from Equation (14). If
the change in the cost function is below a predetermined value, stop iteration,
otherwise return to step 1.

3.4 Feedforward control simulations

2D example

The computational domain in this example was chosen as a part of a cancerous
breast, see Figure 7. The domain was divided into four subdomains which are
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Fig. 7. Computational domain. Cancerous region is marked with the dashed line
(Ω4). Twenty ultrasound transducers are numbered on the left hand side.

Table 3. The acoustic and thermal parameters for the feedforward control
simulation.

Domain α (Nep/m) c (m/s) ρ (kg/m3s) k (W/mK) CT (J/kgK) wB (kg/m3s)

Ω1 0 1500 1000 0.60 4190 0

Ω2 12 1610 1200 0.50 3770 1

Ω3 5 1485 1020 0.50 3550 0.7

Ω4 5 1547 1050 0.65 3770 2.3

water (Ω1), skin (Ω2) a part of a healthy breast (Ω3) and the breast tumor
(Ω4). The domain was partitioned into a mesh having 2108 vertices and 4067
elements.

The transducers system was chosen as a 20-element phased array (see
Figure 7). The transducer was located so that the center of the cancer was in
the geometrical focus. The frequency of ultrasound fields was set to 500 kHz.
The wave fields were computed using the UWVF for each transducer ele-
ment. The acoustic and thermal parameters for the subdomains were adopted
from the literature [3, 30, 41] and they are given in Table 3. It is worth noting
that the frequency in this example was chosen lower than in scanning path
optimization simulations, and the absorption coefficient in skin is therefore
lower.

The feedforward control objective was to obtain the thermal dose of 300
equivalent minutes at 43◦C in the cancer region and below 120 equivalent
minutes in healthy regions. The transient zone near the cancer, where thermal
dose is allowed to rise, was not included to this simulation. The reason for this
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is the testing of the spatial accuracy of controller. The weighting for thermal
dose distribution was chosen as follows. The weighting matrix W was set to
diagonal matrix and the nodes in the skin, healthy breast and cancer were
weighted with 500, 2500 and 2000, respectively.

For feedforward control problem, the time interval t=[0,180] s was dis-
cretized with the step length h=0.5 s and the treatment was split into two
parts. During the first part of the sonication (i.e., when t ∈[0,50] s) the max-
imum amplitude was limited with umax,1=0.8 MPa, and during the second
part (i.e., when t ∈[50,180] s) the maximum amplitude was limited with
umax,2=0.02 MPa. In the inequality constraint approximation for maximum
amplitude, the weighting was set to K=10,000. The smoothing of the trans-
ducer excitations was achieved by setting the weighting matrix for time deriva-
tive of the control input as S=diag(5000). In this simulation, the maximum
temperature inequality constraint approximation was not used, i.e., c2,t = 0
for all t. The thermal dose was optimized using the algorithm described in
previous section. The iteration was stopped when the relative change in cost
function was below 10−4.

The thermal dose contours for the region of interest are shown in Figure 8.
These contours indicate that the major part of the thermal dose is in the
cancer area and only a small fraction of the dose is in the healthy breast.
The thermal dose of 240 equivalent minutes at 43◦C is achieved in 74% of
the target area and 120 equivalent minutes at 92% of the cancer area. In the
breast, only 2.4% of the area has thermal dose of 120 equivalent minutes.
The maximum thermal dose peak in the breast is quite high. However, this
dose peak is found only in a small part of the breast. In this simulation the
modeling of cooling period between [50 180] s is crucial, since 75% of the
thermal dose is accumulated during this time.

The phase and amplitude trajectories for the transducers number 4 and
16 are shown in Figure 9. There are no oscillations in the phase and amplitude
trajectories, so design criterion concerning this limitation is fulfilled.
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Fig. 8. The feedforward controlled dose at the final time (tf=180 s). Contour lines
are for 120 and 240 equivalent minutes at 43◦C.
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Fig. 9. Phase and amplitude trajectories from the feedforward control for transducer
number 4 (left) and 16 (right).

Fig. 10. Left: Computation domain. Subdomains from the left are skin, healthy
breast and the sphere shaped cancer. Right: 200-element phased array.

Furthermore, the maximum input amplitude during the first part of sonica-
tion was 0.801 MPa and during the second part 0.0203 MPa, so the maximum
amplitude inequality constraint approximation limits the amplitude with a
tolerable accuracy.

3D example

The computation domain for the 3D feedforward control problem is shown
in Figure 10. The domain was divided into three subdomains which were
skin, healthy breast and a sphere shaped cancer with the radius of 1 cm at
the point (7,0,0) cm. The computational domain was partitioned into a mesh
consisting of 23,716 vertices and 120,223 elements. The transducer system was
a hemispherical phased array with 200 elements (see Figure 7). The transducer
was located so that the center of the target was in the geometrical focus.
The ultrasound fields with the frequency of 1 MHz were computed using the
Rayleigh integral for each transducer element. The acoustical and thermal
parameters were chosen as Section 3.2 (see Table 1).

The control problem was to obtain the thermal dose of 300 equivalent
minutes or greater at 43◦C in the cancer region. The temperature in the
healthy tissue was limited to 45◦C and to 80◦C in cancer, with the inequality
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constraint approximation. In this simulation, a 0.5 cm transient zone was set
between the cancer and healthy tissue, where temperature or thermal dose was
not limited, since temperature in the simulation in this region was less than
80◦C. The weighting matrix W was set to diagonal matrix, and the vertices
in cancer region were weighted with 10,000 and other nodes had zero weights.

For the feedforward control problem, the time interval t=[0,50] s was dis-
cretized with step length h=0.5 s and the treatment was split to two parts.
During the first part of the sonication (i.e., when t ∈[0,30] s), the maximum
amplitude was limited with umax,1=100 kPa and during the second part (i.e.,
when t ∈[30,50] s), the maximum amplitude was limited with umax,2=2 kPa.
The diagonal weighting matrix S for the time derivative of the input was set
to S=diag(10,000). The weighting scalar for both state and input inequality
constraint approximations was set to K = 2 × 106. The stopping criterion
for feedforward control iteration was that the thermal dose of 240 equivalent
minutes was achieved in the whole cancer.

The thermal dose contours from the feedforward control are shown in
Figure 11. As it can be seen, the thermal dose of 240 equivalent minutes is
achieved in the whole cancer region. Furthermore, the thermal dose is sharply
localized in the cancer region. There are no undesired doses in the healthy
regions. In this simulation, the thermal dose accumulation during the cooling
period (t ∈[30, 50]) was 11% of the whole thermal dose.

The temperature trajectories for cancer and healthy tissue are shown in
Figure 12. From this figure it can be seen that the temperature in cancer
regions is limited to 80◦C. Also, the maximum temperature in healthy regions
is near 45◦C. The maximum temperature in the cancer was 80.3◦C and in the
healthy region 45.5◦C. Furthermore, the maximum input amplitude inequality
constraint approximation was found to be effective. The maximum amplitude
during the first part of the sonication was 101 kPa and 2.02 kPa during the
second part.

Fig. 11. Feedforward controlled thermal dose contours for 3D simulation. Left:
The dose in xy-plane. Middle: The dose in xz-plane. Right: The dose in yz-plane.
Contour lines are for 120 and 240 equivalent minutes.
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Fig. 12. Maximum temperature trajectories in cancer (solid line) and in healthy
subdomains (dotted line) for the 3D feedforward control simulation.

3.5 Feedback control method

The modeling of ultrasound therapy is partly approximate. The main source of
error in ultrasound therapy treatment planning is in the acoustic parameters in
the Helmholtz equation and in the thermal parameters in the bioheat equation.
These errors affect the obtained temperature or thermal dose distribution if
the treatment is accomplished by using only the model-based feedforward
control. Since the MRI temperature measurements are available during the
treatment, it is natural to use this information as a feedback to compensate
for the modeling errors.

The feedback controller can be derived by linearizing the nonlinear state
equation (5) with respect to feedforward control trajectories for temperature
and control input. In this step, the time discretization is also changed. The
feedforward control is computed with the time discretization of the order of
a second. During ultrasound surgery, the temperature feedback from MRI is
obtained in a few second intervals. Due to this mismatch, it is natural to
consider the case when feedback is computed with a larger time discretization
than the feedforward part. This also reduces the computation task of the
feedback controller and filter. Let the step length of the time discretization
in feedforward control be h. In feedback control, d steps of the feedforward
control are taken at once, giving new step length dh. With these changes the
multi-step implicit Euler form of the linearized state equation with the state
noise wk is

∆Tk+1 = F̃∆Tk + B̃k∆uk + wk, (18)

where

F̃ = F d (19)

B̃k = h

kd+d∑
t=kd+1

F t−kd−1G(u0,t), (20)

and where G(u0,t) is the Jacobian matrix with respect to feedforward input
trajectory u0,t. The discrete time cost function for the feedback controller can
be formulated as



Optimal control in high intensity focused ultrasound surgery 187

∆J =
1
2

Nk∑
k=1

(
(∆Tk − T0,k)T Q (∆Tk − T0,k) + ∆uT

k R ∆uk

)
, (21)

where the error between the feedforward and actual temperature is weighted
with matrix Q, and the matrix R weights the correction to the control in-
put. The solution to the control problem can be obtained by computing the
associated Riccati difference equation [42].

For the state estimation, the multi-step implicit Euler state equation and
the measurement equation are written as

∆Tk+1 = F̃∆Tk + B̃k∆uk + wk (22)
yk = C∆Tk + vk , (23)

where yk is the MRI measured temperature, C ∈ RP×N is the linear interpo-
lation matrix and vk is the measurement noise. When state and measurement
noises are independent Gaussian processes with a zero mean, the optimal
state estimation can be computed using the Kalman filter. Furthermore, the
covariance matrices in this study are assumed to be time independent, so the
Kalman filter gain can be computed from the associated Riccati difference
equation [42].

The overall feedback control and filtering schemes are applied to the orig-
inal system via separation principle [42]. In this study, the zero-order hold
feedback control is tested using synthetic data. In feedforward control, the
acoustic and thermal parameters are adopted from the literature, i.e., they
are only approximate values. As the real system is simulated, these param-
eters are varied. In this case, the original nonlinear state equation (5) with
varied parameters and feedback correction can be written as

Tt+1 = ArTt + Pr + MD,r(Br(u0,t + ∆uk))2, (24)

where the feedback correction ∆uk is held constant over the time interval
t ∈ [k, k + 1] and subscript r denotes the associated FE matrices which are
constructed by using the real parameters.

The state estimate is computed for the same discretization (with step
length h) as the state equation with original feedforward control matrices,
since errors are considered as unknown disturbances to the system. During
the time interval t ∈ [k, k + 1], the state estimate is

T̂t+1 = AT̂t + P + MD(B(u0,t + ∆uk))2. (25)

The corrections for the state estimate and the input are updated after every
step k from the measurements and the state estimated feedback as

yk = CTk + vk (26)

T̂k+1 = AT̂k + P + MD

(
B(u0,k + ∆uk)

)2 + L(yk − CT̂k) (27)

∆uk+1 = −Kk+1(T̂k+1 − T0,k+1) , (28)
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where L is the Kalman gain and Kk+1 is the LQG feedback gain. The feedback
correction is constant during time interval t ∈ [k, k+1] and piecewise constant
during the whole treatment.

3.6 Feedback control simulations

The LQG feedback control algorithm was tested for the 2D example of the
feedforward control. The corresponding feedforward control problem is defined
in Section 3.4. The time discretization for the feedback controller was set
according to the data acquisition time of MRI during in the ultrasound surgery
of the breast [27]. The time lag between the MRI measurements was set to 4 s
to simulate MRI sequences and temperature measurement in each vertex was
taken as a mean value during each 4 s interval. The multi-step implicit Euler
equation (18) was adopted by setting d=8, since h in feedforward control
was 0.5 s. The LQG feedback controller was derived by setting weighting
matrices as Q = W/1000 for the state weighting and R=diag(1000) for the
input correction weighting. The Kalman filter was derived by setting the state
covariance matrix to diag(4) and the measurement disturbance covariance
matrix to identity matrix.

The LQG procedure was tested with simulations, where maximum error in
the absorption coefficient was ±50% and ±30% in other acoustic and thermal
parameters. New FEM matrices were constructed using these values (matrices
with subscript r in Equation (24)). In this study, results from the two worst
case simulations are given. In case A, absorption in subdomains is dramatically
higher than in feedforward control. In case B, absorption in tissue is lower than
in feedforward control. In addition, the other thermal and acoustic parameters
are varied in tissue. In both cases, new ultrasound fields were computed with
the UWVF.

The acoustic and thermal parameters for the feedback case A are given
in Table 4. As compared to Table 3, the acoustic and thermal parameters
are changed so that the new parameters result in inhomogeneous errors in
temperature trajectories in different subdomains.

The thermal dose contours with and without feedback are shown in
Figure 13. This figure indicates that feedback controller decreases undesired
thermal dose in healthy regions, while without feedback the healthy breast

Table 4. The acoustic and thermal parameters for the feedback case A.

Domain α (Nep/m) c (m/s) ρ (kg/m3s) k (W/mK) CT (J/kgK) wB (kg/m3s)

Ω2 14 1700 1100 0.60 3650 0.8

Ω3 7 1500 980 0.70 3600 0.6

Ω4 8 1400 1000 0.70 3700 2.0
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Fig. 13. Thermal dose contours for the feedback case A. Left: Thermal dose with
feedback. Right: Thermal dose without feedback.

50 100 150

40

45

50

55

60

t (s)

T
(o C

)

Feedforward
Feedback
Without feedback

50 100 150

40

45

50

55

t (s)

T
(o C

)

Feedforward
Feedback
Without feedback

Fig. 14. Temperature trajectories for the feedback case A. Left: Maximum temper-
ature in cancer. Right: Maximum temperature in healthy breast.
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Fig. 15. Phase and amplitude trajectories from the feedback case A for transducer
number 4 (left) and 16 (right).

suffers from the undesired damage. The area where thermal dose of 240 equiv-
alent minutes is achieved covers 72% of the cancer region with feedback and
99.4% without feedback. In the healthy breast, the area where thermal dose of
240 equivalent minutes is achieved is 0.7% of the whole region with feedback
and 7.9% without feedback.

The maximum temperature trajectories for the feedback case A are shown
in Figure 14. The maximum temperature in cancerous and healthy tissue is
decreased when the feedback controller is used.

The phase and amplitude trajectories for transducers number 4 and 16
for feedback case A are shown in Figure 15. As compared to original input
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Table 5. The acoustic and thermal parameters for the feedback case B.

Domain α (Nep/m) c (m/s) ρ (kg/m3s) k (W/mK) CT (J/kgK) wB (kg/m3s)

Ω2 10 1400 1200 0.70 3570 1.2

Ω3 4 1300 1100 0.65 3700 1.2

Ω4 3.5 1680 1100 0.60 3670 2.8
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Fig. 16. Thermal dose contours for the feedback case B. Left: Thermal dose with
feedback. Right: Thermal dose without feedback.

trajectories (see Figure 9), the feedback controller decreases the amplitude
during the first part of the sonication. This is due to the increased absorption
in tissue. In addition, the phase is also altered throughout the treatment, since
modeling errors are not homogeneously distributed between the subdomains.

The acoustic and thermal parameters for the feedback case B are given in
Table 5. Again, there are inhomogeneous changes in the parameters. Further-
more, the absorption in healthy breast is higher than in cancer, which makes
the task for feedback controller more challenging.

The thermal dose contours for feedback case B are shown in Figure 16.
Without feedback, the thermal dose is dramatically lower than in feedforward
control (see Figure 8). With feedback control, the thermal dose distribution
is therapeutically relevant in the large part of the cancer, while high thermal
dose contours appear in a small part of healthy breast. The area where thermal
dose of 240 equivalent minutes is achieved covers 60% of the cancer region with
feedback, while without feedback therapeutically relevant dose is not achieved
in any part of the target. In healthy breast, the area where thermal dose of
240 equivalent minutes is achieved is 1.8% of the whole region with feedback.
In this example, the slight damage to healthy breast was allowed. However,
if undesired thermal dose is not allowed in healthy regions, it is possible to
increase weighting in the healthy vertices when feedback controller is derived.

Maximum temperature trajectories for feedback case B are shown in
Figure 17. The feedback controller increases temperature in cancer effectively.
In addition, the temperature in healthy breast does not increase dramatically.
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Fig. 17. Temperature trajectories for the feedback case B. Left: Maximum temper-
ature in cancer. Right: Maximum temperature in healthy breast.
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Fig. 18. Phase and amplitude trajectories from the feedback case B for transducer
number 4 (left) and 16 (right).

However, during the second part of the sonication, the feedback controller can-
not increase the temperature in cancer to compensate modeling errors. This
is due to the fact that during this period, transducers were turned effectively
off, and the feedback gain is proportional to feedforward control amplitude
(for details, see [31]).

The phase and amplitude trajectories for the feedback case B are shown
in Figure 18. The feedback controller increases the amplitude to compensate
the decreased absorption in tissue. Furthermore, as compared to Figure 9,
the phase trajectories are also changed with feedback. This is due to the
inhomogeneous modeling errors in subdomains.

4 Conclusions

In this study, alternative control procedures for thermal dose optimization
in ultrasound surgery were presented. The presented methods are scanning
path optimization methods if prefocused ultrasound fields are used and com-
bined feedforward and feedback control approaches in which the phase and
amplitude of the ultrasound transducers are changed as a function of time.

The presented scanning path optimization algorithm is relatively simple.
If any kind of treatment planning is made, it would be worth using this kind
of approach to find the optimal scanning path. The numerical simulations
show that the approach significantly decreases the treatment time, especially
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when a 3D volume is scanned. The given approach can be used with a single
element transducer (where cancer volume is scanned by moving the transducer
mechanically) as well as with a phased array. Furthermore, the presented
algorithm is also tested with simulated MRI feedback data in [34]. Results
from that study indicate that the optimized scanning path is robust even if
there are modeling errors in tissue parameters.

The combined feedforward and feedback control method can be applied in
cases when the phased array is used in ultrasound surgery treatment. In feed-
forward control, the phase and amplitude of the transducers are computed as
a function of time to optimize the thermal dose. With inequality constraint
approximations, it is possible to limit the maximum input amplitude and
maximum temperature in tissue. Furthermore, the diffusion and perfusion are
taken into account in the control iteration. Finally, the latent accumulating
thermal dose is taken into account if sonication is split to parts in which trans-
ducers are first on and then turned off. However, as the feedback simulations
show, the model based feedforward control is not robust enough if modeling
errors are present. For this case, the LQG feedback controller with Kalman
filter for state estimation was derived to compensate modeling errors. The
main advantage of the proposed feedback controller is that it can change not
only the amplitude of the transducers but also the phase. As the results from
the simulations show, the phase correction is needed to compensate inhomo-
geneous modeling errors. The feedback controller increases the robustness of
the overall control scheme dramatically.

As the computational task between the proposed approaches are com-
pared, the combined feedforward and feedback approach is computationally
much more demanding than the scanning path optimization method. The
feedforward control iteration in particular is quite slow due to the large di-
mensions of the problem. In addition, the associated Riccati matrix equations
for feedback controller and Kalman filter have very large dimensions. How-
ever, these Riccati equations, as well as the feedforward controller, can be
computed off line before actual treatment.

The modeling errors in the model based control of ultrasound surgery can
be decreased with pretreatment. In this stage, it is possible to heat tissue
with low ultrasound power levels and then measure the thermal response
of tissue with MRI. From this data, thermal parameters of tissue can be
estimated [23, 46].
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