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Preface

The use of statistical methods in medicine, genetics and more generally in health
sciences has increased tremendously in the past two decades. More often than not,
a parametric or semi-parametric model is used to describe the data and standard
estimation and testing procedures are carried out. However, the validity and good
performance of such procedures generally require strict adherence to the model
assumptions, a condition that is in stark contrast with experience gained from field
work. Indeed, the postulated models are often chosen because they help to understand
a phenomenon, not because they fit exactly the data at hand. Robust statistics is an
extension of classical statistics that specifically takes into account the fact that the
underlying models used by analysts are only approximate. The basic philosophy of
robust statistics is to produce statistical procedures that are stable with respect to
small changes in the data or to small model departures. These include ‘outliers’,
influential observations and other more sophisticated deviations from the model or
model misspecifications.

There has been considerable work in robust statistics in the last forty years
following the pioneering work of Tukey (1960), Huber (1964) and Hampel (1968)
and the theory now covers all models and techniques commonly used in biostatistics.
However, the lack of a simple introduction of the basic concepts, the absence
of meaningful examples presented at the appropriate level and the difficulty in
finding suitable implementation of robust procedures other than robust linear
regression have impeded the development and dissemination of such methods.
Meanwhile, biostatisticians continue to use ‘ad-hoc’ techniques to deal with outliers
and underestimate the impact of model misspecifications. This book is intended to
fill the existing gap and present robust techniques in a consistent and understandable
manner to all researchers in the health sciences and related fields interested in robust
methods. Real examples chosen from the authors’ experience or for their relevance
in biomedical research are used throughout the book to motivate robustness issues,
explain the central ideas and concepts, and illustrate similarities and differences with
the classical approach. This material has previously been tested in several short
and regular courses in academia from which valuable feedback has been gained.
In addition, the R-code and data used for all examples discussed in the book are
available on the supporting website (http://www.wiley.com/go/heritier). The data-
based approach presented here makes it possible to acquire both the conceptual
framework and practical tools for not only a good introduction but also a practical
training in robust methods for a large spectrum of statistical models.



xiv PREFACE

The book is organized as follows. Chapter 1 pitches robustness in the history
of statistics and clarifies what it is supposed to do and not to do. Concepts
and results are introduced in a general framework in Chapter 2. This chapter is
more formalized as it presents the ideas and the results in their full generality. It
presents in a more mathematical manner the basic concepts and statistical tools
used throughout the book, to which the interested reader can refer when studying
a particular model presented in one of the following chapters. Fundamental tools
such as the influence function, the breakdown point and M-estimators are defined
here and illustrated through examples. Chapters 3 to 7 are structured by model
and include specific elements of theory but the emphasis is on data analysis
and interpretation of the results. These five chapters deal respectively with robust
methods in linear regression, mixed linear models, generalized linear models,
marginal longitudinal data models, and models for survival analysis. Techniques
presented in this book focus in particular on estimation, uni- and multivariate testing,
model selection, model validation through prediction and residual analysis, and
diagnostics. Chapters can be read independently of each other but starting with linear
regression (Chapter 3) is recommended. A short introduction to the corresponding
classical procedures is given at the beginning of each chapter to facilitate the
transition from the classical to the robust approach. It is however assumed that
the reader is reasonably familiar with classical procedures. Finally, some of the
computational aspects are discussed in the appendix.

The intended audience for this book includes: biostatisticians who wish to
discover robust statistics and/or update their knowledge with the more recent
developments; applied researchers in medical or health sciences interested in this
topic; advanced undergraduate or graduate students acquainted with the classical
theory of their model of interest; and also researchers outside the medical sciences,
such as scientists in the social sciences, psychology or economics. The book can be
read at different levels. Readers mainly interested in the potential of robust methods
and their applications in their own field should grasp the basic statistical methods
relevant to their problem and focus on the examples given in the book. Readers
interested in understanding the key underpinnings of robust methods should have
a background in statistics at the undergraduate level and, for the understanding of the
finer theoretical aspects, a background at the graduate level is required. Finally, the
datasets analyzed in this book can be used by the statistician familiar with robustness
ideas as examples that illustrate the practice of robust methods in biostatistics. The
book does not include all the available robust tools developed so far for each model,
but rather a selected set that has been chosen for its practical use in biomedical
research. The emphasis has been put on choosing only one or two methods for
each situation, the methods being selected for their efficiency (at different levels) and
their practicality (i.e. their implementation in the R package robustbase), hence
making them directly available to the data analyst. This book would not exist without
the hard work of all the statisticians who have contributed directly or indirectly to the
development of robust statistics, not only the ones cited in this book but also those
that are not.
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1

Introduction

1.1 What is Robust Statistics?

The scientific method is a set of principles and procedures for the sys-
tematic pursuit of knowledge involving the recognition and formulation
of a problem, the collection of data through observation and experiment,
and the formulation and testing of hypotheses (Merriam-Webster online
dictionary, http://merriam-webster.com).

Although procedures may be different according to the field of study, scientific
researchers agree that hypotheses need to be stated as explanations of phenomena,
and experimental studies need to be designed to test these hypotheses. In a
more philosophical perspective, the hypothetico-deductive model for scientific
methods (Whewell, 1837, 1840) was formulated as the following four steps:
(1) characterizations (observations, definitions and measurements of the subject
of inquiry); (2) hypotheses (theoretical, hypothetical explanations of observations
and measurements of the subject); (3) predictions (possibly through a model,
logical deduction from the hypothesis or theory); (4) experiments (test (2) and (3),
essentially to disprove them). It is obvious that statistical theory plays an important
role in this process. Not only are measurements usually subject to uncertainty, but
experiments are also set using the theory of experimental designs and predictions
are often made through a statistical model that accounts for the uncertainty or
the randomness of the measurements. As statisticians, however, we are aware that
models can at best be approximated (at least for the random part), and this introduces
another type of uncertainty into the process. G. E. P. Box’s famous citation that
‘all models are wrong, some models are useful’ (Box, 1979) is often cited by the
researcher when faced with the data to analyze. Hence, for truly honest scientific

Robust Methods in Biostatistics S. Heritier, E. Cantoni, S. Copt and M.-P. Victoria-Feser
c© 2009 John Wiley & Sons, Ltd



2 INTRODUCTION

research, statistics should offer methods that not only deal with uncertainty of the
collected information (sampling error), but also with the fact that models are at best
an approximation of reality. Consequently, statistics should be in ‘some sense’ robust
to model misspecifications. This is important since the aim of scientific research is
the pursuit of knowledge that is used in fine to improve the wellbeing of people as is
obviously the case, for example, in medical research.

Robust methods date back to the prehistory of statistics and they naturally start
with outlier detection techniques and the subsequent treatment of the data. Math-
ematicians of the 18th century such as Bernoulli (1777) were already questioning
the appropriateness of rejection rules, a common practice among astronomers of
the time. The first formal rejection rules are suggested in the second part of the
19th century; see Hampel et al. (1986, p. 34), for details. Student (1927) proposes
repetition (additional observations) in the case of outliers, combined with rejection.
Independently, the use of mixture models and simple estimators that can partly
downweight observations appears from 1870 onwards; see Stone (1873); Edgeworth
(1883); Newcomb (1886) and others. Newcomb even imagines a procedure that can
be posthumously described as a sort of one-step Huber estimator (see Stigler, 1973).
These attempts to reduce the influence of outliers, to make them harmless instead
of discarding them, are in the same spirit as modern robustness theory; see Huber
(1972); Harter (1974–1976); Barnett and Lewis (1978) and Stigler (1973). The idea
of a ‘supermodel’ is proposed by Pearson (1916) who embedded the normal model
that gained a central role at the turn of the 20th century into a system of Pearson
curves derived from differential equations. The curves are actually distributions
where two additional parameters are added to ‘accommodate’ most deviations from
normality. The discovery of the drastic instability of the test for equality of variance
by Pearson (1931) sparked the systematic study of the non-robustness of tests. Exact
references on these developments can be found in Hampel et al. (1986, pp. 35–36).

The term robust (strong, sturdy, rough) itself appears to have been proposed
in the statistical literature by Box (1953). The field of modern robust statistics
finally emerged with the pioneering works of Tukey (1960), Huber (1964) and
Hampel (1968), and has been intensively developed ever since. Indeed, a rough
bibliographic search in the Current Index to Statistics1 revealed that since 1960 the
number of articles having the word ‘robust’ in their title and/or in their keywords list
has increased dramatically (see Figure 1.1). Compared with other well-established
keywords, ‘robust’ appears to be quite popular: roughly half as popular as ‘Bayesian’
and ‘design’, but more popular than ‘survival’, ‘bootstrap’, ‘rank’ and ‘smoothing’.
Is robust statistics really as popular as it appears to be, in that it is used fairly
routinely in practical data analysis? We do not really believe so. It might be that
the word ‘robust’ is associated with other keywords such as ‘rank’, ‘smoothing’ or
‘design’ because of the perceived nature of these methods or procedures. We also
performed a rough bibliographic search under the same conditions as before, but
with the combination of the words ‘robust’ and each of the other words. The result is
presented in Figure 1.2. It appears that although ‘robust’ is relatively more associated

1http://www.statindex.org/
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Figure 1.1 Number of articles (average per 2 years) citing the selected words
in the title or in the keywords list according to the Current Index to Statistics
(http://www.statindex.org/), December 2007.

with ‘design’ and ‘Bayesian’, when we remove all of the combined associations there
are 4367 remaining articles citing the word ‘robust’ (group ‘other’), a fairly large
number.

We believe that this rather impressive number of articles have often used the
term ‘robust’ in quite different manners. At this point, it could be worth searching
more deeply, for example by taking a sample or articles and looking at the possible
meanings or uses of the statistical term ‘robust’, but we do not attempt that here.
Instead, we will clarify in what sense we use the term ‘robust’ or ‘robustness’ in the
present book. We hope that this will help in clarifying the extent and limitations of
the theory of robust statistics for the scientist as set by Tukey (1960), Huber (1964)
and Hampel (1968).

1.2 Against What is Robust Statistics Robust?
Robust statistics aims at producing consistent and reasonably efficient estimators,
test statistics with stable level and power, when the model is slightly misspecified.
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Figure 1.2 Number of articles (average per 6 years) citing the selected words
together with ‘robust’ in the title or in the keywords list according to the Current
Index to Statistics (http://www.statindex.org/), December 2007.

Model misspecifications encompass a relatively large set of possibilities, and robust
statistics cannot deal with all types of model misspecifications. First we characterize
the model using a cumulative probability distribution Fθ that captures the structural
part as well as the random part of the model. The parameters needed for the structural
part and/or the random part are included in the parameter’s vector θ . For example, in
the regression model that is thoroughly studied in Chapter 3, θ contains the (linear)
regression coefficients (structural part) as well as the residual error variance (random
part) and Fθ is the (conditional) normal distribution of the response variable (given
the set of explanatory variables). Here Fθ does not need to be fully parametric, e.g.
the Cox model presented in Chapter 7 can also be used. Then, by ‘slight model
misspecification’, we assume that the data-generating process lies in a neighborhood
of the true (postulated) model Fθ that is considered as ‘useful’ for the problem
under investigation. This notion of a neighborhood, due originally to Huber (1964),
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is formalized as

Fε = (1 − ε)Fθ + εG, (1.1)

where Fθ is the postulated model, θ is a set of parameters of interest, G is an arbitrary
distribution and 0 ≤ ε ≤ 1.2 The form ofG is not really important, but there are some
interesting special cases. For example, G can be a gross error-generating process (or
point mass distribution), i.e.

G(x) = �z(x) =
{

0 x < z,

1 x ≥ z.
(1.2)

In other words, data generated from Fε are from Fθ with probability 1 − ε and
from G with probability ε. Since G is an arbitrary distribution, and ε ∈ (0, 1), the
neighborhood Fε is very general. However, the crucial quantity is actually ε, which
in a sense measures the ‘amount’ of model misspecification. When ε = 0, then
there is no model misspecification in that the data-generating process is exactly the
postulated model. This is the fundamental hypothesis in classical estimation based,
for example, on the maximum likelihood estimator (MLE) and classical testing
based, for example, on the F -test in analysis of variance (ANOVA). For a data
analysis practitioner, experience shows that the chosen ‘useful’ model (Fθ ) is very
rarely equal to the data-generating process (Fε). Assuming that the data analyst does
not ignore this fact, he/she is faced with the problem of ‘what to do next’. There
exist many ‘practical strategies’ that have been developed over the years to process
the data in an ad-hoc fashion or tweak the model to ultimately resort to classical
inference. Most of the strategies may fail in that what is sought is not necessarily
what is found. Indeed, when 0 < ε < 1, the situation becomes murkier. If one truly
believes that the data-generating process Fε is the true model, then inference should
be carried out at Fε . A mixture distribution should then be used, assuming that G can
be chosen adequately. For instance, in injury prevention, researchers are interested in
modeling the number of crashes involving young drivers or the number of serious
injuries. Such outcomes often display a large number of zeros and are typically
modeled by a zero-inflated Poisson or negative binomial distribution (see, e.g.,
Lambert, 1992) or alternatively using hurdle, two-step or conditional models (see,
e.g., Welsh et al., 1996). Inference is at the zero-inflated model (or one of the other
models), represented as a mixture model with ε, as the probability of an observation
being part of the (excess) spike at zero, commonly described on the logistic scale
through a set of covariates. This is a reasonable model if ε is relatively large, but
there is no guarantee that the resulting mixture (after choosing G) is the exact data-
generating process. Inference is then sought simultaneously on θ , ε and the other
parameters (or directly on the quantiles of G if it is a non-parametric model). The

2Note that (1.1) is not exactly a neighborhood in the mathematical sense. However, Huber’s idea was
to imagine a workable set of distributions that were ‘close enough’ to the assumed model, hence the use
of the term neighborhood. He proved that any distribution in (1.1) is within a distance ε of Fθ for a
proper metric on the distribution space such as the Kolmogorov or Prohorov distance; see Huber (1981,
Chapter 2).
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procedure can become very cumbersome because the number of parameters can
become very large.

If ε is relatively small and G is not obvious to define, then another strategy should
be chosen. Indeed, very often Fθ is chosen because it makes sense with respect to the
problem under investigation, so that another model is less ‘interpretable’. Moreover,
when focusing on Fθ and ε > 0, it is very difficult to define G in order to use Fε

as the ‘true’ model. In practice, discovering the form of G from the data is often
impossible, unless the sample size is very large. Most of the time, the best ‘guess’
is Fθ and the data can be assumed to have been generated approximately by Fθ . As
stated previously, even if one has a fairly good idea about G, you still cannot be sure
that the mixture (1 − ε)Fθ + εG is the exact data-generating process. Finally, the
mixture can be so complicated that one may wonder whether it is even worth using
Fε for small ε when one is actually interested in inference about Fθ .

Another situation (at least in theory) occurs when ε = 1. In this case it would
make no sense to still seek inference about Fθ , so the postulated model should be
changed to G. However, in generalized linear mixed models, for example, several
authors have studied the ‘robustness’ of the Wald test to the assumption of normality
of the random effects. Hence, in these cases, Fθ is the mixed model with normal
random effects, G is the mixed model with non-normal random effects and ε = 1.
One then seeks inference about θ when Fε with large ε is the data-generating process.
Some of the proposed procedures have been found to be ‘robust’ in some particular
situations and for some specific distributions for the random effects;3 see e.g. Litière
et al. (2007b) for details. Although this type of robustness is also important, it is
limited to some particular instances of G (i.e. for some distributions for the random
effects). This actually concerns a type of model misspecification that can be called
structural misspecification in that the form of G is known (and ε is large). The
robust procedures we propose here are robust in the sense that inference remains
correct at Fθ even if Fε is the data-generating process and ε is unknown but small
and G can be of any form. The type of model misspecification in this case can be
called distributional misspecification in that the best that can be said is that the data-
generating process is approximately Fθ (small ε).

Seeking inference about Fθ when Fε is the actual data-generating process is
not the same as seeking inference about Fε when Fθ is fitted. Indeed, sometimes
classical procedures (with possible added corrections) are said to be robust to
model misspecification in the sense that the estimator of θ (when Fθ is fitted) still
provides consistent estimators for (some of) the parameters of Fε . For example, in
the important case of the omission of covariates, we would have G (assuming that
it exists) such that Fε = F(θ,θ ′) where θ ′ is the added parameter corresponding to
the missing predictors. This is another case of structural misspecification that is not
covered by the robustness theory introduced in this book. In the 1980s there were
some important studies of the conditions under which a consistent estimate of θ ,
assuming F(θ,θ ′) (as the true model) but fitting Fθ could still be obtained; see Gail
et al. (1984) and Bretagnolle and Huber-Carol (1988) for instance. They essentially

3This type of ‘robustness’ is such that the level of the test is preserved under these assumptions.
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Table 1.1 Models at which inference can at best be made.

Inference G ε = 1 0 � ε < 1 0 < ε � 1 ε = 0

Classical Arbitrary ? ? ? Fθ

G = �z ? Fε Fε Fθ

G specified G Fε Fε Fθ

Robust Arbitrary ? ? Fθ Fθ

G = �z ? Fε Fθ Fθ

G specified G Fε Fθ Fθ

showed that a small residual bias remains although in some simple cases such as the
linear model this situation does not occur.

In Table 1.1 we summarize some of the possible situations discussed so far
regarding the postulated model, the data-generating process, the value of ε, the form
of G and the estimation method. Except in the case when ε = 0, classical inference
is not (at least a priori) suitable in most of the situations considered here. Moreover,
even if theoretically one could postulate Fε instead of Fθ , the former is often difficult
to find and/or to estimate. The robust methods we propose in this book provide an
alternative (and more effective) approach when ε is relatively small. We propose a
set of statistical tools for correct estimation and inference about Fθ when the data-
generating process is Fε , not only when ε = 0, as with classical methods, but also
for relatively small ε and any G. As a by-product, data not fitting Fθ exactly can be
easily identified, and the model can possibly be changed and refitted.

Hence, one possibility is to manipulate the data so that they ‘fit’ the postulated
model, but as argued below, this is not a good method. Another possibility is to
change the model, but it is not always clear what a suitable alternative model may
be. One could also use a more flexible model (e.g. using non-parametric statistics),
but care should be taken as to what the underlying assumptions really are (see the
discussion in Section 1.3). The alternative we propose here is to use robust statistics,
which allows one to make inferences about Fθ , when the data-generating process is
actually Fε , with small ε and arbitrary G. We spend the remainder of this chapter
explaining how robust statistics work in general to achieve these goals.

1.3 Are Diagnostic Methods an Alternative to Robust
Statistics?

Since classical methods, when Fθ is the postulated model, only work when ε = 0,
one could be tempted to modify the data by removing ‘dubious’ observations
from the sample. By ‘dubious’ observations we mean here that they are in some
sense far from the bulk of the data generated by Fθ . The measure of how far
an observation is from the bulk of the data is highly dependent on the problem
(hence the model). For the problem of estimating the mean of a population, also
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called the location problem, measures such as standard deviations are sometimes
used to build thresholds (e.g. three standard deviations around the mean) outside
which observations are considered as outliers. Hampel (1985) provides an account
of several measures for the location problem and compares the properties of the
mean estimator computed after the removal of outliers. In more complex situations,
the measure can be based on graphical tools such as boxplots and/or scatterplots
and constructed before the model is fitted. Alternatively, one could rely on some
sort of ‘residual analysis’ (i.e. estimation of the random part of the model, once the
estimated fixed part has been removed) for checking the distributional assumptions.
More sophisticatedly, in regression models, the so-called ‘diagnostic’ techniques
could be used (see, e.g. Atkinson, 1985; Belsley et al., 1980; Cook and Weisberg,
1982). One such well-known tool is the Cook distance. The strategy of removing
observations, although apparently simple, can be not only unpractical, but also very
misleading. The main arguments are as follows.

• Graphical tools used before the model is fitted are only suitable for simple
problems, such as when comparing groups (testing differences in mean
responses), without control variables or in correlation settings (such as
regression models) when there are only at most three variables (the response
and two explanatory variable) if one uses three-dimensional graphs. When the
dimension is higher, then combinations of (often pairs of) variables could be
used, but multivariate effects could be masked.

• In practice, however, it is not always obvious how to quantify ‘far from’, and
some observations might appear to be just at the (imaginary) border. Then the
analyst is left with a rather arbitrary decision to make.

• Sometimes raw measures of ‘outlyingness’ are used that are based on standard
deviations (e.g. remove observations that are three standard deviations away
from the mean). This leaves the question of how the standard deviations (and
the mean) are estimated open. The chosen scale estimator could be inflated and
the mean itself biased by outlying observations generating a masking effect
(see, e.g. Rousseeuw and Leroy, 1987).

• Moreover, when this is done in a univariate fashion, outlying observations are
found only with respect to one variable at a time masking the effects of other
covariates (see the example below).

• A ‘residual analysis’ can be used to detect ‘outlying’ observations once the
model is fitted. This is commonly done in regression models. However, this
procedure is not flawless as it does not take into account how the residuals
are estimated. Indeed, if classical estimators for the model parameters are
computed, they can be seriously biased by model deviations such as outliers.
Hence, residuals obtained through these biased estimates will, in turn, be
biased. This is another illustration of the masking effect. Removing obser-
vations on the basis of potentially biased residual estimates can become a very
dangerous strategy.



1.3. AN ALTERNATIVE TO ROBUST STATISTICS? 9

• The same argument applies to other diagnostic tools based on classical
estimators of the model parameters. Even if the diagnostic tools are based
on the comparison of fitted models with and without one observation at a time
such as the Cook distance, the simultaneous effect of multiple outliers could
be masked.

• The ‘data-cleaning’ process can become very cumbersome in that one or
some of the observations are removed on the basis of some criteria, then the
model refitted, the criteria calculated again, new data are removed, etc. The
process may never end at a satisfactory stage and a large proportion of data are
removed before the process is stabilized. It is also unfeasible for large datasets.

• However, perhaps the most important argument is inference. A proper inferen-
tial procedure should take into account the data manipulation. In other terms,
inference (e.g. significance tests) should be conditional on the criteria used
for the removal of the observations. The use of classical inference (e.g. t-test)
after case deletion and refit ignores this problem and is therefore dubious and,
in some cases, completely wrong (see also Welsh and Ronchetti, 2002).

In our view the true purpose of diagnostic methods should be to identify genuine
structural model misspecifications, e.g. adding a quadratic term, a missing covariate
or an interaction in the model, identifying a systematic violation to the proportional
hazard assumption in the Cox model or an incorrect formulation of the random
component of a mixed linear model. They do not oppose robust methods, they are
just complementary.

To illustrate the danger of a relatively naive data-cleaning process used before
fitting, we consider the following dataset which will also be reanalyzed in Chapter 3
using robust techniques. The data (kindly provided by Dr Pascal Bovet, IUMSP,
Lausanne, Switzerland) come from a study investigating the prevalence of hype-
ruricemia and the association of uric acid levels with various cardiovascular risk
factors in the Seychelles Islands. A total of 998 participants from this population,
mainly of African origin, were included in the study; see Conen et al. (2004). The
primary outcome, serum uric (uric), is typically analyzed by linear regression
with predictors such as the triglycerides level in body fat (trig) and the low-
density lipoprotein (ldl) cholesterol; see Section 3.5 for a complete description of
all covariates. Before the regression model is fitted, a descriptive data analysis should
be performed. Boxplots of each of the variables can be drawn to detect extreme
measurements, as well as scatterplots of pairs of variables to study their relationship
and possibly detect outlying observations. In Figures 1.3 and 1.4 we present the
scatterplots of uric versus trig and ldl versus trig, respectively. The vertical
and horizontal lines represent the values of the sample means plus three standard
deviations (i.e. the quantile 0.999 on the normal distribution) for each variable. As is
routinely performed, a ‘cleaning’ mechanism based on this univariate criterion would
remove from the sample all of the data represented by the points lying to the right
and above these lines on both graphs. This rather rough mechanism does not take
into account the possible correlation between the variables, especially between the
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response (uric) and the explanatory variables. A more sophisticated but still rough
mechanism is to consider as extreme values those with low probability under the
bivariate normal model, or in other words, observations lying outside the quantiles
with equal density (say with corresponding cumulative probability of 0.999) as
illustrated by the ellipses on the scatter plots. To draw these ellipses, one needs to
estimate the bivariate center and the covariance matrix between the pairs of variables.
The classical estimators are the sample means, variances and Pearson correlation. If
there are extreme observations (away from the bulk of data), these estimators can be
artificially inflated, and this is the case with both examples in Figures 1.3 and 1.4.
Alternatively, one can compute the ellipses based on a robust estimation of the center
and covariance matrix between the pairs of variables (see Section 2.3.3), which, in
the examples taken here, lead to better ‘centered’ ellipses (with respect to the bulk of
data) of smaller volume. Using the ellipse-based criterion for ‘cleaning’ the data
does not lead to the same decisions regarding the data to discard. In particular,
observations that have not been removed with the three standard deviations would
be removed with the classical ellipse, while one outside the three standard deviations
on the ldl variable in Figure 1.4 would not be discarded with the robust ellipse. One
can also notice that more observations would be discarded with the robust ellipses.

The difference in the appreciation of the ‘outlyingness’ of one observation
between a univariate and a multivariate approach is due to the fact that the underlying
model upon which the decisions are made is not the same. Indeed, with the ellipses,
the correlation between the two variables is taken into account, which is not the case
with a univariate approach. One could also consider multivariate criteria, i.e. criteria
based on the relationship between all of the variables simultaneously. Such a criterion
is given by the Mahalanobis distances (Mahalanobis, 1936) based on the multivariate
normal assumption of the data; see (2.34). In the bivariate case as in Figures 1.3
and 1.4, the points on the same ellipses have equal Mahalanobis distances. Hence, a
limit distance could be chosen and points with corresponding Mahalanobis distance
exceeding this limit could be discarded from the sample. This would lead to the
rejection of yet different observations. Even if this approach takes into account the
relationships between all of the variables simultaneously, and hence is better than
a univariate or bivariate approach, it is not satisfactory for the chosen example.
Given that the data are actually used to explain the response variable uric through
a regression model, extreme observations should be chosen with respect to the
regression model, and this can only be done through a robust estimation of the latter.
The complete robust analysis of the cardiovascular risk factors data by means of a
regression model will be presented in Section 3.5. In this analysis, observations are
down-weighted according to their degree of ‘outlyingness’. In Figures 1.3 and 1.4
extreme observations (weight less than or equal to 0.3) with respect to the final
regression model estimated in Table 3.10 have been drawn using the symbol o.
The striking feature is that, although most of them correspond to observations that
would have been discarded using one of the previous ad-hoc methods, they do
not correspond to all of them (hence, more data are used for the estimators, and
consequently inference is more powerful). More dramatically, some observations that
would not have been removed with the ad-hoc method are strongly downweighted by
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Figure 1.3 Scatterplot of the variables uric and trig for the cardiovascular risk
factors data, together with the three standard deviations univariate limits, the robust
and classical 0.975 bivariate normal contours. The symbol o denotes observations
that have been downweighted by a robust regression analysis.

means of the robust regression estimator, questioning the validity of the procedure.
In other words, the ‘outlyingness’ of an observation is relative to a model, and
procedures that do not take this fact into account are not good procedures.

1.4 How do Robust Statistics Compare with Other
Statistical Procedures in Practice?

Robust methods have not seen much use in clinical trials or epidemiological studies,
except in a few cases such as Conen et al. (2004), Kurttio et al. (2005), Tashkin et al.
(2006) and Wen et al. (2004). The only areas were the penetration of such methods
is not anecdotal are medical imaging and genetics where robust regression (and
smoothing techniques) are commonly used successfully; see, for instance, Ma and
Elis (2003), Wager et al. (2003) and Jain et al. (2005). Apart from these particular
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Figure 1.4 Scatterplot of the variables trig and ldl for the cardiovascular risk
factors data, together with the three standard deviations univariate limits, the robust
and classical 0.975 bivariate normal contours. The symbol o denotes observations
that have been downweighted by a robust regression analysis.

cases, there seems to be a general feeling that outliers rarely occur in clinical trials,
and if present they can properly be dealt with by means of traditional methods (e.g.
rank-based techniques, described below). We believe that there is no reason to think
that distributional model misspecifications are less present in clinical research than in
any other area. If it is true that in regression settings covariates can be well controlled,
extreme responses may nevertheless be present and hence ruin the interpretation of
many standard procedures. A sense of false security arises as binary endpoints such
as the occurrence of a specific event (e.g. death, disease progression, relapse) or the
corresponding times to event are routinely studied. Even if procedures such as the
chi-squared test typically used to analyze binary data or the log-rank test for survival
times are less sensitive to extreme responses, one often forgets that a treatment
estimate generally has to be given and some form of modeling assumed. If, as is
done most of time, the Cox proportional hazard model is used, we show in Chapter 7
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that the classical estimator for the hazard ratio based on the partial likelihood can be
ruined by a small number of abnormal long-term survivors. In addition, if an adjusted
analysis is performed as a second step, or if the outcome is simply continuous, the
situation is about the same as any other area in biostatistics.

In clinical research, the case deletion and refit is not a satisfactory alternative to
robust statistics, not only for the reasons discussed in Section 1.3, but also because
such a procedure violates the intention-to-treat (ITT) principle. This principle
(Hollis and Campbell, 1999) states that patients must be analyzed as random-
ized, irrespective of what actually happens and usually assumes that everybody
randomized on the trial is included in the analyzed datasets. In contrast, robust
techniques have solid theoretical underpinnings, protect against outliers and other
model misspecifications and offer an elegant way to preserve the ITT principle by
automatically downweighting extreme observations instead of deleting them in an
ad-hoc fashion. In addition, there is no reason to think that results obtained from a
robust fit (when appropriately used) will favor a particular outcome, say a positive
effect of the drug under investigation, which is precisely what the guidelines request
as a proper way to deal with outliers.

Rank-based methods (see e.g. Hettmansperger and McKean, 1998) are more sen-
sible and this may explain why they are so popular for some types of analysis, such
as survival analysis where the log-rank test is systematically used. However, they
are not always available for more complex techniques, e.g. generalized estimating
equations, complex models with covariates or mixed linear models. In addition,
power issues have to be taken into consideration, an issue that is often overlooked.
As described later in this book, it is often possible to calibrate the robust procedures
we propose to achieve a pre-specified efficiency in the model (e.g. 90–95%). In other
words the price to pay for the use of such techniques with respect to the MLE and
related tests is a small loss in efficiency if the model holds.

It is also often believed that resampling methods such as the bootstrap can be
used as an alternative to robust methods as ‘one does not need to specify the
distribution’. One should first recall that the bootstrap method of Efron (1982) (see
also e.g. Davison and Hinkley, 1997) is a technique allowing the computation of
standard errors, confidence intervals and p-values that are based on given estimators
or test statistics. It thus does not provide new estimators or test statistics ‘per se’.
This method can be used for parametric, semi-parametric or even non-parametric
analyses. What is understood behind this distribution-free assumption is that the
sampling error distribution does not usually need to be a given parametric model
(such as the normal distribution). One simply assumes instead that the observations
are ‘independent and identically distributed’ (i.i.d.). The bootstrap and other non-
parametric methods do not become naturally robust to model misspecification just
because the model sampling error distribution is not specified.

We do not believe that the applied statistician has no ‘model’ in mind when
stating the i.i.d. condition. Indeed, in order to summarize a group response by a
‘mean parameter’, e.g. the mean cholesterol per treatment arm in a statin4 trial, it is

4Statins are drugs that improve blood cholesterol levels.
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implicitly assumed that the response distribution is somewhat symmetric around this
mean. Otherwise it would make little sense to summarize the outcome in this way
but it would be more sensible to compare the (whole) response distribution across
the treatment arm. In other words, even if the bootstrap provides good inference
techniques without the need to specify a data-generating process (e.g. sampling error
distribution), what is tested (choice of the parameters such as the ‘mean’ response)
is not necessarily appropriate in all situations (e.g. bimodal distributions instead of
symmetric distributions) and the conclusions can be very misleading.

Resampling techniques can be particularly sensitive to some types of model
deviations such as outliers. Indeed, some of the bootstrap samples will invariably
have a larger proportion of outliers and therefore heavily bias the estimators or test
statistics computed on these samples. Confidence intervals or p-values derived from
these bootstrapped statistics will then represent an ‘average’ between estimates (or
tests statistics) computed from samples with different proportions of contaminated
data (outliers). One might then wonder whether these confidence intervals (or p-
values) are really informative, since they are representative of neither the ‘clean’
data nor the outliers. A standard bootstrap procedure may even fail when applied to
a robust estimator as it may not necessarily withstand more than a certain proportion
of outliers (i.e. the breakdown point of the procedure is reached). A solution to
this problem would then be to use a robust bootstrap procedure applied to a robust
estimator as originally suggested by Salibian-Barrera and Zamar (2002) in the linear
regression model.

Finally, in non-parametric regression, it is often thought that robustness is
automatically achieved, given that the approach relies on relaxed hypotheses (no
normality assumption for the error term). This feeling is reinforced by the fact that
the non-parametric regression estimators (smoothers) are local averages and it is
therefore wrongly believed that an outlier occurring in a given subspace of the design
only affects the estimation around this region. In fact, quite long ago Huber (1979)
had already warned against the non-robustness of non-parametric regression and
proposed a robust version of smoothing splines. There are also other alternatives,
for example the M-kernels of Härdle (1990) or the Locally Weighted Regression
and Smoothing Scatterplots (LOWESS) of Cleveland (1979). More recently, Cantoni
and Ronchetti (2001a) have shown that the data-driven choice of the smoothing
parameter pertaining to smoothers also needs to be made robust. They propose both
a cross validation and a Cp-like criterion to cope with this issue.

To conclude, the robust methods we propose in this book are based on the
specification of a core (parametric) model Fθ such as, for example, the linear
regression model, the mixed linear model, the generalized linear model (GLM),
models for longitudinal data or a model which might contain some non-parametric
parts such as the Cox model for survival data. We assume, however, that the data are
generated by a distribution in a neighborhood (1.1). In order to avoid the potential
bias on classical estimators, test statistics and other inferential procedures of this type
of model misspecification, we propose instead the use of alternative robust statistics
which provide correct inference at the core model Fθ .



2

Key Measures and Results

2.1 Introduction

Prior to the introduction of robust estimation and testing techniques for many
common models used in biostatistics such as linear regression, mixed linear models,
generalized linear models, models for longitudinal data and the Cox regression, it
is important to lay the foundations of modern robust statistics. Hence, this chapter
formalizes the concepts introduced in Chapter 1, reviews fundamental tools and
presents key results that are used throughout the book. Historically, the development
of a formal robustness theory only started in the 1960s although evidence that
standard techniques lacked stability had been provided since the early days of
statistics; see Section 1.1 and also Huber (1981, pp. 1–5) and Hampel et al. (1986,
pp. 34–36), for details. Tukey (1960) and his group reignited the interest in such
problems by proposing stable alternatives to the sample mean that is known to be
badly affected by outliers. The pioneer work of Huber (1964) forms the first solid
basis for a theory of robust estimation. In Huber’s approach, the estimation problem
is seen as a game between nature (which chooses a distribution in a neighborhood)
and the statistician (who chooses an estimator in a given class). The statistician can
achieve robustness by constructing an estimator which minimizes a loss criterion
(such as the bias or the variance) in the worst possible case in the full neighborhood.
Huber calls this approach the minimax problem and solves it in the class of M-
estimators (see Section 2.3.1) for a location model, a simple model where only the
central parameter (typically the mean for a normal model) has to be estimated.
Despite the elegance of this theory, its extension to more complex models has
proved challenging in general parametric models, in particular when no invariance
structure is available. The key concept of M-estimators was soon extended to any
parametric model by Huber (1967, 1981). The development of the influence function
(IF) by Hampel (1968, 1974) (see Section 2.2.1) was another breakthrough in the
development of the robustness theory that is available today. These tools paved the

Robust Methods in Biostatistics S. Heritier, E. Cantoni, S. Copt and M.-P. Victoria-Feser
c© 2009 John Wiley & Sons, Ltd
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way for a formal treatment of robust estimation in general, soon followed by the
problem of robust inference. A summary of the pioneer work by Huber, Hampel
and colleagues can be found in Huber (1981), Hampel et al. (1986) and Huber
and Ronchetti (2009) or for a presentation at an intermediate level see Staudte and
Sheather (1990). Comprehensive reviews on robust inference until the late 1990s
are given by Markatou and Ronchetti (1997) or Ronchetti (1997a). A more recent
reference on robust statistics is Maronna et al. (2006).

This chapter is organized as follows. We first review in Section 2.2 Hampel’s
IF, which generalizes the concept of a sensitivity curve. This function measures
the asymptotic bias caused to an estimator by an infinitesimal contamination in
a neighborhood of the assumed model. It is usually completed by the breakdown
point that measures, loosely speaking, the percentage of contamination of the data is
required to drive the estimator to any arbitrary value. We then introduce general
approaches for robust estimation in Section 2.3. In particular, we show that M-
estimators constitute a large class of consistent estimators that are convenient to
work with. They have an asymptotically normal distribution, a simple IF and can
subsequently lead to the construction of robust alternatives to the MLE or other
classical estimators. Issues related to robust testing are considered next. The concepts
of the IF and the breakdown point are extended to tests, first in the one-dimensional
setting in Section 2.4, and then in the multidimensional case in Section 2.5. We
then introduce extensions of the likelihood ratio, score and Wald tests based on M-
estimators and show that the good robustness properties of these estimators can be
carried over to the tests. Results are presented here in their generality, with the details
of the specifics of robust estimation or testing techniques in a particular model being
given in subsequent chapters. Finally, issues related to model selection are treated,
when appropriate, in the corresponding chapters.

2.2 Statistical Tools for Measuring Robustness
Properties

Robust statistics aims at producing consistent and possibly efficient estimators, test
statistics with stable level and power and so forth, when the model is slightly
misspecified. Before developing such procedures, one needs to introduce tools to
formally assess the robustness properties of any statistical procedure with respect to
model misspecification (or model deviation) that we have already defined through
the concept of a neighborhood given in (1.1). Such tools could depend on the choice
of the contaminating distribution G for given values of ε, be maximized over all
possible G or be directly dependent on ε. In any case, any robustness measure will
depend on the postulated model Fθ . The effect of model misspecifications on an
estimator θ̂ or an a test procedure is a priori a vague concept. While the case of
testing is discussed in Section 2.4, one might ask on which estimator characteristic(s)
should the effect of model misspecification be measured? Indeed, the effect could
happen on the (asymptotic) distribution of θ̂ , through its first moment, second
moment, etc. The theory developed so far focuses on the first asymptotic moment
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of θ̂ , more precisely on the asymptotic bias caused by model misspecifications.
Tools that target the asymptotic bias for small (infinitesimal values of) ε are said to
measure infinitesimal or local robustness. Measures of the highest contamination ε

that an estimator can tolerate without causing the asymptotic bias to be out of control
assess global robustness. In this section, we present the most popular measures that
have been used to assess the robustness properties of statistical procedures and build
robust estimators or related tests that will be used in subsequent chapters.

2.2.1 The Influence Function

A simple way to assess the influence of an arbitrary point x on a particular statistic
is to compute the difference between its value with observation x and its value
without it. This is sometimes called the empirical influence function. As a better
solution, one can standardize the difference through the proportion of contamination
in the resulting sample, yielding the sensitivity curve SCn(x) originally due to Tukey
(1970). Assume that we initially have n − 1 observations x1, x2, . . . , xn−1 from the
normal model N (µ, σ 2), so that by adding one arbitrary value x we have a sample
of size n, then the sensitivity curve for the sample mean x̄n := (x1 + x2 + · · · +
xn)/n is

SCn(x) = (x1 + x2 + · · · + x)/n − x̄n−1

1/n
= x − x̄n−1,

a linear function in x. When n → ∞, SCn(x) tends to x − µ almost everywhere
and the limit is the ‘asymptotic influence’ of x on the sample mean. The extension of
SCn(x) to any statistics is straightforward but generally SCn(x) is sample-dependent.
To overcome this difficulty Hampel (1968, 1974) introduced the influence curve or
IF by exploiting the fact that most estimators can actually be viewed as a functional
(or function of a distribution). Let F (n) be the empirical distribution function of a
sample of n observations (x1, . . . , xn) i.i.d., i.e

F (n)(x) = 1

n

n∑
i=1

�xi (x)

and, as an illustration, consider θ̂ = (x1 + x2 + · · · + xn)/n, the sample mean. One
can easily rewrite θ̂ as θ̂(F (n)) = ∫ x dF(n)(x). Thus, the functional associated with
the sample mean is θ̂(F ) = ∫ x dF(x). A similar construction is generally possible
for any estimator θ̂ of the parameter θ , typically rewritten as θ̂(F ).

Hampel’s IF can be seen as a natural and elegant generalization of the sensitivity
curve approach for functionals. The equivalent of the contaminated sample is the Fε-
neighborhood or ‘gross error model’. It is obtained by choosing the contaminating
distribution G in (1.1) as the point-mass distribution �z(x) at a particular point
z.1 The contamination fraction in this gross error model is ε and replaces 1/n.

1The point mass distribution was defined earlier in the univariate case. It can be extended to the
multivariate case �z which is the distribution for which �z(A) = 1 if the set A contains the q-vector
z and zero otherwise.
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In Hampel’s definition, the IF measures the infinitesimal variation on the standard-
ized difference (θ̂(Fε) − θ̂(Fθ ))/ε when ε tends to zero (ε ↓ 0), or more formally2

IF(z; θ̂, Fθ ) = lim
ε↓0

θ̂(Fε) − θ̂(Fθ )

ε
, (2.1)

with Fε given in (1.1) and G(x) = �z(x). The IF can simply be obtained by
computing the right-sided derivative (∂/∂ε)θ̂(Fε) at ε = 0 when the derivative exists.
As an illustration, the IF of the sample mean at the normal model Fθ = N (µ, σ 2)

(i.e. with θ = (µ, σ 2)T ) is simply z − µ. Not surprisingly, IF coincides in that case
with the limit of the sensitivity curve. As the normal model is symmetric around µ

the sample median could also be considered as a possible (but inefficient) estimator
ofµ. Its IF is σ sign(z − µ)/(2ϕ(0))where ϕ is the standard normal density function;
see Huber (1981, p. 137). The fact that the IF is bounded illustrates the good local
robustness property of the sample median. In Figure 2.1 we plot the IF of the sample
mean and median together with the IF of the robust Huber estimator (c = 1.345) that
will be presented in Section 2.3.1. While the IF of the sample mean is unbounded
and the IF of the median has only two values, the IF of the Huber estimator can be
seen as a compromise. It remains identical to the sample mean IF in the middle and
then is truncated symmetrically beyond a certain threshold. As explained later, the
form of the IF has implications on the efficiency of the corresponding estimator: the
Huber estimator is more efficient than the (sample) median.

In general, if θ̂ is a consistent estimator of θ , then the IF measures the asymptotic
bias of θ̂ due to infinitesimal model deviations of the type (1.1). The choice for G
as the gross error generating process is not restrictive. Indeed, Hampel et al. (1986,
p. 175), showed that for small ε (and general Fε),

sup
G

‖θ̂(Fε) − θ̂(Fθ )‖ = bias(θ̂ , Fθ , ε) � ε sup
z

‖IF(z; θ̂, Fθ )‖, (2.2)

where ‖ · ‖ denotes the Euclidean norm. This means that an estimator θ̂ with a
bounded IF has a bounded asymptotic bias for any type of contaminating distribution
G. This property explains why the IF has been a central tool in the development of
robustness theory in the infinitesimal sense.

The IF is not only a useful tool for assessing the robustness properties of an
estimator θ̂ , but also for deriving its asymptotic variance. Indeed, Hampel et al.
(1986, p. 85) showed that

V (θ̂ , Fθ ) =
∫

IF(x; θ̂, Fθ )IF
T (x; θ̂, Fθ ) dFθ (x), (2.3)

2Note that one traditionally uses the notation in z for the arguments of the IF while x is used for the
sensitivity curve. In what follows, we use z, x or y depending on the context. These notational choices do
not change the interpretation of the IF which remains the infinitesimal variation of the estimator due to an
infinitesimal amount of contamination at any point denoted by z, x or y or, in the multivariate setting, by
z, x or y.
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Figure 2.1 The IF of the sample mean, median and Huber estimators for the normal
population mean with µ = 0 (and σ 2 = 1).

which can be estimated empirically with

V̂ (θ̂ , Fθ ) = 1

n

n∑
i=1

IF(xi; θ̂, Fθ )IF
T (xi; θ̂ , Fθ )

with θ replaced by a consistent estimator3 (see also Efron, 1982).
A by-product derived from the IF is the gross error sensitivity (GES) given by

GES(θ̂, Fθ ) = sup
z

‖IF(z; θ̂, Fθ )‖ (2.4)

which, according to (2.2), is proportional to the maximal bias on the estimator θ̂ due
to a model misspecification of the Fε-neighborhood type (for small ε). The IF (and

3Note that to get var(θ̂), one has to divide V (θ̂ , Fθ ) by n.
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indeed the GES) can be used not only to assess the robustness properties of a given
estimator, but also to build robust estimators by choosing them in general classes
among those with bounded IF (see Section 2.3).

Finally, other robustness measures derived from the IF can be built, such as the
local-shift sensitivity which measures the influence of numerous but small deviations
such as rounding effects; see Hampel et al. (1986, pp. 87–88).

2.2.2 The Breakdown Point

The breakdown point ε∗ measures the robustness properties of an estimator in the
global sense. It is defined as the maximal amount of model misspecification an
estimator can withstand before its bias becomes too large (infinite), i.e. it breaks
down. Again we have an empirical and theoretical version. For example, only one
observation chosen arbitrarily can carry the sample mean above any given value,
therefore its empirical breakdown point is zero. On the other hand, the (sample)
median is highly resistant as we need to substitute [n/2 + 1]/n of the observations
to make it break down. Its breakdown point therefore tends to 50% for large
enough samples. For a more formal definition, we can relate the amount of model
misspecification to the quantity ε in the Fε-neighborhood (1.1). There exists different
formal definitions of ε∗, the first proposals being those of Hodges (1967) and Hampel
(1968). One can define the breakdown point as

ε∗ := ε∗(θ̂, Fθ ) = inf{ε | bias(θ̂ , Fθ , ε) = ∞}. (2.5)

A consequence is that if the GES of θ̂ is infinite, then its ε∗ is nil. Thus, the theoretical
breakdown point of the sample mean is zero, which further illustrates its lack of
robustness. In contrast, the median is globally robust as ε∗ = 1

2 . In most cases, the
theoretical breakdown point is also equal to the limit of its empirical version.

In practice, the breakdown point is very rarely used as such to assess the
robustness properties of a statistic as it corresponds to the worst-case scenario.
Usually, the IF and consequently the GES are first measured and, if they are bounded,
ε∗ is computed in a second step (as a complementary measure). This is important,
because a robust estimator with bounded IF can become useless in practice if its
breakdown point is too small. In Section 2.3 we present general classes of estimators
with high breakdown points, also called globally robust estimators.

2.2.3 Geometrical Interpretation

The IF, the GES and the breakdown point ε∗ are robustness measures that are linked
together. In Figure 2.2 we illustrate these three robustness measures on a (theoretical)
plot of the maximal bias of an estimator θ̂ as a function of the amount of model
deviation ε. While the GES, through the IF, measures a first-order approximation of
the maximal bias (see (2.2) and (2.4)), the breakdown point measures the maximal
amount of model deviation the estimator can withstand before its maximal bias
becomes too large.
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Figure 2.2 The relationship between the IF, GES, breakdown point ε∗ and maximal
bias of an estimator under model misspecification.

2.2.4 The Rejection Point

Another useful robustness measure that is useful for comparing different robust
estimators is the rejection point. It is used in multivariate settings and, roughly
speaking, it is the distance ρ∗ from the center of the data such that points lying
outside this distance have no influence on the asymptotic bias. More formally (see
Hampel et al., 1986, p. 88), assuming that Fθ is symmetric (and centered at, say, m),
the rejection point is defined as

ρ∗ := ρ∗(θ̂ , Fθ ) = inf{r > 0 | IF(z; θ̂, Fθ ) = 0 for some z, when δ(z,m) > r},
(2.6)

where δ is a suitable distance measure (e.g. the Euclidean norm) and z is a point in
a multidimensional space. It is desirable that a robust estimator has a finite rejection
point, meaning that points too far away from the center of the data receive a weight
of zero. However, the size of ρ∗ is somewhat arbitrary, unless it can be relative
to the model Fθ at which it is computed. Rocke (1996) proposes to relate ρ∗ to
the probability that a point lying ‘outside’ ρ∗ has been generated by Fθ . If this
probability is too small, then only very improbable points under the model have
no influence on the estimator. It is therefore important to also control ρ∗ such that
points with a probability of, say, α∗ of being ‘outside’ ρ∗ have no influence on θ̂ .
Rocke (1996) defines α∗ as the asymptotic rejection probability.

2.3 General Approaches for Robust Estimation

Estimation is an important aspect of statistical inference. Given a sample of obser-
vations x1, . . . , xn from, presumably, a parametric model Fθ with corresponding



22 KEY MEASURES AND RESULTS

density f (xi; θ), one is typically interested in finding an estimator for the q-
dimensional vector of parameters θ , say θ̂ . The choice for θ̂ is usually quite large,
and should therefore be based on the properties that θ̂ possesses. A classical property
is consistency relative to the postulated model Fθ . Consistency generally means that
θ̂ → θ in some sense when n goes to infinity. One way to extend this concept to
estimators seen as functionals is the strong Fisher consistency, defined naturally as

θ̂(Fθ ) = θ . (2.7)

In other words, a Fisher consistent estimator computed at the model produces the
value of the model parameters.

Another classical property is efficiency, i.e. the minimal variance or minimal
mean squared error (MSE) when the estimator is not consistent. Moreover, in the
robustness paradigm, we are also interested in estimators that are robust either in
the infinitesimal sense (bounded IF) or in the global sense (high breakdown point).
In Section 2.3.1 we introduce a very general class of estimators in which estimators
that fulfill these properties (consistency, reasonable efficiency and robustness) can
be found.

At the model Fθ , i.e. when one assumes that the data have been generated
exactly from Fθ , a consistent and efficient estimator is the MLE or θ̂[MLE], obtained
by maximizing the log-likelihood of the data. Mathematically, θ̂[MLE] is then the
solution of

max
θ

n∑
i=1

log f (xi; θ) (2.8)

or, alternatively, the solution for θ of the first-order equation

n∑
i=1

s(xi; θ) = 0, (2.9)

where s(x; θ) = (∂/∂θ) logf (x; θ) is the q-dimensional score function. Its IF can
be easily computed and is given by

IF(z; θ̂[MLE], Fθ ) =
[∫

s(x; θ)sT (x; θ) dFθ (x)

]−1

s(z; θ), (2.10)

which is unbounded if the score function is unbounded. This will have disastrous
consequences if Fθ is not the exact model (i.e. the exact data-generating process is
somehow different from what was assumed initially).

For example, suppose again that the (univariate) normal model N (µ, σ 2) is a
good working model for the data. The sample mean µ̂ = (1/n)

∑
xi and the sample

variance σ̂ 2 = (1/n)
∑

(xi − µ̂)2 are the MLEs of θ = (µ, σ 2)T . Indeed, simple
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calculations show that the score function for that model is

s(x;µ, σ 2) = ∂

∂(µ, σ 2)T
log f (x;µ, σ 2)

= ∂

∂(µσ 2)T
log

(
1√

2πσ 2
exp

(
− 1

2σ 2 (x − µ)2
))

=
 1

σ 2
(x − µ)

− 1

2σ 2
+ 1

2σ 4
(x − µ)2

 ,

and θ̂ = (µ̂, σ̂ 2)T satisfies (2.9) with the score function given above. As s(x;µ, σ 2)

can become arbitrarily large, when x is far away from the mean µ, so is the IF of
both µ̂ and σ̂ 2 and, as a result, the MLE of both parameters is not robust. This rather
formal result will not surprise anyone, as a single observation far away from the bulk
of the data (i.e. far away from the mean or center of the distribution) inflates the
sample mean as illustrated with the sensitivity curve. The same can also be observed
with the sample variance. Here µ̂ and σ̂ 2 are both biased estimators of, respectively,
the population mean and variance when the data-generating process is not exactly
the normal distribution.

The MLE is not the only estimator that does not have, in general, good local
robustness property. Moment-based estimators are not robust either since they rely
on sample means, variances, etc. For some (simple) models, ad-hoc or simple
intuitive estimators can be proposed that are robust in addition to being consistent
and reasonably efficient. For example, for the normal model, a α-trimmed mean,
i.e. the sample mean of the data from which the α proportion of the smallest and
largest observations have been discarded, is a consistent and robust estimator of the
population mean µ, in that it has a bounded IF. Its breakdown point is equal to α.

2.3.1 The General Class of M-estimators

An estimator is often chosen as a member of a general class of estimators that is
optimal in some sense or fulfills a set of good properties. We present below the class
of M-estimators, give their IF so that it is then easier to choose a robust estimator
within this class and consider a subclass of so-called weighted MLEs with different
forms of weights. We also investigate their properties of consistency, efficiency and
asymptotic normality. We do not present all of the robust M-estimators available
in the literature, but concentrate on the most well-known estimators that will also
be used throughout the book. Assume we have n (multivariate) i.i.d. observations
x1, . . . , xn from a common model Fθ . In his pioneering work, Huber (1964, 1967)
proposed a class of M-estimators that naturally generalize the MLE. An M-estimator
of θ is given by the solution θ̂[M] of the minimization problem

min
θ

n∑
i=1

ρ(xi; θ), (2.11)
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or, alternatively, by the solution for θ of

n∑
i=1

�(xi; θ) = 0, (2.12)

for suitable ρ and � functions where �(x; θ) = ∂ρ(x; θ)/∂θ . Setting ρ = −log f
in (2.11) or � = s in (2.12) gives back (2.8) and (2.9), respectively. Hence, the MLE
is just a particular case in the class of M-estimators when ρ is the negative log-
density and � the score function. In general, �(x; θ) needs not be the derivative of
some ρ-function with respect to the parameter of interest, therefore (2.12) is more
general and is often referred as the proper definition of an M-estimator.4

The IF of an M-estimator is given by

IF(z; θ̂[M], Fθ ) = M−1(�, Fθ )�(z; θ) (2.13)

with

M(�,Fθ ) = −
∫

∂

∂θ
�(x; θ) dFθ (x), (2.14)

see e.g. Huber (1981). Formula (2.13) shows that, in a similar fashion to the
MLE, the IF of an M-estimator is proportional to its defining �-function. This
is a powerful result since it suffices to choose a bounded �-function to obtain a
robust M-estimator. On the other hand, if the model score function s(x; θ) or any
�(x; θ) function turns out to be unbounded in its argument x, then the corresponding
estimator is not robust for the parameter of interest, as illustrated with the MLE of
the normal model in (2.10).

Relatively simple M-estimators include the so-called weighted MLE (WMLE)5

defined as the solution for θ of

n∑
i=1

w(xi; θ)s(xi; θ) − a(θ) = 0, (2.15)

where a(θ) is a consistency correction factor (see Section 2.3.2). The MLE corre-
sponds to the choice w(xi; θ) = 1 for all i and, consequently, a(θ) = 0. To construct
a robust WMLE, one simply chooses weights that make w(x; θ)s(x; θ) bounded.
The weights can depend on the observations only, on a quantity that depends itself on
the observations and the parameters or, more generally, directly on the score function.
As an illustration, consider again the univariate normal model (with unit scale). The
score function for µ is s(x;µ) = x − µ; obviously the quantity to bound is the score
function itself. In the linear regression model yi = xT

i β + εi (with again var(εi) = 1
for simplicity), the score function has a similar expression s(y, x; β) = r · x but is

4It should also be stressed that an M-estimator can also be defined for weighted data such as data
produced by some type of stratified sampling. Denoting the weights due to the sampling scheme by
ω(xi ), i, . . . , n, (2.12) becomes

∑n
i=1 ω(xi )�(xi; θ) = 0. The subsequent definitions and results are

presented assuming ω(xi ) = 1, for all i, but can be easily extended to the more general case by simply
adding ω(xi ) after the summation symbol.

5Robust WMLEs were first formalized by Field and Smith (1994).
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proportional to r = y − xT β, the residual, and x, the covariate; see also Chapter 3
for details. In this case, there are two quantities to bound, the residual r and covariate
value x. The situation described here in a simple model is actually representative
of many regression models where some univariate residual appears in the score
function. In that univariate case, a popular choice are Huber’s weights

w[Hub](r; β, c) = ψ[Hub](r; β, c)/r = min{1; c/|r|}, (2.16)

i.e. the weight is equal to one for all (small) values of r satisfying |r| < c and c/|r|
otherwise. The Huber ψ-function (Huber, 1964) is simply

ψ[Hub](r; β, c) = ∂

∂r
ρ[Hub](r; β, c) = min{c,max{r,−c}}

with the corresponding ρ-function

ρ[Hub](r; β, c) =
{

1
2 r

2 if |r| ≤ c,

c|r| − 1
2c

2 if |r| > c.
(2.17)

Note that in a regression model with known scale, the Huber estimator is an
M-estimator associated with �[Hub](r, x; β, c) = ψ[Hub](r, x; β, c)x, a bounded
function of r (or the response y). The ρ- and ψ-functions of the MLE and Huber
proposal are depicted in Figure 2.3, left and middle panels.

As explained in the subsequent chapters, Huber’s weights can be used with many
different models where the corresponding M-estimator is defined through

�[Hub](r, x; θ , c) = w[Hub](r; θ , c) · r ∂r
∂θ

+ a(θ),

where a(θ) is a consistency correction factor (see Section 2.3.2). As long as the
argument r of the weight function, whether it be a residual, a score or some other
quantity, has a reasonable value the weights are equal to one and no downweighting
is performed. The observation is downweighted only if the argument exceeds some
threshold value c. The latter is chosen on the basis of robustness arguments (the
lower c is, the lower the weights, the more robust the estimator) and efficiency
arguments (the lower c is, the more observations are downweighted, the less efficient
the estimator); see also Section 2.3.2.

More generally, in the multivariate case, the weights of the WMLE in (2.15) can
be chosen as (see e.g. Hampel et al., 1986, p. 239)

w[Hub](s(x; θ); c) = min{1; c/‖s(x; θ)‖} (2.18)

and the corresponding WMLE with Huber’s weights is defined through

�[Hub](x; θ , c) = w[Hub](s(x; θ); c)s(x; θ)+ a(θ). (2.19)

It is theoretically possible to define an optimal M-estimator in the sense that it
has maximal efficiency among all M-estimators with bounded IF measured in an
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appropriate metric; see Hampel et al. (1986). This estimator is called the optimal
B-robust estimator (OBRE) but is often difficult to compute. Its �-function has a
similar form to the WMLE with Huber’s weights (2.19), except that the �-function
in (2.19) is multiplied by a matrix A(θ) carefully chosen on efficiency grounds (for
more details, see Hampel et al. (1986, p. 240)).

Although the previous weighting schemes may appear the most natural, they
have been criticized because the resulting M-estimators may possess too small a
breakdown point in relatively high dimensions. Such estimators have actually been
shown to have a breakdown of at best 1/dim(θ) (see Hampel et al., 1986; Maronna,
1976). Fortunately, the breakdown point can be improved by considering the ‘so-
called’ redescending �-functions, i.e. functions that become nil for large values of
their argument or, in other terms, their rejection point (2.6) is finite. This is generally
equivalent to saying that the corresponding ρ-function is constant for large enough
values. A good example of such redescending score function is the popular bisquare
or biweight proposed by Beaton and Tukey (1974) associated with

ρ[bi](r; θ , c) =

3

(
r

c

)2

− 3

(
r

c

)4

+
(
r

c

)6

if |r| ≤ c,

1 if |r| > c.

(2.20)

The function ρ[bi] is indeed bounded for values of r := r(θ) larger than the tuning
constant c, and this feature helps in constructing a high breakdown point estimator.
Tukey’s biweight ρ[bi] was first proposed in the context of the normal model and
linear regression and, hence, the classical (non-robust) counterpart of (2.20) is
ρ(r; θ) = r2/2 (i.e. the squared residuals). To define the weights, one uses

ψ[bi](r; θ , c) = c2

6

∂

∂r
ρ[bi](r; θ , c),

i.e.

ψ[bi](r; θ , c) =


((

r

c

)2

− 1

)2

r if |r| ≤ c,

0 if |r| > c,

(2.21)

= w[bi](r; θ , c)r, (2.22)

so that

w[bi](r; θ , c) =


((

r

c

)2

− 1

)2

if |r| ≤ c,

0 if |r| > c.

(2.23)

The corresponding M-estimator is therefore defined through

�[bi](r, x; θ , c) = w[bi](r; θ , c) · r ∂r
∂θ

+ a(θ), (2.24)
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where a(θ) is again a consistency correction factor6 and x is a (possible) set of
covariates that enter in the definition of the residuals r . When r tends to the tuning
constant c, the weight w[bi](r; c) tends to zero and so does �[bi]. Formula (2.23)
applies to unidimensional arguments r , but this is not too restrictive, as most common
uses of such objective functions have been in regression models or mixed models
where the problem can be made unidimensional by exploiting the dependence of
the score on the residual or Mahalanobis distance; see Section 2.3.3 for details.
Instead of the biweight function, one can also choose other functions. For example,
Hampel proposes a ‘three-part’ redescending function and Andrews proposes a sine
function (see Andrews et al., 1972), most of these being effectively used for the linear
regression model. Figure 2.3 displays the ρ- and ψ-functions for the MLE, Huber
and biweight estimators. For the MLE, the ψ-function (score) and corresponding
ρ = −log(f ) are unbounded. In contrast, the Huber estimator has a score function
bounded by c, but it remains constant beyond that threshold. Its ρ-function is
quadratic in the middle and linear in the tails. Finally, the biweight ψ-function score
is redescending with the corresponding ρ-function being symmetric and constant for
|r| > c. As a result, the MLE is not robust, the Huber estimator is robust but does
not have a large breakdown point in high dimensions q , while the biweight estimator
is a high breakdown point estimator.

2.3.2 Properties of M-estimators

For an M-estimator to be consistent, the �-function must satisfy some regularity
conditions given in Huber (1967). Fisher consistency for an M-estimator at the model
Fθ is ensured if � satisfies7 ∫

�(x; θ) dFθ (x) = 0. (2.25)

In particular, the WMLE given in (2.15) is consistent if a(θ) is equal to n
∫
w(x; θ)

s(x; θ) dFθ (x). The (consistent) WMLE is then the solution for θ of

n∑
i=1

w(xi; θ)s(xi; θ)− n

∫
w(x; θ)s(x; θ) dFθ (x) = 0. (2.26)

Fortunately, in symmetric models such as the normal model or the regression
model, we have a(θ) = 0, which makes the WMLE rather easy to compute,
using for example an iteratively reweighted least squares (IRWLS) algorithm; see
Section 3.2.4 for an example. In other cases, the computation of a consistent WMLE
through (2.26) is harder as the integral term has to be evaluated. Moustaki and
Victoria-Feser (2006) (see also Victoria-Feser, 2007) propose the use of the method
of indirect inference (see Gallant and Tauchen, 1996; Genton and Ronchetti, 2003;

6With the models in this book for which we use �[bi], we have that a(θ) = 0.
7The rationale for this is simply that, by dividing (2.12) by n we see that the functional defining the

M-estimator is θ̂[M](F ) satisfying
∫
�(xi ; θ̂[M](F )) dF(x) = 0. The general Fisher condition (2.7) is

then equivalent to (2.25).



28 KEY MEASURES AND RESULTS

−4 0 2 4

0
1

2
3

4

x

ρ

ML estimator

−4 0 2 4
0

1
2

3
4

x

ρ

Huber estimator (c =1.345)

−4 0 2 4

0
1

2
3

4

x

ρ

Biweight estimator (c =4.685)

−4 0 2 4

−2
−1

0
1

2

x

ψ

ML estimator

−4 0 2 4

−2
−1

0
1

2

x

ψ

Huber estimator (c=1.345)

−4 0 2 4

−2
−1

0
1

2

x

ψ

Biweight estimator (c=4.685)

Figure 2.3 ρ-functions (top panels) and ψ-functions (bottom panels) for the MLE,
Huber and biweight estimators.

Gouriéroux et al., 1993), to remove the bias of a WMLE in (2.15) in complex
models. The basic idea behind the method is as follows. An inconsistent estimator
θ̂0 is first computed from the data using the WMLE without the bias correction
nE[w(x; θ)s(x; θ)]. Then the bias is corrected via simulation even though its exact
form may not be known;8 for a short discussion on Fisher consistency correction, see
also Section 5.3.2.

If consistency is certainly a desirable property, a reasonable level of efficiency
is also required. As the MLE is the most efficient estimator at the model among
all (asymptotically) consistent estimators, some loss of efficiency is expected when
using a robust alternative. This is the price to pay for robustness if the model that
generated the data is indeed Fθ . We certainly want to keep that loss small in general.

8More specifically, at the model Fθ , asymptotically we have that
∫
w(x; θ̂0(Fθ ))

s(x; θ̂0(Fθ )) dFθ (x) = 0; then, using simulated data, the value of the estimator is found solving
the previous equation in θ and taking for θ̂0(Fθ ) its sample value θ̂0.
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The concept of efficiency is closely related to the (asymptotic) variance of an M-
estimator that can be obtained simply by combining (2.3) and (2.13), yielding

V (θ̂[M], Fθ ) = M−1(�, Fθ )Q(�,Fθ )M
−T(�, Fθ ) (2.27)

with

Q(�,Fθ ) =
∫

�(x; θ)�T (x; θ) dFθ (x), (2.28)

and M(�,Fθ ) given in (2.14).9 Moreover, when θ̂[M] is Fisher consistent, i.e. its
�-function satisfies (2.25), we have the following simpler expression for M

M(�,Fθ ) =
∫

�(x; θ)sT (x; θ) dFθ (x). (2.29)

Note that, in the special case of the MLE, i.e. when � = s, (2.27) reduces to the
inverse of the Fisher information matrix, i.e.

V (θ̂[MLE], Fθ ) =
[∫

s(x; θ)sT (x; θ) dFθ (x)

]−1

= I (θ)−1, (2.30)

which is the minimal variance an unbiased estimator can achieve at the model Fθ .
As the robust M-estimator has an asymptotic variance that is always greater than the
asymptotic variance of the MLE at the core model Fθ , one way to quantify the loss
in efficiency (and possibly fine tune the robust estimator) is to use the ratio of the
traces (denoted by tr) of the asymptotic variances

tr([∫ s(x; θ)sT (x; θ) dFθ (x)]−1)

tr(M−1(�, Fθ )Q(�,Fθ )M−T(�, Fθ ))
, (2.31)

which can be interpreted as the asymptotic MSE (see Hampel et al., 1986, p. 242).
Note that (2.31) is not necessarily constant and may depend on the parameter θ

(or θ̂ ); in that case, the same value should be used both in the numerator and the
denominator. The efficiency of an M-estimator is related to the form of the score
function � , which in turn depends on tuning constants that regulate the robustness
properties of the estimator. This is the case for example for the WMLE (2.15) with
Huber-type weights (2.18) or with the biweight M-estimator (2.22) through the lone
tuning constant c. A strategy consists of choosing the tuning constant(s) that make(s)
the efficiency (2.31) reach a given level, typically 90% or 95%. In Figure 2.3, the ρ-
and ψ-functions of the robust estimators were tuned to achieve 95% efficiency at
the normal model. Finally, under some (mild) regularity conditions on ψ , we have
that

√
n(θ̂[M] − θ) is asymptotically normal with zero mean and variance equal to

(2.27). The regularity conditions can be found in, for example, Huber (1981) or
Welsh (1996).

9Note that to obtain var(θ̂[M]), one has to divide V (θ̂[M], Fθ ) by n.
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2.3.3 The Class of S-estimators

S-estimators were first proposed by Rousseeuw and Yohai (1984) in the context of
regression models. They are useful in problems where the estimation of some scale
parameter is an issue and constitute an alternative to M-estimators. One of their
key features is a high breakdown point (as defined in Section 2.2.2). In regression
models, for example, S-estimators generalize the LS estimator which is based on the
scale of the residuals (i.e. the mean of the squared residuals). In a multivariate normal
context, S-estimators are used for the (robust) estimation of covariance matrices
� and mean vectors µ. Formally, and very generally, an S-estimator is defined by
the minimization of a dispersion function, depending on the unknown parameters
collected in the vector θ , under the constraint that

1

n

n∑
i=1

ρ(di; θ) = E[ρ(d; θ)], (2.32)

where the quantities di := di(θ) also depend on the observations and where the
expectation is taken at the distribution of d (for consistency of the S-estimator).
The function ρ must satisfy some regularity conditions (see e.g. Rousseeuw and
Leroy, 1987, p. 136), in particular, ρ must be symmetric and bounded (i.e. constant
for large values of its argument). This actually guarantees that the S-estimator has a
high breakdown point obtained through

ε∗ = E[ρ(d; θ)]
maxx ρ(x; θ)

(2.33)

(see Rousseeuw and Leroy, 1987; Lopuhaä and Rousseeuw, 1991). A typical
example of an appropriate ρ-function is Tukey’s biweight. Tuning constants help
in calibrating the ρ-function in (2.33) to achieve a pre-specified value of ε∗, for
example, 25% or even 50%. In the regression setting of Chapter 3, S-estimators will
also be used. In that case, the di are the standardized residuals and the dispersion
function is the residual scale.

S-estimators are especially useful in the multivariate normal model, i.e. xi ∼
N (µ,�), with � a symmetric and positive-definite matrix. Estimates of � are used
in many analyses such as principal component analysis, factor analysis, structural
equation models or simply as a preliminary data analysis. As will be shown in
Chapter 4, even mixed linear models can be formalized as a multivariate normal
model. In all of these settings, an important aspect is the (robust) estimation of the
(population) covariance matrix with the multivariate normal model as the postulated
model. S-estimators are very often used for their robustness properties (high ε∗) and
their good efficiency relative to other robust estimators (see below). The dispersion
function that is chosen for the multivariate normal model is the determinant of
the covariance matrix det(�) = |�| and the argument di of the ρ-function are
Mahalanobis distances

di =
√
(xi − µ)T �−1(xi − µ). (2.34)
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The Mahalanobis distance is a natural measure of ‘outlyingness’ of an observation.
Recall that points (observations) at equal Mahalanobis distances from the center of
the data (µ) form an ellipse of equal density (see e.g. Figure 1.3). Consequently, and
provided that the parameters µ and � in (2.34) are estimated robustly, Mahalanobis
distances can be used to detect ‘outlying’ observations in that the latter correspond
to large Mahalanobis distances. More precisely, since under the multivariate normal
model, we have that d2

i ∼ χ2
q (the chi-square distribution with q degrees of freedom),

then one could consider that an observation is also ‘outlying’ if it exceeds a cut-off
value of say (χ2

q )
−1(0.975).

In the multivariate normal setting, S-estimators are a generalization of the MLE.
Indeed, for the latter, the log-likelihood function is

logL(µ,�) = −n

2
q log(2π) − n

2
log |�| − 1

2

n∑
i=1

d2
i .

Hence, the MLE minimizes the quantity log |�| + (1/n)
∑n

i=1 ρ(di), with ρ(d) =
d2. An S-estimator for the multivariate normal model minimizes |�| (or, equiva-
lently, log |�|) for a fixed value of (1/n)

∑n
i=1 ρ(di) and a bounded ρ-function.

The S-estimator, say (µ̂[S], �̂[S]), has several important properties. It possesses
a high breakdown point and the property of affine equivariance, i.e. a linear
transformation Axi + a of the data yields the estimator (Aµ̂[S] + a,A�̂[S]AT ).
Conditions for its existence, consistency, asymptotic normality and high breakdown
point have been investigated by Davies (1987).

Most known S-estimators can actually be written as M-estimators (2.12) (see
Rousseeuw and Yohai, 1984; Lopuhaä, 1989; Rocke, 1996; Copt and Victoria-
Feser, 2006). They therefore have a similar asymptotic distribution. In particular,
S-estimators for multivariate location and covariance matrix are the solution for µ

and � of
n∑

i=1

�
µ
S (xi ,µ,�) =

n∑
i=1

w(di)(xi − µ) = 0, (2.35)

n∑
i=1

��
S (xi ,µ,�) = q

∑n
i=1 w(di)(xi − µ)(xi − µ)T∑n

i=1 w(di)d
2
i

− � = 0, (2.36)

with w(d; θ) = ρ′(d; θ)/d and ρ′(d; θ) = ψ(d; θ) = ∂ρ(d; θ)/∂d . The �-func-
tions �

µ
S and ��

S are redescending because they depend on weights w based on
the first derivative of the ρ-function which is, by definition, bounded. S-estimators
therefore form a subclass of M-estimators built on a redescending ψ-function and,
hence, have a positive breakdown point that can be set to a chosen value.

Again, a popular choice for the ρ-function is Tukey’s biweight function (2.20)
with argument r = d(µ,�) = d , the Mahalanobis distance (2.34). Rocke (1996)
proposes to extend Tukey’s biweight function to a translated biweight function to
control for the asymptotic rejection probability α∗.

A less desirable feature of S-estimators inherent to redescending ψ-functions
is that the system (2.35) and (2.36) admits more than one solution (corresponding
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to different local minima). To overcome this difficulty a good initial estimator is
first computed and then used as starting point in the computation of the S-estimator
through (2.35) and (2.36); see Maronna et al. (2006) for a possible algorithm. For the
multivariate normal model, a popular choice for the initial estimator is the minimum
covariance determinant (MCD) of Rousseeuw (1984). It is defined as the mean
and covariance of the h < n points for which the determinant of their (sample)
covariance matrix is minimal. It is also affine equivariant and has a high breakdown
point. To compute it, one needs algorithms that resample subsets of data on which a
search for the optimal subsample is performed. A fast algorithm has been proposed
by Rousseeuw and Van Driessen (1999). S-estimators will be used in the linear
regression (Chapter 3) and the mixed linear models (Chapter 4). As stated previously,
they can however be used in many multivariate data analyses; for examples of robust
multivariate data analysis, see e.g. Reimann et al. (2008, Chapter 14).

2.4 Statistical Tools for Measuring Tests Robustness

While (robust) estimation is an important aspect of a statistical analysis, (robust)
inference is often pivotal in the decision-making process. Many questions arising
in practice, such as whether an experimental treatment is effective or not, are often
stated in terms of hypotheses to be tested. A common strategy is to define a null
hypothesis H0, in this case that there is ‘no difference between treatments’, with
the hope that it can be refuted by the experiment. An hypothesis test is a procedure
based on the data to decide whether there is enough evidence to reject H0. This is
usually done in favor of an alternative hypothesis H1 that specifies the existence of
an effect. In many cases, those null hypotheses can be recast by imposing restrictions
to a parameter of interest θ of an underlying model Fθ having allegedly generated
the data xi , i = 1, . . . , n. Formally, this amounts to testing that k < q components
of θ are zero. If we denote aT = (aT

(1), a
T
(2)) the partition of a q-dimensional vector

a into q − k and k components, and by A(ij), i, j = 1, 2 the corresponding partition
of a q × q matrix A, the null hypothesis is then H0 : θ = θ0, where θ0(2) = 0 and
θ0(1) unspecified, against the alternative H1 : θ0(2) �= 0 and θ(1) unspecified. Testing
H0 is usually achieved through a test statistic T = T (x1, . . . , xn) that rejects H0
for extreme values10 of T . This decision can lead to two types of error, i.e. an
incorrect conclusion in a situation where the null hypothesis is true, and an incorrect
conclusion in a situation where the alternative hypothesis H1 is true.

To control for the first type or type I error, we define α, the test nominal level,
typically 5%, and the corresponding critical region R = [|T | > tα] as the set of
values for which H0 is rejected. The cut-off point, tα , is the critical value of the
test specified by

P(|T | > tα | x ∼ Fθ0) = α. (2.37)

Thus, α is the probability of rejecting the null hypothesis H0 when in fact it is true.
To derive the exact value of tα , one needs the null distribution of T , that is, the

10We consider here only a two-sided test, but definition (2.37) can be easily adapted to a one-sided test.
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distribution of T under Fθ0 . As the latter is not always known, a common practice is
to replace it by its asymptotic limit, i.e. use an asymptotic value for tα independent
of the sample size. Note that this asymptotic distribution in general depends on the
assumed model Fθ0 (under the null hypothesis) for the data. Alternatively, one can
compute, instead of tα , the test p-value = P(|T | > |tobs| | x ∼ Fθ0), where tobs is
the observed value of T over the sample, and compare it with α. The null hypothesis
H0 is then rejected if the p-value is smaller than α.

To control for the second type of error (or type II error) we usually define a given
power the test needs to achieve at the alternative H1 of interest, say x ∼ Fθ1 and
θ1 �= θ0. The power is defined as the probability of the critical region when H1 is
true, i.e. P(|T | > tα | x ∼ Fθ1). Since power is just one minus the probability of
a type II error, controlling the type II error to be acceptably low is equivalent to
controlling the power to be acceptably high. The power of the test can also be used
to choose among several test statistics T , for a given (nominal) level α and a given
hypothesis H0. The statistic with the best power at the alternative of interest is often
the recommended option.

In the same way as classical estimators, standard testing procedures are however
based on the (strong) assumption that the data-generating process is exactly Fθ0

under H0 (and Fθ1 under H1). If instead the data have been generated from a
distribution in some neighborhood of the null model, say Fε , then there is no
guarantee that the critical point or the p-value are actually correct. In fact, the
actual level of the test P(|T | > tα | x ∼ Fε) can be substantially greater than the
nominal level α, which casts doubts over the validity of the procedure. For example,
consider the F -test for equality of two variances and its generalization to m samples
(Bartlett’s test). Box (1953) investigated its actual level when the data-generating
process was the t-distribution (instead of the normal distribution) with different
degrees of freedom including the normal as a limit case.11 For m = 2, the actual
test level is several times as large as the nominal level 5%, e.g. 11% when the
data come from the Student distribution with 10 degrees of freedom t10, and 16.6%
when t7 is the data-generating process. More extreme actual test levels up to 48%
are even obtained for m = 10 groups, see Hampel et al. (1986, p. 388) for details.
The Bartlett’s test is very unstable under small departures from the model (through
departures from the data-generating process).

The lack of level stability is called non-robustness of validity. Other classical
testing procedures show a less dramatic behavior but are still problematic from
a robustness standpoint. For instance, the one-sample t-test cannot maintain its
(nominal) level in the presence of asymmetric contamination (see Beran (1981),
Subrahmanian et al. (1975) and others), the effect being worse in small samples.
This also happens with confidence intervals (their length become unreliable) since
they are based on the same sample information as t-tests. Even if the t-test is
approximately valid (actual level approximately equal to the nominal level) when
the data-generating process is symmetric but non-normal, it cannot be considered

11The t-distribution can be considered as a particular distribution belonging to the neighborhood Fε of
the normal distribution.
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as a robust testing procedure. Moreover, the t-test can suffer from a drastic drop in
power when the data-generating process underH1 is contaminated; see Hampel et al.
(1986, p. 405). This type of instability (i.e. affecting power) is called non-robustness
of efficiency. The two-sample t-test also exhibits similar deficiencies and this is better
illustrated through the following example.

2.4.1 Sensitivity of the Two-sample t-test

The lack of stability of many classical inferential procedures also affects the
corresponding p-value. Everitt (1994, pp. 25–27), provides the IQ scores of 94
children of age 5; fifteen of these children have mothers suffering from post-
natal depression (group A) whereas the 79 others have healthy mothers (group B).
Researchers are interested in testing whether group A children have a different IQ
to those of group B. The null hypothesis H0 of ‘no difference between the mean
IQs across the two groups’ is typically tested by means of a two-sample t-test.
Unfortunately, in that particular sample, most IQ values are between 80 and 144
with the exception of two small values of 22 and 48 for one child in each group
A and B, respectively. Applying the Student t-test to the data returns a p-value of
0.016 supporting a difference in IQ between the two groups, whereas an inconclusive
result (p = 0.07) is observed when the two outliers are deleted. To further illustrate
the erratic behavior of the p-value, we moved around the IQ score of the kid with
the lowest score in group B (case 2 in that group). A plot of the two-sample t-test
p-value versus hypothetical IQ values between 20 and 100 for that child’s IQ score
is given in Figure 2.4. This includes the original value of 22. We also added the p-
value of a Wilcoxon test for comparison. The t-test p-value varies from 0.015 to
0.12, which further demonstrates its instability. Even if the observed IQ score of 22
is a genuine observation, it has too big an impact on the test decision. Hence, relying
on the corresponding p-value of 0.0156 (and, thus, rejecting the null hypothesis) is
extremely hazardous. In contrast, the Wilcoxon rank-sum test is a safer procedure
that returns a relatively stable p-value around 6–8%. Note that it starts to move up
a bit when the hypothetical score for child 2 in group B is set to 85 or above. The
reason is that the ranks that the Wilcoxon test are based on are more disrupted when
the IQ score is pushed back to the bulk of the data. This example also allows us to
illustrate the behavior of the Bartlett test (or F -test) mentioned above on real data.
When applied to the original sample it strongly rejects the null hypothesis of equal
variance (p-value = 0.0003) but it is clearly inconclusive (p-value = 0.13) when the
two lowest IQ values are removed. This is a blatant illustration on how unreliable this
procedure can be and why, in our view, it should be avoided.

In the following section, we present statistical tools for measuring the stability of
a testing procedure, both in terms of robustness of validity and efficiency.

2.4.2 Local Stability of a Test: the Univariate Case

In the robustness paradigm, the objective is twofold: a test must have (i) a stable
type I error (or level) under small, arbitrary departures from the null hypothesis
(robustness of validity) and (ii) a good power under small arbitrary departures from
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Figure 2.4 p-value for the two-sample t-test and Wilcoxon test when the IQ score
of case 2 in group B is changed.

the specified alternative (robustness of efficiency) to be declared locally robust.
The wording ‘small departures’ generally refers to a neighborhood of the data-
generating process, under the null or the alternative. In this section, we formalize
these concepts in univariate parametric models following the pioneering work of
Ronchetti (1982b,a), and Rousseeuw and Ronchetti (1979, 1981). The (natural)
extension to the multivariate case is discussed in Section 2.5.5.

Consider T a test statistic computed on a sample x1, x2, . . . , xn, for testing H0 :
θ = θ0 versus H1 : θ > θ0. Also, let the (nominal) level of the test be α. A simple
example is the test of the mean θ = µ of the (univariate) normal distribution with
known variance σ . A standard test could then be the z-statistic T := z = √

n(x̄ −
θ0)/σ with critical region {z ≥ zα}. To measure the stability of the testing procedure
under (small) model misspecifications, the idea is first to compute the asymptotic
level of the test under model misspecification and compare it with its nominal level.
For that, we need the so-called ‘level contaminated model’

FL
ε,n = (1 − ε/

√
n)Fθ0 + ε/

√
nG, (2.38)

where G is an arbitrary distribution. This is similar to (1.1) and constitutes a
neighborhood of the null hypothesis. The only difference is that (2.38) ‘shrinks’
at a rate 1/

√
n, i.e. εn = ε/

√
n replaces ε in (1.1). This type of neighborhood

is often chosen (Hampel et al., 1986, Huber-Carol 1970; Rieder 1978) because it
depends on the sample size n in the same manner as the sequence of contiguous
alternatives are formulated, i.e. H1 : θ = θ1 = θ0 + δ/

√
n with δ > 0, mainly for

power determination. Indeed, the power of the test is computed for alternatives
close to the null hypothesis, so that the test always become more powerful as the
sample size increases. It is then necessary to choose an amount of contamination
that converges to zero at the same rate that θ1 converges to θ0 to avoid overlapping
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between the neighborhood of the null FL
ε,n, and that of the alternative, say F P

ε,n. The
latter is called the ‘power contaminated model’ and is defined as (2.38) with the
alternative model Fθ1 replacing Fθ0 in the formula.

Let α(FL
ε,n) be the actual level of the test when the data are generated by (2.38)

and α(Fθ0) = α0 the nominal level, i.e. the (asymptotic) level of the test when
the data are generated exactly from Fθ0 . The question of interest is how α(FL

ε,n)

compares to α0. An answer is provided by Ronchetti (1982a,b), and Rousseeuw and
Ronchetti (1979, 1981) who derived the following approximation12 valid for small
values of ε and large sample sizes n:

α(FL
ε,n) � α0 + ε

∫
IF(z; α, Fθ0) dG(z), (2.39)

where IF(z; α, Fθ0) is the level influence function given by

IF(z; α, Fθ0) = ϕ(�−1(1 − α0))IF(z; T , Fθ0)/[V (T , Fθ0)]1/2, (2.40)

with �−1(1 − α0) the 1 − α0 quantile of the standard normal distribution � with
density ϕ, IF(z; T , Fθ0) the IF of T and V (T , Fθ0) = ∫ IF(z; T , Fθ0)

2 dFθ0(z) its
asymptotic variance (see also (2.3)). A direct consequence of this result is that the
stability of the test level under small departures from the assumed model (i.e. under
(2.38)) is proportional to the IF of the test statistic T .

A similar approach can be followed for the test (asymptotic) power. Let β(F P
ε,n)

be the actual power and β0 the nominal power. The following approximation can also
be obtained:

β(F P
ε,n) � β0 + ε

∫
IF(z; β, Fθ0) dG(z), (2.41)

where IF(z; β, Fθ0), the power influence function, is again proportional to the IF of
the test statistic T , i.e.

IF(z; β, Fθ0) = ϕ(�−1(1 − α0) − δ
√
E)IF(z; T , Fθ0)/[V (T , Fθ0)]1/2, (2.42)

where E = [ξ ′(θ0)]2/V (T , Fθ0) is the Pitman’s efficacy of the test with ξ(θ) =
T (Fθ ); see Hampel et al. (1986, (3.2.14)). The nominal (asymptotic) power (under
the true model) is β0 = 1 − �(�−1(1 − α0) − δ

√
E) (defined as the limit of the

power at the alternative θ1 when n → ∞). Note that, as the sequence of contiguous
alternatives tends to the null hypothesis, the power influence function depends
on Fθ0 .

An important consequence of these results is that bounding the IF of the
test statistic guarantees the local stability of the level and power with respect to
small deviations from the assumed model. More specifically, if we denote γ ∗

test =
supz |IF(z; T , Fθ0)/[V (T , Fθ0)]1/2| the (standardized) gross error sensitivity of the
test, then by means of (2.39)–(2.42), we obtain a maximum asymptotic level αmax

12This approximation is based on functional expansions of von Mises (1947) and Fernholz (1983).
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and minimum asymptotic power βmin over the neighborhood, i.e.

αmax � α0 + εϕ(�−1(1 − α0))γ
∗
test,

βmin � β0 − εϕ(�−1(1 − α0) − δ
√
E)γ ∗

test.

Unlike the z-test, the sign and one-sample Wilcoxon tests statistics have a
bounded IF and, hence, are robust testing procedures with stable level and power
under (slight) model misspecification. Details and numerical values of αmax and βmin

for various values of ε and δ can be found in Hampel et al. (1986, pp. 200–201).
They also show that the level of the sign test is slightly more stable than that of
the Wilcoxon test. The latter has more power at the normal model (uncontaminated
case) but it quickly loses its advantage as the percentage of contamination increases.
For ε ≥ 15% the sign test will generally outperform the Wilcoxon test in terms of
robustness of the level and power.

2.4.3 Global Reliability of a Test: the Breakdown Functions

Good local robustness properties of a test do not guarantee that the level and power
of the test will remain stable in the presence of large deviations (also called global
robustness). This concept is vague but includes situations where a large proportion
of outliers arise in the data (e.g. large values of ε in (2.38)), or when the working
model is further away from the assumed model. A second step in the robustness
analysis would then be the computation of the breakdown point of the tests, in
the same spirit as is done for estimators (see Section 2.2.2). We feel, however, that
‘local considerations are relevant for inference, which is more meaningful in smaller
neighborhoods of the assumed model’; see He et al. (1990, p. 447). In other words,
trying to draw inference using a model that is grossly misspecified is hazardous. In
our view, the notion of a high breakdown point is not as critical for tests as it is for
estimators.

The first important contribution in this respect is due to Ylvisaker (1977) who
defined the concept of resistance of a test. We describe it here for a one-sided
test with critical region {T ≥ tα}. The resistance to rejection ρR (respectively
resistance to acceptance ρA) of the test is defined as the smallest proportion m0/n of
sample observations x1, . . . , xm0 for which the observed test statistic T (computed
on the whole sample) is such that T ≥ tα (respectively T < tα), no matter what
xm0+1, . . . , xn are. In other words, for ρA, there is at least one sample of size
n − (nρA − 1) which suggests rejection so strongly that this decision cannot be
overruled by the remaining nρA − 1 observations. This definition attempts to capture
the strength of the reject–not reject decision of the test that should not be reversed
by extreme observations if the test is robust. For instance, the z-test defined by the
critical region x̄n ≥ tα has a resistance to acceptance and a resistance to rejection
of 1/n. Extensions of this idea can be found in Hettmansperger (1984) and Zhang
(1996).

A more general approach can be found in He et al. (1990) and He (1991) in
a more mathematical framework. They introduce the concept of level breakdown
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function εL(θ) and power breakdown function εP(θ).13 Here εL(θ) is the smallest
amount of contamination to the null distribution that drives the test statistic to any
particular value it could take under the alternative. In a similar fashion, εP(θ) is the
smallest amount of contamination to a specific alternative distribution Fθ necessary
to drive the test to a particular value of the test statistic under the null distribution.
An interesting consequence of these definitions is that the directional derivatives of
εL(θ) at a boundary point between the null and the alternative (here θ0) indicates the
local robustness stability of the test level. In particular, if this derivative is zero, then
the test does not have a stable level in a neighborhood of the null model (2.38). By
analogy with the breakdown point of an estimator, one can also compute the level
breakdown point εL as the supremum of εL(θ) over all values of the parameter of
interest θ . The power breakdown point εP is then supθ ε

P(θ). These two quantities
are less precise than their respective breakdown functions but can constitute useful
summary measures.

As an illustration, consider the one-sample t-test H0 : θ = 0 in a normal model
N (θ, σ 2). He et al. (1990) showed that εL(θ) = (θ/σ)2/(1 + θ/σ)2) and εP(θ) = 0.
The slope of εL(θ) at θ = 0 is zero and the test does not have robustness of validity.
This confirms theoretically the empirical findings of Subrahmanian et al. (1975) and
Beran (1981) reported at the beginning of Section 2.4. It is worth noting that the
level breakdown point εL tends to one (εL(θ) → 1) when θ goes to infinity. This
can partially explain why many researchers still believe that the level of the t-test
is robust. However, εP(θ) = 0 which reflects its lack of robustness of efficiency. On
the other hand, εL(θ) for the Wilcoxon (or sign) test has a positive slope at zero (see
Figure 1 in He et al. (1990)), which further justifies the level stability reported at the
beginning of Section 2.4.

The concepts presented in this section can be extended to multivariate hypothesis
in a general parametric model but it is often difficult to derive the exact values of
εP(θ) and εL(θ) in that setting. In the next section, we therefore return only to the
local robustness of tests, extending the ideas of Section 2.4.2 to the more general
case.

2.5 General Approaches for Robust Testing

As stated before, many hypotheses of interest can be formulated as restrictions to
a parameter of interest θ from the model Fθ , i.e. H0 : θ = θ0 where θ0(2) = 0,
dim θ0(2) = k and θ0(1) unspecified, against the alternative H1 : θ0(2) �= 0 and θ0(1)
unspecified. For such a general hypothesis, three tests, namely the Wald, score and
likelihood ratio tests (LRTs) are available from the classical inference theory; see,
for instance, Rao (1973), Cox and Hinkley (1992) or Welsh (1996). We start with
a brief review and a geometrical interpretation in Sections 2.5.1 and 2.5.2. It is
intuitively clear that the three tests lack stability as they are based on the MLE,
which is itself non-robust. In Section 2.5.3, an extension of these three classes

13We omit here the exact definitions based on functionals and the reader is referred to He et al. (1990)
and He (1991) for details.
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based on M-estimators is presented, among which more stable alternative test
statistics can be found. A more formal treatment of robustness issues is given in
Section 2.5.5. Therefore, this section gives a general framework for robust testing;
specific inferential procedures for each particular model (i.e. linear regression, GLM,
mixed models, etc.) are discussed in later chapters.

2.5.1 Wald Test, Score Test and LRT

Consider again a sample x1, x2, . . . , xn of n i.i.d. observations from a parametric
model Fθ , with corresponding density f (x; θ). To compute the different tests
statistics, one needs to estimate θ . There are actually two estimates, θ̂[MLE] and
θ̇[MLE], which are the MLE at the full model Fθ and the MLE at the reduced
model Fθ0 , respectively. Weak regularity conditions are usually needed for these
two estimators to exist, be consistent and asymptotically normally distributed with
asymptotic variance V = V (θ̂[MLE], Fθ ) given in (2.30).

The Wald test statistic originally proposed by Wald (1943) is a quadratic form of
the MLE second component θ̂[MLE](2) at the full model, i.e.

W 2 = nθ̂T[MLE](2)V
−1
(22)θ̂[MLE](2). (2.43)

In practice, the inverse of the block (22) of V = V (θ̂[MLE], Fθ ) = I (θ)−1, where
I (θ) is the Fisher information matrix, needs to be estimated to compute (2.43). This
can be done by taking the sample analog for I computed at the MLE in the full
model, i.e.

Î = Î (θ̂[MLE]) = 1

n

∑
s(xi; θ̂[MLE])s(xi; θ̂[MLE])T .

A score (or Rao) test is based on the test statistic

R2 = nZT
n C

−1Zn, (2.44)

where

Zn = 1

n

n∑
i=1

s(xi; θ̇[MLE])(2)

and θ̇[MLE] is the MLE at the reduced model (i.e. under H0), and is defined as the
solution in θ(1) of

n∑
i=1

s(xi; θ)(1) = 0, (2.45)

with θ(2) = 0. The matrixC is C = I22.1V(22)I
T
22.1 with I22.1 = I(22) − I(21)I

−1
(11)I(12),

and is estimated by its sample analog computed at the MLE under the null
hypothesis, i.e. θ̇[MLE]. It is worth noting that, from (2.44), R2 is simply a quadratic
form in Zn, standardized by its asymptotic variance. The score test is also known as
the Lagrange multiplier test (see e.g. Welsh (1996, p. 223) for details).
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Let l(θ; x) = log f (x; θ) be the log-likelihood function, the LRT statistic is
given by

LRT = 2
n∑

i=1

[l(θ̂[MLE]; xi ) − l(θ̇[MLE]; xi )], (2.46)

i.e. twice the logarithm of the likelihood ratio, hence the name LRT. As a simple
illustration, we consider the example of linear regression14 y = xT θ + ε, where
the error term ε follows a normal distribution N (0, σ 2) (with for simplicity
σ = 1). Elementary algebra shows that, up to a constant, the log-likelihood is
l(θ̂[MLE]; x, y) = −r2/2 where r = y − xT θ̂[MLE]. The LRT statistic is then the
difference in the sums of squared residuals computed at the full and reduced models,
respectively.

Under the null hypothesis, the three tests are asymptotically distributed as a
χ2 distribution with k = dim(θ(2)) degrees of freedom. Large values of the test
statistics on that scale indicate evidence for the rejection of the null hypothesis.
This result, however, is based on the (strong) assumption that the data have been
generated exactly from Fθ0 , which might not be exactly true. As all three tests are
asymptotically equivalent, any of them could, in principle, be used for testing a
multivariate hypothesis of the type H0 : θ(2) = 0 for any parametric model.

2.5.2 Geometrical Interpretation

In order to better understand the difference between the LRT, score and Wald
tests, we present here their geometrical interpretation. Without loss of generality,
we assume that θ = (θ1, θ2)

T is a two-dimensional vector and H0 : θ2 = 0 is
the null hypothesis to be tested. A plot of the log-likelihood l(θ; x1, . . . , xn) =∑

log f (xi; θ) versus θ is displayed in Figure 2.5.15 The LRT statistic is equal to
twice the vertical distance AB which measures the difference between the overall
maximum and the maximum under the null. The Wald test is based on the horizontal
distance OC properly standardized. In the one-dimensional case, the Wald test
statistic is the square of the z-statistic where z = θ̂[MLE]2/SE(θ̂[MLE]2), i.e. the MLE
of θ2 (estimated together with θ1) divided by its standard error. This means that the
estimate has to be ‘measured’ in the metric given by its asymptotic variance. The
score test is based on the slope of the log-likelihood at E or, more precisely, on
some norm of the total score computed at θ̇[MLE], the MLE at the reduced model.
Once again the total score is standardized. Each of these tests rejects H0 when the
corresponding distance or norm is sufficiently large.

2.5.3 General �-type Classes of Tests

The classical tests often have poor robustness properties as they are based on the
MLE, which is usually non-robust. A natural way to overcome this deficiency is to

14This example is purely illustrative as the classical LRT test is never used in that setting: the exact
F -test is available and is routinely used instead.

15Reproduced up to a notational difference, with permission, from Heritier and Victoria-Feser (1997).
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Figure 2.5 Geometry of the three classical tests.

rely upon M-estimators presented in Section 2.3.1 for the construction of the tests
statistics. Intuitively, one can expect their good robustness properties to be carried
over to the tests. Specifically, the log-likelihood function log f (x; θ) is replaced by
a suitable ρ(x; θ) function, the score function by �(x; θ) which may be equal to
the derivative of ρ with respect to θ and use M-estimators θ̂[M] based on ρ (or �)
instead of the MLE. This generates three classes of test statistics, extending the three
classical tests.

The Wald-type test statistic is a quadratic form of the second component θ̂[M](2)
of an M-estimator of θ (based on a function �)

W 2
� = nθ̂T[M](2)V (θ̂[M], Fθ )

−1
(22)θ̂[M](2) (2.47)

with V (θ̂[M], Fθ )
−1
(22) the inverse of the block (22) of the asymptotic variance of the

M-estimator (2.27). As before, V (θ̂[M], Fθ )(22) needs to be estimated to obtain a
numerical value for W 2

� ; this is typically achieved by computing its sample analog
with θ replaced by the robust estimate θ̂[M]. If � = s, the score function, (2.47) is
the classical Wald test (2.43). In the regression model, (2.47) is also the robust Wald
test discussed by Markatou et al. (1991, p. 205) and Silvapulle (1992).

A score- (or Rao-) type test is based on the test statistic

R2
� = nZT

n C
−1Zn, (2.48)
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where Zn = (1/n)
∑n

i=1�(xi; θ̇[M])(2), θ̇[M] is the M-estimator in the reduced
model, i.e. the solution in θ(1) of

n∑
i=1

�(xi; θ)(1) = 0, (2.49)

with θ(2) = 0. The matrix C is C = M22.1V(22)M
T
22.1 and M22.1 = M(22) − M(21)

M−1
(11)M(12) is derived from M = M(�,Fθ0) given by (2.29) and V(22) =

V (θ̂[M], Fθ )(22). As before for the Wald-type test, C has to be estimated and its
sample analog computed at θ̇[M] can be used. The test statistic is a quadratic form
in Zn standardized by its asymptotic variance. When � = s, (2.48) is the classical
score test (2.44). In the regression model, (2.48) is the robust score test proposed by
Markatou and Hettmansperger (1990).

The LRT-type test (or ρ-test) statistic is given by

LRTρ = 2
n∑

i=1

[ρ(xi; θ̂[M]) − ρ(xi; θ̇[M])], (2.50)

where θ̂[M] and θ̇[M] are the M-estimators in the full and reduced models, respec-
tively, and ρ is such that �(x; θ) = ∂ρ(x; θ)/∂θ . When ρ is the log-likelihood
function, (2.50) is the classical LRT statistic (2.46).

The choice of the ρ-function is model-specific and should be guided by robustness
considerations. For a robust test, ρ should be such that �(x; θ), the derivative of
ρ(x; θ) with respect to θ , is bounded (see Section 2.3.1). Since it is often easier to
define a robust estimator through its � function rather than through its ρ function,
then the ρ-test does not necessarily exist as � may not be the derivative of a ρ-
function. On the other hand, the computation of the Wald- (respectively score-)type
test statistic requires only the estimation of θ at the full (respectively reduced) model,
which may be advantageous in complex models. In other words, no specification of
a ρ-function is needed to derive W 2

� and R2
� . This makes these two classes fairly

general in their definition and applicability. However, LRTρ is potentially more
powerful in small samples as it captures more information from the data through
the ρ-function (corresponding to the log-likelihood function in the classical LRT).
Fortunately, for the models presented in this book, solutions exist for defining robust
LRTρ test statistics.

2.5.4 Asymptotic Distributions

Heritier (1993) and Heritier and Ronchetti (1994) show that, under weak regularity
conditions, W 2

� and R2
� have the same asymptotic distribution as their classical

counterparts, namely a (central) χ2
k under the null hypothesis. If, in addition, ρ(x; θ)

is defined in such a way that M = M(�;Fθ) in (2.29) is symmetric positive definite,
the LRT-type statistic LRTρ has asymptotically the same null distribution as a
weighted sum of k independent χ2

1 random variables. The weights are the positive
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eigenvalues of the matrix
Q[M−1 − (M∗)+],

where Q is given by (2.28), (M∗)+ is a q × q matrix derived from M where blocks
(12), (21), (22) are zero, and block (11) is M−1

(11). The p-values are computed
using standard algorithms (see e.g. Wood, 1989; Farebrother, 1990). These results
generalize earlier findings obtained for the linear regression model by Ronchetti
(1982b), Markatou and Hettmansperger (1990) and Silvapulle (1992). It is worth
stressing that, unlike in the classical case, the three tests are not asymptotically
equivalent.

2.5.5 Robustness Properties

Local robustness properties of the classes of tests introduced in Section 2.5.3 can be
studied by extending the approach based on the IF presented in Section 2.4.2 in the
one-dimensional case. We follow here the developments of Heritier and Ronchetti
(1994) and Cantoni and Ronchetti (2001b). As with the one-dimensional case, we
start with robustness of validity. Again we consider a ‘shrinking’ neighborhood of
the model under the null hypothesis, defined in the exact same manner as (2.38). The
only difference is that now θ0 is a multidimensional parameter. Data generated from
FL
ε,n = (1 − ε/

√
n)Fθ0 + ε/

√
nG will occasionally contain observations coming

from the contaminating distribution G. For instance, if the true model under the null
is a Poisson distribution with parameter θ0 possibly depending on some covariates,
G could be another Poisson distribution unrelated to the covariates, a ‘nastier’
contamination such as a point-mass distribution as in (1.2) or any model for count
data. As explained earlier, the comparison of the actual asymptotic level of the test
α(F L

ε,n) and the nominal level α0 is of primary interest.
Heritier and Ronchetti (1994) studied the Wald- and score-type tests and derive

the following level expansion, valid for a large sample size n and small amount of
contamination ε:

α(FL
ε,n) � α0 + ε2 · µ

∥∥∥∥∫ IF(x;U,Fθ0) dG(x)

∥∥∥∥2

, (2.51)

where µ = −(∂/∂δ)Hk(η1−α0; δ)|δ=0, Hk(.; δ) is the cumulative distribution func-
tion of a χ2

k (δ) distribution, η1−α0 the 1 − α0 quantile of the central χ2
k distribution,

and U is the functional defining the Wald- or score-type test statistics.16 It is worth
stressing an important difference with the level approximation (2.39) for the one-
dimensional case, i.e. the difference α(FL

ε,n) − α0 derived from (2.51) now has a
leading term proportional to a quadratic term in ε. The proper quantity to bound to
have a stable level in a neighborhood around the null is the IF of the functionalU(F).

16Both test statistics W2
� and R2

� can be written as a quadratic form nU(F (n))UT (F (n)) where F(n)

is the empirical distribution. The functional U(F) is then UW (F) = V
−1/2
(22) θ̂[M](2)(F ) for the Wald-

type test, and UR(F) = C−1/2Z(F) for the score-type test. In this definition, θ̂[M](F ) and Z(F) are,

respectively, the functionals associated to the M-estimator and Zn, and A−1/2 is the Choleski root of
A−1, the inverse of a symmetric positive-definite matrix A.
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If, in particular, we choose G = �z a point mass contamination, (2.51) reduces to

α(FL
ε,n) � α0 + ε2 · µ‖IF(z; θ̂[M](2), Fθ0)‖2

s ,

where

‖IF(z; θ̂[M](2), Fθ0)‖s = [IF(z; θ̂[M](2), Fθ0)
T V−1

(22)IF(z; θ̂[M](2), Fθ0)]1/2

is the self-standardized IF of the second component θ̂[M](2) (see Hampel et al., 1986,
p. 228) and V(22) = V (θ̂[M], Fθ )(22). Therefore, to obtain robust Wald- and score-
type tests we have to bound the IF of the underlying M-estimator.17 As mentioned
earlier, (2.47) and (2.48) cannot be computed without estimating the asymptotic
variance V(22) and the matrix C. This also has to be done in a robust fashion.

The case of the LRT-type test is more complicated but a similar level approxima-
tion to (2.51) can be derived (see Cantoni and Ronchetti, 2001b)18 yielding a similar
conclusion.

Next we can consider the problem of robustness of efficiency. Again, the idea is
to define a neighborhood of the contiguous alternatives H1 : θ(2) = θ0(2) + �/

√
n,

where � is any k-dimensional vector, and compare the actual power β(F P
ε,n) to

the nominal power β0. Similar derivations to that performed for the level can be
carried out; see Section 4 of Ronchetti and Trojani (2001). They show that the same
condition, i.e. a bounded�-function, is required to ensure that the power of the three
tests remains stable in the neighborhood. Robustness of efficiency is then achieved
without additional requirements. It is worth noting that, although theoretical results
have only been obtained in shrinking neighborhoods, simulations (under different
models and settings) show that stability of the robust tests is often satisfied over full
neighborhoods of the form (1.1).

Finally, as for the one-dimensional case, global robustness of the tests can be
investigated as a complement. In general, if both the M-estimator and the covariance
matrix estimate of V (and also C) have a good global robustness property (i.e. a
high breakdown point), the Wald- (respectively score-)type test also have global
robustness properties; see Markatou and He (1994), Copt and Victoria-Feser (2006)
and Copt and Heritier (2007). Theoretical results are not available in general with the
exception of Markatou and He (1994) for the linear regression. They clearly show
that the robust tests cannot do better than the estimators in terms of breakdown point;
see also He et al. (1990).

17More exactly, robustness of validity is guaranteed if the second part of the IF of the underlying M-
estimator, i.e. the component related to the parameter to be tested θ(2), is bounded. However, as the first
part of the parameter θ(1) is generally unknown, and hence needs to be estimated simultaneously with
θ(2), it is highly recommended to bound the whole �(x; θ) function.

18They use the fact that LRTρ can be approximated asymptotically by a quadratic form under the
additional condition that M = M(�; θ) of formula (2.29) is symmetric positive definite.
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Linear Regression

3.1 Introduction

The linear regression model is probably the most widely used model in many
sciences such as the biological, medical, economics, behavioral and social sciences.
It is the simplest model used to describe possible relationships between variables,
more precisely, between a response variable and a set of so-called explanatory
variables that supposedly explain it. The relationship between the variables is
assumed to be linear, and this is why the linear regression model has existed for
such a long time. Indeed the term regression in association with a linear relationship
between two variables was used by Sir Francis Galton in his famous study of the
average heights of sons of very tall and very short parents, called Regression Toward
Mediocrity in Hereditary Stature and published in 1885. Although the linearity of
the relationship between the response and explanatory variables can be restrictive
and hence models such as GLMs (see Chapter 5) have since been developed, many
studies still use the linear regression model as a core model.

For the linear regression model, classical estimation includes the LS and MLE
methods. The MLE and the LS are optimal in the sense that they are the most
efficient (and consistent) estimators (see also Section 2.3.2) but only under the
relatively strong assumption that the distribution of the error term (see Section 3.2.1)
is exactly normal. For the LS estimator, this optimality is also achieved under the
hypothesis of i.i.d. residual error (with common mean of zero and common variance)
but only within the class of linear estimators (in the observations).1 The i.i.d. case
encompasses a wide variety of distributions and the LS can be very inefficient outside
the normality case, where better estimators (more efficient) exist but are not linear.

1Although the LS is also known as the BLUE, i.e. best linear unbiased estimator, one often forgets
that ‘best’ is only for linear estimators. For a remainder of this feature, see e.g. Ronchetti (2006). Huber
(1973) also discusses the limitations of the LS.

Robust Methods in Biostatistics S. Heritier, E. Cantoni, S. Copt and M.-P. Victoria-Feser
c© 2009 John Wiley & Sons, Ltd
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For example, suppose that the data are i.i.d. according to a Student distribution with
three degrees of freedom, then a better estimator is given by the MLE under the
Student distribution (with three degrees of freedom) which is a nonlinear estimator.
The efficiency loss of the LS with respect to the MLE can be as large as 50%. This is
of course just a particular example in which the non-normal data-generating process
is known, but in general it is unknown and can best be said to be approximatively
normal. As shown in Section 3.2.2, the effect on the classical LS or MLE estimators
of even small model deviations from normality can be disastrous, leading to biased
estimators and hence wrong interpretations of the postulated regression models. The
biases induced by model deviations also have consequences for the calculation of
the residuals (i.e. predicted response minus observed response), and hence on the
analysis of the fit of the model.

Testing hypotheses is also an important aspect of the analysis of regression
models. In particular, testing the significance of the regression parameters is routinely
applied and is used for the interpretation of the model. Classically, a t-statistic is
used and compared with a Student distribution for the computation of the p-values.
When an explanatory variable is categorical with more than two categories, say
K , it can be introduced into the model by means of K − 1 dummy variables such
as ANOVA models (see also Section 3.2.1). In such situations, an hypothesis of
interest is the one of significance of the variable as a whole, i.e. the simultaneous
significance of the regression parameters for all dummy variables corresponding
to the categorical variable. The hypotheses of interest to be tested in this case is
a multivariate hypothesis for which different testing procedures exist, such as the
LRT-, Wald- or F-tests (see also Section 2.5.3). As is the case with estimation, testing
procedures can be seriously affected by small model deviations, in that the actual
level of the classical tests can be very far from the usual 5% level for which the tests
are built (see Section 2.4). As a result, and as illustrated through the examples of this
chapter, the conclusions drawn from classical tests of significance can be different
when the model assumptions are not met and when a robust method is used in place
of a classical method.

Finally, when the postulated regression model includes several explanatory
variables, it is often observed in practice that at least some of them are more or
less strongly correlated. They then explain the same part of the response variable,
which makes their inclusion in the model altogether useless, or worse lead to the
conclusion that these variables are not significant. Variable selection procedures
are then necessary to objectively choose a suitable subset of regression variables.
Classical procedures include those that are based on the likelihood function penalized
for the number of parameters, e.g. the Akaike information criterion (AIC) (Akaike,
1973), and others based on prediction error criteria such as Mallows’s Cp (Mallows,
1973). Both criteria are constructed on the normality of the errors hypothesis,
which means that when they are computed from a sample in which not all of the
observations have been generated by the postulated model, these criteria can lead
to the choice of an inappropriate model. Model selection in regression is treated in
Section 3.4.
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This chapter is organized as follows. In Section 3.2 we present formally the
regression model, study the robustness properties of the classical MLE and LS
estimators and propose alternative robust estimators. In particular, we consider a
Huber-type estimator as well as a high breakdown point estimator. Robust testing
is developed in Section 3.3, while robust residual data analysis and model selection
are treated in Section 3.4. All of the robust (and classical) methods are illustrated
through the analysis of three different datasets.

3.2 Estimating the Regression Parameters

3.2.1 The Regression Model

One way to define the regression model is to postulate that the response variable
y follows, conditionally on a set of regressors x, a normal distribution of mean
µ = xT β and variance σ 2. The (q + 1)-dimensional vector β = (β0, β1, . . . , βq)

contains the regression parameters or slopes with β0 the intercept, and consequently
x = (1, x1, . . . , xq)

T . For a sample of n observations, this amounts to postulating
that yi |xi ∼ N (µi, σ

2) with µi = xT
i β and xT

i = (1, xi1, . . . , xiq). We will further
assume that the variance is constant across observations and do not consider here
the possible cases of heteroscedastic models (for possible robust estimators in these
cases, see e.g. Bianco et al. (2000), Carroll and Ruppert (1982) and Giltinan et al.
(1986)). The regression model can also alternatively be defined by means of

yi = xT
i β + εi , εi ∼ N (0, σ 2) for all i = 1, . . . , n. (3.1)

The multivariate form is written as

y = Xβ + ε, ε ∼ N (0, σ 2In),

where X = [xT
i ]i=1,...,n, also called the design matrix, and In is the identity matrix

of dimension n.
A particular regression model is one for which x is a set of dummy variables, i.e.

taking the values of zero or one. This model can be used when a response variable is
compared across categories of subjects. For example, one could study a physiological
measure taken across K categories of patients. The response is the physiological
measure and the explanatory variables are x1 = 1 if the response corresponds to a
patient in category one and zero otherwise, x2 = 1 if the response corresponds to
a patient in category two and zero otherwise, etc., and xK−1 = 1 if the response
corresponds to a patient in category K − 1 and zero otherwise. One could also cross
two sets of categories, i.e. factors, such as the category of patients and their gender.
This particular type of regression model actually corresponds to what is better known
as the ANOVA models of Fisher. The values given to the dummy variables can
in principle be changed, and this defines so-called contrasts. Hence, with a bit of
reformulation, the robust techniques presented in this chapter can also be used for
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ANOVA models2 (for independent groups). ANOVA for repeated measures is treated
in the mixed linear models of Chapter 4.

3.2.2 Robustness Properties of the LS and MLE Estimators

For a sample of n observations (yi, xT
i ), i = 1, . . . , n, and for the linear regression

model yi |xi ∼ N (xT
i β, σ 2), the score function defining the MLE is given by

s(yi , xi; β, σ 2) = ∂

∂(βT , σ 2)T
log f (yi, xi; β, σ 2)

=


1

σ 2 (yi − xT
i β)xi

− 1

2σ 2
+ 1

2σ 4
(yi − xT

i β)2

 , (3.2)

where f in (3.2) is the density of the normal distribution with mean xT
i β and variance

σ 2. The LS estimator of β is equal to the MLE of β and the LS estimator of σ 2 is
equal to the MLE of σ 2 up to a multiplicative constant of n/(n − 1). Setting ri =
(yi − xT

i β)/σ as the standardized residuals, and simplifying the score function (i.e.
multiplying it by σ ), the LS estimator of β can be seen as an M-estimator (2.12) with

�[LS](ri, xi ) = rixi . (3.3)

Since the IF of an M-estimator is proportional to its �-function, we can easily see
that the LS and indeed the MLE are not robust as their IF is unbounded; in essence,
arbitrary values in either the responses yi (through ri) or in the design matrix X can
bias the estimators. By inspection of (3.2), one can see that this is also true for the
MLE (or the LS) of the residual variance σ 2.

It could be tempting to remove observations to avoid possible bias with classical
estimators. The criteria could be based on graphical analysis, residual analysis or
more sophisticated diagnostic tools such as the Cook and Weisberg (1982) distance.
However, as thoroughly argued in Section 1.3, this strategy, although apparently
simple, is not only impractical, but also can be very misleading. It should, however,
be stressed that more recently, procedures based on forward searches have been
proposed for outlier detection in regression with no or limited masking effect
(see Atkinson and Riani, 2000). Although this type of method is quite appealing,
there remains an important problem that has not yet been solved: what about
inference? Indeed, classical inference (e.g. t-test) is not valid when the data have
been manipulated in some way. If observations have been removed from the sample
on the basis of objective criteria, then inference should be conditional on these
criteria, which is not the case with classical inference. The latter could be corrected
(in a rather complicated fashion) using the results of Welsh and Ronchetti (2002). On
the other hand, a robust approach based on robust estimators, also provides robust

2For practical examples of specific robust testing methods in the ANOVA setting, see e.g. Wilcox
(1997).
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testing procedures that take into account the fact that some observations have either
been downweighted or, more drastically, removed from the sample (i.e. weighted
with weight equal to zero).

Hence, we propose here a ‘global’ approach for estimation and inference based on
robust bounded influence or bounded �-function estimators and the corresponding
inferential tools. Before presenting such estimators and testing procedures, we give
an example to illustrate both the effect of model deviation on classical estimators and
the properties of robust estimators.

3.2.3 Glomerular Filtration Rate (GFR) Data Example

The dataset considered here contains measurements or estimation of the glomerular
filtration rate (gfr) and serum creatinine (cr). The gfr is the volume of fluid
filtered from the renal glomerular capillaries into the Bowman’s capsule per unit of
time (typically in milliliters per minute) and clinically it is often used to determine
renal function. Its estimation, when not measured, is of clinical importance and
several techniques are used for that purpose. One of them is based on cr, an
endogenous molecule, synthesized in the body, which is freely filtered by the
glomerulus (but also secreted by the renal tubules in very small amounts). cr is
therefore supposed to be a good predictor of gfr and, based on empirical evidence,
their relationship is nonlinear. Several models have been proposed in the literature
to explain the logarithm of gfr as a function of cr and possibly other explanatory
variables such as age and sex; some of them are (see, e.g. Rule et al., 2004)

log(gfr) = β0 + β1 log(cr) + β2 log(age) + β3sex+ ε (3.4)

and
log(gfr) = β0 + β11cr

−1 + β12cr
−2 + β2age+ β3sex+ ε. (3.5)

The data we have at hand is the gfr, cr and age measured on a random sample
of 30 men out of the 180 patients included in the Brochner-Mortensen et al. (1977)
study of renal function, and analyzed by Ingelfinger et al. (1987, Table 9b-2, p. 229).
As all subjects are males, we consider models (3.4) and (3.5) without the variable
sex. In this sample, the median age of the participants is 50, their median serum
creatinine is 1.395 and their median glomerular filtration rate 68 milliliters per
minute.

Suppose for simplicity that as a first step we are interested in the linear
relationship between log(gfr) and crinv = cr−1 (i.e. model (3.5) without the
quadratic term and the variables age and sex). The data are plotted in Figure 3.1
together with three regression lines, one estimated by means of the LS estimator,
another with the LS estimator without two observations and the other by means of
a robust estimator (see Section 3.2.4). Note that the line of the LS estimator without
2 observations is nearly undistinguishable from that of the robust one. One can spot
two observations at the far right of the graph which are actually extremes with respect
to the linear regression model. A quadratic term could be added to the model (as in
(3.5)) to fit these two observations, but we leave this option for later and use this
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Figure 3.1 Estimated regression lines for the model log(gfr) = β0 + β1cr−1 + ε.

example to illustrate the difference between a classical and a robust analysis. The
two observations 2 and 16 have an important effect on the LS estimator: the fit is
not satisfactory. The robust estimator on the other hand is able to capture the linear
relationship between the two variables as illustrated by the majority of the data. We
also estimated the regression parameter by means of the LS on the sample without
the two extreme observations (2 and 16) and plotted the corresponding line. Without
these two observations, the LS estimator provides an estimate similar to the robust
estimator. The estimated regression parameter forcr−1 is 1.76 with the LS estimator,
2.17 with the robust estimator and 2.36 with the LS on the reduced sample. The scale
estimates are 0.57 with the LS estimator, 0.53 with the robust estimator and 0.39 with
the LS on the reduced sample. The estimated impact of cr−1 on log(gfr) is hence
not the same, although it is very similar between the robust estimator and the LS
estimator on the reduced sample. Note, however, that the estimated standard errors
of the robust estimator and of the LS on the reduced sample differ noticeably.

3.2.4 Robust Estimators

3.2.4.1 Huber’s Estimator

Robust estimators for the regression coefficients have been proposed regularly in
the statistical literature since the proposal of Huber (1973). He considered a WMLE
(see (2.15)) estimator with Huber’s weights (2.16) applied to (3.3). The resulting
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estimator is hence an M-estimator with �-function

�[Hub](ri , xi; β, σ 2, c) = ψ[Hub](ri; β, σ 2, c)xi = w[Hub](ri; β, σ 2, c)rixi , (3.6)

and corresponding ρ-function

ρ[Hub](ri; β, σ 2, c) =
{

1
2 r

2
i for |ri | ≤ c,

c|ri | − 1
2c

2 for |ri | > c,

for the regression parameter β. Since the corresponding ρ function is convex
the solution in β of

∑n
i=1 �[Hub](ri , xi; β, σ 2, c) = 0 is unique and is obtained

using iteratively reweighted least squares (IRWLS). At iteration t , one obtains β̂ t

which is used to compute the residuals rti and weights w[Hub](rti ; β, σ 2, c) and then∑n
i=1 �[Hub](ri, xi; β, σ 2, c) = 0 is solved for β (in ri) to obtain an updated estimate

β̂ t+1.
The scale parameter σ (in the ri) also needs to be estimated and one can take,

for example, Huber’s Proposal 2 (Huber, 1981, p. 137), also a weighted estimator,
defined through

1

n

n∑
i=1

w2[Hub](ri; β, σ 2, c)r2
i −

∫
w2[Hub](r; β, σ 2, c)r2ϕ(r) dr = 0, (3.7)

with ϕ the density of the standard normal distribution and∫
r2w2[Hub](r; β, σ 2, c)ϕ(r) dr = E�[r2w2[Hub](r; β, σ 2, c)]

= 2�(c) − 1 − 2cϕ(c)+ 2c2(1 − �(c)), (3.8)

that ensures the consistency of the resulting estimator at the standardized normal
model � (the hypothetical model for the standardized residuals). If the bounding
constant c of w[Hub] in (3.6) and (3.7) is large enough, then all weights are equal to
or tend to one and the integral (3.8) is equal to one and the estimators of β and σ 2 are
the MLE. This constant c hence controls the degree of robustness of the procedure. It
can be chosen on efficiency arguments, i.e. so that the ratio between the traces of the
covariance matrices of the LS (or MLE) and the robust estimators achieves a given
value, typically 90–95% (see (2.31) and also (3.20)). The simultaneous estimation of
β and σ 2 can be obtained by an IRWLS in which both estimators are updated at each
iteration (given the weights w[Hub](ri; β, σ 2, c)).

3.2.4.2 Robust Weighted Estimators in the Design Space

Huber’s regression coefficient estimator cannot protect against bad leverage points,
or in other terms, it is not robust in the design space. Indeed, the weights in (3.6)
control for extreme residuals, but not for extreme values in the design matrix.
This deficiency has led to several other proposals for robust regression coefficients
estimators in both the response and the design matrix. These estimators can be



52 LINEAR REGRESSION

written as M-estimators (also called generalized M-estimators or GM-estimators)
with

�(ri, xi; β, σ 2, c) = v1(xi )�[Hub](ri · v2(xi ), xi; c). (3.9)

There exist, in fact, many different robust estimators for the regression coefficients.
In the class given in (3.9) many variations can be imagined for v1 and v2. One can cite
e.g. Mallows’s class (Mallows, 1975) and Hampel–Krasker–Welsch class (Krasker
and Welsch, 1982). Others can be found in Hampel et al. (1986, pp. 315–316).

The Mallows’s class has become more popular, especially because of its simplic-
ity. It is given by

�(ri, xi; β, σ 2, c) = w(xi )�[Hub](ri , xi; β, σ 2, c). (3.10)

One has to choose the weight function 0 ≤ w(xi ) ≤ 1 on the design space. This is
not an obvious task since the choice will depend on the type of explanatory variables.
Indeed, w(xi ) should downweight points in the design space that are in some sense
‘large’. This ‘largeness’ can be measured by means of distances of each xi with
respect to a center and possibly a scatter matrix. If one has only continuous covari-

ates, one can use a robust Mahalanobis distance di =
√
(xi(2) − µ)T �−1(xi(2) − µ)

based on a robust estimator for the center µ and scatter � (see Section 2.3.3). Note
that the distances are taken on xi(2) = (xi1, . . . , xiq), i.e. without the intercept part.
The weights can be defined e.g. as

w(xi ) =
{

1 if d2
i ≤ (χ2

q )
−1(0.975),

0 otherwise.

In other words, observations in the design space that have a squared Mahalanobis
distance that is larger than the 0.975 quantile of the χ2

q are given a weight of zero.
Note that q is the number of explanatory variables, and d2

i ∼ χ2
q if the xi(2) are

multivariate normal.
When the (approximate) normality of the xi(2) cannot be assumed, for example

when some or all explanatory variables are categorical, one can rely on the so-called
‘hat matrix’

H = X(XT X)−1XT (3.11)

and its diagonal elements or leverages hii = xT
i (X

T X)−1xi ∈ (0; 1). The latter have
actually been extensively used in regression diagnostics; for general references, see
e.g. Belsley et al. (1980), Cook and Weisberg (1982), Atkinson (1985), Chatterjee
and Hadi (1988). A simple weighting scheme based on hii is given by

w(xi ) = √1 − hii. (3.12)

Indeed, since for the LS estimator ŷ = Hy and r = (I − H )Y = (I − H )ε, then
in particular ri = (1 − hii)εi −∑j �=i hij εj . This means that when hii is large (near
one), an unexpected error in the response (i.e. large εi ) might not be reflected in
the residuals ri . Therefore, the weights (3.12) compensate for the extreme responses
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not captured by the residuals, i.e. the extreme observations in the design matrix (see
also Staudte and Sheather, 1990, p. 209). These extreme observations are also called
leverage points.

For the scale parameter σ 2, one can choose Huber’s Proposal 2 in (3.7) or a
modified version of it that includes weights w(xi ) as in (3.10). As for Huber’s
estimator, a GM-estimator can be found using an IRWLS in which at each iteration
the weights w[Hub](ri; β, σ 2, c) and w(xi ) are updated.

Although GM-estimators are relatively simple to compute and also rather intu-
itive, they are limited because of the arbitrary choice for the weights w(xi ). They
are, however, adapted for GLM and marginal longitudinal data models in Chapters 5
and 6, for which computer intensive estimators (see Section 3.2.4.3) are not yet
available.

3.2.4.3 High Breakdown Estimators

A high breakdown point is not achieved when Huber’s weights are used (see
Maronna et al., 1979) which is especially a concern when a large number of
predictors are included in the model. One way to overcome this is to use instead
of ψ[Hub] a redescending ψ-function (see Section 2.3), i.e. a ψ-function that can
become nil when the residuals are too large. One can use, for example, Tukey’s
biweight function (2.22) which, for the regression model, corresponds to the
following �-function

�[bi](ri, xi; β, σ 2, c) = ψ[bi](ri; c)xi = w[bi](ri; c)rixi (3.13)

with weights

w[bi](ri; c) =


((

ri

c

)2

− 1

)2

if |ri | ≤ c,

0 if |ri | > c,

(3.14)

hence, defining a WMLE. When ri tends to the value of c, the tuning constant, the
�[bi]-function tends to the value of zero. Note that the ρ-function corresponding to
the weights (3.14), i.e. such that w(r; β, σ 2, c) = (1/r)∂ρ(r; β, σ 2, c)/∂r is

ρ[bi](ri; c) =


(
c2

6

)(
3

(
ri

c

)2

− 3

(
ri

c

)4

+
(
ri

c

)6)
if |ri | ≤ c,

1 if |ri | > c.

(3.15)

A problem arises which concerns the computation of such estimators. Indeed,
even if one assumes that the scale parameter σ 2 is known,

∑n
i=1�[bi](ri , xi; β, σ 2, c)

= 0 admits more than one solution for β. In an iterative procedure, the starting
point is hence crucial. By choosing a high breakdown point estimator (even with
low efficiency) as the starting point one can define a high breakdown point estimator
that achieves a chosen level of efficiency. To be more specific, one first computes
a starting consistent estimator with high breakdown point β̂0 (even with low
efficiency) together with a robust residual scale estimator σ̂ 2 and uses β̂0 as the
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starting point in an iterative procedure (IRWLS) to find the solution β̂[bi] in β of∑n
i=1 �[bi](ri , xi; β, σ 2, c) = 0 with σ 2 replaced by σ̂ 2. The resulting estimator for

β is called the MM-estimator by Yohai (1987); it solves an M-type equation with
an M-type estimator as starting point. The estimator β̂[bi] has the same breakdown
point than β̂0 but an efficiency that can be chosen with a suitable value for c in (3.13)
(see also Yohai et al., 1991). It should also be noted that because of the redescending
nature of the ψ-function, there is no need for a weighting scheme on the design
space as is necessary with GM-estimators. For a discussion about the starting point
and computational aspects, see Appendix A.

Instead of the biweight function defining β̂[bi], one can alternatively choose
other ψ-functions (or corresponding ρ-functions; see e.g. Hampel et al. (1986,
Section 2.6)). Yohai and Zamar (1998) proposed what they called the ‘optimal’ ρ-
function which has an advantage (over the other functions) of minimizing the GES
(see (2.4)) for the same breakdown point and efficiency. In practice, however, the
differences are marginal and hence we propose to use the biweight function. We
also fix the efficiency level at 90% (with corresponding c = 3.8827). This is the
robust estimator used to estimate the regression line in Figure 3.1 with the GFR data
example.

3.2.5 GFR Data Example (continued)

Let us come back to the GFR dataset and estimate the regression parameters using
the classical LS and the robust estimator, with all explanatory variables (i.e. also
with the quadratic term and the variable age) and considering both models (3.4)
and (3.5). The different estimated values (together with corresponding p-values for
significance testing, see Section 3.3.1) are presented in Table 3.1. The variable age
is clearly not significant in either model or either method, whereas the variable cr
plays a significant role in explaining the level of (log) gfr in both models and with
both methods. The only difference between the LS and the robust estimation lies in
the different estimated values for the parameters. For example, with model (3.5), the
regression coefficient for cr−1 is estimated to 4.27 with the LS and to 5.06 with the
robust estimators. In terms of prediction (we exclude the variable age), given that

log(gfr) = β0 + β11cr
−1 + β12cr

−2 + ε ⇔
gfr = exp{β0 + β11cr

−1 + β12cr
−2} exp{ε} ⇔

E[gfr] = exp{β0 + β11cr
−1 + β12cr

−2}E[exp{ε}]
and using the moment-generating function of a N (µ, σ 2) variable x, i.e. E[exp(tx)]
= exp(µt + σ 2t2/2) at t = 1 (with µ = 0), we obtain

ĝfr = exp

{
β̂0 + β̂11

cr
+ β̂12

cr2

}
exp

(
σ̂ 2

2

)
.

Differences in estimated values for the regression coefficients can lead to important
practical differences in predictions, as illustrated in Figure 3.2. In this example, if
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Table 3.1 Estimated regression parameters and significance tests for two models for
the GFR data.

Model (3.4)

LS Robust

Estimate (SE) p-value Estimate (SE) p-value

intercept 4.57 (0.72) <10−4 4.92 (0.75) <10−4

log(cr) −1.12 (0.07) <10−4 −1.12 (0.06) <10−4

log(age) −0.04 (0.19) 0.823 −0.13 (0.19) 0.503
σ̂ 0.31 0.32
R2 0.924 0.940

Model (3.5)

LS Robust

Estimate (SE) p-value Estimate (SE) p-value

intercept 1.80 (0.25) <10−4 1.56 (0.33) <10−4

cr−1 4.27 (0.28) <10−4 5.06 (0.44) <10−4

cr−2 −1.38 (0.14) <10−4 −1.96 (0.27) <10−4

age −0.003 (0.004) 0.45 −0.001 (0.004) 0.755
σ̂ 0.27 0.30
R2 0.943 0.956

The estimates are the LS and the biweight MM-estimator with c = 3.8827 (90% efficiency).

the model holds, the predicted gfr is quite different for values of cr up to one (and
even over one). Given that the sample median value for cr is 1.395, this amounts to
saying that the predicted gfr is quite different for half of the participants, and hence
heavily dependent on the chosen estimation method. As we will see in Section 3.4,
the difference is due to only one observation, namely observation 2.

3.3 Testing the Regression Parameters

3.3.1 Significance Testing

One aspect of inference in regression models is testing the significance of the
regression parameters, i.e. H0 : βj = 0 againstH1 : βj �= 0, j = 1, . . . , q . When the
LS or MLE estimator is chosen to estimate the βj , then one uses the t-statistic

t-statistic = β̂[LS]j
SE(β̂[LS]j )

, (3.16)
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Figure 3.2 Predicted gfr value using the estimated regression model (3.5) without
the variable age.

where β̂[LS]j is the LS estimator (or MLE) of βj ,

SE(β̂[LS]j ) =
√
σ̂ 2[(XT X)−1](j+1)(j+1),

σ̂ 2 = 1

n − 1

n∑
i=1

(yi − xT
i β̂[LS])2

is the classical residual scale estimate and [A](j+1)(j+1) denotes the element at the
(j + 1)th line and the (j + 1)th column of the matrix A. In fact we have that

var(β̂[LS])−1 = n

∫
1

σ
�[LS](r, x; β, σ 2)

1

σ
�[LS](r, xi; β, σ 2)T d�(r) dF (x)

= n
1

n

1

σ 2

n∑
i=1

∫
�[LS](r, xi; β, σ 2)�[LS](r, xi; β, σ 2)T d�(r)

= 1

σ 2

n∑
i=1

xix
T
i E�[r2] = 1

σ 2
XT X,
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with �[LS](r, x; β, σ 2) given in (3.3).3 For the robust estimator, for example β̂[bi],
we proceed in the same way, i.e. using (2.27) in Chapter 2,

var(β̂[bi]) = 1

n
M(�[bi],�)−1Q(�[bi],�)M(�[bi],�)−T (3.17)

with

Q(�[bi],�) = 1

n

n∑
i=1

∫
�[bi](r, xi; β, σ 2, c)�[bi](r, xi; β, σ 2, c)T d�(r)

= 1

n

n∑
i=1

xix
T
i

∫ c

−c

r2
((

r

c

)2

− 1

)4

d�(r) (3.18)

and

M(�[bi],�) = − 1

n

n∑
i=1

∫
∂

∂βT
�[bi](r, xi; β, σ 2, c) d�(r)

= 1

σ

1

n

n∑
i=1

xix
T
i

∫ c

−c

(
5

(
r

c

)4

− 6

(
r

c

)2

+ 1

)
d�(r) (3.19)

so that

var(β̂[bi]) = σ 2(XT X)−1
∫ c

−c

r2
((

r

c

)2

− 1

)4

d�(r)

/
[∫ c

−c

(
5

(
r

c

)4

− 6

(
r

c

)2

+ 1

)
d�(r)

]2

= σ 2(XT X)−1e−1
c .

The variance of β̂[bi] is larger than the variance of β̂[LS] by a factor of e−1
c . In other

words, the efficiency of β̂[bi] is4

ec =
[∫ c

−c

(
5

(
r

c

)4

− 6

(
r

c

)2

+ 1

)
d�(r)

]2/∫ c

−c

r2
((

r

c

)2

− 1

)4

d�(r).

(3.20)
The efficiency given in (3.20) is actually used to choose a value for the tuning
constant c to achieve a given level of efficiency.

To estimate the variance (3.17) it is not wise to just replace σ by a robust σ̂ .
Indeed, extreme values in the design matrix X are not automatically downweighted.
Alternatively, one can use the asymptotic variance (3.17) and replace the matrices
M and Q by their empirical counterparts, i.e. by removing in (3.18) and (3.19)
the integrals and putting ri instead of r;5 see also Simpson et al. (1992). Another

3Note that to obtain the derivative of the log-likelihood function, one has to multiply �[LS] by 1/σ .
4An analytical expression is given in Appendix B.
5This estimator might however produce negative values for the variance because of (3.19).
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estimator for (3.17) is given by

v̂ar(β̂[bi]) = σ̂ 2
(

1∑n
i=1 w[bi](ri; β, σ 2, c)

n∑
i=1

w[bi](ri; β, σ 2, c)xix
T
i

)−1

e−1
c

(3.21)
with w[bi](ri; β, σ 2, c) the biweight weights given in (3.14) and σ̂ 2 the correspond-
ing robust residual variance estimator (see e.g. Maronna et al., 2006, p. 140). The
advantage of v̂ar(β̂[bi]) in (3.21) is that the resulting estimated standard errors for
β̂[bi] are also robust to extreme observations in the regressors. Finally, Croux et al.
(2003) also proposed alternative estimators of var(β̂[bi]), one of which (A var1) is
currently implemented in the R package robustbase. Let

SE(β̂[bi]j ) =
√

[v̂ar(β̂[bi])](j+1)(j+1)

with v̂ar(β̂[bi]) the chosen estimate for (3.17), the test statistic for testing significance
of regression parameters is then the ratio

z-statistic = β̂[bi]j
SE(β̂[bi]j )

. (3.22)

While (3.16) can be compared with a Student distribution with n − q − 1 degrees of
freedom under H0 : βj = 0, for (3.22) one can only rely on the asymptotic normality
of M-estimators (see Section 2.3.1). Hence, the p-value for the robust significance
test is obtained by comparing (3.22) with the standard normal distribution.

The (small) loss of efficiency of the robust estimator at the exact regression model
induces a (small) reduction of the power of the test. In other words, when all of
the data have been exactly generated by the postulated regression model, then one
needs more data to detect significant parameters when a robust estimator is used.
This is the price to pay in order to have a testing procedure that works when the
model is not exact. Indeed, small model deviations, such as gross errors, not only
bias the classical regression estimates but also the classical scale estimate, both used
to construct the test statistic, and consequently the p-value that is computed and
upon which a decision about the significance of the corresponding parameter is taken
(see Section 2.4.2). However, in practice, the robustness issue largely overcomes the
power issue, in that a small model deviation has a more dramatic effect on classical
testing than the loss of efficiency of the robust estimator at the exact (normal)
regression model.

For the GFR data example presented in Table 3.1, with both models, although the
p-values are different between the classical and the robust approach, they all lead
to the same conclusion: all regression coefficients are significant except that of the
variable age.

3.3.2 Diabetes Data Example

The dataset illustrates the relationship between diabetes and obesity measured
through the body mass index and the waist/hip ratio and controlled for the body frame
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of the participants. The data come from the R package Hmisc (dataset diabetes) and
consist of 19 variables on 403 subjects (see Harrell (2001, p. 379) for explanations
on the origin of the dataset). The response variable is glycosolated hemoglobin (gh)
which is usually taken as a positive diagnosis of diabetes when it exceeds the value
of 7. We use as potential explanatory variables the age, the gender (sex), a dummy
variable with one for male and zero for female, the body mass index weight/height2

(bmi), the waist/hip ratio (whip), the body frame with three levels (small, medium
and large), hence modeled using two dummy variables bfmed with one for medium
frame and zero otherwise and bflar with one for large frame and zero otherwise,
the stabilized glucose (stabg), as well as the location of the subject (loc), a
dummy variable with zero for Buckingham County and one for Louisa County (two
rural Virginia counties). We consider the following model

ghi = β0 + β1agei + β2sexi + β3bmii + β4whipi

+ β5bfmedi + β6bflari + β7stabgi + β8loci + εi (3.23)

for which a variable selection method will be used later to select a suitable subset of
explanatory variables. We use a missing-values-free subsample of size 372 (out of
the original 403 observations).

In this sample, the median age of the participants is 45, there are 156 male (hence
216 female) participants, with median bmi of 27.6, median waist/hip ratio of 0.88
and, median stabilized glucose of 90. Moreover, 100 of the respondents have a
small frame while 176 a medium frame (hence, 96 a large frame), and 180 live in
Buckingham County (hence 192 in Luisa County).

The classical LS and robust estimates and corresponding p-values are provided in
Table 3.2. While with the classical estimation, only the variablesage and stabg are
significant, with the robust estimation the variable location is also significant at the
5% level. The two approaches give similar coefficients (−0.21 for the LS estimate
and −0.22 for the robust one), but the residual scale estimate is quite different (1.47
versus 0.763). Hence, a small model deviation such as one or a few outliers for this
variable have an effect on the significance test but not on the estimate here.

It should, however, be stressed that the complete model is not necessarily the best
model for the dataset at hand, and before concluding on the relationship between the
response variable and the explanatory variables, one should first proceed with model
checking and model selection (see Section 3.4).

3.3.3 Multiple Hypothesis Testing

With regression models, one could also in principle be interested in multiple hypoth-
esis testing. The classical F -test for H0 : βj = · · · = βj ′ = 0, for some j, j ′ > 0 is
one example. More generally, a LRT can be used to compare two nested models.
Formally, let β = (β(1),β(2)) with dim(β(2)) = k; suppose that we want to test
H0 : β(2) = β0

(2) (reduced model) against H1 : β(2) �= β0
(2) (full model) with β(1)

unspecified, and let also β̂[LS], be the LS estimators of β (in the full model) and
β̇[LS] = (β̇[LS](1),β0

(2)) with β̇[LS](1) the LS estimator of β(1) in the reduced model.
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Table 3.2 Estimates and significance tests in model (3.23) for the diabetes data.

LS Robust

Estimate (SE) p-value Estimate (SE) p-value

intercept 0.31 (1.0) 0.76 1.72 (0.52) 9.6 × 10−4

age 0.018 (0.005) 4.8 × 10−4 0.011 (0.003) 8.8 × 10−4

sex −0.11 (0.18) 0.54 −0.037 (0.12) 0.76
bmi 0.01 (0.01) 0.44 0.01 (0.01) 0.25
whip 1.2 (1.2) 0.30 0.59 (0.66) 0.38
bfmed 0.2 (0.2) 0.31 0.06 (0.11) 0.60
bflar −0.08 (0.26) 0.75 0.19 (0.16) 0.24
stabg 0.029 (0.0015) <10−4 0.021 (0.005) 1.2 × 10−4

loc −0.21 (016) 0.18 −0.22 (0.10) 0.035
σ̂ 1.47 0.763
R2 0.575 0.651

The estimates are the LS and the biweight MM-estimator with c = 3.8827 (90%
efficiency).

Using (2.46) with the regression model, the LRT statistic is given by

LRT = 2
n∑

i=1

(log f (yi, xi; β̂[LS], σ̂ 2[LS]) − log f (yi, xi; β̇[LS], σ̂ 2[LS]))

=
n∑

i=1

((
yi − xT

i β̇[LS]
σ̂[LS]

)2

−
(
yi − xT

i β̂[LS]
σ̂[LS]

)2)

=
∑n

i=1((yi − xT
i β̇[LS])2 − (yi − xT

i β̂[LS])2)∑n
i=1(yi − xT

i β̂[LS])2
(n − q − 1)

= RSS0 − RSS

RSS
(n − q − 1), (3.24)

where RSS, respectively RSS0, is the residual sum of squares for the complete model
(under H1), respectively the reduced model (under H0). Under H0, asymptotically
LRT ∼ χ2

k . Up to a multiplicative constant, the LRT is equal to the F -test statistic,
i.e. F = LRT/k which under H0 and under the normality assumption of the errors
has an exact Fisher F(k,n−q−1) distribution.

The classical LRT (or indeed the F -test) is obviously not robust in the sense
that small model deviations can lead to under or over rejection at a given level,
or in other terms, that the actual test level does not correspond to the nominal one
(see Section 2.4.2). The reasons are twofold: first the LS estimator is used for both
the regression parameters and residual scale estimates (under the reduced and the
full models) which as seen previously is not robust to small model deviations and,
second, even if a robust estimator replaces the LS, the RSS in (3.24) would be
inflated by the presence of model deviations in the form of e.g. outlying observations
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(in both the response and the explanatory variables). Hence, a class of robust tests
that controls both types of potential deviations is needed. For multiple hypothesis
testing, a natural choice is the class of LRT-type tests (2.50) (see also Hampel et al.
(1986, p. 354) for the regression model)

LRTρ = 2
n∑

i=1

(ρ(ri; β̂[M], σ 2, c) − ρ(ri; β̇[M], σ 2, c)), (3.25)

with β̂[M] theM-estimator of β with �-function�(r, x; β, σ 2, c)= ∂ρ(r; β, σ 2, c)/

∂β, β̇[M] the M-estimator of β under the reduced model in H0 (i.e. solution
of
∑n

i=1 �(ri, xi; β, σ 2, c)(1) = 0 with β(2) = β0
(2)) and σ 2 replaced in practice

by a consistent robust scale estimator (at the full model). As already stated
in Section 2.5.4, under H0, LRTρ

6 is in general asymptotically distributed as a
weighted sum of χ2

1 with weights that depend on the matrices Q and M in (3.18)
and (3.19). For the regression model, inference is simplified in that (3.25) can be
multiplied by7

∫
∂

∂r∂r
ρ(r; β, σ 2, c) d�(r)

/∫ (
∂

∂r
ρ(r; β, σ 2, c)

)2

d�(r) (3.26)

and compared with a χ2
k . This test is also known as the τ -test as in Hampel et al.

(1986, Chapter 7).
An alternative testing procedure for the same null hypothesis is the Wald-type test

statistic (2.47)

W 2
� = n(β̂[M](2) − β0

(2))
T V (�,�)−1

(22)(β̂[M](2) − β0
(2)),

with V (�,�) = M(�,�)−1Q(�,�)M(�,�)−T evaluated at β̂[M] and at a con-
sistent and robust estimator σ̂ 2 of σ 2. Under H0, W 2

� follows asymptotically a χ2
k

distribution. As a choice for the �-functions, we propose to take the same as for the
estimators, i.e. �[bi] defined through (3.13). It should be noted that W 2

� is simpler
than LRTρ to calculate because there is no need to compute β̇[M].

3.3.4 Diabetes Data Example (continued)

With the diabetes data example, an interesting hypothesis to test is the overall effect
of the categorical variable frame, i.e. H0 : β5 = β6 = 0 in model (3.23). Table 3.3
gives the result of the classical F -test and the robust LRTρ and Wald tests. We
note that with this example, the classical and robust procedures lead to the same
conclusion, i.e. the non-significance of H0. This is not really surprising, at least with
respect to the significance of each of the two dummy variables for the variable frame
as given in Table 3.2.

6The LRTρ corresponds to a difference of deviances test in certain GLM families, see Section 5.2.2.
7For an analytical expression in the case of the biweight estimator, see Appendix B.
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Table 3.3 Classical F -test, robust LRTρ and Wald tests for testing the significance
of the body frame in the diabetes data example.

df residuals (n − q − 1) df (k) Test statistic p-value

F -test 363 2 1.2772 0.2801
W� test (�[bi]) 2 1.4640 0.4809
LRTρ test (ρ[bi]) 2 1.7466 0.4176

The ρ- and �-functions are the biweight with c = 3.8827.

3.4 Checking and Selecting the Model

3.4.1 Residual Analysis

An important aspect of the analysis of the model is checking the model assumptions.
This includes the (at least approximate) normality of the errors, the linearity of the
explanatory variables in explaining the response variable and the possible presence of
poorly fitted observations. This check can be successfully done through the analysis
of the (estimated) standardized residuals. These are defined as ri = (yi − xT

i β̂)/σ̂

where β̂ is a chosen estimator, i.e. either the LS or a robust estimator, and σ̂ is the
classical or a robust estimator according to the choice of β̂. Under the regression
model, the errors are assumed to be normally distributed, and hence the standardized
residuals are expected to lie approximately within the bounds (−1.96, 1.96) which
correspond to 95% of the values of a standard normal variable. In other words,
residuals exceeding (in absolute value) the bound of 1.96 can be considered as
suspicious and, hence, as potential outliers.

Clearly, if the LS estimator is chosen, a residual analysis based on it can lead to
wrong conclusions. In particular, one or a few outliers can attract the LS estimated
regression line to them and making the resulting residuals relatively small, so that
the outliers are ‘masked’. This underlines the potential danger of a classical residual
analysis.

3.4.2 GFR Data Example (continued)

As an illustration, we examine the GFR data and consider the simple model
log(gfr) = β0 + β1cr−1 + ε. In Figure 3.1 one can see that the LS regression line
estimate is ‘attracted’ by observations 16 and 2. A standardized residual analysis is
provided in Figure 3.3 for the LS and for the robust estimator. One can notice that
both the LS and the robust estimator detect observation 2 as extreme in the sense that
the value of its corresponding standardized residual (in absolute value) exceeds the
value of 1.96. For observation 16, the story is different: it has a larger residual in the
robust analysis, but still within the expected bounds, while it has a pretty average
residual with a classical analysis. One also notices that the ‘moon’-shaped residuals
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Figure 3.3 Residual analysis for the model log(gfr) = β0 + β1cr−1 (robust
residuals computed using the biweight MM-estimator with 90% efficiency).

cloud indicates (with both analyzes) that a more suitable model would be one that
includes a quadratic term (i.e. cr−2). We analyze this model later.

Before that, and just as an exercise, we now change the value of cr for observa-
tion 16 to match the value of cr for observation 2. The estimated regression lines
are now given in Figure 3.4 (compare with Figure 3.1). The estimated regression
parameters for cr−1 are 1.56 with the LS estimator and 2.38 with the robust
estimator. The scale estimates are 0.63 with the LS estimator and 0.53 with the
robust estimator. We note that the robust scale estimate has not changed with the
transformation of observation 16. A residual analysis is provided in Figure 3.5.
With this modified sample, the LS estimator shows signs of breakdown, since
the two extreme observations cannot really be considered as extreme on the basis
of their standardized residuals. The robust estimator, on the other hand, clearly
flags observations 2 and 16 as outliers (large standardized residuals). Moreover,
the ‘moon’-shaped cloud is now not so clear with the LS analysis, showing that a
classical residual analysis can be very misleading. This is an important aspect of the
non-robustness of LS-based residuals, i.e. the overestimation of the residual scale.
Indeed, if there are outliers in the sample, then the residual scale is overestimated,
which makes the detection of extreme observations more difficult.
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Figure 3.4 Estimated regression lines for the model log(gfr) = β0 + β1cr−1 with
cr16 = cr2.

As we have already noticed before, a more suitable model for these data is
the model log(gfr) = β0 + β11cr−1 + β12cr−2 + ε. In Table 3.4 we present the
estimated regression parameters (and significance tests) using the robust estimator
β̂[bi], and the classical β̂[LS] both on the complete sample and on the sample
without observation 2. In Figures 3.6 and 3.7 we present the corresponding residual
analysis. The aim is to study the stability of both estimators when one observation
is deleted. The first noticeable difference lies in the estimates for β11 and β12.
Indeed, the robust estimator on both the complete and reduced sample (without
observation 2) and the LS estimator on the reduced sample provide approximately
the same estimates, whereas the LS on the full sample provides values that are
different. This difference is quite important as illustrated in the predicted values
for gfr in Figure 3.8. In this figure, the predictions curves for the robust and
the LS without observation 2 are confounded. A close inspection of the residuals
on the complete sample (Figure 3.6) shows that observation 2 is not an extreme
observation for the LS estimator. This indicates that the quadratic model estimated
by means of the LS is able to ‘fit’ the extreme observation 2. However, at the same
time it does not capture so well the quadratic nature of the relationship between
log(gfr) and cr−1 and cr−2 as illustrated in Figure 3.8. On the other hand, the
robust estimator still considers observation 2 as extreme (at least with respect to the
postulated model) and is able to capture the quadratic relationship. Therefore, in
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Figure 3.5 Residual analysis for the model log(gfr) = β0 + β1cr−1 with cr16 =
cr2.

trying to accommodate observation 2, the LS fit tends to predict higher gfr values
for large values of cr−1. The equation found by Rule et al. (2004), who fitted a
similar model is log(gfr) = 1.911 + 5.249cr−1 − 2.114cr−2 − 0.00686age for
males. This finding is consistent with the robust fit, especially for large values of
cr−1. Finally, note that the residual analyses in Figure 3.7 coincide since the LS fit
is performed on the sample without observation 2.

3.4.3 Diabetes Data Example (continued)

As another example, consider the diabetes data and the estimated model given in
Table 3.2. The residual scale estimates are quite different between the LS and the
robust estimators and this has an implication for the residual analysis as illustrated
in Figure 3.9: some robust standardized residuals are larger, although for the bulk of
the data they are similar between the two analyses. In particular, observations 180,
309 and 336 are found to be extreme with both analyses, but far more extreme (larger
standardized residual) with the robust analysis. These three observations correspond
respectively to a 68-year-old man with an average response but an extreme value for
the stabilized glucose, a 26-year-old man with a larger than average response and a
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Table 3.4 Estimated regression parameters and significance tests for model
log(gfr) = β0 + β11cr−1 + β12cr−2 for the GFR data.

Complete sample

LS Robust

Estimate (SE) p-value Estimate (SE) p-value

intercept 1.63 (0.12) <10−4 1.48 (0.12) <10−4

cr−1 4.29 (0.27) <10−4 5.11 (0.38) <10−4

cr−2 −1.36 (0.14) <10−4 −1.98 (0.25) <10−4

σ̂ 0.27 0.28
R2 0.942 0.957

Sample without observation 2

LS Robust

Estimate (SE) p-value Estimate (SE) p-value

intercept 1.48 (0.12) <10−4 1.47 (0.12) <10−4

cr−1 5.06 (0.40) <10−4 5.12 (0.39) <10−4

cr−2 −1.95 (0.26) <10−4 −1.99 (0.25) <10−4

σ̂ 0.25 0.26
R2 0.952 0.957

The estimates are the LS and the biweight MM-estimator with c = 3.8827 (90% efficiency).

very small value for the stabilized glucose and a 60-year-old woman with an extreme
response.

A residual analysis can also be used to check the linearity of the relationship
between each (non-categorical) explanatory variable. In Figure 3.10 we present the
standardized residuals versus each of the non-categorical explanatory variables of
model (3.23) for the LS and robust regression. Except for the extreme outliers that
have been spotted in the residual analysis in Figure 3.9, there is no apparent non-
linearity of the relationship between each explanatory variable and the response
variable.

3.4.4 Coefficient of Determination

A summary measure for the goodness of fit of the model is given by the coefficient of
determinationR2 which estimates the percentage of variance of the response variable
explained by its (linear) relationship with the explanatory variables. Classically, it is
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Figure 3.6 Residual analysis for the model log(gfr) = β0 + β11cr−1 + β12cr−2,
full GFR data sample.

computed by means of the ratio

R2 = ESS

TSS
= TSS − RSS

TSS

=
∑n

i=1(yi − y)2 −∑n
i=1(yi − xT

i β̂[LS])2∑n
i=1(yi − y)2 , (3.27)

where ESS, TSS and RSS are the explained, total and residual sum of squares,
respectively. The coefficient of determination is actually equal to the square of
the correlation coefficient between yi , and the predicted response ŷi (if there is an
intercept term), i.e. (see e.g. Greene, 1997, p. 253)

R2 =
 ∑n

i=1(yi − y)(ŷi − ŷ)√∑n
i=1(yi − y)2

∑n
i=1(ŷi − ŷ)2

2

, (3.28)

with ŷ the mean predicted responses. Definition (3.28) has a nice interpretation in
that R2 measures the goodness of fit of the regression model by its ability to predict
the response variable. The R2 is often adjusted for the sample size and the number
of explanatory variables, i.e. R2

adj = 1 − (1 − R2)((n − 1)/(n − q)).
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Figure 3.7 Residual analysis for the model log(gfr) = β0 + β11cr−1 + β12cr−2,
GFR data sample without observation 2.

Again, it is obvious that the R2 can be driven by extreme observations, not
only through the LS estimator β̂[LS], but also through the average response y and
the possible large residuals or deviations yi − y. We propose here to measure the
goodness of fit of the model by means of the robust R2 proposed by Renaud and
Victoria-Feser (2009)

R2
w =

 ∑n
i=1 wi(yi − yw)(ŷi − ŷw)√∑n

i=1 wi(yi − yw)
2
∑n

i=1 wi(ŷi − ŷw)
2

2

, (3.29)

where yw = (1/
∑

wi)
∑

wiyi , ŷw = (1/
∑

wi)
∑

wiŷi and the weights wi are
produced by the robust regression estimator, for example Tukey’s biweight. Renaud
and Victoria-Feser (2009) showed that under some conditions, (3.29) can be written
as a robust extension of (3.27), i.e.8

R2
w =

∑n
i=1 wi(yi − yw)

2 −∑n
i=1 wi(yi − ŷi)

2∑n
i=1 wi(yi − yw)

2
. (3.30)

8R2
w can possibly be corrected for consistency, see Renaud and Victoria-Feser (2009).
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Figure 3.8 Predicted gfr values using the estimated regression models log(gfr) =
β0 + β11cr−1 + β12cr−2.

In the diabetes data example (see Table 3.2), the R2 are different between a
classical and a robust analysis. It is larger with a robust fit, hence reflecting the
fact that there are extreme observations that lead to a poorer fit for all data with
the LS estimator and a better fit for the majority of the data with the robust estimator.
This can be better understood by means of a scatterplot between the responses
and their predictions as in Figure 3.11. The scatter of the data reflects the degree
of correlation between the response and its prediction, and hence the coefficient
of determination. In the robust version, the deviations in (3.29) are weighted, and
observations receiving a small weight (below 0.3) have been spotted in the (robust)
scatter by means of the symbol ‘o’. It is clear that the correlation between the
response and its prediction is stronger in the robust analysis than in the classical
analysis, not only because extreme observations (with respect to the regression
model) have been downweighted, but also because the estimated line is not biased
by these extreme observations.

3.4.5 Global Criteria for Model Comparison

When the postulated regression model includes several explanatory variables, more
often than not can one observe that some of them are correlated. Such variables then
explain the same part of the response variable, which makes their inclusion altogether
in the model useless, or worse can lead to the conclusion that these variables are
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Figure 3.9 LS and robust standardized residual analysis of model (3.23) for the
diabetes data.

not significant. This phenomenon is known as the problem of multicollinearity.
Variable selection procedures are then necessary to objectively choose a suitable
subset of regression variables. These procedures are different in spirit than a test
for comparing different models such as the LRT (3.24). They are based on the
optimization of a criterion that in some sense gives an indication of the fit of the data
to the postulated model. In practice, all possible models are built with all possible
combinations of the available explanatory variables, then the criterion is computed
for each of these models and the ‘best’ model is that with the best value (minimum or
maximum) for the criterion. One has however to be cautious with the ‘best’ choice,
since the criterion is actually computed from the data and hence is also a random
variable, which means that two models can in principle have two criteria that are
not significantly different. Hence, it is safer to consider a few (two or three) ‘best’
models.

We propose in this section robust alternatives to classical model selection criteria
that are not (or less) influenced by data that cannot be considered as having been
generated by the postulated regression model. One could argue, however, that when
assessing a model, the chosen criterion should also consider these extreme values
and hence in some sense represent the bad fit of the model to some data. However,
this goes against the fundamental ideas supporting a robust approach. Indeed, one
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Figure 3.10 LS and robust standardized residuals of model (3.23) versus covariates
for the diabetes data.

is interested in the model that fits the data in general, not all of the data because
we suppose, in robust statistics, that not all of the data have been generated by the
postulated model. In other words, it is better to have a good model for the majority
of the data than an ‘average’ model for all of the data. Therefore, a robust procedure
should also be used for selecting the ‘best’ models.

3.4.5.1 AIC

The AIC (Akaike, 1973) is one of these criteria. Let x(p) be a subset of p ≤ q + 1
explanatory variables taken from the complete set x (including the intercept) and βp

the corresponding regression parameters in the regression model with x(p). The AIC
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Figure 3.11 Response versus robust and classical (LS) prediction of model (3.23)
for the diabetes data. The symbol ‘o’ corresponds to observations that have received
a robust weight below 0.3.

is given by

nAIC = −2
n∑

i=1

log f (yi, xi(p); β̂
p
[LS], (̂σ

p
[LS])

2) + 2p

= −2
n∑

i=1

[
−log(

√
2πσ̂p

[LS]) − 1

2
(r

p
[LS]i )

2
]

+ 2p,

with r
p

[LS]i = (yi − xT
i(p)β̂

p

[LS])/σ̂
p

[LS]. AIC is actually the value of (minus twice) the
log-likelihood function at the estimated model with a subset of p explanatory vari-
ables (including the intercept) penalized by the number of regression coefficients p.
The ‘best’ model is the model with the smallest corresponding value for the AIC.
The penalty is necessary, because the greater the number of explanatory variables
in the model (even if they do not explain the response), the greater the value of the
log-likelihood function and hence, without penalization, the minimization would be
achieved at the model with all of the available explanatory variables.
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Again, as for the LRT statistic, it is obvious that the AIC is not robust against
extreme values in the data. This is not only due to the fact the LS estimator for the
regression parameters and for the residual scale is not robust, but also because one
extreme residual can make a too negative contribution to the log-likelihood function.
A robust version for the AIC was first proposed by Ronchetti (1982b) (see also
Ronchetti, 1997b). For the regression model it is given generally by

RAIC = 2
n∑

i=1

ρ(r
p
i ; β

p
[M], σ

2, c) + 2p
a

b
(3.31)

with

a =
∫ (

∂

∂r
ρ(r; β, σ 2, c)

)2

d�(r)

b =
∫

∂2

∂r∂r
ρ(r; β, σ 2, c) d�(r)

and r
p

i computed using a robust M-estimator β̂
p

[M] and σ 2 replaced by a robust
estimator of residual scale at the model with all explanatory variables. One can, in
principle, choose any ρ function defining a robust estimator. We propose here to take
the biweight ρ[bi] in (3.15) and corresponding �[bi].9

3.4.5.2 Mallows’s Cp

Another variable selection procedure is given by Mallows’s Cp (Mallows, 1973)
which is based on a prediction error criterion. It is given by

Cp = 1

σ̂ 2[LS]

n∑
i=1

(yi − xT
i(p)β̂

p
[LS])

2 − n + 2p

= 1

σ̂ 2[LS]
RSSp − n + 2p,

where β̂
p

[LS] is the LS estimator of βp and σ̂ 2[LS] = SSRq+1/(n − q − 1) is the LS
residual scale estimate at the complete model. One can notice that when p = q + 1,
then Cp = p, i.e. Cq+1 = q + 1. Here Cp actually estimates the prediction error of
the model measured by

1

σ 2
E

[ n∑
i=1

(ŷ
p
i − E[yi | xi(p)])2

]

where ŷ
p

i = xT
i(p)β̂

p is the predicted value at the model with x(p) for a chosen

estimator β̂p.

9In this case the analytical expressions for a and b are given in Appendix B.
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Like for the AIC, the Cp is sensitive to small model deviations from (each of)
the assumed models. As for the AIC, it is important that a selection procedure is not
affected by a few extreme observations, otherwise the ‘best’ models would represent
an average model for all of the data, rather than a good model for the majority of
the data. Ronchetti and Staudte (1994) propose a robust alternative to the Cp as an
estimator of

�p = 1

σ 2
E

[ n∑
i=1

(ŵ
p
[M]i (ŷ

p
[M]i − E[yi | xi(p)]))2

]
where ŷ

p

[M]i = xT
i(p)β̂

p

[M] and β̂
p

[M] is the M-estimator (with corresponding �-
function) for the model with x(p), and

ŵ
p
[M]i =

[
∂

∂r
ρ(r; β̂

p
[M], σ

2, c)

/
r

]
r=ri

are the weights given to each residual by the M-estimator, and ρ is such that
�(r; x; β, σ 2, c) = ∂ρ(r; β, σ 2, c)/∂β. The weights are different for each model
since an observation can be outlying with respect to one model and have full weight
in another. The weighting scheme therefore not only has the effect of downweighting
the outlying observations with respect to model with x(p) in estimating βp, but also
limiting their influence on �p and therefore on the model selection procedure itself.
Ronchetti and Staudte (1994) show that a suitable estimator for �p is

RCp = 1

σ̂ 2
Wp − (Up − Vp) (3.32)

with Wp =∑n
i=1(ŵ

p
[M]i (yi − ŷ

p
[M]i ))2 a weighted RSS, σ̂ 2 = Wq+1/Uq+1 a robust

residual and consistent scale estimator at the full model, and Up and Vp are quantities
given in Ronchetti and Staudte (1994) or Ronchetti (1997b).10 At p = q + 1, by
definition RCp = Vp, i.e. RCq+1 = Vq+1. Models for which RCp ≈ Vp are among
the ‘best’ models. When the weights ŵ

p
[M]i are all equal to one (e.g. if the M-

estimator is the LS estimator), then RCp = Cp, for all p.
Finally, other criteria computed in a robust fashion exist for variable selection. As

an alternative to the RCp , Machado and Machado (1993) propose a robust version
of the Bayesian information criterion (BIC) (Schwarz, 1978) on objective functions
defining M-estimators, and Sommer and Huggins (1996) propose a criterion based
on the Wald test statistic. Ronchetti et al. (1997) develop a robust criterion based
on cross-validation. However, it requires the splitting of the dataset and hence the
estimation of all of the models for all of the splits, which, with robust estimators,
can be computationally intensive. Müller and Welsh (2005) propose a RAIC-like
criterion but instead of using the same ρ-function in (3.31) as that for the estimator
for the regression coefficients βp, they use a simple bounded ρ(r; c) = min{r2; c2}
with c = 2, and the expected value is estimated by means of a stratified bootstrap in
which the strata are built according to the value of the residuals for a given fit. It is
not however clear whether this procedure is better than the standard RAIC in (3.31)
in terms of probability of choosing the correct model.

10For the biweight ρ-function, Up − Vp is given in Appendix B.
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Table 3.5 AIC and RAIC of the ‘best’ models for the diabetes data. The values
in brackets are the ranks (up to 10) of the models with each criteria, from best to
worse. The last column is the mean of the robust weights (3.14) corresponding to
each model.

Mean
Models AIC (rank) RAIC (rank) weights

AG 1345.62 (3) 354.13 0.797
ACG 1346.29 (9) 353.21 0.798
AEG 1345.24 (2) 355.65 0.797
AGH 1345.84 (5) 350.99 (4) 0.799
ACEG 1346.11 (7) 354.49 0.798
ACGH 1346.37 (10) 349.70 (1) 0.799
ADEG 1345.96 (6) 355.99 0.797
AEGH 1345.06 (1) 352.67 0.798
AFGH 1347.24 350.60 (3) 0.801
ABCGH 1348.10 351.28 (6) 0.800
ABFGH 1348.79 351.34 (8) 0.802
ACDGH 1347.88 351.03 (5) 0.800
ACEGH 1345.80 (4) 351.30 (7) 0.798
ACFGH 1346.81 350.48 (2) 0.800
ADEGH 1346.22 (8) 353.70 0.798
AEFGH 1347.02 351.77 (9) 0.798
ABCFGH 1348.79 351.85 (10) 0.801

A is for age, B for sex, C for bmi, D for whip, E for bfmed,
F for bflar, G for stabg, and H for loc. The ρ-function is the
biweight with c = 3.8827.

3.4.6 Diabetes Data Example (continued)

Some of the explanatory variables in the diabetes dataset are probably correlated (e.g.
bmi and whip), hence a (robust) selection procedure is necessary to choose among
the ‘best’ models. For all possible models, the AIC and RAIC are computed and
the best ones, i.e. those with smallest AIC and RAIC are presented in Figures 3.12
and 3.13. The corresponding values are given in Table 3.5.

The classical AIC proposes for the three ‘best’ models, the models with the
variables age, bfmed, stabg and loc (1), age, bfmed and stabg (2) and age
and stabg (3). The RAIC on the other hand, proposes for the three ‘best’ models
the models with the variables age, bmi, stabg and loc (1), age, bmi, bflar,
stabg and loc (2) and age, bflar, stabg and loc (3). The variables age
and stabg are in all selected models, whatever the method. The variables loc and
either bmi or bflar are always selected with the robust method. Finally sex and
whip are never selected. The models selected by means of the classical AIC are
different from those selected by the RAIC and this difference is certainly due to
extreme data in the sample that were spotted in the residual analysis. In Tables 3.6
and 3.7 we present the estimated parameters for both the ‘best’ model chosen by the
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Figure 3.12 AIC for the ‘best’ models. A is for age, B for sex, C for bmi, D for
whip, E for bfmed, F for bflar, G for stabg, and H for loc.

Table 3.6 LS estimated parameters of the ‘best’ model selected by the AIC.

Coefficient Estimate (SE) p-value

intercept 1.6 (0.27) <10−4

age 0.019 (0.005) 1.2 × 10−4

bfmed 0.25 (0.15) 0.10
stabg 0.029 (0.001) <10−4

loc −0.22 (0.15) 0.14
σ̂ 1.46
R2 0.572

classical AIC and estimated by the LS estimator, and the ‘best’ model selected by
the RAIC and estimated by the robust biweight estimator.

It is not necessarily expected that the selected models lead to explanatory variables
that are all significant, since the criteria used for selection do not contain the same
information as the test statistics used for significance testing. However, one can
notice that the model selected by means of the classical AIC and estimated by the
LS estimator contains variables that are not significant (bfmed and loc), while all
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Figure 3.13 RAIC for the ‘best’ models. A is for age, B for sex, C for bmi, D for
whip, E for bfmed, F for bflar, G for stabg, and H for loc.

Table 3.7 Robust estimated parameters of the ‘best’ model selected by the RAIC.

Coefficient Estimate (SE) p-value

intercept 2.02 (0.40) <10−4

age 0.012 (0.003) <10−4

bmi 0.017 (0.007) 0.011
stabg 0.021 (0.004) <10−4

loc −0.25 (0.10) 0.015
σ̂ 0.760
R2 0.656

The estimates are computed using the biweight MM-
estimator with c = 3.8827 (90% efficiency).

coefficients are significant with the model selected by means of the robust RAIC and
estimated by the robust biweight estimator. This might indicate that a full robust
procedure (estimation, testing and model choice) is more stable than a classical
procedure, or, in other words, that small model deviations such as outliers do affect
the different steps of the full classical procedure in different ways.
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Figure 3.14 Scatter diagram for the cardiovascular risk factors data.

3.5 Cardiovascular Risk Factors Data Example

In this section, we fully analyze the dataset on cardiovascular risk factors briefly
presented in Section 1.3. This dataset comes from a study aimed at investigating
the prevalence of hyperuricemia and the association between uric acid levels and
various cardiovascular risk factors in a developing country with high average blood
pressures; see Conen et al. (2004). The 998 participants aged 25 to 64 years (mean
age of 45) live in the Seychelles, a group of 115 islands lying in the Indian Ocean,
and belong to a population mainly of African origin. There are 474 men (hence
524 women) and different measures were taken that concern physiological as well
as behavioral characteristics of the participants. We consider here as potential
risk factors (explanatory variables) the body mass index (bmi), systolic blood
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Table 3.8 Robust estimates of the regression parameters and significance tests for
the cardiovascular risk factors data (full model).

Estimate (SE) p-value

intercept 5.17 (18) 0.775
smok −9.3 (7) 0.1848
alco 0.108 (0.046) 0.019
bmi 2.947 (0.454) <10−4

sys 0.432 (0.101) <10−4

choles 22.70 (10.27) 0.027
ldl −22.93 (10.12) 0.024
apoa −12.04 (16.8) 0.475
trig 60.51 (6.02) <10−4

age 0.367 (0.208) 0.078
sex 110.6 (5.28) <10−4

σ̂ 59.6
R2 0.725

The estimates are computed using the biweight MM-
estimator with c = 3.8827 (90% efficiency).

pressure (sys), low-density lipoprotein cholesterol (ldl), triglycerides level in
body fat (trig), total cholesterol (choles), apoprotein A (apoa) which is highly
correlated with high-density lipoprotein cholesterol, the smoking habit (smok)
a dummy variable with one for regular smoker, the alcohol intake (alco) in
milliliters per day, together with age and sex, a dummy variable with one for men.
Conen et al. (2004) consider slightly different explanatory variables and estimate a
regression model for men and a separate model for women. They use Stata’s rreg
command for robust regression estimation. rreg uses an IRWLS algorithm with a
Huber-type estimator (3.6), but with biweight weights (2.23) with c = 4.685 (i.e.
an efficiency of 95%). More precisely, for the first two steps of the IRWLS, Huber
weights (2.16) with c = 1.345 are used, and then the procedure switches to biweight
weights. The scale parameter (for scaling the residuals) is chosen as the median
absolute deviation (MAD) of the residuals, i.e.

σ̂MAD = 1.483 med|ri − med(ri)|
where the factor 1.483 ensures consistency at the normal model (see e.g Hampel
et al., 1986, p. 107). This kind of hybrid robust estimator is different from the one
which we use here, in that it does not share the same properties (it does not have a
high breakdown point). However, the results we find below are in accordance with
the analysis of Conen et al. (2004), even if they cannot really be compared. Indeed,
the models are (slightly) different, as is the robust estimator, and they do not use the
same variable selection procedure (they use a stepwise procedure).

A scatter diagram of the continuous variables is given in Figure 3.14. One may
notice that there appears to be some extreme observations and that some of the
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Figure 3.15 Residual analysis of the full regression model for the cardiovascular risk
factors data.

explanatory variables are highly correlated (in particular choles and ldl). Hence,
to fit and test a regression model we not only need a robust procedure but we also
need to perform a variable selection procedure.

The robust estimates are given in Table 3.8. The variables alco, bmi, sys,
choles, ldl, trig and sex are found to be significant at the 5% level. However,
before any conclusion can be drawn, a residual analysis and a model selection
procedure should be performed.

In Figure 3.15 we present the residual analysis corresponding to the full model.
The observations with the six most extreme residuals are identified. The analysis
shows several extreme observations with two being quite extreme.

In order to avoid the effect of correlated explanatory variables on the regression
estimation and testing, we perform a variable selection using the RAIC (see
Section 3.4.5). The results are summarized in Table 3.9. The RAIC selects models
containing, for the first three models, mainly the variables sys, ldl and sex, and
for some also the variables bmi, smok, alco, apoa and age. The estimation of
the ‘best’ selected model is presented in Table 3.10. According to a robust analysis,
the level of uric acid depends on the body mass index, the systolic blood pressure
total cholesterol, the low-density lipoprotein cholesterol and gender. Except for the
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Table 3.9 RAIC of the ‘best’ model for the cardiovascular risk factors data. The
values in brackets are the ranks (up to 10) of the models, from best to worse. The last
column is the mean of the weights (3.14) corresponding to each model.

Mean
Models RAIC (rank) weights

DEIJ 4875.56 (10) 0.839
ADFIJ 4867.88 (2) 0.840
BDEIJ 4870.33 (5) 0.835
CDEFJ 4865.57 (1) 0.837
ABDFIJ 4872.76 (6) 0.837
ABCFGIJ 4875.28 (8) 0.834
ABDFGIJ 4869.04 (3) 0.837
ABCEFHIJ 4875.52 (9) 0.845
ABCFGHIJ 4870.12 (4) 0.846
ACEFGHIJ 4874.83 (7) 0.848

A is for smok, B for alco, C for bmi, D for
sys, E for choles, F for ldl, G for apoa,
H for trig, I for age and J for sex. The
ρ-function is the biweight with c = 3.8827
(90% efficiency).

Table 3.10 Robust estimates of the regression parameters and significance tests for
the cardiovascular risk factors data (model selected by the RAIC).

Estimate (SE) p-value

intercept −70.12 (21.8) 0.0014
bmi 4.74 (0.51) <10−4

sys 0.66 (0.11) <10−4

choles 41.11 (7.6) <10−4

ldl −33.97 (7.8) <10−4

sex 122.2 (5.6) <10−4

σ̂ 66.24
R2 0.585

The estimates are computed using the biweight MM-
estimator with c = 3.8827 (90% efficiency).

low-density lipoprotein cholesterol, the larger the values of these factors, the higher
the level of uric acid. The latter is also higher for men in general.

At this stage, it is interesting to check which observations have been considered
as too extreme by the robust analysis. For the robust selected model (see Table 3.10),
the weights (i.e. (2.23)) are given in Figure 3.16. Some of the observations appear to
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Figure 3.16 Robust weights (2.23) of the robust selected model of Table 3.10 for the
cardiovascular risk factors data.

be receiving a weight nil or near zero. These are actually observations11 numbers 7,
8, 15, 31, 60, 227, 231, 267, 311, 357, 383, 421, 432, 449, 483, 490, 508, 513, 534,
696, 897, 953, 969, 971 and 985. Recall that a residual analysis of the full model
revealed that observations 477, 7, 449, 421, 267 and 483 were the most extreme
observations (see Figure 3.15). In the reduced model, observation 477 no longer
appears as extreme. It is indeed possible that observations appear extreme (large
residual, low weight) in one model while being considered as not so extreme in
another model. This is because the robust estimator produces weights that are relative
to the chosen model, and hence for different models but the same dataset, the weights
(and hence the residuals) are in general different, and sometimes even very different.

11Not shown on the graph.
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Mixed Linear Models

4.1 Introduction

Mixed linear models (MLMs) nicely extend the regression model by including in
the linear predictor a set of unobserved random terms making the response a sum of
fixed and random effects; hence, the use of the term ‘mixed’. The aim is generally
to capture the response variability, possibly due to the random effect of groups of
observations (e.g. experimental units) that share similar characteristics or correlation
over time between repeated measures. MLM therefore apply to settings where several
measurements are taken on the same experimental unit, such as the same subject,
individuals of the same cluster, or multilevel data, etc. The statistical literature
contains numerous references on MLMs, among which one can cite the recent books
by Pinheiro and Bates (2000), Verbeke and Molenberghs (2000) and Diggle et al.
(2002).

Historically, the seminal work of Fisher (1925) on the ANOVA can be considered
as the beginning of the development of the MLMs. Until the mid-1950s, the focus
is on variance components where description and quantification of variability of
the data is of primary interest with applications in animal breeding, experimental
designs and industrial quality control; see Searle et al. (1992) for a review. The
years from 1950 to 1969 saw major developments in methods estimating variance
components with, in particular, the pioneering work of Henderson (1953) for the
unbalanced case. Since then, research in the field has slightly evolved to a broader
use of MLM, pushed by research in medicine, health sciences, psychology and
so forth. Such developments were made possible by the enormous progress in
computing hardware and software. Classical estimation procedures to fit MLMs
are the MLE or restricted (or residual) MLE of Patterson and Thompson (1971)
and related tests, e.g. Fisher’s F -test or standard Wald or LRT tests; see Searle
et al. (1992) and Verbeke and Molenberghs (2000) for details. Unfortunately, these
statistical procedures rely heavily on the normality assumption as small departures
can have disastrous effects on classical estimators (bias) and tests (increased type I

Robust Methods in Biostatistics S. Heritier, E. Cantoni, S. Copt and M.-P. Victoria-Feser
c© 2009 John Wiley & Sons, Ltd
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or II errors). Historically, robustness in MLMs follows the general development of
robustness theory, pushed by the ever-increasing number of applications of such
models. Some early attempts are based on maximizing a robustified likelihood
(Huggins, 1993; Huggins and Staudte, 1994) or the Student t-likelihood (Pinheiro
et al., 2001; Stahel and Welsh, 1992, 1997). Alternatives solving a weighted score
equation are also proposed by Bednarski and Zontek (1996), Richardson (1997),
Richardson and Welsh (1995) and Stahel and Welsh (1997). They generalize the
influence function approach of Hampel et al. (1986) to the MLM setting but only
focus on the estimation problem. A review of these methods can be found in Stahel
and Welsh (1997). In recent years, Copt and Victoria-Feser (2006) reconsider the
problem by using the normal multivariate formulation of MLMs and propose high
breakdown point estimators (i.e. S-estimators; see Section 2.3.3). This work also
allows the construction of robust Wald and score tests. Building on this idea, Copt
and Heritier (2007) propose MM-estimators for MLMs and systematically focus on
inferential issues. In particular, a robust LRT-type test is proposed as an alternative
to the F -test. These latter alternatives have the advantages of being easier to compute
(even for highly structured models) and allow robust inference on the fixed effects to
be performed.

The chapter is organized as follows. In Section 4.2 we present a multivariate
normal formulation of the MLMs and introduce several datasets that will be used
throughout the chapter. The MLE, restricted maximum likelihood (REML) and
related tests are reviewed in Section 4.3. We show both theoretically and empirically
through a sensitivity analysis that these procedures are not robust. Different robust
estimators are presented as an alternative in Section 4.4, including bounded-influence
estimators (Richardson and Welsh, 1995; Richardson, 1997) that robustify the
MLE/REML. The S- and MM-estimators of Copt and Victoria-Feser (2006) and
Copt and Heritier (2007) are largely illustrated as they constitute simple alternatives
with a high breakdown point. They pave the way for the definition of robust tests
for the fixed effects that we present in Section 4.5. In particular, single hypotheses
and contrasts can be tested through a robust Wald-type test while more general
multivariate hypotheses are investigated with a LRT-type test. Inferential issues
linked to testing hypotheses on the variance components are briefly discussed.
Robust residuals and predictions are presented in Section 4.6 and illustrated through
real examples. Three datasets are used to illustrate the theory throughout the different
sections and a fourth dataset is thoroughly analyzed in Section 4.7, using the robust
procedures introduced earlier. Section 4.8 finally discusses current limitations and
extensions.

4.2 The MLM

4.2.1 The MLM Formulation

MLMs were originally introduced by Laird and Ware (1982) to better analyze lon-
gitudinal data. Fixed effects are used to explain the population average relationship
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between the response and a set of predictors while heterogeneity across subjects
under study or more generally clusters is accounted for by the inclusion of random
effects. The model can be seen as an extension of the linear model specified by

y = Xβ + ε (4.1)

where y is the N-vector of all measurements (observations) for all subjects, β, a
(q + 1)-vector of unknown fixed (regression) parameters (including the intercept),
X is a known N × (q + 1) design matrix for the fixed effects and ε is the N-vector
of independent errors with E[ε] = 0 and var(ε) = σ 2

ε IN . In the MLM setting, the
error terms ε can no longer remain independent as typically one want to capture
through the modeling some correlation present in the data, possibly due to repeated
measurements on the same sampling unit (or cluster). A possible way to achieve this
is to specify var(ε) differently, so that it reflects this heterogeneity in the data, or
simply add some random terms to the model.

To fix ideas, consider a very simple example given in Berry (1987). The data come
from an experiment in which five types of electrodes are applied to the arms of 16
subjects and their skin resistance measured (this example will be fully presented in
Section 4.2.2). The skin resistance is the response that is assumed to depend on the
electrode type which acts here as a fixed effect. Figure 4.1 displays a profile plot per
subject of the skin resistance for the five electrode types. One can see that the ‘mean’
skin resistance per subject varies across subjects. In other words, there is a subject
effect on the response that should be taken into account when building the model.
This effect is introduced in the model as a random effect for the subject (which here
is the cluster).

In other words, let yij be the response (i.e. resistance) of subject i on electrode j ,
λj the (fixed) effect of the j th electrode and si the (random) effect of the ith subject
on the response variable, the MLM can be written as

yij = µ + λj + si + εij, i = 1, . . . , n, j = 1, . . . , p (4.2)

where µ is the grand mean, a parameter that is often introduced in a MLM,
which implies then that the λj must be constrained by means of

∑p

j=1 λj = 0, and

εij ∼ N (0, σ 2
ε ) is the residual error term. In this example, p = 5. Since the subjects

were randomly selected from some population, they are considered as random, and
hence their effect on the response (the resistance) cannot be considered as systematic.
Therefore, it is assumed that si ∼ N (0, σ 2

s ) and that they are independent of the
residual error. Note that s = (s1, . . . , sn)

T is one random effect with n (unknown)
levels. Using the notation in (4.1), we have that β = (µ, λ1, λ2, λ3, λ4)

T and X is
made of the n-times stacking (columnwise) of the 5 × 5 matrix

x =
[
e4 I4

1 −eT4

]
(4.3)

with e4 a four-dimensional vector of ones (more generally, ep will stand for a p-
dimensional vector of ones). The matrix x actually defines a set of contrasts for
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Figure 4.1 Profile plot for the skin resistance data.

the fixed effects parameters β. The choice of these contrasts is arbitrary and mostly
depends on the problem. They will be explained in more detail in Section 4.2.2.

Depending on the problem, there might be more than one different random effect
(see examples in Sections 4.2.2 and 4.7.1), so that the latter are introduced in the
MLM in a more general fashion. Let γj , j = 1, . . . , r be a qj -dimensional vector
of random effects levels for the j th random effect. The latter can possibly be pre-
multiplied by a design matrix Zj . Incorporating these random effects into (4.1) gives
the general model formulation for a MLM

y = Xβ +
r∑

j=1

Zjγj + ε. (4.4)

We usually assume that the qj levels of each random effect γj are independent
normal with zero mean and variance σ 2

j ; each of the N random error terms in ε

is normal independent with zero mean and variance σ 2
ε ; and γ1, . . . , γr and ε are

independent. Alternatively, one could bind all Zj matrices together in a large matrix
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Z and stack all vectors γj into a vector γ yielding the compact form

y = Xβ + Zγ + ε. (4.5)

Model (4.5) is similar in structure to the linear model (4.1) where X and Z are the
design matrices for the fixed and random effects, respectively, and ε is the vector of
independent error term.

Under the MLM assumptions stated above, we have that

E[y] = Xβ (4.6)

and, if we put Z0 = IN , γ0 = ε and σ 2
ε = σ 2

0 for convenience,

var(y) =
r∑

j=0

σ 2
j ZjZ

T
j = V . (4.7)

To avoid problems of identifiability, we also assume that we have chosen a
parametrization where the overall parameter vector θ = (βT , σ 2

0 , . . . , σ
2
r )

T is iden-
tifiable. In many situations, one can split the response vector y into n independent
clusters of observations (e.g. the different subjects taking part in an experiment) yi

for i = 1, . . . , n. Then (4.6) and (4.7) become E[yi ] = xiβ and var(yi ) = �i , i =
1, . . . , n with yi the pi -vector of observations, xi the corresponding (pi × (q + 1))
sub-matrix of X, and �i is a pi × pi matrix of the form

�i =
r∑

j=0

σ 2
j [ZjZ

T
j ](ii). (4.8)

The quantity [ZjZ
T
j ](ii) stands for the ith block-diagonal element of ZjZ

T
j . Note that

because of the independence assumption of the clusters or subjects yi the covariance
matrix V in (4.7) is block-diagonal, with diagonal elements given by (4.8). With the
normality assumption for the random effect γ and the error ε in (4.5), we then have
that, at the cluster level,

yi ∼ N (xiβ,�i ), (4.9)

where the variance matrix �i is given by (4.8). The model is presented here under
the ‘conditional-independence’ assumption, that is, all of the random terms are
independent of each other. A more general formulation allowing for correlated errors
and random effects is possible; see McLean et al. (1991) and Searle et al. (1992). It
is usually done by assuming that the random component γ and random error ε have
respectively a variance D and R parametrized by a small number of parameters.
This leads to a general variance structure var(y) = ZDZT + R. When a partition in
n independent clusters is available, the same structure appears at the cluster level,
yielding the MLM of Laird and Ware (1982). We use the simpler model (4.9) in this
book as robustness theory for MLM has mainly been developed in that setting.

Before presenting classical and robust estimation and inference, and in order to
give some examples of different models belonging to the general formulation given
in (4.9), we study three different datasets in more detail that will also be used to
illustrate the theory presented in this chapter.
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4.2.2 Skin Resistance Data

Berry (1987) describes a dataset resulting from an experiment in which five types of
electrode are applied to the arms of 16 subjects and their skin resistance measured.
The experiment is conducted to assess whether the type of electrode can affect the
response (see Berry, 1987). In this example, the electrode type is assumed to be a
fixed effect and the subjects, which were randomly selected from some population,
are considered as a random effect, i.e. their responses (the skin resistance) may vary
across subjects although a common pattern per subject is expected. This experiment
can be easily analyzed using a one factor within-subject ANOVA represented by
(4.2) and the assumptions given below this equation. In this example researchers
are primarily interested in testing the null hypothesis of ‘no effect of the electrode
type’ on skin resistance, and a standard F -test is typically the default approach. To
do this, reliable estimates of the fixed effects and the different variance components
parameters (σ 2

s , σ 2
ε ) are also needed.

As can be seen in Figure 4.1, one subject (case 15) clearly behaves differently than
the other subjects, in that two measurements (type 2 and 3 electrodes) are much larger
than the others. This raises the question of the reliability of the mean or contrast
estimates and the corresponding F -test, a question that is discussed later.

The multivariate formulation is obtained by constructing n p-vectors of observa-
tions yi for each subject (with here p = 5), so that

yi = xβ + e5si + εi , i = 1, . . . , 16. (4.10)

Note that in this example we do not need to specify a different contrast matrix xi
for each subject as it is the same for all subjects. Also note that x given in (4.3)
corresponds to the contrast matrix ‘sum to zero contrast’. The name comes from the
constraint

∑5
j=1 λj = 0 we are using. One could specify other types of contrast such

as the ‘treatment contrast’. With these contrasts, one of the groups j is chosen as the
reference level and set to zero. For example, if the reference level is the first level of
the factor electrode, then first one would set β = (µ, λ2, λ3, λ4, λ5)

T , and then the
corresponding design matrix x using the ‘treatment contrast’ would be

x =


1 0 0 0 0
1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1

 =
[

1 0T4
e4 I4

]
, (4.11)

with 0p a p-dimensional vector of zeros. For the skin resistance data, the covariance
matrix � is constant for all subjects and is defined as

� = var(yi ) = var(e5si + εi ) = σ 2
s e5e

T
5 + σ 2

ε I5 = σ 2
s J5 + σ 2

ε I5, (4.12)
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with J5 being a 5 × 5 matrix of ones. In other words, � is the compound symmetric
(or exchangeable) 5 × 5 matrix

� =



σ 2
ε + σ 2

s σ 2
s σ 2

s σ 2
s σ 2

s

σ 2
s σ 2

ε + σ 2
s σ 2

s σ 2
s σ 2

s

σ 2
s σ 2

s σ 2
ε + σ 2

s σ 2
s σ 2

s

σ 2
s σ 2

s σ 2
s σ 2

ε + σ 2
s

σ 2
s σ 2

s σ 2
s σ 2

s σ 2
ε + σ 2

s

 .

Finally we can retrieve the general MLM formulation (4.5) by writing

y = (e16 ⊗ x)β + (I16 ⊗ e5)γ + ε = Xβ + Zγ + ε,

where y is a 16 × 5-vector of responses, ε is a 16 × 5-vector of errors, and ⊗
is the Kronecker product.1 We also have γ = γ1 = (s1, . . . , s16)

T , Z1 = I16 ⊗ e5,
so that Z1Z

T
1 = (I16 ⊗ e5)(I16 ⊗ e5)

T . It follows that E[y] = Xβ, and that

V = var(y) = (I16 ⊗ e5)σ
2
s I5(I16 ⊗ e5)

T + σ 2
ε I80 (4.13)

= σ 2
s (I16 ⊗ J5) + σ 2

ε (I16 ⊗ I5) = I16 ⊗ (σ 2
s J5 + σ 2

ε I5). (4.14)

The expression of V is hence simply a block-diagonal matrix with block element �

repeated 16 times.

4.2.3 Semantic Priming Data

The study of semantic and associative priming in picture naming is well known in
psychology (see e.g. Alario and Ferrand, 2000; Holcomb and McPherson, 1994).
The data we have come from an experiment in which 21 subjects had to decide as
quickly as possible whether a target (object’s drawing), which appeared after a prime
(action of a pantomime), was a real object or not. The delay between the pantomime
and the showing of the object was either short or long and the pantomime was either
related, neutral or unrelated. Several different real objects were used. In psychology,
this type of experiment is performed in order to study the effect of a prime in naming
objects known as ‘semantic and associative priming in picture naming’. For each
combination of real object and type of prime, five measures (time to decide whether
the object was real or not) were taken on each subject, of which the first one (trial)
and the errors (wrong object decision) were discarded and the means of the remaining
were taken as the response variable. The primary hypothesis is that the reaction time
changes when a link between the priming and the object (i.e. in the related item)
exists. Delay between the prime and the object is also assumed to affect the response.
The data were collected at the University of Geneva (see Moy and Mounoud, 2003).
We consider here a subsample involving the object ‘broom’, with 21 elderly subjects

1The Kronecker product between an m × p matrix A (with elements aij) and a q × r matrix B yields
the m · q × p · r matrix [aijB]i=1,...,m,j=1,...,p .
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(aged 70 and over). A two-way ANOVA model with repeated measures can be fitted
to these data, model given by

yijk = µ + λj + γk + (λγ )jk + si + (λs)ij + (γ s)ik + εijk, (4.15)

with λj , j = 1, 2 the fixed effect for the factor delay, γk, k = 1, 2, 3 the fixed effect
for the factor condition (i.e. if the pantomime is either related, neutral or unrelated)
with

∑
j λj = 0,

∑
k γk = 0, (λγ )jk, j = 1, 2, k = 1, 2, 3 the fixed effect for the

interaction between the two factors, with
∑

j

∑
k(λγ )jk = 0. The independent

normal random effects are given by the subject effect, si , the interaction between
the subject effect and the pantomime type (λs)ij, the interaction between the subject
effect and the factor delay (γ s)ik and εijk . Here an interaction term is added to the
model because it is assumed that the difference in reaction time between a short and
a long delay depends on the type of object that is shown as a prime (related or not).
Assuming the independence between all random effects and that the responses are
ordered as yi11, yi12, yi13, yi21, . . . , yi23, i = 1, . . . , 21, model (4.15) can be written
as yi ∼ N (xβ,�), a multivariate normal model of dimension 2 × 3 = 6 where

β = (µ, λ1, γ1, γ2, (λγ )11, (λγ )12)
T ,

x =


1 1 1 0 1 0
1 1 0 1 0 1
1 1 −1 −1 −1 −1
1 −1 1 0 −1 0
1 −1 0 1 0 −1
1 −1 −1 −1 1 1

 .

If we express (4.15) through a multivariate formulation (as in (4.10)), we can show
that, in this example, the subject covariance matrix � is

� = σ 2
ε I6 + σ 2

s J6 + σ 2
λs(I2 ⊗ J3) + σ 2

γ s(J2 ⊗ I3). (4.16)

As before the overall matrix V in (4.7) is block-diagonal with block element �

repeated 21 times.

4.2.4 Orthodontic Growth Data

These data come from an orthodontic growth study where a set of different
measurements were collected from X-rays of 27 children’s skulls (16 males and 11
females). The response variable is the distance in millimeters between the pituitary
and the pterygomaxillary fissure, two points that can be easily located on the X-
rays. The distance was measured at 8, 10, 12 and 14 years of age for each child.
These data were originally reported by Potthoff and Roy (1964) and subsequently
analyzed by several authors. A preliminary profile plot given in Figure 4.2 shows
that the distance grows linearly with age, each participant having their own intercept
and slope. The within-subject variability seems also slightly larger for boys than for
girls. This features conducted Pinheiro et al. (2001) to use the following model for
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this data

yijt = β0 + β1t + (β0g + β1gt)Ji(j) + γ0i + γ1i t + εijt (4.17)

with yijt the response for the ith subject (i = 1, . . . , 27) of gender j (j = 1 for boys
and j = 2 for girls) at age t = 8, 10, 12, 14, and

Ji(j) =
{

0 j = 1,

1 j = 2,

a dummy variable for gender. The vector β = (β0, β1, β0g, β1g)
T is the fixed effects

parameter, and γ0i , γ1i , εij t are the random effects levels for the ith observation.
All random effects are independent normal with zero mean and respective variance
σ 2
γ0
, σ 2

γ1
and σ 2

ε . This model is technically a random slope and intercept model.
Each subject’s line varies around the group average line, y = β0 + β1t for the boys
and y = (β0 + β0g) + (β1 + β1g)t for the girls. The multivariate formulation of
model (4.17) is achieved by writing the mean vector µj (i) = xj (i)β, where the
subject design matrix is xj (i) = (e4, e4Ji(j), t, tJi (j)) and t is the common age
vector t = (8, 10, 12, 14)T . Note that because the subject is nested in gender (a
subject can be either a boy or a girl), the design matrix is then different between
boys and girls. The covariance matrix at the cluster level (child) is � = σ 2

γ0
J4 +

σ 2
γ1

ttT + σ 2
ε I4.

While the traditional analysis relies on normality assumptions for all random
components, Pinheiro et al. (2001) identify a few outliers in the data and propose
to use a different estimator based on the multivariate t-distribution (see also Lange
et al., 1989; Welsh and Richardson, 1997).

4.3 Classical Estimation and Inference

4.3.1 Marginal and REML Estimation

Two classical techniques are used to estimate MLMs, namely the MLE and the
REML. Denote by α = (σ 2

0 , . . . , σ
2
r )

T the vector of all variance parameters and
by θ = (βT ,αT )T the overall parameter. The likelihood for n observations yi with
model (4.9) is given by

L(θ | y) = (2π)−1/(2n)|�i|−1/2
n∏

i=1

exp{(yi − xiβ)
T �−1

i (yi − xiβ)}, (4.18)

where |�i | denotes the determinant of �i . The MLE, θ̂[MLE], maximizes (4.18) or,
equivalently, solves for the fixed effects parameter β and variance components σ 2

j

respectively
n∑

i=1

xT
i �−1

i (yi − xiβ) = 0 (4.19)



92 MIXED LINEAR MODELS

Age (yr)

D
is

ta
nc

e 
fr

om
 p

itu
ita

ry
 to

 p
te

ry
go

m
ax

ill
ar

y 
fis

su
re

 (
m

m
)

20

25

30

8 9 10 12 14

M16 M05

8 9 10 12 14

M02 M11

8 9 10 12 14

M07 M08

M03 M12 M13 M14 M09

20

25

30

M15

20

25

30

M06 M04 M01 M10 F10 F09

F06 F01 F05 F07 F02

20

25

30

F08

20

25

30

F03

8 9 10 12 14

F04 F11

Figure 4.2 Orthodontic growth patterns in 16 boys (M) and 11 girls (F).

and
n∑

i=1

{(yi − xiβ)
T �−1

i [ZjZ
T
j ](ii)�−1

i (yi − xiβ) − tr(�−1
i [ZjZ

T
j ](ii))} = 0 (4.20)

for j = 0, . . . , r , where [ZjZ
T
j ](ii) again stands for the ith block-diagonal element

of ZjZ
T
j .

To solve this system of equations, let us first assume that α is known. Then, only
(4.19) is necessary, yielding

β(α) =
( n∑

i=1

xT
i �−1

i xi

)−1∑
xT
i �−1

i yi = (XT V −1X)−1XT V −1y. (4.21)

When α is unknown, but an estimate α̂ is available, one can simply estimate β by
replacing �i by �̂i (α̂) in (4.21). A common choice for α̂ is the MLE, denoted by
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α̂[MLE], typically obtained by solving (4.20) for j = 0, 1, . . . , r , after β is replaced
by its expression (4.21). The resulting estimate is the MLE for the fixed effects
parameter, β̂[MLE] which follows asymptotically a multivariate normal distribution
with mean β := β(α) and covariance matrix

var(β̂[MLE]) =
( n∑

i=1

xT
i �−1

i xi

)−1

= (XT V −1X)−1. (4.22)

In practice, the covariance matrix of β̂[MLE] has to be estimated by replacing �i

by �̂i , itself obtained by substituting α by α̂[MLE], in (4.22). Under regularity
conditions, one can show that α̂[MLE] and β̂[MLE] are asymptotically uncorrelated
and their asymptotic covariances being given by the inverse of their respective
Fisher information matrix; see, for instance, Searle et al. (1992, pp. 238–240).
Several methods for the actual computation of the MLE have been proposed in the
literature. Nowadays, Newton–Raphson procedures or clever implementations of the
EM algorithm are used to estimate all parameters in the model; see Lindstrom and
Bates (1988) and Searle et al. (1992, Chapter 8) for details.

Although the MLE is asymptotically efficient when the normality assumptions
are met, the variance components MLE is only asymptotically unbiased. In small
samples, the (finite) bias of α̂[MLE] can be large and become even larger when q

increases. To overcome this problem, Patterson and Thompson (1971) and Harville
(1977) introduce the REML of α from the MLE of independent contrasts of the data,
i.e. variables Ly where L is any (N − q − 1) × N matrix of full rank satisfying
LX = 0. The choice of L is unimportant as the log-likelihood never differs from

LR(α|y) = − 1
2 {(LyT V −1Ly + log |V | + log |XT V −1X|}, (4.23)

by more than a constant. Then α̂[REML] is obtained by maximizing (4.23) or, equiva-
lently, by solving for (the elements of) α the first-order equations ∂/∂σ 2

j LR(α|y) =
0 for j = 0, . . . , r . This can be rewritten after algebraic manipulations as

(y − Xβ)T V −1ZjZ
T
j V −1(y − Xβ) − tr(PZjZ

T
j ) = 0, j = 0, . . . , r, (4.24)

where P = V −1 − V −1X(XT V −1X)−1XT V −1; see Harville (1977) for details.
The matrix P is not block-diagonal, so (4.24) cannot be rewritten as a sum
over independent subvectors. The other difference with (4.20) lies in the trace
term that includes P instead of a block-diagonal element of V . The REML
estimator of the fixed effects, β̂[REML], is given by the formula (4.21) with �i

being replaced by �̂i(α̂[REML]), its REML estimate using the relationship (4.8).
Under mild conditions given by Cressie and Lahiri (1993) and Richardson and
Welsh (1994), (β̂T[REML], α̂T[REML])T is asymptotically normally distributed with
asymptotic variance given by the inverse of the Fisher information matrix. The two
off-diagonal blocks in this matrix are equal to zero, which proves that the REML
fixed effects and variance estimates are asymptotically independent. Like for the
MLE, var(β̂[REML]) is estimated by (4.22) where, conventionally, �i is replaced by
its REML estimate.
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4.3.2 Classical Inference

In this section we primarily consider methods for making inference about the mixed
effect parameters as the variance component α is often considered as a nuisance
parameter. Given that point estimates and their standard errors are available for both
the MLE and REML, one can easily test a single hypothesis, say H0 : βj = 0, by
computing z = β̂j /SE(β̂j ), where SE(β̂j ) is the (estimated) standard error of β̂j , and
compare it with a normal distribution. To simplify notation, we omit the subscript
[MLE] or [REML] and we only specify dependence on the method if necessary.
The z-statistic corresponds to a special case of the Wald test statistics for a null
hypothesis2 of the type H0 : Lβ = 0, given by

W 2 = (Lβ̂)T [LV̂ LT ]−1Lβ̂, (4.25)

where V̂ = (
∑n

i=1 xT
i �̂−1

i xi )
−1 is the estimated variance–covariance matrix of the

fixed effects estimate, and L is a contrast matrix.3 Under the null hypothesis, W 2 is
asymptotically distributed as a χ2 distribution with rank(L) degrees of freedom. As
noted by Dempster et al. (1981), the Wald test statistic does not take into account
the uncertainty in the estimation of the variance components in V̂ , and as a result the
estimated standard errors are too small in small samples. One possible way to correct
for this is to use approximate F -statistic,4 e.g.

F = W 2/rank(L), (4.26)

the numerator degrees of freedom being rank(L). In general, (4.26) is not directly
related to any particular ANOVA F -statistic but it seems reasonable to use the F

distribution as an approximation. The denominator degrees of freedom have to be
estimated from the data and several procedures have been proposed, among which,
the Satterthwaite approximation (Satterthwaite, 1941) is the most commonly used;
see Verbeke and Molenberghs (1997) and Verbeke and Molenberghs (2000, p. 57).
Another is to use the scaled Wald test statistics of Kenward and Roger (1997) based
on an adjusted variance matrix. Its small sample distribution was found to be well
approximated by a F distribution using Satterthwaite’s method.

The LRT test based on the MLE, as defined in Section 2.5.1, is also available for
testing canonical hypotheses in mixed models. It must be stressed though that such
a test is not possible with REML for hypotheses on fixed effects. Indeed, the mean
structure fitted under the null H0 : β(2) = 0 is not the same as that fitted with the full
model, leading to different contrasts. Therefore, the two restricted likelihoods are
based on different observations making them non-comparable. It is also possible to
use the score test to test H0 : β(2) = 0 but this test is apparently not commonly used
for that model.

2We use a slightly more general formulation than the canonical presentation of Section 2.5.1 as with
MLMs, it is more convenient to test contrasts.

3Note that although we use the same notation, L here is not necessarily the same as the contrast matrix
used to define the REML.

4An exact F -test exists in some cases, e.g. balanced ANOVA models; see Littell (2002, p. 482).
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The main focus of inference in the mixed model is probably hypotheses about
the fixed effects; however, in some applications, such as in genetics, the variance
components are of direct interest. In general, over-parametrization of the variance
structure also leads to inefficient and potentially poor assessment of standard errors
of the fixed effects parameters. It is therefore important to propose valid model-
based inference for the variance parameters. In principle, we know from the classical
theory, that α̂[MLE] is asymptotically normally with (asymptotic) covariance matrix
given by the inverse of the Fisher information matrix. So Wald tests or LRT tests
could be used to test restrictions to the variance parameters. However, the problem
is made complicated by the fact that null hypotheses of interest typically involve
constraints of the type σ 2

j = 0, i.e. the parameter of interest lies on the boundary
of the parameter space. In this situation, regularity conditions required for the
asymptotic distribution to be valid are not met. As a result, under H0, the normal
approximation for α̂[MLE] fails and the χ2 distribution for LRT or Wald tests is
no longer valid. The distribution of the small variance components when the true
parameter are not on the boundary but are close to it can also be affected; see
Stern and Welsh (1998). This situation is known in the literature as non-standard
asymptotics. However, Stram and Lee (1994) were able to prove that, when the
number of fixed effects remain constant, the LRT test statistic is often distributed
as a mixture of χ2 distributions. This work is based on the theory by Self and Liang
(1987) and assumes conditional independence of the error term in the model, i.e.
var(ε) = IN in (4.5).

This result is better explained through an example. Consider the orthodontic
growth data where the working mixed model only includes a random intercept
(model (4.17) without γ1i t). We are interested in testing whether adding a random
slope (for time) effect is necessary to capture a possible increase of variance over
time. To illustrate the exact same situation described in Stram and Lee (1994),
we add a non-null correlation between the two random effects by assuming that a
covariance σγ01 between γ0i and γ1i exists in model (4.17). The null hypothesis is
then H0 : σ 2

γ1
= 0, σγ01 = 0. In terms of covariance structure, we are testing that the

covariance matrix for (γ0i, γ1i )
T changes from

D =
[
σ 2
γ0

0

0 0

]
to the alternative H1:

D =
[
σ 2
γ0

σγ01

σγ01 σ 2
γ1

]
,

with σ 2
γ1

> 0 to guarantee that D is positive-definite. As two additional parameters
σγ01 and σ 2

γ1
have been added to the model, a naive application of the classical theory

would compare the corresponding LRT test with a χ2
2 distribution. The exact theory

states that a mixture with equal weights 0.5 for χ2
1 and χ2

2 must be used. Therefore, a
naive analysis could lead to larger p-values and, hence, acceptance of oversimplified
variance structures. This result also holds for the REML-based LRT (Morrell, 1998).
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Table 4.1 Estimates and standard errors for the REML for the skin resistance data
using model (4.2)–(4.3) with and without observation 15.

REML REML without observation 15

Parameter Estimate (SE) p-value Estimate (SE) p-value

µ 2.030 (0.341) <10−4 1.817 (0.284) <10−4

λ1 −0.213 (0.334) 0.525 0.076 (0.246) 0.756
λ2 0.842 (0.334) 0.014 0.580 (0.246) 0.221
λ3 0.549 (0.334) 0.105 0.234 (0.246) 0.345
λ4 −0.526 (0.334) 0.120 −0.399 (0.246) 0.110
σs 1.190 0.994
σε 1.495 1.068

As it is more accurate with a small sample we use this variant on the orthodontic
growth data. The LRT statistic for testing H0 : σ 2

γ1
= 0, σγ01 = 0 returns a value of

2(−216.3 + 216.9) = 1.2. A correct p-value is thereforep = 0.5 × P(χ2
2 > 1.2)+

0.5 × P(χ2
1 > 1.2) = 0.41, whereas the naive calculation yields p = 0.55. In this

case, both procedures conclude that a second random effect is probably not necessary
(assuming that no robustness issue arises here).

Stram and Lee (1994) also consider the case of testing k versus k + 1 random
effects. In that case, a mixture with equal weights 0.5 for χ2

k and χ2
k+1 is obtained

for the asymptotic distribution. A more complex mixture is also available when
l > 1 random effects are added to the model but requires complex calculations.
Again, extensions of these results to LRT tests based on the REML is possible (see
Morrell, 1998). Recent work by Scheipl et al. (2008) show that they are generally
more powerful and should therefore be preferably used. The Wald test and classical
confidence intervals for the variance parameter must also be corrected bearing in
mind that they are generally outperformed by their LRT counterparts. Finally, a
good account of these problems with applications can be found in Verbeke and
Molenberghs (2000, pp. 64–74).

4.3.3 Lack of Robustness of Classical Procedures

To illustrate the sensitivity of the classical estimators introduced in Section 4.3.1,
let us go back to the skin resistance data. In Figure 4.1 we saw that, out of the
80 readings, two measurements (resistance of electrodes of type 2 and 3) taken on
subject 15 were much larger than the others. The experimenter discovered later that
the reason for these two rather large readings was the excessive amount of hair on the
subject’s arm (see Berry, 1987). Table 4.1 presents the classical (REML) estimates
and standard errors with and without case 15.5

One may notice that there is considerable variation in the estimates of the different
electrode types (significant fixed effects) when observation 15 is present in the data.

5The raw data have been divided by 100.
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These differences are less obvious when case 15 is removed from the data. Also
a large difference is observed in the residual error variance estimate σ̂ 2

ε when it is
computed with and without case 15. This clearly illustrates the lack of robustness of
the REML.

To quantify in a more formal way the sensitivity of the MLE and REML, we
use the IF (see Section 2.2.1) which offers an elegant way to justify theoretically
these empirical findings. Indeed, both the MLE and REML are M-estimators
defined through estimating (4.19)–(4.20) and (4.19)–(4.24). Their IF is therefore
proportional to their defining �-functions. Specifically, the influence of the ith
independent cluster (i.e. the four measurements of the ith subject in the skin
resistance experiment) for both classical estimators of β is proportional to the score
function for that parameter

s(yi , xi; θ) = xT
i �−1

i (yi − xiβ). (4.27)

This quantity is unbounded in yi and in xi , which proves theoretically that both the
MLE and REML estimates for the fixed effects are not robust. The situation is even
worse for the variance component. The IF of α̂[MLE] is proportional to the summand
in (4.20), a quadratic form of yi and, as a result, a single abnormal response (such
as case 15’s readings for type 2 and 3 electrodes) can ruin α̂[MLE]. It is not possible
to assess directly the effect of a single cluster on the REML variance estimates as
the estimating equation cannot be defined at that level. However, a quadratic form
appears in the left-hand side of (4.24), proving that α̂[REML] is just as sensitive as
α̂[MLE] to contamination.

4.4 Robust Estimation

4.4.1 Bounded Influence Estimators

It is possible to extend the bounded-influence approach of Section 2.3.2 to MLMs.
Most of these methods are based on a weighted version of the likelihood, either
directly (Huggins, 1993; Huggins and Staudte, 1994) where a robustified likelihood
is maximized, or through a weighted score equation (Richardson and Welsh, 1995;
Richardson, 1997; Stahel and Welsh, 1997). Summarizing the previous work, Welsh
and Richardson (1997) introduce a very general class that encompasses most of the
previous proposals through

n∑
i=1

xT
i W0i�

−1/2
i ψ0i (�

−1/2
i U0i (yi − xiβ)) = 0 (4.28)

for the fixed effects, and

1

2

n∑
i=1

{ψ1i (�
−1/2
i U1i (yi − xiβ))

T W1i�
−1/2
i [ZjZ

T
j ](ii)�−1/2

i W1i

· ψ2i (�
−1/2
i U1i (yi − xiβ)) − tr(K2i�

−1
i [ZjZ

T
j ](ii))} = 0 (4.29)
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for each variance component σ 2
j . The matrices K2i are needed to ensure consistency

at the normal model; see Welsh and Richardson (1997) for details. Equations (4.28)
and (4.29) generalize the score equations (4.19) and (4.20) for the MLE. The
choice of the weight matrices W0i ,W1i , U0i ,U1i and functions ψ0i , ψ1i , ψ2i defines
each particular estimator including Huggins’ earlier proposals. The ψ functions are
typically chosen as Huber functions applied to all components but other choices are
also possible. The robust estimator with all weights equal to one and ψ0 = ψ1 = ψ2
is called robust MLE II in Richardson and Welsh (1995), as (4.29) is analogous
to Huber’s Proposal 2 in linear regression. Likewise, the choice ψ0 = ψ2 and
ψ1(z) = z gives the robust MLE I of Richardson and Welsh (1995). It is also possible
to define robust versions of the REML by using similar weighted equations to (4.29),
the difference being a more complex trace term.6 As before two variants exist
and are called robust REML I and II in Richardson and Welsh (1995) and Welsh
and Richardson (1997). As all the proposals discussed here are defined through
estimating equations of the type

∑
�(yi , xi; θ) where θ = (βT ,αT )T , the general

asymptotic theory forM-estimators applies. Although these developments generalize
the bounded-influence approach of Section 3.2.4 in a considerable level of generality,
several limitations can be mentioned. First, computation is generally complicated by
the presence of complex matrices K2i required for consistency. The problem may
even become intractable for redescending � or complex variance structures. Second,
in the presence of contaminated data, some small residual bias to the robust variance
estimates remains even for the robust REML proposals; see the simulation results
in Richardson and Welsh (1995, pp. 1437–1438). Finally, the breakdown point of
such bounded influence estimators can be low and this may be an issue in complex
models.

4.4.2 S-estimators

The reformulation of the MLM as a multivariate normal model offers an elegant way
to tackle the robustification problem. Specifically, S-estimators introduced earlier
in Section 2.3.3 for their good breakdown properties can easily be generalized to
balanced MLMs , i.e. models of type (4.8)–(4.9) where the cluster size pi = p and
�i = � for all clusters. This assumption is certainly not desirable from a practical
perspective as the number of applications involved unbalanced data or variable
repeated measures over time. As this theory is new (Copt and Victoria-Feser, 2006),
there is however hope that this limitation will be relaxed in the near future.

In the multivariate normal setting, one can define an S-estimator for the mean µ

and covariance � as the solution for these parameters that minimizes det(�) = |�|
subject to

n−1
n∑

i=1

ρ(di) = b0, (4.30)

6The equation is similar to (4.29) with the trace term tr(K2PZjZT
j
) where K2 = diag(K21, . . . ,K2n)

sitting outside the summation for all i.
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where
d2
i = (yi − µ)T �−1(yi − µ) (4.31)

are the Mahalanobis distances, ρ is a bounded function and b0 = E�[ρ(d)] ensures
consistency at the normal model. Using the relationship (2.33), the tuning parameter
of the ρ-function can be chosen to achieve a pre-specified breakdown point ε∗ (see
Section 2.3.3). A typical choice for ρ is Tukey’s biweight given in (2.20). For the
balanced case, the marginal MLM (4.9) simply becomes yi ∼ N (xiβ; �) where the
common covariance matrix is

� =
r∑

j=0

σ 2
j zjz

T
j (4.32)

and zj is the (common) element of the design matrix Zj for a particular cluster.
In the skin resistance data example, � is given by (4.32) (see also (4.12)), with
z0z

T
0 = I5 (for the residual variance) and z1z

T
1 = e5e

T
5 (for the subject random effect

variance). Likewise, for the semantic priming data example, according to (4.16),
we have that z0z

T
0 = I6 (for the residual variance), z1z

T
1 = J6, z2z

T
2 = I2 ⊗ J3 and

z3z
T
3 = J2 ⊗ I3 for the subject and its factors’ interactions random effects variances.
The additional structure on the mean and covariance matrix implied by the MLM

formulation does not create additional difficulties to extend the definition of an
S-estimator to that setting. Indeed, it can be defined as the solution for β, σ 2

j ,
j = 0, . . . , r of the same minimization problem under the constraint (4.30), with

di = di(β) =
√
(yi − xiβ)T �−1(yi − xiβ) (4.33)

and � having the particular structure (4.32). The problem can be restated as solving
the estimating equations∑

w(di)x
T
i �−1(yi − xiβ) =

∑
�β(yi , xi; θ) = 0, j = 0, . . . , r (4.34)

for β, and∑
{pw(di)(yi − xiβ)

T �−1zjz
T
j �−1(yi − xiβ) − w(di)d

2
i tr[�−1zjz

T
j ]}

=
∑

�σ 2
j
(yi , xi; θ) = 0, (4.35)

for the variance component α = (σ 2
0 , . . . , σ

2
r )

T (see Copt and Victoria-Feser, 2006).
Here w(d) = (∂/∂d)ρ(d)/d is the robust weight given to each observation.
Equations (4.34) and (4.35) can be rewritten in a more compact form as∑

�(yi , xi; θ) = 0

where � = (�T
β
,�σ 2

1
, . . . , �σ 2

r
)T . We propose to use Tukey’s biweight ρ-function

(2.20) and call the resulting robust estimator CBS for constrained biweight
S-estimator.
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Like for S-estimators in the linear regression model in Section 3.2.4, (4.34) and
(4.35) may have multiple roots, and hence a good high breakdown point estimator
is needed as a starting point to find the solution to (4.34) and (4.35) with a high
breakdown point. A simple algorithm has been suggested by Copt and Victoria-
Feser (2006) and is given in Appendix C; the way the high breakdown point starting
estimator is obtained is also detailed.

Following Davies (1987) and Lopuhaä (1992) for the normal multivariate case,
Copt and Victoria-Feser (2006) prove that, under mild regularity conditions, a
(constrained) S-estimator defined through (4.34) and (4.35) of θ is consistent and
asymptotically normal distributed. In particular, if the inverse of

∑n
i=1 xT

i xi exists,
β̂[S] has an asymptotic variance given by

e1

e2
2

( n∑
i=1

xT
i xi

)−1 n∑
i=1

xT
i �xi

( n∑
i=1

xT
i xi

)−1

, (4.36)

where

e1 = 1

p
E�[d2w(d)2] (4.37)

and

e2 = E�

[
w(d) + 1

p
d
∂

∂d
w(d)

]
(4.38)

and w is the weight function associated with the ρ-function. The constrained S-
estimator of α is also asymptotically normally distributed with variance given by a
complex sandwich formula (omitted here for simplicity); see Copt and Victoria-Feser
(2006, p. 294).

4.4.3 MM-estimators

In the same spirit as in the regression setting (see Section 3.2.4), Copt and Heritier
(2007) propose MM-estimators for the main effects parameter. They possess many
good properties, i.e. a high breakdown point even in the presence of leverage points,
a good efficiency and, unlike S-estimators, they can be used to build a robust
LRT-type test. This last property was the key incentive for their introduction; see
also Section 4.5. The class of MM-estimators was first introduced by Yohai (1987)
in the linear regression setting and was then generalized by Lopuhaä (1992) and
Tatsuoka and Tyler (2000) to the multivariate linear model. The idea is to dissociate
the estimation of the regression parameter (fixed effects) and variance component
(random effects), and proceed in two steps. In the MLM setting, one can first obtain
a high breakdown point estimator for the covariance matrix via the CBS estimator
(�̂CBS) then use a better tuned ρ function to obtain a more efficient M-estimator for
the fixed effects parameter (i.e. β). In practice the initial variance estimator is based
on a ρ-function ρ0(d; c0), the final estimator on ρ1(d; c1). The tuning constants are
usually chosen to achieve a specific breakdown point (through c0) and efficiency
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(through c1) at the model. Technically, the second step amounts to solving for β

n∑
i=1

�(yi , xi; β) =
n∑

i=1

w1(di)x
T
i �̂−1(yi − xiβ) = 0, (4.39)

where e.g. �̂ = �̂[CBS], w1(d) = (∂/∂d)ρ1(d; c1)/d is the weight function associ-
ated with ρ1, i.e. the ρ-function in the M-step. The solution of (4.39) is the MM-
estimator β̂[MM] of β.

Two natural choices for w1(·) (and, hence, ρ1) naturally arise from the regression
setting, either the Huber’s ρ-function (see Equation (2.17)) or the bounded Tukey’s
biweight ρ-function (see Equation (2.20)) leading to β̂[Hub] and β̂[bi], respectively.
The corresponding weights are

w1(d) = min(1, c1/|d|), (4.40)

for Huber’s weights and

w1(d) =


((

d

c1

)2

− 1

)2

if |d| ≤ c1

0 if |d| > c1

(4.41)

for Tukey’s biweight weights (see also (3.14)). These two proposals serve different
purposes. Huber’s estimator is well adapted to the cases when model deviations
occur in the response variable only such as in ANOVA or models with well-
controlled covariates. It can, however, be severely biased in the presence of (bad)
leverage points. This is not the case with Tukey’s biweight which is robust to both
response and covariate extreme observations. Note that for Huber’s weights (4.40),
the associated ρ-function is (2.17), and for biweight weights (4.41) it is (3.15) with
c replaced by c1 in both cases.

Copt and Heritier (2007) show that, under mild conditions on ρ1,√
n(β̂[MM] − β) has a limiting normal distribution with zero mean and var(β̂[MM]) =

H = (1/n)M−1QM−T where M and Q are proportional to � = EK [xT �−1x] and
K is the covariates’ distribution.7 A simpler representation for H can thus be given
by

H = 1

n

e1

e2
2

EK [xT �−1x]−1, (4.42)

where e1 and e2 are given in (4.37) and (4.38), respectively, with w(d) = (∂/∂d)

ρ1(d)/d . In the case of fixed covariates, K can be replaced by the covariates’ empir-
ical distribution in (4.42) yielding an asymptotic variance matrix H proportional to
the asymptotic variance of the MLE (4.22). The multiplicative constant e1/e

2
2 will

7In this section, we work under slightly more general conditions than in Section 4.4.2 by assuming
that the covariates are not necessarily fixed but have a common distribution K. The rationale for this is to
be able to account for leverage points or other problems in the covariates space. If one does not want to
specify a particular model for K and therefore get back to the previous setting, one only needs to replace
K by the empirical distribution of x.



102 MIXED LINEAR MODELS

Table 4.2 Values for c0 and c1 for Tukey’s biweight ρ-function (2.20) for the
multivariate normal model.

Constant c0 for a breakdown point of 50%

p 1 2 3 4 5 6 7 8 9 10

c0 1.56 2.66 3.45 4.09 4.65 5.14 5.59 6.01 6.40 6.77

Constant c1 for 95% efficiency

c1 4.68 5.12 5.51 5.82 6.10 6.37 6.60 6.83 7.04 7.25

be used to calibrate the efficiency of the MM-estimator (see below). However, we
prefer to ignore the reduced form (4.42) to derive an estimate of H and use instead
the sample analog of the sandwich formula

Ĥ = 1

n
M̂−1Q̂M̂−1,

where M̂ and Q̂ are the empirical versions of (2.28) and (2.29) for the MLM. For
instance, M̂ = (1/n)

∑n
i=1 �(yi , xi; β)s(yi , xi; β)T with � as in (4.39), and s is

the score function (4.27) where again �̂[CBS] has been plugged in for �. Such
an estimator is usually more robust when extreme covariate values are observed.
Numerical values are obtained by replacing β by β̂[MM].

4.4.4 Choosing the Tuning Constants

As mentioned earlier, the constant c0 of ρ0 is chosen to ensure a high (asymptotic)
breakdown point ε∗ (50% in our case) for the initial estimate �̂[CBS]. For that
purpose, the relationship

E[ρ0(d; c0)] = ε∗ max
x

ρ0(x; c0)

is solved for c0 to achieve a pre-specified breakdown point ε∗ with (in our examples)
Tukey’s biweight ρ0. To determine the constant c1, an efficiency level (typically
95%) needs to be specified a priori. As discussed earlier, formula (4.42) shows that
the relative efficiency of the MM-estimator relative to the MLE is given by the ratio

e2
2

e1
= p

E�[w1(d) + (1/p)d(∂/∂d)w1(d)]2

E�[d2w1(d)2] (4.43)

with w1(d) given in (4.40) or (4.41) depending on the choice for ρ1 (Huber or
biweight) and c = c1. The constant c1 is then found by equating (4.43) to the desired
efficiency level (e.g. 95%). Note that in the univariate case (p = 1), (4.43) reduces
to (3.20).

Both constants depend on the dimension p of the response vector and can be
obtained by Monte Carlo simulations. They are summarized in Table 4.2 for Tukey’s
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Table 4.3 Estimates and standard errors for the REML and the CBS–MM for the
skin resistance data using model (4.2).

REML CBS–MM

Parameter Estimate (SE) p-value Estimate (SE) p-value

µ 2.030 (0.341) <10−4 1.440 (0.233) <10−4

λ1 −0.213 (0.334) 0.525 −0.161 (0.175) 0.356
λ2 0.842 (0.334) 0.014 0.403 (0.175) 0.021
λ3 0.549 (0.334) 0.105 0.243 (0.175) 0.163
λ4 −0.526 (0.334) 0.120 −0.169 (0.175) 0.332
σs 1.190 0.842
σε 1.459 0.761

CBS computed with c0 = 4.65 and MM (biweight) computed with c1 = 6.10.

biweight ρ-functions (for ρ0 and ρ1). When p becomes large enough, an asymptotic
approximation given by Rocke (1996, p. 1330) can be used for Tukey’s biweight
which yields c1 = √

p/m where m is defined through ρ[bi](m) = 0.5ρ[bi](1), with
ρ[bi] given in (2.20) with c = 1. This approximation gives reasonable results from
p > 10. Finally note that the values of c0 and c1 given here obviously depend on the
choice of the ρ-function and would need to be recomputed had other ρ-functions
been used. Another option is available for the Huber estimator, i.e. when Huber
weights (4.40) are chosen. It stems from the fact that ρ in (2.17) is a function of
d , the Mahalanobis distance. As d2 has a chi-squared distribution with p degrees
of freedom χ2

p, c1 can be chosen as the square-root of a specific quantile of this
distribution.

4.4.5 Skin Resistance Data (continued)

As an illustration, we go back to the skin resistance data. Table 4.3 presents the
robust MM estimates β̂[bi] and robust CBS estimates α̂[CBS]8 and standard errors
for the electrode resistance data9 along with the REMLs obtained earlier. The MM
contrast estimates are not affected by case 15’s extreme readings for electrodes of
type 2 and 3. They are actually close to what was observed with case 15 removed
from the analysis. The CBS variances estimates, especially the residual estimate, are
much smaller confirming the previous findings that the REML estimates are unduly
inflated by the two abnormal readings.

To limit the influence of potential outlying observations, Berry (1987) actually
proposes to use a log(y + c) (c = 32) transformation of the data. A profile plot of
the transformed data is presented in Figure 4.3. Graphically, the log-transformation
limits the effect of the potential outliers (in particular observation number 15). The
estimated model parameters using the transformed data and the classical (REML)

8For simplicity, we call this set of robust estimators the CBS–MM.
9The raw data have been divided by 100.
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Figure 4.3 Profile plot for the skin resistance data (log-transformed).

and robust estimators are presented in Table 4.4. The overall mean, the contrasts and
variance components and p-values this time are similar in the two methods. This
illustrates the fact that outliers are model specific, i.e. the two abnormal readings on
the original scale do not appear as so extreme on the log-transformed one. This was
not the case with the non-transformed data. We defer the discussion on the effect of
the electrode type to Section 4.5.3.

4.5 Robust Inference

The MM-estimators were introduced earlier to offer more options for testing
hypotheses on the main effects. Typical tests usually involve contrasts or multidi-
mensional hypotheses that a component of the main effects parameter is null.

4.5.1 Testing Contrasts

A contrast test occurs when a linear combination of the elements of β, typically
represented by a (q + 1)-vector L, is tested. For example, suppose that we have a
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Table 4.4 Estimates and standard errors for the REML and the CBS–MM for the
skin resistance data using model (4.2) with a log-transformed response.

REML CBS–MM

Parameter Estimate (SE) p-value Estimate (SE) p-value

µ 4.913 (0.166) <10−4 4.918 (0.176) <10−4

λ1 −0.097 (0.158) 0.542 −0.058 (0.161) 0.718
λ2 0.396 (0.158) 0.015 0.376 (0.161) 0.019
λ3 0.179 (0.158) 0.262 0.167 (0.161) 0.299
λ4 −0.289 (0.158) 0.072 −0.282 (0.161) 0.079
σs 0.585 0.610
σε 0.701 0.689

CBS computed with c0 = 4.65 and MM (biweight) computed with c1 = 6.10.

one-factor within-subject ANOVA model with three levels, i.e. β = (β0, β1, β2) =
(µ, λ1, λ2) and suppose that the design matrix x is parametrized as ‘treatment’
contrasts (see e.g. (4.11)) with the third level as the reference level. Suppose also that
our goal is to test for differences among elements of the mean vector (µ1, µ2, µ3).
The corresponding null hypotheses are

H0 : µ1 − µ3 = β2 = λ1 = 0

H1 : µ1 − µ3 = β2 = λ1 �= 0,

H0 : µ2 − µ3 = β3 = λ2 = 0

H1 : µ2 − µ3 = β3 = λ2 �= 0,

H0 : µ2 − µ1 = β3 − β2 = λ2 − λ1 = 0

H1 : µ2 − µ1 = β3 − β2 = λ2 − λ1 �= 0.

The corresponding contrasts L are LT = (0, 1, 0), LT = (0, 0, 1) and LT =
(0, 1,−1).

Simple robust inference for contrasts can be performed using an estimate of the
asymptotic covariance of β̂[MM] given in (4.42). For H0 : LT β = 0, a robust z-test
statistic is given by

z-statistic = LT β̂[MM]
SE(LT β̂[MM])

(4.44)

with
SE(LT β̂[MM]) =

√
LT ĤL.

The correspondingp-value is obtained by comparing (4.44) with the standard normal
distribution. Note that, although we compute the z-statistic with the MM-estimator,
the same sort of calculation can be done with the S-estimator using the appropriate
asymptotic variance.
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4.5.2 Multiple Hypothesis Testing of the Main Effects

Tests involving multiple hypothesis can, for instance, be used to compare models
with the same variance structure or to assess the statistical significance of a factor
with several levels such as the type of electrode in model (4.2). Denote again by
βT = (βT

(1),β
T
(2)) the partition of the vector β into q + 1 − k and k components and

by A(ij), i, j = 1, 2 the corresponding partition of (q + 1) × (q + 1) matrices. The
hypothesis to be tested can usually be formulated as

H0 : β = β0 where β0(2) = 0,β0(1) unspecified,

H1 : β0(2) �= 0, β(1) unspecified.

The need for robust testing in this setting is obvious as the classical F -test has
reportedly been found to be unreliable under sometimes mild model deviations (see
e.g. (Copt and Heritier, 2007)). Robust alternatives to the classical Wald or score tests
are readily available through (2.47) for the robust Wald test, (2.48) for the robust
score test for any model. Robustifying the LRT is probably the most natural route
to build a robust alternative to the F -test but, as alluded to in Section 4.4.3, such
a test does not always exist for S-estimators. The reason is that the corresponding
test statistic is by construction zero. To see this, just note that the robust LRT in
(2.50) is based on the difference in

∑
ρ(di) for both the full and reduced models.

As the definition of S-estimators (4.30) sets both sums to b0 (up to a 1/n factor)
the difference is simply zero. As shown in Copt and Heritier (2007), MM-estimators
circumvent the problem by using another loss function ρ1, different from that used
to build the S-estimator, therefore the LRT statistic exits.

A direct application of the general theory of robust testing introduced in
Section 2.5 can then be used. Formally, the LRT statistic is computed in the same

way as in the general case. Again let di(β) =
√
(yi − xiβ)T �̂−1

[S](yi − xiβ) be the

Mahalanobis distance for observation i with �̂[S] a chosen S-estimator of � (e.g.
�̂[CBS]). The robust LRT -type test statistic is given by

LRTρ = 2
n∑

i=1

[ρ(di(β̇[MM])) − ρ(di(β̂[MM]))], (4.45)

where β̂[MM] and β̇[MM] are the robust estimators in the full and reduced models,
respectively, with corresponding loss function ρ1. More specifically LRTρ associated
with the Huber estimator, respectively the biweight estimator, is defined through
(4.39) with weight function (4.40), respectively (4.41), with corresponding ρ1-
function given in (2.17), respectively in (3.15). In both cases the covariance matrix
estimate is the CBS �̂[CBS].

An estimate of a robust Wald-type test statistic is naturally defined by

W 2
� = β̂T

[MM](2)Ĥ
−1
(22)β̂[MM](2),

where β̂[MM](2) is the robust MM-estimator of β(2) in the full model and Ĥ(22) the
corresponding covariance estimate. Finally, a score-(or Rao-)type test statistic is
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given by
R2
� = ZT

n Ĉ
−1Zn,

where Zn = (1/n)
∑n

i=1 �(yi , xi; β̇[MM])(2), β̇[MM] is the MM-estimator in the
reduced model with corresponding �-function given in (4.39) and weights in
(4.40) for Huber’s estimator and in (4.41) for Tukey’s biweight estimator. The
k × k positive-definite matrix Ĉ is Ĉ = M̂22.1Ĥ(22)M̂

T
22.1 with M̂22.1 = M̂(22) −

M̂(21)M̂
−1
(11)M̂(12) from the partitioning of the matrix M̂ . Again we have defined

the three test statistics for the MM-estimators but it is also possible to define the
robust Wald and score test in a similar fashion for the CBS estimators. Under the
null hypothesis, their asymptotic distribution is the same as in the general parametric
settings (see Section 2.5.4).

4.5.3 Skin Resistance Data Example (continued)

We now return to the problem of testing the multivariate hypothesis of equality of
mean resistances given by

H1 : H0 is not true µ unspecified

irrespective of the chosen contrast matrix.
The classical F -test statistic is 3.1455. When compared with an F4,60 distribution,

we find a p-value of 0.020 so that the test is significant at the 5% level. We could
conclude that there is a difference between the five electrode types. Using the Tukey’s
biweight ρ-function, the robust LRT test statistics yields a p-value of 0.086 at the
same 5% level. The test is, hence, not significant. Observations 15 and possibly 2
seem to have an influence on the MLE (or REML) estimates and consequently on
the F -test.

If the responses are log-transformed, the F -test statistic is 2.87 corresponding to
a p-value of 0.03 and the robust LRT test gives a p-value of 0.061. Although the log-
transformation gives similar results for the parameters’ estimates (see Table 4.4), it
does not completely reduce the influence of the outlying observations (number 15
and possibly number 2) on the classical F -test: we still reject the null hypothesis
of equal resistances. Note that Berry (1987) analyzes this dataset with subject 15
deleted, and finds a significant F -test on the original data (p-value of 0.044) and a
non-significant F -test on the log-transformed data (p-value of 0.10).

4.5.4 Semantic Priming Data Example (continued)

The model used to analyze this dataset is given in (4.15) with λj , j = 1, 2, the fixed
effect for the delay and γk , k = 1, 2, 3, the fixed effect for the condition. Table 4.5
gives the estimates for the REML and the CBS–MM and the standard errors for
the fixed effects computed using Tukey’s biweight weights. The contrasts for each
factor are the ‘sum’-type contrasts. We can see that both methods detect a significant
effect for the delay but with a borderline p-value of 0.046 for the REML whereas
the message is clearer with the robust method yielding a p-value of 0.003. Another
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Table 4.5 Estimates and standard errors for the REML and the CBS–MM for the
semantic priming data using model (4.15).

REML CBS–MM

Parameter Estimate (SE) p-value Estimate (SE) p-value

µ 633.436 (28.465) <10−4 586.420 (18.817) <10−4

λ1 −18.071 (8.974) 0.046 −17.876 (6.082) 0.003
γ1 18.563 (13.732) 0.179 14.317 (11.691) 0.221
γ2 −51.222 (13.732) <10−4 −56.994 (11.691) <10−4

λγ11 −3.690 (12.691) 0.771 12.706 (10.582) 0.230
λγ12 16.809 (12.691) 0.188 (8.844 (10.582) 0.403
σs 122.622 77.991
σλs 0.006 N/A
σγ s 29.433 27.199
σε 100.73 81.885

CBS computed with c0 = 5.14 and MM (biweight) computed with c1 = 6.37.

important feature of this model is the estimation of the random effects. The robust
estimate of the variance for the interaction between subject and delay is not reported.
This is because the robust estimator gives a negative value. This can sometimes
happen as some of the variance components correspond to covariances between
responses on the same subject and, hence, can in principle be negative. Standard
algorithms included in common statistical packages work around this solution by
imputing very small values close to zero each time a variance is found to be negative.
In this example, using the R package lme, one obtains a small value (0.006) for the
corresponding classical estimator (REML).10

We also tested the significance of each factor and of the interactions, using the
F -test and the robust LRT-type test. Results are presented in Table 4.6. The classical
F -test and robust LRT test give similar results for the three hypotheses with, again, a
stronger effect for the delay variable. In this example, the presence of possible outlier
does not seem to influence the results of the tests.

With this type of data, one can also consider a log-transformation, although in
this domain one usually prefers the original scale, mainly for interpretation reasons.
In Table 4.7 we give the REML and the CBS–MM estimates with corresponding
standard errors. The estimates and p-values for significance testing are quite similar
and lead to the same conclusions. Also note that again the variance of the random
effect for the interaction between the subject and the delay is set to zero with the
REML and found to be negative (and hence reported as N/A) with the CBS estimator.

We can also test the significance of each factor and of the interactions, using
the F -test and the robust LRT-type test. Results are presented in Table 4.8. Both
approaches lead to similar conclusions.

10The problem of negative variances is not specific to robust approaches but is a common problem in
the general ANOVA/MLM setting; see, for example, Searle et al. (1992).
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Table 4.6 Classical F -test and robust LRT for the fixed effects of the semantic
priming data using model (4.15).

p-value

Variable Classical F -test Robust LRT test

Delay 0.046 0.005
Condition 0.001 0.001
Delay:Condition 0.383 0.131

Robust LRT test computed using the CBS with c0 = 5.14 and
the MM (biweight) with c1 = 6.37.

Table 4.7 Estimates and standard errors for the REML and the CBS–MM for the
semantic priming data using model (4.15) with log-transformed data.

REML CBS–MM

Parameter Estimate (SE) p-value Estimate (SE) p-value

µ 6.421 (0.040) <10−4 6.386 (0.036) <10−4

λ1 −0.027 (0.012) 0.025 −0.028 (0.010) 0.007
γ1 0.032 (0.021) 0.127 0.029 (0.022) 0.177
γ2 −0.088 (0.021) <10−4 −0.092 (0.022) <10−4

λγ11 0.002 (0.017) 0.873 0.011 (0.018) 0.526
λγ12 0.018 (0.017) 0.271 0.017 (0.018) 0.336
σs 0.173 0.148
σλs 0.000 N/A
σγ s 0.069 0.069
σε 0.136 0.137

CBS computed with c0 = 5.14 and MM (biweight) computed with c1 = 6.37.

Table 4.8 Classical F -test and robust LRT for the fixed effects of the semantic
priming data using model (4.15), with log-transformed data.

p-value

Variable Classical F -test Robust LRT test

Delay 0.025 0.008
Condition 0.0003 0.001
Delay:Condition 0.390 0.272

Robust LRT test computed using the CBS with c0 = 5.14 and
the MM (biweight) with c1 = 6.37.
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4.5.5 Testing the Variance Components

Most of the effort in robust testing in MLMs has focused on the main effects
because the variance parameters are often considered as nuisance parameters. If one
is truly interested in testing whether some random effects could be removed, the
same problem mentioned above arises. As the null hypothesis typically involves
restrictions of the type σ 2

j = 0, the overall null parameter vector θ0 is on the
boundary of the parameter space and, as a result, the general theory of Section 2.5.3
breaks down. One could conjecture that the same kind of mixture of χ2 distributions
could be used for the robust Wald test. However such tests are known to perform
poorly in the classical case and a similar behavior is expected in the robust case. The
LRT test could constitute a better alternative but no such robust LRT test exists to the
best of our knowledge as the only proposal to date, the robust LRT test (4.45), only
targets hypotheses on the fixed effects. At this stage, the only viable option seems
to use bootstrapping techniques with the warning mentioned in Chapter 2 that the
simple bootstrap can fail when applied to robust estimators (as the breakdown point
may be reached in some bootstrap samples). Our practical recommendation in that
case is to use a robust estimator with a 50% breakdown point to have a good chance
of avoiding the problem.

4.6 Checking the Model

4.6.1 Detecting Outlying and Influential Observations

Since the MLM can be seen as a multivariate normal model, multivariate tools
can be used to measure in some sense at which point the observations are far
from the bulk of data. Such a tool is given by the Mahalanobis distances in (4.31)
in which β and � are replaced by suitable estimates. In order for the estimated
Mahalanobis distances not to be influenced (hence biased) by extreme observations,
it is necessary that β and � are replaced by their robust estimators, namely β̂[MM]
and �̂[CBS]. One then can rely on the asymptotic result that di in (4.31) has an
asymptotic χ2

p distribution and, hence, compare the estimated Mahalanobis distances
to, say, the corresponding 0.975 quantile. One can also, for comparison, estimate
the Mahalanobis distances using the MLE or the REML for β and the variance
components of �. A scatterplot of the robust versus classical Mahalanobis distances
would reveal the outlying observations, i.e. the observations with corresponding
robust and classical Mahalanobis distance above the 0.975 quantile of the χ2

p, as
well as the influential observations, i.e. the observations with corresponding robust
Mahalanobis distances above and the corresponding classical Mahalanobis distances
below the 0.975 quantile of the χ2

p. These influential observations are such that
the classical estimator is not able to detect them but is influenced by them. In
multivariate setting such as with MLM, Mahalanobis distances are usually preferred
to the weights per se to detect outlying observations.

As an example, consider the skin resistance dataset estimated in Section 4.4.5.
In Figure 4.1 we saw that out of the 80 readings, two measurements (electrodes of
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Figure 4.4 Scatterplot of the Mahalanobis distances for the skin resistance data. CBS
computed with c0 = 4.65 and MM (biweight) with c1 = 6.10.

type 2 and 3) taken on subject 15 were much larger than the others. Observation
number 2 corresponds to the second largest response. In Figure 4.4 we give the
scatterplot of the Mahalanobis distances computed with the REML and the CBS–
MM. The horizontal and vertical dotted lines correspond to the 0.975 quantile on
the χ2

5 distribution, to detect outlying observations. The REML and CBS–MM
estimators detect observations 15 and 2 as outlying observations. No influential
observations is present in the sample. With the log-transformed data, the scatterplot
of the Mahalanobis distances given in Figure 4.5, shows that the CBS–MM detects
observation 15 as an influential observation, and observation 2 is no longer consid-
ered as extreme.

As another example, consider the semantic priming dataset estimated in Section
4.5.4. In Figure 4.6 we give the scatterplot of the Mahalanobis distances computed
with the REML and the CBS–MM. One can see that the REML and CBS–MM detect
one outlier (observation 3) and the CBS–MM detects two influential observations
(observations 8 and 16). These observations are certainly the cause of the differences
found between the classical and robust estimates. With the log-transformed data, the
scatterplot of the Mahalanobis distances for the corresponding REML and CBS–
MM estimates is given in Figure 4.7. One can see that there are two outliers detected
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Figure 4.5 Scatterplot of the Mahalanobis distances for the skin resistance data (log-
transformed). CBS with c0 = 4.65 and MM (biweight) with c1 = 6.10.

by the REML and CBS–MM, and they do not seem to have much influence on the
estimates.

4.6.2 Prediction and Residual Analysis

As for the regression model of Chapter 3, residual analysis with MLMs is used to
check the model fit and also the model assumptions. In order to compute residuals,
one needs to be able to compute predicted values for the response vector y.
For that, and with MLM, one also needs to compute estimates for the random effects
levels. Actually, one can define predicted (or fitted) response values at different
levels of nesting or directly at the population level. Given estimated values for
θ = (βT , σ 2

0 , . . . , σ
2
r )

T , the predictions at the so-called population level are

ŷ = Xβ̂ (4.46)

and the predictions at the so-called cluster (lowest) level are

ŷ = Xβ̂ + Zγ̂ . (4.47)

We note that depending on the problem and for hierarchical models, there might be
different cluster levels, so that Zγ̂ in (4.47) can be modified accordingly. In all cases,
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Figure 4.6 Scatterplot of the Mahalanobis distances for the semantic priming data.
CBS with c0 = 5.14 and MM (biweight) with c1 = 6.37.

when predicting at the cluster levels, an estimate for γ̂ is needed so that the first step
is to define estimators for the random effects levels.

Recall that random effects are unobservable variables. However, given the
information contained in a sample and given a model, it is possible to predict (an
expected value of) the vector of random effects for each response. Classically, one
uses the Best Linear Unbiased Predictor (BLUP) given by11

γ̂ = DZT V −1(y − Xβ) (4.48)

where D = cov(γ ). Given values for the variance components α, (4.48) is computed
using (4.21) for β. An interesting interpretation of γ̂ is that it is the MLE based on the
likelihood of the joint distribution of f (y, γ ) = f (y|γ )f (γ ) (for fixed values of α).
Henderson et al. (1959) propose a set of equations for the simultaneous estimation
of γ̂ and β̂ indeed based on the joint distribution of y and γ .

Prediction and residual analysis with robust estimators is not as straightforward
as replacing all parameters in (4.48) by their robust estimates. If we choose this
simple approach, we face the risk that a random effect corresponding to a particular
observation yijk... could be overestimated or underestimated if this observation is
considered as an outlier in terms of the Mahalanobis distance. Indeed Copt and

11See e.g. McCulloch and Searle (2001, Chapter 9).
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Figure 4.7 Scatterplot of the Mahalanobis distances for the semantic priming data
(log-transformed). CBS computed with c0 = 5.14 and MM (biweight) with c1 =
6.37.

Victoria-Feser (2009) show that the IF of γ̂ in (4.48) depends on the robustness
properties of β̂(α) and also on the deviations (y − Xβ). This means that in order
to make the predictions robust to model deviations, one needs not only a robust
estimator such as the CBS–MM, but also to bound (4.48). Copt and Victoria-Feser
(2009) propose the use of ψ-based prediction defined as12

γ̂ψ = eψ,cDZT V −1/2ψ(V −1/2(y − Xβ)),

where ψ(r) = (∂/∂r)ρ(r) is a bounded function such as the Huber’s of Tukey’s
biweight functions, and eψ,c is a correction factor (see below). A bounded
ψ-function is necessary to guarantee the robustness of the corresponding prediction
estimator. Moreover, in order for γ̂ψ to behave similarly to γ̂ at the normal model, we
also need to impose that E[γ̂ψ ] = 0 and var(γ̂ψ) = var(γ̂ ). These constraints define
(implicitly) the correction factor eψ,c. For Tukey’s biweight ψ-function, Copt and
Victoria-Feser (2009) show that

eψ[bi],c =
(
I2(c) − 4

c2
I4(c) + 6

c4
I8(c) − 4

c6
I8(c) + 1

c8
I10(c)

)−1/2

12To compute V −1/2, we follow Richardson and Welsh (1995) and chose V −1/2 to be symmetric with
the same additive structure as V and V −1 and with the property that V −1/2V −1/2 = V −1.



4.6. CHECKING THE MODEL 115

−0
.1

0.
1

0.
3

Subject

−2 −1 0 1 2

−0
.1

0.
1

0.
3

Theoretical quantiles

S
am

pl
e 

qu
an

til
es

Figure 4.8 Boxplot and Q-Q plot of the (estimated) subject random effect for the skin
resistance data. CBS computed with c0 = 4.65 and MM (biweight) with c1 = 6.10.

where

Ik(c) =
∫ c

−c

rk d�(r);

see Appendix B for the computation of these truncated normal moments. For
Huber’s ψ-function, eψ[Hub],c = (1 − 2c2(1 − �(c)))−1/2. Finally, to compute γ̂ψ
in practice, one replaces α in (V and D) and β by their robust estimates.

Estimated random effects can be used to check the model assumptions. Recall
that the random effects are assumed to be normally distributed and independent of
each other. A normal probability plot (normal quantiles against ordered estimated
random effects) or a boxplot can be used to assess the normality assumption. Again,
consider as an example the skin resistance dataset estimated in Section 4.2.2. This
model has only one random effect, the subject. Figure 4.8 suggests that the normality
of the subject random effect is fairly respected.

As in the linear regression setting, residuals are defined as the difference between
the response and the predicted value, i.e. y − ŷ where ŷ is given in (4.47) and
possibly also (4.46). They thus depend on the choice of predicted response. However,
since random effects have been introduced into the model, it is more sensible to
use the subject predicted values to define residuals as population fitted values may
produce a structure in the residuals which is simply due to the random effects. The
residuals can also be standardized by means of the (estimated) covariance matrix
of y, yielding V −1/2(y − ŷ). Figure 4.9 displays the standardized residuals versus
fitted values at the subject level. We can see that there is no particular structure in the
residuals.
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Figure 4.9 Standardized residuals (subject level) versus fitted values for the skin
resistance data. CBS computed with c0 = 4.65 and MM (biweight) with c1 = 6.10.

4.7 Further Examples

4.7.1 Metallic Oxide Data

Until now, we have only presented models in which each level of a factor is combined
with every level of another factor. Hierarchical models are models where only some
levels of a factor are combined with the levels of another factor. More formally,
suppose that we have two treatments λ and γ with l and g levels, respectively. In the
language of experimental design, if each level of treatment γ appears only in one
level of treatment λ, γ is said to be nested in λ.

One can also extend the models so as to include so-called between subjects
factors. For example, we have the typical experiment in which a measurement is
taken from n1 samples of type j = 1 and n2 samples of type j = 2, and in each
sample the measure is taken on g ‘objects’. For example, the ‘objects’ can be rats, the
samples cages, n1 of which are given treatment j = 1 and others n2 given treatment
j = 2. This type of design is called a nested design. The rats are nested within the
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cages. A rat belongs either to cage 1 or cage 2. We use different notation to represent
nested factors. For example, suppose that γ is the parameter for the cage, then γj (i)
would represent rat i nested within cage j . The between subjects factor here is the
treatment.

In this section, we analyze a dataset originating from a sampling study designed
to explore the effects of process and measurement variation on the properties of lots
of metallic oxides (Bennet, 1954). Two samples were drawn from each lot. Duplicate
analyses were then performed by each of two chemists, with a pair of chemists
randomly selected for each sample. Hence, the response yijklm corresponds to the
metal content (percent by weight) measured on the ith metallic oxide type, on the jth
lots, on the kth sample, by the lth chemist for the mth analysis. The model can be
written as

yijklm = µ + λJi(j) + γj (i) + δj (i(k)) + ξj (i(k(l))) + εj (i(k(l(m)))), (4.49)

where

Ji(j) =
{

0 j = 1,

1 j = 2,

and with µ + λJi(j) the fixed effect and γj (i), i = 1, . . . , n = n1 + n2 the random
effect due to the lot, δj (i(k)), k = 1, . . . , 2n, the random effect due to the sample and
ξj (i(k(l))), l = 1, . . . , 4n, the random effect due to the chemist. We then have

µi = e8(µ + λJi(j)) = e8 ⊗ (1, Ji(j))(µ, λ)T = xiβ

and Z1 = In ⊗ e8 for σ 2
γ , Z2 = In ⊗ I2 ⊗ e4 for σ 2

λ , Z3 = In ⊗ I4 ⊗ e2 for σ 2
δ , so

that

� = σ 2
γJ8 + σ 2

λ I2 ⊗ J4 + σ 2
δ I4 ⊗ J2 + σ 2

ε I8.

Thus, the parameters to be estimated are the means for each type of metallic oxide
and the variances associated with lots, samples and chemists. This dataset contains
248 observations. We can then make n = 31 independent sub-vectors yi of size 8.
A plot of the responses by sample and chemist is given in Figure 4.10. One may
notice that whatever the sample or the chemist, the responses are rather low for lots
(observations) numbers 24 and 25 relative to the other lots.

Table 4.9 presents the estimates and standard errors for the CBS–MM. The mean
effect of the metallic oxide type is significant (p-value of 0.005), and the variances
are larger for the lot and the chemist, and smaller for the sample. As a comparison,
the REML gives larger estimates for the variance components of the lot and sample,
while a smaller estimate for the chemist (results not presented here). An analysis of
the Mahalanobis distances reveals that there are a few potential outlying observations
(see Figure 4.11). One can see that the REML and CBS–MM detect two outliers
(observations 24 and 30) and possibly observation 17 as well, while the CBS–MM
detects two influential observations (observations 12 and 25). The analysis based on
the classical Malahanobis distance alone is certainly misleading.
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Figure 4.10 Metal content response for each lot by sample and chemist.

4.7.2 Orthodontic Growth Data (continued)

The orthodontic growth data introduced in Section 4.2 are summarized in Figure 4.2
where individual scatterplots of the distance (between the pituitary and the pterygo-
maxillary fissure) versus age are displayed. Individual LS fits based on simple linear
regression are added to each scatterplot. They reveal that the estimated slope for
subject M13 is far larger than the other estimated slopes. Overall, it seems that the
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Table 4.9 Estimates and standard errors for the CBS–MM for the metallic oxide data
using model (4.49).

CBS–MM

Parameter Estimate (SE) p-value

µ 3.726 (0.066) <10−4

λ 0.184 (0.066) 0.005
σlot 0.317
σsample 0.144
σchemist 0.188
σε 0.186

CBS computed with c0 = 6.01 and MM
(biweight) computed with c1 = 6.83.
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Figure 4.11 Scatterplot of the Mahalanobis distances for the metallic oxide data.
CBS computed with c0 = 6.01 and MM (biweight) with c1 = 6.83.

responses for the boys vary more than those for the girls. Moreover, the plot suggests
that two observations on subject M09 are outliers. These potential outliers are also
detected in Figure 4.12 that presents the LS residuals plots by gender.

As discussed in Section 4.2, a plausible working model is thought to be

yijt = β0 + β1t + (β0g + β1gt)Ji(j) + γ0i + γ1i t + εijt (4.50)
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Figure 4.12 Residuals versus fitted values by gender, corresponding to individual
LS fits.

with yijt the response for the ith subject (i = 1, . . . , 27) of gender j (j = 1 for boys
and j = 2 for girls) at age t = 8, 10, 12, 14, and Ji(j) = 0 for boys (j = 1) and 1
for girls (j = 2).

Table 4.10 presents the CBS–MM estimates and standard errors for the model
parameters. The estimates show that the there is no significant mean intercept
difference between boys and girls (p-value of 0.896), while there is a significant
mean slope difference (p-value of 0.036). The random slope variance is found to
be relatively small compared with the random intercept variance. As a comparison,
the REML gives similar results, with a larger random slope variance estimate and
residual variance. The robust Mahalanobis distances detect observations correspond-
ing to the 9th and 13th boys as extreme, as was already found in the graphical data
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Table 4.10 Estimates and standard errors for the CBS–MM for the orthodontic data
using model (4.50).

CBS–MM

Parameter Estimate (SE) p-value

β0 17.395 (0.613) <10−4

β0g 0.080 (0.613) 0.896
β1 0.581 (0.052) 0.000
β1g −0.110 (0.052) 0.036
σγ0 1.584
σγ1 0.115
σε 1.04

CBS computed with c0 = 4.09 and MM
(biweight) computed with c1 = 5.82.
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Figure 4.13 Boxplot and Q-Q plot of the random effects for the orthodontic data.
CBS computed with c0 = 4.09 and MM (biweight) with c1 = 5.82.

analysis in Figure 4.2. It should be noted that Pinheiro et al. (2001) also find the
same outlying observations.

A plot of the estimated random effects (see Figure 4.13) shows that both the
random slope and the random intercept estimated with the robust estimator are
normally distributed.
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Figure 4.14 Standardized residuals (subject level) versus fitted values for the
orthodontic data. CBS computed with c0 = 4.09 and MM (biweight) with c1 = 5.82.

Figure 4.14 displays the standardized (Pearson) residuals versus fitted values at
the subject level. We can see that there is no particular structure in the residuals and
that subjects M13 and M09 are the largest outliers.

4.8 Discussion and Extensions

Despite its good robustness properties and the fact that it does not suffer from
computational problems when applied to complex data structures (as is often the case
when modeling longitudinal data with fixed covariates), the CBS-MM estimator has
a few limitations. The first limitation is, as stated earlier in this chapter, that the CBS-
MM estimator cannot handle unbalanced data at the moment unlike the very general
bounded influence approach of Richardson and Welsh (1995). This is particularly
annoying as balanced data are usually not the rule and one is more likely to encounter
unbalanced data especially in medical research.

The second limitation is the lack of inference theory for the variance components.
We have seen (see Sections 4.3.2 and 4.5.5) that no proper solution to this problem
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exists in the current robustness theory. Robust inferential procedures presented in
this book fail as they all assume the null hypothesis to be an interior point of the
parameter space. In addition, the robust LRT test defined in Section 4.5 targets only
hypotheses on the fixed effects. It even cannot be defined for a simple testing problem
on the variance parameters σ 2

j , e.g. testing the equality σ 2
j = σ 2

j ′ . Its extension to

more general hypotheses on θ = (βT ,αT )T may be proved challenging. In general,
further research work is needed in this area.

One possible robust extension of the MLM is to assume that the data follows a t
distribution instead of the normal distribution assumed throughout this chapter. For
example, Pinheiro et al. (2001) incorporate multivariate t distributed random com-
ponents for the t MLMs. More recently Lin and Lee (2006) propose a model based
on multivariate t distribution for autocorrelated longitudinal data by incorporating
first an autoregressive dependence structure in the variance components and extend
the work of Pinheiro et al. (2001) to allow for inference about the random effects and
predictions.

The next natural extension of robustness in the MLM environment is to extend
it to the class of generalized linear mixed models (GLMMs). Yau and Kuk
(2002) introduce robust maximum quasi-likelihood and residuals maximum quasi-
likelihood estimation to limit the influence of outlying observations. The way they
introduce robustness in the GLMM follows the same line of thoughts as used
by Richardson and Welsh (1995) in the MLM. Other attempts at robustifying the
GLMM can be found in Mills et al. (2002) or Sinha (2004). More recently Litière
et al. (2007a) study the impact of an incorrectly specified probability model on the
maximum likelihood estimation in GLMM. They study the impact of misspecifying
the random-effects distribution on the estimation and inference and show that the
MLE are inconsistent in the presence of such misspecifications.





5

Generalized Linear Models

5.1 Introduction

The framework of GLMs allows us to extend the class of models considered in
Chapter 3 and to address situations with non-normal (non-Gaussian) responses. In
particular, it allows us to consider continuous and discrete distributions for the
response, both symmetric and asymmetric. From the practical point of view, this
unified framework opens many perspectives formalized under the same setting and
sharing a number of properties. The fields of application are quite wide: certainly
biostatistics, but also medicine, economics, ecology, demography, psychology and
many more. The family of possible distributions for the response is quite large, but
the most common settings with no doubts include binary or binomial responses (e.g.
presence or absence of a characteristic, see the example in Section 5.5, or the number
of ‘successes’ in a sequence), count data (for example, the number of visits to the
doctor, see the example in Section 5.6) and positive responses (e.g. hospital costs,
see the example in Section 5.3.5).

All of the classical theory of GLMs is likelihood based, and the gain in popularity
of GLMs has helped in reinforcing the central role of the likelihood in statistical
inference. We will see that the robust versions of GLM presented in this chapter
move away from the likelihood setting, but retain almost all of its advantages in
terms of statistical properties and interpretation.

The route to the definition of the unified class of GLMs has been long and the steps
to it went through multiple linear regression (Legendre, Gauss, early 19th century),
the ANOVA of designed experiments (Fisher: 1920–1935), the likelihood function
(Fisher, 1922), dilution assay (Fisher, 1922), the exponential family of distributions
(Fisher, 1934), the probit analysis (Bliss, 1935), the logit models for proportions
(Berkson, 1944; Dyke and Patterson, 1952), the item analysis (Rasch, 1960), log-
linear models for counts (Birch, 1963) and inverse polynomials (Nelder 1966; see
McCullagh and Nelder (1989, Chapter 1), for additional information). Nelder and

Robust Methods in Biostatistics S. Heritier, E. Cantoni, S. Copt and M.-P. Victoria-Feser
c© 2009 John Wiley & Sons, Ltd
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Wedderburn (1972) show that the above problems can all be treated in the same way.
They also show that the MLE for all of these models can be obtained using the same
algorithm (IRWLS; see Appendix E.3).

Binary logistic regression has received quite a lot of attention in the robust
literature. In fact, one can find several robust contributions that follow different
approaches: the early contributions of Pregibon (1982), Copas (1988) and Carroll and
Pederson (1993), the L1-norm quasi-likelihood approach of Morgenthaler (1992),
the weighted likelihood approaches of Markatou et al. (1997) and Victoria-Feser
(2002), and the high breakdown approaches of Bianco and Yohai (1997) and
Christmann (1997). This wide contribution is certainly due to the fact that addressing
the binary framework is simpler than addressing the general GLM class. This more
general class has nevertheless been addressed with the work of Stefanski et al.
(1986) and Künsch et al. (1989), who derive optimal (OBRE, see Section 2.3.1)
and conditionally unbiased estimators for the entire GLM class. This theory is
quite complex (even in its simpler conditional approach) and only the case of
logistic regression can be implemented easily. More recently, Cantoni and Ronchetti
(2001b) define Huber and Mallows-type estimators and quasi-deviance functions for
application within the GLM framework, see also Cantoni (2003, 2004a) and Cantoni
and Ronchetti (2006). Here we present this last piece of work which seems to us
the most promising for use in the entire GLM class. In fact, it has the advantage
over other proposals of having computationally tractable expressions (that allow us
to consider the entire class of GLM and not only the logistic application) and of
jointly providing a solution to the variable selection question through the definition
of quasi-deviance functions.

The present chapter is organized as follows. In Section 5.2 we set up the notation
and define the model. We continue in Section 5.3 where we define the class of
(robust) estimators and give their properties. The technique is illustrated on a real
example in Section 5.3.5. The variable selection issue is addressed in Section 5.4.2
where a family of quasi-deviance functions are defined and its distribution stud-
ied. Section 5.4.3 considers the application to the previous studied example. Two
additional complete data analyses with robust model selection are presented in
Sections 5.5 and 5.6. Finally, Section 5.7 discusses the possible extensions of this
work.

5.2 The GLM

5.2.1 Model Building

We introduce here the GLM modeling approach without necessarily giving a
complete and exhaustive treatment of the subject. Instead, we refer the interested
reader to the general references treating GLM modeling, which include Dobson
(2001) (a good starting point for beginners), Lindsey (1997) (an applied approach),
McCullagh and Nelder (1989) (with additional technical details) and Fahrmeir and
Tutz (2001) (more focused on discrete data).
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Table 5.1 Properties of some distributions belonging to the exponential family.

Distribution θi(µi) φ E[yi ] var(yi )

Normal N (µi , σ
2) µi σ 2 µi = θi σ 2

Bernoulli B(1, pi) log(pi/(1 − pi)) 1 pi = exp(θi)

1 + exp(θi)
pi(1 − pi)

Scaled B(m, pi)/m log(pi/(1 − pi)) 1/m pi = exp(θi)

1 + exp(θi)
pi(1 − pi)

binomial
Poisson P(λi) log(λi) 1 λi = exp(θi) λi
Gamma �(µi , ν) −1/µi 1/ν µi = −1/θi µ2

i /ν

See Appendix D for the distributions definitions.

Consider a sample of n individuals, for which we define the three following
ingredients.

• The random component. n independent random variables y1, . . . , yn which
are assumed to share the same distribution from the exponential family, that is
with density that can be written as

f (yi; θi, φ) = exp

[
yiθi − b(θi)

ai(φ)
+ c(yi, φ)

]
(5.1)

for some specific functions a(·), b(·) and c(·). We denote µi = E[yi] and
var(yi) = φvµi , where the specific form of vµi depends on the distributional
assumption on yi , see the last column of Table 5.1.

The most common families of distributions such as the normal, the binomial,
the Poisson, the exponential, and the Gamma belong to the exponential family
of distributions. Some of these distributions will be considered more closely
here.

The parameter θi , which is a function of µi , is called the natural parameter
and φ is an additional scale or dispersion parameter, usually considered
as a nuisance parameter. We note that φ is a constant in certain models
(for example, φ = 1/m for the scaled binomial and φ = 1 for the Poisson
distribution), and coincides with σ 2 in the normal model, see the fourth column
of Table 5.1.

• The systematic component. A set of parameter βT = (β0, β1, . . . , βq) and q

explanatory variables or covariates that can either be quantitative (numerical)
or qualitative (levels of a factor, then coded with dummy variables as in linear
regression). For each individual i = 1, . . . , n, the covariates are stored in the
vector xT

i = (1, xi1, . . . , xiq), from which the linear predictor ηi = xT
i β is

constructed. The parameter β0 therefore identifies the intercept. The pooled
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covariate information is collected in a design matrix X as follows:

X =


xT

1

xT
2
...

xT
n

 . (5.2)

As in the linear model, linearity in GLM is intended with respect to the
parameters. We note that one could introduce transformed covariates, log(xij)

or x2
ij, for example, as well as interactions. Moreover, there are situations where

a parameter βj is known a priori: the corresponding term in the linear structure
is called an offset in the GLM terminology.

• The link. A monotone link function g which links the random and the
systematic components of the model

g(µi) = ηi = xT
i β. (5.3)

The link function defines the form of the relationship between the mean µi

of the response and the assumed linear predictor ηi . It needs to be monotonic
and differentiable. Moreover, it can be chosen to ensure that the estimated
parameter lies in the admissible space of values (for example, the interval
(0, 1) for the binomial distribution and (0,∞) for the Poisson distribution).
The natural or canonical link function is that relating the natural parameter
directly to the linear predictor (θi = θi(µi) = ηi = xT

i β). Models making use
of the canonical link enjoy convenient mathematical and statistical properties,
but the canonical link can be easily replaced with a more appropriate link
function from the practical or interpretation point of view (see Example 5.3.5).

The definition of model (5.3) may be surprising at first to people used essentially
to the linear model setting, but the connection with the linear model appears more
evident when this latter (as defined in (3.1)) is rewritten in the equivalent form

E[yi] = µi = xT
i β,

with yi ∼ N (µi, σ
2). In this case, the link function is the identity function. In the

GLM setting, the distributional assumptions are defined with respect to the response
itself (conditionally on the set of explanatory variables) and not with respect to an
additive error term. Table 5.1 provides an overview of the components of a GLM
model for the most common situations.
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5.2.2 Classical Estimation and Inference for GLM

The parameters of model (5.3) are usually estimated by maximizing the correspond-
ing log-likelihood (with respect to β)

l(β; y) = l(µ; y) = log

( n∏
i=1

f (yi; θi, φ)
)

=
n∑

i=1

[
yiθi − b(θi)

ai(φ)
+ c(yi, φ)

]
=

n∑
i=1

li (µi; yi), (5.4)

where µi = g−1(xT
i β) and θi = θi(µi) = θi(g

−1(xT
i β)) are functions of β.

The maximization of the log-likelihood (5.4) is performed numerically, either
directly or via an IRWLS, see McCullagh and Nelder (1989, Section 2.5) and
Appendix E.3. The resulting estimator β̂[MLE] enjoys the general properties of
maximum likelihood estimation, in particular the normal asymptotic distribution
with variance given by the inverse of the Fisher information matrix I (β) (see (2.30)),
that is

√
n(β̂[MLE] − β) ∼ N (0, I−1(β)).

Based on this asymptotic result, one can construct univariate test statistics for the
coefficients βj , j = 0, . . . , q as

β̂[MLE]j
SE(β̂[MLE]j )

(5.5)

with

SE(β̂[MLE]j ) =
√

1

n
[Î−1(β̂[MLE])](j+1)(j+1),

and using an estimator Î for the Fisher information matrix

Î (β̂[MLE]) = 1

n

n∑
i=1

∂

∂β
li (µi; yi) ∂

∂βT
li (µi; yi)

∣∣∣∣
β=β̂[MLE]

.

The statistic (5.5) is labeled the t-statistic if the dispersion parameter (φ) is estimated
(for example, for the Gaussian and Gamma distributions), and is labelled the z-
statistic if the dispersion parameter is known (for example, for the binomial and
Poisson distributions). The test statistic (5.5) has a tn−(q+1) distribution under the
null hypothesis H0 : βj = 0 in the first case and the standard normal in the second.
The p-value for a two-sided alternative hypothesis H1 : βj �= 0 is therefore com-
puted as P(|z-statistic| > |zobs|) = 2(1 − �(|zobs|)) or P(|t-statistic| > |tobs|) =
2(1 − tn−(q+1)(|tobs|)), where zobs and tobs are the values taken by the statistic (5.5)
on the sample.

Note that the z/t-statistic is a Wald approximation of the log-likelihood (second-
order Taylor expansion of the log-likelihood at the MLE) to test H0 : βj = 0 and is
sometimes misleading with binomial GLMs. In fact, a small value for the z/t-statistic
can either correspond to a small LRT statistic or to a situation where |βj | is large, the
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Wald approximation is poor and the likelihood ratio statistic is large. These problems
can occur in cases when the fitted probabilities are extremely close to zero or one.
This is called the Hauck–Donner phenomenon, see Hauck and Donner (1977).

The asymptotic result is also useful in constructing approximate (1 − α) confi-
dence intervals (CIs), according to the formula

(β̂[MLE]j − q(1−α/2)SE(β̂[MLE]j ); β̂[MLE]j + q(1−α/2)SE(β̂[MLE]j )),

where q(1−α/2) is either the (1 − α/2) quantile of the standard normal distribution or
of the tn−(q+1) distribution, depending on whether φ is known or not.

For binomial and Poisson models, it sometimes happens that data do not satisfy
the variance assumption of the model, but rather that var(yi) = τvµi (recall that
φ = 1 for binomial and Poisson models). This phenomenon is called over- or under-
dispersion depending on whether τ is larger or smaller than one. One of the main
reasons for over-dispersion is clustering in the population (the parameter θi varies
from cluster to cluster, as a function of cluster size for example). This means that the
parameter θi is regarded as random rather than fixed. Beyond normality, specifying
the expectation and the variance structure separately (first and second moment) does
not correspond to a distribution function, therefore preventing the definition of a
likelihood function. In this case, the model is fitted via the estimating equations

n∑
i=1

(
yi − µi

τvµi

)
µ′
i = 0, (5.6)

where µ′
i = ∂µi/∂β.

Equation (5.6) corresponds to the maximization of the so-called quasi-likelihood
function

Q(µ; y) =
n∑

i=1

Q(µi; yi) =
n∑

i=1

∫ µi

yi

yi − t

τvt
dt, (5.7)

where µT = (µ1, . . . , µn) and yT = (y1, . . . , yn). Under some general condi-
tions (see Wedderburn, 1974) the quasi-likelihood estimator is asymptotically nor-
mally distributed. Moreover, the MLE and the maximum quasi-likelihood estimator
(MQLE) are the same for all of the models of the one-parameter exponential family
(binomial and Poisson, for example).

Note that τ has no impact on (5.6) because it cancels out, but does have an impact
on the computation of the standard errors of the coefficients. The estimation of τ is
based on the RSS as follows

τ̂ = 1

n − (q + 1)

n∑
i=1

(yi − µ̂i)
2

vµ̂i

,

where µ̂i are the fitted values g−1(xT
i β̂[MQLE]) on the response scale. The estimator

τ̂ is an unbiased estimator of τ if the fitted model is correct.
A particular function based on the log-likelihood plays an important role in GLM

modeling. It is called the deviance, which, assuming that ai(φ) in (5.1) can be
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decomposed as φ/wi , is defined by

D(µ̂; y) = 2φ[l(y; y)− l(µ̂; y)] =
n∑

i=1

2φ[li(yi; yi) − li(µ̂i; yi)] =
n∑

i=1

φ di,

(5.8)
where µ̂ is the vector of fitted values g−1(xT

i β̂[MLE]) and where l(µ̂; y) is the log-
likelihood of the postulated model and l(y; y) is the saturated log-likelihood for
a full model with n parameters. The deviance measures the discrepancy between
the performance of the current model via its log-likelihood and the maximum log-
likelihood achievable. It can therefore be used for goodness-of-fit purposes. Large
values of D(µ̂; y) indicate that the model is not good. On the other hand, small
values of D(µ̂; y) arise when the log-likelihood l(µ̂; y) is close to the saturated log-
likelihood l(y; y).

The distribution of the deviance is exactly χ2
n−(q+1) for normally distributed

responses, and this distribution can be taken as an approximation for other dis-
tributions, for example binomial and Poisson. However, D(µ̂; y) is not usable for
goodness-of-fit for Bernoulli responses, because it only depends on the observations
y through the fitted probabilities µ̂ and as such does not carry information about the
agreement between the observations and the fitted probabilities (see Collett 2003a,
Section 3.8.2). The deviance can be regarded as a LRT statistic for testing a specific
model within the saturated model, assuming φ = 1. This is the case for binomial and
Poisson models, but for other distributions, e.g. normal or Gamma, the deviance is
not directly related to a LRT statistic.

The deviance is also used to construct a difference of deviance statistics to
compare nested models. Suppose that a model Mq−k+1 with (q − k) explanatory
variables (plus intercept) is nested into a larger model Mq+1 with q explanatory
variables (plus intercept). To test the null hypothesis, which states that the smallest
model suffices to describe the data, one can test whether the parameters associated
with the variables not included in the smallest model are equal to zero with the test
statistic

�D(µ̂, µ̇) = D(µ̇; y) − D(µ̂; y) = 2φ[l(µ̂; y) − l(µ̇; y)], (5.9)

where µ̂ = µ(β̂[MLE]) and µ̇ = µ(β̇[MLE]) are the MLE estimates in the full model
Mq+1 and the reduced model Mq−k+1, respectively.

If φ is known and, under the null hypothesis that the smaller model is good enough
to represent the data, the distribution of �D(µ̂, µ̇) can be approximated by a φ χ2

k

(it is the LRT statistic up to a factor φ). This approximation is more accurate than the
approximation of the deviance itself by a χ2

n−(q+1) distribution. When φ is not known
(e.g. normal, Gamma) the usual approximation under H0 uses an F -type statistic:

(D(µ̇; y)− D(µ̂; y))/k

φ̂
∼ Fk,n−(q+1),

where φ̂ = D(µ̂; y)/(n− (q + 1)). Note that for the normal case with identity link
this is an exact result, but for the Gamma model the accuracy of this approximation
is not well known.
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A natural definition of a quasi-deviance function follows from the definition (5.7)
of a quasi-likelihood function:

QD(µ̂; y) = Q(y; y)− Q(µ̂; y). (5.10)

By analogy with the deviance function, one can use the quasi-deviance function for
inference purposes to test whether a smaller model Mq−k+1 nested into a larger
model Mq+1 is a good enough representation of the data with the difference of
quasi-deviances statistics:

�QD(µ̂, µ̇) = Q(µ̇; y)− Q(µ̂; y), (5.11)

where µ̂ = µ(β̂[MQLE]) and µ̇ = µ(β̇[MQLE]) are the MQLE estimates in the full
model Mq+1 and the reduced model Mq−k+1, respectively.

The test statistic �QD(µ̂, µ̇) is then compared with a χ2
n−(q+1) distribution, at

least when φ is known. As with the likelihood, an F -type test is more appropriate if
φ is unknown, see above.

5.2.3 Hospital Costs Data Example

We introduce here a dataset on health care expenditures previously analyzed by
Marazzi and Yohai (2004) and Cantoni and Ronchetti (2006). The aim is to
explain the cost of stay (cost in Swiss francs) of 100 patients hospitalized at the
Centre Hospitalier Universitaire Vaudois in Lausanne (Switzerland) during 1999 for
‘medical back problems’ (APDRG 243). The following explanatory variables have
been measured: length of stay (los, in days), admission type (adm: 0 = planned,
1 = emergency), insurance type (ins: 0 = regular, 1 = private), age in years (age),
sex (sex: 0 = female, 1 = male) and discharge destination (dest: 1 = home,
0 = another health institution). The median age over the 100 patients is 56.5 years
(the youngest patient is 16 years old and the oldest is 93 years old). Moreover,
60 individuals out of the 100 in the sample were admitted as emergencies and only
9 patients had private insurance. Also, both sexes are well represented in the sample
with 53 men and 47 women. After being treated, 82 patients went home directly.
Modeling medical expenses is an important step in cost management and health
care policy. Establishing the relationship between the cost and the above explanatory
variables could, for example, help in reducing costs in health care expenditures which
are increasing extremely fast everywhere and are therefore a matter of concern.

In addition to be positive, cost measurements are known to be highly skewed.
Moreover, it is also known that the thickness of the tail of their distribution is often
determined by a small number of heavy users. Several authors (e.g. Blough et al.,
1999; Gilleskie and Mroz, 2004) report that the variance of health care expenditures
data can be considered as proportional to the squared mean. We therefore consider
fitting a Gamma GLM model with a logarithmic link. Note that this model can be
seen as issued from a multiplicative model yi = exp(xT

i β) · ui , where the error term
ui has constant variance. This is the reason why we use the logarithmic link instead
of the canonical link g(µi) = 1/µi (the inverse function), which, by the way, does
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Table 5.2 Classical estimates for model (5.12).

Variable Estimate (SE) 95% CI p-value

intercept 7.234 (0.147) (6.940; 7.528) <10−4

log(los) 0.822 (0.028) (0.766; 0.878) <10−4

adm 0.214 (0.050) (0.114; 0.314) <10−4

ins 0.093 (0.079) (−0.065; 0.252) 0.2414
age −0.0005 (0.001) (−0.003; 0.002) 0.6790
sex 0.095 (0.050) (−0.005; 0.195) 0.0602
dest −0.104 (0.069) (−0.243; 0.034) 0.1353
1/ν (scale) 0.0496

The estimates are obtained by maximum likelihood, see (5.4) (CI, confidence
interval).

not guarantee that µi > 0. More specifically, we consider a parameterization of the
Gamma density function such that one parameter identifies µi and the variance
structure is defined by v(µi) = µ2

i /ν, see the top of page 201 in Cantoni and
Ronchetti (2006).

We start by fitting the full model, that is the model with all of the available
explanatory variables, as follows

log(E[cost])
= β0 + β1 log(los) + β2adm+ β3ins+ β4age+ β5sex+ β6dest.

(5.12)

The MLE parameter estimates, their standard errors and the p-values of the signif-
icance tests (5.5) are given in Table 5.2. Before proceeding with any interpretation,
it is recommended to validate the model. In this example, the deviance statistic (5.8)
takes the value 5.07, which yields a p-value P(D > 5.07) � 1 when compared with
a χ2

n−(q+1) = χ2
93 distribution. This large p-value provides no evidence against the

null hypothesis that the postulated model is better than the saturated model.

5.2.4 Residual Analysis

Residual diagnostic plots are an alternative to formal tests. In the GLM setting several
types of residuals can be defined, between which the most common are:

• the Pearson residuals riP = (yi − µ̂i)/

√
φ̂vµ̂i

;

• the standardized Pearson residuals riPS = (yi − µ̂i)/

√
φ̂vµ̂i

(1 − hii), where
the leverages hii are the diagonal entries of the hat matrix, see (3.11);

• the deviance residuals riD = sign(yi − µ̂i)
√
di ;

• the standardized deviance residuals riDS = riD/

√
φ̂(1 − hii).
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Figure 5.1 Diagnostic plots for the Gamma model (5.12), estimated with a MLE.

Residual plots can help in identifying departures from the linearity assumption
(when plotted against continuous covariates), serial correlation (when plotted against
the order in which the observations are collected, if known) and particular structures
(when plotted against predicted values). In addition, it is usual to look at a Q-Q plot of
the residuals against the normal quantiles. Note, that for binary logistic models very
often structures appear on the residuals plots which are due to the discrete nature of
the response variable but do not indicate fitting problems.

Since the diagnostic approach is based on a classical fit, it has therefore to be
used with caution. In fact, masking can occur, where a single large outlier may mask
others. It is worth noting that in the GLM setting, an outlier or extreme observation
would be an observation (yi, x

T
i ) such that, under the GLM model that fits the

majority of the data, yi is in some sense far from its fitted value g−1(xT
i β̂). The

quantity yi − g−1(xT
i β̂) can be large because yi is an extreme response and/or the

covariates xi are (at least for one of them) extreme themselves. A classical residual
analysis can suffer from the masking effect in that the distorted data appear to be the
norm rather than the exception. For instance, consider a regression setting where
an outlier may have such a large effect on a slope estimated by a MLE that its
residual (or any other measure used for diagnostic) will tend to be small, whereas
other observations will have corresponding relatively large residuals. This behavior
is due to the fact that classical estimates are affected by outlying points and are
pulled in the direction of them. We advocate later for the use of a robust analysis in
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Figure 5.2 cost versus log(los) for the Gamma example of Section 5.2.3.

the first place (see also the discussion in Section 1.3). We nevertheless propose as
a starting point to look at a few plots. In Figure 5.1 we present the diagnostic plots
for the fitted Gamma model as per (5.12). In this figure we represent the Pearson
residuals as a function of the fitted values (top left panel), a normal Q-Q plot of
the standardized deviance residuals (top right panel), a scale–location plot of the
standardized deviance residuals as a function of the fitted values (bottom left panel)
and a residuals versus leverage plot, that is, a plot of the standardized deviance
residuals as a function of the leverage hii (bottom right panel). This last plot comes
with added contour lines of equal Cooks distances (see Cook and Weisberg, 1982).
Note that the plot function in R can also produce two extra plots, namely the Cook’s
distances and the Cook’s distances as a function of the leverage.

From Figure 5.1, we can see that there seems to be few outlying/influential
data points with large residuals, in particular those identified with their observation
number. To see why these observations are extreme, one can for example look at the
plot of the variable cost as a function of the variable log(los), as in Figure 5.2. We
see from this figure that the points with large residuals are in fact points which are
extreme with respect to observations with the same or similar values of log(los).
Even though the Gamma model admits variance increasing with the covariates (of the
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order of µ2
i = exp(2xT

i β)), observations 14, 28, 63, 44 and 21 are considered too
extreme with respect to the bulk of the data. On the other hand, observation 31 could
be a leverage point, but is not otherwise worrying given that its y-value lies in a
region covered by the model assumptions.

The more extreme observations identified with this diagnostic analysis can
potentially have a very bad impact on the parameter estimates and this issue needs
to be investigated further. We reanalyze this dataset in Section 5.6 with a robust
technique.

5.3 A Class of M-estimators for GLMs

Deviations from the model can also occur for GLMs. The nature of possible
deviations in the GLM class of models are close to what one can see in the regression
setting: outliers in the response (producing large residuals) and leverage points in the
design space. A notable exception is the binary response setting where deviations in
the response space take the form of misclassification (a zero instead than a one, or
vice versa), and where the difference between an outlier and a leverage point is less
clearcut.

To address the potential problem of deviating points in real data, or more generally
the problem of slight model misspecification, we propose here a general class of
M-estimators (see Section 2.3.1) for the GLM model as defined in Section 5.2. Given
the Pearson residuals ri = (yi − µi)/

√
φvµi , the M-estimating equations for β of

model (5.3) are given by the solution of the following estimating equations
n∑

i=1

[
ψ(ri ; β, φ, c)w(xi )

1√
φvµi

µ′
i − a(β)

]
=

n∑
i=1

�(yi, xi; β, φ, c) = 0, (5.13)

whereµ′
i = ∂µi/∂β = ∂µi/∂ηixi and a(β) = (1/n)

∑n
i=1E[ψ(ri; β, φ, c)]w(xi )/√

φvµi µ
′
i , with the expectation taken over the distribution of yi|xi . The constant

a(β) is a correction term to ensure Fisher consistency; see Sections 2.3.2 and 5.3.2.
The function ψ(ri ; β, φ, c) and the weights w(xi ) are the new ingredients with

respect to the classical GLM estimators obtained by maximum quasi-likelihood:
compare with the estimating equations (5.6), which are obtained with ψ(ri; β, φ, c)

= ri and w(xi ) = 1 for all i. The function ψ is introduced to control deviations in
the y-space and leverage points are downweighted by the weights w(x). Conforming
to the usage in robust linear regression, we call the estimator issued from (5.13) a
Mallows-type estimator. It simplifies to a Huber-type estimator when w(xi ) = 1 for
all i.

It is worth noting that the estimating equations (5.13) can be conveniently
rewritten as

n∑
i=1

[
w̃(ri; β, φ, c)w(xi )ri

1√
φvµi

µ′
i − a(β)

]
= 0, (5.14)

where w̃(r; β, φ, c) = ψ(r; β, φ, c)/r . In this form, the estimating equations (5.13)
can be interpreted as the classical estimating equations weighted (both with respect
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to ri and xi) and re-centered via a(β) to ensure consistency. The particular weighting
scheme considered in (5.14) is multiplicative in its design and residuals components
(wi = w̃(ri; β, φ, c)w(xi )). Alternatively, one could consider a global weighting
scheme of the form wi(ri , xi ), as for example in Künsch et al. (1989). It should
nevertheless be stressed that such a scheme increases the difficulty in calculating the
Fisher consistency correction a(β).

The estimation procedure issued from (5.13) can be written as an IRWLS, in
the same manner as it is usually presented for the classical GLM estimating
equations. We give the algorithm in Appendix E.3. The IRWLS algorithm has been a
particularly convincing ‘selling argument’ when GLMs have been proposed. Thanks
to this representation, the estimation procedure only requires software that allows the
computation of weighted LS (or even only matrix computation). Nowadays computer
power is a less crucial issue and other numerical procedures can be considered. For
example, one can use a Newton–Raphson or a quasi-Newton algorithm.

Finally, one can see that if we write yT = (y1, . . . , yn) and µT = (µ1, . . . , µn),
the estimating equations (5.13) correspond to the minimization of the quantity

QM(µ; y) =
n∑

i=1

QM(µi; yi), (5.15)

with respect to β, where the functions QM(yi;µi) can be written as

QM(µi; yi)

=
∫ µi

s̃

ψ

(
yi − t

φvt
; c
)
w(xi )

1√
φvt

dt

− 1

n

n∑
j=1

∫ µj

t̃

E

[
ψ

(
yi − t

φvt
; c
)
w(xi )

1√
φvt

]
dt, (5.16)

with s̃ such that ψ((yi − s̃)/(φvs̃); c) = 0, and t̃ such that E[ψ((yi − t̃ )/(φvt̃ ); c)]
= 0. The functionQM(µi; yi) in (5.16) plays the same role as the functionQ(µi; yi)
in (5.7), and is used later to define a difference of quasi-deviance type statistic, see
Section 5.4.2.

5.3.1 Choice of ψ and w(x)

The role of the function ψ is to control the effect of large residuals, therefore it has
to be bounded. Common choices for ψ are functions that level off such as the Huber
function or functions that are redescending, see Section 2.3.1 for a discussion of the
possible options. The functionψ is usually tuned with a constant c, which is typically
chosen to guarantee a given level of asymptotic efficiency (which is computed as the
ratio of traces of the asymptotic variances of the classical and the robust estimators,
see, for example, (2.31)). The exact computation of the value of c that guarantees
a certain level of efficiency in GLM models is more complicated than in linear
regression because the asymptotic efficiency also depends here on the design and no



138 GENERALIZED LINEAR MODELS

general result can be derived. It is always possible to inspect the estimated efficiency
a posteriori and refit the model with a different value of c if it is not satisfactory.
In practice, if the Huber ψ-function is used (and this is the case in the glmrob
function of the robustbase R package and therefore in our examples), a value of
c between 1.2 and 1.8 is often adequate. The default value is set to 1.345, the value
that guarantees 95% efficiency for the normal-identity link GLM model. This value is
also often a reasonable choice for the other models, such as the binomial and Poisson
models. Note that when c → ∞, the classical GLM estimators are reproduced. In
practice, very large values of c (e.g. ≥ 10) have the same effect.

The choice of w(xi ) is also suggested by robust estimators in linear models:
the simplest approach is to use w(xi ) = √

1 − hii, where hii is the leverage. More
sophisticated choices for w(xi ) are available, in particular some that in addition
do have high breakdown properties (see Section 3.2.4 for linear regression). The
current implementation of the robustbase package in addition to equal weights
(w(xi ) = 1, for all i, the default) and w(xi ) = √

1 − hii, allows one to choose
weights based on the Mahalanobis distances di (see (2.34)) of the form

w(xi ) = 1√
1 + 8 max(0, (d2

i − q)/
√

2q)
.

A few options are available to estimate the center and the scatter in di robustly,
either by the MCD estimator of Rousseeuw (1984) or a more efficient S-estimator,
see Section 2.3.3. Note, however, that these high breakdown estimators are not well
suited for categorical or binary covariates, and their use only makes sense if all of
the explanatory variables are continuous. A variation of this kind of weights is given
in Victoria-Feser (2002).

The weighting scheme issued from a robust fitting procedure can be used
for diagnostic purposes. In fact, inspecting the observations that received a low
weight allows the user to identify the outlying observations. For an illustration, see
Section 5.5 (Figure 5.3) and Section 5.6 (Figure 5.7).

5.3.2 Fisher Consistency Correction

The term a(β) in the estimating equations (5.13) guarantees that the estimator
is Fisher consistent, that is, asymptotically unbiased under the postulated model
(normal, binomial, etc.). This term can sometimes be difficult to compute. Note,
however, that it can be computed explicitly for GLM models where the responses are
binomial and Poisson (cf. Cantoni and Ronchetti (2001b, p. 1028) with the change
in notation V (µi) = φvµi ), and Gamma (see Cantoni and Ronchetti (2006, pp. 210–
211) with the change in notation v(µi) = φvµi ). The expression of a(β) for these
models in the unified notation of this book are given in Appendix E.1.
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When a(β) cannot be computed analytically, its estimation by simulation can be
considered: the expectation involved in its computation is replaced by the empirical
mean of a simulated sample.1

A different strategy is to compute a simpler biased estimator of β by solving the
uncorrected estimating equations

n∑
i=1

ψ(ri; β, φ, c)w(xi )
1√
φvµi

µ′
i =

n∑
i=1

�̃(yi, xi; β, φ, c) = 0 (5.17)

and correct the bias a posteriori. In fact, the asymptotic bias of the estimator
solving (5.17) can be approximated by a Taylor expansion and takes the form

−E

[
∂
∑n

i=1 �̃(yi, xi; β, φ, c)

∂β

]−1

E

[ n∑
i=1

�̃(yi, xi; β, φ, c)

]
. (5.18)

This bias has to be estimated. One can either compute the expectations by numerical
integration and evaluate them at β̃ (solution of (5.17)), or replace expectations with
averages with respect to the data. Given that

∑n
i=1 �̃(yi, xi; β, φ, c) evaluated at the

solution β̃ of (5.17) equals zero, a robust pilot estimator, that is a robust estimator
obtained by other means, is needed. For further details on the comparison of the
estimator obtained from (5.17)–(5.18) and the estimator obtained from (5.13), see
Dupuis and Morgenthaler (2002), in particular their Section 2.2.

Using indirect inference (Gallant and Tauchen, 1996; Gouriéroux et al., 1993) is
another possible approach that can be implemented to correct the bias a posteriori
as is done in e.g. Moustaki and Victoria-Feser (2006). For illustrations of the use of
indirect inference with robust estimators, see also Genton and Ronchetti (2003).

5.3.3 Nuisance Parameters Estimation

As stated previously, φ is known to be constant for Bernoulli, (scaled) binomial and
Poisson models. In other models, this parameter has to be estimated, and this should
be done by paying attention to maintaining the robustness properties gained in the
estimation of β. In other words, it is necessary to also use a robust estimator for φ.

We address here the normal and the Gamma distribution settings. In both cases
the nuisance parameter is a scale parameter (for the Gamma, one may notice that
var((yi − µi)/µi) = ν), and we suggest borrowing one of the robust scale estimators
available in the literature. Namely, we propose to use the Huber’s Proposal 2
estimator (Huber, 1981, p. 137) defined by (see also (3.7) for the regression model)

n∑
i=1

χ

(
yi − µi√
φvµi

; β, φ, c

)
= 0, (5.19)

where χ(u; β, φ, c) = ψ2(u; β, φ, c) − δ, and δ = E[ψ2(u; β, φ, c)] is a constant
that ensures Fisher consistency for the estimation of φ, see Hampel et al. (1986,

1Care should be taken that in the iterative estimation process, the value of β used to simulate the data
is not equal to the current value of β̂.
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p. 234). The function ψ can be chosen to be the same as that in (5.13).2 The
expectation in δ is computed under normality for u, see (3.8) for its computation
for ψ2(u; β, φ, c) = ψ2[Hub](u; β, φ, c) = u2w2[Hub](u; β, φ, c).

Ideally, (5.19) has to be solved simultaneously with (5.13), but in practice a two-
step procedure is often used. Starting from a first guess for φ, an estimate of β is
obtained, which in turn is used in (5.19), and so on until convergence.

5.3.4 IF and Asymptotic Properties

The estimator defined by (5.13) is an M-estimator β̂[M] characterized by the �-
function �(yi, xi; β, φ, c) = ψ(ri ; β, φ, c)w(xi )/

√
φvµi µ

′
i − a(β). Its IF is then

IF(y,x; β̂, Fβ) = M(�,Fβ)
−1�(y, x; β, φ, c), (5.20)

where M(�,Fβ) = −E[(∂/∂β)�(y, x; β, φ, c)]. Moreover,
√
n(β̂[M] − β) has an

asymptotic normal distribution with asymptotic variance M(�,Fβ)
−1Q(�,Fβ)

M(�,Fβ)
−1, where Q(�,Fβ ) = E[�(y, x; β, φ, c)�(y, x; β, φ, c)T ] (see also

(2.27)). The matrices M(�,Fβ) and Q(�,Fβ) for the Mallows quasi-likelihood
estimator (5.13) can be easily computed as

Q(�,Fβ) = 1

n
XT AX − a(β)a(β)T , (5.21)

where A is a diagonal matrix with elements ai = E[ψ(ri; β, φ, c)2]w2(xi )/(φvµi )

(∂µi/∂ηi)
2, and

M(�,Fβ) = 1

n
XT BX, (5.22)

where B is a diagonal matrix with elements bi as defined in Appendix E.1, and
where the expectations are taken at the conditional distribution of yi |xi . Cantoni and
Ronchetti (2001b) have computed these matrices for binomial and Poisson models
and Cantoni and Ronchetti (2006) for Gamma models. These results are presented in
Appendix E.2 in a unified notation.

Estimated versions of the matrices M(�,β) and Q(�,β) are obtained by
replacing the parameters by their M-estimates.

5.3.5 Hospital Costs Example (continued)

Consider again the hospital costs example introduced in Section 5.2.3. Model (5.12)
is now refitted via the robust estimating equations (5.13) with c = 1.5 and w(xi ) = 1,
that is, with a Huber estimator. The scale estimator (5.19) is used for the nuisance
parameter with the same value of c. The estimated parameters, standard errors, CIs
and p-values of the significance test statistics (5.23) are given in Table 5.3, to be
compared with Table 5.2 (classical estimates). Only small differences appear on the
values of the estimated coefficients between the classical and the robust analysis

2The Huber ψ-function is the one used in the implementation in the robustbase package.
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Table 5.3 Robust estimates for model (5.12).

Variable Estimate (SE) 95% CI p-value

intercept 7.252 (0.105) (7.042; 7.462) <10−4

log(los) 0.839 (0.020) (0.799; 0.879) <10−4

adm 0.222 (0.036) (0.151; 0.294) <10−4

ins 0.009 (0.057) (−0.104; 0.122) 0.869
age −0.001 (0.001) (−0.003; 0.001) 0.257
sex 0.073 (0.036) (0.001; 0.144) 0.042
dest −0.123 (0.050) (−0.222; −0.024) 0.013
1/ν (scale) 0.0243

The estimates are obtained solving (5.13) with c = 1.5 and w(xi ) = 1 for all i
(Huber’s estimator), and (5.19) with c = 1.5.

except for the variable ins, where there is a difference by a factor of 10 (which is
not a typo). This large difference is certainly due to the small number of patients
(only nine) with private insurance, one of which is heavily downweighted in the
robust analysis (patient 28, w̃(ri; β, φ, c) = 0.24). On the other hand, there are major
discrepancies between the estimated standard errors by the two estimators, those
based on the robust approach being much smaller. These differences are mainly due
to the fact that the scale estimate from the classical analysis is twice as large as that
from the robust analysis (see also the simulation results of Cantoni and Ronchetti
(2006, Section. 4)). This will also have an impact on the CIs and significance tests,
as we will see in Section 5.4.3.

Meanwhile, we look at what the robust fit tells us. The observations that are heav-
ily downweighted, that is, with weights w̃(ri; β, φ, c) smaller than 0.5 are w̃(r14;
β, φ, c) = 0.23, w̃(r21; β, φ, c) = 0.50, w̃(r28; β, φ, c) = 0.24, w̃(r44; β, φ, c) =
0.42 and w̃(r63; β, φ, c) = 0.32, which in this case are the same observations as
identified in Section 5.2.3.

Very similar results in terms of coefficient and standard error estimates are
obtained if weights w(xi ) = √

1 − hii are used (not shown). This indicates that we
can be confident that there are no bad leverage points (see Section 3.2.4.2) in the
sample and, therefore, we can use a Huber-type estimator to avoid any additional
loss in efficiency. Indeed, if one computes the weights w(xi ) = √

1 − hii, they would
range from 0.9 to 1, with the first quartile equal to 0.96, the median equal to 0.97 and
the third quartile equal to 0.98. It is particularly interesting to look at the weight of
observation 31 (a potential influential point, as can be seen in Figure 5.2) which is
w(x31) = 0.96, indicating that there is no leverage effect.

5.4 Robust Inference
5.4.1 Significance Testing and CIs

With the asymptotic result of Section 5.3.4, it is possible to draw approximate
inference for β, either by constructing approximate (1 − α) CIs or by computing
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univariate z-statistics, namely

z-statistic = β̂[M]j
SE(β̂[M]j )

, (5.23)

where SE(β̂[M]j ) =
√

v̂ar(β̂[M]j ) and

v̂ar(β̂[M]j ) = 1

n
[M̂(�,Fβ)

−1Q̂(�,Fβ)M̂(�,Fβ)
−1](j+1)(j+1)

in which the matrices Q̂ and M̂ are estimated using β̂[M] in (5.21) and (5.22),
respectively. The z-statistic can then be compared with a standard normal distribution
to test the null hypothesis H0 : βj = 0 and compute the corresponding p-value.

As in the classical setting, the asymptotic distribution can be used to define
approximate (1 − α) CIs for each parameter βj . Here, they write

(β̂[M]j − z(1−α/2)SE(β̂[M]j ); β̂[M]j + z(1−α/2)SE(β̂[M]j )),

where z(1−α/2) is the (1 − α/2) quantile of the standard normal distribution.

5.4.2 General Parametric Hypothesis Testing and Variable
Selection

The general parametric theory on robust testing (e.g. Heritier and Ronchetti, 1994),
i.e. robust LRT, Wald and Rao or score tests, can also be used in the GLMs setting
using the results presented in Section 2.5.3. However, since historically with GLMs
the deviance has been used for inference purposes, we prefer to concentrate on the
possibilities offered by a robust version of the deviance. Note, however, that in the
classical setting the difference of deviances statistic to compare two nested models
coincides with the LRT statistic when φ (the scale parameter) is known.

When confronted with data, it is common practice to fit a first model that includes
all available explanatory variables (the full model). The p-values associated with
the univariate test statistics (z-statistics) on each coefficient separately give a first
broad impression on the important variables impacting the response. However, this
information has to be interpreted with caution, given the possible correlation between
explanatory variables and non-orthogonality of the tests. It is therefore preferable to
conduct a proper variable selection analysis by means of adequate tools. Tools for
variable selection, e.g. test statistics, are as much affected by extreme observations
as estimators. This effect manifests itself in terms of level (for example, an actual
level which does not correspond to the nominal level) and in terms of loss of power;
see discussions in Sections 2.4.2, 2.4.3 and 2.5.5.

Consider a larger model Mq+1 with q explanatory variables (plus intercept) and
a sub-model Mq−k+1 with only (q − k) explanatory variables (plus intercept). The
question that arises is whether the sub-model is a good enough representation of the
data. Testing that some explanatory variables are not significantly contributing to
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the model amounts to testing that a subset of β is equal to zero. Therefore, without
loss of generality, we split β = (βT

(1),β
T
(2))

T with β(1) of dimension (q − k + 1) and
β(2) of dimension k, and we test the null hypothesis H0 : β(2) = 0. We propose (see
Cantoni and Ronchetti, 2001b) a robust counterpart to the difference of deviances
statistic

�QM = 2

[ n∑
i=1

QM(µ̂i; yi) −
n∑

i=1

QM(µ̇i; yi)
]
, (5.24)

where the quasi-likelihood functions QM(µi; yi) are defined by (5.16), µ̂i =
µi(β̂[M]) is the M-estimate under model Mq+1 and µ̇i = µi(β̇[M]) is the M-
estimate under model Mq−k+1. Note that this difference of deviances is independent
of s̃ and t̃ , see (5.16), because their contributions cancel out.

Computing �QM implies the computation of the functions QM(µi; yi) which are
integral forms and for which there is no general analytical expression. They can
easily be approximated numerically and they have been implemented in this way.
In situations where the evaluation of these integrals is problematic, an asymptotic
approximation can be used, see Section 5.4.2.1.

The same forms for the functions ψ and w(xi ) as for the M-estimator β̂[M] can
be used in (5.24), see the discussion in Section 5.3.1. The test statistic �QM can be
used to compare two nested models predefined by the analyst, but can also be used
for a more automatic analysis, either sequential (see the example in Section 5.6.2) or
marginal (stepwise, see the example in Section 5.5.2).

The test statistic (5.24) is in fact a generalization of the quasi-deviance test for
GLMs ((5.11), which is recovered by taking QM(µi; yi) = ∫ µi

yi
((yi − t)/τvt ) dt).

Moreover, when the link function is the identity (linear regression), the statistic
(5.24) becomes the τ -test statistic given by Hampel et al. (1986, Chapter 7), see also
Section 3.3.3.

5.4.2.1 Asymptotic Distribution and Robustness Properties

Let A(ij), i, j = 1, 2 be the partitions of a (q + 1) × (q + 1) matrix A according
to the partition of β into β(1) and β(2). Under technical conditions discussed in
Cantoni and Ronchetti (2001b) and under H0 : β(2) = 0, the test statistic �QM

defined by (5.24) is asymptotically equivalent to

nLT
n C(�,Fβ)Ln = nRT

n(2)M(�,Fβ)22.1Rn(2), (5.25)

where C(�,Fβ ) = M−1(�, Fβ) − M̃+(�, Fβ) (with M̃+(�, Fβ) given below),√
nLn (of dimension (q + 1)) is normally distributed N (0,Q(�,Fβ )),

M(�,Fβ)22.1 = M(�,Fβ)(22) − M(�,Fβ)
T
(12)M(�,Fβ)

−1
(11)M(�,Fβ)(12),

and
√
nRn (of dimension (q + 1)) is normally distributed

N (0,M−1(�, Fβ)Q(�,Fβ)M
−1(�, Fβ))

(see Cantoni and Ronchetti, 2001b). Note that Rn(2) is of dimension k.
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This means that �QM is asymptotically equivalent to a quadratic form in
normal variables and that �QM is asymptotically distributed as

∑k
i=1 diN

2
i , where

N1, . . . , Nk are independent standard normal variables, d1, . . . , dk are the k positive
eigenvalues of the matrix Q(�,Fβ )(M

−1(�, Fβ) − M̃+(�, Fβ)), and M̃+(�, Fβ)

is equal to

M̃+(�, Fβ) =
(
M(�,Fβ)

−1
(11) 0(q−k+1)×k

0k×(q−k+1) 0k×k

)
,

where 0a×b is a matrix of dimension a × b with only zero entries.
The above results imply that the asymptotic distribution of �QM is a linear

combination of χ2
1 , for which theoretical results (e.g. Imhof, 1961) and algorithms

(see Davies, 1980; Farebrother, 1990) exist. Moreover, if necessary, the distribution
of the variable

∑k
i=1 diN

2
i can be approximated with a d̄χ2

k , distribution quite well,
where d̄ = 1/k

∑k
i=1 di . No formal proof exists for the asymptotic distribution of

this test statistic, but we expect that the results for linear models by Markatou and
Hettmansperger (1992) carry over, at least approximately. Our experience shows that
it is often the case in practice. Other approximations exist, see Wood (1989), Wood
et al. (1993) and Kuonen (1999).

In addition to providing the asymptotic distribution of �QM , result (5.25) states
that �QM is asymptotically equivalent to the quadratic form

β̂T
[M](2)M(�,β)22.1β̂[M](2).

This suggests that �QM can be approximated with this easier to compute quadratic
form to avoid the numerical integrations in QM(µi; yi), in particular when n is
large.3

The robustness properties of a test statistic are measured on the level and on
the power scale, see Section 2.2. Cantoni and Ronchetti (2001b) work out the
expressions of the level and of the power of �QM under contamination. These results
show in particular that the asymptotic level of �QM under contamination is stable as
long as a bounded influence M-estimator β̂[M](2) is used in its definition.

5.4.3 Hospital Costs Data Example (continued)

If we look back at Tables 5.2 and 5.3, we can see that the conclusions from both the
classical and the robust analyses on the basis of the univariate test statistics (p-values
in Table 5.2 and 5.3) are quite different: if no doubt arises as to the significance of
the intercept, and the variables log(los) and adm on both analyses, the robust
analysis would suggest a significant effect also for dest, and less clearly for sex,
making the role of these two variables less clear (see also the corresponding CIs).
A more complete variable selection procedure is therefore recommended before
proceeding with any interpretation and conclusion. We now investigate this variable
selection issue a little bit further.

3The anova.glmrob function in the package robustbase in R (called by the generic function
anova), implements both the test statistic �QM and its asymptotic quadratic approximation, in addition
to a Wald test.
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We first start by comparing the full model to the reduced model without the
variables ins and age. This amounts to testing H0 : β3 = β4 = 0 in (5.12). We
keep the same robustness tuning parameters for the robust test as in Section 5.3.5,
that is, c = 1.5 and w(xi ) = 1. The difference of quasi-deviances �QM is equal to
1.23 (p-value = 0.5), which confirms the fact that these two variables do not have a
significant impact on the cost of stay significantly. We go on by comparing the model
including log(los), adm, sex and dest to the nested sub-model that excludes
sex. The hypothesis that the coefficient corresponding to variable sex is equal to
zero is rejected at the 5% level (�QM = 5.26 and p-value = 0.015). Similarly, we
compare the model including log(los), adm, sex and dest to the nested sub-
model that discards dest. The difference of quasi-deviances statistic �QM is equal
to 4.82 and the p-value is 0.02, which implies the rejection of the null hypothesis
that the coefficient of dest is equal to zero at the 5% level. This means that the
models without either sex and dest are not enough to describe the data.

As a comparison, a classical analysis would also fail to reject the sub-model
without ins and age compared with the full model (5.12) (p-value = 0.44).
Starting from this sub-model, the classical analysis would reject the sub-model
without sex, but not the sub-model without dest. This confirms the preliminary
differences between the classical and robust analysis observed with the full fit in
Section 5.3.5.

The final model obtained from the robust analysis has the following estimated
linear predictor (with standard errors of the coefficients within parentheses)

7.168 + 0.839 log(los) + 0.231 adm + 0.082 sex − 0.104 dest.
(0.067) (0.020) (0.035) (0.034) (0.047)

The estimate of the scale parameter is 0.024.
The analysis suggests that hospital costs of stay for back problems are heavily

dependent on length of stay, but also on the type of admission, the sex of the patient
and their destination when leaving the hospital. The age of the patient and the type
of insurance do not impact the costs significantly for this pathology.

The impact of the significant covariates on the average costs E[yi | xi ] = µi is
described by µi = g−1(xT

i β). Having used a logarithmic link in this example, we
have that µi = exp(xT

i β). The interpretation of each coefficient uses this relationship
and can be done separately under the circumstance that all of the other variables are
kept fixed. In this respect, the above constructed model tells us that an emergency
admission has a multiplicative effect of exp(0.231) = 1.26 on the average cost,
which means a 26% increase. Patients that go home directly after the hospital
stay (with respect to those that go to another institution) have lower costs (about
90% = exp(−0.104)). One could expect the converse to be true, but the patient
destination after hospital is probably an indicator of how severe the back problems
under treatment are: a patient that can be independent and go home directly is
probably treated for a lighter problem in the beginning. Of course, the longer the
stay, the higher the costs, as expected: if log(los) increases by 1, that is if los
increases by 2.7, the average cost is multiplied by exp(0.839) = 2.31. Finally, costs
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for male patients seem to be slightly higher than those for female patients by a factor
of exp(0.082) = 1.09.

In this example, the estimated parameters of the variables appearing in this final
model are quite close to the corresponding estimates in the full model, see Tables 5.2
and 5.3. This is due to the low correlation between the covariates.

5.5 Breastfeeding Data Example

5.5.1 Robust Estimation of the Full Model

We now look at a binary response example. The data come from a study conducted
in a UK hospital on the decision of pregnant women to breastfeed their babies or not,
see Moustaki et al. (1998). For the study, 135 expectant mothers were asked what
kind of feeding method they would use for their coming baby. The responses were
classified into two categories (variable breast), the first including breastfeeding,
try to breastfeed and mixed breast- and bottle-feeding (coded 1), and the second for
exclusive bottle-feeding (coded 0). The available covariates are the advancement of
the pregnancy (pregnancy, end or beginning), how the mothers were fed as babies
(howfed, some breastfeeding or only bottle-feeding), how the mother’s friend fed
their babies (howfedfriends, some breastfeeding or only bottle-feeding), if they
had a partner (partner, no or yes), their age (age), the age at which they left
full-time education (educat), their ethnic group (ethnic, white or non-white)
and if they have ever smoked (smokebf, no or yes) or if they had stopped smoking
(smokenow, nor or yes). All of the factors are two-level factors. The first listed level
of each factor is used as the reference (coded 0).

The sample characteristics are as follows: out of the 135 observations, 99 were
from mothers that have decided at least to try to breastfeed, 54 mothers were at
the beginning of their pregnancy, 77 were themselves breastfed as a baby, 85 of the
mother’s friend had breastfed their babies, 114 mothers had a partner, median age
was 28.17 (with minimum equal 17 and maximum equal 40), median age at the end
of education was 17 (minimum = 14, maximum = 38), 77 mothers were white and
32 mothers were smoking during the pregnancy, whereas 51 had smoked before.

The aim of the study was to determine the factors impacting the decision to at
least try to breastfeed in order to target breastfeeding promotion toward women with
a lower probability of choosing it. We fitted the following model:

logit(E[breast]) = logit(P (breast)) = β0 + β1pregnancy+ β2howfed

+ β3howfedfr+ β4partner+ β5age+ β6educat

+ β7ethnic+ β8smokenow+ β9smokebf, (5.26)

where logit(p) = log(p/(1 − p)), with p/(1 − p) being the odds of a success, and
P(breast) is the probability of at least try to breastfeed.

Table 5.4 gives the robust estimates, standard errors and p-values for the z-test
(5.23) of model (5.26) for a Huber-type estimator (w(xi ) = 1) and for a Mallows-
type estimator with w(xi ) = √

1 − hii. The value c = 1.5 has been used in both
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Table 5.4 Robust estimates for model (5.26).

Huber Mallows

Variable Estimate (SE) p-value Estimate (SE) p-value

intercept −7.782 (3.365) 0.021 −7.778 (3.363) 0.021
pregnancy beginning −0.816 (0.695) 0.241 −0.815 (0.694) 0.241
howfed breast 0.545 (0.710) 0.443 0.540 (0.708) 0.445
howfedfr breast 1.479 (0.690) 0.032 1.482 (0.689) 0.032
partner yes 0.772 (0.816) 0.344 0.775 (0.816) 0.342
age 0.030 (0.060) 0.611 0.031 (0.060) 0.608
educat 0.377 (0.186) 0.042 0.376 (0.185) 0.042
ethnic non-white 2.712 (1.125) 0.016 2.705 (1.122) 0.016
smokenow yes −3.476 (1.129) 0.002 −3.468 (1.127) 0.002
smokebf yes 1.507 (1.103) 0.172 1.507 (1.102) 0.171

The estimates are obtained by solving (5.13) with c = 1.5 (Huber’s estimator) and with c =
1.5 and w(xi ) = √

1 − hii (Mallows’s estimator).

cases. The coefficient estimates from both analyses are quite close, even though
individual 18 (see the top panel of Figure 5.3) is considered as a potential leverage
point. This mother is 38 years old and is still in education (educat=38). This is
possible, but is certainly not common to the majority of the population. This remark
raises the question of the rationale behind the definition of the variable educat
(age at the end of full-time education). What information are we trying to measure
with this variable? If it is educational level, maybe it is not what the variable educat
really measures. In other studies, the number of years of education is recorded, which
can also be seen as a proxy for social status.

From Figure 5.3 (bottom panel) we can also see that a small set of observations
are downweighted on the grounds of their residuals, in particular observations 11,
14, 63, 75, 90 and 115 receive a weight of less than 0.6. Note that 6 observations out
of 135 constitute about 4.5% of the total information. For these mothers the fitted
model (5.26) would predict a probability of at least try to breastfeed which is not
consistent with the behavior of the majority of the mothers in the sample on the basis
of the covariates (see Figure 5.4): for instance, for observations 75, 11, 115 and 14
the predicted probability of trying to breastfeed is larger than 0.90, whereas these
mothers have decided to bottlefeed. On the other hand, mothers 90 and 63 are given
a low probability of only 0.02 and 0.11 respectively of trying to breastfeed by the
model, whereas they have chosen to do so.

According to the p-values of Table 5.4, the variables that have the greatest impact
on the decision to at least try to breastfeed are whether the ethnic group is non-white,
whether currently smoking and less strongly the age at which one left education
and whether friends have chosen to breastfeed. A more formal variable selection
procedure follows in Section 5.5.2.

Note that a classical analysis would have yield different estimates and conclu-
sions, see also Section 5.5.2. A slightly different estimation method for this dataset
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Figure 5.3 Robustness weights on the design and on the residuals for model (5.26),
when estimated by (5.13) with c = 1.5 and w(xi ) = √

1 − hii.

has been used in Victoria-Feser (2002), in particular a model-based weighting
scheme. The conclusions are similar between our proposal and her Mallows-type
estimator.

5.5.2 Variable Selection

When analysing the full model, on the basis of p-values corresponding to the z-
statistics, the variables howfedfr, smokenow, ethnic and educat have an
important impact on the decision to at least try to breastfeed. Here we investigate
further the variable selection issue. With this dataset, we illustrate a backward
stepwise procedure. We start with the full model and we use the test statistic �QM to
test each sub-model with one variable removed. All of the sub-models for which the
p-value of such a test is larger than 5% are candidates for removal, and we choose
between them the sub-model which has generated the larger p-value. We then repeat
the procedure by taking this sub-model as the new reference model and testing all
of its sub-models. The procedure is stopped when all of the p-values are larger than
0.05.

Table 5.5 gives the p-values at the first steps of the procedure. For comparison,
we also put the results for a classical analysis. A comparison of the p-values from
the classical and the robust approaches confirms that the robustness issues related to
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Figure 5.4 Fitted values versus actual values for model (5.26), when estimated
by (5.13) with c = 1.5 and w(xi ) = √

1 − hii . Observations with w(ri; β, φ, c) <

0.6 are spotted.

the presence of deviating data points are also a concern for inference. In fact, large
discrepancies (as large as 0.2) appear between the two approaches in terms of p-
values. Some of these differences do not really have an impact on the significance
decision at a usual level of 5% or 10% (e.g. howfed or partner), but some others
do (e.g. educat).

The complete robust stepwise procedure yields the following final model (with
standard errors of the coefficients within parentheses):

−6.417 + 1.478 howfedfr + 3.260 ethnic + 0.403 educat − 2.421 smokenow.
(2.973) (0.622) (1.199) (0.177) (0.664)

From the robust analysis, the non-significant variables have been removed in
the following order: age (p-value = 0.58, the largest p-value at the first step, see
Table 5.5), howfed (p-value = 0.40), pregnancy (p-value = 0.26), partner
(p-value = 0.41) and smokebf (p-value = 0.25).

As a comparison, a classical backward stepwise procedure would have discarded
(in the order) age (p-value = 0.60, the largest p-value at the first step, see
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Table 5.5 p-values of the first step of a backward stepwise procedure for variable
selection for the breastfeeding data example of Section 5.5.

Variable Classical Robust

pregnancy beginning 0.08134 0.20600
howfed breast 0.60261 0.39778
howfedfr breast 0.00951 0.02820
partner yes 0.12219 0.32888
age 0.60271 0.58512
educat 0.14075 0.02283
ethnic non-white 0.00012 0.00187
smokenow yes <10−4 <10−4

smokebf yes 0.05157 0.08605

Classical p-values obtained with c = ∞ and w(xi ) = 1
and robust p-values with c = 1.5 and w(xi ) = √

1 − hii
in (5.24).

Table 5.5), howfed (p-value = 0.58), educat (p-value = 0.10), pregnancy
(p-value = 0.20), smokebf (p-value = 0.10) and partner (p-value = 0.0577).
The classical final model would therefore include only howfedfr, ethnic and
smokenow, which is a smaller and different set of covariates than obtained by the
robust analysis.

From the model identified and fitted by the robust technique we learn that the way
a mother has been fed as a child does not play a role in her decision of whether to
breastfeed, whereas the choice of friends is more important and has an effect on the
expectant mother’s decision. A mother’s choice to try to breastfeed does not evolve
during the pregnancy. This choice is also not affected by the mother being single.
Having smoked before being pregnant has no effect on the decision to breastfeed,
but being a smoker during the pregnancy significantly reduces the probability to at
least try to breastfeed. Ethnicity and age at which a mother leaves education are also
factors that have an impact on a mother’s decision.

The coefficient values allow us to quantify the identified effects on the decision
to at least try to breastfeed. As opposed to the Gamma model of Section 5.3.5 or
to a Poisson model (see Section 5.6), the interpretation of the impact of covariates
on the probability P(breast) is more difficult due to the nature of the logit
transformation. In fact,

P(breasti ) = µi = exp(xT
i β)

1 + exp(xT
i β)

. (5.27)

With these models it is therefore more common to interpret the coefficients on the
odds or odd-ratios scale. The robust estimation procedure has no impact on the way
the model is interpreted. The only difference is that the coefficients are estimated
differently.
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For a continuous variable, the effect of a unit change on the odds is equal to the
exponential of the corresponding coefficient. For example, leaving education a year
later increases the odds of at least try to breastfeed by a factor of exp(0.403) = 1.50,
if all the other covariates are kept fixed. On the other hand, for two-level factors
the logit model leads to the interpretation of the odds-ratio (the ratio of the odds).
For instance, the odds-ratio of at least try to breastfeed for a non-white expecting
mother relative to a white mother is equal to exp(3.260) = 26.05. Similarly, the
odds-ratio of at least try to breastfeed for a smoking mother relative to a non-smoking
one is exp(−2.421) = 0.09. Being a smoker during pregnancy has the strongest
(negative) effect on the model. Finally, the odds-ratio of at least try to breastfeed
for an expectant mother whose friends have chosen to breastfeed relative to friends
bottlefeeding is exp(1.478) = 4.38.

The interpretation of odds and odds-ratios pertains to the logistic model (that is,
the binomial model with logit link), but does not apply to models with the probit
or complementary log–log link. This fact is one of the reasons that makes logistic
models more popular than the two other alternatives, in addition to their more
convenient computational aspects.

To summarize, let us recall that the aim of the study was to better target
the expectant mothers when promoting breastfeeding. The analysis of this dataset
suggests that if one wants to increase the average probability of choosing to at
least try to breastfeed, directed effort should be towards white mothers and towards
mothers that leave education earlier. Pregnant women that smoke tend to avoid
breastfeeding: investigating this phenomenon further could help increase the average
probability of expectant mothers choosing to breastfeed.

5.6 Doctor Visits Data Example

5.6.1 Robust Estimation of the Full Model

Count data are an important subclass of data that fits into the GLM framework.
For this application we use data from the Health and Retirement Study (HRS),4

which surveys more than 22 000 Americans over the age of 50 every 2 years. The
study paints an emerging portrait of an aging America’s physical and mental health,
insurance coverage, financial status, family support systems, labor market status and
retirement planning.

The original full dataset from RAND HRS Data (Version D) distribution (six
waves: 1992, 1994, 1996, 1998, 2000 and 2002) contains 26 728 observations and
4140 variables per individual. Individuals were separated in four cohorts:

• HRS cohort (born between 1931 and 1941);

• AHEAD cohort (born before 1924);

4Sponsored by the National Institute of Aging (grant number NIA U01AG09740) and conducted by
the University of Michigan, see http://hrsonline.isr.umich.edu/.
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• CODA cohort (born between 1924 and 1930);

• WB cohort (born between 1942 and 1947).

In addition to respondents from eligible birth years, the survey interviewed the
spouses of married respondents or the partner of a respondent, regardless of age.

We focus on a subsample of 3066 individuals of the AHEAD cohort for wave 6
(year 2002). Note that only individuals with full information have been retained, to
avoid issues with missing values.

The aim is to identify variables impacting on equity in health care utilization.
When the information about costs themselves is not available (in contrast to
the example in Section 5.2.3), a proxy variable is used to measure health care
consumption, for example the number of visits to the doctor in the previous 2 years.
A set of potentially interesting explanatory variables has been retained on the basis of
previous studies from the literature, e.g. Dunlop et al. (2002) and Gerdtham (1997),
see Table 5.6. These variables are classified into three categories: predisposing
variables, health needs and economic access. The first category includes age, gender,
race and marital status. Health needs are represented by chronic conditions and
functional limitations. In the economic access category, years of education and
parents’ education measure human capital, whilst income and health insurance from
a current or previous employer measure financial ability to pay.

A potential concern with count data in the setting of health consumption is
the excess of zeros, that is, a large presence of zero values among the responses,
which cannot be modeled with standard distributions (see Ridout et al. (1998) and
Section 5.7.1). Given that we target here a population of regular users (elderly) this
issue can be excluded. In fact, only about 4% of the counts are equal to zero, see the
histogram in Figure 5.5. We therefore confidently proceeded with a GLM Poisson
model with log-link including all of the available covariates:

log(E[visits])
= β0 + β1age+ β2gender+ β3race+ β4hispan

+ β5marital+ β6arthri+ β7cancer+ β8hipress

+ β9diabet+ β10lung+ β11hearth+ β12stroke

+ β13psych+ β14iadla1 + β15iadla2 + β16iadla3

+ β17adlwa1 + β18adlwa2 + β19adlwa3 + β20edyears

+ β21feduc+ β22meduc+ β23 log(income+ 1)+ β24insur. (5.28)

We fitted both a classical MLE and a Mallows’ robust estimator according
to (5.13) with c = 1.6 and w(xi ) = √

1 − hii.
Given the large number of covariates, the results are presented graphically.

Figure 5.6 shows approximate 95% CIs for each variable resulting from a classical
fit (on the left, gray line) and from a robust fit (on the right, black line). The intervals
are symmetric and the coefficient itself is represented in the middle with a dot.
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Table 5.6 HRS data variables description. Note that iadla sums the answer to ‘can
use the phone’, ‘can manage money’, ‘can take medication’, where the answer to
each question is coded 1 = difficulty or 0 = no difficulty. Similarly, adlwa sums the
response to being able to ‘bath’, ‘eat’ and ‘dress’. Finally, ‘med’ stands for median.
Sample size is 3066.

Name Description Sample values

Response
visits Number of visits to the doctor 0–750 (med = 8)

Predisposing
age Age in years 42–109 (med = 82)
gender Gender (0 = male, 1 = female) 2079 females
race Race (1 = white/Caucasian, 0 = other) 2714 whites
hispan Hispanic (1 = Hispanic, 0 = other) 183 Hispanic
marital Marital status (1 = married, 0 = other) 1203 married

Health needs
arthri Ever had arthritis (1 = yes, 0 = no) ‘yes’: 2200
cancer Ever had cancer (1 = yes, 0 = no) ‘yes’: 594
hipress Ever had high blood pressure (1 = yes,

0 = no)
‘yes’: 1856

diabet Ever had diabetes (1 = yes, 0 = no) ‘yes’: 524
lung Ever had lung disease (1 = yes, 0 = no) ‘yes’: 312
hearth Ever had hearth problems (1 = yes,

0 = no)
‘yes’: 1206

stroke Ever had a stroke (1 = yes, 0 = no) ‘yes’: 492
psych Ever had psychiatric problems (1 = yes,

0 = no)
‘yes’: 479

iadla Instr. activities of daily leaving (0,1,2,3) ‘0’: 2433, ‘1’: 258
‘2’: 178, ‘3’: 197

adlwa Activities of daily leaving (0,1,2,3) ‘0’: 2284, ‘1’: 361
‘2’: 234, ‘3’: 187

Econ. access
edyears Education years 0–17 (med = 12)
feduc Father education (years) 0–17 (med = 8.5)
meduc Mother education (years) 0–16 (med = 8.5)
income Total household income 0–725 600 (med = 21 540)
insur Ins. from current/prev. empl. (1 = yes,

0 = no)
‘yes’: 649

Note that the magnitude of the coefficients is not comparable between all of the
variables. In fact, some of them are measured in years, e.g. age, meduc, feduc and
edyears, one is measured in log-dollars (log(income+ 1)) and all of the other
variables are dummies.
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Figure 5.5 Histogram of visits. Note that the abscissa has been limited to (0, 100)
(there are 21 observations out of 3066 outside this range, the largest value being 750).

As one can see, the coefficients of the classical and the robust analyses are
sometimes quite different. Also, the standard errors estimates tend to be a bit larger
in the robust analysis.

The CIs from the classical analysis indicate that all of the variables are highly
significant (no crossing of the horizontal line at zero), except for marital.
From the robust analysis it seems, however, that the variables race, meduc,
log(income+ 1) and insur are not significant. For additional variable signifi-
cance tests, see Section 5.6.2.

The dataset here is much larger than the previous dataset both in sample size
and in the number of covariates. For this reason, the plot of the weights (see
Figure 5.7) shows what seems to be a large number of downweighted observations.
Note, however, that the average of the weights with respect to the total number of
observations is

∑3066
i=1 w̃(ri; β, φ, c)w(xi )/3066 = 79.4%, which reflects, loosely

speaking, an average degree of ‘outlyingness’ of about 20%. This may seem a lot,
possibly indicating that extra covariates should be added or that the distributional
assumptions should be modified. Also, the weights on the design are all close to one.

5.6.2 Variable Selection

As can be seen in Figure 5.6, almost all of the (preselected) variables for this study
seem significant. We would like to confirm whether the variables race, meduc,
log(income+ 1) and insur can be excluded from the model. For this purpose
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Figure 5.6 Coefficient estimates and approximate 95% CIs for the log-link Poisson
model (5.28), estimated by maximum likelihood (classical) and by (5.13) with c =
1.6 and w(xi ) = √

1 − hii (robust). For each variable, the results on the left are from
the classical analysis and on the right from the robust analysis.

we use the difference of quasi-deviance statistic �QM with c = 1.6 and w(xi ) =√
1 − hii . We first test the null hypothesis H0 : β3 = 0 in the full model, which is

not rejected (p-value = 0.73). We therefore remove the variable race. We test next
whether meduc is significant in the sub-model that has already race removed. This
variable is not significant (p-value = 0.62) and we remove it. We go on with testing
whether we can in addition remove log(income+ 1), which is not significant (p-
value = 0.35). We last test the removal of insur. The p-value is 0.50, and we
decide to remove also insur.

The above approach is called a sequential approach and differs from a marginal/
stepwise approach in that it does not test all of the sub-models at each step. The
drawback is that the final model is heavily dependent on the order in which the
variables are considered for removal, in particular when the covariates are far from
being independent.

Table 5.7 gives the estimates on the final model retained above. The factors
explaining the number of visits to the doctor are numerous, as confirmed by the
long list of variables in Table 5.7. We have already learned that being Caucasian, the
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Figure 5.7 Robustness weights from the fit of model (5.28) estimated by (5.13) with
c = 1.6 and w(xi ) = √

1 − hii.
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Table 5.7 Final model estimates for the doctor visits data.

Variable Estimate (SE) p-value

intercept 1.989 (0.114) <10−4

age −0.005 (0.001) <10−4

gender 0.030 (0.015) 0.0409
hispan 0.213 (0.027) <10−4

marital −0.050 (0.014) 0.0006
arthri 0.180 (0.015) <10−4

cancer 0.178 (0.015) <10−4

hipress 0.197 (0.014) <10−4

diabet 0.198 (0.015) <10−4

lung 0.110 (0.019) <10−4

hearth 0.304 (0.013) <10−4

stroke 0.125 (0.016) <10−4

psych 0.180 (0.016) <10−4

iadla1 0.056 (0.023) 0.0143
iadla2 0.176 (0.027) <10−4

iadla3 0.244 (0.029) <10−4

adlwa1 0.160 (0.019) <10−4

adlwa2 0.231 (0.024) <10−4

adlwa3 0.382 (0.029) <10−4

edyears 0.008 (0.002) <10−4

feduc −0.020 (0.006) 0.0025

The estimates are obtained by (5.13) with c = 1.6
and w(xi ) = √

1 − hii (Mallows’ estimator).

level of mother’s education, total household income and having a health insurance
plan from a previous employer do not have a statistically significant impact on health
consumption (doctor visits).

The Poisson GLM model used for this example has a logarithmic link. Interpreta-
tion of the coefficient is therefore done through the relationship µi = exp(xT

i β),
as in the Gamma model with logarithmic link in Section 5.4.3. For example, a
patient who is five years older would have a number of visits to the doctor
multiplied by exp(−0.005 · 5) = 0.975 on average, that is, reduced by 2.5%. It
is surprising to see that the coefficient of age is negative, meaning that older
patients consume less. However, the effect is really small (no practical significance),
even though statistically significant. Interpretation of education level via years of
education (edyears) and father’s education (feduc) is puzzling. On the one
hand, an extra year of father’s education decreases the number of visits by 2%
(exp(−0.02) = 0.98). On the other hand, years of education of the patient himself
tend to increase the doctor needs by 1% (exp(0.008) = 1.01). Married individuals
do visit the doctor less on average: exp(−0.05) = 95%. All of the effects of ‘health
needs’ category are positive, indicating, as expected, that if some conditions are
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present (arthritis, diabetes, high blood pressure, etc.), the number of doctor visits
is larger on average with respect to an individual with absence of these conditions.

5.7 Discussion and Extensions

The GLM class encompasses a large variety of data distributions, but of course
it has its own limitations. Therefore, GLM have been extended in various ways.
The linear component structure has been relaxed and non-parametric functions
have been considered in generalized additive models (GAMs; see Hastie and
Tibshirani (1990)). The exponential family restriction can be overcome by using
quasi-likelihood functions instead of proper likelihoods. The asymptotic results for
the estimators derived in this way have to be adapted, essentially by changing the
asymptotic variance estimator (sandwich formula, see Fahrmeir and Tutz (2001,
pp. 55–58)). Finally, in GLM the responses are assumed to be independent and
therefore do not include, for instance, longitudinal or clustered data, where there are
typically several observations per subject for which it is not reasonable to assume
independence (even though the subjects themselves can be considered independent),
see in particular Chapter 6.

In the following sections we discuss some ideas for extensions of the approach
presented in this chapter and some open areas of research.

5.7.1 Robust Hurdle Models for Counts

A particular feature of count data is the fact that they sometimes show an excess of
zeros. Typical examples include the number of visits to the doctor on a given period
(see Cameron and Trivedi, 1998) or abundance of species (see Barry and Welsh,
2002).

Data with an excess of zeros have been modeled in various ways: with mixture
models, with more flexible distributions than the more common Poisson (e.g. neg-
ative binomial, Neyman type-α, see for instance Dobbie and Welsh (2001b)), with
zero-inflated distributions (zero-inflated Poisson or zero-inflated negative binomial,
see Lambert (1992)), or with hurdle models (also called two-step or conditional
models, see Mullahy (1986)). Ridout et al. (1998) and Min and Agresti (2002) give
extensive reviews.

From our perspective, hurdle models are quite attractive because they possess
nice orthogonality properties, they fit nicely in the GLM framework and in its robust
approach presented in this chapter. A hurdle model is characterized by a two-stage
procedure. First, the presence (yi > 0) or absence (yi = 0) is modeled through a set
of covariates xi with a logistic-type of model. Then, conditional on the presence,
the positive values are modeled through a set of covariates x̃i (possibly equal to xi )
with a truncated distribution (e.g. a truncated Poisson) and corresponding model (a
log-linear type of model). This implies that yi = 0 with probability 1 − p(xi ) and
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yi ∼ truncated Poisson with probability p(xi ). In summary,

P(Yi = yi | xi , x̃i ) =


(1 − p(xi )) yi = 0,

p(xi )
exp(−λ(x̃i ))λ(x̃i )

yi

yi !(1 − exp(−λ(x̃i )))
yi = 1, 2, . . . ,

with logit(p(xi )) = xT
i β and log(λ(x̃i )) = x̃T

i α.
The log-likelihood l(α,β) of the above model factorizes as l(α) + l(β), which

has the double advantage of splitting the fitting into two subproblems of smaller size
and rendering the interpretation easier (each set of parameter impact only one part of
the model).

A robust procedure for the hurdle model can be derived by robustifying each
submodel separately. The logistic presence/absence model can be fitted robustly
by the approach presented in the previous sections and the truncated Poisson
modeling part has been addressed in Zedini (2007). Routines in R are currently under
preparation and will be made available either within the robustbase package or
as a standalone package.

5.7.2 Robust Akaike Criterion

The principle of the AIC (see Section 3.4.5) is to use the likelihood information at
a given model penalized by its number of parameters to identify the best model(s),
that is, the best compromise(s) between parsimony and goodness of fit. The smaller
the value of AIC, the better. In fact, AIC is an estimate of the expected entropy, that
one would like to maximize. A robust version of AIC is available for linear models,
see Section 3.31, but not (yet) for GLMs, where a generalized version of AIC can
be constructed based on the quasi-likelihood functions defined in this chapter. We
briefly sketch the idea here.

The log-likelihood in the original definition of AIC can be replaced by the quasi-
likelihood function (5.7) with the penalization term adapted, see Ronchetti (1997b)
and Stone (1977). This yields the final generalized criterion:

GAIC = −2
n∑

i=1

QM(µ̂i; yi) + 2 tr(M−1(�, Fβ)Q(�,Fβ)),

with M(�,Fβ) and Q(�,Fβ) given in (5.21) and (5.22).

5.7.3 General Cp Criterion for GLMs

The Mallows’ Cp criterion (Mallows, 1973) has been mainly used in linear regres-
sion. A robust version of it for linear models exist thanks to Ronchetti and Staudte
(1994) (see (3.32)). It is constructed upon the idea that the Cp criterion is an
unbiased estimator of some sort of measure of prediction error. Following the same
reasoning, Cantoni et al. (2005) develop a similar criterion, called GCp, to be used
for GEE models to address various issues (missingness, heteroscedasticity) including
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robustness. The GLM setting being the limiting case of a longitudinal setting where
there is only one observation per subject, GCp for GLM can be deduced from
the original proposal of Cantoni et al. (2005). If we define the rescaled weighted
predictive squared error by

�p =
n∑

i=1

E

[
w2(r

p

i ) ·
(
ŷ
p

i − E[yi | xi(p)]√
φv̂µi

)2]
, (5.29)

where r
p
i = (yi − ŷ

p
i )/
√
φv̂µi are the Pearson residuals, ŷpi are the fitted values at

the model with p ≤ (q + 1) explanatory variables xi(p) (including the intercept), v̂µi

are ‘external’ variance estimates (held fixed) and where w(·) is a weighting function
to downweight atypical observations, then a general form of an unbiased estimator
for �p is

GCp =
n∑

i=1

(w(r
p
i )r

p
i )

2 −
n∑

i=1

E[(w(r
p
i )εi)

2] + 2
n∑

i=1

E[w2(r
p
i )εiδi], (5.30)

with εi = (yi − E[yi | xi(p)])/
√
φvµi and δi = (ŷ

p

i − E[yi | xi(p)])/
√
φvµi and

where the two latter terms are corrections to achieve unbiasedness. Computing these
two terms for GLM and for our particular (robust) M-estimator (5.13) would yield
the final form of GCp.

5.7.4 Prediction with Robust Models

The goals of model fitting are numerous, but they certainly include prediction. For
example, in the hospital costs example of Section 5.2.3, health insurances could be
interested in forecasting costs for the following year in order to establish their budget.
If in this example the robust fitted model is used naively to obtain predictions, the
reproducibility of the outliers, that is the fact that individuals with high abnormal
costs will likely appear again in the future, would imply potential severe bias in
prediction (e.g. underestimation). This particular feature is shared by all of the
models where the outliers are characterized by particularly large values with respect
to the bulk of the data (this is not the case in examples with binary responses, for
example).

In this kind of situation, one should therefore correct the predictions for possible
reproducible outliers, by considering shrinkage robust estimators, see for example
Welsh and Ronchetti (1998) and Genton and Ronchetti (2008).
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Marginal Longitudinal Data
Analysis

6.1 Introduction

Longitudinal data models are a step further away from linear models. Beyond GLMs,
longitudinal studies are those where individuals are measured repeatedly over time.
So, with respect to the GLM modeling of Chapter 5, a second dimension is added,
where each subject can be measured several times. With respect to the (normal)
MLMs of Chapter 4, the extension broadens the nature of responses considered.
Here we allow the response to come from any distribution of the exponential family
(discrete or continuous), as in Chapter 5. Note that The terminology ‘longitudinal
data’ is used mostly in medicine, biology and health sciences, whereas sociologists
and economists would mostly use the term ‘panel data’.

It has to be stressed that even though the most common applications are for
situations where the main units are individuals (e.g. the example in Section 6.5),
the methodology can also be applied to otherwise clustered data where there are
units in which measurements cannot be considered independent (e.g. the example in
Section 6.2.3).

When there is only one observation per subject, inference solely about the
population average is possible. In contrast, longitudinal studies can distinguish
between changes over time within individuals (called aging effects) and differences
among people in their baseline levels (called cohort effects). Otherwise said,
longitudinal studies are able to distinguish between the degree of variation of
the response across time for one person and the variation in the response among
people. Statistically speaking, one has to take into account the correlation within

Robust Methods in Biostatistics S. Heritier, E. Cantoni, S. Copt and M.-P. Victoria-Feser
c© 2009 John Wiley & Sons, Ltd
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measurements of the same subject (even if the subjects themselves can be considered
independent). The same pattern/behavior is assumed across subjects and strength is
borrowed from this.

The literature about marginal longitudinal models is wide, also because models
are developed in at least three main directions, see Section 6.2. The bases of
the generalized estimating equations (GEE) approach that we follow here have
been introduced with the seminal work of Liang and Zeger (1986) and Zeger and
Liang (1986). Since then, many extensions and variations have been considered,
in particular including an extension to the mixed linear type of models (Zeger
et al., 1988), polytomous responses (Heagerty and Zeger, 1996; Liang et al., 1992;
Stram et al., 1988), survival responses (Heagerty and Zeger, 2000, and references
therein), weighted GEE (Preisser et al., 2000) and zero-inflated count data (Dobbie
and Welsh, 2001a). A nice book on longitudinal data is Diggle et al. (2002), which is
an extension of an earlier edition. The book by Molenberghs and Verbeke (2005) is
another interesting reference. A more focused book on the GEE approach is Hardin
and Hilbe (2003) and a recent book addressing correlated data is Song (2007).

The theory around the GEE approach is sometimes sparse, in particular when
it comes to the nuisance parameters, where the inferential aspects have not been
well treated. The variable selection issues with these models have been addressed
only recently, when Pan (2001) define an Akaike-type criterion for GEE, called QIC.
Moreover, Cantoni et al. (2005) introduce a general Cp-like criterion for variable
selection for marginal longitudinal models that can also address robustness issues.

Robust alternatives to GEE-type of fits have been first proposed by Preisser and
Qaqish (1999), who define a set of resistant estimating equations. Wang et al. (2005)
propose a robust GEE-type bias corrected estimator, where the bias is estimated using
a classical GEE estimator. Qu and Song (2004) show that their estimating equations
proposal based on quadratic inference functions (Qu et al., 2000) has some nice
robustness properties for the estimation of the regression parameters in some cases.
Cantoni (2004b) propose a more general and improved version of the estimating
equations of Preisser and Qaqish (1999) that also allows quasi-likelihood functions
to be defined for inference, which puts the user in a position to carry a full analysis.
We have chosen to present this approach given our familiarity with it, because of its
extensions that make variable selection possible along the same lines as the approach
for GLM and because of its forthcoming availability in R.

In this chapter, after discussing the possible approaches to longitudinal data
(Section 6.2), we go on to introduce marginal longitudinal models in more detail
and present the classical estimation procedure (GEE) to fit them and the associated
inference in Section 6.2.1. The robust counterpart, as per Cantoni (2004b), is
introduced and illustrated in Section 6.3. It is based on a weighted set of estimating
equations. In addition, quasi-deviance functions are defined for inference purposes
and robust model selection. Three different examples serve as motivation and
illustration of the theoretical elements introduced in this chapter, especially in
Sections 6.3.4, 6.5 and 6.6.
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6.2 The Marginal Longitudinal Data Model (MLDA)
and Alternatives

We assume that we have measurements yit for individual (or unit or cluster) i =
1, . . . , n at time (or occasion or occurrence) t = 1, . . . , ni . We additionally define
yT
i = (yi1, . . . , yini ) as the collection of measurements for subject i and we assume

independence between subjects. We assume that E[yi ] = µi and that var(yi ) is non-
diagonal. At each time point, a set of covariates xT

it = (1, xit1, . . . , xitq) is also
measured for each individual. The covariates information on subject i is collected
in a ni × (q + 1) matrix

Xi =
xT

i1
...

xT
ini

 =
1 x111 · · · x11q
...

...
...

...

1 x1ni1 · · · x1niq

 .

The complete set of data comprises N =∑n
i=1 ni observations.

As with GLMs, the response yit will be allowed to come from any distribution of
the exponential family, see Table 5.1 in Chapter 5. However, using the GLM method-
ology would not be appropriate here because it ignores the correlation between the
measurements of the same subject. Ignoring this correlation has consequences at
different levels: inference about the regression parameters is incorrect, estimation
of the regression parameters is inefficient and there is suboptimal protection against
biases caused by missing data.

The difficulty with the analysis of non-Gaussian longitudinal data was the lack
of a rich class for the joint distribution of (yi1, . . . , yini ). There are essentially three
strategies to address the issue. All three approaches model both the dependence of
the response on the explanatory variables and the correlation among the responses.
In the following we give a brief overview.

1. Marginal models. Via this approach one models parametrically not only
the marginal mean of yit (as in GLMs and in cross-sectional studies in
general) but also the correlation matrix corr(yi ), by imposing a relationship
g(E[yit ]) = xT

itβ for a link function g, and by modeling the covariance

matrix with extra parameters τ and α: Vµi ,τ,α = τA
1/2
µi

Rα,iA
1/2
µi

, with Aµi =
diag(vµi1 , . . . , vµini

), where vµit = var(yit ), Rα,i is the working correlation
matrix and τ is a scale parameter. Only inference about the population mean
is possible (population average inference). The parameters are estimated via
a set of estimating equations, because there is no likelihood available in this
setting.

2. Random effects models. With these models it is assumed that the cor-
relation arising among repeated responses is due to the variation of the
regression coefficients across individuals. One therefore models the condi-
tional expectation of yit given γi (the individuals unexplained variations) by
assuming g(E[yit | γi]) = xT

itβ + zTitγi , with γi issued from a distribution F
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(usually Gaussian) such that E[γi] = 0 and var(γi ) = σ 2
γ I . This modeling

approach allows for inference about individuals (subject-specific inference).
Parameters estimation is performed via likelihood maximization.

3. Transition models. In this case, the conditional expectation given the past
E[yit | yi(t−1), . . . , yi1] is modeled. The assumptions about the dependence
of yit on the past responses and on xit are combined into a single equation,
that is, the conditional expectation of yit is written as an explicit function of
yi(t−1), . . . , yi1 and xit . The likelihood is also the estimation method here.

6.2.1 Classical Estimation and Inference in MLDA

In this chapter, we focus on marginal models, where the final goal is to describe the
population average and for which a robust procedure similar to that in Chapter 5 is
available. We note at this point that some robust options exist for random effects
models as well, see e.g. Mills et al. (2002), Sinha (2004) and Noh and Lee (2007).

The model assumptions under which we work are partially common with the main
ingredients defined for GLM.

• The marginal expectation of the response E[yit ] = µit depends on a set of
explanatory variables xit via g(µit ) = xT

it β, where g is the link function.

• The marginal variance depends on the marginal mean through the relationship
var(yit ) = τvµit . The scale parameter τ allows for over- or under-dispersion,
in the same manner as for GLMs, see Section 5.2.2.

• The correlation between yit and yit ′ (t �= t ′) is a function of the corre-
sponding marginal means and possibly of additional parameters α. This goal
is achieved by parameterizing the correlation matrix with a parameter α

yielding a modeled covariance matrix Vµi ,τ,α = τA
1/2
µi

Rα,iA
1/2
µi

, with Aµi =
diag(vµi1 , . . . , vµini

), where vµit = var(yit ). The modeled correlation matrix
Rα,i is called the ‘working’ correlation matrix, as opposed to the true
underlying and unknown correlation matrix corr(yi ).

The regression parameters β have the same interpretation as in GLM. They are
regarded as the parameters of interest, whereas τ and α are considered nuisance
parameters. This may not be appropriate when the time course for each subject is the
focus, in which case one would need to consider either the extension proposed by
Zeger et al. (1988) or a random effects model.

Marginal models are natural extensions of GLM for dependent data. Therefore,
the same or similar choices for the marginal distributions (within the exponential
family) and the same link functions as in GLMs are used, see Chapter 5. However,
even if a marginal distribution for yit is postulated (e.g. Bernoulli, binomial,
Poisson), it does not define a (unique) joint multivariate distribution for yi , making
it impossible to define a likelihood function to work with. The regression parameters
β are therefore estimated by the GEE approach of Liang and Zeger (1986). Note,
however, that the GEE reduce to maximum likelihood when the yi are multivariate
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Gaussian distributed. In addition, GEE can be viewed as an extension of the
quasi-likelihood approach where the variance cannot be specified only through the
expectation µi but rather with additional correlation parameters α. This similarity
with the quasi-likelihood approach explains why the parameter τ is directly included
in the definition of Vµi ,τ,α .

The quasi-likelihood approach used in (5.6) for GLM can be extended by solving
for β the GEE (assuming τ and α are given):

n∑
i=1

(Dµi ,β)
T (Vµi ,τ,α)

−1(yi − µi ) = 0, (6.1)

where Dµi ,β = ∂µi/∂β and Vµi ,τ,α = τA
1/2
µi

Rα,iA
1/2
µi

. The resulting GEE estimator
for β̂[GEE] can be obtained through an IRWLS by implementing a Fisher scoring
algorithm. This algorithm is given in Appendix F.1 in its more general robust form.

As said before, Rα,i is called the ‘working’ correlation, as opposed to the true
(unknown) correlation matrix corr(yi ). The working correlation is imposed by the
user and possible choices are as follows.

• Independence. Here Rα,i = Ini , where Ini is the identity matrix of size ni .
In this case, all of the set of N =∑n

i=1 ni measurements are considered
independent even within the same subject, and therefore we can treat this
situation with a simple GLM model as if each observation yit corresponds
to independent subjects.

• Fixed. The correlation matrixRα,i (orR) has a predefined form (either through
a known parameter α or in general). This case is rare in practice, but could be
implied by a formal theory or a result of previous studies.

• Exchangeable (or compound symmetry). All of the correlations (Rα,i )t t ′
between two occurrences t and t ′ (t �= t ′) are assumed to be equal to a scalar
value α to be estimated. Formally, Rα,i = αeni e

T
ni

+ (1 − α)Ini , where eTni is
a vector of ones of dimension ni and Ini is the ni × ni identity matrix. This
hypothesis may not be fulfilled when the repeated measurements are issued
from subjects measured on several occasions over time, but is more appropriate
in data where units are ‘natural’ clusters, such as children in the same class,
members of a family or patients of the same practice, see e.g. the example
in Section 6.2.3. Note that assuming exchangeable correlation in the normal-
identity link setting corresponds to a random intercept MLM.

• Autoregressive (AR). The correlation decreases with time difference, e.g.
(Rα,i)tt′ = α|t−t ′|, for an unknown scalar value α. This hypothesis is quite
commonly used for measurements on the same subject over time because it
can accommodate an arbitrary number and spacing of observations.

• m-dependence. Observations are correlated up to time distance m, and
therefore correlation is set to zero for observations that are more than m units
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apart. Formally, for α = (α1, . . . , αm)

(Rα,i)t t ′ =


1 t = t ′,
αd d = |t − t ′| ≤ m,

0 otherwise.

• Unstructured/unspecified. The correlation matrix Rα,i is completely free
(apart from a diagonal of ones and the symmetry constraint), which gives
many parameters to estimate. Obviously, this option requires clusters to be
of the same size, that is, ni = n∗ for all i.

We refer the reader to Table 1 in Horton and Lipsitz (1999) for a description
of the possible correlation structures and recommendations. Moreover, Hardin and
Hilbe (2003, pp. 141–142) give additional guidelines when choosing the correlation
structure, as a function of the nature of the data at hand (e.g. size of the clusters,
balanced data, characteristics defining the clusters).

6.2.2 Estimators for τ and α

The GEE (6.1) are defined for given values of τ and α. A procedure that iterates
between the estimation of the regression parameters β and the (moment) estimation
of the nuisance parameters τ and α is implemented in all good software and therefore
used in practice. Given that τ and α are nuisance parameters, less attention has been
paid to their estimation and almost no theoretical results for inference exist for these
parameters.

The estimation of τ is based on the fact that τ is equal to var(
√
τrit ), where rit =

(yit − µit )/
√
τvµit are the Pearson residuals for unit i at occurrence t . Therefore, a

simple estimator of τ is derived from the variance estimator based on all of the N

residuals, i.e.

τ̂ =
n∑

i=1

ni∑
t=1

(yit − µ̂it )
2/vµ̂it

N − (q + 1)
. (6.2)

On the other hand, the estimator of the correlation parameter α depends on the
choice of the correlation structure Rα,i . The general approach is to estimate α by a
simple function of all of the pairs of residuals r̂it , r̂it ′ that share the same correlation
(t and t ′ defined accordingly). Below, we give some of the solutions implemented in
software for the most common correlation structures.1

• If (Rα,i)t t ′ = α (exchangeable correlation) for all t �= t ′, then we have

α̂ =
n∑

i=1

∑
t>t ′

r̂it r̂it ′/(K − (q + 1)), (6.3)

where K = 1/2
∑n

i=1 ni(ni − 1) and r̂it = (yit − µ̂it )/
√
τ̂ vµ̂it

.

1Note that this list is not exhaustive, and different software implement different solutions.
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• If (Rα,i )t t ′ = αt,t ′ = α|t−t ′| (AR correlation), then given that E[rit rit ′ ] �
α|t−t ′| (because E[rit rit ′ ] � cov(rit , rit ′)), one estimates α by the slope of
the regression of log(r̂it r̂it ′) on log(|t − t ′|). Another option (see Hardin and
Hilbe, 2003, p. 66) is to use

α̂t,t ′ =
n∑

i=1

∑ni−(t−t ′)
t=1 r̂it r̂it ′

ni
.

• If α = (α1, . . . , αn∗−1), where αt = (Rα,i)t (t+1) and n∗ is such that n1 =
· · · = nn = n∗, then

α̂t =
n∑

i=1

r̂it r̂i(t+1)/(n − (q + 1)).

In particular, if Rα,i is tridiagonal with (Rα,i)t (t+1) = αt (one-dependent
model), then if we let αt = α, we can estimate it by

α̂ =
n∗−1∑
t=1

α̂t /(n
∗ − 1).

The extension to m-dependence is possible.

• If Rα,i is totally unspecified, that is (Rα,i)t t ′ = αtt ′ for t �= t ′, one uses

R̂ = 1

τ̂ n

n∑
i=1

(Aµ̂i
)−1/2(yi − µ̂i )(yi − µ̂i )

T (Aµ̂i
)−1/2.

For the independence, exchangeable and m-dependence correlation structure, τ
does not need to be computed to solve the estimating equations (it cancels out). In
contrast, it is needed when Rα,i is AR. Liang and Zeger (1986, Section 4) give further
details.

The above-described estimators for τ and α are moment estimators that have
a closed-form, but can be expressed in an estimating equation form to be solved
simultaneously with the estimating equations for β, see Liang et al. (1992, pp. 9–
10). The GEE approach operates as if α and β were orthogonal to each other,
even when they are not, yielding less efficient estimates of β when the correlation
structure is misspecified. Zhao and Prentice (1990) introduce a modified version of
GEE, called GEE2, that relaxes the orthogonality hypothesis. The price to pay is an
increased computational burden and a larger sensitivity to the misspecification of the
correlation structure, see Song (2007, p. 96). The GEE2 approach is usually not what
is implemented in most software and for this reason, we do not pursue this theory
further.

If
√
n-consistent estimators are used to estimate τ and α, it can be proved that√

n(β̂[GEE] − β) is asymptotically normally distributed with zero mean and variance

� = lim
n→∞M−1QM−1,
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where

M = 1

n

n∑
i=1

(Dµi ,β)
T (Vµi ,τ,α)

−1Dµi ,β ,

and

Q = 1

n

n∑
i=1

(Dµi ,β)
T (Vµi ,τ,α)

−1 var(yi )(Vµi ,τ,α)
−1Dµi ,β ,

see Liang and Zeger (1986, Theorem 2). Note that the asymptotic theory here is
intended with respect to the number of subjects (n) and for fixed numbers of
occurrences (ni).

The estimator used for � is �̂ = M̂−1Q̂M̂−1, where

M̂ = 1

n

n∑
i=1

(D
µ̂i ,β̂

)T (Vµ̂i ,τ̂ ,α̂)
−1D

µ̂i ,β̂
, (6.4)

and

Q̂ = 1

n

n∑
i=1

(D
µ̂i ,β̂

)T (Vµ̂i ,τ̂ ,α̂)
−1(yi − µ̂i )(yi − µ̂i )

T (Vµ̂i ,τ̂ ,α̂)
−1D

µ̂i ,β̂
, (6.5)

where β̂ = β̂[GEE], µ̂i = µi (β̂[GEE]), τ̂ is defined by (6.2) and α̂ is one of the
estimators defined in the list above, depending on the assumed correlation structure.

Note that an estimator for var(β̂[GEE]) is n−1�̂. This is what is called in the
literature a ‘robust’ variance estimator, in contrast to a ‘naive’ variance estimator
that would be obtained by assuming that the working correlation is true, and hence
var(yi ) = Vµi ,τ,α . This would yield v̂ar(β̂[GEE]) = n−1M̂−1. So, here ‘robust’ is
intended with respect to the misspecification of the correlation structure. For a similar
use of ‘robust’, see also the discussion in Section 7.2.4.

Approximate z-statistics and (1 − α) CIs can be defined in the usual manner, i.e.

z-statistic = β̂[GEE]j
SE(β̂[GEE]j )

, (6.6)

with SE(β̂[GEE]j ) =
√

v̂ar(β̂[GEE]j ) and v̂ar(β̂[GEE]j ) = n−1�̂(j+1)(j+1). In the
same manner, we obtain

(β̂[GEE]j − z(1−α/2)SE(β̂[GEE]j ); β̂[GEE]j + z(1−α/2)SE(β̂[GEE]j )),

where z(1−α/2) is the (1 − α/2) quantile of the standard normal distribution.
The GEE estimator β̂[GEE] of β is attractive because it presents some nice

theoretical properties. For instance, the asymptotic variance of β̂[GEE] does not
depend on the choice of the estimators for τ and α among the

√
n-consistent

estimators. In addition, the consistency of β̂[GEE] and �̂ depends only on the correct
specification of the means µi and not on the correct specification of the correlation
structure. In fact, inference about β is valid even when the correlation matrix is not
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specified correctly (see Liang and Zeger (1986) for a more detailed discussion and
for the proofs of these theoretical aspects). However, a careful choice of Rα,i , close
to the true correlation matrix corr(yi ), increases efficiency, even though simulations
results in Liang and Zeger (1986, Tables 1 and 2, p. 19) and Liang et al. (1992,
Table 1, p. 15) tend to suggest otherwise. In these references the loss of efficiency
is important only for highly correlated responses, but is limited for situations with
moderate correlation.

The drawbacks of the GEE approach are mostly related to the lack of a likelihood
function for these models, which makes diagnostic and inference limited, and to the
poor theory for the nuisance parameters.

6.2.3 GUIDE Data Example
We consider the dataset of the GUIDE study (Guidelines for Urinary Incontinence
Discussion and Evaluation2 as used by Preisser and Qaqish (1999). The response
variable is the coded answer (bothered: 1 for ‘yes’, 0 for ‘no’) of a patient to the
question: ‘Do you consider this accidental loss of urine a problem that interferes with
your day to day activities or bothers you in other ways?’. There are five explanatory
variables: gender, coded as an indicator for women (female), age (scaled by
subtracting 76 and dividing by 10: age), the average number of leaking accidents
per day (dayacc), the degree of the leak (severe: coded ‘1’ for ‘just create some
moisture’, ‘2’ for ‘wet their underwear (or pad)’, ‘3’ for ‘trickle down their thigh’, ‘4’
for ‘wet the floor’) and the daily number of visits to the toilet to urinate (toilet).
A total of 137 patients divided into 38 practices participated in the study.

Figure 6.1 shows the responses for each cluster. Note that here the cluster sizes
are different, ranging from one to eight. On the other hand, Figure 6.2 presents a
summary of all of the covariates for all of the individuals. The series of plots in
the left column is for observations such that yit = 1, that is, for patients that are
bothered by their incontinence. The right column of plots is for patients with yit = 0.
We observe a strong presence of female patients in the sample and a slightly larger
proportion of female (90% versus 80%) within the subsample for which yit = 0. The
age distribution is quite comparable between the two groups. On the other hand, as
one can expect, the three indicators of the severity of the incontinence (dayacc,
severe and toilet) show larger values for patients that declare themselves
bothered by their problem (left column). For example, the median number of
visits to the toilet is 6.5 for patients for which yit = 1 versus 5 for the other group.
Similarly, the median number of leaking accidents per day for the first group is 4.6
against 1 for the second group.

The model considered for this dataset is a binary logit-link model (τ = 1)
defined by

logit(E[bothered]) = logit(P (bothered))

= β0 + β1female+ β2age+ β3dayacc

+ β4severe+ β5toilet, (6.7)

2Available at http://www.bios.unc.edu/∼jpreisse/personal/uidata/preqaq99.dat
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Figure 6.1 The response for the GUIDE dataset for each practice (labeled by an
increasing number, appearing in the shaded box).

where logit(p) = log(p/(1 − p)), with p/(1 − p) being the odds and
p = P(bothered) the probability of being bothered. The clusters are defined
by the practice, which means that patients from different practices are assumed
independent. We assume common exchangeable correlation α between any two
patients of a same practice. This hypothesis makes sense a priori in the context of this
example: in fact, even though the patients of the same practice behave independently,
correlation could be induced by the fact that a physician tends to prescribe similar
treatments for their patients under treatment for the same problem.

Note that the scaling of the variable age is not necessary but it is kept for
consistency with the original analysis in Preisser and Qaqish (1999). Also, severe
is used as a count (again for consistency with the original analysis) but should
probably be put in the model as a four-level factor.
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Figure 6.2 Covariates pattern for the GUIDE dataset. The left column is for
observations such that yit = 1 (54 observations out of 137) and the right column
is for observations such that yit = 0 (83 observations).

The fitted parameters of model (6.7) via classical GEE with exchangeable
correlation are given in the first column of Table 6.1. We interpret the results in
Section 6.3.4.

6.2.4 Residual Analysis

Residuals with longitudinal data can be considered at the observation level or at
the cluster level. In both cases, the residuals proposed for GEE are similar to those
used for GLMs with the additional requirement that the cluster structure has to be
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Table 6.1 Estimates of α and β by classical and robust GEE for model (6.7).

Classical Huber Mallows
Variable coefficient (SE) coefficient (SE) coefficient (SE)

α̂ 0.09 0.11 0.10
intercept −3.05 (0.96) −3.62 (1.30) −3.63 (1.28)
female −0.75 (0.60) −1.45 (0.80) −1.41 (0.78)
age −0.68 (0.56) −1.48 (0.71) −1.39 (0.69)
dayacc 0.39 (0.09) 0.51 (0.13) 0.52 (0.13)
severe 0.81 (0.36) 0.71 (0.42) 0.69 (0.41)
toilet 0.11 (0.10) 0.36 (0.13) 0.35 (0.13)

The classical estimates are the solution of (6.1)–(6.3). The robust estimates are
obtained by solving (6.8), (6.10) and (6.11) with c = 1.5 and k = 2.4 (Huber’s
estimator), and with c = 1.5, w(xit ) = √1 − hi,t t and k = 2.4 (Mallows’
estimator).

considered, see Hammill and Preisser (2006), Hardin and Hilbe (2003, Section 4.2)
and Chapter 4.

As in GLMs, we define the Pearson residuals

r̂it = yit − µ̂it√
τ̂ vµ̂it

.

They can be plotted to identify outliers and other violation of the assumptions like in
other regression settings (e.g. heteroscedasticity, functional form of the regression,
etc.).

Figure 6.3 is a plot of the Pearson residuals for the GEE fit of the GUIDE dataset.
It shows some large residuals, in particular for observations 8, 19, 42, 87 and 88.
Given the fact that residuals estimated through non-robust estimators have to be
analyzed with caution, in particular in regard of the possible masking effects, we
defer the detailed interpretation of this residual analysis and introduce first the robust
estimators.

6.3 A Robust GEE-type Estimator

6.3.1 Linear Predictor Parameters

The robust counterpart to the GEE approach is built upon the theory of optimally
weighted estimating equations (see Hanfelt and Liang 1995; McCullagh and Nelder
1989, p. 334). In the class of all estimating equations based on (yi − µi ) the optimal
(that is, with smallest asymptotic dispersion) estimating equations are given by

n∑
i=1

(Dµi ,β)
T �T

i (Vµi ,τ,α)
−1(ψi − ci ) =

n∑
i=1

�1(yi ,Xi; β,α, τ, c) = 0, (6.8)
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Figure 6.3 Pearson residuals corresponding to the classical GEE fit of the GUIDE
dataset (first column of Table 6.1).

where Dµi ,β = Di(Xi ,β) = ∂µi/∂β is a ni × (q + 1) matrix,

Vµi ,τ,α = τA
1/2
µi

Rα,iA
1/2
µi

is a ni × ni matrix. Moreover, ψi = Wi · (yi − µi ), where the matrix Wi =
W(yi ,Xi; µi ) = diag(wi1, . . . , wini ) is a ni × ni diagonal weight matrix containing
robustness weights wit for t = 1, . . . , ni , and ci = E[ψi]. Finally, �i = E[ψ̃i − c̃i]
with ψ̃i = ∂ψi/∂µi and c̃i = ∂ci/∂µi . Note that the set of estimating equations
in (6.8) are a slightly modified version of the estimating equations in Preisser and
Qaqish (1999) in that it includes the matrix �i , which, for a given choice of weights
Wi and ‘working’ correlation Rα,i , makes it optimal (in the sense of smallest
asymptotic dispersion) in the class of all estimating equations based on (yi − µi ),
see Hanfelt and Liang (1995). The computational details of ci and �i for binary
responses are given in Appendix F.2.

We assume that the weights Wi downweight each observation separately, even
though it is possible to consider a cluster downweighting scheme, see the discussion
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about observation versus cluster outliers in Section 6.2.4. Possible choices for
the weights are w(rit ; β, τ, c) as a function of the Pearson residuals rit =
(yit − µit )/

√
τvµit , for example Huber’s weight (see also (2.16))

w(rit ; β, τ, c) =
{
c/|rit /√τ | if |rit /√τ | > c,

1 otherwise,
(6.9)

to ensure robustness with respect to outlying points in the response space (Huber’s
estimator), or w(xit ) as a function of the diagonal elements hi,t t of the hat
matrix Hi (see (3.11)) for subject i (for example, w(xit ) = √1 − hi,t t ) to handle
leverage points. In practice, it often makes sense to combine both types of weights
multiplicatively: wit = w(rit ; β, τ, c)w(xit ) (Mallows’ esitmator). The classical
GEE are obtained with Wi equal to the identity matrix. We refer to Cantoni and
Ronchetti (2001b) for a detailed discussion on the choice of the weights.

For simplicity, our weighting scheme (as in Preisser and Qaqish, 1999) does not
take into account the within-subject correlation and is therefore not suitable for the
situation where this correlation is high, in which case it has to be redefined properly,
see for example Huggins (1993) and Richardson and Welsh (1995). Doing so will
change the definition in (6.8) and affect the distributional properties. Note, however,
that protection against outliers affecting all of the observations of a cluster can be
handled by our approach by specifying a cluster downweighting scheme, that is,
with wit = w∗

i for all t = 1, . . . , ni , where the w∗
i have to be defined to take into

account the information of the entire cluster.
The estimating equations (6.8) do not simplify exactly to the estimating equations

(5.13) for GLMs owing to the presence of the matrix �i in the former. The presence
of this matrix in the GEE setting is necessary to allow the construction of the quasi-
deviance functions for inference (see Section 6.4.2).

6.3.2 Nuisance Parameters

The estimators of the dispersion parameter τ and of the correlation parameter α

also have to be made robust to avoid harmful consequences on the estimation of the
regression parameters. We build again on the fact that the parameter τ is the variance
of (yit − µit )/

√
τvµit = √

τrit , see Section 6.2.2. We therefore proceed similarly as
for GLM and choose Huber’s Proposal 2 estimator of variance (see Section 5.3.3),
which is written here as

n∑
i=1

ni∑
t=1

χ(rit ; β,α, τ, c) =
n∑

i=1

�2(ri; β,α, τ, c) = 0, (6.10)

whereχ(u; β,α, τ, c) = ψ2(u; β,α, τ, c) − δ. In addition, δ=E[ψ2(u; β,α, τ, c)]
(under normality for u) is a constant that ensures Fisher consistency of the estimation
of τ . For its computation for ψ2(u; β,α, τ, c) = ψ[Hub](u; β,α, τ, c) (our preferred
choice), see (3.8), while noticing that ψ[Hub](u; β,α, τ, c) = uw[Hub](u; β,α, τ, c).

As in the classical GEE theory, the estimator of the correlation parameter α

depends on the assumed correlation structure. To build a robust estimator of α, the
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idea is to base this estimator on appropriate pairs of residuals, along the same line as
for the classical estimators (see Section 6.2.2), but to consider additional weighting
schemes to downweight outlying observations.

In the following we discuss in detail the case of exchangeable correlation and
explain how one can deal with two other common situations, namely the m-
dependence and the AR correlation structures. Let us recall that the exchangeable
correlation structure defines Rα,i = αeni e

T
ni

+ (1 − α)Ini , with eni a vector of
ones of length ni , and Ini the identity matrix of size ni × ni , which means that
corr(yit , yit ′) = α for t �= t ′, and one otherwise. A simple M-estimator of covariance
can be defined through Huber’s type of weights (based on ψ[Hub](·; β,α, τ, c))
which we define as functions of the Mahalanobis distance di

t t ′ (see (2.34)) between
the pair of residuals r̂it and r̂it ′ . The Mahalanobis distance is given in this case by
(di

t t ′)
2 = (r̂it r̂it ′) �̂−1 (r̂it r̂it ′)T with

�̂ = τ̂[M]
(

1 α̂[M]
α̂[M] 1

)
.

We define Huber’s weights on the Mahalanobis distances by

u1,k(d
i
t t ′) =

{
1 if ditt′ ≤ k,

k/ditt′ otherwise.

We then put u2,k(d
i
t t ′) = u1,k2(dit t ′)/γ with γ = E[ru1,k2(|r|)]/2 where the expec-

tation is computed under normality for r . This yields γ = Fχ2
4
(k2) + k2/2(1 −

Fχ2
2
(k2)), where Fχ2

4
and Fχ2

2
are the cumulative distribution function of a χ2

distribution with four and two degrees of freedom, respectively. Let Bi = (r̂i1 ·
r̂i2, r̂i1 · r̂i3, . . . , r̂i(ni−1) · r̂ini )T be the vector of the product of all of the pairs of
residuals for cluster i and let Gi = (u2,k(d

i
12), u2,k(d

i
13), . . . , u2,k(d

i
(ni−1)ni

))T be
the vector of weights, then our robust estimator of α is defined as the solution α̂[M]
of

n∑
i=1

(
GT

i Bi − K

n
ατ

)
=

n∑
i=1

�3(ri; β,α, τ, c) = 0, (6.11)

with K =∑n
i=1 ni(ni − 1)/2. For more details on all of the above computations we

refer to Maronna (1976), Devlin et al. (1981) and Marazzi (1993, p. 225).
M-estimators are known to have a low breakdown point, namely one over the

dimension of the problem, which is equal to two here (see the discussion of this point
in Section 2.3.1). Nevertheless, high breakdown point estimators could be considered
to estimate �. An ad hoc estimator of α in the case of binary responses with
exchangeable correlation inspired by the classical moment estimator is considered
by Preisser and Qaqish (1999). This proposal relies on the hypothesis that var(ψi )

can be decomposed as Ci var(yi )Ci and therefore the proposal cannot be extended
to other settings, e.g. Poisson. Our proposal is more general and has the advantage
of inheriting the whole set of distributional properties of M-estimators. It is also
worth mentioning that all u1,k(d

i
tt′) = 1, and therefore all u2,k(d

i
tt′) = 1 gives the

usual (classical) moment estimators for these situations.
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Two other common correlation structures are the m-dependence correlation
structure, which assumes that corr(yit , yi,t+j ) = αj , for j = 1, . . . ,m, and the AR
correlation structure which assumes that corr(yit , yi,t+j ) = αj for j = 0, 1, . . . ,
ni − t . The procedure described above can be adapted to these cases by constructing
Bi appropriately, that is, with all of the products r̂it · r̂i,t+j in the first case, and
r̂it · r̂i,t+1 in the latter. The correction terms have to be defined accordingly.

6.3.3 IF and Asymptotic Properties

Under standard regularity conditions we have that (
√
n(β̂[M] − β)T ,

√
n(τ̂[M] −

τ )T ,
√
n(α̂[M] − α)T )T , with β̂[M], τ̂[M] and α̂[M] defined through (6.8), (6.10) and

(6.11), respectively, follows an asymptotic normal distribution with mean zero and
covariance matrix

lim
n→∞

F 0 0
G H 0
J L N

−1�(11) �(12) �(13)

�T
(12) �(22) �(23)

�T
(13) �T

(23) �(33)

F 0 0
G H 0
J L N

−T

, (6.12)

where all of the sub-matrices in (6.12) are given in Cantoni (2004b) (up to a
factor 1/n, with � = �), where the proof of the distributional result is also given.
The particular form of the matrices in (6.12) implies that the marginal asymptotic
distribution of

√
n(β̂[M] − β) is normal with mean zero and variance equal to

ϒ = lim
n→∞F−1�(11)F

−T , (6.13)

where

F = 1

n

n∑
i=1

(Dµi ,β)
T �T

i (Vµi ,τ,α)
−1�iDµi ,β , (6.14)

and

�(11) = 1

n

n∑
i=1

(Dµi ,β)
T �T

i (Vµi ,τ,α)
−1 var(ψi )(Vµi ,τ,α)

−1�iDµi ,β . (6.15)

The distributional result in (6.12) generalizes the results of Prentice (1988): it applies
to other types of responses than Bernoulli trials, it allows for an over-dispersion
parameter (τ ) and is developed in the more general setting of robust estimating
equations defined by (6.8), (6.10) and (6.11).

In addition, the estimating equations (6.8), (6.10) and (6.11) define a set of M-
estimators (Huber, 1981), with the corresponding score functions �1(yi ,Xi; β,α,

τ, c), �2(ri; β,α, τ, c), �3(ri; β,α, τ, c) in Appendix F.1. From general theory on
M-estimation, we know that the IF of these estimators is proportional to the score
functions defining them. Therefore, the estimators obtained by our procedure are
robust as long as the functions �i are bounded in the design and in the response.
This is in particular achieved if ψi in (6.8) and χ in (6.10) are bounded, and u2,k
through Gi in (6.11) are allowed to be less than one.



6.3. A ROBUST GEE-TYPE ESTIMATOR 177

• ••

•

• •

•

•

•

••

•

• • • • •

•

•

•

•
•
••• • •••

•

••

•

•

• •

•

• ••

•

•

•

•• • • •••• • • • ••

•

•

Practice

W
ei

gt
hs

 w
(r

)

0 50 100 150 200

0.
2

0.
4

0.
6

0.
8

1.
0

8

19

22

42

44

88

87

135

Figure 6.4 Robustness weights on the response, grouped by practice, for the fit
corresponding to the middle column of Table 6.1 (Huber’s estimator).

6.3.4 GUIDE Data Example (continued)

We estimate the regression parameters with the set of equations in (6.8), where we
consider both a Mallows’ estimator with w(xit ) = √1 − hi,t t and c = 1.5 and a
Huber estimator with w(xit ) = 1 and c = 1.5. In both cases, the exchangeable corre-
lation parameter α is estimated through (6.11) with k = 2.4, which is approximately
the 95%-quantile of a χ2

2 distribution. In addition to the classical results already
presented in Section 6.2.3, Table 6.1 gives the estimated coefficients for the two
robust alternatives. First note that the results of the second and third column (robust
analyses) are quite close, whereas they differ noticeably from the classical analysis.
This means that the additional weights on the design are probably not crucial in
the sense that the dataset does not seem to contain leverage points. By looking at
approximate CIs (see their definition in Section 6.4.1), the variables female and
age are not significant in the classical analysis, but are borderline in the robust
analysis. The significance of the variable dayacc seems to be equally well assessed
in both types of analysis. The variable severe is no longer significant in the robust
analysis, whereas the variable toilet seems to play an important role that was
hidden in the classical approach.
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The robust procedure also gives information on how many and which observations
are downweighted. For example, in the analysis with weights on the response only
(middle column of Table 6.1), there are 15 observations out of 137 that do not receive
full weight, 8 of which have weight less than 0.6, see Figure 6.4. This group of
observations is partially the same as that identified in Preisser and Qaqish (1999)
with their robust procedure. The diagnostic approach in Hammill and Preisser (2006)
identify as potential outliers a smaller group of observations, in particular patients
8 and 44. These two patients, together with patient 42, report not being bothered
despite their high frequency of visits to the toilet (10 for patients 8 and 42, and 20
for patient 44) and their large average number of leaking accidents per day (9.3 for
patient 8, 6 for patient 42 and 3 for patient 44). On the other hand, patients 19 and 88
declared themselves bothered, even though the severity of their symptoms (variables
severe and toilet) are pretty low with respect to the other sample values.

Only two of these heavily downweighted observations belong to the same practice
(cluster), namely observations 87 and 88 from practice 156, confirming that the
individual downweighting scheme is justified with this dataset.

6.4 Robust Inference

6.4.1 Significance Testing and CIs

The z-test for significance testing and (1 − α) CIs for the regression parameters
β can be constructed based on the asymptotic distribution of the estimator, see
Section 6.3.3.

The z-statistics and (1 − α) CIs are given by

z-statistic = β̂[M]j
SE(β̂[M]j )

,

and
(β̂[M]j − z(1−α/2)SE(β̂[M]j ); β̂[M]j + z(1−α/2)SE(β̂[M]j )),

with

SE(β̂[M]j ) =
√

1

n
[ϒ̂](j+1)(j+1),

where z(1−α/2) is the (1 − α/2) quantile of the standard normal distribution, and
where ϒ̂ = F̂−1�̂(11)F̂

−T , with

F̂ = 1

n

n∑
i=1

(D
µ̂i ,β̂

)T �T
i (Vµ̂i ,τ̂ ,α̂)

−1�iDµ̂i ,β̂
, (6.16)

and

�̂(11) = 1

n

n∑
i=1

(D
µ̂i ,β̂

)T �T
i (Vµ̂i ,τ̂ ,α̂)

−1(ψi − ci )(ψi − ci )
T (Vµ̂i ,τ̂ ,α̂)

−1�iDµ̂i ,β̂
,

(6.17)
where β̂ = β̂[M], µ̂i = µi (β̂[M]), τ̂ = τ̂[M] and α̂ = α̂[M].
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6.4.2 Variable Selection

Variable selection is performed here by comparing the adequacy of a submodel
Mq−k+1 with (q − k + 1) regression parameters with respect to a larger model
Mq+1 with (q + 1) regression parameters. This is done either in a stepwise
procedure, or by comparing two predefined nested models. For that we define a class
of test statistics based on differences of quasi-likelihoods, in the same spirit as the
difference of quasi-deviances in (5.24) for GLMs in Chapter 5:

�t(s) = 2

{ n∑
i=1

Qti (s)(yi; µ̂i ) −
n∑

i=1

Qti (s)(yi; µ̇i )

}
, (6.18)

where µ̂i = µi (β̂[M], α̂[M], τ̂[M]) is the estimation under model Mq+1, and where

µ̇i = µi (β̇[M], α̇[M], τ̇[M])

is the estimation under model Mq−k+1 and where the quasi-likelihood functions
take the multidimensional form

Qti (s)(yi; µi )

= 1

τ

∫ µi

yi

(yi − ti )
T W (yi ,Xi; ti (s))(Vti (s),τ,α)

−1�i (ti (s)) dti (s)

− 1

τ

∫ µi

yi

E[(yi − ti (s))
T W (yi ,Xi; ti (s))](Vti (s),τ,α)

−1�i (ti (s)) dti (s),

(6.19)

with the integrals possibly path-dependent. This means that there are several paths to
go from a point yi to a point µi and implies, therefore, that the integrals in (6.19) are
not uniquely defined. It is common practice to parameterize this path and a typical
set of integration paths is given for example by tit (s) = yit + (µit − yit )s

cit , for
s ∈ [0, 1], cit ≥ 1 and t = 1, . . . , ni . For instance, when cit ≡ 1 for all t (see for
example McCullagh and Nelder, 1989, p. 335), we have that

Qti (s)(yi; µi )

= − 1

τ
(yi − µi )

T

[∫ 1

0
sW (yi ,Xi; ti (s))(Vti (s),τ,α)

−1�i (ti (s)) ds

]
(yi − µi )

+ 1

τ

∫ 1

0
E[{yi − ti (s)}T W (yi ,Xi; ti (s))](Vti(s),τ,α)

−1�i (ti (s))(yi − µi ) ds,

which involves only univariate integrations, uniquely defined. The asymptotic result
from Section 6.4.2.1 shows that the path-dependence of the integrals in (6.19)
vanishes asymptotically. In addition, Hanfelt and Liang (1995) showed that the path
of integration does not play an important role in finite-sample situations. These
results support the use of the difference of robust quasi-likelihoods for inference.
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6.4.2.1 Multivariate Testing

Multivariate testing of the type H0 : β(2) = 0 with β = (β(1),β(2)) and with β(1)
of dimension (q + 1 − k) and β(2) of dimension k, can be performed using �t(s)

defined by (6.18) as a test statistic. Cantoni (2004b) proves that under quite general
conditions (and under H0), �t(s) is asymptotically equivalent to the following
quadratic forms in normal variables

nLT
n (M

−1 − M̃+)Ln = nRT
n(2)M22.1Rn(2), (6.20)

where

M = lim
n→∞F = lim

n→∞
1

n

n∑
i=1

(Dµi ,β)
T �T

i (Vµi ,τ,α)
−1�iDµi ,β

is partitioned into four blocks according to the partition of β:(
M(11) M(12)

MT
(12) M(22)

)
and

M̃+ =
(

M−1
(11) 0(q−k+1)×k

0k×(q−k+1) 0k×k

)
,

where 0a×b is a matrix of dimension a × b with only zero entries.
The variables

√
nLn and

√
nRn are asymptotically normally distributed N (0,Q)

and N (0,M−1QM−1), respectively, where

Q = lim
n→∞�(11) = lim

n→∞
1

n

n∑
i=1

DT
µi ,β

�T
i (Vµi ,τ,α)

−1 var(ψi )(Vµi ,τ,α)
−1�iDµi ,β .

This implies that �t(s) is asymptotically distributed as linear combination of
χ2

1 variables, similarly as for GLMs (see Section 5.4.2). More precisely, �t(s)

is asymptotically distributed as
∑k

i=1 diN
2
i , where N1, . . . , Nk are independent

standard normal variables, d1, . . . , dk are the k positive eigenvalues of the matrix
Q(M−1 − M̃+). In practice, the empirical version of M and Q are used, that is,
M̂ = F̂ (see (6.16)) and Q̂ = �̂(11) (see (6.17)).

In addition to giving the asymptotic distribution, the above result provides
an asymptotically equivalent quadratic form to �t(s), which can be used as an
asymptotic approximation when the integrals involved in the definition of �t(s) are
problematic to compute. More precisely, one computes nβ̂T

M(2)M̂22.1β̂M(2).
Finally, Cantoni (2004b) proves that the level and the power of �t(s) under

contamination are bounded provided that β̂M(2) has a bounded IF.

6.4.3 GUIDE Data Example (continued)

Let us consider a backward stepwise procedure based on the difference of quasi-
likelihoods functions defined by (6.18) to check more carefully the issues related
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Table 6.2 p-values of the backward stepwise procedure on the GUIDE dataset.

Variable Step 1 Step 2 Step 3 Step 4

Classical female 0.224 0.270 – –
age 0.249 – – –
dayacc <10−4 <10−4 <10−4 <10−4

severe 0.089 0.081 0.061 0.011
toilet 0.224 0.164 0.165 –

Robust female 0.070 0.095 – –
age 0.045 0.041 0.068 –
dayacc <10−4 <10−4 <10−4 <10−4

severe 0.092 – – –
toilet 0.006 0.004 0.004 0.002

The robust test statistics (6.18) are computed by applying Huber’s-type weights (c =
1.5), and by using k = 2.4 for the estimation of α in (6.11) (exchangeable correlation).
The classical test statistics are computed with c = ∞ and k = ∞.

to model selection. We use the same weights and the same set of parameters as
for the Huber’s estimator of Section 6.3.4, and compute the quadratic form (6.20)
asymptotically equivalent to �t(s). At each step of the procedure, we remove the
variable that is the least significant by looking at the p-value or, equivalently, at
the value of the test statistic. The procedure is stopped when all of test statistics
are significant at the 5% level. The classical counterpart is computed with the same
quadratic form, by using c = ∞ and k = ∞ to compute the estimators.

Table 6.2 gives the p-values of this backward stepwise procedure. It is impressive
to see how the classical p-values differ from the robust p-values. This highlights the
heavy influence of outlying observations on the test procedure and not only on the
estimation procedure. Finally, the robust procedure ends up by retaining the variables
dayacc and toilet, whereas the classical analysis would retain the variables
dayacc and severe. On the basis of the theoretical properties of the robust
estimator, and also on the simulations results in Cantoni (2004b), the conclusions
from the robust analysis are more reliable. We therefore robustly refit the model with
only dayacc and toilet and proceed with interpretations from this model. The
estimated coefficients and standard errors for the linear predictors are as follows:

−3.67 + 0.49 dayacc + 0.29 toilet.
(0.76) (0.12) (0.10)

The estimated model in this clustered setting can be interpreted in the same way
as for GLMs. In this example, the response is binary, and therefore the discussion
of Section 5.5.2 about interpreting the coefficients on the odds scale still holds. The
effect of an additional leaking accident per day is to increase by 63% (exp(0.49) =
1.63) the odds of a patient being bothered by their incontinence problem. Similarly,
the effect of an extra visit to the toilet results in a 34% increase (exp(0.29) = 1.34)



182 MARGINAL LONGITUDINAL DATA ANALYSIS

on the same odds. This second effect is smaller in magnitude, which seems compliant
with common sense.

6.5 LEI Data Example

We consider here a dataset on direct laryngoscopic endotracheal intubation (LEI),
a potentially life-saving procedure in which many health care professionals are
trained. We examine data from a prospective longitudinal study on LEI at Dalhousie
University, previously analyzed by Mills et al. (2002). Variable selection is an
important step as the model(s) chosen will include only those covariates significant
in predicting successful completion of LEI.

A total of 436 LEIs were analyzed. We let yit = 1 if trainee i performs a
complete LEI in less than 30 seconds on trial t , and zero otherwise. The correlation
between observations on the same trainee is taken to be exchangeable. An AR
correlation structure would be another option with these data. We judge trainees
based on the following nine binary covariates taking the value one if the condition
is satisfied: whether the head and neck were in optimal position (neckflex and
extoa); whether they inserted the scope properly (proplgsp); whether they
performed the lift successfully (proplift); whether there was appropriate request
for help (askas); whether there was unsolicited intervention by the attending
anesthesiologist (help); whether there were no complications (comps); and the
trainee’s handedness (trhand) and gender (trgend). Nineteen trainees performed
anywhere from 18 to 33 trials.

Figure 6.5 gives the pattern profiles for the 19 trainees. These patterns tend to
show that training results in better performance over time, see for example profiles
of trainees K, L, VV and Z. It seems less evident for other individuals, namely AA
and S. Table 6.3 presents a summary of all of the (binary) covariates for all of the
individuals. As naturally expected, the proportion of ones (indicating that successful
action has been taken or that no complications were observed) is larger for individual
that have succeeded in performing a complete LEI.

We fitted robustly a GEE model with exchangeable correlation to the above data.
The estimates and test results are given in Table 6.4. The robust GEE model uses a
Huber’s estimator with c = 1.5 for the Huber function and k = 2.4 for the Huber’s
Proposal 2 (6.10). No weights on the design has been used here given the binary
nature of all the covariates.

A priori we would expect all of the coefficients to be positive, which would
indicate that if proper action is taken, the probability of success in performing
LEI increases. It is indeed the case expect for a few non-significant coefficients
(askas and extoa). A classical approach (not shown here) would give substan-
tially different estimated coefficients. The standard errors of the MLE would also be
quite larger, which is a serious drawback when performing significance testing.

Figure 6.6 gives the weights w(rit ; β, τ, c) from the robust fit. The two main
outliers are observations 11 (11th trial of trainee AA) and 273 (14th trial of trainee
T). The first observation corresponds to the only successful LEI for trainee AA in
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Figure 6.5 LEI responses (one for completed in less than 30 seconds) for each
trainee, labeled by capital letters.

21 trials (see Figure 6.5) for a covariate pattern for this trainee which is quite stable
through the trials (not shown) and can therefore not explain the different response.
The second observation is an unsuccessful LEI, even though the covariates pattern
would have called for a success.

The significant variables stemming from the robust approach on the basis of their
z-statistic are neckflex, proplgsp, proplift, help and perhaps comps.
In the classical analysis, neckflexwould have been considered non-significant, as
would comps.

The significance of all of the variables except comps is clearcut. We therefore
only test three particular nested models with the difference of quasi-deviances (6.18)
with Huber’s weights with c = 1.5: the full model including all of the available
covariates, against the submodel without extoa, askas, trhand, trgend
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Table 6.3 Covariates characteristics for the LEI dataset.

Successful LEI Unsuccessful LEI
(118 observations) (318 observations)

Proportion Proportion Proportion Proportion
Variable of ones of zeros of ones of zeros

neckflex 0.99 0.01 0.95 0.05
extoa 0.99 0.01 0.97 0.03
proplgsp 0.86 0.14 0.52 0.48
proplift 0.88 0.12 0.39 0.61
askas 0.15 0.85 0.20 0.80
help 0.70 0.30 0.37 0.63
comps 0.95 0.05 0.78 0.22
trhand 0.82 0.18 0.84 0.16
trgend 0.77 0.23 0.69 0.31

Table 6.4 Robust GEE fits for the LEI dataset.

Variable Coefficient (SE) p-value

intercept −4.18 (0.51) <10−4

neckflex 1.52 (0.39) <10−4

extoa −0.24 (0.41) 0.56
proplgsp 0.69 (0.20) 0.0007
proplift 0.98 (0.25) <10−4

askas −0.42 (0.26) 0.11
help 0.34 (0.12) 0.004
comps 0.99 (0.49) 0.04
trhand 0.04 (0.26) 0.89
trgend 0.05 (0.24) 0.84

α 0.061

The estimates are obtained by solving (6.8), (6.10)
and (6.11) with c = 1.5 and k = 2.4 (Huber’s
estimator).

(the clearly non-significant covariates) and the submodel that in addition remove
comps. Table 6.5 gives the p-values associated with these tests. It confirms that the
submodel without extoa, askas, trhand and trgend is enough to represents
the relationship that describes a successful LEI. The robust analysis also shows the
importance of the variable comps, given the rejection of the null hypothesis that its
coefficient is equal to zero.

The estimated final model therefore yields the following coefficients and standard
errors for the linear predictor:
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Figure 6.6 Robust weights for the LEI data example.

Table 6.5 Robust p-values for comparison of models based on the difference of
quasi-deviances (6.18).

Model �t(s) p-value

Full
- extoa - askas - trhand - trgend 4.49 0.36
- extoa - askas - trhand - trgend - comps 2.76 0.01

The robust test statistics (6.18) are computed by applying Huber’s-type weights
(c = 1.5) and by using k = 2.4 for the estimation of α in (6.11) (exchangeable
correlation).

−9.17 + 3.78 neckflex + 1.33 proplgsp + 1.93 proplift + 0.60 help + 1.93 comps.
(1.23) (0.75) (0.35) (0.50) (0.26) (0.77)

The multiplicative effects of a positive action taken by the trainee or the fact that
there was no complications (in which cases the covariate is equal to one) on the odds
of succeeding in performing a LEI are as follows (exponential of the coefficient):

neckflex proplgsp proplift help comps.
43.69 3.79 6.89 1.82 6.90

In addition to the statistical significance, we can see that the strongest effect on
the odds of a successful LEI is definitely the proper positioning of the neck, followed
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by the correct lift and the absence of complications. Inserting the scope properly
and asking for help were also positively associated with a successful LEI, but the
associations were somehow weaker.

6.6 Stillbirth in Piglets Data Example

Genetic selection is an important research domain in animal science. It allows species
to be selected with ‘stronger’ characteristics. For example, for most mammalian
species, farrowing is a critical period. In pigs, for example, up to 8% of newborns
are stillborn. Limiting or reducing the number of stillbirths requires its major
determinants to be investigated.

This section is devoted to the study of stillbirth in four genetic types of sow: Duroc
× Large White (DU × LW), Large White (LW), Meishan (MS) and Laconie (LA).
Data are from the INRA GEPA experimental unit (France) and have been kindly
provided by L. Canario and Y. Billon. Related publications are Canario (2006) and
Canario et al. (2006) where the reader can find a more extensive discussion of the
modeling issues for this dataset. Previous studies have shown that parity number,
piglet birth weight, sex and birth assistance were associated with perinatal mortality.
The aim of the study is to establish whether there is a genotype effect, in view of
possible genetic selection (e.g. development of crossed-synthetic lines).

Our dataset comprises 80 litters for the genetic type (coded gentype) DU ×
LW, 633 litters for LW, 59 litters for MS and 168 litters for LA, for a total of 940
litters and 11 638 observations. There were 565 deaths (coded = 1) out of the 11 638.
The genetic type LW is taken as the reference. Parity number, the number of times a
mother has given birth (variable parity, taken as a factor), ranges from one to six
with the following corresponding frequencies (35%, 26%, 15%, 12%, 8%, 4%), with
one taken as the reference. Birth assistance (variable birthassist) is coded zero
for no assistance and one for one or several assistances. The cluster is defined as the
litter, which size varies from 5 to 23.

We fit a binary logit-link model with exchangeable correlation. For the robust
fit we use weights w(rit ; β, τ, c) on the residuals with a tuning constant c = 1.5
for the Huber function. We use k = 2.4 for the Huber’s Proposal 2 (6.10). The
estimated coefficients, standard errors and p-values for z-test for significance on
each coefficient (H0 : βj = 0) are given in Table 6.6. The robust analysis shows that
piglets born from the MS genetic type have a lower risk of stillbirth with respect
to LW. The odds ratio of a stillbirth for the MS genotype with respect to the LW
genotype is equal to exp(−1.71) = 0.18. Also, the mortality increases with parity,
at least for the 5th and 6th parity, which could result from the fatness of old sows or
aging of the uterus (or both). The estimated exchangeable correlation is α̂ = 0.035,
which is low.

The conclusions, however, have to be taken with caution. A careful inspection of
the weights associated by the robust technique to the observations show a particular
pattern. Indeed, in Figure 6.7, one can see that the downweighted observations
identify a subpopulation of the data, in fact all of the 565 observations corresponding
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Table 6.6 Robust estimates for the piglets dataset.

Variable Coefficient (SE) p-value

intercept −3.00 (0.11) <10−4

factor(gentype)DU × LW −0.20 (0.19) 0.31
factor(gentype)MS −1.71 (0.43) <10−4

factor(gentype)LA 0.11 (0.14) 0.45
factor(parity)2 −0.23 (0.15) 0.12
factor(parity)3 0.10 (0.17) 0.57
factor(parity)4 0.15 (0.17) 0.38
factor(parity)5 0.38 (0.21) 0.08
factor(parity)6 0.55 (0.20) 0.005
birthassist 0.13 (0.12) 0.30

The estimates are obtained by solving (6.8), (6.10) and (6.11) with c = 1.5
and k = 2.4 (Huber’s estimator).
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Figure 6.7 Robustness weights on the response for the piglets dataset.

to a death (response = 1). Further investigations allowed us to identify suspected
separation or near-separation in the data. This peculiarity of binary regression
is a situation where the design space of the observations for which y = 1 and
the observations for which y = 0 can be completely separated by a hyperplan.
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Figure 6.8 Illustration of a situation with no overlap in binary regression: the
observations for which y = 0 and the observations for which y = 1 can be
completely separated by a hyperplan.

For example, if there are two covariates x1 and x2, this would correspond to the
situation depicted in Figure 6.8. We say that there is no overlap for this dataset (see
also the illustration in Christmann and Rousseeuw (2001, pp. 67–69)).

Christmann and Rousseeuw (2001) give an algorithm to compute the over-
lap, that is, the smallest number of observations whose removal yields complete
or quasi-complete separation. In these cases, most estimators do not exist. In
cases where the overlap is very small, the estimators exist but can potentially be
very unstable. In addition, robust estimators work by downweighting (or some-
times removing) outlying points. It can therefore happen that the whole dataset
has overlap, but that the robust estimators do not exist. The methodology by
Christmann and Rousseeuw (2001) was used on the piglets dataset to compute the
overlap, which is equal to eight. This is particularly related to the binary/categorical
nature of the data. A (limited) sensitivity analysis has nevertheless shown that some
stability is present and that therefore the study provides useful conclusions.

In this analysis the robust methodology has helped in highlighting a peculiar
feature of the data that could lead to disastrous conclusions if it remains undetected.
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6.7 Discussion and Extensions

At the time of writing, only the Bernoulli family has been implemented for the
robust estimation and inference for GEE. Note, however, that the theory presented
in this chapter is general and includes all GLM distributions. The difficulty arising
in practice is the computation of the correction term ci in (6.8). This difficulty can
be circumvented by computing the correction term by simulation. This is currently
work in progress.

As mentioned in Section 5.7.3, Cantoni et al. (2005) develop a criterion, called
GCp, inspired by Mallows’s Cp for general model comparisons. It is given in (5.29)
and the general form for an unbiased estimator GCp is given in (5.30). The particular
form of GCp for a Mallows’s quasi-likelihood estimator as defined by (6.8) is given
by Cantoni et al. (2005), where their extensive simulation study shows that the GCp

is very effective in handling contaminated data.





7

Survival Analysis

7.1 Introduction

Survival analysis is central to biostatistics and modeling such data is an important
part of the work carried out daily by statisticians working with clinicians and medical
researchers. Basically, survival data analysis is necessary each time a survival time
or a time to a specific event (failure) such as organ dysfunction, disease progression
or relapse is the outcome of interest. Such data are often censored as not all
subjects enrolled in the study experience the event. When investigators are interested
in testing the effect of a particular treatment on failure time the default method
of analysis is the log-rank test, usually supplemented by Kaplan–Meier survival
estimates. The log-rank test is, by definition, based on ranks and therefore offers
some degree of protection against outliers. Criticisms have been raised (Kim and
Bae, 2005) but the test is not as sensitive as most of the standard testing procedures
in other models. When the outcome has to be explained by a set of predictors, the
standard approach is the Cox (1972) proportional hazard model. Cox regression
is appealing owing to its flexibility in modeling the instantaneous risk of failure
(e.g. death) or hazard, even in the presence of censored observations. This interest
toward the Cox model goes well beyond the world of medicine and biostatistics.
Applications in biology, engineering, psychology, reliability theory, insurance and
so forth can easily be found in the literature. Its uniqueness also stems from the
fact that it is not, strictly speaking, based on maximum likelihood theory but on
the concept of partial likelihood. This notion was introduced by Cox in his original
paper to estimate the parameters of interest in a semi-parametric formulation of the
instantaneous risk of failure at a specific time point, given that such an event has not
occurred so far.

Over the years many papers dealing with various misspecifications in the Cox
model have been published. Diagnostic techniques have also flourished boosted by
the ever-growing number of applications related to that model; see, for instance,

Robust Methods in Biostatistics S. Heritier, E. Cantoni, S. Copt and M.-P. Victoria-Feser
c© 2009 John Wiley & Sons, Ltd
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Chen and Wang (1991), Nardi and Schemper (1999), Therneau and Grambsch
(2000), Collett (2003b), Wang et al. (2006) for a review. In the 1980s, researchers
were typically interested in whether a consistent estimate of a treatment effect could
be obtained when omitting a covariate. Work by Gail et al. (1984), Bretagnolle and
Huber-Carol (1988) and others show both theoretically and through simulations that
if important predictors are omitted from the Cox model, a small resulting bias occurs
in the estimate. Later, Lin and Wei (1989) propose a sandwich formula for the
treatment effect estimator’s variance, which they call ‘robust’ in that significance
testing of the treatment effect has approximately the desired level, even if important
predictors are omitted from the model. They also claim that their variance estimator
can cope with possible misspecifications of the hazard function. As argued in
Section 1.2, this type of robustness is different from that discussed in this book.
Robustness methods in the modern sense of the word have been relatively slow
to emerge in survival analysis, hindered by the presence of censoring that is
unaccounted for by the general robustness theory. Regarding the Cox model, another
complication stems from its semi-parametric nature. This is in essence different
from the fully parametric setting discussed at length in the previous chapters. In
the early 1990s, researchers such as Hjort (1992) and Schemper (1992) started to
tackle the problem but the first real attempts to robustify Cox’s partial likelihood
appeared in Bednarski (1993), Sasieni (1993b,a) and Minder and Bednarski (1996).
A complex methodology is generally required to cope with censoring. Bednarski’s
work is based on a doubly weighted partial likelihood and extends the IF approach
presented in Chapter 2. Later Grzegorek (1993) and Bednarski (1999, 2007) refined
their weighting estimation technique to make it adaptive and invariant to time-
transformation. A good account on how outliers affect the estimation process in
practical terms with an illustration on clinical data is given in Valsecchi et al. (1996).
A comparison of Bednarski’s approach and the work by Sasieni and colleagues is
carried out in Bednarski and Nowak (2003). It essentially shows that none of these
estimators clearly outperforms the others as far as problems in the response is the
primary target. This technical literature focuses only on the estimation problem
prompting questions about the robustness of tests as defined in Chapter 2. Recent
work by Heritier and Galbraith (2008) illustrates the current limitations of robust
testing for this model and clarifies the link with the theory by Lin and Wei (1989).

Independently of all of these developments related to the Cox model, an inno-
vative technique called regression quantiles appears in the late 1970s that seems
totally unrelated to survival analysis. That pioneer work due to Koenker and Bassett
(1978) is introduced in the econometric literature as a robust alternative to linear
regression. In this work, any percentile of a particular outcome (e.g a survival time),
or a transformation of it, can be regressed on a set of explanatory variables. This work
in itself and many subsequent papers would not be sufficient to be mentioned in this
chapter, if an extension to the censored case had not been proposed. Fortunately,
such a method, called censored regression quantiles, now exists. The extension, due
to Portnoy (2003), has a great potential in practice. It is easily computable, inherits
the robustness of the sample quantiles, and constitutes a viable alternative to the Cox
model, especially when the proportional hazard assumption is not met.
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This chapter is organized as follows. Cox’s partial likelihood and the classical
theory is reviewed in Section 7.2. The so-called robust sandwich formula of Lin and
Wei (1989) and its link to the IF is presented. The lack of robustness properties of
standard estimation and inferential procedures are motivated by the analysis of the
myeloma data. A robust (adaptive) estimator based on the work of Bednarski and
colleagues is presented and illustrated in Section 7.3. Issues related to robust testing
in the Cox model and its current limitations are also discussed. A complete worked-
out example using the well-known veterans’ administration lung cancer data (see e.g.
Kalbfleisch and Prentice, 1980) is described in Section 7.4. Other issues including
model misspecifications are outlined in Section 7.5. Finally, Section 7.6 is devoted
to censored regression quantiles. We first introduce quantile regression, discuss its
extension to censored data and apply the method to the lung cancer dataset.

7.2 The Cox Model

7.2.1 The Partial Likelihood Approach

As mentioned earlier, the proportional hazard model introduced by Cox (1972) is
probably the most commonly used model to describe the relationship between a
set of covariates and survival time or another time-to-event, possibly censored. Let
(ti , δi) be independent random variables recording the survival time and absence of
censoring (δi = 1 if ti is observed, 0 otherwise) for a sample of n individuals. It
is convenient to write ti = min(t0

i , ci) where t0
i is the possibly unknown survival

time and ci the censoring time. The t0
i are independent random variables from a

cumulative distribution F(· | xi ) with density f (· | xi ), where xi is a q-dimensional
vector of fixed covariates. For simplicity we consider the standard case where all
time points are different and ordered, i.e. t1 < t2 < · · · < tn. We also assume that
the censoring mechanism is non-informative. The Cox model relates the survival
time t to the covariates x through the hazard function of F 1

λ(t | x) = λ0(t) exp(xT β), (7.1)

where λ0(t) is the so-called baseline hazard, usually unspecified, and β the regres-
sion parameter vector.2 In essence, λ(t | x) measures the instantaneous risk of death
(or hazard rate) at time t for an individual with specific characteristics described by
x, given that they have survived so far. The interesting feature of formulation (7.1)
is that λ(t | x) is the product of a baseline hazard λ0(t) and an exponential term
depending on the covariates. This has two major advantages. First, as we will see
in Section 7.2.1, it is not necessary to know the baseline hazard λ0(t) to estimate
the coefficients β. Second, we can derive immediately the effect of an increase of
one unit in a particular covariate xj (e.g. the effect of an experimental treatment
represented by a binary indicator: one for treatment, zero for placebo) on survival.

1The hazard function of a distribution function F with density f is f (t)/(1 − F(t)).
2Note that, by writing (7.1) on the log scale, log(λ0(t)) can be seen as the intercept term added to the

linear predictor xT β , so that dim(β) = q.
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Indeed, such an increase translates into a constant relative change exp(βj ) of the
hazard λ(t). This quantity is the hazard ratio (HR) and is usually interpreted as the
relative risk of death related to an increment of 1 of that particular predictor. This
property justifies the terminology proportional hazard model, commonly used for the
Cox model. Model (7.1) encompasses two important parametric models, namely the
exponential regression model for which λ0(t) = λ and the Weibull regression model
for which λ0(t) = λγ tγ−1. However, in a full parametric setting, the additional
parameters λ and/or γ need to be estimated along with the slopes β for these models
to be fully specified. In the proposal of Cox (1972), this is not necessary.

Equation (7.1) can be expressed equivalently through the survival function
S(t | x) = 1 − F(t | x) (see, for instance, Collett (2003b) and Therneau and
Grambsch (2000)) given by

S(t | x) = {S0(t)}exp(xT β), (7.2)

where S0(t) is defined through

−log(S0(t)) =
∫ t

0
λ0(u) du = �0(t), (7.3)

and �0(t) is the baseline cumulative hazard obtained by integrating λ0(u) between
zero and t .

The usual estimate of β is the parameter value that maximizes the partial
likelihood

L(β) =
n∏

i=1

[
exp(xT

i β)∑
j≥i exp(xT

j β)

]δi
(7.4)

or equivalently the solution of the first order equation

n∑
i=1

δi

[
xi − S(1)(ti; β)

S(0)(ti; β)

]
= 0 (7.5)

where

S(0)(ti; β) =
∑
j≥i

exp(xT
j β) and S(1)(ti; β) =

∑
j≥i

exp(xT
j β)xj

as in Minder and Bednarski (1996) and Lin and Wei (1989).3 The solution of (7.5)
is the partial likelihood estimator (PLE) also denoted by β̂[PLE]. Equation (7.5) is
a simple rewriting of a more conventional presentation as in, for instance, Collett
(2003b, Chapter 3). There, the risk set R(ti) at time ti is used, i.e. the set of all
patients who have not yet achieved the event by time ti and are then still ‘at risk’ of
dying. It is formed of all observations with indices greater than or equal to i.

3The idea is to base the likelihood function on the probability for a subject to achieve the event by time
ti . This is given by the ratio of the hazard at time ti of the subject i over the hazard of all subjects who
have not yet experienced the event by time ti , i.e. the set j ≥ i (also called the risk set). In this ratio, the
baseline hazard cancels out and one obtains the expression given in (7.4).
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The purpose of writing (7.5) in that way is to stress the similarity with the
definition of an M-estimator. Indeed, let

Ui = U(ti, δi, xi; β) = δi

[
xi − S(1)(ti; β)

S(0)(ti; β)

]
be the individual contribution (or score) then, at least literally, (7.5) looks like an
M-estimator with �-function U(t, δ, x; β). The main difference is that the scores
Ui are no longer independent since the two sums S(0)(ti; β) and S(1)(ti; β) depend
on subsequent time points tj for j ≥ i.

We have assumed, for simplicity, that all observed time points are different in the
sample. The partial likelihood approach is generally modified to handle ties. We refer
the reader to Therneau and Grambsch (2000) and Collett (2003b) for a more general
introduction and Kalbfleisch and Prentice (1980) for technical details.

Under some regularity conditions, the PLE is asymptotically normally distributed
with asymptotic variance V = I (β)−1, where I (β) is the information matrix for
that model (see Kalbfleisch and Prentice (1980, Chapter 4) for details). Here I (β)

is usually estimated by minus the second derivative of the average log partial
likelihood, i.e.

Î (β) = − 1

n

n∑
i

∂Ui

∂β
. (7.6)

Numerical values are obtained by replacing β by β̂[PLE] in (7.6). An alternative
formula for the variance of β̂[PLE] will be given in Section 7.2.4. The asymptotic
distribution can then be used for testing single hypothesis H0 : βj = 0 in a standard
way. One just defines a z-statistic as

z-statistic = β̂[PLE]j
SE(β̂[PLE]j )

, (7.7)

where

SE(β̂[PLE]j ) =
√
n−1[Î (β̂[PLE])−1]jj (7.8)

is the (estimated) standard error of β̂[PLE]j , i.e. the square root of the j th diagonal
element of (7.6). Here z is compared with a standard normal distribution.

More generally, standard asymptotic tests such as the LRT, score and Wald tests
are available to test a composite null hypothesis of the type H0 : β(2) = β0

(2), with

β(1) unspecified and with β = (βT
(1),β

T
(2))

T . Specifically, the LRT is equal to twice
the difference in the maximum log-partial-likelihood obtained at the full and reduced
model, i.e.

LRT = 2(log(L(β̂[PLE])) − log(L(β̇[PLE])) (7.9)

where β̂[PLE] denotes the PLE at the full, model and β̇[PLE] its value under the null
hypothesis (at the reduced model).

The Wald test is based on β̂[PLE](2), the second component of the PLE in the full
model, i.e.

W = n(β̂[PLE](2) − β0
(2))

T V̂ −1
(22)(β̂[PLE](2) − β0

(2)), (7.10)
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where V̂(22) is the block (22) of the estimated asymptotic variance V̂ = Î−1(β̂[PLE]).
For the score test, the general approach outlined in Section 2.5.1 can be extended
to the Cox model. Under H0, all three tests are asymptotically distributed as a
χ2
k distribution, where k = dim(β(2)). They are generally provided by all common

statistical packages.

7.2.2 Empirical Influence Function for the PLE

The IF for the PLE is based on complex functionals taking into account the semi-
parametric nature of the Cox model and the presence of censoring. We give here its
empirical version ÎFi evaluated at the observation (ti, δi, xi ) as originally derived
by Reid and Crépeau (1985). Here ÎFi can be used as a diagnostic tool to assess
the effect of a particular observation on the PLE. It is a q-dimensional vector
proportional to a shifted score, i.e.

ÎFi = Î−1(β)(Ui − Ci(β)), (7.11)

where Ci(β) (or to be more specific C(ti , δi , xi; β)) is a term depending on the
observations in a complicate way; see Section 7.2.4. This ‘shift’ is not needed for
consistency but to account for the dependence across the individual scores Ui .
As noted by Reid and Crépeau (1985), the first component in ÎFi is similar to
the usual IF for M-estimators in the uncensored case, and the second component
−Î−1(β)Ci(β) represents the influence of the ith observation on the risk set of other
subjects. A similar expression with a two-part IF is generally found for estimators
for censored data. The first term is unbounded in xi , which means that spurious
observations in the covariates can ruin the PLE. The second term shows the same
deficiency and, as a function of ti’s only, can be large enough to compromise
the estimation process. It captures the influence of a particular observation (e.g.
an abnormal long-term survivor) on the risk set of the others subjects. Valsecchi
et al. (1996) give a good explanation on the acting mechanism. Abnormal long-
term survivors ‘exert influence in two ways. First, that individual forms part of the
very many risks sets (for all preceding failures). Secondly, whereas early failures
will be matched to a large risk set, individuals failing toward the end of the study
may, depending on the censoring, be matched to a very small risk set. Two groups
may be initially of similar size but as time progresses the relative size of the two
groups may steadily change as individuals in the high risk group die at a faster
rate than those in the other group. Eventually the risk set may be highly imbalanced
with just one or two individuals from the high risk group, so that removal of one
such individual will greatly affect the hazard ratio.’ Atypical long-term survivors
are not the only type of abnormal response that can be encountered but they are by
far the most dangerous. Another possibility occurs when a low-risk individual fails
early. As pointed out by Sasieni (1993a) this type of outlier is less harmful as their
early disappearance from the risk set reduces their contribution to the score equation.
Despite its relative complexity the IF for the PLE has similar properties to that given
for the M-estimators of Chapter 2. It still measures the worst asymptotic bias caused
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to the estimator by some infinitesimal contamination in the neighborhood of the Cox
model. It is therefore desirable to find estimators which bound that influence in some
way. The two-part structure of (7.11) rules out a similar weighting to that used earlier
in a fully parametric model. Innovative ways have to be imagined to control both
components, in particular the influence on the risk set. This will be developed further
in Section 7.2.4 in relation to the asymptotic variance.

7.2.3 Myeloma Data Example

Krall et al. (1975) discuss the survival of 65 multiple myeloma patients and its
association with 16 potential predictors all listed in their Table 2. They originally
selected the logarithms of blood urea nitrogen (bun), serum calcium at diagnosis
(calc) and hemoglobin (hgb) as significant covariates. Chen and Wang (1991) used
their diagnostic plot and found that case 40 is an influential observation. They also
concluded that no log-transformation of the three predictors was necessary. We also
use the data without transformation to illustrate the IF approach.

Table 7.1 presents the most influential data points as detected by the change �i β̂

in the regression coefficient β̂[PLE] when the ith observation is deleted. Figures are
given as percentages to make changes comparable across coefficients: percentages
were simply obtained by dividing the raw change by the absolute value of the
corresponding estimate obtained on all data points. The deletion of any of the
remaining observations did not change the coefficients by more than ±11% for
these two variables, and even less for bun. These values can be seen as a handy
approximation of the IF itself as ÎFi ≈ (n − 1)�iβ̂ as pointed out by Reid and
Crépeau (1985). This result is generally true for all models but is particularly useful
here when IF has a complicated expression. Clearly case 40 is influential confirming
the analysis by Chen and Wang (1991). Other observations might also be suspicious,
e.g cases 3 or 48. A careful look at all exact values of the IF (not shown here)
shows that the approximation works reasonably well justifying the use of �i β̂ as
proxy for ÎFi . A word of caution must be added here. The empirical IF in (7.11) is
typically computed at the PLE, itself potentially biased. This can cloud its ability to
detect outliers as pointed out by Wang et al. (2006). However, extreme observations
are generally correctly identified by this simple diagnostic technique. To illustrate
how they can distort the estimation and testing procedures, we deleted case 40 and
refitted the data. PLE estimates, standard errors and p-values for significance testing
(z-statistic in (7.7)) are displayed in Table 7.2. Case 40 is actually a patient with
high levels of serum calcium who survived much longer than similar patients. For
that reason this subject tends on his own to determine the fit, an undesirable feature
as the aim of the analysis is to identify associations that hold for the majority of
the subjects. When all observations are included in the analysis, calcium is not
significant (p = 0.089). After removal of case 40 a highly significant increase in risk
of death of exp(0.31)− 1.0 = 0.36, 95% CI (0.1;0.7), per additional unit of serum
calcium appears. This clearly illustrates the dramatic effect of case 40 on the test. The
differences are even more pronounced if both cases 40 and 48 are removed making
the need of a robust analysis even greater. However, as the dataset is relatively
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Table 7.1 Diagnostics �i β̂ for myeloma data.

Case hgb calc

40 +17% −48%
48 0% −16%
44 +13% +12%

3 −1% +24%
2 +2% +35%

The regression coefficients
are estimated by means of the
PLE β̂[PLE].

Table 7.2 PLE estimates and standard errors for the myeloma data.

All data Case 40 removed

Variable Estimate (SE) p-value Estimate (SE) p-value

bun 0.02 (0.005) 0.000 0.02 (0.005) 0.000
hgb −0.14 (0.059) 0.019 −0.19 (0.063) 0.003
calc 0.17 (0.099) 0.089 0.31 (0.112) 0.006

Ties treated by Efron’s method. Model-based SEs computed using (7.8).

small (n = 65), influential observations are more harmful and case-deletion and refit
becomes a difficult exercise. We do not pretend to give a definitive analysis of these
data here. The purpose was simply to illustrate the sensitivity of the PLE with respect
to unexpected perturbations especially for small to moderate sample sizes.

7.2.4 A Sandwich Formula for the Asymptotic Variance

A different estimate for the asymptotic variance of the PLE has been proposed
by Lin and Wei (1989). It is often called ‘robust’ variance in common statistical
packages, but as we argue below, it is not robust in the sense used in this book.
We therefore name it the LW formula or classical sandwich formula. Perhaps, the
best way to introduce the LW formula is through its link to the IF, something that
is generally overlooked. A careful reading of Reid and Crépeau (1985, p. 3) shows
that n−1∑ ÎFi ÎF

T
i , where ÎFi is as in (7.11), provides another asymptotic variance

estimate for the PLE. Elementary algebra shows that this can be rewritten as

V̂LW(β) = Î−1(β)Ĵ (β)Î−1(β) (7.12)

where Î (β) is the information matrix estimator given in (7.6) and

Ĵ (β) =
∑

U∗
i U

∗T
i , (7.13)
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Table 7.3 Estimates and standard errors for the PLE for the myeloma data.

All data Case 40 removed

Variable Estimate (SELW) p-value Estimate (SELW) p-value

bun 0.02 (0.004) 0.000 0.02 (0.004) 0.000
hgb −0.14 (0.059) 0.019 −0.19 (0.060) 0.002
calc 0.17 (0.127) 0.186 0.31 (0.103) 0.003

Ties treated by Efron’s method. SE computed using (7.12).

where U∗
i = Ui − Ci(β) is a shifted score. If we write down the correcting factor

(shift)

Ci(β) = exp(xT
i β)xi

∑
j≤i

δj

S(0)(tj ; β)
− exp(xT

i β)
∑
j≤i

δj S
(1)(tj ; β)

[S(0)(tj ; β)]2

and replace β by the PLE in (7.12) we obtain the variance estimate proposed by Lin
and Wei (1989, p. 1074). Lin and Wei’s derivation is actually more general as it also
covers the case of time-dependent covariates. Although the formula presented here
assumes n different time points, its extension to data with ties is straightforward (see
Lin and Wei (1989) and Reid and Crépeau (1985) for technical details).

As an illustration, we refitted the myeloma data using the exact same model as
before but use (7.12) as a variance estimate. PLE estimates, standard errors and p-
values are displayed in Table 7.3. Note that the coefficients reported in Table 7.3 are
the same as those reported in Table 7.2 since the estimation procedure is still the
PLE. On the other hand, the standard errors differ as they are now based on the LW
formula. The p-values reported here refer to the individual significance z-tests, i.e.
for H0 : βj = 0,

zLW-statistic = β̂[PLE]j
SELW(β̂[PLE]j )

, (7.14)

where SELW(β̂[PLE]j ) is the standard error of β̂[PLE]j based on the LW formula (7.12),
i.e. the square root of n−1[V̂LW(β̂[PLE])]jj.

Results are very similar to those obtained in Table 7.2. It is clear that case 40 is
influential even if the LW formula is used. In other words, the LW formula offers no
kind of protection against extreme (influential) observations. For example, no effect
of calcium appears when all data are fitted (p-value = 0.186), and after removal of
case 40 the deleterious effect of this observation on the significance of serum calcium
seems obvious as a p-value of 0.003 is reported.

So we may legitimately ask the question ‘What is the LW formula robust
against?’. Lin and Wei (1989) motivate their approach by mentioning some structural
misspecifications, in particular covariate omission. As an example they consider
a randomized clinical trial in which the effectiveness of a particular treatment on
survival time is assessed. The true model is thought to be the Cox model with
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parameter β. We can split β into two parts ν and η where these components
represent, respectively, the treatment parameters and the covariate effects. A valid
test of no treatment effect is sought even if some of the predictors may be missing
in the working model. Alternatively, investigators may simply prefer an unadjusted
analysis for generalizabilty purposes, in which case only ν will be included in the
analysis. Lin and Wei (1989) showed that approximate valid inference can still be
achieved using their formula. This, of course, assumes that no treatment by covariate
interaction exists. To test the null hypothesis of no treatment effect (i.e. H0 : ν = 0),
one then uses (7.14). Lin and Wei (1989) also considered more serious departures
from the Cox model, e.g. misspecification of the hazard form. This includes models
with hazard defined on the log-scale or even a multiplicative model. Their simulation
study shows that their approach allows approximate valid inference in the sense that
the type I error (empirical level) of the Wald test using the LW formula (7.12) is
close to the nominal level. The term ‘robust’ formula is hence used in that sense.
This type of robustness however does not protect against biases induced by extreme
(influential) observations. The reader is referred to Section 7.5 for further discussion
on this topic in a more general setting.

7.3 Robust Estimation and Inference in the Cox
Model

7.3.1 A Robust Alternative to the PLE

The robust alternative to the PLE we present here has emerged over the years from
Bednarski’s research. It is based on a doubly weighted PLE that astutely modifies the
estimating equation (7.5) without fundamentally changing its structure. It also has
the advantage of being easily computable with some code available and included in
the R Coxrobust package. Following Bednarski (1993) and Minder and Bednarski
(1996), we assume that a smooth weight function w(t,x) is available. Denote by
wij = w(ti , xj ) and wi = wii = w(ti , xi ) the weights for all 1 ≤ i ≤ j ≤ n and set
all other weights to zero by construction. Define the two sums

S(0)w (ti; β) =
∑
j≥i

wij exp(xT
j β) (7.15)

S(1)
w (ti; β) =

∑
j≥i

wij exp(xT
j β)xj (7.16)

in a similar way to their unweighted counterparts of Section 7.2. A natural extension
of the PLE is the solution for β of

n∑
i=1

wiδi

[
xi − S

(1)
w (ti; β)

S
(0)
w (ti; β)

]
= 0. (7.17)

The weight function w(t,x) enters at two points: (i) in the main sum with wi

downweighting the uncensored observations; (ii) in the inner sums S(0)
w and S

(1)
w with
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all the wij for i ≤ j ≤ n. Equation (7.17) clearly has a similar structure to (7.5).
Moreover, when all of the weights are chosen equal to one, the solution of (7.17) is
the PLE, so that (7.17) can be literally seen as an extension of equation (7.5). By
analogy with the notation of Section 7.2 we also denote by the individual score Uw,i ,
i.e. the contribution of the ith observation to the sum in (7.17)

Uw,i = wiδi

[
xi − S

(1)
w (ti; β)

S
(0)
w (ti; β)

]
, (7.18)

and by Uw the total score or left-hand side of (7.17). A proper choice of w(t,x) is
pivotal to make the solution of (7.17) both consistent and robust. The weights we
consider here truncate large values of g(t) exp(xT β) where g(t) is an increasing
function of time.4 Indeed, Bednarski (1993) and Minder and Bednarski (1996),
considering the exponential model, argued that the PLE often fails when ti exp(xT

i β)

is too large. They hence proposed weight functions based on truncations of such
quantities (i.e. with g(t) = t). Bednarski (1999), however, pointed out that a better
choice for g(t) is the baseline cumulative hazard �0(t) in (7.3). The rationale for
this is that �0(ti ) exp(xT

i β), given the covariate vector xi , has an exponential one
distribution if the Cox model holds and ti is not censored. This gives rise to the
following weights

w(t,x) =


K − min(K,�0(t) exp(xT β)) (linear),

exp(−�0(t) exp(xT β)/K) (exponential),

max(0,K − �0(t) exp(xT β))2/K2 (quadratic),

where K is a known cut-off value that can be chosen on robustness and efficiency
grounds. Such weights have been used successfully ever since and are now imple-
mented in the R Coxrobust package. In practice, two additional difficulties occur:
first, the truncation value K is generally difficult to specify a priori, especially for
censored data;5 second, the unknown cumulative baseline hazard �0(t) is needed to
compute the weights. This hazard is not often estimated in the Cox model as it is not
actually needed to obtain the PLE and related tests. To overcome the first problem,
Bednarski and colleagues proposed the use of an adaptive procedure that adjusts K
at each step. They deal with the second problem by jointly (and robustly) estimating
�0(t) and β; see Grzegorek (1993) and Bednarski (1999, 2007).

To compute a robust estimator defined through (7.17) with one of the proposed
weighting schemes updated adaptively, one can use the following algorithm. Given
a specific quantile value τ , e.g. τ = 90%, used to derive the truncation value
adaptively, one proceeds through the following steps.

• Initialization: obtain an initial estimator β̂0, e.g. the PLE, compute the cut-off
K as the pre-specified quantile τ of the empirical distribution ti exp(xT

i β̂0),

4Note that the notation above did not mention any dependence of w(t, x) on the regression parameter
β and the weights should be more seen as ‘fixed’. However, Bednarski (1999) showed that, under stringent
conditions, the dependence on β does not modify the asymptotic distribution of the resulting estimator.

5One could argue that a quantile of the exponential one distribution could be used, at least in the
absence of censoring.
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i = 1, . . . , n, set-up the current estimate b at β̂0 and initialize the set of
weights.

• Take the current estimate b, evaluate K as the same quantile τ of the empirical
distribution �̂w(ti) exp(xT

i b) with

�̂w(t) =
∑
i≤t

wiδi∑
j≥i wij exp(xT

j b)
. (7.19)

• Update b by solving (7.17) and then recompute the set of weights.

• Repeat the previous two steps until convergence.

Technical details about the adaptive process and formula (7.19) are omitted for
simplicity but can be found in Bednarski (2007). Note though that �̂w(t) is a
robust adaptation of the Breslow estimator.6 The final value obtained through this
algorithm is the adaptive robust estimator (ARE) or β̂[ARE]. It can generally be
obtained within a few iterations even for relatively large datasets. An advantage of
this adaptive weighting scheme based on the cumulative hazard estimate (7.19) is
that the ARE is invariant with respect to time transformations. It can also better cope
with censored data by the way the cut-off value is updated. The price to pay for this
flexibility is purely computational. Bednarski (1999) shows that the ARE has the
same asymptotic distribution as its ‘fixed-weight’ counterpart defined in (7.17) and
performs similarly in terms of robustness. The issue of the choice of weight function
or quantile τ is more a matter of efficiency and/or personal preference. This question
is discussed in the next section. Finally, it should be stressed that other possible
weights have been proposed by Sasieni (1993a,b). Although the spirit of his approach
is essentially the same, the proposed weights cannot handle abnormal responses for
patients with extreme values in the covariates such as elevated blood cell counts
or laboratory readings. Such extreme but still plausible data points are harmful to
classical procedures. In contrast the ARE is built to offer some kind of protection
in that case. A more formal treatment of these alternative weighting schemes can be
found in Bednarski and Nowak (2003) along with a comparison with the ARE.

7.3.2 Asymptotic Normality

Under regularity conditions on w(t,x) given in Bednarski (1993, 1999), the ARE is
consistent and has the following asymptotic distribution

√
n(β̂[ARE] − β) → N (0, Vw(β)), (7.20)

where the asymptotic variance is given by a sandwich formula7

Vw(β) = M−1
w QwM

−T
w . (7.21)

6Formula (7.19) gives back the Breslow estimator of baseline cumulative hazard when all weights are
equal to one and thus b is the PLE; see, for instance, Collett (2003b, p. 101).

7Again, to obtain the variance of β̂[ARE], one needs to divide (7.21) by n.
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The matrices Mw = Mw(β), Qw = Qw(β) are complicated expectations that we
omit for simplicity; see Bednarski (1993) for details. Tedious but straightforward
calculations show that their empirical versions have a much simpler form, i.e.

M̂w(β) = − 1

n

n∑
i=1

∂Uw,i

∂β
(7.22)

and

Q̂w(β) = 1

n

n∑
i=1

U∗
w,iU

∗T
w,i (7.23)

with Uw,i given in (7.18) and U∗
w,i = Uw,i − Cw,i(β) a shifted weighted score with

shift given in (7.24). A final estimate for the asymptotic variance follows easily by
replacing β by β̂[ARE] in (7.21)–(7.23). The asymptotic distribution (7.21) is valid not
only under the assumption that the weights are fixed, i.e. K and g(t) are pre-specified
independently of the regression parameters,8 but also for the adaptive weighting
scheme described above; see Bednarski (1993, 1999, 2007) for details. Technical
developments essentially show that the asymptotic result is not altered when smooth
adaptive weight functions with bounded support and a robust hazard estimate are
used.

There is a clear link between the LW sandwich formula (7.12) and the asymptotic
variance (7.21). The first thing to note is that for both the classical and robust estima-
tors the sandwich formula stems from the same property, i.e. from n−1∑ ÎFi ÎF

T
i

that is another consistent variance estimator. We have seen this for the PLE in
Section 7.2.2 and the same has been shown by Bednarski (1993, 1999) for the
ARE. Second, tedious rewriting show that the empirical IF for the ARE is again
proportional to a shifted score as follows:

ÎFw,i = M̂−1
w (β)U∗

w,i(β) = M̂−1
w (β)(Uw,i(β) − Cw,i(β))

with Uw,i(β) given in (7.18) and where the shift has an ‘ugly’ but computable
expression given by

Cw,i(β) = exp(xT
i β)xi

∑
j≤i

wj δjwji

S
(0)
w (tj ; β)

− exp(xT
i β)

∑
j≤i

wjwjiδjS
(1)
w (tj ; β)

[S(0)
w (tj ; β)]2

.

(7.24)
A careful look at all of the quantities involved in (7.18) and (7.24) and in the
equations of Section 7.2.4 shows that, if all of the weights wij and wi are equal
to one, then not only is the ARE identical to the PLE but their IF are the same
and consequently its asymptotic variance reduces to the LW formula (7.12). The
robust approach proposed in this chapter can literally be seen as an extension of the
PLE combined with its LW sandwich variance. In practice, this never happens as
the weights cannot be set to one if one wants the ARE to be robust. This analogy is
nevertheless useful as it helps in understanding both formulas and properties.

8The function g(t) is discussed on page 201.
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The use of AREs is desirable from a robustness standpoint. However, an expected
loss of efficiency with respect to the PLE is observed when the Cox model
assumptions hold. Unlike in simpler models, e.g. linear regression or mixed models,
it is impossible to calibrate the tuning constant (i.e. the quantile τ ) to achieve
a specific efficiency at the model for all designs. However, some hints can be
given. First, it is clear that by construction linear adaptive weights of Section 7.3
automatically set a certain percentage of weights wi to zero. If we choose τ = 90%,
then roughly 10% of the weights will be zero even though the data arise from
a proportional hazard model. This automatically generates a loss of efficiency at
the model as genuine observations will be ignored. A similar argument holds for
quadratic weights. In contrast, the exponential weighting scheme of Section 7.3 is
smoother and the ARE with exponential weights performs generally better in terms
of efficiency. Second, simulations can provide valuable information. Our (limited)
experience with the exponential distribution indicates that adaptive exponential
weights do reasonably well in terms of robustness and efficiency when τ is chosen
in the range 80–90%. An asymptotic efficiency relative to the PLE of at least 90%
can easily be obtained even in the presence of a small amount of censoring, while
linear weights achieve an efficiency of at most 80–90%. However, both weighting
schemes perform equally well from a robustness point of view. For these reasons we
tend to prefer exponential weights, with τ in the range 80–90%. Previous references
by Bednarski and colleagues also used similar values of τ successfully. We would
not recommend the use of much smaller quantiles. Finally a choice for τ for a given
weighting scheme could in principle be computed by simulations to achieve a pre-
determined loss of efficiency at a parametric model (i.e. a parametric form for the
hazard). For that purpose, one would need an idea of the censoring level, a rough idea
of the true parameter values, and a distribution for the covariates or conditioning.
In situations where data-driven experimentations are suspicious, experience with
previous similar data can also help in selecting τ without having to use the current
dataset.

7.3.3 Handling of Ties

We have assumed so far that all observed time points were different. Unfortunately
this is rarely the case as even intrinsically continuous data are rounded to their
nearest time unit (days, months) in practice. This situation occurs for the datasets
analyzed in this chapter. As mentioned in Section 7.2 the partial likelihood approach
is generally modified to handle this situation. Four methods are available, namely
Efron’s or Breslow’s, discrete or exact approach. We again refer to the literature,
e.g. Collett (2003b, pp. 67–69) or Kalbfleisch and Prentice (1980, Chapter 4) for
details. For the robust ARE, we simply suggest either: (i) the use of the ‘jittering’
method of Tai et al. (2002) which randomly adds or subtracts a small value to each
tied event time to randomly break the tie; or (ii) do ‘as if there are no ties’. This
basically means that the way the data are sorted by increasing observed survival time
is the way ties are broken, which is not necessarily at random. Approach (i) is, for
instance, used by Sasieni (1993a) as a practical solution for continuous data where



7.3. ROBUST ESTIMATION AND INFERENCE IN THE COX MODEL 205

Table 7.4 Estimates and standard errors for the PLE and the ARE for the myeloma
data.

PLE ARE

Variable Estimate (SE) p-value Estimate (SE) p-value

bun 0.02 (0.005) 0.000 0.02 (0.005) 0.000
hgb −0.14 (0.059) 0.019 −0.17 (0.073) 0.020
calc 0.17 (0.099) 0.089 0.28 (0.122) 0.023

PLE: ties treated with Efron’s method; ARE: exponential weights, τ =
0.80.

time rounding created equal values. Its main disadvantage is that the analyses are
not fully reproducible. Note, however, that the case of fundamentally discrete data
cannot be dealt with, using the methods proposed here and further work for a proper
treatment of ties is certainly desirable.

7.3.4 Myeloma Data Example (continued)

To illustrate how the ARE works in practice, we go back to the myeloma data
example where diagnostic techniques such as the empirical IF of Section 7.2.2
identified at least case 40 as influential. As the sample size is small (n = 65) we
choose exponential weights for the ARE to avoid too large a loss of efficiency.
Such weights are smooth and do not trim the data excessively. The quantile value
τ was set at 80% although τ = 90% was also tried and gave comparable results.
Table 7.4 presents the PLE and ARE estimates, standard errors and the corresponding
p-values for individual z-tests of significance; see Section 7.3.5 for details. The ARE
fit confirms the results obtained in the case-deletion and refit approach identifying
serum calcium (calc) as an important predictor in the model. The deleterious
effect of case 40 has been automatically reduced by the method without having to
delete it or equivalently put a weight of zero. The advantage of this analysis is that
the weighting has been accounted for in the asymptotic distribution of the (robust)
estimator.

We can gain some insight into how the ARE works by inspecting the weights wi .9

Unlike weights provided by M-estimators they decrease with the survival time
by construction so that a log-transformation is more suitable for exponential
weights. Indeed, as noted earlier −K log(wi) = �0(ti ) exp(xT

i β) has an exponential
distribution Exp(1) if the model holds and ti is not censored. Large values on this
scale are unlikely and therefore represent downweighted observations. Figure 7.1
depicts the negative logarithm of the weight (up to a multiplicative constant K)
versus the observation number in the initial dataset. One may notice that roughly
20% of the observations are above the horizontal line with intercept K . This is
expected as we chose τ = 0.80, therefore 1 − τ = 20% of the observations must

9For an analysis of the weights wij , see Section 7.4.2.
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be downweighted by construction. Only two observations emerge on this plot as
abnormal cases: numbers 40 and 48 with the latter being more extreme with a
value for −K log(wi) close to eight. It is not really surprising to detect patient
40 as outlier as it was clearly identified by diagnostic techniques. The presence
of the other observation (number 48) deserves further explanation. A look at case
48 shows that his risk factors are similar to those of case 40 with a relatively
high level of serum calcium (11) and he has a high survival time (92 months).
This is actually the longest survivor among all participants with a level of serum
calcium that was at least comparable. This is considered as unlikely by the ARE,
given that most subjects with similar profile die much earlier, even patient 40. This
observation therefore receives a nearly zero weight (0.0008) reducing its influence
drastically. It is interesting to see that diagnostic techniques of Section 7.2.2 were
less adamant at classifying this subject as so influential. This could be due to
some masking effect due to case 40 on the PLE of β used to compute the
diagnostic tools and/or the fact that the exponential weight penalizes such abnormal
responses more directly. Conversely, the same argument explains probably why
cases 2 and 3 do not really appear on the plot. Those two patients have very short
survival times, 1.25 and 2.0 months, respectively. They are not considered as really
harmful with this type of weight although they might be considered as (too) early
failures. Globally, this example illustrates the importance of a robust fit as both
a safer technique and a new diagnostic tool. To conclude with the myeloma data
example, we do not pretend that this analysis is final. One might obtain different
results and, hence, conclusions if predictors, in particular serum calcium, are log-
transformed. Other factors could also have been brought in to explain the discrepancy
caused by these two long-term survivors. We do not, however, pursue this issue
further.

7.3.5 Robust Inference and its Current Limitations

A robust Wald test for testing hypotheses of the type H0 : β(2) = β0
(2) as in

Section 7.2 is directly available from the asymptotic distribution of β̂[ARE] of
Section 7.3.2. The test statistic is given by

Ww = n(β̂[ARE(2)] − β0
(2))

T V̂ −1
w(22)(β̂[ARE(2)] − β0

(2)), (7.25)

where V̂w(22) is the block (22) of the asymptotic variance V̂w(β). It is the natural
counterpart of the classical Wald test (7.10). As always β̂[ARE] is used to replace β in
the asymptotic variance V̂w(β) = M̂−1

w (β)Q̂w(β)M̂
−T
w (β) obtained through (7.22)–

(7.23) to obtain numerical values. In the special case of a single hypothesis, the
Wald test reduces to a z-test as used above on the myeloma data. Under H0, Ww is
asymptotically distributed according to a χ2

k distribution with k = dim(β0
(2)). It is not

clear whether a score-type or LRT-type test (see Section 2.5.3) can be used because
of the dependence of the scores functions Uw,i and the adaptive weighting process.
This issue has not been investigated so far.
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Figure 7.1 Plot of robust ARE exponential weight (log-transformed) versus case
number for the myeloma data.

The robustness properties of the z- (or Wald) test based on the PLE (with or
without the LW formula) and the ARE have been examined by Heritier and Galbraith
(2008), yielding contrasting results. As we work here with Wald-type tests there
is equivalence between CIs and tests. The notions of robustness of validity and
efficiency for tests introduced in Section 2.5.3 can immediately be translated into
similar concepts for CIs. In essence, a CI must maintain its nominal coverage (e.g.
95%) and its length in a neighborhood of the assumed model for the procedure to
be declared robust. Heritier and Galbraith (2008) therefore studied the coverage
probability of CIs based on the (estimated) variances of β̂[ARE] and β̂[PLE]. Two
types of model deviations are investigated, namely a shrinking neighborhood of the
type (1 − εn)Fβ + εnG where Fβ is the assumed (Cox) model, G a contaminating
distribution and εn = ε/

√
n and a full neighborhood (1.1), i.e. when ε does not

depend on n. The first type of neighborhood is the one assumed in robust testing
theory to avoid overlapping between the neighborhood of the null and that of a
sequence of alternative contiguous hypotheses (see Section 2.4.2). In practice the
proportion of (potential) extreme observations does not necessarily decrease with the
sample size and it is therefore important to check whether the Wald-type test given by
(7.25) is robust in a full neighborhood. Heritier and Galbraith (2008) generate data
from an exponential model with hazard λ(t | x) = 3 exp(β1x1 + β2x2 + β3x3) with
independent standard normal covariates and (β1, β2, β3) = (0, 0.5, 1). A percentage
εn (or ε) of observations is then replaced by data coming from an exponential
model with hazard λ(t) = 3 (i.e. not depending on the covariates’ values). Such
contamination is assumed to mimic the effect of abnormal long-term survivors.
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Figure 7.2 Coverage of 95% CIs under a full neighborhood contamination. The CIs
are based on the (estimated) variances of β̂[ARE] (ARE), β̂[PLE] (classical, PLE) and
β̂[PLE] with LW formula (PLE–LW)

In the shrinking neighborhood setting, the CIs based on the ARE with exponential
weights and τ = 90% perform well (coverage probability close to the target of
95%). So does the level of corresponding Wald-type test because of the equivalence
between CIs and tests. In this simulation the percentage of contamination εn is set
to 5% for n = 100 observations. As n increased progressively to 300, 500 and 1000,
εn drops to 2.9%, 2.2% and 1.6% respectively. Alternatively, this corresponds to 16,
11 and 9 spurious cases generated from the contaminating distribution Exp(3). In
contrast, the CIs based on the PLE (with or without the LW formula) do not show
the same stability and display a coverage that slightly deteriorates as n increases.
CIs using model-based standard errors are uniformly the worst performers with a
coverage that drops below 80% for n = 1000 while, when the LW formula is used, a
slightly better coverage of 87% is observed.

If instead, the simulations are repeated in a full neighborhood of the model,
i.e. ε = 5% irrespective of the sample size, less favorable results are observed.
Figure 7.2 clearly shows that none of the methods considered here can gener-
ally maintain appropriate coverage unless the true parameter is indeed zero as
shown in panel (a). The confidence intervals based on the ARE always outperform
their classical counterparts but this is little consolation as coverage values as
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low as 80% can be observed when n ≥ 800 and β = 1. For moderate sample
sizes or small effect size, a current situation in clinical research, the CIs based
on the ARE might still be reliable and one may see this as a relief. From a
more theoretical perspective, it is quite clear that the procedure breaks down
and does not meet the requirements of the robustness paradigm. This unusual
feature10 can be explained relatively simply. Since the scores given in (7.18)
are not independent, the robustification process is much harder than in the i.i.d.
setting. Looking back at Bednarski’s theory, we clearly see that the ARE has been
proved valid from a robustness point of view in only a shrinking neighborhood
(see Bednarski, 1993; Minder and Bednarski, 1996). Simulations show that, in
a full neighborhood, a small residual bias usually toward the null remains (even
asymptotically). This is no big deal as far as estimation is concerned but it is
when inference is the primary target. Indeed, this attenuation effect causes the
CI to be shifted slightly. As the sample size increases, so does its accuracy,
which in turns leads to a CI coverage that appears comparatively further off the
mark. This dramatic loss of coverage corresponds to an equally important increase
in type I error for the Wald tests investigated here. This emphasizes the need
for further work in this area as the robust theory developed so far is clearly
unsatisfactory.

7.4 The Veteran’s Administration Lung Cancer Data

7.4.1 Robust Estimation

We describe in this section a complete analysis based on a benchmark in survival
analysis: the veteran’s administration lung cancer data. This dataset originated
from a controlled clinical trial where investigators were interested in assessing the
effect of treatment (standard/test) and several predictors on survival in males with
advanced inoperable lung cancer. Covariates include both continuous predictors,
i.e. Karnofsky (karnofsky) performance status (a scale index allowing patients
to be classified as to their functional impairment), disease duration (dduration),
age (age) and indicators such as prior therapy (ptherapy) or cell type (cell)
with four levels, Adeno, Squamous, Small, Large, which is taken as the reference.
Details can be found in Kalbfleisch and Prentice (1980, p. 60) who were the first
to discuss that example: 137 male patients were randomized to either the placebo
or the experimental arm and only 9 of them survived to the end of the study. This
dataset is interesting as it contains abnormal long-term survivors and the Cox model
is generally considered as a good working model. Outliers identified by many authors
including Cain and Lange (1984), Sasieni (1993a,b), Minder and Bednarski (1996)
and Bednarski (1999) have been dealt with in various ways. Minder and Bednarski
(1996) analyzed the veteran’s administration lung cancer data using an early version
of their estimator (i.e. not using the adaptive weights of the ARE) while Bednarski

10Note that this undesirable feature is not completely new: it has been observed for specific location
and regression estimators by Adrover et al. (2004).
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Table 7.5 Estimates and standard errors for the Veterans’ Administration lung cancer
data.

PLE ARE

Variable Estimate (SE) p-value Estimate (SE) p-value

karnofsky −0.033 (0.006) 0.000 −0.039 (0.005) 0.000
dduration −0.000 (0.008) 0.995 −0.004 (0.009) 0.708
age −0.008 (0.009) 0.388 −0.009 (0.011) 0.392
ptherapy 0.065 (0.232) 0.779 0.109 (0.236) 0.643
cell
Squamous −0.397 (0.283) 0.160 −0.247 (0.296) 0.402
Small 0.483 (0.265) 0.068 0.806 (0.278) 0.004
Adeno 0.800 (0.303) 0.008 0.943 (0.253) 0.000
treatment 0.286 (0.217) 0.166 0.214 (0.206) 0.298

PLE: ties treated with Efron’s method; ARE: exponential weights, τ = 0.90.

(1999) used the ARE with linear weights. Irrespective of the robust method used the
results are very consistent. Table 7.5 presents the ARE estimates with exponential
weights, their standard errors and the corresponding p-values of individual tests
for significance. The ties are ignored for simplicity and reproducibility. For the
sake of completion we also tried to break the ties at random and obtained pretty
similar results. Both estimation procedures identify karnofsky as a significant
predictor while neither dduration, treatment, age nor ptherapy appear
to be. Differences appear, however, on the importance of the type of cell. The
PLE does not clearly identify small cell patients as having a worse prognosis than
those with large cell carcinomas. The PLE for small cell is 0.48 (0.27) leading to
a hazard ratio of exp(0.48) = 1.62 with a 95% CI of (−0.95;2.74), a somehow
inconclusive result (p = 0.068). In contrast, the ARE sorts out the issue with a
nearly twofold robust estimate 0.81 (0.28) or equivalently a hazard ratio of 2.2
(0.3;2.9), a clearly significant result (p = 0.004). The effect of adeno carcinomas
is also larger leading to a neater effect of cell overall. Had a smaller quantile been
used e.g. τ = 0.80 an even stronger effect of small cells would have been observed.
Similar conclusions were reached in the above references where linear weights were
used.

7.4.2 Interpretation of the Weights

To identify potential outliers we again use a plot of the weights on (minus) a
logarithm scale, with the plot presented in Figure 7.3. Clearly, two cases (numbers 17
and 44) are identified as influential observations as they receive a raw weight of
0.04 and 0.002, respectively. These are by far the smallest values even on an
untransformed scale. A careful look at the profiles of these two patients shows that
both are among the 7% highest survivors. This is considered as abnormal by the
ARE given their risk factors and other subjects with similar characteristics. They are
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Figure 7.3 Plot of robust ARE exponential weight (log-transformed) versus case
number for the lung cancer data.

therefore automatically downweighted (especially case 44 who receives the smallest
weight). To see this on the plot, note that if the Cox model holds, the exponential
one model is a reasonable model for the distribution of the transformed weight
−K log(wi) = �0(ti) exp(xT

i β) (as the level of censoring is low in these data). Then
the probability of observing a value of 14.2 (i.e. case 44’s transformed weight) or
higher is exp(−14.2) = 7 · 10−7. The method clearly identifies case 44’s response
as totally inconsistent with the rest of the data, given his risk factors. A similar
calculation for case 17 returns a probability of 0.0008, which is still very small. This
analysis agrees well with the work of Sasieni (1993a) and Cain and Lange (1984)
who also identified influential cases, especially case 44.

It is more difficult to make sense of the triangular matrix of weights arising in the
two internal sums (7.15) and (7.16). Roughly speaking these weights try to ‘repair’
the risk set and related sums contaminated by outliers. As an attempt to illustrate
this point, we examine the matrix weights attributed to case 44 for all patients with a
shorter survival time (≤ 392 days). Case 44 is actually recorded as the 131st patient
when patients are ordered by increasing survival time. It therefore contributes to the
risk set of more than 90% of the sample. Figure 7.4 displays the matrix weights on
(minus) the logarithm scale versus survival time for i = 131 (case 44, solid line) and
the six patients who outlived him (i = 132–137, dashed lines). As before, points in
the upper part of the graph correspond to small weights. As a rough indicator we have
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Figure 7.4 Plot of the ARE (transformed) matrix weights versus survival time for
the last seven survivors.

added horizontal lines for several quantiles of the exponential one distribution with
corresponding probabilities for this distribution to be above that line. Most of the
contributions of case 44 to the risk set of other patients are considered as abnormal
and should therefore be small compared with the others. The way ARE achieves this
is by giving them a small exponential weight, the weight becoming smaller as time
increases. This is certainly a desirable property as ideally subject 44 should not be
part of the risk set of many other observations beyond a specific time point. This can
be seen on the plot as the line for case 44 has a steep slope and goes further up leading
to tinier weights. In contrast the dashed lines for the last 6 survivors stay reasonably
low as these subjects are considered as ‘normal’ by the robust approach. The fact
that all of the lines are roughly straight is due to the form of the cumulative hazard
that looks linear for these data. They also have different lengths, e.g the line for case
44 does not go beyond time 392 days, to reflect that beyond their own survival time
the patient is no longer in the risk set of other subjects.

7.4.3 Validation

The literature on how to validate a robust fit in the Cox model is sketchy with
the exception of Valsecchi et al. (1996) and Minder and Bednarski (1996). This is
also due to the relatively new development of the theory. It is still not clear how to
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extend the many residuals and related plots developed for a classical fit (PLE); see
Therneau and Grambsch (2000, Chapter 4), for a review. In an attempt to validate
their approach, Minder and Bednarski (1996) proposed to compare the Kaplan–
Meier survival curve with their counterparts obtained when the Cox model is fitted
with the PLE and the ARE. For increasing survival times ti , the Kaplan–Meier
estimate11 is simply

Ŝ[KM](t) =
∏
ti<t

(
ni − di

ni

)
, (7.26)

where ni is the number of subjects still ‘at risk’ just prior to ti and di is the number
of deaths at time ti ; see Kalbfleisch and Prentice (1980, p. 12) or Collett (2003b,
p. 20). The model-based survival curves are obtained as follows. First, note that by
combining (7.2) and (7.3) we obtain the usual (but rarely used) expression of S(t | x)

as a function of β and the cumulative baseline hazard �0(t), i.e.

S(t | x) = exp(−�0(t) exp(xT β)). (7.27)

Second, an overall survival curve estimate can be simply computed by averaging
over the sample the predictions of individual survival time S(t | xi ) for t = tj ,
j = 1, . . . , n. For the ARE, the ith patient’s survival prediction is obtained by
replacing in formula (7.27) the true cumulative baseline hazard by its estimate
(7.19), and the linear predictor by xT

i β̂[ARE]. The same can be done for the PLE
by using the corresponding classical estimates. The comparison between Ŝ[KM](t)
and its Cox-based counterparts proceeds by plotting their ‘standardized’ differences
versus the logarithm of the survival time, possibly by categories (e.g. quartiles)
of the linear predictor xT β̂[PLE]. For the standardization factor, we follow Minder
and Bednarski (1996) and use the square-root of Ŝ[KM](t)(1 − Ŝ[KM](t)). Figure 7.5
displays the standardized difference per tertile of linear predictor xT β̂[PLE]. The
horizontal lines represent plus or minus twice the standard error of the Kaplan–Meier
estimate obtained through the Greenwood formula (see Collett, 2003b, pp. 24–25) to
take into account the sample variability, at least approximately. A good agreement
between the Kaplan–Meier and ARE survival curves can be observed for all panels.
In contrast some discrepancy appears when the PLE is used to fit the Cox model,
in particular in panels (a) and (c). This lack of fit disappears after deletion of the
extreme observations identified earlier and repeat of the procedure (Figures not
shown). This is a compelling argument in favor of the robust fit assuming that the
model is structurally correct. Other plots can also be found in Minder and Bednarski
(1996) and Bednarski (1999). Note as well that separate plots for each treatment arm
could also be drawn, but this is not done here as the experimental treatment was
found to be ineffective.

11In the presence of ties, formula (7.26) still applies by replacing the ti , i = 1, . . . , n, by the k < n

distinct ordered survival times t1 < t2 < . . . < tk .
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Figure 7.5 Standardized differences between the Kaplan–Meier estimate (KM) and
the model-based survival curves (PLE or ARE).

7.5 Structural Misspecifications

7.5.1 Performance of the ARE

The main objective of this book is to present robust techniques dealing with
distributional robustness. In essence, we assume a specific model (e.g. the Cox
model) and propose estimation or testing procedures that are meant to be stable
and more efficient than the classical procedures in a ‘neighborhood’ of the working
model. We normally speak of model misspecification in that sense. This sometimes
creates confusion, in particular for the proportional hazard model where the effect of
many departures have been studied over the years, e.g. covariate omission, deviations
from the proportional hazard assumption or measurement error in the variables.
These can be seen as structural model misspecifications and are not the scope of the
robustness theory. It is however important to discuss the performance of the robust
procedures (estimation, tests) presented so far in that setting.

Historically, researchers first studied the impact of covariate omission on the
estimation process, in particular in randomized experiments where the main endpoint
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is a specific time to event. Typically, the question of whether an unadjusted analysis
of a two-arm randomized clinical trial (RCT) still provides a consistent estimate of
the treatment effect was of primary interest. Work by Gail et al. (1984), Bretagnolle
and Huber-Carol (1988) and others showed both theoretically and by simulations
that if important predictors were omitted from the Cox model the classical estimate
(PLE) was slightly biased toward the null. They even showed that this situation
could happen when the data were perfectly balanced as in RCTs and was worsened
by the presence of censoring. The key reason for this is that the PLE does not
generally converge toward the true regression parameter unless the treatment effect
is itself zero. This type of problem being structural, a similar situation arises with
the ARE. No formulas have ever been established but a hint was given by Minder
and Bednarski (1996) who explicitly investigated the problem.12 They show in their
simulation (type B) that the robust proposal is indeed biased toward the null but tend
to be less biased than the PLE. A similar situation is encountered in Section 7.3.1
with measurement error problems. If a predictor x1 cannot be measured exactly but
instead v1 = x1 + u is used where u is some random term added independently, it is
well known that β1, the slope of x1, is not estimated consistently; see Carroll et al.
(1995) for instance. An attenuation effect or dilution is observed if the naive approach
is used (i.e. regressing the outcome on v1 and the other covariates) for most types of
regression including Cox’s. In addition estimates of other slopes can also be affected.
Again the ARE is not specifically built to remove such bias resulting more from a
key feature of the data, i.e. a structural model misspecification, ignored in a naive
analysis (classical or robust). In another simulation (type C), Minder and Bednarski
(1996) showed that the ARE tended to be less biased than its classical counterpart.
In such a case it is highly recommended to directly correct for measurement error
using one of the many techniques described, for instance, by Carroll et al. (1995)
and in the abundant literature dealing with this issue. Robust methods could then
also be specifically developed in that setting, i.e. with a model that includes possible
measurement error.

The problem of ‘what to do when the hazard is not proportional’ often arises and
is even more important in practice. Here two elements of the answer can be brought
in. First, if non-proportionality is caused by a subgroup of patients responding
differently then ARE will certainly provide safer results. Second, if the problem is
more structural, e.g. a multiplicative model captures more the inherent nature of the
data, the ARE will not perform any better than the classical technique. The reason
is that (i) both methods still assume proportional hazards; (ii) this type of departure
is not in a neighborhood of the working model. In other words it will not be ‘within
the range’ of what the robust method can handle. By definition, the problem is more
structural than distributional and beyond the scope of the current method.

Finally, one may wonder how large amounts of censoring affects the ARE or
if something similar is possible for the time-dependent Cox model. The robust
approach presented here is only valid under the assumption of fixed predictors.

12The estimator used in this reference is a simpler version of the ARE: the weighting scheme is based on
g(t) = t , not the cumulative hazard function; see Section 7.3.1 for the definitions of the weights. However,
the results are illustrative of what could be obtained with the ARE.
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Its extension to time-varying covariates has not been attempted, even under simple
circumstances, and seem a considerable challenge. Regarding the impact of censor-
ing, no work has been carried out to illustrate the performance of the ARE in the
presence of heavy censoring.

7.5.2 Performance of the robust Wald test

It is probably legitimate to wonder whether the robust Wald test defined in Section
7.3.5 provides some kind of protection against structural misspecifications. This
question arises naturally as we know that the asymptotic variance (7.21) is literally a
generalization of (7.12), the LW formula is supposed to be better at dealing with that
type of problem; see the discussion in Section 7.2.4 and the link between the two
formulas in Section 7.3.2. An insight is given in Heritier and Galbraith (2008) who
carried out simulations similar to those undertaken by Lin and Wei (1989) with the
addition of the ARE as genuine contender. We report here the results for covariate
omission, a particularly relevant situation in RCTs as discussed earlier. The data were
not, however, generated to mimic that situation as in Lin and Wei (1989). Survival
times come from an exponential model with hazard λ(t | x) = exp(x2

1) where x1
follows a standard normal distribution. This is supposed to be an even worse scenario
than simply ignoring the predictors in a RCT. The working model is a Cox model
with two predictors x1 and x2, generated independently of each other with the same
distribution. This model is misspecified as x2

1 has been omitted from the fitted model
and x2 is unnecessary. The primary objective is the performance of tests of H0 : β1 =
0 at the true model. The standard z-test (with model-based SE) cannot maintain its
nominal level of 5% and instead exhibits an inflated type I error around 13%. In
contrast the LW z-test has a type I error around 6–6.5% while ARE’s is around 3.5–
4.5%. These results stand for a sample size of 50–100 and are consistent with those
initially reported by Lin and Wei (1989). The ARE-based Wald test thus seems to
perform well in that particular setting; if anything the test seems to be conservative.
A similar performance to the LW approach is also observed by Heritier and Galbraith
(2008) for the other designs studied by Lin and Wei (1989), including misspecified
hazards, e.g. fitting the Cox model to data generated with a logarithmic type of
hazard. These conclusions are seriously limited by the fact that we are only focusing
on the test level. Nothing is said about the loss of power of such procedures compared
with those of inferential (robust) procedures developed in a structurally correct
model. We therefore strongly recommend sorting out structural problems before
carrying out robust inference. Distributional robustness deals with small deviations
from the assumed (core) model, and this statement is even more critical for inferential
matters. This is clearly not the case if, for instance, the right scale for the data is
multiplicative as opposed to additive (i.e. one of the scenarios considered here).
Using testing procedures in a Cox model fitted with the ARE should not be done
if linearity on the log-hazard scale is clearly violated. The same kind of conclusion
holds for violations from the proportional hazard assumption. This recommendation
could only be waived if such departures are caused by a few abnormal cases, in which
case the use of a robust Wald test can be beneficial. Finally, the LW approach is also
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used when correlation (possibly due to clustering) is present in the data. It generally
outperforms its model-based counterpart and maintains its level close to the nominal
level. The properties of (7.21) in that setting have not been investigated.

7.5.3 Other Issues

Robust methods in survival data have just started their development. As mentioned
earlier the presence of censoring creates a considerable challenge. In the uncensored
case robust methods in fully parametric models are readily available. One could, for
instance, use robust Gamma regression as described in Chapter 5. Specific methods
have also been proposed for the (log)-Weibull or (log)-Gamma distributions by
Marazzi (2002), Marazzi and Barbati (2003), Marazzi and Yohai (2004) and Bianco
et al. (2005). Interesting applications to the modeling of length of stay in hospital or
its cost are given as an illustration. The inclusion of covariates is considered in the
last two references. Marazzi and Yohai (2004) can also deal with right truncation but,
unfortunately, these methods are not yet general enough to accommodate random
censoring. In addition, the theory developed in this chapter for the Cox model
assumes non-informative censoring. Misspecifications of the censoring mechanism
have recently received attention, at least in the classical case; see Kong and Slud
(1997) and DiRienzo and Lagakos (2001, 2003). Whether modern robustness ideas
can valuably contribute to that type of problem is still an open question. Robust
model choice selection for censored data is still a research question with an attempt
in that direction by Bednarski and Mocarska (2006) for the Cox model.

7.6 Censored Regression Quantiles

7.6.1 Regression Quantiles

In this section we introduce an approach that is a pure product of robust statistics in
the sense that it does not have a classical counterpart. The seminal work dates back to
Koenker and Bassett (1978) who were to first to propose to model any pre-specified
quantile of a response variable instead of modeling the conditional mean. By doing so
they offered statisticians a unique way to explain the entire conditional distribution.
As the quantiles themselves can be modeled as a linear function of covariates they
are called regression quantiles and the approach is termed quantile regression (QR).
This technique was historically introduced as a robust alternative approach to linear
regression in the econometric literature. Before presenting the extension to censored
data, we present here the basic ideas underlying the QR approach.

The basic idea is to estimate the conditional quantile of an outcome y given a
vector of covariates x defined as

Q(y, x; τ ) = inf{u : P(y ≤ u | x) = τ } (7.28)
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for any pre-specified level 0 ≤ τ ≤ 1. We further assume that Q(y, x; τ ) is a linear
combination of the covariates, i.e.

Q(y, x; τ ) = xT β(τ ) (7.29)

with β(τ ) the τ th regression parameter. The rationale for (7.29) is that in many
problems the way small or large quantiles depend on the covariates might be
quite different from the median response. This will be particularly true in the
heteroscedastic data common in the econometric literature where this approach
gained rapid popularity. On the other hand, the ability to detect structures for different
quantiles is appealing irrespective of the context. The linear specification is the
simplest functional form we can imagine and corresponds to the problem of finding
regression quantiles in a linear, possibly heterogeneous, regression model. Of course
the response function need not be linear and f (x,β(τ )) is the obvious extension of
the linear predictor in that case. For 0 ≤ τ ≤ 1 define the piecewise-linear function
ρ(u; τ ) = u(τ − ι(u < 0)) where ι(u < 0) is one when u < 0 and zero otherwise.
Koenker and Bassett (1978) then showed that a consistent estimator of β(τ ) is the
value β̂(τ ) that minimizes the objective function

r(β(τ )) =
n∑

i=1

ρ(yi − xT
i β(τ ); τ ), (7.30)

for an i.i.d. sample (yi, xi ). When τ = 1/2, ρ(u; τ ) reduces to the absolute value up
to a multiplicative factor 1/2. Thus, for the special case of the median this estimator is
the so-called L1-estimator in reference to the absolute (or L1) norm. For that reason,
this approach is also referred to as the L1 regression quantiles. An introduction to
this approach at a low level of technicality with a telling example for a biostatistical
audience can be found in Koenker and Hallock (2001).

In their pioneering work Koenker and Bassett (1978) provided an algorithm
based on standard linear programming to compute β̂(τ ) that was later refined by
Koenker and D’Orey (1987). They also proved that this estimator is consistent and
asymptotically normal under mild conditions. For instance, in the classical i.i.d.
setting we have √

n(β̂(τ ) − β(τ )) → N (0, ω(τ )�−1) (7.31)

where ω = τ (1 − τ )/f 2(F−1(τ )), � = E[xxT ] and f and F are the density and
cumulative distribution functions for the error term, respectively. Conditions on f

include f (F−1(τ )) > 0 in a neighborhood of τ . It should be stressed that the fact that
the asymptotic distribution of β̂(τ ) depends on the (unspecified) error distribution
can create some difficulties in computing it. Indeed, the density needs to be estimated
non-parametrically and the resulting estimates may suffer from a lack of stability.
Inferential methods based on the bootstrap might then be preferred. We refer the
reader interested in the technical aspects of this work to Koenker and Bassett (1982)
for details and for a more comprehensive account discussing inferential aspects to
Koenker (2005).

The QR technique took two decades to make its way into survival data analysis,
probably because of the lack of flexibility of QR to deal with censoring. A step in
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the right direction was suggested by Koenker and Geling (2001). It is based on a
simple idea: a transformation of the survival time yi , e.g. the log-transformation,
is used providing a regression quantile approach to accelerated failure time model.
This is straightforward when all survival times are indeed observed, see Koenker and
Geling (2001) for an instructive example. However, this approach is insufficient for
most applications in medical research where censoring occurs.

7.6.2 Extension to the Censored Case

Early attempts to deal with censoring required too strict assumptions making their
use relatively limited; see Powell (1986), Buchinsky and Hahn (1998), Honore
et al. (2002) and Chernozhukov and Hong (2002), among others. The important
breakthrough came with Portnoy (2003) who was able to accommodate general
forms of censoring. He also made available a user-friendly R package called CRQ
for censored regression quantiles (directly accessible on his website). We can then
expect a rapid development of this innovative approach in biostatistics and medical
research where it could be used as a valuable complement to the Cox model.

CRQ involve more technical aspects since it combines both the elements of
regression quantiles and the modeling of censored survival times. The reader may
decide to skip this section in the first instance and just accept the existence of the
extension to the censored case. Let ci , i = 1, . . . , n be the censoring times and y0

i

the possibly unobserved response (e.g. survival time t0
i ) for the ith subject. We have

yi = min(y0
i , ci) (e.g. yi = ti the survival time), and δi = ι(y0

i ≤ ci) the indicator
of censoring. We can even allow ci to depend on xi but require y0

i and ci to be
independent conditionally on xi . The model now stipulates that the conditional
quantiles of y0

i are a linear combination of the covariates but will not impose any
particular functional form on those of yi . Portnoy (2003) astutely noticed that QR
is actually a generalization of the one-sample Kaplan–Meier approach. Two key
ingredients combine here: (1) the Kaplan–Meier estimator (7.26) can be viewed as a
‘recursively reweighted’ empirical survival estimate; (2) a more technical argument
linked to the regression quantiles computation, i.e. the weighted gradient used in
the programming remains piecewise linear in τ . This simple remark permits the use
of simplex pivoting techniques. Point (1) follows from Efron (1967) who shows
that the Kaplan–Meier estimator can be computed by redistributing the mass of
each censored observation to subsequent non-censored observations. In other words,
the mass P(y0

i > ci) can be redistributed to observations above ci . This is done
by exploiting a key point of QR, i.e. the estimator β̂(τ ) depends on the sign
of the residuals at any given point and not on the actual value of the response.
The procedure for estimating β̂(τ ) when there is censoring works then in the
following way. First, it is easy to start with a low quantile τ . We might not know the
exact value of y0

i but we do know that it is beyond the censoring time ci . Then, when
ci lies above the τ th regression line, so does y0

i . The true residual y0
i − xT

i β̂(τ ) will
be positive irrespective of y0

i and we can just use the ordinary QR for such a small
quantile value. Of course as τ becomes larger sooner or later a censored observation
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will have a negative residual ci − xT
i β̂(τ ). We do not know for sure whether the

true residual is positive or negative but as the sign has changed we call such an
observation crossed from now on. The level at which the observation is crossed is
denoted τ̂i , thus

ci − xT
i β̂(τ̂i) ≥ 0 and ci − xT

i β̂(τ ) ≤ 0 for all τ > τ̂i .

As explained by Portnoy (2003) and Debruyne et al. (2008), the critical idea is
‘to estimate the probability of crossed censored observations having a positive,
respectively negative residual and then use these estimates as weights further on’.
This can be achieved by splitting such an observation into two weighted pseudo-
observations, one at (ci, xi ) with weight wi(τ ) ≈ P(y0

i − xT
i β̂(τ ) ≥ 0) and one at

(+∞, xi ) with weight 1 − wi(τ ). The weight itself comes from quantile regression
as 1 − τ̂i is a rough estimate of the censoring probability P(y0

i > ci), i.e.

wi(τ ) = τ − τ̂i

1 − τ̂i
for τ > τ̂i .

Then we can proceed recursively to obtain the CRQ estimate; the exact algorithm
as detailed in Debruyne et al. (2008) is given in Appendix G. This process is
technically equivalent to one minus the Kaplan–Meier estimate with the Efron
recursive reweighting scheme; see the example given in Portnoy (2003, p. 1004), for
details. Improvements to the computation of CRQ can also be found in Fitzenberger
and Winker (2007) and may prove useful for large datasets.

7.6.3 Asymptotic Properties and Robustness

Establishing asymptotic results for CRQ is a considerable task as the weighting
scheme sketched above must be taken into account. The most accurate result so
far is that β̂(τ ) converges to β(τ ) at the rate n−1/2 as shown by Neocleous et al.
(2006). The asymptotic normality with a closed form for the asymptotic variance is
still a work in progress. The current way to compute standard errors or CIs is the
bootstrap. This technique is computer intensive but stable and provides an effective
way to perform inference in the i.i.d. setting; it is also the default method in the R
package CRQ provided by Portnoy. More generally, even if an asymptotic result were
available, it would not necessarily lead to an accurate estimate. Indeed as indicated
earlier in (7.31), the asymptotic variance for the regression quantiles estimates in
the non-censored case depends on the underlying (unspecified) error distribution and
hence bootstrap methods can provide more reliable standard errors estimates. This
is also certainly true in the presence of censoring. Elaboration must be made on
the exact implementation of the bootstrap for CRQ as a few complications arise.
First, when the survival distribution presents many censored observations in its right
tail, it is virtually impossible to estimate the conditional quantile above the last τ
value corresponding to the last uncensored observation. When bootstrapping the
problem is even more serious as this cut-off is random. In one bootstrap sample
the observed cut-off can be 0.9 whereas in another one it is about 0.7 due to the
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presence of more censored observations from the right-hand tail. Thus, the simple
percentile CI possibly fails. Portnoy (2003) introduced a hybrid approach called the
2.906 IQR bootstrap to cope with this problem: simply take the bootstrap estimate of
the interquartile range (IQR) and use normality to obtain the relevant percentiles.
Technically, this amounts to computing the bootstrap sample interquartile values
β̂∗

0.75 − β̂∗
0.5 and β̂∗

0.5 − β̂∗
0.25, multiplying them by 2.906 for consistency and adding

the values to the median estimate β̂∗
0.5 to get upper and lower bounds of the 95% CI

for all β(τ ). This approach seems to work reasonably well both in simulations and
examples. Second, as the computational time can be prohibitive for large samples
discouraging users, a possible solution has been implemented in the R package
CRQ. It is called the ‘n-choose m’ bootstrap whereby replicates of size m < n are
chosen to compute the estimates and then adjust the CIs for the smaller sample size.
Improvements on the CRQ implementation are work in progress and limitations will
certainly be relaxed in the near future.

Regression quantiles inherit the robustness of ordinary sample quantiles, and
thus present some form of robustness to distributional assumptions. As pointed
out by Koenker and Hallock (2001) the estimates have ‘an inherent distribution-
free character because quantile estimation is influenced only by the local behavior
of the conditional distribution near the specified quantile’. This is equally true for
CRQ as long as perturbations in the response only are considered. However, both
regression quantiles and CRQ break down in the presence of bad leverage points or
problems in the covariates. Robust inference has not been specifically studied but it
is safe to say that the bootstrap-based approach probably works well for low levels
of contamination and central values of τ (which is probably where most applied
problems sit). In contrast extreme values of τ or a higher percentage of spurious
data in the sample cause more trouble. Indeed, in that case the standard bootstrap
approach breaks down as more outliers can be generated in the bootstrap sample.
This is even more critical when extreme τ are the target as the breakdown point of
β̂(τ ) is automatically lower.

7.6.4 Comparison with the Cox Proportional Hazard Model

Straightforward computations based on the survival function and cumulative hazard
given in Section 7.2 show that the conditional quantile for the survival time t given
a particular covariate vector x is

Q(t, x; τ ) = �−1
0 [−log(1 − τ ) exp(−xT β)]. (7.32)

Thus, the exponential form of the Cox model imposes a specific form on the
conditional quantiles. More specifically (7.32) shows that they are all monotone in
log(1 − τ ) and depend on �0 in a complicated way. As the conditional quantiles
are not linear in the covariates the Cox model does not provide a direct analog of
β̂(τ ). However, Koenker and Geling (2001) and Portnoy (2003) suggested that a
good proxy for β̂(τ ) is the derivative of (7.32) evaluated at x̄, the average covariate
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vector, i.e.

b(τ ) = ∂

∂x
Q(t, x; τ )

∣∣∣∣
x=x̄

. (7.33)

If we now plug in the PLE for β into formula (7.33) we obtain b̂(τ ) that we can
now compare with the censored regression quantile estimate β̂(τ ). It is worth noting
that (7.33) implies that

bj (τ ) = − (1 − τ )γ (x) log(1 − τ )γ (x)

S′
0[Q(t, x; τ )] βj ,

where γ (x) = exp(−xT β). So the effect of the various covariates as a function of
τ are all identical up to a scaling factor depending on x. In particular, the quantile
treatment effect for the Cox model must have the same sign as βj precluding any
form of effect that would allow crossings of the survival functions for different
settings of covariates. This can be seen as a lack of flexibility of the Cox model
imposed by the proportional hazard assumption.

7.6.5 Lung Cancer Data Example (continued)

Figure 7.6 displays a concise summary of the results for a censored quantile
regression analysis of log(time), i.e. an accelerated failure rate model, on the lung
cancer data. The model includes eight estimated coefficients but ptherapy and
age were omitted as the same flat non-significant pattern appears for all values
of τ and methods. The shaded area represents the 95% pointwise band for each
CRQ coefficient obtained by bootstrapping. The dashed line represents the analog
of β̂(τ ) for the Cox model given by (7.33). The Karnofsky performance status
(karnofsky) is a standard score of 0–100 assessing the functional ability of
a patient to perform tasks; 0 represents death and 100 a normal ability with no
complaints. Its effect depicted in the first panel is highly significant at all levels
and for both the Cox and CRQ models. Around median values, e.g. τ = 0.50,
the CRQ estimate is roughly 0.04 which translates into a multiplicative effect of
exp(0.04 ∗ 10) = 1.49 on median survival for a 10 point increase on that scale
(holding all other factors constant). The effect looks somehow higher for smaller
quantiles and weaker for larger values of τ , a decreasing trend that is not detected by
the Cox model. dduration and treatment have little impact on the outcome
for all values of τ strengthening the previous findings that these predictors are not
important in these data.
cell is a more interesting predictor. No clear effect of squamous versus large

cells appears although it seems that in the tails things could be different with possibly
a crossover. With the 95% CI also being larger towards the ends, we do not pursue
this interpretation. The situation is much neater for small cells where a significant
constant effect appears at all levels except perhaps for larger values, τ ≥ 0.80 say.
An estimate of −0.70 is obtained for τ = 0.50; this means that the presence of small
cells reduces the median survival by 1 − exp(−0.70) = 50% in comparison with
large cells. In contrast, the QR estimate (7.33) for the Cox model represented by the
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Figure 7.6 The CRQ coefficient, β̂(τ ), with shaded 95% band for the lung cancer
data. The Cox coefficient effect (7.33) is represented by the dashed line.

dashed line in the same panel is higher, more variable and its significance uncertain,
probably for the same reasons mentioned earlier. Adeno cells seem to act similarly
to small cells on survival although their effect looks clearer towards the upper end
of the distribution. Finally we would like to mention some robustness concerns. As
the CRQ approach is based on quantiles, it is robust to outliers in the response or
vertical outliers as indicated earlier. It is therefore not influenced by the two long-
term survivors (cases 17 and 44). This explains why the robust analysis of Section 7.4
is more in line with the current findings, especially on the role of the cell type.

For the sake of completeness we also give the CRQ fit at τ = 0.50 in Table 7.6.
It can be seen as a snapshot of Figure 7.6 at a particular level, here the median. The
95% CIs provided in this table are based on the bootstrap with B = 1000 replicates.
The p-values correspond to the z-statistic obtained by studentizing by the bootstrap
IQR as directly implemented in the R package developed by Portnoy.

It is worth noting that the coefficients are similar to those given in the robust
analysis of Section 7.4 up to the minus sign. The systematic reversing of the signs for
significant predictors is generally observed. This is due to the fact that CRQ explains
a specific quantile of the logarithm of time whereas in a Cox model the classical
interpretation with hazard ratios relates more to survival. It is actually possible to
obtain similar tables for other values of τ but the graphical summary is usually
more informative unless an investigator is interested in one particular quantile of the
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Table 7.6 Estimates, 95% CIs and p-values for significance testing for the Veteran’s
Administration lung cancer data.

Variable Estimate 95% CI p-value

Intercept 2.297 (0.45; 4.12) 0.01
karnofsky 0.036 (0.02; 0.05) 0.00
dduration 0.005 (−0.02; 0.06) 0.80
age 0.003 (−0.02; 0.03) 0.83
ptherapy −0.010 (−0.07; 0.04) 0.71
cell
Squamous −0.117 (−0.81; 0.78) 0.77
Small −0.685 (−1.28; −0.05) 0.03
Adeno −0.751 (−1.33; −0.06) 0.02
treatment 0.018 (−0.54; 0.44) 0.94

The regression coefficients are estimated by means of the CRQ at
τ = 0.50.

distribution. To conclude, it is useful to note that although the differences between
the quantile method and the Cox model may not be considered as important in this
example, it is not always the case. As pointed out by Portnoy (2003), CRQ generally
provides new insight on the data with the discovery of substantial differences when
a greater signal-to-noise ratio exists in the data.

7.6.6 Limitations and Extensions

Despite its uniqueness and originality combined with both good local robustness
properties and direct interpretation, CRQ have a few limitations. Unlike the propor-
tional hazard model it cannot be extended to time-varying predictors as the whole
algorithm is based on fixed x. This must be played down as many of the time-
dependent covariates used in the extended Cox model are actually introduced when
the proportional hazard assumption itself is violated. As the proportional hazard
assumption is no longer needed in QR, the problem is no object. From a robustness
perspective CRQ is resistant to vertical outliers, i.e. abnormal responses in time,
but not to leverage points. Recent work by Debruyne et al. (2008) shows that this
difficulty can be overcome by introducing censored depth quantiles. More research
is needed to study their asymptotic properties and compare them with CRQ. More
importantly some more work is needed to sort out inferential issues even though the
bootstrap approach described above offers a workable solution. Recently Peng and
Huang (2008) introduced a new approach for censored QR based on the Nelson–
Aalen estimator of the cumulative hazard function. Implementation of this technique
has been provided in the R package quantreg; see Koenker (2008). This work
is promising as Peng and Huang’s estimator admits a Martingale representation
providing a natural route for an asymptotic theory. A key assumption of all of
these techniques, however, is that Q(t, x; τ ) depends linearly on the regression
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parameter β. This condition can be relaxed in partially linear models as investigated
by Neocleous and Portnoy (2006). This could constitute a valuable alternative for
intrinsically non-linear data. Irrespective of the method, we would like to stress the
potential of QR in biostatistics as it constitutes an original complement to the Cox
model. It has the advantage of being naturally interpretable and does not assume
any form of proportionality of the hazard function. Results obtained by CRQ can
sometimes contradict those derived from the Cox model. This should not be seen
as a deficiency but more as a major strength. It can often capture new structures
that were hidden behind the proportional hazard assumption. In general, its greater
flexibility suggests that the corresponding results are more reliable, but we encourage
users to carry out additional work to better understand how such differences can be
explained.





Appendices





A

Starting Estimators for
MM-estimators of Regression
Parameters

For the starting point β̂0, one can choose an estimator among the class of
S-estimators as proposed by Rousseeuw and Yohai (1984) (see also Section 2.3.3).
A popular choice for the corresponding ρ-function is the biweight function (2.20),
hence leading to the solution β̂0

[bi] for β and σ̂ 2
[bi] for σ 2 which minimize σ 2 subject to

1

n

n∑
i=1

ρ[bi](ri; β, σ 2, c) − E�[ρ[bi](r; β, σ 2, c)] = 0 (A.1)

where the expected value ensures Fisher consistency of the resulting estimator. The
breakdown point of this S-estimator can be chosen through the value of c that
satisfies for ρ[bi] the condition E�[ρ[bi](r; β, σ 2, c)] = ε∗ρ[bi](c; β, σ 2, c), where
ε∗ is the desired breakdown point (see Rousseeuw and Yohai, 1984). When ε∗ = 0.5
(the maximal value), then c = 1.547 (see Rousseeuw and Leroy, 1987, p. 136).
However, its efficiency, i.e. the ratio between the traces of the asymptotic variances
of respectively the LS and the S-estimator under the exact regression model, is equal
to 0.287 (see Yohai et al., 1991), hence it is roughly four times more variable than
the LS.

The solution can be found by a random resampling algorithm, followed by a local
search (see Yohai et al., 1991), by a genetic algorithm in place of the resampling
algorithm, by an exhaustive form of sampling algorithm for small problems (see
Marazzi (1993) for details on the numerical algorithms) and by faster algorithm for
large problems (see Pena and Yohai, 1999).

The computational speed is still an issue for computing β̂0 in general. When
some of the explanatory variables are actually categorical (i.e. factors) as is the case
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with the diabetes data (variables bfmed, bflar and loc), Maronna and Yohai
(2000) propose splitting the estimation procedure into an M-estimation part for the
categorical variables and an S-estimation part for the other variables, resulting into
what they call an MS-estimator. Basically, consider the following regression model

yi = xT
i(1)β(1) + xT

i(2)β(2) + εi , i = 1, . . . , n,

where xi(1) are 0–1 vectors (i.e. dummy variables) of dimension q1 and xi(2) are real-
valued vectors of dimension q2. An estimator for β(1) is defined conditionally on a
value for β(2), i.e. the solution β̇(1)(β(2)) in β(1) of

n∑
i=1

�(r̃i, xi(1)) = 0, (A.2)

with r̃ = (ỹ − xT
(1)β(1))/σ and ỹ = y − xT

(2)β(2). As an estimator for β(2) one

uses e.g. the S-estimator (A.1) in which ri = yi − xT
i(1)β̇(1)(β(2)) + xT

i(2)β(2). For
a discussion on the choice for the �-function in (A.2) and simplified numerical
procedures, see Maronna and Yohai (2000).

One can also choose different ρ-functions and/or other objective functions to
define high breakdown point estimators for the starting point. Indeed, one can cite
the least median of squares estimator (LMS) and the least trimmed squares estimator
(LTS), both from Rousseeuw (1984), and the least absolute deviations estimator
(LAD) of Edgeworth (1887) (see also Bloomfield and Steiger, 1983) also known
under L1-regression. They can be seen in their definition as natural adaptation of the
LS estimator or as a particular case of S-estimators. Indeed, the LS (for a given σ 2)
is defined as the solution of

min
β

1

n

n∑
i=1

r2
i , (A.3)

i.e. the minimization of a scale estimate of the residuals, in a similar manner as for
S-estimators (the square of the residuals is generalized to a function ρ). Replacing
the mean by the median leads to the LMS, using a trimmed mean leads to the LTS
and taking the absolute value instead of the square in (A.3) leads to the LAD. All of
these estimators require a robust estimator for the scale σ and special algorithms to
compute them. They have progressively been abandoned in favor of β̂0

[bi] (and σ̂ 2[bi]).



B

Efficiency, LRTρ, RAIC and
RCp with Biweight ρ-function
for the Regression Model
To develop the efficiency (3.20) and other quantities for the LRTρ , RAIC and the
RCp with the biweight estimator with ρ-function (3.15), we make use of

E[rk] = (k)!
2k/2(k/2)!

to compute the moments of a N (0, 1), and of∫ c

−∞
rk d�(r) = Lk = −ck−1φ(c) + (k − 1)�(c)Lk−2,

with L0 = �(c) and L1 = −φ(c). We need (even) moments up to the order 14, i.e.

L2 = −cφ(c)+ �(c)2

L4 = −(c3 + 3c�(c))φ(c) + 3�(c)3

L6 = −(c5 + 5c3�(c) + 15c�(c)2)φ(c) + 15�(c)4

L8 = −(c7 + 7c5�(c) + 35c3�(c)2 + 105c�(c)3)φ(c) + 105�(c)5

L10 = −(c9 + 9c7�(c) + 63c5�(c)2 + 315c3�(c)3 + 945c�(c)4)φ(c)

+ 945�(c)6

L12 = −(c11 + 11c9�(c) + 99c7�(c)2 + 693c5�(c)3 + 3465c3�(c)4

+ 10 395c�(c)5)φ(c) + 10 395�(c)7

L14 = −(c13 + 13c11�(c) + 143c9�(c)2 + 1287c7�(c)3 + 9009c5�(c)4

+ 45 045c3�(c)5 + 135 135c�(c)6)φ(c) + 135 135�(c)8
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and, therefore,

∫ c

−c

d�(r) = 1 − 2�(−c)∫ c

−c

r2 d�(r) =
∫

r2 d�(r) − 2
∫ −c

−∞
r2 d�(r) = 1 − 2φ(c)c − 2�(−c)2

∫ c

−c

r4 d�(r) = 3 − 2φ(c)(c3 + 3c�(−c))− 6�(−c)3

∫ c

−c

r6 d�(r) = 15 − 2φ(c)(c5 + 5c3�(−c) + 15c�(−c)2) − 30�(−c)4

∫ c

−c

r8 d�(r) = 105 − 2φ(c)(c7 + 7c5�(−c) + 35c3�(−c)2

+ 105c�(−c)3) − 210�(−c)5∫ c

−c

r10 d�(r) = 945 − 2φ(c)(c9 + 9c7�(c) + 63c5�(c)2

+ 315c3�(c)3 + 945c�(c)4) − 1890�(c)6∫ c

−c

r12 d�(r) = 10 395 − 2φ(c)(c11 + 11c9�(−c)+ 99c7�(−c)2

+ 693c5�(−c)3 + 3465c3�(−c)4 + 10 395c�(−c)5)

− 20 790�(c)7∫ c

−c

r14 d�(r) = 135 135 − 2φ(c)(c13 + 13c11�(−c) + 143c9�(−c)2

+ 1287c7�(−c)3 + 9009c5�(−c)4 + 45 045c3�(−c)5

+ 135 135c�(−c)6) − 270 270�(−c)8.

For the efficiency (3.20), we have

ec =
[

5

c4

∫ c

−c

r4 d�(r) − 6

c2

∫ c

−c

r2 d�(r) +
∫ c

−c

d�(r)

]2

×
(

1

c8

∫ c

−c

r10 d�(r) − 4

c6

∫ c

−c

r8 d�(r) + 6

c4

∫ c

−c

r6 d�(r)

− 4

c2

∫ c

−c

r4 d�(r) +
∫ c

−c

r2 d�(r)

)−1

.
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For the LRTρ , and using the ρ-function given in (3.15), we have that (3.26) reduces to

(
5

c4

∫ c

−c

r4 d�(r) − 6

c2

∫ c

−c

r2 d�(r) +
∫ c

−c

d�(r)

)
×
(

1

c8

∫ c

−c

r10 d�(r) − 4

c6

∫ c

−c

r8 d�(r) + 6

c4

∫ c

−c

r6 d�(r)

− 4

c2

∫ c

−c

r4 d�(r) +
∫ c

−c

r2 d�(r)

)−1

.

For the RAIC given in (3.31), and using the ρ-function given in (3.15), we have

a =
(

1

c8

∫ c

−c

r10 d�(r) − 4

c6

∫ c

−c

r8 d�(r) + 6

c4

∫ c

−c

r6 d�(r)

− 4

c2

∫ c

−c

r4 d�(r) +
∫ c

−c

r2 d�(r)

)
b =

(
5

c4

∫ c

−c

r4 d�(r) − 6

c2

∫ c

−c

r2 d�(r) +
∫ c

−c

d�(r)

)
.

For the RCp, Ronchetti and Staudte (1994) have shown that

Up − Vp = n

∫ (
∂

∂r
ρ(r)

)2

d�(r)

− 2p
∫ (

∂

∂r
ρ(r)

)2 ∂2

∂r∂r
ρ(r) d�(r)

[∫
∂2

∂r∂r
ρ(r) d�(r)

]−1

+ p

(∫ (
∂2

∂r∂r
ρ(r)

)2

d�(r) + 2
∫

1

r

∂

∂r
ρ(r)

∂2

∂r∂r
ρ(r) d�(r)

− 3
∫

1

r2

(
∂

∂r
ρ(r)

)2

d�(r)

)∫ (
∂

∂r
ρ(r)

)2

d�(r)

×
[∫

∂2

∂r∂r
ρ(r) d�(r)

]−2

and

VP = p

∫
1

r2

(
∂

∂r
ρ(r)

)2

d�(r)

∫ (
∂

∂r
ρ(r)

)2

d�(r)

[∫
∂2

∂r∂r
ρ(r) d�(r)

]−2

.
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For the biweight ρ-function (3.15), we have

(Up − Vp) = n

(
1

c8

∫ c

−c

r10 d�(r) − 4

c6

∫ c

−c

r8 d�(r) + 6

c4

∫ c

−c

r6 d�(r)

)
− n

(
4

c2

∫ c

−c

r4 d�(r) −
∫ c

−c

r2 d�(r)

)
− 2p

(
5

c12

∫ c

−c

r14 d�(r) − 26

c10

∫ c

−c

r12 d�(r)

+ 55

c8

∫ c

−c

r10 d�(r) − 60

c6

∫ c

−c

r8 d�(r) + 35

c4

∫ c

−c

r6 d�(r)

− 10

c2

∫ c

−c

r4 d�(r) +
∫ c

−c

r2 d�(r)

)

×
[

5

c4

∫ c

−c

r4 d�(r) − 6

c2

∫ c

−c

r2 d�(r) +
∫ c

−c

d�(r)

]−1

+ p

(
32

c8

∫ c

−c

r8 d�(r) − 80

c6

∫ c

−c

r6 d�(r)

+ 64

c4

∫ c

−c

r4 d�(r) − 16

c2

∫ c

−c

r2 d�(r)

)
×
(

1

c8

∫ c

−c

r10 d�(r) − 4

c6

∫ c

−c

r8 d�(r) + 6

c4

∫ c

−c

r6 d�(r)

− 4

c2

∫ c

−c

r4 d�(r) +
∫ c

−c

r2 d�(r)

)

×
[

5

c4

∫ c

−c

r4 d�(r) − 6

c2

∫ c

−c

r2 d�(r) +
∫ c

−c

d�(r)

]−2

and

VP = p

(
1

c8

∫ c

−c

r8 d�(r) − 4

c6

∫ c

−c

r6 d�(r) + 6

c4

∫ c

−c

r4 d�(r)

− 4

c2

∫ c

−c

r2 d�(r) +
∫ c

−c

d�(r)

)(
1

c8

∫ c

−c

r10 d�(r) − 4

c6

∫ c

−c

r8 d�(r)

+ 6

c4

∫ c

−c

r6 d�(r) − 4

c2

∫ c

−c

r4 d�(r) +
∫ c

−c

r2 d�(r)

)

×
[

5

c4

∫ c

−c

r4 d�(r) − 6

c2

∫ c

−c

r2 d�(r) +
∫ c

−c

d�(r)

]−2

.



C

An Algorithm Procedure for
the Constrained S-estimator

The following is a pseudo code of the algorithm for computing the constrained
S-estimator.

• Given a model, define the design matrices zjz
T
j to obtain the structure of the

covariance matrix and the matrices xi that define the mean vectors xiβ, so that

� =
r∑

j=0

σ 2
j zjz

T
j .

• Compute the starting point of the constrained estimator, that is

xiβstart and �start.

In principle one can choose any high breakdown point estimator as starting
point. It can be made ‘constrained’ to match the MLM model by averaging
out the elements of the estimated covariance matrix that are equal under the
MLM. We use the MCD estimator (see Section 2.3.3).

• Compute the constrained estimator through the following iterative procedure:

1. Compute the Mahalanobis distances

d
(1)
i =

√
(yi − xiβstart)T �−1

start(yi − xiβstart).

2. Compute the weights w(d
(1)
i ).

3. Compute the fixed effects parameters β(1) by solving∑
w(d

(1)
i )xT

i �−1
start(yi − xiβstart).
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4. Let α = (σ 2
0 , . . . , σ

2
r )

T , an iterative expression for the variance compo-
nents α(1) is given by

α(1) =
(

1

n

n∑
i=1

w(d
(1)
i )(d

(1)
i )2

)−1

Q−1U

with U defined as

U =
(

1

n

∑
pw(d

(1)
i )(yi − xiβstart)

T

× �−1
startzjz

T
j �−1

start(yi − xiβstart)

)
j=0,...,r

and
Q = tr(MjMk)j,k=0,...,r

with
Mj = �−1

startzjz
T
j .

5. Using the design matrices zjz
T
j , update the constrained matrix by

�(1) =
r∑

j=0

σ
2(1)
j zjz

T
j .

6. Update the fixed effects by
xiβ

(1).

7. Compute some convergence criterion. If the conditions of the criterion
are met, stop; otherwise put βstart = β(1), �start = �(1) and start again
at point 1 by computing d

(2)
i , the weights w(d

(2)
i ) then β(2) and �(2).

Repeat the procedure until convergence.



D

Some Distributions of the
Exponential Family

We give here the definitions of some of the distributions belonging to the exponential
family, as listed in Table 5.1.

• Normal. The density function of a variable distributed as yi ∼ N (µi, σ
2) is

f (y;µi, σ
2) = 1√

2πσ
exp

(
− 1

2σ 2
(y − µi)

2
)
,

for y in R.

• Bernoulli. A yi Bernoulli distributed variable can take values y = 0 or y = 1
according to

P(yi = y;pi) = p
y

i (1 − pi)
1−y.

• Scaled binomial. The scaled binomial distributed variables yi/m take values
0, 1/m, 2/m, . . . , 1 and are derived from the binomial variables yi with
probabilities

P(yi = y;pi) =
(
m

y

)
p
y
i (1 − pi)

1−y,

for y = 0, 1, . . . ,m.

• Poisson. For a Poisson variable yi ∼ P(λ), probabilities are computed accord-
ing to

P(yi = y; λi) = exp(−λi)
λ
y
i

y! ,

for y = 0, 1, 2, . . . .
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• Gamma. Here yi is said to be �(µi, ν) distributed if its density is

f (y;µi, ν) = ν/µi · exp(−νy/µi) · (νy/µi)
ν−1

�(ν)
,

for y > 0, with �(ν) = ∫∞
0 exp(−u)uν−1 du.



E

Computations for the Robust
GLM Estimator

E.1 Fisher Consistency Corrections

We give here the Fisher consistency corrections

a(β) = 1

n

n∑
i=1

E[ψ(ri; β, φ, c)]w(xi )
1√
φvµi

µ′
i ,

for the binomial, Poisson and Gamma models. Note that for binomial and Poisson
models, φ = 1 and for the Gamma model φ = 1/ν, see Table 5.1. The only term
to be computed for each model is E[ψ(ri; β, φ, c)], which is done below for
ψ(ri ; β, φ, c) = ψ[Hub](ri; β, φ, c), see Section 3.6.

Let us first define j1 = �µi − c
√
φvµi � and j2 = �µi + c

√
φvµi �, where �u�

denotes the largest integer not greater than u.
The binomial model states that yi ∼ B(mi, pi), so that E[yi] = µi = mipi and

var(yi) = µi((mi − µi)/mi). Then we have

E[ψ[Hub](ri; β, φ, c)] =
∞∑

j=−∞
ψ[Hub]

(
j − µi√

vµi

; β, φ, c

)
P(yi = j) ι(j ∈ [0,mi])

= c[P(yi ≥ j2 + 1)− P(yi ≤ j1)]
+ µi√

vµi

[P(j1 ≤ ỹi ≤ j2 − 1) − P(j1 + 1 ≤ yi ≤ j2)],

with ỹi ∼ B(mi − 1, pi), and where ι(C) is the indicator function that takes the value
one if C is true and zero otherwise.
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The Poisson model states that yi ∼ P(µi) and, hence, E[yi] = V (µi) = µi .
Then,

E[ψ[Hub](ri; β, φ, c)] =
∞∑

j=−∞
ψ[Hub]

(
j − µi√

vµi

; β, φ, c

)
P(yi = j)ι(j ≥ 0)

= c(P (yi ≥ j2 + 1) − P(yi ≤ j1))

+ µi√
vµi

[P(yi = j1) − P(yi = j2)].

Finally, for the Gamma model, one remarks in the first place that ri = (yi −
µi)/

√
φvµi has a Gamma distribution (independent of µi) with expectation equal

to
√
ν and shifted origin to −√

ν. It holds that

E[ψ[Hub](ri; β, φ, c)] =
∫ ∞

−√
ν

ψ[Hub](r; β, φ, c)f (r; √
ν, ν) ι(r > −√

ν) dr

= c[P(ri > c) − P(ri < −c)]

+ ν(ν−1)/2

�(ν)
[G(−c, ν) − G(c, ν)],

where f (r; √
ν, ν) is the Gamma density (see Appendix D) and

G(t, κ) = exp(−√
ν(

√
ν + t))(

√
ν + t)κ ι(t > −√

ν).

E.2 Asymptotic Variance

Computing the asymptotic variance amounts to computing the matrices A and B

of Section 5.3.4, and therefore of E[ψ2(ri; β, φ, c)] and E[ψ(ri; β, φ, c)(∂/∂µi)

logh(yi | xi , µi)] again for ψ(ri; β, φ, c) = ψ[Hub](ri; β, φ, c), where h(yi |
xi ,µi ) is the conditional density or probability of yi | xi .

For the binomial model

E[ψ2[Hub](ri; β, φ, c)]
= c2(P (yi ≤ j1) + P(yi ≥ j2 + 1))

+ 1

vµi

[π2
i mi(mi − 1)P (j1 − 1 ≤ ˜̃yi ≤ j2 − 2)

+ (µi − 2µ2
i )P (j1 ≤ ỹi ≤ j2 − 1) + µ2

i P (j1 + 1 ≤ yi ≤ j2)],

with yi ∼ B(mi, πi), ỹi ∼ B(mi − 1, πi) and ˜̃yi ∼ B(mi − 2, πi) (mi ≥ 3).
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Given that (∂/∂µi) logh(yi | xi , µi) is equal to (yi − µi)/vµi , we have

E

[
ψ[Hub](ri; β, φ, c)

∂

∂µi
logh(yi | xi , µi)

]
= E

[
ψ[Hub](ri; β, φ, c)

yi − µi

vµi

]
= cµi

vµi

[P(yi ≤ j1) − P(ỹi ≤ j1 − 1) + P(ỹi ≥ j2) − P(yi ≥ j2 + 1)]

+ 1

v
3/2
µi

[π2
i mi(mi − 1)P (j1 − 1 ≤ ˜̃yi ≤ j2 − 2)

+ (µi − 2µ2
i )P (j1 ≤ ỹi ≤ j2 − 1) + µ2

i P (j1 + 1 ≤ yi ≤ j2)],

with yi ∼ B(mi, πi), ỹi ∼ B(mi − 1, πi) and ˜̃yi ∼ B(mi − 2, πi) (mi ≥ 3).
For the Poisson model,

E[ψ2[Hub](ri; β, φ, c)] = c2[P(yi ≤ j1) + P(yi ≥ j2 + 1)]

+ 1

vµi

[µ2
i P (j1 − 1 ≤ yi ≤ j2 − 2)

+ (µi − 2µ2
i )P (j1 ≤ yi ≤ j2 − 1)

+ µ2
i P (j1 + 1 ≤ yi ≤ j2)].

We have
∂

∂µi

logh(yi | xi , µi) = yi − µi

µi

= yi − µi

vµi

,

so that

E

[
ψ[Hub](ri; β, φ, c)

∂

∂µi

logh(yi | xi , µi)

]
= E

[
ψ[Hub](ri; β, φ, c)

yi − µi

vµi

]
= c[P(yi = j1) + P(yi = j2)] + µiP (j1 ≤ yi ≤ j2 − 1)

+ 1

v
3/2
µi

µ2
i [P(yi = j1 − 1) − P(yi = j1) − P(yi = j2 − 1) + P(yi = j2)].

For the Gamma model, we first note that

∂

∂µi

logh(yi | xi , µi) = (yi − µi)/(µ
2
i /ν) = √

νri/µi.
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This yields

E(ψ[Hub](ri; β, φ, c)
∂

∂µi

logh(yi | xi , µi)

=
√
ν

µi

E(ψ[Hub](ri; β, φ, c)ri)

= νν/2c

µi�(ν)
[G(−c, ν) + G(c, ν)] +

√
ν

µi

P (−c < ri < c)

+ νν/2

µi�(ν)
[G(−c, ν + 1) − G(c, ν + 1)]

+ ν(ν+1)/2

µi�(ν)

(
ν + 1

ν
− 2

)
[G(−c, ν) − G(c, ν)].

E.3 IRWLS Algorithm for Robust GLM

We show here how the estimation procedure issued from (5.13) can be written as an
IRWLS algorithm. Given β t−1, the estimated value of β at iteration t − 1, one can
obtain β t , the value of β at iteration t , by regressing Z = XT β t−1 + et−1 on X (see
Definition (5.2)) with weights B = diag(b1, . . . , bn) with

bi = E

[
ψ(ri; β, φ, c)

∂

∂µi

logh(yi | xi , µi)

]/√
φvµiw(xi )

(
∂µi

∂ηi

)2

, (E.1)

for i = 1, . . . , n, where h(·) is the conditional density or probability of yi | xi and
et−1 = (et−1

1 , . . . , et−1
n ) with

et−1
i = ψ(rt−1

i ; β, φ, c) − E[ψ(rt−1
i ; β, φ, c)]

E[ψ(rt−1
i ; β, φ, c)(∂/∂µi) logh(yi | xi , µ

t−1
i )] . (E.2)

To see the above, define U(β) =∑n
i=1 �(yi, xi; β, φ, c), where �(yi, xi; β,

φ, c) is given in (5.13).
The Fisher-scoring algorithm at step t writes

β t = β t−1 + H−1(β t−1)U(β t−1)

or, alternatively,

H(β t−1)β t = H(β t−1)β t−1 + U(β t−1),

where

H(β t−1) = E

[
− ∂

∂β
U(β)

∣∣∣∣
β=β t−1

]
= nM(�,Fβ) = XT B|β=β t−1X.
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Moreover, for Z = XT β t−1 + et−1 with et−1 as defined in (E.2), we have that
H(β t−1)β t−1 + U(β t−1) = XT BZ. In fact, for each j = 1, . . . , n, it holds that

[H(β t−1)β t−1 + U(β t−1)]j

=
p∑

k=1

n∑
i=1

bixijxikβ
t−1
k +

n∑
i=1

ψ(ri; β, φ, c)w(xi )
1√
φvµi

∂µi

∂ηi
xij

−
n∑

i=1

E[ψ(ri ; β, φ, c)]w(xi )
1√
φvµi

∂µi

∂ηi
xij

=
n∑

i=1

{ p∑
k=1

xikβ
t−1
k + ψ(ri ; β, φ, c)w(xi )(1/

√
φvµi )(∂µi/∂ηi)

bi

− E[ψ(ri; β, φ, c)]w(xi )(1/
√
φvµi )(∂µi/∂ηi)

bi

}
bixij

=
n∑

i=1

{
xiβ

t−1 + ψ(ri; β, φ, c) − E[ψ(ri; β, φ, c)]
E[ψ(ri; β, φ, c)(∂/∂µi) logh(yi | xi , µi)]

∂ηi

∂µi

}
bixij

=
n∑

i=1

Zibixij = [XT BZ]j ,

where the involved quantities are evaluated at β t−1.





F

Computations for the Robust
GEE Estimator

F.1 IRWLS Algorithm for Robust GEE

The whole robust procedure consists of solving the three following sets of equations:

n∑
i=1

(Dµi ,β)
T �T

i (Vµi ,τ,α)
−1(ψi − ci ) =

n∑
i=1

�1(yi ,Xi; β,α, τ, c) = 0 (F.1)

n∑
i=1

ni∑
t=1

χ(rit ; β,α, φ, c) =
n∑

i=1

�2(ri; β,α, τ, c) = 0 (F.2)

n∑
i=1

(
GT

i Bi − K

n
ατ

)
=

n∑
i=1

�3(ri; β,α, τ, c) = 0. (F.3)

Ideally these equations should be solved simultaneously (as, for example, in
Huggins (1993)). We implement a two-stage approach iterating between the estima-
tion of the regression parameters via (F.1) and the estimation of the dispersion and
correlation parameters via (F.2) and (F.3). In fact, for fixed values of the nuisance
parameters τ and α, the estimation of the regression parameter β can be performed
via an IRWLS algorithm by regressing the adjusted dependent variable

Z = Xtotβ̂ + D∗�−1(ψtot − ctot)

on Xtot with a block-diagonal weight matrix W∗, where Xtot = (XT
1 , . . . ,XT

n )
T ,

ψtot = (ψT
1 , . . . ,ψT

n )
T , ctot = (cT1 , . . . , c

T
n )

T are the combined informations for the
entire sample. The ith block of W∗ is the ni × ni matrix

W∗
i = D∗

µi ,β
−1

�T
i (Aµi )

−1/2(Rα,i)
−1(Aµi )

−1/2�iD
∗
µi ,β

−1
,
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and D∗ is a block-diagonal matrix with blocks D∗
µi ,β

= diag(∂ηi1/∂µi1, . . . ,

∂ηini /∂µini ). We remark that Dµi ,β = D∗−1
µi ,β

Xi . The matrix Hi = Xi (XT W∗X)−1

XT
i W∗

i defines the hat matrix for subject i. One then obtains an estimate of
τ and next an estimate of α from (F.2) and (F.3), respectively. Note that (F.3)
can be solved explicitly when exchangeable correlation is assumed, yielding α̂ =
1/(τ̂K)

∑n
i=1 GT

i Bi .

F.2 Fisher Consistency Corrections

Let Yit and Yit ′ be Bernoulli distributed with probability of success equal to µit and
µit ′ , respectively, and with correlation ρtt′ . We assume that the robustness weight
wit associated with subject i at time t can be decomposed as w(xit )w(rit ; β, τ, c).
The joint distribution of (yit , yit ′) is multinomial with set of probabilities (π11, π10,

π01, π00), where π11 = ρtt′v
1/2
it v

1/2
it′ + µitµit′ , π10 = µit − π11, π01 = µis − π11

and π00 = 1 − µit − µis + π11.
The consistency correction vector ci has elements cit = E[ψit ] that takes the

form:

cit = w(r
(1)
it ; β, τ, c)(w(r

(0)
it ; β, τ, c) − w(r

(0)
it ; β, τ, c))v(µit ),

where w(r
(j)
it ; β, τ, c) = w((j − µit )/v(µit )/

√
τ ) is the weight for the t th measure

of cluster i evaluated at yit = j .
Moreover, the diagonal matrix �i = E[ψ̃i − c̃i ], with ψ̃i = ∂ψi/∂µi and c̃i =

∂ci/∂µi , has diagonal elements

�it = −w(xit )((1 − µit )w(r
(1)
it ; β, τ, c) + µitw(r

(0)
it ; β, τ, c)).



G

Computation of the CRQ

The global algorithm uses the notation and definitions introduced in Section 7.6.2. It
is taken from Portnoy (2003) or Debruyne et al. (2008) and works as follows.

• As long as no censored observations are crossed use ordinary QR as in
Koenker and Bassett (1978).

• When the ith censored observation is crossed at the τ th quantile store this
value as τ̂i = τ .

• When censored observations have been crossed for a specific τ , find the value
in β that minimizes a weighted version of (7.30):∑

i∈Kc
τ

ρ(yi − xT
i β(τ ); τ )

+
∑
i∈Kτ

[wi(τ )ρ(yi − xT
i β(τ ); τ ) + (1 − wi(τ )ρ(y

∗ − xT
i β(τ ); τ )],

(G.1)

where Kτ represents the set of crossed and censored observations at τ and Kc
τ

its complementary. The weights wi(τ ) are defined in Section 7.6.2 and y∗ is
any value sufficiently large to exceed xT

i β for all i.

To compute the regression quantile objective function (G.1) in practice, a
sequence of breakpoints τ ∗

1 , τ
∗
2 , . . . , τ

∗
L is defined so that β̂(τ ) is piecewise constant

between these breakpoints. Then, simplex pivoting techniques allow to move from
one breakpoint to another using the gradients of (G.1). Portnoy (2003) points out
that the resulting gradients are linear in τ making the whole thing tractable. The
above reference contains a detailed algorithm and additional explanations. Recently a
variant of this called the grid algorithm has been proposed by Neocleous and Portnoy
(2006). It is more stable, faster and has already been implemented in the R package

Robust Methods in Biostatistics S. Heritier, E. Cantoni, S. Copt and M.-P. Victoria-Feser
c© 2009 John Wiley & Sons, Ltd



248 COMPUTATION OF THE CRQ

provided by Portnoy. It should be preferably used for large datasets. The simplex
pivoting algorithm is still available and works well for smaller samples, that is, n up
to several thousands.
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Cp , see Mallows’
F -test, 5, 33, 34, 40, 59–62, 83, 84, 88,

94, 106–109
RCp , see Mallows’
χ2-distribution, see distribution
z-statistic, 35, 37, 40, 94, 105, 186, 195,

197, 199, 205–207, 216, 223
z-test, see z-statistic

adaptive
procedure, 201, 202
weights, 202–204, 206, 209

AIC, see Akaike information criterion
Akaike information criterion, 71, 162

classical (AIC), 46, 72–76, 159
generalized (GAIC), 159
robust (RAIC), 73–77, 80, 81, 159,

231, 233
Analysis of variance, see ANOVA
ANOVA, 5, 46–48, 83, 88, 90, 94, 101,

105, 108, 125
ARE, see estimator
asymptotic rejection probability, 21, 31

bias, 14, 15, 20, 28, 48, 83, 93, 139, 160,
162, 192, 215

asymptotic, 16–18, 21, 139, 196
correction, 28, 139, 162
maximal, 19–21
residual, 7, 98, 209

binary regression, see exponential family
- Bernouilli

BLUE, see estimator
bootstrap, 2, 13, 14, 74, 110, 218,

220–224
breakdown point, 14, 16, 20, 22, 23, 26,

27, 30–32, 37, 38, 44, 53, 54,
79, 84, 98–100, 102, 110, 175,
221, 229

level, 38
power, 38

coefficient of determination, 66–69
confidence interval, 13, 14, 33, 96, 130,

140–142, 144, 152, 154, 155,
168, 178, 197, 207–210,
220–224

coverage, 207–209
consistency, 22, 23, 27, 28, 31, 168, 229

correction, 24, 25, 27, 28, 30, 51,
68, 79, 98, 99, 136–139, 174,
196, 221, 239, 246

Fisher, see consistency
contrasts, 47, 84–86, 88, 93, 94, 104,

105, 107
correlation, 8–10, 67, 69, 83, 95, 142,

146, 161, 163–170, 174, 176,
182, 245, 246

m-dependence, 167, 176
autoregressive, 167, 175, 176, 182
exchangeable, 165, 170, 171, 175,

177, 181, 182, 186, 246
serial, 134
unstructured, 166
working, 163–165, 168, 173

covariance (matrix), 10, 30–32, 44, 51,
87, 88, 90, 91, 93–95, 98–100,
105, 106, 108, 115, 163, 164,
175, 176, 235

Cox proportional hazard model, see
hazard

datasets
breastfeeding, 146, 150
cardiovascular risk factors, 9–12,

78–82
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diabetes, 58–62, 65, 69–72, 75–77,
230

doctor visits, 151
gromerular filtration rate (GFR), 49,

50, 54–56, 58, 62–69
GUIDE data, 169–173, 177, 180,

181
hospital costs, 125, 132, 140, 144,

160
LEI data, 182, 184, 185
metallic oxide, 116–119
myeloma, 193, 197–199, 205–207
orthodontic, 90, 92, 95, 96, 118,

121, 122
semantic priming, 89, 99, 107–109,

111, 113, 114
skin resistance, 85, 86, 88, 96, 97,

99, 103–105, 107, 110–112,
115, 116

stillbirth in piglets, 186–188
Veteran’s Administration lung

cancer, 193, 209–212,
222–224

deviance, 130–132, 142, 143
quasi-, 126, 132, 137, 145, 162,

174, 179, 183, 185
residuals, see residuals
test, 61, 131–133, 142, 143, 145,

155
diagnostic, 7–9, 48, 52, 133–136, 138,

169, 178, 191, 196–198, 205,
206

distribution
binomial, see exponential family
Chi-squared, 31, 40, 42, 43, 52, 60,

61, 94–96, 103, 110, 111,
131–133, 144, 175, 177, 196,
206

exponential, 127, 201, 204, 205,
207, 211, 212, 216

Gamma, see exponential family
gross error, 5, 17, 18, 44
point mass, see distribution - gross

error
Poisson, see exponential family

efficiency, 13, 18, 22, 23, 25, 26, 28–30,
51, 53, 54, 57, 100, 102, 137,

138, 169, 201, 202, 204, 205,
229, 231, 232

loss, 28, 29, 46, 58, 141, 169, 204
empirical

IF, 17, 196, 197, 203, 205
breakdown point, 20
distribution, 17, 43, 101, 201, 202

estimator
GM-, 52–54
M-, 15, 16, 23–27, 29–31, 39,

41–44, 48, 52, 54, 61, 74, 97,
98, 100, 136, 140, 143, 144,
160, 175, 176, 195, 196, 205

MM-, 54, 84, 100–102, 104–107,
229

S-, 30–32, 84, 98–100, 105, 106,
138, 229, 230, 235

adaptive robust, 202–216
best linear unbiased, 45
CBS–MM, 103, 105, 107–109, 111,

112, 117, 119–121
high breakdown, 26, 27, 47, 53, 84,

100, 138, 175, 230
Huber’s, 50, 51, 53, 101, 107, 172,

177, 181, 182
least squares, 45–52, 54–56, 59, 60,

62–66, 68–74, 76, 118, 119,
229, 230

Mallows’, 52, 136, 147, 152, 156,
157, 172, 177, 189

maximum likelihood, 5, 13, 16,
22–25, 27–29, 31, 38–41,
45–48, 51, 55, 56, 83, 84,
91–94, 97, 98, 101, 102, 107,
110, 113, 123, 126, 130–134,
152, 182

partial likelihood, 13, 191–208,
210, 213–215, 222

restricted (or residual) maximum
likelihood estimator (REML),
83, 84, 91, 93, 94, 96–98, 103,
105, 107–112, 117, 120

Tukey’s biweight, 27–29, 55, 60,
61, 63, 66, 76, 77, 79, 81, 99,
102, 106, 107, 231

weighted maximum likelihood,
24–29, 50, 53

weighted partial likelihood, 192,
200
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excess of zeros, 5, 152, 158
exchangeable, 166
exponential family, 125, 127, 130, 158,

161, 163, 164, 237
Bernouilli, 125, 126, 134, 136, 146,

160, 173, 175, 181, 186–188
binary, see Bernouilli
binomial, 5, 127–131, 138–140,

151, 158, 164, 237, 239, 240
Gamma, 127, 129, 131–135, 139,

140, 150, 157, 217, 238–241
Poisson, 43, 127–131, 138–140,

150, 152, 155, 157, 158, 164,
175, 237, 239–241

exponential weight, 204–208, 210–212,
216

fitted value, 112, 115, 116, 120, 122, 130,
131, 134, 135, 149, 160

generalized linear model, 15, 39, 53, 61,
125, 126, 128–130, 132–134,
136–138, 142, 151, 152,
157–165, 171, 172, 174,
179–181, 189

GES, see gross error sensitivity
GLM, see generalized linear model
gross error model / data generating

process, see distribution -
gross error

gross error sensitivity, 19–21, 36, 54

hat matrix, 52, 133, 174, 246
hazard, 13, 191, 193, 194, 196, 200, 201,

203, 204, 207, 210, 212, 215,
216, 222–225

baseline, 193, 194
cumulative, 194, 201, 202, 213,

215, 221, 224
function, 192, 193
proportional, 192
proportional - Cox model, 9, 12,

191, 193, 194, 204, 214, 221,
224

high breakdown estimator, see estimator
Huber’s

ψ function, 25, 51
ρ function, 25
estimator, see estimator

proposal II, 51, 53, 98, 139, 174,
182, 186

weight, 25, 26, 50, 53, 101, 174,
175, 181, 183, 185

hurdle model, 5, 158, 159

IF, see influence function
indirect inference, 27, 139
influence curve, see sensitivity curve
influence function, 15–25, 36, 37, 43, 44,

48, 84, 97, 114, 140, 176, 180,
192, 193, 196–198, 203

empirical, see empirical
IRWLS, see iterative reweighted least

squares
iterative reweighted least squares, 51, 53,

54, 79, 126, 129, 137, 165

Kaplan–Meier, 191, 213, 214, 219, 220

leverage, 52, 100, 101, 133, 135, 136,
138, 141, 147, 174, 177, 221,
224

likelihood
quasi-, 123, 126, 130, 132, 136,

140, 143, 158, 159, 162, 165,
179, 180, 189

likelihood ratio test
classical (S2, LRT), 38, 40, 42, 44,

46, 59, 60, 70, 83, 94–96, 106,
129–131, 142, 195

robust (S2
ρ , LRTρ ), 42, 61, 62, 84,

100, 106–110, 206, 231, 233
linear model, see regression model
link function, 128, 131, 132, 138, 143,

145, 151, 152, 155, 157,
163–165, 169, 186, 193

logistic regression, see exponential
family - Bernouilli

logit, see link function
LRT, see likelihood ratio test
LS, see estimator
LW variance, see variance - sandwich

Mallows’
Cp, 46, 73, 74, 159, 189
RCp , 231, 233

Mallows’ estimator, see estimator
marginal longitudinal data model, 15, 53,

162, 164
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masking effect, 8, 48, 134, 172, 206
missing covariate, 6, 9, 200
mixed linear model, 6, 9, 13–15, 27, 30,

32, 39, 48, 83, 86, 87, 94, 95,
97–100, 102, 110, 112, 123,
161, 162, 165, 204

MLDA, see marginal longitudinal data
model

MLE, see estimator
MLM, see mixed linear model
model misspecification, 2, 4–6, 13, 14,

16, 17, 19–21, 35, 37, 136,
193, 214

distributional, 6, 12, 215
structural, 6, 9, 199, 214–216

over dispersion, 130, 164, 176

PLE, see estimator
point mass contamination, see

distribution - point mass
predicted value, 64, 69, 73, 112, 115
prediction, 1, 54, 69, 72, 84, 112–114,

123, 160, 213
proportional hazard, see hazard

R-squared, see coefficient of
determination

RAIC, see Akaike information criterion
Rao test, see score or Rao test
regression

model, 4, 8–10, 14, 15, 24–27, 30,
39, 41–48, 53, 55, 56, 58–62,
67, 69–71, 73, 79, 80, 83, 100,
112, 115, 118, 125, 137–139,
143, 159, 192, 204, 209, 229,
230

non-parametric, 14
quantiles, 192, 212, 217–220
quantiles - censored, 192, 193, 217,

219, 222, 224
rejection point, 21, 26
REML, see etimatori
residual

analysis, 8, 48, 62–68, 70, 75, 80,
82, 112, 113, 133, 134, 145,
172

deviance, 133, 135

Pearson, 122, 133, 135, 136, 160,
166, 172–174

risk set, 194, 196, 197, 211, 212
robustness

of efficiency, 34, 35, 38, 44, 201
of validity, 33, 34, 38, 43, 44, 207

score or Rao test
classical (R2), 39, 142
robust (R2

� ), 41, 42, 106
sensitivity curve, 16–18, 23
survival curve, 213, 214

ties, 195, 199, 204, 205, 210, 213
Tukey’s bisquare, see Tukey’s biweight
Tukey’s biweight

ψ function, 26, 27, 53
ρ function, 26, 30, 31, 99, 101, 102,

107, 114
estimator, see estimator
weights, 68, 101, 107

tuning constant / parameter, 26, 27, 29,
30, 53, 99, 100, 102, 145, 186,
204

variable selection, 46, 59, 70, 73, 74, 79,
80, 126, 142, 144, 147, 148,
150, 154, 162, 179, 182

variance
asymptotic, 18, 29, 36, 39–42, 57,

93, 100, 101, 105, 137, 140,
158, 168, 195–198, 203, 206,
216, 220, 229, 240

sandwich, 100, 102, 192, 193,
198–200, 202, 203, 207, 208,
216

Wald test, 6
classical (W2), 38–41, 46, 61, 62,

74, 83, 94–96, 106, 129, 130,
142, 144, 195, 200, 206, 207,
209

robust (W2
� ), 16, 41–44, 106, 107,

110, 206–208, 216
weighted partial likelihood, see estimator
WMLE, see estimator

zero-inflated model, 5, 158, 162
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