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FOREWORD

As the title of the book indicates, T have attempted to present those
biostatistical methods which are used in the analysis of epidemiological studies. For
many reasons, this was a hazardous undertaking. One reason is that it is still a
developing field, The book naturally reflects my own appraisal of what is relevant
in the developmenis hitherto. 1 am aware that others might make different
appraisals and that I myself may in some cases have misunderstood the biostatisti-
cal context. I will be very grateful for your views on these issues—both large and
small.

Another of the hazards | faced was that it was my intenticn t0 write a book
which can be read without any prior knowledge of statistics, even while some of
the methods described here can be considered relatively advanced, (for example
those for calculating exact confidence intervals). A consequence of this is that the
book has a fairly narmow focus. It only takes up those aspects of the underlying
probability and statistical theories which are necessary for epidemiological
purposes, while it goes into those specific methods in some depth.

In spitc of my intention to write a work which does not demand prior
knowledge, there is no doubt that a basic understanding of statistics and epidemiol-
ogy makes a reading of the book much easier.

This book can be seen as the third part of a trilogy, the two previous parts of
which are an introduction to epidemiology (Ahlbom & Norell: Introduction to
Modern Epidemiology, Epidemiology Resources, Inc., 1990) and 2 book about the
design of epidemiological studies (Norell: A Short Course in Epidemiology, Raven
Press, 1991).

I would first and foremost like to thank Staffan Norell for cur longstanding
collaboration and for the many constructive and stimulating discussions which were
of great importance in the shaping of this book. I would also like to extend a
special thanks to Lars Alfredsson for his many valuable opinions about the various
drafts of the mapuscript and for an appendix with exercises which significantly
increases the value of the book. Arne Bjurman, Niklas Hammar, Gbran Pershagen,
Gunnar Persson, Gunnar Steineck, Ake Svensson and Magnus Wickman have all
contributed valuable views and comments on the various stages of the manuscript,
for which they are owed many thanks, Lastly, I would like to thank Jennifer
Wheeler who, with admirable courage, threw herself and her word processor inio
the world of the mathematical formula.

In addition, T would like to thank Judith Black for translating the Swedish
version of this book into English. A challenging task for a literature scientist.

Anders Ahlbom

THE AUTHOR

Anders Ahlbom is currently Professor and Head of the Department of
Epidemiology at the Institute of Environmental Medicine, Karolinska Institute, He
has previously published the Introduction to Modern Epidemiology now available
in six languages. Prefessor Ahlbom’s experience is from teaching epidemiclogy
and biostatistics in Europe and the United States.
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Chapter 1
INTRODUCTION

“‘Vital statistics and their analysis are essential features of public health work,
to define its problems, to deiermine, as far as possible, cause and effect, and
to measure the success or failure of the steps taken to deal with sich problems.
They are fundamental 1o the study of epidemiology.”

Hill AB: Principles of Medical Statistics. The Lancet Limited, 1967 (First
edition 1937).

Epidemiology is the study of the occutrence of disease. The occurrence of
disease is studied in relation to factors relating to the individual, his environ-
ment and his lifestyle with the aim of establishing the causes of disease. The
interpretation of an epidemiological study must always take the validity and the
precision of the study into consideration. How one assesses the validity of an
epidemiological study is discussed in books on the methodology of epidemiol-
ogy (see the reference section at the end of this book), while the issue of
precision is addressed in books on biostatistics. Biostatistics also includes
methods which enable one (0 take systematic errors, such as the influence of
other factors, into account when one is analyzing data, as well as methods for
studying the effects of the interaction of risk factors,

The field of biostatistics covers the statistical methods used in biological
and medical research. This is a very wide ficld and strictly speaking does not
exclude any area of statistical methodology. In this book we limit ourselves to
methods used in epidemiology. Thus the methods are discussed in an
epidemiological context and the examples used are from the field of epidemiol-
ogy. This is not to say that these methods do not have applications in other
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fields, such as in swrvival analysis, evaluation of clinical trials or studies of
health care use.

The aims of this book are threefold. The first is to provide a collection of
methods which can be used to analyze data in most epidemiologic studies. In
other words, one should be able to use the book as a statistics handbook or
maybe *‘cookbook’” for epidemiology. The second aim is to give an under-
standing of the theoretical background to the methods described here. With this
we hope 10 demonstrate what the methods can actually achieve and the
assumptions upon which they are based. For this reason, the book contains a
number of derivations of formulae or, where this would carry too far, some
principles as to how derivations could be carmried out. The third aim of the
book is to discuss some general principles which apply (o the analysis of
epidemioclogical data and how the precision of an epidemiologic study can best
be described. One example of this is the discussion of the role of significance
testing,

The book consists of three parts. The first is preparatory and features a
summary of those aspects of the theory of probability which are of importance
for the statistical theory which is then taken up. This part of the book also
contains a discussion about statistical inference in general and a discussion
about statistical inference in epidemiological research in particular, The second
part of the book describes the most important methods used for analyzing
epidemiological data. It begins with an analysis of descriptive data and goes
on to discuss the analysis of effect measures, i.e. measures used to compare
exposed and unexposed. This is done firstly without taking any background
factors into consideration, then when doing so—in other words crude and
stratified analysis. The final part of this section takes up more specific areas,
Multivariate models, dose-response analysis, analysis of the interaction between
causes of disease, meta-analysis and computer programs are all discussed here.

NOTE: In the examples featured in the text and in the exercises in Appendix
2, the results are generally given with 3-digit accuracy. When relevant, mter-
mediate results are given with four digits accuracy but the calculations have
been carried out on the computer which always used maximum accuracy.



Chapter 2
PROBABILITY THEORY

““When they saw a random relationship between what goes into a system and
what comes out, they assumed that they would have to build randomness into
any realistic theory. The modern study of chaos began with the creeping
realization in the 1960s that quite simple mathematical equations could model
systems every bit as violent as a waterfall...In weather, for exampie, this
transiates into what is only half-jokingly known as the Butterfly Effect — the
notion that a butterfly stirring the air today in Peking can transform storm
systems next month in New York.”’

Gleick J: Chaos. Making a New Science. Viking Penguin, Inc., 1987.

One of the main objectives of the statistical analysis of a collected material
is to determine the importance of the study’s random errors. What can we
conclude about the *“true’’ value from an obtained study result? Qur conciu-
sions are based on what is known about the probability of different results
given different assumptions abeut the “*true’" values. Probability theory forms
the basis for these calculations.

In this chapter we will go through some of the basic concepts used in
probability theory which are of particular importance for the applications
discussed in this book. For a more comprehensive presentation of these
concepts, we recommend a textbook on this subject, such as one of those
referred to in the reading list at the end of the book.
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2.1 SOME BASIC PRINCIPLES

The probability of an event, E, for example that a randomly chosen person
has diabetes, is written P(E) and is a number between 0 and 1, where P(E) =0
when E is impossible and 1 when E is sure to occur, If £, and E, are two
events which cannot happen at the same time, then the probability of at least
one of them occurring is P(E,) + P(E,).

The complementary evenl to E is denoted as E' and is the alternative to E.
In other words, it is what happens when E does not happen. If E is defined as
a randomly chosen person having diabetes, then E* means that the person in
question does not have diabetes, Since either E or E” always happens:

P(E) + P(E*) = 1

Two events, E, and E,, occurring simultaneously is described as E,E, and the
probability of this is thus P(E,E,). When

P(EE,) = P(E)P(E,)

E, and E, are said to be independent,

EXAMPLE:

Let the probability of a person randomly chosen from the population
having diabetes be 0.02. The probability of two persons both having
diabetes will then be 0.0004 provided the condition that they are chosen
randomly and independently of each other,

The occurrence of at least one of two events, £, and E,, is denoted as
E,UE, and the probability of this is therefore P(E,UE,). This probability can
be calculated as:

P(E,UE) = P(E,)) + P(E) - P(E,E,)

where the last term compensates for the ‘‘double counting’® which takes place
when both £, and E, occur.

PROBABILITY THECRY &

EXAMPLE;

The probability of at least one of the two persons in the previous example
having diabetes is 0.02 + 0.02 — 0.0004 = 0.0396.

On those occasions when E, and E, are disjunctive, i.e., when they cannot
occur simultaneously and consequently P(E,E,) = 0, the formula is stmplified
to

P(E,UE,) = P(E)) + P(E,)

EXAMPLE:

Define E| as (exact) one of two persons having diabetes and E, as both
having the disease. E, and E, are disjunctive and P(E,UE,) is calculated
according to the above formula: P(E)) = 2 x 0.02 x 0.98 = 0.0392, that is,
twice the probability that the first person has diabetes but not the second.
One multiplies by two because it could also be the second person who had
diabetes while the first did not. P(E;) = 0.02 x 0.02 = 0.0004 as was
shown earlier. The probability of at least one of the two persons having
diabetes is therefore 0,.0004 + 0.0392 = 0.0396. Since the altemative to at
least one of the two persons having diabetes is that neither of them has the
disease in question, the probability can also be calculated as:

1 - P(no one has diabetes) = 1- 0,98 x 0.98 = 0.0396

Conditional probability means the probability of an event occurring
provided that another event has occurred, i.e., the probability of an event under
certain conditions. The probability of E,, on the condition that E, has occurred,
is written as P(E, | E,) and is calculated as:

P(E||E,) = P(E,E,)/P(E,)

The denominator can be understood as the normation required since the
possible outcomes have been limited by the condition.
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EXAMPLE:

The probability of both of the individuals in the example having diabetes,
i at least one of them has the disease, is 0.0004/0.0396 = 0.0101.

In the case of independent occurrences, the conditional probability can be
written as:

P(E,|E)) + P(E))P(E,YP(E,)

which simplifies to P(E,| E,) = P(E,): That is, for independent events the
conditional probability is the same as the nominal probability,

2.2 STOCHASTIC VARIABLES

2.2.1 What Is a Stochastic Variable?

A variable whose value is determined by the outcome of a random event is
called a stochastic variable.

EXAMPLE:

If an individual is randomly chosen from a population and a variable X is
defined as having the value 1 if the individual has diabetes and 0 otherwise,
then X is a stochastic variable.

NOTE: In this chapter, capitals are used to denote stochastic variables and lower
case letters for the values which the variable assumes. To comply with accepted
epidemiological notations, this distinction is made in a slightly different way in
following chapters where we deal explicitly with epidemiological applications.

A stochastic variable which can only assume a finitc number of values within
a limited interval is said to be discrete. Variable X in the above example can only
assume the values 0 and 1 and is consequently an example of a discrete stochastic
variable.

A discrete stochastic variable is specified by its probability function. This is a
function which, for each value of the variable, gives the probability of that value
being assumed. The probability function can either be given as a table of possible

PROBABILITY THEORY 7
values and corresponding probabilities or as a mathematical formula which gives
the comresponding probability for each value of the variable.

EXAMPLE;
Two individvals are randomly and independently chosen from a population

where 0.02 have diabetes. The stochastic variable X is defined as the number
of persons with diabetes. The probability function, p(x), will be:

X b(x)

0 0.9604

1 0.0392

2 0.0004
Total 1.0000

The probabilities are derived from previous calculations. Note that the sum
of all probabilities is 1.

A continuous variable can, within a limited interval, take an infinite
mumber of values and the probability for each individual outcome is 0.
Therefare, in the case of continuous variables one talks not of probability
function but rather of frequency function.

NoOTE: This illustrates an apparent paradox, namely that the probability of an
event being 0 does not mean that the event is impossible,

The probability of a continuous stochastic variable assuming a value within
a certain interval is calculated as the integral of the frequency function over the
interval.

EXAMPLE:

If a continuous stochastic variable is defined in such a way that it can only
assume values between 0 and 1 and that the probability of it assuming a
value within an interval (between 0 and 1) is direcily proportional to the
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length of the interval, then the variable is uniformly distributed with the
frequency function fix):

x Ax)
D<cx=<1l 1
otherwise 0

Note that

1

_!f(x)dx=_!1dx=1

For discrete as well as for continucus stochastic variables, the distribution
function, F(x), is defined as:

Fx) =PX<x)

For a discrete stochastic variable, F(x) is calculated as the sum of the
probability function's values for all values that are less than or equal to x.
In the same way, F(x) for a continuous stochastic variable is calculated as
the integral of the frequency function over all values less than or equat to x,

EXAMPLE;

The distribution function of the discrete variable whose probability
function was described above can be calculated as follows:

x px) F(x)
0 0.9604 0.9604
1 0.0392 (.9996

2 0.0004 1.0000

PROBABILITY THEORY 9
EXAMPLE: "

The distribution function for the continuous variable in the example will
be:

x fx) F(x)
xs0 0 0
D<x=1 1 x
l<x 0 1

When a stochastic variable is specified with the help of the probapility-,
frequency, or distribution function, it is said that one is giving the variable’s
distribution or distribution form.

2.2.2 Mean and Variance

The miean and variance for stochastic variables are defined analogously
with how they are defined in descriptive statistics:

The mean of the stochastic variable X, E(X), is defined as:

-

E(X) = Xpbor or BOO = [fdx

depending on whether the variable is discrete or continuous,

EXAMPLE:

For the discrete variable in the above example one obtains:

EQ0) = 0.9604 % 0 + 0.0392 x 1 + 0.0004 x 2 = 0.0400
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EXAMPLE:

Correspondingly, the mean in the example with the continuous variable
will be;

1
EX) = |xdx = 0.500
)

Variance, var(X), is defined as the mean of the squared differences
between the value of the variable and mean of the variable, i.e., for a
discrete variable as:

var(X) = 3 plx - EQOF

and for a continucus variable as:

var®) = [fx)lx - EQOF dx

The variance can also be written as:

var(X) = E(X?) - [EQOF

which in connection with certain calculations and derivations is an
advantage.

EXAMPLE:

The variance for the discrete variable in the above example will be:
var(X) = 0.9604 x (0 - 0.0400)* + 0.0392 x (1 - 0.0400)* +
+0.0004 x (2 - 0.0400) = 0.0392

PROBABILITY THEORY 11
EXAMPLE;

The example with the continuous variable gives:

1
var(X) = f(x ~ 0.500)* dx = 0.0833
[1]

2.2.3 Transformations

Later in the book we will form new stochastic variables from one or
several previously defined variables by so-called transformations. In the case
of certain transformations one can calculate the mean and variance of the
newly-formed variables from the corresponding parameters for the original
variables.

One very commonly used transformation is the so-called linear combina-
tion. If a stochastic variable X is defined as:

X=a +aX +. +aX

where X, ..., X, are siochastic variables and a,, a,, ..., g, are constants, then X
is said to be a linear combination of the stochastic variables X, ..., X,. It is
easy to show that:

EX) =a, +a,EX) + .. + a,EX)
Provided that X, ..., X are independent, it is also easy to show that:

var(Xy = af var(X)) + ... + af var(X,)

NOTE: Independence between stochastic variables is defined analogously with
the independence of events in a random trial. However, for a more exact
definition we refer the reader to a textbook on probability theory.

EXAMPLE:

Let us look again at the two randomly chosen individuals from the
population with 0.02 diabetics. Define X, as 1 if the first individual has
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diabetes and as 0 otherwise, and define X, as 1 if the second individual
has diabetes and as O otherwise. Now define a new variable as:

X=X +X

i.e., as the number of diabetics; this is a linear combination where both
the a-constants in front of the original variables are 1.

Both the mean and the variance for this variable were calculated earlier
in this chapter from the probability function, We shall now see that the
same result is obtained if the above formulae are used. The mean for the
two variables is obtained directly from the definition of the mean:

EX) = EX,) = 00200 x 1 + 09800 x 0 = 0.0200
The mean of the new variable will be, according to the formula for the

mean of linear combinations:

EX) =1 x 00200 + 1 x 0.0200 = 0.0400

This agrees with what was obtained when the calculations were based on
the probability function.

X, and X, are independent stochastic variables, or at least they are such
if the population is so large that the proportion of diabetics is not affected
by one diabetic being removed from the population. Var(X) can therefore
be calculated by using the formula for linear combinations given

previously if var(X,} and van(X,) are known. These are calculated directly
from the definition as:

var(X,) = var(X,) = 0.02 x {1 - 0.02)* + 098 x (0 - 0.02)* =
0.02 x 0.98 = (0.0196

var(X) is therefore:

0.0196 + 0.0196 = 0.0392

which also agrees with the previous calculations.

PROBABILITY THEQRY 13
EXAMPLE: -

For another example of this type of transformation, let ¥ = X/2, i.e., the
proportion of diabetics among the two chosen individuals. ¥ is formed
here from a single variable, X, and the a-constant in front of this is 1/2.
The mean and the variance are thus respectively:

E) = 172 x E(X) = 1/2 x 0.0400 = 0.0200

and

var(Y) = (127 x var(X) = (1/2) x 0.0392 = 0.0098

We will also sometimes come across transformations which are not
linear. The most important of these is the logarithm transformation. In a
logarithm transformation each value of a variable is substituted by its
logarithm, By logarithm here we mean the natural logarithm; the one which
has the mathematical constant ¢ = 2.718 as base. This logarithm is denoted
as In. Thus, in a logarithm transformation the variable X is transformed into
a variable ¥ so that ¥ = InX; the logarithm is taken for each value that X can
assume to give the corresponding value of the variable Y. (Many calculators
have a logarithm function with which this can easily be performed.) If x = 2
then Inx = In2 = 0.6931. One can reobtain the original value as follows by
taking the so-called antilogarithm or by exponentiating:

80.6931 - 2718069’31 =2

251 is often written as exp(0.6931) for typographical reasons. (Calculators
which have a logarithm function usually also have an exponential function
which can be used here.)

EXAMPLE:

Let a variable, X, have the values 1, 2 and 3 each with the probability
1/3. If this variable iz transformed to the variable ¥ using ¥ = InX,
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variable ¥ will take the values Inl = 0, In2 = 0.6931 and In3 = 1,099 each
with the probability 1/3;

g y P

1 0 173
2 0.6931 1/3
3 1.099 1/3

In the case of non-linear transformations there are no simple, general ways
of transforming the original variance so that it is valid for the new variable. It
is however possible to obtain good approximations.

One method is based on writing the transformed variable as a polynom
with terms in rising potency according to a mathematical method which is
called the Taylor expansion and on the assumption that terms of higher order
can be left out (Armitage, 1971; page 97). If ¥ = AX) where X is a stochastic
variable and f a function which transforms each X-value to a Y-value, then:

var(Y) = [%]’ var(x)

where dY/dX is calculated for £(X) or for an estimate thereof.

We will often use this in connection with the logarithm transformation. If
Y = InX then:

S

1
& X

The variance for Y is consequently:

- 1 - var(X)
rar®) [Em]; " ® = Eor

In other words, the variance for a variable obtained through the logarithm
transformation is obtained by dividing the original variance by the square of
the mean.

PROBABILITY THEORY 15
EXAMPLE:

If we assume that the mean and the variance of variable X are both 10,
then for the variable Y = InX:

var@) _ 10 _ 1

var(Y) =

"TE®OF 17 10

2.3 SOME DISTRIBUTIONS

The previous section of this chapter looked at the distributions for a
number of stochastic variables. It is clear that there is no limit to the number
of this type of distribution. However, some have proven to be more useful than
others, and these have been studied closely by statisticians and mathematicians;
they have often also got names. For the applications described in this book
there are four types of distribution which are particularly important; we will
now look at each of these.

2.3.1 The Normal Distribution

The normal disiribution is a continuous stochastic variable. It is defined by
the frequency fonction;

fixy =

1 cxp{_ (x - E(X))z]
"'_21l:var(X) 2var(X)

The normal distribution is symmetrical around its mean and unlimited both
downwards and upwards. The frequency function is specified by the (wo
parameiers E(X) and var(X), i.e., by the mean and the variance.

If a normally distributed variable is subjected to a linear transformation, the
new variable is also normally distributed but the mean and the variance are
influenced by the transformation in the way described in the previous section.
If X is a normally distributed variable and Z is defined as:

2 = X - By
varX)
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then Z is consequently also normally distributed. The mean and the variance
of Z are then E(Z) = ( and vgr(Z) = 1, This normal distribution is called the
standardized normal distribution. The standardized normal distribution will be
shown to be very important, and for the sake of simplicity Z will be reserved
for variables which follow this distribution.

To indicate that a stochastic variable is normally distributed one usually
writes:

X ~ NEX), var(X)]

where what is inside the brackets are the parameters which specify how the

specific normal distribution looks. The fact that Z follows the standardized
norinal distribution is consequently wriiten as:

Z~N@O 1)

Even if the normal distribution has attractive mathematical characteristics
it cannot be integrated without using special tricks, and calculating the
probability of an outcome within a specific interval is complicated. However,
there are comprehensive tables for the standardized normal distribution and
there are also programs for calculators and personal computer’s which can
calculate the desired probabilities. If the specific normal distribution is not

standardized it must be standardized before the tables or programs can be used.
(See Figure 2.1},

EXAMPLE;

A table of the standardized normal distribution shows, for example, that
P(Z > 1.645) = 0.050. In the same way, P(X > 5.290) = 0.050 if X ~ N(2,
4). To sce this the following transformation is performed:

z = (5290 - N4 = 1,645

If one wants to establish the value of x when P(X > x) = 0.025, one uses
a table or calculator to arrive at P(Z > 1.960) = 0.025.

It thus follows that:

X =2+ 1960 x y& = 5920
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The normal distribution is probably the mest frequently used of all
distributions. This is because of a combination of two conditions. First, the
normal distribution, in spite of the inaccessible form of the frequency function,
has attractive mathematical properties which has meant that a very great
number of statistical methods have been developed for applying to normally
distributed variables or variables derived from the normal distribution, Second,
many variables in application sitnations are approximately normally distributed.
This is not primarily because biological and other variables per se tend to be
normatly distributed but rather because of the so-called Central Limit Theorem.
This is a theorem which, in simple terms, says ‘‘If observations from
sufficiently large materials with independent observations are added together,
the sum is approximately normally distributed, regardiess of the distributions
from which the observations originate.”” This means, for example, that the
mean of a random sample or an incidence rate can often be treated as an
observation of an approximately normally distributed variable.

In the case of the applications we deal with in this book, the variables we
are interested in are usually the number of cases of disease or some function
of this. The probability functions for (hese variables are, however, infeasible
to calculate with large materials, and in such cases the normal distribution can
often be used instead as an approximation. This approximation is sometimes
considerably improved if the original variable is first transformed so that it
becomes less asymmetric. Logarithm transformation is frequently used for this
purpose, but other transformations are also used.

2.3.2 The Binomial Distribution

Let X be a stochastic variable which assumes the value 1 with probability
p and the value O with probability 1 — p. Such a variable is said to be
dichotomous. Dichotomous variables are used to describe random events which
either *‘succeed"” or “*fail.”* Dichotomous variables are used, for example, to
describe disease versus no disease, Earlier in this chapter we had an example
of a dichotomous variable which was defined as 1 if an individual had diabetes
and 0 otherwise.

The mean and variance for a dichotomous variable is calculated directly
from the definitions:

EXy=px1+(1-p)x0=p

and

var(Xy = p(1 - p}* + (1 - pX0 - p)* = p(1 - p)
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F [gure 2.1 The frequency function for a normally distributed variable X
with mean value £(X} and variance var(X). Some probabilities are indicated.
The figure illustrates the relationship between an original and a standard-
ized, normally distributed variable. The standardized variable has been
achieved by the transformation:

7z = X - EX}
Yvar(X)

If X, ., X, are n independent stochastic variables which are all distributed as
above, then:
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is binomially distributed. The distribution varies depending on the prob-
ability, p, and the number of terms in the sum, n. Thus the binomial
distribution is: specified by the two parameters » and p. From here on, a
variable X which is binomially distributed with parameters » and p will be
written X ~ bin(n, p).

The binomial distribution is used to describe the number of *‘successful
irials” in a series of trials carried out independently and under identical
conditions, and a binomially distributed variable can assume the values 0,
1, ..., n. The binomial distribution is used to describe, for example, how
many individuals in a population have fallen ill with a disease.

EXAMPLE:

In the earlier example, where two individuals were randomly chosen
from a population, the number with diabetes can be seen as a binomially
distributed variable with the parameters n = 2 and p = 0.02.

When the outcomes of # independent dichotomous variables, all with the
parameter p, are observed, the probability that the first x observations should
equal 1 and the other remaining (# — x) observations equal 0 is p"(1 - p)* =¥,
This is also the probability for every other outcome with x 1:s and (n — x) O:s.
The probability for x 1:s is therefore p(1 — p)*~* multiplied by the number
of possible outcomes with x 1:s. This number is (pronounced “‘n over x’’):
(n) _ n! _ nin - 1¥n - 2}..1

i -x xx - D.ln -xHn -x - 1)1

X

For a full explanation of this we would refer the reader to a text book in
probability theory, but a! = n(n = 1} ... 1 is the number of ways in which the
n different observations can be ordered, while x! and (» - x)! is the number of
ways in which the L:s and the 0:s respectively, can be ordered. The probability
function of the binomial distribution is therefore:

p(x) =( )p” (1 -pyn~=2

]
x
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With the help of a little algebra it can be shown that p(x) fulfills the
condition:

Y =1

x=10

(See Figure 2.2,)

EXAMPLE:

If X is the number of diabetics in the earlier example, where two
individuals are chosen randomly and independently, then X ~ bin(2, 0.02).
Although we have already calcuiated the various values of the probability

function earlier, we repeat this here to illustrate how the probability
function of the binomial distribution is used:

p0) = (;)0.020(1 ~0.02)%°9 =1 x | x 098 = 0.9604

p(l) = (f)0.02‘(l = 0.02)% Y =2 x 0.02 x 0.98 = 0.0392

P2 = (3)0.022(1 -002)°°2 =1 x 0.022 x 1 = 0.0004

Since the binomial distribution is obtained as the sum of a number of
dichotomous variables, the formulae for the mean and variance of the

binomial distribution are obtained by the rules applying to linear combina-
tions:

EX) = np and var(X) = np(1 - p)
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X ~ bin {5, 0.1) X tan (5, 0.5

Figure 2.2  The probability function for three binorr]ia1|y distrit_:uted
variables with 7 = 5 and p = 0.01, 0.1 and 0.5 respectively. The figure
ilustrates how the asymmetry is altered when p changes.

EXAMPLE:

In the above example,
EX) =2 x 0.002 = 0.04
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and

var(X) =2 0.02 x (1 - 0.02} = 0.0302

The formula for the probability function of the binomial distribution is
difficult to use in the case of large materials, i.e., with large n. On the other
hand, the normal distribution can be used for approximation and the approxi-
mation improves as the size of the material, that is n, increases. As was
demonstrated earlier, the normal distribution is a symmeitrical distribution,
while the binomial distribution is only symmetrical when p = 0.5. The
approximation thus becomes better the nearer p is to 0.5. In epidemiological
applications, where p corresponds to a cumulative incidence or a prevalence,
p is often very small, and considerable material is then needed for the
approximation of the normal distribution. In such situations, however, one can
use an aliernative method, the Poisson distribution which will be described
later.

The normal approximation is obtained by calculating the mean and the
variance of the binomial distribution, which are then used as parameters in the
normal distribution.

EXAMPLE:

To illusirate how the normal distribution can be used to approximate a
binomial distribution, define the stochastic variable X ~ #in(20, 0.1) and
consider P(X < 3). This probability can be calculated exactly from the
probability function as:

pX £ 3) = p(0) + p(1} + p(2) + p(3) =
= 0.1216 + 0.2702 + 0.2852 + 0,1901 = 0.867

To obtain a normal distribution approximation one first calculates:
E(X) = 20 x 0.1000 = 2.000 and
var(X) = 20 x 0.1000 x 0.9000 = 1.800

which are used as parameters in the normal distribution, Thus, approxi-
mately, X ~ N(2.000, 1.800} and
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PX<3)=Pz< 32200001 0912
J/1.800

where Z again is for the standardized normal distribution and where the
probability is determined from a table or with the aid of a program for a
compuler.

The binomial distribution is discrete and can only assume natural numbers,
while the normal distribution is continuous and can assume all real
numbers. The approximation can therefore be improved by the value 3 in
the binomial distribution being represented by the whole intervat (2.5-3.5)
in the normal distribution. We then get the following approximation:

PX<3) ~plzg 35 2000 oo
J/1.800

which should be compared with the exact probability which was calculated
as 0.867.

2.3.3 The Poisson Distribution

Consider a situation where an event can occur at any moment during an
interval of time and where the probability of an event occurring during a sub
interval is directly proportional to the length of the sub interval, and further is
independent of how many events have occurred earlier and the length of time
that has elapsed since the last event occurred. In this situation the number of
events occurring during the interval of time follows the Poisson distribution.

The Poisson distribution is a discrete distribution where all the numbers
from O and up can be assumed. The probability function of the Poisson
distribution is:

plx) = for x=9,1, ..

e p*
x!

This expression can be derived from the probability function for the binomial
distribution. One lets the # of the binomial distribution go toward infinity and
its p toward zero, but in such a way that np is constant; np then becomes the
p parameter of the Poisson distribution.
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Since, with the Taylor expansion ¢ can be written as;

x

[1:

a 1 2 il
r = I | | = E
e ﬁ + -].-—'!- + 2_! + - xﬁ’ l

s

it follows that:
Y =1
=0
As is demonstrated by the probability function, the Poisson distribution is
specified by the single parameter p and we will use the notation:
X ~ Poisson(p)

for Poisson distributed variables. The mean for the Poisson distribution is
calculated as follows:

W
x!

B = Y

The variance is calculated wiih the aid of the above and the alternative
variance formula as:

var) = EQX?) - [EQOF = £ Fxt it =

o x!

That is, the mean and the variance of the Poisson distribution are both
equal to the distribution’s parameter .

The Poisson distribution is limited downward by 0 but unlimited upward
and is consequently asymmetric. When the parameter u increases, the asymme-
try diminishes.

In epidemiology the Poisson distribution is used in connection with person
years rather than persons, The number of person years is regarded as a constant
and as an interval of time during which a new case of disease can occur at any
time. To use the Poisson distribution in such sitations, one lets the incidence
rate multiplied by the number of person years, ie., the expected number of
cases of disease, correspond to the parameter of the Poisson distribution.
Conversely, this means that parameter p (the expected number of cases)
divided by the number of person years corresponds to the incidence rate. (Sce
Figure 2.3.)
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Flgure 23  The probability function for two Poisson distributed variables
with p = 0.61 and 0.05. The tirst Poisson distribution is derived from an
example described by Fisz (1963). In 10 Palish army units observed over
a period of 20 years, the number of deaths resulting from being kicked by
a horse were noted. The total number of observations was 200. The
average number of deaths per year and army unit was 0.61. If the number
of deaths is Poisson distributed, one obtains the distribution described in the
figure. Fisz compared this theoretical distribution with the observed one and
found that they agreed very closely. As a matter of fact, the theoretical and
the observed distributions would not be distinguishable if drawn in the same
figure of this type. The second Poisson distribution, with pu = 0.05, can be
compared with the first of the three binomial distributions in this figure. The
comparison illustrates how a binomial distribution can be approximated with
a Poisson distribution.
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EXAMPLE:

Let X ~ Poisson(3). Probabilitics can then be calculated from the above
probability function. Thus, for example:

PX =2} = p@) + p(1) +p(2) =

- 2730 _e?3  e”3 _
o! 1! 2t

= 0.0498 + 0.1494 + 0.2440 = 0.423

EXAMPLE:

As an example with relevance to epidemiology, let us consider a popula-
tion of 1,000 individuals who are all observed for one year—that is, the
study base includes 1,000 person years. Let us assume that the *‘theoreti-
cal”” or ““true’” incidence rate for acute myocardial infarction in the
population is 5 per 1,000 person years. The number of cases of myocar-
dial infarction during one year, X, can then be taken as an observation of
a Poisson distributed variable with the parameter p = 1,000 x 0.005 = 5.
This can be used to calculate the probability of various outcomes, For
example, the probability of ten or more cases of myocardial infarction is:

PX > 10y = 0.0181 + 0.0082 + 00034 +
+0.0013 + ... =0.032

With large x values, it becomes difficult to use the Poisson distribution's
probability function. However, in such cases the distribution can be approxi-
mated by using the nomal distribution, To obtain a goed approximation, p
should not be too small,

EXAMPLE:

If, in the above example, the normal distribution is used as an approxima-
tion, where p = 3, then:
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-

P(X > 10) ~ P[Z > 10 - 5] = 0.013

Vs

The approximation can be improved by taking into account the fact that
the number of cases must be a natural number. This is achieved by letting
the whole interval from 9.5 to 10.5 represent the outcome 10. If one does
this, one obtains instead:

Px>100=Pz>35 -5 |- o002
"3

There are also other ways of obtaining approximations for Poisson
distributions. A very good one is described in Rothman and Boice (1932).

With binomial distributions where n is very large and p very small, the
normal distribution does not offer a good approximation for the binomial
distribution. In this situation, the Poisson distribution can be used instead.
When p is small then np = np(1 — p) and one of the characteristics of the
Poisson distribution, namely that the mean and the variance are the same, is
at least approximately satisfied. A binomially distributed variable can assume
all natural numbers from 0 to n, while the Poisson distribution can assume all
natural numbers from O and vpwards. Where #n is large and p is small, this
difference is negligible.

EXAMPLE:

Consider a cohort of 10,000 persons where the cumulative incidence
during a follow-up period is 0.0002. If X is the number of cases of
disease, it is nataral 0 use the binomial distribution and X ~ bin(10,000,
0.0002). The probability of getting 3 or more cases is then;

PX23)=1-PX<2)=1-p0) -p(l) -p2) =
=1 -0.1353 - 0.2707 - 0.2707 = 0.323
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If one vses a Poisson distribution approximation instead one obtains:

X ~ Poisson(2), because E(X) = 10,000 x 0.0002 = 2

Then;
PX 23)=1-01353 - 0.2707 - 0.2707 = (.323

The normal distribution approximation gives instead 0.362,

2.3.4 The Hypergeometric Distribution

The following example is often used to describe the hypergeometrical
distribution. In an urn containing two different types of marble, a certain
number of marbles are randomly selected and not returned before the next is
picked out. If a stochastic variable is defined as the number of selected
marbles of one type, then this is hypergeometrically distributed. If one
denotes the stochastic variable as X, then the probability function is:

px) = w max (0, n - N) < x < min(s, N)
(Nl + N,)

where N, and N, are the number of marbles of the two types and »n the
number of selected marbles. For the epidemiologic applications we have in
mind, a different kind of introduction to the hypergeometrical distribution is
more natural. Let two independent stochastic variables be distributed as
follows:

X ~ bin(n,, p) and ¥ ~ bin(n,, p)

Both the binomial distributions have thus the same p. Consider:
X[n=X+Y)
that is, the value of the first of the binomially distributed variables given a

certain value on their total. The conditional probabilities are derived from the
probability function for the binomial distribution and the formula for
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conditional probabilities (see Séction 2,1), which gives the same resulls as
above.

Observations of hypergeometrical distributions can effectively be presented
in the following kind of fourfold table:

One type of The other Total

marbles type of marbles
Selected marbles X n-x h
Left in the umn N —-x N,—(n-x) N-n
Total number of N, N, N

marbles

In epidemiology, the hypergeometrical distribution is used to compare an
observed number of events in two populations, usually the number of diseased
or the number of exposed people.

EXAMPLE:

Assume thal in a population of 5 individuals there are no cases of disease
and that in another population of 4 individuals there are 2 cases of disease.
Let the number of diseased persons in the two populations be represented
by itwo independent binomial distributions. If one assumes that the risk of
becoming diseased is the same in the two populations, the number of
diseased persons in the first population, given the total number of cases of
disease is hypergeometrically distributed. The data can be presented in a
fourfold table as follows:

Disease Population 1  Population 2 Total

Yes 0 2 2
No 5 2 7
Total 5 4 9
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The probability of the observed outcome is:

S\ia 1 x dx3x2x1
p(0) = (oxz) - WkIx2xl _ 1
(:) 0x8..x2x1 3

Txh.. x2x 1x2x1

The hypergeometrical distribution too can be approximated by the normal
distribution. The mean and the variance are obtained from the formulae:

EX) = NN

var(X) = NN\ - n)fIN*(N - 1)]

and are used as parameters in the normal distribution.

EXAMPLE:

Consider the table below, set out as in previous examples:

Disease Population 1  Population 2  Total

Yes 1 5 6
No 4 5 9
Total 5 10 15

Let X be the number of persons with the disease in population 1. Exact
probability calculations are performed from the probability function for the
hypergeometrical distribution. For example:

5
SR 1 B
() (%)

= 0.0420 + 0.2517 = (0.204
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To obtain a normal distribution approximation one first calculates:

Sx6
EX) = = 2,000
x) 75
and
S5x10x6x9
varX) = —____—_ ~ .~ =0.8571
"t 152 x (15 - 1)

In the same way as before one now obtains:

PX <+ 1) = P[Z < ﬂ} = 0.140

y0.8571

As with the previous distributions, the approximation can be improved
by taking into account the fact that the normal distribution is continuous.
One then gets instead:

PO < 1) = P[z < M] = 0.295

¥0.8571

which can be compared with the exact probability of (0,294,

NOTE: The exaci probability in the example is used in a statistical procedure
called Fisher's exact test and the approximate probability agrees in principle
with the one obtained by so-called chi-square tests for fourfold tables.

The two binomial distributions which were used to define the hyper-
geometrical distribution had different »n but the same p. If the p-values were
also different one would instead obtain a non-central hypergeometrical
distribution (Breslow and Day 1980), the probability function of which is;
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where

o Pl
po/(l -pu)

and is called the odds ratio. This distribution is used in so-called exact
analysis of fourfold tables and is used primarily in exact analyses of data
from case-control studies,



Chapter 3
STATISTICAL INFERENCE

““Inductive inferences start with observations of the machine and arrive at
general conclusions.”*

Pirsig RM: Zen and the Art of Motorcycle Maintenance. Vintage, 1991,

Statistical inference means that conclusions aboul a value in a population
are drawn from a random sample or that conclusions about a theoretical
value, a parameter, in a probability model are drawn from an observed
outcome. To be able to talk about statistical inference, the inference must be
obtained according to certain principles of which the reliability can be
ascertained.

NOTE: Scientific inference consists of drawing conclusions about general
circumstances from a study result. This makes use of the result of the
statistical inference, but also takes into account the systematic errors of the
study and the available theoretical information which can be used to assess
the potential for drawing general conclusions from the studied population.

In descriptive epidemiologic studies one looks at the occurrence of
disease in a particular population during a certain period or at a point in
time. One can in such cases maintain that the incidence rate observed
describes an entire population and that there is consequently no random
uncertainty. No statistical inference would be needed here. However, if the
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number of cases is under a certain size it is clear that one cannot expect
exactly the same incidence rate during an ensuing period of time, and that
there is a certain ‘‘random’’ variation between different time periods. This
view does not essentially contradict a deterministic view of how diseases
develop. One should rather regard the random variations in the occurrence
of disease as an expression of variations in the occurrence of risk factors for
the disease which for the moment are not known or even suspected. If we
may, for a moment, refer to another topical field of research, namely chaos
research, this shows that small changes in conditions or initial values can
give completely unpredictable results even in simple deterministic models
{Gleick 1987).

The magnitude of the *‘random™ variation in the occurrence of disease
can be evaluated with the aid of statistical inference. One precondition for
this is an underlying or theoretical measure of the occurrence of disease
which is estimated from an observed measure of disease occurrence.

The same applies with analytical or aetiological epidemiclogic studies
where the relationship between a possible risk factor and the occurrence of
disease are under study. Conclusions about an underlying theoretical relation-
ship are drawn from observed data.

The chief justification for carrying out empirical studies is the belief that
these underlying theoretical relationships or processes do actually exist. If
epidemioclogic studies were used exclusively to describe the population which
is actually under study, their value would be severely restricted,

NOTE: Henceforth, the theoretical, underlying parameters will be given with
capital letters. The incidence rate, for example, will be writien as 7 and the
ratio between (wo incidences as RR (as in relative risk or rate ratio).
Estimates of these parameters will be written with # on top (pronounced hat),
Observed values of these estimates are writlen in the same way as the
estimates, except for when there is a risk of confusing these two; when this
is the case the difference is marked in a special way.



Chapter 4

THE P-VALUE, THE P-VALUE
FUNCTION AND THE
CONFIDENCE INTERVAL

f...reminds me of the number P that I invented a couple of years ago. P is,

Jor each individual, the number of minutes per month that that person spends
thinking about the number P. For me, the value of P seems to average out
at about 2. I certainly wouldn't want it to go much above that! I find it
crosses my mind most often when I'm shaving.”

Hofstadter DR Metamagical themas: Questing for the Essence of Mind and
Pattern. Bantam Books 1985.

In medical research, not least in epidemiclogy, significance testing has
come to play a very major role; it is often the test result alone which is used
to decide whether or not a resuli is to be ascribed to a random variation. One
of the theses in this book is that this is an unsuitable principle, not only
because it is fairly uninformative but also because it can easily lead to
erronzous conclusions. The present chapter nevertheless begins by discussing
the P-value, which is the basis not only for significance testing but also for
its suggested alternative, the confidence interval.

4.1 THE P-VALUE
4.1.1 What is the P-value?

Let us assume that a stochastic variable has a distribution which is
determined by a particular parameter and that we have a hypothesis about the

5
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Figure 4.1 The frequency function for the cbserved relative risk,
assuming that the theoretical relative risk, AR = 1. The P-value is the
probabiiity of getting a value which is at least as large as the observed,
that is:

P = PAR2> RR|RR = 1)

value of that parameter. Sometimes this is called the null hypothesis to
distinguish it from other hypotheses. An example of a hypothesis from the
field of epidemiclogy is estimation of the theoretical relative risk. This is
done with the help of the observed relative risk, which is a stochastic
variable whose distribution depends on the theoretical relative risk. A
common hypothesis is that the theoretical relative risk equals 1, in other
words, that there is no association between exposure and discase. For each
observation on the stochastic variable, the P-vagiue is the probability of
obtaining an outcome which is at least as extreme as the one which is
actually observed, provided that the hypothesis is correct.

THE P-VALUE, THE P-VALUE FUNCTION AND THE CONFIDENCE INTERVAL 37
EXAMPLE: -

Let us assume a hypothesis postulating that a theoretical relative risk
equals 1 and the relative risk observed in a study equals 2. The P-value
is then the probability of observing a relative risk that is greater or equal
to 2 in a new study of the same design. (See Figure 4.1.)

NOTE: The P-value described above is sometimes called one-sided. The term
two-sided P-value refers to the probability of obtaining an outcome that is
al least as extreme as the observed outcome, regardless of whether the
deviation is upwards or downwards. Since we do not need to use two-sided
P-values we shall always refer 10 one-sided P-values here. See, for example,
Armmitage (1971) for further discussion.

4.1.2 Some Examples of How to Calculate P-values

EXAMPLE:

Let us assume a hypothesis according to which the prevalence of diabetes
in a population is 0.02 and that two individuals are chosen at random
from that population. The number of diabetics, A, among these two
persons ¢an then be regarded as a binomially distributed variable where
n = 2 and, according to the hypothesis, p = 0.02. If both of the chosen
individuals prove to be diabetics, A = 2 and the P-value is consequently
P = P(A =2)=0.02=0.0004. Note that there is no outcome more
extreme than the observed one. If, instead, A = 1, then A = 2 is a more
extreme outcome and

P=PA21)=P@A =)+ P(A=2) =

- (:}0,02‘0.981 + 0.0004 = 0.0396

EXAMPLE:

Let us now assume instead that 100 individuals are selected from a
population, with the hypothesis that the prevalence of hypertension is 0.1.
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The number of affected persons, A, is once again binomially distributed,
this time with #n = 100 and, according to the hypothesis, p = 0.1. In this
situation, the P-values can be calculated by normal distribution approxi-
mation, Thus, let

A~ N(00 x 0.1, 100 x 0.1 x 0.9)

If, for example, A = 15:

P = I{Z > _14'5[‘ 10} - 0,067
5

Let us now consider a situation where the theoretical incidence rates in
iwo populations are the same, with A;, R, and f, being the number of
cases, number of person years and incidence rate in one population and
let Ay, Ry, and /, have the corresponding meaning in the other. In each
of the populations, the number of cases is regarded as a Poisson-
distributed stochastic variable with a parameter which is the product of
the npumber of person years and the theoretical incidence rate. The
observed incidence rate is calculated as:

EXAMPLE:

A
f="1fori=0,1
R

i

and is regarded as a stochastic variable. When there is a sufficiently large
expected number of cases, [, x R, a normal distribution approximation
can be used 1o determine the probabilities. To calculate a P-value for the
hypothesis that the two incidence rates agree, the following stochastic
variable is formed:

A A Mo AL

1 Ry R? R_,,2

where I, ~ I, = 0 according to the hypothesis. In the above formula, the
variance has been estimated by making separate estimates for the two
individual populations. However, the hypothesis specifies a sobsidiary
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condition for the variance by stipulating that the (wo incidence rates must
agree. This could be used by instead estimating the variance by
combining the two materials.

Let us now assume that in the first popnlation of 1,000 persons 25 cases
are observed over one year, while in the other population there are 10
cases per 500 persons in one year. In such a case:

25 10
p=pz>_ 1000 500 |55
5 . 10
000 500

EXAMPLE:

Let us now consider a situation in which the cumulative incidence, that
is the probability of becoming ill, is compared for two populations. The
number of cases in the two populations can be seen as two binomially
distributed variables and the hypothesis is that the parameter p is the
same for both distributions. This situation can be analyzed by comparing
the two binomial distributions. If the material permits a normal distribu-
tion approximation, the analysis is analogous with that of the previous
example, the only difference being that the basis of the approximation is
the binomial rather than the Poisson distribution, as in the previous
example. {An analysis which does not use the normal distribution
approximation is more complicated in this kind of situation.)

There is, however, an alternative 1o this approach, namely so-called
conditional analysis. This is based on the hypergeometric distribution and
on the assumption that the number of cases in the two populations can
be assumed to follow two independent binomial distributions, which
under this hypothesis have the same parameter, p. When the hypothesis
is true, the number of cases in one population, given the total number of
cases, is hypergeometrically distributed. (See Section 2.3.4.) This means,
in the example outlined above, that with a certain total number of cases
of iliness from two populations, the number of these originating in one
of the populations is hypergeometrically distributed, given the hypothesis
that the probability of becoming ill is the same for both populations.
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The advantage of using the conditional probability distribution is that the
probabilities of falling ill do not have to be estimated; as long as these are
not of interest in themselves but only in relation to each other, they
constitute what is usually called ‘‘nuisance’” parameters.

Let us once again use the example from Chapter 2, where one person in
a population of five becomes ill and five in a population of ten. The
number of persons falling ill in each of these populations can be seen as
binomially distributed, with n = § in the first case and n = 10 in the
second. The hypothesis is that the parameter p is the same in the two
populations. A P-value can be based on these two binomial distributions,
possibly by using a normal distribution approximation.

Conditional analysis instead uses the fact that a total of six cases of illness
have arisen in the two populations and that the number of these originating
from, say, the first population, is hypergeometrically distributed if the
hypothesis about the identical probabilities of falling ill is correct. The P-
value can then be calculated exactly or using the normal distribution
approximation. With normal distribution approximation one obtains:

15-3x6
15

P=Z=< = 0.295

J Sx10x6x9
1I5x15x(15 - 1)

We will return to the conditional approach later, where it will be shown
that this often facilitates considerably less complicated analyses because
*‘nuisance’’ parameters can be eliminated,

4.1.3 Interpretation of the P-value

There are two possible ways of interpreting a low P-value. The first is that
an unlikely outcome, i.e., an outcome with low probability, has resulted. The
other is that the P-value is based on incorrect assumptions, i.e., that the
parameter values of the hypothesis were not correct. A low P-value therefore
indicates that the hypothesis is not consistent with the data and should be
rejected.

In the field of medicine, a well-established practice has been developed for
interpreting P-values, according to which the hypothesis is rejected when P is
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below 0.05. The result is then said to be (statistically) significant or the
difference is (statistically) established. Sometimes an asterisk is wsed to
indicate that P is in the interval 0.001-0.05; two asterisks mark the interval
0.001-0.01 and three asterisks the interval < 0.001.

This kind of use of the significance concept leads to study results falling
into two distinct groups: significant and non-significant. This is appropriate in
situations where decisions are to be based on study results, and indeed the
hypothesis testing theory has primarily been developed for use in decision-
making. An example of the application of the significance concept in this way
is guality control in production processes, where certain tolerances are
specified and determine when the process shall be interrupted for adjusiment.

However, the situation is different in epidemiologic and other types of
scientific study. To start with, the five-percent limit, like every other limit set
in advance, is entirely arbitrary, and it is impossible to explain why P = 0.051
should lead to a radically different conclusion from P = (.49, Secondly, a
sharp division between significant and non-significant results is not desirable
in a scientific context. Decisions about a particular course of action are made
after taking all the available empirical and theoretical knowledge into account,
never simply from the results of one single study. The conclusion “‘signifi-
cant”” or ‘‘non-significant’’ is not suitable in this kind of procedure; the
pooling of all the available knowledge needs to be based on more informative,
quantitative variables.

Neither can the actual P-value be used in this process. The first reason for
this is that the P-value depends not only on the strength of the association but
also on the size of the study. A large stady gives a smaller P-value (han a
smaller study, all else being equal. The P-value does not enable us to
distinguish between the effect of the strength of the association and the effect
of the size of the study.

A more important reason for why the actual P-value is unsuitable is that
the information contained in the P-value refers only to the null hypothesis. The
P-value gives the extent to which the null hypothesis is consistent with the
observed outcome, but not how consistent alternative hypotheses are with the
outcome. The P-value can therefore only be used to reject the null hypothesis,
not to choose an alternative. In other words, if the hypothesis concerns the
relative risk, a low P-value is interpreted as indicating that the relative risk is
not equal to 1.00. However, the P-value says nothing about whether 1.10 is
consistent with the outcome, or whether one has to go up to 10.0 to find KR
values consistent with the observed oulcome,

The P-value is often wrongly understood as the probability that the
hypothesis is correct, yet it cannot possibly be interpreted in this way, since the
P-value is calculated under the assumption that the hypothesis is correct. Much
of the popularity of the P-value seems to be founded on this misunderstanding.



42 BIOSTATISTICS FOR EPIDEMIOLOGISTS

It is thus clear that significance testing, in the form described here, should not
be used for analyzing epidemiologic data. This does not, of course, mean that
one should disregard random variations, but rather that one should use other
methods than the P-value and significance testing. A number of works
addressing this question are included among the references (for example, The
Lancet (editorial) 1987; Langman 1986; Rothman 1978; Walker 1986).

4.2 THE P-VALUE FUNCTION
4.2.1 What is the P-value Function?

The P-value shows how consistent the observed outcome is with the
hypothesis. In the contexts we discuss here, this generally means that the P-
value carries information about how consistent the observed data are with the
hypothesis that there is no association between exposure and disease, i.e., that
RR = 1.00. The P-value, however, says nothing about how consistent the
observed material is with other hypotheses, for example, that RR = 1,10 or that
RR = 10.0. Under some conditions, {for example when the study is large), the
outcome can thus be inconsistent with the hypothesis that RR = 1.00 but at the
same time wholly consistent with the hypothesis that RR = 1.10. This is a quite
different situation from one where the result is not only inconsistent with the
hypothesis that RR = 1.00 but also with the hypothesis that RR = 10.0. The P-
value can thus not be used to decide which parameter values are compatible
with the outcome of the study.

It scems reasonable to extend the P-value to a P-value function, which
gives the probability of a more extreme outcome not only for the parameter
value of the null hypothesis, but also for other parameter values (Miettinen
1985; Poole 1987), This means, when considering the relative risk RR, that:

(RR > RR|RR} when RR, > RR
(RR < RR,|RR) otherwise

shall be calculated assuming that RR = 1.00, as before, but also with a number
of other assumptions about RR. These calculations show how consistent the
observed outcome is with a series of RR values, and from this one can decide
which RR values are likely in the light of the study results. (See Figure 4.2.)
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4.2.2 Two Examples -
EXAMPLE:
To illustrate this principle, let A, the number of cases of illness in a study
base (population studied over a certain time), follow a Poisson distribution
with unknown parameter p (p = / X R, where I is the incidence rate and R

is the number of person years). If A = 2 observed cases of illness occur,
the P-value can be calculated for any value of p:

P=PAz2p)=Ye* /! forp<2
x=2
and
2
P=PA<2p =Y e* ! for p>2
x=0)

The following table can be calculated on the basis of the above:

P 0005 0018 0025 0037 .. 0062 0030 0025 0014
p 0100 0200 0242 0300 .. 600 700 722 800

The table gives a number of values for the relevant P-value function. The table
shows, for example, that if p = 0.100 then P(A 2 2) = 0,005, ie., if the
expected number of cases in the study base is 0,100 then the probability of two
or more observed cases is 0.005. In the same way one can sec that the
expected number of cases corresponding to a P-value of 2.5% is 0.242.

The P-value function in the above example is calculated from the Poisson
distribution’s probability function, and the reason for this is that the Poisson
distribution is the probability model best suited to this type of data. The P-
value function is in principle obtained in the same way regardless of the type
of data; however, the probability model in question does vary from situation
to situation, which means that the calculations of probability are performed
differently, according to how the probability or frequency function locks. In
the rest of this book, exact probability functions will often be approximated
with the normmal distribution, for which reason an example based on this
distribution might be timely here.
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0.050 /

/ \
T
1.00 H’ho
- 80% —_—
- 95% —

Figure 4.2_ The P-value function gives the P-value for all possible values
ot AR, not just AR = 1. The “traditional” P-value can be read against AR =

1. The P-value function also gives confidence intervals. In the figure, 90 and
95% confidence intervals are marked.

EXAMPLE:

Let us assume that;

fi ~ N[p, var(fi)] where var(fl) = 400 and fi, = 2.00
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The P-value function is then calculated according to:

z< 299 B forus 200
P= V4.0
zZz 2000 - B | iherwise

ya.00

A table for the P-value function can now be calculated:

P 0.001 0.006 0.023 0.025 0.067 ... 0.067 0.025 0.023 0006 000t
p 400 -3.00 -200 -192 -1.00 ... 500 582 600 7.00 800

This table is interpreted in the same way as that for the Poisson distribu-
tion. If, for example, p = 6.00, then the P-value is 0.023. The two p-values
which correspond to P = 0.025 are p = -1.92 and p = 5.92. They may be
calculated as:

ji £ 196 Yvar(@) = 192, 592

where 1.96 corresponds to the probability 0.025 in the standardized normal
distribution,

By looking at the P-value function one can determine which values of the
parameter, for example RR, are consistent with the observed study outcome.
This gives considerably more information than if one merely calculates the P-
value which corresponds to the null hypothesis. This P-value only indicates the
degree of consistency between the data and the null hypothesis. The P-value
function indicates the degree of consistency with a range of possible parameter
values.

It is actually neither practically possible nor necessary to present the whole
P-value function. The two values corresponding to P = 0,025, for example,
give considerable information about the shape and location of the P-value
function. In the next section we will see that these two values also constitute
the limits for a 95% confidence interval.
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4.3 THE CONFIDENCE INTERVAL
4.3.1 What |s the Confidence Interval?

By confidence interval we mean an interval constructed according to such
a principle that it will, with a certain probability, contain the desired parameter
value, If, for example, a study results in a 95% confidence interval for RR
ranging from 0.900 to 2.50, this means that the interval is calculated according
to a principle whereby 95 out of 100 intervals give an interval which contains
the true RR value. One is 95% *‘confident’” in the assertion that the true value
falls within this interval. One might be concerned that the choice of confidence
level is as arbitrary as the choice of significance level, which was earlier
rejected. However, one should not concentrate on the upper or lower limit but
rather on the general position of the interval, The confidence interval can be
understood as a summary of the P-value function; the relationship between the
P-value function and the confidence interval will be discussed later in this
section. If the confidence interval is understood as a description of the P-value
function, interest is focused on the general localization of the confidence
interval rather than on its two limits, and the choice of confidence level is thus
of less importance,

A not uncommon mistake is to look only at the lower limit of the
confidence interval. If the estimated parameter is RR then the answer to
whether the confidence interval’s lower limit exceeds or falls below 1.00 can
be directly translated into a significant or non-significant test result. However,
this is merely a complicated way of carrying out a significance test and is
neither better nor worse than one which is performed directly.

Thus, the whole interval should be taken into account when interpreting the
confidence interval. If the interval is 0o broad and includes values which are
consistent with no effect as well as ones which are consistent with considerable
effect, the study is merely uninformative, i.e., its precision is low. To be able
to interpret a study as indicating that exposure has a great effect on the
occurrence of illness, only large excess risks must be consistent with the
outcome. For an outcome 10 argue against an effect, the interval must only
contain values which lie near the parameter value which corresponds to no
effect, unity in the case of RR.

4.3.2 The Confidence Interval and the P-value Function

The confidence interval is directly linked to the P-value function. The two
parameters which correspond to P = /2 are (he limits for a confidence interval
with confidence level 1 — o« The lower value also defines a one-sided
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confidence interval with confidence Tevel 1 = o/2; the upper value correspond-
ingly defines a one-sided confidence interval with level 1 — o/2. (See Figure
4.2.

’)I‘he fact that an interval constructed in this way really is a confidence
interval with a given coafidence level is demonstrated by the following. Let the
true parameter value be p and let i be an estimator of p with the observed
outcome [i,. The confidence interval’s lower limit can now be set as the value
g, for which P( > fi;|p,) = @/2; thatis, p, is determined in such a way that
the P-value is equal to o/2 when it is calculated according to the hypothesis
that the theoretical value is p;. Let us now assume that p, = p, i.e., that the
confidence interval’s lower limit comes at exactly the true value. If the
observed value had instead been greater, then i, would also have been greater
and the confidence interval would have moved up. The true value would
accordingly have come below the interval’s lower limit. The probability of this
is 02, one of the characteristics of the P-value being that the probability of it
falling below a certain value is the same as that value, and vice versa, given
the null hypothesis. The probability of the confidence interval’s lower limit
exceeding the true value is thus /2. The confidence interval’s upper limit can
be established in a similar way. The probability of it falling under the true
value is also ¢/2, Accordingly, the probability of the confidence interval
including the true parameter value is 1 — ¢. (See Figure 4.3.)

This relation between the confidence interval and the P-value function
explains why the confidence interval can be seen as a description of the P-
value function. It further demonstrates how the confidence interval can be
calculated from the P-value function.

4.3.3 Calculating the Confidence Interval

The previous section demonstraied how confidence intervals can be
calculated with the belp of the P-value function, It aiso demonsirated how both
one-sided and two-sided confidence intervals can be constructed, For the sake
of simplicity, we will henceforth assume that confidence intervals are double-
sided with the level 95% with 2.5% of the probability mass at each end of the
interval; each limit for this type of interval is also the limit for a one-sided
97.5% confidence interval.

We can accordingly construct the confidence interval by looking for the
two values of the unknown parameter which correspond to P = 0.025.
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EXAMPLE;

In a previous example in this chapter we explained how to obiain the P-
value function when an observed value of a Poisson variable equals 2. The
table for that example shows that the two values which correspond to
P =0025 are 0.242 and 7.22. Accordingly, the limits of the 95%
confidence interval for the parameter of the Poisson distribution are these
two values.

EXAMPLE;

The same section also contains an exampie based on the normal distribu-
tion. The estimate was 2.00 and the variance 4.00. The confidence interval
is: —1.92, 5.92.

When the estimator used can be assumed to be normally distributed, the
limits for the 95% confidence interval are calculated as:

Py =h =t 1.96y/var(ji)

where (i is an estimator of p. The constant 1.96 is the value from the standard-
ized normal distribution which corresponds ¢ 2.5% and accordingly sets the
confidence level at 95%, and vgr(fi) is the variance for the estimator which is
used, This formula will return again and again when calculating confidence
intervals with the aid of the normal distribution approximation. The estimator,
fi, will vary depending on what is to be estimated, and the variance will
therefore also vary; the basic principle will, however, always remain the same.

One alternative version of this method is of great importance in epidemio-
logic applications. As has been mentioned previously, the probability
disiributions used in epidemiology are often 5o asymmetrical that the rormal
distribution is not a good approximation. However, this can be countered by,
for example, using the logarithm transformation, since this has the capacity to
reduce large values more than small ones; a logarithm transformation thus
results in a less asymmetrical distribution,

Logarithm transformations are used by first creating a confidence interval
around Inji, and then exponentiating the limits of this interval. One thus
constructs a confidence interval on the logarithmic scale which is then
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Figure 43  The limits for a confidence inmerval with the level 1 -o
obtained as the twe parameler values for which the P-value is o/2.

transformed back to the original number scale. A 95% confidence interval
according to this principle is therefore constructed as follows:

p, =™ 196y var(iap
L

There are no difficulties in calculating Infi. How ygr(inj) is calculated
depends on each situation. Ope can often use the variance formula with
logarithm transformation (see Section 2.2.3):

n g = Yard®
varin ) = T

We will return 10 this in specific types of situations in later chapters,
An approximate way of calculating confidence intervals which has come
to be widely used in epidemiology is the so-called test-based method
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{Miettinen 1976). If RD is the difference in occurrence of disease between two
populations, then an approximate 95% confidence interval can be calculated

as follows;
RD + 1.96\/var(nb)

In some situations the variance is difficult to estimate. This problem might

be countered as follows: To carry out a significance test of the hypothesis, a
z value should first be calculated as:

RD

\/ var(RD)

which would give:

Yvar@®D) = ﬂ

Z

This expression can be substituted in the formula for the calculation of the
confidence interval;

kD 1 19622 < rba £ 196/2)
£

This means that if one has an estimate of the unknown parameter as well as
a z value from a test for that parameter, an approximate confidence interval can
be calculated. The advantage here is that the variance of the estimate is not
needed; a z value can often be obtained from a conditional test which is carried
out without having to estimate the variance of the required parameter.

Test-based confidence intervals can also be calculated for the relative risk,
This is wsually done by using the logarithm transformation, in which case one
gets:

elan(ltl-%k) - Rkuwsk

It has been demonstrated that the test-based method gives good results in
several_ types of epidemiologic application, where it is most often used. At the
same time it is important to remember that this is an approximate method,
which has been criticized from a theoretical standpoint (Gart 1979; Greenland
1984; Halperin 1977).
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Confidence intervals which are calculated by approximating the distribution
of an estimator with the normal distribution are called approximate confidence
intervals as opposed to exact confidence intervals. Exact confidence intervals
are generally complicated to calculate and often necessitate a number of values
being successively tested until the probabilities are what they should be (so-
called iteration). For this reason, exact intervals are in practice only used when
a normal distribution approximation cannot be used, i.e., when the numbers are
smail.

4.4 PRECISION IN EPIDEMIOLOGIC STUDIES
4.4.1 Evaluating and Reporting the Precision

The purpose of epidemiologic studies is either to estimate the occurrence
of disease, by some measurement of incidence or prevalence, or to estimate the
effect of exposure on the occurrence of disease, measured as ratios (relative
risk) or possibly as the difference in some measure of disease occurrence
between the exposed and the non-exposed. Whatever the aim, an observed
outcome can diverge from the theoretical value as a result of sysiematic or
random errors. This book concentrates on methods for evaluating random
emors and assumes that systematic errors are adequately addressed.

As has been pointed oul earlier, significance testing is very commonly used
for evaluating random errors in medical research. However, for reasons which
should by now be clear, this is an approach which should be avoided.

Even if the thesis proposed above is that the P-valuc function is the
summary of the maierial which gives the best basis for interpreting it, it is not
realistic to present data in the detail which this method demands. One can
conclude, therefore, that an appropriate way of reporting on a material is 10
give a point estimate and a confidence interval. The reason for this is two-fold.
Firstly, the confidence interval is a summary of the P-value function; secondly,
it also gives an interval of values which, with known confidence, contains the
true value.

Attitudes towards the confidence interval have made progress in recent
times, and many of the larger journals, for example the New England Journal
of Medicine, now advocate confidence intervals rather than significance tests.
However, this change of opinion has resulted not infrequently in confidence
intervals being calculated, only then 1o be interpreted as if they were
significance tests. In other words, the interpretation is entirely based on
whether the confidence interval includes the value which corresponds to the
exposure having no effect. This is, naturally, no more adequate than the
original test procedure,
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4.4.2 Analysis of a Multiple Hypotheses

It is wsual in epidemiologic studies to be able to analyze a variety of
hypotheses at the same time. An example of this is case-control studies which
use wide-ranging questionnaires covering such areas as work life, diet,
medication, and keisure time activities, Tt is also the case with studies based on
lazge sets of register material where possible excess risks of, for example, a
large number of tumor forms in hundreds of occupational groups can be
studied.

It has been suggested that a considerable number of false ““significances’’
are obtained when many analyses are carried out, even if no real effects exist,
since the probability of getting a significant result is 5% in each analysis. This
has come to be called the mass significance problem, or the problem of
multiple comparisons. The statistical literature offers a variety of methods for
compensating for the multiple significance problem (Scheffe 1959: Sverdrup
1976; Sherg 1980; Thomas et al. 1985). Of necessity these result in a
cpnservative interpretation of data, that is, in the requirements for statistical
significance being increased. Discussion aboul the multiple comparison
problem arises as a rule in connection with hypothesis testing, but the situation
is of course the same when confidence intervals are used.

However, this whole discussion is resolved if the issue is reformulated
(Cole 1979; Miettinen 1985; Rothman 1986; Rothman 1989; Rothman 1990).
It is, of course, correct that a significance level of 5% will in the long run give
significant resulis in one test in twenty, when no effects are present, and a long
series of tests can accordingly be expected to give numerous randomly
determined significant findings. However, this lacks relevance unless the null
hypothesis is formulated as:

where the RRs are relative risks for the various associations, and null
hypothesis is rejected when the test outcome for a single one of these RR is
significant. According to this reasoning it is actually correct that the probability
of obtaining significant results increases when the number of analyses
increases. It is, however, difficult to imagine a situation in which this null
hypothesis is relevant. Instcad, a series of single hypotheses about RR are
tested one at a time, and for each of these, the significance level is the one
nominally given, regardless of how many further analyses are carried out.
The multiple comparison problem is often discussed in connection with
epidemiologic studies. This is because epidemiologic material, of the type
described above, permits the testing of a large number of hypotheses which are
entirely without biological or other basis. However, this has nothing to do with

THE P-VALUE, THE P-VALUE FUNCTION AND THE CONFIDENGE INTERVAL 53

the pumber of possible analyses but rather with the background to the various
individual hypotheses.

Each question shall be analyzed separately from the others and indeper}—
dently of the number of other completed or possible analyses. The analysis
shall thereby weigh the study’s empirical outcomes against the other informa-
tion from earlier epidemiologic studies, theoretical sources, etc. If the material
allows one to analyze the association between, say, eye color and liver cancer,
and this type of analysis gives a significant result, then the result is rejected as
a random effect. This is not because too many other analyses have been carried
out at the same time, but because there is no theoretical basis for the
hypothesis. If the material contains data on consumption of fat and colon
cancer, the data is interpreted in the same way regardless of how many other
associations can be analyzed with the aid of data collected in the same study.

4.4.3 Analysis of Hypotheses not Formulated a Priori

A discussion similar to the one above has been conducted regarding the
necessity of formulating hypotheses a priori. It has been claimed that collected
data can only be used to test hypotheses formulated in advance. A mew
hypothesis may be formulated from the material, but this can only be tested in
subsequent studies with material collected for that purpose.

However, the deciding factor must be which theoretical basis exists for a
hypothesis and not when this basis was produced: a researcher collects material
1o test hypothesis A and at the same time obtains results which are jmportant
for hypothesis B, as yet unknown to him, As long as he does not know about
hypothesis B, the result for hypothesis B is interpreted with great caution.
However, when the researcher in due course is told about hypothesis B, the
result assumes the same importance as the result which was obtained to test
hypothesis A.



Chapter 6

MEASURES OF EFFECT FOR
CRUDE ANALYSIS

““I have noticed of late,’ said King Harald, “that young people cling less
keenly to life than old peaple.””

Bengtsson FG: Réde Orm. P A. Norstedt & Soners Forlag 1941, 1945.

Measure of effect here means measures which describe the effect on the
occurrence of disease of a certain exposure (in epidemiology, the term
exposure has a wide meaning and includes such features as genetic factors,
socio-economic status, etc.). The most common measures of effect are the
difference in disease occurrence between exposed and unexposed and the ratio
of disease occurrence between exposed and unexposed. The latter is the most
common and will be considered in greatest detail. The ratio between the
occurrence of disease among the exposed and the unexposed is usually called
the relative risk (RR); the measure of disease occurrence used is not always a
measure of risk in the true sense and rate ratio might be a more appropriate
notation for the ratio of incidence rates.

The basic measure of occurrence of disease is the incidence rate, which is
why the basic measure of effect is either the difference or the ratio between
incidence rates. Measures of effect based on the cumulative incidence also
have an important function and even measures of effect based on prevalence
can give useful information in certain situations. All these options will
therefore be taken up here. The odds-ratio is used in case-control studies and
sometimes with prevalence data; we therefore also describe methods for

61
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analyzing odds ratios. For further information, we tefer the reader to a textbook
on ¢pidemiology.

This chapter looks at crude data, that is data which are not stratified
according to sex, age, smoking, or anything else. We will look at methods for
stratified analysis in the next chapter.

6.1 INCIDENCE RATE

The incidence rate is the number of new cases in relation to the total time
at risk in the study base. The probability theory model used in analyses of the
incidence rate is the Poisson distribution. The use of the Poisson distribution
for this purpose was described in the previons chapter in connection with the
analysis of descriptive epidemiological measures. The discussion here follows
on directly from that in the previous chapler.

The notations used are summarized in the table below:

Exposure

Yes No Total
Cases A Ay A
Person years R, R, R

6.1.1 Ditfference

Let us first consider the difference between incidence rates. [, and 7 are
the incidence rates among exposed and unexposed. Let

RD =1 -1,

be the measure of effect to be estimated. As previousty, the observed incidence
rates are used as estimates. One therefore obtains as an estimate of the measure
of effect:

-~

RD =1 -1

If the study is sufficiently large, this estimate is approximately normally
distributed with the mean RD. Since A/R, and A,/R, are assumed to be
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independent stochastic variables and since R, and R, are assumed to be
constants, the variance of the estimator is:

A A A A, A,
varRDY =van— ~ — |=van— |+ van— | =
Rl Rﬂ Rl RIJ
L varay + |1 vartay
R, ! R,

Both A, and A, are assumed to be Poisson distributed and the variance is
consequently estimated with A, and A, respectively. We thus get:

- A 1
var(RD)=_12+i;=_.1_+._.‘l
R, R, R R

An approximate 95% confidence interval for RD can therefore be calculated
as:
o A A
RD+19 | +_Z
Rl Ry
in accordance with the principles discussed in Section 4.33.

EXAMPLE:

Consider again the example in Section 4.1.2:

Exposure

Yes No Total
Cases 25 10 35
Person years 1,000 500 1,500
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The confidence interval for the difference between the incidence rates of
the two populations is then:

Rp. = 25 _ 10 oo | 25, 10

LY [000 500 ¢ 10007 5007
5.000 x 10? + 1.96 x 8.062 x 107 =
= 00108, 0.0208

6.1.2 Ratio
6.1.2.1 The Normal Distribution Approximation

Let us now consider a situation in which the relative risk, or rate ratio,
defined as RR = 1[I, is the measure of effect used. An estimate of the relative
risk is obtained as:

- Al.fR 1
AJR,

Since this estimator is a ratio which can never be less than zero and has no
upper limit, its distribution is asymmetric and not suitable for approximation
with the normatl distribution. The confidence interval is therefore calculated by
means of logarithm transformation, as described in Section 4.3.3. The
logarithm of the observed relative risk has a distribution which is more
amenable to being approximated with the normal distribution. First, one
performs a variable transformation by logarithmizing the cbserved relative risk,
after which a confidence interval is calculated for InRR. By antilogarithmizing
the two limits of (he confidence interval for InRR, one obfains the desired
confidence interval for RR.

To calculate the confidence interval, one needs an estimate of the variance
of the logarithmized relative risk. Taking the logarithm gives:
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Y A
InRR = In(-1) = Inf, - Inf, =
Iﬂ

A
s _ 0 oA, - 1R, - In4, + g,
R R

1 a

Since R, and R, are constants and since A, and A, are independent stochastic
variables:

var(]ani’) = var(lnd,} + var(lnd;)

In the section on variable transformations in Chapter 2 we described how
the variance of a logarithmized stochastic variable can be approximated from
the variance for the original variable. If the original variable is X, then:

. var)
var(lnX) 507

Since we are using Poisson distributed variables here, var(X) = E(X); thus, this
variance expression can be simplified as:

1
X = %

Since £(X) can be estimated with A, and A, respectively, then:

s 11
mRR) = L+ L
var(nkR) = 2 + =

1 1

The approximate 95% confidence interval for InRR is consequently:

IRR, , = InRR £ 1.96 | + ]

A 4
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It is, however, not this confidence interval we are looking for, but rather that
for RR. This is obtained by antilogarithmizing the two limits given above.

wek x 196 | L+t
RR,, =e J"T =

In oiher words, the two confidence interval limits are obiained as follows:

RR, = ™ RR, = ¢"%

EXAMPLE:

With the same example as above we get:

RR. . = 25/1000 L g0 |1, 1

+

hhd 0500 NS 10
= 0.2231 £ 1.96 x 0.3742 = -0.5102, 0.9565

The confidence interval for the relative risk RR is obtained as:

RR, , = o 0S10Z 09565 = () 600, 2.60

6.1.2.2 The Exact Method

Exact confidence intervals are calculated without using the normal
distribution approximation. This was described in Chapter 4 in connection with
the general discussion of the calculation of confidence intervals, Exact
confidence intervals were also described in Chapter 5 in comnection with
descriptive epidemiological measures. Exact confidence intervals for measure
of effect are based om so-called conditional probability distributions (see
Chapter 2).
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The probability model used to obtain exact confidence intervals for the
relative risk, when this is defined as the ratio between the incidence rates for
the exposed and the unexposed, is the conditional distribution of the number
of exposed cases, given the total number of cases among the exposed and the
unexposed together.

When the number of cases among the exposed and the unexposed follows
independent Poisson distributions, the number of exposed cases, given the total
number of cases, is binomially distributed. The ‘‘number parameter’” of the
binomial distribution (written as n in Chapter 2) is the total number of cases
among the exposed and the unexposed logether, ie., A = A, + A, The
‘‘probability parameter”” of the binomial distribution (written as p in Chapler
2) is the probability that a case will originate from the exposed population; this
probability is LR/(\R, + F,R,). Given that A, + A, cases occur in all, the
probability distribution for the number of exposed cases is:

LR
A~ ”‘”{”‘1 * Ao ﬂz—ﬁ]
1711 [+ iy}

Exact confidence intervals for the probability parameter in this binomial
distribution are calculated by the same methods as for other binomial
distributions (see the section on this in Chapter 4 and also that on confidence
intervals for cumulative incidence in Chapter 5). The calculations are iterative
and standard programs are used to perform them. The confidence limits
obtained in this way are transformed into limits for a confidence interval for
RR as follows. Let

IlRl
P ==
LR + IR,

By dividing both the numerator and the denominator on the right by
I, RR = I, is introduced into the equation. This is then solved for RR:
R
RR = —°p
Rl(l -p
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By inserting the two confidence interval limits for p into this expression, the
corresponding two limits for RR are obtained.

EXAMPLE:

Let us look at the material in the table:

Exposure
Number of Yes No Total
Cases 4 1 5
Person years 1,000 500 1,500

Five cases in all have thus occurred and the number of exposed cases
consequently follows a binomial distribution with n = A, + A, = 5. A 95%
confidence interval for the probability parameter, p, can be calculated as
0.2836, 0.9950, Seec Table 2 in Appendix 1. By inserting these limits into
the above expression one obtains RR; ,, = 0.198, 99.5.

6.1.2.3 Test-Based Confidence Intervals

Chapter 4 also dealt with the principles for so-called test-based confidence
intervals (see Section 4.3.3). These offer a simple method for calculating
approximate confidence intervals. The formula for the test-based confidence
interval is:

_ pi(t 196
RR, , = RR

Where z is the outcome of a standardized, normally distributed test variable
which tests the hypothesis that RR = 1. The z-value is often obtained by means
of a test which uses the same conditional distribution as the exact analysis, but
where the normal distribution approximation instead of the exact probability
distribution (see previous section) is used. This avoids the necessity to
calculate a variance for the estimator in guestion.

Under the hypothesis that RR = 1, the probability parameter in the
conditional binomial distribution in the previous section is p = R/A(R, + R,).
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The binomial distribution’s n-parameter is n = A. By calculating the mean
value and the variance of the binomial distribution and by using these to
approximate the binomial distribution with the normal distribution, one obtains:

EXAMPLE:

Let us again consider the example where there are 25 cases and 1,000
person years among the exposed and 10 cases and 500 person years among
the unexposed. To calculate a test-based confidence interval we need an
estimate of the relative risk and a value for the test variable, z. The relative
risk is calculated in the usual way:

gk = 251000
10/500

1.250

The test variable is calculated from the mean value and the variance of the
binomial distribution, given the hypothesis that RR = 1. We thus get a
mean value of:

35 x 1,000/1,500 = 23.33

and a variance of:

35 x 1,000¢/1,500 x (1 - 1,000/1,500) = 7.778

, = 25 - 2333
V7778

= (.5988
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The test-based confidence interval will thus be:
RR,, = 1.2500 * 15605588 = (),602, 2.59

This result can be compared with that for the example in Section 6.1.2.1.

6.2 CUMULATIVE INCIDENCE

The comulative incidence is the number who get the disease in relation to
the number who are at risk of getting the disease at the beginning of the
observation period. The basic probability theory model used for analyzing the
cumulative incidence is the binomial distribution, The principles for this have
already been described in the previous chapter in connection with the analysis
of descriptive epidemiological measures. The discussion of the analysis of
measures of effect based on cumulative incidence is a direct continuation of
the discussion in the previous chapter,

Tust as with measures of effect based on incidence rates, the description we
give here will be divided into methods for analyzing difference and those for
ratios. With low probabilities, the binomial distribution will be approximately
Poisson-distributed. Since cumulative incidences are often low, this is a usefu!
approximation procedure, which will also be discussed.

The notations used are given in the table below:

Exposure
Disease Yes No Total
Yes A A, A
No N, -4 N, - A, N-A
Total N, N, N

6.2.1 Difference

Let RD = Cl, = CI, be the measure of effect to be estimated. This is done
by using the corresponding observed value, which is approximately normally
distributed in sufficiently large materials, The variance is estimated:
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var(RD) = var(C‘?l) + var(C]‘u) s

Cr (1 - C1) . ¢l a -chy
N N

1 i}

An approximate 95% confidence interval can now be calculated:

ca -cn . 1 - Ly

Ny N,

RD,, = RD % 1.96 J

EXAMPLE:

Consider the data in the table below:

Exposure
Disease Yes No Total
Yes 25 10 35
No 975 490 1,465
Total 1,000 500 1,500

The difference in the cumnulative incidence is estimated as 25/1,000 -
10/500 = 5.000 x 10, ‘The variance for this estimate is taken as;

25 975 10 4%
1000 ~ 1000 , 500 500

var(RD) = = §.358 x 10

The confidence interval is therefore:

CI, = 5000 x 107 1.96#6.358 x 10 = -0.0106, 0.0206
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6.2.2 Ratio
6.2.2.1 Normal Distribution Approximation

As has been shown above, the relative risk can be formed not only as the
ratio between incidence rates, but also as the ratio between cumulative
incidences. In general, the notation RR is used for the relative risk, irrespec-
tive of the underlying measure of disease occurrence; the reason for this is
that the dimension is always the same and that the relative risk based on
cumulative incidences usually gives a good approximation of the relative risk
based on incidence rates. It is of course always necessary to indicate how a
relative risk has been defined.

The statistical analysis of a relative risk based on cumulative incidence
follows the same pattern as for incidence rates; the important difference is that
the basic probability model for cumulative incidence is the binomial distribu-
tion. Confidence intervals are first calculated on the logarithmic scale, after
which the limits are transformed to the ordinary number scale. We thus get
the measure of effect RR = CI,/CI, which is estimated:

RR = ﬁ - A,
cr, AN,

The logarithm transformation gives:

. A A
nRR = In_ - In_2 = In4, - InN, - Ind, + InN,
N

1 0

Since the number of new cases among exposed and unexposed is assumed to
be independent and since the population sizes, Ny and N, are constants, then:

var(InRR) = var(lnA)) + var(Ind))

The two variances on the right are calculated by using the fact that A, and A,
are binomially distributed as well as the formula from the section on variable
transformations in Chapter 2, which describes how one obtains the variance
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for a logarithmized variable by meeans of the original variance. The variance
of the binomial distribution gives:

Ay =N, Sy - A
vai =N — - —
Nl Nl

and the corresponding for A,. According to the variance formula for logarithm-
ized variables we get:
var(A,)

var(lnA ) =
EA)

and the corresponding for A, By substituting the variance estimate and an
estimate of the mean in this expression for each of the exposed and unexposed
groups respectively, one obtains the following estimate of the variance for the
togarithmized relative risk:

a N -A Ny, -4
var{(InRR) = +
N, A, N, A,

It is educational to note that when A is small in relation to N, i.e., when
(W — A)N = 1, this variance expression concurs with the corresponding one for
the Poisson distribution which was used for the analysis of incidence rates (i.e.,
with 1/4, + 1/A, see Section 6.1.2.1}. We can now calculate a 95% approxi-
mate confidence interval;

RRL,U =¢ nkk I%t‘m(lnﬂk)

EXAMPLE:

Let us consider once again the example from the previous section:
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EN

mRR = n 200 _ 1250 = 02231
107500

The variance estimate is:

1000 - 25 500 - 10 _ 0.1370

var(InRR) =~
1000 x 25 500 x 10

The confidence interval will be:

02231 £ 196 0370 _
RR,, =e¢

= ¢ 04096 = (0,605, 2.58

In other words, RR,, = 0.605, 2.58. If one compares this with the
corresponding example in the section on incidence rates, the close agreement
between the two sets of confidence intervals is demonstrated. This illustrates
the fact that the Poisson distribution can be used as an approximation with low
incidence.

6.2.2.2 The Exact Method

There is no practical, useful method for calculating exact confidence
intervals for the relative risk when it is defined as the ratio between cumulative
incidences (Rothman 1986). When the cumulative incidences are low, however,
the odds ratio can be used as an approximation of the ratio between the
cumulative incidences. In Section 6.4.3 we describe how to calculate exact
confidence intervals for odds ratios.

6.2.2.3 Test-Based Confidence Intervals

In this situation (00, an approximation can easily be obtained by means of
the test-based method. Here, a test variable, z, must be calculated from the
conditional probability distribution for the number of exposed cases. The
number of cases among the exposed and the unexposed are assumed (0 be
independently binomially distributed variables. The number of exposed cases,
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conditional upon the total number of cases, is thus hypergeometrically
distributed, on the condition that RR = 1. The test variable, z, is calculated as:

oA EAY

where
Nl
E(A)=A w
and where
AN - AN N,
var(A)) = ;ﬂ
NN - D

Just as before, the approximate $5% confidence interval is:

Ay (1 & 196/5)
RR,, = RR

EXAMPLE:

With the same data as in the previous example we get:

A, =25 Ay =35 2000 22333
1,500

¥

= 7.596

var(A) = 35 x 1,465 x 1,000 x 500
1,500% x (1,500 - 1)

, = 25 - 2333 _ 0.6059

V159
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The confidence interval will be:
RR,, = 1.250¢ ¢ 19608039 = () 607, 2,57

Again, the results of the different methods can be compared.

6.3 PREVALENCE

Just like the cumulative incidence, the prevalence is a proportion and the
basic probability theory model will therefore be the same for analyses of
prevalence as for analyses of cumulative incidence. The methods described in
previous sections can therefore be directly applied to analyses of relative risks
based on prevalence.

In certain situations prevalence is used for practical reasons even though
the aim is to estimate a ratio between incidence rates. In such instances one
will achieve a better relative risk estimate if a prevalence-odds ratio is
calculated, this is especially the case with common discases. In such situations,
the analysis of the data does not follow the lines discussed above but rather the
methods which are taken up in the following section.

6.4 ODDS RATIOS

6.4.1 Relative Risk, Odds Ratios, and Case-Control Studies

The purpose of a casecontrol study is to estimate the relative risk,
(usually) defined as the ratio between the incidence rate for the exposed and
the unexposed. (See one of the textbooks on epidemiology in the reference
list). The estimate of the relative risk which was used in Section 6.1.2 can be
Tewritten as:

R’R = AI‘JRI = AIIAO
AJR, RIR,

The numerator on the far right is the ratio between the number of exposed and
unexposed cases and the denominator is the ratio between the number of
exposed and unexposed person years. An odds ratio is the ratio between the

MEASURES OF EFFECT FOR CRUDE ANALYSIS 77

number in a particular category and.the remainder. Both the numerator and the
denominator on the far right are odds and the ratio is consequently an odds
ratio. The estimate of the relative risk can thus be written in such a way that
it can be called, in mathematical terms, an odds ratio.

By case-control study we mean a study where a sample from the study
base is used to estimate R,/R,. This sample is the case-control study’s control
group. The material in a casecontrol study can accordingly be said to be
comprised of a series of cases distributed between exposed and unexposed and
a series of controls distributed in the same way. The relative risk is estimated
by means of the odds ratio. The notations in the table below are often used for
case-control studies; the table is also the ¢asiest way of presenting the material:

Exposure

Yes No Total
Cases a b N,
Controls C d N,
Total M, M, T

This simple fourfold table has attracted great interest among biostatisticians
and much has been written on various attempts at analysis (see, for example,
Breslow and Day 1980). Here we can only give an idea of the extensive
literature which exists on the subject.

The following odds ratic is used as an estimate of the relative risk:

alb _ ad

Oor =27 = 84
cld b

For the statistical analysis, the number of exposed cases and the number
of exposed controls are assumed to be independent, binomially distributed
variables with the parameters N,, p,, N, and p,, where p, and p, are the
probabilities of exposure among cases and among controls; the purpose of the
analysis is to establish & confidence interval for the odds ratio:

- plf(l - Pl)
po’(l - pg)
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which is thus the parameter in this statistical mode! which corresponds to the
relative risk,

NOTE: It will be clear from the above that the measure of effect used for case-
control studies is the same as for cohort studies, that is, the relative risk. The
fact that odds ratios are used in case-conirol studies is not because the effect
is measured in a different way but rather because the relative risk is estimated
by means of odds-ratios since the exposure distribution in the study base is
estimated from a random sample.

6.4.2 Normal Distribution Approximation

In the main, the statistical analysis for the normal distribution approxi-
mation follows the same principles as in the previous sections of this chapter,
The estimator is:

OR = ad

b

For the same reasons as before, one must first establish the confidence
interval on the logarithmiic scale, after which the limits of this interval are
antilogarithmized.

Since b= N, - a and d = N, - ¢, we write;

mOR =t —2 _ - __°C
N -a Ny, - ¢

which is assumed to be approximately normally distributed, with the variance:

var(inOR) = _]. + l + _1 +
a b ¢

The variance is obtained by means of the same approximation formula as
was previously used for logarithmized transformations (see Section 2.2.3).

NOTE: The two last terms in the previous equation for the variance refer to the
contribution of the control group to the random uncertainty. When ¢ and d
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increase these two terms move twards zero and the remainder becomes
1/a + 1/b. Note that this is the same equation for variance as that used in the
analysis of incidence rates in Section 6.1.2.1. This illustrates the fact that when
the control group in a case-control study increases, the case-control study
moves closer o the corresponding cohort study.

Thus, an approximate 95% confidence interval for the relative risk in a
case control study can be calculated as follows (Woolf 1955):

OR, ,

EXAMPLE:

Let us assume that a case-control study has given the following data:

Exposure

Yes No Total
Cases 100 50 150
Controls 100 100 200
Total 200 150 350

The following can then be calculated:

or = 100 X100 _ 5000 and mOR = 0.6931
100 X 50
and
varnoRy = 1+ L o L o 1 o gos000
10 30 1 i

Thus, the 95% confidence interval is:
OR,, = e%* 196/00500 _

= gOO312 048 o L0250, 111 = 199 3]0
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NOTE: In Chapter 5 we discussed the problem that the variance for the estimate
can vary according to the parameter value and that it is not entirely correct to
use, at the limits of a confidence interval, a variance which is based on the
mid-point of the interval. Comfield (1956) has suggested a method for case-
control study data based on the normal distribution approximation which takes
this into account. A more general method has also been suggested (Miettinen
1985; Miettinen and Nurminen 1935).

6.4.3 Exact Method

For the type of data we are discussing here, the exact method is based on
the conditional probability distribution for the number of exposed cases given
the total number of exposed. It is worth noting that since the number of cases
and the number of controls are known from the start, all margin sums are
fixed as soon as the total number of exposed is given. It thus follows that just
one of the four cells a, b, ¢ and d determines the other three.

When the numbers of exposed among the cases and controls follow two
independent binomial distributions, the conditional numbers of exposed cases
are distributed according to the non-central hypergeometrical distribution (see
Section 2.3.4). This distribution has, with the notations we use here, the
probability function:

E[N.‘ N".}OR"
T M

When OR = 1 this simplifies to the usual hypergeometrical distribution,
since the OR — expressions cancel out and singe:

() el R

This is used to calculate the P-value on the assumption that the null
hypothesis is correct. To calculate the exact 95% confidence interval one uses
the probability distribution with the non-central hypergeometrical distribution:
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the P-value function is calculated from the observed number of exposed cases
and set at 0.025, in order to obtain the confidence level 95%. The confidence
intervat for OR is established iteratively by successively testing various OR
values until the correct probabilities, that is 0.0235, are obtained for the lower
and for the upper limit. A great many calculations must be carried out for
each iteration and a large number of iterations can be necessary. One
therefore needs a program for such calculations.

EXAMPLE:

Assurne that the stady in the previous example was only one tenth the
size:

Exposure

Yes No Total
Cases 10 5 15
Controls 10 10 20
Total 20 15 35

The estimate will still be 2.000, since:

ok = 19%10 _ 50600

10x5

The exact 95% confidence limits can be calculated as:
OR,, =0414, 10.2
To study the appropriateness of the normal approximation it can be of

interest also to calculate the confidence interval by Wooll's method,

which was described in the previous section. With this method, the 95%
confidence interval is:

OR,, = 0.500, 8.00
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6.4.4 Test-Based Confidence Interval

Approximate confidence intervals for data from case control studies can
also be calculated by the test-based method. The formula for this is, just as
before:

A1 196G
OR,, = OR

where the odds ratio is calculated in the same way as above and where 1.96
specifies the 95% confidence level. The test variable z should derive from a
test of the hypothesis that OR = 1. By basing this test on the same conditional
distribution that was used for calculating the exact confidence interval one
avoids the need to estimate the variance of the point estimate (or its logarithm).

Let us once again look at the table giving the basic material of a case-
control study:

Exposure

Yes No Total
Cases a b N,
Controls I d N,
Total M, M, T

As was mentioned previously, the conditional probabilities (given the total
number of exposed M) follow the hypergeometrical distribution under the
assumption that OR = 1, A test can therefore be based on this distribution,
However, the aim is to achieve a method for calculating confidence intervals
which can be used with large materials. For this reason, the hypergeometrical
distribution is approximated with the normal distribution. The mean value and
the variance of the hypergeometrical distribution are needed for this:

E( ) MINI
a) = —

T
var(a) = MIMONINO

THT - 1)
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The test variable needed for the confidence interval is calculated as:

, . G- E@

yvar(a)

EXAMPLE:

The data from the example in the section on the normal distribution
approximation gives here:
200 x 150

- 100 E(ay = 200 X150 _ g5y
¢ @ 350

and
var(a) = 200 x 150 x 150 x 200 = 20.99
3507 x (350 - 1)
So:
;=100 - 8571 _ 53449

V2099

The confidence interval is thus:

OR,,, = 2000 £ 1965118 = 129, 309

Again, the results of the different methods may be compared.



Chapter 7

MEASURES OF EFFECT IN
STRATIFIED ANALYSIS

“'Aristotle believed thar matter was continwous, that is, one could divide a
piece of matter info smailer and smaller bits without any limii: one never came
up against a grain of matrer that could not be divided further.”’

Hawking SW: A Brief History of Time. From the Big Bang to Black Holes.
Bantam Books 1988.

7.1 PURPOSE AND GENERAL PRINCIPLES

By stratification in connection with the analysis of data we mean that a
material is divided up into strata, according to one or more variables other
than exposure and disease. Stratification can also be performed when selecting
individuals for a study. The individuals are then distributed over a number of
strata in a way that has been determined in advance. However, by stratification
we mean here, stratification in connection with the analysis of data.

7.1.1 Confounding and Effect Modification

Stratification is performed for two completely different reasons: to evaluate
and possibly control for confounding by the stratification variable or, 10
analyze effect modification by the stratification variable. These two concepis
are often confused but are entirely different (Miettinen 1974). Confounding is

85
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a systematic error {or bias} which may or may not be present in a particular
study, while effect modification is connected with how different factors interact
to cause disease. A detailed discussion of the concepts of confounding and
effect modification would be beyond the scope of this book, however, a brief
description should be of value for what follows:

By confounding we mean that some risk factor, apart from the exposure
under study, is distributed differently among exposed and unexposed. One
consequence of not controlling for this is that exposed and unexposed
would differ in disease occurrence independently of any possible effect the
studied exposure may have. In each stratum the stratification variable
assumes the same value for both exposed and unexposed. Each stratum-
specific estimate is therefore free from confounding by the stratification
variable, at least within the limits of the chosen categories for stratification.

EXAMPLE:

If the exposed group contains more men than women, this will lead to a
difference in the incidence of myocardial infarction even if the studied
exposure does not have an effect. (The incidence of myocardial infarction
is higher for men than for women.) If exposure increases morbidity then
the differences in gender distribution causes the effect to be strengthened
and the result is a combination of the effect of the siudied exposure and
the effect of being a man, In this example, gender is a confounder.
However, this can be controlled for by stratification by gender. This
involves the effect of the exposure being estimaled separately for men and
women, Both of these stratum-specific estimates are free from confounding
by gender.

By effect modification we mean that the effect of the exposure differs
between the different strata,

EXAMPLE:
If the relative risk for a particular exposure and myocardial infarction is 2.0

for men and 4.0 for women then an effect modification of gender is
present.
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In-the stratified analysis of data the effect can be estimated separately for
single strata and the effect modification can accordingly be studied by
comparing strata.

Effect modification depends on how the effect of the exposure is measured,
Effect modification can be present in a particular sitzation if the effect is
measured as the ratio between two incidence rates but be absent if the effect
is measured as the difference between the incidence rates, and vice versa.
Effect modification is consequently a concept which is rather of a statistical
interest. If one wants to indicate that one variable influences the effect of
another one, in a biological sense, the terms synergism and gntagonism are
used instead (Rothman et al. 1980). The concept interaction is used alterna-
tively in the meaning of effect modification and synergism as they have been
defined above and we will avoid it in this presentation.

EXAMPLE:

Let us assume that the incidence rates for unexposed women and men are
1.0 and 2.0 per 1,000 person years and 2.0 and 4.0 for the exposed. The
relative risk for both men and women is then 2.0 and no effect modifica-
tion is present. If, on the other hand, the effect is measured as the
difference in incidence rates, these will be 1.0 per 1,000 person years for
women and 2.0 per 1,000 person years for men; when the effect is
measured in this way gender is thus an effect modifier.

This chapter will now describe how stratification can be used to control for
confounding. We will look at instances both with and without effect modifica-
tion. Analysis of synergism and effect modification will be discussed separately
in Chapter 12,

7.1.2 Estimating a Uniform Effect Versus Standardization

When data are stratified in order to control for confounding there are, in
principle, two conceivable outcomes. The first is that no effect modification by
the stratification variable is present. Each stratum specific estimate of the effect
is thus an estimate of one and the same value, i.e., of an effect which is the
same over all strata. The purpose of the analysis is to use the information from
the various strata in the best way for estimating the uniform effect.

The other possible outcome is that effect modification is present. In this
case, there is no common effect to be estimated. One possible course of action
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is then to look at the stratum specific values or some function which describes
how the effect varies over strata. One could also carry out a weighing of the
stratum specific estimates, even though the effect is different in different
strata. The latter procedure is often used, especially in descriptive contexts,
when large amounts of data are to be analyzed. However, it is inevitable that
the result obtained depends on how the weighing is performed, i.e., on which
weights are chosen. A weighing of this type is called standardization.
Methods for estimating a uniform effect and standardization will be discussed
separately in the following two sections.

7.2 ESTIMATING A UNIFORM EFFECT

7.2.1 General Principles

With analyses of nonstratified data there is seldom any doubt about how
the estimation should be done — the underlying theoretical value is estimated
with the corresponding observed value, When information from different
strata is combined to give a common estimate, however, there are various
possibilities. One of these is to calculate a simple mean for the stratum
specific estimates. A more attractive alternative is to give greater weight o
strata with greater precision, but the question is then how this is to be done.
We will first discuss generally three principles for how this can be done and
then how these principles can be specifically applied to different types of
epidemiological data.

7.2.1.1 The Maximum Likelihood Method

The maximum likelihood method, or ML-method, is a general statistical
method for estimation. Here, one chooses as estimate the parameter value
which has the **maximum likelihood’" for the observed outcome. According
to general statistical theories, the ML-method gives estimates which have
good statistical properties: ML-estimates have in general the smallest possible
variance, which means that the material is used in such a way as to obtain the
greatest possible precision. ML-estimates are therefore said to be, in statistical
terms, effective. Furthermore, ML-estimates have, as a rule, a mean which
coincides asymptotically with the estimated parameter value. This means that
if the size of the study could be increased beyond all the limits the ML-
estimate would be the same as the parameter value. The ML-estimates are
said to be consistent. Finally, when the materials are sufficiently large, ML-
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estimates are approximately normally distributed, These qualities mean that
cne generally aims to use maximum likelihood estimates. For a discussion of
the maximum likelihood method we refer the reader to, for example, Breslow
and Day (1980).

EXAMPLE:

A simple example of an ML-¢stimate is the estimation of the incidence
rate when the number of cases, A, and the number of person years, R, are
known. Just as before, A is presumed to be Poisson distribuled with the
parameter f x R, where I is the underlying, theoretical incidence rate to

be estimated. The so-called likelihood function, i.c., the likelihood of the
observed outcome, is:

_ e-m(lR)A
= ——=
L{i} 1s a function which depends on /, i.e., the parameter to be estimated.
The ML-estimate of J is the value for which L{f) assumes its maximum
value. Usually, a likelihood function is maximized by establishing the
maxiroum of its logarithm, which often is simpler; £({/) and InL{l} have
maximum for the same value of I, To find the maximum of the likelihood
function in this example, L(J) is first logarithmized, which gives:

Inf(h = -IR + AInfR + constant

The third term is constant in the sense that it is not dependent on I. To
maximize this expression, the derivative with respect to f is taken and the
50 obtained expression is set equal to 0. This equation is solved for [:

Aol _ g+ AR 920
a IR

This gives an ML-estimator of [:

A

A
Ly =-§

'I:‘hat is, the number of cases divided by the number of person years at
risk. This estimate is consequently the same as the one used in Chapter
5, where, however, we did not refer to the ML-method. For simple
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situations such as this, the intuitively reasonable estimator agrees usually
with the ML-estimator. In the situations which we look at in this chapter,
the mathematics is more complicated and the maximization of the
likelihood equation obliges one (o use iterative methods (see below).

The maximum likelihood method also offers a principle for estimating the
variance; the second derivative is taken of InL(/) and the expression
thereby obtained is inverted and multiplied by —1. One substitutes the
ML-estimate in the resulling expression, whereby the variance of the
estimate is obtained:

i—R +£ =—_A_
df I f?

By inverting, changing symbols and substituting A/R for I, one obtains:

; A _f
var(l,,) =~ =7 "z

This estimate also agrees with the one presented in Chapter 5.

The way in which one achieves an estimate using the maximum likelihood
method varies according to the situation. An iterative method is necessary
when estimating a common effect for stratified data. In other words, a starting
value is first calculated which then forms the basis for calculating a further
value, which in tumn is used for further calculations, and so on, until a new
value is sufficiently like its predecessor for one to be able to stop the process.
These iterative procedures make the calculations complicated and difficult to
perform. One advantage is that this method does not require large numbers in
individual strata.

The iterations can be carried out in various ways. For many specific
situations, including the ones discussed in this chapter, one can establish
special algorithms to perform the iterations. The ML-estimate can, however,
also be obtained by using one of the multivariate methods (see Chapter 12);
this means that the ML-estimate and corresponding variance can be obtained
by using one of the general computer programs used for multivariate analyses.
Programs of this kind are now also available for personal computers. We will
discuss this further in Chapter 12,

For a detailed discussion of specific algorithms for maximum likelihood
estimates for stratified epidemiological material we refer the reader to
Rothman (1986).

MEASURES OF EFFECT IN STRATIFIED ANALYSIS 91
7.2.1.2 Pooling -

Pooling is a weighing together of the stratum-specific estimates which
approximately minimizes the variance of the estimator; the weights are chosen
in proportion to the inverted value of the variance for each stratum specific
estimate. If these variances were known, the method would agree with the
maximum likelihood method; however, the variances are not known and must
be estimated. This means that the method can only be used when each stratum
is big enough to provide a stable variance estimate.

Let us, to start with, consider a situation in which the effect is measured
by the difference in the occurrence of disease between exposed and unexposed.
Using the same symbols as before with the addition of an index i to mark the
stratum in question, one obtains a pooled estimate as:

1

= Rbr
RD = var(RD )
poot
1
var(RD))

The division is carried out {0 guarantee that the sum of the weights is 1.
The variance for this estimate can be estimated by repeated used of the
variance formulae for linear combinations, provided that the weights are
understood as constants (see Section 2.2.3):

Yy [;A]jvar(@,)
var(RD var(RD,)

Pw!) = )
{): _f
varn(RD)
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From the estimate and its variance a confidence interval can be calculated
on the assumption that the estimate is approximately normally distributed. This
assumption is reasonable with sufficiently large materials. The 95% confidence
interval will be (see Section 4.3.3):_

RD,, = RD,,, + 196var(RD )

Now let the measure of effect be the relative risk RR. Pooling is often used
here, together with logarithm transformation (again, see Section 4.3.3), the
confidence interval will be:

RRL,U =elnﬂkw,tl. var(InRR, )

This principle can be used with all the different types of data which were
discussed in the previous chapter. The stratum specific estimate and its
variance will, however, vary in form depending on the situation in question,
In principle, the results for non-stratified data (Chapier 6) are used in each
stratum together with the formulae described above. In the following sections
we will describe the specific uses for each of the situations in question,

7.2.1.3 The Mantel-Haenszel Method

The third method for obtaining a combined estimate is the Mantel-Haensze!
estimator, not to be confused with the Maniel-Haenszel test; these were both
originally presented in the same article (Mantel-Haenszel 1959). The Mantel-
Haenszel estimate was intended for use with data from case-control studies but
analogues for cohort studies have also been obtained (Rothman & Boice 1982;
Tarone 1981).

Using the same symbols as before, but with the addition of the subscript
i to indicate the stratwm in question, the Mantel-Haenszel estimator for the
case-control study is:

" a /T,
oy - BT

Y b.c/T,
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Note the similarity 1o the cotresponding estimator for non-siratified data.
This expression can, just like the pooled estimate, be written as a weighted
mean, yet using different weights:

" w.OR. b.c
OR =E ' with wj=;

uH T“’i T,

The weights ate proportional to the size of the stratum (divided by bo/T)
and are accordingly also at least approximately proportional to the precision
of the stratum-specific estimate. The Mantel-Haenszel estimator is a weighing
procedure which, when it was presented, was based largely on intuitive
qualities. Statistical analyses have since shown that under the null hypothesis
the weights are proportional to the inverted variance; that is, the Mantel-
Haenszel estimate is optimal under this condition. And analyses have shown
that this method generally has good statistical properties (Breslow & Liang
1982). Unlike the pooling discussed above, this method does not need large
numbers in each individual stratum; it can actually be used even if each
stratum consists of only one case and one control {See the note below about
matched case-control studies). Furthermore, the calculations performed when
using this method are uncomplicated, in part because no iterations are
necessary.

The confidence inlerval for the Mantel-Haenszel estimate can be deter-
mined by using the test-based method. The test variable is obtained in this case
by the Mantel-Haenszel test. This is a direct development of the test which was
described in connection with test-based confidence intervals in Chapter 6. The
observed number of exposed cases, together with their mean and variance,
given the total number of cases as well as the distribution across exposed and
unexposed of the number of cases and controls together, are calculated
separately for each stratum and are then added together across all strata. As
with the results for non-stratified data, it is the case that the total number of
exposed cases is approximately normally distributed with materials that are
sufficiently large. Using the same symbols as before:

7= Eai - EMliNliﬂi
JE N NyM M,

TAT, - 1)
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NOTE: If z is squared, a variable is obtained which under the null-hypothesis
is chi-square distributed with 1 degree of freedom and can be used for a chi-
square lest. This test differs from other chi-square tests of stratified data in
only having one degrec of freedom. The Mantel-Haenszel test has the
advantage of being particularly sensitive when several sirata all indicate that
there is an excess risk in one and the same direction. In other types of chi-
square tests for this type of data, the difference between the observed and the
expected number of cases is squared before totalling. For this reasom, the
direction of the differences between the observed and the expecied number
cannot be taken into account. A test of this type can give a significant result
even if the differences between the observed and the expected number go in
different directions in different strata. Another important characteristic of the
Mantel-Haenszel test is that it does not require large numbers in each
individual stratum, only when they have been added together over all strata.
Also the Mantel-Haenszel test can be used even when each stratum contains
only one case and one control,

With the aid of the above estimate and test variable a 95% test-based
confidence interval is obtained, as before, by:

_ (1 E 1968
ORMH.L.U = ORMH

For a long time there was no suitable variance estimator available for the
Mantel-Haenszel estimator and the confidence interval was then determined
mainly by the test-based method. However, a method does now exist, and the
confidence interval can therefore also be established in the usual way
{Greenland & Robins 1985; Robins et al. 1986). Since the Mantel-Haenszel
method estimates the relative risk, logarithm transformation is used as usual to
obtain a better approximation of the normal distribution. The variance estimate
takes different forms depending on the type of data in question. These forms
will be presented in the next section, together with other specifications.

7.2.1.4 Exact Confidence Intervals

In the previous chapter about the analysis of non-stratified data, we also
described exact methods for determining confidence intervals. Such methods
are also available for stratified material. However, these are complex and are
not widely vsed. We refer the reader to Rothman (1986) for a description of
these methods.
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7.2.1.5 Applications v

The methods described above require the underlying measure of effect 1o
be the same for all strata — in other words, that there is no effect modifica-
tion. This must consequently be evaluated before the information from the
different strata are combined to form a common estimate. Unlike the situation
when the P-value was described (Section 4.1.3), this is one where a decision
really must be reached, i.e., whether or not the information from individual
strata is to be combined to give a single estimate. It is thus reasonable to
imagine that this evaluation is based on a statistical test of whether the stratum-
specific values are the same or not (Zelen 1971; Mantel et al. 1977). As arule,
however, the number of individuals in each single stratum is so few that the
ability of this kind of test to reveal the occurrence of an effect modification is
limited. This means that the decision about whether to estimate a uniform
effect will be a highly pragmatic one. In practice, data is combined to give a
commen effect if there are no strong reasons for not doing so. Such reasons
can cither be the patiern which the stratum-specific estimates demonstrate or
subject matter knowledge. Above all, when multivariate methods are used,
statistical tests are also used in order to decide whether the effect can be
regarded as constant across sirata. (See also Chapter 12.)

In the next section we will describe how the principles presented above are
applied in the common epidemiclogic situations. The greatest difference
between these various situations is the difference in the variance expression.
In other respects, more or less the same procedures will be repeated time and
again,

7.2.2 Incidence Rate

With the same symbols as before and with an index { to indicate the
stratum in questicn, the symbols for data with cases of disease and person
years at risk are:

Exposure

Yes No Total
Cases Ay Ay A;
Person vears R; Ry R,
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Let us begin with pooling. The resulis from Chapter 6 can be applied (o
each stratum. For stratum i the difference between two incidence rates is
therefore estimated as:

This estimator has a variance which, for sufficiently large materials, can be
taken as (see Section 6.1.1):

Y Al:‘ Auf
var(RD) = ==
Rll RN

The pooled estimate is calculated in the ways described in the last section.
The estimator will be:

Y- RD,
iﬁ + A
. RL R}
RD,, = S
Av A
R} Ry

Also in accordance with the results in the above section, its variance can
be estimated as:

var(RD_ ) =

A, Ay

1i

oz p2
R; Ry

An approximate 95% confidence interval is calculated by substituting the
estimate and its variance in the formula:

RD, ., ,=RD. , * 1.96varRD,,,)
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To analyze the ratio between two incidence rates one calculates the relative
risk in stratum i

Just as before with the normal approximation of relative risks, the logarithm
transformation is used. The variance for the logarithm of the above estimator
is (see Section 6.1.2):

var(mRR) ~ L + L
A A,

1

The pooled estimator is obtained by pooling the logarithms of the stratum-
specific estimators with weights proportional to the inverted variances. An
estimator of RR is then obtained by exponentiating. The pooled estimator is
thus:

Y 1 R
1
— ¥
Y A,
Rk, = exp

i
™
1
1
1

1 1
—_—t
| Au Ao«'

Since the confidence interval is calculated on the logarithmized scale one
needs the variance for the logarithm of the RR-cstimate. This, again, is the
inverted value of the denominator in the estimate:

1
1
1 1
+

var(]nRle) =

An approximate 95% confidence interval is calculated, as before, by using
the normal distribution approximation on the logarithmized scale, after which
the limits are antilogarithmized to the original number scale:
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RR

ooty = SXPIDRR, , + 1.96 yvar(InRR_, ) ]

Let us now continue with the Mantel-Haenszel method, As was mentioned
earlier, the original version of the Mantel-Haenszel estimator was for data from
case-control studies (Mantel-Haenszel 1959). A version for incidence rates was,
however, presented later (Rothman and Boice 1982). Using the same symbols
as above, this estimator is:

Rk = zAlfRO!'!Ri

MH

EADE Rli fRi
An approximate 95% confidence interval can be simply established as
follows, by means of the test-based method:
i (L & 196f1)
RR, v = RRuy

The necessary z-value is calculated by means of a version of the Mantel-
Haenszel test, adapted for data with incidence rates. This version uses the
method for calculating a test variable for incidence rate data based on the
binomial distribution, (see Section 6.2.3.4), as well ag the method by which
one adds together across strata, taken from the original Mantel-Haenszel test
(see Section 7.2.1.3);

R,
A= LA EA) = XA Y

_ Ry Ry
var(A)) = EAiTi[l T@T}

Just as before, the z-value is obtained as:

A - EA
g = (4

1fvar(A1)

and
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The value for z obtained in this way is used to determine the test-based
confidence interval.

A confidence interval can also be calculated in the usual way by using an
estimate of the variance of the MH-estimate (Greenland & Robins 1985). For
this kind of data, the variance is calculated as:

E AR ”RO'JRE

Var(lan ) =
v [} AR RIY. AR, /R]

The confidence interval is calculated, as before:

RR,,. , = expllnRR,, + 1.96/var(InRR,,,) ]

There are various specific algorithms which can be used to determine the
maximum-likelihood estimate for this kind of data (Breslow & Day 1988).
However, ordinary multivariate methods can also be used. See Chapter 12.

EXAMPLE:

Let us consider a population distributed over two sirata:

Stratum 1 Exposure

Yes No Total
Number of cases 30 5 35
Number of person years 3,000 1,000 4,000

RD, = 500010 var(RD)) = 8.333x10°

RR, =2.000 var(InRR) =~ 0.2333
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Stratum 2 Exposure
Yes No Total
Number of cases 30 225 255

Number of person years 1,000 9,000 10,000

RD, = 5000x10* var(RD,) ~ 3.278x10°

RR, = 1200 var(InRR,) ~ 0.0378

By using the methods presented in this section the following analyses can

be carried out:

Direct pooling gives:

1 1

- S5D00X107 + —__—_ 5.000x107?

% _ 8.333x10°¢ 3.278x107°

RD =
poo 1 1
+
8.333x10° 3.278x107
= 5.000x1073

- 1 _

var(RD ) = : - = 6.644x10¢

+

8.333x10°  3.278x107°
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3

RD, v = 5.000x107 £ 1.96 ¥6.644x10° =

= -5.21x10%, 1.01x1072

1 1

% 1n 2.000 + x In 1.200
RR = exg 0233 0.03778 _
poct 1 1
+
0.2333 003778
= g0 = 1289
N 1

ar(InRR_ ) = = 0.03251
var(nRR_ ) I 1

02333 003778

RR., , = explin 1.289 + 1.96 y0.03251] =

pﬁo
= ¢ -0M9SL 0803 = () 905, 1.84

The Mantel-Haenszel method gives:

_ 30x1000/4000 + 30x9000/10000

. = 1.314
5x3000/4000 + 2251000710000

101
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var{ln Rﬁuﬂ) =

- 35x3000x 1000/40007 + 255x 1000x9000/100007 -
(30x1000/4000 + 30x9000/10000)(5x3000/4000 + 225x1000/10000)

= 0.03259

RR,,, , = exp[ln 1314 + 1.96 y0.03259] =

g P00 0628 = 0,922, 1.87

_ (30 + 30) ~ (35%x3000/4000 + 255x1000/10000)
35x3000/4000x1000/4000 + 255x1000/10000x9000/10000

= 1.519

The test-based confidence interval is:

RR

LY = 13141.1 196/1.519 _ 0.924! 1.87

The maximum likelihood method would give:

RR,, =1298; var(InRR 0.02959

w) =

RR,,,, = 0927, 1.82

MEASURES OF EFFECT IN STRATIFIED ANALYSIS 103

7.2.3 Cumulative Incidence

We will now go through the same methods as in the previous section, but
this time adapted for studies based on cumulative incidence. The notations used
for the siratified analysis of cumulative incidence are the same as for the
analysis of cumulative incidence with non-stratified material (see Chapter 6),
however, again, with the addition of a subscript / which specifies the stramum
in question. For stratum { the following symbols are used:

Exposure
Yes No Total
Diseased Ay Ay A;
Not diseased N, - Ay, Ny — Ay N, - A
Total N, Ny N;

Let us again start with pooling. In stratum ;i the effect is estimated;
ij = dli - C}O‘

when it is defined as the difference between two cumulative incidences. Its
variance is estimated:

CL1 -€1) Il - C1)
N 1 NOf

var(RD) =

all in accordance with the results in the previous chapter (see Section 6.2.1).
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The pooled estimator of the difference is thus: and the variance for the logarithm.of this estimator is calculated:
R . N, - A, N, - A,
_ ! — x RD, varunRR,.)r:.u,‘_h_ﬂL
Ciy - i) N Ci(l - CL) Ny Ay Ny; Ay
Rb - Nli NOF
poct I . .
— — _ The pooled estimator is consequently:
Cr(1 -cry <ra -cry
* % 1Rk
Ny Ny RR ,=¢ ™=
2 N A 1 N A ij?'
and the variance is: Sy 7% 1, Mo 7% 1
‘N'u' Ah‘ NG:' Al]r
expl
E 1
var(Rf)mr) = ll N, -4, L . N, - A, L
= -~ ry -~ Nii Alf Nﬂi Aﬂf _
CL(1 - ) CL( - CL) )
Nll‘ NDJ
and its variance is:
4 1
An approximate 95% confidence interval is calculated as: var(InRR ) ~ T
N, -A; 1 . Ny - Ay 1
RD_mu_,y = Rbpooj’ * 196#"“"(5'?),,”,) Ny Ay Ny, Ay

The principles for analyzing the relative risk for cumulative incidences are By means of estimate and variance the confidence interval is calculated as

also the same as before. Again, the results in the previous chapter form the follows:
basis for the stratum-specific expressions (see Section 6.2.2). The relative risk N _
in stratum § is estimated: RR, ., v = elltp[lnRR'le t 1.96yvar(nRR_ 1
RR, = —
Cly The Mantel-Haenszel method is used in the same way as for incidence

rates, except that the number of person years is replaced by the number of
persons (Tarone 1981):
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R'R = E AuNo.'fNi

MH L YT

E AUJ’ Nlil NJ'

An approximate confidence interval can be calculated by the test-based
method, in which case the test variable is obtained by using the Mantel-
Haenszel test. The test, but not the estimator, is the same as for case control
studies, This gives;

A - EQA)

1‘/ var{A,)

where

A, = ZAIJ’ E(A) = EAile/Ni

and

AN ~ AN, N.
R
r I. i -

With the aid of the z-value from the Mantel-Haenszel test the test-based
confidence interval is determined as follows:

- Rklsl.%’z

MH

RR

MITLL

A confidence interval can also be calculated by using an estimate of the
variance of the logarithm of the Mantel-Haenszel estimate. For cumulative
incidences this variance is (Greenland and Robins 1985):
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E (AN Ny, - A‘1;"1c).'1\(i)f"vr!1

r(InRR,,,) =
va MH [E ALN,IN] [E AN IN]

By using this variance, the confidence interval is calculated as:

RR,,,, ., = expllnRR,,, + 1.96 \/var(nRR,,.) ]

MHLU

To calculate the maximum-likelihood estimate, one can, again, either use
an algorithm especially devised for this particular purpose or one of the
siandard programs used for multivariate analyses, chiefly logistic regression
(see Chapter 12).

EXAMPLE:

The tables below describe a population divided into two strata.

Stratum 1 Exposure

Yes No Total
Diseased 30 5 15
Not diseased 2,970 995 3,965
Total 3,000 1,000 4,000

RD, = 5000 x 107 var(RD,) = 8.275 x 107

RR, = 2000 var(InRR,) = 0.2320
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Stratum 2

Exposure
Yes No Total
Diseased 30 225 255
Not diseased 970 8,775 0,745
Total 1,000 9,000 10,000

RD, = 5000 x 10® var(RD,) = 3.181 x 107

RR, = 1200 var(InRR,)) = 0.03667

With the help of the methods inroduced i this section the following
analyses can be performed:

Pooling gives:

~

RDMI =

1

_ X5.000x107 + 1
- 8.275x10°¢

3.181x10°¢
1 1
+

8.275x10*  3.181x10°®

X5.000x107*

= 5,000x107

var(Rf)m,) = i 1 T
+
8275x10°  3.181x10°

= 6.567x10¢
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o

RD, ;. , = 5.000x10” + 1.96Y6.567x10° =

= -2.26x10°%, 0.0100

02;20 1 sin 1.200
RR . =¢ : =
poci — X T . 1
0.2320 0.03667
=g 0.3520 o 1287
. 1
var(InRR,, ) = : l = 003167

02320 003667

RR.. . ;= explin 1.287 + 196 /D.03167) =

= @ -009646, 06011 = (R, .82

The Mantel-Haenszel analysis gives:

- 30x1000/4000 + 30x9000/10000 _ | 5.,
L S3000/4000 + 225x1000/10000

var(InRR,,) =

(35x3000x 1000) - 30%x5%x4000)/4000* +
. (255x1000x9000 - 30x225x10000)/10000*

- (30x1000/4000 + 30>0000/10000)<(5%3000/4000 + 225%1000/10000)

= 0.03168
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RR,,., , = explln 1314 + 1.96/0.03168 ] =

= ¢ 0TLORIY = 0927, 1.86

(30 + 30) - (35x3000/4000 + 255x1000/10000) _ | s

J 3000 1000x35x3965 + 1000x9000x225%9745
400072000 - 1) 10000410000 ~ 1)

with the test-based confidence interval:

RRy, , = 1.3141 £ 19615% = 0977, 186

The maximum likelihood results are:

RR,, = 1307, var(InRR,,) ~ 0.03045

RR,,,, = 0928, 184

7.2.4 Prevalence

As has been pointed out earlier, the incidence rate on the one hand and the
cumulative incidence and the prevalence on the other, differ in that different
fundamental statistical models are used. By using the same model for both the
cumnulative incidence and the prevalence the analyses will be wholly analogous.

In the previcus chapter it was, however, pointed out that if the purpose is
to estimate the relative risk defined as the ratio between incidence rates, and
if the prevalences are used wholly for logistical reasons, a better estimate is
obtained if the prevalence-odds ratio is used. This improvement is of little
importance except with very high prevalences. If the prevalence-odds ratio is
0 be used, then the prevalences should not be analyzed like the cumulative
incidences, but rather like odds ratios, in accordance with the principles set out
in the following section.
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7.2.5 Odds Ratio ’

The odds ratio is used to estimate the relative risk for data from case-
control studies. The same methods are sometimes used in certain cases when
analyzing prevalence data. The symbols used are the same as those in the
previous chapters, again with the addition of the subscript i to indicate the
stratum in question:

Exposure

Yes No Total
Cases a; b, Ny
Controls o d; Ny,
Total M, M, T,

Let us again begin with pooling. The stratum-specific estimate is (see
Section 6.4.1):

-

a.d.
OR =_"~ "
b c

The analyses are performed by logarithm transformation and the variance
for the logarithm of the stratum-specific estimate can be estimated (see Section
6.4.2) as follows:

~ 1 1
InOR) =~ — + . +
var( f) m 5

1

+

7

nf—

A pooled estimate is obtained, exactly as before, by weighing with the
inverted variances:
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= exp!

The variance estimate will be:

- i
var(nOR,,,) = 1
T
T,

i
T

1 1
—_ 4 o+
a, c;

An approximate 95% confidence interval is calculated as follows:

= o0k, £ 196 JrertnOR,)

OR,, . v
As we saw in the introductory section (7.2.1), the Mantel-Haenszel estimate
of an odds ratio is obtained as:

. ZadIT,

R
O EiCiITf

and a test variable, which can be used to determine a test-based confidence

interval, is obtained as;
_ Eai - EMHNLI‘”:'

4
ENI'NDIMI'MOi
r i
THT, - 1)
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With these results, a 95% test-based-confidence interval is obtained as follows:

‘o 1+ 196/

ORyyy = ORyy

There is also a version of the variance estimate for the Mantel-Haenszel
estimator for odds ratios. This is (Robins et al. 1986):

R, . Z(S +0R) 208,

NOR,,) = et
vﬂr( HH) 2(ER‘)2 ZER,-ES; Z(ES’R)Z

where

Again, a 95% confidence interval can be deterrnined by means of the
logarithi transformation:

ORyyp = explnOR,,, * 1.96y/var(InOR,,,) |

A maximum-likelihood estimate of the common effect when using odds
ratios car, just as for other sorts of data, be obtained cither by means of a
special algorithm or by using a multivariate model. The main multivariate

model used kere is the logistic regression.

EXAMPLE:
The tables below show the material from a case control-stady. The data is

divided into two strata:
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Stratum 1  Exposure

Yes No Total
Cases 30 5 35
Controls 30 10 40
Total 60 15 75

OR, = 2000 var(InOR,) = 0.3667

Stratum 2 Exposure

Yes No Total
Cases 30 225 255
Controls 10 90 100
Total 40 315 355

OR, = 1.200 var(InOR,) = 0.1489

Pooling gives:

! 2000+ 1
03667 0.1480

In 1.200

pool i T
03667 | 01480

= %% = 1.39]
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var(nOR ) = = 0.1059

1
+
03667  0.1489

OR, v = exp(ln 1.391 £ 1.96y0.1059] =

= gxp 0307 0% = (3735, 2.63

The Mantel-Haenszel method gives:

OR. = 30x10/75 + 30x90/355 _ | 399

ME T 530775 + 225x10/355

var(ankMH) =

_ (30+10)/75x30x10/75+30+90)/355x30x90/355
2(30x10/75+30%x90/355)

(30+10)/75x5x30/75+(5+30)/75x30x10/75 +
. (30+90)/355%225x10/355 «(225 +10)/355x30x90/255 |

23010775 +30x00735 5 )(5x307 15 +225x 10/355)

. (5+30/75x5x30/75+225+225x 103558 _ 1 1066
2(5%30/75+225x10/355)°

115
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OR,,,, , = explln 1.392 £ 1.96y0.1066] =

= ¢ VIO 2 (734, 2.64

(30+30) - (35x60/75+255x40/355)  _ 1 10

J 60x15x35x40  40x315x255x100
T5(15-1) 355%(355-1)

Thus, the test-based confidence interval is:

OR, .y = 1.3921 £1991922 = (738, 263

The maximum-likelihood method gives:

-

OR,, = 1401 var(in OR,,) ~ 1.087

OR,,, , = 0.734, 2.67

NoTE: In case-control studies, the control group is sometimes matched.
Accordingly, for every case one or sometimes several controls are chosen
which, in certain specific ways, resemble the case. To avoid systematic errors
in the estimation of the relative risk, matched case-control studies must be
analyzed with cases and their corresponding controls together. The analysis
is conditioned on the outcome for each set of cases and corresponding
control or controls (Miettinen 1985; Rothman 1986). One way of carrying
out the analysis is to regard the material as stratified by defining each case
and corresponding control as a stratum and using the Mantel-Haenszel
method. Let us lock at a situation where there is one control per case. Here,
cach stratumn consists of exactly one case and one control and there are only
four possible ouicomes. See the table below. The table also shows, for each
of the possible outcomes, the contribution to the numerator and denominator
of the Mantel-Haenszel estimator:
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Exposure

Yes No Yes No Yes No Yes No

Cases 1 0 1 0 0 1 0 1
Controls 1 0 0 1 1 0 0 1
ad/T 0 1/2 0 0

befT 0 0 112 0
Number of r 5 H u

tables

The Mantel-Haenszel estimator is thus:

X Tad/T,
ORu = vy =

=rx0+sxl}‘2+rx0+ux()=s
>0 + sx0 + /2 + ux0 ¢

It can, similarly, be demonstrated that for the Mantel-Haenszel test:

5 -1

y¥s + 1

z =

(In this special case, the Mantel-Haenszel test coincides with a test called
the McNemars test (Armitage 1971)).

It is a good idea to compile the material in the following kind of table:
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Control exposed

Yes No
Case Yes r §
exposed No t u

Using the Mantel-Haenszel estimate and test, a test-based confidence
interval can be calculated. Multivariate methods can also be used (See
Section 8.4),

7.3 STANDARDIZATION

7.3.1 Direct Standardization

The principles for standardization are the same regardless of the measure
of disease occurrence wsed. Let us assume for the moment that we use the
incidence rate. A standardized incidence rate is obtained as a weighted mean
value of the stratum-specific incidence rates:

SI = Xvi where Yy, =1

The weights, v, can in principle be chosen arbitrarily, but they must relate (o
each cther so that the sum of the weights is 1. Srandardization means that the
incidence rate is recalculated to what it would have been if the population were
distributed across strata in proportion o the distribution in a Standard
population, rather than according to the real distribution; the weights are
proportional to the distribution of the standard population. The purpose of this
is to obtain two, or sometimes more, incidence rates which are comparable in
the sense that the underlying populations are alt distributed in the same way
across categories of the siratification variable. In this way one controls for
confounding from the stratification variable, Standardization is often carried out
for basal demographic variables, but the method can of course be used for any
variable.
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Let index 1 denote an exposed population and O an unexposed popula-
tion. The standardized relative risk is defined as:

_vd,

SRR
Evg.lm

vl

v.i

SRR = }:wf. RR, and w, =
! i

The SRR can be written as a weighted mean of the stratum-specific RRs
similar to how the estimates were written in the previous section. The
weights used will, however, be different and will be determined according
to quite different principles.

In the previous section, the weights were chosen so that the pooled
estimate had as high a precision as possible. The weights here are determined
by the distribution in a standard population and the aim is not to obtain a
pooled estimate with as high a precision as possible. The aim is rather 1o
estimate the relative risk, assuming that both the exposed and the unexposed
are distributed across the stratification variable in the same way as the
standard population. The standardization can consequently also be used in
situations where there is effect modification, that is, where the measure of
effect is assumed (o vary across the strala,

A confidence interval for SRR is calculated by use of the logarithm
transformation according to the same principle as given earlier, on the
condition that the material is sufficiently large. The variance is:

var(InSKR) = var(inXvl) + var(lnEv,.fm.)

under the usual conditions {see Chapter 2), By using the formula for the
variance for logarithm transformations, (see Section 2.2.3), each of the
variances on the right can be written;
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Zvlvar(l)

var(InXy [} = -
v Ly

Since the variance for the incidence rate is calculated as A/R® (see
Chapter 3), the variance will be;

LA RS TviAR:
Ev i v

t

var(InSER) =

A 95% confidence interval for SRR is calculated as:

SRR, ,, = exp{InSKR + 1.96yvar(inSKR)

The only difference when cumulative incidence or prevalence is used
instead of the incidence rate, is that the variance will be different. Using the
same symbols as before, and when the relative risk is based on the
cumulative incidence, the variance will be:

A, A,
}:va_“ [1 - _"]IN“
.

3 1i Nli
var(InSRR) = .
[Zv,CI )

, Ay
Evfﬁ [1 - _“]me

Nm' N Q¢
Xy, C,)

The confidence interval is calculated by means of this variance estimate
in exacily the same way as for incidence rate data. When prevalence is used,
the procedure is identical to that used for the cumulative incidence.
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EXAMPLE: o

Consider a population distributed across two strata:

Stratum 1 Exposure
Yes No Total
Number of cases an 5 35

Number of person years 3,000 1,000 4,000

i, =20 <o01000 £, =_>_ = 0005000
3000 1000

Stratum 2 Exposure
Yes No Total
Number of cases 30 225 255
Number of person 1,000 9,000 10,000
years
i, - T%g_o = 003000 1, = 32'@% = 0.02500

If the exposed population is taken as the standard population, the
standardized relative risk is estimated as:

35001000 %_xo.osooo

SEr = 2 = 1.500
%xo.oosoo + %xo.ozsoo

and the variance as:
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AR
yar(nSER) ~ \&/ 30000 \4) 1000°

0.0150¢*

3V, S (1}, 255
L \4) 10007 (4) 9000°

0.01000

= 0.04653

An approximate 95% confidence interval is calculated as:

SRR, = explln 1.500 + 1.96/0.04653] = 0.982, 2.29

7.3.2 Indirect Standardization

In certain situations, one of the two populations to be compared cannot
be standardized as above. This is usually becanse the exposed group is so
small that stratum-specific figures cannot be calculated in a meaningful way,
It can, however, still be possible to standardize the unexposed population
with the exposed as standard population. In general, this is carried out so that
the observed number of cases in the exposed population is compared with an
expected number of cases; the latter is calculated from the stratum-specific
figures in the unexposed group and the actual distribution across strata in the
exposed group. When this method is used, the whole country or a whole
county, possibly with some restrictions, is often used as the unexposed
group.

To use the conventional symbols, this time let the observed number of
exposed cases be denoted by 0. As earlier, (he time at risk in the j:fe stratum
in the exposed population is denoted by R,,. [, is the incidence rate in the
I'te stratum in the unexposed population. The expected number of cases, £,
is calculated as:

E=3R]I,

The standardized measure of effect is written in this situation as SMR
(standardized morbidity ratio} and is estimated:
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o

smr =2
E

When E is calculated from the incidence rate for the whole couniry or
another large population, E can be assumed to be constant. That means that the
confidence interval for the SMR is wholly determined by the distribution of 0.
A confidence interval for SMR is therefore based on a confidence interval for
the mean value of O, E(0); the confidence interval for the SMR is obtained by
dividing the two limits by the constant, E. That is:

EO E(O
s, - (E)L’ cE)U

With incidence rates, the confidence interval of the mean value of @ is
based on the Poisson distribution. This can either be obtained exactly or by
means of the normal distribution approximation. The principles are the same
as when calculating confidence intervals for the incidence rate (see Section
5.1). This method is often used with small materials, in which case the exact
method should be used.

EXAMPLE:

Assume that 15 cases have been observed in a population and that the
expected namber of cases is calculated as 10. This gives:

sMr = 12 - 1500
10

A 95% exact confidence interval for the mean of the observed number of
cases will be 8.395, 24.74 according to the table in Appendix 1. The
confidence interval for SMR will be:

sMR,, = 3395 M _ggu0, 247
0 10
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The principles for calculating confidence intervals for the SMR is the same
as above whether the basic data refers to cumulative incidence or prevalence,
but the confidence interval around the mean value of the observed number of
cases is calculated from the binomial distribution instead of the Poisson
distribution. Here too the main principles are the same as when calculaling
confidence intervals around the corresponding descriptive measures, i.e., the
cumulative incidence or the prevalence (see Sections 5.2 and 5.3).



Chapter 8
MULTIVARIATE MODELS

“‘Black holes ain’t so black.”

Hawking SW: A Brief History of Time. From the Big Bang to Black Holes.
Bantam Books 1988.

8.1 AIMS AND GENERAL PRINCIPLES

A multivariate model is a mathematical model which describes how a
number of variables and their parameters specify a stochastic variable, A
simple model, which really does not merit the epithet multivariate, is:

I=a+BX

where I, as before, is the (theoretical) incidence rate and X the level of
exposure. The slope coefficient, B, in the model indicates how the incidence
rate is affected by a change of one unit in X: for every increase in X of one
unit, the incidence rate increases by 8. This model is said to be linear or
additive. Note that the unit in which the incidence rate is measured determines
the magnitude of B and consequently how a 8-value is to be interpreted.

125
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If the exposure is dichotomous and X = 0 for the unexposed and X = 1 for
the exposed, then ¢ is the incidence rate for the unexposed and B the
difference in incidence rate between the exposed and the unexposed:

RD =1 -1 =(a + Px1) - (o + Bx0) = B

The relative risk is:

RR=0*PxL 8
o + Bx0 a

The corresponding multiplicative model is:

I=qge®™

According to this model, 7 increases by a factor of exp(8) when X increases
by one unit. A multiplicative mode! is always additive when it is Jogarithm-
ized;

Inf = Inax + BX

If, again, X is dichotomous, then:

RD = ae? - e = gle? - 1)

and

The B of the multiplicative mode! thus corresponds to the relative risk
defined, as before, by the relation RR = exp(B),

It is important that the purpose of a multivariate model is clear before it
is constructed, since different purposes can lead to greatly differing models.
One purpose can be to construct 2 model which can be used to predict which
individuals are going to develop a disease. Another can be to try 1o explain as
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much of the variation in disease eccurrence as possible. However, the most
common purpose in epidemiology is to allow for confounding and effect
meodification when analyzing the association between exposure and disease; it
is in this context that we will discuss mullivariate models. This means, for
example, that a multivariate model can be a good model even if it only
describes some of the variations in the incidence of disease — which is of
course almost always the case, since so little is known about the actiology of
most diseases.

To demonstrate how a multivariate model can be used to allow for
confounding, the model above can be developed into;

I=o0+PBX +BX,

where index 1 and 2 denote two different risk factors, As the model shows, 8,
represents the increase in incidence rate when X, increases by one unit, on the
condition that X, remains unchanged. This is exactly what is meant by the
effect of X, being studied, controlling for confounding by X,

Effect modification means that the magnitude of the effect varies when a
third variable varies. In the above model there is no effect modification (as
long as the effect is measured on the additive scale, that is by RD), since the
effect of a change of X, is always the same, irrespective of the value of X,. On
the other hand, effect modification will occur if the model is rewritten as
follows:

I=0a+PX +pX, +BXX,

In this model, the effect of a change in X, is obtained as the sum of the
change in the second and the last terms of the model. The last term is
deiermined not only by X, but also X,.

The reason for using multivariate models has here been explained similarly
to thai for stratified analysis. This means that models should be constructed
according to the same principles as those for specifying a stratified analysis.
Decisive for whether a particular variable should be included in the model as
a confounder is whether it really is a confounder. This can be evaluated hy
studying the parameter which describes the effect of the exposure; if it remains
unchanged when a variable is added or removed then the variable in question
is not a confounder. Multivariate models are less sensitive than stratified data
for sparse data. One can therefore err on the side of generosity and when in
doubt include a variable in the model.
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It is easy to test models with various kinds of effect modification when
multivariate models are being constructed, However, the potential for simple
interpretations of the parameter which describes the effect is reduced when the
model includes effect modification; the effect will then vary depending on the
value of the effect modifying variable. Consequently, the principles used here
also follow those for stratified analysis: models are generally constructed
without effect modification unless there are strong reasons for including it
Such reasons can either be that the observed material clearly indicates that a
model without effect modification is inadequate or that one has a particular
interest in studying the effect modification, Here, it is important to remember
that effect modification in a multivariate model cannot simply be interpreted
as interaction or synergism in a biological model (Greenland 1979). See
Chapter 9,

In the above models, X occurs as a continuous as well as a dichotomous
variable. It is of course excellent if the model which includes continuous
variables is actually suitable for your data. However, if this is not the case, X
can be categorized so that it becomes dichotomous, in which case the incidence
rate changes stepwise at the point where X changes its value. For example, in
the first model given above, the use of a continuous X variable means that the
incidence rate changes with increased exposure at the same rate for all levels
of exposure. This is often too stricl an assumption, and variables in epidemio-
logical analyses are therefore often dichotomized.

When one wants more than two levels for a variable, one uses so called
indicator- or dummy variables. Let us look again at the model:

J’=c:1£+|31)(l+|321(2

If you want to divide the variable X, into three intervals, that is, if you
want to divide the material into three strata, letting the incidence rate change
stepwise between these, one can define the indicator variables X; and X, in the
following way:

X X, X,

interval1 0 @
interval 2 1 0
intervai 3 0 1
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The above model can then be replaced by the following, which does not
assume that there is a linear change of 7 when X, is changed:

=0+ BX +BX, +BX,

In accordance with the model, B, is added to the earlier terms for the X,-
values within interval 2 and 8, is added for values within interval 3. The
incidence rate thus changes in steps from ong stratum to the next.

The above is a fairly general discussion but it nevertheless serves to
illustrate certain principles for the use of multivariate models in epidemio-
logical analyses. When selecting a multivariate model for a specific situation
there are a considerable number of alternatives to choose from. In the
following three sections, some of these will be discussed in connection with
various kinds of epidemiological data.

8.2 INCIDENCE RATES

In earlier chapters we based the statistical analysis of incidence rates on
the Poisson distribution. A model which is linked to this and frequently used
is the multiplicative Poisson model. Since the multiplicative model becomes
linear when it is logarithmized, it is also an example of a log-linear model.
For this kind of model the material must be stratified so that the number of
cases and the number of person years can be calculated in various strata.
(See, e.g., Breslow and Day 1975; Breslow et al. 1983; Breslow 1984). An
example of a model which is based, instead, on continuous variables is the
““proportional hazards’’ model (Cox 1972). For a detailed discussion of
these models we refer the reader to Breslow and Day (1988).

As before, let / be the theoretical incidence rate and R the number of
person years at risk, According to the multiplicative Poisson modgel, the
nummber of cases follows a Poisson distribution with a parameter which is
specified as:

IR = 0e™ or InIR = Ina + PX

This model is to all intents and purposes, the same as those which were
discussed at the beginning of the previouns section. Further variables can be
added to the model as confounders or as effect modifiers if necessary. If the
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exposure, X, is a dichotomous variable, the relative risk is obtained as exp(B).
Most of the computer programs used to estimate the parameters of the model
work with the logarithmized model. This means that the parameters obtained
musi be exponentiated before one can interpret them in epidemiological
terms. The parameters of a model are usually estimated iteratively by using
the maximum-likelihocod method,

The model can be formulated in such a way that both the exposure and
the confounding variables are dichotomous and so that effect modification
is not included. The resulting model is identical to the one which is
implicitly used for the corresponding siratified analysis when the relative risk
is assumed to be constant across strata (see Chapter 7). This means that the
computer program used for this multivariate model can also be used to
determine maximum-likelihood estimates in the corresponding stratified
analysis.

8.3 Cumulative Incidence

One¢ model which has come to be used a great deal in epidemiology is
mudtivariate logistic regression. This was developed in connection with the
famous cardiovascular epidemiological study in Framingham, USA (see, for
example, Walker and Duncan 1967). The model stipulates that a probability
p, is:

This expression can be transformed to:

lnlpp=(x+BlX,+B2X2+...

The transformation, which is performed when the odds are calculated and
logarithmized, is called logit; hence the name logistic regression. In analyses
of cumulative incidence, the cumulative incidence is set as CI = p.

To illustrate a simple application of this model, let the exposure again be
dichotomous, with X = 1 for exposed and X = 0 for unexposed. If the
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cumulative incidence for exposed and unexposed is defined as C/, and CI,
respectively, the logarithm for the odds-ratio is written as:

CL

1 -l Cl, _ dy, |,
Ci, 1 - 1 -Ci,

1 -Cf

]

= (o + Bxt + BX, +.) - (@ + Bx0 + BX, +.) =P,

As the logarithm for the odds-ratio equals B,, the odds-ratio equals exp(B,),
in other words:

This means that when the cumulative incidence is so low that

cI,
T«
—, T,
TG,

the relative risk, defined as the ratio between the two cumulative incidences,
can be approximated:

RR = "

This model can be constructed in many different ways, keeping in mind the
discussions in the introductory section of this chapter.
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8.4 CASE-CONTROL STUDIES

Multivariate logistical regression has become the leading multivariate
model for use with case-control studies. For a detailed discussion of this
model, we refer the reader to Breslow and Day 1980. In case-contro! studies
the odds ratio is used to estimate the relative risk. One can therefore use
logistic regression in essentially the same way as was shown in the previous
section, One difference is that the assumption about low probabilities is not
required for case-conircl studies, since the odds ratio is actually the
parameter which corresponds to the ratio between the two incidence rates;
the odds ratio is not used here as an approximation of the ratio between two
proportions, but as the parameter of interest.

The usnal fourfold table is completely symmetrical, so that the exposure
odds ratio is the same as the case-control odds ratio:

Cases a b N,
Controls ¢ d Ny
Total M, M, T

OR = ajd . alc
dd  bid

We have seen that the odds ratio which can be established from the
probability of exposure among cases and controls corresponds to the ratio
between incidence rates among exposed and unexposed. As a result of the
above symmetry however, the probability which is modelled by the logistic
model can instead be taken as the probability that an individual is a case
(Breslow and Powers 1978). The parameter in the model which corresponds
to the ¢xposure will in this case describe how the relative risk is influenced
by a change in exposure.
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InOR =p and OR =ef

It is, again, important to remember that B describes the effect of a change
in exposure of one unit. If the exposure variable is dichotomous, exp(B) can
be interpreted in the same way as in Chapters 6 and 7. On the other hand,
if the exposure variable is continucus, then the scale determines how a B-
value is to be evaluated.

EXAMPLE:

Let the exposure in question be systolic blood pressure measured in mm
Hg and let exp(8) = 1.01. The relative risk is thus 1.01 if the blood
pressure rises by 1 mm Hg,

The programs used to estimate the model’s parameters produce iterative
maximum-likelihood estimates of the B-values. These must be exponentiated
before they can be interpreted in epidemiological terms. The programs also
give the standard deviation (the square root of the variance) for each B-
estimate. The confidence intervals for the odds ratios are thus calculated in
the same way as for the logarithmized variables in Chapters 6 and 7.

o B4 196t
OR,, = e £1

EXAMPLE:

Let us look again at the case-control example in Chapter 7. Define ¥ as
1 for cases and as O for controls, define X, as 1 for exposed and 0 for
others, and define X, as | for individuals in stratum 1 and as O for others.
Let N be the number of individuals having a specific combination of
these variables, The material can then be presented as:
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Y X, X, N
1 1 1 30

1 0 1 5

0 1 1 30
0 0 1 10
l 1 0 30
1 0 g 225
0 l 0 10
0 0 0 290

In this example, one can formulate the following logistic model:

PY =1) =0 + .
In [m] ] BIXI BZXZ

©. corresponds to the probability of being a case among the unexposed in
stratum 2 and is determined by the design of the study; « is therefore of
no real interest. B, corresponds to the effect of the exposure and, in line
with our earlier reasoning, exp(8,) = OR. Similarly, B, corresponds to the
effect of the stratification variable; if the stratification variable is exclusive-
Iy regarded as a confounder, B, is of no interest, but if the stratification
variable is another exposure under study, 8, is interpreted in the same way
as B,. The following estimates are thus obtatned:

: B var(B) OF, OR, o

1 0.3369 0.3297 1.401 0.734 2.67
2 -1.305 0.3499 02712 0.137 0.5%9

MULTIVARIATE MODELS 135

These results are identical .to those which were obtained from the
maximum-likelihood estimate in the stratified analysis in the example in
Chapter 7. It demonstrates how the logistic model can be specified so that
it performs the same analysis as a stratified analysis, and how general
programs for multivariate models can be used 1o calculate maximum-
likelihood estimates in stratified material.

In the above example, the material was divided into two strata. One
indicator variable is sufficient for this. We saw earlier that two indicator
variables were needed to stratify the material into three strata. The number of
indicator variables should be one less than the number of strata.

We have mentioned before that maiched case-control studies should be
analyzed with cases and matching controls together. This also applies to
logistic regression (see Breslow and Day 1980). Each set of cases and
matching controls is thus regarded as one stratum. However, one cannol use
the model given above because the ratio between the number of ohservations
and the number of estimated parameters is too low. The number of parameters
to be estimated is the number of strata minus one, to which comes the
parameters which correspond to exposure and other possible confounders or
effect modifiers. One can, however, use conditional logistic regression. By
making the regression conditional on the total number of exposed in each
stratum, the need to estimate those parameters that are associated with the
indicator variables will disappear. This method also makes it possible 1o take
into account any potential confounders which were not included in the
matching.



Chapter 9

ANALYSIS OF EFFECT
MODIFICATION AND
SYNERGISM

‘It turns out fo be very difficult to devise a theory to describe the universe all
in one go.”’

Hawking SW: A Brief History of Time. From the Big Bang fo the Black Holes.
Bantam Books 1988,

In Chapter 7 effect modification was defined as the effect of an exposure
varying with a third variable, Effect modification by age occurs, for example,
if the relative risk increases with rising age. An example in Section 7.1.1
illustrated that a consequence of this definition is that the effect modification
depends on how the effect is measured. In the example, an effect modification
was present if the effect was measured as the difference in occurrence of
disease between exposed and unexposed, but not if the effect was measured as
the ratio between the occurrence of disease among exposed and unexposed,
that is the relative risk (see the example below). Consequently, the presence
or absence of ¢ffect modification depends on the criterion chosen. The choice
lies mainly between the additive and the multiplicative scale.

The fact that the stratum-specific relative risks are constant means therefore
that there is no effect modification when the multiplicative scale is used. When
this is the case there is usually, instead, an effect modification if the additive
scale had been used. Again, see the example. This must also be kept in mind
when one is interpreling the results of multivariate modelling. The muliivariate
logistic regression model, for example, is an example of a multiplicative
model. This can be seen from the fact that it becomes additive when
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logarithmized. A consequence of this is that a logistic model without
interaction term has no effect modification with multiplicativity as criterion but
usually with additivity as criterion.

So far our discussion here has been about effect modification and we have
not considered whether additivity, multiplicativity or possibly some other
functional link is the most suitable basis for evaluation.

The term synergism is reserved here for effect modification evaluated in a
biologically or medically meaningful way. In the pie chart, synergistic causes
can be defined as contributing causes which are included in the same “‘pie’’
(Rothman 1976; Rothman 1986; Ahlbom & Norell 1986), It can be shown that
this definition leads 10 deviations away from additivity as the criterion for
synergism.

EXAMPLE:

The material in the example from Chapter 7 just mentioned can be
summarized in the following table, with incidence rates expressed as
number of cases per 1,000 person years:

Exposure Males Females
Yes 4.0 20
No 20 1.0
RR 20 20
RD 20 1.0

The effect of the exposure is uniform when the relative risk is used, but
not when the difference is used. Hence, synergism is present between
exposure and gender.

Let us use the symbols as in the table below:

Exposure 2
Exposure 1 Yes No
Yes i, I
No ll)l 100
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The occurrence of sypergism is evaluated by comparing the actual
incidence rate for the “‘doubly exposed”’ with that which would be expected
in the absence of synergism. Withoul synergism:

Iy~ U vy - 131 =0

One might imagine that this would lead to problems in case-control studies
where the relative risks only, and not the actual incidence rates, can be
estimated. However, if each term in the expression above is divided by f, one
obtains:

RR,, - [RR,, + (RR, - 1)] = 0

The presence of synergism can thus also be evaluated on the basis of relative
risks obtained, for example, in a case-contrcl study. The material is then be§t
presented in a table of the type below. Note that the reference category is
always the doubly unexposed:

Exposure 2
Exposure 1 Yes No
Yes RR,, RRy,
No RR,, RR,,

Varicus measures of the degree of synergism, synergy index, have bf:en
suggested (Rothman 1976; Walker 1981). In analogy with the aetiolpglcal
fraction, a synergy index can, for example, be calculated as the proportion of
those new cases which can be attributed to a concurrence between the causes
of the disease in question.



Chapter 10
SEVERAL EXPOSURE LEVELS

*'Sigtrygg's blow struck Orm in the side, piercing kis chain shirt and causing
a deep wound; but Orm’ s sword buried itself in Sigirygg's throat, and a great
shout filled the hall as the bearded head flew from its shoulders, bounced on
the edge of the table and fell with a splash into the butt of ale that stood at its
Jeet?”’

Bengisson FG: Rode Orm. P A. Norstedt & Sdners Forlag 1941, 1945,

So far we have looked at situations where there are two exposure levels:
the individuals have been divided into exposed and unexposed. However,
analyses involving three or more exposure levels are frequently preferable. The
question of whether or not increased exposure is associated with increased
effect is of great importance when evaluating the results of epidemiologicat
stdies. When this is the case one usually says that there is a dose-response
relation. The presence of a dose-response relation, for example, nuimbered
among Hill’s well-known ‘‘criteria’’ for evaluating causality (Hill 1965).

The easiest way of carrying out an analysis which takes several exposure
levels into account is to analyze each exposure level separately. This means
that the individeals in the highest exposure category are compared with the
unexposed, then individuals in the next highest category, and so on for all
categaories of the exposed. Note that the exposed are not compared with the rest
of the material but that the reference category rather remains the same the
whole time,

When relative risks are compared across different exposure categories it is
naturally important that they should be free from confounding. One can, in

14
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principle, control for confounding by means of stratified analysis, as in Chapter
7. However, since the various relative risks are going to be compared with
each other, it is important that the weights which are used when pooling across
strata are the same for all exposure categories. The methods in Chapter 7
which assume that there is a uniform effect across strata, use weights which
take into account the precision in each stratum. One cannot, however, be
certain that these weights are the same for different exposure categories. There
is consequently a risk that the relative risks obtained would not be comparable
if they were calculated in this fashion. One way of ensuring that the weights
really are the same for all exposure levels is (o standardize, rather than to pool
with weights that reflect the stratum-specific precision. In such cases one uses
direct standardization. See again, Chapter 7.

It is often satisfactory to analyze each exposure level separately if one has
a limited mumber of levels. There is no fundamental difference between
dividing a material into exposed and unexposed and dividing it into two levels
of exposed as well as into unexposed. However, problems quickly arise when
the number of exposure levels increases, because of the fact that the material
becomes sparser and the precision of the relative risk estimates is reduced. To
counteract the low precision one uses models which simultaneously use
information from all exposure categories and which describe how the relative
risk increases with increased exposure.

A well-known such method is the Mantel-Haenszel extension test (Mantel
1963). This is a development of the Mantel-Haenszel test which has retained
many of the advantages of the latter. The method was developed for case-
control studies and is based on each exposure category being allocated a point
which is used as an independent variable. Significance tests are no more
desirable in dose-response analyses than in other contexts (see Chapter 4), On
the other hand, there are not as many obvious alternatives for dose-response
analyses as there are for other kinds of analysis, and they have consequently
been discussed less,

The mullivariate models described in Chapter 8 can also be used when
there are several exposure levels. A logistic regression model, for example, can
be formulated as follows:

in_—2 =q+px
1 -p

with X =0, 1, 2, ... depending on the exposure category. Just as before, exp(8)
is the relative risk when X increases by one unit. One can extend the model
with more variables if one wants to control for confounding or analyze effect
maodification (as discussed in Chapter 7). One should, however, bear in mind
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Figure 10.1 A linear regression line is adapted 1o relative-risk estimates
for three levels of exposure.

what was said about standardization earlier in this chapter. According to the
above model, the relative risk increases at the same rate across all exposure
categories. If this is considered to be too strong an assumption, indicator
variables can be used. (See Chapter 7.) In this case, the model can be rewritten
as:

In lp =a+fX +BX, + ..
4

where X, and X, are indicator variables which identify the respective exposure
categories. If, for example, X, is defined as 1 for the first exposure category
and as O otherwise and X, as 1 for the second exposure category and as 0
otherwise, then exp(B,) gives the relative risk for the first exposure category
relative to the unexposed group and exp(B,) similarly gives the relative risk for
the second exposure category. This approach solves the problem of not being
certain that the increase in risk is uniform across the whole exposure range. In
return, the need arises to estimate a parameter for each of the exposure
categories above the reference category. To some extent, this approach
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consequently shares the problem of diminishing precision when the exposure
variable is divided into an increasing mumber of categories. On the other hand
this problem is smaller for multivariate models than for the simple stratified
analysis.

Rothman (1986) has suggested that a simple linear regression analysis
should be used with dose-response analyses. This is then based on separate
estimales of the relative risk in the different exposure categories. These can be
standardized or controlled for confounding in some other way. The relative risk
estimates are the ‘‘y-values® of the regression analysis. The corresponding “‘x-
values’’ are determined by the exposure categories. If the actual exposures in
the individual exposure categories are not known, the x-values can be set at 0,
1, .... Since usually the precision of the relative risk estimates for the different
exposure categories differ, a weighted regression analysis should be carried out.
The weights will be proportional to the inverted variances for the estimates of
the relative risks. (See Figure 10.1).



Chapter 11
META ANALYSIS

“‘Achilles: Don't tell me you believe in fortune-telling! Tortoise: No.. .but they
say it works even if you don’t believe in it!"’

Hofstadter DR : Gédel, Escher, Bach: An Eternal Golden Braid. Basic Books,
Inc. 1979,

It is highly uncommon for a single epidemiological study to allow firm
conclusions to be drawn about a link between exposure and illness. Although
the situation varies with the amount of a priori information of different origin,
several confirmatory studies are typically necessary before a finding can be
seen as proven. This is because, generally, neither random nor systematic
sources of error can be entirely eliminated when anatyzing the results of a
study, There is consequently a need for methods which can be used to compare
the results of a number of studies, so-called meta-analysis. See Greenland
{1987) for a survey of such methods.

A major problem with meta-analysis is that the studies which are to be
compared with each other vary in design and execution. As a consequence, the
comparability of the various studies can be limited. This is partly because they
are marred by varying degrees of systematic error, parily because they use
different criteria for diagnosis or exposure, for example. No statistical methods
for coping with this lack of comparability are available to the epidemiologist.
However, the need to pool study results remains, which results in meta-analysis
being attempted in spite of the above-mentioned problems. The results of meta-
analysis can in such cases not be interpreted mechanicatly; they must rather be
interpreted in conjunction with appraisals of the design and systematic emrors
of individual studies.
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Figure 11.1 The results of five studies of one and the same association
are pooled in & meta-analysis.

Chapter 4 contained a lengthy discussion of the problems associated with
the use of significance testing for evaluating random error in a study. These
problems become particularly obvious in connection with meta-analysis. If one
insists on summarizing the results of & study as either significant or non-
significant, on¢ might imagine a meta-analysis which tells us how many of the
available studies are significant and how many are not significant. Yet this is
clearly not an acceptable procedure, as is demonstrated by Figure 11.1, which
gives the confidence intervals for five available studies. It is apparent that all
the confidence intervals include RR = 1. In other words, all five studies are
non-significant. At the same time, all five observed relative risks are elevated.
It would be absurd merely to establish that five non-significant siudies have
been carried out and conclude that the data clearly indicates that there is no
link between exposure and illness, Nevertheless, this is not an uncommon
procedure (Freiman et al. 1978).

A good way of obtaining a basis for comparing the results of various
studies is to calculate the confidence intervals for the individual studies and to
display them in a figure sach as Figure 11,1, There are also methods for
carrying out formal comparisons of individual study results, such as by
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calculating the mean value. It is actually this formal type of comparison which
is called meta-analysis.

When calculating the mean of the relative risks from a number of available
studies the situation is very similar to the one discussed in Chapter 7, where
the results in single strata were pooled to give a snmmary estimate. One
important precondition if this estimate is to be of any use is that the various
studies must provide relative risk estimates of one and the same underlying
relative risk, If this condition is fulfilled, the methods for stratified analysis
given in Chapter 7 are directly applicable. 11 seems natural to use direct
pooling in meta-analysis, Let us assume that there is a series of studies of one
and the same association and that:

RR, and var(InRR)

is the relative risk estimate and the corresponding variance estimate from the
icth of these. Just as was the case with the stratified analysis, a mean is
obtained which takes the precision of the respective relative risk estimates into
account as:

! _InRR,
. var(InRR)
RRPM =ex T
var(inRR )
The variance is taken as:
+ 1
var(]nRRm‘) = :
var(InRR )

that is as one over the sum of the weights,

The confidence interval is formed, just as before, by point estimate and
variance.

The precondition upon which the calculation of the summary value
described here is based, is that every study provides an estimale of one and the
same underlying relative risk. Thus, it is not necessary for all the studies to be
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of the same destgn. For example, it is no hindrance if some of the pooled
studies are cohort studies while others are case-control studies.

The above procedure demands, apart from the information needed to be
able to evaluate the validily, a point estimate and a variance for each study.
One problem here is that study reports frequently fail to give the variance, and
that often only the confidence interval, for example, is available. However, an
estimate of the variance can be calculated from the confidence interval.
Assuming that a 95% confidence intzrval for the relative risk is constructed by
use of the Jogarithm transformation, the variance can be estimated as follows:

. | kR, - mrR,
var(nRR) = | —— 55—

If only a P-value or a test variable is available for a swmudy, a test-based
confidence interval can be calculated, after which the required variance can be
established approximately, in the way demonstrated above.



Chapter 12

COMPUTER PROGRAMS

“But now we have with us some concepts that greatly alter the whole
understanding of things.... It remains to work these concepts into a practical,
down-to-earth context, and for this there is nothing more practical or down-to-
earth than what I have been talking about along — the repair of an old
motorcycle.'’

Pirsig RM: Zen, and the Art of Motorcycle Maintenance. Vintage 1971.

It is something of an understatement to point out that the 1980s saw
enormous developments in the world of computers. At the beginning of the
decade, computer computations were generally still being performed on large,
main frame, computers, while today powerful personal computers are used for
all but the largest materials. Strictly speaking, everyone engaged in epidemio-
logical research ought to have access to a personal computer. This naturally
has consequences for (he choice of data analysis method. It means, for
example, that the easy to use test-based method for determining confidence
intervals is of less importance today. At the same time, the iterations which the
maximum-likelihood methods demand no longer pose the same problems.

The development of programs has kept pace with that of the computers
themselves. Standard programs have been developed for many fields and the
programs are now much easier to use. However, analyses for the type of
cpidemiological data described in this book do not feature among all the
general statistical packages yet. Nevertheless, increasing numbers of special
programs for epidemiology are becoming available and most epidemiological
needs can now be met by what is on the market. Developments in this field are
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taking place very rapidly and any attempt to describe these runs the risk of
being hopelessly out of date by the time it reaches the reader,

As far as we are aware, the first package of programs for epidemiological
analyses was devised for use with a Hewlett-Packard desk top calculator
{Rothman and Boice 1982). These programs cover many of the epidemiological
applications and still played an important role until recently, partly because
they are so easy to use. It is, for example, still difficult to find later programs
for the exact analyses included in this early package which are anywhere near
as easy to use. One problem with the Hewlett-Packard and these exact analyses
is of course that the necessary iterations in some cases take a considerable
amount of time. The approximate confidence intervals which are calculated are,
with certain exceptions, test-based, which with today’s potential is perhaps an
unnecessarily low level of ambition. Also, of course, data entry poses a
problem on any desk top calculator if a full scale study is to be analyzed.

EPILOG is a comprehensive package for personal computers which
contains programs for many of the common analyses used in epidemiology.
Especially for case control-smdies there are some useful programs here,
including exact analyses of fourfold tables and unconditional/conditional
logistic regression. The program for logistic regression, for example, is easy
to use because it automatically creates indicator variables if these are required.
One disadvantage with EPILOG in some situations is that a certain amount of
experience is necessary before one gets used to the way in which the data is
fed in. It cannot, for instance, be entered directly from the keyboard into an
analysis program; it must first be stored in a file which is then read by the
analysis program.

Certain general-purpose packages can also be used for epidemiological
analyses. The popular SAS package, for example, has been supplied with a
supplement which can be used for many of the analyses common in epidemiol-
ogy. GLIM is another general program package which can be made to carry
out many of the epidemiological analyses easily and with flexibility. It is,
however, advanced and difficult to master.

More recently, programs specifically designed for epidemiological analyses
have been introduced. For a review of these we refer the reader to Epidemiol-
ogy Monitor (1987). Several of the programs in this review are so-called
“public domain” programs, which means that they may be copied and
disseminated. One of these is EPID which is very easy to use and has a wide
field of application. It is menu driven with simple instructions, making a
manual hardly necessary. Data can be entered straight from the keyboard.
Another of these, also easy to use, is LOGRESS, which performs logistic
regressions. PDIST is a program which calculates the P-value functions
described in Chapter 4 with the aid of normal distribution approximation.
MHCHI performs analyses of stratified data from case control studies. The
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material can be entered from the keyboard. The program calculates Mantel-
Haenszel estimates and confidence intervals by the Greenland and Robins’
method described in Chapter 7. It further gives a graphic presentation of the
entire P-value function.



Appendix 1

Table 1. Exact 95% and 90% confidence intervals for the parameter
H in a Poisson distribution for different observed numbers A.

A 95 % confidence limits 90 % confidence limits
0 0.000 3.689 0.000 2.996
1 0.025 5.572 0.051 4.744
2 0.242 7.225 0.355 6.296
3 0.619 8.767 o.e1g 7.754
4 1.090 10.24 1.366 9.154
5 1.623 11.67 1.970 10.51
6 2.202 13.06 2613 11.84
7 2814 14.42 3.285 1315
8 3.454 15.76 3.981 14.44
9 4.115 17.09 4,695 1571
10 4.795 18.39 5.425 16.96
1 5.491 19.68 6.169 18.21
12 6.201 20.96 6.924 19.44
13 6.922 2223 7.690 20.67
14 7.654 23.49 8.464 21.89
15 8.385 2474 9.246 23.10
16 9.145 25.98 10.04 24.30
17 9.903 27.22 10.83 25.50
18 10.67 28.45 11.63 26.69
18 11.44 28.67 12.44 27.88
20 1222 30.85 13.26 29.06

1583
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5.

Calculate the mean value and the variance for ¥ in Exercise 4:

a) from the probability function for Y,

b) from the rules for linear combinations.

X is a stochastic variable with the frequency function
1o = (o

a) Draw the frequency function and calculate the area.

b) Calculate P(X £ 1) and P(X > 3/2).

X is defined as in Exercise 6.

a) Calculate the mean value and variance.

b) Give the distribution function of X.

X ~ N(1,4). What is

PX > 5)

X, and X, ~ N(0,1) and independent. What is

P(X, + X, <2)?

10.

11,

12.

13.

14,

15.
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X ~ bin (3,0.2). ’

a) Calculate p(x) for x = 0,...,3.
3

b) Whatis ¥ p(x)?
=0

¢) What is P(X > 2)?
X ~ bin (100,0.1). Cakulate P(X > 90).

X ~ Poisson (1.5). Calculate p{x) for

x=0, ..
X ~ Poisson (10). Calculate P(X > 15).

There are § cases and S controls. A total of 5 persons have been exposed.
X is the number of exposed cases. Calculate P(X = 1) and P(X < 1)
assuming that X is hypergeometrically distributed.

There are 50 cases and 50 conmtrols. A total of 50 persons have been
exposed. X is the number of exposed cases. Calculate P(X < 10} assuming
that X is hypergeometrically distributed.
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Chapter 4

16.

17.

18.

19.

X is normally distributed with a mean value p and a variance of 4. A
random sample of 16 independent observations gives a mean value of 5.

Hy:p=4andH :p>4

a) Calculate the P-value,

b) For which mean value is P = 0.05?

Take the situation given in Exercise 16, i.e., X ~ N(1,4) together with the
fact that a random sample of 16 observations gives the mean value 5:

a) Calculate the P-value function and describe it in graphic terms,

b) Which mean values correspond to P = 0.0257

Of 10 persons, 1 becomes ill. H, : C/ (the cumulative incidence) = (1.2 and
H, : CI < 0.2. Cakculate the P-value,

Ten out of 100 persons become ill. Of a further 100 persons, 15 become
ill. Let C7, and CI, be the cumulative incidences for the respective groups.
Hy:Ch=Chand H, : CI, < CL,.

a) Calculate the P-value from an unconditional analysis.

b) Caiculate the P-value by normal distribution approximation based on
& conditional analysis.

20.

21

22,
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5 out of 5 persons were exposed, Of a further 5 persons, 4 were exposed.
Hy : P (exposure) is the same in both groups. Calculate an exact P-value
from a conditional analysis.

X ~ N(p4). An observation of X gives x, = 5. Construct a 95% confidence
interval for p.

X is as above. 4 independent observations of X give a mean value of 5.
Construct a 95% confidence interval for p.

Chapter 5

23.

25.

During a certain period of time, A cases occur in a populaticn comprising
R person years. Suggest an estimate of the incidence rate. What can be
said about the mean value, variance and type of distribution of the
estimate?

In a study base consisting of 3,000 person years, 20 cases of an illness
occurred. Calculate the 95% confidence interval for the incidence rate:

a) Exactly.

b) By means of normal distribution approximation.

During a particular period of time. A cases occur in a population of ¥
individuals. Suggest an estimate of the cumulative incidence. What can be
said about the mean value, variance and type of distribution of the
estimate?
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26. X ~ bin(10,000, CI). One observation of X gives x, = 100. Construct a
95% confidence interval for C1. Use nommal distribution approximation
and assume that the variance is stable.

27. In a population consisting of 6,000 individuals, 6 cases of an illness
occurred during a particular period of time. Calculale the 95% confidence
interval for the cumulative incidence:

a) By nomal distribution approximation.

b) By the Poisson approximation.

Chapter 6

28. The table betow describes the data from a cohost study

Exposure
Yes No Total
Cases 41 15 56
Person years 28,010 19017 47,027

a) Calculate a 95% confidence interval for RD,

b) Calculate a 95% confidence interval for RR by means of logarithm
transformation and normal distribution approximation.

c) Calculate a 95% confidence interval for RR using the test-based

method, with the test result obtained from the logarithm transformation
in Exercise b.
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d) Calculate a 95% confidence interval for RR using the test-based
method, with the test result obtained from a conditional analysis.

29. The following table was obtained from a cohort study:

Exposure

Yes No Total
Cases 30 21 51
Non-cases 174 184 358
Total 204 205 409

a) Calculate a 95% confidence interval for RD.

b) Calculate a 95% confidence interval for RR by logarithm transforma-
tion and normal distribution approximation.

¢) Calculate a 95% confidence interval for RR using the test-based
method and based on a conditional analysis,

30. A case-control study gave the following table:

Exposure

Yes No Total
Cases 96 104 200
Controls 109 666 775
Total 205 770 975

a) Calculate a 95% confidence interval for OR using Woolf’s method.
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b} Calculate a 95% confidence interval for OR using the test-based
method, with the test result obtained from a conditional analysis (with
normal distribution approximation of the hypergeometrical distribution),

Chapter 7

31. The table below describes data in a cohort study:

Stratum 1.
Exposure
Yes No Total
Cases 32 2 34

Person years 52,407 18,790 71,197

Stratum 2.
Exposure
Yes No Total
Cases 14 12 116

Person years 43,248 10,673 53921

a) Calculate the point estimate of the rate difference and a 95% con-

fidence interval by pooling with weights proportional to the inverted
stratum-specific variances.

b) Calculate stratum-specific relative risks and 95% confidence intervals.

¢) Calculate the point estimate of the relative risk and a 95% confidence
interval by pooling with weights proportional to the inverted variances.
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d) Calculate the point estimate of the relative risk in accordance with the

Mantel-Haenszel analogy, as well as a 95% test-based confidence
interval.

e} Calculate a 95% confidence inierval for the relative risk using the
estimate in d) with the variance from c).

f) Calculate a 95% confidence interval for the relative risk using the
estimate in d) with a variance according to Greenland & Robins.

32. The table below describes the data in a cohort study:

Stratum 1.
Exposure
Yes No Total
Cases 8 5 13
Persons 106 120 226
Stratum 2.
Exposure
Yes No Total
Cases 22 16 38
Persons 98 85 183

a) Calculate the point estimate of the difference and a 95% confidence
interval by pooling with weights proportional to the inverted stratum-
specific variances.

b) Calculate stratum-specific relative risks and 95% confidence intervals.
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33,

¢) Calculate the point estimate of the relative risk and a 95% confidence
interval by pooling with weights proportional to the inverted variances.

d) Calculate the point estimate of the relative risk according 1o the

Mantel-Haenszel analogy, as well as a 95% test-based confidence
interval.

¢) Calculate a 95% confidence interval for the relative risk using the
estimate in d} with the variance from c),

f) Calculate a 95% confidence interval for the relative risk using the
estimate in d) and with a variance according to Greenland & Robins.

A casecontrol study gave rise 1o the following data:
Stratum 1.
Exposure
Yes No
Cases 15 64
Controls 319 1,409
Stratum 2,
Exposure
Yes No
Cases 8 72
Controls 53 331

a) Calculate stratum-specific odds ratios and 95% confidence intervals,
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b) Cakulate the point estimate of the odds ratio and a 95% cont_“ldence
interval by pooling with weights proportional to the inverted variances.

¢) Calculate the point estimate of the odds ratio according to the Mantel-
Haenszel method and a 95% test-based confidence interval.

34, A case-control study gave the following:

Stratum 1.
Exposure
Yes No
Cases 10 90
Controls 5 95
Stratam 2.
Exposure
Yes No
Cases 3 47
Controls 0 50

a) Calculate stratum-specific odds ratios and 95% confidence intervals.

b) Calculate the point estimate of the odds ratio and a 95% cont?ndcnce
interval by pooling with weights proportional to the inverted variances,

¢) Calculate the point estimate of the odds ratio according to the Mantel-
Haenszel method, as well as a 95% test-based confidence interval.
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d) Calculate a 95% confidence interval for the odds ratio using the a) Calculate the standardized zelative risk if the unexposed population is
estimate in ¢) with a variance according to Robins et al. chosen as the standard population.

b) Calculate a 95% confidence interval for the standardized relative risk

35. A matched case-control study gave the following data: in a).
¢} The same data as above is given in an example in Chapter 7.3.1, In
Control exposed that example, we calculated the standardized relative risk with weights
Yes No from the exposed population. The SRR was calculated as 1.50, with the
upper and lower limits for the 95% confidence interval being 0.98 and
Case exposed Yes 200 5 2,29 respectively. Compare these values with the results from a) and

b) above and discuss them.
No | 197

Calculate the point estimate of the odds ratio and a 95% confidence
interval. 37. In an SMR-analysis of incidence data, O = 3 and E = 1.5. Calculate the
point estimate of the SMR and an exact 95% confidence interval,

36. The tables below describe the data from a cohort study:
38. O is Poisson (SMR x E), where E = 25. An observation of O gives
Stratum 1. O = 30. Calculate a 95% confidence interval for the SMR using normal
distribution approximation. Assume that the variance is stable and regard
E as a constant.

Exposure
Yes No ‘Total
Cases 30 5 35 . 39. A cohort study gave the following;
Person years 3,000 1,000 4,000 Exposed population Reference population
Person Person
years  Cases I years  Cases I
Stratum 2.
Young 6,000 60 0010 1,000 5 0.005
Exposure old 2000 60 0030 9000 225 0025
Yes No  Total All 8000 120 0015 10000 230  0.023
Cases 30 225 255

Person years 1,000 9000 10,000 a) Calculate the SMR and a 95% test-based confidence interval.
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41,

b) O is Poisson (SMR x E). Calculate a 95% confidence interval for the
SMR. Use normal distribution approximation and assume that the
variance is stable and that E can be seen as a constant.

¢) O is Poisson (SMR x E). Calculate a 95% confidence interval for the
SMR by normal distribution approximation of the logarithm transforma-
tion. Regard E as a constant.

d) Calculate a 95% confidence interval based on the assumption that the
SMR is a ratio between two standardized incidence rates.

e) Calculate the RR according to the Mantel-Haenszel method and 2 $5%
tesi-based confidence interval,

f) The confidence intervals calculated in a)-e) differ in size. Discuss
possible reasons for this.

X is Poisson (p),
a) Suggest an estimator for 1, What can be said about the mean value and

variance of the estimate?

b} Derive the ML-estimate for .

Derive the ML-estimate for the cumulative incidence.

APPENDIX 2

SOLUTIONS TO THE EXERCISES

fyaforx =1
L p = {3/4 for x = 0

EX)=YXxpx)=0x34+1x1/4=1/4

var(X) = Zp(x){x - EQOT = 3/4 x (1/4) + 1/4 x (3/4) =
= 1/16(3/4 + 9/4) = 3/16

2. Y=X +X,

1/16 for y
p(y) = 16/16 for y
9/16 for y

2
1
0

EY) =Zyp(y) =0x9/16 + 1 x 6/16 + 2 x 1/16 =
= 8/16 = 172

var(Yy = ZpyXy - E)) =
= 9/16(0-1/2 + 6/16(1-112¢ + 1/16(2-1/2 = 6/16

b) E(Y) = EX, « X)) = E(X) + E(X,) = 2% 1/4 = 12

169
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var(Y) = var(X, + X,) = var(X,) + var(X;)} = 6/16

4 Y =1UX, + X,)

1/16 for y = 1
py) =16/16 for y = 172
916 for y =0

50 EQ@) =Zyply) =9/16 x 0 + 6/16 x 112 + /16 x 1 = 1j14

var(Y) = Lp()(y ~ E()) =

=916 (0 - 1/47 + 6/16(1/2 - 1/4)* + 1/16 (1 - 1/4)* = 3/32

b
) E(Y) = E(12X, + 1/2X,) = E(1/2X)) + E(1/2X) =

= 1/2EX) + V2EX,) = 1/4

varn(Y) = var(1/2X, + 12X, = lfdvarX)) + 1/dvar(X,) =

= 1/4(2 x 3/16) = 3/32

6. a) _x2forD<x<2
Fx) {0 otherwise

The area under the function = 1

b)

APPENDIX 2

1 iy .
P = [ foods = fxfz dr = 16 = U
. 0

- 2
P(X>32) = fﬁx)dx = I x¥4 = 1-9/16 = 7116
k74
i

7. a) EX) = fx;(x)dx =fx2/2dx=1x3/6 =43
— [i] 0
- 2
var0 = [ fo)x - EQOVdx = [ 3f2 (x - 43V dx =
— [}
= 12 Ix¥4 -850 +8x3/9 = 1/2 (4 - 64/9 +32/9) = 2/9
b) F() = PA<K) = f Aoy
8. X -~NO14
Transform; Y = ﬂ =+ Y~N(0,1)
Iy

P(X > 5) 4=+ P(Y > 2)

m
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Table gives (Y > 2) = 1 - P(Y £2) = | — 0.9773 = 0.0227

9. Y =X, +X,~N02)

Z = YW2 ~ N@O,D)
P(Y<2) = PZ < 2) = 0921

10. a} X -~ bin(3,0.2)

ie. p(r) = [:} X 02 %08 % x=0,1,2 3

p(0) = 0!3’3! x 0.2° x 0.8' = 0.512
p(l) = “3!2! x 0.2 x 0.64 = 0,384
p2) = 2!3!“ x 0.04 x 0.8 = 0.0960
p(3) = 313!0! x 0.2 % 1 = 0.00800

b) The sum is 1.00

€} PX22) =p2) +p@3) = 0.104

11, X ~ bin(100,0.1)

E(X) = 100 x 0.1 =10

var(X) =100 x 0.1 x 0.9 = 9
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Normal distribution approximation gives:

X~N0g), z = X~ 10

PX>90) =1-PX<90) =1 - P(Z < 80/3) = 0{<10)

12. X ~ Poisson (1.5), p(x) = ¢

p0) =¥ =0.223
p(1} = e'% x 1.5 = 0.335

1.5

=etsx 12 =0251
S )

as 15
E

3
p(3) = e5 x ._.L_ = (.126

1x2x3

elc,
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13.

14,
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Normal distribution approximation gives;

X ~ N(10,10) = P(X > 15) = Plz > 15710 | _
/10

= P(Z > /2.5) = 0.0569

Taking into account the fact that the normal distribution is continuous

gives:

P=plz>155 - 10| _4ong
/10

'The exact value is 0.0487

5\(s st s
1)le)  TH XTI 25
1) = = =_" =0
P 10 Tor 3z 002
5 3750
5Y(s
p@ = A0S ) XD ey
10 753
5

PX £1) = p0) + p(1) =0,103

APPENDIX 2

15. X is hyper-geometrically distributed

E(X) =n_t = =25

nN-n s
NHN -1) 1007 x 99

Px<s10)=pPzs_ 1025

5¢¢
1007 x 99

16
16. a) X = ¥ x,/16 where X, ~ N(n,4)
j=]

X ~ N(u,1/4)

P=P(X25|HO)=P[22 5_4}=P(222)=

v(1/4)

= 0.0228
b) P = 0.05 comresponds to z = 1.645

X, -4
S = 1645 gives X, = 4.82
172

= P(Z < -5.9699) = 0

175
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b) P =0.05 for p = 4.02 and p = 5.98

17. a) X ~ N(p,1/4) (see the solution to Exercise 16)

Pzs 3P lforn>s 18. X ~ bin(10.C1)

y(1/4)

5-p .
PlZ = otherwise H P —
) o) = U cra-ch

Beneath is a table for the P-value function
P=Px<1|CI=02) = {IOOJOQC' x 0.8 +

£ 0001 0023 0159 0500 0159 0023 0.001

p 3.50 4,00 4.50 5.00 5.50 6.00 6.50 N [110]0.2 x 0.8° = 0.376
]
19. a) X, ~ bin(100,CI,)

0.5 1T

0.4+ X, ~ bin(100,C1)

=T gD = €1, - €1,

024
ERD) = E X, E X,

ot KDY =E 155 |~ Elog
=l - ¢,

' ma— : —t—

(=]
—
L8]
w
»
wn
[+)]
~1
Lr-)
1=
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20. Let X, be the number of expesed in the first group. Given a certain total

X X number of exposed, X, is hyper-geometrically distributed under the null
var(RD) = var| —L | + var| L | = hypothesis.
100 100
_CLa-cry cnda-cr AME
100 1060 P =P, 2 5) = sil4)_p
10
9
Under H, is var(8D) = _%_ cia-Cr)
100
where CJ is the common cumulative incidence.
. 5 5 175 2.y, = x, £ 196 Yvar(X) =
var(RD) can then be estimated as ——__ x = x -~
100 200 200 =5+ 196 y4 =108, 892
RD = N[0,_2_x 2, 175
100 200 200
>
_ 15/100 - 10/100 _ 2 X
P=pPz> = 0.143 22. Comsider X = 2 where X, - N(u4)
2 x B s
100 200 200
X~ NnD
b)
A N A
P=PZ> 'N = Py =X, £ 1.96 var@) =52 196 x 1 =
= 3.04, 6.96
A (N-A)N N,
NIN 1)
15 - 100 x 25
=Pz> 200 - 0.143 23. [ =AR, A~ Poisson ( R)
J[zs x 175 x 100 x 100
2007 x 199 E(y = R (E(A) =1
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var{D) = 1/R? var(A) and is estimated as A/R?

I — N{, AlRY for large materials

24, a) A,=20
Table 1 gives:
Ay = 12217, 30.888
Division by 3000 gives

I, = 0.00407, 0.0103

b) alternative 1
A ~ Poisson(p}, A = 20 is an estimation of p

Normal distribution approximation gives A ~ N(20,20)

B, =A% 196 /A =20+ 19620 =
= 11.23, 28.77

Division by 3000 gives I, ,, = 0.00375, 0.00959

c) alternative 2

I~ N{ AIRY

25.

26.

I, = AR £ 196 yAIR® =

20 20
= _+19 |— =
3 000?

¥ ¥

= 0.00375, 0.00959
C1 = A/N where A ~ bin (NCH
E(CN = 1N E(A) = CI

cra-an

var(CI) = 1/N? var(4) = o

The variance can be estimated as %N-Aﬂ\f)_

¢r~N {CI, M_] when N is large

‘ AIN(L-AINY)
Cl,y = AIN £ 1.96 (T] =

_ 100 il_QGJ{IMIleO(l—IWIIMO)]=

10000
= (.00805, 0.0120

APPENDIX 2

18
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Cl,, = AIN £ 196 ‘[ﬂ%ﬂ@_} -

= 66000 + 196 [6’6000(‘ ‘6/6000)} -

27. a)

6000

= 0.000200, 0.00180

b) &I = A/N, A - Poisson (6)

Table 1 gives A; , = 2,202, 13.059

Division by 6000 gives Ci,,, = 0.000367, 0.00218

28.2) RD=F -1

1 0

var (RD) = AR} + AJR;

Normal distribution approximation gives:

RD,, = RD £ 196 Yvar@®D) =

= M 15 96 a4 15 3.
32010 19017 B0I7 190172

=749 x 10, 0.00128

b) KR ~ N(RR, 1/A, + 1/A)

APPENDIX 2

RR, , = exp In AL X 19017 4 496 |[ L+ L]|=
' 28010 x 15 41 15

= 1.03, 3.35

c) RR,, = RRU*19D

ﬂau X 19017]
InRR -0 _ |\2B010 x 15 _ 2,049

RR,, = 1.03, 3.35

R
d) A, |A ~ bin [A, _”_J

R + R

Normal distribution approximation gives:

A - N|A R\ A R 1 - R 1,
R + R, R+ Ry, R + Ry,

Under the mull hypothesis is 7, = I,;

R

A -4l A1 - 56 28010
L 'R +R T
R, R, J[Sﬁ 28010 19017)
A i tdetald
E+R F R 47027 47027
= 2,082
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RR,,, = RRG*%M =

L

41 x 19017 } * 1292 _
28010 x 15

1.04, 3.32

20, a) An approximate 95% confidence interval based on normal distribution
approximation is calculated as:

1

RD,, = CI, - I, % 196 [CI’(IN_ Cry , CLa - é’u)}

30 174 21 184

—_ —_— —_— X e
D302y g || W WA |,
204 205 204 205
= -0.0193, 0.109
A A Nl - Al NU - AO
b} In(RR) - N{InRR, +
NlAl NOAU

RR.. = exp |in[ 29704 il.gsj e, s )|,
* 217205 204 x 30 205 x 21

= 0.851, 242
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¢} Under the null hypothesi§ RR = 1 A, |A is hypergeometrically dis-
tributed. Normal distribution approximation gives:

AN
P a0 51 x 204
7= N _ ._ 409 = 1.364
J AN-A)N,N, J 51x 358 x 204 x 205
NIN-1) 4097 % 408

—

R 1 £ 1.96/1364)
RRL,U - RR(I + 1.96f2) = 30”204 -
217205

= 0.854, 241

30. 2} OR_, = explln OR % 1.96 Yvar(in OR) | =
f

=expln£‘i:l:l.96Jl+i+.]_+_l_ -
\ be a b c d
)
=cxpln96x666ili+ Lo, 1, 1)L
Toax109 |96  To&  T09 566
= 4.00, 7.95

b) Normal distribution approximation of the hyper-geometrical distribution

gives:
L MA, o6 - 205 x 200
T 973
z= = =
J MMN N, J 205 x 770 x 200 x 775
TIT 1) 9757 x 974

= 10.50
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L3

RD,..o =KD, £ 1960/ w) =

= 5796 x 10™ £ 1.96 1 =
5775 x 107 + 6,213 x 10°

= 3.35 x 107, 8.25 x 10

ORL,U = OR(lt 1.96/t) =

1 & 1.96/1050)
- [96 x 666 } = 4,08, 7.79

104 x 19

. T w, RD,
3L a) RD,, =
W, P
= b) KR, = 3BT . 5337 fir, = L0328 5139
2/18790 12710673
1
]
Co\RE R
RR, o = €xp |InfR, £ 1.96
W, = ! = 5775 x 10/
32 . 2 1
52407 18790 RR,,, =exp [In 5737 + 1.96 (1532 + 1/2) ] =
= 1.38, 23.9
wz - 1 = 6.213 x 106
04 12
432487 10673 RR,,, = exp [In 2.139 + 196 (1/104 + 1/12)] =
= 1.18, 3.89
s7rsx 1032 -2 ).emnxiof{ 1% - 12
iD= 52307 18790 73248 10613 ) _
peet 5.775 x 100 + 6.213 x 10° .
P W ]I‘IJQR
_ ¢} InRR . = - :
= 5.796 x 10~ ) pi T Tw,
var (RD )= 1 1 1
pool : W, W, o=

var(n RR) VA, + VA,
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w, = (1/32 + 1/2)" = 1,882

w, = (1/104 + 1/12)" = 10.76

1.882 m{m + 1076 m(.}i(l‘%%?]
RR_ = exp 3718790 210673

poo 1.882 + 10.76
= 2477

RR_,. . =exp (RR  + 196 {(1/E w)] =

=exp [In 2477 £ 1.96 {(1.882 +1076)1 ] =
= 1.43, 4.30

d)
léR - > An‘ RO:'IRI =

" Al]r' Rll'lRi

32 x 18790 104 x 10673
- 71197 53921 = 2616
2% 52407 | 12 x 43248

71197 53921

Normal distribution approximation based on a conditional analysis
gives:

APPENDIX 2

)

Ai Rli
PR
z = =
R, R,
TA_" (-1
34 x 52407 116 x 43248
- +
| B [ 71197 53021
34 x 52407 x 18790 116 x 43248 x 10673
711972 539217
= 3.585
RR,,,, = RRyy™ ™ =
= 2,616 1968585 =
= 1.55, 4.43
e} RR,,, . =exp [InRR,, + 1.96 var(lnIfR!mI) ] =

‘ 1
- 616 +106 |+ |=
exp |In 2.616 1882 + 10.76

= 1.51, 4.55

)

189
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)
R T A R, R,IR}
var(InfR,,,) = ! =
(LA, Ry/R) (AR R)
34 x 52407 x 18790 _ 116 x 43248 x 10673
- 71197 539217
32 x 18790 _ 104 x 10673 }(2 x 52407 _ 12 x 43248
71157 53921 71197 53921
= 0.07767
RR,,, . = exp (InRR,, + 1.96 Jvar(nkR,) ) =
= exp (In 2.616  1.96/0.07767) =
= 1.52, 4.52
2 0 Ap_, = ZM R0
) poot T w,

z
I

var(RD ) Ny Ny

I [CI“(I -Cry | CrL,u-Ciy T

W, = 8/106 (1 -(8/106)) , 5/120 (1 -(5/120)) !
106 120

= 1009

w. = (2298 (L-(2298)) , 16/85 (1 -(1685) |' _
: 98 85

= 279.8

b)
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ip = 1009(8/106 Z5/120) + 279.8(22/98 - 16/85) .
poot 1009 + 279.8

= 003434

RD,,up = RD, £ 1.96,/(1/2 w) =

200334+ 196 |1 ____ =
1009 + 27198
= -0.0203, 0.0889
RARI = w = 1811 ﬁRz = 22;'98 = 1.193
57120 1675
N-A,  Ny-A,
RR,,, = exp|InAR, + 196 || o _¥ "o
Ny Ay Ny A,

106 -8 _ 120 - 5
RR,,, = cxp|ln 1.811 £ 1.96 . -
o = 6P \][106 x8 10 x s]

= 0.611, 5.37

98 -22 _ 85 - 16
- explln 1.193 £ =
RRypy = X ? \J[% X B IGJ

= 0.671, 2.12
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. L w, InRR,
O B = —yr—

1
w = 1 gNu-Au*_Nm_Aoi
: var(lm'iR,.) N, A, Ny Ay

1
w, = [106 -8 120 - 5] - 3255

106 x 8 120 5

1
(9822 85167
| x22 BSx 16

5 3.255 In 1.811 + 11.63 1n 1.193 ) _

RR . =exp =
poe 3.255 + 11.63

= 1.307

RR,,. , = exp(nRR  + 1.96 (/L w)) =

= exp(ln 1.307 £ 1.96 \/(3.255 + 11.63y1 ) =

= 0.786, 2.17
d
" e L EA NN, _
it Aﬂi Nli’Ni

. 8 X 1207226 + 22 x 85/183 _ | 4o
5 x 106226 + 16 x 98/183

Normal distribution approximation based on a conditional analysis
gives:

€)

APPENDIX 2

AN,
ra, -cil
Ni
z - -

T A, (N, - A) N, Ny
NPV, - D)

22 + 8 - (13 x 106/226 + 38 x 98/183)

13x 213 % 106 x 120 . I8 x145x98 x 85
226% x 225 183% % 182

1.092

- ppQ(196s) _
RR, v = RRyy =
= 1.326(1 + 196/11092)

={(.79%, 2.20

RR,, ., = exp [InRR,, + 1.96 fvar(InRR, ) ] =

exp (In 1.326 £ 1.96 \/(3.255 + 11637 =
0.800, 2.21

ar(h].ﬁR ) = E(A.'NuNm _AliAUt'Ni)’N? -
T AN N AN

13x106x 120 -8 x 5x 226 38X 98 x 85 -22x 16 x 183

. 2267 183
Ex120 _ 22x85 5% 106 _ 1698
226 183 |\” 226 183

0.06707

193
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RR,,,, = cxp (nRR,,, + 196 Jvar(nRR,,) } = w, = (/8 + 1/72 + 1/53 + 1/381)" = 6.235

MHLU

= exp {In 1.326 + 1.96 y0.06707 ) =

= 0,798, 2.20 OR_, = ex 11.61 In 1.035 + 6.235 In 0.7987 ) _
poo [1.61 + 6.235
= 0.9455
33 a 0R=._...__._ISXI409= =8X381= -
) OB = o = 1035 OR, = o = 07987 OR,, = expnOR,,,  1.96 {(/T wp) =
= exp (In 0.9455 + 1.96y(11.61 + 6235)" ) =
OR,, = exp (nOR, £ 1.96 (Va, + 1, + Vic, + 1/d) ) = 0.595, 1.50
OR,,, = exp(in 1.035 = 1.96y(1/15 +1/64 + 1/319 + 1/1409) ) =
6 LadT,
= 0.582, 1.84 < O = yporr
OR,, , = exp(ln 0.7987 + 196 /(1/8 + 1172 +1/53 +1/381) ) = 15 x 1409 , 8 x 381
= 0364, 1.75 OR,, = — 201 S _ - 09415
64 % 319 _ 72x 33
1807 514
Normal distribution approximation based on a conditional analysis
¥ w, InOR, wves:
b In ORM: _w InOR, gives
Yi E“s —EN“ Mani
z 1 =
E Nli N()i Mll MDu'
we__ L . 1 T} (T, - 1)
var(nOR) 1o, + 1/b, + lje, + 1/,
79 x 334 |, 80 x 61
15 +8 - +
- 1807 514 .
w, = (1/15 + 1/64 + 1/319 + 1/1409)" = 11.61 79% 1728 x 334 x 1473 _ 80x 434 x 61 x 453
&+
( 18072 x 1806 514*x 513 ]

= -0.2551
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b}

ORypyry = OR,[,L* 1965) - ().0415(1 ¢ 1L96-0.2551) o

= 0.592, 1.50

OR, = 1900" 955 = 2.111
x

OR, = _37"_53 =7 Undefined
x

OR,;; = exp(nOR, £ 1.96 {(l/a, + 1/b, + lc, + 1/d) ) =

OR,;, = exp(ln 2.111 £ 1.96 y(1/10 + 1/90 + 1/5 +1/95)) =
= 0.694, 6.41

Neither can OR,; ,; be calculated.

_ Y w, nOR,
B >

In0R__,

1 1
var(nOR) /8, + Ub, + 1jc, + 1/d,

X
]

, = (/10 + 1/90 + 1/5 + 1/95) = 3.109

w, undefined when any cell frequency = 0

This means that a pooled analysis is unsuitable when strata contain
one or more zeros,

< _ Ead/T, _

Mt Ebe T,

- 10 x 957200 + 3 X 50/100 _ 5 e
%0 x 57200 + 47 % O/100

OR

Eai - ENuMuITf
z= =

NliNﬂi MIEMN
Ti(T, - 1)

10 +3 - (100 x 15200 + 50 x 3/100)

100 % 100 % 15 % 185 . S0x50x3x97
2002 % 199 1007 x 99

= 1.947

4 (1 & 1.96%)
ORyyp = ORyy =

= 2778“ + 191947y -

=0.993, .77

d) var(nOR

APPENDIX 2
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s tcl).

2Eal.di£ b, c,
T

+
™
b
oy
o+
_‘_‘t":
o~
b
o
|
o
S—
"

10 +951/10%x95) (3 +50){3 x 50
200 200 100 100 |,
5 (10x95 3 x50Y
200 100

B B ) o) [ o)

200 100 200 100

[90+5][90x5]+(47+0][47x0}
L L 200 200 100 100 _ 52338

2[90><5 47><0]2
+

2[10x95 . 3x50][90x5 +47><0J

200 100

OR, ., v = exp(InOR,,,, + 1.96 Jvar(InOR,,,)) =

= exp(ln 2,778 £ 1.960.2338) =
= 1.08, 7.17
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35. The Mantel-Haenszel estimator is simplified to:

OrR, =5=2=5
MH { l

The Mantel-Haenszel test is simplified to:

s-t . _3-1 163

I e T M
Ve r JG+ 1)

- OR‘(:Hi 1965 _

= s(l + 196/1.633)

ORs i

= 0.725, 34.5

36. a)
hir = ZVhu _ 1710 x 0,010 + 9/10 x 0030 _

Ty, 110 x 0.005 + 9/10 x 0025

= 002800 _ ;57
0.02300
b)
sty EAAIES ARG

(Evi,) Evi P
_ (1/10)* x 30/3000° + (9/10)" x 30/1000°> |
0.028°

. (110 x S/1000% + (9/10)* x 225/90007 _
0,023?

= 0.03529
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37.

33.

SRR, , = exp (In 1.217 + 1.96y0.03529) = 0.842, 1.76

¢) The choice of weights influences the point estimate as well as the
precision,

SMR = O/E
O ~ Poisson; Table 1 gives

0,, = 0.619, 8.767

Division by £ = 1.5 gives SMR,, = 0413, 5.85

O — Poisson (SMR x E)
E(0)=SMR X E =0
var(0) =SMR X E =0

0 ~ NO.0)

O,y =0£196/0 =1196y30 = 1926, 40.74
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Division by E = 25 gives SMR, , = 0.771, 1.63

39. 2} SMR = O/E
0 =120
E =X R, I, = 6000 x 0.005 + 2000 x 0.025 = 80.00

sMr = 120 _ 1500
80,00

In order to calculate z, for example, the Mantel-Haenszel analogy
regarding cohort studies with incidence data can be used.

AR,
ra, - L=
A, - E(A) R,
z= =

Joar4,))
R, R,

120_(65x6000+285x2000]

rd

7000 11000

65)(6000)(1000 +2852000><9000
7000” 11000*

= 1.757

SMR,,, = SMR* 1% =
= I-Swltl.%’v’l.?ﬂ) -

= (954, 2.36
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b)

SMR = OJE

E(SMR) = E(O/E) = O/E
var(SMR) = var(OJE) = OJE*
SMR ~ N(SMR, SMR/E)

SMR,, = SMR + 196 SMR/E =
= 1.500 + 1.96(1.500/80.00) =

=1.23, 1.77
SMR = O/E

E(InSMR) = InSMR

" 1
var(InSMR) = var(In{O/E)) = 0 =
N O var(O/E)
- E* 0O 21
0t E2 O

SMR_,, = exp(InSMR + 1.96 yvar(inSMR)) =

= exp(ln 1.500 + 1.96,(1/120) =
= 1.25, 1.79

. Ev,{,
d SMR=_"i1

p IR |

P T

Where v; is achieved from the exposed population.

Letv, = Ry,

. TviAJRE  IvAIR:
var(InSMR) ~ vi Au/Ry il o/ Ru =
Eviy Evlpy

. A, | ERiAJR; _
(EAli)z (E RIEAOr‘IRDf)I

1, 60007 x 5/1000° + 2000° x 225/9000°

T T20 (6000 x S/1000 + 2000 x 225/9000)°
= 0.03819

SMR, ,, = exp(nSMR + 1.96 {var(InSMR)) =

= exp(In 1.500 + 1.964/0.03819) =
= 1,02, 2.20

e) 5 E Ali ROJ' l Ri

RR = =
woE Ay Ry [ R,

- 60 x 1000/7000 + 60 x 9000/11000 _
5 x 6000/7000 + 225 % 2000/11000

= 1276

According 0 39a z = 1.757
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RR = RRyg 7 =

MHLL

= 1276(1 + 1961757 o

= 0.972, 1.68

f) The differences primarily depend on the fact that in Exercises a, d, and
e, unlike Exercises b and ¢, the random error in the reference group is
taken into account,

40. a) fi=x
E@) =EX) =p
var(fi) = var(X) = p
b) The probability function for X is
px) = e™ wi! = Lip)
InL =-p +xlnp - Inxt

Derivation on p gives

dL .
— =0 givesp =2x
dp

41.

ie i, =x

Let A be the number of cases. A ~ bin(N, CD,

The probability function for A is

P(A) = [’:) CIA (1 - CIP = L(CD)

In (CI) = 1n(’:) + A ICI + (N-AYn(1-CD)

Derivation on C/ gives:

dinL)y _ A _N-A
aci <C 1-0

L) _ G sives CI = AN
dacT
ie. CI,, = AIN
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