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12.6.3 Scheffé’s Method 236
12.6.4 Tukey’s Procedure 237

12.7 One-Way ANOVA Random
Effects Model 238

12.8 Test for Equality of k Variances 239
12.8.1 Bartlett’s Test 239
12.8.2 Hartley’s Test 241

12.9 Exercises 242
12.10 References 243

13 Two-way Analysis of Variance 245
13.1 Introduction 245
13.2 General Model 246
13.3 Sum of Squares and Degrees of

Freedom 247
13.4 F Tests 250
13.5 Repeated Measures Design 253

13.5.1 Advantages and
Disadvantages 254

13.6 Exercises 255
13.7 References 255

14 Non-parametric Statistics 257
14.1 Introduction 257
14.2 The Sign Test 258
14.3 The Wilcoxon Rank Sum Test 259
14.4 The Wilcoxon Signed Rank Test 262
14.5 The Median Test 264
14.6 The Kruskal-Wallis Rank Test 266
14.7 The Friedman Test 268
14.8 The Permutation Test 269
14.9 The Cochran Test 270

14.10 The Squared Rank Test for
Variances 272

14.11 Spearman’s Rank Correlation
Coefficient 274

14.12 Exercises 275
14.13 References 277

15 Survival Analysis 279
15.1 Introduction 279
15.2 Person-Time Method and

Mortality Rate 279
15.3 Life Table Analysis 281
15.4 Hazard Function 282
15.5 Kaplan-Meier Product Limit

Estimator 284
15.6 Comparing Survival Functions 287

15.6.1 Gehan Generalized
Wilcoxon Test 288

15.6.2 The Log Rank Test 289
15.6.3 The Mantel-Haenszel

Test 290
15.7 Piecewise Exponential

Estimator (PEXE) 291
15.7.1 Small Sample Illustration 291
15.7.2 General Description of

PEXE 292
15.7.3 An Example 293
15.7.4 Properties of PEXE and

Comparisons with
Kaplan-Meier Estimator 295

15.8 Exercises 297
15.9 References 298

Appendix 299
Solutions to Selected Exercises 299
Table A Table of Random Numbers 309
Table B Binomial Probabilities 310
Table C Poisson Probabilities 316
Table D Standard Normal Probabilities 319
Table E Percentiles of the t

Distribution 320
Table F Percentiles of the χ2

Distribution 322
Table G Percentiles of the F

Distribution 323
Table H A Guide to Methods of

Statistical Inference 328

Index 329





Preface

Like many projects, this project started out to
meet a need: we were teaching classes of den-
tal hygiene, dental and post graduate dentists and
could not find a textbook in statistics designed
with the dental health professional in mind. So,
we started to write a brief syllabus. We realized
that most dentists will not become researchers,
however, all will become consumers of research
and will need to understand the inferential statisti-
cal principles behind the professional journals they
read.

The goal of Biostatistics for Oral Healthcare is
to give the reader a conceptual understanding of
the basic statistical procedures used in the health
sciences. Emphasis is given to the rationales, ap-
plications, and interpretations of the most com-
monly used statistical techniques rather than on
their mathematical, computational, and theoreti-
cal aspects.

Achieving an effective level of communication
in a technical book is always a difficult challenge.
If written at too low a level, a book will not re-
ally explain many important points and risks in-
sulting intelligent readers as well as boring them.
However, if written at too advanced a level, then
a book may have difficulty finding an audience.
We have tried to write at a fairly elementary level,
but have not hesitated to discuss certain advanced
ideas. And we have gone rather deeply into a num-
ber of important concepts and methods.

DESCRIPTIVE STATISTICS

The content of Chapters 1 through 5 includes the
basic concepts of statistics and covers descriptive
statistics. Included are discussions of the rationale
for learning and using statistics, mathematical con-
cepts and guidelines for studying statistical con-
cepts (Chapter 1); organizing and graphing data
(Chapter 2); describing distributions, measures

of central tendency, and measures of variation
(Chapter 3); random variables including both dis-
crete and continuous (Chapter 4); and the three
most useful distributions in the health sciences:
binomial distribution, Poisson distribution and
normal distribution.

INFERENTIAL STATISTICS

The discussion of inferential statistics begins in
Chapter 6 where the recurring question of suffi-
cient sample size is addressed. Chapters 7 through
9 covers how to determine appropriate sample size
for a population and compute confidence intervals
as well as hypothesis testing and estimation for
one-sample and two-sample cases for the mean
and other statistics. Chapter 10 describes hypoth-
esis testing for categorical data.

ADVANCED TOPICS

We began the text with a review of basic mathe-
matical and statistical concepts and we end the text
with some of the more sophisticated statistical con-
cepts and procedures. We include discussions of
one-way and two-way analysis of variance as well
as a description of parametric statistical methods
used for data analysis. And finally, we discuss non-
parametric statistics and survival analysis that are
particularly useful in dental and medical clinical
trials.

It is our sincere hope that the conceptual ap-
proach of this book will prove to be a valuable
guide for dental health professionals in basic in-
troductory courses as well as more advanced grad-
uate level courses. We hope that we have been
successful in providing an integrated overview
of the most useful analytical techniques that stu-
dents and practitioners are bound to encounter

ix



x Preface

in their future studies, research activities and
most importantly, as consumers of evidence based
dentistry.

We are grateful to Mr. J. Tanzman for his assis-
tance in preparing the probability tables included
in the Appendix. Thanks are also due to the stu-
dents who took statistics courses in which the
original manuscript was used as a textbook; their

contributions to shaping this book can not be over-
stressed. Finally, it is a great pleasure to acknowl-
edge Dr. Martha Nunn for her support and encour-
agement. Table H in the Appendix is her idea.

J. S. Kim, Ph.D.
R. J. Dailey, Ph.D.

Loma Linda, California



Chapter 1

Introduction

1.1 WHAT IS BIOSTATISTICS?

Statistics is a field of mathematical sciences that
deals with data. Biostatistics is a branch of statis-
tics that emphasizes the statistical applications in
the biomedical and health sciences. It is concerned
with making decisions under uncertainties that oc-
cur when the data are subjected to variation. Some
of the sources of variation are known and can be
controlled, whereas some other sources are not
known and cannot be controlled. Human beings
vary in many aspects. There exist inherent differ-
ences among all of us in our physiology, biochem-
istry, anatomy, environment, lifestyles, pathogen-
esis, and responses to various dental and medical
treatments. The word statistics is used both to refer
to a set of data and to a field of study.

Advancing technology has enabled us to collect
and safeguard a wide variety of data with minimal
effort, from patients’ demographic information to
treatment regimens. Nowadays it is not uncom-
mon for clinics, small or large, to have an efficient
and impressive database management system that
handles massive amounts of patient records. Clin-
icians, researchers, and other health sciences pro-
fessionals are constantly collecting data on a daily
basis. It is difficult to make sense of this confusing
and chaotic array of raw data by visual inspec-
tions alone. The data must be processed in mean-
ingful and systematic ways to uncover the hidden
clues. Processing the data typically involves orga-
nizing them in tables and in clinically useful forms,
displaying the information in charts and graphs,
and analyzing their meaning, all in the presence
of variability. The methods of statistical analysis
are powerful tools for drawing the conclusions that
are eventually applied to diagnosis, prognosis, and
treatment plans for patients.

The following are some examples in which bio-
statistics is applied to answering questions raised
by researchers in the field of health sciences.

1. In dental sciences, gingival recession represents
a significant concern for patients and a thera-
peutic problem for clinicians. A clinical study
was conducted to evaluate and compare the ef-
fects of a guided tissue regeneration procedure
and connective tissue graft in the treatment of
gingival recession defects.

2. Dental researchers conducted a study to evalu-
ate relevant variables that may assist in iden-
tifying orthodontic patients with signs and
symptoms associated with sleep apnea and to
estimate the proportion of potential sleep apnea
patients whose ages range from 8 to 15 years.

3. Candidiasis is a common infection among
the immunocompromised patients. The most
causative agent is Candida albicans, which is a
fungus that produces chlamydospores. C. albi-
cans can be harbored in the bristles of a tooth-
brush and possibly reinfect the patient during
treatment. A study was conducted to deter-
mine the effectiveness of the three most popular
mouthrinses against C. albicans that is harbored
in the bristles of a toothbrush.

4. The medical research on attention deficit hy-
peractivity disorder (ADHD) is based almost
exclusively on male subjects. Do boys have
greater chances of being diagnosed as having
ADHD than do girls? Is the prevalence rate
of ADHD among boys higher than that among
girls?

5. Coronary angioplasty and thrombolytic therapy
(dissolving an aggregation of blood factors) are
well-known treatments for acute myocardial in-
farction. What are the long-term effects of the
two treatments, and how do they compare?

Most of the scientific investigations typically go
through several steps.

1. Formulation of the research problem
2. Identification of key variables
3. Statistical design of an experiment

1



2 Biostatistics for Oral Healthcare

4. Collection of data
5. Statistical analysis of the data
6. Interpretation of the analytical results

Vast amounts of resources, time, and energy are
being dedicated by health sciences professionals
in the pursuit of research projects such as those
described in the examples above. Statistics is an
absolutely indispensable tool, providing the tech-
niques that allow researchers to draw objective
scientific conclusions.

1.2 WHY DO I NEED STATISTICS?

Students raise the question, “Why do I need statis-
tics?” as often as many people say, “I hate going
to the dentist.” Unfortunately, many students have
had an unpleasant experience in mathematics and
statistics while in school. These individuals are as
likely to dislike statistics as patients are to dislike
dental procedures after a bad experience with a
previous dental treatment.

Students who are pursuing a professional de-
gree in the fields of health sciences, such as den-
tistry, dental hygiene, medicine, nursing, phar-
macy, physical therapy, and public health, are of-
ten required to take at least one statistics course as
part of the graduation requirements. An important
part of students’ training is to develop an ability to
critically read the literature in their specialty areas.
The amount of statistics used in journal articles in
biomedical and health sciences can easily intimi-
date readers who lack a background in statistics.
The dental and medical journal articles, for ex-
ample, contain results and conclusions sections in
which statistical methods used in the research are
described. Health science professionals read jour-
nals to keep abreast of the current research find-
ings and advances. They must understand statistics
sufficiently to read the literature critically, assess-
ing the adequacy of the research and interpreting
the results and conclusions correctly so that they
may properly implement the new discoveries in
diagnosis and treatment. As reported by Dawson-
Saunders and Trapp [1], many published scien-
tific articles have shortcomings in study design and
analysis.

A part of statistics is observing events that oc-
cur: birth, death due to a heart attack, emergence
of premolar teeth, lifetime of a ceramic implant,
spread of influenza in a community, amount of an

increase in anterior-posterior knee laxity by exer-
cises, and so on. Biostatistics is an essential tool
in advancing health sciences research. It helps as-
sess treatment effects, compare different treatment
options, understand how treatments interact, and
evaluate many life and death situations in med-
ical sciences. Statistical rigor is necessary to be
an educated researcher or clinician who can shun
the overgeneralization, objectively criticize, and
appreciate the research results published in the
literature.

Learning should be fun. The study of statistics
can be fun. Statistics is not “sadistics.” It is an in-
teresting subject. In fact, it is a fascinating field. Sir
William Osler was quoted as saying that “medicine
is a science of uncertainty and an art of probabil-
ity.” It is no wonder that in dental schools and
medical schools, as well as other post-graduate
health science professional schools, statistics is an
integral part of the curriculum.

1.3 HOW MUCH MATHEMATICS
DO I NEED?

Some students come to statistics classes with
mathematics anxiety. This book is not intended
to entice students and train them to become expert
statisticians. The use of mathematics throughout
the book is minimal; no more than high school or
college level algebra is required. However, it is fair
to say that with greater knowledge of mathemat-
ics, the reader can obtain much deeper insights into
and understanding of statistics.

To dispel anxiety and fear of mathematics, plain
English is used as much as possible to provide mo-
tivation, explain the concepts, and discuss the ex-
amples. However, the readers may feel bombarded
with statistical terms and notation. Readers should
not let this discourage them from studying statis-
tics. Statistical terms in this book are clearly de-
fined. Definitions and notation are the language by
which statistical methods and results are commu-
nicated among the users of statistics.

1.4 HOW DO I STUDY
STATISTICS?

Statistics books cannot be read like English, his-
tory, psychology, and sociology books, or like
magazine articles. You must be prepared to read



Introduction 3

slowly and carefully and with great concentration
and thought. Do not hesitate to go back and review
the material discussed in the previous sections.
Statistics is unique in that the concept being intro-
duced in the current section is often the foundation
for the concepts to be introduced in the following
sections. It is a good idea to frequently review the
materials to gain deeper insight and enhance your
understanding.

It is not necessary to memorize the formulas in
the book. Memorization and regurgitation will not
help you learn statistics. Instead of spending time
memorizing the formulas, strive to understand the
basic concepts. Think of a few relevant examples in

your discipline where the concepts can be applied.
Throughout the study of this book, ask yourself a
couple of questions: What is the intuition behind
the concept? How could I explain the formula to
my brother in the sixth grade so that he can un-
derstand? These questions will force you to think
intuitively and rigorously.

1.5 REFERENCE

1. Dawson-Saunders, Beth, and Trapp, Robert G. Basic &
Clinical Biostatistics. Second Edition. Appleton & Lange.
1994.





Chapter 2

Summarizing Data and Clinical Trials

2.1 RAW DATA AND BASIC
TERMINOLOGY

In most cases, the biomedical and health sciences
data consist of observations of certain characteris-
tics of individual subjects, experimental animals,
chemical, microbiological, or physical phenom-
ena in laboratories, or observations of patients’
responses to treatment. For example, the typi-
cal characteristics of individual subjects (sample
units) are sex, age, blood pressure, status of oral
hygiene, gingival index, probing depth, number of
decayed, missing, and filled (DMF) teeth, mercury
concentration in amalgam, level of pain, bond-
ing strength of an orthodontic material, choles-
terol level, percentage of smokers with obsessive-
compulsive disorder, or prevalence rate of HIV
positive people in a community. Whenever an ex-
periment or a clinical trial is conducted, mea-
surements are taken and observations are made.
Researchers and clinicians collect data in many
different forms. Some data are numeric, such as
height (5′6′′, 6′2′′, etc.), systolic blood pressure
(112 mm Hg, 138 mm Hg, etc.), and some are non-
numeric, such as sex (female, male) and the pa-
tient’s level of pain (no pain, moderate pain,
severe pain). To adequately discuss and describe
the data, we must define a few terms that will be
used repeatedly throughout the book.

Definition 2.1.1. A variable is any characteristic
of an object that can be measured or categorized.
An object can be a patient, a laboratory animal, a
periapical lesion, or dental or medical equipment.
If a variable can assume a number of different
values such that any particular value is obtained
purely by chance, it is called a random variable.
A random variable is usually denoted by an upper-
case letter of the alphabet, X , Y , or Z .

Example 2.1.1. The following variables describe
characteristics of a patient:

� Sex
� Age
� Smoking habits
� Quigley-Hein plaque index
� Heartbeat
� Amount of post-surgery pain
� Saliva flow rate
� Hair color
� Waiting time in a clinic
� Glucose level in diabetics

Raw data are reported in different forms. Some
may be in the form of letters.

Status of Oral Level of
Sex Hygiene Post-Surgery Pain

F = female P = poor N = no pain
M = male F = fair M = mild pain

G = good S = severe pain
E = extremely severe pain

And some data are in numeric values.

Subject Age BP Pocket Depth Cholesterol
No. (yrs.) (mm Hg) (mm) (mg/dl)

1 56 121/76 6.0 167
2 43 142/95 5.5 180

— — — — —
— — — — —

115 68 175/124 6.5 243

Note: BP, blood pressure.

The characteristics of individual subjects to be
measured are determined by the researcher’s study
goals. For each characteristic there might be a few
different ways to represent the measurements. For
example, a clinician who is interested in the oral

5



6 Biostatistics for Oral Healthcare

health of dental patients has selected tooth mobil-
ity as a variable (characteristic) to follow. Tooth
mobility can be measured either by the precise dis-
tance in millimeters that the tooth can be moved,
or it can be categorized as class I, class II, or class
III. In another case, the ambient temperature may
be the variable, which can be recorded in a spe-
cific numeric value, such as 71.3◦ F, or it can be
classified as being cold, warm, or hot.

Definition 2.1.2. The collection of all elements of
interest having one or more common characteris-
tics is called a population. The elements can be
individual subjects, objects, or events.

Example 2.1.2. Some examples of population are

� the entire group of endodontists listed in the di-
rectory of the California Dental Association;

� students enrolled in dental schools or medical
schools in the United States in fall 2007;

� collection of heads and tails obtained as a result
of an endless coin-tossing experiment;

� American children who have an early childhood
caries problem;

� patients who contracted endocarditis as a result
of dental treatments;

� vitamin tablets from a production batch; and
� all patients with schizophrenia.

The population that contains an infinite num-
ber of elements is called an infinite population,
and the population that contains a finite number of
elements is called a finite population.

Definition 2.1.3. The numeric value or label used
to represent an element in the population is called
an observation, or measurement. These two
terms will be used synonymously.

Example 2.1.3. Information contained in five pa-
tient charts from a periodontal office is summa-
rized in Table 2.1.1. Three observations, sex, age,
and pocket depth, were made for each of the five
patients.

Variables are classified as either qualitative or
quantitative.

Definition 2.1.4. A qualitative variable is a char-
acteristic of people or objects that cannot be natu-
rally expressed in a numeric value.

Table 2.1.1. Periodontal data on pocket depth (mm).

Patient No. Sex Age PD

1 M 38 4.5
2 F 63 6.0
3 F 57 5.0
4 M 23 3.5
5 F 72 7.0

Note: PD, pocket depth.

Example 2.1.4. Examples of a qualitative vari-
able are

� sex (female, male);
� hair color (brown, dark, red, . . . );
� cause of tooth extraction (advanced periodon-

tal disease, caries, pulp disease, impacted teeth,
accidents, . . . );

� orthodontic facial type (brachyfacial, dolichofa-
cial, mesofacial);

� specialty area in dentistry (endodontics, or-
thodontics, pediatric dentistry, periodontics,
implants, prosthodontics, . . . );

� type of treatment;
� level of oral hygiene (poor, fair, good); and
� cause of herpes zoster.

Definition 2.1.5. A quantitative variable is a
characteristic of people or objects that can be nat-
urally expressed in a numeric value.

Example 2.1.5. Examples of a quantitative vari-
able are
� age
� height
� weight
� blood pressure
� attachment level
� caloric intake
� gingival exudate
� serum cholesterol

level
� survival time of

implants

� DAT and MCAT
scores

� bone loss affected by
periodontitis

� success rate of cardiac
bypass surgery

� fluoride concentration
in drinking water

� remission period
of lung cancer
patients

Quantitative variables take on numeric values,
and therefore basic arithmetic operations can be
performed, such as adding, dividing, and averag-
ing the measurements. However, the same arith-
metic operations do not make sense for qualita-
tive variables. These will be discussed further in
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Chapter 3. Random variables are classified into
two categories according to the number of dif-
ferent values that they can assume: discrete or
continuous.

Definition 2.1.6. A discrete variable is a random
variable that can take on a finite number of values
or a countably infinite number (as many as there
are whole numbers) of values.

Example 2.1.6. The following variables are
discrete:

� The number of DMF teeth. It can be any one of
the 33 numbers, 0, 1, 2, 3, . . . , 32.

� The size of a family.
� The number of erupted permanent teeth.
� The number of patients with no dental or medical

insurance.
� The number of patients with osseous disease.
� The number of ankylosis patients treated at L.A.

county hospital.

Definition 2.1.7. A continuous variable is a ran-
dom variable that can take on a range of values
on a continuum; that is, its range is uncountably
infinite.

Example 2.1.7. Continuous variables are

� treatment time
� temperature
� pocket depth
� amount of new

bone growth
� diastolic blood

pressure
� concentration

level of
anesthesia

� torque value on
tightening an implant
abutment

� blood supply in a live
tissue

� acidity level in saliva
� force required to extract

a tooth
� amount of blood loss during

a surgical procedure

The actual measurements of continuous vari-
ables are necessarily discrete due to the limita-
tions in the measuring instrument. For example,
the thermometer is calibrated in 1◦, speedometer
in 1 mile per hour, and the pocket depth probe in
0.5 mm. As a result, our measurement of continu-
ous variables is always approximate. On the other
hand the discrete variables are always measured
exactly. The number of amalgam fillings is 4, and
the number of patients scheduled for surgery on
Monday is 7, but the pocket depth 4.5 mm can

be any length between 4.45 mm and 4.55 mm.
Many discrete variables can be treated as con-
tinuous variables for all practical purposes. The
number of colony-forming units (CFUs) in a den-
tal waterline sample may be recorded as 260,000,
260,001, 260,002, . . . , where the discrete values
approximate the continuous scale.

2.2 THE LEVELS OF
MEASUREMENTS

Statistical data arise whenever observations are
made or measurements are recorded. The collec-
tion of the raw data is one of the key steps to sci-
entific investigations. Researchers in health sci-
ences collect data in many different forms. Some
are labels, such as whether the carving skills of
the applicants to dental schools are unacceptable,
acceptable, or good. Some are in numerical form,
such as the class ranking of the third-year dental
students. The numerical data can convey different
meanings. The student ranked number one in the
class is not necessarily 10 times better than the stu-
dent ranked number 10. However, an orthodontist
who typically earns $500,000 a year from her prac-
tice makes twice as much as an orthodontist whose
income from his practice is $250,000 per year. We
treat the numbers differently because they repre-
sent different levels of measurement. In statistics,
it is convenient to arrange the data into four mutu-
ally exclusive categories according to the type of
measurement scale: nominal, ordinal, interval, and
ratio. These measurement scales were introduced
by Stevens [1] and will be discussed next.

Definition 2.2.1. A nominal measurement scale
represents the simplest type of data, in which the
values are in unordered categories. Sex (F, M) and
blood type (type A, type B, type AB, type O) are
examples of nominal measurement scale.

The categories in a nominal measurement scale
have no quantitative relationship to each other.
Statisticians use numbers to identify the cate-
gories, for example, 0 for females and 1 for males.
The numbers are simply alternative labels. We
could just as well have assigned 0 for males and
1 for females, or 2 for females and 5 for males.
Similarly, we may assign the numbers 1, 2, 3, and
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4 to record blood types, 1 = type A, 2 = type
B, 3 = type AB, and 4 = type O. Any four dis-
tinct numbers could be used to represent the blood
types. Although the attributes are labeled with
numbers instead of words, the order and magni-
tude of the numbers do not have any meaning at all.
The numbers in a nominal measurement scale can
be added, subtracted, divided, averaged, and so on,
but the resulting numbers tell us nothing about the
categories and their relationships with each other.
For example, 2 + 5 = 7 and (5 + 2)/2 = 3.5, but
neither 7 nor 3.5 renders any meaningful relation-
ship to any characteristic of females or males. It
is important for us to understand that numbers
are used for the sake of convenience and that the
numerical values allow us to perform the data
analysis.

Example 2.2.1. Examples of nominal scale are
presented.

� Yes/no response on a survey questionnaire
� Implant coatings
� Type of sedation
� Type of filling material in root canal (gutta-

percha, calcium hydroxide, eugenol, silver, . . . )
� Marital status
� Specialty area in medicine
� Religious faith
� Edema (angioneurotic, cardiac, dependent, peri-

orbital, pitting, and glottis)

Definition 2.2.2. In the ordinal measurement
scale, the categories can be ordered or ranked.
The amount of the difference between any two
categories, though they can be ordered, is not
quantified.

Post-surgery pain can be classified according to
its severity; 0 represents no pain, 1 is mild pain, 2 is
moderate pain, 3 is severe pain, and 4 is extremely
severe pain. There exists a natural ordering among
the categories; severe pain represents more seri-
ous pain than mild pain. The magnitude of these
numbers is still immaterial. We could have as-
signed 1 = extremely severe pain, 2 = severe pain,
3 = moderate pain, 4 = mild pain, and 5 = no pain,
instead of 0, 1, 2, 3, and 4. The difference between
no pain and mild pain is not necessarily the same
as the difference between moderate pain and se-
vere pain, even though both pairs of categories are

numerically one unit apart. Consequently, most of
the arithmetic operations do not make much sense
in an ordinal measurement scale, as they do not in
a nominal scale.

The numbers assigned indicate rank or order but
not magnitude or difference in magnitude among
categories. Precise measurement of differences in
the ordinal scale does not exist. For example, the
competency of dentists or physicians can be ranked
as poor, average, good, or superior. When dentists
are classified as superior, a large variation exists
among those in the same category.

Example 2.2.2. Here are some examples of ordi-
nal measurement scales.

� Löe-Silness gingival index
� Tooth mobility
� Miller classification of root exposure
� Pulp status (normal, mildly necrotic, moderately

necrotic, severely necrotic)
� Curvature of the root (pronounced curvature,

slight curvature, straight)
� Letter grade
� Difficulty of the national board exam (easy, mod-

erately difficult, very difficult, . . . )
� Disease state of a cancer (stage 1, stage 2, . . . )

The third level of measurement scale is called
the interval measurement scale.

Definition 2.2.3. In the interval measurement
scale observations can be ordered, and precise dif-
ferences between units of measure exist. However,
there is no meaningful absolute zero.

Temperature is an example of the interval scale.
Suppose the room temperature readings have been
recorded: 40◦ F, 45◦ F, 80◦ F, and 85◦ F. We can
express 80◦ F > 40◦ F (80◦ F is warmer than
40◦ F), and 45◦ F < 85◦ F (45◦ F is colder than
85◦ F). We can also write 45◦ F − 40◦ F = 85◦ F
− 80◦ F = 5◦ F. The temperature differences are
equal in the sense that it requires the same amount
of heat energy to raise the room temperature from
40◦ F to 45◦ F as it does from 80◦ F to 85◦ F. How-
ever, it may not be correct to say that 80◦ F is twice
as warm as 40◦ F, even though 80◦ F = 40◦ F × 2.
Both Celsius and Fahrenheit have artificial zero de-
grees. In other words, the temperature 0◦ in Celsius
or in Fahrenheit does not mean the total absence
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of temperature. The unique feature of the interval
measurement scale is the absence of meaningful
absolute zero.

Example 2.2.3. The examples of the interval mea-
surement scale are not as common as other levels
of measurement.

� IQ score representing the level of intelligence.
IQ score 0 is not indicative of no intelligence.

� Statistics knowledge represented by a statistics
test score. The test score zero does not necessar-
ily mean that the individual has zero knowledge
in statistics.

The highest level of measurement is called the ratio
measurement scale.

Definition 2.2.4. The ratio measurement scale
possesses the same properties of the interval scale,
and there exists a true zero.

Most of the measurement scales in health sci-
ences are ratio scales: weight in pounds, patient’s
waiting time in a dental office, temperature on the
Kelvin scale, and age. Zero waiting time means the
patient did not have to wait. The ratio measurement
scale allows us to perform all arithmetic operations
on the numbers, and the resulting numerical val-
ues do have sensible meaning. As we mentioned
earlier, the amount of knowledge represented by a
statistics test score is on an interval measurement
scale. On the other hand, the test score that rep-
resents the number of the correct answers is on a
ratio scale. The test score 0 indicates that there are
zero correct answers; a true absolute zero exists.
The test score of 99 means that an individual has
three times as many correct answers as an individ-
ual who scored 33 on the test.

Example 2.2.4. The examples of the ratio mea-
surement scale are presented.

� Treatment cost
� Saliva flow rate
� Length of root

canal
� Attachment loss
� Diastema
� Intercondylar

distance
� Systolic blood

pressure

� Amount of new bone
growth

� Amount of radiation
exposure

� Implant abutment
height

� O2 concentration in
the nasal cannula

� Sugar concentration
in blood

If the temperature is expressed as cold, warm,
and hot, an interval variable becomes an ordinal
variable. A health maintenance organization ad-
ministrator might want to express treatment cost
as low, average, and high; then a ratio variable
becomes an ordinal variable. In general, inter-
val and ratio measurement scales contain more
information than do nominal and ordinal scales.
Nominal and ordinal data are encountered more
frequently in behavioral and social sciences than
in health sciences or engineering. The distinction
among the four levels of measurement is impor-
tant. As we shall see later, the nature of a set of
data will suggest the use of particular statistical
techniques.

2.3 FREQUENCY DISTRIBUTIONS

In the previous sections, we learned how to classify
various types of statistical data. In this section we
study the basic statistical techniques that are useful
in describing and summarizing the data. Though
it is extremely rare, one might collect data for the
entire population. When population data are avail-
able, there are no uncertainties regarding the char-
acteristics of the population; all of the pertinent
statistical questions concerning the population are
directly answered by observation or calculation. In
most of the practical situations, however, the data
represent a sample of measurements taken from
a population of interest. The statistical techniques
in this book are discussed under the assumption
that the sample data, not population data, are
availble.

2.3.1 Frequency Tables

The first step in summarizing data is to organize the
data in some meaningful fashion. The most conve-
nient and commonly used method is a frequency
distribution, in which raw data are organized in
table form by class and frequency. For nominal
and ordinal data, a frequency distribution consists
of categories and the number of observations that
correspond to each category. Table 2.3.1. displays
a set of nominal data of prosthodontic services pro-
vided at a large dental clinic during the period of
1991–1998 [2].
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Table 2.3.1. The number of gold crowns and metal
ceramic crowns provided during 1991–1998.

Type of Crown Number of Crowns

Gold crown 843
Metal ceramic crown 972

A survey was taken to assess job satisfaction in
dental hygiene [3]. Table 2.3.2. presents a set of or-
dinal data of 179 responses to one of the questions
in the survey questionnaire, “If you were to in-
crease appointment length, could you provide bet-
ter quality care for your patients?” There are five
choices for the individual’s response: strongly dis-
agree, disagree, neutral, agree, and strongly agree.
Since there are five choices, a typical frequency
distribution would have five categories as shown
in Table 2.3.2. It is not necessary that a frequency
distribution for the ordinal data should have all
of the categories. Sometimes researchers would
prefer combining two adjacent categories. For
example, combine “strongly disagree” and “dis-
agree,” and combine “agree” and “strongly agree.”
The combined data would have three categories:
disagree (67 individuals), neutral (49 individu-
als), and agree (63 individuals).

It has been speculated that a possible cause for
root canal failure is the persistence of bacteria
that have colonized dentinal tubules. To reduce
this risk and time-consuming endodontic therapy,
new equipment and materials are constantly be-
ing introduced. A study was conducted to evaluate
the effect of disinfection of dentinal tubules by in-
tracanal laser irradiation using an in vitro model.
The following data represent the count of bacterial
(Enterococcus faecalis) colonies found in the sam-
ples after they had been treated by the neodymium:
yttrium-aluminum-garnet (Nd: YAG) laser [4].

It is clear that we must do more than a sim-
ple display of raw data as in Table 2.3.3 if we

Table 2.3.2. Responses to a survey question: If you were
to increase appointment time, you could provide better
quality care for your patients.

Response Category Number of Individuals

Strongly disagree 24
Disagree 43
Neutral 49
Agree 33
Strongly agree 30

Table 2.3.3. Count of bacterial colonies.

280 284 172 176 304 200 254 299 190 396
272 196 408 400 184 410 325 206 380 476
236 275 308 188 184 346 210 448 396 304
300 300 200 365 330 220 160 416 184 192
360 272 185 390 250 412 424 172 304 296
120 366 335 180 304 356 440 200 300 588
280 320 500 438 346 213 412 306 320 418
295 282 354 315 196 380 287 207 396 302
306 275 272 358 304 364 286 386 385 301

want to make some useful sense out of them. Re-
arrangement of the data in ascending order enables
us to learn more about the count of the bacterial
colonies. It is easy to see from Table 2.3.4 the
smallest count is 120, and the largest count is 588.
There are several counts that are tied, for exam-
ple, five samples have the same count of 304 bac-
terial colonies. The data in Table 2.3.4, even in
ordered form, are still too unwieldy. To present
raw data, discrete or continuous, in the form of a
frequency distribution, we must divide the range
of the measurements in the data into a number of
non-overlapping intervals (or classes). The inter-
vals need not have the same width, but typically
they are constructed to have equal width. This will
make it easier to make comparisons among differ-
ent classes. If one class has a larger width, then we
may get a distorted view of the data. Bearing in
mind that we wish to summarize the data, having
too many intervals is not much improvement over
the raw data. If we have too few intervals, a great
deal of information will be lost.

So, how many intervals should we have? Some
authors [5] suggest that there should be 10–20
intervals. Of course, a set of data containing a
small number of measurements should have only
a few intervals, whereas a set of data containing

Table 2.3.4. Count of bacterial colonies arranged in
ascending order.

120 160 172 172 176 180 184 184 184 185
188 190 192 196 196 200 200 200 206 207
210 213 220 236 250 254 272 272 272 275
275 280 280 282 284 286 287 295 296 299
300 300 300 301 302 304 304 304 304 304
306 306 308 315 320 320 325 330 335 346
346 354 356 358 360 364 365 366 380 380
385 386 390 396 396 396 400 408 410 412
412 416 418 424 438 440 448 476 500 588
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thousands of measurements over a wide range of
values may need more than 20 intervals. The num-
ber of observations in the data and the range of val-
ues influence the determination as to how many
intervals and how wide the intervals should be.
In general, we suggest that one should have the
number of intervals approximately equal to the
square root of the number of observations. Let
n denote the total number of measurements or
data points. The number of intervals = √

n. Since√
90 � 9.49, for the bacterial colony data in Table

2.3.3, we will need about 9 or 10 intervals to con-
struct a frequency distribution. The symbol “�”
means approximately equal. Once the number of
intervals has been selected, the interval width can
be determined by dividing the range by the number
of intervals.

Width of the interval = Range of data

Number of intervals
.

Constructing a frequency distribution uses the
following steps:

Step 1. Select the number of non-overlapping
intervals.

Step 2. Select a starting point for the lowest class
limit. This can be the smallest value in the
data or any convenient number less than
the smallest observed value.

Step 3. Determine the upper and lower limits for
each interval.

Step 4. Count the number of observations in the
data that fall within each interval.

The results are then presented as in Table 2.3.5
for the bacterial colony data. Table 2.3.5 shows
how the data are distributed across the 10 non-
overlapping intervals, with relatively few observa-
tions at the end of the range (412.5–612.5), and a
large part of the measurements falling around the
value 300. The intervals must be non-overlapping
so that the observations can be placed in only one
class. The upper and lower limits for the intervals

Table 2.3.5. Frequency table for bacterial colony data.

Interval Frequency Interval Frequency

112.5–162.5 2 362.5–412.5 16
162.5–212.5 19 412.5–462.5 6
212.5–262.5 5 462.5–512.5 2
262.5–312.5 27 512.5–562.5 0
312.5–362.5 12 562.5–612.5 1

have a fraction 0.5 that no other measurements in
the data have. All the observations in Table 2.3.3
are in whole numbers. Thus, an advantage of a
selection of such limits is that we can avoid hav-
ing measurements fall on the boundary between
two adjacent intervals. We could, of course, select
the limits without the fraction 0.5: The first inter-
val can be [112, 162), instead of (112.5, 162.5),
and the second interval can be [162, 212), instead
of (162.5, 212.5). With the intervals so defined,
if an observation has a value 162, we place it in
the next interval [162, 212). An observation with a
value 212 will be placed in the third interval. An-
other advantage of having the fraction 0.5 in the
class limits is that this eliminates a gap between
the intervals. There should be enough intervals to
accommodate the entire data. In other words, the
intervals must be exhaustive. The width of an in-
terval is obtained by subtracting the lower limit
from the upper limit. In Table 2.3.5, the width
of an interval is 162.5 − 112.5 = 50.0.The data
presented in Table 2.3.5 is known as grouped
data because each class contains a collection of
measurements.

We said above that the intervals should have
an equal width, but one exception occurs when a
distribution is open-ended with no specific begin-
ning or ending values. Examples of this are often
seen in age-related data as shown in Table 2.3.6.
The frequency distribution for age is open-ended
for the first and last classes. The frequency dis-
tribution is an effective organization of data, but
certain information is inevitably lost. We can’t tell
from Table 2.3.5 precisely what those five mea-
surements are in the third interval (212.5, 262.5).
All we know is that there are five observations be-
tween 212.5 and 262.5. The guidelines discussed
in this section should be followed when one is
constructing a frequency distribution. As we have
noticed, several different frequency tables can be
constructed for the same data. All are correct, just
different, because of a different starting point for

Table 2.3.6. Restorative patients by age.

No. of Restorative No. of Restorative
Age Patients Age Patients

30 or 16 51–60 37
younger

31–40 24 61–70 41
41–50 23 71 or older 33
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the first interval, a different number of classes,
or a different width for intervals. In summary, a
frequency distribution

1. is a meaningful, intelligible way to organize
data.

2. enables the reader to make comparisons among
classes.

3. enables the reader to have a crude impression
of the shape of the distribution.

2.3.2 Relative Frequency

To facilitate the interpretation of a frequency distri-
bution, it is often helpful to express the frequency
for each interval as a proportion or a percentage
of the total number of observations. A relative
frequency distribution shows the proportion of
the total number of measurements associated with
each interval. A proportion is obtained by divid-
ing the absolute frequency for a particular interval
by the total number of measurements. A relative
frequency distribution for bacterial colony data is
presented in Table 2.3.7. The numbers in the paren-
theses are the corresponding percent values. The
relative frequency for the class (162.5, 212.5) is
19

90
� 0.21, or

(
19

90

)
× 100% � 21.0%. The fig-

ures shown in the tables are rounded off to the
nearest 100th. Relative frequencies are useful for
comparing different sets of data containing an un-
equal number of observations. Table 2.3.7 displays
the absolute, relative, and cumulative relative fre-
quencies. The cumulative relative frequency for
an interval is the proportion of the total number

of measurements that have a value less than the
upper limit of the interval. The cumulative relative
frequency is computed by adding all the previous
relative frequencies and the relative frequency for
the specified interval. For example, the cumulative
relative frequency for the interval (262.5, 312.5)
is the sum, 0.02+ 0.21 + 0.06 + 0.30 = 0.59, or
59%. This means that 59% of the total number
of measurements is less than 312.5. The cumula-
tive relative frequency is also useful for comparing
different sets of data with an unequal number of
observations.

Example 2.3.1. At a large clinic, 112 patient
charts were selected at random; the systolic blood
pressure of each patient was recorded. Using the
blood pressure data presented in Table 2.3.8, con-
struct a frequency distribution, including relative
frequency and cumulative relative frequency.

Solution

i. We need to determine the number of nonover-
lapping intervals. There are 112 observations in
the data set, and

√
112 � 10.58. Therefore, we

choose to have 11 intervals.
ii. For the selection of the interval width, notice

that the smallest systolic blood pressure mea-
surement is 96, and the largest measurement is
179. Therefore,

Width of the interval = Range of data

Number of intervals

= 179 − 96

11
� 7.55.

Given this information, it would seem reasonable
to have the interval width of 8. We also choose

Table 2.3.7. A relative frequency distribution for bacterial colony data.

Relative Cumulative Relative
Interval Frequency Frequency (%) Frequency (%)

112.5–162.5 2 2 2
162.5–212.5 19 21 23
212.5–262.5 5 6 29
262.5–312.5 27 30 59
312.5–362.5 12 13 72
362.5–412.5 16 18 90
412.5–462.5 6 7 97
462.5–512.5 2 2 99
512.5–562.5 0 0 99
562.5–612.5 1 1 100

Total 90 100
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Table 2.3.8. Systolic blood pressure (mm Hg) of 112 patients.

116 130 134 158 138 98 130 170 120 104 125 136 160 126
140 110 116 108 138 104 125 120 130 120 128 123 110 140
124 110 140 120 130 145 144 140 140 145 117 120 120 138
110 130 118 120 120 125 135 140 118 130 132 162 133 112
110 122 120 152 110 160 112 150 122 158 110 118 115 133
122 112 145 128 140 120 110 105 110 105 145 112 124 122
120 140 110 120 150 129 179 118 108 110 144 125 123 117
120 118 120 131 96 127 130 131 112 138 126 162 110 130

to have 92.5 as a starting point, which becomes
the lower limit of the first interval. Any other rea-
sonable value that is less than the smallest ob-
served value would do just as well as a starting
point. Once we determine the number of inter-
vals, the interval width, and the starting point, we
can construct a frequency distribution displayed in
Table 2.3.9.

2.4 GRAPHS

Although a frequency distribution is an effec-
tive way to organize and present data, graphs can
convey the same information more directly. Be-
cause of their nature, qualitative data are usually
displayed in bar graphs and pie charts, whereas
quantitative data are usually displayed in his-
tograms, box-whisker plots, and stem and leaf
plots. Graphs can aid us in uncovering trends or
patterns hidden in data, and thus they are indis-
pensible. They help us visualize data. Graphs make
data look “alive.” There are many graphing tech-
niques. Books have been written devoted to graphs

[6, 7]. Our discussions in this section are limited
to the most useful graphs for research and clinical
data in health sciences.

2.4.1 Bar Graphs

In a bar graph categories into which observa-
tions are tallied appear on the abscissa (X -axis)
and the corresponding frequencies on the ordinate
(Y -axis). The height of a vertical bar represents the
number of observations that fall into a category (or
a class). When two sets of data with an unequal
number of observations are being compared, the
height of a vertical bar should represent propor-
tions or percentages. A bar graph in Figure 2.4.1
displays how an estimated 120,000 deaths each
year from hospital errors compare with the top five
leading causes of accidental death in the United
States [8].

Table 2.4.1 summarizes a survey conducted to
find out how many cases of seizures have occurred
in dental offices [9]. Since the number of respon-
dents is not the same for the specialty areas in

Table 2.3.9. Frequency distribution for the SBP data.

Relative Cumulative Relative
Interval Frequency Frequency (%) Frequency (%)

92.5–100.5 2 1.79 1.79
100.5–108.5 6 5.36 7.15
108.5–116.5 20 17.86 25.01
116.5–124.5 29 25.89 50.90
124.5–132.5 21 18.75 69.65
132.5–140.5 17 15.18 84.83
140.5–148.5 6 5.36 90.19
148.5–156.5 3 2.68 92.87
156.5–164.5 6 5.36 98.23
164.5–172.5 1 0.89 99.12
172.5–180.5 1 0.89 100.01∗

Total 112 100.01∗

Note: ∗The total sum exceeds 100% due to the round-off errors.
SBP, systolic blood pressure.
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Figure 2.4.1 Accidental deaths (Source:
National Safety Council, 1998).

Table 2.4.1. The number of seizures in dental offices.

Specialty Number of Seizures Percent of
Area Respondents Occurred Seizures

General dentistry 719 212 29.5%
Endodontics 60 35 58.3%
Oral surgery 88 33 37.5%
Orthodontics 89 17 19.1%
Periodontics 70 25 35.7%
Prosthodontics 41 11 26.8%
Others 232 69 29.7%

dentistry, the height of the vertical bars should rep-
resent the percentages as shown in Figure 2.4.2.

2.4.2 Pie Charts

Categorical data are often presented graphically as
a pie chart, which simply is a circle divided into
pie-shaped pieces that are proportional in size to
the corresponding frequencies or percentages as il-
lustrated in Figure 2.4.3. The variable for pie charts
can be nominal or ordinal measurement scale. To

construct a pie chart, the frequency for each cate-
gory is converted into a percentage. Then, because
a complete circle corresponds to 360 degrees, the
central angles of the pieces are obtained by multi-
plying the percentages by 3.6.

2.4.3 Line Graph

A line graph is used to illustrate the relationship
between two variables. Each point on the graph
represents a pair of values, one on the X -axis and
the other on the Y -axis. For each value on the X -
axis there is a unique corresponding observation
on the Y -axis. Once the points are plotted on the
XY plane, the adjacent points are connected by
straight lines. It is fairly common with line graphs
that the scale along the X -axis represents time.
This allows us to trace and compare the changes
in quantity along the Y -axis over any specified time
period. Figure 2.4.4 presents a line graph that rep-
resents the data on the number of lifetime births per
Japanese woman for each decade between 1930
and 2000.
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Figure 2.4.2 Seizure incidents in dental
offices.
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Figure 2.4.3 Type of anesthesia used in dental offices.

The line graph in Figure 2.4.4 clearly displays
the trends in the number of births per woman in
Japan since the decade of the 1930s. The rate has
been declining steadily except for a break between
1960 and 1970. Japan has experienced a precipi-
tous drop in the birth rate between 1950 and 1960.
The lifetime births per woman in Japan in 2000 is
less than one-third of that in 1930. The line graph
tells us that since 1980, the birth rate in Japan has
fallen below replacement level of 1.7–1.8 births
per woman. If the current birth rate stays the same,
Japanese population will continue to shrink.

We can have two or more groups of data with
respect to a given variable displayed in the same
line graph. Loo, Cha, and Huang [2] have com-

piled a database of specific prosthodontic treat-
ments provided at Loma Linda University School
of Dentistry during the period of 1991–1998. One
of the prosthodontic treatments of their interest
was fixed partial dentures (FPD), subclassified by
number of units involved and by gold or metal ce-
ramic constituent materials. Figure 2.4.5 contains
two lines for comparison; the bottom line for the
gold and the top line for the metal-ceramic fixed
partial dentures. We can trace and compare the
chronological changes in the number of FPDs pre-
ferred by the patients over a specific time period
during 1991–1998. We can plot more than two ob-
servations along the Y -axis for a given value on
the X -axis to compare different groups. Multiple
lines are then constructed by connecting the adja-
cent points by straight lines.

2.4.4 Histograms

Figure 2.4.6 displays a bar graph for the sys-
tolic blood pressure data of n = 112 patients in
Table 2.3.9. A histogram is similar in appearance
and construction to a bar graph except it is used
with interval or ratio variables. That is, a histogram
is used for quantitative variables rather than qual-
itative variables. The values of the variable are
grouped into intervals of equal width. Like a bar
graph, rectangles are drawn above each interval,
and the height of the rectangle represents the num-
ber of observations in the interval. To stress the
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Figure 2.4.5 Gold and metal ceramic fixed partial dentures.

continuous, quantitative nature of the class inter-
vals, the bars of adjacent class intervals in a his-
togram should touch with no space between the
bars, as can be seen in Figure 2.4.6. The class inter-
vals for the systolic blood pressure are represented
along the X -axis (horizontal axis), and frequency
is represented along the Y -axis (vertical axis).

Either frequency or relative frequency can be rep-
resented along the Y -axis. The relative frequency
for each class interval is shown in Table 2.3.9 as
well. Notice in Table 2.3.8 that 47 of the 112 blood
pressure measurements, which amounts to about
42%, end in zero. This suggests that those persons
who recorded the blood pressure values may have

Systolic blood pressure (mm Hg)
178.4170.2162.0153.9145.7137.5129.3121.1113.0104.896.6
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0
Figure 2.4.6 Histogram: Systolic blood
pressure with 11 class intervals.
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Systolic blood pressure (mm Hg)
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Figure 2.4.7 Histogram: Systolic blood
pressure with 10 class intervals.

had a strong preference for the numbers ending in
zero.

A histogram is one of the most widely used
graphing techniques that enables us to understand
the data. The histogram in Figure 2.4.6 has 11
class intervals, with the first interval starting at
92.5 mm Hg. We can construct an alternative his-
togram with 10 class intervals, instead of 11 class
intervals, to see the effect of our choice. The width
of the 10 intervals in Figure 2.4.7 is 9 mm Hg. The
starting point of the two histograms is the same,
both starting at 92.5. Notice that these two his-
tograms have a rather different shape even though
they are created from the same data and their start-
ing points are precisely the same. The only minor
difference between them is that one has 11 inter-
vals and the other 10 intervals. To further explore
the effects of our choices, readers are encouraged
to construct yet another histogram that has 11 class
intervals, but the graph starts at 94.5 mm Hg. Start-
ing the graph 2 units to the right of the starting point
of the original graph produces a figure that looks
different. In general, histograms are sensitive to
choices we make in the number of class intervals
and the starting point of the graph. As we make dif-
ferent choices, we may see dramatically different
histograms that may give us different impressions
about the same set of data.

The following are a few general comments
about histograms:

� Histograms serve as a quick and easy check of
the shape of a distribution of the data.

� The construction of the graphs is subjective.
� The shape of the histograms depends on the

width and the number of class intervals.
� Histograms could be misleading.
� Histograms display grouped data. Individual

measurements are not shown in the graphs.
� Histograms can adequately handle data sets that

are widely dispersed.

Example 2.4.1. A group of food scientists se-
lected 639 random samples of commercially avail-
able pickles and their volume was measured in cu-
bic centimeters. Four technicians who measured
the volume of individual pickle samples had been
instructed to round off the measurements to the
nearest 5 or 10. Therefore, the actual measure-
ments of 806.5 cm3 and 948.7 cm3 were recorded
as 805 cm3 and 950 cm3 so that all of the recorded
data points end in 0 or 5. We have learned in Sec-
tion 2.1 that the volume is a continuous variable.
Figure 2.4.8 shows the histogram for these pickle
data with 22 class intervals. Nothing appears to be
out of ordinary about this histogram. However, a
histogram for the same data constructed with 50
class intervals, presented in Figure 2.4.9, shows a
fascinating shape. Low bars are sandwiched be-
tween high bars. The height discrepancy between
the low and high bars is remarkable. It is highly
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Figure 2.4.8 Histogram for pickle
data with 22 class intervals.

unusual for a continuous variable to behave as
such. A careful examination of the data set indi-
cated that only 19.7% of the measurements end
in 5, and a lopsided 80.3% of the measurements
end in 0. Consequently, the class intervals con-
taining the measurements ending in 5 tend to have
much lower frequency. Figure 2.4.9 revealed that
most likely the technicians have made round-off

errors. They may have preferred to round off the
measurements to the nearest 10 when they should
have rounded off to the nearest 5.

Solution

1. As we have seen in the above examples, we
can use one data set to construct a variety of
different histograms that might have different
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Figure 2.4.9 Histogram for pickle data
with 50 class intervals.
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appearances. The subjective nature of the his-
togram suggests that we must be cautious about
how we use histograms and not be enamored
with their use.

2. Histograms should not be constructed with open
class intervals. When the width of the class
intervals is not equal, special care should be
exercised.

2.4.5 Stem and Leaf Plots

Suppose we have a discrete quantitative random
variable, such as the number of fixed prostheses
present, or a continuous random variable, such as
the amount of epithelial attachment loss suffered
by a patient. The first task in understanding the data
is to obtain a basic idea of the distribution of the
random variable, that is, to determine the general
shape of the distribution, how widely the measure-
ments are spread, and whether or not the measure-
ments have a distinct pattern. The stem and leaf
plot is a method of organizing data that uses part
of the data as the ”stem” and part of the data as
the ”leaves” to form groups. In stem and leaf plots
measurements are grouped in such a way that indi-
vidual observed values are retained while the shape
of the distribution is shown. The stem and leaf plot
consists of a series of numbers in a column, called
the stem, with the remaining trailing digits in the
rows, called the leaves. The stem is the major part
of the observed values.

Figure 2.4.10 presents a stem and leaf plot of
the systolic blood pressure data in Table 2.3.8. The
first column shows the frequency for each leaf. The
first row in the plot indicates that there are two ob-
servations, which are 96 and 98. The third row
indicates that there are four observations, which
are 105, 105, 108, and 108. In the stem and leaf
plot, the first one or two digits form the stems and
the last digits of the observed values constitute the
leaves. In a sense a stem and leaf plot is an ex-
tension of a histogram. An important advantage
of a stem and leaf plot over a histogram is that
the plot provides all the information contained in
a histogram while preserving the value of the in-
dividual observations.

Example 2.4.2. The bone height of 17 implant pa-
tients was measured in millimeters. The total of 49
measurements of their bone height was recorded.

Frequency Stem Leaf

2 9. 68
2 10. 44
4 10. 5588

17 11. 00000000000022222
10 11. 5667788888
22 12. 0000000000000022223344
10 12. 5555667889
14 13. 00000000112334

6 13. 568888
10 14. 0000000044

4 14. 5555
3 15. 002
2 15. 88
0 16. 0022
1 17. 0
1 17. 9

Figure 2.4.10 Stem and leaf plot for the blood pressure data
in Table 2.3.8.

The number of implants placed in each patient var-
ied from 1 to 6.

The integer part of these measurements, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, and 12 will serve as stems and
row labels. The number appearing after the deci-
mal point will be represented as a leaf on the cor-
responding stem. The entire data set in Table 2.4.2
is displayed in Figure 2.4.11. Some statisticians
like to have a vertical line drawn to the right of the
column of stems as shown in the figure, or some
simply put dots (·) after the stems.

Frequency Stem Leaf

1 2 4
4 3 0222

17 4 00000000888888888
2 5 66
7 6 0000044
6 7 222222
6 8 000008
3 9 066
1 10 0
1 11 2
1 12 0

Figure 2.4.11 Stem and leaf plot of the bone height data.
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Table 2.4.2. Bone height (mm) of implant patients.

4.0 5.6 7.2 8.0 7.2 9.6 6.0 3.0 4.0 9.0 4.0 4.8 3.2
6.0 6.0 4.0 7.2 7.2 4.8 6.4 6.0 8.0 12.0 5.6 4.8 8.0

10.0 8.0 7.2 2.4 4.8 4.0 4.8 4.8 3.2 4.8 8.0 8.8 4.0
4.8 3.2 4.0 9.6 6.4 7.2 11.2 4.8 6.0 4.0

The steps for constructing a stem and leaf plot
can be summarized as follows:

1. Separate each value of the measurement into
a stem component and a leaf component. The
stem component consists of the number formed
by all but the rightmost digit of the value. For
example, the stem of the value 76.8 is 76 and
the leaf is 8. For the value 45.6, the stem is 45
and the leaf is 6.

2. Write the smallest stem in the data set at the
top of the plot, the second smallest stem below
the first stem, and so on. The largest stem is
placed at the bottom of the plot. Alternatively,
the largest stem can be placed at the top of the
plot and the smallest stem at the bottom.

3. For each measurement in the data, find the cor-
responding stem and write the leaf to the right
of the vertical line or period. It is convenient,
although it is not necessary, to write the leaves
in ascending order, that is, the smallest first and
the largest at the end of the row.

We note that the leaf component for a stem and
leaf plot can have more than one digit. Suppose
that a data point for the mercury concentration in
an amalgam sample is 87.42%. The leaf can con-
sist of a two-digit number, 42. A stem and leaf
plot can be constructed rather quickly and easily.
No decisions are needed on the number of class in-
tervals or the width of the class intervals. It is easy
to determine the median and the range of the data
from the plot. As mentioned above, unlike a his-
togram, it provides an overview of the distribution
while retaining the individual observed values.

2.5 CLINICAL TRIALS AND
DESIGNS

Perusing journal articles in biomedical and health
sciences areas, one cannot help but be over-
whelmed by an impressive array of new discov-
eries in treatments and new developments in ma-
terials and equipment in dentistry and medicine.

All advances require proper clinical and scientific
scrutiny to ensure the efficacy and safety of pa-
tients before new methods are allowed to be used in
patient treatment. One cannot emphasize enough
the importance of maintaining high standards of
research in the clinical trials of new drugs and treat-
ment methods. The proper use of statistical meth-
ods is critical in all phases of clinical trials. This
section is intended to familiarize the readers with
several statistical terms that are used whenever a
clinical trial or an experiment is undertaken. An
experimental study that involves human subjects
is called a clinical trial. A typical experiment in
health sciences includes an experimental group
(or treatment group), a negative control group,
and a positive control group. The purpose of con-
trol groups is to set up a direct comparison with
the experimental group.

Definition 2.5.1.
� A negative control group is synonymous with

most people’s idea of a control. The subject’s
response is observed in an untreated group or a
placebo group.

� A positive control group is a treatment group
that shows the subjects are capable of response.
Positive control in general is equally important
but for some reason is less frequently practiced.

Positive control is also known as active control.
We note that if there is no significant difference
between the groups, we may not know if either
treatment was effective, detection was not sensi-
tive, treatment was inadequate, compliance with
the treatment was inadequate, or there was hetero-
geneity in those subjects receiving treatments.

A company called Wellness, Inc. was about to
introduce a new mouthrinse product for the pre-
vention of gingivitis. The product was tentatively
named Oral-Fresh. To study the effectiveness of
the product the investigators recruited 210 patients
who met the inclusion criteria. These subjects were
randomly assigned to each of the three treatment
groups: Oral-Fresh, placebo, and peridex. Each
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Crossover design with 2 treatments:
Washout

Washout

Washout Washout

Washout Washout

Washout Washout

Crossover design with 3 treatments:
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Figure 2.5.1 Crossover designs with 2
and 3 treatments.

treatment group contained 70 subjects. Specific
instructions were given to the subjects regarding
the use of the treatments, such as the amount of
mouthrinse and the rinsing time, to control the ex-
periment. The subject’s compliance with the prod-
ucts was carefully monitored. To assess the effec-
tiveness of the mouthrinse, the gingival index of
each patient was measured at the baseline and at
the 3-month time point. In this study, placebo and
peridex were used as negative and positive control
groups, respectively. The trial can be conducted as
a single-blind or a double-blind.

Definition 2.5.2.
Single-blind study. Only the participating sub-

jects are blinded with regard to whether they are
treatment or control subjects.

Double-blind study. Neither the subjects nor
the investigators evaluating the outcome variables
know whether or not the subjects received treat-
ment.

Parallel groups design. The simplest and most
widely used design for clinical trials is the paral-
lel groups design (also called parallel design). In
a parallel design, subjects are randomly assigned
to receive only one of the treatments, without con-
sidering their prognostic variables. Although it is
simple and easy to apply, the parallel design al-
lows subjects to receive only one of the treatments,
with the object of studying differences between the
treatments.

Crossover design. The design in which sub-
jects receive all of the treatments sequentially in

time is known as a crossover design. In a crossover
design, each subject receives two or more differ-
ent treatments. The simplest case is when there
are only two treatments (see Figure 2.5.1). In this
design each subject receives both treatments; half
the subjects are randomly selected to receive treat-
ment A first and then, after a suitably chosen pe-
riod of time, called washout period, cross over to
treatment B. The washout period is necessary to
prevent the carryover effect of the first treatment
persisting into the time period of the second treat-
ment. The washout period must be long enough to
remove the carryover effect.

The main advantages of the crossover design
are that the subjects act as their own control and
that the treatments are compared within subjects.
In a crossover design with two treatments, for ex-
ample, each subject provides two measurements:
one for treatment A and one for treatment B. The
difference between these two measurements will
eliminate any subject effect from the comparisons.
In fact, this is the purpose of the crossover design:
to eliminate treatment effects arising from differ-
ences among the subjects.

For the clinical trial with three treatments, there
are three groups of subjects. At the beginning of the
trial, the groups are randomly assigned to one of
the three treatments (see Figure 2.5.1). For exam-
ple, the second treatment group is initially assigned
to B, and after the washout period, is assigned
(or crossed over) to C. After another washout pe-
riod, the group is now assigned to A, as shown in
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Figure 2.5.1. Some disadvantages of the crossover
design are the carryover effects, withdrawal of sub-
jects from the study before the next treatment, and
the amount of time it takes to complete the study.
For further discussions on design and analysis of
crossover trials, the readers are referred to spe-
cialized textbooks such as Pocock [10] and Senn
[11].

2.6 CONFOUNDING VARIABLES

A bulk of clinical studies and research projects in
biomedical and health sciences involve compar-
ing the means, proportions, variances, or survival
times between two treatment groups and the rela-
tionship between two variables. In these studies,
the investigators tend to assume that the only dif-
ference between the two groups is the treatment
itself. However, the two groups can vary in many
different ways: one group might have better oral
hygiene, a much higher cholesterol level, or the
control group might have a serious bone resorp-
tion problem at the start of the study. Under these
circumstances, it is difficult to know whether the
difference detected is due to the treatment or to
the differences in oral hygiene, cholesterol level,
or bone resorption.

The statistical results are said to be confounded
when the results can have more than one expla-
nation. For example, in a study to examine the
relationship between the percent of gray hair on
the heads of adults and the risk of myocardial in-
farction, both the percent of gray hair and the risk
of myocardial infarction increase as age increases
[12, 13]. The confounding variable is an extrane-
ous variable that is associated both with the out-
come variable and treatment or risk factor.

Example 2.6.1. In a study to investigate the rela-
tionship between coronary heart disease (CHD)
and physical exercise, smoking habit is a con-
founding variable. Past research has established
that smoking is a serious risk factor for CHD. Indi-
viduals who smoke are much less likely to exercise
and exhibit lower levels of health consciousness
[14].

Example 2.6.2. A study by Jovanovic et al. [15]
showed that smoking is the most important etio-
logical factor in the development of oral squamous

cell carcinoma. It has been suggested that alcohol
is one of the major causes of squamous cell carci-
noma [16], and alcohol consumption is known to
be closely related to smoking. Therefore, in this
study, alcohol is a confounding variable.

There may be more than one confounding vari-
able in a study. For example, in a study designed
to determine if an association exists between
cigarette smoking and signs of periodontal disease
[17], age, sex, plaque, and calculus can be con-
founding variables. Good studies are designed to
minimize the influence of confounding variables.
For valid results and conclusions to be obtained,
confounding variables must be controlled. For ex-
ample, in Example 2.6.1 smokers and non-smokers
should be grouped separately to determine the
relationship between CHD and exercise.

2.7 EXERCISES

1 Make a list of at least five variables in dentistry
or medicine.

2 Find at least five examples of population in
health sciences.

3 For the following dental variables, indicate if
the measurement is qualitative or quantitative. For
quantitative variables, indicate whether they are
discrete or continuous.

a. Patient status
b. Color of gingiva
c. Length of a crown
d. Root resorption
e. Number of amalgam fillings
f. Pulse rate
g. Orthognathic jaw classification
h. Sensitivity of tooth
i. Treatment time
j. Number of patients without medical

insurance
k. Golf score
l. Anxiety level
m. Type of mucosa
n. Mercury concentration in amalgam
o. Size of periradicular lesion
p. Shear strength of a bonding material

4 Classify measures of the following according
to the level of measurement scale.
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a. Amount of new bone growth
b. Tooth mobility
c. Bone graft type
d. Drilling temperature
e. Soft tissue thickness
f. Interfacial width
g. Type of surgical approach
h. Occlusal force measured in millipascals
j. Type of filling material in root canal
k. Degree of curvature of a root
l. Level of complexity in a surgical

procedure
m. Type of drug used in general anesthesia
n. Amount of epithelial growth
o. Shape of alveolar ridge
p. Number of roots obturated
q. Bite force

5 What do scores of 0 and 100 on the national
board exam mean? Discuss them in terms of
the statistical concepts you have learned in this
chapter.

6 Eke, Braswell, and Fritz [18] concluded that
the microbiota associated with the progression of
experimental peri-implantitis and periodontitis in-
duced concurrently in partially edentulous mouths
are similar by comparing the relative proportions
of microbial groups. Identify the measurement
scale of the variables (relative proportions) used
in their study.

7 The most recent study conducted by the As-
sociation of American Medical Colleges [19] on
medical school diversity among the U.S. medical
school graduates in 1998–99 showed that 65.8%
are White, 18.2% Asian/Pacific Islander, 7.7%
Black, 6.7% Hispanic, 0.9% American Indian, and
0.7% unknown. Construct an appropriate graph to
compare the six categories.

8 The impact of moving was measured in an
asthma study to compare the asthma prevalence
in children who remained on the primitive island
of Tokelau with children who moved to the devel-
oped island of New Zealand [20]. Using the data
in the table below, construct an appropriate graph.

Tokelau New Zealand

Definite asthma 1.3 % 6.9 %
Probable asthma 9.8 18.4

Total asthma 11.0 25.0

9 The following are two of the most popular
weight-loss programs; one is American Heart As-
sociation eating plan and the other Dean Ornish
heart disease reversal diet. Construct an appro-
priate chart or charts to compare the two diet
programs.

Total Daily Diet (%)

Carbohydrates Fat Protein

AHA 55 30 15
Dean Ornish 70 10 30

10 The findings by Nielson Media Research indi-
cates that advertisers are not afraid to spend money
on Super Bowl ads. The companies say that the ex-
posure during the Super Bowl justifies the expense.
What type of a graph would you use to illustrate
the trend in ad fees on TV during the Super Bowl
games?

Price of a 30-second Super Bowl ad, adjusted for
inflation. (in millions)

Year 1995 1996 1996 1998 1999 2000 2001
Price $1.1 1.2 1.3 1.4 1.7 2.1 2.3

11 What are the advantages and disadvantages of
grouped and ungrouped frequency distributions?

12 Roll a die 30 times and construct a frequency
table showing the number of times each die face
occurred.

13 Sölerling et al. [21] studied 169 mother-child
pairs in a 2-year investigation exploring whether
the mothers’ xylitol consumption could be used
to prevent mother-child transmission of Mutans
streptococci (MS). The 106 mothers in xylitol
group were requested to chew xylitol-sweetened
gum at least 2 or 3 times a day, starting 3 months
after delivery. In the two control groups, the 30
mothers received chlorhexidine, and 33 mothers
received fluoride varnish treatments at 6, 12, and
18 months after delivery. At 2 years of age, 9.7% of
the children in the xylitol, 28.6% in the chlorhex-
idine, and 48.5% in the fluoride varnish group
showed a detectable level of MS. Construct a graph
to present their research results.

14 The systolic blood pressure data is arranged
by sex. There are 38 female patients and 36 male
patients in the data set. (a) Draw two separate
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histograms. (b) Construct a stem and leaf for each
group to compare the two groups.

Female

116 158 98 125 136 126 140 117
110 116 108 125 120 123 140 125
110 140 145 120 138 118 120 118
125 135 140 118 130 120 118 122
120 96 127 130 131 138

Male

130 134 138 130 170 120 104 123
160 138 104 120 130 128 110 144
124 140 120 130 145 144 140 110
117 120 110 130 120 132 162 108
133 112 131 112

15 Pemphigus vulgaris (PV) is a potentially life-
threatening illness that manifests itself initially in
the mouth in the majority of patients. Sirois et al.
[22] reported the following 42 clinical cases of oral
PV evaluated and diagnosed by dentists. Discuss
how you would graphically present the nominal
data.

No. of Patients
Location of Lesion with Oral PV

Buccal mucosa 18
Gingiva 13
Multiple sites 6
Tongue 2
Palate 3
Floor of mouth 0
Skin 0

16 The ages of 54 patients treated by a general
dentist during the first week in June are listed be-
low. Construct a stem and leaf to display the shape
of the age distribution.

66 81 42 34 85 23 18 67 55 59 62 40 42 53 52 54 64 57
9 26 54 73 69 48 54 55 33 40 46 62 54 43 47 44 42 18

70 47 41 35 31 61 29 22 19 8 67 58 29 26 54 72 37 41

17 To group data on the number of DMF teeth
reported by a project team of dental researchers,
Dr. Smith uses the classes 0–5, 6–11, 12–16, 18–
24, and 24–32. Explain where difficulties might
arise with his classes.

18 As of 1999, there are an estimated 800, 000
to 900, 000 people living with HIV or AIDS in
the United States. Centers for Disease Control and
Prevention [23] estimated the annual new HIV in-
fections by race is the following: 26% White, 54%
Black, 19% Hispanic, and 1% others. How would
you present the data to make comparisons between
the races?
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Chapter 3

Measures of Central Tendency,
Dispersion, and Skewness

3.1 INTRODUCTION

In the preceding chapter we studied frequency dis-
tributions and graphs to visually summarize and
display data. These techniques allow us to obtain
useful information from raw data. However, it is
desirable to further describe certain characteris-
tics of data using quantitative measures. It is often
necessary to summarize data by means of a cou-
ple of numbers that are descriptive of the entire
data. The statistical measures that describe such
characteristics as the center or middle of the data
are called measures of location or measures of
central tendency (or central location). The term
central tendency refers to the value on which a
distribution tends to center. In the next several
sections, we present six different measures of lo-
cation: mean, weighted mean, median, mode, ge-
ometric mean, and harmonic mean. Descriptions
of grouped data, percentiles and quartiles are also
presented.

The most widely used measure of location is
average. However, a company that manufactures
surgical latex gloves will not be able to stay in
business very long if it makes only average-sized
gloves. The measures of central tendency are not
enough to describe the data adequately. In addi-
tion to knowing the average, we must know how
the data are dispersed, or spread. The measures
that determine the level of dispersion are called
measures of dispersion, or measures of varia-
tion. Typical measures of dispersion are range,
variance, and standard deviation. These measures
of variation will be discussed in the later part
of the chapter. In particular, the last few sec-
tions present the box plot, which is an extremely
useful technique for exploratory data analysis,
and the concepts of coefficient of variation and
skewness.

3.2 MEAN

The most frequently used measure of central ten-
dency is an arithmetic mean or simply a mean.
The mean, commonly known as the average, is
the sum of n measurements divided by n. In terms
of describing data, people usually think of aver-
age. Average is an interesting concept. Paraphras-
ing Feinsilbur and Meed [1], while very few of the
dental and medical students want to be an aver-
age student, all of them are interested in the aver-
age score on the national board exam. The average
number of children American families have is 2.3.
But no family we know actually has 2.3 children.
Some families have 2 children, and some 3 chil-
dren. But never 2.3 children.

Because we need to compute the mean for a set
of data arising from many different situations, it
would be most convenient to have a general for-
mula that is always applicable. The sample size,
or the number of observations in a sample, is de-
noted by the letter n. If the letter X represents
the variable, the n values of the sample data are
represented by X1, X2, . . . , Xn . In general, X j in-
dicates the j th measurement in a data set. We can
write:

Sample mean = X1 + X2 + · · · + Xn

n
.

This formula will encompass any number of
measurements in a set of any sample data. It will
be further simplified by using symbols X and

∑
.

The following two symbols will be used repeat-
edly throughout the book:

1. X is the symbol for sample mean, read as “X
bar.”

2.
∑

is capital sigma, a Greek letter, and
∑

Xi

stands for the sum of Xi ’s.

27
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Using the above notation, we write the sample
mean as:

X = X1 + X2 + · · · + Xn

n
=
∑n

i=1 Xi

n
.

In statistics, it is customary to denote the char-
acteristics of samples by uppercase English letters
and the characteristics of populations by lowercase
Greek letters. The mean of a sample is denoted
byX, and the mean of a population is denoted by
μ, the Greek letter mu (pronounced “mew”).

Suppose that a surgeon examined five patients
with intraoral swelling. She measured the diameter
of the swelling and reported the following mea-
surements: 5.5, 7.0, 4.5, 8.5, and 10 mm. The
sample mean of the data can be written as:

X =
∑5

i=1 Xi

5
= X1 + X2 + · · · + X5

5
= 7.1.

Some people prefer to write the sample mean, X =
1

n

∑n
i=1 Xi , instead of

∑n
i=1 Xi

n
. By multiplying

both sides of the equation X = 1

n

∑n
i=1 Xi by n,

we get
∑n

i=1 Xi = n · X . For non-negative data,
no individual value can exceed n times the average.
To illustrate this fact, let us consider an example.

Example 3.2.1. Suppose the mean annual income
of four orthodontists is $225, 000. Would it be pos-
sible for any one of them to have an annual income
of $950, 000?

Solution.
∑n

i=1 Xi = (4) · (225, 000) = 900, 000.

Since the total sum is $900, 000, it is not possible
for any one of them to have reported an annual
income of $950, 000.

Example 3.2.2. Chewing tobacco has high levels
of sugars and the users typically keep it in their
mouth a few hours at a time. Therefore, it may be
cariogenic. A sample of 6 chewing tobacco users
and 8 non-users, all of whom are non-smokers, are
compared with respect to the number of decayed
or filled teeth (DFT; see Table 3.2.1). Two sam-
ples are involved in this example; one sample of
6 subjects from a population of chewing tobacco
users and another sample of 8 from a population of
non-users. The random variables of interest are X
and Y. X is the random variable representing the
number of DFT for the chewing tobacco users, and
Y is the random variable representing the number

Table 3.2.1. Number of DFT.

Chew Tobacco Non-users Chew Tobacco Non-users

16 4 12 1
19 6 17 6
15 3 5
20 6 7

of DFT for the non-users. The two sample means,
X and Y are

X = X1 + X2 + · · · + X6

6

= 16 + 19 + 15 + 20 + 12 + 17

6
= 16. 5.

Y = Y1 + Y2 + · · · + Y8

8

= 4 + 6 + 3 + 6 + 1 + 6 + 5 + 7

8
= 4. 75.

Suppose a mistake had been made and the num-
ber of DFT for the third subject in the non-users
group was recorded as 31, instead of 3. Then the
sample mean would be: Y = (4 + 6 + 31 + 6 +
1 + 6 + 5 + 7)/8 = 8. 25. The mean number of
DFT has increased by 3.50, from 4.75 to 8.25.
The impact of one large value on the mean is quite
dramatic. Similarly, one extremely small value
might decrease the mean by an inordinately large
amount. In other words, a mean is rather sensi-
tive to extremely small or extremely large values.
This is not a desirable feature for a measure of
location. However, the mean is simple to calcu-
late; it can be calculated for any set of numeri-
cal data. There is one and only one mean for any
quantitative data set. It possesses many other de-
sirable statistical properties that will be discussed
in later chapters. It is no accident that the mean
is popular as a measure of central tendency for
both discrete and continuous observations. Is the
mean appropriate to describe the central location
for either nominal or ordinal data we discussed in
Section 2.2? Let’s consider the following two
cases.

Case 1. Orthodontists use three facial types to
classify a patient’s facial shape:
1. Brachyfacial
2. Dolichofacial
3. Mesofacial



Measures of Central Tendency, Dispersion, and Skewness 29

Case 2. Periodontists use the following scale to
categorize a patient’s periodontal disease
state:
1. None 2. Mild 3. Moderate
4. Severe 5. Extremely severe

The variable for the facial type in case 1 is nom-
inal. The numbers assigned to the three different
facial types are labels for convenience. Thus, the
average facial type of 2.1 has no meaning at all.
We could have easily assigned 0 = Brachy, 1 =
Dolicho, and 2 = Meso. Similarly, for the ordinal
variable in case 2, we could have labeled the cat-
egories 0 = none, 1 = mild, 3 = moderate, 5 =
severe, and 7 = extremely severe. The average
score of 3.85 for the periodontal disease state is
meaningless. There is an exception to this rule,
however. In the case of a dichotomous variable
where two possible outcomes are represented by 0
and 1, the mean of the observations is equal to the
proportion of 1’s in the data. For example, 0 = fe-
male and 1 = male. Or 0 = no periapical abscess,
and 1 = periapical abscess. Suppose Dr. Johnson
examines 12 patients and finds that 9 have no ev-
idence of periapical abscess and 3 have periapical
abscess as shown in Table 3.2.2. The average is

X = 0+0+0+0+ 0+ 0+0+1+0+1+0+1

12
= 0.25.

The proportion of the patients who have the peri-
apical abscess is 25%, which is equal to the mean
of the data. However, if we labeled 1 = no periapi-
cal abscess and 2 = periapical abscess, the average

Table 3.2.2. Periapical abscess data.

Subject No. Periapical Abscess (X ) Sex (Y )

1 0 0
2 0 0
3 0 1
4 0 1
5 0 1
6 0 1
7 0 0
8 1 0
9 0 0
10 1 1
11 0 0
12 1 1

of the data

X = 1+1+1+1+1+1+1+2+1+2+1+2

12
= 1.25

has no meaning. The mean of the dichotomous
variable is equal to the proportion of the male
patients in the sample. That is:

Y = 0+0+1+1+1+1+0+0+0+1+0+1

12
= 0.5.

This means that the 50% of the patients in Dr.
Johnson’s sample are males. However, if we had
labeled 1 = female and 2 = male, the mean

Y = 1+1+2+2+2+2+1+1+1+2+1+2

12
= 1.5

would have no meaning. The average score be-
comes meaningful only when two possible out-
comes of a dichotomous variable are represented
by 0 and 1.

Have you noticed that the mean is always be-
tween the smallest and the largest observations
of a data set? This fact should become intuitively
clear once we describe a physical interpretation
of the mean. Suppose we have a data set consist-
ing of pocket depth measurements of 5 patients,
10, 5, 7, 12, and 6 mm. The mean of the data
is X = (10 + 5 + 7 + 12 + 6)/5 = 8. Imagine a
stick that has a uniform mass from one end to the
other. Suppose we put a marker on the stick that
corresponds to every measurement in the data set.
The minimum value of the data will be marked at
the left end of the stick, and the maximum value
of the data will be marked at the right end of the
stick. The intermediary values will be appropri-
ately scaled and marked along the stick as shown
in Figure 3.2.1. If we tie an equal weight, say
1/5 oz., to each of the five markers, the point at
which the stick can be balanced on the edge of a
knife corresponds to the mean of the data.

5 6 7

8 (Mean of the data)

10 12

Figure 3.2.1 The balancing point of the stick is the mean of
the data.
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From the above physical interpretation of the
mean, it should be clear that the mean must be lo-
cated somewhere between the minimum and max-
imum observations in the data. It cannot be smaller
than the minimum value, nor can it be larger than
the maximum value.

Next we will discuss some properties of the
mean. Suppose X1, X2, . . . , Xn are n observations
and c is any given constant. Then the mean of
X1 ± c, X2 ± c, . . . , Xn ± c is the same as adding
or subtracting the constant from the mean of the
observations, that is, X ± c. Similarly, the mean
of c · X1, c · X2, . . . , c · Xn or the mean of X1/c,
X2/c, . . . , Xn/c (c �= 0) is the same as multiply-
ing or dividing the mean X by c, that is, c · X or
X /c. This fact is stated below.

1.
(X1 ± c) + (X2 ± c) + · · · + (Xn ± c)

n

=
∑n

i=1(Xi ± c)

n
= X ± c, for any constant c.

2.
cX1 + cX2 + · · · + cXnc

n

=
∑n

i=1 cXi

n
= cX .

3.
X1/c + X2/c + · · · + Xn/c

n
=
∑n

i=1 Xi/c

n
= X/c, (c �= 0).

4.

∑n
i=1(c1 Xi ± c2)

n
= c1 X ± c2.

Example 3.2.3. (i) Dr. Lee is a clinic lab instruc-
tor. He has 8 third-year dental students under his
supervision. The mid-term exam scores of the 8
students were 68, 88, 79, 94, 70, 84, 85, and 72.
The mean score is (68 + 88 + 79 + 94 + 70 +
84 + 85 + 72)/8 = 80.0. However, Dr. Lee de-
cided to reward all of the students with 5 bonus
points for their commitment and dedication to
their clinical work. Given the constant c = 5, us-
ing property 1 above, we can easily calculate the
mean of the 8 students after adding 5 bonus points;
X + c = 80 + 5 = 85.

(ii) The weight of 5 oral surgery patients
was measured in kilograms; 87, 67, 104, 97, 47.
The average weight is (87 + 67 + 104 + 97 +
47)/5 = 80.4 (kg). Suppose we want to present

the average weight in pounds. Because 1 kg. is
approximately equal to 2.2 pounds, we need to
multiply each measurement by 2.2 to convert it
to pounds and then calculate the mean. By us-
ing the above property 2, the average weight in
pounds can be obtained by simply multiplying
c = 2.2 to X = 80.4. That is, cX = (2.2) · 80.4 =
176.88.

Strictly speaking, the word mean, which is also
known as expected value, is not an alternative
for the word average. The word mean pertains to
the population, and the word average pertains to
the sample. They have different interpretations. In
this book, the distinction between the two words
is not made, unless there is a danger of causing
confusion.

3.3 WEIGHTED MEAN

Suppose your statistics instructor indicated that the
homework accounts for 10%, the mid-term exam-
ination accounts for 30%, and the final examina-
tion accounts for 60% of the grade for Statistics
101. A student named John Elmo scored 60 on the
homework, 75 on the mid-term examination, and
93 on the final examination. How would you cal-
culate John’s average score for the course? Would
it be correct to calculate his average for the course

as X = 60 + 75 + 93

3
= 76.0? According to your

instructor’s grading policy, the final examination is
six times as important as the homework, and twice
as important as the mid-term examination perfor-
mance. We would be making a serious error if we
overlooked the fact that the scores in the data do
not have equal importance.

In order to properly reflect the relative impor-
tance of the observations, it is necessary to assign
them weights and then calculate a weighted mean.
Let X1, X2, . . . , Xn be n measurements, and their
relative importance be expressed by a correspond-
ing set of numbers w1 , w2 , . . . , wn . The weight w1

is assigned to X1, the weight w2 to X2, · · · , and
the weight wn to Xn . It is required that the sum of
the weights is 1.0. That is,

n∑
i=1

wi = w1 + w2 + · · · + wn = 1.0.
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Definition 3.3.1. A weighted mean (or weighted
average) is given by

Xw = w1 X1 + w2 X2 + · · · + wn Xn

=
n∑

i=1

wi Xi , where
n∑

i=1

wi = 1.0.

Example 3.3.1. John Elmo’s scores are given by
X1 = 60 (homework), X2 = 75 (mid-term exam-
ination), and X3 = 93 (final examination). The
corresponding weights are w1 = 0.10, w2 = 0.30,

and w3 = 0.60. The sum of the weights is w1 +
w2 + w3 = 0.10 + 0.30 + 0.60 = 1.0. So John’s
weighted mean score is

Xw =
3∑

i=1

wi Xi = (0.10)(60)

+ (0.30)(75) + (0.60)(93) = 84.3.

Example 3.3.2. A survey was conducted in four
cities in California by the California Dental Asso-
ciation to determine what percent of dentists and
physicians have a solo practice. It was found

Location Solo Practice (%)

Los Angeles (X1) 24
Sacramento (X2) 53
San Diego (X3) 47
San Francisco (X4) 28

The arithmetic mean is

X = 24 + 53 + 47 + 28

4
= 38.0.

Out of the four cities surveyed, 38% of the dentists
and physicians on the average have a solo prac-
tice. But does the survey correctly represent the
average percent of the solo practices in the four
cities? There are many more dentists and physi-
cians practicing in Los Angeles than in Sacra-
mento. Therefore, the degree of importance to re-
flect the number of dentists and physicians in each
city must be considered. Let’s assume, for the sake
of argument, that of 2,526 dentists and physicians
in Los Angeles, 606 have solo practices, 184 of
348 in Sacramento, 228 of 486 in San Diego, and
522 of 1,866 in San Francisco have solo prac-
tices. The total number of dentists and physicians
in these cities is 2, 526 + 348 + 486 + 1, 866 =
5, 226. The proportion of dentists and physicians

in each city is

Los Angeles: w1 = 2526

5226
� 0.48

Sacramento: w2 = 348

5226
� 0.07

San Diego: w3 = 486

5226
� 0.09

San Francisco: w4 = 1866

5226
� 0.36.

These proportions will define the weights to be
assigned to the four cities. We can now calculate
the weighted mean

Xw =
4∑

i=1

wi Xi = (0.48)(24) + (0.07)(53)

+ (0.09)(47) + (0.36)(28) = 29.54.

The weighted mean of the percent of solo practices
in the four cities is 29.54%. To ensure the accuracy
of the weight calculations, it is a good practice to
check if the sum of the weights is indeed 0.48 +
0.07 + 0.09 + 0.36 = 1.00.

The arithmetic mean we discussed in Section
3.2 can be expressed

X = 1

n

n∑
i=1

Xi = 1

n
(X1 + X2 + · · · + Xn)

= 1

n
X1 + 1

n
X2 + · · · + 1

n
Xn.

From the above expression, it is easy to no-
tice that the arithmetic mean is a special case of a
weighted mean, where the weights are all equal to
1

n
. In other words, w1 = w2 = · · · = wn = 1

n
. A

physical interpretation of the weighted mean can
be made similar to the one we did for the mean
discussed in Section 3.2. The only difference is
that, instead of tying the equal weights, different
weights w1 , w2 , . . . , wn are tied to each of the cor-
responding markers on the stick. The weighted
mean for a data set is the point where the stick
is balanced.

3.4 MEDIAN

To avoid the possibility of being misled by a few
extremely small or extremely large observations,
we alternatively describe the center of a data set
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with a statistical measure other than the arithmetic
mean. An alternative measure of central location,
which is almost as popular as the arithmetic mean,
is the median or the sample median. Suppose
there are n observations in a set of data. To find
the median, all n observations must be arranged
in ascending order. Then the median is defined as
follows.

Definition 3.4.1. Let X1, X2, · · · , Xn be a sample
of n observations arranged in ascending order. The
sample median is the middle observation if n is
odd. If n is even, the sample median is the average
of the two middle observations.

Another way to describe the median is: if n

is odd, the

(
n + 1

2

)th

largest observation is the

median. If n is even, the average of
(n

2

)th
and(n

2
+ 1
)th

largest observations is the median. For

a sample with an odd number of observations,
there is always a unique central value. If a data
set has five measurements, the third largest is the
central value in the sense that two measurements
are smaller and two measurements are larger. For
a sample with an even number of observations,
there is no unique central value. If a data set
has four measurements, the two middle observa-
tions (the second and the third largest) must be
averaged.

Example 3.4.1. A retrospective study was done
by an orthodontist to quantify changes resulting
from quad helix expansion therapy (used primar-
ily to expand the maxillary dental arch) using
the patient records following completion of ac-
tive orthodontic treatment. Dr. Bee selected seven
dolichofacial patients and measured their maxil-
lary intermolar distance in millimeters. His obser-
vations were: 47.4, 42.2, 49.0, 47.6, 48.5, 45.8,

41.4.

To find the median of the data, we must
first arrange the observations in ascending or-
der: 41.4, 42.2, 45.8, 47.4, 47.6, 48.5, 49.0. Be-
cause there is an odd number (n = 7) of ob-
servations in the sample, the sample median

is

(
n + 1

2

)th

=
(

7 + 1

2

)th

= 4th largest one.

Therefore, 47.4 is the median. We can arrange the

data in descending order. The same argument will
be applied to determine the median.

Example 3.4.2. As baby boomers age, a healthy,
attractive smile becomes important to their appear-
ance. Nothing conveys good health like aestheti-
cally pleasing teeth. It has been reported that tooth
whitening has grown significantly in popularity
and continues to have a major impact on the prac-
tice of dentistry [2]. Six baby boomers were asked
how much they would be willing to spend on teeth
whitening done by dentists. Their responses in dol-
lars ($) are arranged in ascending order: 200, 250,
300, 350, 375, 425. Since there is an even number
(n = 6) of observations, the median is the aver-
age of the two middle values. The third and fourth
largest values are the two middle values. Then the

median is given by
300 + 350

2
= 325. The three

smallest of the six observations are less than the
median 325, and the three largest are greater than
the median 325.

In general, we say that X M is the median of a
data set if one half of the observations in the data
are less than or equal to X M , and one half of the
observations in the data are greater than or equal
to X M .

Suppose in Example 3.4.2, the patient’s re-
sponse was 650, instead of 425. How would this
affect the median? Replacing 425 by 650, the ob-
servations are arranged in ascending order: 200,
250, 300, 350, 375, 650. We see that the me-
dian still is the average of the two middle values,
(300 + 350)/2 = 325. Similarly, if we had 50 in
place of 200 in the sample, it would not change
the median at all. The median remains the same.
What would happen to the mean? This is left to
the readers to think about. What we have observed
here is that, unlike the arithmetic mean, the me-
dian is insensitive to very large or very small val-
ues but sensitive only to the number of observa-
tions in the sample. Hence, if we are studying an
income variable or housing price where some ex-
tremely large values pull the mean away from the
center of the data, the median has an advantage
as a measure of central location because it stays
in the middle of the data, unaffected by extremely
large values. Income and housing data are gen-
erally known as right-skewed. The discussion on
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skewness is presented in Section 3.16. The me-
dian can be used not only with quantitative data,
but also with qualitative ordinal data that can be
ranked, for example, the amount of calculus on
teeth (none, slight, moderate, heavy). The median
can be used to describe the “middle” that is the
most common among the measurements.

3.5 MODE

Another measure used to describe the center of a
data set is the mode, the observation that occurs
most frequently and occurs more than once. An
advantage of the mode is that no calculation is in-
volved. It can be determined simply by counting
the frequencies. The mode is the only measure of
central tendency that can be used for qualitative
variables, such as facial type, anesthetic injection
(inferior alveolar, infiltration, posterior superior
alveolar, mandibular block), ethnic background of
patients, and blood type. Even for quantitative vari-
ables that are inherently discrete, such as family
size, the number of visits to dental office, and the
number of pregnancies, the mode is sometimes a
more meaningful measure of central tendency than
the mean or the median. It makes more sense to say
that the most typical American family size is 4, or
typical American women have 2 pregnancies in
their lifetime, rather than that the average Amer-
ican family size is 3.8 or that American women
have 1.9 pregnancies on the average. A disadvan-
tage is that a data set may have several modes
or no mode at all if no values occur more than
once.

Example 3.5.1. A group of patients was being
screened for a clinical trial to determine if a height-
ened intake of confectionery sugars over a short
period of time caused an increased level of Strep-
tococcus mutans bacteria on the overall dentition.
Gingival index (GI) of the patients was one of the
variables the dental scientists observed.

Subject No. GI Subject No. GI Subject No. GI

1 2 7 0 13 0
2 1 8 0 14 2
3 0 9 2 15 1
4 1 10 1 16 1
5 3 11 1 17 3
6 1 12 2 18 1

From the above gingival index data the following
frequency table can be constructed. It is easy to
see that the mode is 1.

Gingival Index Frequency

0 4
1 8
2 4
3 2

Example 3.5.2. Dental fear has been shown to
be one of the leading factors in avoiding den-
tal treatment. Many dentalphobic patients would
rather risk severe oral pain and discomfort than
seek dental care. Fear may cause various negative
physiological responses such as faster heart rate,
increased respiratory rate, perspiration, tense mus-
cles, and nausea. Even moderate levels of anxiety
may produce significant iatrogenic consequences
in medically compromised patients [3]. To assess
the effect of dental fear, patients’ pulse rate was
taken while they were sitting in the dental chair.
Their pulse rates were 92, 88, 90, 94, 92, 86, 95,
94, 93, 92, 82, 90, 96, 94, 92, 89, 94. There are
4 patients with a pulse rate of 92, and another 4
with 94. Both 92 and 94 are the most frequently
occurring values. Therefore, there are two modes,
one at 92 and the other at 94.

Example 3.5.3. It is well-known that tricyclic an-
tidepressants and antihypertensives may influence
salivary flow. Decreased salivary flow diminishes
the natural cleansing of the oral cavity, thus in-
creasing the incidence of periodontal disease and
caries. To explore what effects ascorbic acid lev-
els in saliva might have on periodontal disease
and caries, a periodontist took 30 salivary sam-
ples from his patients and measured their ascorbic
acid levels, which are shown in Table 3.5.1.

A simple calculation shows that the mean ascor-
bic acid level is X = 0.216. Two middle values are
the 15th and 16th largest ones, both of which are
0.22. Thus, the median is X M = 0.22. Ascorbic
acid level of 0.10 is observed most frequently in
the table. So the mode of the data set is 0.10: mean
= 0.216, median = 0.22, and mode = 0.10. Both
the mean and median are located in the “middle” of
the data, but the mode of 0.10 is located far to the
left of the middle. In the case of the ascorbic acid
data in Table 3.5.1, the mean and the median are
much better measures of location than the mode.
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Table 3.5.1. Ascorbic acid level (mg%) in 30 salivary samples.

0.11 0.14 0.21 0.25 0.10 0.26 0.36 0.22 0.17 0.13
0.33 0.13 0.10 0.21 0.23 0.31 0.19 0.33 0.22 0.28
0.24 0.28 0.37 0.10 0.15 0.31 0.29 0.12 0.08 0.26

In fact, the mode, in this example, will be mis-
leading as a measure of central location. A data
set that has one mode is called unimodal. Some-
times data sets can have more than one mode, as in
Example 3.5.2, where there are two modes. A
data set that has two modes is called bimodal.
In the real world it is much more common for
data to have one mode than to have two or more
modes.

3.6 GEOMETRIC MEAN

The change in growth of bacterial colonies over
time is proportional to the number of colonies that
were present at a previous time. Roughly speak-
ing, the rate of growth is multiplicative, not addi-
tive. For example, on the first day, the count of the
bacterial colonies is 100, on the second day it is
10, 000, on the third day it is 1, 000, 000, and so
on. Propagation of a certain infectious disease in a
population is another such example. During a flu
epidemic, 80 cases were reported to the county
public health department in the first week, 160
cases in the second week, 320 cases in the third
week, and 640 cases in the fourth week. The arith-
metic mean would not be appropriate as a measure
of central tendency in these situations because of
the effects of extremely large values. Some people
may consider the median, but another measure that
is appropriately used is the geometric mean.

Definition 3.6.1. The sample geometric mean of
n non-negative observations, X1, X2, · · · , Xn, in
a sample is defined by the nth root of the product:

X G = n
√

X1 · X2 · · · Xn = (X1 · X2 · · · Xn)
1
n .

Because the nth root is involved in the cal-
culation, all of the measurements must be non-
negative. If there are any negative measurements
in a data set, the geometric mean cannot be used.

Example 3.6.1. (a) The geometric mean of two
values 4 and 16 is

√
(4)(16) = 8.0.

(b) The geometric mean of three measurements 2,
8, and 256 is 3

√
(2)(8)(256) = 16.0.

Example 3.6.2. The American Dental Associa-
tion has been concerned about the passage of oral
microbes into dental water lines. It mandates that
bacterial count in the dental unit water lines be re-
duced to 200 colony-forming units per milliliter
(cfu/ml). The current standard considers water to
be safe for human consumption when it contains
a maximum of 500 cfu/ml. A test was conducted
to determine the efficacy of microfilters using tap
water in reducing the bacterial counts in dental unit
water lines. The water samples were taken at 24-,
48-, and 72-hour intervals, and the samples were
then inoculated on agar plates and incubated at
37◦C for 48 hours. The count of bacterial colonies
at 24 hours was 2, at 48 hours was 34, and at 72
hours was 226. The most appropriate measure of
central location of this type of data is the geometric
mean. The geometric mean of the bacterial counts
at the three time points is

X G = 3
√

(2)(34)(226) = 24.862.

The geometric mean is used primarily in av-
eraging ratios, growth rates, percents, concentra-
tions of one chemical substance to another, and
economic indices. Readers, who are interested in
further exploring the geometric mean, are referred
to Forthofer and Lee [4].

3.7 HARMONIC MEAN

Suppose your dentist’s office is 10 miles away from
your home. On the way to his office the traffic was
light and you were able to drive 60 miles per hour.
However, on the return trip the traffic was heavy
and you drove 30 miles per hour. What was the av-
erage speed of your round trip? Was it 45 mph(

60 + 30

2
= 45.0

)
? Most of us have seen this

kind of problem in algebra textbooks. Because you
have traveled the total of 20 miles in 30 minutes,
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the correct average speed is 40 mph. This average
is known as the harmonic mean.

Definition 3.7.1. The harmonic mean of n obser-
vations, X1, X2, · · · , Xn , is given by the reciprocal
of the arithmetic mean of the reciprocals of the n
observations. That is,

X H = 1
1

n

(∑n
i=1

1

Xi

)
Example 3.7.1. In the above discussion, the two
measurements are X1 = 60 mph, and X2 = 30
mph. The harmonic mean of these two values is

X H = 1
1

2

(
1

60
+ 1

30

) = 2(
1

60
+ 1

30

)
= 2(

1

60
+ 2

60

) = 120

3
= 40.

Example 3.7.2. An experiment was performed in
a biomaterials laboratory with three types of com-
posite materials. For the experiment $480 worth of
composite A was purchased at $30 per package,
$480 worth of composite B at $40 per package,
and $480 worth of composite C at $32 per pack-
age. The average cost per package is given by the
harmonic mean:

X H = 1
1

3

(
1

30
+ 1

40
+ 1

32

) = 33.488.

The average cost per package is about $33.50.

In addition to what we have discussed, there are
other measures of central location. For example,
the midrange is sometimes used. The midrange is
simply the average of the smallest and the largest
observations. Think of it as the midpoint between
two values; one is the minimum and the other is
the maximum. It is simple to calculate but very
sensitive to the minimum and maximum values in
a sample. The midrange is given by

Midrange = XMinimum + XMaximum

2
.

Example 3.7.3. Irreversible pulpitis is character-
ized by pain that is spontaneous and lingers for

some time after the removal of stimulus. Dr. Bonds
treated nine patients with irreversible pulpitis, and
measured the amount of time in seconds that pain
lingered after the stimulus removal. Here are her
data: 35, 45, 20, 65, 5, 25, 30, 35, 15. The mini-
mum is 5 and the maximum is 65. The midrange

of the data is
5 + 65

2
= 35.0.

3.8 MEAN AND MEDIAN OF
GROUPED DATA

We have seen in the previous chapter that a grouped
data set loses some information. The exact value
of each observation in the grouped data is lost; we
only know how many measurements there are in
each class. Dental and medical researchers some-
times report their experimental observations as
grouped data in the form of a frequency distribu-
tion [5, 6, and 7]. Even if the values of individual
measurements are not available, we still might be
interested in obtaining a numerical summary of the
data. To determine the mean, we can get a good
approximation by assigning a midpoint of the class
interval to all those observations that fall into the
same class. For example, the anesthetic activity of
articaine with epinephrine has been demonstrated
to be comparable to that of other anesthetic combi-
nations, including lidocaine with epinephrine [8].
Malamed et al. [8] present the results of a clinical
investigation consisting of three studies designed
to compare the safety and efficacy of 4% arti-
caine with epinephrine (Treatment A, 1:100, 000)
with that of 2% lidocaine with epinephrine (Treat-
ment B, 1:100, 000). Their patient demographics is
presented in Table 3.8.1.

For the subjects treated with 2% lidocaine with
epinephrine, 20 patients are in the age group
4–12, 396 are in 13–64 age group, 23 in 65–
74 age group, and 4 in 75–80 age group. To

Table 3.8.1. Patient demographics.

No. of Treated No. of Treated
Subjects with A Subjects with B

Age 1:100,000 1:100,000

4–12 50 20
13–64 778 396
65–74 43 23
75–80 11 4
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determine the mean age of the patients from the
grouped data, the midpoint of the class inter-
val must be calculated by adding the class lim-
its and dividing it by 2. The midpoint of the first
age group 4–12 is (4 + 12)/2 = 8.0. The mid-
points of the second, third, and fourth age groups
are (13 + 64)/2 = 38.5, (65 + 74)/2 = 69.5, and
(75 + 80)/2 = 77.5. It is assumed that all 20 pa-
tients in the first group are equal to 8.0, all 396
in the second group are equal to 38.5, all 23 in
the third group are equal to 69.5, and all 4 in the
fourth group are equal to 77.5 years old. A total
of 20 + 396 + 23 + 4 = 443 patients are assigned
to this particular treatment. Thus the mean age is
given by

X = (20)(8.0) + (396)(38.5) + (23)(69.5) + (4)(77.5)

443
= 39.085.

The above calculation shows the average age of the
443 patients is about 39.1 years. This procedure is
usually quite satisfactory because the errors being
introduced in the calculation will tend to “aver-
age out.” A general formula will be presented to
calculate the mean of a grouped data.

Definition 3.8.1. Suppose there are k class inter-
vals. Let X1, X2, · · · , Xk be the midpoint of the
intervals, and f1, f2, · · · , fk be the corresponding
frequencies. Then the total number of observations
is the sum of the frequencies,

∑k
i=1 fi = N , and

the mean is given by the expression

X = ( f1)(X1) + ( f2)(X2) + · · · + ( fk)(Xk)∑k
i=1 fi

=
∑k

i=1 fi Xi∑k
i=1 fi

In the example we discussed above, the mid-
points of the intervals are X1 = 8.0, X2 = 38.5,

X3 = 69.5, and X4 = 77.5, and their correspond-
ing frequencies are f1 = 20, f2 = 396, f3 = 23,

and f4 = 4. The total number of observations is
the sum of the frequencies,

4∑
i=1

fi = 20 + 396 + 23 + 4 = 443.

Example 3.8.1. Two of the most important clini-
cal parameters for the prognosis of a periodonti-
cally involved tooth are attachment loss and mo-

Table 3.8.2. Attachment loss of 51 patients.

Attachment loss (mm) No. of subjects

0 ≤ X < 2 14
2 ≤ X < 4 16
4 ≤ X < 6 12
6 ≤ X < 8 7
8 ≤ X < 10 2

bility. A pool of patient subjects was screened for
a clinical trial to evaluate the effects on natural ex-
trinsic dental stain from the use of a dentifrice con-
taining 0.5% calcium peroxide, 1500 ppm sodium
monofluorophosphate in a precipitated calcium
carbonate base. The amount of attachment loss
was one of the inclusion-exclusion criteria.
Table 3.8.2 presents the attachment loss of 51 pa-
tients examined by the dental researchers for the
study. Let X denote the random variable represent-
ing the amount of attachment loss in millimeters.
The class defined by 2 ≤ X < 4 includes the pa-
tient subjects whose attachment loss is greater than
or equal to 2 mm but less than 4 mm.

The midpoints of the class intervals are X1 =
1.0, X2 = 3.0, X3 = 5.0, X4 = 7.0, and X5 =
9.0. The corresponding frequencies are f1 = 14,

f2 = 16, f3 = 12, f4 = 7, and f5 = 2. So the
mean of the grouped data is obtained by

X =
∑k

i=1 fi Xi∑k
i=1 fi

= (14)(1.0) + (16)(3.0) + (12)(5.0) + (7)(7.0) + (2)(9.0)

51
= 3.705 9.

The mean attachment loss of these 51 patients is
approximately 3.7 mm.

A natural question in our minds at this time is
how can we find the median from a grouped data
set. The median of a set of grouped data is found es-
sentially in the same manner as the grouped mean.
Recall that the median of a distribution is the mid-
point such that half of the data lies below and the
other half lies above. If we knew the values of at-
tachment loss of the 51 patients in Table 3.8.2, the
26th largest observation will be the median. There
are 14 observations in the first class and 16 ob-
servations in the second class; therefore, the 26th

largest observation falls in the second class.
To determine the median, we must first count

26 − 14 = 12 more observations beyond the 14
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that fall in the previous class. Assuming that 16
observations in the class are evenly spaced, we
add 12/16 of the width of the class interval to
the left-hand limit of the second class. That is,
2 + (12/16) · 2 = 3.5. Thus, 3.5 mm is the median
of the grouped data in the Table 3.8.2. We will now
summarize this in the following definition.

Definition 3.8.2. Let L be the left-hand limit of
the class into which the median falls, d be the width
of the class interval, f be the frequency of the class,
and k be the number of observations we need in
the class to reach the median. Then the general
formula is

X M = L + k

f
d.

Example 3.8.2. Let us find the median age of the
grouped data in Table 3.8.1 for the patients treated
with 2% lidocaine with epinephrine. There are 443
patients. The midpoint, the 222nd largest obser-
vation, falls in the second class, which contains
396 patients. The left-hand limit of the second
class is L = 13, d = 64 − 13 = 51, f = 396, and
k = 222 − 20 = 202. Using the formula we can
easily obtain the median:

X M = L + k

f
d = 13 + 202

396
(51) = 39.015.

The median age of the patients in the grouped data
is about 39.0.

3.9 MEAN OF TWO OR
MORE MEANS

Sometimes researchers report a data set that is a
collection of averages of two or more observa-
tions. To present the results of the experiment they
may want to produce descriptive statistics, includ-
ing the mean. Suppose we have three sections of
Statistics 101. The average score of the final ex-
amination is X A = 71 for section A, X B = 85 for
section B, and XC = 78 for section C. Is the mean

of the three sections

X = X A + X B + XC

3
= 71 + 85 + 78

3
= 78.0?

If the class size of the three sections is the same,
then X = 78.0 is the correct mean. But if section
A has 48 students, section B has 24 students, and
section C has 29 students, we must weigh the three
means according to their class size. Section A with
48 students should be given twice the weight that
is given to Section B with only 24 students. That
is,

X W = (48)X A + (24)X B + (29)XC

48 + 24 + 29

= (48)71 + (24)85 + (29)78

101
= 76.337.

Definition 3.9.1. Let n1, n2, · · · , nk be the sam-
ple sizes of k samples, and X1, X2, · · · , Xk be the
respective means of the k samples. Then the mean
of the k means is given by the following weighted
mean:

X W = n1 X1 + n2 X2 + · · · + nk Xk

n1 + n2 + · · · + nk
.

Example 3.9.1. Post and core buildups represent
an important preprosthetic procedure prior to the
restoration of an endodontically treated tooth. The
dental practitioners are faced with the dilemma of
selecting from an ever-increasing variety of ma-
terials, techniques, and designs related to the pro-
cedure. To provide guidelines, a dental scientist
selected five different types of direct post-core sys-
tems cemented into extracted human cuspid teeth,
and their peak load (kilograms) was measured
using an Instron universal testing machine. The
mean peak load of these five types of direct post-
core systems and their sample sizes are [9] X1 =
101.99, X2 = 94.78, X3 = 99.09, X4 = 128.76,
X5 = 76.47, and n1 = 7, n2 = 6, n3 = 6, n4 =
7, n5 = 14. Then the mean peak load of these five
means is

X W = n1 X1 + n2 X2 + · · · + nk Xk

n1 + n2 + · · · + nk

= (7)(101.99) + (6)(94.78) + (6)(99.09) + (7)(128.76) + (14)(76.47)

7 + 6 + 6 + 7 + 14
= 96.226.
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The weighted mean, thus obtained, is the same
as the grand mean of all 40 observations pooled
together.

In the following we summarize important prop-
erties of four widely used measures of location.

Mean:

� Most widely used and dependent on the value of
every observation

� Balance point of a distribution
� Not appropriate for qualitative data
� Sensitive to extreme values
� Inappropriate for highly skewed data

Weighted Mean:

� Reflects relative importance of observations
� Useful to find the grand mean of k means

Median:

� Insensitive to extreme values
� Sensitive to the sample size
� Widely used for highly skewed distributions
� Appropriate for ordinal variables

Mode:

� Most typical value in the data
� Only measure appropriate for nominal data
� More appropriate than mean or median for quan-

titative variables that are inherently discrete

In this chapter we have discussed measures of
central tendency. However, no two patients re-
spond precisely the same way to a given treat-
ment, and no two dentists or physicians treat their
patients exactly the same way. This is due to vari-
ation. Variation in all aspects of health sciences
is inevitable. Let us consider an example. The ini-
tial development of gingivitis is directly dependent
on the accumulation of the supragingival plaque.
To evaluate the plaque control that eludes many
patients, investigators randomly selected 7 dental
students and 7 medical students. From each of the
14 subjects, using a cotton pellet a plaque sam-
ple was taken from the smooth surface of their
right maxillary molar area. After 24 hours of in-
cubation, the samples were observed for bacte-
rial colony growth, represented by the amount of
colony-forming units (cfu) as follows:

Medical students:
30, 150, 250, 280, 310, 410, 530

Dental students:
230, 260, 265, 280, 295, 300, 330

The mean for each of the above two data sets
is 280. The CFU measurements for the 7 medical
students vary much more than those for the dental
students, but the means for the two groups are the
same. It would be totally inappropriate for any-
one to conclude that the plaque condition of these
two groups are about the same because the means
are the same. This illustrates the fact that the mean
alone is not enough to accurately describe the data.
The measures of central tendency we discussed so
far represent points on which a distribution tends
to center or concentrate. The measures of central
location convey important information about data,
but they do not tell us anything about the variabil-
ity or dispersion of observations. Many measures
of variability have been proposed to represent the
spread of observations around some central lo-
cation. We will discuss most useful measures of
variability in health sciences: range, percentiles,
interquartile range, variance, standard deviation,
and coefficient of variation.

3.10 RANGE

The simplest measure of variability is the range
(or sample range), which is the distance between
the largest and smallest observations. Let the range
be denoted by R, and X1, X2, · · ·, Xn be n obser-
vations. Then the range is given by

R = Xmax − Xmin.

From the data in Section 3.9, the range of the medi-
cal students is R = 530 − 30 = 500, and the range
of the dental students is R = 330 − 230 = 100.
The range is easy to calculate, but it depends on
only two extremes, the smallest and the largest, ig-
noring all of the intermediary values. That is, the
range does not reflect the dispersion of the val-
ues between the two extreme observations. This
is the main shortcoming of the range. All three
cases below have the same range since they have
the common extreme observations, regardless of
the values between them.

Case 1: 30, 150, 250, 280, 310, 410, 530
Case 2: 30, 30, 30, 30, 30, 30, 530
Case 3: 30, 530, 530, 530, 530, 530, 530



Measures of Central Tendency, Dispersion, and Skewness 39

Range has the following disadvantages:

1. The sampling stability (variability from one
sample to the next) of the range is very poor.

2. It depends on the sample size. The more sam-
ples we have, the more likely we are to observe
greater extreme values. Therefore, the larger
range will likely be observed as we increase
the sample size.

3. It is very sensitive to the two extreme values
and ignores the rest of the observations.

4. It is not meaningful for unordered qualitative
data.

3.11 PERCENTILES AND
INTERQUARTILE RANGE

A measure of variability that is better than the
range would use more information from data by
including more than the two extreme observations
and would not depend on the sample size. Per-
centiles and quartiles are intended to divide data
into 100 parts and 4 parts, respectively.

Definition 3.11.1. The percentile point, or sim-
ply percentile, is a point below which a specified
percent of observations lie. The percentile is de-
noted by p%; the 95th percentile is denoted by p95.
Some prefer to write a fraction in the subscript as
p0.95.

The percentiles are not the same as percents. If
a dental student has scored 82 of a possible 100
on the National Board Examination Part II, then
he has obtained a percentage score of 82. But it
does not indicate the position of his score relative
to the scores obtained by the dental students who
took the same board exam. His score could be the
highest, lowest or somewhere in between. On the
other hand, if his score of 82 corresponds to 90th

percentile, he has performed better than 90% of all
the dental students who took the exam at the same
time he did.

Example 3.11.1. Composite resins are widely
used for esthetic restorations in anterior teeth. An
ideal composite restoration possesses such proper-
ties as color matched with existing dentition, wear
resistant, unabrasive to natural teeth, easy to re-
pair, and color stable. The success of composite
resin restorations depends primarily on color sta-
bility over time. To test the color stability of a
composite currently used widely in dentistry, the
total of 56 specimens of the composite resin was
prepared in uniform dimension. These specimens
were then exposed to a staining medium for a du-
ration of 24 hours at 39◦C. Coffee was used as
the staining medium. The L value of each speci-
men was measured by a Minolta chromameter for
color change after 24-hour immersion. The L value
quantifies metric lightness on the scale of 0 to 100.
The higher the L value, the lighter the color of the
specimen. Table 3.11.1 displays the L value data
for color stability of the composite resin.

Using the data in Table 3.11.1, we construct a
percentile graph as shown in Figure 3.11.1. Per-
centile graphs are the same as the graphs con-
structed based on the cumulative relative fre-
quency discussed in Section 2.3.

From the percentile graph, we can find the ap-
proximate percentile ranks corresponding to given
L values and vice versa. For example, to find the
percentile rank of an L value of 61.85, find 61.85
on the X -axis and draw a vertical line to the graph.
Then draw a horizontal line to the Y -axis. Note that
the horizontal line intersects the Y -axis at 80. The
L value of 61.85 corresponds to approximately the
80th percentile. To find an L value corresponding
to the 40th percentile, first draw a horizontal line to
the graph and then a vertical line to the X -axis. The
vertical line intersects the X -axis at about 59.80.

Table 3.11.1. L value data for color stability of a composite resin [10].

54.59 58.70 62.58 61.24 59.43 55.85 54.81 59.82
61.25 61.15 59.96 56.22 59.72 61.59 60.77 60.38
53.52 61.34 61.48 61.91 60.47 55.36 54.47 53.59
62.29 62.63 60.50 55.08 51.84 61.77 63.40 59.64
54.40 55.71 62.47 63.23 55.97 55.21 53.47 61.49
63.34 62.50 59.35 60.76 56.06 59.87 62.47 58.64
59.64 60.05 58.10 62.81 61.34 58.63 59.88 61.63
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Figure 3.11.1 Percentile graph for
stainability of composite resin data.

Thus, the 40th percentile corresponds to an L value
of approximately 59.80.

The percentile graph is a convenient tool to
find values and their corresponding percentiles.
The use of these graphs yields only approxima-
tion, however. There is a mathematical method to
compute percentiles for data. The percentile cor-
responding to a given observation, X , is given by
the formula

Percentile

= (Number of observations less than X ) + 0.5

Total number of observations in data
×100%.

Example 3.11.2. There are 14 dentists and physi-
cians in a clinic. The number of hours they spent
in patient contact during the first week in June are
42, 30, 25, 28, 8, 40, 32, 28, 36, 44, 15, 40, 41,
38. To find the percentile rank of 36 hours, first
arrange the data in ascending order: 8, 15, 25, 28,
28, 30, 32, 36, 38, 40, 40, 41, 42, 44. Because
there are 7 observations below the data value of
36, substitution in the formula yields,

Percentile = 7 + 0.5

14
× 100% � 53.57.

The value of 36 hours corresponds to approx-
imately the 54th percentile. Conversely, to find
the observed value corresponding to a given

percentile, we can use the formula

k = n · p%

100
, the k indicates the k th largest

observation.

If k is not an integer, round it up to the next integer.

Example 3.11.3. Endodontic rotary files, which
are made of nickel titanium, are being tested for
their reliability. For this study 12 rotary files and
12 endodontists were selected at random, and each
file was used by an endodontist. The endodontists
were asked to record the number of uses of the files
before they became unusable due to breakage or
deformity. The data is given by 6, 3, 12, 23, 2, 6,
18, 11, 9, 5, 9, 8.

(i) To find the value corresponding to the 75th

percentile, rearrange the observations in ascending
order: 2, 3, 5, 6, 6, 8, 9, 9, 11, 12, 18, 23. Then
substitute in the above formula

k = 12 · 75

100
= 9.

Since k = 9, the midpoint between the 9th and 10th

largest observations, that is, the midpoint between
11 and 12, corresponds to the 75th percentile. In
this case, 11.5 is the 75th percentile.

(ii) To find the value corresponding to the 40th

percentile, compute k = 12 · 40

100
= 4.8. Since k =

4.8 is not an integer, round it up to the next whole
number. Then k = 5. The midpoint between the
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5th and 6th largest observations is
6 + 8

2
= 7, and

the value 7 corresponds to the 40th percentile.

Percentiles are intended to divide data into 100
parts. The remainder of this section is devoted to
quartiles, which divide data into approximately
four equal parts. The range as a measure of vari-
ability has a major deficiency because it is sensi-
tive to two extreme values (which two values?).
It is desirable to have a measure of dispersion
that is not easily influenced by a few extreme val-
ues. Interquartile range is such a measure. The
25th, 50th, and 75th percentiles are known as 1st,
2nd, and 3rd quartiles, and denoted by Q1,Q2,
and Q3. Using the percentile notation, Q1 = p25 ,
Q2 = p50 , and Q3 = p75 .

Definition 3.11.2. The sample interquartile
range (IQR) is the distance between Q1 and Q3.

IQR = Q3 − Q1.

The interquartile range contains about 50% of
the data. If the IQR is large, then the data tend
to be widely dispersed. On the other hand, if
the IQR is small, then the data tend to be con-
centrated around the center of the distribution.
For the data in Example 3.11.2, the Q1 can be

computed as follows. First, k = 12 · 25

100
= 3. So

the Q1 is the midpoint between the 3rd and 4th

largest values;
5 + 6

2
= 5.5. The IQR is now

given as IQR = Q3 − Q1 = 11.5 − 5.5 = 6. As
an exploratory data analysis, one should scruti-
nize data for extremely small or extremely large
observations.

Definition 3.11.3. Outlier observations (or sim-
ply, outliers) are extremely small and extremely
large observations compared to the rest of the
values in the data.

There are several statistical methods to check
for outliers. One method that uses the IQR is de-
scribed:

Step 1. Multiply the IQR by 1.5, (1.5) · IQR.
Step 2. Subtract (1.5)IQR from the Q1, and add

to the Q3 to form an interval

[Q1 − (1.5) · IQR, Q3 + (1.5) · IQR].

Step 3. Any data points that fall outside this inter-
val are considered outliers.

Example 3.11.4. In Example 3.11.3, Q1 = 5.5,

Q3 = 11.5, and IQR = 6.The lower limit of the
interval is 5.5 − (1.5) · 6 = −3.5, and the upper
limit is 11.5 + (1.5) · 6 = 20.5. The largest obser-
vation 23 lies outside the interval, and hence, it
can be considered an outlier. Note that the lower
limit is −3.5, a negative value, even though the
observed values for the number of uses cannot fall
below zero. In a case such as this, the realistic
lower limit is in fact zero.

Data often contain outliers. Outliers can occur
due to a variety of reasons: an inaccurate instru-
ment, mishandling of experimental units, measure-
ment errors, or recording errors such as incorrectly
typed values or misplacement of a decimal point.
The observations may have been made about a sub-
ject who does not meet research criteria; for ex-
ample, a research study on hypertension may have
included a patient with low blood pressure, due to
experimenters’ oversight. An outlier can also be
a legitimate observation that occurred purely by
chance.

If we can explain how and why the outliers
occurred, they should be deleted from the data.
Suppose a periodontist is collecting data on the
periodontal attachment level of patients with acute
periodontitis. A value of 75 mm for the attachment
level is clearly an error. Unless we can be cer-
tain that a decimal point is missing and the correct
value is 7.5 mm, this particular outlier observation
should be thrown out.

3.12 BOX-WHISKER PLOT

We have learned in Chapter 2 that graphs are very
effective ways to summarize and present data. A
type of graph that gives a visual representation
of location, variability, and outliers is the box-
whisker plot, or simply called the box plot. The
box plot involves basically only a few values: the
lowest value, the first quartile, median, the third
quartile, and the largest value. Figure 3.12.1 dis-
plays the box plot for the endodontic file data in
Example 3.11.3.

The bottom line of the box, in the middle of
the graph, represents the first quartile (Q1), and
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Figure 3.12.1 Box-whisker plot for endodontic file data.

the top line of the box represents the third quartile
(Q3). The horizontal line going through the middle
of the box describes the median (Q2). Therefore,
the middle 50% of the data values lie within the
box. The shorter the height of the box, the heavier
the concentration of the middle 50% of the data
around the median; the taller the height of the box,
the greater the dispersion of the middle 50% of the
data about the median. In fact, the height of the
box is the interquartile range, IQR = Q3 − Q1.
The two lines projecting out from the bottom and
top sides of the box are called whiskers. The bot-
tom whisker extends to the smallest value within
Q1 − (1.5) · IQR, and the top whisker extends
to the largest value within Q3 + (1.5) · IQR. The
small circle (◦) above the top whisker indicates the
outlier. Notice that the bottom whisker is shorter
than the top whisker. This means the three smallest
observations (2, 3, and 5) in the first quartile are
much less spread out than the two observations
(12 and 18) that fall between Q3 point and Q3+
(1.5) · IQR.

Older groupYounger group

D
ay

s

45

40

35

30

25
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Figure 3.12.2 Box plot for two groups for time required to
splint avulsed tooth.

Example 3.12.1. The table below shows the
length of time required to splint an avulsed tooth
with alveolar fracture for patients 18 years old or
younger and for those older than 18 years.

The box plots are especially useful for compar-
ing two or more sets of data. Figure 3.12.2 above
displays the data in Table 3.12.1. The younger
group has one outlier that falls above the limit,
Q3 + (1.5) · IQR, and the older group has two out-
liers that fall below the limit, Q1 − (1.5) · IQR.

One of the outliers in the box plot is indicated by
a star (∗), which means it is an outlier observation
that lies below Q1 − (3.0) · IQR. The outliers that
lie above Q3 + (3.0) · IQR are also indicated by ∗.
These are referred to as extreme outliers. It is easy
to see that the first quartile, median, and third quar-
tile for the younger group are smaller than those
for the older group. The IQR of the younger group
is much larger than that of the older group. Fur-
ther discussions on the box-whisker plots and their
applications can be found in Tukey [11].

Table 3.12.1. The length of time required to splint an avulsed tooth.

Subject No. Age ≤ 18 Age > 18 Subject No. Age ≤ 18 Age > 18 Subject No. Age ≤ 18 Age > 18

1 24 35 8 29 35 15 21 36
2 17 29 9 21 37 16 20 43
3 33 38 10 20 35 17 22 18
4 30 35 11 23 34 18 32 30
5 22 33 12 21 38 19 24
6 28 37 13 23 42 20 42
7 19 39 14 34 22 21 26
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3.13 VARIANCE AND STANDARD
DEVIATION

The variability in the sample is measured to un-
derstand the level of dispersion that exists in
the population. The most popular and frequently
used measures of variability are the variance and
the standard deviation (SD). Unlike the range
and the interquartile range, these two measures
of dispersion use all of the observations in a
data set. The measures of central location—mean,
median, and mode—do not reflect the variabil-
ity of data at all. Intuitively, we want a statistic
that is small when the observations are closely
bunched around the mean and large when they are
spread out.

In the Figure 3.13.1, the data values in (b) are
more dispersed than those in (a). We therefore
might attempt to calculate the sum of the devia-
tions of individual observations from the mean X ,∑n

i=1(Xi − X ) in order to quantify the variability.
The problem with this measure is that, regardless
of the observed values, whether they are closely
clustered around X or not, it can be shown mathe-
matically that the sum of the deviations is always
equal to zero:

n∑
i=1

(Xi − X ) = 0.

From Figure 3.13.1, it should be clear that the
observations less than X will yield negative de-
viations, and those larger than X will yield pos-
itive deviations. Their respective sums will can-
cel each other out, thereby resulting in the zero
sum. The sum,

∑n
i=1(Xi − X ), will always be zero

for any data set. To avoid this, we might con-
sider the distance between the individual obser-
vations and the mean, that is, to consider the abso-
lute values, |Xi − X |.Although nothing is wrong
with a measure of variability based on the absolute

(a)
◦ ◦ ◦ ◦ | ◦ ◦ ◦ ◦

X

(b)
◦ ◦ ◦ ◦ | ◦ ◦ ◦ ◦

X

Figure 3.13.1 Comparison of dispersion for two cases.

values, it does not possess any desirable statistical
properties.

An alternative approach to consider is the square
of the deviations from the mean that are non-
negative. Hence, we will make use of the sum
of the squared deviations,

∑n
i=1(Xi − X )2. Sup-

pose we have two samples, each taken from the
same population, one with n = 8, and the other
with n = 800. The sample with n = 800 will nat-
urally have a larger value of

∑n
i=1(Xi − X )2 than

the sample with n = 8. To ensure that the sample
size does not influence the measure of dispersion,
a logical approach is to work with the arithmetic
mean of the squared deviations,∑n

i=1(Xi − X )2

n
.

This measure is quite intuitive. It possesses
some desirable statistical properties, which are not
discussed in this book, and it is preferred by many
statisticians (see [12] and [13]). However, it tends
to underestimate the population variance, σ 2. We
will modify the above formula by dividing the sum
by (n − 1), instead of n. This modified version
gives an unbiased estimate of the population vari-
ance and will be used throughout the book as the
measure of variability.

Definition 3.13.1. Let n be the sample size and
X1, X2, . . . , Xn be the n observations. The sam-
ple variance of the data, denoted by S2, is defined
by

S2 =
∑n

i=1(Xi − X )2

n − 1
, (n � 2).

Example 3.13.1. A clinic director believes qual-
ity care begins from the moment the patient walks
into his office. He has learned from the patient sat-
isfaction survey that one of the areas where im-
provement should be made is the waiting time
in the lobby. He asked his assistant to randomly
select one patient a day and carefully observe
the waiting time of the patient. The waiting time
data for this week, Monday through Saturday, is
35, 23, 10, 40, 28, 21 (minutes). What is the vari-
ance of his patients’ waiting time?

Solution. First, we need to compute the mean, X

= 35+23+10+40 + 28 + 21

6
= 157

6
= 26.167.
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The variance in waiting time is given by

S2 =
∑n

i=1(Xi − X )2

n − 1

= (35 − 26.2)2 + (23 − 26.2)2 + (10 − 26.2)2 + (40 − 26.2)2 + (28 − 26.2)2 + (21 − 26.2)2

6 − 1
= 114.17

This example involves only six observations,
but a variance computation involving a large num-
ber of observations can be quite tedious. A short-
cut formula that is equivalent to the one given in
Example 3.13.1 is

S2 =
∑n

i=1 X2
i − n(X )2

n − 1
, (n � 2).

In many practical situations the mean would con-
tain a round-off error. If, for example, we have
rounded off the mean to the nearest tenth, each
term (Xi − X )2 in the sample variance formula
S2 =∑n

i=1(Xi − X )2/(n − 1) would have some
rounding error. The shortcut formula would con-
tain an error but not as great an error as the sample
variance formula. An alternative formula circum-
vents this problem and also is more convenient to
use:

S2 =
∑n

i=1 X2
i −

(∑n
i=1 Xi

)2
n

n − 1
, (n � 2).

We will now present some useful properties of
the variance. You may wonder how addition and
subtraction of a constant or the changes in the units
affect the variance. Suppose X1, X2, . . . , Xn are
n observations. Addition (or subtraction) of a con-
stant c to each of the n observations will shift or
translate all the observations by exactly c units
to the right (or to the left), leaving the variability
among the observations intact. See Figure 3.13.2.

Now let’s think about the effect of multiplying
each observation by the same constant c. If c > 1,
then the multiplication will make the data values
spread out more, and thus, the variance of the data
will be larger. On the other hand, if 0 < c < 1, the

(a)

(b)

Figure 3.13.2 Observations in (a) and (b) have the same
variance.

multiplication will bring the observations closer
together, and therefore the variance will be smaller.
Let S2

X denote the sample variance of n observa-
tions, X1, X2, . . . , Xn, and S2

X±c be the sample
variance of X1 ± c, X2 ± c, . . . , Xn ± c. Let S2

cX
be the sample variance of cX1, cX2, . . . , cXn,

and S2
aX±b be the sample variance of aX1 ± b,

aX2 ± b, · · ·, aXn ± b. Then the following
relations hold:

1. S2
X = S2

X±c for any given constant c

2. S2
cX = c2S2

X for a constant c > 0

3. S2
aX±b = a2S2

X (a > 0)

Example 3.13.2. A study was performed to eval-
uate the strength of a certain prefabricated post for
post-and-core buildups in endodontically treated
teeth. Seven canines of similar length were treated
endodontically and prepared with standardized
drill bits to receive the respective posts. A com-
posite base resin was used for the buildup. The
length of the teeth was approximately 18 mm, and
4 mm of gutta-percha was left in the apex. The
posts were sandblasted and cemented with com-
posite cement. The following fracture load data
were collected after thermocycling the tooth sam-
ples and tested under load using an Instron ma-
chine at 45 degrees:109.73, 44.83, 42.86, 57.43,

74.23, 95.88, 48.04 kg [14]. The mean and vari-
ance are:

X = 67.57, and S2 =
∑n

i=1(Xi − X )2

n − 1
= 705.87.

(i) Suppose the Instron machine was not calibrated
properly, and the correct measurement of the frac-
ture load should be 1.5 kg higher. After revising
the data by adding 1.5 kg to each of the seven
observations, what would be the variance? By the
above property 1, the variance of the original frac-
ture data and the variance of the revised data

(109.73 + 1.5, 44.83 + 1.5, 42.86 + 1.5, 57.43

+ 1.5, 74.23 + 1.5, 95.88 + 1.5, 48.04 + 1.5)
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should be the same. That is, S2
X = S2

X±1.5 =
705.87, where c = 1.5.

(ii) If the fracture data were converted to pounds
by multiplying the measurements in kilograms
by 2.2 (1.0 kg = 2.2 pounds), what would the
variance of the converted data be? Using prop-
erty 2, we see that the variance of the converted
data is

S2
2.2·X = (2.2)2S2

X = (2.2)2 · (705.87)

= 3416.41 (c = 2.2).

Sample variances are no longer in the same units
of measurement as the original data. The observa-
tions on the fracture load were measured in kilo-
grams, and thus the unit of the sample variance
would be squared kilograms. To compensate for
the fact that the deviations from the mean were
squared, the positive square root of the sample vari-
ance is taken; this is known as the sample SD of a
data set. Both the SD and the mean are expressed
in the same unit of measurement as the original
data. Primarily for this reason, the SD is the most
widely used measure of variability.

Definition 3.13.2. The sample SD, denoted by S,
is defined by

√
S2 = S =

√∑n
i=1

(
Xi − X

)2
n − 1

.

To avoid rounding off errors, which was discussed
previously, we may use the alternative formula to
calculate the SD as given by

√
S2 = S =

√√√√√∑n
i=1 X2

i −
(∑n

i=1 Xi
)2

n
n − 1

.

The SD of the fracture load data in Example 3.13.2
is S = √

705.87 = 26.568 (kg).

The corresponding properties for SD can be
stated:

1. SX = SX±c for any given constant c.
2. ScX = c · SX for a constant c > 0.

3. SaX±b = a · SX (a > 0).

Like the variance, SD is not affected by the

translation of the observations by c = 1.5:

SX = SX±1.5 =
√

705.87 = 26.568 (c = 1.5).

If the observations change in scale by a factor
of c, the variance changes by a factor of c2, but the
SD changes by a factor of

√
c2 = c.

S2.2·X = (2.2) · SX = (2.2) · (26.568)

= 58.450 (c = 2.2).

Example 3.13.3. Five maxillary premolar teeth
are in jar 1, and three maxillary premolar teeth
are in jar 2. The width of each tooth in these jars
is measured from distal surface to mesial surface.
The three teeth in jar 2 have identical width, equal
to the average width of the five teeth in jar 1. If the
three teeth in jar 2 are combined with those in jar
1, would the standard deviation of the widths of
the combined sample of eight teeth be larger than
that of the original five teeth in jar 1?

Solution. Let X1, X2, · · · , X5 be the width of the
five premolar teeth in jar 1, and let X be their
mean. Let Y1, Y2, and Y3 be the width of the three
premolar teeth in jar 2. From the given description,
we have Y1 = Y2 = Y3 = X . The mean width of
the combined eight teeth is:

(X1 + X2 + · · · + X5 + Y1 + Y2 + Y3)

8

= (X1 + X2 + · · · + X5 + X + X + X )

8

= (X1 + X2 + · · · + X5 + 3 · X )

8

=
X1 + X2 + · · · + X5 + 3 ·

(
X1 + X2 + · · · + X5

5

)
8

.

Multiplying both the numerator and the denomi-
nator of the above expression by 5, we get:

5(X1 + X2 + · · · + X5) + 3 · (X1 + X2 + · · · + X5)

5 · 8

= 8(X1 + X2 + · · · + X5)

40

= X1 + X2 + · · · + X5

5
= X .

The mean width of the combined eight teeth is the
same as that of the original five teeth in jar 1. The
variance of the width of the original five teeth in
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jar 1 is:

S2
O = (X1 − X )2 + (X2 − X )2 + (X3 − X )2 + (X4 − X )2 + (X5 − X )2

5 − 1
.

The variance of the widths of the combined teeth is:

S2
C = (X1 − X )2 + · · · + (X5 − X )2 + (Y1 − X )2 + · · · + (Y3 − X )2

8 − 1

= (X1 − X )2 + · · · + (X5 − X )2 + 0 + 0 + 0

7
, since Y1 = Y2 = Y3 = X ,

= (X1 − X )2 + (X2 − X )2 + (X3 − X )2 + (X4 − X )2 + (X5 − X )2

7
.

Numerators in S2
O and S2

C are the same but the
denominator in the expression S2

C is larger than
that in S2

O , therefore, the variance of the widths in
a combined sample is smaller.

The following table summarize a few symbols
that will be used repeatedly throughout the text. It
is customary to denote the population variance and
standard deviation by σ 2 and σ (sigma, the Greek
letter).

Parameter Sample Population

Mean X μ

Variance S2 σ 2

Standard deviation S σ

3.14 COEFFICIENT OF VARIATION

Although the SD is the most widely used measure
of variability, one disadvantage is that it depends
on the unit of measurement. The coefficient of
variation is a measure used to compare the vari-
ability among two or more sets of data represent-
ing different quantities with different units of mea-
surement. For instance, the strength of two types
of prefabricated posts, carbon fiber post (CFP)
and polyethylene fiber-reinforced post (PFRP),
on endodontically treated teeth are being stud-
ied. The sample mean and the sample SD of the
fracture load for CFP are X A = 67.57 kg and
SA = 26.57 kg, and those for PFRP are X B =
132.55 lbs and SB = 36.19 lbs, respectively. It
does not make much sense to compare these two
SDs directly because they are reported in different
units of measure. The coefficient of variation is

what we need in this situation to measure relative
variations.

Definition 3.14.1. The coefficient of variation
(CV) is given by

CV = S

X
· 100%, or CV = σ

μ
· 100%.

The CV expresses the SD as a percent of the arith-
metic mean of what is being measured. The CV is
also useful in comparing the dispersions of two or
more distributions with markedly different means,
even if they are all in the same measuring unit. For
example, the CV of the fracture load for carbon
fiber posts and polyethylene fiber-reinforced posts
are

CVA = 26.57

67.57
· 100% = 39.3%,

and

CVB = 36.19

132.55
· 100% = 27.3%.

This indicates that the measurements of polyethy-
lene fiber-reinforced posts is less dispersed and
more precise.

Example 3.14.1. Consider the following two sets
of data.

Data 1 = {0, 5, 10}, and Data 2 = {70, 80, 90}.
Data 1 represents the quiz scores of three students
on the scale of 0 to 10, and data 2 represents the
final exam scores of three students on the scale of
0 to 100. Calculations show that X1 = 5.0, S1 =
5.0, X2 = 80.0, and S2 = 10.0. These two data
sets have markedly different means. The SD S2 =
10.0, of data 2 is twice the standard deviation,
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S1 = 5.0, of data 1. However, their CVs are

CV1 = 5.0

5.0
· 100% = 100%

and

CV2 = 10.0

80.0
· 100% = 12.5%.

Thus, the dispersion of data 1 relative to its mean
is about eight times larger than the dispersion of
data 2 relative to its mean.

Example 3.14.2. Accurate preoperative evalua-
tion of bone quality is essential to assist the clini-
cian with the treatment-planning stages of implant
therapy. The long-term clinical success of den-
tal implants is reportedly influenced by both the
quality and quantity of available bone. There are
two competing techniques that enable us to mea-
sure alveolar bone density within the edentulous
areas of jaws: quantitative computerized tomog-
raphy (QCT) and cone-beam computed tomogra-
phy (CBCT). Both techniques were used to evalu-
ate the bone density of 10 partially or completely
edentulous human cadaver heads [15]. Measure-
ments taken using QCT were represented in mil-
ligrams per cubic centimeter, and those by us-
ing CBCT were represented in percents. Suppose
that the researchers reported the mean and the SD
of QCT and CBCT as X Q = 4.53, SQ = 2.28,

XC = 78.5, and SC = 24.3. Because the units of
measurement are different, the coefficient of vari-
ation should be used to compare the dispersion of
the measurements done by the two methods. The
CV of QCT and CBCT are:

SQ

X Q
= 2.28

4.53
· 100% = 50.3%,

and
SC

XC
= 24.3

78.5
· 100% = 31.0%.

Measurements of bone density samples done us-
ing CBCT are less dispersed and therefore, more
precise than QCT.

Whenever experimental researchers collect data
as part of their scientific investigation, they should
be aware of several criteria briefly described here.

� Validity: The relationship between what it is
supposed to measure and what it actually does
measure.

� Accuracy: Refers to how close the measurement
is to the true value.

� Precision: Refers to how close repeated mea-
surements are to each other.

� Unbiasedness: Refers to the measurements that
are free of systematic errors.

� Reliability: Refers to the extent to which the
measurements can be replicated.

Detailed discussions on these criteria can be
found in Brunette [16]. Precision of measurements
is directly related to the variance and the SD. If the
precision level is low, the SD is high. If the preci-
sion level is high, the SD is low. Let’s consider an
example.

Example 3.14.3. A health maintenance organiza-
tion operates four laboratories located in different
areas in Southern California. In an attempt to as-
sess the quality of the performance of the laborato-
ries, the Quality Assurance Department prepared
identical samples of mouthrinse, and sent six sam-
ples to each of the laboratories. Alcohol has gen-
erally been used in mouthrinses for its antiseptic
properties. For alcohol to be an effective antimi-
crobial agent, the concentration needs to be be-
tween 50% and 70% [17]. The mouthrinse samples
sent to the laboratories contain 60% alcohol. The
laboratories were required to analyze the samples
and report the amount of alcohol in the mouthrinse
samples. Figure 3.14.1 displays the alcohol con-
tent in the samples each laboratory has analyzed.

1. Lab A has the largest variation and therefore
the lowest precision level. Except for one sam-
ple, the analytical results are either far below
or far above the true value, indicating that the
performance of Lab A is not accurate.

2. With all six measurements close to the true va-
lue of 60% alcohol content, the performance of
Lab B is the most accurate. The precision level
is second best because all the measurements are
close to each other. The overall performance of
Lab B is the best of the four laboratories.

3. The performance of Lab C is the second best
(why?).

4. Lab D is the most precise, with all six mea-
surements closer to each other than the other
three laboratories. But the accuracy of Lab D
is the worst. Not knowing the true value, such
laboratories can be misled into believing that
the quality of their performance is very good
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Figure 3.14.1 Analytical results of al-
cohol contents by four laboratories.

because of the high precision level of the analyt-
ical results. This is a classic case of “precision
of inaccuracy.” However, once the problem of
inaccuracy is recognized, it is relatively easy for
Lab D to improve its performance by calibration
of its analytical instruments. Generally speak-
ing, it is more difficult and takes greater effort
to enhance the precision than the accuracy.

3.15 VARIANCE OF GROUPED
DATA

In Section 3.8 we discussed the mean and median
of grouped data. Our next interest is a measure of
dispersion of the grouped data. In particular, we
are interested in calculating the variance and the
SD. Using the same notation as in Section 3.8, let
X1, X2, · · · , Xk be the midpoint of the intervals,
and f1, f2, · · · , fk be the corresponding frequen-
cies. The variance and the SD of grouped data are
given by

S2 =
∑k

i=1(Xi − X )2 fi{∑k
i=1 fi

}− 1

and

S =
√√√√∑k

i=1(Xi − X )2 fi{∑k
i=1 fi

}− 1
.

S2 =
∑k

i=1(Xi − X )2 fi{∑k
i=1 fi

}− 1

= (1.0 − 3.71)2 ·14 + (3.0 − 3.71)2 · 16 + (5.0 − 3.71)2 · 12 + (7.0 − 3.71)2 · 7 + (9.0 − 3.71)2 · 2

51 − 1
= 5.2518 (mm)2,

and

S =
√

5.2518 (mm)2 = 2.2917 mm. (3.15.1)

The variance and SD of the grouped data pre-
sented in Table 3.8.2 are as follows: the mid-
points of the intervals are X1 = 1.0, X2 = 3.0,

X3 = 5.0, X4 = 7.0, X5 = 9.0; the correspond-
ing frequencies are f1 = 14, f2 = 16, f3 = 12,

f4 = 7, f5 = 2,
∑5

i=1 fi = 51; and the mean of
the grouped data is X = 3.71. By the below
formula 13.15.1.

3.16 SKEWNESS

Some important characteristics of a distribution
that can be observed from histograms, stem and
leaf plots, or box plots are the symmetry and shape
of the distribution. Data are said to be symmet-
rically distributed if the half of the distribution
below the median matches the distribution above
the median. In other words, the relative position
of the data points on both sides of the median will
match. The distribution of standardized test scores
and blood pressure data are known to be symmet-
ric. Of course, a distribution could be asymmetric
or skewed.

Definition 3.16.1. A distribution that has a long
“tail” to the right is said to be skewed to right, or
right-skewed (or positively skewed), and a distri-
bution that has a long “tail” to the left is said to
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(a) Symmetric

(b) Right-skewed

(c) Left-skewed

Figure 3.16.1 Symmetric, right- and left-skewed distribu-
tions.

be skewed to left, or left-skewed (or negatively
skewed).

If a distribution is skewed to right, the obser-
vations above the median will tend to be farther
from the median, and the right end of the distri-
bution may contain extreme values. On the other
hand, if a distribution is skewed to left, then the
observations below the median will tend to be far-
ther from the median, and there may be extreme
values in the left side of the distribution.

In many samples, the relationship between the
sample mean and the sample median can aid us in
determining the symmetry of a distribution. For a
symmetric distribution, the sample mean and the
sample median are approximately the same. For
a right-skewed distribution, the mean tends to be
larger than the median as it gets pulled to the right

Table 3.16.1. Mean and median price of houses sold in
2001.

City n Median ($) Mean ($)

Chino Hills 1, 172 259, 000 269, 000
Diamond Bar 957 258, 000 311, 000
Hacienda Heights 580 263, 000 365, 000
Rowland Heights 513 242, 000 300, 000
Walnut 411 325, 000 354, 000

Source: Southern California Realtors Association.

by extreme values on the right end of the tail. For
a left-skewed distribution, the mean tends to be
smaller than the median as it gets pulled to the left
by extreme values on the left end of the tail. Income
distribution and housing market are known to be
right-skewed. Age at which patients need complete
dentures and the incidence of an oral carcinoma
related to age are examples of the left-skewed dis-
tribution. The lifetime of crowns is also known
to be left-skewed. Very few crowns fail within
5 years, but a vast majority of the crowns last more
than 10 years. Figure 3.16.1 displays symmetric,
right-skewed, and left-skewed distributions.

In case of a symmetric unimodal distribution,
mean, median, and mode will coincide. In case
of a symmetric bimodal distribution as shown in
Figure 3.16.2, mean and median are equal, but the
two modes do not coincide with mean and median.
For right-skewed distributions, the mean will tend
to be larger than the median, and for left-skewed
distributions, the mean will tend to be smaller
than the median, as can be seen in Figure 3.16.1.
Table 3.16.1 presents the mean and the median
price of the houses sold in five communities in
Southern California during the year 2001. In all
five communities, the median price of the house is
lower than the average because the distribution of
the housing price is right-skewed.

The box plots discussed earlier can give us a
rough idea about the skewness of data. For in-
stance, if the lower whisker is longer than the upper

Figure 3.16.2 A symmetric bimodal
distribution.
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whisker, then the data are likely to be left-skewed.
On the other hand if the upper whisker is longer
than the lower whisker, then the data are likely
to be right-skewed. If a distribution is moderately
skewed, then the following crude relationship be-
tween mean, median, and mode holds:

(Mean − Mode) � 3(Mean − Median).

The most widely used skewness index is stated.

SK =
∑n

i=1(Xi − X )3[∑n
i=1(Xi − X )2

]3/2

If a distribution is symmetric, SK = 0; if it is
right-skewed (or positively skewed), SK > 0; and
if it is left-skewed (negatively skewed), SK < 0. A
distribution with the skewness index SK = 1.122
is more skewed to right than a distribution with
SK = 0.768. Similarly, a distribution with the
skewness index SK = −0.948 is more skewed to
left than a distribution with SK = −0.375.

Example 3.16.1. Ten subjects were chosen to
study the length of time an adult rinses with a
mouthwash in relation to the manufacturer’s rec-
ommended rinsing time. The random variable Xi

represents the length of time in seconds the i th sub-
ject has rinsed.

Subject No. Xi (Xi − X ) (Xi − X )2 (Xi − X )3

1 15 −11.5 132.25 −1520.875
2 34 7.5 56.25 421.875
3 33 6.5 42.25 274.625
4 10 −16.5 272.25 −4492.125
5 32 5.5 30.25 166.375
6 30 3.5 12.25 42.875
7 35 8.5 72.25 614.125
8 32 5.5 30.25 166.375
9 18 −8.5 72.25 −614.125

10 26 −0.5 0.25 −0.125

From the data we can compute X = 26.5,∑10
i=1(Xi − X )2 = 720.5,

∑10
i=1(Xi − X )3 =

−4941.0, SK = −4941.0

(720.5)3/2
= −0.2555 . The

above data are skewed to the left. Note that
a mirror image of the data would be skewed
to the right and its skewness index would be,
SK = 0.2555.

3.17 EXERCISES

1 Explain what these mean.
a. Xi b. X c.

∑4
j=1 X j d. μ

2 Peri-Gel is an antimicrobial gel that is designed
to treat chronic adult periodontitis. For the pi-
lot study to test the effectiveness of Peri-Gel, 11
patients with chronic adult periodontitis were se-
lected. These patients have been instructed to use
Peri-Gel for 3 months by applying it deeply into
their periodontal pockets. Dr. Brown, a periodon-
tist, reported the amount of pocket depth reduction
in his patient subjects. What is the mean reduction
in pocket depth?

0.4, 1.2, 0.6, 1.0, 0.5, 0.6, 1.1, 1.4, 0.8, 0.7, 0.6 (mm)

3 In Example 3.2.2, if you took another sample of
six chewing tobacco users, and another sample of
eight non-users, do you expect to get sample means
that are different from those in the example? If so,
then why?

4 Suppose that a mistake had been committed in
Example 3.2.2 by recording 28 DMFT instead of
15 for the third subject in the chewing tobacco
group. Find the error this would cause in comput-
ing the mean DMFT.

5 (a) If the average DAT score of 12 first year
dental students is 17, how many of them could have
scored 22 or higher? (b) If the average MCAT score
of 7 first year medical students is 33, how many of
them could have scored 39 or higher?

6 There are three brands of periapical dental film.
The price of brand A is $6.45 per package, $7.25
per package for brand B, and $5.98 for brand C.
Riverside Dental Clinic purchased 150 packages
during the last year, of which 20% are brand A,
30% brand B, and 50% brand C. What is the av-
erage cost of periapical dental film per package
Riverside Dental Clinic has paid for?

7 What is the median of two measurements 85.3
and 89.5?

8 An orthodontic resident took a sample of four
brachyfacial patients who have not started or-
thodontic treatment. To monitor the effect of
quad helix expansion therapy, she measured their
maxillary intermolar distance in millimeter. What
is the median distance if the measurements are
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39.5, 44.5, 42.0, 39.0? Calculate the mean and
compare it to the median.

9 Twenty-four children in Mrs. Maruo’s kinder-
garten class underwent a dental examination at the
end of the school year. The number of carious teeth
each child has is presented below. What is the me-
dian number of carious teeth the children in Mrs.
Maruo’s class have? What is the mode?

3 5 3 2 0 0 7 5
1 6 2 2 8 4 2 2
4 4 3 6 7 0 1 8

10 Twenty-six dental residents are enrolled in a
biostatistics course. Their ages are 32, 29, 27, 31,
47, 39, 29, 28, 37, 32, 29, 30, 33, 30, 29, 28, 28,
32, 28, 28, 31, 29, 32, 28, 29, 34. Find the mode.

11 In an orthodontic clinic 21 patients were
treated in 1 week. The patient charts show the fol-
lowing information about facial type. Is the mode
an appropriate measure of location for the data? If
so, find the mode.

Patient ID Facial Type Patient ID Facial Type

1 Dolicho 12 Brachy
2 Brachy 13 Dolicho
3 Brachy 14 Meso
4 Meso 15 Meso
5 Meso 16 Meso
6 Dolicho 17 Dolicho
7 Meso 18 Brachy
8 Meso 19 Dolicho
9 Meso 20 Meso

10 Dolicho 21 Dolicho
11 Meso

12 During a thorough periodontal examination
the mesio-, mid-, and distobuccal sites, as well
as the corresponding lingual and palatal sites, are
routinely checked. Most periodontists sweep the
probe continuously through the sulcus to get a
better feel for the pocket depths as a whole. A
periodontist reported pocket depths (mm) of his
15 patients as follows. Find the mode. Is the data
bimodal?

1.5 3.5 7.0 4.0 5.5 2.0 3.5 8.5
5.5 9.0 3.5 4.0 5.5 2.0 1.0

13 Find the geometric mean of 0.4, 1.2, 28.8, and
312.0.

14 The relationship between the arithmetic mean
and the geometric mean is XG ≤ X . That is, given
a set of non-negative observations, the arithmetic
mean is always at least as large as the geometric
mean. When do you think they are equal?

15 Dr. Johnson is an experienced, long-term in-
vestor. He understands that the stock market will
always fluctuate. His investment strategy is to pur-
chase the stocks when they are down to keep his av-
erage purchase price lower. In each of the four pre-
vious months this year he bought $10, 000 worth
of a denture care company’s stocks. In January he
bought them at $200 per share, in February at $125
per share, in March at $100 per share, and in April
at $80 per share. What is his average purchase price
per share of this denture care company’s stocks?
Verify that the harmonic mean is $112.68.

16 Acute chest syndrome, which is an acute pul-
monic process in patients with sickle cell disease,
is a common major clinical problem associated
with the disease. Fifty-eight patients whose ages
ranging from 1 to 12 have been admitted to the
Loma Linda Community Hospital Pediatric Ward
during a 1-year period. Laboratory profiles showed
their hemoglobin ranged between 4.2 gm/dl and
12.0 gm/dl. Suppose the hemoglobin data were
presented as follows. Compute the mean of the
hemoglobin level from the table.

Hemoglobin (gm/dl) No. of Patients

3.0 < X ≤ 6.0 16
6.0 < X ≤ 9.0 26
9.0 < X ≤ 12.0 17

17 Calculate the mean of the bacterial colony
data from Table 2.3.4. and from Table 2.3.6 in Sec-
tion 2.3.1, and compare the two means.

18 Calculate the median of the hemoglobin data
in Exercise 16.

19 To evaluate the caries-detecting ability of the
practicing dentists, a sample of 10 dentists with
at least 5 years of practice experience was se-
lected. Each dentist was shown a set of panoramic
and periapical radiographs chosen from patient
records. Correct detection of caries by the subjects
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after viewing the radiographs is represented in
percent (%): 27.8, 65.4, 17.5, 29.6, 22.0, 26.0,
38.0, 34.5, 28.6, 42.8. What is the midrange of the
caries-detecting ability? Compare the midrange
with other measures of central location.

20 Fracture resistance of four endodontic post
systems under chewing conditions was measured
in kilograms. Suppose the mean and the sam-
ple size of each endodontic post system is given
as Y 1 = 93.1, n1 = 5, Y 2 = 79.6, n2 = 7, Y 3 =
82.2, n3 = 10, and Y 4 = 71.4, n4 = 9. What is
the average of these four means of the fracture
resistance?

21 Find an example in dentistry or medicine
where (a) the median is a more appropriate loca-
tion measure than the mean, and (b) the mode is a
more appropriate location measure than the mean.

22 Twenty patients have been recruited for a clin-
ical trial to assess the efficacy of a newly designed
toothpaste. To establish a baseline gingival index
for the research study, each patient subject was
examined and their gingival index was measured
at 20 sites, 10 each from maxillary and mandibu-
lar molars. The experimenters reported individual
subject’s average gingival index as follows: 2.3,
1.4, 3.1, 2.6, 0.5, 1.4, 0.2, 3.6, 1.8, 3.3, 2.6, 0.1,
1.8, 3.8, 2.1, 2.6, 3.4, 2.7, 2.0, 1.3. Find the range.
What is the mode? Would you report the range
with the mode to describe the data?

23 From Figure 3.11.1, find the 90th percentile
rank. What is the percentile rank corresponding to
the L value of 59.50?

24 The mid-term exam scores of 21 dental resi-
dents in Biostatistics 101 are shown below. Com-
pute the percentile corresponding to a score of 93.

88 91 78 93 98 95 82 68 87 72 64
90 80 70 87 76 40 89 96 95 78

25 From the data in Exercise 24, find the values
corresponding to the 25th and the 75th percentiles.

26 Using the data in Table 3.11.1, find the quar-
tiles, interquartile range, and detect outliers.

27 Which one of the measures of central ten-
dency is most influenced by extreme values in a
skewed distribution?
a. Mean b. Mode c. Median d. 95th percentile.

28 Patients’ pocket depth data is shown below.
Find the interquartile range, and identify outliers
if any:

4.5 3.0 5.5 7.0 2.5 1.0 8.5 13.0 6.0 1.5 6.5
5.5 3.0 4.0 4.5 6.0 5.5 2.5 2.0 3.0 5.0 4.0

29 A manufacturer of a mouthrinse product rec-
ommends that the users should keep their product
in the mouth for 30 to 45 seconds after brush-
ing teeth to get the maximum benefit. As a class
project, hygiene students took a sample of 20 fe-
male and 22 male dental students who are regular
users of mouthrinse products to determine if they
follow the manufacturer’s recommendation, and
to find out if sex is a factor in compliance. The
amount of time the subjects kept the mouthrinse
in their mouth in seconds is as follows.

Females 35 42 30 45 53 28 33 34 35 40
38 46 50 30 45 35 40 55 38 43

Males 26 15 35 40 25 38 28 38 35 30 25
20 18 22 20 30 26 34 16 24 27 30

a. Find the quartiles and the interquartile range for
each group separately.

b. Find the quartiles and the interquartile range for
both groups combined.

c. Identify the outliers for each group, if there are
any.

d. Construct the box plots for the two groups and
compare them.

30 Hearing impairment as an occupational haz-
ard affects a large spectrum of vocations across the
world. From airport employees to rock concert mu-
sicians, many people suffer from job-related noise
pollution. The habitual use of high-frequency ul-
trasonic scalers can potentially contribute to tin-
nitus and hearing impairment among dental pro-
fessionals. To assess the level of their exposure
to high-frequency ultrasonic scalers, a sample of
38 dental hygienists and dentists was taken. Be-
low are the number of hours in a typical week that
they are exposed to the ultrasonic scalers. Find the
sample variance and the sample SD. Find also the
interquartile range.

12 18 25 6 28 14 5 10 15 20 22 15 12
6 25 12 4 8 24 4 18 16 15 20 5 6

20 22 7 2 5 12 8 8 10 5 10 9
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31 From the data in Exercise 29, (a) compute the
SD after subtracting 2 from each observation. (b)
What is the SD of the data if you were to divide the
observations by 4? Would you expect the standard
deviation to get smaller or larger than that for the
original data?

32 A dental researcher has collected the follow-
ing data to compare the strength of two types of
bonding materials, Brand A and Brand B.
a. Compute mean, variance, and SD for each

brand.
b. What are their CV?

Brand A (kg) Brand B (kg)

43.5 60.5 57.6 39.8
58.5 55.7 40.8 47.8
42.7 46.7 66.4 55.2
48.4

33 The mouthrinses, along with their con-
tained alcohol percentages, include essential oils,
cetylpyridinium chloride, and chlorhexidine gly-
col. Ten samples of mouthrinses were sent to
three laboratories for their analysis of the con-
tents: Lab A analyzed the samples for essential
oils and reported their measurements in percent-
ages (%), Lab B for cetylpyridinium chloride and
reported in milligrams per cubic centimeter, and
Lab C for chlorhexidine glycol and reported in per-
centages (%). Calculate the mean and SD of each
lab data, and discuss how you would compare their
variabilities.

Lab A (%) 58.6 65.4 76.0 60.7 53.3 45.8 62.1 74.6 51.8 59.2
Lab B (mg/cc) 5.0 4.4 5.3 5.0 3.8 5.5 4.7 3.8 4.0 5.2
Lab C (%) 12.3 11.6 13.0 12.9 10.4 13.8 11.3 10.7 11.7 12.9

34 As a class project, a group of hygiene students
took a survey with practicing dental hygienists to
assess the level of their compensation in River-
side County. Twenty-eight hygienists participated
in the study. Their weekly pay is presented be-
low. Calculate the skewness index and discuss the
skewness of the data. Is it right-skewed or left-
skewed?

1,445, 1,540, 1,300, 1,450, 1,275, 1,450, 1,400
1,660, 1,700, 1,380, 1,215, 1,675, 1,220, 1,380

35 The lifetime of implants placed in 76 grafted
maxillary sinuses is shown. The lifetimes are in
months. What are the variance and the SD of the
grouped implant lifetime data?

Lifetime Lifetime
(month) Frequency (month) Frequency

0–9 4 40–49 11
10–19 7 50–59 14
20–29 3 60–69 16
30–39 8 70–79 13
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Chapter 4

Probability

4.1 INTRODUCTION

Clinicians and researchers in biomedical and
health sciences do far more than simply describe
and present their experimental data. They use the
data they collect to draw conclusions and make
inferences regarding the population of all objects
of the kind that they have studied. Inferential sta-
tistical methods are enormously powerful tech-
niques that enable us to draw valid conclusions
and make accurate predictions of certain charac-
teristics of the population based on the limited
number of samples drawn from the population.
Proper understanding and correct applications of
inferential statistical methods require knowledge
of probability. Probability is not only a fundamen-
tal tool for inferential statistics but is the founda-
tion for statistical tests, as we shall see in future
chapters.

Nothing in life is certain. In everything we do,
from patient care to business activities, we gauge
the chances of successful outcomes. The following
are typical questions that health care professionals
have to answer:

1. What is the chance that microleakage will occur
when the occlusal surfaces have been sealed
with a pit and fissure sealant?

2. What is the chance that the adenocarcinoma
cells will recur within 2 years after the malig-
nant tumor has been surgically removed?

3. What is the chance that titanium implants
placed in patients who smoke more than 20
cigarettes a day will survive 5 years?

4. Is the probability greater than 90% that the new
outbreak of influenza will infect at least 50%
of the population in the community within the
next 3 months?

Addressing these questions properly requires an
adequate knowledge of basic probability. The ba-
sic concepts of probability are discussed in the

next three sections; those questions are followed
by discussions on the conditional probabilities and
Bayes theorem. In addition, applications of the
conditional probabilities that are also useful in
epidemiology are presented.

4.2 SAMPLE SPACE AND EVENTS

Your doctor might inform you that after oral max-
illofacial surgery, there is an 80% chance the post-
operative pain will dissipate in 2 days. Roughly
speaking, probability is a numerical assessment
of the likelihood of the occurrence of an outcome
of a random variable. Probability is a number be-
tween 0 and 1, inclusive. It can be expressed in
percentages as well as in fractions. The probabil-
ity near 1 indicates that the event is most likely to
occur, but it does not necessarily mean it will oc-
cur. The probability near 0 indicates that the event
is not likely to occur, but it does not necessarily
mean it will not occur. The probability 1 means
that the event involved will occur with certainty.
The event that has the probability 1 is called the
sure event. The probability 0 means that the event
involved will not occur.The events with extremely
small probabilities of occurrence are referred to
as rare events. The event with the probability
1
2 is just as likely to occur as it is not to occur.
We will now define a few terms to facilitate our
discussions.

Definition 4.2.1. The sample space is the set of
all possible outcomes of an experiment (or a ran-
dom variable) and is denoted by � (a Greek letter
“omega”). The outcomes are sometimes referred
to as the sample points.

Definition 4.2.2. Any subset of the sample space
is an event. Events are denoted by uppercase let-
ters, A, B, C, · · · , or E1, E2, E3, · · · .

55
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Example 4.2.1. A fair coin means the chance of
observing a head (H) is just as likely as observing
a tail (T). A fair coin is tossed once. The sample
space for this experiment consists of H and T, that
is, � = {H, T }, because there are exactly two pos-
sible outcomes in an experiment of tossing a coin
once.

Example 4.2.2. A fair coin is tossed twice, or
two fair coins are tossed once.Then the sample
space is given by � = {HH, HT, TH, TT}. There
are four possible outcomes in this experiment.
Each outcome is equally likely to occur; there-
fore, P{HH} = P{HT} = P{TH} = P{TT} = 1

4 .

We can form a number of events from this sam-
ple space. For instance, A = {HH, HT, TH} = {at
least one H}, B = {HT, TH, TT} = {at least one
T}, and C = {HH, TT}. Because the four outcomes
are equally likely, and the event A contains 3 out-
comes of the sample space, the probability of ob-
serving event A is 3

4 . This is denoted by P(A) = 3
4 .

Similarly, the probabilities of observing the events
B and C are P(B) = 3

4 ,and P(C) = 1
2 , respec-

tively.

Example 4.2.3. The Brown family has three chil-
dren. What is the sample space for the sexes of their
three children? Because each of the three children
can be either B or G, the sample space consists of
8 outcomes;

� = {BBB, BBG, BGB, BGG, GBB,

GBG, GGB, GGG}.

Let’s assume that the likelihood of a female birth
is equal to the likelihood of a male birth; that is,
P(B) = P(G) = 1

2 . Then

1. P(three girls) = P(GGG) = 1
8 .

2. P(exactly one boy) = P{BGG, GBG, GGB}
= 3

8 .
3. P(at least two boys) = P{BBB, BBG, BGB,

GBB} = 4
8 = 1

2 .

Example 4.2.4. Suppose we toss a coin n times.
Then the sample space, �, contains 2n outcomes.
If we tossed a coin five times (n = 5), � =
{25 outcomes}= {32 outcomes}.

Example 4.2.5. Dr. Brown and Dr. Chen each
have 2 patients. At least one of Dr. Brown’s pa-
tients is male, and Dr. Chen’s first patient is male.
Assume that the probability of having a male pa-
tient is the same as that of having a female patient.
(a) What is the probability that both of Dr. Brown’s
patients are male? (b) What is the probability that
both of Dr. Chen’s patients are male? Are the two
probabilities equal?

Solution. This example can be viewed as a coin
tossing experiment where Male and Female corre-
spond to H and T, with P(H ) = P(T ) = 1

2 .

(i) Let’s first consider all possible outcomes for
the sex of Dr. Brown’s patients. Dr. Brown
has at least one male patient.Therefore, there
are three possible outcomes; � = {MM, MF,

FM}. The event A = {MM} is the event of our
interest. Because P(Male) = P(Female),the
three outcomes are all equally likely. Hence,
P(A) = 1

3 .

(ii) All possible outcomes for the sex of Dr. Chen’s
patients are MM and MF, because her first
patient is male; � = {MM, MF}. These two
outcomes are equally likely; thus P(A) =
1
2 , where A = {MM}. The chance that Dr.
Chen has both male patients is greater than
the chance that Dr. Brown has both male
patients.

The probability of an event can be determined
by examining the sample space. Provided that the
outcomes are equally likely, the probability of any
event A is the number of outcomes in A divided by
the total number of outcomes in the sample space;

P(A)

= Number of outcomes in A

Total number of outcomes in the sample space
.

4.3 BASIC PROPERTIES OF
PROBABILITY

To motivate discussions on algebraic operations on
events, we will roll a balanced die. If the numbers
we will observe from the experiment of rolling a
die are equally likely, then the die is said to be
balanced. In other words, P(1) = P(2) = P(3) =
P(4) = P(5) = P(6) = 1/6. The sample space
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Figure 4.3.1 Diagram for event A and event B.

for the die-rolling experiment is � = {1, 2, 3, 4,

5, 6}. Let A be the event of observing even num-
bers, that is, A = {2, 4, 6}, and let B be the event
of observing a number less than 5, that is, B = {1,

2, 3, 4}.The probability of observing the event A
is P(A) = 3/6 = 1/2, and the probability of ob-
serving the event B is P(B) = 4/6 = 2/3.What
is the probability of observing both event A and
event B? From Figure 4.3.1, events A and B will
be observed if either 2 or 4 turns up. Hence, the
probability that both events A and B will occur is,
P(A and B) = P{2, 4} = 2/6 = 1/3.

What is the probability that either event A or
event B will occur? Either event A or event B can
be observed if A or B, or both A and B, occur,
namely, if any of the faces 1, 2, 3, 4, 6 turns up.
These are 5 of the 6 equally likely outcomes. Thus,
P(A or B) = P(A or B, or both A and B) = 5/6.

To make the discussions slightly more formal, we
need to introduce the following definitions.

Definition 4.3.1.
1. The union of the events A and B is the event

“A or B, or both A and B,” denoted by A ∪ B
(read, A union B). The probability of A or B,

or both A and B, is denoted by P(A ∪ B).
2. The intersection of the events A and B is the

event “both A and B,” denoted by A ∩ B (read,
A intersection B). The probability of A and B
is denoted by P(A ∩ B).

3. The complement of an event A is the event
“not A,” denoted by AC or A. The comple-
mentary event, AC of the event A = {2, 4,

6}is AC = {1, 3, 5}. The event A consists of
even numbers, and its complementary event
AC consists of odd numbers. The complemen-
tary event of B = {1, 2, 3, 4} is BC = {5, 6}.

A complementary event EC consists of all out-
comes outside the event E that lie in the sample
space.

4. Two events A and B are said to be mutually
exclusive if both cannot occur at the same
time. Thus, A = {2, 4, 6} and B = {1, 3, 5} are
mutually exclusive.

Example 4.3.1. Suppose the possible drugs pre-
scribed by dentists that may affect smell or taste
are ampicillin, benzocaine, codeine, metronida-
zole, sodium lauryle sulfate toothpaste, and tetra-
cycline. Define events C = {benzocaine, codeine,
metronidazole, tetracycline}, D = {ampicillin,
codeine, metronidazole, tetracycline}, and E =
{ampicillin}.
1. The union of the two events C and D is C ∪

D = {ampicillin, benzocaine, codeine, metron-
idazole, tetracycline}.

2. The intersection of the two events C and
D is C ∩ D = {codeine, metronidazole,
tetracycline}.

3. The complementary events of C and D
are: CC = {ampicillin, sodium lauryle sulfate
toothpaste}, and DC = {benzocaine, sodium
lauryle sulfate toothpaste}.

4. The two events C and D are not mutually ex-
clusive, because they have common outcomes:
codeine, metronidazole, and tetracycline. They
can both occur simultaneously.

5. The events C and E are mutually exclusive.

We now state basic properties of probability.

Properties 4.3.1 (Axioms of Probability) Let A
and B be any events defined on the sample space,
�. Then

1. P(�) = 1.

2. 0 ≤ P(A) ≤ 1.

3. P(A) = 1 − P(AC ) and P(AC ) = 1 − P(A).
4. If A and B are mutually exclusive, then P(A ∩

B) = 0.

The first property indicates that the probabil-
ity of the entire sample space is 1. Any experi-
ment must certainly result in one of the outcomes
in the sample space. The third property involving
a complementary event is a useful way to calcu-
late the probabilities. It can be used to avoid te-
dious probability calculations as we shall see in
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the later sections.The fourth property implies that
if A and Bare mutually exclusive, then P(A ∪
B) = P(A) + P(B). We note that A ∪ AC = �;
the union of A and AC yields the sample space.
Clearly, A and AC are mutually exclusive. The con-
cept of mutually exclusiveness can be extended
beyond two events. For example, if no two events
among E1, E2, · · · , Ek , (k > 2) can occur at the
same time, then they are mutually exclusive.

Example 4.3.2. There are 8 differential diagnoses
of ulcers of the oral mucosa [1]: (1) aphthous stom-
atitis, (2) cancer, (3) chancre of syphilis, (4) deep
fungal infection, (5) necrotizing sialometaplasia,
(6) noma, (7) traumatic ulcer, and (8) tuberculo-
sis. Suppose that only one specific diagnosis of
the 8 differential diagnoses is made for a given pa-
tient at a time and that the different diagnoses are
equally likely to be made. Let events A, B, and
C be defined by A = {2, 4, 5, 8}, B = {2}, and
C = {5, 7, 8}.
1. The events B and C are mutually exclusive,

because they cannot occur simultaneously.
2. P(B or C) = P(B) + P(C) = 1

8 + 3
8 = 4

8 =
1
2 .

3. P(BC ) = 1 − P(B) = 1 − 1
8 = 7

8 , by the third
axiom of probability.

Let A be the event that the husband flosses his
teeth at least once a day, and B be the event that
the wife flosses her teeth at least once daily. If
P(A) = 0.45, and P(B) = 0.60, what can we say
about the event A ∩ B (A and B), that is, both
husband and wife floss their teeth at least once a
day? To address this type of situation, we need to
introduce the following concept.

Definition 4.3.2. Two events A and B are said to
be statistically independent or simply indepen-
dent if P(A ∩ B) = P(A) · P(B). If the events are
not independent, we say they are dependent.

In simple terms, if the occurrence or non-
occurrence of A does not influence the occurrence
or non-occurrence of B, then A and B are statis-
tically independent. If A and B are independent,
the probability of the occurrence of both events is
obtained by the product of P(A) and P(B). If the
event A is independent of the event B, then B is
also independent of A.

Example 4.3.3. (i) If the flossing habit of the
husband is independent of the flossing habit
of the wife, that is, the events A and B
are statistically independent, then P(A ∩
B) = P(A)P(B) = (0.45)(0.60) = 0.27. The
chance that both husband and wife floss their
teeth at least once a day is 0.27.

(ii) Suppose P(A) = 0.45 and P(B) = 0.60.
IfP(A ∩ B) = 0.38, is the event that the hus-
band flosses his teeth daily statistically in-
dependent of the event that the wife flosses
her teeth daily? From Definition 4.3.2, if
we can show P(A ∩ B) = P(A) · P(B), then
they are independent events. If P(A ∩ B) �=
P(A) · P(B), then the events are not in-
dependent. Because P(A) · P(B) = (0.45) ·
(0.60) = 0.27 �= P(A ∩ B), the events A and
B are not independent.

Example 4.3.4. Let X be a random variable de-
scribing the probing depths of patients, A be the
event that the probing depth is between 2 and
5 mm, and B be the event that the probing depth
is between 3 and 7 mm. We can rewrite the events
as A = {2 ≤ X ≤ 5} and B = {3 ≤ X ≤ 7}. Then
A ∪ B = {2 ≤ X ≤ 7} and A ∩ B = {3 ≤ X ≤
5}. The union of A and B is the event that the pa-
tient’s probing depth is between 2 and 7 mm, and
the intersection of A and B is the event that the pa-
tient’s probing depth is between 3 and 5 mm. The
probability P(A ∪ B) would mean the proportion
of the patients whose probing depth is between 2
and 7 mm, and P(A ∩ B) the proportion of the
patients whose probing depth is between 3 and
5 mm.

We now state a useful principle known as the
addition rule of probability. We have learned from
the axiom of probability that if A and B are mutu-
ally exclusive, then P(A ∪ B) = P(A) + P(B). A
more general case where A and B are not mutually
exclusive will be presented.

Addition Rule of Probability:
If A and B are any two events, then P(A ∪ B) =
P(A) + P(B) − P(A ∩ B).

To calculate the probability of the union P(A ∪
B), add two probabilities P(A) and P(B) sepa-
rately, and subtract the probability corresponding
to the overlapping area, A ∩ B (i.e., A and B),
shown in Figure 4.3.2.
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B

A and B

A

Figure 4.3.2 Overlapping area A ∩ B.

Example 4.3.5. A dental researcher has been col-
lecting extracted teeth in a jar. The jar contains
cuspids, incisors, bicuspids, and molars. Suppose
the events are defined by A = {incisor, molar},
B = {cuspid, incisor}, and C = {cuspid, molar}.
He estimated the probabilities of A, B, and C by
repeatedly drawing a tooth from the jar, one at a
time with a replacement: P(A) = 0.625, P(B) =
0.375, P(C) = 0.430, P(A ∩ B) = 0.250, and
P(A ∩ C) = 0.375. Then by the addition rule of
probability

(i) P(A ∪ B) = P(A) + P(B) − P(A ∩ B)
= 0.625 + 0.375 − 0.250 = 0.750.

(ii) P(A ∪ C) = P(A) + P(C) − P(A ∩ C)
= 0.625 + 0.430 − 0.375 = 0.680.

Example 4.3.6. As part of a thorough dental ex-
amination, a patient was required to take a poste-
rior periapical radiograph. Let A be the event Dr.
Berry, after reviewing the periapical radiograph,
makes the diagnosis that the patient has carious or
pathologic lesions (i.e., a positive diagnosis), and
B be the event that his associate, Dr. Jarvis, makes a
positive diagnosis. If P(A) = 0.20, P(B) = 0.26,
and the chances are 29.0% that either Dr. Berry
or Dr. Jarvis makes a positive diagnosis, what is
the probability that both dentists make a positive
diagnosis?

Solution. From the given information, we have
P(A ∪ B) = 0.29. By applying the addition rule,
we obtain P(A ∩ B) = P(A) + P(B) − P(A ∪
B) = 0.20 + 0.26 − 0.29 = 0.17.

There is a 17% chance that both dentists will
make a positive diagnosis.

Example 4.3.7. More and more dentists recom-
mend that youngsters who participate in sports ac-
tivities wear mouthguards to protect their teeth.
The chances of suffering an injury to teeth by those
who do not wear mouthguards are significantly
higher than among those who do. Let E1 be the

event of an injury to teeth when a mouthguard is
not used, and E2 be the event of an injury to teeth
when a mouthguard is used. LetP(E1) = 0.15
andP(E2) = 0.03. The Moseley family has two
boys, Jack and Tim, who play sports. Jack uses
a mouthguard, and Tim doesn’t. Suppose the two
events E1 and E2 are independent. What is the
probability that at least one of Mr. Moseley’s boys
will sustain an injury to his teeth during sports
activity?

Solution. The event that at least one of the boys
sustains an injury is equivalent to the event that ei-
ther Jack or Tim sustains an injury. We can express
the probability as follows:

P(at least one boy sustains an injury)

= P(Jack or Tim sustains an injury)

= P(E1 ∪ E2) = P(E1) + P(E2) − P(E1 ∩ E2)

= P(E1) + P(E2) − P(E1) · (E2), by independence

= 0.15 + 0.03 − (0.15) · (0.03) = 0.175 5.

The concepts of statistical independence and
mutually exclusiveness can be generalized to the
case of k > 2.

Definition 4.3.3.

(i) (Multiplication Law of Probability) If E1,
E2, · · · , Ek are mutually independent, then

P(E1∩E2∩·∩Ek) = P(E1)P(E2)· · ·P(Ek).

(ii) The events E1, E2, · · · , Ek are mutually
exclusive if no two events can occur at the
same time.

(iii) A set of events E1, E2, · · · , Ek are mutually
exclusive and exhaustive if no two events
can occur at the same time and at least one of
the events must occur. Therefore, exactly one
of the events must occur.

This first identity is known as the multiplica-
tion law of probability. If k events are mutually
independent, then the probability that k events oc-
cur simultaneously is obtained by the product of
k individual probabilities. For brevity, the expres-
sions A ∩ B and E1 ∩ E2 ∩ · · · ∩ Ek are written
as AB and E1 E2 · · · Ek . Hereafter, we will write
P(AB) instead of P(A ∩ B) and P(E1 E2 · · · Ek)
instead of P(E1 ∩ E2 ∩ · · · ∩ Ek).
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Example 4.3.8. A tooth can be classified into one
of the following four categories; � = {healthy,
decayed, missing, restored}. Let E1 = {healthy,
missing}, E2 ={decayed}, E3 = {restored}, E4 =
{healthy, missing, restored}, E5 = {healthy}, and
E6 = {missing, restored}.
1. The set of eventsE1, E2, and E3 is mutually

exclusive and exhaustive, because exactly one
of the events in the set must occur.

2. However, the set of events E2, E3, and E4 are
not mutually exclusive and exhaustive, because
E3 and E4 can occur at the same time whenever
the outcome “restored” is observed.

3. The events E1, E2, E3, and E6 are not mutually
exclusive and exhaustive.

4. The events E2, E3, and E5 are mutually exclu-
sive but not exhaustive.

Example 4.3.9. Suppose in a typical community
the fluoride concentration level in the drinking wa-
ter is 0.7 to 1.1 ppm. A study shows that a pa-
tient who resides in such a community has a 21%
chance of developing a carious tooth. The study
also indicates that the family members are inde-
pendent of each other in developing carious teeth.
Mr. and Mrs. Flossom have twin sons who are
about 11 years old. What is the chance that all
four members of the Flossom family will develop
a carious tooth?

Solution. Let E1, E2, E3, and E4 denote the events
that each of the four members in the Flossom fam-
ily develop a carious tooth, respectively. Then

P(All four have a carious tooth)

= P(E1 E2 E3 E4)

= P(E1)P(E2)P(E3)P(E4), by independence

= (0.21) · (0.21) · (0.21) · (0.21) � 0.0019.

There is about a 0.2% chance that all four in the
family develop a carious tooth.

Frequently, we need to deal with more than two
events together. If A is the event that the patient
is a heavy smoker and has smoked more than 15
cigarettes since age 22, B the event that he has
lived in a fluoridated community, and C is the
event that he has the symptoms of a periradicu-
lar abscess, then what is the probability that A or
B or C occurs? We state the following extension
of the addition rule of probability.

Addition Rule of Probability: Let A, B, and C be
three events.Then the probability of the occurrence
of event A or B or C is given by

P(A or B or C) = P(A ∪ B ∪ C)

= P(A) + P(B) + P(C) − P(AB)

−P(AC) − P(BC) + P(ABC).

The event of the occurrence of “A or B or C” is
equivalent to the event of the occurrence of “at
least one of A, B, and C .” The probability is ob-
tained by first adding the three probabilities P(A),
P(B), P(C), and subtracting the three proba-
bilities P(A ∩ B), P(A ∩ C), P(B ∩ C), corre-
sponding to the overlapping areas, A and B, A and
C, and B and C, and finally, adding the probability
P(A ∩ B ∩ C), corresponding to the overlapping
area, A and B and C .

(i) If A, B, and C are mutually exclusive, P(A ∩
B) = 0, P(A ∩ C) = 0, P(B ∩ C) = 0, and
P(A ∩ B ∩ C) = 0. Thus, P(A ∪ B ∪ C) =
P(A) + P(B) + P(C).

(ii) If A, B, and C are mutually independent, then

P(A ∪ B ∪ C)

= P(A) + P(B) + P(C)

−P(AB) − P(AC) − P(BC) + P(ABC)

= P(A) + P(B) + P(C) − P(A)P(B)

−P(A)P(C)−P(B)P(C)+P(A)P(B)P(C).

Example 4.3.10. Consider three events A, B, and
C :

A = Myocardial infarction patients who have
periodontitis and reside in the fluoridated
community.

B = Periodontitis patients with osteopetrosis who
have myocardial infarction.

C = Osteopetrosis patients residing in the fluori-
dated community who have periodontitis.

Suppose that P(A) = 0.12, P(B) = 0.06, P(C)
= 0.09, P(AB) = 0.04, P(AC) = 0.06, P(BC)
= 0.03, and P(ABC) = 0.02. The chance that at
least one of the three events is observed is

P(at least one of the events A, B, and C happens)

= P(A ∪ B ∪ C)

= 0.12 + 0.06 + 0.09 − 0.04 − 0.06 − 0.03

+ 0.02 = 0.16.
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Example 4.3.11. Let A, B, C be the events that
the patient has periodontitis, caries, and needs
a root canel treatment. Suppose P(A) = 0.25,
P(B) = 0.45, and P(C) = 0.60. (i). Are all the
events mutually exclusive? (ii). What is P(A or B
or C) if all three are independent?

Solution. (i) P(A) + P(B) + P(C) = 0.25 +
0.45 + 0.60 = 1. 30 > 1.0. The sum of the three
probabilities exceeds 1.0, which implies that there
must be at least one pair of events that occur si-
multaneously. The three events A, B, C are not
mutually exclusive.

(ii) P(A or B or C) = P(A) + P(B) + P(C)

− P(A)P(B) − P(A)P(C) − P(B)P(C)

+ P(A)P(B)P(C), by independence

= 0.25 + 0.45 + 0.60 − (0.25)(0.45)

− (0.25)(0.60) − (0.45)(0.60)

+ (0.25)(0.45)(0.60)

= 0.835.

It may be tempting to think that A and
B are mutually exclusive if P(A) + P(B) <

1.0. In general, this cannot be true. For exam-
ple, in the die-rolling experiment let A = {2, 5}
and B = {4, 5}. Clearly, P(A) + P(B) = 2/6 +
2/6 = 4/6 < 1.0, but A and B are not mutually
exclusive.

4.4 INDEPENDENCE AND
MUTUALLY EXCLUSIVE EVENTS

One might be tempted to think that if two events
A and B are independent, then they are mutually
exclusive. This is a common misconception among
students. There is no relationship between these
two concepts. Two events can be independent but
not mutually exclusive, and vice versa. We will
present biomedical examples to illustrate that there
is no relationship between the two concepts.

Example 4.4.1. The following are examples of
two eventsA and B that are independent, but not
mutually exclusive:

1. A = Eruption of mandibular third molar, and
B = high caries rate.

2. A = Radiation therapy for head and neck can-
cer, and B = root caries in a patient age 50 years
of age or older.

3. A = Mom has a root fracture, and B = dad has
a class II amalgam restoration.

4. A = A patient with the existence of squamous
cell carcinoma, and B = a patient with a root
fracture.

5. A = Candida infections in the oral cavity, and
B = tooth decay.

Example 4.4.2. The following are examples of
two events A and B that are not independent, but
are mutually exclusive:

1. A = An avulsed tooth that is not replanted, and
B = an avulsed tooth that is replanted with sub-
sequent root canal treatment.

2. A = Vital uninflamed coronal pulp is present,
and B =gutta-percha is present in the root canal
system.

3. A = Tumor in tongue was detected at an ad-
vanced age, and B = heavy smoking earlier in
life.

4. A = A patient suffers a trauma on a maxil-
lary central incisor, and B = the same patient,
10 years later, having root canal treatment on
the same tooth due to pulpal restriction from
the trauma.

Example 4.4.3. The following are examples of
two events A and B that are independent and mu-
tually exclusive:

1. A = Exfoliation of deciduous dentition, and
B = root surface caries in an elderly patient.

2. A = Candidiasis in a newborn child, and
B = dental implants in an elderly patient.

3. A = Baby bottle decay at a young age, and
B = broken denture at an old age.

4. A = Taking an impression of teeth, and
B = filling a cavity.

Example 4.4.4. The following are examples of
two events A and B that are not independent and
are not mutually exclusive:

1. A = Periradicular lesion, and B = pulpal
necrosis.

2. A = Wearing tongue jewelry, and B = frac-
tured lingual cusp of a molar.
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3. A = Gross caries in a tooth, and B = acute
pulpitis.

4. A = Rampant decay of teeth, and B = xeros-
tomia.

5. A = Formation of heavy plaque, and B =
absence of regular toothbrushing.

4.5 CONDITIONAL PROBABILITY

We have discussed how to compute the probability
of two or several events occurring at the same time
when the events are independent. For example,
P(A and B and C) = P(ABC) = P(A) · P(B) ·
P(C), if events A, B, and C are independent. How
can we compute the probability that some events
will occur simultaneously if they are not indepen-
dent (or are dependent)? Let us consider rolling a
balanced die. Let A be the event of observing the
number 4, and B be the event of observing an even
number, that is, B = {2, 4, 6}. Clearly, P(A) = 1

6 .

However, if a friend rolled a balanced die and
told you that an even number was observed, what
is the chance that your friend actually observed the
number 4? In other words, what is the probability
of the occurrence of event A, given that event B
occurs? Knowing that an even number has turned
up, and that there are only three possible outcomes
that are even numbers (4 is one of the three pos-
sible even numbers, 2, 4, and 6), you will say the
probability of event A, given that event B occurs,
is 1

3 .

These two events are related in such a way that
the probability of event A depends on the occur-
rence or non-occurrence of event B. The additional
information, provided by event B, improves the
probability of event A from 1

6 to 1
3 . Events A and

B are related, because a knowledge of B affects
the probability of A. To quantify the probability
of simultaneous occurrence of two events when
the events are not independent, we introduce the
concept of conditional probability.

The probabilities we have discussed, P(A),
P(B), P(E1), P(E2), etc. are sometimes called
the unconditional probabilities. Often the condi-
tional probabilities are of greater interest to the
health care professionals than unconditional prob-
abilities. Dentists and physicians ask about a pa-
tient’s lifestyle and individual and family medical
histories to ascertain conditional probabilities such
as the following:

� If a patient has consumed a fat- and cholesterol-
rich diet most of his life, the chances of him
developing a myocardial infarction are much
greater.

� If a dentist knows that both parents of her patient
suffered from osteogenesis imperfecta, she may
offer a different treatment plan to the patient,
based on the fact that the patient is more likely
to develop osteogenesis imperfecta.

� If a patient has a periapical lesion as a conse-
quence of pulpal necrosis and periodontal dis-
ease, the dentist will know that the patient might
have an odontogenic infection and tooth loss will
result with a high likelihood.

� If an individual is known to have been exposed
to an influenza-infected environment, his chance
of developing influenza is greater than that of
individuals who have not been exposed.

Definition 4.5.1. The conditional probability of
event A, given that event B has occurred, is
denoted by P(A|B) and is defined by

P(A|B) = P(A and B)

P(B)
= P(AB)

P(B)
.

Similarly, the conditional probability of event B,
given event A has occurred, is given by

P(B|A) = P(B and A)

P(A)
= P(B A)

P(A)
= P(AB)

P(A)
.

The conditional probabilities, P(A|B) and
P(B|A) are not in general equal. They may look
alike, but they represent two very different events.
They are equal if and only if P(A) = P(B). The
vertical line (|) is read “given” or “conditioned
on.” Keep in mind that A|B here does not mean
that A is divided by B. The event B in the condi-
tional probability statement P(A|B) is called the
“conditioning event.”

Example 4.5.1. Soft-tissue trauma from dentures,
oral infections from periodontal disease, and den-
tal caries are known to put the patients at risk
of developing osteoradionecrosis. Let A be the
event that a patient has oral infections from pe-
riodontal disease and dental caries, and B be
the event that a patient develops osteoradionecro-
sis. If P(A) = 0.08, P(B) = 0.06, and P(AB) =
0.03, what is the probability that a patient will
develop osteoradionecrosis, given that the patient
has oral infection from periodontal disease and
dental caries?
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Solution. By the definition of the conditional prob-
ability,

P(B|A) = P(B A)

P(A)
= P(AB)

P(A)
= 0.03

0.08
= 0.375 .

Example 4.5.2. Let C be the event that Dr. Tan
diagnoses a patient as having acute periodontal
disease, and D be the event that Dr. Robinson
diagnoses a patient as having acute periodon-
tal disease. If P(C) = 0.24, P(D) = 0.20, and
P(C D) = 0.16, what is the chance that Dr. Robin-
son makes a positive diagnosis, provided that Dr.
Tan makes a positive diagnosis?

Solution. The definition of the conditional proba-
bility yields

P(D|C) = P(DC)

P(C)
= 0.16

0.24
� 0.6667.

What is the chance that Dr. Tan makes a positive
diagnosis, provided that Dr. Robinson makes a
positive diagnosis? Again, using the definition,

P(C |D) = P(C D)

P(D)
= 0.16

0.20
= 0.80.

Given that one of them has made a positive diag-
nosis, the chance that the other makes a positive
diagnosis is much greater.

In Example 4.5.2, knowledge of conditioning
event C improves the probability of event D. If the
events A and B are independent, then the following
relations hold:

1. If A and B are independent, then A and BC are
independent. To see this, consider the diagram
in Figure 4.5.1.

Events AB and ABC are mutually exclu-
sive, hence A can be written as the union
of these two mutually exclusive events; A =
ABC ∪ AB. Therefore, P(A) = P(ABC ) +

B

AB

A
ABC

Figure 4.5.1 Events AB and ABC .

P(AB). Subtracting P(AB) from both sides of
this equation, we get

P(ABC ) = P(A) − P(AB)

= P(A) − P(A)P(B),

by independence of A and B.

= P(A)[1 − P(B)],

by factoring out the common

factor P(A).

= P(A)P(BC ),

since P(BC ) = 1 − P(B).

This shows that the independence of A and B
implies the independence of A and BC .

2. P(A|B) = P(AB)

P(B)
= P(A)P(B)

P(B)
, by inde-

pendence of A and B
= P(A). [P(B) in the numerator is cancelled
against the P(B) in the denominator.]

3. P(A|BC ) = P(ABC )

P(BC )
= P(A)P(BC )

P(BC )
= P(A), by independence of

A and BC

If A and B are independent, then the occurrence or
non-occurrence of the conditioning event B does
not affect the probability of the occurrence of A.
Recall from the previous section, if A and B are
independent, then P(AB) = P(A) · P(B). Alter-
natively, we say that A and B are independent if
and only if P(A|B) = P(A). Similarly, A and B
are independent if and only if P(B|A) = P(B). In
Example 4.5.1, P(B|A) = 0.375 and P(B) =
0.06. Therefore, A and B are not independent.

Example 4.5.3. Leukoplakia is a white plaque
formed on the oral mucous membrane from sur-
face epithelial cells; this condition is suspected to
be more prevalent among individuals who chew
tobacco. Suppose A is the event that a patient
is affected by leukoplakia, and B is the event
that a patient chews tobacco. If P(B) = 0.06 and
P(AB) = 0.02, then the probability that the pa-
tient is affected by leukoplakia, knowing that he
chews tobacco, is

P(A|B) = P(AB)

P(B)
= 0.02

0.06
= 1

3
.

If the patient chews tobacco, his chance of being
affected by leukoplakia is about 33.3%.
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By multiplying P(A) to both sides of the con-
ditional probability equation, we obtain

P(A) · P(B|A) = P(AB)

P(A)
· P(A).

The following formula called the multiplication
law of probability can be derived.

Multiplication Law of Probability

P(AB) = P(A) · P(B|A)

or

P(AB) = P(B) · P(A|B).

As a consequence of the multiplication law of
probability, the following relationship holds:

P(A) · P(B|A) = P(B) · P(A|B).

The application of the multiplication law of prob-
ability is described in the next example.

Example 4.5.4. Having a high cholesterol level
(say, more than 320 mg per 100 ml of blood)
is one of the symptoms that a male patient will
likely have a myocardial infarction. Let A be
the event of high cholesterol level and B be the
event of the male patient developing myocardial
infarction. If P(A) = 0.14, and P(B|A) = 0.28,

what is the chance that a male patient, who has a
high cholesterol level, will develop a myocardial
infarction?

Solution. By the multiplication law, P(AB) =
P(A) · P(B|A) = (0.14)(0.28) = 0.039 2.

Suppose that a conditioning event is the comple-
mentary event Ac of event A. Then the conditional
probabilityP(B|Ac) can be stated

P(B|Ac) = P(Ac B)

P(Ac)
.

The same type of the multiplication law as pre-
sented above can be derived:

P(Ac B) = P(Ac) · P(B|Ac).

The unconditional probability P(B) can be ex-
pressed in terms of the two multiplication laws
we discussed. In Figure 4.5.2, the two mutually
exclusive events AB and AcB are represented
by the overlapping and the shaded areas, respec-
tively. Then B is the union of AB and AcB, or

A CBAB

Figure 4.5.2 Events AB and ACB.

B = AB ∪ Ac B, from which we get

P(B) = P(AB) + P(AC B)

= P(A) · P(B|A) + P(Ac) · P(B|Ac),

by multiplication laws.

Example 4.5.5. Bone resorption visible in radio-
graphs could be strong evidence for periodon-
tal disease. Let A be the event that bone resorp-
tion has occurred, and the bone height is below
the cementoenamel junction, and let B be the
event that the patient has periodontal disease. Sup-
pose the patient data from a large dental clinic
indicates that P(A) = 0.08, P(B|A) = 0.90, and
P(B|Ac) = 0.05. What is the probability of peri-
odontal disease in the general patient population?

Solution. By the above discussion,

P(B) = P(AB) + P(AC B) = P(A) · P(B|A)

+ P(Ac) · P(B|Ac)

= (0.08) · (0.90) + (1.0 − 0.08) · (0.05)

= 0.118 .

Example 4.5.6. Suppose A represents the event
that the patient is diabetic, and B repre-
sents the event that the patient experiences
delayed healing after a tooth extraction. If
P(A) = 0.13, P(B|A) = 0.74, and P(B|AC ) =
0.20, what is the probability that the patient will
experience delayed healing after the extraction?

Similar to Example 4.5.5,

P(B) = P(A) · P(B|A) + P(Ac) · P(B|Ac)

= (0.13) · (0.74) + (0.87) · (0.20)

= 0.270 2.

The last two examples illustrate a useful
relationship between the unconditional and
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conditional probabilities. The equation P(B) =
P(A)·P(B|A) + P(Ac)·P(B|Ac) can be viewed
as the weighted average of the two conditional
probabilities. The weights are given by P(A) and
P(Ac). The aforementioned result can be extended
to the case involving more than two mutually ex-
clusive events. Let A1, A2, · · · , Ak be mutually
exclusive and exhaustive events, and B be any
given event. We obtain the following total prob-
ability law.

Total Probability Law

Let A1, A2, · · · , Ak be mutually exclusive
and exhaustive events and B be any given
event. ThenP(B) =∑k

i=1 P(Ai )P(B|Ai ). Be-
cause P(A1) + P(A2) + · · · + P(Ak) =
1.0, P(B) =∑k

i=1 P(Ai )P(B|Ai ) is the weighted
average of k conditional probabilities P(B|Ai ). An
application of the total probability law is discussed
below.

Example 4.5.7. There are three types of early
childhood caries (ECC) [2]. Type I ECC is mild
to moderate, evidenced by isolated carious lesions
involving molars and/or incisors. Type II ECC is
moderate to severe, seen as labiolingual caries on
maxillary incisors, with or without molar caries
and unaffected mandibular incisors. Type III ECC
is severe, evidenced by type II including the in-
volvement of lower incisors. Let A1, A2, and A3

be the events representing the three types of ECC
and B be the event that a child has bacteremia.
Suppose that P(A1) = 0.48, P(A2) = 0.30, and
P(A3) = 0.22. If P(B|A1) = 0.009, P(B|A2) =
0.01, and P(B|A3) = 0.04, what is the chance that
a child, whether or not he is affected by ECC, has
bacteremia?

Solution. First of all, events A1, A2, and A3 are
mutually exclusive and exhaustive. By applying
the total probability law, we obtain:

P(B) = P(A1)P(B|A1) + P(A2)P(B|A2)

+ P(A3)P(B|A3)

= (0.48) · (0.009) + (0.30) · (0.01)

+ (0.22) · (0.04) � 0.016 1.

The chance that a child has bacteremia is
0.0161.

Example 4.5.8. Cancer of the pancreas is rarely
curable. It accounts for only 2% of all newly

diagnosed cancers in the U.S. each year, but 5% of
all cancer deaths. National Cancer Institute data in-
dicates that the highest survival occurs if the tumor
is truly localized. Let A be the event that the tu-
mor is localized, and B the event that patients sur-
vive at least 5 years. It is known that P(A) = 0.20,
P(B|A) = 0.20, and P(B|Ac) = 0.0001. What is
the 5-year survival rate of a patient who is recently
diagnosed with a pancreatic cancer?

Solution. Because two events A and Ac are mutu-
ally exclusive and exhaustive, and P(A) = 0.20,
we have P(Ac) = 1 − 0.20 = 0.80. Using the to-
tal probability law, the 5-year survival rate of a
patient with a pancreatic cancer can be expressed
as

P(B) = P(A)P(B|A) + P(Ac)P(B|Ac)

= (0.20)(0.20) + (0.80)(0.0001)

= 0.040 08.

4.6 BAYES THEOREM

In the previous section, we pointed out the differ-
ence between P(B|A) and P(A|B). We learned
from the discussions of the conditional probabil-
ity that P(B|A) can be found if P(AB) and P(A)
are known. What if P(AB) and P(A) are not di-
rectly available? Can we still find the conditional
probability P(B|A)? The theorem formulated by
the Reverend Thomas Bayes, known as the Bayes
theorem, will address this question. The following
are examples of the practical questions that clini-
cians in dentistry and medicine often ask:

� What is the probability that the patient has the
disease, if the test results are positive?

� What is the probability that the patient does not
have the disease, if the test results are negative?

� If the patient has periodontal inflammation,
what is the chance that he has an acute
periodontitis?

� If the patient has no signs of periodontal inflam-
mation, what is the chance that he does not have
an acute periodontitis?

Bayes theorem has a wide variety of applica-
tions in health sciences [3, 4]. From the multipli-
cation law of probability, we have

P(AB) = P(A) · P(B|A) = P(B) · P(A|B).
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After dividing both sides of P(A) · P(B|A) =
P(B) · P(A|B) in the above equation by P(A), we
can establish the relationship between P(B|A) and
P(A|B):

P(B|A) = P(B) · P(A|B)

P(A)
.

This last equation enables us to compute the
conditional probability P(B|A) in terms of the
other conditional probability, P(A|B). We may
think of A as symptoms and B as the disease.

Example 4.6.1. Whenever the decision has to be
made whether to perform an endodontic treatment
on a tooth or to extract the tooth, it is important
to gain an insight into the probability of success
or failure under the given circumstances, such as
type of tooth, age of the patient, vital or necrotic
pulp, presence or absence of periapical rarefaction,
acute or chronic periapical inflammation, etc., es-
pecially when the tooth is to be used as an abut-
ment in a complex multitooth restoration [3]. Sup-
pose that A represents the event that the pulp is
necrotic, S and F represent success and failure of
an endodontic treatment, respectively. If the pa-
tient has a necrotic pulp, the chance of failure of
the endodontic treatment is 0.16, and if the patient
does not have necrotic pulp, the chance of failure is
0.04. Suppose about 10% of patients have necrotic
pulp. Among the patients whose endodontic treat-
ment failed, what percent of the patients would
have necrotic pulp?

Solution. We can summarize the given information
in the example as: P(A) = P (pulp is necrotic)
= 0.10, P(F |A) = 0.16, and P(F |AC ) = 0.04.

Before we can computeP(A|F), we need to deter-
mine P(F). To gain some insights, let us consider
the path diagram in Figure 4.6.1.

The event F is observed via the path going
through the event A or via the path going through
the event AC . The probabilities of observing these

�→ A —– F : P(A)P(F |A) = (0.10)(0.16)
= 0.016.

�
�→ AC —– F : P(AC )P(F |AC ) = (0.90)(0.04)

= 0.036.

Figure 4.6.1 Diagram for path probabilities.

paths are

P(A)P(F |A) = (0.10)(0.16) = 0.016

and

P(AC )P(F |AC ) = (0.90)(0.04) = 0.036.

Because the two paths are mutually exclusive, we
have P(F) = 0.016 + 0.036 = 0.052.

From the definition of the conditional probabil-
ity,

P(A|F) = P(A) · P(F |A)

P(A)
= 0.016

0.052
= 0.3077.

About 30.8% of the patients had necrotic pulp,
given their endodontic treatment failed.

Example 4.6.2. Tooth mobility is important in the
development of a prognosis and vital to treatment
planning. Mobility is gauged in millimeters by
the motion back and forth in a buccal/lingual di-
rection. It is classified into four categories, E1 =
no mobility, E2 = class I mobility, E3 = class II
mobility, and E4 = class III mobility. It is esti-
mated that among the general patient population,
P(E1) = 0.05, P(E2) = 0.40,P(E3) = 0.30, and
P(E4) = 0.25. Let A be the event that the pa-
tient brushes and flosses at least once every day.
If P(A|E1) = 0.86, P(A|E2) = 0.17, P(A|E3) =
0.08, and P(A|E4) = 0.04, what is the probability
that a patient is of class III mobility, knowing that
he has been brushing and flossing daily?

Solution. We are interested in the conditional prob-
ability P(E4|A) = P(AE4)/P(A). Events E1, E2,
E3, and E4 are mutually exclusive and exhaustive,
because a tooth can belong to exactly one of the
four categories. From the diagram in Figure 4.6.2,
we can easily see that event A can be decomposed
into four mutually exclusive and exhaustive events,

A

AE1 AE2 AE3 AE4

E1 E2 E3 E4

Figure 4.6.2 Diagram of tooth mobility categories and event.
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AE1, AE2, AE3, and AE4 and therefore, the prob-
ability P(A) can be written as the sum of P(AE1),
P(AE2), P(AE3), and P(AE4).

P(A) = P(AE1)+P(AE2)+P(AE3)+P(AE4).

By applying the multiplication law,

P(AEi ) = P(A|Ei )P(Ei ), i = 1, 2, 3, and 4.

P(E4|A) = P(AE4)

P(A)
, by the definition of

conditional probability

= P(A|E4)P(E4)

P(AE1) + P(AE2) + P(AE3) + P(AE4)

= P(A|E4)P(E4)

P(A|E1)P(E1) + P(A|E2)P(E2) + P(A|E3)P(E3) + P(A|E4)P(E4)

= (0.04) · (0.25)

(0.86) · (0.05) + (0.17) · (0.40) + (0.08) · (0.30) + (0.04) · (0.25)
� 0.069.

Example 4.6.2 states that in general, about 25%
of teeth are of class III mobility. But if the patient
brushes and flosses daily, there is only about 6.9%
chance that his teeth are of class III mobility. This
new probability information, P(E4|A) � 0.069,

can be used to convince patients to brush and floss
regularly to maintain good oral health. The con-
cept discussed in Example 4.6.2 can be extended
to a case where there are more than three mutually
exclusive and exhaustive events. In clinical cases
there are often several disease states, for example,
stage 1, stage 2, stage 3, and stage 4 carcinoma.
Clinicians are interested in predicting the proba-
bility of a disease state, given a specific symptom.
We state the Bayes theorem.

Bayes Theorem

Let E1, E2, · · · , Ek be mutually exclusive and
exhaustive events, and A be an event such that
P(A) �= 0. Then

P(Ei |A) = P(A|Ei )P(Ei )∑k
j=1 P(A|E j )P(E j )

.

As discussed in Example 4.6.2, the expression in
the denominator equals P(A). In the clinical case,
typically, the event A represents a specific symp-
tom or a set of symptoms, and Ei ’s represent the
disease states, which are mutually exclusive and
exhaustive in the sense that at least one disease

state must occur, and no two disease states can
occur at the same time.

Example 4.6.3. Thoden van Velzen et al. [3] dis-
cussed the effect of a complication on the success-
failure rate computed for a tooth with a preoper-
ative necrotic pulp and periapical rarefaction. Let
A, E1, E2, and E3 represent the events

A = a preoperative necrotic pulp and periapical
rarefaction

E1 = success
E2 = doubtful
E3 = failure on the treatment results

The probabilities are given by P(E1) = 0.84,

P(E2) = 0.07, and P(E3) = 0.09. These prob-
abilities are sometimes referred to as the prior
probabilities. Also given are P(A|E1) = 0.09,

P(A|E2) = 0.09, and P(A|E3) = 0.35. These are
probabilities associated with the event A (a partic-
ular symptom), given the occurrence of success,
doubtful outcome, and failure, which are mutu-
ally exclusive and exhaustive events. These con-
ditional probabilities are sometimes referred to as
likelihoods. What are the probabilities of observ-
ing the events of the treatment results, E1, E2, and
E3, given the event A (a preoperative necrotic pulp
and periapical rarefaction)?

Solution. By applying Bayes theorem with k = 3,

we obtain

P(E1|A)

= P(A|E1)P(E1)∑3
j=1 P(A|E j )P(E j )

= (0.09) · (0.84)

(0.09)(0.84) + (0.09)(0.07) + (0.35)(0.09)
= 0.666 7.
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P(E2|A)

= P(A|E2)P(E2)∑3
j=1 P(A|E j )P(E j )

= (0.09) · (0.07)

(0.09)(0.84) + (0.09)(0.07) + (0.35)(0.09)
= 0.0556.

P(E3|A)

= P(A|E3)P(E3)∑3
j=1 P(A|E j )P(E j )

= (0.35) · (0.09)

(0.09)(0.84) + (0.09)(0.07) + (0.35)(0.09)
= 0.277 8.

Bayes theorem tells us that, given a tooth with a
preoperative necrotic pulp and periapical rarefac-
tion, there is about a 66.7% chance that the treat-
ment will be successful, and a 27.8% chance that
it will fail.

Example 4.6.4. Suppose a 40-year old male pa-
tient has been under stress and smokes a pack of
cigarettes a day. During a regular dental exami-
nation, white patches on the buccal mucosa were

found. The patient is aware of the condition, but
no symptoms have surfaced. The dentist was con-
cerned and did the biopsy of the region. The
following events are defined.

A = White patches on the buccal mucosa.
B1 = Lichen planus.
B2 = Hairy leukoplakia.
B3 = Focal hyperkeratosis.
B4 = Follicular keratosis.
B5 = White spongy nevus.
B6 = Normal, benign.

Event A represents the symptom, and events
B1, B2, · · · , B6 are disease states that are mutu-
ally exclusive and exhaustive. If P(B1) = 0.24,

P(B2) = 0.17, P(B3) = 0.19, P(B4) = 0.11,

and P(B5) = 0.17, suppose P(A|B1) = 0.09,

P(A|B2) = 0.12, P(A|B3) = 0.15, P(A|B4) =
0.21, P(A|B5) = 0.27, and P(A|B6) = 0.03. For
this 40-year old patient with white patches on buc-
cal mucosa, which one of the six disease states is
most likely to occur?

Solution. From the given information and Bayes
theorem, we can obtain

P(B6) = 1 − {P(B1) + P(B2) + P(B3) + P(B4) + P(B5)}
= 1 − (0.24 + 0.17 + 0.19 + 0.11 + 0.17) = 0.12.

P(B1|A) = P(lichen planus | white patches on buccal mucosa) = P(A|B1)P(B1)∑6
j=1 P(A|B j )P(B j )

= (0.09)(0.24)

(.09)(.24) + (.12)(.17) + (.15)(.19) + (.21)(.11) + (.27)(.17) + (.03)(.12)
� 0.150 9.

P(B2|A) = P(hairy leukoplakia | white patches on buccal mucosa)

= (0.12) · (0.17)

(.09)(.24) + (.12)(.17) + (.15)(.19) + (.21)(.11) + (.27)(.17) + (.03)(.12)
� 0.142 6.

P(B3|A) = P(focal hyperkeratosis | white patches on buccal mucosa)

= (0.15)(0.19)

(.09)(.24) + (.12)(.17) + (.15)(.19) + (.21)(.11) + (.27)(.17) + (.03)(.12)
� 0.199 2.

P(B4|A) = P(follicular keratosis | white patches on buccal mucosa)

= (0.21)(0.11)

(.09)(.24) + (.12)(.17) + (.15)(.19) + (.21)(.11) + (.27)(.17) + (.03)(.12)
� 0.161 4.

P(B5|A) = P(white spongy nevus | white patches on buccal mucosa)

= (0.27) · (0.17)

(.09)(.24) + (.12)(.17) + (.15)(.19) + (.21)(.11) + (.27)(.17) + (.03)(.12)
� 0.320 8.

P(B6|A) = P(benign | white patches on buccal mucosa)

= (0.03) · (0.12)

(.09)(.24) + (.12)(.17) + (.15)(.19) + (.21)(.11) + (.27)(.17) + (.03)(.12)
� 0.0252.
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In this example, given the symptom of white
patches on buccal mucosa, the disease state of
white spongy nevus is most likely to occur with
probability 0.3208.

When white patches are found on buccal mu-
cosa (i.e., the event A), the chance of having hairy
leukoplakia is about 5.7 times greater (0.1426 vs.
0.0252), and the chance of having white spongy
nevus is about 12.7 times greater (0.3208 vs.
0.0252) than the chance that the condition is nor-
mal. Although the unconditional probability of B5

(the event of white spongy nevus) is 0.17, the con-
ditional probability of the disease, given the symp-
tom, is 0.3208. When the symptom is present,
the patient is almost twice as likely to have white
spongy nevus as he does when the symptom is not
present.

4.7 RATES AND PROPORTIONS

This section will examine clinical phenomena in
a population, called rates and proportions, which
are useful in biomedical and health sciences. In
order to assess the study phenomena in a popu-
lation, we need to quantify them accurately. The
events of epidemiologic interest are usually dis-
eases, illnesses, disabilities, or deaths—how they
spread, how they infect the population at risk, how
to control them—and prediction of the occurrence
of a certain type of disease and its impact on the
communities. Accurate predictions and clear un-
derstanding of diseases and infections will aid in
public health policies and in developing preventive
measures. We begin the discussion by introducing
two of the most fundamental concepts in epidemi-
ology: prevalence and incidence rates. The term
rate refers to the amount of change taking place in
a specified variable with respect to time.

4.7.1 Prevalence and Incidence

Definition 4.7.1. Prevalence rate is the number
of people in a defined population who have a spec-
ified disease or condition at a fixed point in time
divided by the size of the population at that time
point. Sometimes this is called point prevalence
rate. This refers to the probability of currently

having the disease, irrespective of the duration of
time the patient has had the disease.

Definition 4.7.2. Incidence rate is the number of
new cases (occurrences) of a specified disease, in-
jury, or death during a given time period divided
by the size of the population in that specific time
interval. This refers to the probability that an in-
dividual with no prior disease will develop a new
case of the disease over some fixed time period.

It is straightforward to estimate the prevalence
rate of a disease, but often it is not a simple matter
to determine the denominator for the incidence rate
because the population size will change as people
move in and out of the communities. It may not
always be known how many people were at risk
during the study period. It is customary to substi-
tute for the denominator the average of the known
population sizes during the specified time period.

Example 4.7.1. A squamous cell carcinoma is a
malignant epithelial neoplasm with cells resem-
bling those of the epidermis. It is reported that
approximately 50% of squamous cell carcinomas
have metastasized at the time of diagnosis. The lo-
cal chapter of the dental association in the city of
Colton contacted dental and medical offices, clin-
ics, and hospitals in the area to collect patient data
on squamous cell carcinoma. As of early January
there were 128 known cases of squamous cell car-
cinoma patients who resided in Colton. Between
January and June, 43 new cases were reported in
the city. The city record shows that as of January,
there were 10, 250 people in the city. However,
in June there were only 7, 750 residents, because
most of the college students left town for the sum-
mer. What is the prevalence rate as of January, and
what is the incidence rate of squamous cell carci-
noma during the period between January and June
for the city?

Solution. The prevalence rate as of January is ob-
tained by

Prevalence rate

= The number of known cases as of January

The size of the population in the city as of January

= 128

10, 250
� 0.01 25 (or 1.25%).

For the incidence rate we need to compute the av-
erage population size during the study period from
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January to June, that is, (10, 250 + 7, 750)/2 =
9, 000.

Incidence rate

= The number of new cases in the city between January and June

The average size of the population in the city during study period

= 43

9, 000
� 0.0048 (or approximately, 0.5%).

4.7.2 Sensitivity and Specificity

For clinicians in dentistry and medicine, diagnos-
tic tests are important screening tools for determin-
ing the presence or absence of a disease or genetic
markers, such as the skin test for tuberculosis, the
full mouth radiographs for caries detection, and
biopsy for malignancy. Other diagnostic tools are
home pregnancy test kits, Breathalyzers for po-
lice officers, and airport security devices. Diag-
nostic testing is one of the areas where probability
is proven quite useful. In biomedical health sci-
ences, we try to detect the presence or absence of
a specified medical condition in human subjects.
We have learned in the past that diagnostic tools
are not foolproof. They could not always detect the
condition when it truly is present, or they falsely
indicate the condition in patients when it does not
exist at all. The test results fall into one of the four
categories.

1. True positive (T +): The condition is present or
the patient has the disease and the diagnostic test
detects the condition. The test result is correct
and no error has been made.

2. False negative (F−): The condition is present
or the patient has the disease, but the diagnostic
test does not detect it. The test result indicates
the condition is absent or the patient does not
have the disease. The test result is incorrect and
an error has been made.

3. True negative (T −): The condition is absent
or the patient does not have the disease, and the
diagnostic test indicates that the condition is not
present. The test result is correct and no error
has been made.

4. False positive (F+): The condition is absent
or the patient does not have the disease, but the
diagnostic test indicates that the condition is
present. The test result is incorrect and an error
has been made.

There are two types of errors: a false positive
and a false negative. These can be defined in the
context of the conditional probability.

Definition 4.7.3. False positive rate α (Greek
letter, alpha) and false negative rate β (Greek
letter, beta) of a diagnostic test are defined by

α = P(F+)

= P(test result is positive | subject does not
have a disease)

= P(test result is positive | subject is a true
negative).

β = P(F−)

= P(test result is negative | subject does have
a disease)

= P(test result is negative | subject is a true
positive).

False positive and false negative rates describe
the probability of obtaining incorrect test results.
Two other rates that represent the probability of
making correct decisions in diagnostic tests are
defined below.

Definition 4.7.4. The sensitivity rate of a test is
the probability that the test results are positive,
given that the patient has the disease:

Sensitivity rate

= P(test result is positive | subject is a true positive).

Definition 4.7.5. The specificity rate of a test is
the probability that the test results are negative,
given that the patient does not have the disease:

Specificity rate

= P(test result is negative | subject is a true negative).

The sensitivity represents the chance that a pa-
tient who has the disease is correctly diagnosed
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Table 4.7.1. Four categories of diagnostic test results.

Disease State

Test Result Disease No Disease

Positive (+) True positive (T +) False positive (F+)
Negative (−) False negative (F−) True negative (T −)

as having the disease, and the specificity repre-
sents the chance that a patient who does not have
the disease is correctly diagnosed as not having
the disease. What we have discussed above can be
summarized in a simple table (Table 4.7.1).

Example 4.7.2. The hygienists at a university
dental clinic screened 220 patients for an acute
periodontal disease. Later, a more careful exami-
nation was given by periodontists. The results of
the periodontal examination indicated that 45 were
true positives, 14 false negatives, 26 false positives,
and 135 true negatives. Compute the false positive
(α), false negative (β), sensitivity and specificity
rates.

Solution. The number of patient subjects (n =
220) is fixed, but the number of patients with or
without a periodontal disease and the number of
patients who are tested positive or negative are not
fixed. These numbers are in fact random. The re-
sults described in the example can be presented in
the following table.

Disease State

Screening Test Perio No Perio Total
by Hygienists Disease Disease Tested

Test positive 45 26 71
Test negative 14 135 149

59 161 220

By Definition 4.7.3, the false positive rate α is
the conditional probability P(test result is positive
| subject is a true negative). To compute α, we
need to compute P(subject is a true negative) and
P(subject is a true negative and test result is pos-
itive) from the table. The total number of patients
with an acute periodontal disease is

(true positives) + (false negatives) = 45 + 14

= 59,

and the total number of patients without an acute

periodontal disease is

(true negatives) + (false positives) = 135 + 26

= 161.

It is easy to see that P(subject is a true negative)
= 161/220, and P(subject is a true negative and
test result is positive) = 26/220. Thus,

α = P(test result is positive | subject is a true negative)

= 26/220

161/220
= 26

161
� 0.1615.

A similar argument leads to the calculation of the
false negative rate:

P(subject is a true positive) = 59/220,

and

P(subject is a true positive and test result

is negative) = 14/220.

Thus,

β = P(test result is negative | subject is a true positive).

= 14/220

59/220
= 14

59
� 0.2373.

Similarly, the sensitivity and the specificity rates
can be estimated from the table as follows.

Sensitivity rate

= P(test result is positive | subject is a true positive)

= P(subject is a true positive and test result is positive)

P(subject is a true positive)

= 45/220

59/220
= 45

59
� 0.7627.

Specificity rate

= P(test result is negative | subject is a true negative)

= P(subject is a true negative and test result is negative)

P(subject is a true negative)

= 135/220

161/220
= 135

161
� 0.8385.

Example 4.7.3. Streptococcus mutans is a caries-
causing organism. Children tend to acquire this
organism between the ages of about 1 and 3 years.
A new diagnostic technique for detection of Strep-
tococcus mutans has been introduced. The manu-
facturer claims that both sensitivity and specificity
rates of the technique are at least 95%. To verify
the claim, we have prepared 200 samples with S.
mutans, and 150 samples without it. The new tech-
nique correctly indicated that 191 samples out of
200 contain S. mutans and also indicated that 143
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Figure 4.7.1 Relationship between sensitivity and specificity.

samples of 150 do not contain any S. mutans. Does
your data support the manufacturer’s claims?

Solution.

Sensitivity = P(subject is a true positive and test result is positive)

P(subject is a true positive)
= 191/350

200/350
= 0.9550 (95.5%).

Specificity = P(subject is a true negative and test result is negative)

P(subject is a true negative)
= 143/350

150/350
� 0.9533 (95.33%).

Because both sensitivity and specificity rates of
the diagnostic technique exceed 95%, the manu-
facturer’s claim is supported and credible.

The most ideal situation, of course, is when both
the sensitivity and the specificity rates are 100%,
but in practice this is unlikely to happen. No di-
agnostic techniques are perfect at all times. The
relationship between these two rates is depicted in
the Figure 4.7.1.

The graph on the right-hand side represents the
patients with the disease, and the one on the left-
hand side represents the patients without the dis-
ease. The values along the X -axis represent the
values of the diagnostic test results, such as blood
pressure, hemoglobin, and white blood cell counts.
Usually the diagnostic devices have a cut-off point
or a threshold value below which the test results
are considered negative and above which the test
results are considered positive. The vertical line in
the middle of the overlapping area in Figure 4.7.1
indicates the cut-off point. Those patients with the
disease whose diagnostic test value is to the right
of the cut-off point are true positives to the left

of the cut-off point in the overlapping area are
false negatives. These patients do indeed have the

disease but the diagnostic test does not so indicate.
Those patients without the disease, whose diagnos-
tic test value is to the left of the cut-off point, are
true negatives and to the right of the cut-off point
in the overlapping area are false positives. These
patients do not have the disease, but the diagnostic
test results erroneously indicate that they do.

By setting the cut-off point at a different loca-
tion, we can change the sensitivity and specificity
rates. If we moved the cut-off point to the right, the
number of false negatives would increase, and at
the same time, the number of false positives would
decrease. Likewise, if we moved the cut-off point
to the left, the number of false negatives would de-
crease, and at the same time, the number of false
positives would increase.

In health sciences, what follows the diagnos-
tic test results is an appropriate treatment. The
true positives and false positives will be offered an
appropriate treatment, whereas the true negatives
and false negatives will not. We are faced with a
difficult situation in which the false positives, who
do not have the disease and therefore do not need
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the treatment, will be given the treatment. On the
other hand, the false negatives, who have the dis-
ease and therefore are in need of the treatment,will
not be given the treatment. Both situations involve
risks to patients.

4.7.3 Relative Risk and Odds Ratio

Clinicians often talk about risk factors; smoking
is a risk factor for lung cancer, the positive skin
test is a risk factor for tuberculosis, tobacco and
alcohol use are the major risk factors for the de-
velopment of oral cancer, and oral contraceptives
and antimalarial agents are risk factors for mu-
cosal pigmentation. A risk factor is neither a nec-
essary nor a sufficient condition for developing the
disease. The probability of developing the disease
in a group of patients who have the risk factor
is likely to be greater than the probability of the
disease in a group of patients without the risk fac-
tor. Relative risk is an important concept that is
useful to compare the probabilities of disease in
two different groups; one group consists of sub-
jects who have been exposed to the risk factor, and
the other consists of subjects who have not been
exposed to the risk factor. Two conditional prob-
abilities are involved in the definition of relative
risk. Relative risk is defined by the ratio between
these two conditional probabilities: the probabil-
ity of developing the disease, given that a risk fac-
tor is present, and the probability of developing
the disease, given that a risk factor is not present.
The relative risk of D (disease), given that E
(exposure) is defined below.

Definition 4.7.6. Let D represent the event of dis-
ease and E the event of exposure to a risk factor.
Then the complementary event EC represents the
event of non-exposure to a risk factor. The relative
risk (RR) is defined by

RR = P(Disease | Exposed to a risk factor)

P(Disease | Not exposed to a risk factor)

= P(D|E)

P(D|EC )
.

If D and E are independent, then from the discus-
sions in Section 4.5, the relative risk is

RR = P(D|E)

P(D|EC )
= P(D)

P(D)
= 1.0.

If the events D and E are not independent (or
dependent), then the RR will be different from 1.0.

Example 4.7.4. Lung cancer is the number one
cause of cancer deaths in both men and women in
the United States. Approximately 160, 100 Amer-
icans died from lung cancer in 1998. The over-
whelming majority of lung cancer, at least 90%,
are caused by cigarette smoking [5]. It was esti-
mated that 144, 100 lung cancer deaths per year
are caused by smoking. As of 1998 there are about
192.5 million adult Americans, of which 47.2 mil-
lion are smokers. What is the RR?

Solution. Let D be the event of death due to lung
cancer, and let S and SC be the events repre-
senting adult smokers and adult non-smokers, re-
spectively. The conditional probabilities can be
expressed

P(D|S) = P(death among smokers)

P(smokers)

= (144, 100/192, 500, 000)

(47, 200, 000/192, 500, 000)
� 0.0031

P(D|SC ) = P(death among non-smokers)

P(non-smokers)

= (16, 000/192, 500, 000)

(145, 300, 000/192, 500, 000)
� 0.0001.

The relative risk is now given by

RR = P(D|S)

P(D|SC )
= 0.0031

0.0001
= 31.

The resulting RR = 31 means that smokers are 31
times more likely to die from lung cancer than
non-smokers. The relative risk is also known as
the risk ratio, because it involves the ratio of the
risk of a disease in the exposed group to the risk
in the unexposed group.

Sensitivity and specificity are interesting and
important epidemiologic concepts, but they do not
address certain questions that are of great value to
clinicians. If a patient is tested positive for a dis-
ease, what is the probability that the patient does
indeed have the disease? Or if a patient is tested
negative, what is the probability that the patient
does not have the disease? These questions are
related to the concept of the predictive value of
diagnostic test results.
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Table 4.7.2. The association between risk factor and
disease.

Disease Status

Risk Factor Present Absent Total

Present a b a + b
Absent c d c + d
Total a + c b + d a + b + c + d

Definition 4.7.7. (i) The predictive value posi-
tive (PV+) of a diagnostic test is the conditional
probability that a subject has the disease, given
that the test result is positive, denoted by PV+ =
P(disease | test is +).
(ii) The predictive value negative (PV−) of a di-
agnostic test is the conditional probability that a
subject does not have the disease, given that the
test result is negative, denoted by PV− = P(no
disease | test is −).

Example 4.7.5. Suppose that the probability that
a subject has lung cancer, given he is a smoker, is
0.0030, and the probability that a subject has lung
cancer, given he is not a smoker, is 0.0001. Then

PV + = P(disease | test is+)

= P(lung cancer | smoker) = 0.0030,

and

PV − = P(no disease | test is−)

= P(no lung cancer | non-smoker)

= 1 − P(lung cancer | non-smoker)

= 1 − 0.0001 = 0.9999.

Another useful concept of the relative proba-
bilities is that of odds ratio. Table 4.7.2 exhibits
the association between risk factor and disease.
The risk of the disease in the exposed group is
a/(a + b), whereas the odds of the disease in the
exposed group is a/b.

In sporting events, people often talk about the
odds in favor of the home team. Let p be the
probability of a success. Then 1 − p is the prob-
ability of a failure. The odds in favor of the
home team’s success is given by the proportion
p/(1 − p). For example, if p = 1/2, then the odds

are 0.5/(1 − 0.5) = 1. Thus, the home team’s win
and loss are equally likely. If p = 0.8, then the
odds are 0.8/(1 − 0.8) = 4. Namely, the odds are
4 to 1 in favor of the home team’s success. So,
the home team is 4 times more likely to win than
lose. The odds ratio is a convenient measure for
comparing two different such proportions.

Definition 4.7.8. The odds ratio (OR) of two
different proportions, p1 and p2, are defined by

OR = p1/(1 − p1)

p2/(1 − p2)
= p1/q1

p2/q2
= p1q2

p2q1
, by letting

q1 = 1 − p1 and q2 = 1 − p2.

In the context of the association between a risk
factor and a disease, the odds ratio represents the
odds in favor of a disease for the exposed group
divided by the odds in favor of a disease for an
unexposed group. That is,

OR = [P(disease | exposed)]/[1 − P(disease | exposed)]

[P(disease | unexposed)]/[1 − P(disease | unexposed)]
.

Using the notation in Table 4.7.2, we can express
the odds ratio as

OR = [a/(a + b)]/[b/(a + b)]

[c/(c + d)]/[d/(c + d)]

= [a/(a + b)] x [d/(c + d)]

[c/(c + d)] x [b/(a + b)]
= ad

bc
.

Example 4.7.6. It is known that the bacteria as-
sociated with acute necrotizing ulcerative gin-
givitis (ANUG), also known as Vincent’s infec-
tion or trench mouth, are fusiform bacteria and
spirochetes—a fusospirochetal complex. A fu-
sospirochetal complex is a risk factor for ANUG.
Suppose that periodontists have collected ANUG
data, presented in the table below.

ANUG Status

Fusospirochetal Complex Present Absent Total

Present 28 36 64
Absent 6 145 151

Total 34 181 215

Then

OR = ad

bc
= (28)(145)

(36)(6)
= 4, 020

216
� 18.80.
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The odds in favor of an ANUG for patients
with the presence of a fusospirochetal complex
is 18.8 times the odds in favor of an ANUG
for patients with the absence of a fusospirochetal
complex.

Example 4.7.7. The primary factors shown to pre-
dispose to implant failure are low bone density
(i.e., type IV bone) and smoking [6–9]. Bain re-
ported a prospective study of the early outcomes
of 223 implants placed in 78 patients [10]. The
patients are divided into two groups: smokers and
non-smokers. The failure rate of the implants was
observed. An implant removal for any reason or an
implant exhibiting more than 50% bone loss was
considered a failure. Bain’s data are summarized
in the following table.

Results of Implants

Risk Factor Failure Success Total No. of Implants

Smokers 9 38 47
Non-smokers 10 166 176

Total 19 204 223

Then

OR = ad

bc
= (9)(166)

(38)(10)
= 1, 494

380
� 3.93.

The odds in favor of an implant failure for smokers
is about 3.93 times the odds in favor of an implant
failure for non-smokers.

4.8 EXERCISES

1 How many outcomes are there in an experiment
of rolling a die?

2 Write all possible outcomes in an experiment
of rolling two dice.

3 Dental patients are classified according to their
age: young, middle-aged, and elderly. They also
are classified according to their tooth mobility: no
mobility, class I, class II, and class III. What is
the sample space � when you classify the patients
according to their age and tooth mobility?

4 Suppose the outcomes in Exercise 3 are
equally likely. (a). What is the probability that a
middle-aged patient is categorized as having class
II mobility? (b). What is the probability that an

elderly patient is categorized as having either class
II or class III mobility?

5 Suppose that erythema multiforme, lichen
planus, pemphigoid, pemphigus vulgaris, and vi-
ral disease are all the conditions and diseases that
may cause vesiculobullous lesions (blistering) in
the human mouth. Assume that only one of the
conditions and diseases can develop at a time.
The sample space consists of these five conditions
and diseases. Let two events be defined by C =
{lichen planus, viral disease} and D = {erythema
multiforme, lichen planus, pemphigoid}. Find the
events, C ∪ D, C ∩ D, CC and DC .

6 In the above exercise, let P(C) = 0.42,
P(D) = 0.68, and P(C ∩ D) = 0.26. What is the
chance that you will observe the event C or the
event D?

7 Let A be the event that a patient brushes his
teeth at least once a day, B be the event that a
patient eats carbohydrates, and C be the event
that a patient uses a toothpaste that contains
fluoride. SupposeP(A) = 0.76, P(B) = 0.15,
P(C) = 0.47, P(A ∪ B) = 0.84, and P(B ∩ C)
= 0.12. Compute the probabilities P(A ∩ B) and
P(B ∪ C).

8 A patient who has gingival bleeding went to
an endodontist and later went to a periodontist.
Let A and B, respectively, be the events that
an endodontist and a periodontist correctly di-
agnose the patient as having advanced periodon-
titis. If P(A) = 0.49 and P(B) = 0.57, what is
the probability that both of them correctly diag-
nose the patient if the two events were statistically
independent ?

9 The chance that a father has at least one de-
cayed, missing, filled (DMF) tooth is 0.34, and the
chance that a mother has at least one DMF is 0.43.
Suppose that the father’s having any DMF teeth
is statistically independent of the mother’s having
any DMF teeth. What is the probability that either
father or mother has at least one DMF tooth?

10 Suppose that A is the event of a mother having
at least one missing tooth and that B is the event
of a father having at least one missing tooth. If
it is known that P(A) = 0.10, P(B) = 0.20, and
P(AB) = 0.02, are the events A and B statistically
independent?
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11 Flip a pair of fair coins until at least one of
them lands on heads. What is the probability that
the other coin also has landed on heads?

12 Many factors can influence the condition of
the teeth, such as eating habits, toothbrushing,
flossing, and fluoridation.

Let
A = the event that a patient brushes her teeth at

least twice a day,
B = the event that a patient flosses her teeth at

least once a day,
C = the event that a patient lives in a fluoridated

community.

Suppose P(A) = 0.55, P(B) = 0.40, P(AB) =
0.25, and P(C) = 0.75.

a. Are the events A and B independent?
b. Are the events A, B, and C mutually exclusive?
c. Knowing that a patient brushes her teeth at least

twice a day, what is the chance that she flosses
her teeth at least once a day?

d. Suppose the chance that a patient whose town
drinking water is fluoridated and she flosses her
teeth at least once a day is 0.30. Given that a
patient flosses her teeth at least once a day, what
is the chance that she lives in a fluoridated town?

e. Are the events A and B mutually exclusive?

13 Let A be the event that a canine tooth is carious
and B be the event that a canine tooth is fractured.
Let P(A) = 0.25 and P(B) = 0.20. If the proba-
bility that a canine tooth is carious, given that it is
fractured, is 0.45, what is the chance that a canine
tooth is fractured and carious?

14 A jar contains 140 adult molar teeth. The mo-
lar teeth are categorized as follows: 30 sound, 20
decayed, 75 restored, and 15 decayed and restored.
If you were to select a molar tooth from the jar at
random, what are the probabilities of the following
events?
a. P(selecting only a decayed tooth).
b. P(selecting any decayed tooth).
c. P(selecting any decayed or any restored tooth).

15 Let A be the event that Dr. Jones diagnoses
a patient as having myofacial pain syndrome, and
B be the event that Dr. Lam diagnoses a patient
as having myofascial pain syndrome. Let P(A) =
0.15 and P(B) = 0.24. If A and B are statistically
independent, what is the P(A or B)?

16 Let A+ be the event of Dr. Chung making
a positive diagnosis, and B+ be the event of Dr.
Smith making a positive diagnosis. If at least one
of them makes a positive diagnosis, then the pa-
tient is referred for further evaluation. Suppose
P(A+) = 0.24,P(B+) = 0.29, and P(A+ B+) =
0.18. What is the probability that a patient is
referred for further examination?

17 An orthodontics researcher is interested in
modeling the distribution of maxillary teeth. He
needs to measure the distance from mesial to
mesial between two maxillary second bicuspids.
This requires all his subjects to have both sec-
ond bicuspids. Let A be the event that a patient
has at least one missing second bicuspid. The
age of the subjects is divided into five classes as
follows. What is the chance that a patient is 66
or older, given that she has at least one missing
second bicuspid?

Population With a Missing
Age (%) Second Bicuspid (%)

Less than 20 20 5
21–35 15 10
36–50 25 18
51–65 30 23
66 or older 10 45

18 Find an example in dentistry where the Bayes
theorem can be applied. Be very specific in defin-
ing the events, including the mutually exclusive
and exhaustive events.

19 Find an example in dentistry, medicine, and
other health care areas to describe the following:
a. Events A and B are independent but not mutu-

ally exclusive.
b. Events A and B are independent and mutually

exclusive.
c. Events A and B are not independent and not

mutually exclusive.
d. Events A and B are not independent but mutu-

ally exclusive.

20 A dental clinic is conducting a survey on pa-
tients’ perception of the quality of the dental care
they have received and the competency of the den-
tal professionals they have had at the clinic. They
intend to sample 100 patients from the database,
which contains a large number of patient records.
Ideally, the sample of 100 should represent the
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entire patient population. The chance that a pa-
tient has a private insurance carrier is 0.45, and the
chance that a patient is female, is 0.55. What is the
probability that a randomly chosen patient from
the database is female who has private insurance?

21 Find an example in biological or health sci-
ences that illustrates
a. Two events A and B that are independent but

not mutually exclusive.
b. Two events A and B that are not independent

but mutually exclusive.
c. Two events A and B that are independent and

mutually exclusive.
d. Two events A and B that are not independent

and not mutually exclusive.

22 Let E1 and E2 be the events that Dr. Ander-
son and Dr. Lee diagnose a patient as having a
mucogingival defect. Suppose P(E1) = 0.34 and
P(E2) = 0.54. If P(E1 E2) = 0.25, what is the
chance that at least one of them diagnoses a pa-
tient as having a mucogingival defect?

23 Suppose that the probability of a person’s hav-
ing microdontia is 0.05. In a family of four what
is the chance that all of them have microdontia
if one person’s having microdontia is statistically
independent of another person’s having it?

24 Let E1 be class I mobility, E2 be class II mobil-
ity, and E3 be class III mobility, which are mutually
exclusive and exhaustive events. It is believed that,
among the general patient population, P(E1) =
0.40, P(E2) = 0.35, P(E3) = 0.25. Let A be the
event that a patient has been flossing regularly
since an early age. Also known are P(A|E1) =
0.85, P(A|E2) = 0.10, P(A|E3) = 0.05. What is
the chance that a patient is of class II mobility,
knowing that he has been flossing ?

25 A team of dental professionals visited a com-
munity in the Southwest. Among the samples of
568 patients they treated, 428 of them had at
least two carious teeth. What is the estimated
probability that a patient from this area has at most
one carious tooth?

26 Suppose that in America, the chance of a per-
son having ECC is about 0.15. There are 7 kids
in one neighborhood.What is the chance that all

of them have ECC, if one person’s having ECC is
independent of another having it?

27 Suppose the chance that an individual is af-
fected by odontodysplasia is 0.08. Mr. and Mrs.
Smith have two children. What is the chance that
all four of them are affected by odontodysplasia,
if an individual being affected by it is statistically
independent of another being affected?

28 Let A, B, and C be three events with P(A) =
0.35, P(B) = 0.10, and P(C) = 0.25. If the
events are mutually exclusive, what is the prob-
ability of observing at least one of the events?

29 It has been observed by the statistics instruc-
tors of an elementary statistics course that about
5% of the class earn the letter grade A. Among the
students who took a college level calculus course,
however, about 85% earn the letter grade A. If 10%
of the students in the statistics class took a calculus
course, what is the probability that a student took
a calculus course and earned an A in the statistics
course?

30 It is known that most of the patients brush
their teeth at least once daily. Let A be the event
that a patient brushes teeth at least once a day, and
B be the event that the patient’s plaque score is less
than 50%. The chance that the patient brushes his
teeth at least once a day, given his plaque score is
less than 50%, is 0.89. The chance that the patient
brushes his teeth at least once daily, given that
his plaque score is greater than 50%, is 0.08. If
P(B) = 0.47, what is the chance that the patient
brushes his teeth at least once a day?

31 Let S+ and S−, respectively, denote posi-
tive and negative symptoms of periodontal in-
flammation. Let D and DC , respectively, denote
existence and non-existence of an acute peri-
odontal disease. If P(S+) = 0.20, P(S−) = 0.80,

P(DC S+) = 0.03, andP(DS−) = 0.016.

a. What is the probability that a patient does not
have an acute periodontal disease, knowing that
the patient has positive symptoms of periodontal
inflammation?
b. If it is known that the patient showed negative
symptoms of periodontal inflammation, what is the
probability that the patient has an acute periodontal
disease?
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32 Furcation defects are classified according to
probing, and the treatment of furcations varies, de-
pending on the type and the tooth. The treatment
may range from simple management with scaling,
root planing, and curettage, to tissue-guided regen-
eration with bone-grafting material. Let the events
be defined
A = Patient’s dental health history

B1 = No furcation involvement
B2 = Class I furcation
B3 = Class II furcation
B4 = Class III furcation.

From past data it is estimated that P(B1) = 0.44,

P(B2) = 0.28, P(B3) = 0.22, P(B4) = 0.06,

P(A|B1) = 0.05, P(A|B2) = 0.14, P(A|B3) =
0.21, and P(A|B4) = 0.26. Given the patient’s
dental health history, what is the probability that
his tooth will be of class III furcation?

33 Cancer patients undergoing chemotherapy
can develop mucositis as part of the side effects
of the treatment. Suppose B1 and B2 are the events
representing the patients who develop mucosi-
tis and those who do not, respectively. Let C
be the event that the cancer patients are under-
going chemotherapy. P(B1) = 0.64, P(C |B1) =
0.76, and P(C |B2) = 0.14. If we know that a pa-
tient has developed mucositis, what is the prob-
ability that he is a cancer patient undergoing
chemotherapy?

34 Common causes for chronic xerostomia in-
clude aging, anticholinergic drugs, autoimmune
sialadenitis, neurologic dysfunction, nutritional
deficiencies (e.g., vitamin A, vitamin B, and iron),
and radiation to the gland. The following is the
U.S. population distribution by age (source of data:
U.S. Census Bureau, 2000), and the probability of
the patients having xerostomia, given the range of
their age. What is the chance that the age range
of a patient is 60 to 79 years, given that he has
xerostomia?

A1 = 39 or younger, P(A1) = 0.568 P(B|A1) = 0.05
A2 = 40 − 59 years old, P(A2) = 0.268 P(B|A2) = 0.10
A3 = 60 − 79 years old, P(A3) = 0.131 P(B|A3) = 0.48
A4 = 80 or older, P(A4) = 0.033 P(B|A4) = 0.89
B = Patients with xerostomia

35 In January, 2005, 1, 825 people were em-
ployed by the Riverside County government. It
was reported that, at the beginning of the new year

2005, 125 employees were suffering from chronic
depression. At the end of the fiscal year in June,
2005, the number of employees suffering from
chronic depression increased to 185. Between Jan-
uary and June, 2005, 75 employees left their jobs
with the county government for a variety of rea-
sons. Express the incidence rate for the period of
January through June, 2005, and the prevalence
rate at the end of June, 2005.

36 A team of hygienists and dentists visited a
community in South America during spring break.
Their visit lasted only a few days. The primary
goal they hoped to achieve during their stay was to
assess the proportion of children who require root
canal treatments. What type of epidemiologic rate
is most appropriate for this? Give a short reason
why.

37 The results shown in the table below were
obtained from a study conducted to evaluate the
quality of a pathology laboratory in a major hospi-
tal. Eighty-two malignant samples and 181 benign
samples of lymph nodes were sent to the labo-
ratory for analysis. Compute the sensitivity and
specificity rates.

True State

Pathological Result Malignant Benign

Positive test result 74 12
Negative test result 8 169

Total 82 181

38 As the uptake of fluoride and other minerals
make the tooth surface less acid soluble, enamel
becomes more resistant to dental caries throughout
the life of the tooth. Suppose that the probability of
dental caries among those who live in fluoridated
communities is 0.08, and the probability of dental
caries among those whose drinking water is not

fluoridated is 0.48. Compute the relative risk, and
interpret the result in words.
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39 The patients with Addison’s disease (hypoad-
renocorticism) experience slowly progressive loss
of cortisol and aldosterone secretion, usually pro-
ducing a chronic, steadily worsening fatigue, a loss
of appetite, and some weight loss. Hyperpigmen-
tation of the skin or gingiva occurs often enough
to raise a strong suspicion of the disease, prompt-
ing further evaluation. Suppose there is a 1 in 100
chance that the patient has Addison’s disease when
he has hyperpigmentation of the gingivae, and a 5
in 10, 000 chance when he does not have hyperpig-
mentation of the gingivae. What are the predictive
value positive and the predictive value negative?

4.9 REFERENCES

1. Sonis, S. T. Dental Secrets. Second edition. Hanley &
Belfus, Inc. 1999.

2. Wyne, A. H. Nomenclature and Case Definition. Commu-
nity Dent. Oral Epidemiol: 1999, 27, 313–315.

3. Thoden van Velzen, S. K., Duivenvoorden, H. J., and
Schuurs, A. H. B. Probabilities of success and failure in
endodontic treatment: A Bayesian approach. Oral Surg:
1981, 85–90.

4. Jekel, J. F., Elmore, J. G., and Katz, D. L. Epidemiology,
Biostatistics, and Preventive Medicine. W. B. Saunders
Company. 1996.

5. http://ourworld.compuserve.com/homepages/lungcancer.
6. Jaffin, R. A., and Berman, C. L. The excessive loss of

Branemark implants in type IV bone: A 5-year analysis.
J. Periodontol: 1991, 62, 2–4.

7. Bain, C. A., and Moy, P. K. The association be-
tween the failure of dental implants and cigarette
smoking. Int. J. Oral Maxillofac. Implants: 1993, 8,
609–615.

8. De Bruyn, H., and Collaert, B. The effects of smoking on
early implant failure. Clin. Oral Implants Res.: 1994, 5,
260–264.

9. Jones, J. K., and Triplett, R. G. The relationship of smoking
to impaired intraoral wound healing. J. Oral Maxillofac.
Surg.: 1992, 50, 237–239.

10. Bain, C. A. Smoking and implant failure—Benefits of a
smoking cessation protocol. The Int. J. Oral Maxillofac.
Implants: 1996, 11, 756–759.





Chapter 5

Probability Distributions

5.1 INTRODUCTION

In Chapter 2 we discussed random variables, both
discrete and continuous. A discrete random vari-
able assumes a finite or countable number of possi-
ble outcomes, such as causes of pulpal death, spe-
cialty areas in dentistry and medicine, and types of
injuries. A continuous random variable can take on
any value within a specified interval or continuum,
such as time of healing, root angulation, or amount
of anesthetic used. Every random variable has a
unique corresponding probability distribution. To
draw precise conclusions about a population based
on a sample taken from the population, we need
to understand the probability distribution corre-
sponding to the population. This chapter will intro-
duce three of the most useful distributions, which
have a wide variety of applications in biomedical
and health sciences: binomial distribution, Poisson
distribution, and normal distribution. For a discrete
random variable, the probability distribution gives
all possible outcomes and the probabilities asso-
ciated with the outcomes. These probabilities rep-
resent the relative frequency of the occurrence of
each outcome in a large number of experiments re-
peated under identical conditions. The next three
sections are devoted to these three probability
distributions.

5.2 BINOMIAL DISTRIBUTION

When a fair coin is tossed three times, the sample
space consists of eight possible outcomes: TTT,
TTH, THT, HTT, HHT, HTH, THH, HHH. Let
Y be the random variable (rv) for the number of
heads observed, then Y assumes the value 0, 1, 2, 3.
Probabilities for the values of the random variable
Y can be determined as shown in Table 5.2.1.

Therefore, the probability of observing no heads
is 1

8 , one head is 3
8 , two heads is 3

8 , and three heads

is 1
8 . The probability distribution for the number

of heads observed from tossing a fair coin three
times can be constructed as in Table 5.2.2 below.

There are three different ways to obtain ex-
actly two heads out of three tosses; HHT, HTH,
THH. Each outcome is equally likely ( 1

8 ) because a
fair coin is tossed. Hence, P(Y = 2) = P(HHT) +
P(HTH) + P(THH) = 3

8 . The two most likely
outcomes when a coin is tossed three times are
two heads and two tails.

There are many situations in biomedical and
health sciences where the investigators are inter-
ested in the probability that an event occurs k times
out of n trials. For example, we may be interested
in (a) the probability of getting 85 responses to
200 questionnaires sent to nurses and dental hy-
gienists to find out about job satisfaction, (b) the
probability that 3 out of 18 patients who need an
immediate root canal treatment do not have an
employer-provided insurance, (c) the probability
that at least one member in a family of five has os-
teogenesis imperfecta, or (d) the probability that 7
out of 25 lymphoma patients undergoing chemora-
diation treatment will survive at least 5 years. In
each of the cases, the investigators are interested in
the probability of obtaining k successes in n trials
(or k heads in n coin tosses). Getting k successes
in n trials (or k heads in n coin tosses) means k
successes and n − k failures in n trials (or k heads
and n − k tails in n coin tosses). Table 5.2.1 reveals
that the event of observing two heads is the same
as that of observing one tail. Therefore, the prob-
ability of observing one tail should be the same
as the probability of observing two heads, which
is, 3

8 .

A large dental clinic record indicates that 78%
of the patients have at least one DMFT, and 22%
do not have any decayed, missed, and filled teeth
(DMFT) at all. Let X be a random variable that
represents the patient’s DMFT status. It is conve-
nient to let X = 0 if the patient does not have any

81
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Figure 5.2.1 Probability distribution
for the number of heads.

Table 5.2.1. Probabilities for Y = no. of heads.

Number
of H’s No heads One H Two H’s Three H’s

rv Y = 0 Y = 1 Y = 2 Y = 3
Outcome TTT TTH THT HTT HHT HTH THH HHH
Probability 1

8
3
8

3
8

1
8

DMFT, and X = 1 if the patient has at least one
DMFT. These two outcomes of X are mutually ex-
clusive and exhaustive. Thus, we can express the
probabilities associated with the outcomes of X as

P(X = 0) = 0.22 = p,

and

P(X = 1) = 1.0 − p = 1.0 − 0.22 = 0.78

For convenience in discussing the binomial dis-
tribution, we shall denote the outcome X = 0 as
“failure” or “tail,” and X = 1 as “success” or
“head.” For the validity of our discussions on the
binomial distributions, we shall assume

� the number of trials, n, is fixed.
� the n trials are statistically independent.

Table 5.2.2. Probability of the number of heads.

Number of heads, Y Y = 0 Y = 1 Y = 2 Y = 3
Probability, P(Y = y) 1

8
3
8

3
8

1
8

� the probability of success, p, is constant through-
out the trials.

If p and 1 − p are the probabilities of obtaining
a head and a tail on any given trial (i.e., a coin
tossing), the probability of observing 2 heads and
3 tails in 5 tosses in some specific order is p2(1 −
p)5−2 = p2(1 − p)3. Since this probability applies
to any outcome of two heads and three tails, we
need to count how many of such outcomes there
are. In fact, we can write down all possible such
outcomes when n is small, as follows:

HHTTT TTHTH

HTHTT TTTHH

HTTHT THHTT

HTTTH TTHHT

THTTH TTTHH

Since there are 10 outcomes that are mutually ex-
clusive, the probability of observing two heads
in 5 tosses is 10 · p2(1 − p)5−2. To facilitate the
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discussion, we need to introduce some notation.
Given n endodontic patients, n! (read, n facto-
rial) represents the number of distinct ways in
which n patients can be ordered. Note that we have
n choices for the first position, (n − 1) choices
for the second position, (n − 2) choices for the
third, and only one choice left for the last position.
Hence, the number of ways in which we can order
n patients is given by

n! = n(n − 1)(n − 2) · · · (3)(2)(1).

For example,

5! = 5 · 4 · 3 · 2 · 1 = 120

4! = 4 · 3 · 2 · 1 = 24

3! = 3 · 2 · 1 = 6

2! = 2 · 1 = 2

1! = 1

0! = 1, by convention.

The expression

(
n

k

)
= n!

k!(n − k)!
describes the

number of distinct ways in which k patients can be
selected from the total of n patients without regard

to order. Read

(
n

k

)
as “n choose k.” An experi-

ment where n coins are tossed is statistically equiv-
alent to tossing a coin n times. Let X be a binomial
random variable. Using the notation introduced we
now can define a binomial probability.

Definition 5.2.1. To define binomial probability,
let n be the number of independent trials and p be
the probability of success. Then the probability of
observing exactly k successes is given by

P(X = k) =
(

n

k

)
pk(1 − p)n−k

= n!

k!(n − k)!
pk(1 − p)n−k

where k = 0, 1, · · · , n

From the definition of

(
n

k

)
, it is easy to see(

n

k

)
=
(

n

n − k

)
. By a simple substitution in the

above formula we can establish

P(X = k) =
(

n

k

)
pk(1 − p)n−k

=
(

n

n − k

)
pk(1 − p)n−k .

The binomial random variable X when the number
of trials is n and the probability of success is p is
sometimes denoted by X ∼ B(n, p) (read ∼ as
“distributed according to”).

Example 5.2.1. Six students always sit in the front
row in statistics class. They took the National
Board exam at the same time. If the probability of
passing the board exam is 0.90, what is the chance
that five of the six students passed the exam?

Solution. From the information given in the exam-
ple, we know that n = 6, and p = P(passing the
exam) = 0.90. The probability of our interest is

P(X = 5) =
(

6

5

)
(0.90)5(1.0 − 0.90)6−5

= 6!

5!(6 − 5)!
(0.90)5(0.10)

= 0.3543.

Example 5.2.2. The normal range of the white
blood cell (WBC) count for healthy adult is 3,800
to 10, 800 per cubic millimeter. The white blood
cell count of the patients undergoing chemother-
apy is expected to drop below the normal range.
Suppose that the WBC count of about 45% of the
cancer patients fall below 2,000 per cubic mil-
limeter during treatment. If five lung cancer pa-
tients are waiting in Dr. Jackson’s office, what is
the probability that no more than 40% of them
have a WBC count of less than 2,000 per cubic
millimeter?

Solution. The random variable we have here is X ∼
B(5, 0.45), where p = P(white blood cell count
≤ 2,000) = 0.45. Forty percent of the five patients
is equal to two patients, so the probability we need
to find is:

P(X ≤ 2)

= P(X = 0) + P(X = 1) + P(X = 2)

=
(

5

0

)
(0.45)0(0.55)5−0 +

(
5

1

)
(0.45)1(0.55)5−1

+
(

5

2

)
(0.45)2(0.55)5−2

= 5!

0!(5 − 0)!
(0.55)5 + 5!

1!(5 − 1)!
(0.45)1(0.55)4

+ 5!

2!(5 − 2)!
(0.45)2(0.55)3

= 0.0503 + 0.2059 + 0.3369 = 0.5931.
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The probabilities in Example 5.2.2 can be found
in the binomial probability table (Table B in the
Appendix). The first two columns in the binomial
probability table are the number n of trials and
the number k of successes observed in the experi-
ment. The top row has the probabilities p = 0.05,

0.10, 0.15, · · · , 0.45, and 0.50. To find the proba-
bility P(X = 2) in the example, go to the row for
n = 5 and k = 2 in Table B. The table value cor-
responding to p = 0.45 is the desired probability,
P(X = 2) = 0.3369.

The table contains the probabilities for n =
2, · · · , 40 and p = 0.05, · · · , 0.45, and 0.50.
What if p > 0.50? We can still use Table B to com-
pute the binomial probabilities when p > 0.50.

Suppose we have a random variable X ∼ B(7,

0.70). The probability that (X = 3), that is, the
probability of an event of three successes out of
seven trials when p = 0.70, is

P(X = 3) =
(

7

3

)
(0.70)3(0.30)7−3

[keep in mind here that n = 7,

k = 3, and p = 0.70]

=
(

7

7 − 3

)
(0.30)7−3(0.70)3

=
(

7

7 − 3

)
(0.30)7−3(0.70)7−(7−3).

In this expression we have n − k and 1 − p in place
of k and p.

=
(

7

4

)
(0.30)4(0.70)3 = 0.0972.

If p > 0.50, then the probability of obtaining k
successes in n trials is given by

P(X = k) =
(

n

k

)
pk(1 − p)n−k

=
(

n

n − k

)
(1 − p)n−k pn−(n−k).

For p > 0.50, P(X = k) is found in Table B by
putting n − k in place of k and 1 − p in place of p.

Example 5.2.3. As a class project, student den-
tists were instructed to record probing depth,
bleeding index, mobility, furcations, recession and
attachment level in their patients’ chart. A recent
audit of charts indicated that at least one of the six
variables is missing from 55% of the charts. Sup-
pose 12 patient charts are randomly selected. What

is the probability that 7 of the charts are missing
at least one variable?

Solution. In this problem, n = 12, k = 7, and p =
0.55 so that the probability P(X = 7) is

P(X = 7)

=
(

12

7

)
(0.55)7(1 − 0.55)12−7

=
(

12

12 − 7

)
(1 − 0.55)12−7(0.55)12−(12−7),

since p > 0.50,

=
(

12

12 − 7

)
(1 − 0.55)12−7(0.55)12−(12−7)

=
(

12

5

)
(0.45)5(0.55)7

= 0.2225.

This is the table value corresponding to n = 12,
k = 5 and p = 0.45.

Example 5.2.4. A pontic is an artificial tooth on
a fixed partial denture that replaces a lost natu-
ral tooth. The design of the pontic is dictated by
the boundaries of an edentulous ridge, opposing
the occlusal surface, and musculature of tongue,
cheeks, and lips. Suppose prosthodontists in a
clinic have experienced that 15% of the pontics re-
quire some minor adjustments. In other words, the
defect rate of the pontic is 15%. Of 10 pontics the
dental clinic has prepared for their patients, what
is the chance that between 2 and 5 (inclusive) are
defects?

Solution. The required probability is given by

P(2 ≤ X ≤ 5) = P(X = 2) + P(X = 3)

+ P(X = 4) + P(X = 5)

= 0.2759 + 0.1298 + 0.0401

+ 0.0085 = 0.4543,

from Table B in the Appendix.

Example 5.2.5. An individual who has a type-
A influenza (also known as Asian flu) has a 5%
chance of infecting a person with whom he comes
into close contact and who has had no prior ex-
posure. If the carrier of a type-A influenza comes
into close contact with 12 individuals, what is the
probability that he will pass the disease on to at
least 3 of them?

Solution. Let X be the random variable represent-
ing the number of individuals who will be infected
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by the carrier of the flu virus. Then the possible val-
ues X takes on are 0, 1, 2, 3, · · · , 12. The event of
interest is “at least 3 of them,” which is in boldface
in the figure below.

| | | | | | | | | | | | | | |
X : 0 1 2 3 4 5 6 7 8 9 10 11 12

We can calculate the probability directly from
the binomial table with n = 12, and p = 0.05 by
adding 10 terms as in the following expression:

P(3 ≤ X ) = P(X = 3) + P(X = 4)

+ · · · + P(X = 12).

However, the calculation can be simplified if we
use the complementary argument discussed in
Chapter 4. The event {X ≤ 2} is complementary
to the event {3 ≤ X}. Therefore, P(3 ≤ X ) can be
expressed as

P(3 ≤ X ) = 1.0 − P(X ≤ 2)

= 1.0 − [P(X = 0) + P(X = 1)

+ P(X = 2)]

= 1.0 − (0.5404 + 0.3413 + 0.0988)

= 0.0195.

Example 5.2.6. The principle of guided bone
regeneration (GBR) is an established surgical
method used in treatment of bone defects, bone
augmentation procedures, and implant installment
[1]. An unbiased and accurate quantitative evalua-
tion of the amount of regenerated bone in a GBR is
critical. Suppose that the past studies with rabbits
using stereological methods showed that in 35% of
the subjects, the amount of bone regeneration in a
6-month time period was about 23% or greater. A
dental researcher has a group of 8 rabbits for an ex-
periment to assess the amount of regenerated bone
after placement of degradable membranes cover-
ing defects in rabbit calvaria using the principle of
GBR. What is the chance that the researcher will
observe at least 23% bone regeneration in, at most,
75% of his rabbit samples?

Solution. At least 23% bone regeneration consti-
tutes success. Let X denote the number of rabbits
that achieve at least 23% bone regeneration. Thus,
X ∼ B(8, 0.35). Because 75% of 8 rabbits is 6
rabbits, the probability of “at most 75% of rabbit

samples” can be written as

P(X ≤ 6) = P(X = 0) + P(X = 1)

+ · · · +P(X = 6)

= 1.0 − [P(X = 7) + P(X = 8)],

by the complementary event

= 1.0 − (0.0034 + 0.0002)

= 0.9964.

Suppose we toss a coin 100 times. If the prob-
ability of obtaining a head is 1

2 , p = P(H ) = 1
2 .

Then we would expect to obtain about 50 heads. If
p = P(H ) = 1

4 , we would expect to obtain about
25 heads. In statistics, the mean is often referred to
as the expected value. From this simple observa-
tion, it seems reasonable to say that the mean of a
binomial distribution is np, that is, the number of
trials times the probability of success. We can de-
rive mathematically that the mean is indeed given
by np. We state the mean, variance, and standard
deviation of a binomial distribution X ∼ B(n, p),
which will be useful in future discussions.

Mean, μ = np

Variance, σ 2 = np(1 − p) = npq,

where q = 1 − p

Standard deviation, σ =
√

np(1 − p) = √
npq.

The variance of a binomial distribution becomes
smaller and smaller as p approaches 0 or 1. In-
tuitively, when p = 0 there will be no heads ob-
served, and when p = 1, every coin toss will result
in a head. Therefore, there is no variability. Hence,
the variance np(1 − p) = 0. The largest variabil-
ity occurs when p = 1

2 . The variance is maximum
when p = 1

2 , as can be seen in Figure 5.2.2.

Example 5.2.7. Health care professionals in
medicine and dentistry routinely use latex gloves,
which are inexpensive and protect the clinicians
from transmission of infection. Regular contact

0
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Figure 5.2.2 Plot of p vs. p(1 − p).



86 Biostatistics for Oral Healthcare

with latex-containing products such as rubber
gloves can result in an allergy. A survey showed
that about 32% of the respondents reported ex-
periencing a latex allergy [2]. In a sample of 125
clinicians, what is the mean and the variance of the
number of those who experience a latex allergy?

Solution. With n = 125 and p = 0.32, substitution
in the above formula yields

Mean, μ = np = 125 · (0.32) = 40

and

Variance, σ 2 = np(1 − p)

= 125 · (0.32)(0.68) = 27.2.

5.3 POISSON DISTRIBUTION

After the binomial distribution, the Poisson distri-
bution is the second most widely used discrete dis-
tribution. The Poisson distribution is useful when
n is large and p is small and when the events occur
over a period of time, area, volume, or space:

� The number of calls received by the dental as-
sistant for cancellation of an appointment

� The number of cases where oral-dental infec-
tions contributed to bacteremia

� The number of false alarms sounded at a nuclear
power plant

� The number of neutrophils in a tiny drop of blood
sample

� The count of certain bacterial colonies growing
on an agar plate

� The number of mistakes in patient charts

The probability of receiving a cancellation call
at time t1 (actually, a small time interval around
t1) is very small. The probability of getting calls at
any two time points, t1 and t2, are independent. The
number of cancellation calls over a day will follow
a Poisson distribution. The following assumptions
need to be made.

1. The probability of observing one occurrence
(one call) is directly proportional to the length
of the time interval, �t.

2. The probability of observing more than one call
over this time interval, �t , is essentially 0.

3. What happens in one interval is independent of
what happens in another interval.

Let λ be the average number of occurrences of
the event per unit of time (or area or volume) and
s be the number of units. Then the Poisson prob-
ability of observing k occurrences in a period of
length s is given by

P(X = k) = (λs)ke−λs

k!
,

where k = 0, 1, 2, 3, · · · , and

e = 2.7183

= μke−μ

k!
, by letting μ = λs.

Example 5.3.1. Dr. Chung and his partners keep
750 patient charts in their practice. Suppose 1, 125
errors (e.g., typographical errors, sex of a male pa-
tient is marked as “F” in the chart, etc.) are ran-
domly scattered among these charts. (i) What is
the probability that each patient chart contains ex-
actly 3 errors? (ii) What is the probability that each
chart contains at least 3 errors?

Solution (i) Because there are 1, 125 errors ran-
domly distributed in 750 patient charts, each chart
has an average of

λ = 1, 125

750
= 1.5.

Since k = 3 and s = 1 (each patient chart), μ =
λs = 1.5. Substituting in the Poisson probability
formula given above, we obtain

P(X = 3) = (1.5)3e−1.5

3!
= 0.1255 (e = 2.7183).

(ii) P(chart contains at least 3 errors) = P(3 ≤ X )

=1.0 − P(X ≤ 2), using the argument of

complementary event

=1.0 − [P(X = 0) + P(X = 1) + P(X = 2)]

=1.0−
[

(1.5)0e−1.5

0!
+ (1.5)1e−1.5

1!
+ (1.5)2e−1.5

2!

]
=1.0 − (0.2231 + 0.3347 + 0.2510)

=0.1912.

To facilitate calculation of the Poisson probabil-
ity, the Poisson probability table is provided in Ta-
ble C in the Appendix. Table C presents probabili-
ties for μ = 0.5, 1.0, 1.5, · · · , 20.0, and k = 0, 1,

2, 3, · · · , 40. In the above example, we have com-
puted the probabilities after substituting e with
2.7183. Table C should provide the same values
without involving any computations.
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Example 5.3.2. The white blood cell count of can-
cer patients undergoing chemotherapy is closely
monitored by the oncologist, who will interrupt
the treatment when the patient’s WBC count falls
below 2,000 per cubic millimeter. Overall, the
normal number of leukocytes ranges from 5,000
to 10,000 per cubic millimeter. If the average
WBC count for healthy adults is 7,000 per cu-
bic millimeter what is the probability that only
2 white cells are found in a 0.001 mm3 drop
of a blood sample taken from a healthy adult
individual?

Solution. In this problem, the unit volume is cubic
millimeter, the average count per unit is given by
λ = 7, 000, s = 0.001 mm3, and k = 2. We then
have μ = λs = (7, 000)(0.001) = 7. Thus,

P(X = 2) = μ2e−μ

2!
= (7)2e−7

2!
= 0.0223, from Table C.

The chances are about 2.2% that only 2 WBCs are
found in a 0.001 mm3 blood sample taken from a
healthy adult individual.

Example 5.3.3. Some psychological reports
speculate that left-handed people are “smarter”
than right-handed people. Suppose that 13% of
the population is left-handed. At the American
Dental Association meeting, a psychologist
was standing at the door to a conference room
and asked the dentists if they were left-handed.
What is the chance that she will find at least 20
left-handed dentists among the first 100 entering
the conference room?

Solution. Let us consider a block of 100 dentists as
a unit. Then λ = (0.13)(100) = 13. Since s = 1,
μ = λs = λ.

P(at least 20 left-handed)

= P(20 ≤ X ) = P(X = 20) + P(X = 21)

+ P(X = 22) + · · ·
= (13)20e−13

20!
+ (13)21e−13

21!
+ (13)22e−13

22!
+ · · ·

= 0.0177 + 0.0109 + 0.0065 + 0.0037 + 0.0020

+ 0.0010 + 0.0005 + 0.0003

+ 0.0001 + 0.0001 + 0 + · · · = 0.0428.

Example 5.3.4. Emergencies commonly experi-
enced in dental offices involve allergic reactions

of the patients to anesthesia, seizures, asthmatic
attack, airway obstruction, syncope, laryn-
gospasm, bradycardia, hypoglycemia, and angina
pectoris. Suppose a survey showed that on the
average a dental office has 3 emergencies in a
year. What is the probability that Dr. Baker’s den-
tal practice will have 2 emergencies in the next
6 months?

Solution. The time unit in this example is 1 year,
and λ = 3. Because s = 0.5 (6 months), μ =
(3)(0.5) = 1.5. We seek to find the probability of
observing 2 emergencies in 6 months:

P(X = 2) = μ2e−μ

2!
= (1.5)2e−1.5

2!
= 0.2510.

There is a 25.1% chance that Dr. Baker’s office
will have 2 emergencies in six months.

For a Poisson distribution with parameter μ,

the mean and variance are both equal to μ, and
the standard deviation is

√
μ. This fact gives us

a preliminary indication that if we have a discrete
data set where the mean and variance are approx-
imately equal, then the data set is likely to have
come from a Poisson distribution.

5.4 POISSON APPROXIMATION
TO BINOMIAL DISTRIBUTION

We learned in Section 5.2 that the binomial dis-
tribution with parameters n and p has the mean
μ = np and variance σ 2 = np(1 − p). Consider
the case where n is large and p is small. When
p is small (close to 0), (1 − p) is close to 1.0.
If (1 − p) is approximately equal to 1.0, then the
variance np(1 − p) is approximately np. This im-
plies that the mean and variance are both equal
to np (approximately). This simple observation
suggests that the Poisson distribution can be used
to approximate the binomial distribution. We will
state the following useful rule: The binomial dis-
tribution, B(n, p), where n is large and p is small
can be approximated by a Poisson distribution with
parameter μ = np.

As we have seen before, the binomial distri-

bution involves

(
n

k

)
and (1 − p)n−k . For a large

value of n, it could be time consuming to calcu-
late the probabilities. In comparison it would be
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much simpler to compute the Poisson probability
μke−μ/k!.

Example 5.4.1. The incidence of cleft lip with or
without cleft palate is known to be 1 in 700 to
1, 000 births in the United States. Suppose the inci-
dence rate is 1 in 1, 000. If the number of births per
year in a large metropolitan area is about 18, 500,
what are the chances that there will be 20 new
births with cleft lip over a 1-year period in the
area?

Solution. The exact binomial probability is ob-
tained by letting n = 18, 500 and p = 0.001. That
is,

P(X =20)=
(

18, 500

20

)
(0.001)20(0.999)18,500−20.

Even with a calculator in hand this is not a simple
task. Using the Poisson approximation with μ =
λs = 1

1000
(18, 500) = 18.5, we can obtain:

P(X = 20) = (18.5)20e−18.5

20!
= 0.0837,

either by direct calculation
or from Table C.

For an adequate approximation one is advised
to use the Poisson approximation if n ≥ 100 and
p ≤ 0.01.

5.5 NORMAL DISTRIBUTION

Continuous random variables arise when quanti-
ties are measured on a continuous span. Some ex-
amples may include a remission period of a patient
who is undergoing a cancer treatment, the amount
of blood lost during a surgery, the survival time
of a gold crown, the bone height of a patient who
needs a titanium implant, mercury concentration
in amalgam, the amount of carbon monoxide in
the air, or the shear strength of a composite mate-
rial. In these situations, we usually round off our
measurements to the nearest whole unit or to a
few decimals, regardless of how precise and accu-
rate the measuring instrument might be and how
capable the technicians are. Of all the continuous
probability distributions, the normal distribution is
the most popular and widely used in statistics. The

normal distribution is tremendously important in
the analysis of every aspect of experimental data in
biomedical and health sciences, engineering, and
social sciences.

Many continuous random variables, such as
weight and blood pressure, have distributions that
are bell-shaped. A histogram for systolic blood
pressure data representing 100 randomly selected
college students is presented in Figure 5.5.1(a).
As we increase the sample size, we may obtain the
histograms in Figure 5.5.1(b) and 5.5.1(c), which
look approximately like a graph of the normal den-
sity function in (d). The normal density function
is informally referred to as the normal distribu-
tion or normal curve. However, the normal density
and normal distribution are not the same. As there
are many different binomial distributions, B(n, p),
with different parameters n and p, there are many
different normal distributions. Each normal distri-
bution has a density function of the form

f (x) = 1√
2πσ

e− 1
2σ 2 (x−μ)2

where μ is the mean and σ is the standard devia-
tion of the normal distribution (σ 2 is the variance
of the normal distribution). The mean and stan-
dard deviation, (μ, σ ) uniquely determine a par-
ticular normal distribution. We will not use this
mathematical equation at all in this book. Instead,
we will work with the standard normal probability
table (Table D in the Appendix).

5.5.1 Properties of Normal
Distribution

The graph of the normal distribution is a sym-
metric, bell-shaped curve centered at its mean, μ.

Figure 5.5.2 shows that for the normal distribution,
its mean, median, and mode are equal and located
at the center of the distribution. The normal dis-
tribution curve is unimodal. The area bounded by
the normal curve and the horizontal axis is 1.0. The
normal probabilities can be found by correspond-
ing areas under the curve. The height of the normal

distribution is given by
1√

2πσ
. When σ = 1, the

height of the curve is
1√
2π

= 0.39894. The larger

the values of σ , the larger the dispersion and, there-
fore, the flatter the normal distribution will be as
shown in Figure 5.5.3.



Probability Distributions 89

F
re

qu
en

cy

(a) Systolic blood pressure (n = 100).

F
re

qu
en

cy

(b) Systolic blood pressure (n = 200).

F
re

qu
en

cy

(c) Systolic blood pressure (n = 300) (d) Normal distribution

Figure 5.5.1 Histograms for systolic blood pressure data.

The area under the normal curve that lies

� within μ ± σ (within one SD of the mean) is
approximately 0.683 (68.3%),

� within μ ± 2σ (within two SD of the mean) is
about 0.955 (95.5%), and

� within μ ± 3σ (within three SD of the mean) is
about 0.997 (99.7%).

μ

Figure 5.5.2 The normal distribution is centered at its mean.

The bell-shaped curve extends indefinitely in
both directions. The curve comes closer and closer
to the horizontal axis without ever touching it, re-
gardless of how far we go in either direction away
from the mean. The area under the curve beyond
4 standard deviations from the mean is negligi-
bly small; thus, from a practical standpoint, we
may rarely have to extend the tails of the normal

μ

1

2

1 2
( < )

Figure 5.5.3 The standard deviation determines the shape.
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Figure 5.5.4 Two normal distributions
with unequal means and equal standard
deviation.

distribution more than 4 or 5 standard deviations
away from its mean.

As mentioned, a normal distribution is uniquely
determined by two parameters, μ and σ. This
means that there can be only one normal distri-
bution with a given mean and a given standard
deviation. In Figure 5.5.3, the two curves have
equal means but unequal standard deviations. The
flatter normal distribution has a larger SD. Two
normal distributions with unequal means but equal
standard deviations are displayed in Figure 5.5.4.
The one on the right has a larger mean μ than the
one on the left (μ1 < μ2). Similarly, two normal
curves with unequal means and unequal standard
deviations are shown in Figure 5.5.5 (μ1 < μ2 and
σ1 < σ2) .

The properties regarding the area under the
curve discussed apply only to a unimodal, sym-
metric distribution such as normal distributions. If
the data is not unimodal and symmetric, the follow-
ing Chebychev’s inequality can be used to specify
the proportion of the spread in terms of the stan-
dard deviation. Chebychev’s inequality applies no
matter what the shape of the distribution.

Chebychev’s Inequality

The proportion of the values from a data set that
will fall within k standard deviations of its mean

is at least 1 −
(

1

k2

)
, where k ≥ 1.

For example, if k = 1.5, then 1 −
(

1

1.52

)
=

0.5556. This implies that at least 55.56% of the
data will fall within 1.5 standard deviations of its

mean. For k = 2, 1 −
(

1

22

)
= 0.75. Thus, at least

75% of the data will fall within 2 standard devia-

tions of its mean. For k = 3, 1 −
(

1

32

)
= 0.8889.

Hence, at least 88.89% of the data will fall within
3 standard deviations of its mean. Chebychev’s
inequality provides a conservative proportion of
the measurements that fall within k · SD ± mean,
regardless of the shape of the distribution.

5.5.2 Standard Normal
Distribution

A random variable X that has the normal distri-
bution with the mean μ and the variance σ 2 is
denoted by X ∼ N (μ, σ 2). Hence, X ∼ N (0, 1)
indicates that a random variable X has mean = 0
and variance = 1. A normal distribution with a
mean μ = 0 and a variance σ 2 = 1 (that is, a stan-
dard deviation σ = 1) is referred to as the stan-
dard normal distribution. It is neither feasible
nor necessary to provide normal probability tables
for all possible values of μ and σ 2. The standard
normal probability table can be used for all cases,
because normally distributed random variables can

<

<

μ
1

μ
2

1

2

μ
1

μ
2

σ1 σ2

Figure 5.5.5 Two normal distribu-
tions with unequal means and standard
deviation.
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Figure 5.5.6 Transformation of X to the
standard normal curve.

be transformed into the standard normal distribu-
tion by

Z = X − μ

σ

This formula will make the conversion from
X ∼ N (μ, σ 2) to Z ∼ N (0, 1). The transformed
X values are referred to as Z scores or Z val-
ues. The Z score represents the number of stan-
dard deviations that a particular value of X is away
from the mean μ. The transformation has a phys-
ical meaning. The normal curve on the right-hand
side in Figure 5.5.6 has mean μ = 12 and vari-
ance σ 2 = 4. The numerator of the above formula
X − μ has the same effect as pulling the curve to
the left until the center of the curve (i.e., μ = 12)
comes to the point zero (i.e., μ = 0). After this
process is done, the normal curve is located where
the dotted normal curve is in the figure. The center
of the dotted normal curve is at zero. The dotted
normal distribution has mean μ = 0 and variance
σ 2 = 4. The denominator σ in the formula, that
is, dividing X − μ by σ, has the same effect as
squeezing the dotted curve so that the curve is
pushed up until it completely coincides with the
graph of the standard normal distribution. In case
of a normal distribution with the mean μ = 0 and
the variance σ 2 < 1, say, X ∼ N (0, 0.5) shown in
Figure 5.5.7, dividing X − μ by σ has the same
effect as flattening the curve until it coincides with
the standard normal curve.

Example 5.5.1. Suppose the amount of time the
dental hygienists spend with their patients for pro-
phylaxis is normally distributed with a mean of
50 min. and a standard deviation (SD) of 6 min.
Letting X be the random variable representing the
amount of time, we can write X ∼ N (50, 36). We
can easily transform X to Z scores. The table be-
low presents the selected values of X and their
corresponding Z scores.

X Values
(in min.) Z Scores

42
X − 50

6
= 42 − 50

6
= − 1.33

50
X − 50

6
= 50 − 50

6
= 0

55
X − 50

6
= 55 − 50

6
= 0.83

68
X − 50

6
= 68 − 50

6
= 3.0

5.5.3 Using Normal Probability
Table

In this section we will discuss how to use Table D
in the Appendix to compute the necessary normal
probabilities. The first column of Table D lists the
digits in the ones and tenths places of non-negative
values (represented hereafter as z) from 0.0 to 3.9.
In the first row across the top of the table are the

0

0.2

0.4

0.6

−4 −2 2 4
Figure 5.5.7 Two normal curves with
mean zero but unequal variance.
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digits in the one-hundredth place (second digit be-
low the decimal). The table values represent the
probabilities corresponding to the entire area un-
der the standard normal curve to the left of a given
z score.

Example 5.5.2. Find the probability P(Z ≤
1.65).

Solution. The probability P(Z ≤ 1.65) corre-
sponds to the area under the standard normal curve
to the left of the score z = 1.65.

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 ·
0.1 ·
0.2 ·
· ·
· ·

1.5 ↓
1.6 · · · · −→ .9505
1.7
1.8

We need to look up z score 1.65 in Table D.
Go to 1.6 in the first column and .05 in the top
row. The table entry value 0.9505 where 1.6 and
.05 meet is the probability, that is, P(Z ≤ 1.65)
= 0.9505.

From Figure 5.5.8 we can see that the area un-
der the curve to the left of zero is the same as
the area under the curve to the right of zero; that
is, P(Z ≤ 0) = P(Z ≥ 0) = 0.5. Indeed Table D
gives P(Z ≤ 0) = 0.5.

By the symmetric property of the standard nor-
mal distribution, P(Z ≤ −z) = P(Z ≥ z). The
probabilities for −z are not provided in Table D,
but we will learn to find such probabilities using the
symmetric property. The probability P(Z ≤ −z)
refers to the left tail and the probability P(Z ≥ z)

-4 -3 -2 -1 1 2 3 4

0.1

0.2

0.3

0

μ = 0

σ = 1

Figure 5.5.8 Standard normal curve.

refers to the right tail of the standard normal distri-
bution. Keep in mind that P(Z = z) = 0 because
the area under the curve at Z = z is zero. Conse-
quently,

P(Z ≤ z) = P(Z < z) + P(Z = z)

= P(Z < z) + 0 = P(Z < z).

Example 5.5.3. (i) Find P(Z ≤ 1.96). In Fig-
ure 5.5.8 place a tick mark at z = 1.96. The cor-
responding probability is the entire area under the
curve to the left of 1.96. In Table D, find the first
two digits 1.9 in the first column headed Z . Fol-
low that row over to the column labeled by the
third digit, 0.06, to find the desired probability of
0.9750.

(ii) Find P(Z ≤ −2.43). This probability is
not included in the table, but notice that from
the symmetric property of the normal distribution
P(Z ≤ −2.43) = P(Z ≥ 2.43). Thus, this prob-
lem is equivalent to finding P(Z ≥ 2.43), which
is the area to the right of z = 2.43, that is, the
right tail of the standard normal distribution. Re-
call that the entire area under the normal curve is
1.0. Therefore, we can express

P(Z ≥ 2.43) = 1 − P(Z < 2.43)

= 1 − P(Z ≤ 2.43), since Z is a
continuous random variable.

= 1 − 0.9925 = 0.0075.

Hence, P(Z ≤ −2.43) = 0.0075.

(iii) Find P(Z ≥ −1.28). In Figure 5.5.8, place
a tick mark at z = −1.28. The probability is
the same as the area to the right of z = −1.28.

The area to the right of z = −1.28 is equal to
1 − [the area to the left of −1.28]. Using the
probabilistic expression, we can write P(Z ≥
−1.28) = 1 − P(Z ≤ −1.28). We need to com-
pute P(Z ≤ −1.28) in a similar manner as in
(ii) above. That is, P(Z ≤ −1.28) = 1− P(Z ≤
1.28) = 1 − 0.8997. = 0.1003. The desired prob-
ability then is

P(Z ≥ −1.28) = 1 − P(Z ≤ −1.28)

= 1 − [1 − P(Z ≤ 1.28)]

= 1 − 0.1003 = 0.8997.

(iv) Find P(1.27 ≤ Z ≤ 3.15). This probability
corresponds to the area under the standard normal
curve between z = 1.27 and z = 3.15. Geometri-
cally, this area is [the area to the left of 3.15] − [the
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area to the left of 1.27]. Hence, we can rewrite
P(1.27 ≤ Z ≤ 3.15) as

P(1.27 ≤ Z ≤ 3.15)

= P(Z ≤ 3.15) − P(Z ≤ 1.27)

= 0.9992 − 0.8980 = 0.1012.

In Example 5.5.3 we have demonstrated how to
find a variety of different standard normal prob-
abilities using Table D. We will continue to dis-
cuss a few more examples dealing with the normal
probability distributions.

Example 5.5.4. Ascorbic acid is one of the prin-
cipal ingredients contained in vitamin C tablets.
It is found in fresh fruits and vegetables, such as
citrus fruits, tomatoes, and cabbage. A deficiency
of ascorbic acid is known to lead to scurvy; the
pathologic signs of scurvy, confined mainly to the
connective tissues, include hemorrhages, loosen-
ing of teeth, gingivitis, and poor wound healing.
Suppose the amount of ascorbic acid contained
in vitamin C tablets is normally distributed with
the mean of 450 mg and the SD of 15 mg. What
proportion of the vitamin C tablets would contain
ascorbic acid between 425 mg and 475 mg?

Solution. Let X be the random variable for the
amount of ascorbic acid. The desired proportion
of the vitamin C tablets can be expressed as
P(425 ≤ X ≤ 475). First, we need to transform
X to the standard normal. Because μ = 450 and
σ = 15,

P(425 ≤ X ≤ 475)

= P

[
425 − 450

15
≤ X − μ

σ
≤ 475 − 450

15

]
= P(−1.67 ≤ Z ≤ 1.67)

= P(Z ≤ 1.67) − P(Z ≤ −1.67)

= 0.9525 − 0.0475 = 0.9050.

Therefore, 90.5% of the tablets would contain
ascorbic acid between 425 mg and 475 mg.

Example 5.5.5. Suppose that the bite force in 5-
to 10-year-old healthy children was measured and
found to be normally distributed with the mean
μ = 80.8 lbs and the SD σ = 14.4 lbs [3]. What
is the probability that a healthy 8-year-old male
patient who regularly brushes his teeth twice a day
would have the bite force of at least 70 lbs?

Solution. Letting Y be the random variable denot-
ing the bite force, we can write the probability as

P(70 ≤ Y ) = P

[
70 − 80.8

14.4
≤ Y − μ

σ

]
= P(−0.75 ≤ Z )

= 1 − P(Z ≤ −0.75)

= 1.0 − P(Z ≥ 0.75).

One should be able to draw the standard nor-
mal curve and graphically indicate the areas cor-
responding to the probabilities to understand the
equalities in the above expressions.

P(Z ≥ 0.75) = 1.0 − P(Z ≤ 0.75)

= 1.0 − 0.7734 = 0.2266.

By substitution, P(70 ≤ Y ) = 1.0 − P(Z ≥
0.75) = 1.0 − 0.2266 = 0.7734.

The probability is 0.7734 that the patient has the
bite force of at least 70 lbs.

In the above example, some of the intermedi-
ary steps could have been avoided by noticing
that the area under the standard normal curve to
the right of −0.75 is equal to the area to the left
of 0.75 by the symmetric property, which implies
P(−0.75 ≤ Z ) = P(Z ≤ 0.75).

Example 5.5.6. Pocket depth, usually expressed
in millimeters, is the measurement of the dis-
tance between the gingival crest and the base of
the pocket. If the probability distribution of the
pocket depths of smokers is normal with the mean
μ = 3.5 mm and the variance σ 2 = 0.64, what is
the chance that a randomly chosen smoker has a
pocket depth no more than 5.0 mm?

Solution. Suppose we let Y be the random variable
representing the pocket depth. Then the problem
can be written as P(Y ≤ 5.0). By transformation,

P(Y ≤ 5.0) = P

[
Y − μ

σ
≤ 5.0 − 3.5

0.8

]
= P(Z ≤ 1.875)

Note that z = 1.875 is the midpoint between 1.87
and 1.88. From Table D, P(Z ≤ 1.87) = 0.9693
and P(Z ≤ 1.88) = 0.9700. We will approximate
the probability P(Z ≤ 1.875) by the midpoint be-
tween 0.9693 and 0.9700, that is, the average of the
two probabilities. This approximation technique is



94 Biostatistics for Oral Healthcare

called the linear interpolation.

P(Z ≤ 1.875) = 0.9693 + 0.9700

2
= 0.9697.

A randomly chosen smoker has a 96.97% chance
that his pocket depth will not exceed 5.0 mm.

Example 5.5.7. Karjalainen et al. [4] investigated
the relationship between the occurrence of caries
and diabetes in children and adolescents with
insulin-dependent diabetes mellitus. One of the
variables they observed was salivary pH in the
subjects with decayed and/or filled teeth. The av-
erage salivary pH was 7.4 and the SD was 0.3.
Suppose the probability distribution of the sali-
vary pH level is approximately normal. Dr. Chung
has filled two mandibular molar teeth in a 12-year-
old patient who is an insulin-dependent diabetic.
What is the probability that the salivary pH level
of Dr. Chung’s patient is no less than 7.0 but no
more than 7.5?

Solution. The desired probability can be expressed
as

P(7.0 ≤ X ≤ 7.5)

= P

[
7.0 − 7.4

0.3
≤ X − μ

σ
≤ 7.5 − 7.4

0.3

]
= P(−1.33 ≤ X ≤ 0.33)

= P(X ≤ 0.33) − P(X ≤ −1.33)

= 0.6293 − (1.0 − 0.9082) = 0.5375.

5.5.4 Further Applications of
Normal Probability

In the preceding section we have studied several
examples for finding appropriate probabilities us-
ing the standard normal probability table. In this
section, we will discuss examples that illustrate
applications combining both binomial and normal
distributions.

Example 5.5.8. Dentists who treat patients with
insulin-dependent diabetes mellitus (IDDM)
should be concerned about hypoglycemia before
undertaking any outpatient treatment. The IDDM
patients are likely to experience greater bone re-
sorption, and, therefore, the survival time of an
implant placed in the IDDM patients may be con-
siderably shorter. Suppose a retrospective study
shows that the survival times of titanium implants

for these patients are approximately normally dis-
tributed with the average survival time of 34
months and the variance of 28. What is the chance
that 2 of 6 patients with IDDM will have their im-
plants function beyond 40 months?

Solution. First, we should compute the probability
of an implant surviving beyond 40 months, that is,
P(40 ≤ Y ). Let p be the probability of success.
Then, because μ = 34 and σ = √

28 = 5.3, we
have

p = P(40 ≤ Y ) = P

[
40 − 34

5.3
≤ Y − μ

σ

]
,

since Y ∼ N (34, 28)

= P(1.13 ≤ Z )=1.0−P(Z ≤ 1.13)=0.1292.

Let X be the binomial random variable with pa-
rameters n = 6 and p = 0.1292. The chance that
2 of 6 patients have their implants function at least
40 months is given by

P(X = 2) =
(

6

2

)
p2(1 − p)6−2

= 6!

2!(6 − 2)!
× (0.1292)2(0.8708)4

= (15) · (0.0167) · (0.5750)

= 0.1440.

Example 5.5.9. Veneered stainless steel (VSS)
crowns are one of the treatment options to restore
severely carious anterior teeth. Although these
VSS crowns are esthetically pleasing, the veneers
can fracture. A study was conducted to determine
the fracture resistance of these veneers by plac-
ing the crowns in the Instron universal testing
machine and loading them to failure. The peak
loads at failure were approximately normal with
the mean μ = 68.49 kg and the standard devia-
tion σ = 18.07 [5]. Dr. Hernandez prepared 4 VSS
crowns for his patients. What is the probability
that none of the veneers will fracture at the load
strength of 70 kg?

Solution. That none of the veneers will fracture
at the load strength of 70 kg means that, for all
4 veneers, fracture will occur at the load strength
higher than 70 kg. First, we need to calculate the
probability that fracture occurs at the load strength
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higher than 70 kg;

p = P(70 < Y ) = P

[
70 − 68.49

18.07
≤ Y − μ

σ

]
= P(0.08 < Z )

= 1.0 − P(Z ≤ 0.08) = 0.4681.

P(none of the veneers will fracture at the load

strength of 70 kg)

= P (all 4 veneers will fracture at the load

strength higher than 70 kg)

=
(

4

4

)
p4(1 − p)4−4

= 4!

4!(4 − 4)!
(0.4681)4(0.5319)0 = 0.0480.

The desired probability that none of the veneers
will fracture at the load strength of 70 kg is
0.0480.

Example 5.5.10. Provisional restorations play a
critical role in the success of restorative treatment.
The provisional restoration must maintain its sur-
face integrity throughout the restorative process.
A study was performed to evaluate the microhard-
ness of a contemporary prosthodontic provisional
material (bis-acryl resin composites). Knoop hard-
ness was measured for the samples with a mi-
crohardness tester. Knoop hardness is a means
of measuring surface hardness by resistance to
the penetration of an indenting tool made of di-
amond [6]. Suppose the Knoop hardness for this
provisional material is normally distributed with
μ = 17.20 and σ 2 = 4.41, that is, Y ∼ N (17.20,

4.41). What is the probability that at least 2 of the
5 provisional restorations have Knoop hardness
between 15 and 20?

Solution. We need to compute the binomial prob-
ability of “success.”

p = P(15 ≤ Y ≤ 20)

= P

[
15 − 17.2

2.1
≤ Y − μ

σ
≤ 20 − 17.2

2.1

]
= P(−1.05 ≤ Z ≤ 1.33), this probability

corresponds to the area under the standard
normal curve between Z = −1.05 and

Z = 1.33.

= P(Z ≤ 1.33) − P(Z ≤ −1.05)

= P(Z ≤ 1.33) − [1.0 − P(Z ≤ 1.05)]

= 0.9082 − (1.0 − 0.8531) = 0.7613.

Let X be the binomial random variable
with parameters n = 5 and p = 0.7613, X ∼
B(5, 0.7613). The probability P(at least 2 of the 5
provisional restorations have Knoop hardness be-
tween 15 and 20) = P(2 ≤ X ).

P(2 ≤ X ) = 1.0 − [P(X = 0) + P(X = 1)]

= 1.0 −
[(

5

0

)
(0.7613)0(0.2387)5

+
(

5

1

)
(0.7613)1(0.2387)4

]
= 0.9868.

5.5.5 Finding the (1−α) 100th

Percentiles

In the previous sections, we have learned how to
transform a normal variable to the standard nor-
mal variable and how to calculate the probabilities
using the normal probability table provided in the
Appendix. To make the transformation, we used
the simple formula Z = (X − μ)/σ . Conversely,
given the above transformation, we can obtain X
in terms of a Z score by a simple algebraic manip-
ulation: X = μ + Z · σ.

Consider the following problem. A speedy am-
bulance response time can save many lives in crit-
ical situations. Public officials in the city of River-
side have been monitoring the ambulance response
times within the city limits. Suppose the distribu-
tion of the response time is approximately normal
with the mean of 10 minutes and the standard de-
viation of 2.5 minutes. The city mayor wishes to
know what the response time is for the 95% of the
911 emergency calls. In other words, the mayor
wants to know the 95th percentile of the ambu-
lance response time. We can use the normal prob-
ability table (Table D) to solve the problem. First,
let z1−α denote the (1 − α)100th percentile point of
the standard normal distribution. If α = 0.05, the
z1−α = z1−0.05 = z0.95 denotes the 95th percentile
on the standard normal distribution. We can find
the 95th percentile, z0.95, by following the steps
described below.

Step 1. In Table D, look for the probability 0.95.
Although 0.95 does not appear in the table,
note that it is the midpoint between 0.9495 and
0.9505. The z scores corresponding to 0.9495
and 0.9505 are 1.64 and 1.65, respectively.
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Table 5.5.1. Standard normal probability table.

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 · ·
0.1 · ·
0.2 · ·
· · ·
· · ·

1.5 ↓ ↓
1.6 · · · −→ .9495 .9505
1.7

Step 2. By an approximation technique known
as linear interpolation, take the midpoint be-
tween 1.64 and 1.65, that is, 1.645 as the corre-
sponding z score to the probability 0.95, so that
z0.95 = 1.645.

We can use z0.95 = 1.645 to answer the
mayor’s question. In the identity X = μ + Z ·
σ, we make substitutions for μ = 10, σ =
2.5, and z0.95 = 1.645; X = μ + Z · σ = 10 +
(1.645)(2.5) = 14.113. Therefore, the emergency
vehicles can respond to 95% of the calls within
14.113 minutes (see Table 5.5.1).

Definition 5.5.2. The (1 − α)100th percentile,
z1−α is sometimes referred to as the upper αth per-
centile, and the αth percentile, zα is sometimes
referred to as the lower αth percentile. For exam-
ple, the 95th percentile point, z0.95 is referred to
as the upper 5th percentile, and the 5th percentile,
z0.05 is referred to as the lower 5th percentile.

Example 5.5.11. A carving skill test is given to
all aspiring dental students to evaluate their ability
to shape and form restorations with instruments.
Suppose the carving skill scores are normally dis-
tributed with μ = 78 and σ = 7.5. If it is known
that the applicants to dental schools score in the
top 10%, what is the minimum carving skill test
score of the successful applicants?

Solution. Because the top 10% score corresponds
to the 90th percentile point, first we need to find
z0.90. This is equivalent to finding the z value that
yields 0.10 of the area under the standard nor-
mal curve to the right of the z value. From Table
D we get z0.90 = 1.28 (approximately). One can
obtain z0.90 = 1.282 by the use of the linear in-
terpolation technique. Substitution in the equation

X = μ + Z · σ gives

X = μ + Z · σ = 78 + (1.28)(7.5) = 87.6.

Thus, a minimum carving skill score of 87.6 is
needed for dental school admissions.

Example 5.5.12. For an optimal orthodontic
bonding system, the bond strength must be high
enough to prevent failure and the damage to the
enamel involved in achieving the bond must be
minimized. It should also be possible to remove
the orthodontic brackets in such a way that min-
imal damage is caused to the teeth. The etching
technique that uses phosphoric acid results in good
bond strength, but some enamel loss occurs. A pro-
filometer was used to determine the surface enamel
loss (μm). If the amount of the surface loss is nor-
mally distributed with the mean of 6.4 and the
standard deviation of 1.5 [7], find the lower and
upper 2.5th percentiles.

Solution. The area to the right of the upper 2.5th

percentile and the area to the left of the lower
2.5th percentile under the standard normal curve
are both equal to 0.025. As illustrated in Figure
5.5.9, the probability corresponding to the area
between the lower and upper 2.5th percentiles is
0.95. The 95% of the standard normal popula-
tion falls between the lower and upper 2.5th per-
centiles. The upper 2.5th percentile is the same as
the 97.5th percentile, z0.975. The lower 2.5th per-
centile is given by z0.025 = −z0.975 by the symmet-
ric property. From Table D the z score correspond-
ing to the probability 0.975 is 1.96. Hence, the
upper 2.5th percentile z0.975 = 1.96 and the lower
2.5th percentile z0.025 = −1.96. Substituting these
percentiles in the formula X = μ + Z · σ, we
get
The lower 2.5th percentile:

X = μ + Z0.025 · σ =6.4 + (−1.96)(1.5) = 3.46.

The upper 2.5th percentile:

X = μ + Z0.975 · σ = 6.4 + (1.96)(1.5) = 9.34.

5.5.6 Normal Approximation to
the Binomial Distribution

Binomial distribution was introduced earlier in this
chapter to evaluate the probability of k successes
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Figure 5.5.9 Lower and upper 2.5th percentiles.

in n independent trials. Recall that a binomial dis-
tribution possesses the following characteristics:

1. There is a fixed number of trials.
2. The trials are independent.

3. Each trial can result in exactly two possible out-
comes.

4. The probability p of a success must remain the
same from trial to trial.

The calculation of the binomial probability
when n is large becomes tedious and time consum-
ing. For a binomial distribution, X ∼ B(n, p),if p
is close to 0.5, then the shape of the binomial dis-
tribution looks similar to the normal distribution,
as n increases. The larger n gets and the closer
p is to 0.5, the more similar the shape of the bi-
nomial distribution is to the normal distribution.
Intuitively, this suggests that we can use the nor-
mal distribution to approximate the binomial dis-
tribution. (Theoretical justification is based on the

central limit theorem, which is presented in Chap-
ter 6.) To illustrate the normal approximation, let’s
consider p = 0.35, and n = 5, 10, and 15. From
Table B in the Appendix, we obtain the values in
the following table.

n = 5, p = 0.35 n = 10, p = 0.35 n = 15, p = 0.35

k P(X = k) k P(X = k) k P(X = k) k P(X = k)

0 0.1160 0 0.0135 0 0.0016 8 0.0710
1 0.3124 1 0.0725 1 0.0126 9 0.0298
2 0.3364 2 0.1757 2 0.0476 10 0.0096
3 0.1812 3 0.2522 3 0.1110 11 0.0024
4 0.0488 4 0.2377 4 0.1793 12 0.0004
5 0.0053 5 0.1536 5 0.2123 13 0.0001

6 0.0689 6 0.1906 14 0.0000
7 0.0212 7 0.1319 15 0.0000
8 0.0043
9 0.0005

10 0.0000

Figure 5.5.10 shows three binomial mass func-
tions with n = 5, 10, 15, and p = 0.35. There
is empirical evidence that as n increases, the
shape of the binomial mass functions become
closer to the normal distribution. Because the mean
and variance of a binomial distribution are np
and np(1 − p), or npq, it seems quite natural
to use N (np, npq), the normal distribution with
the mean np and the variance npq , as an ap-
proximation. When n is relatively small and p is
close to 0 or 1, the normal approximate is not
accurate. Even for large n, the binomial distri-
bution when p is close to 0 or 1 will be either
positively or negatively skewed. The normal ap-
proximation to the binomial distribution is recom-
mended when npq ≥ 5. Notice that if npq ≥ 5,
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Figure 5.5.10 Binomial mass functions.

then np ≥ 5 because q is smaller than or equal
to 1.0. Suppose n = 10 and p = 0.42. Because
npq = (10)(0.42)(0.58) = 2.436 < 5.0, the nor-
mal approximation should not be used in this case.
We will restate the theorem next.

Normal Approximation to the Binomial
Distribution
Let X be a binomial random variable with param-
eters n and p. Then for large n, X is approximately
normal with mean np and variance npq .

Suppose we want to compute the probability
P(a ≤ X ≤ b), where X ∼ B(n, p). It appears
reasonable to approximate the probability by the
area under the normal curve between a and b. It
turns out that a better approximation to this prob-
ability is given by the area under the normal curve
between a − 1

2 and b + 1
2 . We note that P(X = 0)

and P(X = n) are better approximated by the ar-
eas to the left of n + 1

2 and to the right of n − 1
2 ,

respectively, under the normal curve. In summary,

1. P(a ≤ X ≤ b)

� P

[
(a − 0.5) − np√

npq
≤ X − np√

npq
≤ (b + 0.5) − np√

npq

]

= P

[
(a − 0.5) − np√

npq
≤ Z ≤ (b + 0.5) − np√

npq

]
2. P(X = 0)

� P

[
X − np√

npq
≤ 0.5 − np√

npq

]
= P

[
Z ≤ 0.5 − np√

npq

]
3. P(X = n)

� P

[
(n − 0.5) − np√

npq
≤ X − np√

npq

]

= P

[
(n − 0.5) − np√

npq
≤ Z

]

4. P(X = a)

� P

[
(a − 0.5) − np√

npq
≤ X − np√

npq
≤ (a + 0.5) − np√

npq

]
for 0 < a < n

= P

[
(a − 0.5) − np√

npq
≤ Z ≤ (a + 0.5) − np√

npq

]

Example 5.5.13. Suppose that the chance of or-
thodontic treatment lasting more than 30 months
is about 0.20. Dr. Elderidge receives, on average,
160 new patients a year. What is the probability
that between 30 and 50 of these patients will re-
quire the treatment longer than 30 months?

Solution. Because npq = 160 · (0.20)(0.80) =
25.6 > 5.0, we may use the normal approxima-
tion to compute the probability P(30 ≤ X ≤ 50).
Now the mean and variance of the binomial ran-
dom variable X are np = 32.0 and npq = 160 ·
(0.20)(0.80) = 25.6. Using the formula

P(30 ≤ X ≤ 50)

� P

[
(30 − 0.5) − 32√

25.6
≤ Z ≤ (50 + 0.5) − 32√

25.6

]
= P

[ −2.5

5.0596
≤ Z ≤ 18.5

5.0596

]
= P(−0.49 ≤ Z ≤ 3.66)

= P(Z ≤ 3.66) − P(Z ≤ −0.49)

= 0.9999 − 0.3121 = 0.6878.

Example 5.5.14. Physical abuse of a child is de-
fined as a non-accidental injury or trauma to the
body of a child. Hospital data over a 5-year period
indicated that 49% of abused children exhibited
facial and intraoral trauma [8]. Parkview Commu-
nity Hospital ER had 28 child maltreatment cases
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in one week. What is the probability that exactly
one-half of those children exhibited facial and
intraoral trauma?

Solution. Let p = P(abused child exhibit fa-
cial and intraoral trauma) = 0.49. Then np =
28(0.49) = 13.72, and npq = 28(0.49)(0.51) =
6.9972 > 5.0. Thus, using the normal
approximation to the binomial distribution,
we have

P(X = 14)

� P

[
(14 − 0.5) − 13.72√

6.9972
≤ X − np√

npq

≤ (14 + 0.5) − 13.72√
6.9972

]
= P(−0.08 ≤ Z ≤ 0.29)

= P(Z ≤ 0.29) − P(Z ≤ −0.08)

= 0.1460.

The normal distribution is the most frequently
used theoretical model in statistics. It can serve as
a model for many phenomena in biomedical, epi-
demiologic, and health sciences that are approx-
imately normally distributed. It provides an ex-
cellent approximation to the binomial distribution
(and to other distributions) when n is sufficiently
large. When n is large, it is too laborious to cal-
culate the exact binomial probabilities. One of its
most important applications is as a model for the
sampling distribution of statistics based on a large
number of observations. The sampling distribution
will be discussed in Chapter 6.

5.6 EXERCISES

1 Suppose that the chances of a patient’s be-
ing equally female or male are 50%. Sixteen pa-
tients have an appointment with Dr. Johnson. The
outcome that is most likely to happen is that Dr.
Johnson will examine
a. 16 female patients
b. 16 male patients
c. 9 female and 17 male patients
d. 17 female and 9 male patients
e. 8 female and 8 male patients.

2 Compute the following.

a.

(
12

4

)
b.

(
12

0

)
c.

(
12

12

)
d. 6!

3 Discuss why

(
n

k

)
and

(
n

n − k

)
are equal.

4 Most patients trust that the dental and medical
instruments used in their treatment are sterilized
and free from any bacteria. They may also trust that
the same instruments will not be used on the next
patients before they are resterilized. The Public
Health Department took a random sample of 126
dental and medical practices and found that 12%
of them have infection control problems. Let X
be the number of practices with infection control
problems.
a. Explain why X is a binomial random variable
b. What are n and p?

5 The chance that a gold crown functions 10 years
or longer is about 0.20. Dr. Shin placed 6 gold
crowns last week. What is the probability that 3 of
the 6 crowns will still function 10 years from now?

6 The data collected on Streptococcus sanguis
by a group of hygiene students indicate that it can
be found in about 20% of the healthy individuals’
oral cavities. Dr. Danton typically treats 15 patients
a day. What is the probability that he will find
S. sanguis in the oral cavity of at least 3 of his next
10 patients?

7 Dental patients are classified into three cate-
gories based on their oral hygiene status; poor,
fair, and good. Let P(poor hygiene) = 0.32, P(fair
hygiene) = 0.43, and P(good hygiene) = 0.25.
Poor oral hygiene can cause serious periodonti-
tis. Of 12 patients arriving at a dental clinic, what
is the chance that between 5 and 8 (inclusive) pa-
tients have poor oral hygiene?

8 An exposure incident defined by OSHA (Oc-
cupational Safety and Health Administration) is
an occurrence that puts clinicians at risk of a
biomedical or chemical contact on the job, such as
eye, skin, mucous membrane, or parenteral contact
with blood or other potentially infectious fluids. It
is required that all exposure incidents be reported
to OSHA. Suppose that only 75% of the expo-
sure incidents are reported and 25% are ignored.
What is the chance that Arrowhead Dental Clinic
reported only 9 of the 15 exposure incidents last
year?

9 The average number of patients diagnosed with
pancreatic cancer is about 6.5 per 100, 000 individ-
uals per year. If the number of patients diagnosed
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with pancreatic cancer follows the Poisson distri-
bution, what is the probability that during a given
year
a. exactly 10 patients with pancreatic cancer live

in a community with approximately 100, 000
people?

b. there are at least three cases in the community?
c. there are two or fewer cases in the community?

10 Suppose in a water sample taken from a dental
water line on average there are five organisms.
a. What is the probability that the next sample con-

tains four organisms?
b. What is the probability that at least three organ-

isms will be found in the next sample?
c. What is the probability that no more than two

organisms will be found?

11 Loma Linda Community Hospital receives
3.5 ER patients per hour on average between
11:00 pm and 7:00 am. What is the chance that
the hospital would get 30 ER patients during this
period?

12 To evaluate the Poisson approximation, com-
pare the Poisson approximation to the exact bi-
nomial probabilities for n = 100, p = 0.01, and
k = 0, 1, 2, 3, 4, 5, 6, 7, and 8.

13 About 4% of the dental and medical bills are
uncollectable for various reasons. Dr. Johnson and
his partners have about 1, 000 outstanding patient
bills. What is the chance that 45 of those bills are
uncollectable?

14 A survey on quality care indicates that one of
the major factors affecting patient satisfaction is
the waiting time before they are examined by the
health care professionals. Suppose the distribution
of patient waiting time is not known. What percent
of the patients would have to wait ±1.5σ of the
average waiting time?

15 Suppose a random variable X describes the
pocket depth, and it is found to be approximately
normally distributed with the mean of 3.2 mm and
the standard deviation of 1.5 mm. A 66-year-old
male patient has a pocket depth of 5.7 mm. What is
the standardized normal score of his pocket depth?

16 According to a study, the actual amount of
anesthetic contained in the bottle labeled 5 cc. is
normally distributed with the mean of 5.4 cc. and
the SD of 1.8 cc. Let X be the amount of anesthetic.
Then X ∼ N (5.4, 3.24).

a. Transform the random variable X to a standard
normal.

b. Find P(−2.04 ≤ Z ≤ 1.97).
c. Find P(−2.12 ≤ Z ≤ −0.59).
d. What is the probability that a given bottle con-

tains more than 7.0 cc.?
e. What proportion of the anesthetic bottles la-

beled 5 cc. contain more than 8.0 cc.?

17 The historical data indicate that the scores
of the National Board Exam Part I taken during
the second year in dental school are normally dis-
tributed with the mean score of 77.8 and the vari-
ance of 19.4. In order to pass the exam one must
score at least 75. Compute the percent of students
who passed this year’s exam.

18 Find the following percentiles using Table D
(standard normal probabilities) in the Appendix.
a. 10th b. 75th c. 85th d. 97.5th

19 Educational outcomes assessment of the pre-
doctoral dental curriculum has long been a concern
of educators and dental practitioners. The curric-
ular guidelines were developed by the American
Association of Dental Schools to prescribe course
contents and to ensure that dental schools pro-
vide sufficient instruction to prepare competent
future dental clinicians. To evaluate the success of
these efforts, an outcomes assessment test consist-
ing of a didactic test and a test of clinical diagnostic
skills was given to a group of 4th year dental stu-
dents. Suppose the scores are normally distributed
with the mean of 66.3 and the variance of 64.6.
Find 25th, 50th, 90th, 95th and 99th percentiles of
the test results.

20 Root resorption is an undesirable side effect
of orthodontic treatment. Acar et al. [9] investi-
gated the effects on root resorption of continu-
ous force application by means of elastics. Elas-
tics were worn 24 hours per day for 9 weeks. At
the end of the 9th week, the teeth were extracted.
The samples were then appropriately prepared and
the resorbed root area was calculated as a percent-
age of the total root area seen in each composite.
Suppose that these percentages are approximately
normal with the mean of 11% and the standard
deviation of 2.6%. What are the lower and upper
5th percentiles?

21 The length of time endodontists spend with
their patients at each visit is known to be normally
distributed with the mean μ = 20 min and the
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standard deviation σ = 5 min. Suppose an en-
dodontist starts treating a patient at 11:45 am.
What is the probability that he will complete the
treatment by 12:15 pm?

22 Dr. Johnny is an orthodontist. In the above
exercise, what is the chance that Dr. Johnny spends
either less than 15 min or more than 25 min with
a randomly chosen patient?

23 The National Board Exam Part II scores are
normally distributed. If the mean score is 78 and
the variance is 28, what proportion of the students
have scored between 75 and 85?

24 If the annual household dental and medi-
cal expenditure in the State of California is ap-
proximately normal with μ = $11,450 and σ =
$2,750. What is the probability that a randomly
chosen household in California spends between
$10,000 and $13,000 a year?

25 The salivary flow rate of adult patients is
known to be normally distributed with the mean
of 1.2 ml/min and SD of 0.3 ml/min. If nine pa-
tients were selected at random and their salivary
flow rate was measured, what is the chance that
exactly three of them have the flow rate less than
1.0 ml/min?

26 Composite bonding agent is used by many
dental practitioners as the surface treatment for
denture teeth. The shear bond strength of compos-
ite to acrylic resin denture teeth was measured in
megapascals. Suppose the probability distribution
of the shear bond strength is normal with μ = 7.33
and σ = 1.52. Dr. Danbury prepared 45 central in-
cisors and canines of acrylic resin denture teeth in
the last 6 months. How many of them would have
a shear bond strength greater than 6.5 MPa?

27 Many dental and medical students carry a
large amount of educational loans while in school.
A survey shows, however, that surprisingly about
16% of the students have less than $20,000 in
loans. Out of 150 dental and medical students who
were randomly sampled, what is the chance that
between 25 and 35 students have less than $20,000
in loans?

28 Separation of instruments while performing
root canals is something that has plagued all practi-
tioners. A study [10] shows that with rotary nickel-
titanium instruments at 333.33 rpm file distortion

and/or separation is four times as likely to occur
than at 166.67 rpm. Suppose that the probability of
file distortion or separation at 333.33 rpm is 0.15.

Out of 80 files, what is the probability that at least
50 will not be damaged at this rate?

29 In Exercise 28, what is the chance that be-
tween 25 and 50 files will not be distorted or
separated?

30 Microleakage can occur at the abutment-
implant interface in osseointegrated implants and
may cause malodor and inflammation of peri-
implant tissues. Using colored tracing probes
driven by a 2-atm pressure system, the interface
microleakage of certain implants was determined
spectrophotometrically [11]. Suppose microleak-
age at the abutment-implant interface occurs at the
rate of 18 per 100 when closing torque is about
15 N.cm. Dr. Camp and his associates placed 60
implants so far this year. What is the chance that
no more that 10 of the implants would have mi-
croleakage at the abutment-implant interface?

31 Dr. Camp has two hygienists working in his
practice. For the purpose of scheduling patient
appointments, it is important to know something
about the distribution of time it takes for the hy-
gienists to complete prophylaxis. Suppose he has
learned from a hygiene journal that the distribu-
tion of time the hygienists spend in patient con-
tact is normal with μ = 58 min and σ 2 = 50. One
of his hygienists has 12 patients to treat. What
is the probability that she will be able to com-
plete prophylaxis in 50 min for at least 9 of her
patients?

32 The volume of the cranial cavity, denoted by a
random variable Y , is a great concern to orthodon-
tists. Suppose that Y is normally distributed with
the mean of 1,500 cc and standard deviation of 200
cc.
a. What is the probability that the volume of the

cranial cavity of a 14-year-old male patient is
less than 1,400?

b. Dr. Jung has 14 patients sitting in 14 chairs in
his practice. Find the probability that between
5 and 8 patients have cranial cavity volume of
at most 1,400 cc.

c. Find the 95th percentile of the distribution of Y .

33 It is known that about 95% of bacteria-causing
odontogenic infections respond to penicillin and
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that about 6% of the population is allergic to peni-
cillin. Suppose 850 patients have been given a dose
of penicillin VK, 500 mg every 6 hours for a week.
Find the probability that no more than 30 of these
patients would have an allergic reaction.

34 The percentage of mercury concentration in
an amalgam restoration is known to range from
25% to 65%. Suppose the chance that mercury
concentration in amalgam exceeding the 50% level
is 0.28. Of 26 amalgam samples Dr. Lang has pre-
pared, what is the probability that at least 7 of them
have mercury concentration higher than 50%?

35 Bacteria and their by-products are known to
cause periapical inflammation. Thus, endodontic
treatment is focused on preventing microorgan-
isms from entering the root canal system or elim-
inating them if already present. The tightness of
root canal fillings is essential to prevent bacteria
from invading the periapex. The estimated rate of
leakage in roots coronally sealed with a certain
type of temporary filling over 30 days is 35%.
Arrowhead Dental Clinic treated 25 endodontic
patients with this temporary filling. What is the
probability that the temporary filling experienced
leakage in no more than 5 patients?
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Chapter 6

Sampling Distributions

6.1 INTRODUCTION

In Chapter 5 we introduced theoretical probability
distributions—binomial, Poisson, and normal—
where the population mean and variance are as-
sumed to be known. However, in most practical
situations these parameters are not known. In these
cases the unknown parameters must be estimated
from the data in order to describe the distribu-
tions and to estimate the associated probabilities
for certain events. One of the most basic concepts
of statistical inference is the sampling distribu-
tion of the sample mean (X ), which we introduced
in Chapter 3. This chapter focuses on the sampling
distribution of the sample mean; in later chap-
ters we shall consider the sampling distributions
of other statistics.

To illustrate the concept of a sampling distri-
bution, let’s consider a population of 5 maxillary
molar and premolar teeth contained in a jar. Each
tooth is marked with a number: 1, 2, 3, 4, or 5. We
will draw a sample of 3 teeth from the jar without
replacement. The population mean of the numbers
marked on the 5 teeth is

μ = 1 + 2 + 3 + 4 + 5

5
= 3.0.

Now let’s draw a random sample of 3 teeth. There
are
(5

3

) = 10 possible samples:

(1, 2, 3), (1, 2, 4), (1, 2, 5), (1, 3, 4), (1, 3, 5),

(1, 4, 5), (2, 3, 4), (2, 3, 5), (2, 4, 5), (3, 4, 5).

The sample mean of each sample is 2.0, 2.33, 2.67,
2.67, 3.0, 3.33, 3.0, 3.33, 3.67, and 4.0. Each
sample is equally likely, so each sample has the
probability 1

10 . Thus, we have the sample means
with the equal probability of 1

10 as summarized in
Table 6.1.1.

6.2 SAMPLING DISTRIBUTION OF
THE MEAN

Suppose that the investigators are interested in the
hemoglobin level of patients with the unknown
population mean μ. The sample mean X is called
an estimator of the parameter μ. Let’s select two
different samples of size n taken from the same
population. The sample means for these two sam-
ples are likely to be different unless all the patients
in the population have precisely the same level of
hemoglobin. Now, consider the set of all possible
samples of size n that can be selected from the pop-
ulation. As we can imagine, the values of X in all
these samples will likely be different due to inher-
ent uncertainty involved with different samples. It
is very important that the samples represent accu-
rately the population from which they are drawn.
Any sample that does not represent the population
properly will lead to biased conclusions.

Suppose we wish to draw a conclusion about the
hemoglobin level of patients based on a sample of
size n. If all of the n patients included in the
sample are undergoing chemotherapy, the sample
mean, which is the estimate of the population mean
of patients’ hemoglobin level, is likely to be too
low, since the chemotherapy tends to decrease the
hemoglobin level in cancer patients. Let the sample
mean of the first sample of size n be X1, the sample
mean of the second sample of size n be X2, · · ·,
and the sample mean of the nth sample of the same
size n be Xn. At this point it is very helpful to
consider these sample means as representative of
all possible samples of size n that could have been
drawn from the population. In other words, think
of X as a random variable with possible outcomes
x1, x2, · · · , xn, and so on. If each sample mean in
this case is treated as a unique observed value, the
probability distribution of X is known as a sam-
pling distribution of sample means of size n.

103
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Table 6.1.1. Sampling distribution of the
mean of three teeth numbers.

Sample Mean, X Probability, P(X = x)

2.0 1
10

2.33 1
10

2.67 2
10

3.0 2
10

3.33 2
10

3.67 1
10

4.0 1
10

Definition 6.2.1. The sampling distribution of X
is the distribution of values of X over the sample
space consisting of all possible samples of size n.

Sampling distributions play an important role
in statistical inference because they describe the
sample to sample variability of statistics com-
puted from random samples taken under a variety
of different situations. Sampling distributions will
be used extensively in future chapters, especially
when the hypothesis testing is discussed. Consider
now a large number of random samples of size n.
If we compute the average of these sample means
X , we see that this average is approximately equal
to the population mean μ. In fact, the mean of
the sample means drawn from a population with
mean μ is precisely the same as μ. This remark
will become clearer as we discuss examples later.

The mean (expected value) of the sample means
X is equal to the population mean μ. This state-
ment holds true for any population regardless of its
underlying distribution function. In statistics, this
estimator X is called an unbiased estimator of
the unknown population mean μ. There are other
unbiased estimators available, such as the sample
median and the average of the maximum and
the minimum of the observed values. There are
advantages to working with X . When the popula-
tion is normally distributed, X is known to have the
smallest variance among all unbiased estimators.

6.2.1 Standard Error of the
Sample Mean

As we saw in Section 6.1, the sample mean of the
first sample was 2.0, and the sample mean of the

second sample was 2.33, and so on. In general,
the values of the sample means X of the same size
n, drawn repeatedly from a population with the
mean μ and variance σ 2, vary from one sample to
the next. It is intuitively clear that a larger sample
would likely yield more accurate estimates than a
smaller sample. Therefore, we prefer to estimate
the parameters μ and σ 2 from larger samples than
from smaller samples. Bear in mind that in prac-
tice we do not repeatedly select samples of size
n from a given population. Statistical inferences
are made based on a single sample of size n. This
practice is justified by the properties of the sam-
pling distribution of the sample mean. We would
expect that the averages of the random samples
would be clustered together around the population
mean, and the variability of X ’s is smaller than
the variability of individual observations. That is,
there is less variability among the sample means
than there is among the individual observations.

Figure 6.2.1 below shows four random samples
of size n = 5 drawn from a given population with
the mean μ and variance σ 2. The individual ob-
served values are marked by “
” and the sample
mean of each sample is marked by “↓ ” on the
line, and denoted by X1, X2, X3, and X4 below
the line. When all the observed values and the sam-
ple means are projected and superimposed on the
same horizontal line at the bottom of the figure, it
is easy to see that the range of X ’s is much smaller
than the range of the individual observations. How
much smaller is the variability of the sample means
than the variability of the individual observations?
Using the properties of linear combination of ran-
dom variables, we can show the following. If you
are not interested in the details of the following
derivation, you may skip it.

Var(X ) = Var

(
1

n

n∑
i=1

Xi

)
=
(

1

n2

)
Var

(
n∑

i=1

Xi

)

=
(

1

n2

) n∑
i=1

Var(Xi ) =
(

1

n2

)
· n · σ 2

= σ 2

n
, since Var(Xi ) = σ 2 for

i = 1, 2, · · · , n.

Thus, the variance and the standard deviation

of the sample mean X is given by
σ 2

n
and σ/

√
n.

Namely, the variance of the sample mean is smaller
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X1

Sample 1:

Sample 2:

Sample 3:

Sample 4:

X2

X3

X1 X3 X2 X4

X4

Figure 6.2.1 Variability of X ’s is smaller than the variability of individual observations.

than the variance of the individual observations by
the factor of the sample size n, and the standard de-
viation of the sample mean is smaller than the SD
of the individual observations by the factor of

√
n.

Definition 6.2.2. Let X1, X2, · · · , Xn be a ran-
dom sample taken from a population with the
mean μ and variance σ 2. The set of sample means
X ’s of the random samples of size n drawn from

this population has variance given by
σ 2

n
and the

SD σ/
√

n. The SD σ/
√

n is referred to as the
standard error of the sample mean or the
standard error (SE).

1. The variance of the sample mean X is denoted
by Var(X ) or σ 2(X ).

2. The standard error is denoted by SE(X ), σ (X ),
or some denote it by σX .

It is important to understand that the SE σ/
√

n is
not the standard deviation of an individual obser-
vation Xi , but of the sample mean X . As the sam-
ple size n increases, the denominator of σ/

√
n in-

creases and, consequently, the SE decreases. When
a given population is normal with parameters μ

and σ 2, the sampling distribution of X is also
normal.

Let X1, X2, · · ·, Xn be a random sample from a
normal distribution with the mean μ and the vari-
anceσ 2.Then the sample mean X has a normal dis-

tribution with the mean μ , the variance
σ 2

n
, and the

standard error σ/
√

n. That is, X ∼ N

(
μ,

σ 2

n

)
.

Example 6.2.1. Sunlight is a major etiological
factor for malignant melanoma. The prognosis is
dependent primarily on the depth of the tumor:
the thicker the lesion, the poorer the prognosis.
Suppose that for patients who are diagnosed with
malignant melanoma in the sunbelt region, the
distribution of the depth of the melanoma tumor
is normal with μ = 2.3 mm and σ 2 = 0.8. If 9
melanoma patients were randomly selected in this
region, what is the SE of the sample mean of the
depth of their tumor?

Solution. Since σ = √
0.8 = 0.8944 and n = 9,

the SE is given by

σ√
n

= 0.8944√
9

= 0.298 1.

Note that the SE σ/
√

n = 0.2981 is much
smaller than the SD σ = 0.8944. If the sample
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size were larger, say n = 16, the SE would
be σ/

√
n = 0.8944/

√
16 = 0.223 6. In Example

6.2.1, the distribution of X is normal because the
underlying distribution of the depth of the tumor
is normal.

Example 6.2.2. Greenbaum and Zachrisson [1]
investigated post-orthodontic patients to deter-
mine the effect of palatal expansion therapy on
the periodontal supporting structures, located at
the buccal aspects on the maxillary first permanent
molars. The patients were treated with a rapid max-
illary expansion technique using a tissue-bone,
fixed, split acrylic appliance. Their study showed
that the average increase in maxillary first molar
width was 4.6 mm with the standard deviation of
1.6 mm. Suppose these parameters represent the
mean and variance of the increase in maxillary first
molar width for the population of orthodontic pa-
tients who underwent a rapid maxillary expansion
(RME) treatment. Find the standard error of the
sample mean for a random sample of 5 patients
who underwent RME treatment.

Solution. The population SD is σ = 1.6, and the
sample size n = 5. Hence, the SE is

σ√
n

= 1.6√
5

= 0.715 5.

In this example the underlying distribution of
the magnitude of the increase in maxillary first
molar width is not specified. Whether the un-
derlying distribution is known or not, the SE of
the sample mean X is obtained by dividing σ

by
√

n.

We have stated that if the underlying distri-
bution is normal, then the sampling distribution
of X is also normal with mean = μ and SE
= σ/

√
n. Similar to what we did in Section 5.5.2, a

transformation can be made to convert X to a stan-

dard normal, that is,
X − μ

σ/
√

n
has a standard normal

distribution with μ = 0 and σ 2 = 1.

Let X1, X2, · · · , Xn be normally distributed
with mean μ and variance σ 2. Then

Z = X − μ

σ/
√

n
∼ N (0, 1).

Example 6.2.3. Dr. Provine and his colleagues
used calcium sulfate grafts in conjunction with a

sinus lift procedure in sinus augmentation for en-
dosseous implants. The calcium sulfate was placed
around the endosseous implants after the implants
had been installed. Two months later, implant in-
tegration in the newly formed bone was measured
in percent (%), which is normally distributed with
mean μ and variance σ 2. Let’s assume that μ and
σ 2 are known to be 84.5 and 36, respectively. Sup-
pose there are 18 patients who have received this
procedure. (i) What is the sampling distribution of
X? (ii) What is the chance of obtaining an aver-
age implant integration percent higher than 82.8%
from a random sample of n = 7?

Solution. (i) The expected value of the sample
mean is 84.5%, as given in the problem. The vari-

ance is
σ 2

n
= 36

18 = 2.0, and since the underlying

distribution is normal, X has a normal distribution

X ∼ N (μ,
σ 2

n
) = N (84.5, 2.0).

(ii) We need to find the probability that the sample
mean is greater than 82.8. From the given informa-
tion in the problem, we have σ = 6.0 and n = 7.

Therefore, the standard error is σ/
√

n = 6/
√

7 =
2. 27, and the desired probability is

P(X ≥ 82.8) = P

(
X−μ

σ/
√

n
≥ 82.8 − 84.5

2.27

)
= P(Z ≥ −0.75) = 0.7734.

6.2.2 Central Limit Theorem

If the underlying distribution is normal, then the
distribution of the sample mean is also normal,

with mean μ and variance
σ 2

n
. The question is,

what is the sampling distribution of the sample
mean when the underlying distribution of the pop-
ulation from which the random sample is selected
is not normal? The answer to this question is
provided by the central limit theorem.

Central Limit Theorem

Let X1, X2, · · · , Xn be a random sample from
a distribution with the mean μ and variance σ 2.

Then for a sufficiently large sample n, the sampling
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distribution of X is approximately normal;

X
◦∼ N

(
μ,

σ 2

n

)
Many distribution functions we encounter in

practice are not normal. This remarkable theorem
enables us to perform a variety of statistical infer-
ences based on the approximate normality of the
sample mean, even though the distribution of in-
dividual observations is not normal. The larger the
sample size, the more accurate is the normal ap-
proximation. We present several examples where
the central limit theorem is applied to compute the
probabilities.

Example 6.2.4. Suppose a group of 64 dental pa-
tients gave the investigators informed consent to
participate in a study designed to test a new anti-
caries vaccine. If the mean and variance of the level
of fluorocal salivarius found in the saliva of these
patients after the vaccine was given are 11.2 mg
and 12.9, what is the probability that their sample
mean is between 11.0 and 12.0 mg?

Solution. Since the underlying distribution is not
known, but the sample size n = 64 is sufficiently
large, we can use the central limit theorem (CLT) to
find the probability by the normal approximation.
The standard error is σ/

√
n = √

12.9/
√

64 =
0.45. Thus, we can express

P(11.0 ≤ X ≤ 12.0)

◦∼ P

(
11.0 − 11.2

0.45
≤ X−μ

σ/
√

n
≤ 12.0 − 11.2

0.45

)
= P(−0.44 ≤ Z ≤ 1.78)

= P(Z ≤ 1.78) − P(Z ≤ −0.44)

= 0.9625 − 0.3300 = 0.632 5.

Example 6.2.5. CD4+ T lymphocytes play a cen-
tral role in regulating the cell-mediated immune re-
sponse to infection. The human immunodeficiency
virus (HIV), which causes AIDS, attacks CD4+

cells. Uninfected individuals have on the average
about 1, 100 cells per milliliter of blood. Suppose
the standard deviation of the CD4+ cell count for
an uninfected subject is around 260. Out of a ran-
dom sample of 125 uninfected individuals, find the
95th percentile of the sample mean of the CD4+

cell count of these individuals.

Solution. Since the distribution of the cell count
is unknown, we will use the CLT to find the 95th

percentile of the sample mean. From the given in-
formation, the standard error is computed σ/

√
n =

23. 26. We need to find the value x such that the
equation P(X ≤ x) = 0.95 holds. That is,

P(X ≤ x)
◦∼ P

(
X−μ

σ/
√

n
≤ x − 1100

23.26

)

= P

(
Z ≤ x − 1100

23.26

)
= P(Z ≤ Z0.95) = 0.95.

Therefore, we have Z0.95 = x − 1100

23.26
and we

know from Table D and Section 5.5.5 that Z0.95 =
1.645.By substituting Z0.95 with 1.645 in the equa-

tion Z0.95 = x − 1100

23.26
, we obtain a linear equa-

tion
x − 1100

23.26
= 1.645. We now have to solve the

equation for x : x − 1100 = (23.26) · (1.645) =
38. 263. Adding 1, 100 to both sides of the above
equation, we get x = 1,138.263. So, the 95th per-
centile of the sample mean of the CD4+ cell
count of these 125 individuals is approximately
1,138.263.

Example 6.2.6. Find the lower and upper limits
that encompass 95% of the means of the samples
of size 125 drawn from the population described in
the above example. Since 2.5% of the area under
the standard normal curve lies above 1.96, and the
same amount 2.5% lies below −1.96 (see Section
5.5.5), and μ = 1, 100 and σ/

√
n = 23. 26,

P(x1 ≤ X ≤ x2)

= P

(
x1 − 1100

23.26
≤ X − μ

σ/
√

n
≤ x2 − 1100

23.26

)
◦∼ P

(
x1 − 1100

23.26
≤ Z ≤ x2 − 1100

23.26

)
= P(Z0.025 ≤ Z ≤ Z0.975)

= P(−1.96 ≤ Z ≤ 1.96).

From the above relationship, we get two linear
equations

x1 − 1100

23.26
= −1.96 and

x2 − 1100

23.26
= 1.96.

By solving the equations for x1 and x2, we obtain

x1 = (23.26) · (−1.96) + 1, 100 = 1, 054.41

and

x2 = (23.26) · (1.96) + 1, 100 = 1, 145.59.
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This indicates that approximately 95% of the
means of the samples of the size of 125 individu-
als fall between 1,054.41 and 1,145.59 CD4+ cell
counts.

6.3 STUDENT t DISTRIBUTION

It should be familiar by now that the distribution
of the sample mean X is normally distributed with

mean μ and variance
σ 2

n
when the random samples

are drawn from a normal population that has mean
μ and variance σ 2. The value of σ 2 is assumed
to be known. In practice the value of σ 2 is rarely
known. In fact, if μ is not known, σ 2 is likely to
be unknown. That is, the value of σ is not likely
to be known. When σ is not known, it must be
estimated from data. We discussed in Chapter 3
that the sample SD

S =
√∑n

i=1 (Xi−X )2

n − 1

is an estimator of σ . If we replaced σ with its es-

timator S in the expression
X − μ

σ/
√

n
, would it still

have the standard normal distribution? If not, what

would be the distribution of the statistic
X − μ

S/
√

n
?

It is well known that this statistic has the Student
t distribution or t distribution with (n − 1) de-
grees of freedom. We will let t denote the statistic,

t = X − μ

S/
√

n
.

The shape of the t distribution looks very similar
to the standard normal distribution, except that it
has longer tails and is associated with a special

feature called the degrees of freedom. In Fig-
ure 6.3.1 the standard normal curve and the t distri-
bution are displayed. The one with longer left and
right tails is t distribution with (n − 1) degrees of
freedom.

The general characteristics of the t distributions
include the following.

1. The t random variable is continuous.
2. The graph of the density of the t random vari-

able is symmetric and bell-shaped.
3. The mean, median, and mode are equal to 0 and

located at the center of distribution.
4. Each t distribution is identified by a parameter δ

(a Greek letter delta), called degrees of freedom.
5. The degree of freedom is always a positive

integer.
6. The parameter is a shape parameter in the sense

that as δ increases, the variance of the t dis-
tribution decreases. The variance σ 2 of the t
distribution is larger than 1.0. Hence, the t dis-
tribution is more dispersed than the standard
normal distribution.

7. As degrees of freedom increase, the t distribu-
tion approaches the standard normal distribu-
tion.

The degrees of freedom are the number of val-
ues that are free to vary after a sample statistic
has been calculated. For example, if the average
of 3 values is 5, then 2 of the 3 values are free to
vary. But once 2 values have been chosen, the third
value must be a specific value so that the sum of
the 3 values is 15, because 15/3 = 5. In this case,
the degree of freedom is 3 − 1 = 2. Some may get
the idea that the degrees of freedom are always
one less than the sample size (n − 1). In many
situations it is true that the degrees of freedom
δ = n − 1, but in other situations it is not. How-
ever, the degrees of freedom are all expressed in

N (0,1)

t(n-1)

0
Figure 6.3.1 Standard normal and t
distributions.
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0

t(10)

N(0,1)

t(5)

t(3)

Figure 6.3.2 Standard normal and t distributions with different degrees of freedom.

terms of the sample size (i.e., δ = n − 1) and thus,
increasing the sample size is the same as increasing
the degrees of freedom. There are four bell-shaped
curves in Figure 6.3.2. The tallest curve in the mid-
dle with the shortest tails and the smallest variance
is the standard normal, and the other three curves
with longer tails represent the t distributions. The

t distribution with the longest tails is associated
with the smallest degrees of freedom (or smallest
sample size). We can see in Figure 6.3.2 that as
the degrees of freedom increases, the t distribution
becomes closer and closer to the standard normal.

The percentiles of the t distribution are provided
in Table E in the Appendix. The values in the first
column of Table E are the degrees of freedom rang-
ing from 1 to ∞ (read ∞ as “infinity”). The sym-
bol ∞ represents the degrees of freedom greater
than 120. In the first row across the top of Table E
are the percentiles. The table entry values are per-
centiles that correspond to the degrees of freedom.
The probability that the t random variable with the
degrees of freedom δ having the values less than
(or equal to) t is denoted by P(t(δ) ≤ t).

Example 6.3.1. Find the probability P(t(5) ≤
2.57).

Solution. This is a t random variable with the de-
grees of freedom (df), δ = 5. To find the proba-
bility, go to the degrees of freedom δ = 5 in the

first column of Table E. As we move from left
to right across the row, stop at the entry that has
2.57, or approximately 2.57. In this example, we
have an entry that contains 2.5706, as indicated in
the table. The corresponding percentile to 2.5706
is 0.975 in the top row. Hence, P(t(5) ≤ 2.57) is
approximately 0.975.

df (δ) 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 0.975 0.98 0.985 · · ·
1 ·
2 ·
3 ·
4 ↓
5 · · · · · · · · −→ 2.5706
6

Similar to the standard normal distribution, this
probability P(t(5) ≤ 2.57) = 0.975 indicates that
the entire area to the left of t = 2.57 under the t
distribution with the degrees of freedom 5 is 0.975.
The area to the right of t = 2.57 is then 0.025. To
see how closely the t distribution approaches the
standard normal distribution as the degrees of free-
dom increase, let us consider the following table.
Table 6.3.1 t(0.975) denotes the 97.5th percentile.
With the specific degrees of freedom we will use
t(δ,0.975) to denote the 97.5th percentile of the t dis-
tribution associated with δ degrees of freedom. The
table illustrates that the t distribution rapidly ap-
proaches the standard normal distribution as the
degrees of freedom become larger.

Example 6.3.2. Find the probability P(t(19) ≤
−0.86).

Solution. This is the t distribution with the degrees
of freedom 19. Table E does not include any neg-
ative entry values, but the symmetric property of
the t distribution will allow us to find the desired
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Table 6.3.1. Comparison between t and Z
distributions.

Degrees of Freedom t(0.975) Z(0.975)

δ = 5 2.5706 1.96
10 2.2281 1.96
20 2.0860 1.96
40 2.0211 1.96
60 2.0003 1.96
80 1.9901 1.96

100 1.9840 1.96
120 1.9799 1.96
∞ 1.96 1.96

probability, just as it does in the standard normal
distribution. The probability P(t(19) ≤ −0.86) is
equal to the area to the left of t = −0.86 under
the t distribution with δ = 19, which is precisely
the same as the area to the right of t = 0.86 by the
symmetric property. Therefore, it can be expressed

P(t(19) ≤ −0.86) = P(t(19) ≥ 0.86), by symmetry

= 1.0 − P(t(19) ≤ 0.86)

= 1.0 − 0.8 = 0.20.

It is quite straightforward to find the percentiles of
the t distribution for a given δ from Table E. For
example, t(14,0.75) = 0.6924, t(24,0.90) = 1.3178,

t(24,0.95) = 1.7109, and t(30,0.975) = 2.0423.

Example 6.3.3. Find t(35,0.95).

Solution. Table E does not show the degrees of
freedom δ = 35. However, it provides the 95th per-
centiles for the degrees of freedom δ = 30 and
δ = 40. We can use the method of linear interpo-
lation as described below.

df 0.90 0.95 0.975

29 · · ·
30 · 1.6973 ·
35 −→
40 · 1.6839 ·
50 · · ·

The 95th percentiles corresponding to the degrees
of freedom δ = 30 and δ = 40 are provided by the
table; t(30,0.95) = 1.6973 and t(40,0.95) = 1.6839.

Since δ = 35 is the midpoint between 30 and 40,
by the method of linear interpolation the 95th per-
centile corresponding to the degrees of freedom
δ = 35 will be the midpoint between t(30,0.95) and

t(40,0.95). Thus,

t(35,0.95) = (1.6973 + 1.6839)

2
= 1. 690 6.

Example 6.3.4. Let X be a random variable de-
scribing the angle between subnasale (SN) plane
and mandibular plane in orthodontics. Suppose X
is normally distributed. A study was performed to
evaluate the long-term stability of deep overbite
correction in Class II Division 2 malocclusion and
to search for predictor variables of post-retention
overbites [3]. After treatment, cephalograms of 29
patients were analyzed, and the angle between the
SN plane and mandibular plane for each patient
was measured. If you were to take a random sam-
ple of 29 patients repeatedly after treatment, what
is the sampling distribution of the statistic

t = X − μ

S/
√

n
?

Solution. Since σ is not known, the standard er-
ror σ/

√
n of X is to be estimated by S/

√
n.

The statistic t = X − μ

S/
√

n
has the t distribution

with the degrees of freedom δ = n − 1 = 29 −
1 = 28.

One of the key assumptions of the t distribu-
tion is that the underlying population distribution
is normal. Under this assumption the sampling dis-
tribution of X is normal for any sample size n,

and by a statistical property the numerator and de-

nominator of the statistic t = X − μ

S/
√

n
are statisti-

cally independent. What if the population distri-
bution of X is not normal? It is known that when
n is sufficiently large and the distribution of X
is unimodal and symmetric, we still have an ad-
equate approximation. We will elaborate on this
later when we introduce the t test. The t distribu-
tion will be used often throughout the next several
chapters when confidence intervals and hypothesis
testing are introduced.

6.4 EXERCISES

1 Let the random variable X be normally dis-
tributed with μ = 136.2 and σ 2 = 86.4. Find the
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variance and the standard error of X when the
sample size n = 20.

2 The dental fees for a root canal treatment vary
from one office to another. According to a survey
conducted by an insurance company, the distribu-
tion of the fees is normal with the mean of $1,100
and the SD of $50. To compare the fees in River-
side County to the nation as a whole, we took a
sample of eight dental offices in the county. What
is the sampling distribution of the average cost of
a root canal treatment in Riverside County?

3 Suppose the salivary flow rate of adult patients
is known to be normally distributed with the mean
of 6.2 ml/min and the SD of 2.2 ml/min. If nine
dental and medical students were selected at ran-
dom, what is the SE of their average salivary flow
rate?

4 Suppose that the survival time of the patients
who underwent a surgical procedure to remove a
brain tumor is normally distributed with the mean
of 82 months and the SD of 18 months. Eight
brain tumor patients were surgically treated at the
Riverside Community Hospital last month. What
is the chance that the average survival time of these
patients will exceed 90 months?

5 In exercise 3 above, what is the probability that
the sample mean of salivary flow rate is between
5.0 and 7.3 ml/min?

6 Advanced lymphoma is one of the deadli-
est cancers. The distribution of survival time in
months to death of a patient after the illness is
diagnosed is not known, but the mean and SD are
given as 17.8 months and 6.5 months, respectively.
Thirty-two patients have just been diagnosed with
an advanced case of lymphoma. What is the prob-
ability that their average survival time is at least
15 months?

7 Investigators have found it difficult to simul-
taneously and reliably evaluate bite force in the
intercuspal position with the area and location of
occlusal contacts. Hidaka et al. [2] reports that oc-
clusal contact area at maximum voluntary clench-
ing level has the mean of 30.2 mm2 and the
SD of 10.7 mm2. If the area of occlusal con-
tact of 38 randomly selected adult patients is to
be measured, what is the chance that the sample

mean of their occlusal contact area is greater than
33.0 mm2?

8 Cholesterol is a lipid common to all animals.
In most cases, the cholesterol levels in the human
body range from about 135 to 250 mg per 100 ml
of blood. If the mean cholesterol level is 190 and
the SD is 17.5, find the lower and upper limits
that enclose 95% of the mean of a sample of size
25 drawn from the population. Assume that the
cholesterol levels are normally distributed.

9 In Exercise 8, find the lower and upper limits
that enclose 95% of the means of samples of size 35
drawn from the population, instead of 25. Compare
the limits obtained to those in Exercise 8.

10 Find the probabilities:
a. P(t(7) ≤ 0.40),
b. P(t(10) ≤ −1.37),
c. P(t(5) ≥ −0.73),
d. P(0.68 ≤ t(24) ≤ 2.17),
e. P(−0.88 ≤ t(9) ≤ −0.26).

11 Find the appropriate percentiles:
a. t (5,0.75),

b. t (7,0.90),

c. t (13,0.95),

d. t (25,0.975),

e. t (45,0.95),

f. t (9,0.995).

12 Suppose a random variable Y has t distribu-
tion associated with the degrees of freedom 17.
Determine the percentage of the approximate area
under the t distribution:

a. to the left of 1.069,

b. to the right of 2.110,
c. between −0.863 and 1.333,
d. between −0.689 and−0.257.
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Chapter 7

Confidence Intervals and Sample Size

7.1 INTRODUCTION

A statistic used to approximate an unknown pop-
ulation parameter is called an estimator for the
parameter. For example, the sample mean X and
sample variance S2 are estimators for the popu-
lation mean μ and population variance σ 2. There
are two different estimation methods. One method
is point estimation. A statistic X is called a point
estimator for μ because a particular set of sample
data is used to calculate X and yields a single value
or point on the real number scale. The value that
X yields for a particular data is called an estimate
and is denoted by x (a bar over the lowercase x).
Likewise, a statistic S is a point estimator for σ.

Many scientific papers present the sample mean,
along with the sample SD S, and the sample size
n. We learned in previous chapters that two differ-
ent samples are likely to result in different sample
means due to an inherent variability in the sam-
ples. This inherent variability is not reflected in
the sample mean. Therefore, it is difficult to know
how close the estimate x is to the true mean μ. For
large samples, most of the observed values are ex-
pected to fall very close to μ. But the fact is, there
will always be some difference between x and μ.

It would be helpful to know how close the estimate
is to the unknown true population parameter and
to answer the question, How confident are we of
the accuracy of the estimate?

The other method of estimation that reflects
sample-to-sample variability is called an interval
estimation. An interval estimator provides an in-
terval that is a range of values based on a sample.
We hope that the interval provided will contain the
population parameter being estimated. This inter-
val, referred to as confidence interval, is a random
variable whose endpoints L and U are statistics
involving X . An interval estimator is often pre-
ferred because it enables us to get an idea of not
only the value of the parameter, but the accuracy

of the estimate. A confidence interval for μ is an
interval (L , U ), which contains the true mean with
some prespecified degree of certainty. L is called
the lower confidence limit and U the upper confi-
dence limit (or lower limit and upper limit). For
example, a 95% confidence interval is an inter-
val (L , U ) such that P(L ≤ μ ≤ U ) = 0.95.The
probability associated with a confidence interval
is the measure of our confidence that the mean μ

is between L and U . This probability is called a
confidence coefficient or confidence level. The
degree of confidence desired is determined and
controlled by the researcher. Scientific investiga-
tors often present 95% confidence intervals for the
parameters of their interest in the reports. A correct
interpretation of a 95% confidence interval for μ is
that when it is used in repeated sampling from the
same population, 95% of the intervals that result
will contain the unknown true population mean μ,

and 5% will fail to contain μ. This is illustrated in
Figure 7.1.1. It should be noted that a 95% confi-
dence interval (L , U ) (1) does not imply 95% of
the population values lie within the interval, and
(2) does not imply μ is a random variable that as-
sumes a value within the interval.

In this chapter we will discuss how to construct
confidence intervals for mean μ when σ is known,
for mean μ when σ is not known, for proportion
p, for variance σ 2, and standard deviation σ .

7.2 CONFIDENCE INTERVALS FOR
THE MEAN μ AND SAMPLE SIZE n
WHEN σ IS KNOWN

Chapter 6 discussed the theoretical properties of
a distribution of sample means. We will now use
these properties in making statistical inferences.
Suppose X is a random variable that has mean μ

and SD σ . The statistic Z = X − μ

σ/
√

n
has a standard

113
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Figure 7.1.1 95% of the confidence intervals are expected to contain μ.

normal distribution if X is normally distributed. If
it is not normally distributed, then by the central
limit theorem, it has an approximately standard
normal distribution, provided that the sample size
n is sufficiently large (n ≥ 30). For a standard nor-
mal variable Z , the probability is 0.95 = 1 − 0.05
that it lies between Z0.05/2 = Z0.025 = −1.96 and
Z1−(0.05/2) = Z0.975 = +1.96. That is, P(−1.96 ≤
Z ≤ 1.96) = 0.95. By substituting

X − μ

σ/
√

n
for Z ,

we have P(−1.96 ≤ X − μ

σ/
√

n
≤ 1.96) = 0.95. We

can multiply all three terms of the inequality inside

the parentheses by the factor
σ√
n

without altering

the probability, and thus we obtain the expres-

sion P

(
−1.96 · σ√

n
≤ X − μ ≤ 1.96 · σ√

n

)
=

0.95.

Subtracting X from each term in the inequality
yields

P

(
−X − 1.96 · σ√

n
≤ −μ ≤ −X + 1.96 · σ√

n

)
=0.95

and multiplying by −1, which reverses the direc-
tion of the inequality and the signs of the terms,

gives

P

(
X − 1.96 · σ√

n
≤ μ ≤ X + 1.96 · σ√

n

)
= 0.95.

The above probability statement says the chances
are 95% that the parameter μ is contained in a
random interval(

X − 1.96 · σ√
n
, X + 1.96 · σ√

n

)
.

This interval is called a 95% confidence interval.
The endpoints of the confidence interval, L = X −
1.96 · σ√

n
and U = X + 1.96 · σ√

n
are called the

lower and upper confidence limits. We are 95%
confident that this interval will contain mean μ.We
should keep in mind that X is a random variable,
and therefore, the interval(

X − 1.96 · σ√
n
, X + 1.96 · σ√

n

)
is random and has a 95% chance that it contains the
unknown parameter μ. The parameter μ is a fixed
constant that happens to be unknown. Once the
confidence interval has been determined, either μ

lies within the confidence limits or it does not (i.e.,
μ lies outside the confidence limits). In general, a
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Figure 7.2.1 Distribution of the sample mean.

(1 − α)100% confidence interval when σ is known
is given by(

X − Z1−α/2 · σ√
n
, X + Z1−α/2 · σ√

n

)
For a 95% confidence interval, α = 0.05,
(1 − α)100% = 0.95% and Z1−α/2 = Z0.975 =
1.96. Sometimes, the above confidence interval is
expressed as

X ± Z1−α/2 · σ√
n
.

The term Z1−α/2 · σ√
n

is referred to as the

maximum error of estimate. As we can see in
Figure 7.2.1 the probability is 1 − α that the mean
of a large random sample from an infinite pop-
ulation will differ from the population mean by

at most Z1−α/2 · σ√
n
. For a given value of α,

say α = 0.05, 95% of the sample means will fall
within this error limit on either side of the popula-
tion mean μ. Let E denote the maximum error of
estimate.

Example 7.2.1. Suppose X is a random variable
representing the amount of organic sulfur con-
tained in 500 mg methyl sulfonyl methane (MSM)
tablets. Organic sulfur plays an important role in
the maintenance of joint cartilage. The formula
for MSM requires that each tablet should contain
85 mg of organic sulfur. To assess how well the
requirement is being followed, 24 MSM tablets
were randomly selected. Analytical results show
that on the average the tablets contain about 80.5
mg of organic sulfur. If, based on experience, the
amount of organic sulfur found in MSM tablets is
normally distributed with σ = 14.2 mg, construct
a 95% confidence interval for mean μ.

Solution. Since σ = 14.2 and n = 24, the standard
error is

σ√
n

= 14.2√
24

= 2. 898 6.

We also have X = 80.5 and Z1−α/2 = Z0.975 =
1.96. By substitution in the above formula, the
95% confidence interval is(

X − Z1−α/2 · σ√
n
, X + Z1−α/2 · σ√

n

)
= (80.5−(1.96)(2.8986), 80.5+(1.96)(2.8986))

= (74.8187, 86.1813) � (74.82, 86.18).

L = 74.82 U = 86.18
↓ ↓

| | | | |
70 75 80 85 90

Before a random sample of n = 24 is drawn, we
can say that there is a 95% chance that the pop-
ulation mean μ lies between 74.82 and 86.18,

approximately.

Example 7.2.2. Pumice prophylaxis has long
been accepted as a prerequisite for achieving
enamel etching during orthodontic bonding proce-
dures. Lindauer et al. [1] conducted a study to de-
termine whether pumice prophylaxis, performed
before acid etching, enhances the bond strength
and retention rate of orthodontic brackets. A labo-
ratory test was performed in which brackets were
bonded to n = 13 extracted premolars after sur-
face preparation protocols, and the shear bond
strengths were calculated and recorded in mega-
pascals (1 × 106 N/m2). Suppose the distribution
of the shear bond strength is known to be nor-
mal with a specified σ = 4.6. If the average bond
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strength of the 13 premolar samples is 9.6 MPa,
construct a 99% confidence interval for μ.

Solution. It is easy to see that α = 0.01 from
(1 − α)100% = 99%. From Table D, Z1−α/2 =
Z0.995 = 2.58 (using the method of linear inter-

polation). The standard error is
σ√
n

= 4.6√
13

=
1. 275 8. Hence, a 99% confidence interval is
obtained by

(
X − Z1−α/2 · σ√

n
, X + Z1−α/2 · σ√

n

)
= (9.6 − (2.58)(1.2758), 9.6 + (2.58)(1.2758))

= (6.3084, 12.8916).

There is a 99% chance that the population mean
μ lies between 6.3 MPa and 12.9 MPa, approxi-
mately.

Example 7.2.3. The recent introduction of new
bonding agents has led some dentists to suggest
that certain endodontically treated posterior teeth
could be restored with a bonded restoration in-
stead of a full-coverage crown or onlay. Steele and
Johnson [2] performed the fracture-resistance test
of endodontically treated premolars restored with
4-META bonding agent (MOD prep, root canal
treatment, composite resin plus bonding agent).
They used 56 mature maxillary premolars ex-
tracted for periodontal reasons, which were free of
caries, previous restorations, and preexisting frac-
tures. These teeth were subjected to compressive
fracture tests, and the average fracture strength was
47.2 kg. Suppose that the SD σ of the fracture
strength from their previous experience is about
9.3 kg. Construct a 90% confidence interval for
the population mean fracture strength.

Solution. Since the confidence level is 90%, we
know α = 0.10. In order to construct a 90% confi-
dence interval, first we need to find the SE and
Z1−α/2. From the discussions in Chapter 6 we

have Z0.95 = 1.645, and
σ√
n

= 9.3√
56

= 1. 242 8.

By substitution,

(
X − Z1−α/2 · σ√

n
, X + Z1−α/2 · σ√

n

)
= (45.1556, 49.2444).

Table 7.2.1. Confidence intervals for the mean
fracture strength.

Confidence Coefficient Confidence Interval

90% (45.16, 49.24)
95% (44.76, 49.64)
99% (43.99, 50.41)

In practice 90%, 95%, and 99% are the most
commonly used confidence coefficients, and there-
fore, it is useful to keep in mind that Z0.95 =
1.645, Z0.975 = 1.96, and Z0.995 = 2.58. In Ex-
ample 7.2.3, what if we required a different level
of confidence? Table 7.2.1 presents confidence in-
tervals for the mean fracture strength under three
different confidence coefficients.

The table shows that for a given n and σ, the con-
fidence interval becomes wider (narrower) as the
confidence coefficient increases (decreases). Sim-
ilarly, given a sample size n and the confidence
coefficient, the larger the variance, the wider the
confidence interval, and given the variance σ 2 and
the confidence coefficient, the larger the sample
size, the narrower the confidence interval. The fac-
tors that influence the confidence intervals are

� Sample size n
� Variance σ 2

� Confidence coefficient

We now present some applications of the concept
of maximum error of estimate.

Example 7.2.4. Gangas et al. [3] studied 29 fe-
male patients with high low-density lipoprotein
(LDL) cholesterol during 6 months of therapy with
pravastatin. At the end of the study period the av-
erage LDL cholesterol level X of these women
was 130.3 mg/dL. If the random variable X has a
normal distribution with σ = 6.1, what can they
assert with probability 0.95 about the maximum
error of their estimate?

Solution. Substituting Z0.975 = 1.96, σ = 6.1,

and n = 29 in the definition of maximum error
of estimate,

E = Z1−α/2 · σ√
n

= 1.96 · 6.1√
29

= 2. 220 2.

With probability 0.95 they can assert that the error
will be at most 2.2202.
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We can use the formula E = Z1−α/2 · σ√
n

to

determine the sample size necessary to achieve a
desired degree of precision. Suppose we want to
use the sample mean of a large random sample
to estimate the population mean and to be able to
assert with probability 1 − α that the error of the
estimate will not exceed some prespecified level
E . This can be done by solving the equation E =
Z1−α/2 · σ√

n
for n.

n =
(

Z1−α/2 · σ

E

)2

Example 7.2.5. Dental fluorosis occurs as a result
of excessive fluoride intake during tooth develop-
ment. Some children may receive a substantial in-
take from soft drinks. Suppose we want to use the
sample mean of a random sample to estimate the
population mean of the fluoride level in soft drinks
and to be able to assert with probability 0.99 that
our error will be no more than 0.15 ppm. If it is
reasonable to assume that the distribution of the
fluoride level is normal and the SD σ = 0.32 ppm,
how large a sample will we need?

Solution. We can obtain the necessary sample n by
substitution in the above formula, Z0.995 = 2.58,

σ = 0.32, and E = 0.15.

n =
(

Z1−α/2 · σ

E

)2

=
(

2.58 · 0.32

0.15

)2

= 30.294.

We need to round up to the nearest integer n = 31.
Rounding off to n = 30 will not meet the require-
ment. Thus, a random sample of size n = 31 (31
soft drink samples) is required.

As we can see, the formula n =
(

Z1−α/2 · σ

E

)2

cannot be used unless we know the value of the
population SD σ. In practice, we begin with a rel-
atively small sample and then use the sample SD
S as an estimate of σ to determine if more data is
needed. As with the confidence intervals there are
three factors that influence the determination of
sample size: Z1−α/2, variance σ 2, and maximum
error E . Table 7.2.2 presents the comparison of
sample size. It shows how the sample size require-
ment changes as Z1−α/2 σ 2 and E vary.

When a random variable of our interest is nor-
mally distributed and σ is known, the standard

Table 7.2.2. Comparison of sample size.

Z1−α/2 E σ 2 n

Z0.95 = 1.645 0.5 4 44
8 87

1.5 4 5
8 10

Z0.975 = 1.96 0.5 4 62
8 123

1.5 4 7
8 14

normal distribution can be used to construct con-
fidence intervals regardless of the sample size.
When the sample size is large enough (n ≥ 30), the
distribution of the sample means will be approx-
imately normal (by central limit theorem) even if
the underlying distribution deviates from normal-
ity. If n ≥ 30, then S can be substituted for σ in
the formula, and the standard normal distribution
can be used to find confidence intervals for the
population means.

7.3 CONFIDENCE INTERVALS FOR
THE MEAN μ AND SAMPLE SIZE n
WHEN σ IS NOT KNOWN

It was assumed in our discussions of the confi-
dence interval X ± Z1−α/2 · σ/

√
n that the SD σ

is known. From a practical standpoint this assump-
tion is unrealistic. In most scientific investigations,
the studies are being conducted for the first time.
Thus, there is no way to know either the mean or
the variance of the population of our interest prior
to the study. As discussed in Chapter 3, unknown
population parameters must be estimated from the
available data. In this section, we will consider re-
alistic situations of making statistical inferences
on the mean μ when the population variance σ 2 is
not known. Since the value of σ is not known, it
must be estimated. In fact, when σ in the statistic

Z = X − μ

σ/
√

n
is replaced by its estimate S, we get

t = X − μ

S/
√

n
, which has the t distribution with the

degrees of freedom δ = n − 1. Detailed discus-
sions on t distributions were presented in Section
6.3. It is now easy to determine a (1 − α)100%
confidence interval for μ when σ is not known.
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All the algebraic arguments given in the previous
section will hold true, except that Z1−α/2 and σ

are replaced by t(δ,1−α/2) and S. We state a gen-
eral formula for a confidence interval for μ with
an unknown σ.

Let X1, X2, · · · , Xn be a random sample of size
n from a normal distribution with mean μ and vari-
ance σ 2. Then a (1 − α)100% confidence interval
for μ is given by(

X − t(n−1,1−α/2) · S√
n
, X + t(n−1,1−α/2) · S√

n

)
or

X ± t(n−1,1−α/2) · S√
n
.

Example 7.3.1. Glass ionomer cement (GI) is
one of several new classes of adhesive luting
agents recently introduced as an alternative to zinc
phosphate cement. GI has been shown to reduce
microleakage, increase retention, and improve
physical properties, compared with zinc phos-
phate cements [4]. Different factors might influ-
ence the hydraulic response and therefore the film
thickness of different classes of adhesive luting
agents. Let X be a random variable representing
the film thickness of GI. White et al. [5] measured
the film thickness (micrometers) of GI with a load
of 5 kg applied vertically to the plates. The sample
mean and sample SD of 10 samples are X = 19.9
and S = 1.3. If X is normally distributed, find a
95% confidence interval for μ.

Solution. The degree of freedom is n − 1 = 10 −
1 = 9; the sample SE is S/

√
n = 1.3/

√
10 =

0.411 1; and from Table E in the Appendix we
get t(n−1,1−α/2) = t(9,0.975) = 2.2622. By substitut-
ing in the formula, a 95% confidence interval for
μ is given by(

X − t(n−1,1−α/2)
S√
n
, X + t(n−1,1−α/2)

S√
n

)
= (19.9 − (2.2622)(0.4111), 19.9

+ (2.2622)(0.4111))

= (18.97, 20.83).

Example 7.3.2. Posterior crossbite is one of the
most frequently observed malocclusions of the de-
ciduous and mixed dentition periods. The preva-
lence of this malocclusion is regarded to be 8–
12% [6, 7]. To evaluate specific dental and skeletal

changes during the treatment of posterior cross-
bite using expansion plates, investigators selected
13 children with posterior crossbite in the mixed
dentition between the ages of 8 and 11. The sub-
jects were treated with the use of expansion plates
for about a year. Let Y represent post-treatment
maxillary intermolar width, which is one of the
variables of their interest. Assume that Y is ap-
proximately normally distributed. Erdinc et al. [8]
reported that the sample mean and sample SD of
the post-treatment maxillary intermolar width of
the 13 patients are 46.8 mm and 2.3 mm, respec-
tively. Construct a 90% confidence interval for μ.

Solution. Since it is given that Y is approxi-
mately normally distributed, n = 13, Y = 46.8,

and S = 2.3, we can use the formula discussed
above. From Table E we can obtain t(n−1,1−α/2)

= t(13−1,0.95) = 1.7823, and S/
√

n = 2.3/
√

13 =
0.637 9. By making appropriate substitutions, we
get(

Y − t(n−1,1−α/2) · S√
n
, Y + t(n−1,1−α/2) · S√

n

)
= (45.6631, 47.9369).

We have seen that some students have difficulty
in deciding whether to use Z(1−α/2) or t(n−1,1−α/2)

when constructing confidence intervals for the
mean μ. When the variable is normally distributed
and σ 2 (or σ ) is known, Z(1−α/2) values are to be
used regardless of the sample size n. When n ≥ 30
and σ is not known, the estimate S can be used with
a Z(1−α/2) value. When n < 30 and σ is not known,
the estimate S can be used with a t(n−1,1−α/2) value
as long as the variable is approximately normal.
Bear in mind that the key assumption here is that
the underlying distribution is normal. The validity
of the assumption can be checked roughly by con-
structing a stem-and-leaf plot or a histogram. This
approach, based on the t distribution, works well
if the observations exhibit an approximately bell-
shaped curve. This is true for discrete observations
as well. However, if observations are far from be-
ing normal, statistical procedures based on the t
distribution should not be used. In such cases, ap-
propriate non-parametric methods should be em-
ployed. Non-parametric techniques are presented
in Chapter 14.

The method presented in Section 7.2 to
determine the maximum error we risk with
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(1 − α)100% confidence when estimating the pop-
ulation mean with a sample mean can be readily
adapted to the cases discussed in this section when
σ is not known. Simply substitute S for σ , and
t(n−1,1−α/2) for Z(1−α/2) in the formula.

Definition 7.3.1. The maximum error of extimate

is defined by E = t(n−1,1−α/2) · S√
n

Example 7.3.3. It is well known in dentistry that
dental anxiety is one of the leading factors in avoid-
ing dental treatments. To quantify the level of anxi-
ety among dental-phobic patients, a researcher se-
lected 15 patients at random and measured their
pulse rates while the patients were sitting in the
dental chair. She compared these rates to their
normal pulse rates in their home environment and
recorded the differences. If the average of the 15
observations is X = 28.7 beats per min with the
SD S = 5.3, with probability 99%, what can the re-
searcher say about the maximum error if she wants
to use X to estimate μ?

Solution. Substituting n = 15, S√
n

= 5.3√
15

=
1. 368 5 and t(14,0.995) = 2.9768 in the above
formula,

E = t(n−1,1−α/2) · S√
n

= (2.9768)(1.3685)

= 4.0738.

If she uses X = 28.7 to estimate the true unknown
mean increase in pulse rate of her patients, she can
say with probability 99% that the error will not
exceed 4.07 beats per minute.

7.4 CONFIDENCE INTERVALS FOR
THE BINOMIAL PARAMETER p

We have dealt with the binomial parameter p when
the binomial probability was discussed in Section
5.2, where a counting principle was introduced.
Data are obtained by counting rather than measur-
ing. For example,

1. the number of smokers among health science
professionals’ patients.

2. the number of hygienists who prefer ultrasonic
scalers for routine prophylaxis and periodontal
instrumentation over hand-held scalers.

3. the number of endodontic patients who experi-
ence severe pain and/or swelling following root
canal treatment.

4. the number of patients whose mortality rates
returned to the level of that for the gen-
eral population after undergoing bone marrow
transplantation.

In these examples, we typically collect data to
estimate the population proportion p by a sam-
ple proportion X

n , where X is the number of times
that an event of our interest, such as a patient
who smokes, has occurred in n independent tri-
als. If a study shows that in a random sample of
185 hygienists, 152 prefer ultrasonic scalers, then
X
n = 152

185 � 0.82. We can use this value as a point
estimate of the true unknown proportion of hygien-
ists who prefer ultrasonic scalers. Throughout the
discussion in this section we will assume that the
conditions of the binomial distribution are satis-
fied. That is, we have n independent trials, and for
each trial the probability p of success has the same
constant value. The proportion p is the parameter
we want to estimate. We introduce the following
notation for our discussion: Let p be the true pop-
ulation proportion, and

∧
p (read “p” hat) be the

sample proportion given by

∧
p = X

n
and

∧
q = 1 − ∧

p = 1 − X

n
= n − X

n
.

Example 7.4.1. In a recent survey of 68 endodon-
tic patients who underwent root canal treatment,
27 have experienced severe pain and/or swelling
following the treatment. Find

∧
p and

∧
q.

Solution. Since n = 68 and X = 27,
∧
p = X

n
=

27

68
= 0.397 1 (or 39.71%), and

∧
q = 1 − X

n
=

n − X

n
= 68 − 27

68
= 0.602 9 (or 60.29%).

We can also obtain
∧
q by using the relation

∧
q = 1 − ∧

p = 1 − 0.3971 = 0.602 9.

We know from Section 5.5.6 that the bi-
nomial distribution can be approximated by a
normal distribution with mean np and vari-
ance npq when both are greater than 5. Recall
that this approximation requires that n must be
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sufficiently large. In fact, for large values of n, the
statistic

Z = X − np√
np(1 − p)

= X − np√
npq

has approximately the standard normal distribu-
tion, N (0, 1). As discussed in Section 7.2,

P(−Z1−α/2 ≤ Z ≤ Z1−α/2) = 1 − α.

Replacing Z by
X − np√

npq
, we have

P

(
−Z1−α/2 ≤ X − np√

npq
≤ Z1−α/2

)
= P(−Z1−α/2

√
npq ≤ X − np ≤ Z1−α/2

√
npq),

subtracting X from each term, we get

= P(−X − Z1−α/2
√

npq ≤ −np

≤ −X + Z1−α/2
√

npq),

dividing each term by −n yields

= P

(
X

n
− Z1−α/2 ·

√
pq

n
≤ p

≤ X

n
+ Z1−α/2 ·

√
pq

n

)
= 1 − α.

Note that

√
pq

n
is the SE of a proportion, that is,

the SD of the sampling distribution of a sample

proportion
X

n
. By replacing p by its estimate

∧
p

= X

n
, we derive the following 100(1 − α)% large

sample confidence interval for p. We refer to it
as a large sample confidence interval because a
sufficiently large sample size n is required for the
normal approximation.

A 100(1 − α)% large sample confidence
interval for a proportion p is given by;⎛⎝∧

p − Z1−α/2 ·
√

∧
p

∧
q

n
,

∧
p + Z1−α/2 ·

√
∧
p

∧
q

n

⎞⎠ ,

where
∧
q = 1 − ∧

p.

Example 7.4.2. A retrospective study was con-
ducted on the durability and life span of restora-
tions in primary molars of pediatric patients treated
at a dental school clinic. The histories of crowned
primary molars were followed for up to 9 years

and their durability assessed in terms of crown
replacements and length of service, using appro-
priate definitions for failure and success. Of 331
crowns studied, 291 were successful either to tooth
exfoliation or to the end of the study [9]. Construct
a 95% confidence interval for the true proportion
p of successful crowns.

Solution. Since n = 331 and X = 291, the sam-

ple proportion is
∧
p = X

n
= 291

331 = 0.879.We note

that npq is greater than 5. Substituting Z1−α/2 =
Z0.975 = 1.96 in the formula, we obtain

⎛⎝∧
p − Z1−α/2 ·

√
∧
p

∧
q

n
,

∧
p + Z1−α/2 ·

√
∧
p

∧
q

n

⎞⎠
= (0.879 − 1.96

√
(0.879)(0.121)

331
, 0.879

+ 1.96

√
(0.879)(0.121)

331
) = (0.844, 0.914).

A 95% confidence interval for p is given by
(0.844, 0.914). Bear in mind this interval either
contains the parameter it is intended to estimate
or it does not. We actually do not know which
is the case, but we can be 95% confident that
the proportion of success is between 84.4% and
91.4%.

Example 7.4.3. Coronal leakage should be taken
into account as a potential etiological factor in the
failure of root canal treatment. An endodontist has
performed an experiment to evaluate the effective-
ness of the pigmented glass ionomer cement he
uses as an intraorifice barrier to prevent coronal
microleakage. He sampled 135 extracted human
teeth with a single canal. The teeth were instru-
mented, obturated, and placed in a glass vial filled
with red broth. Three weeks later he examined his
samples for microleakage and found 9 had leak-
age. Find a 99% confidence interval for the true
proportion of coronal microleakage.

Solution. The sample size is n = 135 and the num-
ber of leakage is X = 9, so the sample propor-

tion is
∧
p = X

n
= 9

135 = 0.0667. Since Z1−α/2 =
Z0.995 = 2.58 and the sample size is large enough,
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by substitution⎛⎝∧
p − Z1−α/2 ·

√
∧
p

∧
q

n
,

∧
p + Z1−α/2 ·

√
∧
p

∧
q

n

⎞⎠
=
(

0.067 − 2.58

√
(0.067)(0.933)

135
,

0.067 + 2.58

√
(0.067)(0.933)

135

)
= (0.011, 0.123).

Similar to our discussions in Section 7.2, the maxi-

mum error of estimate is E = Z1−α/2 ·
√

pq
n . From

this equation we can determine the minimum sam-
ple size required for a confidence interval for p
by solving the above equation for n. Thus, the
minimum sample size required for 100(1 − α)%
confidence interval for p is:

n = pq

(
Z1−α/2

E

)2

.

If necessary, round up to obtain a whole number
for n.

Of course, p is not known in the formula. We
cannot use the formula unless we have some ideas
about the possible values of p. If some approxi-
mate value of p is known, that value can be used.
Otherwise, we should use p = 0.5. We saw in
Section 5.2 that pq achieves its maximum when
p = 0.5. With p = 0.5, the sample size n will be
larger than necessary. In this case, we can say that
the probability is at least 1 − α that our error will
not exceed E .

Example 7.4.4. Hormone replacement therapy
(HRT) is used by an increasing number of women
to relieve menopausal problems. A protective ef-
fect against bone loss and cardiovascular disease
has been demonstrated. One study [10] reported
that estrogen replacement therapy prolonged sur-
vival in women when coronary artery disease was
present. However, concern has been raised about
an increased incidence of breast cancer after HRT
use, especially after more than 10 years of use
[11]. A clinical study is designed to estimate the
proportion of women who develop breast cancer
after having been on HRT at least 10 years. If the

research team wants to assert with the probabil-
ity of at least 0.95 that its error will not exceed
0.015, how large a sample should they take (a) if
it is known from the past studies that the true pro-
portion lies between 0.01 and 0.05; and (b) if they
have no idea what the true proportion might be?

Solution. (i) Since p is known to be in the interval
between 0.01 and 0.05, we take p = 0.05. Substi-
tuting p = 0.05, Z1−α/2 = 1.96, and E = 0.015
in the formula for n, we obtain

n = pq

(
Z1−α/2

E

)2

= (0.05) · (0.95) ·
(

1.96

0.015

)2

= 811.0044.

Rounding up to the nearest integer, we get the
required sample size n = 812 subjects.

(ii) By substitution with p = 0.5, Z1−α/2 =
1.96, and E = 0.015, we have

n = (0.5) · (0.5) ·
(

1.96

0.015

)2

= 4268.4.

Rounding up to the nearest integer, we obtain the
required sample size n = 4, 269 subjects.

7.5 CONFIDENCE INTERVALS FOR
THE VARIANCES AND STANDARD
DEVIATIONS

In previous sections we have illustrated how to
construct confidence intervals for means and pro-
portions. This section is devoted to discussing how
to find confidence intervals for variances and SDs.
We studied in Chapter 3 that location parameters,
such as mean, median, and mode, are not enough to
adequately describe data. Variances and SDs were
introduced to represent the dispersion of data. In
drug manufacturing, keeping variability as small
as possible is the key step to providing the “right”
dosage level for the patients. To discuss confidence
intervals for σ 2 we need to introduce another prob-
ability distribution function, called the χ2 distri-
bution. Read χ2 as “chi-square” (χ is a Greek let-
ter). Like the t distribution, the chi-square dis-
tribution is associated with the degree of free-
dom. The shape of the chi-square distribution is
determined by the degree of freedom associated
with it. It is a well-known fact in statistics that
the χ2 distribution is obtained from the values
of (n − 1)S2/σ 2, where the random samples are
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Figure 7.5.1 χ2 densities for different
degrees of freedom.

taken from an underlying population that is nor-
mally distributed with the variance σ 2. Some char-
acteristics of the χ2 distribution are as follows.

1. Like the t distribution, the χ2 distribution is a
family of distributions whose shapes depend on
the associated degrees of freedom.

2. The degrees of freedom δ is equal to n − 1.
3. Unlike the normal and t distributions, the

χ2 distribution takes on non-negative values
between 0 and ∞ (infinity).

4. Unlike the normal and t distributions, the χ2

distribution is positively skewed for small val-
ues of δ (small degrees of freedom). As δ in-
creases, the distribution becomes less and less
skewed. In fact, for sufficiently large degrees
of freedom δ, the χ2 distribution approaches a
normal distribution with mean μ = δ and vari-
ance σ 2 = 2δ. Whether δ is small or large, the
mean and the variance of the χ2 distribution are
given by δ and 2δ, respectively. In other words,
the mean μ of the χ2 distribution is the same as
the degrees of freedom, and the variance σ 2 is
twice the degrees of freedom.

Figure 7.5.1 shows the χ2 distribution with four
different values for degrees of freedom δ; δ = 1,

3, 5, and 10. As we can see in the figure, the shape
of the χ2 distribution appears less and less skewed
as the degrees of freedom increase.

Table F in the Appendix gives the percentile val-
ues for the χ2 distribution for p = 0.005, 0.01,

0.025, 0.05, 0.10, 0.90, 0.95, 0.975, 0.99, and
0.995. The first column of the table shows the de-
grees of freedom δ. The degrees of freedom in
Table F ranges from δ = 1 to δ = 100. The entire
area under each χ2 distribution is equal to 1.0. As
in the t distribution, (1 − α)100th percentile of the
χ2 distribution with the degrees of freedom δ is
denoted by χ2

(δ,1−α).
Let X be a random variable that has the χ2

distribution with the degrees of freedom δ. Then
P(X ≤ χ2) = 1 − α. After replacing X by χ2

(δ) to
indicate that X is distributed according to the χ2

distribution with the degrees of freedom δ, we may
write P(χ2

(δ) ≤ χ2
(δ,1−α)) = 1 − α.

The probability P(χ2 ≤ χ2
(δ,1−α)) corresponds

to the area to the left of the point χ2
(δ,1−α)

X 2
(δ, 1-α)

Figure 7.5.2 P(X2 ≤ X2
(δ,1−a)) corresponds to the area to the left of the point X2

(δ,1−a) under the curve.
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surrounded by the χ2 curve and the x-axis shown
in Figure 7.5.2.

Example 7.5.1. Find the appropriate percentile
points for the following.

(i) P(χ2
(6) ≤ χ2) = 0.90,

(ii) P(χ2
(24) ≤ χ2) = 0.95, and

(iii) P(χ2
(15) ≤ χ2) = 0.975.

Solution. Using Table F in the Appendix, we can
find the valuesχ2

(δ,1−α).

(i) χ2
(6,0.90) = 10.645,

(ii) χ2
(24,0.95) = 36.415, and

(iii) χ2
(15,0.05) = 4.601.

For the χ2 distribution with the degrees of freedom
δ = 6, 90% of the population lies below 10.645,

or the area encompassed by the χ2 curve, and the
X -axis and the vertical line drawn at 10.645 is
0.90.

Example 7.5.2. Find the following probabilities.

(i) P(χ2
(7) ≤ 2.83),

(ii) P(χ2
(20) ≤ 37.57), and

(iii) P(χ2
(35) ≤ 53.16).

Solution. The first two probabilities are readily
available from Table F. The table does not con-
tain the degrees of freedom δ = 35 but it includes
δ = 30 and 40. Since δ = 35 is the midpoint be-
tween 30 and 40, we will apply the linear interpo-
lation method to approximate the probability. In
the table, 53.16 is between 46.979 for δ = 30 and
59.342 for δ = 40 under P = 0.975. In fact, 53.16
is the midpoint between 46.979 and 59.342. Thus,
P(χ2

(35) ≤ 53.16) = 0.975.

df (δ) · 0.950 0.975 0.990 ·
· · · · · ·

30 · 43.773 46.979 50.892 ·
35 −→ −→ 53.16 ·
40 · 55.758 59.342 63.691 ·
· · · · · ·

Recall that if the variable X is normally dis-
tributed, then the statistic χ2 = (n−1)S2

σ 2 has the
χ2 distribution with the degrees of freedom (n −
1), where S2 is the sample variance. Similar to
t distribution, χ2

(n−1,α/2) and χ2
(n−1,1−α/2) denote

the (α/2)100th and (1 − α/2)100th percentiles of
the χ2 distribution with the degrees of free-
dom (n − 1). Therefore, a (1 − α)100% confi-

dence interval for σ 2 is given by
(n − 1)S2

χ2
(n−1,1−α/2)

≤

σ 2 ≤ (n − 1)S2

χ2
(n−1,α/2)

, and a (1 − α)100% confidence

interval for σ is given by

√
(n − 1)S2

χ2
(n−1,1−α/2)

≤ σ ≤√
(n − 1)S2

χ2
(n−1,α/2)

.

Example 7.5.3. Let X be the random variable
denoting the mucogingival distance, which is
normally distributed. To estimate the mean and
variance of the mucogingival distance for adult
patients, a periodontist took a random sample of
24 patients and measured the distance X in mil-
limeters. She has obtained S2 = 4.74. Find a 95%
confidence interval for the variance.

Solution. Since (1 − α)100% = 95%, α = 0.05.

The sample size n = 24 means the degree of free-
dom is n − 1 = 23. We now find the percentiles
from Table F; χ2

(n−1,α/2) = χ2
(23,0.025) = 11.689

and χ2
(n−1,1−α/2) = χ2

(23,0.975) = 38.076. By substi-
tution in the formula, we get

(23)(4.74)

38.076
≤ σ 2 ≤ (23)(4.74)

11.689
.

Calculations lead to 2.86 ≤ σ 2 ≤ 9.33.

Thus, a 95% confidence interval for σ 2 is
(2.86, 9.33). A 95% confidence interval for
the standard deviation σ is obtained by tak-
ing the square root (

√
2.86,

√
9.33) = (1.69,

3.05).

Example 7.5.4. Dilution of 5.25% sodium hypo-
chlorite before its use as an endodontic irrigant has
been recommended. To evaluate the effect of dilu-
tion on the solvent action of sodium hypochlorite,
9 necrotic tissue specimens were exposed to 5.25%
sodium hypochlorite and the percent X of tissue
weight change was measured. Suppose X is nor-
mally distributed and the sample of 9 specimens
yielded the sample SD of 14.26% [12]. Construct
a 90% confidence interval for σ.

Solution. Since S = 14.26, S2 = 203.35. The de-
gree of freedom is given by n = 9 − 1 = 8. From
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Table F we get χ2
(n−1,α/2) = χ2

(8,0.05) = 2.733, and
χ2

(n−1,1−α/2) = χ2
(8,0.95) = 15.507. Substitution in

the formula yields√
(8)(203.35)

15.507
≤ σ ≤

√
(8)(203.35)

2.733
.

Thus, a 90% confidence interval for σ is given by
(10.24, 24.40).

7.6 EXERCISES

1 Changes in dental arch dimensions that occur
as a result of growth and treatment are of interest
to orthodontists and must be carefully considered
when planning treatment. To study the changes
in arch length, thirty-three 13-year old males have
been recruited, and their arch length measurements
were made. The sample mean of the 33 measure-
ments was 77.9 mm. Let Y be the random variable
for maxillary arch length. Suppose Y has a normal
distribution with the SD σ = 4.1 mm. Find a 90%
confidence interval for the population mean arch
length of 13-year-old males.

2 To study whether or not there are any dif-
ferences in changes between females and males,
the investigators took twenty-nine 13-year-old fe-
males and measured their arch length. The sam-
ple mean of the 29 arch length measurements was
74.7 mm. Suppose that the arch length has a nor-
mal distribution with the SD σ = 3.2 mm. Find a
95% confidence interval for the population mean
arch length of 13-year-old females.

3 Fifteen fully developed maxillary anterior teeth
were artificially stained with human hemoglobin
to evaluate objectively in vitro the effectiveness
of bleaching. The bleaching agents were applied
twice over a 1-week period, and the changes in
tooth shade were analyzed using a sphere spec-
trophotometer, which measures the color “white.”
Let X be a random variable describing the amount
of changes in “white” color. The average change
of the 15 samples was 7.24. Suppose X has a nor-
mal distribution and our past experience indicates
that the SD is known to be 1.73. Construct a 99%
confidence interval for the mean μ.

4 In Exercise 3, suppose the investigators took 25
fully developed maxillary anterior teeth instead of

15. Discuss how this would affect the 99% confi-
dence intervals for μ.

5 In Example 7.2.5, discuss why rounding off to
n = 30 will not meet the requirement.

6 It is reasonable to assume that the level of
triglycerides (milligrams per decaliter) is normally
distributed. A previous study indicates that the
variance σ 2 among male subjects is 86.4. We want
to use the sample mean of a random sample to esti-
mate the population mean of the triglyceride level
and want to be able to assert with probability 0.85
that our error will be no more than (at most) 2.75
mg/dL. How large a sample will we need?

7 Eight dentists work in a large clinic. Let X be a
random variable for the amount of time they spent
in patient contact. Suppose the SD of X is 8.5 min.
What can we say with probability 95% about the
maximum error of estimate of the mean μ of their
patient contact time? Assume X is normally dis-
tributed.

8 Cardiologists want to estimate the average du-
ration of chest pain experienced by AMI (acute
myocardial infarction) patients. Suppose that the
duration is normally distributed with variance
σ 2 = 424. Chest pain data were collected from
24 AMI patients who have been admitted to a coro-
nary care unit. With what probability can you as-
sert that the maximum error of estimate will be no
greater than 10 min?

9 Public Health Department officials are con-
cerned about the oral hygiene of inner city chil-
dren. Twenty schoolchildren were randomly se-
lected to assess the overall oral hygiene conditions.
Dental examination of these children showed that
the average pocket depth is 6.2 mm with the SD of
2.4 mm. Suppose that the distribution of children’s
pocket depth is approximately normal. With prob-
ability 95%, what is the maximum error the offi-
cials make when they use 6.2 mm to estimate the
true average pocket depth of inner city children?

10 If the officials in Exercise 9 want to reduce the
maximum error by 50%, how many more children
should they select? Assume that the sample mean
and the sample SD will stay the same.

11 Suppose in Example 7.3.2 the investigators
collected the following post-treatment mandibular
intercanine width of 10 subjects from the group of
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13 patients. Find a 99% confidence interval for the
population mean μ.

Subject Mandibular Intercanine Width

1 26.5
2 24.6
3 26.4
4 27.3
5 26.0
6 25.8
7 27.0
8 24.8
9 25.2

10 24.1

12 A university clinic offers a flu vaccine each
year. The flu vaccine does not protect individu-
als from being infected by the flu virus. It only
reduces the probability of infection. Of 375 in-
dividuals who were given a flu vaccine, 64 had
the flu during the last flu season. Construct a 90%
confidence interval for the proportion of the peo-
ple who will not get the flu after receiving a flu
shot.

13 The heat produced by dental implant os-
teotomy preparation at different speeds and the
effects of heat production on the prognosis of im-
plant treatment are controversial [13]. To study the
relationship between drill speed at 30,000 rpm and
heat production, rabbits will be used. Heat produc-
tion will be measured in vivo during osteotomy
preparation in the rabbit tibia. Temperature will
be recorded while an osteotomy is being drilled
1 mm from the thermocouple receptor site. Dis-
tilled water is to be used as coolant in conjunction
with drilling. The goal is to estimate the proportion
of the heat measurements that exceed 33.0◦ C. If
you want to assert with the probability of at least
0.90 that its error will not exceed 0.025, how large
a sample will you need?

14 The breakage of the esthetically desirable ce-
ramic bracket has been considered a major clin-
ical problem because it prolongs the orthodontic
treatment and leads to compromises in its final
outcome. Broken ceramic brackets are uncomfort-
able to the patients and difficult to remove. In-
ternal causes for ceramic breakage are porosity
and cracks, the presence of localized stresses and
scratches, an inadequate heat treatment, and an im-
proper design and material [14]. To improve the

quality of the ceramic brackets, the manufacturer
has designed an impact resistance test. A focus of
the test is to estimate the proportion of brackets
that survive the impact test. Suppose the manu-
facturer wishes to claim, with the probability of
at least 0.99, that its error is no greater than 0.03.
How large a sample will it need?

15 The prevalence of hypodontia in children with
clefts, both inside and outside the cleft region, is
being studied. It is known that hypodontia preva-
lence rate is 0.77 from the past studies. How large
a sample would you need if you want to assert with
the probability of at least 0.95 that the maximum
error of your estimate of the prevalence rate is less
than 0.02?

16 Quality of patient care includes a quiet envi-
ronment in the hospital ward area. To assess their
quality patient care, Loma Linda Community Hos-
pital administrators collected noise level data at 23
randomly selected time points during January in
the ward area. Suppose the noise level is normally
distributed. Their data yielded the sample mean of
52.5 decibels and the sample SD of 5.2 decibels.
The administrators would like to know a 99% con-
fidence interval for the true mean noise level in the
hospital.

17 Tooth size ratios represent a valid diagnostic
tool that allows for an educated prediction of treat-
ment outcomes and may also limit the necessity
for diagnostic setups for complex cases. A proper
relationship of the total mesiodistal width of the
maxillary dentition to the mesiodistal width of the
mandibular dentition will favor an optimal post-
treatment occlusion [15]. Suppose the maxillary-
to-mandibular tooth size relationship is observed,
and the ratio is known to be normally distributed.
A sample of 31 patients is selected, and the sample
variance of the ratio of these 31 patients is 2.72.
Construct a 85% confidence interval for the stan-
dard deviation σ.

18 Homocysteine is a by-product of protein pro-
cessing, which is known to be one of the serious
artery clogging villains. Patients can lower homo-
cysteine levels by taking vitamins, such as folic
acid, vitamins B-6 and B-12. Doctors took 29 pa-
tients and measured their daily intake of folic acid,
which is assumed to be normally distributed. From
the measurements they obtained, the sample SD
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S = 34 micrograms. Find a 90% confidence inter-
val for the population variance σ 2.

19 Silicon nitride is a high-performance ceramic
characterized by high wear resistance, good fa-
tigue life, and fracture toughness. Its elastic mod-
ulus in the porous state is similar to that of bone.
These properties are indicative of its potential as
a material for orthopedic prostheses [16]. Sup-
pose investigators studied its fracture toughness in
megapascals using 41 samples. The investigators
are interested in estimating the standard deviation
of fracture toughness X . Suppose X is normally
distributed and S2 = 784. Find a 95% confidence
interval for σ.

20 The parathyroid hormone regulates calcium
levels in blood. Blood calcium levels increase
when the production of parathyroid hormone in-
creases. This high blood calcium level can lead
to kidney stones, making a person urinate large
volumes, and be constantly thirsty. It also leaches
calcium from bones, weakening them and mak-
ing them vulnerable to fractures. A high calcium
level can dull a person’s thinking. If the level is
quite high, it can eventually put a person into a
coma. An endocrinologist estimated the SD of the
blood calcium level to be 0.25 mg/dL based on 12
patients he examined last week. Find a 99% con-
fidence interval for σ assuming the distribution of
the blood calcium level is normal.
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Chapter 8

Hypothesis Testing: One-Sample Case

8.1 INTRODUCTION

Statistical inference is a process of drawing con-
clusions regarding a population based on the lim-
ited information from a sample taken from the
population of our interest. There are different sta-
tistical approaches to making decisions about the
population. One that has received much attention
is hypothesis testing, which has a wide range of
applications in biomedical and health sciences,
as well as other disciplines. Statistical hypothe-
sis testing can be applied to address conjectures
such as the following:

� Wearing a mouthguard is an effective way to
prevent trauma to teeth during sports activities.

� The prevalence of decayed, missing, filled teeth
(DMFT) in children with cleft lip/palate is higher
than in those without cleft lip/palate.

� Alcohol consumption, like smoking, might be
related to periodontal diseases.

� Patients treated with nifedipine tend to have gin-
gival enlargement.

� A 5-year survival rate of oral and pharyngeal
cancer is higher for white patients than for black
patients.

� Bleach is much more effective than a dish wash-
ing soap in eliminating microorganisms such as
salmonella, pseudomonas, staphylococcus, and
candida.

� Apolipoprotein E E4 allele is strongly associated
with late-onset familial Alzheimer’s disease.

In hypothesis testing, the researchers must
clearly define the population under investigation,
state the hypotheses to be tested, specify the sig-
nificance level (this will be defined later), select
a sample from the population, collect data, select
a test statistic, perform the calculations required

for the statistical test, draw a conclusion, and,
finally, develop appropriate interpretations of the
conclusion.

Scientific investigations involve learning from
data. Researchers state hypotheses on the basis of
the statistical evidence contained in the sample
data. The hypothesis is either rejected, meaning
the evidence from the sample indicates enough to
say with a certain degree of confidence that the hy-
pothesis is false, or accepted, meaning there is not
enough evidence to reject the hypothesis. Suppose
we want to show that a new cholesterol-reducing
drug is more effective than the current one. We hy-
pothesize that they are equally effective. Since we
hypothesize that there is no difference in medical
effectiveness between the two drugs, this type of
hypothesis is called the null hypothesis and is de-
noted by H0. The hypothesis that we accept when
the null hypothesis is rejected is called the alter-
native hypothesis, denoted by H1.

In our system of criminal justice, the accused
is presumed innocent until proven guilty “beyond
reasonable doubt.” The null hypothesis we make
in court proceedings is the presumption of inno-
cence. The alternative hypothesis is “the defendant
is guilty.” In the U.S. justice system, the burden
of proof lies with the prosecution to convince the
jury that the defendant is guilty. The two hypothe-
ses must be formulated together so that we know
when to reject the null hypothesis. For example,
the investigators are testing the null hypothesis H0

that the average birth weight of full-term babies
born in the U.S. is μ ≤ 7.5 lbs versus the alterna-
tive hypothesis H1 that μ > 7.5 lbs. They would
reject H0 only if the sample mean is much greater
than 7.5 lbs. The hypothesis being proposed by the
scientific investigators is the alternative hypothe-
sis. Thus the alternative hypothesis is sometimes
referred to as the research hypothesis.

127
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8.2 CONCEPTS OF HYPOTHESIS
TESTING

To illustrate some of the underlying concepts of
testing a statistical hypothesis, suppose a claim
was made by emergency room staff that the av-
erage waiting time for emergency room patients
is about 30 minutes. The hospital administration
considers reorganizing the emergency room staff.
They want to test the null hypothesis that the aver-
age waiting time is 30 minutes versus the alterna-
tive hypothesis that the average waiting time is not
30 minutes, that is, either longer or shorter than
30 minutes. We can state the hypotheses as
follows:

H0 : μ = 30 vs. H1 : μ �= 30.

A member of the ER staff is assigned to ob-
serve 25 patients at random, carefully recording
their arrival time and the time they are attended by
the medical staff. Suppose the hospital adminis-
tration has decided to accept the claim if the mean
waiting time of the random sample of 25 patients is
between 27 and 33 minutes. Otherwise, H0 will be
rejected. This is a criterion for making a decision
whether to accept or reject the ER staff’s claim.
As we discussed in detail in Chapter 6, the sample
mean is a random variable. Since the decision is
made based on a sample, the value of the sample
mean of 25 patients may be greater than 33 minutes
or less than 27 minutes, even though the true mean
of the waiting time is between 27 and 33 minutes.
This situation will lead them to make a wrong deci-
sion, because according to their criterion they will
reject the claim that is true. Therefore, it seems rea-
sonable to evaluate the chances of making a wrong
decision, given a decision criterion. Let’s assume
that the waiting time is normally distributed and
the SD σ of the waiting time is known to be 6.75.

The chance that the sample mean of the waiting
time is shorter than 27 or longer than 33, given that
the true mean is 30, is P(X ≤ 27) + P(X ≥ 33).
We can calculate these probabilities

P(X ≤ 27) = P

(
Z ≤ 27 − 30

6.75/
√

25

)
= P(Z ≤ −2.22) = 0.0132,

and

P(X ≥ 33) = P

(
Z ≥ 33 − 30

6.75/
√

25

)
= P(Z ≥ 2.22) = 0.0132.

So P(X ≤ 27) + P(X ≥ 33) = 0.0132 + 0.0132
= 0.0264.

The probability of observing a sample mean that
is less than 27 or greater than 33 is given by the
combined area under the normal curve to the left
of x = 27 and to the right of x = 33 shown in
Figure 8.2.1. That is, the chance that they reject
H0 purely due to chance, even though the null hy-
pothesis is true, is 0.0264. This probability is small
enough to be considered as an acceptable risk. If,
however, the probability were 0.0784 instead of
0.0264, the hospital administrators will have to
decide if they are willing to take the risk in light
of the consequences of an error.

We now consider the other possibility, that is,
accepting H0 (or failing to reject H0) when the null
hypothesis is false. Suppose the true mean waiting
time is 34 minutes. The chance that the sample
mean of 25 patients is between 27 and 33 minutes
is

P(27 ≤ X ≤ 33)

= P

(
27 − 34

6.75/
√

25
≤ Z ≤ 33 − 34

6.75/
√

25

)
= 0.2296,

30

0.0132 0.0132

_
x = 27

_
x = 33

Figure 8.2.1 Normal distribution with μ = 30.
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Figure 8.2.2 The shaded area corresponds to P(−5.19 ≤ Z ≤ −0.74).

which is the same as the entire area between
z = −5.19 and z = −0.74 under the standard nor-
mal curve in Figure 8.2.2. But this area is approx-
imately the same as the entire area to the left of
z = −0.74 under the normal curve. Why?

The above probability 0.2296 is the probability
of erroneously accepting H0 when the true mean
waiting time is indeed μ = 34 minutes. The exam-
ple we described is typical of statistical hypotheses
tests, which is summarized in the table below.

H0 Is True H0 Is False

Accept H0 Correct decision Incorrect decision
Reject H0 Incorrect decision Correct decision

What we have discussed is analogous to a jury
trial in a court of law. The defendant who is on trial
is either innocent or guilty in the same way that the
null hypothesis is either true or false. Relevant ev-
idence (data) is presented during the trial. The jury
finds the defendant either innocent or guilty after
the deliberation. If the jury finds the defendant not
guilty when he truly is innocent, the right verdict is
delivered. On the other hand, if the jury finds him
innocent when he truly is guilty, the wrong ver-
dict is delivered. As the above table indicates, two
types of incorrect decisions can be made: reject-
ing H0 when it is true, and accepting H0 when it is
false. We define two types of errors in hypothesis
testing.

Definition 8.2.1. We say a type I error is com-
mitted if the null hypothesis is rejected when it is
true, and a type II error is committed if the null
hypothesis is accepted when it is false.

Notation 8.2.1. The probability of committing a
type I error is denoted by the Greek letter α (alpha),
and the probability of committing a type II error is

denoted by the Greek letter β (beta). That is, P(a
type I error) = α and P(a type II error) = β.

We will present a few examples to illustrate how
the hypotheses can be stated.

Example 8.2.1. A new drug is being developed
by a pharmaceutical company for the treatment of
lung cancer. The company will release the drug
only if a clinical trial indicates that it is effective
on a majority of lung cancer patients. The com-
pany’s scientists are confident that the drug is ef-
fective, but they wish to make the claim based on
the statistical evidence. Let p be the proportion of
lung cancer patients for whom the drug is effective.
How would you state the hypotheses?

Solution. The company wishes to prove the drug
is effective in a majority of lung cancer patients,
which means the proportion p > 0.5. Thus, the
null and alternative hypotheses can be stated as

H0 : p ≤ 0.5 vs. H1 : p > 0.5.

Example 8.2.2. Due to dental anxiety experi-
enced by the patients, their pulse rate tends to
increase while the patients are sitting in the den-
tal chair. Suppose the average pulse rate of the
dental patients during the treatment is 105 beats
per minute. Research is being conducted to test
what effect soothing music might have on the pa-
tients: increased pulse rate, decreased pulse rate,
or no changes at all. State the null and alternative
hypotheses.

Solution. Letting μ be the average pulse rate of the
patients while sitting in the dental chair, we state
H0: μ = 105 vs. H1: μ �= 105. The null hypoth-
esis specifies that there is no change in the mean
pulse rate. The alternative hypothesis states that
the mean pulse rate is different from 105, either
lower or higher than 105 beats/min.
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Example 8.2.3. Both dental and medical societies
have an obligation to become aware of the meth-
ods of bacterial spread. In recent years, the dental
profession has increased measures to prevent po-
tential vehicles of transmission for clinicians and
patients. Bacterial contamination can occur every
day. For instance, airborne bacteria are produced
during dental procedures in the oral cavity. It has
been generally known that in the immediate site
of operation, a cavitron produces no more than
75, 000 bacterial counts per cubic foot, much less
than a high-speed handpiece. But recently, dental
researchers have begun to suspect that the level
of bacterial contamination produced by a cavitron
might be higher, and they wish to confirm their
suspicion. State the appropriate hypotheses.

Solution. Let μ denote the average amount of
aerosols produced by a cavitron during dental pro-
cedures. Since the investigators speculate that μ is
at least 75, 000, we state the hypotheses as:

H0 : μ ≤ 75, 000 vs. H1 : μ > 75, 000.

If the null hypothesis in Example 8.2.3 is rejected
when it is true, then a type I error is committed.
The sample data indicated that a cavitron pro-
duced more bacteria-ridden aerosols by chance
(i.e., more than 75, 000), even though it really
doesn’t. In this case, a cavitron might not neces-
sarily produce bacteria-ridden aerosols more than
75, 000, but the investigators wrongly concluded
that it does. Therefore, they have committed a type
I error. On the other hand, a cavitron might pro-
duce aerosols much less than 75, 000 by chance,
even if it really doesn’t, thereby leading the inves-
tigators to accept the null hypothesis, that is false.
In this case, they have committed a type II error.

We emphasize that the investigator’s decision to
reject or accept the null hypothesis in some sense
does not prove much. The only definitive way to
prove anything statistically is to observe the entire
population, which is not easy to accomplish. The
decision to accept or reject the null hypothesis is
made on the basis of a random sample and thus
of a probabilistic concept as discussed in Chapter
6. When there is a large difference between the
observed mean from the sample (say, the sample
mean is 118 in Example 8.2.2) and the hypothe-
sized mean (μ = 105 in Example 8.2.2), the null
hypothesis is probably false. We would not ex-
pect the mean X of a single random sample to be

exactly equal to the hypothesized value 105, even
if the true mean is μ = 105. Some discrepancy is
expected between X and 105 due to chance. But
if the discrepancy is large, we would be inclined
to believe that H0 is false and that it should be re-
jected. Therefore, we conclude that the population
mean μ could not be 105 beats/min. In this situ-
ation, statisticians say that a test result is statisti-
cally significant. If the sample mean X is close to
105, that is, if the statistical evidence is not strong
enough to doubt the validity of the null hypothe-
sis, we accept H0. Instead of saying “accept H0,”
some authors prefer to say “not enough evidence
to reject H0.” There is a good reason for this. The
true population mean could be some value other
than 105, but the random sample we have selected
did not contain enough evidence to prove it. The
key question in hypothesis testing is how large a
difference do we need to observe in order to re-
ject the null hypothesis? As we explained in the
above discussion, when H0 is rejected, we take a
risk of rejecting a null hypothesis that is true. It
is customary in statistics that we reject H0 if the
probability is less than or equal to 0.05 of observ-
ing a discrepancy between X and 105 at least as
large as the one you just observed. Such a proba-
bility is called the significance level. We state the
following definitions.

Definition 8.2.2. The significance level is the
maximum probability of committing a type I error
and is denoted by α.

Definition 8.2.3. The power of a hypothesis test
is defined as

1 − β = 1 − P( a type II error).

Definition 8.2.4. The test statistic is a statistic
based on which the hypothesis is to be tested. For
example, the sample mean X is a test statistic for
testing the hypothesis in Example 8.2.3.

The ideal case, of course, is when both P(type I
error) = α and P(type II error) = β are equal to
0. However, this is unrealistic to expect unless the
sample size is increased without a bound (n = ∞).
The best we can do in the hypothesis-testing pro-
cedure is to limit the probability of committing
a type I error and try to minimize the probabil-
ity of committing a type II error. The significance
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level sets the limit on the risk of making a type I
error. Statisticians usually specify α = 0.05. But
the investigators can be flexible with the selection
of the significance level α, depending upon cir-
cumstances. In many medical and pharmaceutical
studies α is typically specified by a value lower
than 0.05, for example, 0.01.

Once again, this situation is analogous to a court
trial. At the end of a trial, the judge issues a state-
ment to the members of the jury to the effect that
if they must find the defendant guilty, find him
guilty “beyond reasonable doubt.” The American
judicial system recognizes the fact that there is a
risk of wrongly convicting an innocent man by the
jury, that is, committing a type I error. To pro-
tect against potentially devastating consequences,
the judge is setting a limit on the probability of
committing a type I error. This limit is specified
by “beyond reasonable doubt,” which is equiva-
lent to the significance level in hypothesis testing.
The jury must now try to minimize the chance of
finding the defendant “not guilty” when he truly is
guilty. After specifying the significance level, an
appropriate critical value or critical values must
be selected using the probability tables provided
in the Appendix.

Definition 8.2.5. The critical value(s) defines the
rejection region, which is the range of values of
a test statistic for which there is a significant dif-
ference, and therefore the null hypothesis should
be rejected. The acceptance region is the range of
values of a test statistic for which the null hypoth-
esis is accepted.

Definition 8.2.6. When the rejection region is on
either the right-hand side or the left-hand side
of the mean, the test is called a one-tailed test.
When the rejection region is on both sides of the
mean, the test is called a two-tailed test.

The critical value can be on either the right-hand
side or left-hand side of the mean for a one-tailed
test. It depends on the inequality sign of the al-
ternative hypothesis. In Example 8.2.3, the critical
value is on the right-hand side. If the direction of
the inequality was reversed in the statement of the
alternative hypothesis (i.e., H1: μ < 75,000), then
the critical value will be on the left-hand side of
the mean. For a two-tailed test the critical values
are on both sides of the mean. Example 8.2.2 is a

two-tailed test for which the rejection region is on
both sides. The procedures for testing statistical
hypotheses can be summarized as follows:

Step 1. State the hypotheses to be tested.
Step 2. Specify the significance level α.

Step 3. Choose a test statistic and perform the re-
quired calculations for the statistical test.

Step 4. Find the critical value and define the rejec-
tion region.

Step 5. Decide to accept or reject H0.

Step 6. Draw conclusions and make interpreta-
tions.

8.3 ONE-TAILED Z TEST OF THE
MEAN OF A NORMAL
DISTRIBUTION WHEN σ2 IS
KNOWN

We will explain how to obtain the critical value
using the example of the average birth weight of
full-term babies discussed in the previous section.
We shall assume the distribution of the birth weight
is normal with a known variance σ 2 = 1.74. The
standard deviation (SD) is σ = √

1.74 = 1.32. In
that example, the null and alternative hypotheses
are stated as

H0 : μ ≤ 7.5 lbs. vs. H1 : μ > 7.5 lbs.

Suppose that the investigators selected the sig-
nificance level α = 0.05. Since this is a one-tailed
test with the critical value lying on the right side,
we need to look for a z value such that 5% of the
area falls to the right and 95% to the left of the z
value. It can be shown that the best test in this type
of situation is a test based on the sample mean X . If
X is sufficiently larger than 7.5 lbs, we reject H0.

Otherwise, we accept H0. If the true mean birth
weight of full-term babies is less than 7.5 lbs, then
most likely the values of X will tend to be less than
7.5. If H1 is true, then the values of X will tend to
be much larger than 7.5. How large should X be for
H0 to be rejected? Let c denote the critical value.
Then, H0 will be rejected if c ≤ X . Given the sig-
nificance level α = 0.05, we can find the critical
value c from the relation P(a type I error) = α.

P (a type I error) = P(c ≤ X )

= P

(
c − 7.5

σ/
√

n
≤ Z

)
= 0.05.
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μ0 +
z1−α .σ        _____            

√n

Figure 8.3.1 The critical value for a one-tailed test.

This indicates that
c − 7.5

σ/
√

n
corresponds to the up-

per 5th percentile or 95th percentile on the stan-
dard normal distribution. Using the notation from
Chapter 5, we have

c − 7.5

σ/
√

n
= z1−α.

Since α = 0.05, z1−α = z0.95. Thus we get
c − 7.5

σ/
√

n
= z0.95. Solving the equation for c by

multiplying both sides of the equation by σ/
√

n
and adding 7.5, we obtain the critical value c =
7.5 + z1−ασ/

√
n.

Instead of 7.5 lbs in the statement of the hy-
potheses, we will use μ0 to indicate an unspecified
but known birth weight. Replacing 7.5 with μ0, we
can state the hypotheses as

H0 : μ ≤ μ0 vs. H1 : μ > μ0.

The critical value c is then given by c = μ0 +
z1−ασ/

√
n. This critical value is indicated in

Figure 8.3.1 for the significance level α.

The best procedure to test the above hypotheses
H0: μ ≤ μ0 vs. H1: μ > μ0 is based on a sam-
ple mean X . Suppose that the investigators ob-
served the birth weight of 16 full-term babies born
at a local hospital and that the mean weight was
8.2 lbs. Letting α = 0.05, we obtain the critical
value

c = μ0 + z1−α · σ√
n

= 7.5 + (1.645) · (1.32)√
16

= 8.0429.

Since X = 8.2 is greater than c = 8.0429, we

reject the null hypothesis H0 and conclude that

the average birth weight of full-term babies is sta-
tistically significantly higher than 7.5 lbs at the
significance level α = 0.05. If X had been less
than c = 8.0429, we would have accepted H0. The
hypothesis-testing procedure we have just demon-
strated can be summarized as follows:

� Hypotheses: H0: μ ≤ μ0 vs. H1: μ > μ0
� Significance level: α

� Test statistic: X or Z = X − μ0

σ/
√

n
� Critical value: c = μ0 + z1−ασ/

√
n

� Reject H0 if X > μ0 + z1−α · σ√
n

, or accept H0

if X ≤ μ0 + z1−α · σ√
n

.

The acceptance and rejection regions for test-
ing the birth weight hypotheses are shown in
Figure 8.3.2.

The rejection region defined by X > μ0 +
z1−ασ/

√
n can be rewritten by subtracting μ0 from

both sides of the inequality sign and dividing both

sides by
σ√
n
,

X − μ0

σ/
√

n
> z1−α.

Therefore, we can express the test criteria in terms

of the standardized values, Z = X − μ0

σ/
√

n
. Given

the hypotheses H0: μ ≤ μ0 vs. H1: μ > μ0, we

reject H0 if Z = X − μ0

σ/
√

n
> z1−α , or accept H0 if

Z = X − μ0

σ/
√

n
≤ z1−α.
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μ0 +
z1−α .σ        _____            

√n

Acceptance
Region

Rejection
              Region

Figure 8.3.2 Acceptance and rejection regions for H0: μ ≤ μ0 vs. H1: μ > μ0.

Assuming α = 0.05, the null hypothesis H0 is

rejected if Z = X − μ0

σ/
√

n
> 1.645, or accepted if

Z = X − μ0

σ/
√

n
≤ 1.645. Under the null hypothesis

H0, the test statistic Z = X − μ0

σ/
√

n
has the stan-

dard normal distribution N (0, 1). This type of hy-
pothesis test, based on the test statistic Z , is re-
ferred to as the one-sample Z test. Suppose in
the statement of the above hypotheses that we
have discussed, the inequalities were reversed,
that is, H0: μ ≥ μ0 vs. H1: μ < μ0. The critical
value will be on the left-hand side of the mean

and is given by c = μ0 + zα · σ√
n

. For the signif-

icance level α = 0.05, zα = z0.05 = −1.645, SD
σ = 1.32 and n = 16,

c = 7.5 + (−1.645)(1.32)√
16

= 6.9572

Thus, the null hypothesis is rejected if X < 6.9572,
or accepted if X > 6.9572. Similarly, we may ex-
press the test criteria as follows: Given the hy-
potheses

H0 : μ ≥ μ0 vs. H1 : μ < μ0,

reject H0 if X < μ0 + zα · σ/
√

n,

or accept H0 if X ≥ μ0 + zα · σ/
√

n.

Equivalently, reject H0 if Z = X − μ0

σ/
√

n
< zα , or

accept H0 if Z = X − μ0

σ/
√

n
≥ zα.

The rejection and acceptance regions of the test
are shown in Figure 8.3.3.

Example 8.3.1. For many years, conscious seda-
tion has been a popular pharmacological approach
in the management of young uncooperative chil-
dren who need invasive dental and medical pro-
cedures. The waiting time Y after drug admin-

μ0 +
zα .σ                    

√n

Acceptance
Region

                    Rejection
Region

Figure 8.3.3 Acceptance and rejection regions for H0: μ ≥ μ0 vs. H1: μ < μ0.
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z1−α
•

2.7596

Figure 8.3.4 Rejection and acceptance regions for the test in Example 8.3.1.

istration for sedation is believed to be normally
distributed. For the children who are at least
36 months old, the average waiting time is about
55 minutes. Some pediatric clinicians claim that
they have waited longer and were determined to
prove it. They observed 22 sedation appointments
and recorded the waiting time for each appoint-
ment. The sample mean of these 22 observations
is 61 minutes. Suppose the variance of the wait-
ing time Y is 104. State the hypotheses and per-
form an appropriate test at the significance level
α = 0.05.

Solution. Since the clinicians claim that the waiting
time is longer than 55 min., we can state the hy-
potheses H0: μ ≤ 55 vs. H1: μ > 55. We now cal-
culate the test statistic with σ = √

104 = 10.1980
and n = 22.

Z = X − μ0

σ/
√

n
= 61 − 55

10.1980/
√

22
= 2.7596.

Since z1−α = 1.645 and z = 2.7596 > z1−α , we
reject H0 and conclude that the average wait-
ing time is statistically significantly longer than
55 minutes at the significance level α = 0.05. The
rejection and acceptance regions are shown in
Figure 8.3.4.

Example 8.3.2. The risk of mandibular canal pen-
etration during endosteal implant placement is
a concern for both the implant surgeon and the
patient. At the time of surgery, intrusion in the
mandibular canal results in an increase in hemor-
rhage, impairs visibility, and increases the poten-
tial of fibrous tissue formation at the contact of the
implant. To protect the patients during the place-
ment of posterior mandibular endosteal implants,
the zone of safety is defined as an area within the

bone safe to place implants, without fear of im-
pingement on the mandibular neurovascular bun-
dle [1]. Suppose the zone of safety is a random
variable X that is normally distributed with the
known variance σ 2 = 3.49. It is generally known
that the average zone of safety for the implant pa-
tient is 9.64 mm2. Dr. Laurent suspects from her
clinical experience that patients in their 60s, 70s, or
older have the zone of safety substantially smaller
than 9.64 mm2. To confirm her suspicion, she has
measured the zone for 8 patients in their 60s, and
10 patients in their 70s based on their panoramic
radiographs. The sample mean of the 18 observa-
tions was X = 8.48 mm2. (a) State the appropriate
hypotheses; and (b) test her suspicion at the sig-
nificance level α = 0.05.

Solution. (i) Let μ denote the average zone of
safety for the older patients. The hypotheses can
be stated H0: μ ≥ 9.64 vs. H1: μ < 9.64.

(ii) We compute the test statistics by substituting
σ = 1.87 and n = 18

Z = X − μ0

σ/
√

n
= 8.48 − 9.64

1.87/
√

18
= −2.64.

Since zα = z0.05 = −1.645 and −2.64 < z0.05 =
−1.645, we reject H0 at the significance level α =
0.05. So the average zone of safety for the older
patients is statistically significantly smaller than
that for the general implant patients. The rejection
and acceptance regions of the test are illustrated in
Figure 8.3.5.

Example 8.3.3. Imperfect spacing between the
primary incisors and malalignment of the perma-
nent incisors may suggest the need for orthodon-
tic intervention. Without sufficient data, decisions
to treat are based on individual judgment rather
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z.05

•
−2.64

Figure 8.3.5 Rejection and acceptance regions for the test in Example 8.3.2.

than clinical evidence. A study was undertaken
to determine whether slipped contact arrangement
(distal-lingual surface of mandibular permanent
lateral incisors overlapping the facial surface of
the primary canines at the end of incisor transition)
should be considered when children undergo early
orthodontic treatment for teeth crowding [2]. Sup-
pose 37 children presenting with slipped contact
arrangement were studied. The space deficiency,
denoted by Y , between primary canines for ide-
ally aligned permanent incisors was measured. The
sample mean Y of the space deficiency is 3.24 mm,
with σ = 1.82 mm. Is the sample mean of 3.24 mm
statistically significantly wider than the “standard”
value of 3.00 mm? Test the hypotheses at the sig-
nificance level α = 0.05.

Solution. The hypotheses we wish to test can be
stated as H0: μ ≤ 3.0 vs. H1: μ > 3.0. We note
that the distribution of the space deficiency Y is
not known. But, since the sample size n = 37 is
large enough, the central limit theorem (see Sec-
tion 6.22) can be applied. The standard error is
obtained by α/

√
n = 1.82/

√
37 = 0.299 2. Thus,

the test statistic

Z = Y − μ0

σ/
√

n
◦∼ N (0, 1) by the central limit theorem

= 3.24 − 3.0

1.82/
√

37
= 0.8021 < z1−α = 1.645.

The calculated z value is in the acceptance region.
Therefore, we accept the null hypothesis. No sta-
tistically significant difference from the “standard”
value has been detected at α = 0.05.

In the above examples, we have specified the
significance level α = 0.05 because this value is
commonly used in most areas of scientific in-
vestigations. Readers should keep in mind that

hypothesis tests can be performed at different
significance levels, for instance α = 0.10, 0.05,

0.01, as pointed out in the previous section. The
choice of the α level depends on the seriousness of
the consequence of the type I error. The more seri-
ous the consequence, the smaller the α level should
be. You may have encountered many research re-
ports containing a p value (a probability value).
We will state the definition of a p value, and will
discuss that a significance test can be performed
by obtaining the p value for the test.

Definition 8.3.1. The p value of a test is the prob-
ability that the test statistic assumes a value as
extreme as, or more extreme than, that observed,
given that the null hypothesis is true.

Recall our discussions on the conditional prob-
ability in Chapter 4. We see that the p value is
really the conditional probability of observing “ex-
treme” data, given the null hypothesis: P(D | H0).
This conditional probability P(D | H0) is different
from the conditional probability P(H0 | D), as we
learned in Chapter 4. A small value of P(D | H0)
does not imply a small value of P(H0 | D). The
p values can be obtained by using a statistical soft-
ware package or the probability tables provided in
the Appendix. It is customary for scientific articles
to report the test statistic that was employed, the
value of the test statistic, and the p value. Sup-
pose an article in the Journal of American Dental
Association reports a p value of 0.0212 for a sta-
tistical hypothesis test based on the test statistic

Z = X − μ0

σ/
√

n
= 2.03. Then the probability of ob-

serving Z = X − μ0

σ/
√

n
greater than or equal to 2.03

is 0.0212 if the null hypothesis were true. Intu-
itively, if the p value were very small, then the



136 Biostatistics for Oral Healthcare

P (Z ≥ 0.80) = 0.2119

Figure 8.3.6 The p value P(Z ≥ 0.80).

chances that the null hypothesis is true might be
small. This will lead us to reject the null hypoth-
esis at the significance level α = 0.05, but not at
α = 0.01. We will show how to find a p value for
the Z test.

Example 8.3.4. The observed value of the test
statistic in Example 8.3.3 is z = 0.8021, which is
not included in Table D in the Appendix, since the
standard normal probability table is limited. We
will have to round it off to the nearest hundredth
so that we have z = 0.80. By the definition, the
p value is the probability that the test statistic Z
is greater than this observed value 0.80 (“more
extreme than that observed” means greater than
0.80), that is,

p = P(0.80 ≤ Z ) = 1 − 0.7881 = 0.2119.

Since the p value of the Z test is 0.2119, which is
much larger than the significance level α = 0.05,

we accept the null hypothesis. The p value is
shown in Figure 8.3.6.

Example 8.3.5. Periodontists have claimed that
the average pocket depth of smokers is 7.5 mm,
which is much deeper than that for non-smokers.
Based on his own experiences with periodontal
patients he has treated, Dr. Pang is suspicious of
this claim. In fact, he hypothesized that the pocket
depth of smokers is deeper than that for non-
smokers but less than 7.5 mm. The sample mean of
his 14 patients who are smokers is 6.25 mm. Let’s
assume that the distribution of the pocket depth
for smokers is normal, with the known standard
deviation of 2.15 mm. State the hypotheses and
perform the test using the p value.

Solution. The hypotheses that Dr. Pang needs to
test can be stated as: H0: μ = 7.5 vs. H1: μ < 7.5.

The standard error is obtained by
σ√
n

= 2.15√
14

=

0.5746. Thus, the test statistic is

Z = X − μ0

σ/
√

n
= 6.25 − 7.5

0.5746
= −2.175.

The p value is the probability of observing the

values less than z = −2.175, because those values
to the left of −2.175 are more extreme than the z
value that was obtained. We can express

p = P(Z ≤ −2.175) = P(2.175 ≤ Z ),

by symmetry

= 1 − P(Z ≤ 2.175) = 0.0148.

Since the p value 0.0148 is smaller than α = 0.05,

we reject H0 at the significance level α = 0.05 and
conclude that the average pocket depth of smokers
is significantly shallower than the 7.5 mm previ-
ously claimed by the periodontists. The p value of
the test is shown in Figure 8.3.7.

We have performed statistical testing hypothe-
ses using the p value. As we saw in the examples
discussed, the importance of the p value is that
it tells us exactly how significant the test results
are on the basis of the observed data. Students and
researchers in biomedical and health sciences fre-
quently ask how small the p value has to be for
the results to be considered statistically significant.
Here are some crude guidelines many investigators
use.

� If p ≥ 0.05, then the results are not statistically
significant.

� If 0.01 ≤ p < 0.05, then the results are signifi-
cant.

� If 0.001 ≤ p < 0.01, then the results are highly
significant.

� If p < 0.001, then the results are very highly
significant.
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P(Z < −2.175)
= 0.0148

−2.175

Figure 8.3.7 The p value P(Z ≤ −2.175).

Remember that the p value represents the proba-
bility, that is, the chance that the investigators mis-
takenly find the results significant due to an error.
In a jury trial, the p value represents the probabil-
ity that, based on the evidence, the jury wrongly
finds the defendant guilty when he is really
innocent.

Keep in mind that, depending upon particular
situations, these guidelines may not be entirely ad-
equate. A pharmaceutical company that is about to
introduce a new drug may not consider the results
statistically significant unless the p value is less
than 0.01. In the first three examples, we took the
critical value approach to establish whether or not
the results from the hypothesis tests are statistically
significant. In the last two examples, the p value
approach was taken. We can take either one of the
two approaches, though the p value approach is
more precise because it yields an exact value, and
it is more popular among the practitioners.

8.4 TWO-TAILED Z TEST OF
THE MEAN OF A NORMAL
DISTRIBUTION WHEN σ2 IS
KNOWN

In Section 8.3, the alternative hypothesis was
stated in a specific direction (H1 : μ > 3.0 or H1:
μ < 7.5) relative to the null hypothesis, assuming
that we have prior knowledge regarding the direc-
tion. However, in many situations this knowledge
may not be available. If the null hypothesis is false,
we would have no idea if the alternative mean is
smaller or larger than the null mean.

To explain a two-tailed test, let’s consider com-
plete denture prosthodontics. Although the preva-
lence rate of edentulous conditions has been

decreasing, the great number of edentulous pa-
tients warrants the continuing efforts of basic and
clinical research on removable partial dentures.
Residual ridge resorption is an inevitable conse-
quence of tooth loss and denture wearing. Suppose
the amount of residual ridge resorption in women
in their 60s and 70s who wear dentures is approx-
imately normally distributed with mean 2.0 mm
and SD 0.36 mm. It is not known whether residual
ridge resorption in men in the same age range who
wear dentures is more or less than that in women.
We assume that the amount of residual ridge re-
sorption in men is also approximately normally
distributed with unknown mean and SD 0.36 mm.
We wish to test the hypotheses H0: μ = 2.0 vs.
H1: μ �= 2.0. Suppose 12 male patients in their
60s and 70s who wear dentures were examined
and the mean residual ridge resorption was found
to be 1.8 mm. What can we conclude from the test?
This is an example of a two-tailed test, since the
alternative mean can be either less or more than
the null mean of 2.0 mm. A reasonable decision
rule for the two-tailed test is to reject H0 if the
test statistic is either too small or too large. That
is, Z ≤ c1 or Z ≥ c2. As in the one-tailed test,
these values will be determined by a type I error.
Since

α = P(type I error)

= P(reject H0 when H0 is true)

= P(reject H0|H0 is true).

We can see that c1 and c2 should be determined
such that the following relationship is satisfied.

P(reject H0|H0 is true)

= P(Z ≤ c1 or Z ≥ c2|H0 is true)

= P(Z ≤ c1|H0 is true) + P(Z ≥ c2|H0 is true)

= α.
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Figure 8.4.1 Rejection regions of a two-tailed test.

Assigning the type I error evenly to P(Z ≤ c1|H0

is true) and P(Z ≥ c2|H0 is true), we have

P(Z ≤ c1|H0 is true) = P(Z ≥ c2|H0 is true)

= α/2.

Since Z ∼ N (0, 1), it follows that c1 = zα/2

and c2 = z1−α/2. For α = 0.05, we obtain c1 =
zα/2 = z0.025 = −1.96 and c2 = z1−α/2 = z0.975 =
1.96. This indicates the rejection regions are to the
left of c1 = zα/2 and to the right of c2 = z1−α/2,
which are left and right tails of the standard normal
distribution shown in Figure 8.4.1.

We summarize the two-tailed test for the mean
of a normal distribution with known variance
where the best test is based on

Z = X − μ0

σ/
√

n
.

Given the hypotheses H0: μ = μ0 vs. H1: μ �=
μ0 at the significance level α,

we reject H0 if X < μ0 + zα/2 · σ√
n
, or

X > μ0 + z1−α/2 · σ√
n
, and

we accept H0 if μ0 + zα/2 · σ√
n

≤ X

≤ μ0 + z1−α/2 · σ√
n

Equivalently, we reject H0 if Z = X − μ0

σ/
√

n
< zα/2,

or Z = X − μ0

σ/
√

n
> z1−α/2, and

we accept H0 if zα/2 ≤ X − μ0

σ/
√

n
≤ z1−α/2.

Example 8.4.1. Dental injury is a traumatic event
related to many factors, including dentofacial

morphology. Dr. Bailey examined pretreatment
lateral cephalograms from his patient files and
learned that external gap (distance between labrale
superior and labrale inferior) is approximately nor-
mally distributed with mean 19.0 mm and SD
5.1 mm [3]. She wishes to determine whether or
not the patients who had injured their maxillary
incisors before orthodontic treatment would have
a shorter or longer external gap. She has collected
lateral cephalograms of 64 patients who had expe-
rienced the trauma and calculated the mean exter-
nal gap of 20.7 mm. Suppose the distribution of
the external gap is normal with SD σ = 5.1 mm.
State the hypothesis and perform a statistical test
at the significance level α = 0.05.

Solution. Dr. Bailey is not certain whether the aver-
age external gap μ of injured patients is shorter or
longer than that of uninjured patients. Thus, we can
state a two-tailed test hypothesis, H0: μ = 19.0 vs.
H1: μ �= 19.0. We now compute the test value

Z = X − μ0

σ/
√

n
= 20.7 − 19.0

5.1/
√

64
= 2.67.

The observed test statistic z = 2.67 > z0.975 =
1.96. Hence, we reject the null hypothesis at the
significance level α = 0.05 and conclude that the
mean external gap of trauma patients is statistically
significantly longer than the mean of uninjured
patients.

As noted in the previous section, we can also
use the p value method to perform the test. If the
observed test statistic z ≤ 0, the p value is twice
the area under the standard normal curve to the left
of z, the left tail area. If the observed test statis-
tic z > 0, the p value is twice the area under the
standard normal curve to the right of z, the right
tail area. The area under the standard normal curve
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P/2

Figure 8.4.2 The p value for a two-tailed test.

should be multiplied by 2, because in a two-tailed
test, extreme values are measured by the absolute
value of the test statistic. These areas are illustrated
in Figure 8.4.2 and Figure 8.4.3.

The p value for a two-tailed test is given by

p =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 · P

(
X − μ0

σ/
√

n
< z

)
= 2 · P(Z < z) if z ≤ 0

2 ·
[

1 − P

(
X − μ0

σ/
√

n
< z

)]
= 2 · [1 − P(Z < z)] if z > 0.

Example 8.4.2. Compute the p value of the test
in Example 8.4.1.

Solution. Since Z = 2.67, the p value is twice the
area under the standard normal curve to the right
of z = 2.67. That is, p = 2 · P(Z > 2.67) = 2 ·
[1 − P(Z ≤2.67)]=2(0.0038) = 0.0076. Hence,
the result is highly significant with the
p value of 0.0076. This p value is illustrated in
Figure 8.4.4.

Example 8.4.3. Homocysteine is a by-product of
protein processing. It is as much an artery-clogging

villain as cholesterol is in contributing to heart at-
tacks and strokes. A study was conducted to in-
vestigate if there exists any difference in homo-
cysteine levels between adult males living in the
Southwest and those in the Midwest. Suppose past
medical data indicated that the level of homo-
cysteine of those living in the Southwest is nor-
mally distributed with mean 14 mg/dL and SD 3.26
mg/dL. Assume that the distribution of the homo-
cysteine levels of midwestern counterparts is also
normal, with the same known standard deviation,
σ = 2.26 mg/dL. Investigators randomly selected
15 individuals from the Midwest, and their ho-
mocysteine levels were measured. If the sample
mean of the 15 observations was X = 13 mg/dL,
what conclusions can be drawn from this
evidence?

Solution. It is clear that the we need to have a two-
tailed alternative hypothesis;

H0 : μ = 14.0 vs. H1 : μ �= 14.0.

From the given information we compute the test
value

Z = X − μ0

σ/
√

n
= 13.0 − 14.0

3.26/
√

15
= −1.19.

P( 2.67 ≤ Z ) = P/2

2.67

Figure 8.4.3 The p value for a two-tailed test.
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2.67

P/2 = 0.0038

Figure 8.4.4 The p value for a two-tailed test in Example 8.4.2.

Since z = −1.19 < 0, the p value is obtained by

p = 2 · P(Z < −1.19)

= 2 · [1 − P(Z ≥ 1.19)]

= 0.2340 > α = 0.05.

The test result is not significant, and therefore we
accept the null hypothesis. There is no significant
difference in mean homocysteine level between
those living in the Southwest and those in the Mid-
west with the p value of 0.2340.

Example 8.4.4. Porcelain-fused-to-metal (PFM)
crowns are produced with a variety of marginal
designs to achieve the best fit and appearance. The
metal butt margin and the porcelain butt margin are
known to be the more popular designs. Suppose 32
subjects who required 51 PFM crowns with po-
tential supragingival facial margins were selected
from patients who were treated with the porcelain
butt design at a large dental school clinic. The mea-
surements in microns (μm) of the marginal open-
ing were made after cementation. Suppose that the
distribution of the margins of the metal butt crowns
after cementation are approximately normal with
mean 48 μm and SD 13.6 μm. The sample mean of
the marginal opening of the 51 PFM crown porce-
lain butt design measured with an SEM (scan-
ning electron microscope) on replicas derived from
elastomeric impressions is 44 μm. Assume that
these marginal openings are normally distributed
with the same known SD σ = 13.6 μm. Is the
mean marginal opening for the porcelain butt mar-
gin significantly different from that of the metal
butt margin?

Solution. We have a two-tailed alternative hypoth-
esis; H0: μ = 48 vs. H1: μ �= 48. From the given

information we compute the test value with
n = 51, X = 44, μ0 = 48, and σ = 13.6.

Z = X − μ0

σ/
√

n
= 44 − 48

13.6/
√

51
= −2.10.

Since z = −2.10 < 0, the p value is ob-
tained by p = 2 · P(Z < −2.10) = 0.0358 <

α = 0.05. The result is significant, and thus
we reject the null hypothesis H0. The porce-
lain butt margin has a statistically significantly
lower average marginal opening with the p value
0.0358.

Would the conclusions be different if we had
a one-tailed alternative hypothesis? Let’s state a
one-tailed alternative hypothesis as H0: μ = 48
vs. H1: μ < 48. From the previous discussions we
know that the rejection region is in the left-hand tail
of the standard normal distribution. In fact, the p
value is given by p = P(Z < −2.10) = 0.0179.

We would, of course, reject the null hypothesis.
Suppose the investigators stated a one-tailed al-
ternative hypothesis as H0: μ = 48 vs. H1: μ >

48. The p value is obtained by p = 1 − P(Z <

−2.10) = 0.9821. Thus we accept the null hy-
pothesis if we use a one-tailed test and the sample
mean is on the opposite side of the null mean from
the alternative hypothesis. In the above example,
the sample mean X = 44 is less than the null mean
μ = 48, which is on the opposite side from H1. In
general, a two-tailed test has an advantage because
we do not need prior knowledge as to which side
of the null hypothesis is the alternative hypothe-
sis. Because the two-tailed tests are more widely
used in biomedical and health sciences literature,
we will focus more on the two-tailed cases in our
future discussions.
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8.5 t TEST OF THE MEAN OF A
NORMAL DISTRIBUTION

In all of our discussions in the previous two sec-
tions, we assumed knowledge of the variance
of the underlying distribution. However, in most
cases the information on the variance is not avail-
able. Therefore, it is more realistic to assume that
the variance of the underlying distribution is not
known. How can we then conduct the hypothe-
sis testing? We learned in Section 6.3 that if X1,

X2, · · · , Xn are a random sample from a normal
distribution N (μ, σ 2) and the variance σ 2 is esti-
mated by the sample variance S2, then the random
variable

t = X − μ0

S/
√

n

follows a t distribution with the degrees of free-
dom (n − 1). It makes very good sense to base the
significance test on a t statistic. The unknown pop-
ulation SD σ in a Z test statistic is replaced by the
sample SD S. The critical values c1 and c2 are de-
termined in the same way as the Z tests. That is,
under the null hypothesis

P(t < tn−1,α/2) = P(t > tn−1,1−α/2) = α

2
.

Hence, c1 = tn−1,α/2 = −tn−1,1−α/2, by the sym-
metric property of a t distribution, and

c2 = tn−1,1−α/2.

In the following we summarize a t test when σ 2 is
not known.

Given the hypothesis H0: μ = μ0 vs.

H1 : μ �= μ0 at the significance level α,

we reject H0 if X < μ0 + tn−1,α/2 · S√
n
, or

X > μ0 + tn−1,1−α/2 · S√
n
, and

we accept H0 if μ0 + tn−1,α/2 · S√
n

≤ X

≤ μ0 + tn−1,1−α/2 · S√
n
.

Equivalently, we reject H0 if

t = X − μ0

S/
√

n
< tn−1,α/2, or

t = X − μ0

S/
√

n
> tn−1,1−α/2, and

we accept H0 if

tn−1,α/2 ≤ X − μ0

S/
√

n
≤ tn−1,1−α/2.

The rejection and acceptance regions of a t test are
illustrated in Figure 8.5.1.

The p value for a one-sample two-tailed t test
for a mean of normal distribution can be computed
as described below:

If t = X − μ0

S/
√

n
< 0, then

p = 2 · P(tn−1 < t) = 2 · [area to the left of t

under a t distribution with df = n − 1].

If t = X − μ0

S/
√

n
≥ 0, then

p = 2 · P(tn−1 ≥ t) = 2 · [area to the right of t

under a t distribution with df = n − 1].

Example 8.5.1. Although obstructive sleep apnea
(OSA) patients tend to be obese, a significant

Acceptance
Region

Rejection
Region

Rejection
Region

t (n−1, α/2) O t (n−1, 1−α/2)

Figure 8.5.1 Rejection and acceptance regions of a two-tailed t test.
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Figure 8.5.2 Rejection regions and the p value of a two-tailed t test.

number of them are not. A recent study suggested
that fat deposition around the neck may be a fac-
tor associated with OSA in non-obese patients
[4]. Suppose that apnea hypopnea index (AHI),
an index used to quantify the degree of obstructive
sleep apnea, is normally distributed and that the
average AHI for non-obese patients, whose body
mass index is less than 25, is 7.65. It has been
Dr. Johnston’s experience that AHI for obese pa-
tients (say, BMI > 35) is not much different from
that of the non-obese. To validate his assertion Dr.
Johnston took a sample of 15 obese patients and
measured their AHI. The mean (X ) and variance
(S2) of his measurements are 9.77 and 11.14, re-
spectively. State the hypotheses and perform a test
at the significance level α = 0.05.

Solution. Dr. Johnston’s hypotheses can be stated
as H0: μ = 7.65 vs. H1: μ �= 7.65. Since the pop-
ulation variance σ 2 is not known, but the sample
variance S2 is calculated from the data, we need
to perform a two-tailed t test with X = 9.77, S =√

11.14 = 3.3377, and n = 15. The test statistic
is

t = X − μ0

S/
√

n
= 9.77 − 7.65

3.3377/
√

15
= 2.4600 > tn−1,1−α/2 = t14,0.975 = 2.145.

Hence, we reject the null hypothesis and conclude
that the mean AHI of the obese patients is statis-
tically significantly higher than that of the non-
obese at the significance level of α = 0.05. The
p value is obtained by

p = 2 · P(t ≤ tn−1)

= 2 · P(2.460 ≤ t(14)) < 2 · P(2.415 ≤ t(14))

= 2(0.015) = 0.030.

The p value is less than the specified significance
level α = 0.05. This is an example of a two-tailed

t test. The rejection regions and the p value are
illustrated in Figure 8.5.2.

Example 8.5.2. Coronary heart disease is the
leading cause of morbidity and mortality through-
out the world. Emingil et al. [5] investigated the
possible association between periodontal health
and coronary heart disease in patients with acute
myocardial infarction (AMI) and chronic coro-
nary heart disease (CCHD). Based on the phys-
ical examination done prior to admission into a
clinical trial, it was determined that the average
level of triglycerides for the patients with AMI is
196.49 mg/dl. Suppose the investigators claimed
that the triglyceride level for the patients with the
CCHD should be lower than that for the patients in
the AMI group. To confirm their claim, the inves-
tigators randomly selected 27 patients with CCHD
and observed their triglyceride levels. The data
yielded X = 155.23 mg/dl and S = 88.04 mg/dl.
Assume that the triglyceride levels are normally
distributed. How would you state the hypotheses
for the investigators, and what could you con-
clude?

Solution. Since the investigators claim that the
triglyceride levels for the patients with CCHD
should be lower than 196.49 mg/dl, we state the hy-
potheses as H0: μ = 196.49 vs. H1: μ < 196.49.

As in Section 8.4, we need to perform a one-tailed
t test with X = 155.23, S = 88.04, and n = 27.

The test statistic is

t = X − μ0

S/
√

n
= 155.23 − 196.49

88.04/
√

27
= −2.4352 < tn−1,α = t26,0.05

= −1.7056.

Hence, we reject the null hypothesis at the signif-
icance level α = 0.05 and conclude that the mean
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−2.4352

P/2

Figure 8.5.3 The p value of the one-tailed t test in Example 8.5.2.

triglyceride level for the patients with CCHD is
statistically significantly lower than that for the
patients with AMI. The p value is obtained by

p = P(tn−1 ≤ t)

= P(t26 ≤ −2.4352) < P(t26 ≤ −2.2958)

= 0.015, from the t table.

The p value is less than the specified significance
level α = 0.05. The result is significant with the p
value less than 0.015. The p value is illustrated in
Figure 8.5.3.

When the sample size n is larger than 30 and
the population SD σ is not known, we can use
the Z test, because by the central limit theorem

the distribution of the test statistic
X − μ0

S/
√

n
fol-

lows approximately standard normal, N (0, 1). As
discussed in the previous chapters, the larger the
sample size n, the better the normal approximation
is. When n ≤ 30 and σ are not known, the t test
must be used.

In the preceding sections, we explained the
concept of the probability of obtaining an ob-
served difference purely due to chance alone. If
the probability is sufficiently small, we conclude
that such difference is unlikely to have occurred by
chance. We stated in Example 8.5.2 that “the mean
triglycerides level for the patients with CCHD
is significantly lower than that for the patients
with AMI.” The difference between 155.23 mg/dl
and 196.49 mg/dl is statistically significant be-
cause the probability of the observed difference
(196.49 − 155.23 = 41.26) arising by chance is
sufficiently small, less than 0.015. The two test
statistics we have used, Z test and t test, depend
on three elements:

1. The observed difference between means,
X − μ0

2. The standard deviation σ of the underlying dis-
tribution, in the case of the Z test, and sample
standard deviation S, in case of the t test

3. The sample size, n.

How would the sample size affect the magnitude
of the observed mean difference to achieve the p
value < 0.05 so that the results are significant? In
Example 8.4.4, the average porcelain butt margin
of 44 μm was significantly lower than 48 μm with
the p value 0.0358. The observed mean difference
was X − μ0 = 4 μm and the sample size was n =
51. Table 8.5.1 illustrates the relationship between
the sample size and the observed mean difference
necessary to achieve statistical significance.

For the sample size n = 1,000, the observed
mean difference of 0.84 μm is statistically sig-
nificant. However, from the standpoint of a clin-
ician, the magnitude of the difference 0.84 μm
in marginal opening may mean absolutely noth-
ing. In other words, the observed mean differ-
ence of 0.84 μm may not be clinically significant.
Readers should keep in mind that what is statis-
tically significant is not necessarily clinically sig-
nificant, and vice versa. See an excellent article by
Hujoel et al. [6]. Readers should realize from
Table 8.5.1 that any observed difference can even-
tually become statistically significant if we can

Table 8.5.1. Relationship between the sample size
and mean difference.

n X (in μm) μ0 |X − μ0| p

50 44.23 48 3.77 0.05
100 45.33 48 2.67 0.05
500 46.81 48 1.19 0.05

1,000 47.16 48 0.84 0.05
2,000 47.41 48 0.59 0.05
5,000 47.62 48 0.38 0.05



144 Biostatistics for Oral Healthcare

afford to keep increasing the sample size. This
is one of the few unpleasant aspects of a testing
hypothesis procedure.

8.6 THE POWER OF A TEST AND
SAMPLE SIZE

We have explained the appropriate hypothesis tests
based on the sample mean X , assuming that the
underlying distribution is normal. Of course, we
could have selected a test statistic that is based on
the sample median, instead of the sample mean.
However, the best test is the one that is built on the
sample mean; the best in the sense of the power of
a test. The power of a hypothesis test, denoted by
1 − β, was defined earlier in this chapter as

1 − β = 1 − P(a type II error)

= P(Reject the null hypothesis
when it is false)

= P(Reject H0|H0 is false).

The power of a test is the conditional probability
of rejecting H0, given that H0 is false. For the
hypotheses H0: μ = μ0 vs. H1: μ < μ0, we reject

H0 if X < μ0 + zα

σ√
n

and accept H0 if X ≥ μ0 +

zα

σ√
n
. Thus, the power of the test is given by

1 − β = P(Reject H0|H0 is false)

= P

(
X < μ0 + zα

σ√
n
|μ < μ0

)
.

The above power 1 − β assumes different val-
ues at different values of μ under H1. Specifi-
cally, at μ = μ1 < μ0, the sample meanX has a

normal distribution N

(
μ1,

σ 2

n

)
. For example, at

μ = μ1 < μ0, the power of the test is

P

(
X − μ1

σ/
√

n
<

(μ0 + zα · σ/
√

n) − μ1

σ/
√

n

)

= P

(
Z <

(μ0 + zα · σ/
√

n) − μ1

σ/
√

n

)
= P

(
Z < zα + μ0 − μ1

σ/
√

n

)
.

The rejection region and the power of test are
shown in Figure 8.6.1.

The area to the left of the point μ0 + Zα · σ/
√

n
under H1 under the normal curve corresponds to
the power, and the area to the left of the same
point μ0 + Zα · σ/

√
n under H0 under the normal

curve corresponds to the type I error α (the signif-
icance level). The power is an important property
of a test that tells us how likely it is the test can
detect a significant difference, given that the al-
ternative hypothesis is true. When the power is
low, the chances are small that the test will de-
tect a significant difference even if there exists a
real difference. Often a small sample size results
in a low power to detect a statistically as well as a
clinically significant difference. After presenting
examples to show how to calculate the power of a
test, we shall discuss the relationship between the
power of a test and the sample size.

Power
= 1 − β

Acceptance
  Region

_
Distribution of X
  under H0

Rejection
Region

N (μ0,
σ2)                  ___

                   n
N (μ1,

σ2)                  ___
                   n _

Distribution of X
  under H1

μ0 + Zασ / √n

μ1
μ2

Figure 8.6.1 Rejection region and power of the one-sample test.
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Example 8.6.1. Calculate the power of the test
used for testing the hypothesis in Example 8.3.5 at
the alternative mean μ1 = 4.0, 4.5, 5.0, 5.5, 6.0,

6.5, and 7.0 mm when α = 0.05.

Solution. Substituting n = 14, σ = 2.15, zα =
−1.645, and μ0 = 7.5 in the formula, we
get at μ1 = 4.0,

P

(
Z < zα + μ0 − μ1

σ/
√

n

)
= P

(
Z < −1.645 + 7.5 − 4.0

2.15/
√

14

)
= P(Z < 4.45) = 1.0;

at μ1 = 4.5, P

(
Z < zα + μ0 − μ1

σ/
√

n

)
= P

(
Z < −1.645 + 7.5 − 4.5

2.15/
√

14

)
= P(Z < 3.58) = 1.0;

at μ1 = 5.0, P

(
Z < zα + μ0 − μ1

σ/
√

n

)
= P

(
Z < −1.645 + 7.5 − 5.0

2.15/
√

14

)
= P(Z < 2.71) = 0.9966;

Continuing the calculations using the standard nor-
mal probability table at the other alternative mean
μ1, we obtain the power of the test presented in
Table 8.6.1.

We note that as the alternative mean increases,
that is, as μ1 gets closer to μ0, the power of the test
decreases. This is to be expected since the closer
μ1 and μ0 are, the smaller the observed mean dif-
ference. Therefore, it would be more “difficult” for
the test to detect a significant difference. For the
power of a test for H0: μ = μ0 vs. H1: μ > μ0 the

Table 8.6.1. Power of the test in Example 8.3.5.

μ1 (alternative mean) 1 − β (power of the test)

4.0 1.0
4.5 1.0
5.0 0.9966
5.5 0.9671
6.0 0.8352
6.5 0.5359
7.0 0.2206

null hypothesis is rejected if

X − μ0

σ/
√

n
> z1−α.

By multiplying both sides by σ/
√

n and adding μ0

to both sides, we get X > μ0 + z1−ασ/
√

n. So the
power of the test for H0: μ = μ0 vs. H1: μ > μ0

is given by

power =1 − β

= P(X > μ0 + z1−α · σ/
√

n | H0 is false).

At a specific value of the alternative mean μ = μ1,

power

= P(X > μ0 + z1−α · σ/
√

n|μ = μ1)

= P

(
X − μ1

σ/
√

n
>

(μ0 + z1−α · σ/
√

n) − μ1

σ/
√

n

)

= P

(
Z > z1−α + μ0 − μ1

σ/
√

n

)
, where μ1 >μ0.

For a one-tailed Z test for H0: μ = μ0 vs. H1:
μ < μ0, the power of the test is

1 − β = P

(
Z < zα + μ0 − μ1

σ/
√

n

)
, μ1 < μ0.

For a one-tailed Z test for H0: μ = μ0 vs. H1:
μ > μ0, the power of the test is

1 − β = P

(
Z > z1−α + μ0 − μ1

σ/
√

n

)
, μ1 > μ0.

It is clear from the above formulas that the power
of a test depends on the following factors: α, σ, n,
and |μ0 − μ1|, that is, the magnitude of the differ-
ence between μ0 and μ1.

1. If the significance level α is small, then zα is
small. Hence, the power decreases.

2. If the alternative mean, which is moving away
from the null mean, that is, |μ0 − μ1| is larger,
then the power increases.

3. If the SD σ of individual measurements in-
creases, then the power decreases.

4. If the sample size increases, then the power
increases.

The power of a two-tailed test is obtained in
a similar way to a one-tailed test. For example,
consider hypotheses H0: μ = μ0 vs. H1: μ �= μ0.

The null hypothesis is rejected if

X <μ0 + zα/2 · σ√
n
, or X >μ0 + z1−α/2 · σ√

n
.
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The power of the test at a specific alternative mean
μ = μ1 is given by

1 − β = P(X < μ0 + zα/2 · σ/
√

n | μ = μ1)

+ P(X > μ0 + z1−α · σ/
√

n | μ = μ1)

= P

(
Z < zα/2 + μ0 − μ1

σ/
√

n

)

+ P

(
Z > z1−α/2 + μ0 − μ1

σ/
√

n

)
.

The power of a two-tailed test for H0: μ = μ0 vs.
H1: μ �= μ0 is given by

1 − β = P

(
Z < zα/2 + μ0 − μ1

σ/
√

n

)

+ P

(
Z > z1−α/2 + μ0 − μ1

σ/
√

n

)
.

Example 8.6.2. Calculate the power of the test
used for testing the hypothesis in Example 8.4.4 at
the alternative mean μ1 = 40, 42, 43, 44, 45, 46,

47, 48, 49, 50, 51, 52, 53, 54, and 55 μm when
α = 0.05.

Solution. Substituting n = 51, σ = 13.6, zα/2 =
−1.96, z1−α/2 = 1.96, and μ0 = 48 in the above
formula, we obtain the following.

At μ1 = 40,

P

(
Z < zα/2 + μ0 − μ1

σ/
√

n

)

+ P

(
Z > z1−α/2 + μ0 − μ1

σ/
√

n

)

= P

(
Z < −1.96 + 48 − 40

13.6/
√

51

)

+ P

(
Z > 1.96 + 48 − 40

13.6/
√

51

)
= P(Z < 2.24) + P(Z > 6.16)

= 0.9875 + 0 = 0.9875.

At μ1 = 42,

P

(
Z < zα/2 + μ0 − μ1

σ/
√

n

)

+P

(
Z > Z1−α/2 + μ0 − μ1

σ/
√

n

)

Table 8.6.2. Power of the test in Example 8.6.2.

μ1 1 − β μ1 1 − β

40 0.9875 49 0.0757
41 0.9573 50 0.1814
42 0.8830 51 0.3520
43 0.7471 52 0.5557
44 0.5557 53 0.7471
45 0.3520 54 0.8830
46 0.1814 55 0.9573
47 0.0757 56 0.9875
48 0.05

= P

(
Z < −1.96 + 48 − 42

13.6/
√

51

)

+ P

(
Z > 1.96 + 48 − 42

13.6/
√

51

)
= P(Z < 1.19) + P(Z > 5.11)

= 0.8830 + 0 = 0.8830.

Continuing the similar calculations at another al-
ternative mean μ1, we obtain the power of the test
presented in Table 8.6.2.

The power of the test increases as the alternative
mean μ1 moves away from the null mean μ0 in
either direction. In other words, as the observed
mean difference increases, so does the power of the
test. We have described the power in terms of the Z
test, but the power of the t test is precisely the same
except we replace zα (or zα/2) and z1−α (z1−α/2) by
tn−1,α(or tn−1,α/2) and tn−1,1−α (tn−1,1−α/2), and σ

by S in the formulas presented above.
Investigators often ask statisticians “what is an

appropriate sample size for my experiment?” An
answer to this question depends on several fac-
tors, such as SD σ, the significance level α, the
power 1 − β, and the difference to be detected.
In practice, typical values for the power are 80%,
85%, 90%, 95%, 97.5%, and 99%. Suppose the
difference between the null mean and the alterna-
tive mean is |μ0 − μ1|, and SD σ is known. What
sample size do we need for the test to be able to de-
tect the specified difference with probability 1 − β

when the test is conducted at the significance level
α? The following formulas for the sample size can
be derived from the expression for the power of
the test. Suppose that the observations are nor-
mally distributed with mean μ and known variance
σ 2. Let α be the significance level of the test. The
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sample size, required to detect a significant differ-
ence with probability 1 − β, is given by the fol-
lowing formulas.

For a one-tailed test: n = σ 2(z1−α + z1−β)2

(μ0 − μ1)2
.

For a two-tailed test: n = σ 2(z1−α/2 + z1−β)2

(μ0 − μ1)2
.

Example 8.6.3. A titanium implant method is be-
ing tested for previously infected bones. Suppose
the effectiveness of the titanium implant is deter-
mined by the amount of bone growth 1 year after
the implant is placed. The average bone growth for
the patients with no history of previous infection
is about 3.2 mm. Dr. Simmon believes from her
clinical experience that the bone growth of the pa-
tients with a history of previous infection is slower
than those with no such medical history. In order
to confirm her belief, Dr. Simmon wishes to test
her hypotheses at the significance level α = 0.05.

In fact, she wants to detect a significant differ-
ence of 0.9 mm with probability 0.90. Assume that
the amount of bone growth is normally distributed
with variance σ 2 = 2.68. How many patients with
a history of previous bone infection does she need
for her research?

Solution. From the description of Dr. Simmon’s
research project, she should have a one-tailed al-
ternative hypothesis stated as H0: μ = 3.2 vs. H1:
μ < 3.2. We are given σ 2 = 2.68, z1−α = z0.95 =
1.645, z1−β = z0.90 = 1.282, and (μ0 − μ1)2 =
(0.9)2 = 0.81. By substituting in the first formula,
we get the required sample size

n = σ 2(z1−α + z1−β)2

(μ0 − μ1)2

= (2.68)(1.645 + 1.282)2

0.81
= 28.346.

To achieve the 90% power of detecting a significant
difference of 0.9 mm she needs 29 patients for her
study.

If we rounded off n = 28.346 to the nearest whole
number, we would have n = 28. With n = 28 we
will achieve the power slightly less than 90%.
Therefore, we should always round up to the next
integer and get n = 29. The sample size n = 29
will yield the power slightly higher than 90%.

Example 8.6.4. Let X be the random variable rep-
resenting the mesiodistal width of a tooth taken as
the distance between contact points on the proxi-
mal surfaces. Dental investigators use a Digimatic
caliper to measure the width, accurate to 0.01 mm.
A study suggested that X is normally distributed
with mean μ and SD σ , which is known to be
0.30. The study also suggested that the mean of
the mesiodistal width of left lateral incisors for
the noncleft patients is approximately 6.00 mm.
The investigators suspect that the width of left lat-
eral incisors for the cleft patients ought to be dif-
ferent from that of the noncleft. If they wish to
test at the significance level α = 0.05 and have
a 95% power of detecting a minimum difference
|μ0 − μ1| = 0.25 mm, what would be the required
sample size?

Solution. We have a two-tailed alternative hypoth-
esis stated as H0: μ = 6.00 vs. H1: μ �= 6.00.

From the given information we know σ 2 = (0.30)2

= 0.09, z1−α/2 = z0.975 = 1.96, z1−β = z0.95 =
1.645, and (μ0 − μ1)2 = (0.25)2 = 0.0625. By
substituting in the second formula, we obtain the
required sample size

n = σ 2(z1−α/2 + z1−β)2

(μ0 − μ1)2

= (0.09)(1.96 + 1.645)2

0.0625
= 18.714.

To achieve the 95% power of detecting a significant
difference of 0.25 mm they need 19 teeth samples
for the study.

These two examples indicate that a required sam-
ple size depends on several factors:

� The sample size decreases (increases) as the dif-
ference between null mean and alternative mean,
|μ0 − μ1| increases (decreases).

� The sample size increases as the smaller signif-
icance level α is chosen.

� The sample size increases as the power 1 − β

increases.
� The sample size increases as the variance σ 2

increases.

To see the effect of the variance, let’s increase
the SD in Example 8.6.4 from σ = 0.30 to σ =
0.60, leaving all other factors intact. Then the
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required sample size is

n = σ 2(z1−α/2 + z1−β)2

(μ0 − μ1)2

= (0.36)(1.96 + 1.645)2

0.0625
= 74.857.

When the SD σ is increased to 0.6, we need to
increase the sample size from n = 19 to n = 75.
Theoretically, a twofold increase in σ results in
a fourfold increase in the required sample size.
The suggested level of the power 1 − β is typi-
cally 80% or higher. In most of the scientific ex-
periments the investigators would like to have the
power around 85%−95%. The key questions we
should keep in mind when we determine the sam-
ple size are: How can we estimate σ 2, and what
is an appropriate value to specify μ1? Usually, at
the beginning of an experiment, values for σ 2 and
μ1 are not available. The researchers will have to
decide what a scientifically and clinically reason-
able difference |μ0 − μ1| is. In the absence of any
data, the variance σ 2 has to be estimated from pre-
vious similar studies or prior knowledge of simi-
lar experiments. A small-scale pilot study is most
valuable in acquiring knowledge to estimate σ 2

and μ1. It must be stressed that the sample size
obtained using the above formulas is crude rather
than precise.

8.7 ONE-SAMPLE TEST FOR A
BINOMIAL PROPORTION

In this section we will describe a one-sample test
for a binomial proportion. Many clinical and ex-
perimental results in biomedical and health sci-
ences are expressed in proportions or fractions, for
example, the proportion of patients with myocar-
dial infarction who develop heart failure, the pro-
portion of patients who become infected after an
oral surgery, the proportion of patients whose im-
plant failure occurs within 1 year, and the propor-
tion of patients who exhibit symptoms of hypocal-
cemia. We will explain the significance test for
such proportions based on the sample proportion
p̂, which was defined in Section 7.4. We will as-
sume that the conditions for the normal approx-
imation to the binomial distribution are met. We
explained in Section 7.4 that the proportion p̂ is

approximately normally distributed:

p̂
◦∼ N

(
p0,

p0q0

n

)
, where q0 = 1 − p0.

A transformation yields, Z = p̂ − p0√
p0q0/n

◦∼ N (0,1).

A Medical Expenditure Panel Survey was con-
ducted in 1996 to determine the distribution of di-
agnostic and preventive, surgical, and other dental
visit types received by U.S. children, aged 0 to 18
years. The survey results showed that about 39.3%
of children had a diagnostic or preventive visit,
4.1% had a surgical visit, and 16.2% had a visit for
restorative/other services [7]. The authors report
profound disparities in the level of dental services
obtained by children, especially among minority
and poor youth. Their findings suggest that Medi-
caid fails to assure comprehensive dental services
for eligible children. Improvements in oral health
care for minority and poor children are necessary
if national health objectives for 2010 are to be met
successfully [7]. Suppose we wish to find out if
the proportion of the U.S. adults, aged 19 or older,
who have a diagnostic or preventive visit is dif-
ferent from that of the youth group, 0 to 18 years
of age. For this purpose we took a random sample
of 70 adults and found out that 25 of them (about
35.7%) had a diagnostic or preventive visit. How
does this 35.7% compare to 39.3% for the youth
group? Here we have p0 = 0.393 (39.3% for the
youth group). Appropriate hypotheses we need to
test are H0: p = 0.393 vs. H1: p �= 0.393.

Since np0q0 =70(0.393)(0.607) = 16.7 > 5.0,

the normal approximation to the binomial distribu-
tion is valid. The expected value and variance of p̂

under the null hypothesis H0 are p0 and
p0q0

n
. The

test statistic Z is given by Z = p̂ − p0√
p0q0/n

◦∼ N (0,

1). It is clear that a one-sample test for a binomial
proportion is performed precisely the same as a
one-sample Z test for the normal mean we studied
in Section 8.4.

One-Sample Test for a Binomial
Proportion

To test hypotheses H0: p = p0 vs. H1: p �= p0, we
use the test statistic

Z = p̂ − p0√
p0q0/n

◦∼ N (0, 1).
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Zα/2
Z1−α/2
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Figure 8.7.1 The rejection and acceptance regions for the binomial proportion.

We reject H0 if Z < zα/2 or Z > z1−α/2, and ac-
cept H0 if zα/2 < Z < z1−α/2.

The rejection and acceptance regions are shown
in Figure 8.7.1 above.

In the Medical Expenditure Panel Survey exam-
ple we have p0 = 0.393, q0 = 0.607, n = 70, and
p̂ = 0.357. The value of the test statistic is

Z = p̂ − p0√
p0q0/n

= 0.357 − 0.393√
(0.393)(0.607)/70

= −0.67.

Since zα/2 = −1.96 < Z < z1−α/2 = 1.96, the
null hypothesis is accepted at the significance level
α = 0.05. We therefore conclude that there is no
statistically significant difference in the proportion
of patients in those two groups who had a diagnos-
tic or preventive visit.

The p value of the test is calculated in much
the same manner as with the two-tailed tests. The
calculation of the p value depends on whether the
sample proportion p̂ ≤ p0 or p̂ > p0. If p̂ ≤ p0,

then the p value is 2 times the area to the left of z
under the standard normal curve. If p̂ > p0,then
the p value is 2 times the area to the right of z
under the standard normal curve. Another way to
describe the p value is that if the z value is negative,
then the p value is 2 times the area to the left of z
under the standard normal curve. If the z value is
positive, then the p value is 2 times the area to the
right of z.

Computation of the p Value for Testing a
Binomial Proportion

Let the test statistic be given by Z = p̂ − p0√
p0q0/n

.

If p̂ ≤ p0, then p value = 2 · P(Z ≤ z).
If p̂ ≥ p0, then p value = 2 · P(Z ≥ z).

The p value of the above example is

p value = 2 · P(Z ≤ −0.67)

= 2 · [1 − P(Z ≤ 0.67)]

= 0.5028 > 0.05.

Example 8.7.1. Hypersensitivity of the teeth is a
pathologic condition in which the teeth are sensi-
tive to thermal, chemical, and physical stimuli. The
patients with dentin hypersensitivity experience
pain from hot/cold and sweet/sour solutions and
foods. The pain may be experienced when hot/cold
air touches the teeth. It varies in degrees from mild
to excruciating. Dentin hypersensitivity occurs due
to exposure of dentinal tubules as a result of attri-
tion, abrasion, erosion, fracture, or chipping of the
tooth, or a faulty restoration [8]. Suppose that a
past study showed that 5% potassium nitrate solu-
tion reduced dentin hypersensitivity in 48% of the
cases. To compare the effectiveness of a 40% for-
malin solution with that of 5% potassium nitrate
solution, the investigators took a sample of 81 pa-
tients who suffer from dentin hypersensitivity. Of
these 81 patients, 49 of them expressed that 40%
formalin solution did significantly reduce the pain.
What could you conclude about the effectiveness
of the two desensitizing agents?

Solution. Since no prior knowledge is available
regarding the effectiveness of 40% formalin so-
lution relative to 5% potassium nitrate solution,
we wish to test the hypotheses H0: p = 0.48 vs.
H1: p �= 0.48. It is given that p0 = 0.48, q0 = 1 −
0.48 = 0.52, n = 81, p̂ = 49/81 = 0.60. The
normal approximation is valid because np0q0 =
81(0.48)(0.52) = 20.22 > 5.0. We compute the
test statistic

Z = p̂ − p0√
p0q0/n

= 0.60 − 0.48√
(0.48)(0.52)/81

= 2.16.
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Let’s now compute the p value of the test.

p value = 2 · P(Z > 2.16)

= 2 · (1 − 0.9846) = 0.0308 < 0.05.

Since Z > z1−α/2 = 1.96, the null hypothesis is
rejected at α = 0.05. We conclude that the 40%
formalin solution is statistically significantly more
effective in reducing the level of pain in dentin-
hypersensitive patients than the 5% potassium
nitrate solution with the p value of 0.0308.

Example 8.7.2. In the game of basketball, the free
throw is an important aspect of the game. A cou-
ple of free throws at the last minute can decide the
outcome of a game. Using his or her legs prop-
erly at the free throw line is a critical technique
to develop. Men’s basketball coach, Mr. Jackson,
knows that as the game progresses, the players’
legs get tired, and consequently, their free throw
percentage drops. He compared the free throw per-
centages of the first half and the second half of the
games his team has played over the last few sea-
sons, and learned that the free throw percentages
(FT%) in the second half is significantly lower.
The tired legs definitely affect their FT%. In fact,
his team’s statistic shows that the FT% of the sec-
ond half is a disappointing 57%, compared to 79%
in the first half. He thinks that the women’s bas-
ketball team experiences a similar drop in FT% in
the second half. However, he has no idea if their
percentage will be as low as his team’s 57%. Mr.
Jackson obtained the FT% data of 105 women’s
basketball games in the last 4 seasons, and found
out their average second-half FT% is 68%. What
would you say to Mr. Jackson, based on his
data?

Solution. Mr. Jackson’s hypotheses can be stated
as H0: p = 0.57 vs. H1: p �= 0.57. Since np0q0 =
105(0.57)(0.43) = 25.736 > 5.0, the normal ap-
proximation can be applied. Substituting p0 =
0.57, q0 = 1 − 0.57 = 0.43, n = 105, and the
sample proportion p̂ = 0.68 in the test statistic,
we obtain

Z = p̂ − p0√
p0q0/n

= 0.68 − 0.57√
(0.57)(0.43)/105

= 2.28.

Let’s now compute the p value of the test.

p value = 2 · P(Z > 2.28) = 0.0226 < 0.05.

Since Z > z1−α/2 = 1.96, the null hypothesis is

rejected at the significance level α = 0.05. The
women’s free throw percentage in the second
half is statistically significantly better than that
of the men’s team. The p value of the test is
0.0226.

Because the test is based on the normal approx-
imation, the p values obtained in the above ex-
amples are approximate. For a small sample case
where the normal approximation to the binomial
distribution is not valid, we can use an exact bino-
mial method to perform the test. Interested readers
are referred to Fisher and Van Belle [9].

Example 8.7.3. The primary factors known to
predispose one to implant failure are low bone
density (type IV bone, [10]) and smoking. Sup-
pose that a study with a group of implant patients
who are moderate to heavy smokers revealed that
about 13% have type IV bone. Dr. Samuelson, who
is an implantologist, wanted to investigate how the
prevalence rate of low bone density among the
smokers will compare to the prevalence rate of
type IV bone for the non-smokers. His examina-
tion of 74 implant patients indicated that only 7
patients had type IV bone. Do the two groups have
a significantly different prevalence rate? Test the
hypothesis using the p value method.

Solution. One can perform the hypothesis test by
mimicking the examples we discussed in this sec-
tion. Technical details are left to the readers as an
exercise problem.

8.8 ONE-SAMPLE χ2 TEST FOR
THE VARIANCE OF A NORMAL
DISTRIBUTION

So far in this chapter our discussions have been
focused on testing the hypotheses for the mean of
a normal distribution. In this section, we introduce
a hypothesis testing procedure for the variance of
a normal distribution. Let X1, X2, · · · , Xn be a
random sample from a normal population N (μ,

σ 2). Suppose we wish to test the hypotheses H0 :
σ 2 = σ 2

0 vs. H1 : σ 2 �= σ 2
0 . We shall describe how

to perform this type of test.
The number of adults seeking orthodontic treat-

ment is increasing. It has been estimated up to
40% of all orthodontic patients are adults. Adult
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Figure 8.8.1 Rejection and acceptance regions of the χ2 test.

patients present a challenge to orthodontists be-
cause they have high aesthetic demands and often
have dental conditions that may complicate treat-
ment, such as tooth wear, poorly contoured restora-
tions, and periodontal disease. In some adults, a
black triangular space may appear between the
maxillary central incisors and the cervical gingi-
val margin after orthodontic treatment. This open
gingival embrasure may appear unaesthetic [11].
The area of gingival embrasure is assumed to be
normally distributed. Suppose a past study showed
that the variance of the area of normal gingival em-
brasure is σ 2 = 3.08. Would the variance of the
area of open gingival embrasure among adult pa-
tients be significantly different? We can state the
hypotheses as H0 : σ 2 = 3.08 vs. H1 : σ 2 �= 3.08.

Investigators took a sample of 23 patients with an
open gingival embrasure. From the measurements
of the area, they have calculated the sample vari-
ance S2 = 4.31. Under the null hypothesis H0, the
test statistic is

χ2 = (n − 1)S2

σ 2
∼ χ2

(n−1), that is,

a χ2 with (n − 1) degrees of freedom.

The critical values are determined by P
(
χ2 <

χ2
(n−1,α/2)

) = α

2
= P

(
χ2 > χ2

(n−1,1−α/2)

)
.

So the critical values are c1 = χ2
(n−1,α/2) and

c2 = χ2
(n−1,1−α/2), which define the rejection and

acceptance regions. Figure 8.8.1 illustrates these

regions for the distribution of χ2 = (n − 1)S2

σ 2
0

under H0.

To complete the test for the example, let’s com-
pute the test statistic with n − 1 = 23 − 1 = 22,

σ 2
0 = 3.08, and S2 = 4.31;

χ2 = (n − 1)S2

σ 2
0

= (23 − 1)(4.31)

3.08
= 30.786.

From Table F (the χ2 probability table) in the Ap-
pendix we obtain

c1 = χ2
(22,0.025) = 10.98 and

c2 = χ2
(22,0.975) = 36.78.

Since the computed test statistic χ2 = 30.786
is between χ2

(22,0.025) = 10.98 and χ2
(22,0.975) =

36.78, we accept H0 at the significance level
α = 0.05 and conclude that the variance of the
area of an open gingival embrasure is not statis-
tically significantly different from the variance of
the area of a normal gingival embrasure. This χ2

test procedure can be summarized as follows.

One-Sample χ2 Test for the Variance of a
Normal Distribution

Given the hypotheses
H0 : σ 2 = σ 2

0 vs. H1 : σ 2 �= σ 2
0 , and the test

statistic

χ2 = (n − 1)S2

σ 2
0

,

reject H0 if χ2 < χ2
(n−1,α/2) or χ2 > χ2

(n−1,1−α/2),

and accept if χ2
(n−1,α/2) < χ2 < χ2

(n−1,1−α/2).

Example 8.8.1. Periodontal probing is done rou-
tinely during a dental examination and has be-
come an important diagnostic tool to determine
the presence and severity of periodontal disease.
Clinicians have used a handheld probe that is
non-pressure controlled with visual measurement
recording, and, therefore, the degree of accuracy
may not be high as well as the precision level of the
instrument may be low. Historical data indicates
that the variance of the pocket depth by a hand-
held probe is 2.8. Recently, a medical equipment
company has introduced a pressure-controlled
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Figure 8.8.2 Rejection and acceptance regions of the χ2 test in Example 8.8.1.

computerized probe. It is not certain whether or
not this computerized probe would necessarily
have a higher level of precision than the traditional
handheld probe. The clinic director decided to un-
dertake a study to evaluate the variability of the
new instrument. He will purchase the computer-
ized probe for his clinic only if the study proves
its superiority. A clinician took 31 pocket depth
measurements and reported the sample variance
S2 = 2.2. We may assume that the pocket depth is
normally distributed. Would you recommend that
the clinic director purchase the new equipment?
Use the significance level α = 0.05.

Solution. The hypotheses we need to test can
be stated as H0 : σ 2 = 2.8 vs. H1 : σ 2 �= 2.8.

Substituting n − 1 = 31 − 1 = 30, S2 = 2.2, and
σ 2

0 = 2.8, we obtain the test statistic

χ2 = (n − 1)S2

σ 2
0

= (30)(2.2)

2.8
= 23.571.

From Table F in the Appendix we can easily find
the critical values,

χ2
(n−1,α/2) = χ2

(30,0.025) = 16.79 and

χ2
(n−1,1−α/2) = χ2

(30,0.975) = 46.98.

We see that the computed χ2 test statistic value is
between the critical values;

χ2
(n−1,α/2) = 16.79 < 23.571 < χ2

(n−1,1−α/2)

= 46.98.

Thus, we accept the null hypothesis and conclude
that the computerized probe is not statistically sig-
nificantly more precise than the handheld probe
at the significance level α = 0.05. The formula
for the p value of a one-sample χ2 test of a nor-
mal distribution is given below. The rejection and
acceptance regions of the test are illustrated in
Figure 8.8.2.

The p Value of a One-Sample χ2 Test

Given the hypotheses
H0 : σ 2 = σ 2

0 vs. H1 : σ 2 �= σ 2
0 , and the test

statistic χ2 = (n − 1)S2

σ 2
0

.

If S2 ≤ σ 2
0 , then the p value = 2 · P(χ2

(n−1) ≤ χ2).
If S2 > σ 2

0 , then the p value = 2 · P(χ2
(n−1) > χ2).

So the p value of the test in Example 8.8.1 is given
by

p value

= 2·P
(
χ2

(n−1) ≤χ2
)
, since S2 =2.2 ≤ σ 2

0 = 2.8

= 2·P
(
χ2

(30) ≤ 23.571
)

> 2 · P
(
χ2

(30) ≤ 20.599
)

= 2(0.100) = 0.200.

The p value is a little larger than 0.200.
Figure 8.8.3 illustrates the p value.

Example 8.8.2. Recently, the researchers in den-
tal and medical sciences have shown considerable
interest in putative relationships between oral and
systemic diseases. Kowolik et al. [12] hypothe-
sized that dental plaque accumulation in healthy
subjects would elicit a systemic inflammatory re-
sponse. During the experiment, their healthy sub-
jects were refrained from all oral hygiene practices
for 3 weeks, thus permitting the accumulation of
bacterial plaque. One variable that they observed
was the total neutrophil counts. Suppose their pre-
vious similar experiment with a group of young
subjects, aged 21 to 30, showed that the mean
and standard deviation of their neutrophil counts
(x109/ l) were 2.61 and 0.27, respectively. Sup-
pose investigators wondered how the variability of
the neutrophil counts would compare if the exper-
imental group also included patients in their 30s
to 60s. To find out, they took a random sample of
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Figure 8.8.3 The p value test in Exam-
ple 8.8.1.

26 patients. A similar experiment yielded the sam-
ple standard deviation 0.37 for the total neutrophil
counts of these 26 patients. Is there a significant
difference in the variance between the two groups?

Solution. The hypotheses will be stated as before,
H0 : σ 2 = (0.27)2 vs. H1 : σ 2 �= (0.27)2. Using
the test statistic given in this section and by sub-
stitution, we have

χ2 = (n − 1)S2

σ 2
0

= 25(0.37)2

(0.27)2
= 46.948.

The critical values can be found from the χ2 prob-
ability table (Table F in the Appendix);

χ2
(n−1,α/2) = χ2

(25,0.025) = 13.12 and

χ2
(n−1,1−α/2) = χ2

(25,0.975) = 40.65.

Since the computed test statistic χ2 = 46.948 >

χ2
(25,0.975) = 40.65, we reject the null hypothesis at

the significance level α = 0.05. The p value is

p value

= 2 · P
(
χ2

(n−1) > χ2
)
,

since S2 = (0.37)2 > σ 2
0 = (0.27)2

= 2 · P
(
χ2

(30) > 46.948
)

< 2 · P
(
χ2

(30) > 46.928
)

= 2(0.0050) = 0.0100.

The variability of the total neutrophil counts for the
group with a wider age range is statistically signif-
icantly greater with the p value slightly less than
0.0100. The difference in the variance between the
two groups is highly significant.

8.9 EXERCISES

1 Medical investigators found that about 20% of
the population age 65 or older are given medica-
tions that are rarely appropriate for people their

age. At least part of the problem is the way doc-
tors are trained; pediatrics is mandatory in all U.S.
medical schools, but geriatric care tends to get
glossed over [13]. Suppose that, motivated by this
finding and the rapidly growing population of se-
nior citizens, some medical schools have revamped
their curricula to include training in geriatric care.
These medical schools like to believe that their
new curricula should have reduced the percentage
of inappropriate prescriptions by their graduates.
a. State the null and alternative hypotheses.
b. Discuss in the context of the above problem

what happens if a type I error is committed.

2 School teachers who are concerned with oral
hygiene habits of children claimed that on the av-
erage, children spend about 30 seconds brushing
their teeth. To test this claim, investigators take a
random sample of 50 children, ages 5 to 7. All are
healthy, free of developmental delays, and capa-
ble of properly applying dentifrice to a toothbrush.
The time spent brushing is to be carefully observed
for the study.
a. State the null and alternative hypothesis.
b. Discuss in the context of the above problem

how a type II error can be committed and what
a type II error means.

3 In women, lung cancer has surpassed breast
cancer as the leading cause of cancer death.
Cigarette smoking causes 85% of lung cancers
in American men, and passive smoking also in-
creases the risk of lung cancer, causing 25% of
the lung cancers seen in non-smokers. Chromoso-
mal defects are also associated with lung cancer.
Suppose it has been known that after successful
chemoradiation treatments the average remission
period of lung cancer patients is 7.5 years. The
researchers have developed a new treatment and
hope to demonstrate clinically that it is much more
effective in extending the remission period beyond
7.5 years.
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a. How should the researchers formulate the
hypotheses?

b. State the consequences of committing a type I
and a type II error.

4 Vitamin E is a popular and powerful antioxi-
dant, which is effective in preventing the oxidation
of polyunsaturated fatty acids. A study showed that
the addition of 100 IU or more of vitamin E per
day resulted in a reduction by 40% of the risk of
heart disease [14]. Public health officials vaguely
speculated that adult Americans consume approx-
imately 20 IU per day on the average. To con-
firm this figure, investigators selected 35 subjects
at random and carefully monitored their vitamin E
intake. The sample mean X of the 35 individuals
was 25 IU. Suppose the amount of vitamin E in-
take by adult Americans has a normal distribution
with the standard deviation σ = 5.2 IU. Has the
public health department significantly underesti-
mated the average intake of vitamin E? Use the
significance level α = 0.05.

5 Base metal alloys have been used with varying
degrees of success for metal-ceramic restorations.
One shortcoming of these alloys is the technique
sensitivity associated with the soldered joints. The
strength X of a certain nickel-base alloy is assumed
to be normally distributed, X ∼ N (μ, 6889). Six-
teen alloy samples were tested for the flexure
stress measured in megapascals. If the mean flex-
ure stress of these 16 samples is 703 MPa, is this
significantly lower than 750 MPa, which is claimed
by the manufacturer? Test the hypotheses at the
significance level α = 0.05.

6 Brown rice is being sold in a bag labeled
25 kg. Mr. Chang, who owns a grocery store, buys
the brown rice from California rice growers. He
weighed a few bags and found all were under the
labeled value. This led him to believe that the av-
erage weight of the 25-kg rice bag is actually less
than 25 kg. To ensure that his customers are get-
ting what they pay for, he has selected at random
12 bags from the last week’s shipment. The fol-
lowing lists the weight of his samples. You may
assume that the weights are normally distributed
with σ 2 = 4.2.

a. State the appropriate hypotheses.
b. Perform the test by using the p value.
c. Draw a conclusion for Mr. Chang.

23.2 24.5 22.1 22.4 23.6 21.4
22.0 24.0 24.8 25.6 23.2 22.8

7 Perform a hypothesis test H0: μ = 2.0 vs. H1:
μ �= 2.0 described at the beginning of Section 8.4
at the significance level α = 0.05.

8 Studies on antimicrobial action and induction
of tissue repair by intracanal medications have
shown calcium hydroxide to be an effective ther-
apeutic agent. The manufacturer’s brochure sug-
gested that the mean inhibition zone against S.
aureus is about 6.0 mm in diameter. The scien-
tists suspect that calcium hydroxide is far more
effective than what is believed by the manufac-
turer and that the inhibition zone has to be sub-
stantially greater than 6.0 mm. The agar diffusion
test, with 15 samples, yielded the mean inhibi-
tion zone of 7.1 mm. Suppose the zone of inhi-
bition is normally distributed with the SD σ =
2.23 mm. What conclusion can be drawn? (Use
α = 0.05.)

9 An experiment was conducted to investigate the
effect of physical exercise on the reduction of the
weight of individuals who have the body mass in-
dex (BMI) of 30 or higher. The researchers put
28 study subjects on an exercise regimen while
controlling their diet during the investigation. A
similar study, done in the past, showed that there
is on the average a decrease of 3.2 in body mass
index. Since the new study is at least a week longer
than the previous studies, they expect to see a
slightly larger drop in BMI. At the end of the
study they obtained the mean decrease of 3.8 in
BMI. The amount of reduction in BMI is known
to be normally distributed with the SD of 1.52.
What can you conclude? What is the p value? (Use
α = 0.05.)

10 Root-end preparations made with diamond-
coated ultrasonic tips (DUST) are being evaluated
with respect to extracanal cracks that originate on
the root surface and extend into the dentin. For
the study, 20 incisors were instrumented and obtu-
rated. The investigators hypothesized that prepa-
rations made with DUST would be different from
preparations made with conventional ultrasonic
tips (CUST). Past data indicate that the distribution
of extracanal cracks for CUST is approximately
normal with mean 2.87 mm. Dye penetration was
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measured after immersion of the incisor samples
in Pelikan ink for 5 days. Suppose the average
crack size for DUST, based on these 20 samples,
is 2.60 mm. If we assume that the standard devi-
ation of the size of the cracks is σ = 1.08 mm,
state the appropriate hypotheses and perform the
hypothesis test using the p value method.

11 Patients want their implants to function at
least 10 years and fully expect their dentists to
guarantee any damages to implants within 10 years
to be corrected at no cost to them. To assess if this
expectation is realistic or not, Dr. Quinn decided to
collect retrospective data from the patient charts.
He had randomly selected 27 charts of the patients
who have had titanium implants placed by him and
his associates. His data showed that the average
survival time of implants is 11.26 years. Suppose
that the distribution of implant survival time is nor-
mal with a known SD σ = 2.13 years. Based on
this evidence, would you advise Dr. Quinn that it
is reasonably safe for him to give his patients a
10-year guarantee on the titanium implants?

12 The salivary flow rate of adult patients is nor-
mally distributed with mean 1.2 ml/min and SD
0.3 ml/min. Nine dental patients were chosen at
random from a group of habitual gum chewers.
Suppose the average salivary flow rate of these
patients is 1.6 ml/min. Do gum chewers have a
significantly higher rate of salivary flow? State
the hypotheses and test at the significance level
α = 0.05.

13 Dental researchers have collected data on
bonding strength Y of an experimental dental ma-
terial they have developed. Suppose that the null
mean bonding strength of the control product is
150 lbs/mm2. Assume that the random variable Y
has a normal distribution with an unknown vari-
ance σ 2. On the basis of 20 observations of the
experimental material, they obtained the sample
mean of 154 lbs/mm2 and the SD S = 4.52. The
researchers stated their hypotheses as H0: μ = 150
vs. H1: μ �= 150. Perform a test using the p value
method.

14 Xtra-Seal and Belton are sealants widely used
by practicing dentists. The lifetime distribution of
the sealants is approximately normal. Suppose a
study suggested that the average lifetime of Xtra-
Seal is 75.6 months. To compare the lifetime of
Belton to that of Xtra-Seal, Dr. Jung selected

25 patient charts of those who were treated with
Belton and found out that the sample mean of these
25 observations was 77.4 months and the sample
SD was 9.75 months. What can you conclude from
the evidence? Explain, based on the p value of the
test.

15 Calculate the power of the test used for testing
the hypotheses in Excercise 11 at the alternative
mean μ1 = 5.5, 6.0, 6.5, 7.0, and 7.5 years. What
can you say about the behavior of the power as μ1

becomes closer to the null mean?

16 Calculate the power of the test used for test-
ing the hypotheses in Exercise 12 at several se-
lected values of the alternative mean, and discuss
the behavior of the power as the observed mean
difference |μ1 − μ0| changes.

17 Calculate the power of the test used for testing
the hypotheses in Exercise 13 at μ1 = 130, 135,

140, 145, 150, 155, 160, 165 and 170 lbs/mm2.

18 Which one of the following statements best
describes the difference between statistically sig-
nificant and clinically significant?
a. I typically treat 26 patients a day but it was hec-

tic yesterday treating 35 patients. This turned
out to be a blessing in disguise because my of-
fice manager was taking a patient satisfaction
survey for me and she was able to collect more
data.

b. When I perform statistical hypothesis testing, I
let my significance level α = 0.05, but when I
get involved with a clinical test, I let my signif-
icance level α = 0.10.

c. My partner in the clinic collected a large amount
of data on osseous integration from his patients
over the years. He is still collecting data because
he believes that the data he currently has is not
clinically significant enough. However, my sta-
tistical analysis of the current data indicates that
the results are statistically significant.

d. A study suggested that in their 80s about 25%
of the patients had at least one carious tooth.
However, a recent study conducted last year in-
dicated that about 24.5% of the patients had at
least one carious tooth. This difference is sta-
tistically significant, based on 2,106 patients.
Public health officials are happy about the sta-
tistically significant reduction in the rate. I did
well in my statistics course when I was in den-
tal school; I always tried my best to understand
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the statistical concepts rather than regurgitate
the formulas. The results may be statistically
significant but clinically inconsequential.

e. As a statistically savvy physician, I understand
the concept of variability perfectly well. About
35% of my patients, who are 65 years of age or
older, need to be medicated for hypertension.
My estimation of standard deviation of the pro-
portion of hypertensive patients from year to
year is 8%. This is a clinically significant num-
ber, compared to any other doctor I know. But
this may not be statistically significant because
I specified the significance level α = 0.005, in-
stead of α = 0.05 when I did the comparison
study with other physicians.

19 Poor oral hygiene is a serious cause of pe-
riodontal disease. Clinicians have realized that
smokers are much more likely to have poor oral
hygiene, and, therefore, their periodontal pocket
depth (PPD) is deeper than that for the general pa-
tient population. Let a random variable Y denote
the PPD. Assume that Y is normally distributed
with mean μ and known variance σ 2 = 2.44, and
that the mean PPD of the general population is
4.0 mm. Suppose investigators want to detect a
minimum difference |μ0 − μ1| = 1.2 mm with
probability 0.90. If a hypothesis test is to be per-
formed at the significance level α = 0.05, what is
the required sample size?

20 Agents with carbamide peroxide (CP) in var-
ious concentrations are widely prescribed for at-
home tooth whitening. It is not clear if the more
concentrated gels will whiten teeth to a greater ex-
tent. Dental researchers plan to conduct a double-
blind study of human subjects to evaluate whether
a 15% CP tooth-whitening system is more effec-
tive than a 10% CP system [15]. Suppose that the
values of the Vita Lumin shade guide is normally
distributed and that the variance σ 2 of teeth shade
for the patients who use CP at various concentra-
tions is known to be 4.56. A pilot study with 20
human subjects suggests that in the 15% CP system
the mean teeth shade, measured by Vita Lumin, is
4.19.
a. State the appropriate hypotheses.
b. Suppose the test is conducted at the significance

level α = 0.05. If the researchers wish to detect
a difference |μ0 − μ1| = 1.75 with probability
of 0.95, what sample size would you recom-
mend?

21 Suppose a survey with practicing MDs
showed about 43% have a solo practice and the re-
mainder 57% have a partnership, association, are
employed with HMO or government, etc. Upon
reading this survey report, a dental researcher was
curious about the proportion of DDSs who have a
solo practice. She has randomly selected 450 den-
tists listed in the ADA directory and mailed a simi-
lar survey questionnaire to these DDSs. By the end
of the month she had received 118 responses. The
sample proportion of a solo practice based on these
responses was p̂ = 0.38. Is the proportion of a solo
practice among DDSs different from that among
physicians? Use the significance level α = 0.05.

(a) State the hypotheses. (b) Test the hypothesis at
the significance level α = 0.05.

22 Interpret the result of the hypothesis test de-
scribed in Example 8.7.2.

23 Dental injury is a traumatic event with
many causative factors. Dentofacial morphology
is thought to be a major factor. Other factors related
to dental injury include behavior, environment,
and accident-proneness [16]. Suppose a study was
conducted with orthodontic patients with injured
incisors. Their cephalograms were visually ex-
amined by orthodontists, and 62% of the cases
have been correctly identified as having injured
incisors. A question was, based on their cephalo-
grams, would they be able to correctly identify
the patients with non-injured incisors as having no
injured incisors? To pursue this question the in-
vestigators prepared 90 cephalograms of patients
with non-injured incisors and found out that 56%
of them were correctly identified as having non-
injured incisors. Is there a significant difference
in correct identification between injured and non-
injured incisors? State the hypotheses and per-
form an appropriate test at the significance level
α = 0.05.

24 The materials involved in orthodontic bond-
ing have changed constantly since the acid etch
technique permitted adhesion of acrylic filling ma-
terials to enamel surfaces. A study suggested that
the mean and SD of bonding strength of a widely
used material are 6.95 MPa and 3.04 MPa. The
variation of this popular material is unacceptably
large. Orthodontists are considering a competing
material and hope that it will have a lower variance.
However, since it is brand new, no one knows if its
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variability in bonding strength is smaller or larger.
To evaluate the quality of the new material, inves-
tigators conducted an experiment with 24 samples
in their biomaterials research lab and the sample
SD of 2.43 MPa was obtained from the data. What
can you conclude? Use the p value method.
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Chapter 9

Hypothesis Testing: Two-Sample Case

9.1 INTRODUCTION

All of the statistical test procedures we studied
in Chapter 8 were one-sample problems. In this
chapter we will discuss hypothesis testing of two-
sample cases. In most of the practical situations in
biomedical health sciences, it is much more com-
mon to compare the means of two independent
populations. One random sample is drawn from
the first population and one from the second in
such a way that these two random samples are sta-
tistically independent of each other. Typically, two
groups receive different treatments, or two groups
are compared under two different conditions—one
is referred to as an experimental group (or treat-
ment group) and the other a control group. Here are
some examples to illustrate two-sample problems
that arise in the real world applications.

1. A study was conducted to evaluate the effi-
cacy of desensitizing agents for the treatment
of dentin hypersensitivity in which one group
was treated with distilled water and the other
group with 40% formalin solution.

2. A study was conducted to determine whether
an expectant mother’s alcohol consumption has
any effect on the bone mineral content of her
newborn baby.

3. Is there any difference in percent carbon
monoxide in the air between downtown L.A.
and San Bernardino, California?

4. An investigation was performed to compare the
shear bond strength of composite to metal with
two commercially available chemical bonding
systems: a silicoating system and a nitrogenous
heterocycle-acrylonitrile system.

5. Is the sealability of preventive resin restorations
prepared conventionally better than those pre-
pared with air-abrasion in the presence of acid
etching?

All these examples involve a comparison be-
tween two populations. Most questions in scien-
tific research are concerned with the detection of
a significant mean difference between two groups.
This chapter is devoted to comparing two popula-
tions with respect to their means, proportions and
variances.

9.2 TWO-SAMPLE Z TEST FOR
COMPARING TWO MEANS

Consider two independent normal populations
with unknown means μ1 and μ2. We assume that
the variances of the populations, σ 2

1 and σ 2
2 , are

known. The variances are not necessarily equal.
Suppose random samples of size n1 and n2 are
taken from the respective populations. Then it is
well-known that the sampling distribution of the
difference between the sample means is normal.
That is, the sampling distribution of X1 − X2 is
normal. Even if the underlying distributions are
not normal, the sampling distribution of X1 − X2

is approximately normal for sufficiently large n1

and n2. It can be shown that the expected value
(mean) and variance of X1 − X2 are

μ1 − μ2 and
σ 2

1

n1
+ σ 2

2

n2
.

Thus, the standard error (SE) of X1 − X2 is√
σ 2

1
n1

+ σ 2
2

n2
. In summary, if two random samples

of size n1 and n2 are taken from two independent
normal populations with unknown means μ1 and
μ2 and known variances σ 2

1 and σ 2
2 , then the sam-

pling distribution of X1 − X2 is given by

X 1 − X 2 ∼ N

(
μ1 − μ2,

σ 2
1

n1
+ σ 2

2

n2

)
or

(X 1 − X 2) − (μ1 − μ2)√
σ 2

1

n1
+ σ 2

2

n2

∼ N (0, 1).
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If the variances are equal, that is, σ 2 = σ 2
1 = σ 2

2 ,

then the variance of X1 − X2 is σ 2
(

1
n1

+ 1
n2

)
. The

above expressions can be rewritten as

X1 − X2 ∼ N

(
μ1 − μ2, σ

2

(
1

n1
+ 1

n2

))
or

(X1 − X2) − (μ1 − μ2)

σ

√
1

n1
+ 1

n2

∼ N (0, 1).

Suppose investigators wish to compare the clini-
cal shear bond strength of the two most widely used
orthodontic adhesives; Orthobond (Vivident) and
Unibond (Orthobite). For this study, n1 = 15 Or-
thobond and n2 = 12 Unibond samples were pre-
pared and their strength was tested using an Instron
machine. From the measurements of the shear
bond strength, they have estimated X1 = 9.28 kg
and X2 = 8.13 kg. Assume that the shear bond
strength is normally distributed with known vari-
ancesσ 2

1 = 4.75 andσ 2
2 = 4.37.The investigators’

goal is to test the hypotheses:

H0 : μ1 = μ2 vs. H1 : μ1 �= μ2.

By subtracting μ2 from both sides of the null and
alternative hypothesis, we have an equivalent hy-
pothesis H0: μ1 − μ2 = 0 vs. H1: μ1 − μ2 �= 0.

In light of the statements of the hypothesis, it ap-
pears reasonable to form a test statistic based on
X1 − X2. In fact, we can use

(X1 − X2) − (μ1 − μ2)√
σ 2

1

n1
+ σ 2

2

n2

as a basis for the above hypothesis test. Because
this test statistic has the standard normal distribu-
tion, testing the hypothesis proceeds precisely the
same as the one-sample Z test. Let’s compute the

value of the test statistic by substituting the appro-
priate values under the null hypothesis (that is, H0:
μ1 − μ2 = 0):

Z = (X1 − X2) − (μ1 − μ2)√
σ 2

1

n1
+ σ 2

2

n2

= (9.28 − 8.13) − 0√
4.75

15
+ 4.37

12

= 1. 39.

At the significance level α = 0.05, the critical val-
ues are z = −1.96 and z = 1.96, as we saw in
Chapter 8. Therefore, the null hypothesis is ac-
cepted. We can also compute the p value.

p value = 2 · P(Z > 1.39) = 0.1646 > 0.05.

Thus, we accept H0 and conclude that there is
no statistically significant difference in the mean
shear bond strength between the two orthodontic
adhesives. The rejection and acceptance regions of
this two-sample Z test is depicted in Figure 9.2.1.

Two-Sample Z Test

Suppose we want to test the hypothesis H0: μ1 =
μ2 vs. H1: μ1 �= μ2 at the significance level α =
0.05 for two independent normal populations with
known variances σ 2

1 and σ 2
2 . Under H0: μ1 = μ2,

compute the test statistic

Z = (X1 − X2)√
σ 2

1

n1
+ σ 2

2

n2

Reject H0 if Z < −Z1−α/2 = Zα/2 or Z > Z1−α/2

and accept H0 if −Z1−α/2 ≤ Z ≤ Z1−α/2.

Acceptance 
Region

Rejection

Region

Rejection

Region

1.96O−1.96

Figure 9.2.1 Rejection and acceptance regions of two-sample Z test.
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9.3 TWO-SAMPLE t TEST FOR
COMPARING TWO MEANS WITH
EQUAL VARIANCES

In general, σ 2
1 and σ 2

2 are not known. Therefore,
they must be estimated from the data. From the
two samples we select, the sample variances are
obtained by S2

1 and S2
2 , respectively. We assume

in this section that the variances are unknown but
equal σ 2 = σ 2

1 =σ 2
2 . The sample variances, S2

1 and
S2

2 , will be used to estimate the population variance
σ 2. The best estimate of σ 2 is given by the pooled
estimate from two independent samples:

S2
p = (n1 − 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2
.

Note that S2
p is a weighted average of S2

1 and
S2

2 , where the weights are defined by the number
of degrees of freedom in each sample. The weights

w1 = n1 − 1

n1 + n2 − 2
and w2 = n2 − 1

n1 + n2 − 2
are as-

signed to S2
1 and S2

2 , respectively. The pooled esti-
mate of the variance S2

p has n1 + n2 − 2 degrees of
freedom, n1 − 1 from the first sample and n2 − 1
from the second sample. Greater weight is given
to the sample variance of the larger sample. If
n1 = n2, then the pooled estimate S2

p is the sim-
ple arithmetic average of S2

1 and S2
2 . As we have

done in the one-sample case, we will replace σ by
the pooled sample SD, Sp in the formula in the
previous section and get

t = (X1 − X2) − (μ1 − μ2)

Sp

√
1

n1
+ 1

n2

.

Under the null hypothesis H0: μ1 − μ2 = 0, we

have t = (X1 − X2)

Sp

√
1
n1

+ 1
n2

∼ t(n1+n2−2).

The above statistic has a t distribution with n1 +
n2 − 2 degrees of freedom. A two-sample t test
for independent samples when the variances are
unknown but equal can be summarized as follows.

Two-Sample t Test with Equal Variances

Suppose we want to test the hypothesis H0: μ1 =
μ2 vs. H1: μ1 �= μ2 at the significance level α =
0.05 for two independent normal populations with
unknown but equal variances. Compute the test
statistic

t = (X1 − X2)

Sp

√
1
n1

+ 1
n2

, where Sp is the sample SD

given by

√
(n1 − 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2
,

Reject H0 if t < −t(n1+n2−2,1−α/2) =
t(n1+n2−2,α/2) or t > t(n1+n2−2,1−α/2), and ac-
cept H0 if −t(n1+n2−2,1−α/2) ≤ t ≤ t(n1+n2−2,1−α/2).

The p value of the two-sample t test can be
calculated the same as the one-sample case:

If t = (X1 − X2)

Sp

√
1

n1
+ 1

n2

≤ 0,

p = 2 · P(t(n1+n2−2) < t)

= 2 · (area to the left of t under
t (n1+n2−2) distribution).

If t = (X1 − X2)

Sp

√
1

n1
+ 1

n2

> 0,

p = 2 · P(t(n1+n2−2) ≥ t)

= 2 · (area to the right of t under
t(n1+n2−2) distribution).

These p values are shown in Figure 9.3.1 and
Figure 9.3.2.

Figure 9.3.1 P value when t ≤ 0.
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Figure 9.3.2 P value when t ≥ 0.

We present a couple of examples to illustrate a
two-sample t test.

Example 9.3.1. Localized gingival recessions are
among the indications for mucogingival surgery.
They may require treatment because of functional
considerations or because of their esthetic impli-
cations. Caffesse and Guinard [1] studied 26 lo-
calized gingival recessions: 14 of them treated
with a lateral sliding flap procedure and 12 treated
with a coronally repositioned flap procedure. Six
months after the treatment with the respective pro-
cedure, the change in mucogingival line was mea-
sured. Suppose that the change in mucogingival
line is normally distributed and that both proce-
dures have the same population variances. From
the measurements the investigators computed the-
following sample means and sample variances,
X1 = 4.50 mm, X2 = 4.33 mm, S2

1 = 1.27, and
S2

2 = 1.07. The investigators wish to test if there
is any difference in mean changes between the two
procedures. Perform the test at the significance
level α = 0.05.

Solution. The hypothesis can be stated as follows:
H0: μ1 = μ2 vs. H1: μ1 �= μ2. Two independent
samples were drawn, one with n1 = 14 and the
other with n2 = 12. Since S2

1 = 1.27 and S2
2 =

1.07, we can obtain the pooled estimate of the
variance σ 2,

S2
p = (n1 − 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2

= (14−1)(1.27)+(12 − 1)(1.07)

14 + 12 − 2
= 1. 178 3.

So the SE of X1 − X2 is given by

Sp

√
1

n1
+ 1

n2
=

√
1.1783 ·

√
1

14
+ 1

12
= 0.427 0.

We now compute the t statistics value by substitu-
tion,

t = (X1 − X2)

Sp

√
1

n1
+ 1

n2

= 4.50 − 4.33

0.4270
= 0.3981.

The critical values are t(24,0.975) = 2.064 and
t(24,0.025) = −t(24,0.975) = −2.064. Because t =
0.3981 falls in the acceptance region, −2.064 <

t = 0.3981 < 2.064, we accept the null hypothe-
sis and conclude that there is no statistically signif-
icant difference in mean changes in mucogingival
line on the recipients 6 months after the treatment
between a lateral sliding flap and a coronally repo-
sitioned flap procedure at the significance level
α = 0.05. We can reach the same conclusion using
the p value method.

p = 2 · P(0.3981 ≤ t(24)) > 2 · P(0.531 ≤ t(24)),

from the t table in the Appendix

= 2(0.30) = 0.60.

The p value is slightly larger than 0.60, which is
much greater than α = 0.05.

Example 9.3.2. The success of endodontic ther-
apy depends on the method and quality of in-
strumentation, irrigation, disinfection, and the tri-
dimensional obturation of the root canal system.
Vertical condensation of warm gutta-percha and
lateral condensation with a standardized cone are
the techniques widely used for the obturation of the
root canal system. These techniques are evaluated
in the presence of a smear layer. Twenty-four well-
preserved extracted human central incisors with
straight roots were selected to evaluate the smear
layer influence on the apical seal of the obturation
techniques. The root canals of 12 teeth samples
(n1 = 12) were obturated with the first technique
and 12 (n2 = 12) with the second technique. To
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compare the effectiveness of the two techniques,
apical leakage was assessed by measuring the lin-
ear penetration of methylene blue dye with a stere-
omicroscope [2]. Suppose that the linear penetra-
tion is normally distributed and that the variances
of penetration for these obturation techniques are
the same. The sample means and the sample vari-
ances are calculated from the data: X1 = 5.2 mm,
X2 = 4.1 mm,S2

1 = 1.96, and S2
2 = 1.0. Perform

a hypothesis test to detect a significant difference
in mean between the obturation techniques at the
significance level α = 0.05.

Solution. The hypotheses we want to test can be
stated as H0: μ1 = μ2 vs. H1: μ1 �= μ2. If the sam-
ple sizes for the two independent samples are n1 =
12 and n2 = 12, and S2

1 = 1.96 and S2
2 = 1.0, we

obtain the pooled estimate of the variance σ 2.

S2
p = (n1 − 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2

= (12 − 1)(1.96) + (12 − 1)(1.0)

12 + 12 − 2
= 1. 48.

We now compute the value of the t statistic by
substitution,

t = (X1 − X2)

Sp

√
1

n1
+ 1

n2

= 5.2 − 4.1

1.2166

√
1

12
+ 1

12

= 2. 214 7

The critical values are t(22,0.975) = 2.074 and
t(22,0.025) = −t(22,0.975) = −2.074. Because t =
2.2147 falls in the rejection region, t(22,0.975) <

2.2147, we reject the null hypothesis and con-
clude that there is a statistically significant mean
difference. In fact, the lateral condensation with
a standardized cone in the presence of a smear
layer is significantly more effective in preventing
apical leakage than vertical condensation of warm
gutta-percha. The p value is obtained by p = 2 ·
P(2.2147 < t(22)) < 2 · P(2.183 < t(22)) = 0.04.

9.4 TWO-SAMPLE t TEST FOR
COMPARING TWO MEANS WITH
UNEQUAL VARIANCES

In the previous section we discussed a two-sample
t test for comparing means of two independent
normal populations when the variances are not

known but assumed to be equal. In this section
we discuss the situations in which the variances
are unknown and unequal. One sample of size n1

is drawn from a normal population N (μ1, σ 2
1 ) and

another sample of size n2 is drawn from a nor-
mal population N (μ2, σ 2

2 ). We wish to test the
hypothesis H0: μ1 = μ2 vs. H1: μ1 �= μ2. Instead
of using the pooled estimate S2

p of the variance,
we replace σ 2

1 and σ 2
2 in the formula in Section 9.2

by their estimates S2
1 and S2

2 and obtain the test
statistic

t = (X1 − X2)√
S2

1

n1
+ S2

2

n2

.

Unlike the case with equal variances, the above

statistics t = (X1 − X2)√
S2

1/n1 + S2
2/n2

when σ 2
1 �= σ 2

2 has

an approximately t distribution with the degrees of
freedom δ∗ [3]. The quantity δ∗ is approximated
by

δ = (S2
1/n1 + S2

2/n2)2

(S2
1/n1)2/(n1 − 1) + (S2

2/n2)2/(n2 − 1)
.

The δ is known as Satherthwaite approximation.
The approximate degrees of freedom δ may not
be an integer, in which case, round it down to the
nearest integer δ∗. Satherthwaite showed that

t = (X1 − X2)√
S2

1/n1 + S2
2/n2

is approximately t(δ∗).

We round the degrees of freedom δ down to the
nearest integer, rather than up, to take a conserva-
tive approach. This means it is slightly less likely
to reject the null hypothesis.

Two-Sample t Test for Comparing Two
Normal Means with Unequal Variances

1. For testing the hypothesis H0: μ1 = μ2 vs. H1:
μ1 �= μ2, we compute the statistic

t = (X1 − X2)√
S2

1/n1 + S2
2/n2

2. Obtain the approximate degrees of freedom δ,

δ = (S2
1/n1 + S2

2/n2)2

(S2
1/n1)2/(n1 − 1) + (S2

2/n2)2/(n2 − 1)
.
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3. Round δ down to the nearest integer, δ∗.
4. Reject H0 if t < t(δ∗,α/2) or t > t(δ∗,1−α/2), and

accept H0 if t(δ∗,α/2) ≤ t ≤ t(δ∗,1−α/2).

The p value is calculated in the same manner
as before except the approximated degrees of free-
dom δ∗ must be used. If the value of the test statistic

t = (X1 − X2)√
S2

1/n1 + S2
2/n2

≤ 0, then

p = 2 · P(t(δ∗) < t)

= 2 · (area to the left of t under the
t distribution with the degrees of
freedom δ∗).

If the value of the test statistic

t = (X1 − X2)√
S2

1/n1 + S2
2/n2

> 0, then

p = 2 · P(t(δ∗) > t)

= 2 · (area to the right of t under the t
distribution with the degrees of
freedom δ∗).

Example 9.4.1. Investigators selected 34 subjects
to study the permanent dentition in deciduous
anterior crossbites. Based on the radiographs,
the subjects were divided into two groups. One
group comprised 17 subjects whose anterior cross-
bite self-corrected during the transitional state
(Group A). The other group was composed of 17
subjects whose anterior crossbite persisted during
the transitional dentition (Group B) [4]. Lateral
cephalometric radiographs were traced to measure
posterior facial height in millimeters. Suppose that
the distribution of posterior facial height for both
groups is normal with unequal variances. What
would you conclude from the data about the mean
of the posterior facial height of the two groups?
The investigators summarized their research data
in the table below.

Group A Group B

Sample size n1 = 17 n2 = 17
Sample mean X1 = 46.9 X2 = 48.7
Sample variance S2

1 = 4.25 S2
2 = 2.94

Solution. The hypothesis we wish to test can be
stated as H0: μ1 = μ2 vs. H1: μ1 �= μ2. Following

the steps described, we compute the test statistic

t = (X1 − X2)√
S2

1/n1 + S2
2/n2

= (46.9 − 48.7)√
4.25/17 + 2.94/17

= −2.7678.

To approximate the degrees of freedom, we
compute

δ = (S2
1/n1 + S2

2/n2)2

(S2
1/n1)2/(n1 − 1) + (S2

2/n2)2/(n2 − 1)

= (4.25/17 + 2.94/17)2

(4.25/17)2/(17 − 1) + (2.94/17)2/(17 − 1)

= 30. 972.

By rounding it down to the nearest integer,
we get δ∗ = 30. Since t(δ∗,1−α/2) = t(30,0.975) =
2.042, and t(δ∗,α/2) = t(30,0.025) = −2.042, and t =
−3.0753 < t(30,0.025) = −2.042, we reject the null
hypothesis. Group B has a statistically signifi-
cantly larger mean posterior facial height at the
significance level α = 5%. The p value is given
by

p = 2 · P(t(δ∗) < t) = 2 · P(t(δ∗) <−2.7678)

< 2 · P(t(30)<−2.581) = 0.015.

The p value is less than 0.015.

Example 9.4.2. Rheumatoid arthritis (RA) is as-
sociated with an increased mortality rate for car-
diovascular disease. This may relate to insulin re-
sistance and dyslipidemia, which were both re-
ported to correlate with the acute phase response
in RA [5]. A study was conducted to compare
the metabolic variables between a control group
and an experimental group. The control group
was composed of 81 subjects who are free of
RA, and the experimental group composed of 83
subjects who suffer from inflammatory arthritis.
One of the metabolic variables under investiga-
tion was insulin level (μ microunits per milliliter),
which is assumed to be normally distributed. In-
sulin levels were measured for each subject in the
study, and their sample mean and sample vari-
ances are X1 = 5.2, X2 = 8.2 mm, S2

1 = 5.29 and
S2

2 = 22.09. Assume that the population variances
σ 2

1 and σ 2
2 for the two groups are not equal. Do the
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two groups have significantly different mean in-
sulin levels?

Solution. By simple substitution we get the val-
ues of test statistic and the approximate degrees of
freedom,

t = (X1 − X2)√
S2

1/n1 + S2
2/n2

= (5.2 − 8.2)√
5.29/81 + 22.09/83

= −5.2109

and

δ∗ = (S2
1/n1 + S2

2/n2)2

(S2
1/n1)2/(n1 − 1) + (S2

2/n2)2/(n2 − 1)

= (5.29/81 + 22.09/83)2

(5.29/81)2/(81−1) + (22.09/83)2/(83−1)

= 119.79.

By rounding it down to the nearest integer, we
get δ∗ = 119. The degrees of freedom 119 is
not found in the t table. We will take δ∗ = 120,

which is the closest value in Table E in the Ap-
pendix. Since t(δ∗,1−α/2) = t(120,0.975) = 1.980, and
t(δ∗,α/2) = t(120,0.025) = −1.980, and the calculated
t = −5.2109 < t(120,0.025) =−1.980, we reject the
null hypothesis. Therefore, we conclude that the
patients with inflammatory arthritis have a statis-
tically significantly higher mean insulin level at
the significance level α = 5%. The p value can be
obtained by

p = 2 · P(t(δ∗) < t) = 2 · P(t(120) < −5.2109)

< 2 · P(t(120) < −3.373) = 0.001.

The p value is less than 0.001. So the difference
in mean insulin levels between the control and ex-
perimental groups is highly significant.

The examples of two-sample hypothesis testing
problems we have discussed in this section and the
previous sections are two-tailed tests. Like one-
sample cases, two-sample problems can be for-
mulated as one-tailed hypothesis tests.

9.5 THE PAIRED t TEST

Often, experiments in biomedical health sciences
are designed so that the sample subjects (experi-
mental units) are measured at baseline and after

treatment, or pre- and post-medical intervention.
Examples of this sort of experiment are as follows:

1. To assess a weight loss program, the subject’s
body mass index is measured before he begins
the program at baseline and again at the end of
the program.

2. To evaluate a certain regimen of exercise pro-
gram in reducing blood pressure, the sub-
ject’s blood pressure is measured before he or
she starts the program and at the end of the
program.

3. To study the effect of beta carotene on reduc-
tion of serum cholesterol, the study subjects are
instructed to drink a prescribed amount of beta
carotene-rich juice for the duration of the clin-
ical trial. Their serum cholesterol level is mea-
sured at baseline and at the end of the trial.

4. Periodontal diseases are caused by putative pe-
riodontopathic bacteria in periodontal pockets
[6]. To evaluate the efficacy of periodontal treat-
ment in removing periodontopathic bacteria,
the number of porphyromonas gingivalis cells
at baseline and after the treatment are compared.

In all of the examples described above, measure-
ments are taken on the same subjects at two distinct
time points. This type of study is known as paired
sample design. In a paired sample design, we have
a pair of observations for each subject. Each sub-
ject acts as his or her own control. Alternatively,
investigators can form two study groups, one group
of subjects representing those who are not on the
weight loss program and another group of sub-
jects representing those who are on the program.
These two groups are compared to assess the effi-
cacy of the weight loss program. This type of de-
sign is referred to as cross-sectional design. Sub-
jects in a cross-sectional design are chosen to be as
much alike as possible in terms of their prognostic
variables, such as age, sex, or blood pressure. In
general, studies with a paired sample design takes
much more time to complete and tends to be more
expensive than those with a cross-sectional design.
But, the paired sample design has a definite advan-
tage in a sense that the same confounding variables
that influence the response at baseline will also be
present at the end of the study. Therefore, any dif-
ference we observe is likely due to the treatment
effect. In this section, we assume that the paired
sample design is employed.
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A study was conducted by an orthodontist to
compare pre-treatment to post-treatment changes
in patients undergoing fixed orthodontic therapy
who have had buccinator release surgery. The alve-
olar and soft tissue changes in the mandible of
the 13 subjects who are of the brachyfacial type
were observed [7]. Table 9.5.1 below presents the
measurement data on alveolar bone in the area of
the symphysis for both pre-orthodontic treatment
(X1i ) and post-orthodontic treatment (X2i ) based
on their lateral cephalometric radiographs. Dura-
tion of fixed orthodontic treatment was approxi-
mately 30 months. The difference in alveolar bone
area between pre- and post-treatment is denoted
by Di = X2i − X1i .

We assume that the alveolar bone area of the
i th subject at baseline is normally distributed with
mean μi and variance σ 2, and at the end of the
treatment is also normally distributed with mean
μi + δ and variance σ 2. Of course, we can as-
sume that the study subjects are statistically in-
dependent of each other. We can show that the
difference Di = X2i − X1i is normally distributed
with mean δ and variance σ 2

d , that is, Di ∼ N (δ,
σ 2

d ). Intuitively, if δ = 0, then there is no treatment
effect. If δ > 0, then the treatment is associated
with an increase in alveolar bone area. If δ < 0,

then the treatment is associated with a decrease
in alveolar bone area. The hypothesis we wish to
test is: H0: δ = 0 vs. H1: δ �= 0. Since δ is the
mean of the random variable representing the dif-
ference Di = X2i − X1i , the hypothesis test can

Table 9.5.1. Alveolar bone area (mm2), pre- and
post-treatment.

Pre-treatment Post-treatment
Subject (X1i ) (X2i ) Di = X2i − X1i

1 57.16 62.65 5.49
2 50.38 72.01 21.63
3 70.67 79.17 8.50
4 89.53 122.12 32.59
5 62.18 62.01 −0.17
6 64.82 73.97 9.15
7 79.89 85.19 5.30
8 92.03 97.47 5.44
9 78.22 88.84 10.62

10 86.66 96.0 9.34
11 97.86 102.75 4.89
12 93.69 106.84 13.15
13 65.81 88.64 22.83

be considered a one-sample test. As we discussed
in Chapter 8, the best test is based on the sam-
ple mean D. The variance σ 2

D is estimated by the
sample variance given by

S2
D =

∑n
i=1(Di − D)2

n − 1
.

Then the test statistic is t = D − δ

SD/
√

n
, which fol-

lows a t distribution with the degrees of freedom
(n − 1). A test based on this statistic is referred to
as a paired t test. Under the null hypothesis we
have

t = D

SD/
√

n
∼ t(n−1).

Thus, a paired t test will proceed just like a one-
sample t test. From Table 9.5.1, we obtain the
sample mean and sample variance; D = 11.44,

S2
D = 82.47 (SD = 9.08). The value of the test

statistic is given by

t = D

SD/
√

n
= 11.44

9.08/
√

13
= 4.5427.

Because t(12,0.975) = 2.179 < 4.5427, we reject
H0 at the significance level α = 0.05. The p value
is computed the same as the one-sample t test:

p = 2 · P(4.5427 ≤ t(12)) < 2 · P(4.318 ≤ t(12))

= 2(1 − 0.9995) = 0.001.

The p value is slightly smaller than 0.001. We can
conclude that the alveolar bone area for the pa-
tients undergoing fixed orthodontic therapy, who
have had buccinator release surgery, is statistically
significantly larger.

Instead of defining the difference by Di =
X2i − X1i , we can subtract the follow-up measure-
ments from baseline measurements so that we have
Di = X1i − X2i . Then the sample mean D will
be −11.44 and the sample variance will remain
the same S2

D = 82.47. The value of the test statis-

tic will be t = D

SD/
√

n
= −4.5427 < t(12,0.025) =

−2.179. By symmetric property of a t distribution,
the p value is the same as before:

p = 2 · P(4.5427 ≤ t(12))

= 2 · P(t(12) ≤ −4.5427) < 0.001.
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−2.306 2.306

Figure 9.5.1 Rejection and acceptance regions for the paired t test in Example 9.5.1.

Hence, the conclusion is the same as before, that
is, we reject the null hypothesis.

Example 9.5.1. Agents with carbamide peroxide
(CP) in various concentrations are widely pre-
scribed for at-home tooth whitening. A study was
conducted to evaluate the efficacy of a 10% CP
with nine human subjects with maxillary ante-
rior teeth. All of the study subjects underwent a
professional prophylaxis and were given specific
instructions regarding at-home use of a 10% CP
tooth-whitening agent. They were required to use
it for 2 weeks. Tooth shade index of their central
incisors was measured at baseline and after the 2-
week study period. It is assumed that the distribu-
tion of tooth shade index is normal. The following
table summarizes the data. Would you be able to
conclude that the 10% CP tooth-whitening agent
is effective?

Baseline After 2-week
Subject (X1i ) Treatment (X2i ) Di = X2i − X1i

1 14 21 7
2 16 15 −1
3 14 18 4
4 17 19 2
5 18 15 −3
6 11 18 7
7 15 22 7
8 13 16 3
9 12 14 2

Solution. We compute the sample mean and the
sample SD of Di from the data; D = 3.1111,

and SD = 3.5862. The test statistic t = D

SD/
√

n
has a t distribution with the degrees of freedom

n − 1 = 8, and its observed value is obtained by

t = D

SD/
√

n
= 3.1111

3.5862/
√

9
= 2.6026.

Because t(8,0.975) = 2.306 < t = 2.6026, the null
hypothesis H0 is rejected. The p value is obtained
by

p = 2 · P(2.6026 ≤ t(8)) < 2 · P(2.449 ≤ t(8))

= 2(1 − 0.98) = 0.04.

The p value is less than 0.04. We conclude that
the 10% CP tooth-whitening agent is significantly
effective at the significance level α = 0.05. Rejec-
tion and acceptance regions for the paired t test are
shown in Figure 9.5.1.

Example 9.5.2. Chronic leukemia involves an
overgrowth of mature blood cells and is more
common among patients who are 40–70 years of
age. The most common treatment for leukemia is
chemotherapy, which may involve one or a com-
bination of antineoplastic drugs that destroy can-
cer cells. Researchers suspect that the treatment
may lower the level of hemoglobin, the oxygen-
carrying red pigment of the red blood corpuscles.
Eight leukemia patients who underwent the treat-
ment were selected to test the investigators’ hy-
pothesis. Each patient’s hemoglobin was measured
at baseline and at the end of the first course of
the treatment. Determination of the hemoglobin
content of the blood was done by using the Sahli
method (g/100 ml). The following is the data the
investigators collected. If the hemoglobin content
is approximately normally distributed, would you
conclude that the chemotherapy has a significant
effect on the level of hemoglobin?
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Baseline After Chemotherapy
Subject (Xi ) Treatment (Yi ) Di = Xi − Yi

1 15.4 13.8 1.6
2 16.7 15.4 1.3
3 15.5 14.1 1.4
4 16.2 13.9 2.3
5 14.2 14.0 0.2
6 16.5 — —
7 14.8 14.5 0.3
8 14.5 13.4 1.1

Solution. Two observations at two distinct time
points were made for each subject. Thus, a paired
t test is appropriate. The hypothesis to be tested
is H0: δ = 0 vs. H1: δ �= 0. The follow-up obser-
vation for subject number 6 is missing because
the patient was unable to complete the treatment.
Therefore, this patient is deleted from the study.
Consequently, the sample size is n = 7. We com-
pute the sample mean and the sample SD of the
difference Di = Xi − Yi from the data, and ob-
tain D = 1.1714 and SD = 0.7342. The test statis-
tic t = D

SD/
√

n
has a t distribution with the degrees

of freedom n − 1 = 6, and its observed value is
obtained by

t = D

SD/
√

n
= 1.1714

0.7342/
√

7
= 4.2212.

Because t(6,0.975) = 2.447 < t = 4.2212, the null
hypothesis H0 is rejected. The p value is obtained
by:

p = 2 · P(4.2212 ≤ t(6)) < 2 · P(3.707 ≤ t(6))

= 2(1 − 0.995) = 0.01.

The p value is less than 0.01. We conclude that
the leukemia treatment significantly lowers the
hemoglobin level at the significance level α =
0.05. The p value is depicted in Figure 9.5.2.

9.6 Z TEST FOR COMPARING
TWO BINOMIAL PROPORTIONS

There are many problems in biomedical health sci-
ences in which an observed difference between
two sample proportions can be attributed to chance
alone or in which the difference represents the
true difference that exists between the correspond-
ing population proportions. We illustrate some
examples:

1. The Department of Public Health scientists sus-
pect that the proportion of the chronic leukemia
patients in an urban area is different from that
in a rural area.

2. The proportion of patients who prefer to be
treated by female dentists and physicians is
higher than that of patients who prefer to be
treated by male counterparts.

3. The proportion of impaired bone healing and/or
necrosis during implant osteotomy is higher
under prolonged exposure to high temperature
than that under lower temperature.

Let p1 be the proportion (probability) of the pa-
tients who experience impaired bone healing or
necrosis during implant osteotomy as a result of
prolonged exposure to high temperature and p2 be
the proportion of patients exposed to lower tem-
perature. Then the hypothesis-testing problem can
be stated as follows:

H0 : p1 = p2 vs. H1 : p1 �= p2,

H0 : p1 ≤ p2 vs. H1 : p1 > p2, or

H0 : p1 ≥ p2 vs. H1 : p1 < p2.

Statisticians use two methods to compare two
binomial proportions: a hypothesis-testing ap-
proach and a contingency table approach. The
contingency table approach will be discussed in
Chapter 10. Both methods yield the same p value.

P/2 = P(4.2212 ≤ t
(6)

)

t
(6)

Figure 9.5.2 The p value for the paired t test in Example 9.5.2.
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In this sense, the two methods are equivalent. In
this section, we discuss the method of testing hy-
potheses. Our discussion is focused on the two-
tailed test: H0: p1 = p2 vs. H1: p1 �= p2. This is
an extension of the one-sample test for a bino-
mial proportion that we introduced in Section 8.7.
By subtracting p2 from both sides of the null and
alternative hypotheses, we can state an equivalent
hypothesis, H0:p1 − p2 = 0 vs. H1: p1 − p2 �= 0.

To test the hypothesis we take two random sam-
ples of size n1 and n2 from two independent pop-
ulations whose unknown true proportions of our
interest arep1 and p2, respectively. Let X1 and X2

be the number of events in the first and the second
samples. As we discussed in Section 8.4,

∧
p1 = X1

n1

and
∧
p2 = X2

n2
. It is reasonable to construct the sig-

nificance test based on
∧
p1−

∧
p2. Intuitively, if the

sample difference
∧
p1−

∧
p2 is very large or very

small (a large negative value), the null hypothesis
would be rejected. If it is very close to zero, then
H0 would be accepted, since it is an indication that
the null hypothesis might be true. As before, we
assume that the sample sizes are sufficiently large
enough so that the normal approximation to the
binomial distribution is valid. We can show that
under H0,

∧
p1 and

∧
p2 are approximately normally

distributed with mean p and variance
pq

n1
and

pq

n2
:

∧
p1

◦∼ N

(
p,

pq

n1

)
, and

∧
p2

◦∼ N

(
p,

pq

n2

)
.

Furthermore, we can show that, since two samples

are independent, the sample difference
∧
p1−

∧
p2 is

approximately normally distributed with mean 0

and variance
pq

n1
+ pq

n2
= pq

(
1

n1
+ 1

n2

)
,

∧
p1 − ∧

p2
◦∼ N

(
0, pq

(
1

n1
+ 1

n2

))
.

By dividing
∧
p1−

∧
p2 by the SD

√
pq

(
1

n1
+ 1

n2

)
,

we have

Z =
∧
p1 − ∧

p2√
pq

(
1

n1
+ 1

n2

) ◦∼ N (0, 1).

A test based on this statistic is a Z test. To compute
the test statistic, we have to estimate the proportion

p (q = 1 − p). The estimate is given by:

∧
p = X1 + X2

n1 + n2
= n1(X1/n1) + n2(X2/n2)

n1 + n2

= n1
∧
p1 + n2

∧
p2

n1 + n2
.

A simple algebraic manipulation shows that the

estimate
∧
p is a weighted average of

∧
p1and

∧
p2, and

∧
q = 1− ∧

p. The sample mean associated with a
larger sample size is given a greater weight. We
have just reduced the two-sample test for compar-
ing binomial proportions to a simple Z test.

Example 9.6.1. A study was done to compare the
proportion of urban and suburban children in the
United States who have early onset juvenile peri-
odontitis (EOJP). Investigators randomly selected
130 urban children and 145 suburban children
younger than 7 years of age and gave them a pe-
riodontal examination. The results of the exami-
nation indicated that 12 of the urban children and
16 of the suburban children had EOJP. The in-
vestigators hypothesized that there would be no
difference in the proportion between the two pop-
ulations. Given this information, what could you
conclude?

Solution. Let p1 and p2 denote the proportion of
urban and suburban children, respectively, with
EOJP. The hypotheses of our interest is H0: p1 =
p2 vs. H1: p1 �= p2. From the given informa-
tion, we have n1 = 130, n2 = 145, X1 = 12, and

X2 = 16. Thus, the sample proportions are
∧
p1 =

12
130 = 0.092 and

∧
p2 = 16

145 = 0.110. The estimate
∧
p is given by

∧
p = X1+X2

n1+n2
= 12+16

130+145 = 0.102. So
∧
q = 1 − 0.102 = 0.898. By replacing p and q

by their estimates
∧
p = 0.102 and

∧
q = 0.898 in

the denominator, the value of the test statistic is
obtained by:

Z =
∧
p1 − ∧

p2√
pq

(
1

n1
+ 1

n2

)
= 0.092 − 0.110√

(0.102)(0.898)

(
1

130
+ 1

145

)=−0.492 4.
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Z.025 = −1.96 Z.975 = 1.96

Acceptance 
Region

Rejection

Region

Rejection

Region

Figure 9.6.1 The rejection and acceptace regions for the test in Example 9.6.1.

Since Z0.025 = −1.96 < −0.4924 < Z0.975 =
1.96, we accept the null hypothesis at the
significance level α = 0.05. The p value is
given by p = 2 · P(Z ≤ −0.4924) > 2 · P(Z ≤
−0.50) = 0.6170. The actual p value is slightly
larger than 0.6170. We conclude that there is no
statistically significant difference in the proportion
of suburban children with EOJP and that for urban
children with the p value a little larger than 0.6170.
The rejection and acceptance regions for this test
are illustrated in Figure 9.6.1.

Example 9.6.2. A study of comparative effects of
two sedatives, Nembutal and diazepam, on antero-
grade amnesia was performed. The anterograde
amnesia was assessed with the help of flash cards
and a musical note to test the audiovisual mem-
ory of the patient during the surgical procedure
[8]. Suppose that 46 of the 48 patients, who were
exposed to IV sedation using Nembutal, experi-
enced short-term memory loss, and 51 of the 62
patients, who were sedated with diazepam, experi-
enced short-term memory loss. Anesthesiologists
suspect that there is no difference in the proportion
of patients who have a negative effect of amnesia
between the two sedatives. Do the data support
their suspicion? Test your hypothesis.

Solution. Let p1 and p2 denote the proportion of
patients who experienced memory loss after be-
ing sedated using Nembutal and diazepam, respec-
tively. The hypotheses of our interest is

H0 : p1 = p2 vs. H1 : p1 �= p2.

From the given data, we have the sample propor-

tions
∧
p1 = 46

48 = 0.9583 and
∧
p2 = 51

62 = 0.8226.

The estimate
∧
p is obtained by

∧
p = X1+X2

n1+n2
=

46+51
48+62 = 0.8818 So

∧
q = 1 − 0.8818 = 0.1182. By

substituting p and q with their estimates
∧
p =

0.8818 and
∧
q = 0.1182 in the denominator, the

value of the test statistic is computed:

Z =
∧
p1 − ∧

p2√
pq

(
1

n1
+ 1

n2

)

= 0.9583 − 0.8226√
(0.8818)(0.1182)

(
1

48
+ 1

62

) = 2.1863

Since Z0.975 = 1.96 < 2.1863, we reject the null
hypothesis at the significance level α = 0.05. The
p value is given by p = 2 · P(2.1863 ≤ Z ) <

2 · P(2.18 ≤ Z ) = 0.0292. The actual p value is
slightly less than 0.0292. We conclude that the
proportion of the Nembutal-sedated patients who
lose their memory is significantly higher than that
of the diazepam-sedated patients who experience
a short-term memory loss, with the p value ap-
proximately equal to 0.0292.

9.7 THE SAMPLE SIZE AND
POWER OF A TWO-SAMPLE TEST

9.7.1 Estimation of Sample Size

Determination of sample size for the one-sample
Z test was presented in Section 8.6. When inves-
tigators design a research project, estimation of a
sample size is one of the first key issues. We will
introduce a method of sample size estimation for
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comparing two normal means, μ1 and μ2. Con-
sider the case where we have equal sample sizes
(n = n1 = n2) for two random samples for a two-
sample Z test. The question investigators most fre-
quently ask is “How large should n be for a two-
sample Z test at the significance level α = 0.05
in order to achieve the power of 1 − β?” Assum-
ing that the variances σ 2

1 and σ 2
2 are known, the

required sample size n for each sample for a two-
tailed Z test is given by

n = (σ 2
1 + σ 2

2 ) · (Z1−α/2 + Z1−β)2

(μ1 − μ2)2
,

where μ1, σ 2
1 and μ2, σ 2

2 are the mean and vari-
ance of the two independent normal populations,
N (μ1, σ 2

1 ) and N (μ2, σ 2
2 ). As in the one-sample

case, the researchers have to specify the amount
of the mean difference |μ1 − μ2| they wish the
test to detect. For a one-tailed test, simply replace
Z1−α/2 by Z1−α in the formula. In many cases it is
impractical to expect the two groups to have equal
sample sizes. For instance, there may be twice as
many non-smokers as there are smokers, the num-
ber of patients who floss their teeth daily is far
less than those who do not floss, or there might
be five times as many non-vegetarians as there
are vegetarians. We wish to determine unequal
sample sizes to achieve a predetermined level of
power. Let k > 0 be some number such that n1 =
k · n2. The required sample sizes for a two-tailed
Z test for achieving a power 1 − β are given as
follows:

For sample size n1 of first sample from N (μ1, σ
2
1 )

n1 = (σ 2
1 + k · σ 2

2 ) · (Z1−α/2 + Z1−β)2

δ2
, and

for sample size n2 of second sample from
N (μ2, σ

2
2 )

n2 =

(
σ 2

1

k
+ σ 2

2

)
· (Z1−α/2 + Z1−β)2

δ2

where δ = (μ1 − μ2) and k = n1

n2
. For a one-tailed

test, replace Z1−α/2 by Z1−α in the formula.

The mean difference δ = (μ1 − μ2) between μ1

and μ2 usually is prespecified by the investigators.
This is the minimum amount of the difference they
wish to detect using a significance test.

Example 9.7.1. Suppose we are interested in
comparing two groups of patients with respect to
plaque scores, which are represented in percent-
age. The first group will be given an antibacterial
chlorhexidine mouthwash by the periodontists
during periodontal treatments to determine if
chlorhexidine is effective in reducing plaque
scores. The second group will receive no chloro-
hexidine. In a small pilot study, we obtained X1 =
18.4, S2

1 = 72.2, and X2 = 22.2, S2
2 = 86.1. De-

termine an appropriate sample size for the future
study using a two-tailed test at the significance
level α = 0.05 and for achieving a power of 90%.
We may assume that plaque scores are normally
distributed.

Solution. We have Z0.975 = 1.96, and Z1−β =
Z0.90 = 1.282. By substituting the sample data,
X1 = 18.4, S2

1 = 72.2, and X2 = 22.2, S2
2 =

86.1, we get

n = (σ 2
1 + σ 2

2 ) · (Z1−α/2 + Z1−β)2

(μ1 − μ2)2

= (72.2 + 86.1) · (1.96 + 1.282)2

(18.4 − 22.2)2
= 115.22.

The required sample size to achieve 90% power in
a two-tailed test is n = 116 for each group.

Example 9.7.2. Investigators wish to perform a
study to compare the effects of full mouth root
planing with antibiotics on probing depth in smok-
ers versus non-smokers. Two groups will be se-
lected such that the first group is composed of
non-smokers and the second group consists of
smokers who smoke at least 10 cigarettes per day.
At the end of the 6-month trial period, each sub-
ject’s probing depths will be measured. Suppose
that the distribution of probing depths is approx-
imately normal. From a similar study reported in
the literature, we get S2

1 = 3.5 and S2
2 = 4.4. The

investigators wish to detect the mean difference
of 1.2 mm. Let’s assume there are three times as
many non-smokers as there are smokers, that is,
n1 = 3 · n2 (k = 3). What are the required sample
sizes if a two-tailed test with α = 0.05 is planned
to achieve 95% power?
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Solution. Using Z1−β = Z0.95 = 1.645, and by
substituting the sample values, we get

n1 = (σ 2
1 + k · σ 2

2 ) · (Z1−α/2 + Z1−β)2

δ2

= (3.5 + 3 · 4.4) · (1.96 + 1.645)2

(1.2)2
= 150.72,

and

n2 =

(
σ 2

1

k
+ σ 2

2

)
· (Z1−α/2 + Z1−β)2

δ2

=

(
3.5

3
+ 4.4

)
· (1.96 + 1.645)2

(1.2)2
= 50.239.

We need 151 non-smokers and 51 smokers for the
study.

9.7.2 The Power of a Two-Sample
Test

Calculation of the power for a one-sample case
was presented in Section 8.6 for both one-tailed
and two-tailed tests. As defined in Section 8.6,
the power of a test is the conditional probability
of rejecting H0, given that H0 is false: 1 − β =
P(reject H0 | H0 is false). The formula for com-
puting the power of a two-tailed test at the signif-
icance level α = 0.05 is expressed as follows.

Given the hypotheses H0: μ1 = μ2 vs. H1: μ1 �=
μ2 to compare two normal means, μ1 and μ2, the
power of a two-tailed test at the significance level
α = 0.05 can be expressed

Power

= P

⎛⎝Z ≤ −Z1−α/2 + δ · √
k√

(σ 2
1 /n1) + (σ 2

2 /n2)

⎞⎠
where δ = |μ1 − μ2| and k = n1

n2
. For a one-tailed

test, replace Z1−α/2 by Z1−α in the formula.

We note that σ 2
1 and σ 2

2 are usually not known.
Therefore, they have to be estimated from the data.
Keep in mind that the power of a test depends on
a number of factors, such as α, n1, n2, k, δ, σ 2

1
and σ 2

2 .

Example 9.7.3. Suppose that a study is planned to
compare the effectiveness of two brands of indirect

bonding adhesives for ceramic brackets. The effec-
tiveness of the materials is assessed by measuring
the bond strength with shearing forces. For the ex-
periment, 25 human teeth were extracted (maxil-
lary incisors) and each will be used for brand A and
brand B, that is, n1 = 25 and n2 = 25. Suppose the
distribution of the bond strength is normal. From
the manufacturer’s brochure we have σ1 = 8.4 and
σ2 = 9.7. If δ = 10 (Newton), what is the power of
a two-tailed test at the significance level α = 5%.

Solution. Since n1 = n2 = 25, k = 1, and
Z1−α/2 = Z0.975 = 1.96, using the formula given
above

Power

= P

⎛⎝Z ≤ −Z1−α/2 + δ · √
k√(

σ 2
1 /n1

)+ (σ 2
2 /n2

)
⎞⎠

= P

(
Z ≤ −1.96 + 10 · √

1√
(8.4)2/25) + (9.72/25)

)
= P(Z ≤ 1.9366) = 0.9736.

Hence, there is about 97.36% chance of detecting
a significant difference using a two-tailed test at
the significance level α = 5%. Using a one-tailed
test,

Power

= P

⎛⎝Z ≤ −Z1−α + δ · √
k√(

σ 2
1 /n1

)+ (σ 2
2 /n2

)
⎞⎠

= P

(
Z ≤ −1.645 + 10 · √

1√
(8.4)2/25) + (9.72/25)

)
= P(Z ≤ 2.2516) = 0.9878.

There is about a 98.78% chance of detecting a
significant difference at the significance level α =
5%.

Example 9.7.4. Acute chest syndrome is an acute
pulmonic process in patients with sickle cell dis-
ease. Sickle cell diagnosis is made on the stan-
dard hemoglobin electrophoresis. Between Jan-
uary, 2001 and December, 2001, 28 boys and 22
girls were admitted to the pediatric ward. To com-
pare the hemoglobin level (grams per deciliter) of
two groups, pediatricians calculated the sample
mean and sample variance of their hemoglobin,



Hypothesis Testing: Two-Sample Case 173

which is assumed to be normally distributed: X1 =
8.1, S2

1 = 4.0 and X2 = 9.3, S2
2 = 5.3. Estimate

the power of a two-tailed test at the significance
level α = 5%.

Solution. From the given information, we have

n1 = 28, n2 = 22, and k = n1

n2
= 28

22 = 1.27.

Thus,

Power

= P

(
Z ≤ −1.96 + |8.1 − 9.3| · √

1.27√
4.0/28) + 5.3/22)

)

= P

(
Z ≤ −1.96 + (1.2) · √

1.27√
4.0/28) + 5.3/22)

)
= P(Z ≤ 0.2230) = 0.5880.

Thus, a two-tailed test has about a 58.8% chance
of detecting a significant difference.

9.8 THE F TEST FOR THE
EQUALITY OF TWO VARIANCES

So far in this chapter, our discussions have been
focused on comparisons of two independent nor-
mal means and two binomial proportions. In Sec-
tion 8.8 we introduced the one-sample χ2 test for
the variance of a normal distribution. We now turn
our attention to comparing the variances of two
independent normal populations. The hypotheses
of our interest is

H0 : σ 2
1 = σ 2

2 vs. H1 : σ 2
1 �= σ 2

2

where σ 2
1 and σ 2

2 are the variances of two indepen-
dent normal distributions, N (μ1, σ 2

1 ) and N (μ2,

σ 2
2 ). Suppose that random samples of sizes n1

and n2 are taken from N (μ1, σ 2
1 ) and N (μ2, σ 2

2 ),

respectively. We obtain estimates S2
1 and S2

2 of σ 2
1

and σ 2
2 . To test the hypothesis, it seems reason-

able to compare the estimates in terms of the ratio,
S2

1/S2
2 . In fact, we can show that the statistics

F = S2
1/σ 2

1

S2
2/σ 2

2

has the F distribution with the degrees of freedom,
n1 − 1 and n2 − 1. As usual, we denote

F = S2
1/σ

2
1

S2
2/σ

2
2

∼ F(n1−1,n2−1).

The degrees of freedom n1 − 1 is associated with
the numerator S2

1/σ
2
1 , and n2 − 1 is associated

with the denominator S2
2/σ 2

2 . Along with the nor-
mal distribution, t distribution, andχ2 distribution,
the F distribution is an important distribution in
the study of statistical inferences. Under the null
hypothesis that σ 2

1 = σ 2
2 , we get

F = S2
1/σ

2
1

S2
2/σ

2
2

= S2
1

S2
2

∼ F(n1−1,n2−1).

Recall from Section 8.8 that
(n − 1)S2

σ 2
has the

χ2 distribution with n − 1 degrees of freedom. So
the F distribution with the degrees of freedom,
n1 − 1 and n2 − 1 is the ratio of two independent
χ2 distributions with degrees of freedom n1 − 1
and n2 − 1, respectively. Like the χ2 distribution,
the F distribution is positively skewed with a long
tail on the right. See Figure 9.8.1 below.

The percentiles of the F distribution are pro-
vided in Table G in the Appendix. The first col-
umn in Table G lists the denominator degrees of
freedom, the values in the second column indi-
cate the probabilities, the numbers across the top
of Table G are the numerator degrees of freedom,
and the rest of the entry values in the table are the

F(20, 25)

F(2, 8)

Figure 9.8.1 F densities with F(2,8) and F(20,25).
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corresponding percentile points. Let δ1 and δ2 be
the degrees of freedom. Then the 100 × pth per-
centile of F(δ1,δ2) is denoted by

P(F(δ1,δ2) ≤ F(δ1,δ2;p)) = p.

Example 9.8.1.
(i) Find the upper 5th percentile of an F distribution
with degrees of freedom 8 and 5.
(ii) Find the 90th percentile of an F distribution
with degrees of freedom 25 and 30.

Solution.
(i) P(F(8,5) ≤ F(8,5;0.95)) = 4.818.

(ii) P(F(25,30) ≤ F(25,30;0.90)) = 1.632.
Table G provides only the upper percentile

points of the F distribution. The lower percentile
points of the F distribution can be derived from
the corresponding upper percentile points by the
following simple formula:

F(δ1,δ2;p) = 1

F(δ2,δ1;1−p)
.

The formula indicates that the lower pth percentile
of an F distribution with the degrees of freedom δ1

and δ2 is the reciprocal of the upper pth percentile
of an F distribution with the degrees of freedom
δ2 and δ1. Remember the degrees of freedom are
reversed.

Example 9.8.2. Find (i) F(7,12;0.025) and (ii)
P(F(18,16) ≤ 2.302).

Solution. Using the formula discussed above, we
can write

(i) F(7,12;0.025) = 1

F(12,7;1−0.025)
= 1

F(12,7;0.975)

= 1

4.666
= 0.214 3.

(ii) P(F(18,16) ≤ 2.302) = 0.95 from Table G in
the Appendix.

We can now perform a significance test for the
equality of two variances. It is helpful to keep in
mind that the samples are drawn from two inde-
pendent normal populations. As noted earlier, the
test will be based on the ratio of the sample vari-
ances S2

1/S2
2 . If S2

1/S2
2 is close to 1.0, it would be

an indication that there is no difference between
the variances, in which case H0 will be accepted.
On the other hand, if S2

1/S2
2 is very large or close to

0, then it would be an indication that the variances
are different, in which case H0 will be rejected.
A test based on the statistic S2

1/S2
2 for testing the

equality of two variances is called an F test. We
formalize this heuristic argument below.

The F Test for the Equality of Two Normal
Variances

For testing the hypothesis H0 : σ 2
1 = σ 2

2 vs. H1 :
σ 2

1 �= σ 2
2 at the significance level α = 0.05, com-

pute the value of the test statistic F = S2
1

S2
2

.

Reject H0 if F < F(n1−1, n2−1,α/2) or F >

F(n1−1, n2−1,1−α/2).

Accept H0 if F(n1−1, n2−1,α/2) ≤ F ≤ F(n1−1,

n2−1,1−α/2).

The p value of the test is given by the following:

If F = S2
1/S2

2 ≥ 1.0, then p = 2 · P(F(n1−1,n2−1) ≥ F).

If F = S2
1/S2

2 < 1.0, then p = 2 · P(F(n1−1,n2−1) < F).

The rejection and acceptance regions and the p
value of the test are illustrated in Figures 9.8.2,
9.8.3, and 9.8.4.

Example 9.8.3. Direct bonding of orthodontic
brackets to etched enamel is widely used by or-
thodontists and pediatric dentists. An investigation

Acceptance

Region

Rejection

Region Rejection

Region

F (n
1
−1, n

2
−1)

F (n
1
−1, n

2
−1; α/2) F (n

1
−1, n

2
−1; 1−α/2)

Figure 9.8.2 Rejection and acceptance regions of the F test.



Hypothesis Testing: Two-Sample Case 175

F (n1−1, n2−1)

P/2

Figure 9.8.3 The p value of the F test when F ≥ 1.

was performed to evaluate the shear bond strength
of brackets fixed to enamel that has been etched
for 15 or 60 seconds. For this investigation, 47 re-
cently extracted human premolars were randomly
divided into two groups. Group A, composed of
21 premolars, was etched for 15 seconds, and
Group B composed of 26 premolars for 60 sec-
onds. A 37% phosphoric acid solution was used
for etching. The force required to dislodge the
bracket was measured for each sample, and the re-
spective variances were estimated by S2

1 = 18.92
and S2

2 = 18.06 [9]. Suppose the bond strength is
normally distributed. Using the significance level
α = 5%, test if there is a significant difference be-
tween the two variances.

Solution. Since n1 = 21, and n2 = 26, the degrees
of freedom are 20 for the numerator and 25 for the
denominator. The observed test statistic is

F = S2
1

S2
2

= 18.92

18.06
= 1.0476.

The critical values are F(n1−1, n2−1,1−α/2) =
F(20,25,0.975) = 2.300, and

F(n1−1,n2−1,α/2) = F(20,25,0.025) = 1

F(25,20,0.975)

= 1

2.396
= 0.4174.

Because F = 1.0476 and F(20,25,0.025) = 0.4174
< F < F(20,25,0.975) = 2.396, we accept the null
hypothesis. Let’s compute the p value. Since F =
S2

1/S2
2 = 1.0476 > 1.0, we have

p = 2 · P(F(n1−1,n2−1) > F)

= 2 · P(F(20,25) > 1.0476) ≈ 1.0.

The p value is almost 1.0. Thus, we accept H0 and
conclude that there is no statistically significant
difference in variance of the shear bond strength
between 15- and 60-second etching.

Example 9.8.4. High levels of serum lipoprotein
have been associated with an increased risk of
coronary artery disease (CAD), but this association
is not confirmed in older patients who are at least
65 years of age. To study the relation of lipopro-
tein as a coronary risk factor to type II diabetes
mellitus and low-density lipoprotein cholesterol
in these patients, 70 patients with CAD and 330
patients without CAD were examined and their
lipoprotein levels (milligrams per deciliter) were
recorded. Their sample SDs were S1 = 19.0 and
S2 = 19.4 [10]. Assume that the levels of serum
lipoprotein are normally distributed. Do these two
groups have significantly different variances of
levels of serum lipoprotein?

P/2

Figure 9.8.4 The p value of the F test when F < 1.
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Solution. The hypothesis we wish to test is H0 :
σ 2

1 = σ 2
2 vs. H1 : σ 2

1 �= σ 2
2 . Since n1 = 70, and

n2 = 330, the degrees of freedom are 69 for the
numerator and 329 for the denominator. Using
S1 = 19.0 and S2 = 19.4, the observed test statis-
tic can be calculated

F = S2
1

S2
2

= (19.0)2

(19.4)2
= 0.9592

The critical values are F(n1−1, n2−1,1−α/2) =
F(69,329,0.975) = 1.363 (approximated by linear
interpolation explained below), and

F(n1−1,n2−1,α/2) = F(69,329,0.025) = 1

F(329,69,0.975)

= 1

1.415
, by approximation

= 0.7067.

Because F = 0.9592 and F(69,329,0.025) =
0.7067 < F < F(69,329,0.975) = 1.363, we accept
the null hypothesis. Let’s compute the p value.
Since F = S2

1/S2
2 = 0.9592 < 1.0, we have

p = 2 · P(F(n1−1,n2−1) < F)

= 2 · P(F(69,329) < 0.9592) ≈ 1.0.

Hence, there is no significant difference in variance
between the patients with CAD and the patients
without CAD.

Table G does not provide the corresponding
percentile points to the degrees of freedom
69 and 329; therefore, we will first approx-
imate F(69,329,0.975) by F(70,∞,0.975). From the
table we obtain F(60,∞,0.975) = 1.388, and
F(90,∞,0.975) = 1.313. The distance between
F(60,∞,0.975) and F(90,∞,0.975) is 1.388 − 1.313
= 0.075. Since the degrees of freedom for
the numerator of F(70,∞,0.975) is 70, we get
(70 − 60)/(90 − 60) = 1/3. To approximate
F(70,∞,0.975) one-third of the distance between
F(60,∞,0.975) and F(90,∞,0.975); that is, 0.025 will
be subtracted from F(60,∞,0.975) = 1.388. Thus,
we have F(70,∞,0.975) = F(60,∞,0.975) − 0.025 =
1.388 − 0.025 = 1.363. The same argument was
used to approximate F(329,69,0.975) = 1.415.

Students often ask whether or not it makes a
difference in the F test which sample appears
in the numerator and which in the denominator,
for example, F = S2

1/S2
2 or F = S2

2/S2
1 . For a

two-tailed test, it does not make any difference.
To see this, consider

P(F(n1−1,n2−1,1−α/2) ≤ S2
1/S2

2 ) = α/2.

By taking the reciprocal of each side and reversing
the direction of the inequality, we get

P

(
1

F(n1−1,n2−1,1−α/2)
≥ S2

2/S2
1

)
= α/2.

Since

S2
2

S2
1

∼ F(n2−1,n1−1),

we have P(F(n2−1,n1−1,α/2) ≥ S2
2/S2

1 ) = α/2.

9.9 EXERCISES

1 Explain why the sampling distribution of X1 −
X2 is approximately normal for sufficiently large
n1 and n2 even if the underlying distributions are
not normal.

2 A group of dental students conducted a study
to determine the effect of aging on pocket depth.
A random sample of 18 young patients in their 20s
and 30s and a sample of 24 senior citizens in their
60s or older were selected. Each subject’s pocket
depth was measured, and the sample means of the
two samples are X1 = 3.4 mm and X2 = 4.2 mm.
Suppose that the distribution of pocket depth is
normal and that the variance of the younger group
is known to be σ 2

1 = 1.86 and the variance of the
senior citizens is σ 2

2 = 2.02. State a null and an
alternative hypotheses, and perform the test at the
significance level α = 5%.

3 A study was conducted to evaluate the effi-
cacy of a bonding agent and epinephrine on the
smooth muscle contraction of rat uterine muscle
and carotid arteries. The contraction forces in-
duced were recorded using a force displacement
transducer. Sixteen rats each were assigned to ei-
ther the bonding agent or the control (epinephrine),
that is, n1 = n2 = 16. The specified dose level of
20 μl of both the bonding agent and epinephrine
was applied. Suppose the contraction force is nor-
mally distributed and that σ 2

1 = σ 2
2 (the variances

are equal). The researchers summarized their data
as in the table.
a. How should the researchers formulate the

hypotheses?
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b. Complete the test at the significance level α =
0.05.

c. What is the p value?

Bonding Agent Epinephrine

Sample size n1 = 16 n2 = 16
Sample mean X1 = 81.2 X2 = 110.4
Sample variance S2

1 = 1223.6 S2
2 = 2304.8

4 Previous studies have demonstrated that
enamel matrix derivative (EMD) has the ability
to improve clinical parameters when used to treat
intraosseous defects [11]. Twenty-three subjects
with an intrabony defect were chosen. Suppose
n1 = 12 patients received EMD in conjunction
with open flap debridement and n2 = 11 were
treated with open flap debridement alone. Hard
tissue measurements were recorded during the
initial and re-entry surgery 1 year later for the
level of osseous depth. From the measurements
they have recorded, the investigators calculated the
sample mean and sample variance of the amount
of decrease in osseous depth for both groups:
X1 = 4.28 mm, S2

1 = 0.57, X2 = 2.65 mm, and
S2

2 = 0.21. Assume the amount of decrease in os-
seous depth is normally distributed and that the
population variances of the two groups are equal.
Would you be able to conclude that the EMD with
open flap debridement is significantly superior to
the treatment without EMD?

5 Social phobia has in recent years been recog-
nized as a considerable public health concern [12].
It was speculated by psychiatrists that socially pho-
bic patients who are diagnosed as having chronic
depression may have greater fear of social inter-
action than those who do not have chronic depres-
sion. Liebowitz social anxiety test was given to 16
socially phobic subjects who suffer from chronic
depression (group I), and 21 socially phobic sub-
jects who are not chronically depressed (group II).
The investigators computed descriptive statistics
from the social anxiety test scores: X1 = 22.6, S2

1
= 14.0, X2 = 20.1, and S2

2 = 12.2. If the distri-
bution of Liebowitz social anxiety test scores are
normally distributed, and the variances of the test
scores for both populations are unequal, what can
you conclude from the data?
a. State the appropriate hypothesis.
b. Perform the test by using the p value.

6 It has been suggested that smoking does not
affect the risk of cardiovascular diseases in pop-
ulations with low serum cholesterol levels. To
determine whether cigarette smoking is an inde-
pendent risk factor among men with low levels
of serum cholesterol, a nationwide, multicentered
study was conducted. At one of the study sites,
Orange Crest Community Hospital, 25 smokers
and 47 non-smokers signed the consent form to
participate in the study. Their serum cholesterol
measurements are summarized below. Suppose the
distribution of serum cholesterol levels is approx-
imately normal and the variance of the cholesterol
levels for smokers is different from that for non-
smokers. What can you conclude from the research
data?

Serum Cholesterol
(mg/dl) Non-smokers Current Smokers

Sample mean X1 = 209.1 X2 = 213.3
Sample SD S1 = 35.5 S2 = 37.6

7 A cephalometric study was conducted to as-
sess long-term changes in the soft tissue profile
following mandibular setback surgery. The study
enrolled six patients operated with bilateral sagittal
split osteotomy and rigid fixation. Lateral cephalo-
grams were taken at two occasions: immediate pre-
surgical and 2 months post-surgical [13]. One of
the variables under observation was skeletal hor-
izontal changes of pogonion (the most anterior
point on the osseous contour of the chin). The
sample mean and sample standard deviation of
the difference between the two time points are
D = −5.94, and SD = 4.86. Test an appropriate
hypothesis to determine if the treatment has any
significant effect.

8 Suppose we are interested in determining if oral
hygiene instructions given by the periodontist dur-
ing a periodontal examination are effective in re-
ducing plaque scores. One group of 68 patients was
given oral hygiene instructions (OHI) and the other
group of 46 patients received no OHI. We wish to
compare the proportion of patients who will have
plaque score less than 20%. A periodontal exam
was given to the subjects 6 months later. The re-
sults suggested that 24 patients in the first group
that received OHI and 14 patients in the second
group that did not receive OHI had plaque scores
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less than 20%. Is the OHI effective in helping pa-
tients reduce their plaque scores?

9 The following table shows the data collected by
American Dental Association to evaluate the rela-
tionship between the use of ergonomic chairs and
the incidence of backaches in dental offices. Test
a hypothesis to determine if the use of ergonomic
chair is effective.

Backache

Yes No

Use of Yes 17 68 85
Ergonomic Chair No 28 70 98

45 138 183

10 Suppose a study was designed to investigate
the occurrence of enamel fracture upon the re-
moval of the metal brackets versus ceramic brack-
ets. Suppose that of 75 patients who had metal
brackets, 9 had experienced enamel fracture upon
removal of the brackets, and of 98 patients who
had ceramic brackets, 16 had experienced enamel
fracture. State an appropriate hypothesis and test
if there is any significant difference in the propor-
tion of cases in which an enamel fracture occurs
between metal and ceramic brackets.

11 There are two competing glass ionomer or-
thodontic cements. The manufacturers provided
the following data regarding the bond strength
(megapascals) of their products: μA = 51.3, σ 2

A =
62.5, and μB = 55.6, σ 2

B = 60.2. An orthodon-
tist wishes to compare these cements with respect
to their bond strength. Using this information, he
needs to determine the required sample size for
a two-tailed test at the significance level α = 0.05
for achieving a power of 85%. What is his required
sample size?

12 A 4-week weight control program was devel-
oped by a team of nutrition scientists. To evalu-
ate the efficacy of the program the investigators
selected 11 subjects who have body mass index
higher than 30. Subjects were given specific in-
structions to comply in order to control the vari-
ables that may affect their weight, such as physical
exercise and snacks. The weight of each subject at
baseline and at the end of the 4-week clinical trial
was measured. Suppose the weight distribution is

known to be normal. State and test the hypothesis
to determine if the program is effective.

Weight at Weight After
Subject Baseline (kg) the Program (kg)

1 82.3 76.5
2 76.5 73.8
3 103.7 98.2
4 89.6 —
5 96.8 95.8
6 108.5 112.6
7 94.3 89.9
8 121.8 —
9 87.0 —

10 115.7 111.4
11 125.1 117.4

13 In the above problem, if Dr. Lee wants to per-
form a one-tailed test at α = 0.05 for achieving a
power of 90%, how many samples does he need?

14 The effectiveness of two intra-root canal
medicaments were compared; medicament A and
medicament B. The effectiveness was measured
by the number of colony-forming units (CFU) pro-
duced when the root canals were cultured. Sup-
pose that the CFU is approximately normally dis-
tributed and that the variances are known, σ 2

A =
75.5 and σ 2

B = 80.7. Thirty-one medicament A
and 36 medicament B samples were tested, and
their sample means were X A = 68.4 and X B =
55.9. What is the power of a two-tailed test at the
significance level α = 0.05?

15 Centric relation (CR) is defined as the rela-
tionship of the mandible to the maxilla with prop-
erly aligned condyles and discs in the most su-
perior position against the eminentia. Restorative
dentists have suggested using CR to provide a sta-
ble and reproducible position to reconstruct the
dentition. Suppose a study was conducted to as-
sess the effect of an anterior flat plane deprogram-
ming appliance (Jig) in 40 subjects for whom CR
records were obtained before and after the use
of the appliance. Incisal overbite and overjet di-
mensions using the Panadent condylar path indi-
cator were recorded from maximum intercuspa-
tion [14]. Assume that the overbite and overjet
are statistically independent and that they are nor-
mally distributed. Suppose the sample mean and
sample SD of overbite and overjet were computed
from the records: X1 = 4.14 mm, S1 = 1.74 and
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X2 = 3.33 mm, S2 = 1.78. Using a one-tailed test
at the significance level α = 0.05, estimate the
power of the test.

16 Using Table G in the Appendix, find the
following.
a. Find the upper 10th percentile of an F distribu-

tion with degrees of freedom 14 and 9.
b. Find the lower 10th percentile of an F distribu-

tion with degrees of freedom 14 and 9.
c. Find P(F(20, 16) ≤ 2.185).

17 Suppose a study was to compare the level of
frictional resistance generated between titanium
and stainless steel brackets. The friction resistance
was measured by an Instron Universal testing ma-
chine with a 10-pound load cell. The investiga-
tors tested 31 samples of titanium and 26 samples
of stainless steel brackets and reported the sam-
ple means and sample standard deviations of ki-
netic friction, which is assumed to be normally dis-
tributed, as follows: X1 = 118.3, S1 = 64.8 and
X2 = 84.0, S2 = 74.9. What would you conclude
about the variances of the two groups? Test your
hypothesis at the significance level α = 5%.

18 Black licorice contains glycyrrhizic acid,
which is also found in chewing tobacco. Exces-
sive ingestion of confectioner’s black licorice can
elevate blood pressure. To determine how much el-
evation in blood pressure the patients experience,
a group of 125 subjects was selected and encour-
aged to ingest as much black licorice as possible in
a day. Their blood pressure was measured before
and 1 day after ingesting the licorice. The sam-
ple standard deviation of their blood pressure at
baseline was 17.3 and that of the follow-up blood
pressure was 2.3 mmHg higher. Was there a sig-
nificant difference in the variances at baseline and
follow-up?

19 Mineral trioxide aggregate (MTAD) is a root
canal disinfectant that is a mixture of tetracycline,
an acid and a detergent. A study was conducted
to compare the antimicrobial activities of MTAD
to that of sodium hypochloride (NaOCL). The fol-
lowing data indicate the zone of inhibition (mil-
limeters) on plates inoculated with Enterococcus
faecalis [15]. Suppose that the distribution of the
zone of inhibition is normal. Perform a test to de-
tect if there are any significant differences in mean
and variance between MTAD and NaOCL.

Zone of Inhibition (mm)

MTAD 35, 34, 35, 35, 34, 36, 35, 34
NaOCL 33, 34, 33, 34, 36, 35, 34, 36
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Chapter 10

Categorical Data Analysis

10.1 INTRODUCTION

In Chapters 8 and 9, we presented the basic meth-
ods of testing hypotheses for continuous data,
which is assumed to come from the underlying
normal population, such as blood pressure, birth
weight, gingival recession, bone resorption, shear
bond strength, serum cholesterol level, and car-
bon monoxide in the air. Investigators often prefer
to count the number of occurrences of an event
in two or more mutually exclusive categories of
a variable, instead of numerically measuring the
variable. For instance:

1. The number of cancer patients who are in re-
mission and those who have relapsed.

2. Patients who prefer fixed partial dentures over
removable partial dentures.

3. Gingival index is classified as either 0 or 1.
4. Patients with elevated oral Mutans streptococci

levels and those with low levels.
5. The effect of the use of various endodontic ir-

rigants on interappointment pain can be cat-
egorized; free of interappointment symptoms,
slight pain, or pain that requires palliative treat-
ment, etc.

Our interest is in the number of observations
that fall into each of the categories. A main goal of
this chapter is to develop a statistical test that will
allow us to determine whether or not there is an
association between two variables, given the cate-
gorical data, which consists of frequency counts of
observations occurring in the response categories.
A statistic for testing hypotheses about categorical
data is known to be approximately distributed as a
χ2 distribution. Recall that a χ2 distribution was
used in Section 8.8 to test a hypothesis about the
variance σ 2 of the normal population.

This chapter discusses practical applications of
a χ2 test arising in biomedical health sciences
when we encounter categorical data. We will in-

troduce the following topics: 2 × 2 contingency
table, Fisher’s exact test, r × c contingency table,
Cochran-Mantel-Haenszel test, McNemar’s test,
kappa statistic, and χ2 goodness-of-fit test.

10.2 2 × 2 CONTINGENCY TABLE

In this section we introduce 2 × 2 χ2 contingency
table techniques. These tables arise when there are
two variables and each variable is studied at two
levels. Such cases arise when we observe dichoto-
mous or binary data. Each observation falls into
exactly one of two categories or classes. To facili-
tate our discussion, let’s consider an example.

Example 10.2.1. Hormone replacement therapy
(HRT) is used by an increasing number of women
to relieve menopausal problems. The past research
showed a protective effect against bone loss and
cardiovascular disease, but concern has been raised
about an increased incidence of breast cancer after
HRT use, especially after more than 10 years of
use [1]. Breast cancer patients were interviewed
regarding exogenous hormonal use. Suppose this
represents a random sample of breast cancer pa-
tients in Southern California referred to the De-
partment of Oncology at the Riverside County
Hospital for treatment between 1985 and 2005
with a 100% follow-up. Of the 730 patients, 97 re-
ceived hormone replacement therapy and 633 did
not receive any HRT prior to diagnosis. A subse-
quent examination indicated that 70 of the patients
who used HRT are estrogen-receptor (ER) posi-
tive, and 416 of those who did not use HRT are ER
positive. The rest of the patients are ER negative.

In this example we are dealing with two vari-
ables: hormone replacement therapy status and
ER status of each patient. Each subject is either
a user or a non-user of HRT and is either ER posi-
tive or ER negative. Thus, the two variables define
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Table 10.2.1. The 2 × 2 contingency table for the
data in Example 10.2.1.

ER Status

HRT Status Positive Negative

Users 70 27 r1 = 97
Non-users 416 217 r2 = 633

c1 = 486 c2 = 244 n = 730

four categories. Each subject falls into exactly one
of the four categories as illustrated in the 2 × 2
contingency table, Table 10.2.1.

The 2 × 2 contingency table contains four cells,
with two rows and two columns. Each variable
is arbitrarily assigned either to the rows or to the
columns. In Table 10.2.1, HRT status is assigned to
the rows and ER status is assigned to the columns.
Let Oi j and Ei j denote the observed cell frequency
and expected cell frequency, respectively, in row i
and column j , where i and j are 1 and 2. Let

ri = Oi1 + Oi2

= number of observations in the i th row,

i = 1, 2

c j = O1 j + O2 j

= number of observations in the j th column,

j = 1, 2.

The expected values of the cell frequencies are
calculated by

Ei j = ri · c j

n
= (i th row total)×( j th column total)

grand total
.

From Example 10.2.1 we have O11 = 70, O12 =
27, O21 = 416, O22 = 217, r1 = 97, r2 = 633,

c1 = 486, c2 = 244, and the grand total n = 730.
The expected cell frequencies are

E11 = (97)(486)

730
= 64.578,

E12 = (97)(244)

730
= 32.422,

E21 = (633)(486)

730
= 421.42,

and

E22 = (633)(244)

730
= 211.58.

The row and column sums, ri and c j , are also re-
ferred to as marginal row and marginal column to-

tal. The null hypothesis we wish to test by a 2 × 2
contingency table is that there is no association
between the two variables; the alternative hypoth-
esis is that there is an association. Two different
sampling designs lead to 2 × 2 contingency tables.

1. All marginal totals, ri and c j , are free to vary.
2. One set of marginal totals is fixed and the other

is free to vary.

In the first case, where all marginal totals are free
to vary, the test of no association is equivalent to a
test of independence. In the second case, where
only one set of marginal totals is free to vary, the
test of association is equivalent to a test of homo-
geneity. In a test of independence the grand total
n is the only number that is under the investiga-
tor’s control. As we have seen in Example 10.2.1,
n = 730 breast cancer patients are randomly sam-
pled, and each patient under study is classified by
the two variables, X and Y . The cell frequencies,
Oi j , as well as row and column totals, ri and c j ,
are not known in advance. In other words, these
are random variables. The investigator wishes to
compare the proportion of breast cancer patients in
each group who have ER positivity. The null and
alternative hypotheses can be stated as

H0: X and Y are independent vs.

H1: X and Y are not independent

(or there is an association between X and Y ).

In Example 10.2.1, the null hypothesis is that the
status of ER is independent of the status of HRT.
The knowledge of the status of HRT does not help
predict the status of ER.

Example 10.2.2. In spite of the fact that metal ce-
ramic crowns have been frequently used in recent
years, many patients seem to prefer the porcelain
jacket crown. The main reason for their preference
is superior esthetics, particularly in the anterior
segment. Prosthodontists studied the survival rate
of these two types of crowns. Over a 4-year period
there were 368 patients who had metal ceramic
crowns and 294 patients who had porcelain jacket
crowns on the maxillary anterior segment at a den-
tal school clinic, where they collected the data. The
follow-up study showed that 330 patients with all-
ceramic crowns and 251 patients with porcelain
jacket crowns had their crowns still functioning
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Table 10.2.2. The 2 × 2 contingency table for the
crown data.

Survival Time

Type of Less than
Crown 5 yrs. 5 or more yrs.

Metal ceramic 38 330 r1 = 368
Porcelain 43 251 r2 = 294

c1 = 81 c2 = 581 n = 662

well beyond 5 years. The data is summarized in
Table 10.2.2.

Let’s consider the sampling design, in which
one set of marginal totals is fixed by the investi-
gators and the other set is random. In the above
crown data, there are two independent samples:
metal ceramic crowns and porcelain jacket crowns.
Our goal is to compare the proportion of patients
in each group whose crowns survived less than 5
years. The row totals are fixed at r1 = 368 and
r2 = 294, and the number of cases where crowns
failed within 5 years is a binomial random vari-
able, given the fixed marginal row totals. See
Table 10.2.3. For metal ceramic, 38 failed, and for
porcelain, 43 failed within 5 years. Suppose p11

and p21 denote the proportion of crowns that fail
within 5 years for metal ceramic and for porce-
lain, respectively. The null hypothesis of no as-
sociation between two variables—type of crown
(X ) and survival time (Y )—is stated as H0 : p11 =
p21. That is, H0 : Proportion of metal ceramic
crowns that fail in less than 5 years = proportion
of porcelain jacket crowns that fail in less than
5 years.

As with Example 10.2.1, we have observed
cell frequencies and row and column totals:
O11 = 38, O12 = 330, O21 = 43, O22 = 251,

r1 = 368, r2 = 294, c1 = 81, c2 = 581, and the
grand total n = 662. The expected cell frequencies

Table 10.2.3. Proportions associated with a 2 × 2
contingency table in which marginal row totals are fixed.

Survival Time

Type of Crown Less than 5 yrs. 5 or more yrs.

Metal ceramic p11 p12 Fixed
Porcelain p21 p22 Fixed

Random Random n

are

E11 = (368)(81)

662
= 45.027,

E12 = (368)(581)

662
= 322.97,

E21 = (294)(81)

662
= 35.973,

and

E22 = (294)(581)

662
= 258.03.

A general 2 × 2 table with observed cell frequen-
cies is illustrated in Table 10.2.4.

Using the notation in Table 10.2.4, the expected
cell frequencies are obtained by

E11 = (r1)(x1 + x2)

r1 + r2
,

E12 = (r1)[(r1 + r2) − (x1 + x2)]

r1 + r2
,

E21 = (r2)(x1 + x2)

r1 + r2
,

and

E22 = (r2)[(r1 + r2) − (x1 + x2)]

r1 + r2
.

Note that E11 + E12 + E21 + E22 = r1 + r2 = n.

That is, the sum of all the cell frequencies is equal
to the grand total. This should provide a quick and
easy way to verify whether or not your calculations
are correct. To test the hypothesis stated above,
we wish to compare the observed frequency and
expected frequency for each of the four cells in a
2 × 2 contingency table. If the observed values and
the corresponding expected values for the cells are
close, then H0 will be accepted, and if they are suf-
ficiently different, then H0 will be rejected. It can
be shown that the best way to compare the corre-
sponding observed and expected cell frequencies

Table 10.2.4. A general 2 × 2 contingency table with
observed cell frequencies in which marginal row totals
are fixed.

Survival Time

Less than
Type of Crown 5 yrs. 5 or more yrs.

Metal ceramic x1 r1 − x1 r1

Porcelain x2 r2 − x2 r2

(r1 + r2)
x1 + x2 −(x1 + x2) n = r1 + r2
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is to use the statistic

(Oi j − Ei j )2

Ei j
for the (i, j) cell.

It is well-known in statistics that the sum of the
above statistic for the cells is approximately χ2

distributed with 1 degree of freedom,

χ2 =
2∑

i, j=1

(Oi j − Ei j )2

Ei j

◦∼ χ2
(1).

We may write the χ2 statistic as

χ2 = (O11 − E11)2

E11
+ (O12 − E12)2

E12

+ (O21 − E21)2

E21
+ (O22 − E22)2

E22

◦∼ χ2
(1).

Because the distribution of the test statistic is
approximately χ2, this procedure is known as the
χ2 contingency table. The χ2 test compares the
observed frequency with the expected frequency
in each category in the contingency table, given
that the null hypothesis is true. The question here
is whether or not the difference Oi j − Ei j is too
large to be attributed to chance. We reject H0 when
the sum is “large” and accept H0, when the sum is
“small.” Note that we are approximating a contin-
uous χ2 distribution by discrete observations. The
approximation is good for contingency tables with
high degrees of freedom, but may not be valid for
2 × 2 tables that have only 1 degree of freedom.
Therefore, statisticians use a continuity correction.
With the continuity correction factor, the statis-

tic
(|Oi j − Ei j | − 0.5)2

Ei j
rather than

(Oi j − Ei j )2

Ei j
is computed for each cell. This test procedure is
referred to as the χ2 test, with Yates correction.
The term 0.5 in the numerator is called the Yates

correction. From algebra, we see that the effect of
this term is to decrease the value of the test statis-
tic, and thus, as we have seen in Section 8.8, it
increases the corresponding p value. This makes
the test more conservative and less likely to re-
ject the null hypothesis. While the Yates correction
has been used extensively, many statisticians have
questioned its validity, and some believe that the
Yates correction makes the tests overly conserva-
tive and may fail to reject false H0 [2]. When the
sample size n is sufficiently large, the effect of the
Yates correction is negligible. The test procedure
is summarized below.

The χ2 Test for a 2 × 2 Contingency Table
with Yates Correction

1. Compute the value of the test statistic

χ2 =
2∑

i, j=1

(|Oi j − Ei j | − 0.5)2

Ei j
.

Under H0, this statistic is approximately χ2
(1).

2. Reject H0 if χ2
(1,1−α) < χ2 and accept H0 if

χ2
(1,1−α) ≥ χ2 at the significance level α.

3. The p value of the test is given by the area to the
right of the value of the test statistic χ2 under a
χ2

(1) distribution; p = P(χ2 ≤ χ2
(1)).

The rejection and acceptance regions and the
p value of the χ2 test for a 2 × 2 contin-
gency table are illustrated in Figure 10.2.1 and
Figure 10.2.2.

Recall that when a χ2 distribution was intro-
duced in Chapter 8, we assumed that the underly-
ing distribution is normal. As pointed out, we ap-
proximate a χ2 distribution, which is continuous,
by discrete observations. Thus the χ2 test proce-
dure for 2 × 2 contingency tables is valid only

Acceptance
           Region

c 2
(1)

c2
(1, 1−α)

Rejection Region

Figure 10.2.1 Rejection and aceptance regions of the χ2 test for a 2 × 2 contingency table.
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c 2
(1)

P

Figure 10.2.2 The p value of the χ2 test for a 2 × 2 contingency table.

when the normal approximation to the binomial
distribution is valid. This means that the χ2 test
procedure in this setting is meaningful and valid
when the expected cell frequencies are at least 5
(Ei j ≥ 5).

Example 10.2.3. Evaluate the data in Example
10.2.1 for statistical significance.

Solution. The observed and expected cell fre-
quencies have been calculated. Note that the ex-
pected cell frequencies are much larger than 5,
and hence we can use the test procedure given
in this section. For each cell we need to compute
(|Oi j − Ei j | − 0.5)2

Ei j
.

(|O11 − E11| − 0.5)2

E11
= (|70 − 64.578| − 0.5)2

64.578

= 0.375

(|O12 − E12| − 0.5)2

E12
= (|27 − 32.422| − 0.5)2

32.422

= 0.747

(|O21 − E21| − 0.5)2

E21
= (|416 − 421.420| − 0.5)2

421.420

= 0.057

(|O22 − E22| − 0.5)2

E22
= (|217 − 211.58| − 0.5)2

211.58

= 0.114.

The value of the test statistic is χ2 = 0.375 +
0.747 + 0.057 + 0.114 = 1.293. From Table F in
the Appendix we get χ2

(1,0.95) = 3.841 > χ2 =
1.293. So we accept the null hypothesis at the
significance level α = 0.05 and conclude that the
results are not significant. There is no statistically
significant association between HRT and ER. The

p value is given by

p = P(χ2
(1) > 1.293) > P(χ2

(1) > 2.706) = 0.10.

The χ2 test procedure is valid because all the Ei j

are greater than 5.

Example 10.2.4. A study was conducted to ex-
amine the behavior of preschool children, each se-
dated with one of two drug regimens based on
the patient’s age, dental needs, and pre-operative
clinical impression. Two hundred children whose
ages range from 2 to 5 years were selected. The
study subjects were randomly divided into two
groups, and the groups received either chloral
hydrate and hydroxyzine (A) or chloral hydrate,
meperidine, and hydroxyzine (B). Their behavior
after sedation was observed and classified as ei-
ther quiet/sleeping or struggling. Suppose the data
was summarized in the table below. What can you
conclude about the association (homogeneity) be-
tween the variables from the data?

Behavioral Variable

Drug Regimen Quiet/sleeping Struggling

A 76 24
B 92 8

Solution. The marginal totals are r1 = r2 = 100,

c1 = 168, c2 = 32, and the grand total n = 200.

The expected frequency for each cell can be
computed,

E11 = (100)(168)

200
= 84.0,

E12 = (100)(32)

200
= 16.0,

E21 = (100)(168)

200
= 84.0
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and

E22 = (100)(32)

200
= 16.0.

All of the expected cell frequencies are greater than
5 (Ei j > 5), so that the test procedure described
previously can be used. We now compute the test
statistic χ2,

χ2 = (|76 − 84| − 0.5)2

84
+ (|24 − 16| − 0.5)2

16

+ (|92 − 84| − 0.5)2

84
+ (|8 − 16| − 0.5)2

16
= 0.670 + 3.516 + 0.670 + 3.516 = 8.372.

Sinceχ2 = 8.372 > χ2
(1,0.95) = 3.841, the null hy-

pothesis is rejected at the significance level α =
0.05. The p value is obtained by p = P(χ2

(1) >

8.372) < P(χ2
(1) > 7.879) = 1 − 0.995 = 0.005.

The results are highly significant. Thus, there is a
statistically significant difference between the rate
of quiet/sleeping behavior for the chloral hydrate
and hydroxyzine group and the chloral hydrate,
meperidine, and hyroxyzine group, with the sec-
ond group having a higher rate.

Example 10.2.5. In many research projects, sub-
jects are required to fill out survey questionnaires,
such as a patient satisfaction survey. One of the
main concerns in these situations is whether or
not the subject’s responses are consistent and reli-
able. A sample of 50 dental patients was selected
at random to study their attitudes toward visiting
dentists. To assess the reliability of his or her re-
sponses, each patient was required to fill out the
same questionnaire a second time, a week after the
first one. The questionnaires contain the identical
questions, but in a different order. One of the sur-
vey questions was “Is visiting a dentist an anxiety
provoking experience?” In the first questionnaire,
20 patients responded “Yes” to this question; in the
second questionnaire, 24 people said “Yes.” Fif-
teen (15) patients responded “Yes” to this question
on both questionnaires. What can you say about
the association between the two sets of responses
on the question of dental anxiety? Use the signifi-
cance level α = 0.05.

Solution. The two variables of our interest are the
“anxiety question” on the first questionnaire and
the same “anxiety question” on the second ques-
tionnaire. The question can be answered either

“Yes” or “No.” We can present the data described
in the problem in a 2 × 2 table.

First Questionnaire

Second Questionnaire Yes No

Yes 15 24
No

20 50

The blank cells can easily be filled by simple alge-
bra. We should keep in mind that the total sample
size is n = 50. Some students may think the grand
total is n = 100. After filling the blank cells, we
obtain the following table.

First Questionnaire

Second Questionnaire Yes No

Yes 15 9 24
No 5 21 26

20 30 50

Computing the expected frequency for each cell,
we get

E11 = (24)(20)

50
= 9.6,

E12 = (24)(30)

50
= 14.4,

E21 = (26)(20)

50
= 10.4

and

E22 = (26)(30)

50
= 15.6.

Since all of the Ei j > 5, the test procedure (10.2.2)
can be used. We compute the test statistic χ2,

χ2 = (|15 − 9.6| − 0.5)2

9.6
+ (|9 − 14.4| − 0.5)2

14.4

+ (|5−10.4|−0.5)2

10.4
+ (|21 − 15.6| − 0.5)2

15.6
= 2.501 + 1.667 + 2.309 + 1.539 = 8.016.

Sinceχ2 = 8.016 > χ2
(1,0.95) = 3.841, the null hy-

pothesis is rejected at α = 0.05. The p value
is obtained by p = P(χ2

(1) > 8.016) < P(χ2
(1) >

7.879) = 1 − 0.995 = 0.005.

The results are highly significant. There is a sta-
tistically significant association between the two
questionnaires for the way in which the subjects
have responded.
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The χ2 test procedure for 2 × 2 contingency
tables is often used in exposure-disease relation-
ships. For example, there are r1 exposed subjects
and r2 unexposed subjects. The number of exposed
subjects with the disease is x1 and the number of
unexposed subjects with the disease is x2. When
the grand total n = r1 + r2 is small, we might find
some of the expected cell frequencies Ei j less than
5. What if at least one of the Ei j is less than 5? In
such cases, it is not valid to use the procedure de-
scribed in this section. Instead, we use a technique
known as Fisher’s exact test. This technique in-
volves laborious computations, and thus it is not
discussed in this text. Interested readers are re-
ferred to Fisher and Van Belle [3] and Rosner [4].
Most of the statistical software packages include a
procedure to perform Fisher’s exact test for a 2 × 2
contingency table.

Example 10.2.6. Candida species usually colo-
nize in the oral cavity of denture wearers and may
also colonize on their fingers because of frequent
manual manipulation of the dentures. A study was
performed to investigate the association between
oral and fingertip candidal isolation in a group of
denture wearers [5]. Oral rinse and fingerprints
obtained from 25 healthy male complete denture
wearers were microbiologically investigated for
candidal growth, and isolated candida species were
identified with a germ tube test and a commer-
cially available yeast identification system. Can-
dida species were isolated from the oral cavity of
15 subjects and fingertips of 11 subjects. Ten sub-
jects had concomitant oral and fingertip candidal
isolation, whereas 5 subjects had only oral can-
dida. A 2 × 2 contingency table can be set up as
follows.

Fingertip Candida

Oral Candida Positive Negative

Positive 10 5 15
Negative 1 9 10

11 14 25

The expected frequency for the cell (2, 1) is E21 =
(10)(11)/25 = 4.4. Since this expected cell fre-
quency is less than 5, we can’t use the χ2 test
procedure for a contingency table. Fisher’s exact
test must be used for this case. To avoid the use

of Fisher’s exact test, the investigators should take
sufficiently large samples so that all of the expected
cell frequencies for a 2 × 2 contingency table will
be at least 5.

10.3 r × c CONTINGENCY TABLE

In Section 10.2, our discussions were limited to
nominal variables with two possible outcomes, and
thus we have contingency tables with two rows
and two columns. In this section we will extend
the technique to situations in which there are two
or more rows and columns. Two variables are as-
sumed to have r (r ≥ 2) levels and c (c ≥ 2) levels,
respectively. Therefore, the corresponding contin-
gency table has r rows and c columns. It contains
the total of rc cells. Table 10.3.1 illustrates a typ-
ical r × c contingency table. A typical r × c con-
tingency table has more than two categories for
one or both variables. Consider an example.

Example 10.3.1. Intrusive luxation has been de-
fined as “displacement of the tooth deeper into the
alveolar bone.” Some researchers found intrusion
to be the most common type of injury to the pri-
mary incisor region. The intruded primary incisor
will in most cases re-erupt within 1–6 months with-
out any pathological sequences. Complications as-
sociated with intrusion may affect the injured teeth
or their permanent successors. As part of a ret-
rospective study to analyze the major character-
istics, the prognosis and sequelae of intrusion of
primary incisors, 112 teeth have been classified
into two categories according to the degree of in-
trusion (partial and complete), and the appearance
of the pulp of these re-erupted teeth was evaluated
radiographically and put into three categories: nor-
mal appearance, pulp canal obliteration, and arrest

Table 10.3.1. Observed frequencies for a r × c contingency
table.

Variable Y Row Sum

Variable X Level 1 Level 2 · · · Level c

Level 1 O11 O12 · · · O1c r1

Level 2 O21 O22 · · · O2c r2

· · · · · · · · · · · · · · · · · ·
Level r Or1 Or2 · · · Orc rr

Column sum c1 c2 · · · cc n
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Table 10.3.2. Radiographic appearance of the pulp of
re-erupted teeth.

Radiographic Appearance of the Pulp

Degree of Normal Pulp Canal Arrest of Dentin
Intrusion Appearance Obliteration Apposition

Partial 27 24 8 59
Complete 11 33 9 53

38 57 17 112

of dentin apposition [6]. The data is illustrated in
the 2 × 3 contingency table (Table 10.3.2). How
can we test for a relationship between the degree
of intrusion and radiographic appearance of the
pulp?

As with the 2 × 2 tables, there are two sit-
uations. In one case, we wish to test the null
hypothesis

H0 : p11 = p12 = p13

p21 = p22 = p23

The alternative hypothesis is that the pi j ’s (i th row,
j th column) are not all equal for at least one row.
That is, H1 : p11, p12, and p13 are not all equal, or
p21, p22, and p23 are not all equal. In the first case,
we are concerned with the null hypothesis that ra-
diographic appearance of the pulp is independent
of the degree of intrusion. In general, we state the
null and alternative hypotheses as

H0: Two variables (radiographic appearance and
the degree of intrusion) are independent vs.

H1: Two variables are not independent.

The analysis of an r × c contingency table is basi-
cally the same as that of a 2 × 2 table. The signif-
icance test is based on the difference between the
observed and the expected cell frequencies in the
table. In fact, the computation of the expected cell
frequencies is the same as before:

Ei j = (ri )(c j )

n
.

The corresponding expected cell frequencies for
the data in Example 10.3.1 are presented in
Table 10.3.3.

The sum of the expected cell frequencies across
any row or column must equal the correspond-
ing marginal row or column total, and the sum
of all Ei j should equal the grand total. In some
cases, due to the round-off error, the sum may

Table 10.3.3. Expected cell frequency for the data in
Table 10.3.2.

Radiographic Appearance of the Pulp

Degree of Normal Pulp Canal Arrest of Dentin
Intrusion Appearance Obliteration Apposition

Partial 20.02 30.03 8.96
Complete 17.98 26.97 8.04

not be precisely equal. For example, the sum
of the expected cell frequencies in the first row
is 20.02 + 30.03 + 8.96 = 59.01, which is not
equal to the marginal total r1 = 59.

We will compare the expected frequencies with
the observed frequencies. We will again compute

the sum of the differences (Oi j −Ei j )2

Ei j
over all the

cells in the r × c table. If the sum is “small,”
we will accept the null hypothesis. If the sum is
“large,” we will reject it. Under H0, the test statis-
tic χ2 for an r × c contingency table follows ap-
proximately a χ2 distribution with the degrees of
freedom (r − 1)(c − 1). Empirical studies showed
that the continuity correction for contingency ta-
bles larger than 2 × 2 does not improve the approx-
imation of the test statistic by the χ2 distribution.
Thus, the correction factor is not usually used for
the r × c tables. For the validity of the approxima-
tion, the χ2 test procedure is recommended under
the following conditions:

� No more than 20% of the cells have an expected
cell frequency less than 5.

� No cells have an expected cell frequency less
than 1.

We summarize the test procedure for an r × c
contingency table. The rejection region and the p
value are illustrated in Figure 10.3.1 and 10.3.2.

The χ2 Test for an r × c Contingency Table

1. Compute the value of the test statistic

χ2 =
c∑

j=1

r∑
i

(Oi j − Ei j )2

Ei j
.

Under H0, this test statistic is approximately
χ2

((r−1)(c−1))

2. Reject H0 if χ2
((r−1)(c−1),1−α) < χ2 and accept

H0 if χ2
((r−1)(c−1),1−α) ≥ χ2 at the significance

level α.
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Acceptance
Region Rejection

             Region

Figure 10.3.1 Rejection region of the χ2 test for an r × c contingency table.

3. The p value of the test is given by the area to the
right of the value of the test statistic χ2 under a
χ2

((r−1)(c−1)) distribution.

We will perform a statistical significance test
for the data in Example 10.3.1. Table 10.3.3 shows
that all the expected cell frequencies are > 5, so the
test procedure given above can be applied. Since
r = 2 and c = 3, we have r · c = 6 cells. The test
statistic χ2 is approximately χ2

((2−1)(3−1)) = χ2
(2).

We compute the test statistic as follows:

χ2 =
c∑

j=1

r∑
i

(Oi j − Ei j )2

Ei j

= (O11 − E11)2

E11
+ (O12 − E12)2

E12

+ (O13 − E13)2

E13
+ (O21 − E21)2

E21

+ (O22 − E22)2

E22
+ (O23 − E23)2

E23

= (27 − 20.02)2

20.02
+ (24 − 30.03)2

30.03

+ (8 − 8.96)2

8.96
+ (11 − 17.98)2

17.98

+ (33 − 26.97)2

26.97
+ (9 − 8.04)2

8.04
= 7.920.

Since χ2
(2,1−0.5) = χ2

(2,0.95) = 5.991< χ2 =7.920,

we reject the null hypothesis and conclude that
there is a statistically significant relationship be-
tween the degree of intrusion and the radiographic
appearance of the pulp. The p value of the test is
given by

p = P
(
7.920 < χ2

(2)

)
< P

(
7.378 < χ2

(2)

)
= 0.025.

10.4 THE COCHRAN-MANTEL-
HAENSZEL TEST

Suppose that n = 228 implants placed in grafted
maxillary sinuses have been followed for 5 years
to evaluate the factors affecting the survival rate
of implants. Patient’s smoking habit (yes/no) and
general oral hygiene (good/poor) were two of
the primary variables on which the investigation
was focused. The main goal of the study was to
investigate the effect of oral hygiene on implant
survival time. One potential confounding variable
was patients’ smoking habits, because active
smoking is related to both oral hygiene and
survival time of the implants. Therefore, it is
important to control for active smoking before

P

c2

Figure 10.3.2 The p value of the χ2 test for an r × c contingency table.
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Table 10.4.1. Relationship between oral hygiene and
implant survival rate among smokers.

Oral Hygiene

Survival Time (Smokers) Good Poor

5 or more yrs. 12 13 25
Less than 5 yrs. 10 35 45

22 48 70

Table 10.4.2. Relationship between oral hygiene and
implant survival rate among non-smokers.

Oral Hygiene

Survival Time (Non-smokers) Good Poor

5 or more yrs. 96 46 142
Less than 5 yrs. 6 10 16

102 56 158

we study the relationship between oral hygiene
and implant survival time. A statistical method
was developed by Cochran [7] and Mantel and
Haenszel [8] for examining this type of rela-
tionship between two categorical variables while
controlling for another categorical variable. Table
10.4.1 and Table 10.4.2 display the data in a 2 × 2
table relating oral hygiene to implant survival rate
for smokers and non-smokers, separately. Table
10.4.3 presents the combined data.

From the above tables we can estimate the odds
ratio in favor of more than 5-year implant survival
for the patients with good oral hygiene versus the
patients with poor oral hygiene among smokers
and non-smokers:

∧
ORsmokers = (12)(35)

(10)(13)
= 3.230 8

and
∧

ORnon-smokers = (96)(10)

(6)(46)
= 3.4783

In both subgroups, the odds of an implant
surviving more than 5 years is greater among

Table 10.4.3. Relationship between oral hygiene and
implant survival rate among smokers and non-smokers.

Oral Hygiene

Survival Time Good Poor

5 or more yrs. 108 59 167
Less than 5 yrs. 16 45 61

124 90 228

Table 10.4.4. Relationship between oral hygiene and
implant survival rate.

Oral Hygiene

Survival Time Good Poor

Less than 5 yrs. ai bi ai + bi

5 or more yrs. ci di ci + di

ai + ci bi + di ni

non-smokers than among smokers. Based on un-
stratified data in Table 10.4.3, we estimate the odds
in favor of more than 5-year implant survival given

by
∧

OR = (108)(45)/(16)(59) = 5.148.

We have stratified the data into two subgroups
according to a confounding variable to make the
subjects within a stratum as homogeneous as pos-
sible. To facilitate the presentation of the Cochran-
Mantel-Haenszel test method, we use the follow-
ing notation for the i th 2 × 2 contingency table, in
which the index i ranges from 1 to k. In this ex-
ample of implant survival data, i = 1, and 2. See
Table 10.4.4.

The test statistic is based on an overall com-
parison between the observed and expected cell
frequencies in the (1, 1) cell in each of the k sub-
tables. As before, the expected cell frequency is
obtained by

Ei = (ai + bi )(ai + ci )

ni
.

The observed and expected frequencies in the (1, 1)
cell are summed over all strata, that is,

O =
k∑

i=1

Oi , and E =
k∑

i=1

Ei .

The proposed test statistic is based on (O − E).
We need to calculate the variance (σ 2

Oi
) of Oi to

assess if the difference is statistically significant.

σ 2
Oi

= (ai + bi )(ci + di )(ai + ci )(bi + di )

n2
i (ni − 1)

.

The variance (σ 2
O ) of O =∑k

i=1 Oi is then given
by σ 2

O =∑k
i=1 σ 2

Oi
. The test statistic is defined by

χ2
C M H = (|O − E | − 0.5)2

σ 2
O

◦∼ χ2
(1).

Under the null hypothesis that there is no associ-
ation between the two dichotomous variables, the
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Cochran-Mantel-Hanzsel test statistic is approxi-
mately χ2 distributed with 1 degree of freedom.
We summarize the Cochran-Mantel-Hanzsel test.

The Cochran-Mantel-Hanzsel Test

Evaluate the association between two dichoto-
mous variables after controlling for confounding
variables.

1. Compute the total number of observed sub-
jects in the (1, 1) cell over all strata, and com-
pute the corresponding expected cell frequency,
O =∑k

i=1 Oi , and E =∑k
i=1 Ei .

2. Compute the variance (σ 2
O ) of O =∑k

i=1 Oi ,

where

σ 2
O =

k∑
i=1

(ai + bi )(ci + di )(ai + ci )(bi + di )

n2
i (ni − 1)

.

3. The test statistics is defined by χ2
C M H =

(|O − E | − 0.5)2

σ 2
O

◦∼ χ2
(1) under H0.

4. Reject H0 if χ2
(1,1−α) < χ2

C M H and accept H0 if
χ2

(1,1−α) ≥ χ2
C M H .

5. The p value of the test is given by p =
P(χ2

C M H < χ2
(1)).

Example 10.4.1. Using the stratified data in Table
10.4.1 and Table 10.4.2, evaluate the relationship
between oral hygiene and implant survival time.

Solution. Let O1 equal the observed number of
implants that survived more than 5 years for the
patients who have good oral hygiene among smok-
ers, and O2 equal the observed number of implants
that survived more than 5 years for the patients who
have good oral hygiene among non-smokers. Then
from the tables, we get O1 = 12 and O2 = 96.The
corresponding expected cell frequencies are
computed:

E1 = (25)(22)

70
= 7.857

and

E2 = (142)(102)

158
= 91.671.

The total observed and expected number of im-
plants are

O = O1 + O2 = 12 + 96 = 108

and

E = E1 + E2 = 7.857 + 91.671 = 99.528

We can now calculate the variance,

σ 2
O1

= (25)(45)(22)(48)

702(70 − 1)
= 3.513 8

and

σ 2
O2

= (142)(16)(102)(56)

1582(158 − 1)
= 3.311 2.

Thus, σ 2
O = σ 2

O1
+ σ 2

O2
= 3.5138 + 3.3112 =

6.825.

The value of the test statistics is

χ2
CMH = (|O − E | − 0.5)2

σ 2
O

◦∼ χ2
(1) under H0

= (|108 − 99.528| − 0.5)2

6.825
= 9.3118.

The p value is obtained by

p = P(χ2
C M H < χ2

(1))

= P(9.3118 < χ2
(1)) < P(7.879 < χ2

(1))

= 0.005.

Since χ2
(1,0.95) = 3.841 ≤ χ2

C M H = 9.3118, and
the p value is less than 0.005, we reject the null
hypothesis and conclude that there is a highly sig-
nificant positive relationship between oral hygiene
and implant survival rate, even after controlling for
the confounding variable, which is smoking habits
of the patients.

10.5 THE McNEMAR TEST

Let’s consider an example to describe the
McNemar test. Several techniques have been pro-
posed to achieve root coverage to treat gingival re-
cession defects, which represent a significant con-
cern for patients and a therapeutic problem for
clinicians. Suppose a clinical trial was performed
to evaluate the effect of a connective tissue graft
(CTG) in comparison to a guided tissue regener-
ation (GTR) procedure in the treatment of gingi-
val recession. This clinical trial was designed to
form matched pairs in which one member of each
matched pair is randomly assigned to CTG and the
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Table 10.5.1. Gingival recession treatment data.

Soft Tissue Improvement

Treatment Yes No

CTG 101 51 152
GTR 92 60 152

193 111 304

other member to GTR. The patients are matched on
age, sex, oral hygiene standards, gingival health,
probing depth, and other prognostic attributes.
There were 304 patients, or 152 matched pairs. Six
months after the treatment, patients were recalled
and clinically significant improvement of the soft
tissue conditions of the defects was recorded. The
data are presented in a 2 × 2 contingency table, as
shown in Table 10.5.1.

The proportion of soft tissue improvement for
the treatment groups appears not that much dif-
ferent: 101/152 = 0.664 for CTG and 92/152 =
0.605 for GTR, respectively. What do these pro-
portions tell us about the effectiveness of the treat-
ments? Is it valid to use the 2 × 2 χ2 contingency
technique to compare the proportions? The χ2 test
with Yates correction cannot be used in this case
because the two samples are not independent. Each
matched pair is quite similar in clinical conditions,
and thus they are not independent. In this type of
situation, we use a statistical method known as the
McNemar test, which takes the nature of matched
pairs into account in the analysis. In this example,
the matched pair constitutes the basic unit for the
experiment so that the sample size is 152, instead
of 304. We construct a 2 × 2 table by classifying
the pairs according to whether or not members of
that pair have clinically significant soft tissue im-
provement, as shown in Table 10.5.2.

Notice the chance that the member of treat-
ment GTR of the pair improved, given that the
member of treatment CTG of the pair improved,
is 92/109 = 0.844, while the chance that the

Table 10.5.2. Gingival recession treatment data for matched
pairs.

Treatment GTR

Treatment CTG Improvement No Improvement

Improvement 92 17 109
No improvement 14 29 43

106 46 152

member of treatment GTR of the pair improved,
given that the member of treatment CTG of the
pair did not improve, is 14/43 = 0.326. This sug-
gests that the two samples are highly dependent on
each other. If they are independent, then we would
expect the probabilities to be approximately the
same. We state the null hypothesis as follows:

H0: There is no association between clinically
significant improvement and the treatment.

H1: An association exists between clinically
significant improvement and the treatment.

In Table 10.5.2, for 92 matched pairs the out-
comes of the two treatments, CTG and GTR, are
“improvement” and for 29 pairs the outcomes
of the two treatments are “no improvement.” In
other words, there are 121 pairs in which the out-
comes of the treatments are the same. For the other
17 + 14 = 31 pairs, the outcome of the patients of
the matched pair is different.

Definition 10.5.1. (i) A matched pair in which the
outcome is the same for both members of the pair
is called a concordant pair. (ii) A matched pair, in
which the outcomes are different for the members
of the pair, is called a discordant pair.

In Table 10.5.2, there are 121 (92 + 29) concor-
dant pairs and 31 (17 + 14) discordant pairs. The
concordant pairs provide no information about dif-
ferences between treatments and therefore will not
be used. A test statistic is constructed based on the
discordant pairs. There are two types of discordant
pairs, as indicated in Table 10.5.2, where there are
14 discordant pairs in which only GTR patients
improved, and 17 discordant pairs in which only
CTG patients improved. Let b be the number of
discordant pairs in which only the CTG patients
of the pair improved, and c be the number of dis-
cordant pairs in which only the GTR patients of the
pair improved. If the null hypothesis is true, then b
and c should be approximately equal. If the differ-
ence between b and c is large, we would reject the
null hypothesis if there is no association between
the two variables. The McNemar test statistic is
defined by

χ2
M = [|b − c| − 1]2

(b + c)
◦∼ χ2

(1).

The McNemar test statistics have an approximate
χ2 distribution with 1 degree of freedom. The
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basic setting for the McNemar test is that we deal
with matched pairs in which two samples are cor-
related. When comparisons are made between two
independent groups, significant differences may
be observed that are not the result of the treatment.
Two groups may not accurately reflect the relative
effectiveness of the treatments because other clin-
ical factors might be producing the observed dif-
ferences in responses. One way to overcome this
problem between the independent samples is to use
matched pairs, achieved by pairing subjects as ex-
plained earlier. For the approximation to be valid,
the total number of the discordant pairs should be
at least 20, that is, b + c ≥ 20. The test procedure
is summarized below.

The McNemar Test for Matched Pairs

1. Count the number of discordant pairs b and c.

2. Evaluate the test statistic: χ2
M = [|b − c| − 1]2

(b + c)
◦∼ χ2

(1) under H0.

3. Reject the null hypothesis if χ2
(1,1−α) < χ2

M and
accept H0 if χ2

(1,1−α) ≥ χ2
M .

4. The p value is obtained by p = P(χ2
M < χ2

(1)).

Example 10.5.1. Complete the significance test
for the data in Table 10.5.2.

Solution. Because b = 17, c = 14, and b + c =
31 > 20, we may use the above test procedure.
The value of the test statistic is

χ2
M = [|b − c| − 1]2

(b + c)
= [|17 − 14| − 1]2

(17 + 14)
= 0.129 0.

The p value is obtained by

p = P
(
χ2

M < χ2
(1)

)
= P

(
0.129 < χ2

(1)

)
> P

(
2.706 < χ2

(1)

)
= 0.10.

Since χ2
(1,0.95) = 3.841 ≥ χ2

M = 0.129, and the p
value is much larger than 0.10, we accept the null
hypothesis at the significance level α = 0.05, and
conclude that there is no statistically significant
difference in proportion of improved patients be-
tween CTG and GTR.

Example 10.5.2. A survey was taken by Mc-
Carthy and MacDonald [9] to investigate changes

Table 10.5.3. Infection control survey data for matched
pairs.

Second Survey

First Survey HBV Vaccine No HBV Vaccine

HBV vaccine 519 31 550
No HBV vaccine 57 181 238

576 212 788

in infection control practices among dental pro-
fessionals between 1994 and 1995. Their study
was designed to measure changes in the propor-
tion of dentists who reported the use of (i) ba-
sic barrier techniques, including the use of gloves,
mask, and protective eyewear; (ii) hepatitis B virus
vaccination (HBV) of dentists and clinical staff;
(iii) heat sterilization of handpieces; and (iv) ad-
ditional infection control precautions for patients
with HIV/AIDS. A group of 788 dentists partic-
ipated in both surveys taken in 1994 and 1995.
Table 10.5.3 presents the survey data in a 2 × 2
table on compliance with the infection control rec-
ommendation for HBV vaccination of all clinical
staff. Conduct a significance test at α = 0.05.

Solution. Following the four steps described in the
discussion above, we count the discordant pairs,
b = 31 and c = 57. The value of the test statistic
can be computed

χ2
M = [|b − c| − 1]2

(b + c)
= [|31 − 57| − 1]2

(31 + 57)
=7.102.

The p value is given by p = P(χ2
M < χ2

(1)) =
P(7.102 < χ2

(1)) < P(6.635 < χ2
(1)) = 0.01.

The critical value χ2
(1,0.95) = 3.841 < χ2

M =
7.102, and the p value is smaller than 0.01, so
we reject the null hypothesis at the significance
level α = 0.05 and conclude that there is a statisti-
cally significant change in proportion of infection
control compliance between 1994 and 1995, with
a high compliance rate in 1995.

The McNemar test is often applied in social sci-
ences. For example, researchers may attempt to
compare the effectiveness of two teaching methods
by pairing the subjects and to determine whether or
not a particular political debate between two can-
didates was effective in changing viewers’ prefer-
ences for them.
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10.6 THE KAPPA STATISTIC

As we have seen in many examples for clinical
studies, the response variables are qualitative: yes
or no; survived or failed; tissue growth or no tissue
growth; patient is cured or not cured; in remission
or relapsed; and extreme pain, mild pain or no pain.
In this section we will introduce Cohen’s κ statis-
tic (kappa statistic) [10] to measure the reliability
of such data. Let X be the random variable repre-
senting a certain characteristic of subjects, for ex-
ample, blood pressure. No matter how the blood
pressure is measured and who measured it, it is
measured unreliably in the sense that if the sub-
ject’s blood pressure is measured again in similar
conditions by the same experimenter or by a dif-
ferent experimenter, the second measurement will
be different from the first measurement to some
degree. In previous sections, the focus of our dis-
cussions was on tests of association between two
categorical variables. Strictly speaking, there al-
ways will be some association between two vari-
ables. In the present section, we will discuss the
issue of quantifying the extent to which two vari-
ables are associated. The question we ask is, How
reliable or reproducible are they?

A χ2 contingency table technique may be used
for a test of association between first and second
responses. However, the χ2 test does not provide
us with a quantitative measure of the degree of reli-
ability (or reproducibility) between the two sets of
responses. A good place to begin to measure reli-
ability is concordant pairs in which both members
in the pair produce the same responses. In Exam-
ple 10.2.6 we have 15 + 21 = 36 concordant pairs
out of the total of 50 pairs. The rate of concordant
responses is 36/50 = 0.72. As with the χ2 con-
tingency table technique, we would like to com-
pare this observed concordance rate, denoted p0,

with the expected concordance rate, denoted pE ,

if the responses to the two separate questionnaires
are statistically independent. The following table
presents the relationship between survey responses
in a 2 × 2 contingency table.

Second Survey

First Survey Yes No

Yes O11 O12 r1

No O21 O22 r2

c1 c2 n

p0 = Total number of concordant pairs

Total number of pairs

= O11 + O22

n

pE =
(r1

n
× c1

n

)
+
(r2

n
× c2

n

)
.

As in the case of the χ2 procedure, the better way to
measure reliability is by the difference p0 − pE . If
p0 − pE = 0, all the observed concordance could
be attributed to chance alone. Cohen [10] proposed
the following κ statistic to measure the degree of
reliability.

κ = p0 − pE

1 − pE

� If p0 < pE (less than chance concordance), then
κ < 0.

� If p0 = pE (just chance concordance, that is,
two questionnaires are completely independent),
then κ = 0.

� If p0 > pE (more than chance concordance),
then κ > 0.

� If p0 = 1.0 (perfect concordance), then κ = 1.0.

The following guidelines for the assessment of the
κ statistic are given in various statistics literature:
� 0 ≤ κ < 0.40 suggests marginal reproducibility.
� 0.40 ≤ κ ≤ 0.75 suggests good reproducibility.
� 0.75 < κ suggests excellent reproducibility.

For more discussions on the κ statistic, see Fleiss
[11], Landis and Koch [12], Rosner [13], and
Siegel and Castellan [14].

Example 10.6.1. An investigator selected 62 ra-
diographs at random from patient charts. To assess
the reliability of a dentist’s ability to detect caries,
these radiographs were shown to him at two sep-
arate times. After reviewing the radiographs, the
dentist was asked to give dichotomous responses:
caries present or caries absent. The dentist was not
aware that he was reviewing the same radiographs
twice. His responses are shown in Table 10.6.1.
Evaluate the reliability of his measurements.

Table 10.6.1. Pocket depth measurement data.

First Review

Second Review Caries Present Caries Absent

Caries Present 20 5 25
Caries absent 14 23 37

34 28 62
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Solution. The observed concordance rate is

p0 = O11 + O22

n
= 20 + 23

62
= 0.6936 and the

expected concordance rate is

pE =
(r1

n
× c1

n

)
+
(r2

n
× c2

n

)
=
(

25

62
× 34

62

)
+
(

37

62
× 28

62

)
= 0.4905.

We can now compute the κ statistic κ =
p0 − pE

1 − pE

= 0.6936 − 0.4904

1 − 0.4904
= 0.398 7.

Since κ = 0.3987, we conclude that the mea-
surements of the dentist are marginally repro-
ducible.

We discussed the κ statistic for 2 × 2 tables,
but the concept can be extended to r × r contin-
gency tables (r > 2) as illustrated in the following
example.

Example 10.6.2. Dr. Dunford studied healing of
a new root canal treatment. The evaluation of heal-
ing is done radiographically. He suspects that this
type of measurement may not be highly reliable. To
assess how reliable or reproducible radiographic
readings are, Dr. Dunford had two other endodon-
tists examine post-operative healing based on ra-
diographs to determine a patient’s condition in
accordance with three categories: failing, partial
healing, and complete healing. The endodontists
evaluated 338 cases. Dr. Dunford’s data is sum-
marized in Table 10.6.2. Compute the κ statistic
to measure the reproducibility between the two
endodontists.

Solution. First, we need to compute the observed
and expected concordance rates:

p0 = O11 + O22 + O33

n
= 52 + 107 + 86

338
= 0.724 9.

Table 10.6.2. Radiographic data on root canal healing.

First Endodontist

Second Partial Complete
Endodontist Failing Healing Healing

Failing 52 12 17 81
Partial healing 18 107 22 147
Complete healing 9 15 86 110

79 134 125 338

pE =
(r1

n
× c1

n

)
+
(r2

n
× c2

n

)
+
(r3

n
× c3

n

)
=
(

81

338
× 79

338

)
+
(

147

338
× 134

338

)
+
(

110

338
× 125

338

)
= 0.3487.

We can compute the κ statistic κ = p0 − pE

1 − pE

=
0.7249 − 0.3487

1 − 0.3487
= 0.577 6.

We get κ = 0.578, which suggests that
there is a good reproducibility between the
endodontists.

10.7 χ2 GOODNESS-OF-FIT TEST

In the previous discussions we have conveniently
assumed that the data came from a specific un-
derlying probability distribution function, such as
binomial or normal, and proceeded to estimate the
unknown population parameters and to test hy-
potheses concerning the parameters. In this sec-
tion we shall consider another application of the
χ2 technique in which an observed frequency dis-
tribution is compared with the underlying popula-
tion distribution we assume to be true. Such a com-
parison is referred to as a χ2 goodness-of-fit test.
To illustrate the χ2 goodness-of-fit test, we shall
consider an example. The conventional method
for the study of bonding failure has been the use
of the shear bond strength test, in which a force
is directed parallel to the base of the orthodon-
tic bracket until the point of bonding failure oc-
curs. Recently, a study was done using tensile bond
strength to measure the bond strength of ceramic
brackets to porcelain. The following table (see
Table 10.7.1) shows the tensile strength (megapas-
cals) of 50 samples of ceramic brackets bonded and
then pulled off by an Instron machine. Let X be
the random variable denoting the tensile strength.

Let’s create 6 intervals (categories): X ≤
16.25, 16.25 < X ≤ 17.20, 17.20 < X ≤ 18.15,

18.15 < X ≤ 19.10, 19.10 < X ≤ 20.05, and
20.05 < X.

| | | | |
16.25 17.20 18.15 19.10 20.05
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Table 10.7.1. Tensile strength of ceramic brackets.

20.2 16.0 18.2 16.8 16.5 19.0 20.2 18.6 19.1 18.7 18.4 18.1 19.1
19.2 20.3 18.3 16.2 19.9 18.6 20.6 16.4 21.0 18.0 17.1 19.3 19.4
19.1 19.8 17.3 18.1 17.3 17.6 20.0 18.9 19.7 19.6 18.7 20.6 19.3
17.9 18.0 15.8 17.1 17.4 16.8 16.4 15.3 18.1 18.3 18.0

By counting the number of observed measure-
ments in each category, we get O1 = 4, O2 = 7,

O3 = 11, O4 = 13, O5 = 9, and O6 = 6. We
would like to assume that these measurements
came from a normal distribution. Recall that many
statistical inferential procedures we discussed in
the previous chapters were developed under the as-
sumption of a normal distribution. The goodness-
of-fit test is a technique that compares an observed
number of measurements in each category with
an expected number of measurements under the
null hypothesis. From the data we can estimate
the mean and variance and obtain X = 18.37, and
S2 = 1.92. We state the null hypothesis as H0 :
The underlying distribution from which the mea-
surements came is N (18.37, 1.92). (a normal dis-
tribution with μ = 18.37 and σ 2 = 1.92)

We can also state it as H0 : X ∼ N (18.37, 1.92).
The next step is to estimate the expected cell fre-
quencies for the 6 categories, assuming that the
mean and SD of the hypothesized normal distribu-
tion are given by the sample mean and sample SD:
X = 18.37 and S = 1.39. The expected cell fre-
quency is calculated by the following procedure,
where n is the total sample size.

E1 = n · P(X ≤ 16.25)

= n · P

(
X − μ

σ
≤ 16.25 − μ

σ

)
= n · P

(
Z ≤ 16.25 − μ

σ

)
= 50 · P

(
Z ≤ 16.25 − 18.37

1.39

)
= 50 · P(Z ≤ −1.525)

= 50(1 − 0.9364) = 3.18.

Similarly, we obtain

E2 = n · P(16.25 < X ≤ 17.20)

= 50(0.1136) = 5.68

E3 = n · P(17.20 < X ≤ 18.15) = 11.87

E4 = n · P(18.15 < X ≤ 19.10) = 13. 15

E5 = n · P(19.10 < X ≤ 20.05) = 9.35,

and

E6 = n · P(20.05 < X ) = 5.67.

The observed and expected cell frequencies are
given in the table below.

Oi 4 7 11 13 9 6
Ei 3.18 5.68 11.87 13.15 9.35 5.67

We use the same test statistic as before

χ2 = (O1 − E1)2

E1
+ (O2 − E2)2

E2
+ (O3 − E3)2

E3

+ (O4 − E4)2

E4
+ (O5 − E5)2

E5
+ (O6 − E6)2

E6
.

Under the null hypothesis, this statistic follows
approximately a χ2 distribution with the degrees
of freedom c − 1 − k, where c = number of cat-
egories, and k = number of the parameters esti-
mated. In this example, c = 6, because we have
created 6 categories, and k = 2, because we have
estimated 2 parameters (mean and SD). We should
note that the approximation is valid when no ex-
pected cell frequency is less than 1, and no more
than 20% of the expected cell frequencies can
be less than 5. In our example, all of the Ei ’s
are greater than 1, and only 1 expected cell fre-
quency (1 out of 6 expected cell frequencies) is less
than 5.

χ2 = (4 − 3.18)2

3.18
+ (7 − 5.68)2

5.68

+ (11 − 11.87)2

11.87
+ (13 − 13.15)2

13.15

+ (9 − 9.35)2

9.35
+ (6 − 5.67)2

5.67
= 0.616.

Under H0, the test statistics has χ2
(c−1−k) =

χ2
(6−1−2) = χ2

(3). The critical value is χ2
(3,1−α) =

χ2
(3,.95) = 7.81. Since χ2 = 0.616 < χ2

(3,0.95) =
7.81, we accept the null hypothesis at the signifi-
cance level α = 0.05 and conclude that the nor-
mal distribution with mean 18.37 and standard
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deviation 1.39 provides an adequate fit to the ten-
sile strength measurements.

The following should be noted:

1. Suppose that the null hypothesis was rejected
in the above example. This does not necessarily
mean that a normal distribution with different
mean and SD will not fit the data.

2. The number of categories we decide to have is
arbitrary, but a consideration must be given so
that the approximation is valid. If we have too
many categories, the expected cell frequencies
will be small. Too many categories with the ex-
pected cell frequency less than 5 will violate the
conditions for a valid approximation.

3. The concept of the χ2 goodness-of-fit test pro-
cedure was explained in the context of a normal
distribution, but it can be applied to any proba-
bility model. See Example 10.7.1 below.

We will summarize steps involved in a χ2

goodness-of-fit test procedure.

1. Divide the data into c categories. The observa-
tions must be independent of each other.

2. Estimate the k parameters of the probability
model using the data.

3. Count the observed cell frequencies, and calcu-
late the corresponding expected cell frequen-
cies using the hypothesized distribution.

4. Compute the test statistic χ2 = (O1 − E1)2

E1
+

(O2 − E2)2

E2
+ · · · + (Oc − Ec)2

Ec
.

Under H0, the test statistic follows approx-
imately a χ2 distribution χ2

(c−1−k) with the
degrees of freedom c − 1 − k.

5. If χ2
(c−1−k,1−α) < χ2, then reject H0. If

χ2
(c−1−k,1−α) ≥ χ2, then accept H0.

6. The p value of the test is obtained by P(χ2 <

χ2
(c−1−k)).

Example 10.7.1. Health-care satisfaction surveys
conducted in the past indicated that a factor most
significantly affecting the patient’s overall percep-
tion of quality health care is waiting time in the

clinic lobby. In order to understand the distribu-
tion of patient waiting time, an investigator de-
cided to measure the length of time Dr. Brown’s
patients had to wait in his office. Suppose that Dr.
Brown has 8 appointments each day he works. The
investigator spent 100 days in Dr. Brown’s office
to observe patient waiting time. Since the patients
in those surveys expressed that 15 minutes wait-
ing time is tolerable, he recorded each appoint-
ment as either “on time” if a patient waited less
than 15 minutes or “late” if a patient waited longer
than 15 minutes. The patient waiting time data are
displayed below. For each appointment, there are
exactly two possible outcomes; either on time or
late. Based on the data, test if the data came from
a binomial distribution with n = 8.

No. of Late
Appointments No. of Days

0 14
1 7
2 9
3 17
4 12
5 13
6 25
7 3
8 0

Solution. We wish to test whether the data can
be considered as having been observed from a
binomial population with n = 8. Since the bino-
mial probability p is not known, it needs to be
estimated. Here, the probability p = P (a patient
waits longer than 15 minutes). In Section 6.2, we
learned that the mean of the binomial distribution
is np = X .To estimate p, we will compute

X = 0 · 14 + 1 · 7 + 2 · 9 + 3 · 17 + 4 · 12 + 5 · 13 + 6 · 25 + 7 · 3 + 8 · 0

100
= 360

100
= 3.6.

We now have an equation np = 3.6. Solving the
equation for p, we get

p = 3.6

n
= 3.6

8
= 0.45.

The null and alternative hypotheses are

H0: The data are from a binomial distribution, B(8,

0.45) vs.
H1: The data are not from a binomial distribution

with n = 8 and p = 0.45.
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The possible values for the number of late appoint-
ments a day are 0, 1, 2, · · · , 8. We will divide the
data according to these values. Thus we have c = 9
categories. From Table B of the Appendix, we can
obtain

No. of Late Observed Binomial Expected
Appointments Freq. Prob. Freq.

0 14 0.0084 0.84
1 7 0.0548 5.48
2 9 0.1570 15.70
3 17 0.2568 25.68
4 12 0.2627 26.27
5 13 0.1719 17.19
6 25 0.0703 7.03
7 3 0.0164 1.64
8 0 0.0017 0.17

The first two and the last two categories are com-
bined to ensure the number of expected cell fre-
quencies with values less than 5 is below 20% of
the total number of categories. We now have

No. of Late Observed Expected
Appointments Freq. Freq.

0 or 1 21 6.32
2 9 15.70
3 17 25.68
4 12 26.27
5 13 17.19
6 25 7.03
7 or 8 3 1.81

Calculate the test statistic

χ2 = (21 − 6.32)2

6.32
+ (9 − 15.70)2

15.70

+ (17 − 25.68)2

25.68
+ (12 − 26.27)2

26.27

+ (13 − 17.19)2

17.19
+ (25 − 7.03)2

7.03

+ (3 − 1.81)2

1.81
= 95.381.

The critical value is χ2
(c−1−k,1−α) = χ2

(7−1−1,0.95) =
χ2

(5,0.95) = 11.070 < χ2 = 95.381. Therefore, we
reject the null hypothesis. The binomial distribu-
tion is not an adequate fit to the data.

10.8 EXERCISES

1 At the beginning of the last flu season, Orange
County Community Hospital staff administered a
flu vaccine. To determine if there is an association
between the flu vaccine and contraction of the flu,
235 of the inoculated patients and 188 uninocu-
lated subjects were randomly sampled. The inves-
tigators monitored the study subjects throughout
the flu season and gathered the data shown in the
table.
a. State the appropriate null hypothesis to test for

an association between two variables.
b. Find the expected frequency for each cell.
c. Find the value of the test statistic.
d. What is the p value?
e. State the conclusion of the significance test.

Contracted Flu

Flu Vaccine Yes No

Yes 43 192 235
No 51 137 188

94 329 423

2 Alcohol consumption, like smoking, may be
related to periodontal disease independent of oral
hygiene status. To assess the relationship between
alcohol consumption and severity of periodontal
disease, 154 patients were chosen at random, and
each patient was examined for gingival bleeding
(yes/no) [15]. The patients were classified into two
categories of alcohol consumption; fewer than five
drinks a week and five or more drinks a week. The
data is shown in table below. Perform an appro-
priate test to determine if there is an association
between drinking and periodontal disease at the
significance level α = 0.05.

Alcohol Consumption

Gingival Bleeding < 5 drinks ≥ 5 drinks

Yes 44 24
No 64 22

3 A study reviewed the outcome of 528 Brane-
mark implants placed in the posterior region of
the maxilla to investigate the relationship between
smoking and implant failure [16]. Of the 528
implants, 89 were placed in smokers and 439 in
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non-smokers. Seventeen implants placed in the
smoker’s posterior maxilla and 48 implant placed
in the non-smoker’s posterior maxilla failed within
a 5-year period. Is there a significant association
between smoking habits and implant failure? Test
an appropriate hypothesis at the significance level
α = 0.05.

4 Osteogenesis imperfecta is one of many genetic
diseases. Suppose that an investigation was done to
determine if there is any association between sib-
lings being affected by osteogenesis imperfecta.
Forty families, each with two children, were cho-
sen at random for the study, and the children were
thoroughly examined for the disease. The results
of the dental exam showed that 12 of the first-born
and 6 of the second-born children were affected
by the disease. In 4 of the families, both the first-
and second-born children were affected.
a. Construct a 2 × 2 contingency table.
b. Perform a significance test for association. If

the χ2 test procedure cannot be used, explain
why. Discuss what technique can be applied to
test the null hypothesis.

5 Assess the crown survival time data in Example
10.2.2 for statistical significance.

6 Many dental patients report that they experi-
ence dental anxiety and phobia. Dental researchers
developed a video program that is designed to al-
leviate the patient’s dental anxiety. To evaluate the
effectiveness of the program, 160 patients have
been selected in various dental clinics. Before and
after the video program was shown to them, their
anxiety level was classified into three categories:
none, moderately anxious, and very anxious. The
data are arranged in a 3 × 3 table, because both
“before” and “after” have three categories. Per-
form a significance test for a relationship between
before and after.

After

Before None Moderate Very

None 26 2 0 28
Moderate 7 62 18 87
Very 3 38 4 45

36 102 22 160

7 Little attention has been given to the issue of
obtaining informed consent for conscious seda-
tion and general anesthesia from Spanish-speaking

parents living in the United States. Clinicians are
aware that the treatment of pediatric patients can
only be as effective as the extent to which Spanish-
speaking parents consent to the treatment. In a sur-
vey conducted with primarily Spanish-speaking
parents of pediatric patients, the following two
questions were included. Question 1: Language
spoken at home (Spanish only, English only, both
English and Spanish). Question 2: I prefer that the
clinician who treats my child speak (Spanish only,
English only, English and Spanish, no preference).
The survey data are presented in the table below.

Clinician Speaks

Language at Spanish English No
Home only only Both preference

Spanish only 78 23 64 46
English only 4 33 38 29

Both 43 57 64 48

a. State the null hypothesis to test for a relationship
between the language spoken at home and the
language parents prefer clinicians to speak.

b. Perform an appropriate test at the significance
level α = 5%.

c. Compute the p value.

8 Each year, about 30, 000 new cases of oral can-
cer are diagnosed in the United States and about
9, 000 people die from the disease [17]. Accord-
ing to the National Cancer Institute, tobacco use
is the most serious risk factor for oral cancer. A
second major cause is chronic and/or heavy use of
alcohol. The combination of tobacco and alcohol is
particularly dangerous. Edwards [17] reported that
smoking a pack of cigarettes a day increases the
risk of oral cancer 4.5 times. Consuming up to six
alcoholic drinks a day increases the risk 3.3 times
and ingesting six to nine drinks a day increases the
risk 15 times. Heavy use of alcohol and smoking
combined increases the risk up to 100 times. Sup-
pose a study was conducted with 492 randomly
selected subjects, of whom 114 are heavy users
of alcohol and 378 are not. Further investigations
revealed that 46 of the 114 heavy users of alcohol
and 110 of the 378 non-users of alcohol smoke
at least one pack of cigarettes a day. There were
47 subjects diagnosed with oral cancer among
the group of heavy alcohol users, while there were
74 subjects diagnosed with oral cancer among the
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non-alcohol group. The investigators learned that
35 subjects have oral cancer among those who
smoke and drink alcohol, and 43 subjects have oral
cancer among those who smoke but do not drink
alcohol. Assess the relationship between oral can-
cer (Yes/No) and smoking (Yes/No), after control-
ling for alcohol consumption (Yes/No). Assess the
relationship between the variables. What method
would you use?

9 Discuss an example in biomedical health sci-
ences where Cochran-Mantel-Hanszel method is
appropriate.

10 Find a specific example where the McNemar
test can be applied in your specialty area.

11 There are two tooth-numbering systems in
use. The universal system is the most widely used
system in the United States. The other system is the
FDI system, developed by a committee from the
Federation Dentaire Internationale. Suppose an in-
vestigator was interested in assessing whether the
universal or FDI tooth-numbering system is eas-
ier for students to learn. The investigator has se-
lected 264 students and formed 132 matched pairs
according to several extraneous factors that might
influence their ability to learn the tooth-numbering
systems, such as the number of years in dental
school, GPA, performance in clinical work, etc.
Subjects in the same pair are randomly assigned
to either the universal or FDI system. At the end
of a tooth morphology course they were given a
test to identify the teeth, using the system they
learned to use [18]. The performance of the stu-
dents was classified into 75% or more correct an-
swers and less than 75% correct answers. Suppose
that the test results showed that in 55 pairs both
members of the pair scored 75% or better, in 24
pairs both members scored below 75%, and that 77
of the students who were assigned to the universal
and 86 of the students who were assigned to FDI
system scored at least 75%. Analyze the data for
a statistical significance at the significance level
α = 0.05.

12 The probing depth equal to or greater than
6 mm is commonly used as the “yardstick” in de-
termining periodontitis. It is not always easy to
accurately measure the pocket depth and gingival
recession due to soft tissues. To evaluate the re-
producibility of measurements, 83 dental patients
were randomly selected, and their pocket depth

was measured by two periodontists. The measure-
ments were classified into two categories, less than
6 mm and equal to or greater than 6 mm. Let X be
the random variable describing the pocket depth.
The data is illustrated in a 2 × 2 table. Compute
the κ statistic.

First Periodontist

Second Periodontist X < 6 mm X ≥ 6 mm

X < 6 mm 41 5 46
X ≥ 6 mm 8 29 37

49 34 83

13 A dentist was asked to read radiographs and
determine if she sees a rarefaction on the film. She
was again asked to do the same 48 hours later.
Her response to each radiograph was either yes,
there is a rarefaction on film, or no, there is not.
She was shown the same 143 radiographs. For 42
radiographs she indicated “yes,” and for 51 radio-
graphs she indicated “no” at both times. For 27
radiographs, she said “Yes” at initial reading but
“No” 48 hours later. Evaluate the κ statistics for
her readings.

14 From the tables shown in Example 10.2.5,
measure the degree of reproducibility.

15 A table of random numbers is provided in Ta-
ble A in the Appendix. This table is constructed in
such a way that each digit, 0, 1, 2, · · ·, 9 is equally
likely. In other words, they are observed with the
equal probability of 0.10.
a. Construct a frequency table with the first 350

digits from Table A.
b. Find the expected cell frequency for each of the

10 digits.
c. Does the discrete uniform distribution ade-

quately fit the data?

16 The past studies suggested that amalgam re-
pair is a valid alternative to replacing damaged
amalgam restorations [19]. However, many den-
tists believe that there is almost no cohesion be-
tween the application of fresh amalgam to pre-
viously placed amalgam, and thus they do not
benefit from practicing the technique. A time-
differentiated amalgam cohesion study was per-
formed [20]. Seventy samples were prepared to
test the bond between the aged amalgam surface
and the fresh amalgam. The Instron machine was
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used to measure the shear strength of the speci-
mens. The following data represent the peak load
in megapascals. Test if a normal probability model
fits the data adequately at the significance level
α = 0.05.

57.18 51.52 66.85 65.63 30.48 37.36 28.07 36.75 45.26 38.68
31.23 38.55 28.81 15.66 16.78 20.82 20.44 42.21 39.88 36.36
51.28 55.58 49.93 64.96 37.48 36.70 45.44 39.56 37.82 32.16
75.96 27.82 39.14 22.88 18.45 39.75 55.89 52.24 47.27 67.31
38.76 41.20 53.92 36.83 40.18 35.89 38.96 33.56 44.05 32.18
36.15 33.90 28.53 30.68 36.12 28.01 17.52 22.86 40.47 21.84
48.12 24.65 33.36 57.45 47.51 39.74 26.35 31.58 40.39 56.04
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Chapter 11

Regression Analysis and Correlation

11.1 INTRODUCTION

The previous four chapters were devoted to two ar-
eas of statistical inference: confidence interval and
hypothesis testing. In this chapter we will intro-
duce another area of inferential statistics, known
as regression analysis, which explores the nature
of a relationship between two or more quantita-
tive variables so that one variable can be predicted
from the other(s). Simple linear regression, corre-
lation, and multiple regression will be introduced.
The primary goal of a simple linear regression is
to establish a statistical relationship that makes it
possible to predict one variable in terms of another.
For example:

1. a study was conducted to predict family’s dental
and medical expenditures in terms of household
income;

2. an investigation was done to study the relation-
ship between weight loss and the number of
days subjects have been on a 1, 200 kcal per
day diet;

3. an analysis was performed to predict dental stu-
dents’ national board exam scores in terms of
their GPA in basic science courses while in den-
tal school;

4. a study was done to describe the relationship
between drug potency and the assay response;
and

5. a study was done to describe the relationship
between height and weight of dentists; if Dr.
Jackson is 5 feet 10 inches tall, how much is he
expected to weigh?

In a simple regression problem, we are primarily
interested in a statistical relationship between one
dependent variable Y and one independent vari-
able X . It is assumed that the values taken on by
the random variable Y depend on a fixed value of
X . In other words, the values of Y vary with
changes in the values of X . In the above exam-
ples, Y represents a family’s dental and medical

expenditures, weight loss, national board exam
scores, and weight of the dentist. Independent vari-
able X represents household income, the number
of days on diet, dental school grade point average
(GPA), and height of the dentist. Dependent vari-
able Y is also called response variable or out-
come variable. Independent variable X is also
called predictor variable, regressor variable, or
explanatory variable. The purpose of a regres-
sion analysis is to find a reasonable regression
equation to predict the average value of a response
variable Y that is associated with a fixed value of
one independent variable X . We cannot predict
precisely how much weight an individual subject
will lose after having been on the diet program
for 14 days, but given adequate data we can pre-
dict the average weight loss after 14 days. Sim-
ilarly, we can predict students’ average score on
the national board exam given their GPA and the
expected weight of the dentists in terms of their
height. If more than one independent variable were
used to predict the average value of a response
variable, then we would need multiple regression
(discussed later in this chapter). The dependent
variable in regression is the variable that cannot be
controlled. The score on the national board exam
depends on the students’ GPA, and the amount of
weight loss depends on the number of days the in-
dividuals are on a diet. The determination of the
dependent and independent variables is not always
clear-cut and sometimes is an arbitrary decision
made by researchers. For example, a different in-
vestigator may select height of the dentist as the
dependent variable Y and weight as the indepen-
dent variable X .

11.2 SIMPLE LINEAR
REGRESSION

To study the statistical relationship between
two variables, we first plot the independent and

203
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dependent variables on a scatter plot. The in-
dependent variable is plotted along the horizon-
tal axis, and the dependent variable is plotted
along the vertical axis. The scatter plots can aid
us in determining the nature of the relationship.
Figure 11.2.1 shows three scatter plots: A, B,
and C.

Scatter Plot A

In many countries nowadays, people tend to drink
greater amounts of soft drinks. Consumption of
soft drinks affects dental health because of the po-
tential risk of sugar and acid-containing drinks to
cause caries and erosion. The factors that cause the
erosion of tooth surface due to acidic soft drinks
has been well documented [1]. Chung, et al. [1]
investigated the influence of the high level of con-
sumption of soft drinks on the behavior of dental
materials and teeth with respect to erosion. Ex-
tracted human teeth were soaked in one of the pop-
ular carbonated drinks. The measurements of sur-
face roughness of teeth samples were determined
with a profilometer at various time points. This
data is depicted in scatter plot A in Figure 11.2.1.
Surface roughness (micrometers) is taken as the
response or outcome variable Y , and the soaking
time (hr) is taken as the independent or predictor
variable X . The plot clearly suggests that there is
a linear relation (a straight line) between surface
roughness and soaking time, in the sense that the
longer the soaking time, the greater tends to be the
surface roughness, that is, there is a greater amount
of erosion of the tooth surface. Figure 11.2.2 (A)
indicates that the relationship is not perfectly lin-
ear, but it strongly suggests that a linear equation
with a positive slope is a good fit.

Scatter Plot B

The Knoop’s hardness of a widely used cement
material was measured by using the conventional
light curing method at various depths (millimeters)
[2]. The relationship between hardness Y (the re-
sponse variable) and depth X (the predictor vari-
able) is plotted in scatter plot B in Figure 11.2.1.
The plot suggests that there is a linear relationship
between the two variables. Unlike scatter plot A,
the slope of the equation in Figure 11.2.2 (B) is
negative. The greater the depth, the smaller tends
to be the Knoop’s hardness of the composite ma-
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Figure 11.2.1 Three scatter plots.

terial cured by the conventional light. These data
are slightly less linear than those in scatter plot
A. Nevertheless, a straight line appears to provide
an adequate fit. The plot indicates the general ten-
dency by which the hardness varies with changes
in depth.
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Figure 11.2.2 Statistical relationship between predictor and
response variables.

Scatter Plot C

The vitality of bone tissue has been shown to be
altered with temperatures above 47◦ C. Prolonged
exposure to high temperature usually results in
impaired bone healing and/or bone necrosis. The
temperature during implant osteotomy can rise

over 100◦ C, which exceeds biologic tolerance for
osseous repair. Consequently, heat-induced bone
necrosis leads to implant failure. It has been shown
in the dental literature [3] that proper irrigation is
the most important factor in maintaining bone tem-
perature within biologic tolerance. Hover et al. [4]
investigated the effect of irrigation solutions on
heat generation. Scatter plot C of Figure 11.2.1
represents the relationship between the maximum
temperature during osteotomy and initial baseline
temperature before osteotomy. The depth of the
osteotomies was 4 mm. A chlorhexidine glycerine
solution was one of the irrigation systems used on
the study of reduction of heat generation during
implant osteotomy. The data suggest that the rela-
tionship between the temperature at peak and the
initial temperature is non-linear. It is non-linear
(or curvilinear). The curve of the relation is drawn
in Figure 11.2.2 (C). The plot suggests that as the
initial temperature at baseline becomes higher, the
maximum temperature during the osteotomy in-
creases to a certain point, and then it levels off at
about 21.7◦ C.

The scatter plot in Figure 11.2.3 represents the
effect of sour toothpaste on tooth demineraliza-
tion by testing micro-hardness of enamel using 14
extracted bovine incisors. It has been found that
a low pH in the oral cavity leads to tooth dem-
ineralization. Due to the low pH of citric acid in
the sour toothpaste, it was speculated that enamel
demineralization will occur. Micro-hardness was
measured before and after the treatment with the
sour toothpaste [5]. The plot strongly suggests that
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Figure 11.2.3 Scatter plot of pre- vs. post-treatment enamel
hardness.
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there is little or no linear relationship between
pre- and post-treatments with respect to the micro-
hardness. In fact, pre-treatment hardness does not
seem to provide much help for predicting post-
treatment hardness. There is no particular relation
between the variables.

Based on the observed data, we like to estimate a
mathematical model that describes the relationship
between two variables. In statistics this procedure
is known as regression analysis or curve fitting.
A regression model is a formal expression of a
statistical relationship between two variables.
There are two basic questions we must keep in
mind in any regression analysis.

1. What is the most appropriate model to use as a
predicting equation: a straight line, a curvilin-
ear, etc?

2. Given a specific model, how do we determine
the particular equation that is “best” for the
data?

The first question is usually addressed by inspect-
ing the scatter plot of the data. We can determine
the kind of model that best describes the overall
pattern of the data by visual inspection. In this
section the second question will be discussed in
detail. Our discussions will primarily be focused
on simple linear regression equations. Regression
models may have more than one independent vari-
able. Here are some examples:

1. In the study of a regression analysis to predict
a family’s dental and medical expenditure, the
household income as well as the size of the fam-
ily can be introduced as independent variables.

2. In the study of weight loss, we can use diet,
physical exercise, and sex as explanatory vari-
ables in the model to predict the amount of
weight loss.

3. A regression model can include GPA in basic
sciences, dental admissions test (DAT) scores,
and the number of hours spent for preparation
as independent variables for predicting the na-
tional board exam scores.

For each of the above three applications one
can think of many more independent variables,
but only a limited number of predictor variables
should be included in a regression model. The key
issue, then, is choosing variables that are best for
prediction of the response variable. Basically, this
choice is made with consideration of the variables

that contribute to reducing the variation in the re-
sponse variable Y .

11.2.1 Description of Regression
Model

We consider a simple linear regression model that
includes only one independent variable. The model
can be stated as follows:

Yi = β0 + β1 Xi + εi , where

� Yi is the value of the response variable at the i th

level of the independent variable;
� parameters β0 and β1 are unknown regression

coefficients whose values are to be estimated;
� Xi is a known constant, which is the value of the

independent variable at the i th level; and
� εi represents an error term that is a random vari-

able, assumed to be normally distributed with
mean 0 and variance σ 2, that is, εi ∼ N (0, σ 2).

We assume that the errors at different levels of
the predictor variable Xi are statistically indepen-
dent. That is εi and ε j are statistically independent.
We also assume that the variance of the random er-
ror term εi is constant. Ignoring the error term and
the indices for the variables in the model for an
illustration, we have Y = β0 + β1 X . This is a fa-
miliar mathematical expression from an algebra
course, which describes a straight line such as the
line we have in Figure 11.2.2 (A). The parameter
β0 is called the Y -intercept, and β1 is called the
slope of a straight line. Recall that the intercept β0

is the value of Y when X takes on the value 0. The
slope β1 is the amount of changes in Y for each
one unit change in X . For a given linear equation,
this rate of change is always constant. From the
assumptions we have for the simple linear regres-
sion model regarding the random error term εi ,
the mean (or the expected value) of the response
variable at the i th level of the independent vari-
able is 0, denoted by E(Yi ) = β0 + β1 Xi , and the
variance of Yi is σ 2, denoted by V ar (Yi ) = σ 2.

Thus, the regression model assumes that the prob-
ability distributions of the responses Yi have the
same variance, irrespective of the levels of the in-
dependent variable Xi . This assumption of con-
stant variability is known as homoscedasticity. In
summary, the outcomes Yi come from the popula-
tion with a normal distribution with the mean given
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Figure 11.2.4 Perfect fit with σ 2 = 0.

by E(Yi ) = β0 + β1 Xi and variance given by σ 2,

Yi ∼ N (E(Yi ) = β0 + β1 Xi , σ
2).

The expression E(Yi ) = β0 + β1 Xi is called a re-
gression function. If the value X = 0 in a regres-
sion model is meaningful, then the Y -intercept
β0 is the mean of the response variable Y when
X = 0. Suppose we have a regression function
E(Yi ) = 7.8 + 2.5 · Xi . The mean value of the re-
sponse at X = 0 is 7.8, and the slope β1 = 2.5
indicates that one unit increase in X leads to a 2.5
unit increase in the mean of the distribution of the
response variable Y . If σ 2 = 0, then every obser-
vation would fall right on the regression line as
shown in Figure 11.2.4. As the variance increases,
σ 2 > 0, the observations would be scattered about
the regression line. See Figure 11.2.5.
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Figure 11.2.5 A regression equation with σ 2 > 0.

From E(Yi ) = β0 + β1 Xi we can see that if
β1 > 0, a positive slope, then the mean response
increases as X increases. On the other hand if
β1 < 0, a negative slope, then the mean response
decreases as X increases. If β1 = 0, then the mean
response will be constant E(Yi ) = β0, and hence
there is no relationship between the mean response
Y and the independent variable X . In a simple lin-
ear regression model we assume that the graph of
the mean of the response variable E(Yi ) for given
values of the independent variable Xi is a straight
line.

11.2.2 Estimation of Regression
Function

The values of the regression coefficients β0 and
β1 are usually not known, and therefore we need
to estimate them from data. To estimate β0 and
β1, we shall apply the method of least squares.
The estimates of β0 and β1will be denoted by b0

and b1. When the estimates are obtained, they will

replace β0 and β1, and
∧
Y i = b0 + b1 Xi will be

referred to as a fitted regression equation. As in
Figure 11.2.2, we could simply draw a straight line
through the points, but this approach is somewhat
arbitrary and subjective. Many such straight lines
can be drawn from the scatter plot. With many
points scattered on the graph, this approach of
“eyeballing the data” could be imprecise in prac-
tice. We wish to determine a line that best fits
the data, the best in the sense that the values b0

and b1 will be those that minimize the sum of the
squares of the distance between the data points and
the fitted regression line. To facilitate our discus-
sion on the method of least squares, let’s consider
the following data, which represent the relation-
ship between the average pre-clinic lab scores and
perceptual aptitude test (PAT) scores of 15 dental
students (Table 11.2.1).

Suppose we wish to develop a regression model
by which the average pre-clinical scores of dental
students can be predicted from the knowledge of
their PAT scores. Figure 11.2.6 shows a fitted re-
gression line drawn on the scatter plot of the data.
The motivation behind the method of least squares
is the following. Draw a vertical line from each
data point to the regression line in Figure 11.2.6.
The vertical distance between a data point and the
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Table 11.2.1. Average pre-clinic lab score vs. PAT
score of dental students.

PAT Score (Xi ) Ave. Preclinic Lab (Yi )

13 2.96
14 3.02
15 3.08
16 3.10
17 3.14
18 3.32
19 3.37
20 3.35
21 3.51
22 3.34
23 3.67
24 3.19
25 —
26 3.43
27 3.76

fitted regression line is called a residual. The resid-
uals are denoted by ei as indicated in the figure,

ei = Yi − (b0 + b1 Xi ).

The method of least squares yields the estimates b0

and b1 of the regression parameters that minimize
the sum of squared distances of the data points
from the regression line given by

Q =
n∑

i=1

e2
i =

n∑
i=1

[Yi − (b0 + b1 Xi )]
2.

This method of estimating the regression coeffi-
cients β0 and β1selects the straight line that comes
as close as it can to all data points in the scatter plot.

It can be shown that the estimates are obtained by

b1 =
∑n

i=1(Xi − X )(Yi − Y )∑n
i=1(Xi − X )2

=
∑n

i=1 Xi Yi −
(∑n

i=1 Xi
) (∑n

i=1 Yi
)

n∑n
i=1 X2

i −
(∑n

i=1 Xi
)2

n

b0 = 1

n

(
n∑

i=1

Yi − b1

n∑
i=1

Xi

)
= Y − b1 X

where

X = 1

n

n∑
i=1

Xi and Y = 1

n

n∑
i=1

Yi .

We note that b0 and b1 obtained by the least
squares method are minimum variance unbiased
estimators.

Example 11.2.1. As part of a study to examine
neuromuscular function, occlusal index, and cen-
tric relation-centric occlusion discrepancy of or-
thodontically treated patients, Kowalczyk [6] col-
lected the following improved isometric masseter
sEMG (surface electromyography) values of right
anterior temporalis (R-AT) and left anterior tem-
poralis (L-AT) of 23 patients. Estimate a regression
function to predict left anterior temporalis given a
value of right anterior temporalis.

ei

Figure 11.2.6 Vertical distance be-
tween the best fitted regression line and
the data point.
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Patient R-AT L-AT Patient R-AT L-AT

1 61 60 13 110 95
2 180 185 14 49 20
3 190 180 15 75 88
4 115 90 16 103 102
5 200 185 17 145 170
6 155 80 18 245 220
7 185 190 19 100 150
8 48 77 20 160 120
9 75 75 21 160 190

10 70 65 22 101 120
11 142 110 23 15 40
12 98 50

Solution. The scatter plot in Figure 11.2.7 suggests
that a straight line will be a good fit. Left anterior
temporalis is the response variable Yi and right
anterior temporalis is the independent variable Xi .

Using the method of least squares to estimate the
regression coefficients β0 and β1, from the data
presented in the table, we can calculate

b1 =
∑n

i=1 Xi Yi −
(∑n

i=1 Xi
)(∑n

i=1 Yi
)

n∑n
i=1 X2

i −
(∑n

i=1 Xi
)2

n

=
384, 857 − (2, 782)(2, 662)

23

409, 704 − (2, 782)2

23

= 0.8589.

b0 = 1

n

(
n∑

i=1

Yi − b1

n∑
i=1

Xi

)

= 1

23
[2, 662 − (0.8589)(2, 782)] = 11. 850.

By substitution we obtain the fitted regression

equation
∧
Y i = 11.850 + 0.8589Xi .

If we are interested in the mean L-AT (or the pre-
dicted value) when the R-AT is X = 125, our es-

timate is
∧
Y i = 11.850 + 0.8589(125) = 119. 21.

The value of L-AT for any individual patient whose
R-AT is 125 is not likely to be exactly 119.21 but
either lower or higher because of the inherent vari-
ability in the response variable Yi as represented by
the error term εi . But bear in mind that the expected
value of Y for a given value of X = 125 is 119.21.
We note that the fitted regression line illustrated
in Figure 11.2.7 has the smaller Q =∑n

i=1 e2
i =∑n

i=1 [Yi − (b0 + b1 Xi )]2 than any other arbitrary
fitted regression lines.

11.2.3 Aptness of a Model

When a regression model is selected for an appli-
cation, we cannot be quite certain whether or not
the model is appropriate. Any one of the condi-
tions for the simple linear regression model may
not be satisfied. For example, the linearity of the
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ted regression model for right and left
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regression function, normality of the error terms,
or homoscedasticity may not be appropriate for
the data we wish to fit. Therefore, it is impor-
tant that we study the aptness of the model for
our data. In this section we introduce some sim-
ple graphic techniques to examine the appropriate-
ness of a model. At the beginning of Section 11.2
we defined the residual ei , which is the differ-
ence between the observed value Yi and the fitted

value
∧
Y :

ei = Yi − (b0 + b1 Xi ) = Yi −
∧
Y i .

The residual can be viewed as an observed er-
ror. The error term εi = Yi − (β0 + β1 Xi ) = Yi −
E{Yi } is the true unknown error in the regression
model. We have stated that the error term εi is as-
sumed to be statistically independent and normally
distributed with mean 0 and the constant variance
σ 2 (homoscedasticity). Hence, if the fitted model
is appropriate for the data, it is reasonable to expect
the observed residuals ei to reflect these conditions
assumed for the error term εi . A two-way plot of
the residuals versus the values of the independent
variable (or the fitted values of the response vari-
able), known as the residual plot, is a useful tool for
examining the aptness of a regression model. We
will use the residual plots to check the following:

1. The regression function is linear.
2. The error terms have constant variance.
3. The error terms are statistically independent.
4. The error terms are normally distributed.
5. The model fits the data points except for a few

outlier observations.

Linearity

The plot in Figure 11.2.8 (a) is the residual plot of
the data in Example 11.2.1 against the independent
variable Xi . This shows a typical situation in which
the linear model is adequate. The residuals tend to
fall around the horizontal ei = 0, exhibiting no
systematic patterns to stay above or below ei = 0.

If the linear regression model is not adequate, the
residual plot would look like the plot shown in
Figure 11.2.8 (b). The residuals tend to behave in
a systematic fashion. They increase gradually and
then decrease, staying above ei = 0 in the mid-
dle of the range for the independent variable. This
residual plot indicates that the linear regression
model is not appropriate. An appropriate model
has to be nonlinear.
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Figure 11.2.8 Residual plots illustrating linearity (a) and non-
linearity (b).

Constant Error Variance

The scatter plots of the residuals against the in-
dependent variable (or against the fitted values)
are useful for examining the adequacy of both the
linear regression model and the homoscedasticity.
The plot in Figure 11.2.8 (a) is an example of con-
stant error term as well as appropriateness of the
linearity of a model. Figure 11.2.9 illustrates an
example of nonconstancy of error variance. The
plot suggests there is a strong tendency that the
larger the value of independent variable (Xi ), the
greater the spread of residuals. This indicates that
the error variance (and therefore, the variance of
the response variable) is greater for the larger val-
ues of R-AT. Of course, we could have a plot that
shows that the spread of the residuals is greater
for the smaller values of the independent vari-
able and smaller for the larger values of R-AT. Ei-
ther case is an indication of nonconstancy of error
variance.
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Figure 11.2.9 Residual plot illustrating nonconstancy of
error variance.

Independence

When the error terms are statistically indepen-
dent, we expect the residuals to randomly fluc-
tuate around the horizontal line ei = 0; some are
positive and others are negative, as seen in Figure
11.2.8 (a). The residual plot in Figure 11.2.10 is
an illustration of non-independence of error terms.
The first half of the residuals for smaller values of
Xi are above the line ei = 0 (that is, ei > 0), and
the second half of the residuals for larger values
of Xi are below the line ei = 0 (that is, ei < 0).
Namely, positive residuals are associated with the
smaller values of Xi and negative residuals are
associated with the larger values of Xi . This type
of a residual plot indicates a lack of independence
of error terms.
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Figure 11.2.10 Non-independence of error terms.

Normality

The expression of the simple linear regression
model assumes the normality of the error term εi .

The normality assumption is justifiable because εi

can be viewed as the term that represents the ef-
fects of many factors not included in the model
that do influence the outcome variable. By central
limit theorem, discussed in Section 6.2, the error
term would be approximately normally distributed
as the effects of factors become sufficiently large.
The normality is the standard assumption, which
greatly simplifies the theory of regression analy-
sis. Small departures from normality are not con-
sidered as serious problems.

We have already introduced some graphic tech-
niques to examine informally whether or not a par-
ticular set of data is drawn from a normal popu-
lation: histograms, stem and leaf plots, and box
plots. A box plot can be used to check the symme-
try of the residuals and outliers. Another graphic
method is a normal probability plot of the resid-
uals. Residuals are plotted against their expected
value under the normal distribution. Statistical
software packages (e.g., Minitab, SPSS, SAS) can
produce normal probability plots. The plot in Fig-
ure 11.2.11 is a normal probability plot of the
data we discussed in Example 11.2.1. This plot is
nearly straight, which suggests that the normality
assumption is reasonable in this case. If the plot
were substantially deviated from linearity, then the
error term is not normal.

We remind the readers that the normal error re-
gression model is assumed. Thus, the regression
model implies that the outcome variable Yi has the
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Figure 11.2.11 Normal probability plot of the data in Exam-
ple 11.2.1.
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Figure 11.2.12 Residual plot with an outlier.

normal probability distribution. There are some
rigorous methods used to study the normality of
the data at hand, such as the χ2 goodness-of-fit
test discussed in Chapter 10.

Detection of Outliers

In Chapter 3 we discussed how outliers can be
detected from box plots and stem and leaf plots.
Residual outliers can be detected from residual

plots against the independent variable X or
∧
Y .

Outliers can cause great difficulty in regression
analysis. When the least squares method is used
to estimate the regression function, a fitted line
would be pulled toward the outliers. This could
give us a misleading fit, especially if the outlier
observation is due to an investigator’s mistake. It
is common practice to delete the outliers only if
there is evidence that they are due to an error in
reading, recording, calculating, or equipment mal-
functioning. Sometimes standardized residuals are
used in residual analysis. Standardized residual is
defined by

ei√
M SE

where MSE (mean squared error) is given by

MSE =
∑n

i=1 e2
i

n − 2
. MSE is also called residual

mean square by some authors. Figure 11.2.12
shows a standardized residual plot against the in-
dependent variable. It shows that it contains one
residual outlier at Xi = 103.

Frequently, a regression model is used to predict
future events. In predicting future observations on

the outcome variable, some caution must be ex-
ercised when the prediction is made pertaining to
levels of the independent variable that fall outside
its original range. It often occurs that the investiga-
tors want to predict the annual dental and medical
expenditure for a family whose household income
is far beyond the level they have observed. There
is no guarantee the regression function that fits the
past data well is also adequate over a much wider
range of the independent variable. To illustrate this
point further, let’s consider the following example.

A regression equation for the body mass in-
dex (BMI) of past Miss Americas [7] is shown
in Figure 11.2.13. Using the least squares method

we have obtained the regression equation,
∧
Y =

97.148 − 0.040Xi . This model will predict the
BMI of 15.9 for Miss America for the year 2030. It
is extremely unlikely that any Miss America would
have BMI of 15.9, which can be considered as a
health risk. We have not discussed inferences about
regression coefficients in this chapter. There are
many excellent textbooks on the topic. We refer
interested readers to Kleinbaum et al. [8], Neter et
al.[9], and Pagano and Gauvreau [10].

11.3 CORRELATION COEFFICIENT

So far, in this chapter, our discussion has been
focused on a simple linear regression method of
predicting one dependent variable from one inde-
pendent variable. Instead of predicting the mean
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Figure 11.2.13 Regression function for body mass index of
Miss America.
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of one variable from another, investigators are of-
ten interested in measuring a relationship between
two variables. Statisticians use a measure called
the correlation coefficient to quantify the strength
and direction of the relationship between two vari-
ables. There are several types of quantitative mea-
sures of correlation coefficient. In this section
we will introduce the Pearson product moment
correlation coefficient, or Pearson correlation
coefficient. As usual, we will let Xi and Yi de-
note two variables. In the regression analysis, the
response variable Yi is a random variable, but the
independent variable Xi is not, though there are
some situations where it is considered a random
variable. In correlation analysis, both Xi and Yi are
random variables. We wish to determine the linear
association that exits between these two random
variables, Xi and Yi . The most popular measure
of linear association between two variables is the
Pearson product moment correlation coefficient.

The Pearson sample correlation coefficient is
denoted by r, and the population correlation coef-
ficient is denoted by the Greek letter ρ (rho).

Definition 11.3.1. Let Xi and Yi be a pair of ran-
dom variables. Then the Pearson product moment
correlation coefficient is defined by

r =
∑n

i=1(Xi − X )(Yi − Y )√∑n
i=1(Xi − X )2 ·∑n

i=1(Yi − Y )2

where n is the number of pairs of sample observa-

tions, and X = 1

n

∑n
i=1 Xi and Y = 1

n

∑n
i=1 Yi . It

is computationally more convenient to use

r =
∑n

i=1 Xi Yi −
(∑n

i=1 Xi
)(∑n

i=1 Yi
)

n√√√√(∑n
i=1 X2

i −
(∑n

i=1 Xi
)2

n

)(∑n
i=1 Y 2

i −
(∑n

i=1 Yi
)2

n

) .

Note that the denominator of the correlation co-
efficient r is always positive. If small values of
Xi tend to be associated with small values of Yi ,
and large values of Xi with large values of Yi ,
then (Xi − X ) and (Yi − Y ) will tend to have the
same algebraic sign (+ or −). This implies that
(Xi − X )(Yi − Y ) in the numerator will tend to be
positive, yielding a positive value of r. If small val-
ues of Xi tend to be associated with large values of

of Yi , and vice versa, then (Xi − X ) and (Yi − Y )
will tend to have opposite signs. This implies that
(Xi − X )(Yi − Y ) will tend to have negative signs,
resulting in a negative value of r . The correlation
coefficient r lies between −1 and +1 inclusive
(−1 ≤ r ≤ +1).

� If r = 1, then we have perfect positive corre-
lation between X and Y . Figure 11.3.1 (a) and
Figure 11.3.1 (b) illustrate the cases with r = 1,

in which there is perfect linear association be-
tween two variables. In both cases, small values
of X are associated with small values of Y , and
large values of X are matched with large val-
ues of Y . The slopes of the straight lines drawn
through the sample points in Figure 11.3.1 (a)
and (b) are different. The correlation coefficient
does not measure the magnitude of the slope. We
should stress that it is intended to measure only
the linear relationship between X and Y .

� If r = −1, then we have perfect negative correla-
tion between X and Y . Figure 11.3.1 (c) and Fig-
ure 11.3.1 (d) illustrate the cases with r = −1.
In both (c) and (d), small values of X are associ-
ated with large values of Y , and large values of
X are associated with small values of Y .

� If r = 0, then X and Y are uncorrelated. This
means that there is no linear association between
X and Y . Of course, there may be other asso-
ciations between them, such as a quadratic re-
lationship. Figure 11.3.1 (e) shows the correla-
tion coefficient r = 0.096, which means there
is hardly any linear association. Similarly, Fig-
ure 11.3.1 (f) shows the correlation coefficient

r = 0.036, which indicates there is virtually no
linear association.

The Pearson sample correlation coefficient r
is a point estimate of the unknown population
correlation coefficient ρ. To compute the sample
correlation coefficient, every observation Xi must
be paired with the corresponding observation Yi ,
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Figure 11.3.1 Different settings of correlation between X and Y .

so that the data consist of pairs of observations
(Xi , Yi ).

Example 11.3.1. Twenty-five patient charts were
randomly pulled from the patient database.
Diastolic blood pressure (DBP) and systolic blood
pressure (SBP) measurements of these 25 pa-
tients were recorded to study the relationship be-
tween the two variables. Calculate the correlation

coefficient r to evaluate the strength of the lin-
ear association between DBP and SBP. (See Table
11.3.1.)

Solution. Let Xi and Yi be the systolic and dias-
tolic blood pressure of the i th patient. From the
above data we can calculate

∑n
i=1 Xi = 3, 184,∑n

i=1 Yi = 2, 058,
∑n

i=1 Xi Yi = 267, 606,∑n
i=1 X2

i = 412, 926, and
∑n

i=1 Y 2
i = 174, 640.
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Table 11.3.1. Patient blood pressure data.

Patient No. SBP DPB Patient No. SBP DBP

1 116 72 14 126 85
2 130 90 15 140 95
3 134 85 16 110 60
4 158 112 17 116 89
5 138 85 18 108 68
6 98 60 19 138 85
7 130 80 20 104 70
8 170 115 21 125 70
9 120 80 22 120 80

10 104 75 23 130 92
11 125 78 24 120 62
12 136 80 25 128 80
13 160 110

By substituting these values in the formula, we get

r =
∑n

i=1 Xi Yi −
(∑n

i=1 Xi
) (∑n

i=1 Yi
)

n√√√√(∑n
i=1 X2

i −
(∑n

i=1 Xi
)2

n

)(∑n
i=1 Y 2

i −
(∑n

i=1 Yi
)2

n

)

=
267, 606 − (3, 184)(2, 058)

25√√√√(412, 926 − (3, 184)2

25

)(
174, 640 −

(
2, 058

)2
25

) = 0.8836.

Since r = 0.8836, we can conclude that there is a
strong linear association between SBP and DBP.
Patients with high SBP tend to have high DBP,
and those with low SBP are likely to be associated

Diastolic blood pressure

1201101009080706050

S
ys

to
lic

 b
lo

od
 p

re
ss

ur
e

180

160

140

120

100

80

Figure 11.3.2 Scatter plot of the blood pressure data in Table
11.3.1.

with low DBP. The scatter plot of this relationship
is displayed in Figure 11.3.2.

11.3.1 Significance Test of
Correlation Coefficient

Our primary discussion in the previous section has
been on the sample correlation coefficient r . If r
is close to −1 or +1, there is a strong linear re-
lationship. When r is close to 0, the association
is weak or nonexistent. Since r is calculated from
the data obtained from the sample, it is subject to
chance. Frequently, statisticians are interested in
determining whether or not there exists any cor-
relation between two random variables X and Y .

This can be done by testing the hypotheses,

H0 : ρ = 0 vs. H0 : ρ �= 0.

The null hypothesis states that there is no correla-
tion between two variables X and Y in the underly-
ing population. The alternative hypothesis means
that there is a significant correlation between the
variables in the population. As with other hypoth-
esis tests we have discussed, the test procedure is
naturally based on the sample correlation coeffi-
cient and involves finding the probability of ob-
taining r at least as extreme as the one we have
just observed, given that the null hypothesis is true.
When H0 is rejected at a specified level of signif-
icance, then it means r is significantly different
from 0, that is, much smaller or much larger than
0. When H0 is accepted, then it means r is not sig-
nificantly different from 0. The estimated standard
error of r is given by

SE(r ) =
√

1 − r2

n − 2
.
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The test statistic is defined by t = r

SE(r )
=

r√
(1 − r2)/(n − 2)

= r

√
n − 2

1 − r2
.

If we assume that X and Y are normally dis-
tributed, then the above test statistic t has a t dis-
tribution with the degrees of freedom (n − 2). We
summarize the significance test for a correlation
coefficient as follows.

To test the hypotheses H0 : ρ = 0 vs. H0 : ρ �=
0, take the following steps.

1. Compute the sample correlation coefficient r
from the sample data (Xi , Yi ), i = 1, 2, . . . , n.

2. Compute the test statistic t = r

√
n − 2

1 − r2
∼

t(n−2).

3. Reject H0 if t < t(n−2, α/2) or t(n−2, 1−α/2) < t.
Accept H0 if t(n−2, α/2) < t < t(n−2, 1−α/2).

Since the test defined above is a one-sample t test,
the p value for the test is obtained in the same way
as discussed in Chapter 8. That is,

if t < 0, then p = 2× (area to the left of t under a
t(n−2)) = 2 × P(t(n−2) < t),

if t ≥ 0, then p = 2× (area to the right of t under
a t(n−2)) = 2 × P(t ≤ t(n−2)).

The rejection and acceptance regions are shown in
Figure 11.3.3.

Example 11.3.2. Scaling and root planing are the
most widely used techniques in periodontal ther-
apy. These procedures are used to remove bacte-
rial plaque and calculus from the surfaces of teeth.
Despite the best efforts of clinicians to thoroughly
root plane teeth, considerable amounts of calcu-
lus remain, even though the surface of teeth feel
clinically smooth at the completion of scaling and

root-planing procedures. Suppose a periodontist
observed pocket depth and percentage of calculus
after scaling was done with 12 patients, as pre-
sented in the table below. Perform a test of signif-
icance for the correlation coefficient for the data.
We may assume both pocket depth and percentage
of calculus are normally distributed.

Patient Pocket Depth % Calculus

1 5.5 26.3
2 4.5 32.4
3 3.2 20.8
4 8.5 30.6
5 2.5 9.7
6 5.0 12.3
7 6.0 25.7
8 3.0 14.5
9 4.0 14.6

10 6.5 18.4
11 4.8 25.6
12 7.5 41.8

Solution. We need to test H0 : ρ = 0 vs. H0 :
ρ �= 0. Using the formula above, we can calcu-
late the sample correlation coefficient given by r =
0.676. By substituting n = 12 and r = 0.676, we
have

t = r

√
n − 2

1 − r2
∼ t(10)

= (0.676)

√
12 − 2

1 − (0.676)2
= 2. 900 9.

From Table E in the Appendix

t(n−2,1−α/2) = t(10,0.975) = 2.228

and

t(n−2,α/2) = t(10,0.025) = −t(10,0.975) = −2.228.

t(n−2, α/2)

Acceptance
Region

Rejection
Region

Rejection
Region

t(n−2, 1−α/2)

t(n−2)

Figure 11.3.3 Rejection and acceptance regions of the significance test for a correlation coefficient.



Regression Analysis and Correlation 217

Since t = 2.9009 > t(10, 0.975) = 2.228, the null
hypothesis is rejected at the significance level
α = 0.05. We can also compute the p value, p =
2 · P(2.9009 ≥ t(10)). From Table E, we see that
the p value is

2 · P(2.932 ≥ t(10)) < p < 2 · P(2.764 ≥ t(10)).

Or 2(0.0075) < p < 2(0.01). Thus, 0.015 < p <

0.02. We conclude that there is a significantly
higher percentage of calculus among the patients
with deeper pocket depth.

11.4 COEFFICIENT OF
DETERMINATION

In practice, the correlation coefficient r is a fre-
quently used descriptive measure to represent the
degree of linear association between two random
variables X and Y . The coefficient of determi-
nation is another measure that is often used to
describe the degree of linear association between
X and Y. Before we formally introduce the coef-
ficient of determination, we need to define a few
more concepts. In regression analysis, the variation
of the response variable Yi is measured in terms of
the deviations between Yi and Y , the sample mean
of Yi ’s. That is, Yi − Y . The sum of the squared
deviation is defined by SSTO =∑n

i=1(Yi − Y )2.

SSTO stands for total sum of squares. If SSTO = 0,

then every term (Yi − Y )2 = 0. This means every
response Yi is the same, or Yi = Y . The greater
the value of SSTO, the greater the variation in the
responses Yi ’s. Using the fitted regression function
∧
Y i we can decompose SSTO as follows,

SSTO =
n∑

i=1

(Yi − Y )2

=
n∑

i=1

(Yi −
∧
Y i )

2 +
n∑

i=1

(
∧
Y i − Y )2.

The terms
∑n

i=1(Yi −
∧
Y i )2 and

∑n
i=1(

∧
Y i − Y )2 are

referred to as error sum of squares (SSE), and
regression sum of squares (SSR), respectively;

SSE =
n∑

i=1

(Yi −
∧
Y i )

2 and SSR =
n∑

i=1

(
∧
Y i − Y )2.

The measure of variation in the data with the fit-
ted regression model is the sum of the squared

deviations, SSE = ∑n
i=1(Yi −

∧
Y i )2. It is clear

that if all observed responses fall on the fitted

regression line, we get Yi −
∧
Y i = 0, and thus

SSE = 0. The other sum of the squared deviations

SSR =∑n
i=1(

∧
Y i − Y )2 is the sum of the squared

deviations of the fitted values
∧
Y i of its mean Y . We

see that SSTO has two components, SSE and SSR;
SSTO = SSE + SSR. Equivalently, we can write
SSR = SSTO − SSE. Since SSTO, SSE, and SSR
are all ≥ 0, we have SSTO ≥ SSE. From the above
expressions it can be seen that SSTO measures the
uncertainty in predicting the response Yi when the
independent variable Xi is not taken into account,
and SSE measures the uncertainty in predicting Yi

when Xi is taken into consideration. Therefore, the
difference SSTO − SSE measures the effect of Xi

in reducing the variation of Yi .

Definition 11.4.1. The coefficient of determina-
tion, denoted r2, is defined by

r2 = SSTO − SSE

SSTO
= 1 − SSE

SSTO
.

Unlike the correlation coefficient, the coefficient
of determination does not assume any negative
values. In fact, 0 ≤ r2 ≤ 1. From the definition,
we can interpret r2 as representation of the pro-
portion of reduction in total variation due to the
use of the particular independent variable Xi in
the regression model. The larger r2 is, the greater
the reduction in the total variation of the response
variable Yi . This means that the better prediction
of Yi can be made when r2 is approximately 1. We
make the following comments on the coefficient
of determination r2:

1. If SSE = 0 (all observations fall on the fitted
line), then r2 = 1. This is the case where all the
variation in the outcome variable Yi is explained
by Xi .

2. If SSR = SSTO − SSE = 0, that is,
∧
Y i − Y =

0, then r2 = 0. This is the case where there is
no linear association between Xi and Yi , and
the independent variable does not reduce any
variation in Yi with linear regression model.

3. The square root of r2, r = ±
√

r2 is the corre-
lation coefficient. If the slope of the fitted re-
gression equation is positive, r = +

√
r2. If the

slope is negative, r = −
√

r2.
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Example 11.4.1. A study was conducted by en-
dodontists to test the hypothesis that multiple ster-
ilizations of endodontic nickel-titanium files will
lead to a continuous decrease in the resistance of
files to separation by torsion. Let the number of
sterilization cycles be the independent variable X
and torque at separation be the response variable
Y . Suppose the researchers collected the follow-
ing data. Compute the coefficient of determination
and the correlation coefficient.

No. of Cycles 0 10 20 30 40
Torque 51.1 46.1 56.9 54.7 59.8

Solution. By the method of least squares, we obtain
the fitted regression function

∧
Y i = 48.52 + 0.26Xi .

By simple calculations, we get SSTO = 112.97
and SSE = 45.37. Thus,

r2 = SSTO − SSE

SSTO
= 112.97 − 45.37

112.97
= 0.5984.

The correlation coefficient is obtained as r =
±

√
r2 = ±√

0.5984 = ±0.7736. Since the slope
of the regression equation is positive, we take
r = 0.7736. The coefficient of determination r2 =
0.5984 indicates that the total variation in Yi is
reduced by about 59.8% by introducing the vari-
able Xi (the number of sterilization cycles), and
the correlation coefficient r = 0.7736 indicates

moderately strong linear association between the
two variables Xi and Yi .

The quantity 1 − r2 is called the coefficient of
nondetermination. This is the amount of variation
in the response variable that is not explained by the
independent variable in the model. In the above
example, the coefficient of nondetermination is
1 − r2 = 1 − 0.5984 = 0.401 6. This means that
40.16% of the variation in torque at separation
(Y ) is not explained by the number of sterilization
cycles (X ).

Example 11.4.2. There is an increasing interest in
starting orthodontic treatment in the mixed denti-
tion stage rather than after all the permanent teeth
have erupted. Orthodontists wish to predict the po-
tential for a tooth size–arch length discrepancy in
their growing patients. The need for developing
a prediction model that utilizes jaw and tooth di-
mensions after eruption of the lower incisors arises
because primary crowding is defined as a genetic
discrepancy between jaw size and tooth dimen-
sion. Joe, Kim, and Oh [11] investigated a statisti-
cal relationship between the sum of the mandibular
permanent incisors and the combined mesiodistal
crown diameters of the maxillary and mandibu-
lar canine and premolars in a sample of Hispanic
American subjects (see Figure 11.4.1). The dental
casts of the maxillary and mandibular arches of
104 Hispanic American patients were randomly
selected from the Orthodontic Department of the
Loma Linda University School of Dentistry [11].
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Figure 11.4.1 Regression model for the size of unerupted canines and premolars.
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Using the least squares methods, we can establish
a predictive regression function given by

∧
Y i = 5.1169 − 0.7077Xi .

By Definition 11.4.1, the coefficient of determina-
tion is r2 = 0.5884. Discuss how you would inter-
pret the value of r2 = 0.5884.

Solution. See Exercise 14.

11.5 MULTIPLE REGRESSION

So far in this chapter we have discussed a sim-
ple linear regression in which there is only one
independent variable and one response variable.
While there are many problems in which the re-
sponse variable can be predicted quite well in
terms of only one independent variable, it is intu-
itively clear that the prediction should improve if
we consider other independent variables, because
they add more relevant information about the re-
sponse variable. For example, we should be able
to make a better prediction of the performance of
dental and medical students on the national board
exam if we consider not only their grade point av-
erage in basic science courses but also the number
of hours they spent in preparation. In practical ap-
plications there are often two or more independent
variables:

1. Prediction of blood pressure (Y ), based on age
(X1) and the amount of weekly exercise (X2)

2. Prediction of implant survival time (Y ), based
on age (X1), bone height (X2), and status of
smoking (X3)

3. Sales volume of toothpaste (Y ) predicted from
price (X1), advertising expenditure (X2), and
quality of the product (X3)

The general form of a multiple regression model
with k independent variables and one response
variable would have the form

Yi = β0 + β1 X1i + β2 X2i + · · · + βki Xki + εi .

This model is called a first-order regression model
with k independent variables and one response
variable. We will explain the multiple regression
model with two independent variables. A multiple
regression model with two independent variables

and one response variable would have the form

Yi = β0 + β1 X1i + β2 X2i + εi ,

where

Yi is the response in the i th trial or the outcome of
the i th subject,

X1i and X2i are the values of the two independent
variables in the i th trial,

β0, β1 and β2 are regression parameters, and
εi is the error term.

Similar to those for a simple linear regression
model, the following assumptions for a multiple
regression model are made:

1. The error terms εi are independent and normally
distributed with μ = 0 and variance σ 2.

2. The values of the response variable Yi are in-
dependent and normally distributed with Yi =
β0 + β1 X1i + β2 X2i and the constant variance
σ 2; that is, Yi ∼ N (β0 + β1 X1i + β2 X2i , σ 2).

3. There is a linear relationship between the inde-
pendent variables and the dependent variable.

4. The independent variables are not correlated.
This is called non-multicolinearity assump-
tion.

The simple linear regression model with one in-
dependent variable is a straight line, but the regres-
sion model with two independent variables X1i and
X2i is a plane. The parameter β0 is the Y -intercept
of the regression plane. The parameters β0, β1,
and β2 are called partial regression coefficients.
The parameter β1 indicates the change in the mean
response per unit increase in X1 when X2 is held
constant, and the parameterβ2 indicates the change
in the mean response per unit increase in X2 when
X1 is held constant. The partial regression coeffi-
cients β0, β1, and β2 need to be estimated by b0,

b1, and b2 using the least squares method. That is,
use the least squares method to obtain the values
b0, b1, and b2, that minimize the sum

Q =
n∑

i=1

e2
i =

n∑
i=1

[Yi − (b0 + b1 X1i + b2 X2i )]
2.

Example 11.5.1. Dental school administrators
are interested in developing a regression model
to predict students’ performance on the national
board exam. A few months prior to the national
board exam, students are given a mock board exam
to assess their strengths and weaknesses so that
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they can be better prepared for the board exam.
Seventeen fourth-year students were randomly se-
lected. Their science grade point average and mock
board scores are recorded for the regression anal-
ysis. Given the following data, obtain the multiple
regression model.

Student Sci. GPA Mock Score NB Score

1 3.20 55.0 76
2 2.51 55.5 76
3 3.21 67.7 91
4 2.45 49.3 77
5 3.55 66.1 83
6 3.23 54.8 82
7 2.43 63.8 87
8 3.02 67.0 87
9 2.81 51.4 81

10 3.03 48.2 77
11 3.35 55.7 80
12 2.95 52.8 77
13 2.36 53.2 77
14 3.24 64.7 88
15 3.62 67.2 91
16 2.12 39.9 67
17 3.02 57.3 82

Solution. The national board exam score (Yi ) is
the response variable, and the two independent
variables are science grade point average (X1i )
and mock board score (X2i ). We can use the
statistics software package (SPSS) to obtain the
least squares estimates. The multiple regression

equation is given by
∧
Y i = 38.690 + 0.696X1i +

0.917X2i . This fitted regression equation indicates
that the national board exam score increases by
0.696 per 1 unit increase in science GPA when
the independent variableX2 is held fixed, and in-
creases by 0.917 per 1 unit increase in mock
board score with the independent variable X1 held
constant.

In a multiple regression model, as in a simple
linear regression model, the strength of the re-
lationship between the response variable and in-
dependent variables is measured by a multiple
correlation coefficient, denoted by R. The multi-
ple correlation coefficient R with two independent
variables is defined by

R =
√√√√r2

x1 y + r2
x2 y − 2 · rx1 y · rx2 y · rx1 x2

1 − r2
x1 x2

where rx1 y is the correlation coefficient between
X1 and Y, rx2 y is the correlation coefficient be-
tween X2 and Y, and rx1 x2

is the correlation coef-
ficient between X1 and X2.

Let’s evaluate the multiple correlation coeffi-
cient in the above example. We use Definition
11.3.1 to compute the correlation coefficients rx1 y ,
rx2 y , and rx1 x2

and get rx1 y = 0.599, rx2 y = 0.916,

and rx1 x2
= 0.610.

Substituting these values in the formula, we
have

R =
√√√√r 2

x1 y + r 2
x2 y − 2 · rx1 y · rx2 y · rx1 x2

1 − r 2
x1 x2

=
√

(0.599)2 + (0.916)2 − 2(0.599)(0.916)(0.610)

1 − (0.610)2

= 0.918.

The values of R range between 0 and +1. The
closer R is to +1, the stronger the relationship;
the closer to 0, the weaker the relationship. The
multiple correlation coefficient R is always larger
than the individual correlation coefficients. In this
example, with R = 0.918, there is a strong rela-
tionship among the variables. As with a simple
linear regression model, we have the coefficient
of multiple determination, denoted R2, which
represents the amount of variation in the response
variable explained by the regression model. Sim-
ilarly, 1 − R2 is the amount of variation in re-
sponse that is not explained by the model. We
have R2 = (0.918)2 = 0.843, and 1 − R2 = 1 −
0.843 = 0.157 . The above multiple regression
equation, based on science GPA and mock board
score, has the ability to predict the average national
board exam scores well.

The coefficient of multiple determination R2 de-
pends on the number of pairs of observations n and
the number of the independent variables k, so that
statisticians often present an adjusted R2 (adjusted
for n and k), denoted R2

adj . The formula for an
adjusted R2

adj is given by

R2
adj = 1 −

[
(1 − R2)(n − 1)

n − k − 1

]
.

Since n = 17 and k = 2 in Example 11.5.1, we
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obtain

R2
adj = 1 −

[
(1 − R2)(n − 1)

n − k − 1

]
= 1 −

[
(1 − 0.843)(17 − 1)

17 − 2 − 1

]
= 0.821.

The adjusted R2
adj is always smaller than the coeffi-

cient of multiple determination R2. When n and k
are approximately equal, then the denominator of
R2

adj is small. Therefore, the value of R2
adj can be

artificially large, not because of the strong relation-
ship among the variables, but because of sampling
error.

11.6 LOGISTIC REGRESSION

In our discussions of a simple linear regression
model Yi = β0 + β1 Xi + εi , we assume that the
response variable Y is continuous and, in particu-
lar, normally distributed. Our focus was to predict
the mean of the corresponding response to a given
set of values for the independent variable X . There
are many situations where the response variable
is dichotomous rather than continuous. Here are
some examples.

1. In a study to determine the prevalence and risk
factors for gingival enlargement in nifedipine-
treated patients, periodontists also observed
whether or not inflammation of the gingiva is
present. We let the dichotomous random vari-
able Y take on the value 1 if inflammation
is present and the value 0 if inflammation is
absent.

2. One hundred fifty patients were treated with a
bilateral sagittal split osteotomy over the last 5
years. During the follow-up examination, pres-
ence of nerve dysfunction was recorded. The
response variable Y = 1 if nerve dysfunction is
present, and Y = 0 if nerve damage is absent.

3. Clinicians and researchers studied the effect of
pacifier sucking on the prevalence of posterior
crossbite among young children. If the study
subject has posterior crossbite, then Y = 1, and
if not, then Y = 0.

4. After bone marrow transplantation with to-
tal body irradiation, children show continu-
ous growth impairment. Bone density is often
reduced in long-term survivors of childhood
malignancies. Children treated for childhood

cancers also exhibit both acute and long-term
complications in the oral cavity and in den-
tal and craniofacial development [12]. The di-
chotomous response variable Y = 1, if there
is an evidence for arrested root development
with v-shaped roots, premature apical closure,
microdontia, enamel disturbances, and aplasia.
The response variable Y = 0, if there is no
evidence.

A linear regression approach is based on the as-
sumption that the response variable is normally
distributed. However, the dichotomous response
variables that we illustrated do not satisfy this
normality assumption. Therefore, we are forced
to use a technique known as logistic regression,
which allows us to study the relationship between
a response variable with two possible outcomes
and one or more independent variables. Indepen-
dent variables in logistic regression models can be
either continuous or discrete.

11.6.1 The Logistic Regression
Model

As we discussed in Section 5.2, the mean of the
binary random variable is the proportion of times
that it assumes the value 1. That is, P(Y = 1) =
p. Similar to a simple regression model, one may
attempt to fit a model of the form

p = β0 + β1 X.

The response variable Y has been replaced by
the proportion p, which represents the probability
of taking on values between 0 and 1. On the other
hand, the right-hand side β0 + β1 X could be less
than 0 or greater than 1. To circumvent this diffi-
culty, we often use the logistic transformation of
p as the response variable;

p = eβ0+β1 X

1 + eβ0+β1 X
.

Regardless of the values of X, the right-hand side
of the above equation assumes values between 0
and 1,which is the required range of p. Recall that
the odds in favor of an event when the event occurs
with the probability p are given by p/(1 − p). As
we described in the first example in Section 11.6,
let p be the probability that inflammation of the
gingiva is present (or the probability of success).
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Then the odds in favor of inflammation of the
gingiva are

p

1 − p
= eβ0+β1 X/(1 + eβ0+β1 X )

1/(1 + eβ0+β1 X )
= eβ0+β1 X .

By taking the natural logarithm of both sides of
the equation, we obtain

ln

(
p

1 − p

)
= ln(eβ0+β1 X ) = β0 + β1 X.

This logit transformation is also denoted by
logit(p). Instead of having Y as a response variable
in the model, we have the logarithm of the odds
in favor of inflammation of gingiva. In the above
equation, we assume that there is a linear rela-
tionship between ln[p/(1 − p)] and a explanatory
variable X . The statistical technique of fitting a
model given in this section is known as logistic
regression.

11.6.2 Fitting the Logistic
Regression Model

To fit the logistic regression model to a set of
data we need to estimate the unknown parame-
ters β0 and β1. The method we introduced in Sec-
tion 11.2 for estimating the unknown parameters
in simple linear regression was the least squares
method. However, the least squares method as-
sumes that the response variable is normally dis-
tributed. When the least squares method is applied
to a model with a dichotomous response variable,
the estimators of the parameters no longer possess
the same desirable statistical properties. Thus, the
method of maximum likelihood estimation is used
to fit a logistic regression. The method of maxi-
mum likelihood estimation will not be presented

here, since it is beyond the scope of our discus-
sion. Readers who are interested in studying it
are referred to an excellent text by Hosmer and
Lemeshow [13]. Consider the following example.

Example 11.6.1. Halitosis is an offensive odor of
the breath resulting from local and metabolic con-
ditions. Sonis [14] states that the known causes of
halitosis are food retention, periodontal infection,
caries, acute necrotizing gingivitis, and mucosal
infection. Extraoral and systemic causes of halito-
sis include smoking, alcohol ingestion, pulmonary
or bronchial disease, metabolic defects, diabetes
mellitus, sinusitis, and tonsillitis [14]. Suppose a
study was conducted to investigate a relationship
between bleeding index (BI) and halitosis. Investi-
gators used the Halimeter to quantify the strength
of halitosis. Bleeding index is the response vari-
able represented by a dichotomous variable Y . We
let Y = 0 if there is no evidence of bleeding in gin-
giva, and Y = 1 if there is an evidence of bleeding.
Table 11.6.1 presents the halitosis and BI data for
n = 63 patients.

Let p be the probability that there is an evidence
of bleeding in gingiva. The estimated logistic re-
gression function is

ln

( ∧
p

1 − ∧
p

)
= ∧

β0 + ∧
β1 X = −0.3898 + 0.0035X.

The estimated coefficient
∧
β1 = 0.0035 implies

that for each unit increase in halitosis, on the aver-
age the logarithm of the odds that the patient has
an evidence of bleeding in gingiva is increased
by 0.0035. When the logarithm of the odds in-
creases, the probability p increases as well. In
Table 11.6.2 we summarize the output from the
SAS Proc Logistic.

Table 11.6.1. Halitosis and BI data.

Halitosis 141 131 94 140 104 112 219 135 94 93 97 133 300 101
BI 1 0 1 1 0 0 0 1 0 1 1 1 1 1

Halitosis 98 129 86 91 163 102 95 116 119 82 73 89 103 108
BI 0 1 1 0 1 0 0 0 1 1 1 1 0 0

Halitosis 94 113 164 72 116 116 93 105 156 125 248 256 109 126
BI 0 1 0 0 1 1 0 1 1 1 0 1 0 0

Halitosis 175 130 151 139 157 120 92 97 119 114 131 119 123 93
BI 0 0 1 1 0 0 0 0 1 1 1 1 0 0

Halitosis 92 84 89 105 78 94 140
BI 1 0 0 0 1 1 0
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Table 11.6.2. Analysis of maximum likelihood estimates.

Standard error SE

Parameter df
∧
β i (

∧
β i ) χ2 Pr > χ2 Exp(Est)

Intercept 1 −0.3898 0.7808 0.2493 0.6176 0.6772
Halitosis 1 0.0035 0.0061 0.3237 0.5694 1.0035

The estimated odds ratio relating BI to halitosis
is 1.0035. Table 11.6.2 shows the p values cor-
responding to the significance test for the regres-
sion coefficients β0 and β1are 0.6176 and 0.5694.

These p values indicate that the tests are not sig-
nificant. Since the null hypotheses are accepted,
we conclude that there is no relationship between
the probability p = P(Y = 1) and halitosis.

11.7 MULTIPLE LOGISTIC
REGRESSION MODEL

Similar to the multiple regression model discussed
in Section 11.5, it is intuitive that inclusion of more
than one independent variable in the logistic re-
gression model would likely improve our ability
to predict the probability p. Suppose in Example
11.6.1 we let X1 = halitosis and X2 = the number
of times the subjects floss their teeth. The logis-
tic regression model containing two independent
variables would have the following form.

ln

(
p

1 − p

)
= β0 + β1 X1 + β2 X2.

In general, if Y is a binary response variable with
the probability of success p = P(Y = 1), and X1,

X2, · · · , Xk are k independent variables, then the
multiple logistic regression can be expressed as

ln

(
p

1 − p

)
= β0 + β1 X1 + β2 X2 + · · · + βk Xk .

Any of the available statistical software packages,
such as SAS, can be used to produce a table as
shown in the previous section to fit a multiple lo-
gistic regression model. For further discussions
on multiple logistic regression and interpretations
of regression parameters, readers are referred to
Hosmer and Lemeshow [13] and Kleinbaum et al.
[8].

11.8 EXERCISES

1 Twenty students were selected at random from
the fourth-year class in dental school. Consider the
following scores on independent variable Xi and
dependent variable Yi . The independent variable
is the student’s score in a basic science course,
and the dependent variable is the student’s score in
clinic. Construct the scatter plot. What can you say
about the relationship between the two variables
from the scatter plot?

Xi Yi Xi Yi Xi Yi Xi Yi Xi Yi

74 88 84 92 77 61 96 78 89 93
86 90 68 75 80 82 91 86 69 73
89 85 60 65 73 77 83 78 75 86
78 80 85 80 76 77 66 78 91 84

2 Eighteen patient records were chosen randomly
to determine the relationship between age and sys-
tolic blood pressure (SBP). Based on the data in the
table below, does a straight line (linear regression)
appear to be applicable?

Age SBP Age SBP Age SBP Age SBP

55 148 36 120 32 118 37 130
71 160 58 134 42 138 82 168
65 152 67 143 58 140 65 146
43 128 79 158 28 118
25 110 47 128 30 127

3 A study was conducted by Rhee and Nahm
[15] to establish a statistical relationship between
the shape of the labial crowns of the incisors and
crowding. Plaster cast models of 15 untreated male
patients whose Little’s irregularity index is nor-
mal were evaluated. The table below presents part
of the data Rhee and Nahm [15] collected. Sup-
pose upper incisor irregularity index (UIRI) is
the response variable Yi and upper central incisor
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mesiodistal width ratio (UIR) is the independent
variable Xi .

a. Draw a scatter plot for the data.
b. Find

∑n
i=1 Xi ,

∑n
i=1 X2

i ,
∑n

i=1 Yi , and∑n
i=1 Xi Yi .

c. Estimate the regression function.
d. Use the fitted regression line to predict the UIRI

for a patient whose UIR value is 145.

Patient UIR (Xi ) UIRI (Yi )

1 139.97 11.7
2 141.17 11.7
3 142.51 11.25
4 141.02 13.61
5 140.91 16.61
6 132.94 8.47
7 135.41 12.84
8 143.26 12.84
9 130.1 14.1

10 149.62 14.1
11 139.33 15.27
12 130.1 10.26
13 139.84 10.26
14 160.94 17.68
15 134.66 10.84

4 It is well-known in implant dentistry that as the
tightening torque increases, the screw elongation
(abutment screw) increases within the design limit.
Suppose that Dr. Kirk investigated and collected
the following data to establish a statistical rela-
tionship between screw elongation and tightening
torque. Find the best fitting curve for the data using
the least squares method.

Torque (Nmm) Elongation (μm)

5 1.0
10 2.0
15 3.7
20 5.5
25 8.0
30 9.0
32 9.5

5 An investigation was conducted by endodon-
tists to assess total carbohydrate concentration, as
well as the noncollagenous protein content, in hu-
man dental pulp. Pulps were obtained from eight
premolars and homogenized in saline solution.
The following data were collected by the inves-
tigators [16]. Develop an appropriate regression

function to predict the protein content in dental
pulp.

Total wt. pulp (mg) Protein (μg/mg)

12.5 46.93
10.6 42.73

9.0 44.40
14.8 47.84
15.1 36.68
18.0 30.25
14.0 48.66

6.8 63.77

6 In Exercise 5, examine the aptness of the re-
gression model.
a. Is linearity appropriate?
b. Is there any graphic evidence of non-constant

error variance?
c. Are independence of error terms adequate?
d. Are there any residual outliers?

7 Using the data in Exercise 5, estimate the pop-
ulation correlation coefficient ρ between the total
weight of pulp and the amount of protein.

8 Compute the correlation coefficient r for the
data in Exercise 2 by letting Xi = age, and Yi =
SBP. If you now exchange Xi and Yi , that is, if
you let Xi = SBP, and Yi = age, and calculate
the correlation coefficient r . Would you expect the
correlation coefficient r to be the same? Explain
why?

9 A researcher selected nine sets of identical
twins to determine whether there is a relationship
between the first-born and second-born twins in
the IQ scores. Is there a strong association in the
IQ score between identical twins? The following
table presents their IQ scores.

1 2 3 4 5 6 7 8 9

Ist born 112 127 105 132 117 135 122 101 128
2nd born 118 120 100 128 102 133 125 104 114

10 A research project was conducted to deter-
mine the effect of physical exercise on the level
of low-density lipoprotein (LDL) cholesterol. The
following data on the amount of weekly exer-
cise and LDL-cholesterol are collected. Would
you suggest there is a strong enough association
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between the variables to conclude that physical ex-
ercise is beneficial for lowering LDL-cholesterol?

1 2 3 4 5 6 7 8 9 10 11

Exercise (hr.) 3.0 1.5 0.5 4.2 2.5 2.0 4.75 5.0 1.75 3.25 2.25
LDL (mg/dl) 96.0 136.4 168.8 102.1 145.0 98.6 104.3 124.5 147.3 120.4 130.6

11 Perform a one-sample t test for a correlation
coefficient for the data in Exercise 10.

12 An investigation was conducted to evaluate
the effect of water and saliva contamination on the
bond strength of metal orthodontic brackets ce-
mented to etched (10% polyacrylic acid) human
premolar enamel. The bonding agent used was an
experimental light-cured glass ionomer. The fol-
lowing table shows the shear bond strength (mega-
pascals) for water and saliva contamination mea-
sured after aging for 5 minutes. The probability
distribution of bond strength is assumed to be nor-
mal. Let water be the independent variable (X ) and
saliva be the outcome variable (Y ).
a. Compute the sample correlation coefficient and

give an appropriate interpretation.
b. Perform a significance test for a correlation

coefficient at the significance level α = 0.05.

c. Calculate the p value.

1 2 3 4 5 6 7

Water (Xi ) 4.5 3.6 5.6 2.2 4.9 6.5 4.0
Saliva (Yi ) 6.1 4.9 5.5 3.0 4.3 7.9 6.1

13 Oral stereognosis was analyzed in a group of
edentulous subjects rehabilitated with complete
removable dentures. From the patient charts we
have observed their age (X ) and duration of eden-
tulism (Y ). We are interested in evaluating any
linear association between the variables and how
much variability in the response variable Y is re-
duced by including the age variable in the regres-
sion model. Calculate r2 and r.

Age 63 50 75 86 61 78 82 69 53 56 73 59
Duration (yr) 12.0 13.5 3.0 1.0 8.5 4.0 3.5 4.3 10.0 9.0 2.5 5.0

14 How would you interpret the coefficient of
determination we obtained in Example 11.4.2.

15 Water samples were tested for fluoride ion
concentration using an Orion 720A ion meter and

fluoride ion electrode. The electrode is known to
have a sensitivity of 0.02 ppm and measures in mil-
livolts [17]. The following table shows the relation-
ship between fluoride concentration in parts per
million (independent variable) and an electrode in
millivolts (response variable) for 5 samples. Is a
simple linear regression adequate? If not, why?

ppm 0.02 0.10 0.50 1.00 10.00
mV 180.6 156.8 119.2 101.6 42.3
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Chapter 12

One-way Analysis of Variance

12.1 INTRODUCTION

Chapter 9 introduced a two-sample t test for com-
paring the population means of two independent
normal distributions. The t test is an efficient
method of testing the significance of the difference
between two population means. In many practical
applications, however, it is necessary to compare
three or more population means. Let us consider
several examples:

1. We want to decide whether there is a difference
in the effectiveness of four commercial den-
ture cleansers in eliminating oral pathogens. We
must decide whether the observed differences
among the four sample means can be attributed
to chance, or whether there are real differences
among the means of the four populations.

2. We may want to determine, based on the sam-
ple data, whether there is a difference in the
effectiveness of three teaching methods being
used in American dental and medical schools.
We might want to ask whether an observed
difference in the effectiveness of the teaching
methods is really due to the differences of the
methods and not due to the instructors or to the
intelligence and motivation of the students who
are being taught.

3. Doctors want to determine whether there is
a statistically significant difference among the
population means of the blood pressure of three
groups of patients who have received different
treatments for their hypertension.

4. Individuals who met certain inclusion criteria
have been randomly assigned to four different
diet programs that are designed to help reduce
body weight. Subjects’ body weight, body mass
index (BMI), and blood pressure measurements
have been taken at the baseline as well as at
the end of the clinical trial. Investigators want
to test the null hypothesis that the population

means of the baseline BMI measurements of
the four groups are identical. This can be stated
as

H0: μ1 = μ2 = μ3 = μ4 vs.
H1: At least one of the population means is

different from one of the other three means.

In this chapter, we will introduce the statisti-
cal method known as the analysis of variance
(ANOVA), which is an extension of the two-
sample t test to three or more samples. Some may
ask, if the ANOVA is involved in comparing the
population means, why is it not called the analysis
of means? Actually, the acronym is justifiable. We
will see later that the means are compared by using
the estimates of variance. Regression models, in-
troduced in Chapter 11, describe the nature of the
statistical relationship between the mean response
and the levels of the independent variable. Like re-
gression models, ANOVA models are concerned
with the statistical relation between a dependent
variable and one or more independent variables.
Unlike the regression models, however, the inde-
pendent variables in ANOVA models may be qual-
itative, such as sex, type of treatment, hair color,
and cause of tooth extraction. In this chapter, we
shall focus on the one-way ANOVA, where there
is only one independent variable.

12.2 FACTORS AND FACTOR
LEVELS

A factor is an independent variable to be stud-
ied in the ANOVA models. In the first example
in the introduction, which compares the effective-
ness of four denture cleansers, the factor being
investigated is denture cleanser. In the second ex-
ample comparing three teaching methods, the fac-
tor under investigation is teaching method. Some
studies are single-factor studies, where only one
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factor is of concern. The four examples illustrated
above are all single-factor studies. Sometimes, two
or more factors are being investigated simultane-
ously. These are called multi-factor studies. The
one-way ANOVA model deals with single-factor
studies. Statisticians often talk about a factor level,
or a particular category of a factor. For instance,
in the third example, one particular hypertensive
treatment is a factor level. In that study, the factor
“hypertensive treatment” has three levels.

There are two types of factors: fixed and ran-
dom. A fixed factor refers to a factor whose lev-
els are the only ones of interest. Examples of
fixed factors are smoking habit (heavy smoking,
light smoking, passive smoking, non-smoking),
age (young, middle-aged, old), and medication
for severe cancer pain (morphine, oxycodone, fen-
tanyl, hydromorphone methadone). In a study in
which smoking habit is a factor, investigators are
only interested in four levels of the factor—heavy
smoking, light smoking, passive smoking, and
non-smoking. A random factor refers to a factor
whose levels are considered as a sample from a
population of levels, such as subjects, clinicians,
or time points. The one-way ANOVA, when the
factor under investigation is fixed, is called a one-
way ANOVA fixed effects model. When the fac-
tor under study is random, it is called a one-way
ANOVA random effects model.

12.3 STATEMENT OF THE
PROBLEM AND MODEL
ASSUMPTIONS

The main problem in the one-way ANOVA fixed-
effects model is to determine whether k (k > 2)
population means are equal or not. The different
populations correspond to different factor levels.
Given k population means, the hypotheses we wish
to test may be stated as

H0 : μ1 = μ2 = · · · = μk vs.
H1 : not all k means are equal. Alternatively, H1 :

μi �= μ j for some pair i and j , where i �= j.

The following assumptions must be met for one-
way ANOVA fixed effects model to be valid.

1. Independent samples are taken from each of the
k populations.

2. The populations from which the samples are
taken must be normally distributed.

3. The variances of the populations must be equal,
that is, σ 2

1 = σ 2
2 = · · · = σ 2

k = σ 2.

This assumption is also referred to as homo-
geneity of variance.

These assumptions provide the theoretical jus-
tification for using the ANOVA model. The real
world problems are unlikely to satisfy these as-
sumptions exactly. In general, ANOVA models can
be applied even if the above assumptions are not
completely satisfied as long as they are not egre-
giously violated. The normality assumption does
not have to be met exactly if we have large enough
samples of size 20 or more from each popula-
tion. However, the consequences of large deviation
from normality could be quite severe. The assump-
tion of the equality of variances can also be mildly
violated without serious consequences if the sam-
ple sizes are large enough. A violation of the inde-
pendence assumption can lead to serious mistakes
in statistical inference. Thus, special care must be
taken to ensure that the observations are indepen-
dent. The F test for one-way ANOVA is known to
be robust with respect to violation of the equality
of variance assumption [1] if the number of ob-
servations for each treatment level is the same, the
populations are normally distributed, and the ratio
of the largest variance to the smallest variance is
no greater than 3.0.

Suppose an ANOVA is performed and the null
hypothesis H0 : μ1 = μ2 = · · · = μk is rejected.
What does this tell us? We know that at least one
population mean μ j is different from some of the
other means. The problem is to find out where the
differences occur. If k = 3 and the null hypothe-
sis H0 : μ1 = μ2 = μ3 is rejected, then we want
to determine whether the differences are between
μ1 and μ2, between μ1 and μ3, between μ1

and
μ2 + μ3

2
, etc. We can answer this question

using one of the multiple comparison procedures
described later in this chapter.

12.4 BASIC CONCEPTS IN ANOVA

An observation can be thought of as a combina-
tion of the effects of the independent variable of
interest, the characteristics of patient subjects or



One-way Analysis of Variance 229

experimental units, chance variation in the sub-
ject’s response, and environmental and other extra-
neous conditions that are beyond the investigator’s
control. As mentioned, the ANOVA procedure is
dependent on estimates of variance. We are in-
terested in comparing the means of k populations
that are assumed to be independent and normally
distributed with the same variance. Therefore, the
procedure begins by taking a random sample of
size n1 from the first population, which is N (μ1,

σ 2
1 ), a random sample of size n2 from the second

population, which is N (μ2, σ 2
2 ), · · · , and a ran-

dom sample of size nk from the k th population,
which is N (μk, σ 2

k ). It is not necessary that the
numbers of observations in each sample are equal.
Let Yi j denote the j th observation in the i th group.
The following model is assumed to hold:

Yi j = μ + αi + εi j

where

μ = constant representing the grand mean of the
population means,

αi = constant representing the treatment effect of
i th population, which is equal to μi − μ, and

εi j = the error term associated with Yi j , which is
equal to Yi j − μ − αi .

The observation Yi j is the sum of three unknown
parameters; μ, αi , and εi j . These unknown param-
eters can be estimated from the sample data. The
error term εi j is assumed to be normally distributed
with mean 0 and variance σ 2, that is, εi j ∼ N (0,

σ 2). From the model stated above, it is easy to see
that an observation Yi j is also normally distributed
with mean μ + αi and variance σ 2. The term αi is
constrained in the model so that the sum of the αi ’s
over all groups is 0, that is,

∑n
i=1 αi = 0. Note that

μ1 = μ + α1, μ2 = μ + α2, · · ·, μk = μ + αk .

Equivalently, α1 = μ1 − μ, α2 = μ2 − μ, · · ·,
αk = μk − μ. If μ1 = μ2 = · · · = μk = μ, then
α1 = α2 = · · · = αk = 0. Therefore, the null hy-
pothesis H0 : μ1 = μ2 = · · · = μk is equivalent
to testing the hypothesis that all population treat-
ment effects αi ’s are equal to zero. The alternative
hypothesis is that at least one of the treatment ef-
fects is not zero. The hypotheses can be expressed
as: H0 : all αi = 0 versus H1 : at least one
αi �= 0. The k sample data is displayed in Table
12.4.1. The sample sizes n1, n2, · · ·, nk are not
necessarily equal. Let N =∑k

i=1 ni denote the to-
tal number of all the observations in k samples. Let

Table 12.4.1. Samples drawn from k
independent populations.

Group 1 Group 2 · · · Group k

Y11 Y21 · · · Yk1

Y12 Y22 · · · Yk2

· · · ·· · · ·· · · ·
Y1,n1 Y2,n2 · · · Yk,nk

n1 n2 · · · nk

Y 1 Y 2 · · · Y k

S1 S2 · · · Sk

Y 1, Y 2, · · ·, Y k be the k treatment means, and
S1, S2, · · ·, Sk be the k sample standard deviations

(SDs). The grand mean, Y , is obtained by sum-
ming all the observations in the table and dividing
by N =∑k

i=1 ni . Note that the grand mean can
be viewed as a weighted average of the k sample
means.

Y =
∑k

i=1

∑ni
j=1 Yi j

N

= n1Y 1 + n2Y 2 + · · · + nkY k

n1 + n2 + · · · + nk
.

12.5 F TEST FOR COMPARISON
OF k POPULATION MEANS

One of the assumptions we make in the ANOVA is
that the population variance in each of the k groups
has the same value σ 2. Two different measures of
variability can be estimated. One is the variation
of the individual observations around their popula-
tion means, and the other the variation of the pop-
ulation means around the grand mean. The first
estimate is called the within-group variability,
and the second estimate is called between-group
variability. If the variability within the k differ-
ent populations is small relative to the variabil-
ity among their respective means, this indicates
that the population means are different. We will
describe how an F test is used to test the null
hypothesis, H0 : μ1 = μ2 = · · · = μk .

The deviation of an individual observation Yi j

from the grand mean Y can be written as

Yi j − Y = (Yi j − Y i
)+ (Y i − Y ).
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The first term
(
Yi j − Y i

)
represents the deviation

of an individual observation from the i th group

mean, and the second term (Y i − Y ) represents
the deviation of a group mean from the grand
mean. If the above decomposition is squared and
the squared deviations are summed over all N =∑k

i=1 ni observations, we can obtained the follow-
ing expression:

k∑
i=1

ni∑
j=1

(
Yi j − Y

)2 =

k∑
i=1

ni∑
j=1

(
Yi j − Y i

)2 +
k∑

i=1

ni∑
j=1

(
Y i − Y

)2
.

Definition 12.5.1.
1. The total sum of squares (SSTO) is defined by

SSTO =∑k
i=1

∑ni
j=1(Yi j − Y )2.

2. The within-groups sum of squares (SSW) is

defined by SSW =∑k
i=1

∑ni
j=1

(
Yi j − Y i

)2
.

3. The between-groups sum of squares (SSB) is

defined by SSB =∑k
i=1

∑ni
j=1(Y i − Y )2.

Using the definition, the expression∑k
i=1

∑ni
j=1(Yi j − Y )2 can be written as

SSTO = SSW + SSB. It is easy to see that
SSW = SSTO − SSB. Note that SSW is also
referred to as error sum of squares and SSB as
treatment sum of squares. We can derive the
following identities that may appear to be com-
plicated but computationally more convenient:

SSTO =
k∑

i=1

ni∑
j=1

Y 2
i j − Y 2

··
N

,

where Y·· =∑k
i=1

∑ni
j=1 Yi j denotes the grand

total sum of all observations in k samples.

SSB =
k∑

i=1

ni Y
2
i −

(∑k
i=1 ni Y i

)2
N

,

SSW =
k∑

i=1

(ni − 1)S2
i .

Before we can proceed, we need to discuss the
degrees of freedom associated with these sums
of squares. The number of degrees of freedom
associated with SSB (between-groups sum of
squares) is (k − 1), which is one less than the
number of treatment means. The i th treatment
level has (ni − 1) degrees of freedom. Thus, there

are (n1 − 1) + (n2 − 1)+ · · · +(nk − 1) = N − k
degrees of freedom associated with SSW (within-
groups sum of squares). If the sample sizes are
equal, n1 = n2 = · · · = nk = n, then there are
k(n − 1) degrees of freedom associated with SSW.
The number of degrees of freedom assigned with
SSTO (total sum of squares) is N − 1, one less than
the total number of observations in the k samples.
We discussed above that SSTO = SSW + SSB.

The same relationship holds for their respective
degrees of freedom, that is, (N − 1) = (N − k) +
(k − 1).We define a new term, called mean square
(MS). The concept of mean square is the same as
variance. A mean square is obtained by simply di-
viding a sum of squares by its degrees of freedom.

Between-groups mean square: MSB = SSB

(k − 1)
.

Within-groups mean square: MSW = SSW

(N − k)
.

The null hypothesis of equality of k population
means, H0 : μ1 = μ2 = · · · = μk , is tested based
on the following F statistic, which is the ratio
between MSB and MSW as follows:

F = MSB

MSW
.

As discussed in Section 10.8, the null hypothe-
sis will be rejected if the value of the F statistic is
large. If it is small, the null hypothesis will be ac-
cepted. Under the null hypothesis, the test statistic
MSB

MSW
follows an F distribution with the numerator

degrees of freedom (k − 1) and the denominator
degrees of freedom (N − k). The F test procedure
for one-way ANOVA can be summarized.

For testing the hypotheses H0 : μ1 = μ2 = · · ·
= μk vs. H1 : at least one mean is different from
the others at the significance level α, and the fol-
lowing steps must be taken.

1. From the data compute the degrees of free-
dom, sum of squares (SSB and SSW), and
mean squares (MSB and MSW) using the above
formulas.

2. Compute the value of the test statistic F =
MSB

MSW
∼ F(k−1,N−k) under H0.

3. Reject H0 if F > F(k−1,N−k;1−α) and accept
H0 if F ≤ F(k−1,N−k;1−α). The critical value
F(k−1,N−k;1−α) can be found in the F table
(Table G).
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F(k−1, N−k)

Acceptance Region
Rejection
        Region

Figure 12.5.1 The rejection and acceptance regions for the F test for one-way ANOVA.

F (k−1, N−k)

p Value

F

Figure 12.5.2 The p value of the F test for one-way ANOVA.

4. The p value is given by the area to the right of
the calculated F value under an F distribution
with the degrees of freedom k − 1 and N − 1.
That is, p value = P(F < F(k−1,N−k)).

The rejection and acceptance regions for the F
test are displayed in Figure 12.5.1. The exact p
value of the test is also shown in Figure 12.5.2.
The statistical results of the one-way ANOVA are
usually presented in an ANOVA table, as shown in
Table 12.5.1. We present the following examples
to illustrate one-way ANOVA procedures.

Example 12.5.1. The bonding of composite resin
to enamel gained particular popularity in or-
thodontics, where benefits to patients include im-
proved esthetics, caries and decalcification con-
trol, decreased periodontal insult, and simpler
plaque control. For the last two decades bonding

metal brackets to enamel has been acceptable
clinical practice, with much success and patient
satisfaction [2]. Blount, Streelman, and Tkachyk
[2] investigated if the use of bonded orthodontic
brackets and/or bonded composite is a viable alter-
native to the traditional mandibular canine rest seat
technique. The advantages are leaving healthy, vi-
tal abutment teeth unprepared, which contributes
to added strength and longevity and is less costly
than creating cast test seats. Their goal was to
evaluate the strength of four different types of
bonded rest seats (smooth enamel bond, rough-
ened bond, ceramic brackets, stainless steel brack-
ets) as compared to rest seats cut into maxillary
canines, which is the control group. Seventy-five
intact mandibular and maxillary canines were col-
lected after extraction. Following bonding, the rest
seats were loaded to failure in a Universal testing

Table 12.5.1. One-way ANOVA table.

Source of Variation df Sum of Squares Mean Square F value p value

Between k − 1 SSB
SSB

(k − 1)

SSB/(k − 1)

SSW/(N − k)
P(F < F(k−1,N−k))

Within N − k SSW
SSW

(N − k)

Total N − 1 SSTO
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Table 12.5.2. Peak load data in kilograms.

Factor Levels

Control Roughened Bond Smooth Enamel Bond Ceramic Bracket Stainless Steel Bracket

47.39 42.73 10.92 14.02 25.27 19.38 39.54 43.87 7.08 8.56
31.07 45.61 22.60 19.00 8.54 12.34 35.15 23.42 7.87 25.11
36.25 49.06 14.76 21.13 13.73 10.23 31.38 26.80 19.73 9.17

Observations 40.21 46.54 12.67 12.20 22.20 8.78 40.71 29.56 11.79 12.42
(kg) (Yi j ) 49.31 40.01 19.41 16.27 12.46 34.44 33.97 12.61 17.18

42.33 30.31 21.54 17.03 30.87 35.29 14.14 19.38
42.11 31.92 29.41 30.04 36.32 5.60

16.52 16.73 29.56 28.82
8.21 14.29 25.77 24.74

19.20 33.35 35.34
18.76

Sample size n1 = 13 n2 = 19 n3 = 9 n4 = 21 n5 = 13
Sample mean Y 1 = 41.764 Y 2 = 17.781 Y 3 = 14.770 Y 4 = 31.795 Y 5 = 13.126
Sample SD S1 = 6.207 S2 = 5.901 S3 = 6.066 S4 = 6.041 S5 = 5.800

Grand mean Y = 24.694 (
∑5

i=1 ni =75)

machine and the peak load (maximum dislodg-
ing force) in kilograms for each specimen was
recorded as shown in Table 12.5.2.

The notation Yi ·is the sum of all observations
in the i th sample. That is, Yi · =∑ni

j=1 Yi j . The
grand total sum of all observations in k samples is
denoted by Y·· =∑k

i=1

∑ni
j=1 Yi j = 1852.03. The

grand mean is Y = 1852.03

75
= 24.694. We now

compute SSB and SSW.

SSB =
k∑

i=1

ni Y
2
i −

(∑k
i=1 ni Y i

)2

N

= 13(41.764)2 + 19(17.781)2 + 9(14.770)2 + 21(31.795)2 + 13(13.126)2

− [13(41.764) + 19(17.781) + 9(14.770) + 21(31.795) + 13(13.126)]2

75
= 54, 114.660 − 47, 585.7665 = 6, 528.8935.

SSW =
k∑

i=1

(ni − 1)S2
i

= 12(6.207)2 + 18(5.901)2 + 8(6.066)2 + 20(6.041)2 + 12(5.800)2 = 2, 517.030.

SSTO = SSW + SSB = 2, 517.030 + 6, 528.8935 = 9, 045.9235.

Since k − 1 = 5 − 1 = 4 and N − k = 75 −
5 = 70,

MSB = SSB

(k − 1)
= 6, 528.8935

4
= 1, 632.2234

MSW = SSW

(N − k)
= 2, 517.030

70
= 35.9576.

The value of the test statistic is given by

F = MSB

MSW
= 1, 632.2234

35.9576
= 45.3930 ∼ F(4,70) under H0.

From the F table in the Appendix, we find that

F(4,70;0.999) < F(4,60;0.999) = 5.307< F = 45.3930.

So the p value = P(F < F(k−1,N−k)) =
P(45.3930< F(4,70))<0.001. Therefore, we reject

the null hypothesis that all the treatment means are
equal and conclude that at least one mean is differ-
ent. These results are summarized in an ANOVA
table, Table 12.5.3.

Example 12.5.2. An investigation was conducted
to compare the efficacy of three types of
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Table 12.5.3. One-way ANOVA table.

Source of Variation df Sum of Squares Mean Square F value p value

Between 4 6,528.8935 1,632.2234 45.3930 p < 0.001
Within 70 2,517.030 35.9576

Total 74 9,045.9235

commercially available toothpastes against the
bacteria responsible for caries, gingivitis, and
periodontitis. The introduction of fluoride into
dentifrices was a milestone in dental science.
Despite its great effects, scientists have been
continually looking to improve dental care by
investigating new agents that could help further
decrease the rate of dental disease [3]. The study
also included chlorhexidine, which has been the
“gold standard” antimicrobial agent when com-
pared with other products made for plaque control.
Marsh [4] has shown that chlorhexidine can reduce
dental plaque, caries, and gingivitis in humans.
Table 12.5.4 displays the summary of the data that
represent the zones of microbial inhibition pro-
duced by the four treatments against Lactobacillus
salivarious.

The degrees of freedom are (k − 1) = 4 − 1 =
3 and (N − k) = 41 − 4 = 37. We now compute
SSB, SSW, MSB, and MSW.

SSB = 10(7.368)2+11(6.779)2+9(6.412)2+11(6.572)2

− [10(7.368)+11(6.779)+9(6.412)+11(6.572)]2

41
= 1, 893.5042 − 1, 883.3538 = 10.1504.

SSW = 9(1.892) + 10(1.927) + 8(1.843) + 10(2.013)

= 71.1720.

SSTO = SSW + SSB = 71.1720 + 10.1504

= 81.3224.

MSB = SSB

(k − 1)
= 10.1504

3
= 3.3835,

MSW = SSW

(N − k)
= 71.1720

37
= 1.9236.

Table 12.5.4. Zone of inhibition data in square centimeters.

Mean of Zone of Sample
Toothpaste ni Inhibition (Y i ) Variance (S2

i )

Group A 10 7.368 1.892
Group B 11 6.779 1.927
Group C 9 6.412 1.843
Group D 11 6.572 2.013

(chlorhexidine)

The value of the F test statistic is given by

F = MSB

MSW
= 3.3835

1.9236
= 1.7589 ∼ F(3,37) under H0.

From the F table in the Appendix, we find that

F(3,60;0.95) = 2.758 < F(3,37;0.95) < F(3,30;0.95)

= 2.922.

Since the value of the test statistic F = 1.7589 <

F(3,37;0.95), F falls in the acceptance region.

The p value = P(F < F(k−1,N−k))

= P(1.7589 < F(3,37)) > P(2.177 < F(3,60;0.90))

= 0.10.

Therefore, we accept the null hypothesis that there
are no significant differences among all the treat-
ment means. These results are summarized in an
ANOVA table (Table 12.5.5).

Suppose the null hypothesis H0 : μ1 = μ2 =
· · · = μk is rejected. Which population means are
different? This question will be addressed in the
next section.

Example 12.5.3. In the pharmaceutical sciences
the investigators are often interested in comparing
three or more assay methods. Specifically, suppose
that 12 tablets were selected at random for the
comparison of three assay methods, four tablets
for each assay. The results of assays compar-
ing the three analytical methods are displayed in
Table 12.5.6.

Test the equality of the three treatment means
(that is, H0 : μA = μB = μC vs. H1 : not all
means are equal). From the above data, we obtain
Y A = 311.40, Y B = 308.0, Y C = 308.78, SA =
1.517, SB = 1.095, SC = 1.615, and the grand

mean Y = 309.39. One can mimic the steps dis-
cussed in the preceding examples to complete the
test.
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Table 12.5.5. One-way ANOVA table.

Source of Sum of Mean
Variation df Squares Square F value p value

Between (model) 3 10.1504 3.3835 1.7589 p > 0.10
Within (error) 37 71.1720 1.9236

Total 40 81.3224

Table 12.5.6. Comparing three assay methods.

Method A Method B Method C

312.2 308.4 309.8
310.5 309.2 310.5
309.8 306.6 307.3
313.1 307.8 307.5

12.6 MULTIPLE COMPARISONS
PROCEDURES

When k = 2, the F test statistic for one-way
ANOVA is equivalent to the square of the corre-
sponding t test statistic used for testing the equal-
ity of two means. Why can we not use the t test
comparing two means at a time to compare three
or more population means? When two means are
compared at a time, the rest of the population
means under investigation are not being consid-
ered. When all possible pairwise comparisons are
made, the probability of rejecting the null hypoth-
esis when it is true is increased, since there are
many more t tests being performed. The likeli-
hood of finding some significant differences by
chance alone is greater. For example, for the com-
parison of k = 3 treatment means, three separate
t tests are required. For the comparison of k = 10

means, we need to perform
(

10
2

)
= 45 two-sample

t tests. This suggests that at the significance level of
α = 0.05, we may find about two comparisons that
are significant by chance, since (0.05)(45) = 2.25.

To protect ourselves against finding false signifi-
cant differences due to making too many pairwise
comparisons, several statistical procedures have
been suggested. These procedures are referred to
as multiple comparisons procedures.

12.6.1 Least Significant Difference
Method

We first describe a procedure known as Fisher’s
least significant difference (LSD) method for

comparing two specific group means among the
k group means; H0 : μi = μ j vs. H1 : μi �= μ j

(i �= j). The test statistic is given as follows:

t = Y i − Y j

S
√

( 1
ni

+ 1
n j

)
∼ t(N−k) under the null

hypothesis, where

S2 =
∑k

i=1(ni − 1)S2
i

N − k
,

the pooled estimate of the variance, which is the
same as the MSW discussed in the preceding sec-
tion. For a two-tailed test at the significance level of
α, we reject H0 if t < t(N−k,α/2) or t > t(N−k,1−α/2),

and accept H0 if t(N−k,α/2) ≤ t ≤ t(N−k,1−α/2). The
p value of the test is computed;

if t < 0, p = 2 · P(t(N−k) < t)

= 2 · {area to the left of the value
t under a t distribution with df
N − k},

if t ≥ 0, p = 2 · P(t(N−k) > t)

= 2 · {area to the right of the value t
under a t distribution with df
N − k}.

If N − k = 70, the critical values for the LSD
procedure are given by

t(N−k,α/2) = t(70,0.025) = −1.9944

and

t(N−k,1−α/2) = t(70,0.925) = 1.9944.

12.6.2 Bonferroni Approach

One of the simplest and most widely used multiple
comparison procedures is the approach proposed
by Bonferroni. The basic idea of the Bonferroni
approach is the modification of the significance
level. This method is applicable whether the sam-
ple size ni for each group is equal or unequal. Sup-
pose we want to make a pairwise comparison be-
tween any two treatment means among k means in
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13 14 17 31 41

Y5 Y3 Y2 Y4 Y1

Figure 12.6.1 Results of Bonferroni approach.

one-way ANOVA. The hypothesis to be tested is
H0 : μi = μ j vs. H1 : μi �= μ j (i �= j). Let α be
the specified significance level.

1. Compute the sample means Y i and the pooled
estimate of the SD obtained by

S =
√∑k

i=1(ni − 1)S2
i

N − k
.

2. Compute the test statistic t = Y i − Y j

S

√(
1
ni

+ 1
n j

) ∼

t(N−k) under the null hypothesis.
3. Let c be the number of pairwise comparisons to

be made, that is, c =
(

k
2

)
. Let α∗ = α

c
.

Reject H0 if t < t(N−k,α∗/2) or t > t(N−k,1−α∗/2).

Accept H0 if t(N−k,α∗/2) ≤ t ≤ t(N−k,1−α∗/2).

The above procedure is basically the same as the
two-sample t test with equal variances, which was
introduced in Section 9.3. The difference is that the
estimate S2 of the variance is the pooled estimate
from all k samples rather than two samples that
are involved for the comparison. Instead of using
the significance level α, we have the adjusted sig-

nificance level α∗ = α

c
proposed by Bonferroni.

Example 12.6.1. In Example 12.5.1, the null hy-
pothesis H0 : μ1 = μ2 = · · · = μk was rejected.
We apply the Bonferroni approach to detect which
of the k population means are different. The
test was performed at the significance level α =
0.05. We have k = 5 groups, N = 75, and N −
k = 70. Thus, the number of pairwise compar-

isons to be made is c =
(

k
2

)
= 10, and α∗ =

α

c
= 0.05

10
= 0.005. Therefore, we perform the t

test between each pair of groups using the ad-
justed significance level α∗ = 0.005. The crit-
ical values are given by t(N−k,α∗/2) = t(70,0.0025)

and t(N−k,1−α∗/2) = t(70,0.9975). From the t table
(Table E) in the Appendix, we find t(70,0.9975) =
2.8987 and t(70,0.0025) = −2.8987. We let A = con-
trol, B = roughened bond, C = smooth enamel
bond, D = ceramic bracket, and E = stainless
steel bracket. The results of these significance tests
show that there are no significant differences be-
tween the pairs (B, C), (B, E), and (C, E), but signif-
icant differences exist in all other pairwise compar-
isons; that is, one treatment mean is significantly
different from the other treatment mean. This
is displayed in the above figure (Figure 12.6.1).
The summary of the results using the Bonferroni
method is presented in Table 12.6.1. The first col-
umn of the table indicates the specific groups being

Table 12.6.1. Pairwise comparisons of the data in Example 12.5.1.

Mean Difference Value of the
Groups Compared (Y i − Y j ) Test Statistic p value

(A, B) 23.983 t = 10.4848 p < 0.0005
(A, C) 26.994 t = 9.6821 p < 0.0005
(A, D) 9.969 t = 4.7117 p < 0.0005
(A, E) 28.638 t = 12.1760 p < 0.0005
(B, C) 3.011 t = 1.2410 p > 0.30
(B, D) −14.014 t = −7.3828 p < 0.0005
(B, E) 4.655 t = 2.1572 p > 0.04
(C, D) −17.025 t = −7.1270 p < 0.0005
(C, E) 1.644 t = 0.6323 p > 0.60
(D, E) 18.669 t = 8.3333 p < 0.0005
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compared, the second column the difference be-
tween the sample means (Y i − Y j ), the third col-
umn the test statistic, and the last column the cor-
responding p value.

For the data in Example 12.5.1, the critical
values for the least significant difference (LSD)
procedure are given by t(N−k,α/2) = t(70,0.025) =
−1.9944 and t(N−k,1−α/2) = t(70,0.925) = 1.9944.

Given α = 0.05, the rejection regions using LSD
are defined by t < −1.9944 and t > 1.9944,

while the rejection regions using the Bonferroni
approach are defined by t < −2.8987 and t >

2.8987. Thus, there are comparisons between pairs
of groups for which the LSD would find a signifi-
cant difference but the Bonferroni approach would
not. We should note that one disadvantage of the
adjusted significance level is that it is so much
smaller than the α level that none of the pairwise
tests will be rejected. Consequently, the power of
the test procedure will be low. Some other proce-
dures that are more powerful have been suggested
by Scheffé and Tukey.

12.6.3 Scheffé’s Method

In most situations, the multiple comparisons pro-
cedures are applied if pairs of group means are
being compared. However, in some other cases,
we are interested in all possible contrasts involving
more complicated comparisons. Scheffé’s method
is widely used in this type of comparison. We first
define a linear contrast.

Definition 12.6.1. A linear contrast (L) is any
linear combination of the individual group means
such that the sum of the coefficients ci is zero.

L =
k∑

i=1

ciμi where
k∑

i=1

ci = 0.

Since an unbiased estimator of the population
mean μi is Y i , an unbiased estimator of the above
linear contrast L =∑k

i=1 ciμi is given by

∧
L =

k∑
i=1

ci Y i where
k∑

i=1

ci = 0.

The simplest example of a linear contrast is the
mean difference used in the Bonferroni approach:

∧
L = Y 1 − Y 2

where c1 = 1, c2 = −1, and c3 = c4 = c5 = 0(∑5
i=1 ci = 0

)
.

It can be shown that the estimated variance of
the linear contrast given in the above expression is

S2(
∧
L) = S2

k∑
i=1

c2
i

ni
,

where S2 is the pooled estimate of the variance and
ni is the number of observations in the i th sample.

Example 12.6.2. Here are several examples of
linear contrasts.

1. L = μ1 − μ2

2. L = μ3 − μ5

3. L = μ1 + μ2

2
− μ3 + μ4

2

4. L = μ1 + μ2

2
− μ3

5. L = μ1 − μ2 + μ3 + μ4 + μ5

4

Linear contrasts are often used in drug develop-
ment. Suppose a new drug at two different dosage
levels is being compared with a placebo. μ1 and
μ2 denote the mean response for dosage level 1
and level 2, respectively, and μ3 denotes the mean
response for placebo. The investigators will con-

sider L = μ1 + μ2

2
− μ3 to compare the overall

effect of the drug with the placebo effect.
To apply Scheffé’s multiple comparisons pro-

cedure to test the hypothesis H0 :
∑k

i=1 ciμi = 0
vs. H0 :

∑k
i=1 ciμi �= 0, follow the steps described

below:

1. Compute the test statistic t =
∧
L

S

√∑k
i=1

c2
i

ni

.

2. Find the critical values defined by
−√(k − 1)Fk−1,N−k;1−α

and
√

(k − 1)Fk−1,N−k;1−α.

3. Reject H0 if t < −√(k − 1)Fk−1,N−k;1−α or
t >

√
(k − 1)Fk−1,N−k;1−α.

Example 12.6.3. Suppose we wish to make a
comparison of bond (roughened bond and smooth
enamel) and bracket (ceramic and stainless steel)
with respect to their peak load from the data
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presented in Table 12.5.2. The linear contrast we
have is

L = μ2 + μ3

2
− μ4 + μ5

2
where c1 = 0, c2 = c3 = 1/2, and c4 = c5 =
−1/2. Thus,

∑5
i=1 ci = 0. To test the hypotheses

H0 :
μ2 + μ3

2
− μ4 + μ5

2
= 0 vs.

H0 :
μ2 + μ3

2
− μ4 + μ5

2
�= 0

we need to compute

∧
L = Y 2 + Y 3

2
− Y 4 + Y 5

2

= 17.781 + 14.770

2
− 31.795 + 13.126

2
= −6.185.

5∑
i=1

c2
i

ni
= 0 + (0.5)2

19
+ (0.5)2

9

+ (−0.5)2

21
+ (−0.5)2

13
= 0.07207.

Since S2 = MSW = 35.9576 from Example
12.5.1, S = √

35.9576 = 5.9965, the value of the
test statistic is obtained by

t =
∧
L

S

√∑k
i=1

c2
i

ni

= −6.185

(5.9965)
√

0.07207

= −3.8414.

From the F table, using α = 0.05, we get the crit-
ical values:

−√(k − 1)Fk−1,N−k;1−α = −√(4)F4,70;0.95

= −
√

(4)2.508

= −3.1673

and √
(k − 1)Fk−1,N−k;1−α = 3.1673.

Because

t = −3.8414 < −√(k − 1)Fk−1,N−k;1−α

= −3.1673,

the null hypothesis H0 is rejected at the signifi-
cance level of α = 5%. We conclude that on the av-
erage the brackets tend to have significantly higher
peak load than the bonds.

As illustrated in Example 12.6.2, Scheffé
method can be used to compare pairs of treat-
ment means, since a difference between two means
is a special case of a linear contrast. Using the
Scheffé method, the null hypothesis is rejected
if t < −3.1673 or t > 3.1673, while using the
Bonferroni multiple comparisons procedure, the
null hypothesis is rejected if t < −2.8987 or
t > 2.8987. Therefore, Bonferroni method will
find significant differences more often than does
Scheffé method when only pairwise comparisons
are being made.

12.6.4 Tukey’s Procedure

One of the best known and widely used multiple
comparisons procedures is Tukey’s method. When
Tukey’s multiple comparisons procedure is used
for testing pairwise mean differences, the test is
commonly referred to as Tukey’s honestly sig-
nificant difference (HSD) test. The Tukey’s HSD
method is applicable when the sample sizes for the
k groups are equal (n1 = n2 = · · · = nk = n) and
pairwise comparisons of the means are of primary
focus. This method is based on the studentized
range distribution. Suppose we have n indepen-
dent observations Y1, Y2, · · ·, Yn from a normal
distribution with mean μ and variance σ 2. Then
the range, w, of this observations is denoted w =
Max (Yi ) − Min (Yi ). Let S2 be an estimate of the

variance σ 2. Then the ratio
w

S
is known as the

studentized range, and is denoted by q(k, υ) =
w

S
. The studentized range depends on k and υ, the

degrees of freedom associated with the estimate
S2. Many statistics textbooks ([5], [6]) include a
table of percentiles of the studentized range distri-
bution for performing the Tukey’s HSD test. The
test statistic, denoted by q, is given by

q = Y i −Y j√
MSW

n

∼ qk,N−k, under the null hypothesis

where N (N = kn) is the total number of observa-
tions.

For the Tukey’s method, we assumed that
the sample sizes are equal for each of the k
groups. The Tukey’s multiple comparisons proce-
dure for unequal sample sizes is called the Tukey-
Kramer method. The Student-Newman-Keuls
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(SNK) multiple comparisons procedure is an
often-used method by investigators, which is an
alternative to the Tukey’s procedure. The SNK pro-
cedure is also based on the studentized range dis-
tribution, but the numerator degrees of freedom k
in qk,N−k is modified such that k replaced by k∗ =
number of treatment means in the range of means
being compared. For example, if a comparison is
being made between the second largest and the
fourth largest means, then k∗ = 3. If the compari-
son is being made between the largest and fourth
largest, then k∗ = 4. Other multiple comparisons
procedures have been developed and proposed,
such as Dunn-Šidàk test and Dunnett’s method.
Dunnett’s procedure is applicable only when sev-
eral treatment means are being compared with a
single control mean. No comparisons between the
treatment means are allowed. Readers, who are in-
terested in studying the test procedures suggested
by Dunn-Šidàk and Dunnett, are referred to Kirk
[7] and Forthofer and Lee [8].

12.7 ONE-WAY ANOVA
RANDOM EFFECTS MODEL

As we mentioned earlier in this chapter, there are
situations in which the factor levels are consid-
ered as a random sample from a population of fac-
tor levels or treatments. In the present section, we
shall introduce the one-way ANOVA random ef-
fects model in which the factor under study is con-
sidered random. The mathematical form of one-
way ANOVA random effects models looks the
same as the one for fixed effect models stated in
Section 12.3:

Yi j = μ + αi + εi j

where

Yi j = the j th observation in the i th factor level or
i th treatment

αi = independent random variables that are as-
sumed to follow a normal distribution,

αi ∼ N (0, σ 2
B)

εi j are independent N (0, σ 2)
αi and εi j are independent random variables, i =

1, 2, · · ·, k and j = 1, 2, · · ·, ni .

Recall that the factor level means αi are constant
for the fixed effect model but are random variables

Table 12.7.1. CA 19-9 data.

Subject

Replicate 1 2 3 4 5

1 27 101 48 187 45
2 38 76 39 104 63
3 15 68 22 88 74
4 43 88 37 134 33
5 31 92 33 158 66
6 40 65 24 141 49

for the random effects model. Before we can fur-
ther explain the model, consider an example.

Example 12.7.1. A tumor marker for pancreatic
cancer is known as CA 19-9 and is measured by a
blood test. CA 19-9 is often used to monitor treat-
ment progress of previously diagnosed pancreatic
cancer patients. Physicians rely on this blood test
in conjunction with periodic CT scans to determine
whether the cancer is in remission or continuing to
grow [9]. Suppose that blood samples were drawn
from five patients who were diagnosed with pan-
creatic cancer within the last 2 years. Table 12.7.1
shows the blood test results of CA 19-9 levels from
a laboratory. Each subject has six measurements
(replicates).

The underlying mean of the i th subject is ob-
tained by μ + αi , where αi has a normal distri-
bution with mean 0 and variance σ 2

B . Thus, for
example, the first subject would have the under-
lying mean μ + α1, and the third subject would
have the underlying mean μ + α3. The variability
of μ + αi is represented by σ 2

B . The more the dif-
ferent patients vary in their mean CA 19-9 levels,
the larger is the value of σ 2

B . If all patients have
the same mean level of CA 19-9, we will have the
variance σ 2

B = 0. The variance σ 2
B represents the

between-subject variation. The term εi j represents
the variability associated with the replicates of dif-
ferent subjects. The above model assumes that all
εi j have the same variance σ 2, which represents
the within-subject variation. This implies that the
replicates from the i th subject are normally dis-
tributed with mean μ + αi and variance σ 2. Hence,
the variance of Yi j in this random effects model is
the sum of two variance components, σ 2

B and σ 2.

In Example 12.7.1, we are primarily interested in
the mean CA 19-9 level of all patients, that is, in
effect their variability rather than the mean levels
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Table 12.7.2. ANOVA table for one-way random effects model.

Source of Sum of Mean
Variation df Squares Square F value p value

Between (Model) 4 43,970.76 10,992.69 28.53 < 0.0001
Within (Error) 25 9,632.90 385.32

Total 29 53,603.66

of the five subjects. Therefore, the hypotheses of
our interest is: H0 : σ 2

B = 0 vs. H1 : σ 2
B > 0.

If the null hypothesis H0 is true, then there is
no between-subject variability and therefore, all
μ + αi are equal. If H1 is true, then σ 2

B > 0 im-
plies that they are different and that there is a dif-
ference between the means for the subjects. A test
procedure employing an F statistic will be used
to test the hypothesis. Here are the steps to be
taken.

1. Compute the value of the test statistic F =
MSB

MSW
∼ F(k−1,N−k) under the null hypothesis

H0, where

MSB (between MS) =
∑k

i=1 ni (Y i − Y )2

k − 1
,

MSW (within MS) =
∑k

i=1

∑ni
j=1(Yi j − Y i )2

N − k
.

Y i and Y were defined in Section 12.4, and N =∑k
i=1 ni .

2. Reject H0, if F > F(k−1,N−k;1−α) and accept H0,
if F ≤ F(k−1,N−k;1−α).

3. The p value is obtained by

p = P(F < F(k−1,N−k))

= the area to the right of the calculated

value F under an F(k−1,N−k)) distribution.

From the data displayed in Table 12.7.1, we can
compute the means:

Y 1 = 32.33, Y 2 = 81.67, Y 3 = 33.83,

Y 4 = 135.33, Y 5 = 55.00, and Y = 67.63,

With k = 5, n1 = n2 = · · · = n5 = n = 6, and

N =∑k
i=1 ni = 30, we obtain

SSB =
k∑

i=1

ni (Y i − Y )2 = 43, 970.76

SSW =
k∑

i=1

ni∑
j=1

(Yi j − Y i )
2 = 9, 632.90

MSB = SSB

4
= 10, 992.69

MSW = SSW

25
= 385.316

The value of the test statistic is F = MSB

MSW
=

10, 992.69

385.316
= 28.529.

From the F table in the Appendix, we
get F(k−1,N−k;1−α) = F(4,25;0.95) = 2.759. Since
F(4,25;0.95) = 2.759 < F = 28.529, we reject the
null hypothesis. We conclude that σ 2

B > 0, which
means that the mean levels of CA 19-9 of the sub-
jects are significantly different. The p = P(F <

F(k−1,N−k)) < 0.0001. The results can be summa-
rized in Table 12.7.2.

12.8 TEST FOR EQUALITY OF k
VARIANCES

At the beginning of this chapter we learned that the
ANOVA models require the k populations (k > 2)
to have equal variances. The F test for the equality
of two variances was discussed in Section 9.8. This
section will introduce two formal statistical proce-
dures available for testing whether or not three or
more populations have the same variance.

12.8.1 Bartlett’s Test

The Bartlett test requires the populations under
study are normally distributed and can be used for
equal or unequal sample sizes. Suppose that there
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are k independent normal populations and that ran-
dom samples of size ni are drawn from each of the
k populations. The hypothesis we wish to test is:

H0 : σ 2
1 = σ 2

2 = · · · = σ 2
k vs.

H1 : not all σ 2
i are equal.

It would seem quite intuitive to construct a test
statistic based on their sample variances to study
whether or not the variances σ 2

i are equal. Let
S2

1 , S2
2 , · · ·, S2

k be the sample variances esti-
mated from the samples taken from k indepen-
dent normal populations. The degrees of freedom
associated with S2

i is (ni − 1). The total sum of
the degrees of freedom is

∑k
i=1(ni − 1) = N − k,

where N =∑k
i=1 ni . As discussed in Section 12.5,

the mean square MSW is the weighted average of
the sample variances:

MSW =
∑k

i=1(ni − 1)S2
i

N − k
.

We define the weighted geometric average of the
sample variances S2

i , denoted by GMS (geometric
mean square), as follows:

GMS= {
(S2

1 )(n1−1)(S2
2 )(n2−1) · · · (S2

k )(nk−1)
}1/(N−k)

.

It can be shown that GMS ≤ MSW or 1 ≤ MSW

GMS
.

If the ratio
MSW

GMS
is close to 1, it is an indication

that the population variances are equal. If the ratio
MSW

GMS
is large, it indicates that the variances are

not equal. Bartlett has shown that for large samples
(i.e., large ni ), a function of

log
MSW

GMS
= log MSW − log GMS

◦∼ χ2
(k−1)

under H0,

that is, a function of log MSW − log GMS is ap-
proximately χ2 distributed with degrees of free-
dom (k − 1) when the population variances are
equal. To perform the Bartlett test, the following
steps are to be taken:

1. Compute the MSW and G M S from the sample
data.

2. Compute the test statistic B = (N − k)

C
× {log MSW − log G M S} ◦∼ χ2

(k−1) under H0,

where C = 1 + 1

3(k − 1)

{(∑k
i=1

1

ni − 1

)
−

1

N − k

}
.

Alternatively, the test statistic B can be
expressed as

B = 1

C

{
(N − k) · log MSW

−
k∑

i=1

(ni − 1) · log S2
i

}
.

3. Reject the null hypothesis if B > χ2
(k−1,1−α) and

accept the null hypothesis if B ≤ χ2
(k−1,1−α).

The χ2 approximation is adequate if all sample
sizes ni ≥ 5.

Example 12.8.1. Obesity is a serious health haz-
ard. Obese patients are more likely to have hyper-
tension and coronary artery disease than patients
who are not overweight. Obese patients also have
increased mortality from all causes, including can-
cer [10]. Investigators conducted a 16-week clin-
ical trial to compare the effectiveness of four diet
programs designed to help reduce the body weight
for obese subjects. The four diet programs are (i)
strictly vegetarian diet, (ii) vegetarian diet with
snacks, (iii) regular diet A, and (iv) regular diet
B. Subjects in regular diet A group are required
to eat their normal meals, mixed with vegetable
and fruits, and those in regular diet B group are
required to eat their normal meals, but have 30-
minutes of physical exercise a day. All subjects
admitted into the clinical trial had BMI index ≥ 32
at the baseline. The table below (Table 12.8.1) dis-
plays the summary data of the amount of weight
loss in pounds at the end of the weight loss study.
Are the variances (σ 2

i ) equal? Test at 5% signifi-
cance level.

Solution. We need to test the hypothesis

H0 : σ 2
1 = σ 2

2 = σ 2
3 = σ 2

4 vs.

H1 : not all σ 2
i are equal.

Since n1 = 22, n2 = 30, n3 = 25, and n4 = 27,

(N − k) = 104 − 4 = 100. Using the Bartlett’s
procedure and Table 12.8.1, we can obtain the
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Table 12.8.1. Weight loss data.

Sample Size Mean Wt. Loss Sample SD
Treatment Group ni Y i Si

Strict vegetarian 22 18.28 5.11
Vegetarian with snack 30 15.63 3.90
Regular diet A 25 10.02 3.05
Regular diet B 27 14.47 4.22

constant C by substitution:

C = 1 + 1

3(k − 1)

{(
k∑

i=1

1

ni − 1

)
− 1

N − k

}

= 1 + 1

3(3)

{(
k∑

i=1

1

ni − 1

)
− 1

100

}
= 1.0169.

The log MSW = log

[
(21)(5.11)2 + (29)(3.90)2 + (24)(3.05)2 + (26)(4.22)2

100

]
= 1.2242,

k∑
i=1

(ni − 1) · log S2
i = (21) log(5.11)2 + (29) log(3.90)2 + (24) log(3.05)2 + (26) log(4.22)2

= 119.798.

We can now compute the test statistic

B = 1

C

{
(N −k) · log MSW−

k∑
i=1

(ni −1) · log S2
i

}
= 1

1.0169
{(100)(1.2242)−119.798} = 2.5784.

From the χ2 probability table in the Appendix, we
get χ2

(k−1,1−α) = χ2
(3,0.95) = 7.815.

Since the value of the test statistic B =
2.5784 < χ2

(3,0.95) = 7.815, the null hypothesis is
accepted. We conclude that the four population
variances are equal at the significance level α =
0.05. The p value of the test is P(2.5784 < χ2

(3)) >

P(6.251 < χ2
(3)) = 0.10.

The Bartlett’s test is known to be sensitive to
departures from normality. Therefore, if the pop-
ulation deviates substantially from normality, it is
not recommended that the Bartlett’s method be
applied for testing variance homogeneity. If the
population is not normally distributed, the actual
significance level may differ quite a bit from the
specified α. When any of the sample sizes ni is less
than four, the χ2 approximation to the distribution
of the Bartlett’s test statistic B should not be used.

12.8.2 Hartley’s Test

There is a simple test for homogeneity of variances
due to Hartley if the sizes ni of samples drawn
from normal populations are equal (n1 = n2 = · · ·
= nk = n), that is, if the sample variances S2

i have
the same degrees of freedom, n1 − 1 = n2 − 1 =

· · · = nk − 1. The Hartley’s test statistic is based
on the largest and smallest sample variances:

H = Max(S2
i )

Min(S2
i )

.

It is quite intuitive that the values of the test statistic
H close to 1 would suggest the null hypothesis

H0 : σ 2
1 = σ 2

2 = · · · = σ 2
k

is true. On the other hand, the values of the test
statistic H greater than 1 would suggest that the
null hypothesis is false. The distribution of the test
statistic H, when the null hypothesis H0 holds, is
provided in some textbooks [5]. The critical val-
ues can be found using the percentiles of the H
distribution in Neter, et al. [5], and

reject H0 if H > H(k,n−1;1−α) and

accept H0 if H ≤ H(k,n−1;1−α).

One great advantage of the Hartley’s test is its
simplicity for computing the test statistic. The
Hartley’s procedure strictly requires the sample
sizes to be equal. If the sample sizes are unequal
but reasonably close to each other, then it can still
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be used as an approximation. It is suggested that
the average of the sample sizes will be used for the

Group Number of Hours per Week

Endodontists 28 34 40 35 29 30 42 40 34 32 32
Hygienists 34 40 24 30 38 35 36 32 29 30
Orthodontists 42 28 31 36 30 38 29 31 32 26 34 30
Pediatric dentists 34 37 28 40 33 27 33 38 36 34 26
Periodontists 37 28 27 38 33 31 26 34 40 40 35
Prosthodontists 41 33 24 27 35 34 32 29 30 40 32

degrees of freedom. Like the Bartlett’s test, the
Hartley’s test is quite sensitive to departures from
normality. When the departures from normality
are substantial, the Hartley’s test should not be
used. Unlike the Hartley’s test, the Bartlett’s pro-
cedure does not require equal sample sizes, thus
it is more flexible than the Hartley’s. A drawback
of the Bartlett’s test is that the computation for the
test statistic is far more complicated.

12.9 EXERCISES

1 What statistical method is used to compare
three or more population means?

2 Name three tests you would use to compare the
population means if the one-way ANOVA rejects
the null hypothesis.

3 In the list item number 3 described in Section
12.1, what is the factor under investigation? How
many levels are there in the study?

4 A survey was taken with 66 dental profession-
als. Each subject was required to indicate the num-
ber of hours they spend per week in patient contact.
The survey data by specialty area is displayed in a
table below.
a. Compute the sample means and the sample SDs

for each group.
b. Compute the sums of squares.

c. Do the six group means significantly differ? Use
the significance level α = 0.05.

d. Present the results in an ANOVA table.

5 The following is an ANOVA table with missing
values.
a. Fill in the blanks to complete the table.
b. Calculate the approximate p value for the F

statistic.

Source of Sum of Mean
Variation df Squares Square F value

Between 1080.59
Within 60

Total 84 1884.45

6 Table 12.9.1 presents descriptive statistics for
systolic blood pressure data of subjects who
participated in a hypertension reduction study.
Hypertensive patients were randomly assigned to
five different study groups: Group A = vegetarian
diet, Group B = low-sodium meals with vegeta-
bles, Group C = regular meals with hypertensive
medications, Group D = regular meals and regular
exercise, and Group E = control.
a. Are there any significant differences among the

five groups with regard to their mean systolic
blood pressure? Test the null hypothesis at the
significance level α = 0.05.

b. Construct a one-way ANOVA table.
c. If the null hypothesis is rejected, use Fisher’s

least significant difference method for compar-
ing pairs of group means.

Table 12.9.1. Systolic blood pressure at the end of the study.

Group A Group B Group C Group D Group E

Sample size (ni ) 41 36 44 39 46
Sample mean (Y i ) 123.8 129.5 131.3 127.9 144.7
Sample SD (Si ) 6.45 5.89 6.91 5.77 7.13



One-way Analysis of Variance 243

7 In a linear contrast given by L = μ1 + μ2

2
−

μ3 + μ4

2
for Example 12.6.2, what are the coeffi-

cients ci ’s?

8 In Exercise 6 above, contrast between groups
with vegetable diet (Group A and Group B) and
groups with regular meals. What can you conclude
from the results?

9 From Table 12.9.1, conduct multiple compar-
isons procedures using Bonferroni’s method and
Scheffe’s method.

10 From Table 12.5.5, show if the assumption
of the homogeneity of variances is satisfied for a
one-way ANOVA model.

11 From the community hospital and clinics
around the city, the ages of dentists, nurses, and
physicians are recorded as shown in the table be-
low. At α = 0.05, test if the variances are equal.
You may assume that the distribution of the ages
is normal.

Ages

Dentists 29 57 62 44 47 34 37 31 40 56 49 52 43 39 45 34
Nurses 44 23 27 35 55 41 38 49 57 33 26 38 49 60 25 34 47 46
Physicians 39 47 41 58 68 60 54 47 35 49 50

12 Given the data in Exercise 11, would you con-
sider using the Hartley’s test for the equality of
variance? If not, give a reason why you would not
use it.

13 At the beginning of a school year, 92 stu-
dents were randomly assigned to three classes be-
ing taught by three different instructional methods.
Suppose that the students in these classes are even,
with respect to their ability and motivation, and
that the instructors have been carefully calibrated.
At the end of the school year, students were given
an identical examination to evaluate the teaching

methods. What can you conclude from the infor-
mation presented in the following table?

ni Y i S2
i

Class A 29 82.8 24.3
Class B 31 76.6 29.2
Class C 32 79.1 19.6
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Chapter 13

Two-way Analysis of Variance

13.1 INTRODUCTION

In Chapter 12, the use of the analysis of variance
(ANOVA) technique was restricted to one inde-
pendent variable with two or more levels. There
are many situations in which two different vari-
ables are used to define treatment groups. We will
discuss the use of ANOVA techniques in cases in
which there are two independent variables (fac-
tors) and one dependent variable. In a high-density
lipoprotein (HDL) research project, investigators
want to study the effects of smoking habit and body
mass index (BMI). They want to consider the ef-
fects of one variable after controlling for the effects
of the other variable. Suppose they have created
two categories for BMI: low (27 or lower) and
high (higher than 27). The data resulting from this
research project can be arranged in a 2 × 2 contin-
gency table (Table 13.1.1). Factor A, representing
smoking habit, has 2 levels, and factor B, repre-
senting BMI, also has 2 levels. This type of data
involving two independent variables is analyzed
using a statistical procedure known as two-way
ANOVA, which is an extension of the one-way
ANOVA. Smoking habit and BMI are the two in-
dependent variables, and HDL cholesterol level is
the dependent variable. The investigators’ goal is
to determine whether smoking habit or BMI inde-
pendently influences HDL and whether these two
factors jointly have some influence on HDL. In
case of the former, we say that smoking habit and
BMI have main effects. In case of the latter, we
say that smoking habit and BMI have an inter-
action effect. The investigators want to test the
effects of smoking habit and BMI on high-density
lipoprotein.

To conduct this research, four groups of sub-
jects are required. These groups are often re-
ferred to as treatment groups or treatment
combinations.

Group 1: Smokers with low BMI
Group 2: Smokers with high BMI
Group 3: Non-smokers with low BMI
Group 4: Non-smokers with high BMI

The two-way ANOVA enables us to test three
hypotheses. We can test the effects of each of the
two factors (smoking habit and BMI), and the ef-
fect of the interaction between the two factors. If
there is a difference between smokers with high
BMI and non-smokers with low BMI in HDL, we
say there is the interaction effect of smoking and
BMI. Smoking affects the HDL differently in dif-
ferent BMI status. The three hypotheses can be
illustrated as follows:

1. Are there any differences in mean HDL between
smokers and non-smokers?

H0: There is no difference in the mean of HDL
between smokers and non-smokers, vs.

H1: There is a difference in the means of HDL
between smokers and non-smokers.

If the alternative hypothesis is true, the means
for the treatment groups might look like that in
Table 13.1.2. Note that the HDL level is lower
for smokers regardless of their BMI status.

2. Are there any differences in mean HDL between
low and high BMI?

H0: There is no difference in the mean of HDL
between subjects with low and high BMI, vs.

H1: There is a difference in the mean of HDL
between subjects with low and high BMI.

If the alternative hypothesis is true, the means
for the treatment groups might look like that
shown in Table 13.1.3. The HDL level is much
lower for the high-BMI groups regardless of
their smoking habit.

3. Are there any differences in mean HDL due to
neither smoking nor BMI alone, but due to the
combination of both factors?

245
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Table 13.1.1. 2 × 2 contingency table for
HDL.

BMI

Smoking Habit Low High

Yes
No

Table 13.1.2. Means for treatment groups:
difference due to smoking habit.

BMI

Smoking Habit Low High

Yes 34 30
No 52 48

H0: There is no interaction effect on HDL
between smoking and BMI status, vs.

H1: There is an interaction effect on HDL
between smoking and BMI status.

If the alternative hypothesis is true, the means
for the treatment groups might look as shown in
Table 13.1.4.

Definition 13.1.1. An interaction effect between
two factors is defined as one in which the effect of
one factor depends on the level of the other factor.

Throughout the discussion, we will assume
that the treatment groups have equal samples.
Having the equal number of observations for
treatment combinations makes the analysis fairly

Table 13.1.3. Means for treatment groups:
difference due to BMI.

BMI

Smoking Habit Low High

Yes 45 20
No 52 26

Table 13.1.4. Means for treatment groups:
difference due to the interaction between
smoking and BMI.

BMI

Smoking Habit Low High

Yes 47 30
No 32 48

straightforward. It is essential that each treatment
group has more than one observation. If only one
smoker who has BMI higher than 27 is observed,
then we would not be able to determine the HDL
level for another subject in the same treatment
group. In other words, we would not be able to
determine the variability in the HDL level among
the patients under the same conditions. A major
reason for requiring at least two observations per
treatment combination is to enable us to estimate
σ 2. This will be discussed in the next section. Un-
equal sample sizes are more complicated and will
not be presented. Interested readers are referred to
Neter, Wasserman, and Kutner [1] and Kleinbaum
et al. [2].

13.2 GENERAL MODEL

To illustrate the meaning of the model, let us con-
sider a simple two-factor study in which the effects
of smoking habit and BMI on systolic blood pres-
sure (SBP) are of interest. The dependent variable
in this study is SBP. As before, let smoking habit
be factor A with two levels (yes = smoker and no
= non-smoker) and BMI be factor B with three
levels instead of two (low = less than 27, medium
= between 27 and 31, and high = greater than
31). We are interested in the effects of smoking
and BMI on the level of SBP. The data collected
by investigators is presented in Table 13.2.1.

A two-way ANOVA model is given by

Yi jk = μ + αi + β j + (αβ)i j + εi jk

where

Yi jk = SBP of the k th subject in the i th smoking
group and j th BMI group

μ = a constant
αi = a constant representing the effect of smoking
β j = a constant representing the effect of BMI
(αβ)i j = a constant representing the interaction

effect between smoking and BMI
εi jk = an error term, assumed to be independent

normal with mean 0 and variance σ 2, that is,

εi jk ∼ N (0, σ 2), i = 1, 2, · · · , r ;

j = 1, 2, · · · , c;

k = 1, 2, · · · , n
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Table 13.2.1. Systolic blood pressure data.

BMI

Smoking Low ( j = 1) Medium ( j = 2) High ( j = 3) Row Average

Yes 135, 141, 139, 143, 134 147, 136, 144 141, 148 148, 154, 155 146, 160
(i = 1) Mean = 138.4 Mean = 143.2 Mean = 152.6 144.7

No 121, 124, 128 122, 125 131, 124, 135 126, 122 147, 151, 148 153, 154
(i = 2) Mean = 124.0 Mean = 127.6 Mean = 150.6 134.1

Column average 131.2 135.4 151.6 139.4

These terms are subject to the restriction:∑r
i=1 αi = 0,

∑c
j=1 β j = 0

r∑
i=1

(αβ)i j = 0 for all j,

and
c∑

j=1

(αβ)i j = 0 for all i.

The SBP data in Table 13.2.1 indicates that r = 2,
c = 3, and n = 5, since there are 2 levels of factor
A, 3 levels of factor B, and 5 subjects are assigned
to each treatment combination. Thus,

α1 + α2 = β1 + β2 + β3 = 0,

and

(αβ)1 j + (αβ)2 j = (αβ)i1 + (αβ)i2 + (αβ)i3 = 0.

From the model described above, the SBPs Yi jk

are independent normal with mean μ + αi + β j +
(αβ)i j and variance σ 2. To facilitate the discussion
we introduce some notation:

Y i j =
∑n

k=1 Yi jk

n
= the (sample) mean SBP for the i th row

(level) and j th column (level)

Y i · =
∑c

j=1

∑n
k=1 Yi jk

cn
= the (sample) mean SBP for the i th row

Y · j =
∑r

i=1

∑n
k=1 Yi jk

rn
= the (sample) mean SBP for the j th column

Y ·· =
∑r

i=1

∑c
j=1

∑n
k=1 Yi jk

rcn
= the overall mean

From Table 13.2.1, we have the six cell means:
Y 11 = 138.4, Y 12 = 143.2, Y 13 = 152.6, Y 21 =

124.0, Y 22 = 127.6, and Y 23 = 150.6. The two
row means are Y 1· = 144.7 and Y 2· = 134.1, and
the three column means are Y ·1 = 131.2, Y ·2 =
135.4, and Y ·3 = 151.6. The overall mean is given
by Y ·· = 139.4. We may recognize whether or not
interactions are present by examining

� whether the difference between the mean SBP
for any two levels of factor B (BMI) is the same
for all levels of factor A (smoking status). Note
in Table 13.2.1 that the mean SBP increases by
9.4 for smokers but by 23.0 for non-smokers
between medium BMI and high BMI.

� whether the difference between the mean SBP
for any two levels of factor A (smoking status)
is the same for all levels of factor B (BMI). Note
that the difference in mean SBP between smok-
ers and non-smokers for medium BMI is 15.6
but that for high BMI group is only 2.0.

� whether the mean blood pressure curves for
different factor levels are parallel or not. The
curves of the mean responses in a graph as in
Figure 13.2.1, which are not parallel, indicate
the presence of the interaction effects of the two
factors. If, instead, the curves of the mean re-
sponses for the different factor levels are essen-
tially parallel as in Figure 13.2.2, then there are
no interaction effects between the two factors.

13.3 SUM OF SQUARES AND
DEGREES OF FREEDOM

We need to test whether or not the effects are real
effects or simply represent only random variations.
To perform such tests, a breakdown of the total
sum of squares is required. The deviation of an
individual observation from the overall mean can
be decomposed reflecting the factor A main effect,
the factor B main effect, and the interaction effect
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Figure 13.2.1 Effects of smoking and BMI, with interaction effect.

between the two factors as follows:

Yi jk − Y ·· = (Y i j − Y ··) + (Yi jk − Y i j )

= (Y i · − Y ··) + (Y · j − Y ··)
+ (Y i j −Y i ·−Y · j +Y ··)+(Yi jk −Y i j )

(13.3.1)

� The term on the left-hand side of equation
(13.3.1), Yi jk − Y ··, is the total deviation.

� The first term on the right-hand side, Y i · − Y ··,
represents the deviation of the mean of the i th

row from the overall mean and is the factor A
main effect or row effect.

� The second term on the right-hand side, Y · j −
Y ··, represents the deviation of the mean of the
j th column from the overall mean and is the
factor B main effect or column effect.

� The third term on the right-hand side, Y i j −
Y i · − Y · j + Y ·· = (Y i j − Y i ·) − (Y · j − Y ··),
represents the deviation of the column effect
in the i th row from the overall column effect
Y · j − Y ·· and is the interaction effect.

� The last term on the right-hand side, Yi jk − Y i j ,
represents the deviation of an individual obser-
vation from the mean of the treatment group
to which the observation belongs and is the
error term. This term describes within-group
variability.

When we square equation (13.3.1) and sum over
all cases, we obtain: SSTO = SSTR + SSE where

SSTO =
r∑

i=1

c∑
j=1

n∑
k=1

(Yi jk − Y ··)2,

SSTR = n
r∑

i=1

c∑
j=1

(Y i j − Y ··)2

SSE =
r∑

i=1

c∑
j=1

n∑
k=1

(Yi jk − Y i j )
2

SSTR, called treatment sum of squares, repre-
sents the variability between rc treatment means.
SSE represents the variability within treatments
and is the error sum of squares. From the data
in Table 13.2.1, we obtain the following sums of
squares:

SSTO = (135 − 139.4)2 + (141 − 139.4)2

+ (139−139.4)2 + · · · + (154 − 139.4)2

= 3, 919.2

SSTR = 5[(138.4 − 139.4)2 + (143.2 − 139.4)2

+ (152.6 − 139.4)2 + (124.0 − 139.4)2

+ (127.6 − 139.4)2 + (150.6 − 139.4)2]

= 3, 457.6

110

120

130

140

150

160

Low Medium High

Factor B: BMI

S
B

P Yes

No

Figure 13.2.2 Effects of smoking and
BMI, with no interaction effect.
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SSE = (135 − 138.4)2 + (141 − 138.4)2

+ (139−138.4)2 + (143 − 138.4)2 + · · ·
+ (151 − 150.6)2 + (148 − 150.6)2

+ (153 − 150.6)2 + (154 − 150.6)2

= 461.6

From the relationship SSTO = SSTR + SSE, we
can derive

SSTR = SSTO − SSE

and

SSE = SSTO − SSTR. (13.3.2)

Hence, SSTR and SSE can easily be obtained from
the other two sums of squares. Notice that we
can test whether or not the six treatment means
are equal by using the one-way ANOVA tech-
nique (H0 : μ1 = μ2 = μ3 = μ4 = μ5 = μ6 vs.
H1 : not all treatment means are equal). If they
are equal, then neither of the two factors has any
significant effect. In order to test factor effects we
need to further decompose the treatment sum of
squares as follows.

One can obtain a decomposition of SSTR. This
is known as an orthogonal decomposition in
statistics.

SSTR = SSA + SSB + SSAB (13.3.3)

where

SSA = factor A sum of squares
= nc

∑r
i=1 (Y i · − Y ··)2

SSB = factor B sum of squares
= nr

∑c
j=1 (Y · j − Y ··)2

SSAB = interaction sum of squares
= n

∑r
i=1

∑c
j=1(Y i j − Y i · − Y · j + Y ··)2.

The above decomposition is called an orthog-
onal decomposition. Factor A sum of squares
SSA measures the (estimated) variability of fac-
tor A level means Y i · (i.e., row average) about the
overall mean Y ··. The larger the variability, the
greater will be the value of SSA. Factor B sum of
squares SSB measures the (estimated) variability
of factor B level means Y · j (i.e., column average)
about the overall mean Y ··. The interaction sum
of squares SSAB measures the variability of inter-
actions Y i j − Y i · − Y · j + Y ·· for the cr treatment
groups. These three sums of squares provide rele-
vant information about the main effects of factors
A and B, and the interaction effect between factor

A and factor B. We present the following identities
for computational purposes:

SSTO =
r∑

i=1

c∑
j=1

n∑
k=1

Y 2
i jk − Y 2

··
nrc

,

where Y·· =
r∑

i=1

c∑
j=1

n∑
k=1

Yi jk

SSTR =
∑r

i=1

∑c
j=1 Y 2

i j ·
n

− Y 2
··

nrc
,

whereYi j · =
n∑

k=1

Yi jk .

SSA =
∑r

i=1 Y 2
i ·

nc
− Y 2

··
nrc

,

where Yi · =
c∑

j=1

n∑
k=1

Yi jk

SSB =
∑c

j=1 Y 2
· j

nr
− Y 2

··
nrc

,

where Y· j =
r∑

i=1

n∑
k=1

Yi jk

SSE =
∑r

i=1

∑c

j=1

∑n

k=1
Y 2

i jk

−
∑r

i=1

∑c
j=1 Y 2

i j ·
n

.

The interaction sum of squares can be obtained by
simple formulas

SSAB = SSTO − SSA − SSB − SSE

or

SSAB = SSTR − SSA − SSB.

From Table 13.2.1, we can calculate the sums of
squares SSA and SSB using the above identities:

SSA =
∑r

i=1 Y 2
i ·

nc
− Y 2

··
nrc

= (2, 171)2 + (2, 011)2

5(3)
− (4, 182)2

5(2)(3)
= 853.33

SSB =
∑c

j=1 Y 2
· j

nr
− Y 2

··
nrc

= (1, 312)2 + (1, 354)2 + (1, 516)2

5(2)

− (4, 182)2

5(2)(3)
= 2, 320.8
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Thus,

SSAB = SSTR − SSA − SSB

= 3, 457.6 − 853.33 − 2, 320.8 = 283.47

From (13.3.2) and (13.3.3), we get

SSTO = SSTR + SSE

= SSA + SSB + SSAB + SSE

3, 919.2 = 853.33 + 2320.8 + 283.47 + 461.6

We note that the large part of the total variation is
associated with the effects of factor B (BMI).

We have discussed in Section 12.5 how the de-
grees of freedom for one-factor ANOVA are di-
vided between the sums of squares. The degrees
of freedom for two-factor ANOVA is determined
as follows: In case of n observations for each treat-
ment group, we have a total of N = nrc observa-
tions. The number of treatment groups is rc. There-
fore, the degrees of freedom associated with SSTO,
SSTR, and SSE are given by nrc − 1, rc − 1,
and nrc − rc = rc(n − 1). Corresponding to the
decomposition of the treatment sum of squares
SSTR = SSA + SSB + SSAB, the degrees of free-
dom rc − 1 associated with SSTR can be broken
down to (r − 1) degrees of freedom associated
with SSA, (c − 1) with SSB, and (rc − 1) − (r −
1) − (c − 1) = (r − 1)(c − 1) with SSAB (the in-
teraction sum of squares), respectively.

The mean squares are obtained in the similar
way by dividing the sum of squares by their asso-
ciated degrees of freedom. We get

MSTR = SSTR

rc − 1
, MSA = SSA

r − 1
,

MSB = SSB

c − 1
, MSAB = SSAB

(r − 1)(c − 1)
,

MSE = SSE

rc(n − 1)

Example 13.3.1. From the SBP data in Table
13.2.1, we obtain the degrees of freedom asso-
ciated with the sums of squares and their corre-
sponding mean squares.

SSTO: nrc − 1 = (5)(2)(3) − 1 = 29
SSTR: rc − 1 = (2)(3) − 1 = 5
SSA: r − 1 = 2 − 1 = 1
SSB: c − 1 = 3 − 1 = 2
SSAB: (r − 1)(c − 1) = (2 − 1)(3 − 1) = 2
SSE: rc(n − 1) = (2)(3)(5 − 1) = 24

MSTR = 3, 457.6

5
= 691.52,

MSA = 853.33

1
= 853.33,

MSB = 2, 320.8

2
= 1, 160.4,

MSAB = 283.47

2
= 141.74,

MSE = 461.6

24
= 19.233

We note that unlike the sum of squares, which are
additive, that is, SSTR = SSA + SSB + SSAB, the
sum of mean squares (MSA, MSB, and MSAB) is
not equal to MSTR. That is, 691.52 �= 853.33 +
1, 160.4 + 141.74.

The two-way ANOVA model was stated in the
previous section, and it was discussed that the as-
sumptions for the two-way ANOVA are essentially
the same as those for the one-way ANOVA. We
will restate the assumptions below:

1. The populations from which the observations
are made (or the samples are drawn) must be
normally distributed or approximately normally
distributed.

2. The populations must be statistically indepen-
dent.

3. The variances of the populations must be equal.
4. The treatment groups must have equal numbers

of observations.

The third assumption, the homogeneity of the vari-
ance, is often overlooked in practice by the re-
searchers. We have seen the ANOVA techniques
being applied to situations where the normality
assumption is not satisfied. Keep in mind that
the populations under consideration must be at
least approximately normally distributed. When
the observations are not normally distributed, there
are some techniques available in statistics that
will allow us to obtain observations that are nor-
mally distributed, such as a logarithmic transfor-
mation. These techniques will not be discussed.
As with the one-way ANOVA, the results of the
two-way ANOVA can be summarized as shown in
Table 13.3.1.

13.4 F TESTS

We mentioned earlier that the two-way ANOVA
enables us to test three hypotheses. As in the
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Table 13.3.1. Two-way ANOVA table.

Source of Variation df Sum of Squares Mean Squares

Between treatments rc − 1 = 5 3,457.6 691.52 = 3, 457.6

5

Factor A r − 1 = 1 853.33 853.33 = 853.33

1

Factor B c − 1 = 2 2,320.8 1, 160.4 = 2, 320.8

2

A ∗ B interaction (r − 1)(c − 1) = 2 283.47 141.74 = 283.47

2

Error (Residual) rc(n − 1) = 24 461.6 19.233 = 461.6

24
Total nrc − 1 = 29 3,919.2

one-way ANOVA, the test statistics are based on
the ratio of appropriate mean squares (MS), which
follow the F distribution. Thus, the tests are called
F tests. Usually, the two-factor ANOVA begins
with a test to determine whether or not these two
factors interact. We state the hypotheses to test if
two factors interact.

Test for Interactions

H0: all (αβ)i j = 0 vs. H1: not all (αβ)i j equal 0

The test statistic is given by F = MSAB

MSE
.

The values of the test statistic being close to 1
(i.e., the values of MSAB are almost equal to the
values of MSE) would indicate that there are no
interaction effects. On the other hand, the “large”
values of F would indicate the existence of interac-
tions. When H0 holds, it is known that the above
test statistic is distributed as F[(r−1)(c−1), rc(n−1)],

the F distribution with the degrees of freedom,
(r − 1)(c − 1) and rc(n − 1). Here are the steps
to be taken to perform the test at the significance
level α.

1. Compute the test statistic F = MSAB

MSE
.

2. Reject the null hypothesis if

F > F[(r−1)(c−1),rc(n−1): 1−α].

Accept the null hypothesis if

F ≤ F[(r−1)(c−1), rc(n−1): 1−α].

where F[(r−1)(c−1), rc(n−1): 1−α] is a critical value
of the test that is the (1 − α)100th percentile
point.

3. The corresponding p value is given by p =
P(F ≤ F[(r−1)(c−1),rc(n−1)]).

Test for Main Effects of Factor A

To test for main effects of factor A, we state the hy-
potheses H0: α1 = α2 = · · · = αr = 0 vs. H1:
not all αi equal 0.

The test statistic is given by F = MSA

MSE

The “large” values of F indicate the existence of
main effects. When H0 holds, the test statistic is
distributed as F[(r−1), rc(n−1)], the F distribution
with the degrees of freedom, (r − 1) and rc(n −
1). Here are the steps to be taken to perform the
test at the significance level α.

1. Compute the test statistic F = MSA

MSE
.

2. Reject the null hypothesis if

F > F[(r−1), rc(n−1): 1−α].

Accept the null hypothesis if

F ≤ F[(r−1), rc(n−1): 1−α].

where F[(r−1), rc(n−1): 1−α] is a critical value of
the test that is the (1 − α)100th percentile point.

3. The corresponding p value is given by

p = P(F ≤ F[(r−1), rc(n−1)]).

Test for Main Effects of Factor B

To test for main effects of factor B, we state the
hypothesis H0: β1 = β2 = · · · = βc = 0 vs. H1:
not all β j equal 0.

The test statistic is given by F = MSB

MSE

Similar to the test for the factor A main effect,
the “large” values of F indicate the existence
of main effects. When H0 holds, the test statis-
tic is distributed as F[(c−1), rc(n−1)], the F distri-
bution with the degrees of freedom, (c − 1) and
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Figure 13.4.1 Interaction effects be-
tween two factors—SBP data.

rc(n − 1). The steps to perform the test at the sig-
nificance level α are:

1. Compute the test statistic F = MSB

MSE
.

2. Reject the null hypothesis if

F > F[(c−1), rc(n−1): 1−α].

Accept the null hypothesis if

F ≤ F[(c−1), rc(n−1): 1−α].

where F[(c−1), rc(n−1): 1−α] is a critical value of
the test which is the (1 − α)100th percentile
point.

3. The corresponding p value is given by

p = P(F ≤ F[(c−1), rc(n−1)]).

Example 13.4.1. We shall perform the above F
tests, using the blood pressure data in Table 13.2.1.
Let the significance level be specified by α = 0.05.

Interaction effects: We obtain the value of the
test statistic

F = MSAB

MSE
= 141.74

19.233
= 7.370.

Since the risk of committing a type I error is fixed
at α = 0.05, we get

F[(r−1)(c−1), rc(n−1): 1−α]

= F[2,24: 0.95] = 3.407 by linear interpolation,

but one may simply approximate it by taking
F[2, 25: 0.95] = 3.385, which is found in Table G
of the Appendix. The test statistic F = 7.370 >

F[2, 24: 0.95] = 3.407. Hence, we reject H0 and con-
clude that there exist statistically significant inter-
action effects between smoking and BMI. We now
compute the p value of the test.

p = P
(
F ≤ F[(r−1)(c−1), rc(n−1)]

)
= P

(
7.370 ≤ F[2, 24]

)
< P

(
6.598 ≤ F[2, 25]

)
= 0.005.

So the p value is less than 0.005, and as Fig-
ure 13.4.1 shows, the test is significant.

Main effects of factor A: We compute the value
of the test statistic

F = MSA

MSE
= 853.33

19.233
= 44.368.

The critical value is obtained by
F[(r−1), rc(n−1): 1−α] = F[1,24: 0.95] = 4.264. Since
F[1, 24: 0.95] is not provided in Table G in
the Appendix, one can approximate it by
F[1, 25: 0.95] = 4.242. The test statistic F =
44.368 > F[1, 24: 0.95] = 4.264. Hence, we reject
H0 and conclude that there exist statistically
significant main effects of factor A (smoking).
The p value of the test is

p = P
(
44.368 ≤ F[1, 24]

)
< P

(
13.88 ≤ F[1, 25]

)
= 0.001.

Main effects of factor B: The test procedure for
main effects of factor B is quite similar to that for
factor A. We compute the value of the test statistic

F = MSB

MSE
= 1, 160.4

19.233
= 60.334.

The critical value is obtained by
F[(c−1),rc(n−1):1−α] = F[2,24:0.95] = 3.407. The test
statistic F = 60.334 > F[2, 24: 0.95] = 3.407.

Hence, we reject H0 and conclude that there exist
statistically significant main effects of factor B
(BMI). The p value of the test is

p = P
(
60.334 ≤ F[2, 24]

)
< P

(
9.223 ≤ F[2, 25]

)
= 0.001.

The results of the two-factor ANOVA indicate that
smoking and BMI have significant interaction ef-
fects on systolic blood pressure, and furthermore,
the individual factors have significant main effects
as well.
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Table 13.4.1. Two-way ANOVA table.

Source of
Variation df SS MS F p value

Smoking 1 853.33 853.33 44.368 < 0.001
BMI 2 2,320.8 1,160.4 60.334 < 0.001
Smoking*BMI 2 283.47 141.74 7.370 < 0.005
Error 24 461.6 19.233

Total 29 3,919.2

We summarize the above results in the two-way
ANOVA table (Table 13.4.1).

Example 13.4.2. A study was performed to eval-
uate the effectiveness of two different systems of
light cure polymerization for composite resins in
orthodontic bracket bonding. In this study, conven-
tional tungsten halogen light system was compared
to a recently developed system using plasma light.
Bonding strength, measured in megapascals, was
tested at 2 minutes, 10 minutes, and 15 minutes
after bonding. The summary of the data is pre-
sented in the following ANOVA table. Complete
the table. What conclusions can you draw from the
table?

Source of Variation df SS MS F p value

Factor A 0.075
(Light cure)

Factor B 45.603
(Time)

Light*time interaction 3.336
Error (Residual) 18 24.480

Total

Solution. We will leave this as an exercise. See
Exercise 9.

In summary the following steps are to be taken by
the investigators to perform a two-way ANOVA:

1. State the hypotheses.
2. Compute the sums of squares and the appro-

priate mean squares by dividing the SS by the
associated degrees of freedom.

3. Compute the value of the test statistic, F .
4. Find the critical value for each F test, using the

significance level α = 0.05.

5. Summarize the results in an ANOVA table.
6. Make the decisions and draw conclusions.

There are many experimental designs for
ANOVA. The most popular ones are randomized
factorial designs, randomized block designs, Latin
square designs, nested designs, and repeated mea-
sures designs. We will introduce repeated mea-
sures design in the following section. Readers who
wish to study other designs are referred to an
excellent book by Neter et al. [1].

One may ask, “what do we do when the as-
sumptions of normality and the homogeneity of
variances are seriously violated?” Although the F
test is robust with respect to the deviations from the
normality assumption, non-parametric procedures
are advisable if the sample sizes are equal and
the homogeneity of variances can’t be assumed.
For example, when the observations greatly de-
viate from the normal distribution and the vari-
ances for different samples are considerably dif-
ferent, non-parametric ANOVA procedures, such
as Kruskal-Wallis and Friedman rank tests, should
be considered. These non-parametric tests will be
introduced in Chapter 14.

13.5 REPEATED MEASURES
DESIGN

In clinical trials in dental and medical research
projects, it is common practice to make a sequence
of observations from each subject over time. The
crossover design we discussed in Chapter 2 is an
example of this in which investigators observe sub-
jects’ responses from successive treatment peri-
ods. The term repeated measures design is used
to refer to such situation in which measurements of
the same variable are made on each subject on two
or more different points in time. Some examples
of repeated measures design are as follows:

1. Pulse rates are measured every 15 minutes to
assess a patient’s anxiety level while waiting in
the clinic lobby.

2. Daily level of insulin is recorded by subjects
with diabetes mellitus.

3. Periodontal/implant patients are recalled every
3 months to observe their bony dehiscence.

4. Tooth shade is measured at baseline and 3 and
7 days after treatment with a tooth-whitening
agent.

5. The same 10 individuals are used to investigate
the effect of three different drugs over a period
of time.
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13.5.1 Advantages and
Disadvantages

The major advantage of the repeated measures de-
sign is the fact that fewer subjects are required than
in a design in which different subjects are used for
each treatment in the study. Suppose, for example,
three treatments are under investigation. If a dif-
ferent sample of 10 subjects is used for each of the
three treatments, a total of 30 subjects would be
required. However, if we can make observations
on the same subjects for each treatment or point in
time, that is, if a repeated measures design is em-
ployed, only 10 subjects would be required. This
is a very attractive feature if the subjects are dif-
ficult to recruit. Another advantage is that in a re-
peated measures design, equivalent pretreatment
measures are not a matter of concern because each
individual serves as his or her own control.

A major disadvantage is the risk of withdrawal
from the study if the subjects require multiple tests
over a long period of time. The other disadvan-
tage is that the order in which treatment levels are
administered must be controlled. A subject’s re-
sponse to a treatment received last in a sequence
may be different from the response that would have
occurred if the treatment had been received first in
the sequence. The problem of the order effect can
be solved by randomizing the sequence of treat-
ments for each subject. Investigators should also
be alert for carryover effect. The carryover effect
can be eliminated by allowing a sufficient length
of time between treatments.

In statistics, the repeated measures design is re-
ferred to as a randomized block design, with each
subject designated as a block. The simplest re-
peated measures design is the one in which one
additional variable, referred to as a factor, is con-
sidered. This design is called a single-factor re-
peated measures design. When the treatment and
subject effects are additive (that is, there is no inter-
action between treatments and subjects), we have
the following model for the fixed-effect additive
single-factor repeated measures:

Yi j = μ + αi + β j + εi j

This model is very similar to the one discussed in
Section 13.2. An example of a repeated measures
design is presented in the following.

Table 13.5.1. L values at three time points.

Subject Baseline 3-day 7-day

1
2
3
4
5
6
7
8
9

10

70.4
74.0
73.5
64.5
74.5
68.4
70.0
67.8
71.0
68.9

71.6
76.2
74.5
64.5
74.6
69.5
71.9
68.7
70.2
72.4

72.5
75.3
75.0
64.9
75.3
70.8
69.4
70.8
71.9
72.0

Example 13.5.1. Ten subjects were recruited for
a tooth-whitening study. The subjects were in-
structed to use Whitestrips once a day for 20 min.
per day. Investigators measured the individual’s L
value at the baseline, 3, and 7 days to evaluate the
effectiveness of the whitening product. Is there a
difference in the mean L value among the three
time points? (See Table. 13.5.1.)

Solution. The hypotheses to be tested are H0 :
μBL = μ3Day = μ7Day vs. H1: Not all μs are equal.

We need to calculate SSTO, SSB, SSTR, and SSE
as follows:

SSTO = (70.42 + 74.02 + 73.52 + · · · + 72.02)

− (2, 1352/30)

= 294.39

SSB = 214.52+225.52+223.02 + · · · + 213.32

3
− (2, 1352/30)

= 268.25

SSTR = 703.02 + 714.12 + 717.92

10
− (2, 1352/30)

= 11.97

SSE = 294.39 − 268.25 − 11.97

= 14.17

Using the significance level α = 0.05, the criti-
cal value is 3.555 (F(2,18; 0.95) = 3.555). We reject
the null hypothesis and conclude that the mean L
value is statistically significantly different among
the three time points, with the p value less than
0.005. The results of the calculation are presented
in Table 13.5.2.
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Table 13.5.2. ANOVA table for Example 13.5.1.

Source of
Variation df SS MS F p value

Treatments 2 11.97 5.985 7.605 < 0.005
Blocks 9 268.25 29.806
Error 18 14.17 0.787

Total 29 294.39

13.6 EXERCISES

1 What are the assumptions for the two-way
ANOVA?

2 What are between-group variance and within-
group variance?

3a. Explain what interaction effects and main
effects are.

b. Explain how you can recognize interaction
effects without preparing an ANOVA table.

4 In Section 13.2, what is the factor under inves-
tigation? How many levels are there in the study?
a. Compute the sample means and the sample

standard deviations for each group.
b. Compute the sums of squares.
c. Do the six group means significantly differ? Use

the significance level α = 0.05.

d. Present the results in an ANOVA table.

5 What is the difference between one-way and
two-way ANOVA?

6 Final exam scores in the biostatistics course for
hygiene students, dental students, and residents are
given. At the significance level α = 0.05, can you
conclude that there is a difference in the mean score
of the three groups?

Exam Score

Hygiene 83 88 68 84 74 94 75 80 71
Dental 77 92 48 82 79 85 66 73 82
Residents 98 84 79 88 95 82 76 94 89

7 How many independent variables are there in
two-way ANOVA?

8 The following income data for physicians is
reported. Four physicians in each treatment group
are randomly selected. Is there any sex difference?
Perform a two-way ANOVA at α = 0.05.

Location

Sex San Bernardino Riverside

Female 123 354 275 327 224 250 155 285
Male 265 402 160 312 245 268 508 146

9a. Complete the ANOVA table presented in
Example 13.4.2.

b. What conclusions can you draw from the
table?

10 Medical research was done to assess the ef-
fectiveness of diet (vegetarian and non-vegetarian)
and physical exercise on hypertension. The in-
vestigators created three categories for physical
exercise according to the amount of time spent
in physical activities: low, medium, and high.
Twenty-eight subjects were randomly assigned to
each treatment group. Summary of the SBP data
is presented in the following table. Would you use
a two-way ANOVA? If not, why?

Physical Exercise

Diet Low Med High

Vegetarian X = 1.30.5 X = 126.7 X = 121.4
S = 12.9 S = 13.8 S = 12.7

Non-vegetarian X = 139.2 X = 135.7 X = 133.8
S = 13.7 S = 29.4 S = 10.2
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Chapter 14

Non-parametric Statistics

14.1 INTRODUCTION

Statistical procedures discussed in the previous
chapters assumed that the samples were drawn
from a known population, such as the normal
or at least approximately normal, whose mathe-
matical form of distribution function is known.
It was stressed throughout the discussions that
the normality assumption is necessary for the
method of testing hypotheses to be valid. Statis-
tical procedures based on the assumption of the
known underlying distributions are referred to as
parametric statistics. The results of a parametric
method depend on the validity of these assump-
tions. For the statistical tests in which the popu-
lation from which the samples are drawn is not
normally distributed, statisticians developed alter-
native procedures based on less stringent assump-
tions, referred to as non-parametric statistics or
distribution-free statistics. Non-parametric tests
can be used in place of their parametric coun-
terparts, such as Z test, t test, and F test, when
the normality assumption is untenable in practi-
cal applications. There are some advantages as
well as disadvantages in the use of nonparametric
statistics.

Advantages of non-parametric methods are as
follows.

1. They can be used without the normality
assumption.

2. They can be used with nominal or ordinal data.
3. Hypothesis testing can be performed when

population parameters, such as mean μ and
standard deviation σ are not involved.

4. The computations are lighter in most cases and
the procedures are easier to understand.

5. Because they deal with ranks rather than the
actual observed values, non-parametric tech-
niques are less sensitive to the measurement

errors than parametric techniques and can use
ordinal data rather than continuous data.

For these reasons, nonparametric statistical meth-
ods are quite popular and extensively used in prac-
tice.

Disadvantages of non-parametric methods are
the following.

1. They tend to use less information than the para-
metric methods.

2. They are less sensitive than the parametric tests.
Thus the larger differences are needed to reject
the null hypothesis.

3. They are less efficient than their parametric
counterparts. Roughly, this means that larger
sample sizes are required for non-parametric
tests to overcome the loss of information.

If the underlying population is normally dis-
tributed (or approximately normal) or if the central
limit theorem can be appropriately applied, then
the parametric methods are preferred. However,
if the parametric assumption is not met, the re-
searcher should be able to use the non-parametric
methods as valuable tools for data analysis. It
is usually difficult to tell from a small sample
whether the sample is taken from a normal popu-
lation. Non-parametric procedures should be used
when the researcher has any doubt about normality
assumption. Even if the assumption of normality
is reasonable, non-parametric methods can still be
used. We shall introduce the non-parametric test
procedures that are most popular and widely ap-
plied in journal articles in biomedical sciences.
Readers will realize that non-parametric statis-
tical methods often involve less computational
work and are easier to apply than other statisti-
cal methods. We note that much of the theory be-
hind the non-parametric methods can be developed
rigorously using hardly any mathematics beyond
college algebra.

257
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14.2 THE SIGN TEST

The sign test is known to be the oldest non-
parametric test procedure. It can be applied to com-
pare paired samples. The test is useful for testing
whether one random variable in a pair (X, Y ) tends
to be larger than the other random variable in the
pair. It is often used for biomedical research in
which quantitative measurements are not feasible,
but it is possible to determine the order for each
pair (Xi , Yi ) of the observations. The assumptions
required by the sign test are (a) the random vari-
able under consideration has a continuous distri-
bution, (b) the paired samples (Xi , Yi ) are inde-
pendent, and (c) the measurement scale is at least
ordinal within each pair. The test does not make
any assumptions about the mathematical form of
the distribution. The populations from which the
samples are drawn are not necessarily statistically
independent. The null hypothesis of the sign test
is

H0 : P(Xi < Yi ) = P(Xi > Yi ) = 1

2
(The median of Xi is equal to the median

of Yi for all i),

where Xi may represent the observation before the
treatment and Yi may represent the observation
after treatment. That is, Xi and Yi can be viewed
as two observations for a matched pair. Each pair
of sample data is represented by either

� a plus sign (+) if the first value Xi is greater than
the second value Yi of the pair, or

� a minus sign (−) if the first value Xi is smaller
than the second value Yi of the pair, or

� if the two values are equal, in which case the pair
is deleted from the data.

Similarly, the null hypothesis can be stated as

H0 : μ1 = μ2 (the two means are equal).

Either H0 : P(Xi < Yi ) = P(Xi > Yi ) = 1/2 or
H0 : μ1 = μ2; the sign test is a non-parametric
procedure designed to test if Xi and Yi have the
same location parameter. When the null hypothe-
sis is true, we would expect that the number of pairs
(Xi , Yi ) in which Xi < Yi is equal to the number
of pairs (Xi , Yi ) in which Xi > Yi . In other words,
if H0 is true, we expect the number of plus signs
and the number of minus signs to be about the
same. The null hypothesis is rejected if too few or
too many plus (minus) signs are observed. The test

Table 14.2.1. Weekly new patient data.

Week Barton Colton Sign

1 4 2 +
2 1 0 +
3 3 3
4 1 2 −
5 3 2 +
6 4 2 +
7 3 4 −
8 4 1 +
9 2 0 +

10 2 2
11 3 1 +
12 1 2 −

statistic T is defined by

T = total number of plus signs.

That is, T equals the number of pairs (Xi , Yi ) in
which Xi is larger than Yi . The following examples
describe the test procedure. Example 14.2.1 deals
with a small sample problem and Example 14.2.2
a large sample problem with n ≥ 30.

Example 14.2.1. An implant specialist has two
offices in adjacent communities, Barton and
Colton. In terms of the patient volume, the two
offices have been about the same for a number of
years. He has been advertising for the Barton office
in the local newspaper. To determine the effective-
ness of the advertisement, he had his office man-
agers record the new patients each week in both
offices for the 12-week period while the advertise-
ment appeared in the paper. From Table 14.2.1,
perform a hypothesis test to determine whether the
advertisement is effective at the significance level
α = 0.05.

Solution. Let μ1 and μ2 denote the mean numbers
of new patients per week at the offices in Barton
and Colton, respectively. The implant specialist
suspects that the advertisement would attract more
new patients. We may state the hypotheses as H0 :
μ1 = μ2 vs. H1 : μ1 > μ2.

Since two pairs, week 3 and week 10, have the
same number of new patients, they will be deleted
from the data. Thus, the sample size for the sign test
is n = 10. Let the test statistic T be the number of
plus signs. Then T = 7. From the table of binomial
probabilities (Table B in the Appendix), we find
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the p value for n = 10, and α = 0.05,

p = P(X = 7) + P(X = 8) + P(X = 9)

+ P(X = 10)

= 0.1172 + 0.0440 + 0.0098 + 0.0010

= 0.1720.

Because the p value is 0.1720 > 0.05, we accept
the null hypothesis and cannot conclude on the
basis of the data that the advertisement is effec-
tive in producing a statistically significantly larger
number of new patients.

When the number of sample pairs n is suffi-
ciently large such that npq ≥ 5, we can use the
normal approximation to the binomial distribution.

Example 14.2.2. A manufacturer of toothbrushes
has developed two types of mechanical tooth-
brushes, A and B. Thirty-nine subjects were ran-
domly selected to determine acceptability of the
toothbrush products by the consumers. Subjects
were instructed to use both A and B for 4 days
each. At the end of the study, subjects assigned a
score 0 (unacceptable) or 1 (acceptable) to each
product. The manufacturer’s data is presented in
Table 14.2.2. Is there any difference in consumer
acceptability between A and B? Let p1 and p2 be
the proportion of consumer acceptance for A and
B. Perform a significance test at α = 0.05. That

Table 14.2.2. Consumer response to mechanical
toothbrush.

Subj No. A B A − B Subj No. A B A − B

1 0 1 −1 21 1 0 1
2 0 1 −1 22 1 0 1
3 0 0 0 23 0 1 −1
4 1 0 1 24 1 0 1
5 1 1 0 25 1 0 1
6 0 1 −1 26 1 0 1
7 1 0 1 27 1 0 1
8 1 0 1 28 0 1 −1
9 1 0 1 29 0 0 0

10 0 1 −1 30 1 0 1
11 1 0 1 31 1 0 1
12 1 0 1 32 1 0 1
13 0 1 −1 33 0 1 −1
14 1 0 1 34 0 1 −1
15 1 0 1 35 1 0 1
16 1 0 1 36 1 0 1
17 1 0 1 37 1 0 1
18 0 1 −1 38 1 0 1
19 1 1 0 39 1 0 1
20 1 0 1

is, test the hypotheses

H0 : p1 = p2 = 1

2
vs. H1 : p1 > p2

Solution. Because there are four pairs in which the
scores are equal, that is, A − B = 0, these will be
deleted from the samples. So the sample size n =
total number of “ + ” and “ − ” = 39 − 4 = 35.

The test statistic is T = total number of plus signs
= 25. Because n = 35 is large enough, the normal
approximation to the binomial distribution can be

used. Under the null hypothesis, μ = np = n

2
and

σ 2 = npq = n

4
.

The statistic Z =
T − n

2√
n/4

◦∼ N (0, 1).

Z =
(25 − 0.5) − 35

2√
35/4

= 2.3664.

The value 0.5 in the numerator is a continuity
correction. The p value is obtained by

p = P(2.3664 < Z ) = 0.0089 < 0.05.

Thus we conclude that the consumer acceptance
for toothbrush A is statistically significantly dif-
ferent than that for toothbrush B. In fact, the ac-
ceptance level for A is significantly higher with
the p value of 0.0089.

14.3 THE WILCOXON RANK
SUM TEST

The sign test considers only the sign (plus or
minus), not the magnitude of the differences of
the sample values. The Wilcoxon rank sum test,
which considers the magnitude of the differences
via ranks, was developed to test the null hypothe-
sis that there are no differences in two treatments.
That is, the two samples come from identical popu-
lations. The test does not require that the two inde-
pendent populations follow normal distributions. It
requires only that the samples are from continuous
distributions to avoid ties. In practice, however, we
will sometimes observe ties, and the ties will not
prevent us from using the test. The test statistics
are based on the ranks of observations rather than
their actual numerical values, and hence this proce-
dure is appropriate for a wide variety of situations
in biomedical sciences as well as social sciences.
The test is also known as the Mann-Whitney U
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Table 14.3.1. Amount of mercury released from amalgam fillings (μg)

Xi (10%) .29 .52 .70 .51 .54 .58 1.58 .60 1.18 .67 .98 .77 .72
Rank 2 7 13 6 8 9.5 23 11 20 12 19 16 14

Y j (15%) 1.23 .37 2.10 2.29 1.28 .44 1.76 .96 .08 .39 .93 .58 .76
Rank 21 3 25 26 22 5 24 18 1 4 17 9.5 15

test and is widely used as a non-parametric al-
ternative to the two-sample t test for independent
samples. The null and alternative hypotheses can
be stated as follows:

H0 : P(X > Y ) = 1/2 (X and Y have the same
distribution)

vs.
H1 : P(X > Y ) �= 1/2 (X and Y have different

distributions),
or
H1 : P(X > Y ) > 1/2 (observations from popu-

lation X are likely to be larger than those from
population Y ),

or
H1 : P(X > Y ) < 1/2 (observations from popu-

lation Y are likely to be larger than those from
population X )

In the Wilcoxon rank sum test, the observed
values from both samples are combined and then
ranked. If the first sample has n1 observations and
the second sample has n2 observations, the com-
bined sample will be ranked from 1 to N , where
N = n1 + n2. The test statistic is the sum of the
ranks for the first sample (Xi ), denoted WX , or the
sum of the ranks for the second sample (Y j ), de-
noted WY . In practice, it does not matter which sum
we prefer to use. The sum of the first N integers
is equal to (N )(N + 1)/2. This formula enables us
to obtain WX from WY and vice versa. Since it is
easier to work with a smaller sample size, let n1

be the smaller of the two sample sizes. Without
loss of generality, we assume that the first sample
has size n1. The test can be performed with small
samples (less than 10 samples), but we assume that
both n1 and n2 are at least 10 so that the normal
approximation can be used. Steps leading to the
Wilcoxon rank sum test are:

1. Compute Z = WX − μW

σW
, where WX = sum of

the ranks of the first sample

μW = (n1)(n1 + n2 + 1)

2

and

σW =
√

(n1 · n2)(n1 + n2 + 1)

12

2. Find the critical values. For the significance
level α = 0.05, use the z values of −1.96 and
1.96.

3. Reject the null hypothesis if Z = WX − μW

σW
<

−1.96 or Z = WX − μW

σW
> 1.96. Accept the

null hypothesis if −1.96 ≤ Z = WX − μW

σW
≤

1.96.

The next examples illustrate the Wilcoxon rank
sum test.

Example 14.3.1. To determine if at-home bleach-
ing products for teeth cause mercury to be released
from amalgam fillings, the facial surface of 26
posterior teeth were prepared and amalgam was
then condensed into the preparation and carved.
One day later, 13 teeth samples each were put
into 10% and 15% carbamide peroxide. A week
later the amount of mercury released was mea-
sured. Let X represent the measurements of mer-
cury released for the first sample in 10% car-
bamide peroxide and Y the second sample in
15% carbamide peroxide. Table 14.3.1 presents the
data.

Notice that one measurement value 0.58 from
the first sample is tied with the same value in the

second sample. The average rank
9 + 10

2
= 9.5 is

assigned to the tied observations. We compute the
sum of the ranks of the first sample

WX = 2 + 7 + 13 + 6 + 8 + 9.5 + 23 + 11

+ 20 + 12 + 19 + 16 + 14 = 160.5

The mean μW and the SD σW are obtained by
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Table 14.3.2. Attachment levels of 30 study subjects.

Subject No. 1 2 3 4 5 6 7 8

PLA (X ) 5.2 5.8 4.3 5.0 5.5 4.7 4.8 4.2
ePTFE (Y ) 5.8 6.0 5.6 4.4 5.6 5.0 4.8 5.4

Subject No. 9 10 11 12 13 14 15 16

PLA (X ) 5.1 5.7 5.5 4.5 4.0 4.9 4.1 4.2
ePTFE (Y ) 5.9 5.6 5.6 5.7 4.4 5.7

substitution,

μW = (n1)(n1 + n2 + 1)

2
= (13)(13 + 13 + 1)

2
= 175.5

σW =
√

(n1 · n2)(n1 + n2 + 1)

12

=
√

(13 · 13)(13 + 13 + 1)

12
= 19.5

The value of the test statistic is

Z = WX − μW

σW
= 160.5 − 175.5

19.5
= −0.7692

Since Z = −0.7692 is between −1.96 and 1.96,

we accept the null hypothesis and conclude that
there is no statistically significant difference in
mercury released between 10% and 15% car-
bamide peroxide at the significance level α =
0.05.

Example 14.3.2. A study was performed to
assess periodontal regenerative techniques in
intrabony defects utilizing a bioabsorbable, poly-
lactic acid (PLA) barrier or the non-resorbable,
expanded polytetrafluoroethylene (ePTFE) barrier
[1]. Thirty patients each with one radiographically
evident intrabony periodontal lesion of probing
depth ≥ 6 mm participated in a 12-month con-
trolled clinical trial. The subjects were randomly
divided into two groups. The test group of n1 = 16
subjects received a PLA barrier, and the control
group of n2 = 14 subjects received a ePTFE bar-
rier. The attachment level of the subjects was
measured when the clinical trial ended, as shown
in Table 14.3.2. Perform a significance test at
α = 0.05.

Solution. The Wilcoxon rank sum test is chosen to
test

H0 : attachment level for the test group is not dif-
ferent from that for the control group,

Table 14.3.3. Observations from two populations are
ranked.

X Y Rank X Y Rank X Y Rank

4.0 1 4.8 10.5 5.6 21.5
4.1 2 4.9 12 5.6 21.5
4.2 3 5.0 13.5 5.6 21.5
4.2 4 5.0 13.5 5.7 25
4.3 5 5.1 15 5.7 25

4.4 6.5 5.2 16 5.7 25
4.4 6.5 5.4 17 5.8 27.5

4.5 8 5.5 18.5 5.8 27.5
4.7 9 5.5 18.5 5.9 29

4.8 10.5 5.6 21.5 6.0 30

H1 : attachment level for the control group is larger
than that for the test group.

There are six groups of tied observations in Ta-
ble 14.3.2. The average of the ranks that would
have been assigned is assigned to the tied observa-
tions within each group, as shown in Table 14.3.3.
The statement of the alternative hypothesis H1 is
one-tailed test. The sum of the ranks assigned to
Y is

WY = 6.5 + 6.5 + 10.5 + 13.5 + 17 + 21.5

+ 21.5 + 21.5 + 21.5 + 25 + 25

+ 27.5 + 29 + 30 = 276.5

The mean μW and the SD σW are obtained by
substitution,

μW = (16)(30 + 1)

2
= 248

and

σW =
√

(16 · 14)(30 + 1)

12
= 24.06.

The value of the test statistic is Z = WY − μW

σW
=

276.5 − 248

24.06
= 1.1845

Table D in the Appendix shows that P(1.1845 <

Z ) > 0.1170. Since this p value is larger than
α = 0.05, a decision should be made not to re-
ject the null hypothesis. We conclude that there is
no statistically significant difference in attachment
level between the test and control groups.
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14.4 THE WILCOXON SIGNED
RANK TEST

The Wilcoxon signed rank test is also designed
to test that two treatments are the same, or the hy-
pothesis that two population distributions are iden-
tical. This test can be used in place of the t test
for dependent samples, without the assumption of
the usual normal distributions. Thus, the test is re-
ferred to as the Wilcoxon matched pairs test for
dependent samples. In dentistry, such matched
pairs can occur from obtaining repeated measures
on the same subjects at baseline and at follow-up
examinations, or obtaining pairs of subjects who
are matched based on their prognostic variables
such as age, smoking status, oral health, probing
depth, or bone density. The Wilcoxon signed rank
test is based on the ranks of the absolute differ-
ences between the paired observations rather than
the numerical values of the differences. As a re-
sult, the Wilcoxon test is appropriate for the ob-
servations that represent ordinal data. A matched
pair (Xi , Yi ) is a single observation on a bivari-
ate random variable. In the sign test discussed in
Section 14.2, the matched pairs of the data were
reduced for analysis to a plus, a minus, or zero in
case of ties. The Wilcoxon signed rank test also
reduces the matched pair (Xi , Yi ) to a single ob-
servation by taking the difference

Di = Xi − Yi (or Di = Yi − Xi ) for

i = 1, 2, · · · , n

These differences Di , i = 1, 2, · · · , n, will con-
stitute a sample of single observations. Unlike the
sign test, which merely considers whether Di has
a positive or a negative sign or zero, the Wilcoxon
signed rank test takes the magnitude of the pos-
itive differences relative to the negative differ-
ences. In this section, we assume that the distri-
bution of the differences Di is symmetric. This
assumption was not made for the sign test. The
distribution of a random variable is said to be
symmetric with respect to some constant c, if
P(X ≤ c − x) = P(X ≥ c + x) for all x . All nor-
mal distributions and t distributions are symmet-
ric. So is the binomial distribution if p = 1/2. The
Wilcoxon signed rank test will be described to test

H0 : Treatment A and treatment B are equivalent.

1. Compute the difference Di = Xi − Yi for
matched pairs.

2. Rank all of the Di without regard to sign. That
is, rank the absolute values |Di |.

3. Affix the sign of the difference to each rank.
This indicates which ranks are associated with
positive Di or negative Di .

4. Compute T + = the sum of the ranks R+
i of the

positive Di , and T − = the sum of the ranks R−
i

of the negative Di .

When two observations of any pair are equal, that
is, Di = Xi − Yi = 0, such pairs will be deleted
from the analysis and thus the sample size will be
reduced accordingly. When two or more Di are
tied, the average rank is assigned to each of the
differences. If the sum of the positive ranks T + is
different (much smaller or much larger) from the
sum of the negative ranks T −, we would conclude
that treatment A is different from treatment B, and
therefore, the null hypothesis H0 will be rejected.
That is, H0 is rejected if either T + =∑ R+

i or
T − =∑ R−

i is too small. Without loss of gener-
ality, the test statistic is defined by T + =∑ R+

i ,
which is approximately normally distributed with

Mean = μ = n(n + 1)

4
and

Variance = σ 2 = n(n + 1)(2n + 1)

24

Thus, Z = T + − μ

σ

= T + − n(n + 1)/4√
n(n + 1)(2n + 1)/24

◦∼ N (0, 1)

For small samples (n ≤ 10), the critical values
can be found by referring to the table for Wilcoxon
signed rank test included in many statistics text-
books [2, 3]. In this section, we will illustrate the
test procedure assuming the number of matched
pairs is larger than 10 so that the test can be per-
formed by normal approximation. Keep in mind
that the approximation improves as the sample size
becomes larger.

Example 14.4.1. To evaluate the effectiveness of
a teeth-whitening gum, 12 subjects who met the
inclusion–exclusion criteria were selected for a
4-week clinical trial. The subjects were provided
with specific instructions for using the gum. Their
compliance was checked weekly. A chromameter
was used to measure the shade of their teeth at the
baseline and at the end of the 4-week period. Let
Xi and Yi denote the chromameter measurements
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Table 14.4.1. The whitening gum data.

Subject BL (Xi ) 4-wk (Yi ) Di = Yi − Xi |Di | Rank Signed Rank (Ri )

1 44.3 50.5 6.2 6.2 12 12
2 55.3 55.4 0.1 0.1 1 1
3 49.4 54.7 5.3 5.3 11 11
4 51.2 51.5 0.3 0.3 2 2
5 53.6 56.7 3.1 3.1 10 10
6 52.7 54.9 2.2 2.2 8 8
7 53.7 53.2 −0.5 0.5 3 −3
8 47.9 45.1 −2.8 2.8 9 −9
9 54.3 55.7 1.4 1.4 6 6

10 51.7 52.5 0.8 0.8 4.5 4.5
11 56.5 55.7 −0.8 0.8 4.5 −4.5
12 55.5 54.0 −1.5 1.5 7 −7

Note: BL, baseline.

at the baseline and at the end of the study, re-
spectively. The chromameter measurements for
the 12 subjects are displayed in the second and
third columns in Table 14.4.1. Test the hypotheses
at the significance level α = 0.05:

H0 : No difference in the shade of teeth before and
after the use of the whitening gum

H1 : Difference exists in the shade of teeth before
and after the use of the whitening gum.

Solution. Following the steps described above, the
differences, ranks, and signed ranks are displayed
in Table 14.4.1.

1. The differences between the baseline mea-
surement and the 4-week measurement for
the subjects are in fourth column. For exam-
ple, D1 = Y1 − X1 = 50.5 − 44.3 = 6.2, · · · ,

D12 = Y12 − X12 = 54.0 − 55.5 = −1.5.

2. Take the absolute value of the differences, that
is,

|Y1 − X1| = |6.2| = 6.2, · · · , |Y12 − X12|
= | − 1.5| = 1.5.

3. Rank the absolute differences from lowest to
highest. In the case of a tie, assign the average
rank. For example, the rank 12 is assigned to the
first subject. The tenth and eleventh subjects are
tied, thus the average rank of 4.5 is assigned to
both.

4. Give each rank a “+” or “−” sign according to
the signs of the differences Di , as shown in the
last column of Table 14.4.1.

5. Find the sum of the positive ranks: T +

=∑ R+
i = 12 + 1 + 11 + 2 + 10 + 8 + 6 +

4.5 = 54.5.

6. The mean and variance of T + are given by

μ = 12(12 + 1)

4
= 39.0,

and

σ 2 = 12(12 + 1)(2 · 12 + 1)

24
= 162.5.

7. The value of the test statistic is Z = T + − μ

σ
=

54.5 − 39√
162.5

= 1.2159.

8. Since −1.96 < Z = 1.2159 < 1.96, the null
hypothesis H0 is not rejected. The p value is

p = 2 · P(1.2159 < Z ) > 2(0.1131)

= 0.2262 > 0.05 from Table D in the Appendix.
9. We conclude there is no significant difference

in the shade of teeth before and after the use of
the whitening gum. So the whitening gum is not
effective.

Example 14.4.2. A split-mouth study was con-
ducted to compare the clinical and radiographic
healing results in intrabony periodontal defects
12 months after guided tissue regeneration (GTR)
therapy with two different bioresorbable barriers
[4]. The study comprised 22 healthy patients with
one pair of contralaterally located intrabony de-
fects with a probing pocket depth of at least 6 mm
and radiographic evidence of angular bone loss of
at least 4 mm.

The two defects of each patient were ran-
domized for treatment either with polylactic acid
(PLA) membranes or with polylactin-910 (PG-
910) membraines. Suppose the investigators mea-
sured gingival recession of each subject 12 months
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Table 14.4.2. Gingival recession data (mm).

Subject PLA PG-910 Subject PLA PG-910

1 2.1 1.5 12 2.6 1.6
2 1.7 1.8 13 2.3 2.1
3 1.1 1.6 14 2.2 1.1
4 1.4 1.4 15 1.4 1.3
5 1.8 1.2 16 1.7 1.2
6 2.4 1.6 17 1.6 1.8
7 2.5 2.0 18 1.7 1.7
8 1.9 1.9 19 2.3 1.5
9 2.0 1.1 20 2.5 1.4

10 1.8 1.2 21 2.0 1.8
11 1.9 1.2 22 2.4 2.2

after the therapy, as shown in Table 14.4.2. Do the
two treatments, PLA and PG-910, have different
effects?

Solution. Let Xi and Yi be the pair of observations
on gingival recession for i th patient. Since (Xi , Yi )
form matched pairs, the Wilcoxon signed rank test
is appropriate for this case. The computed results
with Di = Xi − Yi are showed in the following
table. There are three pairs in which Di = Xi −
Yi = 0. Thus the sample size is reduced to n =
22 − 3 = 19. The sum of the positive ranks is:

T + =
∑

R+
i = 11 + 11 + 14.5 + 8 + 16

+ 11 + 13 + 17 + 4.5 + 18.5 + 1.5 + 8

+ 14.5 + 18.5 + 4.5 + 4.5

= 176.0

Subj. Xi Yi Di Signed rank (Ri )

1 2.1 1.5 0.6 11
2 1.7 1.8 −0.1 −1.5
3 1.1 1.6 −0.5 −8
4 1.4 1.4 0 •
5 1.8 1.2 0.6 11
6 2.4 1.6 0.8 14.5
7 2.5 2.0 0.5 8
8 1.9 1.9 0 •
9 2.0 1.1 0.9 16
10 1.8 1.2 0.6 11
11 1.9 1.2 0.7 13
12 2.6 1.6 1.0 17
13 2.3 2.1 0.2 4.5
14 2.2 1.1 1.1 18.5
15 1.4 1.3 0.1 1.5
16 1.7 1.2 0.5 8
17 1.6 1.8 −0.2 −4.5
18 1.7 1.7 0 •
19 2.3 1.5 0.8 14.5
20 2.5 1.4 1.1 18.5
21 2.0 1.8 0.2 4.5
22 2.4 2.2 0.2 4.5

The mean and variance of T + are given by

μ = 19(19 + 1)

4
= 95.0,

and

σ 2 = 19(19 + 1)(2 · 19 + 1)

24
= 617.5

The value of the test statistic is Z = T + − μ

σ
=

176 − 95√
617.5

= 3.2596.

Since Z = 3.2596 > 1.96, the null hypothesis
is rejected. The p value is obtained by

p = 2 · P(3.2596 < Z ) < 0.0012

We conclude that the gingival recession treated
with PLA is statistically significantly greater with
p < 0.0012.

14.5 THE MEDIAN TEST

The median test is a statistical procedure for testing
whether two independent populations (treatments)
differ in central tendencies when the populations
are far from normally distributed. The hypotheses
can be stated

H0 : Two treatments are from populations with the
same median.

H1 : The populations of two treatments have dif-
ferent medians.

Intuitively, if the null hypothesis is true, we expect
that about half of each sample observation to be
below the combined median and about half to be
above. The key to the median test is to combine
the samples and count the number of observations
from each sample that falls below or above the
median of the combined data. Let n1 and n2 be the
number of samples drawn from two populations
and N be the size of the combined sample. The
data can be put in a 2 × 2 contingency table shown
below.

Treatment Treatment
A B Combined

No. of observations a b a + b
≤ combined median

No. of observations c d c + d
> combined median

Total n1 n2 N = n1 + n2
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Table 14.5.1. Bone height data for smokers and
non-smokers.

Smokers Non-smokers Combined

No. of observations 19 21 40
≤ the median

No. of observations 8 32 40
> the median

Total n = 27 m = 53 N = 80

Example 14.5.1. Of 80 randomly chosen implant
patients, 27 were smokers and 53 were non-
smokers. Their bone heights were measured to de-
termine whether there is a significant difference in
bone height between smokers and non-smokers.
All the measurements for both groups were com-
bined and the median of the combined data was
determined. Table 14.5.1 shows the number of pa-
tients in each group whose bone height is below
or above the median. Test if the two groups have
the same median.

Solution. Here the combined sample size is N =
n + m = 27 + 53 = 80. As can be seen below,
none of the expected cell frequencies is less than
5. Thus the χ2 contingency table technique can be
used. The expected cell frequencies are

E11 = E21 = 40 · 27

80
= 13.5

and

E12 = E22 = 40 · 53

80
= 26.5

The value of the test statistic is given by

χ2 = (|19 − 13.5|− 0.5)2

13.5
+ (|21 − 26.5|− 0.5)2

26.5

+ (|8 − 13.5| − 0.5)2

13.5

+ (|32 − 26.5| − 0.5)2

26.5
= 5.5905

The test statistic χ2 is approximately
χ2−distributed with 1 degree of freedom.
The critical value is χ2

(1,0.95) = 3.841. Because
χ2 = 5.5905 > χ2

(1,0.95) = 3.841, we reject the
null hypothesis and conclude that the median
bone height of nonsmokers is significantly higher
than that for smokers at the significance level
α = 0.05.

When applying the χ2 test to a 2 × 2 contingency
table, it is computationally more convenient to use
the following formula.

χ2 = N (|ad − bc| − N/2)2

(a + b)(c + d)(a + c)(b + d)

Applying this formula to the data in Example
14.5.1, we should be able to obtain the same value
for the test statistic χ2 = 5.5905:

χ2 = N (|ad − bc| − N/2)2

(a + b)(c + d)(a + c)(b + d)

= 80(|19 · 32 − 21 · 8| − 80/2)2

(19 + 21)(8 + 32)(19 + 8)(21 + 32)
= 5.5905.

The median test discussed in this section can
be extended to examine whether three or more
samples came from populations having the same
median. Suppose from each of c (≥ 3) popula-
tions a random sample of size ni is taken, i = 1,

2, · · · , c. The grand median is determined from
the combined sample of N = n1 + n2 + · · · + nc.

The combined sample of N observations is ar-
ranged in a 2 × c contingency table as follows.

Treatment 1 Treatment 2 · · · Treatment c Combined

No. of obs ≤ the median O11 O12 · · · O1c r1

No. of obs > the median O21 O22 · · · O2c r2

Total n1 n2 · · · nc N

The r × c contingency table was discussed in Sec-
tion 10.3. The test statistic is obtained by a formula
expressed in a more convenient form:

χ2 = N 2

r1 · r2

c∑
i=1

O2
1i

ni
− N · r1

r2

◦∼ χ2
(c−1)

Example 14.5.2. A study was performed to evalu-
ate in-vitro the effectiveness of two light-emitting
diode (LED) curing lights and one quartz tungsten
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halogen on the tensile bond strength of orthodontic
brackets at 10-second curing time. Fifteen samples
were prepared for each of the three treatments (two
LED’s and halogen), and the shear bond strength
of orthodontic brackets bonded to extracted hu-
man teeth cured by the treatments were measured
(in Newtons), as shown in the table below [5].
Do the three groups come from populations with
the same median? Test at the significance level
α = 0.05.

Sample 1 2 3 4 5 6 7 8

LED 1 80 80 107 96 59 82 90 87
LED 2 119 92 75 93 69 101 103 105
Halogen 101 92 68 118 107 131 132 113

Sample 9 10 11 12 13 14 15

LED 1 93 106 100 62 82 109 84
LED 2 109 84 110 73 86 127 93
Halogen 109 117 126 112 98 125 126

Solution. Since there are three groups, each with
15 samples, we have k = 3, n1 = n2 = n3 = 15,

the combined sample N = n1 + n2 + n3 = 45. It
is easy to determine that the grand median is
100. By counting the frequencies below and above
the combined sample median from each group,
we can construct the following 2 × 3 contingency
table.

LED1 LED2 Halogen Combined

No. of obs 12 8 3 23
≤ the median

No. of obs 3 7 12 22
> the median

Total 15 15 15 45

The value of the test statistic is given by

χ2 = N 2

r1 · r2

c∑
i=1

O2
1i

ni
− N · r1

r2

= 452

23 · 22

(
122

15
+ 82

15
+ 32

15

)
− 45 · 23

22
= 10.850

It exceeds the critical value χ2
(2,0.95) = 5.99, there-

fore the null hypothesis is rejected. The p value is
slightly less than 0.005.

14.6 THE KRUSKAL-WALLIS
RANK TEST

The one-way ANOVA technique used the F test
to compare the means of three or more popu-
lations. For the ANOVA procedure to be valid,
the population distributions must be normal or
approximately normal and the variances must be
equal. When these assumptions are not satisfied, a
non-parametric test known as the Kruskal-Wallis
test may be employed to test whether the treat-
ment means are equal. This test is based on the
ranks of the observations. The only assumption
required about the population distributions is that
they are independent, continuous and of the same
shape. That is, the populations must have the same
variability or skewness. It is recommended that at
least five samples should be drawn from each pop-
ulation. This test is also called the Kruskal-Wallis
one-way ANOVA by ranks.

Suppose that k (k ≥ 3) population means are
being compared and we wish to test

H0 : μ1 = μ2 = · · · = μk vs.

H1 : not all μi are equal

Let n1, n2, · · ·, nk be the number of samples taken
from the k populations. It is not required that the
sample sizes are equal. Let N = n1+ n2 + · · ·+
nk be the sum of the k samples. All N observations
are ranked from 1 to N . Let Ri be the mean of the
ranks for the i th group. The Kruskal-Wallis test
statistic is defined by

χ2
K W = 12

N (N + 1)

(
n1 R

2
1 + n2 R

2
2 + · · · + nk R

2
k

)
− 3(N + 1)

The test statistic is known to be approximately a χ2

random variable with (k − 1) degrees of freedom.
Thus,

Reject H0 if χ2
K W > χ2

(k−1,1−α)

and

accept H0 if χ2
K W ≤ χ2

(k−1,1−α).

Example 14.6.1. Studies have shown that com-
posite resins soften in the presence of alcohol. To
assess the effect of ethanol concentrations on four
composite resins, eight samples of each compos-
ite resin were prepared and subjected to wine for
15 days at a specific temperature. At the end of
the 15-day period, the hardness test was accom-
plished using the Knoops hardness index [6]. The
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Table 14.6.1. Knoops hardness data for four composite resins.

Composite A 53.5 51.6 52.2 50.4 52.3 52.8 49.2 48.8
Rank 19 15 16 13 17 18 12 11

Composite B 23.9 23.6 22.3 18.7 19.8 19.7 24.8 22.0
Rank 7 6 5 1 3 2 8 4

Composite C 45.4 42.4 53.8 50.6 54.9 56.9 62.2 55.2
Rank 10 9 20 14 21 23 26 22

Composite D 64.4 61.8 61.4 70.1 70.0 69.8 69.6 67.9
Rank 27 25 24 32 31 30 29 28

resulting hardness data, along with their ranks in
a combined sample, is presented in Table 14.6.1.
Test H0 : There is no difference among the four
composite resins in the effect of ethanol concen-
trations.

Solution. After ranking all 32 observations from 1
to 32, the mean of the ranks for each composite
material can be computed:

R1 = (19 + 15 + 16 + 13 + 17 + 18

+12 + 11)/8 = 15.125

R2 = (7 + 6 + 5 + 1 + 3 + 2 + 8 + 4)/8 = 4.5

R3 = (10 + 9 + 20 + 14 + 21 + 23

+ 26 + 22)/8 = 18.125

R4 = (27 + 25 + 24 + 32 + 31 + 30

+ 29 + 28)/8 = 28.25

The value of the test statistic is obtained as

χ2
K W = 12

N (N + 1)

(
n1 R

2
1 + n2 R

2
2 + · · · + nk R

2
k

)
− 3(N + 1)

= 12

32(32 + 1)
[8 · (15.125)2 + 8 · (4.5)2 + 8

× (18.125)2 + 8 · (28.25)2] − 3(32 + 1)

= 26.054.

The critical value from the χ2 table is
χ2

(k−1,1−α) = χ2
(4−1,0.95) = 7.81. Since χ2

K W =
26.054 > χ2

(3,0.95) = 7.81, we reject the null
hypothesis and conclude that there is statistically
significant difference in mean hardness among
the four composite materials after having been
soaked in wine for 15 days at the significance
level α = 0.05.

The Kruskal-Wallis test does not require the
sample sizes to be equal. In the above example, we
could have n1 = 8, n2 = 6, n3 = 11, and n4 = 7.

If the sample sizes are small enough that the χ2

approximation is not appropriate, we can use a
special table to perform the test. However, we rec-
ommend that the sample sizes be at least 5 so
that the approximation can be applied. When ties
occur between two observations within the treat-
ment group or different treatment groups, each ob-
servation is assigned the mean of the ranks for
which they are tied. Tied observations influence
the variance of the sampling distribution, and thus
the test statistic needs to be corrected for ties. As in
Example 14.6.1, when the Kruskal-Wallis test is
significant, it indicates at least one of the treatment
groups is different from the others. A procedure is
needed to determine which treatment groups are
different. We need to test H0 : μi = μ j vs. H1 :
μi �= μ j .This is a pairwise test that tests the signif-
icance of individual pairs of differences. The test
statistic is based on |Ri − R j |, which is approxi-
mately normally distributed. Similar to the multi-
ple comparison procedures introduced in Section
12.6, comparisons must be made among k treat-
ment groups. We reject the null hypothesis if

|Ri − R j | ≥ z1−α/k(k−1)

√
N (N + 1)

12

(
1

ni
+ 1

n j

)
.

Comparisons to be made are:

|R1 − R2| = |15.125 − 4.5| = 10.625

|R1 − R3| = |15.125 − 18.125| = 3.0

|R1 − R4| = |15.125 − 28.25| = 13.125

|R2 − R3| = |4.5 − 18.125| = 13.625

|R2 − R4| = |4.5 − 28.25| = 23.75

|R3 − R4| = |18.125 − 28.25| = 10.125

For α = 0.05 and k = 4 treatment groups, we ob-
tain z1−α/k(k−1) = z1−0.05/4(4−1) = z0.9968 = 2.73
from the normal table. Because |Ri − R j | >

z1−α/k(k−1) = z0.9968 = 2.73, all of the comparison
tests are significant.
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Table 14.7.1. Cleanliness data for left-handed patients.

1 2 3 4 5 6 7 8 9 10 11 12

A 2 (1) 5 (3) 3 (2) 3 (3) 3 (2) 1 (1) 2 (1) 4 (3) 2 (1) 3 (2) 2 (1) 1 (1)
B 4 (3) 1 (1) 4 (3) 2 (2) 2 (1) 4 (3) 5 (3) 1 (1) 4 (2) 1 (1) 4 (2) 3 (2)
C 3 (2) 2 (2) 2 (1) 1 (1) 4 (3) 2 (2) 3 (2) 3 (2) 5 (3) 4 (3) 5 (3) 5 (3)

14.7 THE FRIEDMAN TEST

The Kruskal-Wallis rank test for k independent
samples was discussed in the preceding section. In
the present section, we will introduce the Fried-
man test for k-related samples to determine
whether the k samples have been drawn from
the sample population. This test is also known
as the Friedman two-way analysis of variance
by ranks. To facilitate the discussion, consider a
study comparing four teaching methods in dental
education. The researcher may select 20 groups of
four students. Each group consists of four matched
subjects in terms of age, IQ, motivation, and GPA.
Subjects in the same group are randomly assigned
to one of the four teaching methods; later, their
performance is evaluated. Within the group, the
performance of the subjects is ranked 1 to 4. In
case of ties, the average rank is assigned. The
test is based on the ranks of the subjects who
were taught by a specific teaching method. When
there are no ties in the data, the test statistic is
given by

Fr =
[

12

Nk(k + 1)

k∑
i=1

R2
i

]
− 3N (k + 1)

where

N = number of groups
k = number of treatments

Ri = sum of the ranks for i th treatment

When the number of groups N and/or the number
of treatments k is large, the distribution of the test
statistic Fr is approximately χ2

(k−1) with (k − 1)
degrees of freedom. When ties occur, we need to
make an adjustment. Thus, the expression of the
test statistic is slightly more complicated:

Fr = 12
∑k

i=1 R2
i − 3N 2k(k + 1)2

Nk(k + 1) + Nk − (U + V )

(k − 1)

,

where

U = number of untied observations in the data
V = sum of (τ )3,

τ denotes the size of the ties.

For example, if two scores in the same group are
tied, τ = 2. We present an example each with no
ties and with ties.

Example 14.7.1. Investigators were interested in
evaluating left-handed patients’ ability to clean
teeth in all four quadrants of their teeth using three
newly designed toothbrushes. Twelve left-handed
subjects have been recruited for the study. Each
subject was instructed to use one of the three tooth-
brushes for 1 week. At the end of the week inves-
tigators examined the subjects and the cleanliness
of their teeth was rated by a prespecified scoring
system ranging from score 1 (worst) to score 5
(best). From the data tabulated in the following
table, what conclusion can we draw? The num-
bers in the parentheses in Table 14.7.1 indicate the
ranks.

Solution. There are N = 12 matched samples with
k = 3 treatments. The rank sums are given by
R1 = 21, R2 = 24, and R3 = 27. There are no ties
in the data. Thus the test statistic is

Fr =
[

12

Nk(k + 1)

k∑
i=1

R2
i

]
− 3N (k + 1)

= 12

12 · 3(3 + 1)
(212 + 242 + 272)

− 3 · 12(3 + 1)

= 1.5.

The critical value χ2
(2,0.95) = 5.99 and Fr <

χ2
(2,0.95), thus the test is not significant. We con-

clude that there is no statistically significant dif-
ference among the three toothbrushes.

Example 14.7.2. Table 14.7.2, summarizes the
data for the 20 matched samples for the study of
four teaching methods in dental education. Using
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Table 14.7.2. Matched data for teaching methods in dental
education.

Method A Method B Method C Method D
Scores Scores Scores Scores

Groups (Rank) (Rank) (Rank) (Rank)

1 78 (3) 82 (4) 67 (1) 75 (2)
2 74 (2) 85 (4) 62 (1) 84 (3)
3 84 (4) 79 (3) 73 (2) 68 (1)
4 76 (2.5) 76 (2.5) 74 (1) 80 (4)
5 87 (4) 74 (2) 86 (3) 69 (1)
6 58 (1) 76 (3) 66 (2) 79 (4)
7 78 (1.5) 83 (3) 85 (4) 78 (1.5)
8 78 (2) 88 (3) 77 (1) 90 (4)
9 86 (4) 74 (3) 68 (1) 73 (2)

10 84 (3) 88 (4) 76 (1) 79 (2)
11 63 (2) 66 (3) 71 (4) 58 (1)
12 75 (2) 63 (1) 79 (4) 77 (3)
13 79 (2) 84 (3) 72 (1) 92 (4)
14 87 (4) 72 (1) 79 (2) 80 (3)
15 91 (3.5) 91 (3.5) 86 (1) 88 (2)
16 78 (3) 70 (2) 65 (1) 83 (4)
17 76 (4) 74 (3) 62 (1) 65 (2)
18 87 (2.5) 83 (1) 92 (4) 87 (2.5)
19 63 (2) 75 (4) 68 (3) 56 (1)
20 85 (3) 81 (2) 88 (4) 80 (1)

Ri 55 55 42 48

the Friedman test, we wish to test if there is any
difference in the teaching methods. The number
of matched samples is N = 20, the number of
treatments k = 4, and the rank sums are R1 = 55,

R2 = 55, R3 = 42, and R4 = 48. There are four
sets of ties in groups 4, 7, 15, and 18. Only two
scores in each group are tied. Hence, τ = 2 for
each tied pair. Since 8 observations resulted in ties,
we have U = 72 untied observations among the to-
tal of 80 observations. We can now compute the
value of the test statistic:

Fr = 12
∑k

i=1 R2
i − 3N 2k(k + 1)2

Nk(k + 1) + Nk − (U + V )

(k − 1)

= 12(552 + 552 + 422 + 482) − 3 · 202 · 4(4 + 1)2

20 · 4(4+1)+
[

20·4−(72+23+23+23+23)

(4−1)

]
= 3.6122

Since the critical value χ2
(3,0.95) = 7.81 and Fr <

χ2
(3,0.95), the test is not significant. We conclude

there is no statistically significant difference in the
effectiveness of the four teaching methods at the
significance level α = 0.05.

Suppose the test in Example 14.7.2 was signif-
icant. It would then indicate that at least one of
the teaching methods is different from the oth-
ers. The test would not tell us which one is dif-
ferent. We need to perform multiple comparisons
test between the treatments. The multiple com-
parisons procedure is based on the sum of ranks
for individual treatments. For comparing i th and
j th teaching methods, the null hypothesis will be
rejected if

∣∣Ri − R j

∣∣ ≥ z1−α/k(k−1)

√
Nk(k + 1)

6

This procedure is very similar to the multiple com-
parisons procedure discussed in Section 14.6.

14.8 THE PERMUTATION TEST

The permutation test is used when we have the
paired observations for each subject or the ob-
servations are made for matched pairs. Paired
observations (X , Y ) occur in either case. As a
non-parametric procedure, the advantage of the
permutation test is that neither normality nor ho-
mogeneity of variances is assumed. For example
consider the following.

1. To compare the effectiveness of two treat-
ments for hypertension associated with acute
post-streptococcal glomerulonephritis (PSGN),
eight subjects have been recruited for a clini-
cal trial. Subjects were given one treatment for
3 weeks, and after a 4-week washout period,
they were given the other treatment for 3 weeks.
Subjects’ blood pressure levels were compared
to evaluate the effectiveness of the treatments.

2. To evaluate the impact of two types of implant
loading—the immediate loading and delayed
loading—on survival time, 16 patients were ac-
cepted into a clinical trial. Eight matched pairs
were formed according to their prognostic vari-
ables, such as age, sex, bone height, smoking
status, and oral hygiene conditions. Within each
pair, one patient was randomly assigned to the
immediate loading and the other to the delayed
loading. The survival time of the implants was
followed to complete the study. The null hy-
pothesis is H0 : two treatments are equivalent
(or there is no difference).
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Table 14.8.1. Survival time of implants (in month).

Pairs

Loading 1 2 3 4 5 6 7 8

Delayed (Xi ) 118 96 127 134 105 66 113 140
Immediate (Yi ) 110 103 112 120 89 54 82 142

di = Xi − Yi +8 −7 +15 +14 +16 +12 +31 −2

The first step is to calculate the difference be-
tween the paired observations di = Xi − Yi for
the i th subject or the i th matched pair. The dif-
ference di would be positive but just as likely to
be negative if H0 is true, since we made the ran-
dom assignment. Under H0, every observed dif-
ference will be equally likely to have had the op-
posite sign. If we have n = 8 pairs, assuming H0

is true, we would have 2n = 28 = 256 outcomes
that are equally likely. The test statistic is based on
the sum of the differences: D =∑n

i=1 di . To com-
plete the test, we need to define the rejection re-
gion. If H0 is false, then either D =∑n

i=1 di is very
small or very large. In the case of the two-tailed
test with the significance level α = 0.05, the re-
jection region would consist of 5% of the 256 out-
comes. That is, (256)(0.05) = 12.8 extreme val-
ues. In other words, the largest 6 and the smallest
6 constitute the rejection region. If H0 is true, the
chance that we observe 1 of these 12 extreme cases
is 12/256 = 0.0469. To further illustrate the per-
mutation test, consider the following example.

Example 14.8.1. From eight matched pairs of 16
implant patients, the survival time data was col-
lected as shown in Table 14.8.1. Assume that the
normality assumption is not met.

The differences in descending order of absolute
values are

+31, +16, +15, +14, +12, +8, −7, −2

The sum is obtained by D =∑n
i=1 di = 31 +16

+15 +14 +12 +8 − 7 − 2 = 87.0. Table 14.8.2
shows 6 most extreme positive sums to perform
the test. These 6 outcomes are in the rejection re-
gion. As we can easily see, the observed outcome,
+31, +16, +15, +14, +12, +8, −7, −2, which
yields the sum

∑n
i=1 di = 87.0, falls in the rejec-

tion region. Hence, we reject the null hypothesis
and conclude that the delayed loading results in
significantly longer survival times at the signifi-
cance level α = 0.05.

If the number of pairs is large, the permu-
tation test can be extremely tedious and time
consuming. For example, if n = 12, the num-
ber of possible outcomes is 212 = 4096.0. There-
fore, the rejection region contains (4096)(0.05) =
204.8 extreme values. When the sample size n is
large enough for easy computation, it is recom-
mended to use the Wilcoxon signed rank test in-
stead of the permutation test. It turns out that the
Wilcoxon signed rank test is the permutation test
based on ranks.

14.9 THE COCHRAN TEST

The McNemar test for two related samples pre-
sented in Section 10.5 can be extended for use in
comparing more than two related samples. This
extension is known as the Cochran test for k

Table 14.8.2. Six most extreme positive sums for Example 14.8.1.

Outcomes D =∑n
i=1 di

+31 +16 +15 +14 +12 +8 +7 +2 105
+31 +16 +15 +14 +12 +8 +7 −2 101
+31 +16 +15 +14 +12 +8 −7 +2 91
+31 +16 +15 +14 +12 −8 +7 +2 89
+31 +16 +15 +14 +12 +8 −7 −2 87
+31 +16 +15 +14 +12 −8 +7 −2 85
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Table 14.9.1. A layout for the Cochran test for k-related
samples.

Treatment

Block 1 2 · · · k Row Sum

1 X11 X12 · · · X1k r1

2 X21 X22 · · · X2k r2

· · · · · · · · · · · · · · · · · ·
b Xb1 Xb2 · · · Xbk rb

Col. sum c1 c2 · · · ck N = Total

(≥ 3) related samples. The Cochran test provides
a method for testing whether or not k matched sets
of frequencies differ from each other. In biomedi-
cal applications, k typically represents the number
of treatments. There are situations in biomedi-
cal sciences in which each of k treatments is
applied independently to each of b subjects (some-
times, referred to as blocks in statistics), and the
outcome response is recorded by investigators as
either “cured” or “not cured,” or “success” or “fail-
ure.” These responses are represented by either 1
(success) or 0 (failure). The sample data can be
presented in a table with k columns and b rows.
Let ri (i = 1, 2, · · ·, k) be the row sum, and c j

( j = 1, 2, · · ·, b) be the column sum. Each entry
of the table Xi j is either 0 or 1. (See Table 14.9.1).

The hypotheses can be stated

H0 : The k treatments are equally effective
H1 : The k treatments are not equally effective

(there is a difference in effectiveness)

By letting pi j = P(Xi j = 1), the hypotheses can
be restated H0 : pi1 = pi2 = · · · = pik for each
i = 1, 2, · · · , k vs. H1 : Not all pi j are equal.

The test statistic is given by

Q =
(k − 1)

[
k
∑k

j=1 c2
j −
(∑k

j=1 c j

)2
]

k
∑b

i=1 ri −∑b
i=1 r2

i

where

c j = total number of success in the j th column
ri = total number of successes in the i th row.

If the null hypothesis is true and if the number,
b, of subjects is not too small, the test statistic
is approximately χ2 distributed with degrees of
freedom k − 1. Note that this test is sometimes
known as the Cochran Q test.

Table 14.9.2. Endodontic file data.

File A File B File C ri

1 1 1 0 2
2 1 0 1 2
3 1 1 1 3
4 0 1 1 2
5 0 1 1 2
6 1 0 0 1
7 1 1 0 2
8 1 1 0 2
9 1 1 0 2

10 1 1 0 2
11 0 1 1 2
12 1 1 0 2

c j 9 10 5 N = 24

Example 14.9.1. An investigation was conducted
to assess the reliability of endodontic files. Sup-
pose that an endodontic file is considered success
if it is used at least 10 times and failure if it becomes
deformed or broken before it is used 10 times.
Assume that there are three types of files being
used by most endodontists. To compare the relia-
bility of these files, 12 endodontists were selected
at random and each recorded the results of the files
they had tested. Table 14.9.2 summarizes the data
from the 12 endodontists who participated in the
study (0 = failure,1 = success). Are the three files
equally reliable?

Solution. There are three treatments, k = 3, and
b = 12 subjects. Note that the responses are di-
chotomized observations. Since each of the 12
subjects tested all three files, we have three re-
lated samples. The Cochran test is an appropriate
approach for the problem.

The test statistic is given by

Q =
(k − 1)

[
k
∑k

j=1 c2
j −
(∑k

j=1 c j

)2
]

k
∑b

i=1 ri −∑b
i=1 r2

i

=
(k − 1)

(
k
∑k

j=1 c2
j − N 2

)
k N −∑b

i=1 r2
i

By making substitutions, we get

Q = (3 − 1)[3(92 + 102 + 52) − 242]

3 · 24 − 50
= 3.8182.

Since Q = 3.8182 < χ2
(2,0,.95) = 5.99, the null hy-

pothesis is accepted. Thus, we conclude that there
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Table 14.9.3. Clinic competency ratings of 10 residents.

Rater A Rater B Rater C Rater D Row sum

1 1 1 0 1 3
2 1 1 0 1 3
3 1 1 1 1 4
4 1 1 0 1 3
5 1 1 0 1 3
6 0 1 1 1 3
7 1 1 0 1 3
8 1 1 0 1 3
9 1 0 1 0 2

10 1 1 0 1 3

Col. sum 9 9 3 9 N = 30

is no statistically significant difference in reliabil-
ity among the three endodontic files.

Example 14.9.2. Parkview Medical Center has
10 residents who are undergoing training under
the supervision of four attending physicians. At
the end of the year residents’ clinical compe-
tency is evaluated by the four supervisors, either
0 = unacceptable or 1 = acceptable as shown in
Table 14.9.3. Is there any supervisor bias in the
evaluation?

Solution. There are 10 subjects who were eval-
uated by all four raters, and each response is
a dichotomous variable (either 0 or 1); the
Cochran test is applicable. By making appropri-
ate substitutions, we obtain the value of the test
statistic

Q =
(k − 1)

(
k
∑k

j=1 c2
j − N 2

)
k N −∑b

i=1 r2
i

= (4 − 1)[4(92 + 92 + 32 + 92) − 302]

4 · 30 − 92
= 11.5714.

Since Q = 11.5714 > χ2
(3,0,.95) = 7.81, the null

hypothesis is rejected. Thus, we conclude that
there is a statistically significant rater bias with
p < 0.01 from the χ2 table in the Appendix.

14.10 THE SQUARED RANK TEST
FOR VARIANCES

In most of the practical problems, the usual stan-
dard of comparison for several treatments is based
on the population means or other measures of

location of the populations. In some other situa-
tions, the variances of the treatments may be the
focus of an investigation. The squared rank test
provides a method to test the equality of variances
without the assumption of normality. We shall first
discuss the two-sample case when the sample sizes
are at least 10. For the small sample case with no
ties, the readers are referred to Conover [2]. Let
X1, X2, · · · ,Xn1 denote n1 observations from pop-
ulation A, and Y1, Y2, · · · ,Yn2 denote n2 observa-
tions from population B. To perform the squared
rank test,

1. calculate the sample means X and Y .

2. calculate the absolute deviations of the obser-
vations from the mean

Ui = ∣∣Xi − X
∣∣ for i = 1, 2, · · · , n1, and

Vj = ∣∣Y j − Y
∣∣ for j = 1, 2, · · · , n2.

3. combine the absolute deviations and assign the
ranks from 1 to N = n1 + n2.

4. compute the value of the test statistic

T =
∑n1

i=1[R(Ui )]2 − n1 · R2√
n1 · n2

N (N − 1)

∑N
i=1 R4

i − n1 · n2

(N − 1)

(
R2
)2

where R(Ui ) = the rank of the absolute deviation
Ui

R2 = 1

N

{
n1∑

i=1

[R(Ui )]
2 +

n2∑
j=1

[R(Vj )]
2

}
= average of the squared ranks of

both samples
N∑

i=1

R4
i =

n1∑
i=1

[R(Ui )]
4 +

n2∑
j=1

[R(Vj )]
4

Under the null hypothesis, the above test statistic is
approximately normally distributed. The test can
be performed using the normal probability table in
the Appendix.

Example 14.10.1. Periodontal probing has be-
come increasingly more important as a diagnos-
tic tool to determine the presence and severity of
periodontal disease. Since the accuracy and relia-
bility of probing is critical, a study was conducted
to evaluate two types of probes: the hand-held
probe with visual measurement recording and the
pressure-controlled electronic probe with direct
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Table 14.10.1. Periodontal probing: hand-held vs. computer.

Absolute Deviation Squared Rank
Hand-held Computer Rank Rank

Xi Y j Ui =
∣∣Xi − X

∣∣ Vj =
∣∣Y j − Y

∣∣ R(Ui ) R(Vj ) [R(Ui )]2 [R(Vj )]2

4.5 6.7 1.5 0.2 13.5 5 182.25 25.0
6.0 5.2 0 1.7 1 16.5 1.0 272.25
5.0 7.4 1.0 0.5 11.5 8 132.25 64.0
7.5 7.0 1.5 0.1 13.5 3 182.25 9.0
9.0 6.4 3.0 0.5 21 8 441.0 64.0
8.0 6.8 2.0 0.1 18.5 3 342.25 9.0
2.5 5.3 3.5 1.6 22 15 484.0 225.0
7.0 9.4 1.0 2.5 11.5 20 132.25 400.0
6.5 6.2 0.5 0.7 8 10 64.0 100.0
4.0 7.0 2.0 0.1 18.5 3 342.25 9.0

8.6 1.7 16.5 272.25
7.3 0.4 6 36.0

X = 6.0 Y = 6.9

computer data capture. Suppose the data indicates
that the samples are not from normal populations.
From the data in Table 14.10.1, can we conclude
that there is no difference in the precision level
between the two types of probe?

Solution: From Table 14.10.1, we find that n1 =
10, n2 = 12, and N = n1 + n2 = 22. We can
compute

10∑
i=1

[R(Ui )]
2 = 2, 303.5,

12∑
j=1

[R(Vj )]
2 = 1, 485.5

R2 = 1

N

{
10∑

i=1

[R(Ui )]
2 +

12∑
j=1

[R(Vj )]
2

}

= 1

22
(2, 303.5 + 1, 485.5)

= 172.23
N∑

i=1

R4
i =

101∑
i=1

[R(Ui )]
4 +

12∑
j=1

[R(Vj )]
4

= 768, 514.38 + 379, 221.13

= 1, 147, 735.51

We can compute the value of the test statistic by
substitution

T = 2, 303.5 − 10 · 172.23√
10 · 12

22(22−1)
(1,147,735.51)− 10 · 12

(22−1)
(172.23)2

= 1.6207.

The calculated value T = 1.6207 < z0.975 =
1.96. Thus, the null hypothesis is not rejected and
we conclude that there is no statistically significant
difference in the variance between hand-held and
computerized probes.

If there are more than two variances to be com-
pared, the squared rank test can easily be modi-
fied to test the equality of several variances: H0 :
σ 2

1 = σ 2
2 = · · · = σ 2

k vs. H1 : not all σ 2
i are equal.

From each observation in each sample, subtract its
sample mean and then take the absolute value of
the difference to get

∣∣Xi j − Xi

∣∣ , i = 1, 2, · · ·, k
and j = 1, 2, · · ·, ni . Let the pooled sample size
be denoted by N = n1 + n2+ · · · +nk . Combine
all N absolute values and rank them from 1 to N ,
assigning the average rank if there are ties. Like
the two-sample case, we now compute the sum of
the squares of the rank for each of the k samples
and let these sums be denoted by T1, T2, · · · , Tk.

The test statistic is given by

T ∗ = 1

K

[∑k

i=1

T 2
i

ni
− N · (T )2]

where T = 1

N

∑k
i=1 Ti = the average of all the

squared ranks

K = 1

N − 1

[
k∑

i=1

ni∑
j=1

R4
i j − N · (T )2] ,

∑k
i=1

∑ni
j=1 R4

i j is the sum taken after every rank
is raised to the fourth power.
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Table 14.10.2. Number of bacteria species in dentin
samples.

(A) (B) (C) (A) (B) (C)

1 27 18 11 6 18 19 26
2 32 21 12 7 35 26 14
3 24 22 16 8 31 28 18
4 20 18 23 9 30 20 32
5 26 24 13 10 25 34 30

We note that if there are no ties in the data, T and
K can be simplifies as follows:

T = N (N + 1)(2N + 1)(8N + 11)

180
,

K = (N + 1)(2N + 1)

6

If the null hypothesis is true, the test statistic T ∗

is approximately χ2 with (k − 1) degrees of free-
dom. At this point the hypothesis test will proceed
as if it is a usual χ2 test, so the null hypothesis
is rejected if T ∗ > χ2

(k−1,1−α). When we reject the
null hypothesis, multiple comparisons procedure
will be used to compare the i th and j th popula-
tions. In such a case, the variances of the i th and
j th populations are said to be different if

∣∣∣∣Ti

ni
− Tj

n j

∣∣∣∣ > t(N−k,1−α/2)

[
K · (N − 1 − T ∗)

N − k

]1/2

×
[

1

ni
+ 1

n j

]1/2

Example 14.10.2. Ten single-rooted human teeth
were inoculated with saliva and incubated for
7 days. After 7 days, dentin samples were taken
at coronal (A), midroot (B), and apex (C). These
samples were cultured for anaerobic bacteria, and
the number of species in each sample was re-
ported. It is known that the samples do not fol-
low a normal distribution. Test the hypotheses
H0 : σ 2

A = σ 2
B = σ 2

C vs. H1 : variances are not
equal.

Solution. From the data in Table 14.10.2, the sam-
ple means are obtained; X A = 26.8, X B = 23.0,

XC = 19.5. Following the steps described above,
we compute the sum of the squares of the rank
of the each of the three samples: TA = 2, 695.0,

TB = 2, 158.0, and TC = 4, 598.0. The average of

all the squared ranks is

T = (2, 695 + 2, 158 + 4, 598)/30 = 315.03

Hence,

N · (T )2 = 30 · (315.03)2 = 2, 977, 317.027

K = 1

N − 1

[
k∑

i=1

ni∑
j=1

R4
i j − N · (T )2]

= 1

30 − 1
[5, 268, 365 − 2, 977, 317.027]

= 79, 001.654

We can now compute the test statistic

T ∗ = 1

K

[
k∑

i=1

T 2
i

ni
− N · (T )2

]

= 1

79001.654
(3306159.3 − 2977 317.027)

= 4.1625 < χ2
(2,0.95) = 5.99.

The null hypothesis of no difference in variance is
accepted.

14.11 SPEARMAN’S RANK
CORRELATION COEFFICIENT

A measure of correlation between two variables X
and Y was introduced in Section 11.3. The Pearson
product moment correlation coefficient ρ ranges
from −1 to +1. To test the hypothesis that H0 :
ρ = 0, we require that samples are drawn from
normal populations. Spearman rank correlation
coefficient is an alternative to the Pearson corre-
lation coefficient when the normality assumption
is not appropriate. This non-parametric equivalent
can be used when the data can be ranked. The
computations for the Spearman rank correlation
coefficient is simpler than the Pearson correlation
coefficient because they involve ranking the sam-
ples. If both samples have the same ranks, then ρ

will be +1. If the ranks of the two samples are
completely opposite, then ρ will be −1. Suppose
we have two sets of data that are paired as (X1, Y1),
(X2, Y2), · · ·, (Xn , Yn), These pairs of observations
may represent height (Xi ) and weight (Yi ) of n pa-
tients. Let R(Xi ) be the rank of i th subject’s height
as compared to the heights of other subjects. Sim-
ilarly, let R(Yi ) be the rank of i th subject’s weight
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Table 14.11.1. Bone height (mm) and implant failure time (in month) data.

1 2 3 4 5 6 7 8 9 10

Bone ht. (Xi ) 5.4 3.5 7.0 8.2 6.8 6.4 8.2 2.7 6.5 4.6
Survival time (Yi ) 110 86 113 132 120 92 135 71 106 93

Rank R(Xi ) 4 2 8 9.5 7 5 9.5 1 6 3

Rank R(Yi ) 6 2 7 9 8 3 10 1 5 4

U = R(Xi ) − 5.5 −1.5 −3.5 2.5 4.0 1.5 −0.5 4.0 −4.5 0.5 −2.5
V = R(Yi ) − 5.5 0.5 −3.5 1.5 3.5 2.5 −2.5 4.5 −4.5 −0.5 −1.5

U · V −0.75 12.25 3.75 14.0 3.75 1.25 18.0 20.25 −0.25 3.75

U · V = [R(Xi ) − 5.5] · [R(Yi ) − 5.5]

as compared to the weights of other subjects. If
there are no ties, the Spearman rank correlation
coefficient is defined by

ρ =
∑n

i=1

[
R(Xi ) − n + 1

2

] [
R(Yi ) − n + 1

2

]
n(n2 − 1)/12

If there are many ties, the Spearman rank correla-
tion coefficient is given by

ρ =
∑n

i=1 [R(Xi ) · R(Yi )] − n ·
(

n + 1

2

)2

√∑n
i=1 [R(Xi )]2 − n ·

(
n + 1

2

)2

·
√∑n

i=1 [R(Yi )]2 − n ·
(

n + 1

2

)2

This can be viewed as the Pearson correlation co-
efficient computed on the ranks of Xi and Yi and
their average ranks. If only a moderate number of
ties are involved, the first formula, which is less
cumbersome, may be used.

Example 14.11.1. Suppose that 10 patients re-
ceived titanium implants. To study the relation-
ship between the bone height at the time of implant
placement and the implant survival rate, investiga-
tors carefully measured the subject’s bone height
and followed implant failure time of each patient
in the study. The data is presented in Table 14.11.1.
Assuming that both the bone height and survival
time data are not normally distributed, determine
the Spearman rank correlation coefficient.

Solution. Since there are 10 subjects in the study,

we have
n + 1

2
= 10 + 1

2
= 5.5. Since there are

only two ties in the bone height measurements, we

will use the first formula.

ρ =
∑n

i=1

[
R(Xi ) − n + 1

2

] [
R(Yi ) − n + 1

2

]
n(n2 − 1)/12

=
∑n

i=1 [R(Xi ) − 5.5][R(Yi ) − 5.5]

10(1002 − 1)/12

= 76.0

10(1002 − 1)/12
= 0.9212

Bone height and implant survival time have a
very high Spearman rank correlation coefficient
of 0.9212.

14.12 EXERCISES

1 In order to determine the effect of chlorhexidine
on the salivary Streptococcus mutans (SM) levels,
18 subjects were recruited into a clinical study.
Each subject submitted a saliva sample that was
tested to establish a baseline (BL) colony count.
Subjects were instructed to rinse twice daily with
0.12% chlorhexidine mouthrinse over a 2-week
period. Four weeks after the end of the period, an-
other saliva sample was taken from the subjects to
investigate the recolonization trends. Saliva sam-
ples were tested using a commercially available
strip test. The value of 0 is given to a sample with
less than 3, 000 colony-forming units per milliliter
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(CFU/ml), and 1 to a sample with greater than
3, 000 (CFU/ml). Data is summarized in the table
below. Perform an appropriate test to determine if
chlorhexidine is effective in reducing the salivary
SM.

Subj no. BL 4-wk Subj no. BL 4-wk

1 1 0 19 1 0
2 1 1 20 1 0
3 0 0 21 1 1
4 1 0 22 1 0
5 1 0 23 0 1
6 1 1 24 1 0
7 1 0 25 0 1
8 0 1 26 1 0
9 1 0 27 1 0
10 1 0 28 1 0
11 1 0 29 1 0
12 0 0 30 0 1
13 1 0 31 0 1
14 1 0 32 1 0
15 0 1 33 0 1
16 0 1 34 0 1
17 1 0 35 1 0
18 1 1 36 1 0

2 HGH Corporation has made a substantial qual-
ity improvement on their top selling medical prod-
uct. The company’s marketing department wants
to find out if there is any difference in consumer
preference scores between old and new improved
products. If you were the company’s marketing
scientist, what would be your conclusion based on
the following data.

Original product: 71, 82, 84, 69, 88, 93,
56, 78, 80, 79, 56, 88,
90, 72, 77, 81

Improved product: 85, 66, 98, 67, 79, 81,
82, 95, 88, 87, 79, 92,
82, 93, 87, 94

3 A major consumer complaint about adhesive
bandages is that they come off when moistened. A
pharmaceutical company has developed two types
of adhesive bandage: type A and type B. The com-
pany needs to determine which one stays on longer.
They selected 17 college students and asked them
to apply both types of bandage to the same area.
The following data indicates the number of hours

the bandages stayed on the skin. Is there a differ-
ence between A and B?

Subject 1 2 3 4 5 6 7 8 9

Type A 33 14 42 33 23 20 28 19 22
Type B 37 26 35 31 23 38 43 33 42

Subject 10 11 12 13 14 15 16 17

Type A 18 49 31 29 21 30 39 27
Type B 35 45 40 32 34 43 28 38

4 Investigators prepared 12 samples of each of
two sealants, A and B. Their goal is to compare
bond strength, which was measured in Newtons
using an Instron machine. State the hypotheses and
perform a significance test at α = 0.05.

Xi (Sealant A) Yi (Sealant B)

8.15 9.32 7.16 9.01 11.46 13.96 17.65 17.05
9.65 8.04 6.47 7.54 12.01 18.74 15.55 13.04

10.14 6.55 6.45 11.23 9.00 8.42 16.65 10.46

5 Two different formulations of a tablet of a new
drug are to be compared with regard to rate of dis-
solution. Fourteen tablets of formulation A and 12
tablets of formulation B are tested, and the per-
cent of dissolution after 15 min. in the dissolution
apparatus is observed. From the results tabulated
below, perform a significance test to determine
whether they came from populations having the
same median.

Formulation A 68 84 81 85 75 74 79
80 65 90 77 72 69 78

Fromulation B 80 63 79 74 71 61 69
65 80 72 76 75

6 The following data represent blood protein lev-
els (g/100 ml) for the comparison of four drugs. All
four drugs were tested on each subject in random
order. What conclusion can you draw regarding
their median?

Patient 1 2 3 4 5 6 7 8 9 10 11 12

Drug A 9.3 6.6 8.1 7.2 6.3 6.6 7.0 7.7 8.6 8.1 9.0 8.3

Drug B 9.2 8.2 9.9 7.3 7.0 9.1 9.0 8.9 8.3 8.3 8.8 6.0

Drug C 7.4 7.1 6.2 6.1 8.0 8.2 7.5 6.8 6.7 8.4 7.7 7.5

Drug D 6.0 5.8 4.9 6.5 6.3 7.2 6.9 8.1 6.4 7.2 6.6 7.4
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7 Eleven patients were randomly selected to eval-
uate four different alginate flavorings for patient
preference. All four of them were used for each
subject and patients were asked to rank them from
1 (worst) to 4 (best). Given the following data, per-
form an appropriate test to determine if there are
any differences in patient preference among the
four flavorings?

1 2 3 4 5 6 7 8 9 10 11

Strawberry 3 2 3 2 3 2 2 2 3 1 2
Chocolate 2 2 4 1 1 3 1 1 2 2 1
Mint 1 3 2 4 2 3 4 4 4 3 3
Pineapple 4 4 1 3 4 4 3 3 1 4 4

8 There are 10 football teams in the Pacific Coast
Conference. All 10 teams played a non-conference
game at the start of the season. Four football fans
were selected from third-year dental school class.
They predicted the outcome of the games, and the
results of their predictions were tabulated with 0 =
wrong prediction and 1 = correct prediction. Per-
form an appropriate test to determine if there is any
consistency in their ability to predict the outcome
of the games?

John Dave Melissa Sam

Team 1 0 0 1 1
2 1 1 1 1
3 1 1 0 1
4 0 1 1 1
5 0 0 0 0

Team 6 0 1 0 0
7 1 0 1 1
8 0 0 1 1
9 1 0 1 0

10 1 0 0 1

9 The data tabulated in the table below rep-
resent the measurement (in millimeters) of the
length of maxillary central incisors using a manual
caliper and a computerized device. Suppose the
measurements are not normally distributed. Are

the measurements done by a computerized device
more precise?

1 2 3 4 5 6 7

Manual 10.0 10.4 11.1 10.9 10.6 9.8 9.7
Computer 10.3 10.2 9.8 10.6 10.7 10.3 10.2

8 9 10 11 12 13

Manual 10.5 11.2 10.8 9.1
Computer 9.9 10.0 10.2 10.1 10.1 9.9

10 Fifteen patients were selected at random from
a clinic to study the relationship between blood
pressure and the amount of weekly exercise. The
amount of exercise represents the average daily
exercise in minutes. Compute the Spearman rank
correlation coefficient.

Patient SBP Exercise Patient SBP Exercise

1 146 25 8 148 35
2 134 30 9 139 28
3 152 15 10 175 0
4 129 45 11 126 37
5 168 10 12 120 40
6 115 35 13 116 40
7 155 28 14 138 22

15 140 15
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Chapter 15

Survival Analysis

15.1 INTRODUCTION

In clinical trials in dentistry and medicine, suc-
cess is usually measured in terms of the lifetime,
which is a continuous variable, that a certain de-
sirable condition is maintained, such as survival
of implants or remission of cancer. In many sit-
uations, however, it is inconvenient or impossi-
ble for investigators to observe the precise fail-
ure time or the time of death of all members of
a random sample. For example, in dental implant
follow-up studies to determine the lifetime distri-
bution (i.e., survival function) after the implants
have been placed, patients failed to visit the clinic
for follow-up examinations or contact with some
patients was lost for a variety of reasons. In med-
ical studies, patients could be lost for follow-up
before their death (or relapse) or the studies have
been terminated before the investigators had an op-
portunity to observe the death of every subject in
the study sample. Those patients for whom implant
failure time or relapse time is not observed are said
to yield incomplete or censored observations. A
sample that contains censored observations is re-
ferred to as censored data in survival analysis. The
key variable in this section is time-related lifetime
or survival time. Survival time is defined as the
time to the occurrence of a certain event, such as
the failure of an implant, death of a patient, re-
lapse, or development of a disease. These times
are subject to random variations.

To illustrate survival data containing censored
observations, consider the following implant fail-
ure times in months for nine patients: 12+, 24, 68,
68+, 68+, 98, 120+, 144+, 144+. Six censored ob-
servations and 3 uncensored (or complete) obser-
vations are included in the data. The “+” sign indi-
cates the observations that have been censored for
various reasons. The failure time measurement of
12+ indicates that the patient’s implant was known
to be functioning for 12 months after its place-

ment, but that the patient was lost to follow-up or
withdrawn from the studies. The investigators have
no knowledge as to how much longer the implant
would have provided its intended service had the
subject remained in the study. The three uncen-
sored observations indicate that the investigators
did observe the implant failure times at 24, 68, and
98 months.

Many studies in biomedical sciences are de-
signed to evaluate whether a new treatment or a
new procedure will perform better than the one
currently being used or compare two or more treat-
ment options to provide more effective and better
quality health care with most desirable outcomes.
The readers should keep in mind that censored data
occurs naturally in biomedical research projects.
Not all patients have the implants placed at the
same time. Patients enter the clinical trial for a
newly developed treatment at different time points.
Situations such as loss of patients to follow-up,
withdrawal from the study, or termination of the
study for data analysis give rise to survival data that
is censored. Analysis of survival data was used in
13.7% of the articles published in The Interna-
tional Journal of Oral & Maxillofacial Implants
between 1986 and 2002. It is reported that sur-
vival analysis was used in 32% of the papers in
The New England Journal of Medicine [1]. The
statistical methods of data analysis discussed in
the previous sections are not appropriate for the
type of survival data obtained from measuring the
length of lifetime. In this chapter, special methods
needed to analyze survival times will be discussed.

15.2 PERSON-TIME METHOD
AND MORTALITY RATE

A concept often used in epidemiology is person-
years on observation, which is defined by the
number of failures (or deaths) per 100 person-years

279
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Figure 15.1.1 Censored data with nine patients arranged in ascending order (“+” sign represents a censored observation).

under observation during the study period. To de-
scribe this method, consider the data illustrated
in Figure 15.1.1. The first patient remained in the
study for 12 months before being withdrawn from
the study, contributing the value of 12 to the cal-
culation of the total time the investigators spent
on observations. The implant failure of the second
patient was observed by the investigators after 24
months. From the figure it is clear that the investi-
gators observed the failure time of one patient after
68 months, and two patients were lost to follow-up
at 68 months. Thus, each of the three patients con-
tributed the value of 68 months to the total time on
observation. Implant failure was observed for the
sixth patient at 98 months. The seventh patient was
censored at 120 months. The last two patients were
censored when the study was terminated at 144
months. The total time on observation is calculated
by adding individual contributions as follows:

Total time = 12 + 24 + (68 × 3) + 98

+ 120 + (144 × 2)=746 (months)

Dividing 746 months by 12 yields 62.167 person-
years. The investigators spend a total of 62.167
person-years observing the 9 patients during the
study period. During the period, three implants
failed. This gives 3 ÷ 62.167 = 0.0483 or 4.83
failures per 100 person-years on observation.
There are a few problems with using this method:

1. The method inherently assumes the constant
failure rate (or survival rate) over any fixed
time interval within the study period, which is
unrealistic in most cases. This is the most seri-
ous problem.

2. The same value of 100 years for the total time
on observation will be obtained by observing
10 patients for 10 years or by observing 100
patients for 1 year.

3. The censored observation 12+ could have been
a complete observation if the patient had not
withdrawn from the study, increasing the num-
ber of failures from three to four if the patient
had not withdrawn.

Mortality rate is a standard method used by
investigators in epidemiology and biomedical sci-
ences that is designed to compare incidents of
death or failure occurring in different populations.
Mortality rate is defined by dividing the number
of subjects who died in a given time period by the
number of subjects at risk of dying in the same pe-
riod. The mortality rate depends heavily on when
the data analysis is performed. If it is calculated
at the very early stage of the study when there are
no occurrences of death, the mortality rate will be
zero (0%). If the study period is long enough and
the calculation is done at the end of the study when
all subjects at risk have died, the mortality rate will
be 100%. Thus the typical approach taken in on-
cology research is 2- or 5-year mortality rate in
which only those subjects who have been in the
study for 2 or 5 years are used in the data. The
shortcoming of this approach is that the contri-
butions from the censored subjects who withdrew,
for example, 4 years after entering the clinical trial
are completely ignored. The approach is generally
accepted when a large number of subjects is be-
ing followed, provided the proportion of censored
observations is at a manageable level.
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Table 15.2.1. Interval failure rate for 894 implants.

No. of Implants No. of Implant
Interval at Beginning of Failed during Interval Failure
(month) Interval Interval Rate (%)

0–12 894 13 1.5
12–24 702 12 1.7
24–36 445 9 2.0
36–48 189 5 2.6
48–60+ 88 3 3.4

The concept of interval failure rate discussed
in implant literature is similar to that of mortal-
ity rate. Table 15.2.1 shows typical success rate
data that represent survival times of 894 implants
placed by utilizing a variety of prosthodontic de-
signs. Like the calculations for mortality rate, in-
terval failure rate for the first interval is calculated
by dividing the number of failures in the inter-
val by the number of implants at the beginning of
the interval, that is, 13/894 = 0.015 (1.5%). Inter-
val failure rates for other intervals are calculated
likewise. The five interval failure rates given in
Table 15.2.1 are equivalent to mortality rates cal-
culated for five distinct time periods. Since there
are 894 implants at the beginning of the first inter-
val, 13 of which failed in the interval and 702 im-
plants are still functioning at the beginning of the
second interval, the number of censored implants
during the first interval is 894 − 13 − 702 = 179.

These 179 implants have been censored at various
time points during the first interval (0−12 months).
Note that the failure time contributions from these
censored implants have been ignored in the calcu-
lation of the interval failure rate. The methods that
take uncensored (i.e., complete) as well as cen-
sored observations into consideration—actuarial
life table analysis, Kaplan-Meier product limit

estimator, and piecewise exponential extimator—
are discussed in the following sections.

15.3 LIFE TABLE ANALYSIS

One of the primary goals of survival analysis is
to estimate the survival function, denoted S(t). In
the above example, S(t) represents the probability
of dental implants successfully providing intended
services for at least t months or patients remaining
in remission for at least t weeks. Whether it is t
months or t weeks, the time unit is immaterial for
the discussion. The survival function is also re-
ferred to as survival probability, cumulative sur-
vival rate, or survival curve. In engineering and
physical sciences, it is called system reliability or
reliability function. The life table analysis is one
of the oldest techniques developed for studying the
survival experience of a population. It has been
widely used by actuaries in the insurance industry,
demographers, and medical researchers.

Let the time axis be partitioned into a fixed se-
quence of interval, I1, I2, · · · , Ik . These intervals
are usually, but not necessarily, of equal length. In
most of the applications in implant dentistry, the
length of each interval is one year. In Figure 15.3.1
below, t0 = 0, t1 = 12, t2 = 24, · · ·, t5 = 60.

It is necessary to introduce some notation to
facilitate the discussion.

Let
di = No. of implants failed during the interval Ii ;
wi = No. of implants withdrawn during the inter-

val Ii ;
pi = probability of surviving through Ii , given that

it is functioning at the beginning of Ii ; and
qi = 1 − pi = probability of failure during Ii ,

given that it is functioning at the beginning of Ii .

From the summary of survival data presented in
Table 15.3.1,

n0 = 894, n1 = 702, n2 = 445, n3 = 189, n4 = 88

d1 = 13, d2 = 12, d3 = 9, d4 = 5, d5 = 3

w1 = 179, w2 = 245, w3 = 247, w4 = 96, w5 = 85

In survival analysis, it is said that n0 = 894 are
at risk of failing at the beginning of interval I1,

n1 = 702 are at risk of failing at the beginning

( ]
I1 I2 Ik

tktk−1t3t2t1

n1n0 n2 n3

0
nk−1 nk

( ]( ]( ]( ]( ] >

Figure 15.3.1 A sequence of time intervals.
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Table 15.3.1. Implant survival data.

Months Since No. of Implants Functioning No. of Implant Failed No. of Implants Withdrawn
Implant Placement at Beginning of Interval (ni ) during Interval (d j ) or Lost to Follow-up

0–12 894 13 179
12–24 702 12 245
24–36 445 9 247
36–48 189 5 96
48–60+ 88 3 85

of interval I2, etc. The life table method gives an
estimate for each pi , the probability of survival
during each time interval Ii , and then multiplies
the estimates together to obtain an estimate of the
survival function S(t). The probability pi can be
estimated by using

pi = 1 − di

ni
if there were no withdrawals in
Ii (wi = 0).

If there were withdrawals, then it is assumed that
on the average, these implants that were censored
during interval Ii were at risk for half the length of
the interval. Therefore, the effective sample size,
n∗

i , can be defined by

n∗
i = ni − 1

2
wi .

Hence, estimates are given by q̂i = di

n∗
i

, and p̂i =
1 − di

n∗
i

. The actuarial estimate of the survival

function is

Ŝ(tk) = p̂1 p̂2 · · · p̂k .

From the discussions in this section, we know that
the values of the survival function Ŝ(tk) in differ-
ent samples will be different due to inherent un-
certainty. The estimate of the variance of Ŝ(tk) is

obtained by Greenwood’s formula [2] as follows:

V̂ ar [Ŝ(tk)] = [Ŝ(tk)]2 ·
k∑

i=1

di

n∗
i (n∗

i − di )
.

The standard error of Ŝ(tk) is given by

SE[Ŝ(tk)] = [Ŝ(tk)] ·
√∑k

i=1

di

n∗
i (n∗

i − di )
.

Table 15.3.2 presents a life table analysis based on
the implant survival data in Table 15.3.1.

The actuarial life table method assumes that all
withdrawals during a given interval occur on the
average at the midpoint of the interval. If the length
of the intervals is small, a violation of this assump-
tion may not be serious. However, if the length of
the intervals is large, then it may introduce a con-
siderable amount of bias. Many withdrawals could
occur in a interval that do not occur at the mid-
point. The second assumption is that probability
of survival in one particular interval is statistically
independent of the probability of survival in any
other intervals.

15.4 HAZARD FUNCTION

The survival function is defined as the probabil-
ity that an implant (or a subject) survives at least a
specified time period. In this section, the concept of

Table 15.3.2. Life table analysis of implant survival data.

Probability Cumulative
Interval Effective Sample Probability of Failure of Surviving Survival Rate
Ii Size n∗

i q̂i p̂i Ŝ(ti )

0–12 894 − (179/2) = 804.5 13/804.5 = 0.01 6 0.984 0.984
12–24 702 − (245/2) = 579.5 12/579.5 = 0.021 0.979 0.963
24–36 445 − (247/2) = 321.5 9/321.5 = 0.028 0.972 0.936
36–48 189 − (96/2) = 141.0 5/141.0 = 0.035 0.965 0.904
48–60 88 − (85/2) = 45.5 3/45.5 = 0.066 0.934 0.844
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the hazard function will be introduced. The proba-
bility distribution of survival times can be charac-
terized by three functions, one of which is known
as the hazard function. Given a set of data, the
users of statistics would like to calculate the mean
and standard deviation. Investigators have learned
that the problem with survival time data is that
the mean survival time depends on when the data
is analyzed. The unique feature of survival data is
that the subjects typically join the study at different
time points, may withdraw from the study, or may
be lost to follow-up. Thus, the value of the average
survival time will change as time elapses until the
point at which the lifetimes of all of the implants in
the study have been observed. In survival analysis,
it is often unrealistic to expect a set of data with-
out any censored observations. However, there is a
procedure that gives a reasonable estimate of mean
survival time when the sample size is fairly large.
The procedure, called the hazard function, is de-
fined as the probability that an implant fails in a
time interval between t and t + �t , given that the
implant has survived until time t . In statistics, this
concept is known as the conditional probability. In
engineering, the term instantaneous failure rate
and in epidemiology, the term force of mortality
are more commonly used. The hazard function is
a measure of the likelihood of failure as a function
of the age of the individual implants. The hazard
function reflects the risk of failure per unit time
during the aging process of the implant. It plays
an important role in the study of survival times. In
practice, when there are no censored observations,
the hazard function is estimated as the proportion
of implants failing in an interval per time unit,
given that they have survived to the beginning of
the interval:

ĥ(t) = number of implants failing in the interval beginning at time t

(number of implants functioning at t) · (width of the interval)

= number of implants failing per time unit in the interval

number of implants functioning at t

In actuarial sciences, the hazard function, ĥ(t), is
defined by

ĥ(t) = number of implants failing per time unit in the interval

(number of implants functioning at t) − ( 1
2 )(number of implant failures in the interval)

When failure times are observed, and if it is rea-
sonable to assume that the shape of a survival curve
follows what is known as an exponential distribu-
tion, the hazard function can be expressed as given

below and the mean survival time is obtained by
taking its reciprocal:

ĥ = number of implant failures

(sum of failure times) + (sum of censored times)

To illustrate the hazard rate, consider a simple
example.

Example 15.4.1. A prosthodontist has collected
the following time data (in month) from 16 pa-
tients who had received implant-supported fixed
partial dentures that were cement retained. Fail-
ures were defined by complications such as porce-
lain fracture, cement washout, implant failure, and
loose central screws. There are 4 uncensored and
12 censored observations in the data displayed in
the following table. The sums of failure times and
censored observations are as follows:

Sum of failure times = 16.5 + 12.0 + 5.5 +
14.5 = 48.5

Sum of censored times = 35 + 34 + 27 + 27 +
25 + 23 + 22 + 15 + 14 + 11 + 7 + 5.5 =
245.5

Patient Date of Date of Survival
No. Treatment Failure Time

1 1/14/00 6/2/01 16.5
2 1/31/00 35.0+
3 3/2/00 34.0+
4 5/3/00 4/30/01 12.0
5 7/28/00 1/16/01 5.5
6 9/25/00 27.0+
7 10/4/00 27.0+
8 11/30/00 25.0+
9 1/30/01 23.0+

10 3/5/01 22.0+
11 6/26/01 9/15/02 14.5
12 9/27/01 15.0+
13 11/2/01 14.0+
14 2/4/02 11.0+
15 5/31/02 7.0+
16 7/17/02 5.5+

The hazard rate is: ĥ = 4

48.5 + 245.5= 0.0136.
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Figure 15.5.1 Display of survival data for porcelain-faced crowns.

So the mean survival time of the survival data in
Example 15.4.1 is estimated to be

X = 1

ĥ
= 1

0.0136
= 73.5 (months).

15.5 KAPLAN-MEIER PRODUCT
LIMIT ESTIMATOR

The Kaplan-Meier product limit estimator [3] has
become the most commonly used approach to sur-
vival analysis in biomedical sciences. The Kaplan-
Meier estimator is similar to the actuarial life ta-
ble analysis except the intervals Ii are determined
by the time points at which failures are observed.
Because failures occur at random, the lengths of
the intervals Ii are random variables. Consider the
following example to illustrate the Kaplan-Meier
method. Porcelain-faced crowns placed in ante-
rior maxilla were studied retrospectively. A 11-
year study resulted in survival data consisting 15
samples. These 15 observations in month are dis-
played in Figure 15.5.1.

28+, 30+, 48, 48, 60, 60+, 88+, 94, 100+,

108, 116+, 116+, 120, 126, 132.

There are two uncensored observations (failures)
tied at 48 months, two censored observation tied
at 116+ months, and one uncensored and one cen-
sored observation tied at 60 months. In the latter
case, it is reasonable to assume that the censored
observation at 60+ occurred just a little bit later
than the uncensored observation at 60. It is easy
to see that seven intervals are obtained from the
survival data:

I1 = (0, 48], I2 = (48, 60], I3 = (60, 94],

I4 = (94, 108], I5 = (108, 120],

I6 = (120, 126], I7 = (126, 132].

Note that there are two censored observations in
interval I1, none in I2, two in I3, one in I4, two in
I5, none in I6 and I7.

Table 15.5.1. Porcelain crown survival data.

i ti ci di ni

0 t0 = 0 c0 = 0 d0 = 0 n0 = 15
1 t1 = 48 c1 = 2 d1 = 2 n1 = 13
2 t2 = 60 c2 = 0 d2 = 1 n2 = 11
3 t3 = 94 c3 = 2 d3 = 1 n3 = 8
4 t4 = 108 c4 = 1 d4 = 1 n4 = 6
5 t5 = 120 c5 = 2 d5 = 1 n5 = 3
6 t6 = 126 c6 = 0 d6 = 1 n6 = 2
7 t7 = 132 c7 = 0 d7 = 1 n7 = 1

Let
ti = the time at which the i th failure is observed,
ci = the number of crowns censored in the interval

Ii ,

di = the number of crowns failed at ti ,
ni = the number of crowns at risk at instant before

ti .

It can be seen that ni is given by a simple formula
ni = ni−1 − ci − di−1, where n0 = 15, c0 = 0,

and d0 = 0. For example, since n0 = 15, c1 = 2,

and d0 = 0; n1 = n0 − c1 − d0 = 15 − 2 − 0 =
13. The values of ti , ci , di , and ni are presented
in Table 15.5.1. Let pi = P(surviving through Ii ,
given that crowns were functioning at the begin-

ning of Ii ). Then p̂i = ni−1 − di−1

ni−1
. If there are

no tied uncensored observations, then di = 1 for
all i = 1, 2, · · ·, k, and p̂i will be obtained by

p̂i = ni−1 − 1

ni−1
(Table 15.5.2). The Kaplan-Meier

product limit estimator is given by

Ŝ(ti ) = p̂1 p̂2 · · · p̂i .

Example 15.5.1. Table 15.5.3.a and Table
15.5.3.b display implant survival data for patients
whose bone height was < 2 mm or > 4 mm at
the time of the implant placement. If a patient
had more than two implants, one of the implants
was randomly selected for the survival study.
There were 41 patients with bone height < 2 mm
and 56 patients with bone height > 4 mm for the
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Table 15.5.2. Kaplan-Meier product limit estimates
for porcelain-faced crown data.

Ii ci di ni p̂i Ŝ(ti )

1 2 2 13 1.0 1.0
2 0 1 11 0.846 0.846
3 2 1 8 0.909 0.769
4 1 1 6 0.875 0.673
5 2 1 3 0.833 0.561
6 0 1 2 0.667 0.374
7 0 1 1 0.5 0.187

study. As usual, “ + ” sign indicates the censored
observation.

Figures 15.5.1 and 15.5.2 exhibit Kaplan-Meier
product limit estimator for the survival data in Ta-
ble 15.5.3.a and Table 15.5.3.b. Notice there are 11
distinct failure time points in the Table 15.5.4.a,
and 7 distinct failure time points in Table 15.5.4.b.
Figure 15.5.3 shows that the implant survival for
those patients with bone height < 2 mm is much
lower than those with bone height > 4 mm. A
comparison between two survival functions will
be studied rigorously in Section 15.6.

Note that the largest observed survival time in
Table 15.5.3.a is 60+, which is censored, while the
largest observation in Table 15.5.3.b is 58, which
is uncensored. If the largest observation is uncen-
sored, the Kaplan-Meier product limit estimator
gives the survival function equal to zero (0) beyond
58 months. If the largest observation is censored
as in Table 15.5.3.a, the Kaplan-Meier estimator
gives the survival function equal to 0.391 for the
survival time well beyond 60 months. This makes
some statisticians uncomfortable as survival func-
tions are expected to reach zero at some time in
the future. The standard error Si of the estimate of

Table 15.5.3.a. Implant survival data for patients with bone height < 2 mm.

5+ 6 6+ 8+ 8+ 9+ 10 10 12+ 15 16+
18 18 21+ 23 25+ 26+ 26+ 28 28 34+ 35
35+ 36+ 42 45+ 46 47+ 50+ 52 56+ 58 58
58 60+ 60+ 60+ 60+ 60+ 60+ 60+

Table 15.5.3.b. Implant survival data for patients with bone height > 4 mm.

6+ 6+ 6+ 6+ 6+ 8+ 9+ 9+ 9+ 9+ 12+ 12+
12+ 12+ 18+ 18+ 18+ 18+ 18+ 18+ 22+ 22+ 22+ 22+
24 26+ 28+ 28+ 33 33 35+ 36+ 38+ 38+ 39+ 40+
40+ 44 44 47+ 47+ 47+ 48 50 50+ 54+ 54+ 54+
56 56+ 56+ 56+ 56+ 56+ 58 58

Table 15.5.4.a. Kaplan-Meier survival
probability for censored data for BH < 2 mm.

Ii ci di ni p̂i Ŝ(t)

1 1 0 41 1.0 1.0
2 4 1 40 0.976 0.976
3 1 2 35 0.943 0.920
4 1 1 32 0.969 0.891
5 1 2 30 0.933 0.831
6 3 1 27 0.963 0.800
7 1 2 23 0.913 0.730
8 2 1 20 0.950 0.694
9 1 1 17 0.941 0.653

10 2 1 15 0.933 0.609
11 1 1 12 0.917 0.558
12 5 3 10 0.700 0.391

Table 15.5.4.b. Kaplan-Meier survival
probability for censored data for BH > 4 mm.

Ii ci di ni p̂i Ŝ(t)

1 24 0 56 1.0 1.0
2 3 1 32 0.969 0.969
3 7 2 28 0.929 0.900
4 3 2 19 0.895 0.801
5 0 1 14 0.929 0.744
6 4 1 13 0.923 0.687
7 5 1 8 0.875 0.601
8 0 2 2 0.0 0.0

the cumulative survival function Ŝ(ti ) is quite sim-
ilar to the standard error for an actuarial estimate
discussed in Section 15.3. The standard error for
the Kaplan-Meier product limit estimate is given
by Greenwood [4],

SE(Ŝ(ti )) = Ŝ(ti )

√∑ di

ni (ni − di )
.

Using the standard error, confidence limits for
the survival curve can be obtained. For example,
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Figure 15.5.1 Kaplan-Meier survial function for impant data with BH ≤ 2 mm.
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Figure 15.5.2 Kaplan-Meier survival function for implant data with BH ≥ 4 mm.
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Figure 15.5.3 Two Kaplan-Meier survival functions for the implant data.
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Table 15.5.5. Necessary calculations for 95% confidence bands for Kaplan-Meier survival curve for the implant data in
Table 15.5.3.a.

di

ni (ni − di )

∑ di

ni (ni − di )
Ŝ(ti )

√∑ di

ni (ni − di )Ii ni di Ŝ(ti ) ±1.96 · SE(Ŝ(ti ))

1 41 0 1.0 0.0 0.0 0.0 ±0.0
2 40 1 .976 .0006 .0006 .0239 ±0.0468
3 35 2 .920 .0017 .0023 .0441 ±0.0864
4 32 1 .891 .0010 .0033 .0512 ±0.1004
5 30 2 .831 .0024 .0057 .0627 ±0.1229
6 27 1 .800 .0014 .0071 .0674 ±0.1321
7 23 2 .730 .0041 .0112 .0773 ±0.1515
8 20 1 .694 .0026 .0138 .0815 ±0.1597
9 17 1 .653 .0037 .0175 .0864 ±0.1693

10 15 1 .609 .0048 .0223 .0909 ±0.1782
11 12 1 .558 .0076 .0299 .0965 ±0.1891
12 10 3 .391 .0429 .0728 .1055 ±0.2068

95% confidence limits for the survival function are
given by

Ŝ(ti )±z0.975 · SE(Ŝ(ti )) or Ŝ(ti )±1.96 · SE(Ŝ(ti )).

The confidence limits for the survival func-
tion are often referred to as the confidence
bands. Similarly, the 90% confidence bands for
the Kaplan-Meier product limit estimates are
obtained by Ŝ(ti ) ± z 0.95 · SE(Ŝ(ti )) or Ŝ(ti ) ±
1.645 · SE(Ŝ(ti )). The above table (Table 15.5.5)
shows the necessary calculations for the con-
struction of 95% confidence bands for the
Kaplan-Meier survival curve for the implant
data presented in Table 15.5.3.a. The corre-
sponding 95% confidence bands are depicted in
Figure 15.5.4.

95% Confidence Bands
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Figure 15.5.4 95% confidence bands for Kaplan-Meier survival curve for data in Table 15.5.3.a.

15.6 COMPARING SURVIVAL
FUNCTIONS

The statistical problem of comparing survival
functions arises often in biomedical sciences. On-
cology researchers may be interested in comparing
the effectiveness of two or more treatments in pro-
longing life or the remission period of metastatic
breast cancer patients. Implant dentists may want
to compare a pure titanium threaded implant with a
hydroxyapatite-coated threaded implant in the ca-
nine mandible. Survival times of the different treat-
ment groups will always vary. The differences can
be illustrated by drawing graphs of the Kaplan-
Meier survival curves, but this will only give a
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crude idea of the difference between the treat-
ments. The graphs do not reveal whether the differ-
ences are statistically significant or due to chance
variations. In this section, a few of the most popular
non-parametric methods for comparing survival
functions will be discussed. Let S1(t)and S2(t) de-
note the survival functions of the two treatment
groups. Then the hypotheses to be considered can
be stated:

H0 : S1(t) = S2(t) (two treatments are equally
effective) against

H1 : S1(t) �= S2(t) (two treatments are not equally
effective), or

H1 : S1(t) < S2(t) (treatment 2 is more effective
than treatment 1), or

H1 : S1(t) > S2(t) (treatment 1 is more effective
than treatment 2)

If there are no censored observations in the sur-
vival data, non-parametric test procedures for two
independent samples can be applied. In some situ-
ations, it may be tempting to use the two-sample t
test, but keep in mind that unless the two samples
are normally distributed, the t test is not appro-
priate. In the following discussions, the presence
of censored observations in the survival data is
assumed.

15.6.1 Gehan Generalized
Wilcoxon Test

The Gehan generalized Wilcoxon test is an exten-
sion of the Wilcoxon rank sum test introduced in
Section 14.3. It is designed to compare two inde-
pendent treatment groups when the survival times
are censored. In the Gehen test, every observation
Xi or X+

i (censored or uncensored) in treatment
group 1 is compared with every observation Yi or
Y +

i (censored or uncensored) in treatment group
2. Let n1 be the number of samples in group 1 and
n2 be the number of samples in group 2. A test
statistic is defined by

W =
n1∑

i=1

n2∑
j=1

Ui j where

Ui j =

⎧⎪⎪⎨⎪⎪⎩
+1 if Xi > Y j or X+

i ≥ Y j

0 if Xi = Y j or X+
i < Y j or

Y +
j < Xi or (X+

i , Y +
j )

−1 if Xi < Y j or Xi ≤ Y +
j

The value of the test statistic W would be small (a
negative value) if H1 : S1(t) < S2(t) is true. The
value of W would be large (a large positive value)
if H1 : S1(t) > S2(t) is true. If the null hypothesis
H0 : S1(t) = S2(t) were true, the value of W would
be close to zero (0). Let’s compare the implant
survival data in Table 15.5.3.a with the survival
data in Table 15.5.3.b. Figure 15.5.3 indicates that
the implants placed in the patients with bone height
> 4 mm have greater survival probabilities than
those with bone height < 2 mm. The Gehen test
will show if the difference between the two groups
is statistically significant. Since X1 = 5+ and Y1 =
6+, it is difficult to determine which is larger or
smaller, or if they are the same. Thus, it is easy to
see that U11 = 0. Since X2 = 6, and Y1 = 6+, it is
clear that X2 < Y1. Hence, U21 = −1. Repeating
the process for n1n2 times, the value of the test
statistic is obtained.

W =
n∑

i=1

m∑
j=1

Ui j = −288

The calculation of W can be time consuming and
laborious when the sample sizes, n1 and n2, are
large. An alternative method suggested by Mantel
[5] combines the two samples to form a single
pooled sample of n1 + n2 observations. Arrange
the observations in the pooled sample in ascending
order. Let

Ui = (no. of observations definitely greater
than the i th observation)

− (no. of observations definitely less
than the i th observation),

where i = 1, 2, · · ·, n1 + n2.

Example 15.6.1. Consider two sets of data:

(i) Sample 1: 6, 8+, 12, 12, 23+

Sample 2: 7, 7+, 14+, 20
(ii) Pooled sample: 6, 8+, 12, 12, 23+, 7, 7+, 14+,

20
(iii) Arranging the data in ascending order:

6, 7, 7+, 8+, 12, 12, 14+, 20, 23+

Then

U1 = (no. of observations definitely greater than 6)
−(no. definitely less than 6) = 8 − 0 = 8

U2 = (no. of observations definitely greater than 7)
−(no. definitely less than 7) = 7 − 1 = 6
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U3 = (no. of observations definitely greater than 7+)
−(no. definitely less than 7+) = 0 − 2 = −2

·
·

U9 = (no. of observations definitely greater than 23+)
−(no. definitely less than 23+) = 0 − 5 = −5

The variance of the test statistic is given by

σ 2(W ) = n1n2
∑n1+n2

i=1 U 2
i

(n1 + n2)(n1 + n2 − 1)
.

The statistic W under H0 can be considered ap-
proximately normally distributed with mean zero
and variance σ 2(W ) :

Z = W√
σ 2(W )

◦∼ N (0, 1).

Example 15.6.2. Using the Gehan generalized
Wilcoxon test, determine if there is any statisti-
cally significant difference between the two sets
of survival data presented in Table 15.5.3.a and
Table 15.5.3.b.

Calculations yield W =∑n
i=1

∑m
j=1 Ui j =

−288 and following the steps described above,∑n1+n2
i=1 U 2

i = 64, 617.

So the variance of the statistic W is obtained as
follows:

σ 2(W ) = n1n2
∑n1+n2

i=1 U 2
i

(n1 + n2)(n1 + n2 − 1)

= (41)(56)(64, 617)

(41 + 56)(41 + 56 − 1)
= 15, 932.

By substituting W and σ 2(W ), the test statistic is

Z = W√
σ 2(W )

= −288√
15932

= −2.2817.

Since Z = −2.2817 < z 0.05 = −1.645, the null
hypothesis is rejected. The conclusion is that the
survival function for treatment group 2 (Table
15.5.3.b) is statistically significantly higher, with
p = 0.0113.

15.6.2 The Log Rank Test

The log rank test is another method that is widely
used to compare two independent survival func-
tions in the presence of censored observations.
Several statisticians contributed to the develop-
ment of the test procedure (Mantel, Cox, Peto and
Peto), and thus there are different names associated

with the method and different versions are avail-
able to illustrate the test. Often, the procedure is
simply called the log rank test. The log rank test
statistic can be shown to be the sum of the differ-
ences between the observed failures (uncensored)
and the expected failures in one of the treatment
groups. Hence, one version of the log rank test is a
χ2 test, since the test statistic has approximately a
χ2 distribution. This is the version that is discussed
in this section. Let O1 and O2 be the observed
numbers and E1 and E2 the expected numbers of
failures or deaths in the two treatment groups. To
compute E1 and E2, all the uncensored observa-
tions are arranged in ascending order. Compute
the number of expected failures at each observed
uncensored time point and sum them. Suppose dt

denotes the number of failed observations at time t,
and n1t and n2t be the numbers of implants still ex-
posed to risk of failure at time t in treatment group
1 and group 2, respectively. The expected failures
for the two treatment groups are expressed

e1t = n1t

n1t + n2t
× dt , and e2t = n2t

n1t + n2t
× dt

Then E1 and E2 are given by E1 =∑ e1t and E2 =∑
e1t . Note that E2 is the total number of failures

minus E1. So in practice, it is sufficient to compute
E1. The test statistic

χ2 = (O1 − E1)2

E1
+ (O1 − E2)2

E2

◦∼ χ2
(1)

has approximately the χ2 distribution with one de-
gree of freedom. A χ2 value larger than χ2

(1, 0.95) =
3.84 would lead to the rejection of the null hypoth-
esis in favor of the alternative hypothesis.

Example 15.6.3. A study was done to compare
the survival of dental implants in diabetic patients
with that in non-diabetic patients. The 60-month
follow-up data is presented.

Group A: 6, 6+, 12, 12+,

(diabetic subjects) 18, 18, 36, 42+

Group B: 12+, 24+, 36+, 48,

(non-diabetic subjects) 54+, 60, 60+

Let’s perform a significance test by using the log
rank test at the significance level of α = 0.05. That
is, we need to test H0 : S1(t) = S2(t) (survival
functions of the two groups are not different) vs.
H1 : S1(t) < S2(t) (Group B has higher survival
rate).
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The necessary values for the test statistic are cal-
culated and presented in the following table.

Failure
Time t dt n1t n2t n1t + n2t e1t e2t

6 1 8 7 15 0.5333 0.4667
12 1 6 7 13 0.4615 0.5385
18 2 4 6 10 0.8 1.2
36 1 2 5 7 0.2857 0.7143
48 1 0 4 4 0 1.0
60 1 0 2 2 0 1.0

From the above table, E1 and E2 can be obtained;
E1 =∑ e1t = 2.0805 and E2 =∑ e1t = 4.9195.
Hence, the test statistic is

χ2 = (5 − 2.0805)2

2.0805
+ (2 − 4.9195)2

4.9195
= 5.829 4 > χ2

(1,0.95) = 3.84

Therefore, the null hypothesis H0 is rejected.
The survival function for the implants placed in
non-diabetic subjects is statistically significantly
higher.

15.6.3 The Mantel-Haenszel Test

The Mantel-Haenszel test has proven extremely
useful in biomedical research and epidemiologic
studies where the effects of confounding variables
need to be controlled. For example:

1. In comparing two treatment options for cancer-
ous tumor, it would be important to consider
prognostic factors such as stage of the tumor.

2. In studying the association between drinking
and lung cancer, the investigators want to con-
trol the effects of smoking habit.

3. In studying the relationship between implant
survival time and type of loading (immediate
or delayed), adjustments for the effects of bone
height is required.

To apply the Mantel-Haenszel test, the data have
to be stratified by the confounding variable and
2 × 2 contingency tables are to be formed, one for
each stratum. To describe the test procedure, con-
sider the following case: A retrospective research
was conduced with 493 implants to study the asso-
ciation between survival time and type of loading.
Two 2 × 2 contingency tables were constructed to
control the effects of bone height.

Bone height < 2 mm

Type of No. of Failures No. Surviving
Loading within 5 Years 5 Years

Immediate d11 = 22 86 n11 = 108
Delayed d12 = 23 97 n12 = 120

f1 = 45 s1 = 183 N1 = 228

Bone height > 4 mm

Type of No. of Failures No. Surviving
Loading within 5 Years 5 Years

Immediate d21 = 18 107 n21 = 125
Delayed d22 = 17 123 n22 = 140

f2 = 35 s2 = 230 N2 = 265

Among the samples under study, 80 implants
were known to have failed within 5 years of place-
ment, and 413 survived at least 5 years. To inves-
tigate if the type of loading is significantly associ-
ated with the implant survival rate, it was decided
to control the effects of bone height, dividing the
samples into those with bone height < 2 mm and
those with bone height > 4 mm. The test statistic
has approximate χ2 distribution with 1 degree of
freedom:

χ2 = [(d11 + d21) − (E(d11) + E(d21))]2

σ 2(d11) + σ 2(d21)
◦∼ χ2

(1)

where E(d11), E(d21), σ 2(d11), and σ 2(d21) are
mean and variance of d11 and d21.

The mean and variance of d11 and d21 can be
obtained as follows:

E(d11) = (n11)( f1)

N1
= (108)(45)

228
= 21.32,

E(d21) = (n21)( f2)

N2
= (125)(35)

265
= 16.51

σ 2(d11) = (n11)(n12)( f1)(s1)

N 2
1 (N1 − 1)

= (108)(120)(45)(183)

2282(228 − 1)
= 9.044

σ 2(d21) = (n21)(n22)( f2)(s2)

N 2
2 (N2 − 1)

= (125)(140)(35)(230)

2652(265 − 1)
= 7.599
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The computed χ2 value is

χ2 = [(22 + 18) − (21.32 + 16.51)]2

9.044 + 7.599
= 0.283 < χ2

(1, 0.95) = 3.84.

The null hypothesis is accepted at the significance
level α = 0.05, and the test is not significant. Thus,
the type of loading is not significantly associated
with the implant survival time after adjusting for
the effects of bone height. A different version of the
test called Cochran-Mantel-Haenszel test is dis-
cussed in other statistics textbooks [6].

In Section 15.5, the well-known Kaplan-Meier
product limit estimator of survival functions for
censored data was introduced. The next section is
devoted to an alternative estimator known as the
piecewise exponential estimator which has certain
advantages. Interested readers are referred to Kim
and Proschan [7] for detailed discussions on the
alternative estimator.

15.7 PIECEWISE EXPONENTIAL
ESTIMATOR (PEXE)

A method for estimating a survival function of a
life distribution for a set of censored data, called
the piecewise exponential estimator (PEXE),
will be discussed. PEXE is an alternative estima-
tor to the Kaplan-Meier product limit estimator.
We will illustrate the method and explain how to

Table 15.7.1. Censored data on time at cessation of
observation.

Order of Time at Cessation Cause of
Observation of Observation Cessation Notation

1 2.0 Death z1

2 3.5 Withdrawal w1

3 4.5 Withdrawal w2

4 6.2 Death z2

5 8.0 Withdrawal w3

6 8.8 Death z3

7 11.3 Death z4

calculate the survival function when a data set con-
tains censored observations.

15.7.1 Small Sample Illustration

Suppose that at time 0, seven patients have joined
a clinical trial that is designed to test the effective-
ness of a new treatment for hairy cell leukemia.
These seven subjects are not bone marrow trans-
plant patients. Each patient is observed until death
(failure) or withdrawal from the study, whichever
occurs first. The observed data on the seven pa-
tients is presented in Table 15.7.1 in the order of
occurrence. The survival data in Table 15.7.1 is
displayed in Figure 15.7.1.

Definition 15.7.1. Total time on test is the total
amount of time spent on observing the subjects
who are in study.

z1 z2 w3 z3 z4w1 w2

Figure 15.7.1 Number of patients remaining in the study at time t .



292 Biostatistics for Oral Healthcare

For example, there are 7 patients under obser-
vation during [0, 2.0] and 6 patients under ob-
servation for 1.5 years during [2.0, 3.5]; there-
fore, the total time on test during [0, w1] is
(7 × 2) + 6 × (3.5 − 2.0) = 23.0. The key steps
to estimating the survival function from the data
are as follows.

1. Estimate the average failure rate separately on
each interval between successive failures.

2. Fit an exponential survival function separately
for each such interval whose failure rate is the
value obtained in step 1.

3. Join the separate exponential pieces (one piece
per failure interval) to form a continuous piece-
wise exponential estimator.

4. The estimated survival function stops at the last
observed failure time z4 in the above example.
Beyond z4, all we can say is that the survival
function continues to decrease.

To implement step 1, estimate the unknown av-
erage failure rate r1 on the interval [0, z1] from

∧
r 1 = Number of deaths observed during [0, z1]

Total time on test observed during [0, z1]

= 1

7 · z1
= 1

7 · 2
= 1

14
= 0.0714.

One death (or failure) was observed at z1 during
[0, z1], which accounts for the numerator. Seven
patients each contributed z1 years toward the total
time on test observed during [0, z1], which ac-
counts for the denominator. The resulting value

of
∧
r 1 = 0.0714 is the maximum likelihood esti-

mate (MLE) of the exponential piece to be used on
[0, z1], conditional on the observed withdrawal
times. The concept of the maximum likelihood es-
timator is not discussed in this book. Interested
readers are referred to Hogg and Craig [8]. On the
interval (z1, z2] (the interval of time following the
first observed death and ending in the second ob-
served death), estimate the unknown average fail-
ure rate r2 on (z1, z2] from

∧
r 2 = Number of deaths observed during [z1, z2]

Total time on test observed during [z1, z2]

= 1

6(w1 − z1) + 5(w2 − w1) + 4(z2 − z1)

= 1

6(3.5 − 2.0) + 5(4.5 − 3.5) + 4(6.2 − 4.5)
= 0.0481.

One death occurred at time z2, yielding the numer-
ator as for the denominator, 6 patients were under
observation during the interval [z1, w1], 5 patients
were under observation during the interval [w1,

w2], and 4 patients were under observation during
the interval [w2, z2]. Use these facts to obtain the
total time on test shown in the denominator. Sim-
ilarly,

∧
r 3 the estimator of the average failure rate

on (z2, z3], is given by

∧
r 3 = Number of deaths observed during [z2, z3]

Total time on test observed during [z2, z3]

= 1

3(w3 − z2) + 2(z3 − w3)

= 1

3(8.0 − 6.2) + 2(8.8 − 8.0)
= 0.1429.

Finally, we estimate the average failure rate r4

on the last interval (z3, z4] between the successive
deaths occurred at z3 and z4:

∧
r 4 = 1

(z4 − z3)
= 1

(11.3 − 8.8)
= 0.4000.

To implement steps 3 and 4, compute a piecewise

exponential survival function
∧
S(t) with the failure

rate

∧
r (t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∧
r 1 = 0.0714, for 0 ≤ t ≤ z1 = 2.0
∧
r 2 = 0.0481, for z1 ≤ t ≤ z2 = 6.2
∧
r 3 = 0.1429, for z2 ≤ t ≤ z3 = 8.8
∧
r 4 = 0.4000, for z3 ≤ t ≤ z4 = 11.3

For t > z4, we do not attempt to obtain an esti-

mator
∧
S(t). All one can say is that the survival

function
∧
S(t) decreases with t > z4 = 11.3.

15.7.2 General Description
of PEXE

In this section we present a more precise and gen-
eral description of the PEXE of the survival func-
tion based on censored data. For each subject, we
assume the time that observation ends is the min-
imum of 2 statistically independent random vari-
ables X and Y ; X is governed by a continuous
life distribution function F(t) and Y by a contin-
uous life distribution function G(t). The random
variable X represents the time to death (or failure)
and the random variable Y represents the time to
withdrawal. Let f (t) and g(t) be the corresponding
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probability density functions. Then the each sub-
ject in the study is observed to

� death at time t with likelihood f (t)[1 − G(t)],
� be withdrawn at time t with likelihood g(t)[1 −

F(t)], or
� experience neither death nor withdrawal during

[0, t] with likelihood [1 − F(t)][1 − G(t)].

Suppose n new patients joined a clinical trial at
time 0. We observe each patient until death due
to the illness that is under study or withdrawal
from further observation, whichever occurs first.
The observed outcomes are listed in order of oc-
currence as follows:

0 < w11 < · · · < w1k1 < z1 < w21 < · · · < w2k2

< z2 < · · · < zm−1 < wm1 < · · · < wmkm

< zm < wm+1,1 < · · · < wm+1,km+1

We take z0 = 0, zm+1 = ∞, and ki = 0 when no
withdrawals occur in (zi−1, zi ). In the above ex-
pression, strict inequality occurs between succes-
sive observed values. This is a consequence of
the assumption that the life distribution functions
F and G are continuous. There are m observed
deaths and

∑m+1
i=1 ki withdrawals. Because the to-

tal number of observations is n, we must have
m +∑m+1

i=1 ki = n. Based on the ordered obser-
vations displayed above, we describe the PEXE
for survival function S(t). On the first failure in-
terval [0, z1], we estimate the failure rate of the
exponential survival function that best fits the data
observed during [0, z1]; “best” in the sense of the
MLE. We are operating as if the unknown survival
function S(t) is exponential on [0, z1]. It is well
known that the MLE of the failure rate of an ex-
ponential distribution is of the following form:

Observed number of deaths

Observed total time on test
.

Applying this principle, we obtain the failure rate

estimator
∧
r 1on [0, z1],

∧
r 1 = 1∑k1

i=1 w1i + z1 + (n − k1 − 1)z1

The value 1 in the numerator is simply the number
of deaths observed during [0, z1]. The denomina-
tor represents the total time on test observed during
[0, z1] : One patient was observed until he with-
drew from the study at time w11. A second was
observed until he withdrew at time w12, etc., until

the last patient withdrew during [0, z1], contribut-
ing w1k1 years to total time on test observed during
[0, z1]. In addition, the patient who died at time
z1 was observed for z1 years. Finally, at time z1,
there were n − k1 − 1 patients still remaining in
the study that had been observed for z1 years each.
Thus, on the first failure interval, an estimator of
survival function is:

S(t) = e− ∧
r 1t for 0 ≤ t ≤ z1.

In the similar fashion, we estimate
∧
r 2 the MLE

of the failure rate of the exponential distribution
that fits the data on (z1, z2]:

∧
r 2 = 1∑k2

i=1(w2i− z1)+(z2−z1)+(n − k1−k2−2)(z2−z1)

The exponential estimator of the survival func-
tion on the second failure interval (z1, z2] is

S(t) = exp{−∧
r 1z1 − ∧

r 2(t − z2)} for z1 ≤ t ≤ z2

At t = z1, the two expressions
∧
r 1and

∧
r 2 agree;

that is, the exponential pieces on successive inter-
vals between deaths are joined to form a continu-
ous survival function curve. From the two survival
functions, one can see that this is accomplished
for the first two exponential pieces on [0, z1] and

(z1, z2] by inserting the term − ∧
r 1z1 in the expo-

nent of e in
∧
r 2. We continue in this fashion obtain-

ing in succession
∧
r 3, · · ·, ∧

r m . We can now express
the survival function estimator in general over the
interval [0, zm]:

∧
S(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e− ∧
r 1t for 0 ≤ t ≤ z1

exp{−[
∧
r 1z1 + · · · + ∧

r i (zi − zi−1)

+ ∧
r i+1(t − zi )]}

for zi ≤ t ≤ zi+1,

i = 1, 2, · · · , m − 1

No estimator, for t ≥ z

15.7.3 An Example

We will use the implant survival data in Table
15.5.3.a and Table 15.5.3.b to illustrate the PEXE.
First, let’s consider the data in Table 15.5.3.a,
which contains 16 failures (or deaths) and 25 with-
drawals. In other words, there are 16 uncensored
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Table 15.7.2. Failure rate estimates for implant–bone height < 2 mm.

Failure Interval
∧
r i

[0, z1] = [0, 6]
∧
r 1 = 1

5 + 6 + 39(6)
= 1

245
= 0.0041

(z1, z2] = (6, 10]
∧
r 2 = 2

0 + 4 + 3 + 8 + 33(4)
= 2

147
= 0.0136

(z2, z3] = (10, 15]
∧
r 3 = 1

2 + 5 + 31(5)
= 1

162
= 0.0062

(z3, z4] = (15, 18]
∧
r 4 = 2

1 + 6 + 28(3)
= 1

91
= 0.0220

(z4, z5] = (18, 23]
∧
r 5 = 1

3 + 5 + 26(5)
= 1

138
= 0.0072

(z5, z6] = (23, 28]
∧
r 6 = 2

2 + 6 + 10 + 21(5)
= 1

123
= 0.0163

(z6, z7] = (28, 35]
∧
r 7 = 1

6 + 7 + 19(7)
= 1

146
= 0.0068

(z7, z8] = (35, 42]
∧
r 8 = 1

0 + 1 + 7 + 16(7)
= 1

120
= 0.0083

(z8, z9] = (42, 46]
∧
r 9 = 1

3 + 4 + 14(4)
= 1

63
= 0.0159

(z9, z10] = (46, 52]
∧
r 10 = 1

1 + 4 + 6 + 11(6)
= 1

77
= 0.0130

(z10, z11] = (52, 58]
∧
r 11 = 3

4 + 18 + 7(6)
= 3

64
= 0.0469

and 25 censored observations. Notice that these 16
failures occur at 11 distinct time points. In terms
of the notation used in Section 15.7.2, the data in
Table 15.5.3.a can be presented as follows:

w11 z1 w21 w22 w23 z2 w31 z3 w41 z4

5+ 6 6+ 8+, 8+ 9+ 10, 10 12+ 15 16+ 18, 18

w51 z5 w61 w62 z6 w71 z7 w81 w82 z8

21+ 23 25+ 26+, 26+ 28, 28 34+ 35 35+ 36+ 42

w91 z9 w10,1 w10,2 z10 w11,1 z11 w12,1

45+ 46 47+ 50+ 52 56+ 58, 58, 58 60+ 60+ 60+ 60+ 60+ 60+ 60+

Notice that there are many tied observations
in the implant survival data, both censored and
uncensored. For example, two censored observa-
tions are tied at w22 = 8+, w62 = 26+, and seven
censored observations are tied at w12,1 = 60+.

Two uncensored observations are tied at z2 = 10,

z4 = 18, z6 = 28, and three at z11 = 58. Apply-
ing the failure rate estimator discussed in the

previous section, we can obtain
∧
r 1,

∧
r 2, · · ·, ∧

r 11

shown in Table 15.7.2. (See also Fig. 15.7.2) Thus,
the exponential estimator of the survival function
S(t) is obtained by:

∧
S(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

e− ∧
r 1t = e−(0.0041)t for 0 ≤ t ≤ 6

exp{−∧
r 1 · z1 − ∧

r 2(t − z1)} = exp{−(0.0041)6 − (0.0136)((t − 6) for 6 ≤ t ≤ 10
· · · · · ·

exp{−[
∧
r 1 · z1 + · · · + ∧

r 10(z10 − z9) + ∧
r 11(t − z10)]}

= exp{−[(0.0041)6 + · · · + (0.0130)(6) + (0.0469)(t − 52)} for 52 ≤ t ≤ 58
No estimator, for 58 ≤ t
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PEXE Survival Function
Bone Height < 2 mm

0.0
0.1
0.2

0.3
0.4
0.5
0.6
0.7

0.8
0.9
1.0

0 10 20 30 40 50 60

Time (months)

S
u

rv
iv

al
 p

ro
b

ab
il

it
y

Figure 15.7.2 PEXE survival function for implant data with bone height < 2 mm.

Similarly, we can obtain the failure rate estima-
tors for the corresponding failure intervals and the
exponential survival function for the implant sur-
vival data in Table 15.5.3.b for the patients with
bone height > 4 mm. (See Figure 15.7.3.)

As we saw in the Kaplan-Meier product limit
estimators, the PEXE survival function for pa-
tients with bone height > 4 mm lies above that
for patients with bone height < 2 mm (see Figure
15.7.4). This means that the implant survival prob-
ability for the patients with bone height > 4 mm is
greater than that for the patients with bone height
< 2 mm.

15.7.4 Properties of PEXE and
Comparisons with Kaplan-Meier
Estimator

The standard estimator widely used for the survival
function when data is randomly censored is the
well-known Kaplan-Meier product limit estimator
(KME). In this section, some statistical properties
of PEXE and comparisons of the two survival func-
tion estimators will be discussed. The PEXE and
the KME are known to be asymptotically equiva-
lent [7]. That is, both estimators would yield the
unknown true survival function as the sample size

PEXE Survival Function
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Figure 15.7.3 PEXE survival function for implant data with bone height > 4 mm.
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PEXE Survival Functions
Bone Height > 4 mm and < 2 mm

0.0
0.1
0.2

0.3
0.4
0.5
0.6
0.7

0.8
0.9
1.0

0 10 20 30 40 50 60

Time (months)

S
u

rv
iv

al
 p

ro
b

ab
il

it
y

> 4 mm

< 2 mm

Figure 15.7.4 Two PEXE survival functions for the implant survival data.

increases without limit. For finite sample size, little
is known theoretically about either estimator ex-
cept that the KME has been studied when survival
functions of the life distribution and the censoring
distribution have proportional hazards [9]. Monte
Carlo simulation has shown that for certain well-
known life and censoring distributions, the mean
squared error of estimation is smaller for the PEXE
than for the KME. Some advantages of the PEXE
are as follows.

1. The PEXE estimator has the great practical ad-
vantage that it is a continuous survival func-
tion, whereas the KME is a step function with

discontinuities at the observed failure times,
as can be seen in Figure 15.7.5 and Figure
15.7.6. Many investigators in biomedical sci-
ences would prefer to estimate a survival func-
tion known to be continuous from clinical
prior knowledge or from experience with sim-
ilar diseases by a continuous survival function
estimator.

2. Investigators might consider counterintuitive a
survival function estimator (KME) that, in ef-
fect, states that there is no chance of failure (or
death) during [0, z1), then suddenly at z1 the
failure rate becomes infinite, then for another
interval (z1, z2] there is no chance of failure,

Kaplan-Meier and PEXE Survival Functions
Bone Height < 2 mm
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Figure 15.7.5 PEXE and KME survival functions for bone height < 2 mm.
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Kaplan-Meier and PEXE Survival Functions
Bone Height > 4 mm
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Figure 15.7.6 PEXE and KME survival functions for bone height > 4 mm.

then at z2 the failure rate again instantly be-
comes infinite, and so on until zm . In the case
that no censored observations occur beyond zm,

the KME states that the patient has no probabil-
ity of surviving beyond zm . This is a startling
conclusion, especially since zm itself is random
and would very likely increase if we were to
increase sample size.

3. Another attractive feature of the PEXE as com-
pared with the KME is that as the location of
a censored observation changes within a given
failure interval, the PEXE changes whereas the
KME does not. That is, the KME is insensi-
tive to changes in information as to the exact
location of the censored observations so long
as they stay within their original failure inter-
val, whereas the PEXE is responsive to such
changes. For example, in Figure 15.7.5, if each
censored observation were shifted as far as pos-
sible to the left (or right) within its failure inter-
val, the KME would remain unaffected through-
out the entire time domain [0, z11]. The PEXE
would change correspondingly. In this sense,
the PEXE is more sensitive to the information
contained in the censored data.

4. If there are many ties among the uncensored ob-
servations, particularly in a small sample, the
KME has only a few large steps and conse-
quently appears unrealistic as an estimator for
a survival function. The PEXE, in contrast, re-
flects the continuity inherent in a great majority
of the clinical situations by decreasing at every

Table 15.7.3. Percentiles of KME and PEXE.

ξ.995 ξ.990 ξ.975 ξ.950 ξ.920 ξ.9000 ξ.850 ξ.800 ξ.750

KME 3.0 3.0 6.0 9.0 10.0 10.0 16.0 22.0 30.0
PEXE 1.2 2.3 4.4 7.2 9.5 10.1 13.3 20.5 25.9

possible failure time, not only at the observed
failure time. The survival function is anticipated
to decrease smoothly over time, therefore, in
this respect alone, the PEXE is the more ap-
pealing estimator of a survival function.

5. The step function form of the KME is known
to be responsible for a statistical deficiency,
that is, the KME tends to overestimate the un-
derlying survival function and its percentiles.
Figure 15.7.5 and Figure 15.7.6 show that most
of the time the PEXE lies below the KME.
We present a few percentile points, ξp, where
S(ξp) = p for both estimators from the implant
survival data with bone height < 2 mm. (See
Table 15.7.3.)

For a given p, the percentile points ξp for the
KME are larger than those for the PEXE, except
for p = 0.90. This is due to KME’s tendency to
overestimate the underlying survival function.

15.8 EXERCISES

1 A 10-year implant survival study was con-
ducted with 24 patients who had undergone
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connective tissue grafting to enhance implant es-
thetics. The investigators collected the following
implant failure times in months.
a. Present a life table analysis of the implant

survival data.
b. Calculate the hazard rate.
c. What is the mean survival time?

68.1 98.0+ 28.6 118.0+ 66.2+ 143.0 106.8 132.0+
76.8+ 114.0+ 35.6 168.0 78.4 114.0 28.3 112.5+
54.8 168.0 48.5 97.8+ 142.5+ 79.4+ 121.0 72.7

2 The following data represent implant survival
times (in months) for 15 smokers with low bone
density (less than 65%). Construct the Kaplan-
Meier product limit estimator.

55.4+ 89.0 112.5+ 84.7 98.4 23.5+ 62.0 98.4+
102.5 68.0 46.8+ 68.0 23.5+ 112.0 92.1+

3 What is the standard error for the Kaplan-Meier
product limit estimator in Exercise 2?

4 A new treatment for acute viral hepatitis was
compared with a conventional treatment. A group
of 16 patients, who signed a consent form, was
chosen. These subjects were randomly assigned to
either the experimental group or the control group.
Their survival time (in months) was carefully
recorded as shown below. Is the new treatment
more effective than the conventional treatment?
Perform an appropriate test at the significance level
of α = 0.05.

Experimental group: 45.6+ 68.2 68.2 98.0+
106.4 105.5 114.8 123.8+

Control group: 22.8 55.0 55.0+ 77.3+
80.2 80.2+ 92.4+ 116.4

5 Smoking is believed to be a significant risk fac-
tor for the lifetime of implants. As part of a class
project, a team of three dental students examined
21 patient charts and obtained the following data.

Perform a log rank test at the significance level of
α = 0.05 to confirm if the claim is justified.

Smokers: 45.3+ 98.5 74.0+ 68.2 32.6
103.0+ 87.2 110.4

Non-smokers: 72.0+ 48.4+ 113.5 95.0 82.9+
78.6+ 125.0 110.0 95.0+ 72.0+

132.8 52.8+ 106.5

6 Acidulated fluoride preparations may corrode
the surface of titanium implants. Thus, patients
with this type of implant are generally recom-
mended to avoid fluoride use. The 10-year follow-
up investigation of the patients with titanium
implants placed in the maxillary anterior region
obtained the survival data shown below.
a. Construct the piecewise exponential estimator

of the implant survival function.
b. Compare the piecewise exponential estimator

and the Kaplan-Meier product limit estimator
with respect to their percentiles.

14.5+ 21.4+ 33.0 40.8 58.5 58.5+
69.8 70.2 77.5+ 85.0 89.5 94.0
94.0+ 94.0+ 97.0 99.5 103.8 105.5+

105.5+ 108.4 110.0 115.8+ 118.0
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Appendix

SOLUTIONS TO SELECTED
EXERCISES

Chapter 2

3

a. qualitative
c. quantitative, continuous
d. quantitative, continuous
f. quantitative, discrete
h. qualitative
i. quantitative, continuous
j. quantitative, discrete
l. qualitative

4

a. ratio c. nominal
d. interval e. ratio
f. ratio g. nominal
l. ordinal q. nominal
r. nomial

Chapter 3

1 a. the value of the i th observation
b. the sample mean
c. the sum of the first four observations, X1, X2,

X3, and X4

d. the population mean

2 We expect to obtain different sample means due
to the sample-to-sample variability.

5 a. 9, b. 5.

6 X1 = $6.45, X2 = $7.25, X3 = $5.98, and
the corresponding weights are w1 = 0.20, w2 =
0.30, w3 = 0.50.

6.45(0.20) + 7.25(0.30) + 5.98(0.50) = 6.455.

The weighted average is about $6.46.

8 The mean = X

= 39.5 + 44.5 + 42.0 + 39.0

4= 41.25,

median = 39.5 + 42.0

2
= 40.75.

The mean is 0.5 mm larger than the median.

12 There are two modes, 3.5 mm and 5.5 mm.

14 When the measurements are all equal to 1.

15 X H = 1
1
4

(
1

200 + 1
125 + 1

100 + 1
80

) = 112.68.

16 The mean of the grouped data, X =
(16)(4.5) + (26)(7.5) + (17)(10.5)

(16 + 26 + 17)
= 7.551

18 6.0 + 30−16
26 (9.0 − 6.0) = 7.62.

19 Midrange = 17.5 + 65.4

2
= 41.45.

Midrange is larger than the sample mean (X =
33.22) and median (X M = 29.1).

20

X W = 5(93.1) + 7(79.6) + 10(82.2) + 9(71.4)

5 + 7 + 10 + 9
= 80.235.

22 Mode = 2.6 and range = 3.7.

24 78.6th percentile.

27 a. Mean.

30 S2 = 50.16, S = 7.08, and IQR = Q3 −
Q1 = 12.5.

32 Brand A: X = 50.9, S2 = 53.1, S = 7.3,

CV = (7.3/50.9) × 100 = 14.3%.

Brand B: X = 51.3, S2 = 107.5, S = 10.4,

CV = (10.4/51.3) × 100 = 20.3%.

299
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33 Lab A: X = 60.8, S = 9.5, CV = (9.5/60.8)
× 100 = 15.6%.

Lab B: X = 4.7, S = 0.6, CV = (0.6/4.7) ×
100 = 12.8%.

Lab C: X = 12.1, S = 1.1, CV = (1.1/12.1)
× 100 = 9.1%.

Need to consider CV because the measuring
units are different.

Chapter 4

2 There are 36 possible outcomes: {(1, 1), (1, 2),
(1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3),
(2, 4), (2, 5), (2, 6), · · · , (6, 1), (6, 2), (6, 3),
(6, 4), (6, 5), (6, 6)}.
4 a. 1/12, b. 1/6.

5. C∪D ={erythema multiforme, lichen planus,
pemphigoid, viral disease},

C ∩ D = {lichen planus},
Cc = {erythema multiforme, pemphigoid,

pemphigus vulgaris}, and
Dc = {pemphigus vulgaris, viral disease}.

6. P(C ∪ D) = P(C) + P(D) − P(C ∩ D) =
0.42 + 0.68 − 0.26 = 0.84.

7. P(A ∩ B) = P(A) + P(B) − P(A ∪ B) =
0.76 + 0.15 − 0.84 = 0.07.

P(B ∪ C) = P(B) + P(C) − P(B ∩ C) =
0.15 + 0.47 − 0.12 = 0.50.

8. P(A) = 0.49 and P(B) = 0.57. By indepen-
dence, P(AB) = P(A) · P(B) = (0.49)(0.57) =
0.2793.

10. P(A)·P(B)= (0.10)(0.20)=0.02= P(AB).
Thus, A and B are statistically independent.

12. a. We need to check if P(A) · P(B) =
P(AB). P(A) · P(B) = (0.55)(0.40) = 0.42 �=
P(AB). Thus, A and B are not statistically
independent.

b. P(A) + P(B) + P(C) = 0.55 + 0.40 +
0.75 = 1.70 > 1.0. Since the sum of the proba-
bilities exceeds 1.0, at least two events must share
common outcomes. The events A, B and C are not
mutually exclusive.

c. P(B|A) = P(B A)

P(A)
= P(AB)

P(A)
= 0.25

0.55
= 0.455.

d. P(BC) = 0.30. P(C |B) = P(BC)

P(B)
= 0.30

0.40
= 0.75.

e. Because P(AB) = 0.25, A and B can not be
mutually exclusive.

15. P(A or B) = P(A) + P(B) − P(AB) =
P(A) + P(B) − P(A) · P(B), by independence

= 0.15 + 0.24 − (0.15)(0.24) = 0.354.

16. P(a patient is referred for further exami-
nation)

= P(at least one of the doctors makes a positive
diagnosis)

= P(A+ or B+) = P(A+) + P(B+)
− P(A+ B+)= 0.24 + 0.29 − 0.18 = 0.35.

17. Let E1, E2, E3, E4, and E5 denote the five
age categories. We need to compute the conditional
probability P(E5|A). Using Bayes theorem, we
have

P(E5|A) = P(A|E5) · P(E5)

P(A|E1) · P(E1) + P(A|E2) · P(E2) + · · · + P(A|E5) · P(E5)

= (0.45)(0.10)

(0.05)(0.20) + (0.10)(0.15) + (0.18)(0.25) + (0.23)(0.30) + (0.45)(0.10)
= 0.2446.

22. P(E1 or E2) = P(E1) + P(E2)
− P(E1 E2) = 0.34 + 0.54 − 0.25 = 0.63.

23. Let Ai be the event of the i th person having
hypodontia. Then P(Ai ) = 0.05.

P(all 4 persons in a family having
hypodontia) = P(A1 A2 A3 A4)

= P(A1)P(A2)P(A3)P(A4) by independence,
= (0.05)(0.05)(0.05)(0.05) = 6.25 × 10−6.

25. P(at most one carious tooth) = 1 − P(at

least 2 carious teeth) = 1 − 428

568
= 0.2465.

28. Since the events A, B, and C are mutually
exclusive, P(observing at least one of the events)
= P(A or B or C) = P(A) + P(B) + P(C) =
0.35 + 0.10 + 0.25 = 0.70.
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30. It is given that P(A|B) = 0.89, P(A|Bc) =
0.08, and P(B) = 0.47. P(Bc) = 1 − 0.47 =
0.53.

P(A) = P(AB) + P(ABc) = P(A|B)P(B) +
P(A|Bc)P(Bc) = (0.89)(0.47) + (0.08)(0.53) =
0.4607.

31. a. P(Dc|S+) = P(Dc S+)

P(S+)
= 0.03

0.20
= 0.15.

b. P(D|S−) = P(DS−)

P(S−)
= 0.016

0.80
= 0.02.

35. Prevalence rate at the end of June, 2001 =
185

1825 − 75
= 0.1057.

Incidence rate = 60

(1825 + 1750)/2

= 3.3566 × 10−2.

37. Sensitivity rate = 74

82
= 0.9024, and

specificity rate = 169

181
= 0.9337.

38.

Relative risk

= P(dental caries | drinking water is not fluoridated)

P(dental caries | drinking water is fluoridated)

= 0.48

0.08
= 6.0.

Those individuals whose drinking water is
not fluoridated are 6 times more likely to get
dental caries than those living in a fluoridated
communities.

Chapter 5

1. e.

2. a. 495, b. 1, c. 1, d. 720.

4. b. n = 126, and p = 0.12.

5. P(X = 3) = 0.0819.

7. P(5 ≤ X ≤ 8) = P(X = 5) + P(X = 6) +
P(X = 7) + P(X = 8) = 12!

5!7!
(0.32)5(0.68)7

+ 12!

6!6!
(0.32)6(0.68)6 + 12!

7!5!
(0.32)7(0.68)5

+ 12!

8!4!
(0.32)8(0.68)4 = 0.3275.

9. a. Using the Poisson approximation to the
binomial with μ = 6.5, we get the probability

P(X = 10) = (6.5)10e−6.5

10!
= 0.0558.

b. P(at least 3) = 1 − {P(X = 0) + P(X =
1) + P(X = 2)} = 0.9570.

c. P(2 or fewer) = P(X = 0) + P(X = 1) +
P(X = 2) = 0.0430.

11. μ = λs = (3.5)(8) = 28.0.

P(X = 30) = (28)30e−28

30!
= 6.7738 × 10−2

= 0.0677.

13. μ = λs = (0.04)(1000) = 40.

P(X = 45) = (40)45e−40

45!
= 4.3965 × 10−2

= 0.0440.

15. Z = X − μ

σ
= 5.7 − 3.2

1.5
= 1.6667.

16. a. Z = X − 5.4

1.8
,

d. P(7.0 < X ) = P

(
7.0 − 5.4

1.8
<

X − μ

σ

)
= P(0.89 < Z )

= 1 − P(Z ≤ 0.89)

= 1 − 0.8133

= 0.1867.

e. P(8.0 < X ) = P

(
8.0 − 5.4

1.8
<

X − μ

σ

)
= P(1.44 < Z )
= 1 − P(Z ≤ 1.44)
= 1 − 0.9251
= 0.0749. About 7.5%.

17. Let X be a random variable representing the
national board exam score. X ∼ N (77.8, 19.4),

σ = √
19.4 = 4.4. P(75 ≤ X )

= P

(
75 − 77.8

4.4
≤ Z

)
= P(−0.64 ≤ Z )

= 0.7389. About 73.9% of the students passed.

18. a. −1.282, b. 0.674,c. 1.037, d. 1.96.

19. Let X = test scores. X ∼ N (66.3, 64.6),
σ = 8.04.

a. 25th percentile: P(X ≤ x) = 0.25.

P

(
X − μ

σ
≤ x − 66.3

8.04

)
= P(Z ≤ z0.25).
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Let
x − 66.3

8.04
= z0.25 = −0.675

(from Table D). Solving the equation
for x , we get x = 66.3 − (0.675)(8.04) = 60.87.

b. 50th percentile = median = mean = 66.3.

c. 90th percentile: P

(
X − μ

σ
≤ x − 66.3

8.04

)
=

P(Z ≤ z0.90) = 0.90.
x − 66.3

8.04
= z0.90 = 1.282.

x = 66.3 + (1.282)(8.04) = 76.61.

d. 95th percentile: P

(
X − μ

σ
≤ x − 66.3

8.04

)
=

P(Z ≤ z0.95) = 0.95.
x − 66.3

8.04
= z0.95 = 1.645.

x = 79.53.

e. 99th percentile: x = 85.03.

21. P(X ≤ 30) = P

(
Z ≤ 30 − 20

5

)
=

P(Z ≤ 2.0) = 0.9773.

22. X ∼ N (20, 25), σ = 5.

P(Dr. Johnny spends less than 15 min. or more
than 25 min.) = P(X < 15 or X > 25)

= P(X < 15) + P(X > 25)

= P

(
X − μ

σ
<

15 − 20

5

)
+ P

(
X − μ

σ
>

25 − 20

5

)
= P(Z < −1.0) + P(Z > 1.0)

= [1 − P(Z < 1.0)] + [1 − P(Z < 1.0)]

= 0.3174.

23. P(75 ≤ X ≤ 85)

= P

(
75 − 78

5.29
≤ Z ≤ 85 − 78

5.29

)
= P(−0.57 ≤ Z ≤ 1.32)

= P(Z ≤ 1.32) − P(Z ≤ −0.57)

= 0.9066 − (1 − 0.7157)

= 0.6223.

24. Let X = dental and medical expenditure.
X ∼ N (11, 450, σ 2), σ = 2, 750.

P(10, 000 ≤ X ≤ 13, 000) =

P

(
10, 000−11, 450

2, 750
≤ Z ≤ 13, 000−11, 450

2, 750

)

= P(−0.53 ≤ Z ≤ 0.56)
= P(Z ≤ 0.56) − P(Z ≤ −0.53)
= 0.4142.

25. p = P(X ≤ 1.0) = P

(
Z ≤ 1.0 − 1.2

0.3

)
= P(Z ≤ −0.67) = 1 − 0.7486

= 0.2514.(
9
3

)
(0.2514)3(0.7486)6

= 9!

3!6!
(0.2514)3(0.7486)6

= 0.2351.

27. p = P(X ≤ 20, 000) = 0.16.

np = 150(0.16) = 24.0,√
npq = √

20.16 = 4.49.

Using the normal approximation to the binomial
distribution,

P(25 ≤ X ≤ 35) �
P

(
(25 − 0.5) − 24

4.49
≤ Z ≤ (35 − 0.5) − 24

4.49

)
= P(0.11 ≤ Z ≤ 2.56)

= P(Z ≤ 2.56) − P(Z ≤ 0.11) = 0.4510.

31. p = P(X ≤ 50) = P

(
Z ≤ 50 − 58

7.07

)
=

P(Z ≤ −1.13) = 0.1292.

P(X = 9) + P(X = 10) + P(X = 11)
+P(X = 12) = (12

9

)
(0.1292)9(0.8708)3

+ (12
10

)
(0.1292)10(0.8708)2

+ (12
11

)
(0.1292)11(0.8708)1

+ (12
12

)
(0.1292)12(0.8708)0 � 0.

The chance that she will be able to complete
prophylaxis in 50 min. for at least 9 of her 12
patients is nearly 0.

33. Use the normal approximation to obtain the
probability 0.0015.

34. P(7 ≤ X ) � 0.6331.

Chapter 6

1. Variance of X is
σ 2

n
= 4.32 and the standard

error is
σ√
n

= 2.0785.

5. P(84 ≤ X ≤ 87)

= P

(
84 − 84.5

1.42
≤ Z ≤ 87 − 84.5

1.42

)
= P(−0.35 ≤ Z ≤ 1.76)
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= P(Z ≤ 1.76) − P(Z ≤ −0.35)
= 0.9608 − (1 − 0.6368) = 0.5976.

6. P(15 ≤ X ) ≈ P

(
15.0 − 17.8

6.5/
√

32
≤ Z

)
= P(−2.437 ≤ Z ) = 0.9926.

8. Lower limit = 183.14 and upper limit =
196.86.

10. a. 0.65, b. 0.10, c. 0.75, d. 0.23, e. 0.20.

12. a. 0.85, b. 0.025, c. 0.70, d. 0.15.

Chapter 7

2. (73.54, 75.86).

3.
(

7.24 − 2.58
1.73√

15
, 7.24 + 2.58

1.73√
15

)
= (6.09, 8.39).

6. n = 24.

7. The maximum error of estimate of the mean μ

is about 5.89 min.

9. E = t(n−1,1−α/2)
S√
n

= 2.093
2.4√

20
= 1.1232.

10. About 60 more children are required to
reduce the maximum error by 50%.

12. (0.7981, 0.8619).

18. A 90% confidence interval for σ 2 is given by
(782.97, 1911.87).

Chapter 8

2. a. H0 : μ = 30 vs. H1 : μ �= 30. b. A type II
error can be committed by accepting the null hy-
pothesis when it is not true. That is, accepting H0

that the children spend 30 seconds in brushing their
teeth when actually they don’t spend 30 seconds.

4. Z = 25 − 20

(5.2/
√

35)
= 5.6885 > Z1−α/2 = 1.96.

Reject their speculation and conclude that vitamin
E intake of the adult Americans is significantly
higher than 20 IU per day.

6. a. H0 : μ = 25 vs. H1 : μ < 25.

b. We have n = 12, X = 23.3, and σ = √
4.2 =

2.05. This is a one-tailed test. The value of

the test statistic is Z = 23.3 − 25

(2.05/
√

12)
= −2.87.

The p value = P(Z < −2.87) = 0.0020 < 0.05.

Thus reject H0.

c. The average weight of the rice bags labeled
25 kg is statistically significantly lower at the
significance level α = 0.05.

9. The hypothesis to be tested is H0 : μ = 3.2
vs. H1 : μ > 3.2. We have n = 28, X = 3.8,

and σ = 1.52. Since Z = 3.8 − 3.2

(1.52/
√

28)
= 2.09 >

1.645, we reject the null hypothesis. The p value
= P(2.09 < Z ) = 1 − 0.9817 = 0.0183.

11. The hypothesis we need to test is H0 : μ <

10.0 vs. H1 : μ > 10.0. We have n = 27, X =
11.26, and σ = 2.13. Since Z = 11.26 − 10.0

(2.13/
√

27)
=

3.0738> 1.645, reject the null hypothesis at the
significance level α = 0.05. Dr. Quinn may wish
to give them a 10-year guarantee.

13. The test statistics t = 154 − 150

(4.52/
√

20)
=

3.9576 > t(19,0.975) = 2.093. The experimental
dental material has significantly larger mean
bonding strength than the control at α = 0.05.

The p value is P(3.9576 < t(19)) <

P(3.8834 < t(19)) = 0.0005.

18. d.

21. a. H0 : p = 0.43 vs. H1 : p �= 0.43

b. Z = 0.38 − 0.43√
(0.43)(0.57)/118

= −1.0971. Since

Z(0.025) = −1.96 < −1.0971 < Z(0.975) = 1.96,

we accept H0 and conclude that there is no
significant difference.

Chapter 9

2. a. H0 : μ1 = μ2 vs. H1 : μ1 �= μ2.

b. The value of the test statistic is given by

Z = X1 − X2√
σ 2

1

n1
+ σ 2

2

n2

= 3.4 − 4.2√
1.86

18
+ 2.02

24

= −1.8475.

Because −1.96 < Z = −1.8475 < 1.96, the
null hypothesis is not rejected and the mean
pocket depth of the two groups is not statistically
significantly different at the significance level
α = 0.05.
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3. a. H0 : μ1 = μ2 vs. H1 : μ1 �= μ2.

b. The pooled estimate

S2
p = (16 − 1)(1, 223.6) + (16 − 1)(2, 304.8)

16 + 16 − 2
= 1, 764.2,

and Sp = 42.0. We now can calculate the test
statistic

t = X1 − X2

Sp

√
1

n1
+ 1

n2

= 81.2 − 110.4

(42.0024)

√
1

16
+ 1

16
= −1.9663.

Since t = −1.9663 < t(30,0.025) = −2.042, the
null hypothesis can not be rejected. The con-
traction efficacy of epinephrine is not signifi-
cantly different from that of bonding agent at the
significance level α = 0.05.

c. p value = 2P(t(30) < −1.9963) >

2P(t(30) < −2.042) = 0.05.

4. We need to test H0 : μ1 = μ2 vs. H1 :
μ1 �= μ2. The pooled estimate S2

p =
(12 − 1)(0.57) + (11 − 1)(0.21)

12 + 11 − 2
= 0.3986 and

Sp = 0.6313. We now can calculate the test
statistic

t = X1 − X2

Sp

√
1

n1
+ 1

n2

= 4.28 − 2.65

(0.6313)

√
1

12
+ 1

11
= 6.1855.

Since t = 6.1855 > t(21,0.925) = 2.080, the null
hypothesis is rejected. The EMD with open
flap debridement is significantly better than
treatment without EMD at the significance
level α = 0.05. p value = 2P(6.1855 < t(21)) <

2P(3.819 < t(21)) = 2(0.0005) = 0.0010.

6. This is a two-sample t test problem with un-
equal variances. Since n1 = 47,and n2 = 25, the
test statistic is given by

t = X1 − X2√
S2

1

n1
+ S2

2

n2

= 209.1 − 213.3√
1260.25

47
+ 1413.76

25

= −0.460

The approximate degrees of freedom δ∗ is obtained
by

δ∗ =
(
S2

1/n1 + S2
2/n2

)2(
S2

1/n1
)2

/(n1 − 1) + (S2
2/n2

)2
/(n2 − 1)

= 6949.5898

15.6300 + 133.2478
= 46.68

The approximate degrees of freedom δ∗ = 46.

From Table E, t(46, 0.025) = −2.0125. Because t =
−0.46 > t(46, 0.025) = −2.0125,we conclude there
is no statistically significant difference in mean
cholesterol between smokers and non-smokers.
The p value is 2P(t(46) < −0.460) > 2P(t(46) <

−0.5286) = 0.60.

8. We want to test H0 : p1 = p2 vs. H1 : p1 �=
p2. p̂1 = 24

68
= 0.353 and p̂2 = 14

46
= 0.304.

p̂ = X1 + X2

n1 + n2
= 24 + 14

68 + 46
= 0.333, q̂ = 1 −

0.333 = 0.667. By the normal approximation, the
test statistic is

Z = p̂1 − p̂2√
pq

(
1

n1
+ 1

n2

)
= 0.353 − 0.304√

(0.333)(0.667)

(
1

68
+ 1

46

) = 0.5446.

Thus, the null hypothesis is accepted. We con-
clude that there is no statistically significant differ-
ence between OHI and no OHI at the significance
level α = 0.05. Based on the data, the OHI is not
effective in helping patients reduce plaque scores.

10. Need to test H0 : p1 = p2 vs. H1 : p1 �= p2.

p̂1 = 9

75
= 0.120 and p̂2 = 16

98
= 0.163.

p̂ = X1 + X2

n1 + n2
= 0.1445, q̂ = 1 − 0.1445 =

0.8555. By the normal approximation, the test
statistic is

Z = p̂1 − p̂2√
pq

(
1

n1
+ 1

n2

)
= 0.120 − 0.163√

(0.1445)(0.8555)

(
1

75
+ 1

98

)
= −0.7978.
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The null hypothesis is accepted at the significance
level α = 0.05. There is no statistically significant
difference in the proportion.

11. n = (62.5 + 60.2) · (1.96 + 1.03)2

(51.3 − 55.6)2

= 59.327. The required sample size is 60.

14. Power

= P

(
Z ≤ −1.96 + |68.4 − 55.9| · √

31/36√
(75.5/31) − (80.7/36)

)
= P(Z ≤ 3.017) = 0.9987.

17. F = (64.8)2

(74.9)2
= 0.7485 < F(30,25;0.975) =

2.182. The null hypothesis is accepted. There
is no statistically significant difference in the
variance.

Chapter 10

1. a. H0: There is no association between flu
vaccine and contraction of the flu.

H1: There is an association between flu vaccine
and contraction of the flu.

b. E11 = 235 · 94

423
= 52.222,

E12 = 235 · 329

423
= 182.78

E21 = 94 · 188

423
= 41.778,

E22 = 329 · 188

423
= 146.22.

c. χ2 = (|43 − 52.222| − 0.5)2

52.222

+ (|192 − 182.78| − 0.5)2

182.78

+ (|51 − 41.778| − 0.5)2

41.778

+ (|137 − 146.22| − 0.5)2

146.22
= 4.2136

d. p value = P
(
4.2136 < χ2

(1)

)
<

P
(
3.84 < χ2

(1)

) = 0.05.

e. We reject the null hypothesis and conclude
that there is a statistically significant association

between flu vaccine and contraction of the flu at
the significance level α = 0.05.

2. H0: There is no association between alcohol
consumption and severity of periodontal disease.

H1: There is an association between alcohol
consumption and severity of periodontal disease.

The expected cell frequecies are

E11 = 68 · 108

154
= 47.688,

E12 = 68 · 46

154
= 20.312

E21 = 86 · 108

154
= 60.312,

E22 = 86 · 46

154
= 25.688

The value of the test statistic is

χ2 = (|44 − 47.688| − 0.5)2

47.688

+ (|24 − 20.312| − 0.5)2

20.312

+ (|64 − 60.312| − 0.5)2

60.312

+ (|22 − 25.688| − 0.5)2

25.688
= 1.2776 < χ2

(1,0.95) = 3.841.

The null hypothesis is not rejected. Based on the
data, the test result indicates that there is no sta-
tistically significant association between alcohol
consumption and severity of periodontal disease
at the significance level α = 0.05.

4. a. One may construct a 2 × 2 contingency
table:

Osteogenesis Imperfecta

Affected Unaffected

First born 16 24 40
Second born 10 30 40

26 54 80

b. The χ2 test procedure can be used in the
above 2 × 2 contingency table, because the two
samples are not independent. Each matched pair of
the first born and the second born children within
the same family is similar in clinical conditions.
The matched pair constitutes the basic unit for the
experiment so the sample size is 40, not 80. Apply
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the McNemar test to the following 2 × 2 contin-
gency table.

First born

Second Born Affected Unaffected

Affected 4 6 10
Unaffected 12 18 30

16 24 40

7. a. H0: p11 = p12 = p13 = p14, p21 = p22 =
p23 = p24, p31 = p32 = p33 = p34.

b. χ2 =∑c
j=1

∑r
i

(Oi j − Ei j )2

Ei j

= 55.19 > χ2
((r−1)(c−1),1−α) = χ2

(6,0.95)
= 12.592.

The null hypothesis is rejected.
c.p = P

(
χ2 < χ2

(6)

) = P
(
55.19 < χ2

(6)

)
<

0.005.

11. Let “Yes = 75% or better” and “No = less
than 75%.” We can have the following 2 × 2
contingency table.

FDI System

Y N

Universal Y 55 22 77
system N 31 24 55

86 46 132

Use the McNemar test for matched pairs. The value
of the test statistic is

χ2
M = (|b − c| − 1)2

b + c
= (|22 − 31| − 1)2

22 + 31
= 1.2075 < χ2

(1,0.95) = 3.841.

Thus, the null hypothesis is accepted. There is no
significant association between tooth-numbering
systems and learning ability of dental students at
the significance level α = 0.05.

12. The observed and expected concordance
rates are:

Po = O11 + O22

n
= 41 + 29

83
= 0.8434, and

PE = r1

n
· c1

n
+ r2

n
· c2

n
= 46

83
· 49

83
+ 37

83
· 34

83
= 0.5098

κ = Po − PE

1 − PE
= 0.8434 − 0.5098

1 − 0.5098
= 0.6805

14. 0.5313.
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Figure A.1 Relationship between basic science and clinic
performance.

Chapter 11

1. Refer to Figure A.1. Except for one individual
whose basic science score is 77 and clinic score
is 61, there appears to be a linear relationship be-
tween two variables. The higher the score in basic
science courses, the better the clinic performance.

3. b.
∑15

i=1 Xi = 2, 101.78,∑15
i=1 X2

i = 295, 345.52,∑15
i=1 Yi = 191.53,∑15
i=1 Xi · Yi = 27, 002.84.

c.
∧
Y i = −14.68 + 0.196 · Xi .

d. 13.74

5.
∧
Y i = 72.54 − 2.16 · Xi .

UIR (Upper central incisor mesiodistal width ratio)
170160150140130120

U
IR

I (
U

pp
er

 in
ci

so
r 

irr
eg

ul
ar

ity
 in

de
x)

18

16

14

12

10

8

Figure A.2 Relationship between UIR and UIRI.
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9. Pearson correlation coefficient r = 0.810
(p = 0.008).

13. r2 = 0.727 and r = 0.853.

Chapter 12

2. See Section 12.6. Multiple Comparisons
Procedures.

5. a.

Source of Sum of Mean
Variation df Squares Square F Value

Between 4 1080.59 270.15 20.16
Within 60 803.86 13.40

Total 64 1884.45

b. p value < P(F(4,60) > 20.16) < 0.001.

Chapter 13

1. The populatons from which the samples are
taken are normally distributed.

The populations must be statistically indepen-
dent.

The variances of the populations are equal.

3. b. If the interaction effects of the two factors
exist, the curves of the mean responses in a graph
are not parallel. If no interaction effects exist, the
curves are essentially parallel.

7. Two.

9. a.

Source of
Variation df SS MS F p Value

Factor A 1 0.075 0.075 0.055 p > 0.50
(Light cure)

Factor B (Time) 2 45.603 22.802 16.766 p < 0.001
Light*Time 2 3.336 1.668 1.226 p > 0.10

interaction
Error (Residual) 18 24.480 1.360

Total 23 73.494

Chapter 14

1. The sample size is n = 30 (why?). We obtain
μ = np = 15 and σ 2 = npq = 7.5. σ = 2.7386.

The test statistic T = total number of plus signs
= 21. Using a normal approximation,

Z = (21 − 0.5) − 15

2.7386
≈ 2.01

The p value = P(2.01 < Z ) = 0.0222 < 0.05.

We conclude that chlorhexidine is statistically sig-
nificantly effective in reducing the salivary SM at
the significance level α = 5%.

3. The sum of the ranks for Y ’s is WY = 374.

μW = (17)(17 + 17 + 1)/2 = 297.5 and σW =√
(17 · 17)(17 + 17 + 1)/12 = 29.03. The test

statistics is Z = (WY − μW )/σW = 2.6352.

Since Z = 2.6352 > 1.96, the null hypothesis
is rejected at the significance level α = 5%.

5. The median of the combined sample (N = 26)
is 75. From a 2 × 2 contingency table, we obtain
χ2 = 0.5758, < χ2

(1,0.95) = 3.841. We accept the
null hypothesis and conclude there is no statisti-
cally significant difference in median between the
two treatments.

7. The number of matched samples is N = 11,
and the number of treatments is k = 4. The rank
sums are R1 = 23.5, R2 = 19, R3 = 32.5, and
R4 = 35. There are 2 sets of ties in groups 2 and 6
so τ = 2 for each tied pair. By applying the Fried-
man test, we obtain

Fr = 12[(23.5)2 + (19)2 + (32.5)2 + (35)2] − 3 · 112 · 4(4 + 1)2

11 · 4(4 + 1) +
[

11 · 4 − (40 + 23 + 23)

4 − 1

] = 9.4167

Since the critical value χ2
(3,0.95) = 7.81 < Fr =

9.4167, the test is significant. We conclude that
there are statistically significant differences in
patient preference among the four flavorings.

9.
∑

R(Ui )2 = 3,494,
∑

R(Vi )2 = 1,402.50,

R2 = 4,896.5/24 = 204.0208.
∑N

i=1 R4
i =∑n1

i=1[R(Ui )]4 +∑n2
i=1[R(Vi )]4 = 1,474,070 +

288,171.38 = 1,762,241.38. Compute the test
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statistic T,

T = 3, 494 − (11)(204.0208)√
11·13
24·23 (1, 762, 241.38) − 11·13

23 (204.0208)2

= 2.8106 > z0.975 = 1.96

Thus, the null hypothesis is rejected. There is a
statistically significant difference in the variance
between manual and computerized device.
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Table A. Table of Random Numbers.

03948 16937 32505 61245 34354 03151 68637 09160 77627 59716 21230
21363 91444 97097 46988 94234 18137 78243 42624 89835 18126 51551
95981 74524 97486 13560 20666 04317 46647 79424 76143 48415 46632
49061 97473 90178 64870 63680 53990 42055 64455 40290 66139 79795

13843 71385 56614 28351 07778 71963 48641 86740 96902 11514 31854
71072 31474 01147 40814 93389 37096 44071 53963 90558 17130 72535
48853 81449 34111 23782 85891 84054 84486 99960 97181 48042 77999
42074 76843 22128 31828 14858 91247 57420 45029 21301 00928 43466

21210 83388 67189 38462 66709 48433 78970 11289 46542 46072 59348
45289 26016 23322 62967 45670 62806 20128 00262 31360 25892 00382
31884 03321 60604 26893 69307 80931 17044 64707 27699 37600 39004
57349 84097 77727 82897 98369 74685 93047 04592 45126 84570 85009

42043 21335 39697 05647 70396 86310 00718 04100 60002 63963 40325
31126 06728 55622 43674 83187 36730 78370 47977 78761 12058 21658
00399 08824 52781 67192 10295 95597 66519 29761 42228 45030 44348
98581 88738 80773 17038 90731 67143 17291 05885 33128 77547 36885

72548 57216 55540 23632 49615 69200 34000 00940 94472 15784 08085
58649 92854 18416 28092 57594 53995 04488 03659 46696 45433 29044
12580 74674 48948 16432 35904 15285 40431 72348 15195 78663 38660
40521 58505 68461 62845 74999 72011 63632 98449 42442 57512 72530

36073 10563 95593 75151 15297 96004 60663 31531 89460 11422 16747
31776 52823 66757 20965 92727 26942 81622 03625 05135 62312 89865
28363 05022 01411 05876 04184 74234 21252 97931 70773 45485 30564
46195 88502 45197 87735 96000 11791 32322 87512 51563 00723 67086

90795 47274 12553 17713 86227 63727 57007 19412 70794 99612 78108
75973 46220 97916 43726 56141 53647 59749 25301 96633 63658 96788
92774 64784 39075 57974 42914 04602 19559 58763 69048 18136 14006
23973 38851 11313 99610 86995 02666 10913 45667 69021 21620 05861

93230 22448 04062 74881 50778 85063 84863 97482 40875 60326 34481
75933 73581 79648 51851 05055 18241 49978 75860 50184 16688 65693
15845 94437 33769 10003 11978 36917 70737 34351 38952 39470 21456
83054 46887 08507 55364 18062 94589 85664 11143 53762 36527 76585

61543 43300 68040 73710 64086 57436 91971 63972 93683 97414 25068
10546 03602 52902 06812 56592 75122 57208 11965 08644 16790 25481
94214 94910 65044 90684 90583 47733 50275 97852 55180 30232 58091
86859 46660 00596 50915 98263 89750 40177 95075 78806 59392 49640

29696 35150 35568 53546 92628 27749 26006 57583 80870 81755 92535
63722 26988 79368 23285 26262 66837 14797 45577 99963 33695 94399
35922 13238 50916 65558 31841 47916 93600 51487 34638 46029 73478
39745 02144 38275 68724 91200 68222 97089 21966 41810 79072 58937
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Table B. Binomial Probabilities P(X = k).

n k .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

2 0 .9025 .8100 .7225 .6400 .5625 .4900 .4225 .3600 .3025 .2500
1 .0950 .1800 .2550 .3200 .3750 .4200 .4550 .4800 .4950 .5000
2 .0025 .0100 .0225 .0400 .0625 .0900 .1225 .1600 .2025 .2500

3 0 .8574 .7290 .6141 .5120 .4219 .3430 .2746 .2160 .1664 .1250
1 .1354 .2430 .3251 .3840 .4219 .4410 .4436 .4320 .4084 .3750
2 .0071 .0270 .0574 .0960 .1406 .1890 .2389 .2880 .3341 .3750
3 .0001 .0010 .0034 .0080 .0156 .0270 .0429 .0640 .0911 .1250

4 0 .8145 .6561 .5220 .4096 .3164 .2401 .1785 .1296 .0915 .0625
1 .1715 .2916 .3685 .40% .4219 .4116 .3845 .3456 .2995 .2500
2 .0135 .0486 .0975 .1536 .2109 .2646 .3105 .3456 .3675 .3750
3 .0005 .0036 .0115 .0256 .0469 .0756 .1115 .1536 .2005 .2500
4 .0000 .0001 .0005 .0016 .0039 .0081 .0150 .0256 .0410 .0625

5 0 .7738 .5905 .4437 .3277 .2373 .1681 .1160 .0778 .0503 .0313
1 .2036 .3280 .3915 .4096 .3955 .3601 .3124 .2592 .2059 .1563
2 .0214 .0729 .1382 .2048 .2637 .3087 .3364 .3456 .3369 .3125
3 .0011 .0081 .0244 .0512 .0879 .1323 .1811 .2304 .2757 .3125
4 .0000 .0005 .0022 .0064 .0146 .0284 .0488 .0768 .1128 .1563
5 .0000 .0000 .0001 .0003 .0010 .0024 .0053 .0102 .0185 .0313

6 0 .7351 .5314 .3771 .2621 .1780 .1176 .0754 .0467 .0277 .0156
1 .2321 .3543 .3993 .3932 .3560 .3025 .2437 .1866 .1359 .0938
2 .0305 .0984 .1762 .2458 .2966 .3241 .3280 .3110 .2780 .2344
3 .0021 .0146 .0415 .0819 .1318 .1852 .2355 .2765 .3032 .3125
4 .0001 .0012 .0055 .0154 .0330 .0595 .0951 .1382 .1861 .2344
5 .0000 .0001 .0004 .0015 .0044 .0102 .0205 .0369 .0609 .0938
6 .0000 .0000 .0000 .0001 .0002 .0007 .0018 .0041 .0083 .0156

7 0 .6983 .4783 .3206 .2097 .1335 .0824 .0490 .0280 .0152 .0078
1 .2573 .3720 .3960 .3670 .3115 .2471 .1848 .1306 .0872 .0547
2 .0406 .1240 .2097 .2753 .3115 .3177 .2985 .2613 .2140 .1641
3 .0036 .0230 .0617 .1147 .1730 .2269 .2679 .2903 .2918 .2734
4 .0002 .0026 .0109 .0287 .0577 .0972 .1442 .1935 .2388 .2734
5 .0000 .0002 .0012 .0043 .0115 .0250 .0466 .0774 .1172 .1641
6 .0000 .0000 .0001 .0004 .0013 .0036 .0084 .0172 .0320 .0547
7 .0000 .0000 .0000 .0000 .0001 .0002 .0006 .0016 .0037 .0078

8 0 .6634 .4305 .2725 .1678 .1001 .0576 .0319 .0168 .0084 .0039
1 .2793 .3826 .3847 .3355 .2670 .1977 .1373 .0896 .0548 .0313
2 .0515 .1488 .2376 .2936 .3115 .2965 .2587 .2090 .1569 .1094
3 .0054 .0331 .0839 .1468 .2076 .2541 .2786 .2787 .2568 .2188
4 .0004 .0046 .0185 .0459 .0865 .1361 .1875 .2322 .2627 .2734
5 .0000 .0004 .0026 .0092 .0231 .0467 .0808 .1239 .1719 .2188
6 .0000 .0000 .0002 .0011 .0038 .0100 .0217 .0413 .0703 .1094
7 .0000 .0000 .0000 .0001 .0004 .0012 .0033 .0079 .0164 .0313
8 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0007 .0017 .0039

9 0 .6302 .3874 .2316 .1342 .0751 .0404 .0207 .0101 .0046 .0020
1 .2985 .3874 .3679 .3020 .2253 .1556 .1004 .0605 .0339 .0176
2 .0629 .1722 .2597 .3020 .3003 .2668 .2162 .1612 .1110 .0703
3 .0077 .0446 .1069 .1762 .2336 .2668 .2716 .2508 .2119 .1641
4 .0006 .0074 .0283 .0661 .1168 .1715 .2194 .2508 .2600 .2461
5 .0000 .0008 .0050 .0165 .0389 .0735 .1181 .1672 .2128 .2461
6 .0000 .0001 .0006 .0028 .0087 .0210 .0424 .0743 .1160 .1641
7 .0000 .0000 .0000 .0003 .0012 .0039 .0098 .0212 .0407 .0703
8 .0000 .0000 .0000 .0000 .0001 .0004 .0013 .0035 .0083 .0176
9 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0008 .0020
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Table B. Binomial Probabilities P(X = k) (continued).

n k .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

10 0 .5987 .3487 .1969 .1074 .0563 .0282 .0135 .0060 .0025 .0010
1 .3151 .3874 .3474 .2684 .1877 .1211 .0725 .0403 .0207 .0098
2 .0746 .1937 .2759 .3020 .2816 .2335 .1757 .1209 .0763 .0439
3 .0105 .0574 .1298 .2013 .2503 .2668 .2522 .2150 .1665 .1172
4 .0010 .0112 .0401 .0881 .1460 .2001 .2377 .2508 .2384 .2051
5 .0001 .0015 .0085 .0264 .0584 .1029 .1536 .2007 .2340 .2461
6 .0000 .0001 .0012 .0055 .0162 .0368 .0689 .1115 .1596 .2051
7 .0000 .0000 .0001 .0008 .0031 .0090 .0212 .0425 .0746 .1172
8 .0000 .0000 .0000 .0001 .0004 .0014 .0043 .0106 .0229 .0439
9 .0000 .0000 .0000 .0000 .0000 .0001 .0005 , .0016 .0042 .0098

10 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0010

11 0 .5688 .3138 .1673 .0859 .0422 .0198 .0088 .0036 .0014 .0005
1 .3293 .3835 .3248 .2362 .1549 .0932 .0518 .0266 .0125 .0054
2 .0867 .2131 .2866 .2953 .2581 .1998 .1395 .0887 .0513 .0269
3 .0137 .0710 .1517 .2215 .2581 .2568 .2254 .1774 .1259 .0806
4 .0014 .0158 .0536 .1107 .1721 .2201 .2428 .2365 .2060 .1611
5 .0001 .0025 .0132 .0388 .0803 .1321 .1830 .2207 .2360 .2256
6 .0000 .0003 .0023 .0097 .0268 .0566 .0985 .1471 .1931 .2256
7 .0000 .0000 .0003 .0017 .0064 .0173 .0379 .0701 .1128 .1611
8 .0000 .0000 .0000 .0002 .0011 .0037 .0102 .0234 .0462 .0806
9 .0000 .0000 .0000 .0000 .0001 .0005 .0018 .0052 .0126 .0269

10 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0007 .0021 .0054
11 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0005

12 0 .5404 .2824 .1422 .0687 .0317 .0138 .0057 .0022 .0008 .0002
1 .3413 .3766 .3012 .2062 .1267 .0712 .0368 .0174 .0075 .0029
2 .0988 .2301 .2924 .2835 .2323 .1678 .1088 .0639 .0339 .0161
3 .0173 .0852 .1720 .2362 .2581 .2397 .1954 .1419 .0923 .0537
4 .0021 .0213 .0683 .1329 .1936 .2311 .2367 .2128 .1700 .1208
5 .0002 .0038 .0193 .0532 .1032 .1585 .2039 .2270 .2225 .1934
6 .0000 .0005 .0040 .0155 .0401 .0792 .1281 .1766 .2124 .2256
7 .0000 .0000 .0006 .0033 .0115 ,0291 .0591 .1009 .1489 .1934
8 .0000 .0000 .0001 .0005 .0024 .0078 .0199 .0420 .0762 .1208
9 .0000 .0000 .0000 .0001 .0004 .0015 .0048 .0125 .0277 .0537

10 .0000 .0000 .0000 .0000 .0000 .0002 .0008 .0025 .0068 .0161
11 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0010 .0029
12 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002

13 0 .5133 .2542 .1209 .0550 .0238 .0097 .0037 .0013 .0004 .0001
1 .3512 .3672 .2774 .1787 .1029 .0540 .0259 .0113 .0045 .0016
2 .1109 .2448 .2937 .2680 .2059 .1388 .0836 .0453 .0220 .0095
3 .0214 .0997 .1900 .2457 .2517 .2181 .1651 .1107 .0660 .0349
4 .0028 .0277 .0838 .1535 .2097 .2337 .2222 .1845 .1350 .0873
5 .0003 .0055 .0266 .0691 .1258 .1803 .2154 .2214 .1989 .1571
6 .0000 .0008 .0063 .0230 .0559 .1030 .1546 .1968 .2169 .2095
7 .0000 .0001 .0011 .0058 .0186 .0442 .0833 .1312 .1775 .2095
8 .0000 .0000 .0001 .0011 .0047 .0142 .0336 .0656 .1089 .1571
9 .0000 .0000 .0000 .0001 .0009 .0034 .0101 .0243 .0495 .0873

10 .0000 .0000 .0000 .0000 .0001 .0006 .0022 .0065 .0162 .0349
11 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0012 .0036 .0095
12 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0005 .0016
13 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

(cont.)
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Table B. Binomial Probabilities P(X = k) (continued).

n k .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

14 0 .4877 .2288 .1028 .0440 .0178 .0068 .0024 .0008 .0002 .0001
1 .3593 .3559 .2539 .1539 .0832 .0407 .0181 .0073 .0027 .0009
2 .1229 .2570 .2912 .2501 .1802 .1134 .0634 .0317 .0141 .0056
3 .0259 .1142 .2056 .2501 .2402 .1943 .1366 .0845 .0462 .0222
4 .0037 .0349 .0998 .1720 .2202 .2290 .2022 .1549 .1040 .0611
5 .0004 .0078 .0352 .0860 .1468 .1963 .2178 .2066 .1701 .1222
6 .0000 .0013 .0093 .0322 .0734 .1262 .1759 .2066 .2088 .1833
7 .0000 .0002 .0019 .0092 .0280 .0618 .1082 .1574 .1952 .2095
8 .0000 .0000 .0003 .0020 .0082 .0232 .0510 .0918 .1398 .1833
9 .0000 .0000 .0000 .0003 .0018 .0066 .0183 .0408 .0762 .1222

10 .0000 .0000 .0000 .0000 .0003 .0014 .0049 .0136 .0312 .0611
11 .0000 .0000 .0000 .0000 .0000 .0002 .0010 .0033 .0093 .0222
12 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0005 .0019 .0056
13 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0009
14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

15 0 .4633 .2059 .0874 .0352 .0134 .0047 .0016 .0005 .0001 .0000
1 .3658 .3432 .2312 .1319 .0668 .0305 .0126 .0047 .0016 .0005
2 .1348 .2669 .2856 .2309 .1559 .0916 .0476 .0219 .0090 .0032
3 .0307 .1285 .2184 .2501 .2252 .1700 .1110 .0634 .0318 .0139
4 .0049 .0428 .1156 .1876 .2252 .2186 .1792 .1268 .0780 .0417
5 .0006 .0105 .0449 .1032 .1651 .2061 .2123 .1859 .1404 .0916
6 .0000 .0019 .0132 .0430 .0917 .1472 .1906 .2066 .1914 .1527
7 .0000 .0003 .0030 .0138 .0393 .0811 .1319 .1771 .2013 .1964
8 .0000 .0000 .0005 .0035 .0131 .0348 .0710 .1181 .1647 .1964
9 .0000 .0000 .0001 .0007 .0034 .0116 .0298 .0612 .1048 .1527

10 .0000 .0000 .0000 .0001 .0007 .0030 .0096 .0245 .0515 .0916
11 .0000 .0000 .0000 .0000 .0001 .0006 .0024 .0074 .0191 .0417
12 .0000 .0000 .0000 .0000 .0000 .0001 .0004 .0016 .0052 .0139
13 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0010 .0032
14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0005
15 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

16 0 .4401 .1853 .0743 .0281 .0100 .0033 .0010 .0003 .0001 .0000
1 .3706 .3294 .2097 .1126 .0535 ,0228 .0087 .0030 .0009 .0002
2 .1463 .2745 .2775 .2111 .1336 .0732 .0353 .0150 .0056 .0018
3 .0359 .1423 .2285 .2463 .2079 .1465 .0888 .0468 .0215 .0085
4 .0061 .0514 .1311 .2001 .2252 .2040 .1553 .1014 .0572 .0278
5 .0008 .0137 .0555 .1201 .1802 .2099 .2008 .1623 .1123 .0667
6 .0001 .0028 .0180 .0550 .1101 .1649 .1982 .1983 .1684 .1222
7 .0000 .0004 .0045 .0197 .0524 .1010 .1524 .1889 .1969 .1746
8 .0000 .0001 .0009 .0055 .0197 .0487 .0923 .1417 .1812 .1964
9 .0000 .0000 .0001 .0012 .0058 .0185 .0442 .0840 .1318 .1746

10 .0000 .0000 .0000 .0002 .0014 .0056 .0167 .0392 .0755 .1222
11 .0000 .0000 .0000 .0000 .0002 .0013 .0049 .0142 .0337 .0667
12 .0000 .0000 .0000 .0000 .0000 .0002 .0011 .0040 .0115 .0278
13 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0008 .0029 .0085
14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0005 .0018
15 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002
16 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
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Table B. Binomial Probabilities P(X = k) (continued).

n k .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

17 0 .4181 .1668 .0631 .0225 .0075 .0023 .0007 .0002 .0000 .0000
1 .3741 .3150 .1893 .0957 .0426 .0169 .0060 .0019 .0005 .0001
2 .1575 .2800 .2673 .1914 .1136 .0581 .0260 .0102 .0035 .0010
3 .0415 .1556 .2359 .2393 .1893 .1245 .0701 .0341 .0144 .0052
4 .0076 .0605 .1457 .2093 .2209 .1868 .1320 .0796 .0411 .0182
5 .0010 .0175 .0668 .1361 .1914 .2081 .1849 .1379 .0875 .0472
6 .0001 .0039 .0236 .0680 .1276 .1784 .1991 .1839 .1432 .0944
7 .0000 .0007 .0065 .0267 .0668 .1201 .1685 .1927 .1841 .1484
8 .0000 .0001 .0014 .0084 .0279 .0644 .1134 .1606 .1883 .1855
9 .0000 .0000 .0003 .0021 .0093 .0276 .0611 .1070 .1540 .1855

10 .0000 .0000 .0000 .0004 .0025 .0095 .0263 .0571 .1008 .1484
11 .0000 .0000 .0000 .0001 .0005 .0026 .0090 .0242 .0525 .0944
12 .0000 .0000 .0000 .0000 .0001 .0006 .0024 .0081 .0215 .0472
13 .0000 .0000 .0000 .0000 .0000 .0001 .0005 .0021 .0068 .0182
14 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0004 .0016 .0052
15 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0010
16 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001
17 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

18 0 .3972 .1501 .0536 .0180 .0056 .0016 .0004 .0001 .0000 .0000
1 .3763 .3002 .1704 .0811 .0338 .0126 .0042 .0012 .0003 .0001
2 .1683 .2835 .2556 .1723 .0958 .0458 .0190 .0069 .0022 .0006
3 .0473 .1680 .2406 .2297 .1704 .1046 .0547 .0246 .0095 .0031
4 .0093 .0700 .1592 .2153 .2130 .1681 .1104 .0614 .0291 .0117
5 .0014 .0218 .0787 .1507 .1988 .2017 .1664 .1146 .0666 .0327
6 .0002 .0052 .0301 .0816 .1436 .1873 .1941 .1655 .1181 .0708
7 .0000 .0010 .0091 .0350 .0820 .1376 .1792 .1892 .1657 .1214
8 .0000 .0002 .0022 .0120 .0376 .0811 .1327 .1734 .1864 .1669
9 .0000 .0000 .0004 .0033 .0139 .0386 .0794 .1284 .1694 .1855

10 .0000 .0000 .0001 .0008 .0042 .0149 .0385 .0771 .1248 .1669
11 .0000 .0000 .0000 .0001 .0010 .0046 .0151 .0374 .0742 .1214
12 .0000 .0000 .0000 .0000 .0002 .0012 .0047 .0145 .0354 .0708
13 .0000 .0000 .0000 .0000 .0000 .0002 .0012 .0045 .0134 .0327
14 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0011 .0039 .0117
15 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0009 .0031
16 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0006
17 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001
18 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

19 0 .3774 .1351 .0456 .0144 .0042 .0011 .0003 .0001 .0000 .0000
1 .3774 .2852 .1529 .0685 .0268 .0093 .0029 .0008 .0002 .0000
2 .1787 .2852 .2428 .1540 .0803 .0358 .0138 .0046 .0013 .0003
3 .0533 .1796 .2428 .2182 .1517 .0869 .0422 .0175 .0062 .0018
4 .0112 .0798 .1714 .2182 .2023 .1491 .0909 .0467 .0203 .0074
5 .0018 .0266 .0907 .1636 .2023 .1916 .1468 .0933 .0497 .0222
6 .0002 .0069 .0374 .0955 .1574 .1916 .1844 .1451 .0949 .0518
7 .0000 .0014 .0122 .0443 .0974 .1525 .1844 .1797 .1443 .0961
8 .0000 .0002 .0032 .0166 .0487 .0981 .1489 .1797 .1771 .1442
9 .0000 .0000 .0007 .0051 .0198 .0514 .0980 .1464 .1771 .1762

10 .0000 .0000 .0001 .0013 .0066 .0220 .0528 .0976 .1449 .1762
11 .0000 .0000 .0000 .0003 .0018 .0077 .0233 .0532 .0970 .1442
12 .0000 .0000 .0000 .0000 .0004 .0022 .0083 .0237 .0529 .0961
13 .0000 .0000 .0000 .0000 .0001 .0005 .0024 .0085 .0233 .0518
14 .0000 .0000 .0000 .0000 .0000 .0001 .0006 .0024 .0082 .0222
15 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0005 .0022 .0074
16 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0005 .0018
17 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003
18 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
19 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

(cont.)
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Table B. Binomial Probabilities P(X = k) (continued).

n k .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

20 0 .3585 .1216 .0388 .0115 .0032 .0008 .0002 .0000 .0000 .0000
1 .3774 .2702 .1368 .0576 .0211 .0068 .0020 .0005 .0001 .0000
2 .1887 .2852 .2293 .1369 .0669 .0278 .0100 .0031 .0008 .0002
3 .0596 .1901 .2428 .2054 .1339 .0716 .0323 .0123 .0040 .0011
4 .0133 .0898 .1821 .2182 .1897 .1304 .0738 .0350 .0139 .0046
5 .0022 .0319 .1028 .1746 .2023 .1789 .1272 .0746 .0365 .0148
6 .0003 .0089 .0454 .1091 .1686 .1916 .1712 .1244 .0746 .0370
7 .0000 .0020 .0160 .0545 .1124 .1643 .1844 .1659 .1221 .0739
8 .0000 .0004 .0046 .0222 .0609 .1144 .1614 .1797 .1623 .1201
9 .0000 .0001 .0011 .0074 .0271 .0654 .1158 .1597 .1771 .1602

10 .0000 .0000 .0002 .0020 .0099 .0308 .0686 .1171 .1593 .1762
11 .0000 .0000 .0000 .0005 .0030 .0120 .0336 .0710 .1185 .1602
12 .0000 .0000 .0000 .0001 .0008 .0039 .0136 .0355 .0727 .1201
13 .0000 .0000 .0000 .0000 .0002 .0010 .0045 .0146 .0366 .0739
14 .0000 .0000 .0000 .0000 .0000 ,0002 .0012 .0049 .0150 .0370
15 .0000 .0000 .0000 .0000 .0000 .0000 .0003 .0013 .0049 .0148
16 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0003 .0013 .0046
17 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0011
18 .0000 .0000 1 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002
19 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
20 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

25 0 .2774 .0718 .0172 .0038 .0008 .0001 .0000 .0000 .0000 .0000
1 .3650 .1994 .0759 .0236 .0063 .0014 .0003 .0000 .0000 .0000
2 .2305 .2659 .1607 .0708 .0251 .0074 .0018 .0004 .0001 .0000
3 .0930 .2265 .2174 .1358 .0641 .0243 .0076 .0019 .0004 .0001
4 .0269 .1384 .2110 .1867 .1175 .0572 .0224 .0071 .0018 .0004
5 .0060 .0646 .1564 .1960 .1645 .1030 .0506 .0199 .0063 .0016
6 .0010 .0239 .0920 .1633 .1828 .1472 .0908 .0442 .0172 .0053
7 .0001 .0072 .0441 .1108 .1654 .1712 .1327 .0800 .0381 .0143
8 .0000 .0018 .0175 .0623 .1241 .1651 .1607 .1200 .0701 .0322
9 .0000 .0004 .0058 .0294 .0781 .1336 .1635 .1511 .1084 .0609

10 .0000 .0001 .0016 .0118 .0417 .0916 .1409 .1612 .1419 .0974
11 .0000 .0000 .0004 .0040 .0189 .0536 .1034 .1465 .1583 .1328
12 .0000 .0000 .0001 .0012 .0074 .0268 .0650 .1140 .1511 .1550
13 .0000 .0000 .0000 .0003 .0025 .0115 .0350 .0760 .1236 .1550
14 .0000 .0000 .0000 .0001 .0007 .0042 .0161 .0434 .0867 .1328
15 .0000 .0000 .0000 .0000 .0002 .0013 .0064 .0212 .0520 .0974
16 .0000 .0000 .0000 .0000 .0000 .0004 .0021 .0088 .0266 .0609
17 .0000 .0000 .0000 .0000 .0000 .0001 .0006 .0031 .0115 .0322
18 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0009 .0042 .0143
19 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0013 .0053
20 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0003 .0016
21 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0004
22 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001
23 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
24 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
25 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000



Table B 315

Table B. Binomial Probabilities P(X = k) (continued).

n k .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

30 0 .2146 .0424 .0076 .0012 .0002 .0000 .0000 .0000 .0000 .0000
1 .3389 .1413 .0404 .0093 .0018 .0003 .0000 .0000 .0000 .0000
2 .2586 .2277 .1034 .0337 .0086 .0018 .0003 .0000 .0000 .0000
3 .1270 .2361 .1703 .0785 .0269 .0072 .0015 .0003 .0000 .0000
4 .0451 .1771 .2028 .1325 .0604 .0208 .0056 .0012 .0002 .0000
5 .0124 .1023 .1861 .1723 .1047 .0464 .0157 .0041 .0008 .0001
6 .0027 .0474 .1368 .1795 .1455 .0829 .0353 .0115 .0029 .0006
7 .0005 .0180 .0828 .1538 .1662 .1219 .0652 .0263 .0081 .0019
8 .0001 .0058 .0420 .1106 .1593 .1501 .1009 .0505 .0191 .0055
9 .0000 .0016 .0181 .0676 .1298 .1573 .1328 .0823 .0382 .0133

10 .0000 .0004 .0067 .0355 .0909 .1416 .1502 .1152 .0656 .0280
11 .0000 .0001 .0022 .0161 .0551 .1103 .1471 .1396 .0976 .0509
12 .0000 .0000 .0006 .0064 .0291 .0749 .1254 .1474 .1265 .0806
13 .0000 .0000 .0001 .0022 .0134 .0444 .0935 .1360 .1433 .1115
14 .0000 .0000 .0000 .0007 .0054 .0231 .0611 .1101 .1424 .1354
15 .0000 .0000 .0000 .0002 .0019 .0106 .0351 .0783 .1242 .1445
16 .0000 .0000 .0000 .0000 .0006 .0042 .0177 .0489 .0953 .1354
17 .0000 .0000 .0000 .0000 .0002 .0015 .0079 .0269 .0642 .1115
18 .0000 .0000 .0000 .0000 .0000 .0005 .0031 .0129 .0379 .0806
19 .0000 .0000 .0000 .0000 .0000 .0001 .0010 .0054 .0196 .0509
20 .0000 .0000 .0000 .0000 .0000 .0000 .0003 .0020 .0088 .0280
21 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0006 .0034 .0133
22 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0012 .0055
23 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0003 .0019
24 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0006
25 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001
26 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
27 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
28 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
29 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
30 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
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Table C. Poisson Probabilities P(X = k).

k μ = .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0 .6065 .3679 .2231 .1353 .0821 .0498 .0302 .0183 .0111 .0067
1 .3033 .3679 .3347 .2707 .2052 .1494 .1057 .0733 .0500 .0337
2 .0758 .1839 .2510 .2707 .2565 .2240 .1850 .1465 .1125 .0842
3 .0126 .0613 .1255 .1804 .2138 .2240 .2158 .1954 .1687 .1404
4 .0016 .0153 .0471 .0902 .1336 .1680 .1888 .1954 .1898 .1755
5 .0002 .0031 .0141 .0361 .0668 .1008 .1322 .1563 .1708 .1755
6 — .0005 .0035 .0120 .0278 .0504 .0771 .1042 .1281 .1462
7 — .0001 .0008 .0034 .0099 .0216 .0385 .0595 .0824 .1044
8 — — .0001 .0009 .0031 .0081 .0169 .0298 .0463 .0653
9 — — — .0002 .0009 .0027 .0066 .0132 .0232 .0363

10 — — — — .0002 .0008 .0023 .0053 .0104 .0181
11 — — — — — .0002 .0007 .0019 .0043 .0082
12 — — — — — .0001 .0002 .0006 .0016 .0034
13 — — — — — — .0001 .0002 .0006 .0013
14 — — — — — — — .0001 .0002 .0005
15 — — — — — — — — .0001 .0002
16 — — — — — — — — — —

k μ = 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

0 .0041 .0025 .0015 .0009 .0006 .0003 .0002 .0001 .0001 —
1 .0225 .0149 .0098 .0064 .0041 .0027 .0017 .0011 .0007 .0005
2 .0618 .0446 .0318 .0223 .0156 .0107 .0074 .0050 .0034 .0023
3 .1133 .0892 .0688 .0521 .0389 .0286 .0208 .0150 .0107 .0076
4 .1558 .1339 .1118 .0912 .0729 .0573 .0443 .0337 .0254 .0189
5 .1714 .1606 .1454 .1277 .1094 .0916 .0752 .0607 .0483 .0378
6 .1571 .1606 .1575 .1490 .1367 .1221 .1066 .0911 .0764 .0631
7 .1234 .1377 .1462 .1490 .1465 .1396 .1294 .1171 .1037 .0901
8 .0849 .1033 .1188 .1304 .1373 .1396 .1375 .1318 .1232 .1126
9 .0519 .0688 .0858 .1014 .1144 .1241 .1299 .1318 .1300 .1251

10 .0285 .0413 .0558 .0710 .0858 .0993 .1104 .1186 .1235 .1251
11 .0143 .0225 .0330 .0452 .0585 .0722 .0853 .0970 .1067 .1137
12 .0065 .0113 .0179 .0263 .0366 .0481 .0604 .0728 .0844 .0948
13 .0028 .0052 .0089 .0142 .0211 .0296 .0395 .0504 .0617 .0729
14 .0011 .0022 .0041 .0071 .0113 .0169 .0240 .0324 .0419 .0521
15 .0004 .0009 .0018 .0033 .0057 .0090 .0136 .0194 .0265 .0347
16 .0001 .0003 .0007 .0014 .0026 .0045 .0072 .0109 .0157 .0217
17 — .0001 .0003 .0006 .0012 .0021 .0036 .0058 .0088 .0128
18 — — .0001 .0002 .0005 .0009 .0017 .0029 .0046 .0071
19 — — — .0001 .0002 .0004 .0008 .0014 .0023 .0037
20 — — — — .0001 .0002 .0003 .0006 .0011 .0019
21 — — — — — .0001 .0001 .0003 .0005 .0009
22 — — — — — — .0001 .0001 .0002 .0004
23 — — — — — — — — .0001 .0002
24 — — — — — — — — — .0001
25 — — — — — — — — — —
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Table C. Poisson Probabilities P(X = k) (continued).

k μ = 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0

0 — — — — — — — — — —
1 .0003 .0002 .0001 .0001 — — — — — —
2 .0015 .0010 .0007 .0004 .0003 .0002 .0001 .0001 .0001 —
3 .0053 .0037 .0026 .0018 .0012 .0008 .0006 .0004 .0003 .0002
4 .0139 .0102 .0074 .0053 .0038 .0027 .0019 .0013 .0009 .0006
5 .0293 .0224 .0170 .0127 .0095 .0070 .0051 .0037 .0027 .0019
6 .0513 .0411 .0325 .0255 .0197 .0152 .0115 .0087 .0065 .0048
7 .0769 .0646 .0535 .0437 .0353 .0281 .0222 .0174 .0135 .0104
8 .1009 .0888 .0769 .0655 .0551 .0457 .0375 .0304 .0244 .0194
9 .1177 .1085 .0982 .0874 .0765 .0661 .0563 .0473 .0394 .0324

10 .1236 .1194 .1129 .1048 .0956 .0859 .0760 .0663 .0571 .0486
11 .1180 .1194 .1181 .1144 .1087 .1015 .0932 .0844 .0753 .0663
12 .1032 .1094 .1131 .1144 .1132 .1099 .1049 .0984 .0910 .0829
13 .0834 .0926 .1001 .1056 .1089 .1099 .1089 .1060 .1014 .0956
14 .0625 .0728 .0822 .0905 .0972 .1021 .1050 .1060 .1051 .1024
15 .0438 .0534 .0630 .0724 .0810 .0885 .0945 .0989 .1016 .1024
16 .0287 .0367 .0453 .0543 .0633 .0719 .0798 .0866 .0920 .0960
17 .0177 .0237 .0306 .0383 .0465 .0550 .0633 .0713 .0785 .0847
18 .0104 .0145 .0196 .0255 .0323 .0397 .0475 .0554 .0632 .0706
19 .0057 .0084 .0119 .0161 .0213 .0272 .0337 .0409 .0483 .0557
20 .0030 .0046 .0068 .0097 .0133 .0177 .0228 .0286 .0350 .0418
21 .0015 .0024 .0037 .0055 .0079 .0109 .0146 .0191 .0242 .0299
22 .0007 .0012 .0020 .0030 .0045 .0065 .0090 .0121 .0159 .0204
23 .0003 .0006 .0010 .0016 .0024 .0037 .0053 .0074 .0100 .0133
24 .0001 .0003 .0005 .0008 .0013 .0020 .0030 .0043 .0061 .0083
25 .0001 .0001 .0002 .0004 .0006 .0010 .0016 .0024 .0035 .0050
26 — — .0001 .0002 .0003 .0005 .0008 .0013 .0020 .0029
27 — — — .0001 .0001 .0002 .0004 .0007 .0011 .0016
28 — — — — .0001 .0001 .0002 .0003 .0005 .0009
29 — — — — — .0001 .0001 .0002 .0003 .0004
30 — — — — — — — .0001 .0001 .0002
31 — — — — — — — — .0001 .0001
32 — — — — — — — — — .0001
33 — — — — — — — — — —

(cont.)
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Table C. Poisson Probabilities P(X = k) (continued).

k μ = 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0

0 — — — — — — — — — —
1 — — — — — — — — — —
2 — — — — — — — — — —
3 .0001 .0001 .0001 — — — — — — —
4 .0004 .0003 .0002 .0001 .0001 .0001 — — — —
5 .0014 .0010 .0007 .0005 .0003 .0002 .0002 .0001 .0001 .0001
6 .0036 .0026 .0019 .0014 .0010 .0007 .0005 .0004 .0003 .0002
7 .0079 .0060 .0045 .0034 .0025 .0019 .0014 .0010 .0007 .0005
8 .0153 .0120 .0093 .0072 .0055 .0042 .0031 .0024 .0018 .0013
9 .0264 .0213 .0171 .0135 .0107 .0083 .0065 .0050 .0038 .0029

10 .0409 .0341 .0281 .0230 .0186 .0150 .0120 .0095 .0074 .0058
11 .0577 .0496 .0422 .0355 .0297 .0245 .0201 .0164 .0132 .0106
12 .0745 .0661 .0580 .0504 .0432 .0368 .0310 .0259 .0214 .0176
13 .0888 .0814 .0736 .0658 .0582 .0509 .0441 .0378 .0322 .0271
14 .0983 .0930 .0868 .0800 .0728 .0655 .0583 .0514 .0448 .0387
15 .1016 .0992 .0955 .0906 .0849 .0786 .0719 .0650 .0582 .0516
16 .0984 .0992 .0985 .0963 .0929 .0884 .0831 .0772 .0710 .0646
17 .0897 .0934 .0956 .0963 .0956 .0936 .0904 .0863 .0814 .0760
18 .0773 .0830 .0876 .0909 .0929 .0936 .0930 .0911 .0882 .0844
19 .0630 .0699 .0761 .0814 .0856 .0887 .0905 .0911 .0905 .0888
20 .0489 .0559 .0628 .0692 .0749 .0798 .0837 .0866 .0883 .0888
21 .0361 .0426 .0493 .0560 .0624 .0684 .0738 .0783 .0820 .0846
22 .0254 .0310 .0370 .0433 .0496 .0560 .0620 .0676 .0727 .0769
23 .0171 .0216 .0265 .0320 .0378 .0438 .0499 .0559 .0616 .0669
24 .0111 .0144 .0182 .0226 .0275 .0328 .0385 .0442 .0500 .0557
25 .0069 .0092 .0120 .0154 .0193 .0237 .0285 .0336 .0390 .0446
26 .0041 .0057 .0076 .0101 .0130 .0164 .0202 .0246 .0293 .0343
27 .0023 .0034 .0047 .0063 .0084 .0109 .0139 .0173 .0211 .0254
28 .0013 .0019 .0028 .0038 .0053 .0070 .0092 .0117 .0147 .0181
29 .0007 .0011 .0016 .0023 .0032 .0044 .0058 .0077 .0099 .0125
30 .0004 .0006 .0009 .0013 .0019 .0026 .0036 .0049 .0064 .0083
31 .0002 .0003 .0005 .0007 .0010 .0015 .0022 .0030 .0040 .0054
32 .0001 .0001 .0002 .0004 .0006 .0009 .0012 .0018 .0025 .0034
33 — .0001 .0001 .0002 .0003 .0005 .0007 .0010 .0015 .0020
34 — — .0001 .0001 .0002 .0002 .0004 .0006 .0008 .0012
35 — — — — .0001 .0001 .0002 .0003 .0005 .0007
36 — — — — — .0001 .0001 .0002 .0003 .0004
37 — — — — — — .0001 .0001 .0001 .0002
38 — — — — — — — — .0001 .0001
39 — — — — — — — — — .0001
40 — — — — — — — — — —
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Table D. Standard Normal Probabilities P(Z < z).

Z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.00 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359
0.10 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753
0.20 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141
0.30 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517
0.40 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879

0.50 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224
0.60 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549
0.70 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852
0.80 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133
0.90 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389

1.00 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621
1.10 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830
1.20 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015
1.30 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177
1.40 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319

1.50 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441
1.60 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545
1.70 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633
1.80 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706
1.90 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767

2.00 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817
2.10 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857
2.20 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890
2.30 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916
2.40 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936

2.50 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952
2.60 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964
2.70 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974
2.80 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981
2.90 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986

3.00 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990
3.10 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993
3.20 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995
3.30 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997
3.40 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998

3.50 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998
3.60 .9998 .9998 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999
3.70 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999
3.80 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999
3.90 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999
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Table E. Percentiles of the t Distribution P(t(δ) < t).

df .55 .60 .65 .70 .75 .80 .85 .90 .95

1 0.1584 0.3249 0.5095 0.7265 1.0000 1.3764 1.9626 3.0777 6.3138
2 0.1421 0.2887 0.4447 0.6172 0.8165 1.0607 1.3862 1.8856 2.9200
3 0.1366 0.2767 0.4242 0.5844 0.7649 0.9785 1.2498 1.6377 2.3534
4 0.1338 0.2707 0.4142 0.5686 0.7407 0.9410 1.1896 1.5332 2.1318
5 0.1322 0.2672 0.4082 0.5594 0.7267 0.9195 1.1558 1.4759 2.0150

6 0.1311 0.2648 0.4043 0.5534 0.7176 0.9057 1.1342 1.4398 1.9432
7 0.1303 0.2632 0.4015 0.5491 0.7111 0.8960 1.1192 1.4149 1.8946
8 0.1297 0.2619 0.3995 0.5459 0.7064 0.8889 1.1081 1.3968 1.8595
9 0.1293 0.2610 0.3979 0.5435 0.7027 0.8834 1.0997 1.3830 1.8331

10 0.1289 0.2602 0.3966 0.5415 0.6998 0.8791 1.0931 1.3722 1.8125

11 0.1286 0.2596 0.3956 0.5399 0.6974 0.8755 1.0877 1.3634 1.7959
12 0.1283 0.2590 0.3947 0.5386 0.6955 0.8726 1.0832 1.3562 1.7823
13 0.1281 0.2586 0.3940 0.5375 0.6938 0.8702 1.0795 1.3502 1.7709
14 0.1280 0.2582 0.3933 0.5366 0.6924 0.8681 1.0763 1.3450 1.7613
15 0.1278 0.2579 0.3928 0.5357 0.6912 0.8662 1.0735 1.3406 1.7531

16 0.1277 0.2576 0.3923 0.5350 0.6901 0.8647 1.0711 1.3368 1.7459
17 0.1276 0.2573 0.3919 0.5344 0.6892 0.8633 1.0690 1.3334 1.7396
18 0.1274 0.2571 0.3915 0.5338 0.6884 0.8620 1.0672 1.3304 1.7341
19 0.1274 0.2569 0.3912 0.5333 0.6876 0.8610 1.0655 1.3277 1.7291
20 0.1273 0.2567 0.3909 0.5329 0.6870 0.8600 1.0640 1.3253 1.7247

21 0.1272 0.2566 0.3906 0.5325 0.6864 0.8591 1.0627 1.3232 1.7207
22 0.1271 0.2564 0.3904 0.5321 0.6858 0.8583 1.0614 1.3212 1.7171
23 0.1271 0.2563 0.3902 0.5317 0.6853 0.8575 1.0603 1.3195 1.7139
24 0.1270 0.2562 0.3900 0.5314 0.6848 0.8569 1.0593 1.3178 1.7109
25 0.1269 0.2561 0.3898 0.5312 0.6844 0.8562 1.0584 1.3163 1.7081

26 0.1269 0.2560 0.3896 0.5309 0.6840 0.8557 1.0575 1.3150 1.7056
27 0.1268 0.2559 0.3894 0.5306 0.6837 0.8551 1.0567 1.3137 1.7033
28 0.1268 0.2558 0.3893 0.5304 0.6834 0.8546 1.0560 1.3125 1.7011
29 0.1268 0.2557 0.3892 0.5302 0.6830 0.8542 1.0553 1.3114 1.6991
30 0.1267 0.2556 0.3890 0.5300 0.6828 0.8538 1.0547 1.3104 1.6973

40 0.1265 0.2550 0.3881 0.5286 0.6807 0.8507 1.0500 1.3031 1.6839
50 0.1263 0.2547 0.3875 0.5278 0.6794 0.8489 1.0473 1.2987 1.6759
60 0.1262 0.2545 0.3872 0.5272 0.6786 0.8477 1.0455 1.2958 1.6706
70 0.1261 0.2543 0.3869 0.5268 0.6780 0.8468 1.0442 1.2938 1.6669
80 0.1261 0.2542 0.3867 0.5265 0.6776 0.8461 1.0432 1.2922 1.6641

90 0.1260 0.2541 0.3866 0.5263 0.6772 0.8456 1.0424 1.2910 1.6620
100 0.1260 0.2540 0.3864 0.5261 0.6770 0.8452 1.0418 1.2901 1.6602
110 0.1260 0.2540 0.3863 0.5259 0.6767 0.8449 1.0413 1.2893 1.6588
120 0.1259 0.2539 0.3862 0.5258 0.6765 0.8446 1.0409 1.2886 1.6577

inf 0.1257 0.2533 0.3853 0.5244 0.6745 0.8416 1.0364 1.2816 1.6449
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Table E. Percentiles of the t Distribution P(t(δ) < t) (continued).

df .975 .980 .985 .990 .9925 01 .9950 .9975 .999 .9995

1 12.706 15.895 21.205 31.821 42.433 63.657 127.32 318.31 636.62
2 4.3027 4.8487 5.6428 6.9646 8.0728 9.9248 14.089 22.327 31.599
3 3.1824 3.4819 3.8960 4.5407 5.0473 5.8409 7.4533 10.215 12.924
4 2.7764 2.9985 3.2976 3.7469 4.0880 4.6041 5.5976 7.1732 8.6103
5 2.5706 2.7565 3.0029 3.3649 3.6338 4.0321 4.7733 5.8934 6.8688

6 2.4469 2.6122 2.8289 3.1427 3.3723 3.7074 4.3168 5.2076 5.9588
7 2.3646 2.5168 2.7146 2.9980 3.2032 3.4995 4.0293 4.7853 5.4079
8 2.3060 2.4490 2.6338 2.8965 3.0851 3.3554 3.8325 4.5008 5.0413
9 2.2622 2.3984 2.5738 2.8214 2.9982 3.2498 3.6897 4.2968 4.7809

10 2.2281 2.3593 2.5275 2.7638 2.9316 3.1693 3.5814 4.1437 4.5869

11 2.2010 2.3281 2.4907 2.7181 2.8789 3.1058 3.4966 4.0247 4.4370
12 2.1788 2.3027 2.4607 2.6810 2.8363 3.0545 3.4284 3.9296 4.3178
13 2.1604 2.2816 2.4358 2.6503 2.8010 3.0123 3.3725 3.8520 4.2208
14 2.1448 2.2638 2.4149 2.6245 2.7714 2.9768 3.3257 3.7874 4.1405
15 2.1314 2.2485 2.3970 2.6025 2.7462 2.9467 3.2860 3.7328 4.0728

16 2.1199 2.2354 2.3815 2.5835 2.7245 2.9208 3.2520 3.6862 4.0150
17 2.1098 2.2238 2.3681 2.5669 2.7056 2.8982 3.2224 3.6458 3.9651
18 2.1009 2.2137 2.3562 2.5524 2.6889 2.8784 3.1966 3.6105 3.9216
19 2.0930 2.2047 2.3456 2.5395 2.6742 2.8609 3.1737 3.5794 3.8834
20 2.0860 2.1967 2.3362 2.5280 2.6611 2.8453 3.1534 3.5518 3.8495

21 2.0796 2.1894 2.3278 2.5176 2.6493 2.8314 3.1352 3.5272 3.8193
22 2.0739 2.1829 2.3202 2.5083 2.6387 2.8188 3.1188 3.5050 3.7921
23 2.0687 2.1770 2.3132 2.4999 2.6290 2.8073 3.1040 3.4850 3.7676
24 2.0639 2.1715 2.3069 2.4922 2.6203 2.7969 3.0905 3.4668 3.7454
25 2.0595 2.1666 2.3011 2.4851 2.6122 2.7874 3.0782 3.4502 3.7251

26 2.0555 2.1620 2.2958 2.4786 2.6049 2.7787 3.0669 3.4350 3.7066
27 2.0518 2.1578 2.2909 2.4727 2.5981 2.7707 3.0565 3.4210 3.6896
28 2.0484 2.1539 2.2864 2.4671 2.5918 2.7633 3.0469 3.4082 3.6739
29 2.0452 2.1503 2.2822 2.4620 2.5860 2.7564 3.0380 3.3962 3.6594
30 2.0423 2.1470 2.2783 2.4573 2.5806 2.7500 3.0298 3.3852 3.6460

40 2.0211 2.1229 2.2503 2.4233 2.5420 2.7045 2.9712 3.3069 3.5510
50 2.0086 2.1087 2.2338 2.4033 2.5193 2.6778 2.9370 3.2614 3.4960
60 2.0003 2.0994 2.2229 2.3901 2.5044 2.6603 2.9146 3.2317 3.4602
70 1.9944 2.0927 2.2152 2.3808 2.4939 2.6479 2.8987 3.2108 3.4350
80 1.9901 2.0878 2.2095 2.3739 2.4860 2.6387 2.8870 3.1953 3.4163
90 1.9867 2.0839 2.2050 2.3685 2.4800 2.6316 2.8779 3.1833 3.4019

100 1.9840 2.0809 2.2015 2.3642 2.4751 2.6259 2.8707 3.1737 3.3905
110 1.9818 2.0784 2.1986 2.3607 2.4712 2.6213 2.8648 3.1660 3.3812
120 1.9799 2.0763 2.1962 2.3578 2.4679 2.6174 2.8599 3.1595 3.3735

inf 1.9600 2.0537 2.1701 2.3263 2.4324 2.5758 2.8070 3.0902 3.2905
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Table F. Percentiles of the χ2 Distribution P(χ2
(δ) < χ2).

df .005 .010 .025 .050 .100 .900 .950 .975 .990 .995

1 0.000 0.000 0.001 0.004 0.016 2.706 3.841 5.024 6.635 7.879
2 0.010 0.020 0.051 0.103 0.211 4.605 5.991 7.378 9.210 10.597
3 0.072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345 12.838
4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 14.860
5 0.412 0.554 0.831 1.145 1.610 9.236 11.070 12.833 15.086 16.750

6 0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.449 16.812 18.548
7 0.989 1.239 1.690 2.167 2.833 12.017 14.067 16.013 18.475 20.278
8 1.344 1.646 2.180 2.733 3.490 13.362 15.507 17.535 20.090 21.955
9 1.735 2.088 2.700 3.325 4.168 14.684 16.919 19.023 21.666 23.589

10 2.156 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209 25.188

11 2.603 3.053 3.816 4.575 5.578 17.275 19.675 21.920 24.725 26.757
12 3.074 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217 28.300
13 3.565 4.107 5.009 5.892 7.042 19.812 22.362 24.736 27.688 29.819
14 4.075 4.660 5.629 6.571 7.790 21.064 23.685 26.119 29.141 31.319
15 4.601 5.229 6.262 7.261 8.547 22.307 24.996 27.488 30.578 32.801

16 5.142 5.812 6.908 7.962 9.312 23.542 26.296 28.845 32.000 34.267
17 5.697 6.408 7.564 8.672 10.085 24.769 27.587 30.191 33.409 35.718
18 6.265 7.015 8.231 9.390 10.865 25.989 28.869 31.526 34.805 37.156
19 6.844 7.633 8.907 10.117 11.651 27.204 30.144 32.852 36.191 38.582
20 7.434 8.260 9.591 10.851 12.443 28.412 31.410 34.170 37.566 39.997

21 8.034 8.897 10.283 11.591 13.240 29.615 32.671 35.479 38.932 41.401
22 8.643 9.542 10.982 12.338 14.041 30.813 33.924 36.781 40.289 42.796
23 9.260 10.196 11.689 13.091 14.848 32.007 35.172 38.076 41.638 44.181
24 9.886 10.856 12.401 13.848 15.659 33.196 36.415 39.364 42.980 45.559
25 10.520 11.524 13.120 14.611 16.473 34.382 37.652 40.646 44.314 46.928

26 11.160 12.198 13.844 15.379 17.292 35.563 38.885 41.923 45.642 48.290
27 11.808 12.879 14.573 16.151 18.114 36.741 40.113 43.195 46.963 49.645
28 12.461 13.565 15.308 16.928 18.939 37.916 41.337 44.461 48.278 50.993
29 13.121 14.256 16.047 17.708 19.768 39.087 42.557 45.722 49.588 52.336
30 13.787 14.953 16.791 18.493 20.599 40.256 43.773 46.979 50.892 53.672

40 20.707 22.164 24.433 26.509 29.051 51.805 55.758 59.342 63.691 66.766
50 27.991 29.707 32.357 34.764 37.689 63.167 67.505 71.420 76.154 79.490
60 35.534 37.485 40.482 43.188 46.459 74.397 79.082 83.298 88.379 91.952
70 43.275 45.442 48.758 51.739 55.329 85.527 90.531 95.023 100.425 104.215
80 51.172 53.540 57.153 60.391 64.278 96.578 101.879 106.629 112.329 116.321

90 59.196 61.754 65.647 69.126 73.291 107.565 113.145 118.136 124.116 128.299
100 67.328 70.065 74.222 77.929 82.358 118.498 124.342 129.561 135.807 140.169
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Table G. Percentiles of the F Distribution.

Numerator df
Denominator

df p 1 2 3 4 S 6 7 8 9 10 12 14 16 18 20 25 30 60 90 120 inf

1 .50 1.00 1.50 1.71 1.82 1.89 1.94 1.98 2.00 2.03 2.04 2.07 2.09 2.10 2.11 2.12 2.13 2.15 2.17 2.18 2.18 2.2

.90 39.86 49.50 53.59 55.83 57.24 58.20 58.91 59.44 59.86 60.19 60.71 61.07 61.35 61.57 61.74 j,62.05 62.26 62.79 62.97 63.06 63.3

.95 161.45 199.50 215 .71 224.58 230.16 233.99 236.77 238.88 240.54 241.88 243.91 245.36 246.46 247.32 248.01 249.26 250.10 252.20 252.90 253.25 254.3

.975 647.79 799.50 864.16 899.58 921.85 937.11 948.22 956.66 963.28 968.63 976.71 982.53 986.92 990.35 993.10 998.08 1001.4 1009.8 1012 . 6 1014 . 0 1018.

.99 4052.2 4999.5 5403.4 5624.6 5763.6 5859.0 5928.4 5981.1 6022.5 6055.8 6106,3 6142.7 6170.1 6191.5 6208.7 6239.8 6260.6 6313.0 6330.6 6339.4 6365.

.995 16211 19999 21615 22500 23056 23437 23715 23925 24091 24224 24426 24572 24681 24767 24836 24960 25044 25253 25323 25359 2546

.999 405284 499999 540379 562500 576405 585937 592873 598144 602284 605621 610668 614303 617045 619188 620908 624017 626099 631337 633093 633972 63664

2 .SO 0.67 1.00 1.13 1.21 1.25 1.28 1.30 1.32 1.33 1.35 1.36 1.37 1.38 1.39 1.39 1.40 1.41 1.43 1.43 1.43 1.4

.90 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38 9.39 9.41 9.42 9.43 9.44 9.44 9.45 9.46 9.47 9.48 9.48 9.4

.95 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.41 19.42 19.43 19.44 19.45 19.46 19.46 19.48 19.48 19.49 19.5

.975 38.51 39.00 39.17 39.25 39.30 39.33 39.36 39.37 39.39 39.40 39.41 39.43 39.44 39.44 39.45 39.46 39.46 39.48 39.49 39.49 39.5

.99 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 99.40 99.42 99.43 99.44 99.44 99.45 99.46 99.47 99.48 99.49 99.49 99.5

.995 198.50 199.00 199.17 199.25 199.30 199.33 199.36 199.37 199.39 199.40 199.42 199.43 199.44 199.44 199.45 199.46 199.47 199.48 199.49 199.49 199.5

.999 998.50 999.00 999.17 999.25 999.30 999.33 999.36 999.37 999.39 999.40 999.42 999.43 999.44 999.44 999.45 999.46 999.47 999.48 999.49 999.49 999.5

3 .50 0.59 0.88 1.00 1.06 1.10 1.13 1.15 1.16 1.17 1.18 1.20 1.21 1.21 1.22 1.23 1.23 1.24 1.25 1.26 1.26 1.2

.90 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24 5.23 5.22 5.20 5.20 5.19 5.18 5.17 5.17 5.15 5.15 5.14 5.1

.95 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.71 8.69 8.67 8.66 8.63 8.62 8.57 8.56 8.55 8.5

.975 17.44 16.04 15.44 15.10 14.88 14.73 14.62 14.54 14.47 14.42 14.34 14.28 14.23 14.20 14.17 14.12 14.08 13 . 99 13.96 13.95 13.9

.99 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35 27.23 27.05 26.92 26.83 26.75 26.69 26.58 26.50 26.32 26.25 26.22 26.1

.995 55.55 49.80 47.47 46.19 45.39 44.84 44.43 44.13 43.88 43.69 43.39 43.17 43.01 42.88 42.78 42.59 42.47 42.15 42.04 41.99 41.8

.999 167.03 148.50 141.11 137.10 134.58 132.85 131.58 130.62 129.86 129.25 128.32 127.64 127.14 126.74 126.42 125.84 125.45 124.47 124.14 123.97 123.4

4 .50 0.55 0.83 0.94 1.00 1.04 1.06 1.08 1.09 1.10 1.11 1.13 1.13 1.14 1.15 1.15 1.16 1.16 1.18 1.18 1.18 1.1

.90 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94 3.92 3.90 3.88 3.86 3.85 3.84 3.83 3.82 3.79 3.78 3.78 3.7

.95 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5.87 5.84 5.82 5.80 5.77 5.75 5.69 5.67 5.66 5.6

.975 12.22 10.65 9.98 9.60 9.36 9.20 9.07 8.98 8.90 8.84 8.75 8.68 8.63 8.59 8.56 8.50 8.46 8.36 8.33 8.31 8.2

.99 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.55 14.37 14.25 14.15 14.08 14.02 13.91 13.84 13.65 13.59 13.56 13.4

.995 31.33 26.28 24.26 23.15 22.46 21.97 21.62 21.35 21.14 20.97 20.70 20.51 20.37 20.26 20.17 20.00 19.89 19.61 19.52 19.47 19.3

.999 74.14 61.25 56.18 53.44 51.71 50.53 49.66 49.00 48.47 48.05 47.41 46.95 46.60 46.32 46.10 45.70 45.43 44.75 44.52 44.40 44.0

5 .50 0.53 0.80 0.91 0.96 1.00 1.02 1.04 1.05 1.06 1.07 1.09 1.09 1.10 1.11 1.11 1.12 1.12 1.14 1.14 1.14 1.1

.90 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32 3.30 3.27 3.25 3.23 3.22 3.21 3.19 3.17 3.14 3.13 3.12 3.1

.95 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.64 4.60 4.58 4.56 4.52 4.50 4.43 4.41 4.40 4.3

.975 10.01 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68 6.62 6.52 6.46 6.40 6.36 6.33 6.27 6.23 6.12 6.09 6.07 6.0

.99 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05 9.89 9.77 9.68 9.61 9.55 9.45 9.38 9.20 9.14 9.11 9.0

.995 22.78 18.31 16.53 15.56 14.94 14.51 14.20 13.96 13.77 13.62 13.38 13.21 13.09 12.98 12.90 12.76 12.66 12.40 12.32 12.27 12.1

.999 47.18 37.12 33.20 31,09 29,75 28.83 28.16 27.65 27.24 26.92 26.42 26.06 25.78 25.57 25.39 25.08 24.87 24.33 24.15 24.06 23.7
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Table G. Percentiles of the F Distribution (continued).

Numerator df
Denominator
df p 1 2 3 4 S 6 7 8 9 10 12 14 16 18 20 25 30 60 90 120 inf

6 .50 0.51 0.78 0.89 0.94 0.98 1.00 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.08 1.08 1.09 1.10 1.11 1.11 1.12 1.1
.90 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96 2.94 2.90 2.88 2.86 2.85 2.84 2.81 2.80 2.76 2.75 2.74 2.7
.95 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.96 3.92 3.90 3.87 3.83 3.81 3.74 3.72 3.70 3.6
.975 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52 5.46 5.37 5.30 5.24 5.20 5.17 5.11 5.07 4.96 4.92 4.90 4.8
.99 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.72 7.60 7.52 7.45 7.40 7.30 7.23 7.06 7.00 6.97 6.8
.995 18.63 14.54 12.92 12.03 11.46 11.07 10.79 10.57 10.39 10.25 10.03 9.88 9.76 9.66 9.59 9.45 9.36 9.12 9.04 9.00 8.8
.999 35.51 27.00 23.70 21.92 20.80 20.03 19.46 19.03 18.69 18.41 17.99 17.68 17.45 17.27 17.12 16.85 16.67 16.21 16.06 15.98 15.7

7 .50 0.51 0.77 0.87 0.93 0.96 0.98 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.06 1.07 1.07 1.08 1.09 1.09 1.10 1.1
.90 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 2.70 2.67 2.64 2.62 2.61 2.59 2.57 2.56 2.51 2.50 2.49 2.4
.95 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.53 3.49 3.47 3.44 3.40 3.38 3.30 3.28 3.27 3.2
.975 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82 4.76 4.67 4.60 4.54 4.50 4.47 4.40 4.36 4.25 4.22 4.20 4.1
.99 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.47 6.36 6.28 6.21 6.16 6.06 5.99 5.82 5.77 5.74 5.6
.995 16.24 12.40 10.88 10.05 9.52 9.16 8.89 8.68 8.51 8.38 8.18 8.03 7.91 7.83 7.75 7.62 7.53 7.31 7i23 7.19 7.0
.999 29.25 21.69 18.77 17.20 16.21 15.52 15.02 14.63 14.33 14.08 13.71 13.43 13.23 13.06 12.93 12.69 12.53 12.12 11.98 11.91 11.7

8 .50 0.50 0.76 0.86 0.91 0.95 0.97 0.99 1.00 1.01 1.02 1.03 1.04 1.04 1.05 1.05 1.06 1.07, 1.08 1.08 1.08 1.0
.90 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56 2.54 2.50 2.48 2.45 2.44 2.42 2.40 2.38 2.34 2.32 2.32 2.2
.95 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.24 3.20 3.17 3.15 3.11 3.08 3.01 2.98 2.97 2.9
.975 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36 4.30 4.20 4.13 4.08 4.03 4.00 3.94 3.89 3.78 3.75 3.73 3.6
.99 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.67 5.56 5.48 5.41 5.36 5.26 5.20 5.03 4.97 4.95 4.8
.995 14.69 11.04 9.60 8.81 8.30 7.95 7.69 7.50 7.34 7.21 7.01 6.87 6.76 6.68 6.61 6.48 6.40 6.18 6.10 6.06 5 9
.999 25.41 18.49 15.83 14.39 13.48 12.86 12.40 12.05 11.77 11.54 11.19 10.94 10.75 10.60 10.48 10.26 10.11 9.73 9.60 9.53 9.3

9 .50 0.49 0.75 0.85 0.91 0.94 0.96 0.98 0.99 1.00 1.01 1.02 1.03 1.03 1.04 1.04 1.05 1.05 1.07 1.07 1.07 1.0
.90 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44 2.42 2.38 2.35 2.33 2.31 2.30 2.27 2.25 2.21 2.19 2.18 2.1
.95 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.03 2.99 2.96 2.94 2.89 2.86 2.79 2.76 2.75 2.7
.975 7.21 5.71 5.08 4.72 4.48 4.32 4.20 4.10 4.03 3.96 3.87 3.80 3.74 3.70 3.67 3.60 3.56 3.45 3.41 3.39 3.3
.99 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 5.11 5.01 4.92 4.86 4.81 4.71 4.65 4.48 4.43 4.40 4.3
.995 13.61 10.11 8.72 7.96 7.47 7.13 6.88 6.69 6.54 6.42 6.23 6.09 5.98 5.90 5.83 5.71 5.62 5.41 5.34 5.30 5.1
.999 22.86 16.39 13.90 12.56 11.71 11.13 10.70 10.37 10.11 9.89 9.57 9.33 9.15 9.01 8.90 8.69 8.55 8.19 8.06 8.00 7.8

10 .50 0.49 0.74 0.85 0.90 0.93 0.95 0.97 0.98 0.99 1.00 1.01 1.02 1.03 1.03 1.03 1.04 1.05 1.06 1.06 1.06 1.0
.90 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35 2.32 2.28 2.26 2.23 2.22 2.20 2.17 2.16 2.11 2.09 2.08 2.0
.95 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.86 2.83 2.80 2.77 2.73 2.70 2.62 2.59 2.58 2.5
.975 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78 3.72 3.62 3.55 3.50 3.45 3.42 3.35 3.31 3.20 3.16 3.14 3.0
.99 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.71 4.60 4.52 4.46 4.41 4.31 4.25 4.08 4.03 4.00 3.9
.995 12.83 9.43 8.08 7.34 6.87 6.54 6.30 6.12 5.97 5.85 5.66 5.53 5.42 5.34 5.27 5.15 5.07 4.86 4.79 4.75 4.6
.999 21.04 14.91 12.55 11.28 10.48 9.93 9.52 9.20 8.96 8.75 8.45 8.22 8.05 7.91 7.80 7.60 7.47 7.12 7.00 6.94 6.7
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12 .50 0.48 0.73 0.84 0.89 0.92 0.94 0.96 0.97 0.98 0,99 1.00 1.01 1.01 1.02 1.02 1.03 1.03 1.05 1.05 1.05 1.0
.90 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21 2.19 2.15 2.12 2.09 2.08 2.06 2.03 2.01 1.96 1.94 1.93 1.9
.95 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.69 2.64 2.60 2.57 2.54 2.50 2.47 2.38 2.36 2.34 2.3
.975 6.55 5.10 4.47 4.12 3.89 3.73 3.61 3.51 3.44 3.37 3.28 3.21 3.15 3.11 3.07 3.01 2.96 2.85 2.81 2.79 2.7
.99 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.16 4.05 3.97 3.91 3.86 3.76 3.70 3.54 3.48 3.45 3.3
.995 11.75 8.51 7.23 6.52 6.07 5.76 5.52 5.35 5.20 5.09 4.91 4.77 4.67 4.59 4.53 4.41 4.33 4.12 4.05 4.01 3.9
.999 18.64 12.97 10.80 9.63 8.89 8.38 8.00 7.71 7.48 7.29 7.00 6.79 6.63 6.51 6.40 6.22 6.09 5.76 5.65 5.59 5.4

14 .50 0.48 0.73 0.83 0.88 0.91 0.94 0.95 0.96 0.97 0.98 0.99 1.00 1.01 1.01 1.01 1.02 1.03 1.04 1.04 1.04 1.0
.90 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12 2.10 2.05 2.02 2.00 1.98 1.96 1.93 1.91 1.86 1.84 1.83 1.8
.95 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.53 2.48 2.44 2.41 2.39 2.34 2.31 2.22 2.19 2.18 2.1
.975 6.30 4.86 4.24 3.89 3.66 3.50 3.38 3.29 3.21 3.15 3.05 2.98 2.92 2.88 2.84 2.78 2.73 2.61 2.57 2.55 2.4
.99 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94 3.80 3.70 3.62 3.56 3.51 3.41 3.35 3.18 3.12 3.09 3.0
.995 11.06 7.92 6.68 6.00 5.56 5.26 5.03 4.86 4.72 4.60 4.43 4.30 4.20 4.12 4.06 3.94 3.86 3.66 3.58 3.55 3.4
.999 17.14 11.78 9.73 8.62 7.92 7.44 7.08 6.80 6.58 6.40 6.13 5.93 5.78 5.66 5.56 5.38 5.25 4.94 4.83 4.77 4.6

16 .50 0.48 0.72 0.82 0.88 0.91 0.93 0.95 0.96 0.97 0.97 0.99 0.99 1.00 1.00 1.01 1.02 1.02 1.03 1.04 1.04 1.0
.90 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06 2.03 1.99 1.95 1.93 1.91 1.89 1.86 1.84 1.78 1.76 1.75 1.7
.95 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.42 2.37 2.33 2.30 2.28 2.23 2.19 2.11 2.07 2.06 2.0
.975 6.12 4.69 4.08 3.73 3.50 3.34 3.22 3.12 3.05 2.99 2.89 2.82 2.76 2.72 2.68 2.61 2.57 2.45 2.40 2.38 2.3
.99 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.55 3.45 3.37 3.31 3.26 3.16 3.10 2.93 2.87 2.84 2.7
.995 10.58 7.51 6.30 5.64 5.21 4.91 4.69 4.52 4.38 4.27 4.10 3.97 3.87 3.80 3.73 3.62 3.54 3.33 3.26 3.22 3.1
.999 16.12 10.97 9.01 7.94 7.27 6.80 6.46 6.19 5.98 5.81 5.55 5.35 5.20 5.09 4.99 4.82 4.70 4.39 4.28 4.23 4.0

18 .50 0.47 0.72 0.82 0.87 0.90 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00 1.00 1.00 1.01 1.02 1.03 1.03 1.03 1.0
.90 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00 1.98 1.93 1.90 1.87 1.85 1.84 1.80 1.78 1.72 1.70 1.69 1.6
.95 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2. SI 2.46 2.41 2.34 2.29 2.25 2.22 2.19 2.14 2.11 2.02 1.98 1.97 1.9
.975 5.98 4.56 3.95 3.61 3.38 3.22 3.10 3.01 2.93 2.87 2.77 2.70 2.64 2.60 2.56 2.49 2.44 2.32 2.28 2.26 2.1
.99 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 3.37 3.27 3.19 3.13 3.08 2.98 2.92 2.75 2.69 ?.66 2.5
.995 10.22 7.21 6.03 5.37 4.96 4.66 4.44 4.28 4.14 4.03 3.86 3.73 3.64 3.56 3.50 3.38 3.30 3.10 3.02 2.99 2.8
.999 15.38 10.39 8.49 7.46 6.81 6.35 6.02 5.76 5.56 5.39 5.13 4.94 4.80 4.68 4.59 4.42 4.30 4.00 3.89 3,84 3.6

20 .50 0.47 0.72 0.82 0.87 0.90 0.92 0.94 0.95 0.96 0.97 0.98 0.99 0.99 1.00 1.00 1.01 1.01 1.02 1.03 1.03 1.0
.30 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96 1.94 1.89 1.86 1.83 1.81 1.79 1.76 1.74 1.68 1.65 1.64 1.6
.95 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.28 2.22 2.18 2.15 2.12 2.07 2.04 1.95 1.91 1.90 1.8
.975 5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.84 2.77 2.68 2.60 2.55 2.50 2.46 2.40 2.35 2.22 2.18 2.16 2.0
.99 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.23 3.13 3.05 2.99 2.94 2.84 2.78 2.61 2.55 2.52 2.4
.995 9.94 6.99 5.82 5.17 4.76 4.47 4.26 4.09 3.96 3.85 3.68 3.55 3.46 3.38 3.32 3.20 3.12 2.92 2.84 2.81 2.6
.999 14.82 9.95 8.10 7.10 6.46 6.02 5.69 5.44 5.24 5.08 4.82 4.64 4.49 4.38 4.29 4.12 4.00 3.70 3.60 3.54 3.3
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Table G. Percentiles of the F Distribution (continued).

Numerator df
Denominator
df p 1 2 3 4 S 6 7 8 9 10 12 14 16 18 20 25 30 60 90 120 inf

25 .50 0.47 0.71 0.81 0.86 0.89 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.98 0.99 0.99 1.00 1.00 1.02 1.02 1.02 1.0
.90 2.92 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.89 1.87 1.82 1.79 1.76 1.74 1.72 1.68 1.66 1.59 1.57 1.56 1.5
.95 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.16 2.11 2.07 2.04 2.01 1.96 1.92 1.82 1.79 1.77 1.7
.975 5.69 4.29 3.69 3.35 3.13 2.97 2.85 2.75 2.68 2.61 2.51 2.44 2.38 2.34 2.30 2.23 2.18 2.05 2.Q1 1.98 1.9
.99 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22 3.13 2.99 2.89 2.81 2.75 2.70 2.60 2.54 2.36 2.30 2.27 2.1
.995 9.48 6.60 5.46 4.84 4.43 4.15 3.94 3.78 3.64 3.54 3.37 3.25 3.15 3.08 3.01 2.90 2.82 2.61 2.53 2.50 2.3
.999 13.88 9.22 7.45 6.49 5.89 5.46 5.15 4.91 4.71 4.56 4.31 4.13 3.99 3.88 3.79 3.63 3.52 3.22 3.11 3.06 2.8

30 .SO 0.47 0.71 0.81 0.86 0.89 0.91 0.93 0.94 0.95 0.96 0.97 0.97 0.98 0.99 0.99 1.00 1.00 1.01 1.02 1.02 1.0
.90 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85 1.82 1.77 1.74 1.71 1.69 1.67 1.63 1.61 1.54 1.51 1.50 1.4
.95 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.09 2.04 1.99 1.96 1.93 1.88 1.84 1.74 1.70 1.68 1.6
.975 5.57 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.57 2.51 2.41 2.34 2.28 2.23 2.20 2.12 2.07 1.94 1.89 1.87 1.7
.99 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.84 2.74 2.66 2.60 2.55 2.45 2.39 2.21 2.14 2.11 2.0
.995 9.18 6.35 5.24 4.62 4.23 3.95 3.74 3.58 3.45 3.34 3.18 3.06 2.96 2.89 2.82 2.71 2.63 2.42 2.34 2.30 2.1
.999 13.29 8.77 7.05 6.12 5.53 5.12 4.82 4.58 4.39 4.24 4.00 3.82 3.69 3.58 3.49 3.33 3.22 2.92 2.81 2.76 2.5

60 .50 0.46 0.70 0.80 0.85 0.88 0.90 0.92 0.93 0.94 0.94 0.96 0.96 0.97 0.97 0.98 0.98 0.99 1.00 1.00 1.01 1.0
.90 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74 1.71 1.66 1.62 1.59 1.56 1.54 1.50 1.48 1.40 1.36 1.35 1.2
.95 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.92 1.86 1.82 1.78 1.75 1.69 1.65 1.53 1.49 1.47 1.3
.975 5.29 3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.33 2.27 2.17 2.09 2.03 1.98 1.94 1.87 1.82 1.67 1.61 1.58 1.4
.99 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.50 2.39 2.31 2.25 2.20 2.10 2.03 1.84 1.76 1.73 1.6
.995 8.49 5.79 4.73 4.14 3.76 3.49 3.29 3.13 3.01 2.90 2.74 2.62 2.53 2.45 2.39 2.27 2.19 1.96 1.88 1.83 1.6
.999 11.97 7.77 6.17 5.31 4.76 4.37 4.09 3.86 3.69 3.54 3.32 3.15 3.02 2.91 2.83 2.67 2.55 2.25 2.14 2.08 1.8

90 .50 0.46 0.70 0.79 0.85 0.88 0,90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.97 0.97 0.98 0.99 1.00 1.00 1.00 1.0
.90 2.76 2.36 2.15 2.01 1.91 1.84 1.78 1.74 1.70 1.67 1.62 1.58 1.55 1.52 1.50 1.46 1.43 1.35 1.31 1.29 1.2
.95 3.95 3.10 2.71 2.47 2.32 2.20 2.11 2.04 1.99 1.94 1.86 1.80 1.76 1.72 1.69 1.63 1.59 1.46 1.42 1.39 1.3
.975 5.20 3.84 3.26 2.93 2.71 2.55 2.43 2.34 2.26 2.19 2.09 2.02 1.95 1.91 1.86 1.79 1.73 1.58 1.52 1.48 1.3
.99 6.93 4.85 4.01 3.53 3.23 3.01 2.84 2.72 2.61 2.52 2.39 2.29 2.21 2.14 2.09 1.99 1.92 1.72 1.64 1.60 1.4
.995 8.28 5.62 4.57 3.99 3.62 3.35 3.15 3.00 2.87 2.77 2.61 2.49 2.39 2.32 2.25 2.13 2.05 1.82 1.73 1.68 1.5
.999 11.57 7.47 5.91 5.06 4,53 4.15 3.87 3.65 3.48 3.34 3.11 2,95 2.82 2.71 2.63 2.47 2.36 2.05 1.93 1.87 1.6
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120 .50 0.46 0.70 0.79 0.84 0.88 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.96 0.97 0.97 0.98 0.98 0.99 1.00 1.00 1.0
.90 2.75 2.35 2.13 1.99 1.90 1.82 1.77 1.72 1.68 1.65 1.60 1.56 1.53 1.50 1.48 1.44 1.41 1.32 1.28 1.26 1.1
.95 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96 1.91 1.83 1.78 1.73 1.69 1.66 1.60 1.55 1.43 1.38 1.35 1.2
.975 5.15 3.80 3.23 2.89 2.67 2.52 2.39 2.30 2.22 2.16 2.05 1.98 1.92 1.87 1.82 1.75 1.69 1.53 1.47 1.43 1.3
.99 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47 2.34 2.23 2.15 2.09 2.03 1.93 1.86 1.66 1.58 1.53 1.3
.995 8.18 5.54 4.50 3.92 3.55 3.28 3.09 2.93 2.81 2.71 2.54 2.42 2.33 2.25 2.19 2.07 1.98 1.75 1.66 1.61 1.4
.999 11.38 7.32 5.78 4.95 4.42 4.04 3.77 3.55 3.38 3.24 3.02 2.85 2.72 2.62 2.53 2.37 2.26 1.95 1.83 1.77 1.5

inf .50 0.45 0.69 0.79 0.84 0.87 0.89 0.91 0.92 0.93 0.93 0.95 0.95 0.96 0.96 0.97 0.97 0.98 0.99 0.99 0.99 1.0
.90 2.71 2.30 2.08 1.94 1.85 1.77 1.72 1.67 1.63 1.60 1.55 1.50 1.47 1.44 1.42 1.38 1.34 1.24 1.20 1.17 1.0
.95 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.75 1.69 1.64 1.60 1.57 1.51 1.46 1.32 1.26 1.22 1.0
.975 5.02 3.69 3.12 2.79 2.57 2.41 2.29 2.19 2.11 2.05 1.94 1.87 1.80 1.75 1.71 1.63 1.57 1.39 1.31 1.27 1.0
.99 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.18 2.08 2.00 1.93 1.88 1.77 1.70 1.47 1.38 1.32 1.0
.995 7.88 5.30 4.28 3.72 3.35 3.09 2.90 2.74 2.62 2.52 2.36 2.24 2.14 2.06 2.00 1.88 1.79 1.53 1.43 1.36 1.0
.999 10.83 6.91 5.42 4.62 4.10 3.74 3.47 3.27 3.10 2.96 2.74 2.58 2.45 2.35 2.27 2.10 1.99 1.66 1.52 1.45 1.0
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Table H. A Guide to Methods of Statistical Inference.

This guide to the statistical methods is designed as an aid in the choice of appropriate methods in given situations. The techniques
are arranged according to the statistical problem which they were designed to address. Because some methods are useful in a
variety of situation, they appear more than one place in the table. The conditions under which the methods may be used are left
somewhat vague (e.g., “large sample”) to give a general indication of the range of applicability of the methods. Relevant sections in
the textbook are given in parentheses. Methods not covered in the textbook are not given. (Abbreviation, CI = confidence interval)

Analysis of One Variable in One Sample

Estimation and
Data Type Conditions Confidence Intervals Hypothesis Testing

Ratio Large sample or normal
population with known σ 2

CI for μ based on normal probability
table (7.2)

One-sample Z test for μ (8.3, 8.4)

Small sample, normal
population with known σ 2

CI for μ based on normal table (7.2) One-sample Z test for μ (8.3, 8.4)

Small sample, normal
population with unknown σ 2

CI for μ based on t distribution (7.3) One-sample t test for μ (8.5)

Small sample, normal
population

CI for σ 2 based on χ2 table (7.5) One-sample χ2 test for σ 2 (8.8)

Binary Large sample CI for proportion (7.4) One-sample test for proportion (8.7)

Binary Small sample — Exact one-sample test for
proportion

Analysis of One Variable in Two Paired Samples

Data Type Conditions Hypothesis Testing

Ratio Small sample, normal population of differences One-sample Z test for μ (8.3, 8.4)
Small sample, normal population with unknown σ Paired t test (9.5)
Small sample, non-normal population of differences Sign test (14.2), Wilcoxon signed rank test (14.4)

Ordinal Large sample (for use of normal table) Sign test (14.2), Wilcoxon signed rank test (14.4)

Binary Large sample (for use of normal table) McNemar test ( 10.5)

Analysis of One Variable in Two Independent Samples

Data Type Conditions Hypothesis Testing

Ratio Large samples Two-sample Z test for means (9.2)
Small samples, normal populations with known
variances

Two-sample Z test for means 9.2)

Small samples, normal populations with unknown,
but equal variances

Two-sample t test 9.3)

Small samples, normal populations with unknown,
and unequal variances

Two-sample t test, sing Satherthwaite approximation
(9.4)

Non-normal populations Wilcoxon rank sum test (14.3)

Ordinal Large sample (for use of normal probability table) Wilcoxon rank sum test (14.3)

Binary Large sample Two-sample test for proportions using normal
approximation (9.6) χ test for 2 × 2 table (10.2)

Binary Small sample Fisher’s exact test (10.2)

Analysis of One Variable in Three or More Independent Samples

Ratio Normal populations with equal variances Analysis of variance (12.5)
Non-normal populations Kruskal-Wallis rank test (14.6)
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A

Absolute deviation 272
Accept H0 129
Acceptance region 131
Active control group 20
Actuarial life table method 282
Addition rule of probability 58
Alternative hypothesis 127
Analysis of variance (ANOVA) 227
ANOVA table 231–234, 253, 255
Aptness of a model 209
Arithmetic mean 27
Association 186
Asymptotically equivalent 295
Axioms of probability 57

B

Bar graph 13
Bayes theorem 65–68
Between group variability 229
Bell-shaped curve 88
Bimodal 34
Binary random variable 221
Binomial distribution 81, 87, 96–98, 197
Binomial proportions 168
Biostatistics 1
Bonferroni approach 234
Box-whisker plot 41

C

Carryover effect 254
Categorical data analysis 181
Cell frequency 182
Censored data 279
Censored observation 279
Central limit theorem 106
Central location 27
Central tendency 27
Chebychev’s inequality 90
Chi-square contingency table 181
Chi-square (χ2) distribution 121, 150, 184
Chi-square goodness of fit test 195
Chi-square test for σ 2 150, 289–291
Clinical trial 20
Clinically significant 143
Cochran-Mantel-Haenszel test 191, 291

Cochran test 270–272
Coefficient of determination 217
Coefficient of multiple determination 220
Coefficient of non-determination 218
Coefficient of Variation (CV) 46, 47
Column effect 248
Comparing survival functions 287
Complement of an event 57
Concordant pair 192
Conditional probability 62, 63
Confidence band for Kaplan-Meier survival curve 287
Confidence coefficient 113
Confidence level 113
Confidence interval for μ 113–116
Confidence interval for σ 2 and σ 117–120
Confidence interval for binomial parameter p 119
Confounding variable 22, 191, 290
Constant error variance 210
Contingency table 181

2x2 181, 290
rxc 181

Continuous variable 7
Correct decision 129
Correlation coefficient 212
Critical value 131
Cross sectional design 165
Crossover design 21
Cumulative relative frequency 12
Cumulative survival rate 281

D

Degrees of freedom 163, 173, 230
Dependent variable 203
Detection of outliers 212
Dichotomous variable 191
Discordant pair 192
Discrete variable 7
Distribution free statistics 257
Double blind study 21

E

Effective sample size 282
Error sum of squares (SSE) 217, 230
Error term 206
Error variance 210
Event 55
Expected cell frequency 182

329
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Expected value 85
Experimental group 20
Explanatory variable 203

F

F test 173, 174, 229–233, 239
Factor A main effect 248
Factor B main effect 248
Factor level 227, 228
Factorial (n!) 83
Failure rate 280
Failure time 279, 280
False negative 70
False negative rate 70
False positive 70
False positive rate 70
First order regression model 219
Fisher’s exact test 187
Fitted regression equation 207
Fitted value 211
Fixed effects model 228
Force of mortality 283
Frequency distribution 8, 9
Frequency table 11
Friedman test for k related samples 268, 269
Friedman two-way ANOVA by ranks 268

G

Gehan generalized Wilcoxon test 288, 289
Geometric mean 34
Geometric mean square 240
Grand mean 229
Grand median 265, 266
Greenwood’s formula 282
Group mean 236
Grouped data 11

H

Harmonic mean 34
Hazard function 282, 283
Histogram 15
Homogeneity of variance 228
Homoscedasticity 206
Hypothesis testing 127, 128, 160

I

Incidence rate 69
Incomplete observation 279
Incorrect decision 129
Independent event 61
Independent variable 203
Instantaneous failure rate 283
Interquartile range 41
Intersection of the events 57
Interval estimation 113
Interval failure rate 281
Interval measurement scale 8

K

Kaplan-Meier product limit estimator 284
Kappa statistic 194
Knoops hardness index 266
Kruskall-Wallis rank test 266, 267

L

Large sample confidence interval for p 120
Least significant difference method (LSD) 234
Least squares method 207
Left skewed 49
Levels of measurement 7

interval measurement scale 8
nominal measurement scale 7
ordinal measurement scale 8
ratio measurement scale 9

Life table analysis 281, 282
Lifetime 279
Line graph 14
Linear contrast 236
Linear interpolation 94, 96, 110
Linear relationship 213
Linearity 210
Log rank test 289
Logistic regression 221
Logistic regression model 221
Logistic transformation 221
Lost to follow-up 280
Lower confidence limit 113, 114

M

Mann-Whitney U test 259
Mantel-Haenszel test 290
Marginal column sum 182
Marginal row total 182
Matched pair 191, 257
Maximum likelihood estimation 222, 291, 293
McNemar test 191
Mean 27, 28
Mean of grouped data 35
Mean of two or more means 37
Mean response 207
Mean square (MS) 230
Mean squared error (MSE) 296
Mean survival time 284
Measure of dispersion 27
Measure of variation 27
Measure of location 27

central tendency 27
central location 27

Measurement 6
Median 31, 32
Median of grouped data 36
Median test 264–266
Method of least squares 207
Midrange 35
Mode 33
Monte Carlo simulation 296
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Mortality rate 280
Multi-factor 228
Multiple comparison procedure 234
Multiple correlation coefficient 220
Multiple logistic regression 223
Multiple regression 219
Multiplicative law of probability 59, 64
Mutually exclusive 57, 59
Mutually exclusive and exhaustive 59
Mutually independent 59

N

Negative control group 20
negatively skewed 49
Nominal measurement scale 7
Non-multicolinearity 219
Nonparametric statistics 257
Normal approximation 96
Normal probability table 91
Normal probability plot 211
Normal distribution 88–90, 197
Normality assumption 228
Null hypothesis 127

O

Observed cell frequency 182
Odds ratio 74, 75
One-tailed test 131
One-sample χ2 test for σ 2 150–153
One sample Z test 133
One-sample test for a binomial proportion 148
One-way ANOVA 228–243
One-way ANOVA by ranks 266, 267
Ordinal measurement scale 8
Observation 6
Outcome 55
Outcome variable 203
Outlier 41

P

p-value 135
Paired t test 165
Paired sample 257
Paired sample design 165
Pairwise comparison 235
Parallel groups design 21
Parametric statistics 254
Partial regression coefficient 219
Pearson product moment correlation coefficient 213
Pearson correlation coefficient 213
Percentile 39, 40
Percentile points 297
Permutation test 269, 270
Person years on observation 279, 280
Pie chart 14
Piecewise exponential estimator (PEXE) 291
Placebo group 20
Point estimation 113

Point prevalence rate 69
Poisson approximation 87
Poisson distribution 86, 87
Pooled estimate of variance 234
Population 6

finite population 6
infinite population 6

Positive control group 20
positively skewed 48
Power of a test (1 − β) 130, 144, 171, 172
Predictive value negative 74
Predictive value positive 74
Predictor variable 203
Prevalence rate 69
Probability 55
Probability value 135

Q

Qualitative variable 6
Quantitative variable 6

R

Random effects model 238
Random variable 5
Randomized block design 254
Range 38

sample range 38
Rare event 55
Ratio measurement scale 9
Raw data 5
Regression analysis 203
Regression coefficient 206
Regression equation 203
Regression function 207
Regression model 206
Regression parameters 208
Regression sum of squares (SSR) 217
Regressor variable 203
Rejection region 131
Relative frequency distribution 12
Relative risk 73
Reliability 194
Repeated measures design 253
Reproducibility 194
Research hypothesis 127
Residual 208
Residual outlier 210, 212
Residual plot 210, 211
Response variable 203
Right skewed 48
Row effect 248

S

Sample interquartile range 41
Sample mean 27, 28
Sample median 32, 104
Sample range 38
Sample size 27, 117, 147, 170–172
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Sample space 55
Sampling distribution 103
Satherthwaite approximation 163
Scatter plot 204
Scheffe’s method 236
Sensitivity rate 70–72
Sign test 257
Significance level (α) 130
Simple linear regression 206
Single blind study 21
Single factor 227
Skewness 48–50
Skewed to left 49
Skewed to right 48
Source of variation 231, 253
Spearman’s rank correlation coefficient 274
Specificity rate 70–72
Squared rank test for variance 272
SSB 230
SSE 217
SSR 217
SSTO 217, 230
SSW 230
Standard deviation (SD) 43–45
Standard error (SE) 104, 105, 159
Standard normal distribution 90
Statistically dependent 58
Statistically independent 58, 206, 210
Statistically significant 130, 143
Statistics 1, 2
Stem & leaf plot 19
Step function 296
Stratum 190
Stratified data 190
Student t test 108
Student-Newman-Keuls (SNK) 237
Studentized range 237
Studentized range distribution 237
Sure event 55
Survival analysis 281
Survival data 279, 284
Survival function 281, 282
Survival probability 281
Survival rate 280
Survival time 279
Symmetrically distributed 48
Symmetric distribution 262

T

t test 108, 141
Test for equality of k variances 239

Bartlett’s test 239, 240
Hartley’s test 241

Test of homogeneity 182
Test of independence 182
Test statistic 130
Total deviation 248
Total probability law 65
Total sum of squares (SSTO) 217

Total time 280
Total time on test 291
Total variation 217
Treatment sum of squares 230
True negative 70
True positive 70
Tukey-Kramer method 237
Tukey’s honestly significant difference (HSD) 237
Two binomial proportions 168
Two-sample Z test 160
Two-sample t test 161, 162
Two-tailed t test 141–143
Two-tailed Z test 137
Two-way ANOVA 245

assumptions 246, 250
interaction effect 246–248
levels 246
mail effects 245, 247, 248
model 246
test for interactions 251
test for main effects 251, 252
treatment groups (combinations) 245

Type-I error 129
Type-II error 129

U

Unbiased estimator 104
Uncensored observation 279
Union of the events 57
Unimodal 34
Upper confidence limit 113, 114

V

Variable 5
Variance 43

sample variance 43
of grouped data 48

W

Washout period 21
Weighted mean 30
Wilcoxon matched pairs test 262
Wilcoxon rank sum test 257
Wilcoxon signed rank test 262–264
Withdrawal from study 254
Within group variability 229

Y

Yate’s continuity correction 184

Z

Z score 91
Z test 131, 137
Z test for comparing two binomial proportions 168–170
Z value 91
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