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He uses statistics as a drunken man uses lampposts— 

for support rather than illumination.

Andrew Lang 

Scottish Author  

1844–1912

© 2009 by Taylor & Francis Group, LLC



vii

Contents

Introduction ...........................................................................................xi

ISECTION The Scientific Foundations 

of Statistical Analysis

1Chapter Scientific Method: The Language of Statistical 

Studies ................................................................................. 3

Science as a Universal Language ...............................................5

The Attributes of Scientific Method..........................................8

Science Is Open-Minded .......................................................8

Science Is Free of Values ........................................................9

Science Is Thoughtful...........................................................10

Science Is Reproducible .......................................................11

Science Is Honest ..................................................................13

The Attributes of a Scientific Report.......................................14

Abstract..................................................................................15

Introduction and Problem Statement ................................16

Review of Literature .............................................................17

Methods (Methodology)......................................................18

Data.........................................................................................19

Results and Discussion ....................................................... 20

2Chapter Experimentation: The Foundation of Scientific 

Studies ............................................................................... 23

What Is an Experiment?...........................................................24

The Hypothesis .....................................................................26

The Experiment.................................................................... 28

1. Randomly Select the Study Sample from the 

Population.....................................................................29

2. Randomly Assign the Study Sample to 

Experimental and Control Groups............................31

© 2009 by Taylor & Francis Group, LLC



3. Establish Pretest (Baseline) Measures for 

Experimental and Control Groups............................32

4. Administer an Experimental Effect to an 

Experimental Group Only..........................................33

5. Establish Posttest Measures for Experimental 

and Control Groups.....................................................33

6. Analyze Experimental Data for Statistical 

Significance...................................................................33

Evaluation Studies .................................................................... 34

ISECTION I The Fundamental 

Importance of Data

3Chapter Numbers Good and Bad: How to Judge the Quality 

of Data............................................................................... 39

Letting the Numbers Speak for Themselves ......................... 40

What Are Data? ........................................................................ 42

Validity.................................................................................. 43

Reliability ...............................................................................45

Location Bias .................................................................... 46

Sex Sampling Bias.............................................................47

Dollar Measurement Bias ................................................47

Counting Error .................................................................49

Definitional Error .............................................................49

Adjustment Error..............................................................49

Time Measurement Error................................................50

Types and Levels of Measurement ..........................................52

Parametric Data....................................................................53

Nonparametric Data ........................................................... 54

4Chapter Samples and Surveys: How Numbers Should Be 

Collected ........................................................................... 57

Sample Selection........................................................................57

Sample Size.................................................................................58

Response Rate ............................................................................62

© 2009 by Taylor & Francis Group, LLC



Information Systems ................................................................ 64

Survey Research.........................................................................65

Survey Bias............................................................................ 66

Respondent Objectivity .......................................................67

Survey Format.......................................................................69

Data Extraction.....................................................................71

IISECTION I The Different Types of Statistics

5Chapter Descriptive Statistics: The Foundation of 

Comparisons..................................................................... 77

The First Step: What Have We Here?......................................78

Descriptive Analysis.............................................................78

Range..................................................................................... 80

Measures of Central Tendency ................................................83

Median .................................................................................. 84

Mode...................................................................................... 84

Mean.......................................................................................87

Measures of Dispersion ............................................................89

Overview................................................................................89

Standard Deviation ..............................................................91

6Chapter Inferential Statistics: Studies of Differences .................. 97

The Normal Distribution..........................................................98

The Central Limit Theorem ...................................................103

Standard Error (of the Mean) ................................................104

Quick Review ...........................................................................106

Hypothesis Testing..................................................................106

Accepting the Null Hypothesis ........................................111

Rejecting the Null Hypothesis..........................................111

Test Statistics ............................................................................114

t Test .....................................................................................116

F Test (Analysis of Variance).............................................116

Chi-Square Test...................................................................119

The End of the Tunnel............................................................ 123

© 2009 by Taylor & Francis Group, LLC



7Chapter Relational Statistics: Studies of Relationships.............. 125

Direction of Relationships..................................................... 126

Strength of Relationships .......................................................127

Test Statistics ............................................................................130

Parametric Correlation......................................................130

Nonparametric Correlation ..............................................132

Linear versus Nonlinear Relationships ................................132

Correlation and Causality ..................................................... 134

8Chapter Explanatory Statistics: Studies of Causality ................. 137

Statistical Models.....................................................................138

The Basic Equation of Multivariate Linear Regression......140

Specifying the Model ..............................................................141

Evaluating a Multivariate Linear Regression Model ..........144

Refining Regression Models...................................................150

Applications of Explanatory Statistics..................................150

Postscript: Statistics in Perspective ................................................... 153

About the Author................................................................................ 157

© 2009 by Taylor & Francis Group, LLC



Introduction

AND NOW, FOR SOMETHING 
COMPLETELY DIFFERENT …

You might think I should have my head examined for writing a book about 

statistics. Why, after all, would any sane person want to spend valuable 

time adding to the published literature on one of the world’s most feared 

and incomprehensible subjects? Aren’t statisticians people who didn’t have 

the personality to become mathematicians? Don’t students refer to their 

classes in the subjects as “sadistics?”

You might also wonder why you should read a book on statistics. If you 

are a typical healthcare professional, you probably feel you barely survived 

the required course in statistics; it may even account for the only B– on 

your transcript. You would like to forget the classroom experience, and 

you probably have forgotten the subject matter itself. Why take another 

pass at a subject that offers so little inherent appeal?

The reason for this book is pretty simple. I wrote it and you are reading 

it because, like it or not, we cannot avoid statistics in a competitive health-

care industry. Every day, we encounter people who want us to change the 

things we do: update diagnostic equipment, modify employee training 

programs, add drugs to the formulary, adopt “best” clinical practices, sign 

contracts to participate in new payment mechanisms, and even reform the 

entire healthcare system.

The people who would like us to make the changes try to influence us 

by citing statistics from studies that presumably show why we would be 

better off if we did things their way. Today’s decision makers need to know 

something about statistics if for no other reason than to deal intelligently 

with all the studies that suggest changes to something that will make a 

desired difference in the outcome. If you are never confronted with stud-

ies in your day-to-day management of healthcare resources or patients, 

you probably do not need to understand statistics. But if you do encounter 
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studies in your daily quest to make better decisions, this book is written 

for you.

Back in the good old days (before the mid-1980s), the executives and 

clinicians who decided how healthcare would be delivered did not have 

to pay much attention to studies in general or to statistics in particular. 

Deciding whether to make a proposed change was a personal philosophi-

cal issue more than a practical concern because the marketplace was very 

generous. Retrospective, cost-based reimbursement and easy cost shift-

ing pretty much allowed hospital managers to do whatever they wanted. 

Clinicians only had to think about practicing in accord with loosely 

defined “local standards of care.” That old statistics book probably sat on 

the shelf, unopened since college days.

Today, administrators are managing scarce resources in fiercely com-

petitive markets, and health professionals are practicing in an environ-

ment of research-based practice guidelines (because resources are scarce). 

Those research reports in Harvard Business Review or the New England 

Journal of Medicine have taken on a new significance. We now must care 

whether hiring hospitalists, installing an electronic medical record, or 

upgrading diagnostic technology really makes a difference because being 

wrong has consequences. Where can we turn for guidance in making such 

decisions? To all those published studies, of course. And what do we need 

to know in order to interpret the studies? Statistics.

I wrote this book because I know that your old “stats” book is not going 

to help you very much even if you do get around to reviewing it. I have 

taught statistics and research methods to graduate students in medical, 

dental, nursing, and business schools for more than 20 years, so I have had 

semester-long encounters with hundreds of highly intelligent profession-

als who already had a statistics book from their previous undergraduate 

statistics class. Most of these students felt comfortable admitting to me 

that they never really did understand their old statistics book in the first 

place. They learned to cope with the math of statistics well enough to pass 

the course, but they never did understand why they were doing what they 

were doing.

I share my students’ frustration because I have faced the difficult task of 

selecting a text every time I taught the course. I’ve assigned at least a dozen 

introductory-level statistics books, and I have never found one that helped 

the students fully understand the subject using examples from the world 

of healthcare. My students have convinced me that health professionals 
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need their own statistics book, one that is very different from all the others 

in both general concept and specific illustrations. Thanks to the construc-

tive feedback I have received from my students, this statistics book is very 

different, and it is dedicated to them.

KNOWING WHAT AND WHY, NOT HOW

My 35-plus years of experience as a professor and consultant in many dif-

ferent medical settings led me to conclude that today’s healthcare decision 

makers need to have a workable understanding of the theory of statistics—

which is something very different from knowing how to perform statisti-

cal computations. Consequently, this book emphasizes basic concepts, not 

mathematics. People who are intimidated by equations can read this book 

without the fear of getting lost in the act of taking square roots of the sum 

of squared deviations and dividing by the sample size minus one (or is it 

the sample size minus two?). Knowing which equation to solve and why 

is vastly more important than knowing how to solve an equation without 

knowing why.

Computers can do the computations, but only the decision maker can 

tell the computer which computations to do. (Actually, computers do make 

computational errors every once in a while, but infinitesimally less often 

than humans.) Countless students have told me that they spent so much 

time learning formulas and solving problems in their previous statistics 

classes that they never had time to figure out what it all really meant. This 

book explains the “what” and “why” of statistics so that busy professionals 

can understand and evaluate the statistical claims made in all the stud-

ies that come across their desks. Those who still have the time and desire 

to master computational skills can consult just about any other statistics 

book, but the extra mathematical exercise will not make them better deci-

sion makers.

The computer’s clear superiority in solving numerical problems is not 

the only reason for my decision to stress concept and deemphasize com-

putation in a statistics book for decision makers in healthcare. The prac-

tical fact of the matter is that today’s managerial and clinical executives 

are paid to think and to make decisions, not to spend time doing math. 

Staff employees, research assistants, administrative interns, technologists, 
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and the like are paid to collect and analyze the data. The executive in an 

information-rich society, appropriately identified by Harlan Cleveland as 

the “get-it-all-together person,” must know enough to evaluate the appro-

priateness and the quality of their work:

The get-it-all-together person needs above all to be good at judging whether 

the experts who stream through the executive office, creating a chronic con-

dition of information entropy on the executive’s desk [italics mine], are func-

tioning as competent experts.1

I know that my decision to write a book that explains the basic theory 

and largely ignores the math will offend many statisticians who have spent 

years pursuing computational elegance in their field. Unfortunately, their 

intellectual purity is not very helpful to health professionals who only 

need a practical understanding of statistics. Most of us need nothing more 

than the statistical equivalent of a Berlitz phrase book and a Rick Steves 

travel guide so that we can get along and not make stupid mistakes in a 

foreign land. By comparison, the typical statistics book is the equivalent of 

a scholarly treatise on linguistics and cultural anthropology.

CHALLENGING THE FAITH

In my experience, courses and textbooks in statistics are generally dedi-

cated to the proposition that the student must believe, but not necessarily 

understand, statistics. This book endeavors to do the opposite: to make 

statistics understandable but not necessarily believable. If this book is suc-

cessful, statistics will lose its element of mystery. You will no longer be 

afraid of statistics. Some—possibly much—of your previous awe for sta-

tistics will be replaced by cynicism. You will have a strong defense against 

the many people who try to intimidate you with statistics because you will 

know the weak points in their offense. You will also develop considerable 

respect for those who use statistics properly.

1 Harlan Cleveland, The Knowledge Executive: Leadership in an Information Society (New York: 

Dutton, 1985), p. 11. This is one of only two books I have used year after year in my statistics classes; 

I heartily recommend it. Regrettably, it is not a recent publication, so look for it online or in used 

bookstores if necessary.
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My goal is based on an analogy that has often come to my mind, one 

of native heathens (statistics students) being converted to a new religion 

by foreign missionaries (statistics teachers). In the traditional approach, 

the converts accept the beliefs, even though few will ever understand the 

historical or cultural context of their adopted religion. In contrast, my 

approach is like that of a college class on a religion other than your own. I 

want you to understand the catechism of the other religion (statistics), but 

I do not expect you to convert to it just because you get an A in the course. 

I hope you will understand statistics enough to recognize both its useful-

ness and its limitations. You should emerge from the experience enriched 

but skeptical, because statistics is not based on any demonstrable truth 

that God gave to only one highly educated caste of his or her people.2

Of course, students who are training for careers in the health profes-

sions tend to be intelligent. They can learn to solve statistical problems 

once they see that the underlying math requires nothing more than the 

computational skills they learned in high school—even though they may 

struggle for a while as they decide which formula to use in a particular 

situation. To my dismay, I have noticed that very few students ever move 

beyond computational competence to understand what the formulas actu-

ally represent. They believe implicitly that the equations express wisdom 

only accessible to the priesthood with a Ph.D. Since these students are 

taking statistics because it is required to get a degree in some other field 

(such as health or business administration, public health), they are happy 

to believe that statistics is built on a solid conceptual base that they do not 

have to understand.

The theory of statistics is built on a few key assumptions that are 

explored in-depth later in this book. The real-world power of statistical 

analysis cannot be any better than the real-world relevance of the under-

lying assumptions. Consequently, understanding the assumptions behind 

statistical theory is the first critical step toward the competent use of sta-

tistics. Stated in another way, being able to compute a statistical test cor-

2 Many statisticians will undoubtedly label me a heretic for explicitly pursuing such a disrespectful 

goal. Heresy is actually becoming quite respectable in the mathematics-based fields of science. 

As evidence, one needs look no further than to the current collection of books on cosmology and 

origins of the universe. The once solid worldview of Albert Einstein has been challenged over the 

past few years by many living Nobel laureates who offer very different concepts of physical reality 

(including the view that reality is not what we think it is). Physics has become a less-certain science 

as the tools of mathematics and data analysis have improved dramatically.
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rectly is irrelevant if the assumptions behind the formula are inconsistent 

with the situation to which the statistic is being applied.

The problem is rooted in the sad fact that books on introductory statis-

tics seldom explain the underlying assumptions or their importance. Even 

worse, those books that do allude to the link between theory and practice 

often say that the theory can be ignored because it is either too restric-

tive or does not matter very much! The result is a lot of bad studies done 

by researchers with just enough statistical knowledge (or too little profes-

sional integrity) to be dangerous. My central purpose in writing this book, 

then, is to teach you to separate the good from the not-good. Sad to say, 

you will find that good statistical practice is not the norm. At least you will 

know how not to be fooled, which can save you from making decisions 

based on bad statistics.

STRUCTURE AND CONTENT OF THIS BOOK

The modern “science” of mathematical statistics began to develop in the 

mid-1700s to meet the needs of a growing number of people who were 

making quantitative observations—that is, collecting data to advance 

their understanding of the world around them. Bureaucrats and scientists 

started counting things like never before, which created a need to develop 

methods for summarizing large collections of numbers.

Section I: The Scientific Foundations of Statistical Analysis

The historical relationship between science in general and statistics in par-

ticular is fundamentally important to the understanding of either, so this 

book begins with an exploration of the scientific foundations of statisti-

cal analysis. Chapter 1 reviews the universal principles of the scientific 

method because they provide the necessary but commonly ignored foun-

dation of good statistical practice. Chapter 2 presents a careful review of 

experimental design because a proper experiment should lie behind any 

effort to influence a health professional’s managerial or clinical decisions 

on the grounds that something makes a difference. Together, these two 

chapters provide the reader with an essential first line of defense against 

the many studies that are not built on solid foundations.
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SLIDE-RULE SCIENCE IN THE COMPUTER AGE?

Very few people ever become aware of the fact that statistics’ funda-

mental assumptions date from the eighteenth and nineteenth cen-

turies (that is, the 1700s and 1800s). Almost alone among scientific 

disciplines, statistics changed very little during the twentieth cen-

tury. However, most fields of science are now being redefined every 

5 to 10 years, if not faster! Computers have sped up mathematical 

computations and enabled researchers to analyze larger and larger 

databases—now doing analyses in seconds, which took hours or days 

only a few years ago. Yet, the underlying theoretical foundations of 

statistics have been pretty much the same for more than 100 years.

Curiously, statistics in the age of computers is still conceptually 

confined to computations that can be performed on a slide rule. A 

slide rule, for younger readers who grew up in the digital age, was a 

mechanical device that resembled a ruler. It used logarithmic scales 

for multiplication, division, and exponential computations.

Nerds like me who went to high school and college in the 1960s 

or earlier had to use mechanical (that is, big, slow, and noisy) add-

ing machines or pencil and paper to do the addition and subtraction 

in statistical computations. The slide rule handled the squares and 

square roots. The process was slow and far from error free, so we 

thought twice before performing a statistical analysis.

Sadly, computers and hand-held digital devices have made statis-

tics too easy to do now. Problems that took hours to set up and solve 

just a few decades ago can now be handled in nanoseconds by people 

who do not have the slightest idea what they are doing because the 

computer requires them to do nothing more than enter some data. 

By virtually eliminating human involvement in doing statistics, 

computer power has done us a disservice.

Happily, the digital revolution has a very positive dimension. With 

its multimedia interfaces, the modern computer now makes possible 

many new ways of looking—both literally and figuratively—at numbers 

and other forms of measurement. Data can also be analyzed over time, 

revealing dynamic effects that are obscured or completely lost in the 

static realm of statistics. The computer offers so many new approaches 

to quantitative and qualitative analyses that traditional statistics may 

soon be obsolete, particularly in genetics and molecular medicine. 
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Section II: The Fundamental Importance of Data

Good science is an essential precondition of good statistics, but it is not 

solely sufficient to justify putting faith in the results of a statistical study. 

The data must also be good. Since bad data are even more common than 

bad science, this section spends considerable time helping you decide 

whether to have confidence in the numbers that are inserted into statisti-

cal formulas. Chapter 3 is devoted to a general discussion of the quality 

and types of data. Chapter 4 takes a special qualitative look at sampling 

and surveys since so many of today’s studies are based on data obtained 

via survey research. Together, the two chapters in this section will give 

you one of your most powerful weapons in the never-ending fight against 

statistical malpractice.

Section III: The Different Types of Statistics

Much to my amazement, I discovered that most students taking statistics 

for the second or third time have not already learned that there are dif-

ferent categories of statistics to accomplish different analytical purposes, 

just as there are different categories of drugs to accomplish different 

biochemical outcomes (such as antibiotics to kill bacteria, psychotropic 

medications to alter brain function, thrombolytics to dissolve clots, and 

so on). Happily, I discovered that statistics starts to make sense when 

students are exposed separately to each of the analytical branches of sta-

tistics; therefore, the four chapters in this section explain the models for 

describing populations and samples (Chapter 5: “Descriptive Statistics”); 

making inferences about the likelihood that samples are from differ-

ent populations (Chapter 6: “Inferential Statistics”); studying the rela-

tionships between measurements (Chapter 7: “Relational Statistics”); 

and using models to explain and predict relationships (Chapter 8: 

“Explanatory Statistics”).

And now, for something completely different …3

3 Although this phrase is not protected by copyright, I do acknowledge Monty Python’s John Cleese 

for popularizing it. I am a real fan of the work of this British comedy troupe, and some of its irrev-

erence is no doubt reflected in my worldview. Statistics and statisticians would be a great subject 

for a Monty Python skit if the group were ever to get together again.
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ISection 

The Scientific Foundations 
of Statistical Analysis

The mystery that surrounds the world is eternal. (Le mystère qui envelope 

l’univers est éternel.)

Louis Pasteur

Speech to l’Académie Française

Oeuvres, Tome VII (Masson & Cie., 1939)
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3

1
Scientific Method: The Language 
of Statistical Studies

Good science and good statistics must go hand in hand. As the old 

song goes, you cannot have one without the other. Unfortunately, many 

researchers and policy analysts who try to influence our decisions with 

their studies have not learned to respect the fundamental importance of 

good science. (Actually, I suspect that quite a few studies are presented by 

people who do understand the importance of science but choose to ignore 

it.) Studies built on a flimsy scientific base are remarkably common, to 

the point of being considered normal. Healthcare decision makers must 

develop the knowledge and the courage not to take seriously the many 

studies that fail to pass muster on scientific grounds.

Very few statistics books pay any attention to the fundamental issues of 

scientific integrity in the data-collection process. Most authors of statistics 

books apparently assume that the data to be analyzed are collected in a sci-

entifically defensible manner, so their books move immediately to the first 

steps in the process of organizing data for analysis.1 This shortcut has allowed 

unsophisticated or unscrupulous researchers to conduct and publish stud-

ies without giving a second thought to the scientific conditions that should 

be met before any data are collected, analyzed, and reported. Good statis-

1 I happened to be teaching at the School of Medicine at the University of Wisconsin–Madison 

when I originally wrote this sentence, so I went to the university bookstore on campus to test 

my hypothesis. Upon examining approximately 15 statistics books stocked in the sections for 

Statistics and Mathematics, I found only two that explicitly included chapters on the importance 

of the scientific integrity of methods used to collect data. I was pleased to find many good books 

on research issues in the General Reference section, but I saw no evidence that these books were 

being used in the introductory courses offered to students who are majoring in something other 

than statistics.
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tics cannot compensate for bad science, so this book begins with a careful 

examination of the essential scientific foundations of statistical analysis.

 As a healthcare decision maker who does not relish the consequences of 

being misled by bad information, you must care about the scientific base 

of any study you review. Your first line of defense should be an assessment 

of the scientific integrity of all studies that are intended to influence your 

managerial or clinical actions. Always evaluate a study scientifically first, 

before deciding whether to be impressed with its claimed level of statisti-

cal significance or explanatory power. If the study does not conform with 

the basic principles of good science, you do not need to pay any attention 

to the study’s statistics because—I will say it once again—good statistics 

cannot compensate for bad science.

Does bad science happen often enough that today’s healthcare deci-

sion makers need to be concerned about it? Yes, sad to say; the prob-

lem is widespread. I find major violations of the scientific method in the 

majority of statistical studies that I review on almost a daily basis as a 

medical economist, health futurist, consultant, and expert witness.2 And 

this is the same literature aimed at healthcare decision makers! Many 

researchers are so focused on analyzing and presenting their data that 

they forget to make sure the data were collected in a scientifically defen-

sible manner.

The problem is exacerbated by the fact that journal editors do not always 

do a good job of ensuring the scientific integrity of what gets published. 

Both researchers and editors should be concerned about deficiencies in 

the scientific foundations of published reports if for no other reason than 

they would undoubtedly be quite offended to have their studies labeled 

“unscientific.” However, lots and lots of studies are conducted in a most 

unscientific manner.

2 Conducting a careful literature review in the late 1970s sensitized me to the questionable scientific 

base of studies intended to influence the allocation of healthcare resources. In reviewing approxi-

mately 40 published studies of the demand for dental care, two colleagues and I found the results 

of most of the studies were cast in serious doubt by deficiencies in scientific method. See Jeffrey C. 

Bauer, Arthur P. Pierson, and Donald R. House, Factors Which Affect the Utilization of Dental 

Services (Hyattsville, MD; U.S. Department of Health, Education, and Welfare, Public Health 

Service, Health Resources Administration, Bureau of Health Manpower, Division of Dentistry, 

1978; Publication No. HRA78-64). I continue to review research reports with the same critical 

eye, and I do not perceive that the overall situation has gotten any better in the intervening years. 

Reports of clinical research have improved perceptibly over the past decade in quite a few major 

journals, but studies of policy and management issues are generally no better now than they were 

in the 1970s.
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How can bad science happen? How can so many people conduct statisti-

cal studies using methods that do not adhere to the basic principles of sci-

ence? I think that the common lack of attention to the scientific integrity 

of studies derives from the fact that statistics is a required course, while a 

course in research methods is not. Formal courses in the proper methods 

of scientific research are exceedingly rare at either the undergraduate or 

graduate levels. Students are not forcibly exposed to the fundamentals of 

good science.3

This sad state of academic affairs makes about as much sense as allow-

ing graduate students in comparative literature to write about the differ-

ences between English and French novels without expecting them to learn 

French. Too much meaning is lost in translation, especially if the transla-

tor is not fluent in the original language. You have to understand grammar 

and syntax and complex contemporary usage (for example, slang) in two 

languages in order to translate well from one to the other. Too many peo-

ple approach statistical studies at the level of “translators” who do nothing 

more than look up words in a foreign language dictionary. So let us start 

our inquiry into interpreting studies by becoming fluent in its original 

language: science.

SCIENCE AS A UNIVERSAL LANGUAGE

Figuratively speaking, the metaphorical description of science as the com-

mon language of research is appropriate and useful. Indeed, science is 

often described as a universal language because its principles are the same 

throughout the world, and science seeks to understand and explain the 

way the world works. Discoveries that are made in adherence to its uni-

versal principles are immensely helpful to people who make decisions in 

all fields, including healthcare.

More to the point of this book, the field of statistics was developed over 

the past few centuries by people with mathematical skills to meet scien-

tists’ and public officials’ needs to analyze the data they collected through 

3 Indeed, I learned research methods by virtue of being a research assistant with an international 

group of atmospheric physicists for several years before I became a health economist. My own, 

very typical Ph.D. training in the social sciences did not include a single course that formally 

addressed the scientific preconditions for statistical analysis.
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experiments and government activities (for example, collecting taxes or 

conducting the census). Statistics, in other words, is a tool for doing sci-

ence, both public and private. It is not an alternative to science in the sense 

that we can study a problem using either science or statistics. Data should 

be collected scientifically and analyzed statistically.

Like all nerds who attended high school in the early 1960s—at a time 

when science was stressed like never before (and, sadly, never since) 

because our government was obsessed with beating the Soviets in the race 

NEGATIVE KNOWLEDGE

Science is respected worldwide as the civilized method for solving 

problems, and we rightly expect much of it. The “clockwork” world-

view of famous scientists from Sir Isaac Newton to Albert Einstein 

generally leads people to believe that science exists to reveal the 

secrets of a logical, orderly world.

However, we must realize that some problems have no solutions; 

some questions have no answers. A growing number of scientists 

now hold a “quantum” worldview, one where disorder and random-

ness are believed to be common. Science cannot find the answer to a 

question or the solution to a problem in a chaotic system.

I think that chaos is now rather common in our medical system. To 

paraphrase the title of one of my other books, Not What the Doctor 

Ordered, the health system is no longer organized solely by doctors. 

Many of the thorny problems now confronting managers and clini-

cians come from the fact that no one is in absolute control any more. 

If the ongoing debates over healthcare reform prove anything, it is 

that the American healthcare system is not structured around any 

coherent logic or inherent order. (Indeed, many commentators argue 

that it is not a system at all.)

Decision makers need to be smart enough to recognize unsolvable 

problems or unanswerable questions. Be wary of studies that claim 

to have found predictable order when you have reason to expect the 

opposite. Learn to value negative knowledge: Know what not to do 

and when not to do it. In such instances, science cannot save us. As 

some sage once said, anything not worth doing is not worth doing 

well.
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to put a man on the moon—I was taught in numerous courses that science 

was a universal language because it created a common bond in communi-

ties of open-minded inquiry around the world. Much to my surprise, this 

lofty sounding claim turned out to be true.

I worked for seven consecutive summers (1963–1969) as a research 

assistant on a large-scale scientific study of hailstorms. The principal 

scientists came from all over the world. They had to use several dif-

ferent languages for communicating with one another, but whether I 

was working on an experiment with an Italian or an Australian or a 

Russian or a French Canadian, I discovered that all the researchers 

shared the same definitions of experimentation, measurement, con-

trols, and other fundamental concepts of science. Any deviation from 

these shared principles would have been considered a serious breach 

of etiquette. Indeed, adhering to the principles of science was prob-

ably the only area of complete agreement in this group of international 

scientists!

We should expect the same loyalty to universal scientific principles in 

our own country and in our own health professions. Whether healthcare 

researchers are from Massachusetts or Nevada, from a medical school or 

an insurance company, from a university or a think tank, or from internal 

medicine or orthopedic surgery, all ought to be held accountable to the 

same concepts of science. Science does not have the equivalent of regional 

dialects.

In similar fashion, scientific method should not vary with research-

ers’ professional backgrounds. No author of a study should be allowed 

to get away with scientific nonsense on the grounds that he or she was 

trained to look at problems in a different (that is, nonscientific) way. A 

study performed by a health economist with a Sc.D. from MIT should be 

judged according to the same scientific principles as a study conducted by 

a physician with an M.P.H. from Duke or a nurse with a Ph.D. from the 

University of California.

The common principles of good research have stood the test of time, 

so let us begin the task of evaluating statistical studies by discussing 

the common foundation of all research: scientific method. We will then 

look at the proper contents of a scientific report. Both these sections 

provide the information you need in order to decide whether to pay 

attention to any given study. If a study does not pass muster according 

to the criteria presented in the following two sections, you do not need 
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to take it seriously—indeed, you probably should not take it seriously—

because (one last time, I promise) good statistics cannot compensate for 

bad science.

THE ATTRIBUTES OF SCIENTIFIC METHOD

The scientific method has been defined and analyzed extensively.4

Although different authors may describe scientific method in slightly dif-

ferent terms, the basic concepts can be summarized under the five com-

mon concepts that are the headings of the following discussion. The order 

of presentation does not matter because all are important (that is, the fol-

lowing attributes of good science are not presented in priority order). A 

violation of any single element in the scientific method can be enough to 

make an entire study unworthy of your attention. Like a chain, science is 

no stronger than its weakest link.

Science Is Open-Minded

Good scientists approach every study with a completely open mind, which 

means two things. First, scientists are prepared to change their minds 

based on new information.5 Second, they are prepared to see the unex-

pected when they conduct an investigation. Scientists approach their work 

with a sense of wonder, knowing that they may miss something important 

if they are only willing to see what they expect to see. For example, Sir 

Arthur Fleming’s famous mistake is a well-known example of the impor-

tance of open-minded science. What he found in the Petri dish was theo-

retically impossible; it just could not be. If he had not taken the time to try 

to understand it, we might not have penicillin.

4 I have for many years recommended two well-known books for students who want to learn more 

about the structure and meaning of science. My favorite general introduction to the subject is W. 

I. B. Beveridge, The Art of Scientific Investigation (New York: Vintage Books, 1950). The philo-

sophical foundations of science are explored in considerably more depth in Thomas S. Kuhn, The 

Structure of Scientific Revolutions (Chicago: University of Chicago Press, 1962), which is the pri-

mary source of much of the popularized thinking about paradigms and paradigm shifts.
5 Rudolph Fleisch’s The Art of Clear Thinking (New York: Harper & Row, 1945) is a concise classic 

that deserves renewed attention because it shows how to apply scientific principles to our everyday 

lives.

© 2009 by Taylor & Francis Group, LLC



Many of our most important scientific discoveries were totally unex-

pected. Consequently, a meaningful study does not start out with a pre-

conceived notion. (As we will see in the next chapter, a meaningful study 

does start out with a hypothesis stated in such a way that it does not influ-

ence observational judgment.) Therefore, become immediately suspicious 

of any study that includes statements such as these:

It is known that…

We set out to prove that…

We deleted the inconsistent data…

Finding these phrases and others like them in well-known journals is not 

uncommon, so be vigilant. The more closed the mind of the author, the 

less valuable the study. A good researcher expects the unexpected. Open-

mindedness should be apparent in all aspects of a study.

Science Is Free of Values

We all know the problems associated with discussing religion and politics. 

Our parents warned us that these are not safe subjects for polite conversa-

tion because many people are unwilling to accept the validity of contrary 

positions. Discussions of religious or political issues can get in the way 

of friendships or necessary day-to-day interactions, such as getting along 

with fellow workers.

Religion and politics can also get in the way of scientific research. For 

example, scientific research has consistently shown that the AIDS virus 

(HIV) is transmitted through sexual contact. Stopping AIDS will require 

more knowledge about human sexual behavior among people in at-risk 

populations. Yet some people want to distort or prevent research in this 

area because it clashes with their values. We cannot properly study the 

problem when research is influenced by the power of individuals whose 

political or religious values on sensitive subjects such as sexual behavior 

get in the way of open-minded inquiry.

Science needs to be free to pursue truth through the use of proper meth-

ods. Good research cannot be conducted when values lead to a distor-

tion of the scientific method. Jacob Bronowski, one of the last century’s 

most respected scientists, stated that science “is not a set of findings but a 

search for them. Those who think that science is ethically neutral confuse 
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the findings of science, which are, with the activity of science, which is 

not.”6 In other words, good scientists do not color their observations with 

ethical precepts, but personal convictions may determine the areas of their 

research.

Most of the scientists I know chose their profession because they have 

strong personal values such as a commitment to saving the Earth or 

improving human health. The way in which they conduct the research, on 

the other hand, is not influenced by their values. Indeed, a study should 

be conducted in exactly the same way by a politically liberal agnostic or a 

politically conservative Christian.

Healthcare decision makers should be wary about relying on the results of 

research that was possibly or obviously influenced by nonscientific values. 

In particular, always pay close attention to the organization or individual 

who financed the study. When research is funded by an organization that 

stands to gain or lose from the findings, the sponsor’s values are likely to 

have influenced the study or the way it was reported. Be particularly wary 

if the source of funds is not identified at all. A good research report always 

tells you who paid for the study. Failure to identify the source of funds 

should immediately make you suspicious about the reported results.

Science Is Thoughtful

Good scientists are good thinkers. They spend a lot of time thinking before 

they conduct experiments. In fact, some of the world’s most respected 

scientists (such as theoretical physicists, molecular biologists) spend all 

their time thinking, leaving the actual research to someone else. Good 

scientists think about the problem, the research method, the collection 

of data, the analysis of results, and even the usefulness of the study. They 

concoct dozens of different experiments in their minds before they decide 

which one to conduct in their laboratories. More than one philosopher or 

historian of science has argued that the scientist’s mind is his or her most 

important research tool.

In addition to recognizing the importance of pure thinking as part of 

the art of solving problems, good scientists also have the ability to synthe-

size information—to merge thoughts and concepts from diverse sources 

into a coherent whole. They are commonly multidisciplinary. The world’s 

6 J. Bronowski, Science and Human Values (New York: Harper & Row, 1965), pp. 63–64.
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greatest scientists tend to be well-rounded individuals. Their ability to 

think clearly and usefully about the world around them is aided by a work-

ing knowledge of art, literature, music, and even sports.7

Sadly, today’s published literature in medical and health-policy journals 

frequently lacks evidence of careful, multidisciplinary thought. Studies 

that pile up on the desks of healthcare decision makers are often ill-con-

ceived and narrow-minded from the beginning because many researchers 

are in a hurry to get their findings into print and to advance within their 

field. Pressure to gain recognition through publications and intense com-

petition for limited funding have caused quantity to become more impor-

tant than quality. This environment creates overspecialization, to the 

detriment of common sense. (I have always been amused by the definition 

of a specialist as a person who keeps learning more and more about less 

and less until he or she knows absolutely everything about nothing.)

To avoid falling under the influence of a thoughtless study, look carefully 

for signs that the authors regularly spent time thinking while conducting 

the study. Doing this will require you to spend time thinking about the 

study too, so make thinking a part of your personal process of evaluating 

a study that might matter to you. Use common sense. Draw upon your 

knowledge in a variety of fields. Ask yourself the obvious questions about 

the work.8 If plausible answers are not provided in the study, you have 

probably caught the authors with their thoughts down. The more a study is 

lacking in answers to questions that are obvious to you, the less you should 

allow it to influence your managerial or clinical decisions.

Science Is Reproducible

Good scientists are skeptical by nature. They require a lot of evidence 

before they consider anything a proven fact. Being open-minded, they also 

7 If you would like to learn more about the important link between good science and broad knowl-

edge, I recommend Arthur Koestler, Janus (New York: Vintage Books, 1979). Silvano Arieti’s 

Creativity: The Magic Synthesis (New York: Basic Books, 1976) is another interesting and acces-

sible classic work on the mental processes of scientific thinking.
8 If you could use a little help in preparing for the task of asking commonsense questions about 

studies, you absolutely owe it to yourself to read Darrell Huff’s How to Lie with Statistics (New 

York: W. W. Norton, 1954). This short, well-written, and cleverly illustrated paperback is a clas-

sic in every sense of the word. It was the other required book in my statistics courses, along with 

Harlan Cleveland’s The Knowledge Executive: Leadership in an Information Society (New York: E. 

P. Dutton, 1985).
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accept the possibility that a fact may be disproved at a later time.9 A col-

lection of consistent facts can add up to a well-established theory. Before 

it can be elevated from theory to law, a particular phenomenon must be 

demonstrated over and over again by independent researchers.

The concept of reproducibility (also known as replication) is relevant 

and important at all stages of the development of science-based knowl-

edge. Good scientists would never accept as “fact” something that had 

been reported in only one or two studies. The same or very similar find-

ings need to be reported in several corroborative studies before a conclu-

sion becomes widely accepted within the scientific community.

Credibility comes with replication. In other words, one study by itself 

proves absolutely nothing to a scientist. Just remember the furor created a 

few years ago over a published report about cold fusion. The discovery of 

thermonuclear reaction at “room temperature” would have been one of the 

biggest scientific events of the century if it had been true, but no one else 

could get the same results when they repeated the experiment. The claim 

quickly lost its front-page status as scientists returned to their laboratories 

to rethink the possibilities, and the report was retracted. (Retractions of 

published studies occasionally occur when their findings cannot be repro-

duced by other researchers.)

People in the healthcare business tend to assign far too much significance 

to the findings of a single study. Healthcare’s equivalents of cold fusion 

tend to hang around for a long time. National health policy, concepts of 

health, or the demand for medical services can be shifted almost over-

night by the latest research article published in the Journal of the American 

Medical Association (JAMA), the New England Journal of Medicine, or 

Health Affairs. Clinicians and managers who want their decisions to be 

influenced by good science must learn not to jump to conclusions until the 

effect of a proposed change has been confirmed by several studies.

I suggest a few rules of thumb to help you assess articles with respect to 

the scientific criterion of reproducibility:

9 Indeed, with ongoing advances in technologies to make observations in unprecedented detail 

and to analyze data with remarkable speed, today’s scientists even expect facts to be short-lived. 

The conceptual foundations of most health sciences, for example, are being constantly revised as 

research scientists learn how to use the research tools that were developed for the Human Genome 

Project.

© 2009 by Taylor & Francis Group, LLC



Do not base your decisions on a single study. Insist on seeing several 

consistent reports before you start to think of something as a fact 

that ought to influence your decisions.

Look for a preponderance of evidence. Half a dozen reports with the 

same findings are a lot more powerful if they are not contradicted by 

an equal number of reports with opposite findings. Be aware of the 

extent of evidence to the contrary, and act appropriately.

Expect independent confirmations. Be extremely cautious in the all-

too-common situation where all six corroborating studies were con-

ducted by the same researchers or the same institution.

Do not rely on secondhand summaries of studies. Newspaper and tele-

vision reports of the latest studies tend to be pathologically simplistic. 

If a study is important to you, read it yourself in its original form.

Science Is Honest

Since science is a quest for the truth (“the body of real things,” according 

to Webster’s), its practitioners are expected to be honest. Fudging data or 

otherwise falsifying observations is simply not acceptable practice in sci-

ence. The principle of reproducibility will reveal corrupt practices sooner 

or later, but dishonesty nevertheless occurs in research. It occurs often 

enough that suspicion is in order when something about a study just does 

not add up.

Acts of scientific dishonesty have been widely reported in the press 

over the past decade, and a few elected officials have politicized the 

issue quite effectively. Scientists’ reputations have been tarnished as a 

result of all the attention, seriously damaging the credibility of work in 

a few fields. Many prominent research institutions have subsequently 

developed strict guidelines to distinguish between acceptable and unac-

ceptable ways of conducting a study since some researchers accused 

of dishonesty have defended themselves by arguing that their suspect 

actions were common practice.10

10 The controversy over honesty in science and steps to address it are covered extensively in Science,

an internationally respected journal published weekly by the American Association for the 

Advancement of Science (AAAS). Reading Science and belonging to AAAS are worthwhile for 

anyone interested in general issues of research and related public policy. For information, visit 

www.aaas.org.
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Like anyone relying on the results of scientific research, the healthcare 

decision maker cannot easily check the integrity of the researcher who 

conducted a study of particular interest. The benefit of doubt is in order, 

and the situation will likely improve as the scientific community gets even 

more serious about policing itself. However, the possibility of dishonesty 

should not be ignored. When your suspicions are aroused, you should pay 

extra attention to the issue of reproducibility to see if the results are sup-

ported by the findings of independent researchers.

In extreme situations where a suspicious study is really important to 

your decision making, you may want to ask the researchers for a firsthand 

opportunity to review the data so you can judge the work for yourself. Also, 

be wary of anyone who conducts research in secret when secrecy is not 

necessary to protect proprietary information or patient confidentiality.

Remember that science is a universal language with common charac-

teristics that should be identifiable in any research that might cause you 

to change the way your run a medical organization or treat a patient. If a 

study does not pass scientific muster, you do not need to spend time evalu-

ating the data because the study is flawed in ways that cannot be corrected 

by statistical analysis. Science comes first, statistics second. Learn to eval-

uate studies in that order so you will not commit the errors of people who 

look only at the statistics—people who fail to realize that the study might 

be built on a foundation of sand.

THE ATTRIBUTES OF A SCIENTIFIC REPORT

Good scientific journals around the world lay out their research articles 

in an identical or remarkably similar manner that has been around for 

many, many years. The resulting consistency is extremely useful for a vari-

ety of reasons ranging from reader convenience to researcher integrity. 

For example, skimming an article is much easier and faster when the arti-

cle adheres to the standardized format discussed in the following pages. 

(Taking a quick first look at articles is absolutely necessary in a world of 

so much literature and so little time. Thank heavens for standardization 

that allows us to decide quickly which articles merit full and careful read-

ing!) A researcher who is more interested in the methodology than in the 

results of a particular study can immediately find the relevant information 
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because it is clearly identified and located in the expected place. In the 

absence of a standard format, interested individuals would have to read 

an entire article just to find the one or two sections of immediate interest 

to them.

More importantly, the uniform method for reporting scientific stud-

ies serves as a checklist that enhances the chances that the inquiry was 

conducted in accord with the principles of science. The sections of the 

standard reporting format are roughly equivalent to the basic steps in sci-

ence, so a researcher is less likely to ignore an important aspect of good 

research while conducting the study if she or he knows that the written 

report should address that step.

Failure to follow the standardized format of scientific writing is a warn-

ing signal suggesting the possibility, but not the certainty, of significant 

flaws in a study. An unconventional report can be a sign of problems rang-

ing from the author’s poor training or the editor’s sloppiness to a con-

scious effort by either to divert attention from a serious deficiency in the 

research. Therefore, part of your evaluation of a study needs to include an 

assessment of the reporting format. You will be able to do this very quickly 

with a little experience.

Do not hesitate to consider the possible implications of deviations from 

common practice as you compare a report’s structure with the standard 

format presented below. However, expect to find some variation in the 

subject headings that provide a report’s structure. Most journals use orga-

nizational structures similar to the generalized version presented here, 

but the specific wording and order may vary a bit. The important thing is 

making sure that all the topics are addressed.

You must also realize that adherence to the standard format is not 

enough to guarantee that a study is scientifically sound. It is a good sign 

but not a conclusive one. A report can have all the right parts, but the 

parts themselves can be flawed. Therefore, examining each of the parts in 

appropriate detail is also an important step in deciding whether a study 

is good enough to influence the decisions of a healthcare manager,  clini-

cian, or policymaker.

Abstract

A good research report begins with an abstract: a clear and concise 

summary of what was done and what was learned. Reading the abstract 
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should give you enough information to decide whether you want to 

read the entire article. I particularly like the abstract formats used by 

the Journal of the American Medical Association and the New England 

Journal of Medicine. Consult a recent issue of either journal to review 

their formats if you are not already familiar with them. Concise and use-

ful summaries of key articles are now included at the beginning of many 

scientific journals, but they do not include enough information to make 

qualitative assessments.

Introduction and Problem Statement

The opening section of the article’s narrative text should provide a clear 

description of the general subject area being addressed by the study. In 

the first several paragraphs, the authors ought to provide a context for the 

work by describing the underlying real-world problem and the difference 

that could be made by understanding it. (If a study is not intended to pro-

duce information that might make a difference, why bother with it? Pure 

research inquiry conducted solely for the sake of knowledge without any 

expectation of practical application is important in many fields of science, 

but it is very uncommon in the areas of interest to healthcare decision 

makers. This book addresses the realm of applied research: inquiry aimed 

at solving problems.)

An identifiable problem statement is a particularly important com-

ponent of a good study, so look for it as you begin your assessment of a 

written report. If you cannot figure out exactly what the researchers were 

trying to do or why they were doing it, the odds are pretty good they did 

not know either. A study without a problem statement is like an answer 

without a question.

Also, watch for studies that begin with a clear problem statement and 

then go off in a different direction to find a solution that has little or no 

relationship to the problems as originally stated. I frequently find this 

“bait and switch” practice in published studies on major issues of health 

policy, so be prepared for it. For reasons to be discussed in the next chap-

ter (for example, the importance of an a priori statement of the research 

hypothesis), a conceptual link between the problem and the solution is just 

as important as a careful statement of the problem.

Either flaw—an answer without a question or an answer to a different 

question from the one asked in the beginning—happens often enough 
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that you need to be attentive to the possibility when you are evaluating 

studies that might influence the way you solve your administrative or 

clinical problems. The only studies that are truly useful to you are those 

that relate directly to your problems and present findings consistent with 

those problems. This is not necessarily the same thing as “finding solu-

tions to those problems.” A study can be very useful by providing infor-

mation about a wrong solution to a problem that is important to you. 

Never underestimate the potential value of negative knowledge, knowing 

what not do!

Review of Literature

Except in the occasional instance where an article is reporting the very 

first study in an area, it should begin with a review of the published litera-

ture on the subject. The review should summarize the findings of other 

researchers who have investigated the same or similar issues in enough 

detail to give you a sense of current thinking in the area. The review should 

be clear and concise.

The references should be footnoted with complete citations (increasingly, 

URLs and other online links) at the end of the article so you can retrieve 

and review the previous studies for yourself if you so desire. Paucity 

or absence of citations is generally a sign of shoddy work. A study that 

includes little or no review of the literature is suspect when other research 

on the issue has previously been published.

A study’s review of literature should be balanced, including references to 

key articles on all sides of the issue when contradictory findings have been 

reported. Mentioning alternative views is part of being open-minded and 

honest. This goal is often accomplished quite usefully in review articles, so 

be pleased when you find references to reviews that discuss the published 

literature in depth. Be cautious when a study cites only articles that are 

consistent with its findings if other conclusions are known to exist, and be 

even more cautious when most or all of the citations are previous studies 

done by the same authors of the study you are reviewing.

In addition to being balanced, a good review of the literature also 

includes references to studies published in a variety of journals (when 

reports on a given topic have appeared in more than one publication). 

Journals, like authors, can be biased—in other words, prone to promot-

ing a single perspective. Appearance of corroborative studies in several 
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journals is consistent with science’s requirement for reproducibility. All 

other things being equal, the scientific power of six studies published 

in as many different journals would be greater than six articles all pub-

lished in the same journal. Therefore, your analysis of a study should 

include a quick assessment of the number of journals from which arti-

cles are cited.

Finally, look carefully at the bibliography to see if the summarized lit-

erature is up to date. A good review will refer to important articles from 

the past so that the reader can get a sense of historical perspective on the 

research issue, but it will cite the most recent studies on the same topic. 

Consequently, check the publication dates on references listed at the end 

of the article. Relatively recent publications should be mentioned unless 

the topic has not been researched for some time—a fact that probably mer-

its some explanation in the literature review.

Methods (Methodology)

Good articles explain how the study was conducted; that is, they describe 

the method employed to conduct the study. Again, the reason is reproduc-

ibility. If an article fails to give you enough information to recreate the study 

on your own, it fails one of the most important tests of scientific literature. 

Alternatively, an article can refer you to a previously published study where 

the experiment was described in detail. This practice, increasingly com-

mon due to the high costs of publishing scientific journals, is acceptable if 

the previous study is readily accessible. Alternatively, and less acceptably, 

authors occasionally offer to send the information upon request. As gener-

ous as the offer may seem, I do not like it because the process takes time 

and is unreliable. (My students who have sent away for promised infor-

mation about method have generally been disappointed with the response. 

References to Web sites that no longer exist are equally frustrating.)

The ability to present a sufficiently detailed description of methodol-

ogy is one of the most important skills of scientific writing. You should 

expect it in any published report that may influence your own managerial 

or clinical decisions. Since the methods sections should provide enough 

information to allow replication of the study (or allow you to retrieve it 

without unreasonable effort), it will not necessarily be concise. The criteria 

for evaluating research methodology will be described in detail in the fol-

lowing chapter.
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If the method is not adequately described, you are wise to doubt the 

study and its reported conclusions. The authors may have something to 

hide, such as sloppy research techniques or flimsy assumptions that would 

not withstand scrutiny if they were described. On the other hand, the 

authors may be good methodologists and bad writers. Some of the fault 

lies with the journal editor in this situation, but the study is still flawed.

Data

The quantitative information used to support a study’s conclusions may 

need to be broken down and reported in several different sections of an 

article, so you will not necessarily find all the numbers presented under 

a single “Data” section. However, you should always find some data in a 

study. The absence of basic data effectively amounts to the author’s saying, 

“Trust me.” Don’t!

The interpretation of data can vary with perspective or experience. For 

example, a researcher who conducts a drug experiment on mice, a cli-

nician who prescribes the drug to humans, and a health economist who 

looks at the cost-effectiveness of the drug to society can all reach legiti-

mately different conclusions about the implication of the same research 

finding. However, the clinician and the health economist cannot interpret 

the study from their different perspectives if the researcher does not pres-

ent any data in the published report.

The absence of key data can be a sign of serious problems with a study, 

ranging from the authors failing to recognize the possibility of different 

interpretations of the numbers (uninformed judgment) to concealing 

obvious discrepancies between what the data really said and what they 

are reported to have said (outright deceit). Even when the analysis is done 

correctly and honestly, you should be cautious about accepting research-

ers’ value judgments about data you cannot review for yourself if you are 

so inclined. A small difference to the researchers might be a big difference 

to you (or vice versa).

The numbers should be allowed to speak for themselves. At a minimum, 

expect an article to report the basic descriptive statistics (the subject of 

Chapter 5) and the appropriate test statistics (Chapters 6, 7, and 8) as you 

decide whether to let a study influence your own decisions. Actual, objec-

tive values of these summary measures—not subjective verbal descrip-

tions—will be included in a scientific study worthy of your attention.
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Results and Discussion

The concluding section in the standard format for scientific publication is a 

presentation of the results and a discussion of the findings. (Some journals 

present “Results” and “Discussion” as two separate sections, a perfectly 

acceptable practice.) This content is almost always included in a study. 

After all, results and discussion are probably the elements that define a 

study in most people’s minds, so your assessment will normally focus on 

how well—not whether—the results are presented and discussed.

The results of a study should be reported clearly and succinctly. The sec-

tion normally need not be long, and it must be understandable. A long 

and confusing presentation of results is often a sign that the researchers 

tried to address too many issues. A poor presentation of results can also 

indicate that the researchers strayed from the problem they originally set 

out to address. Therefore, make sure that the problem statement at the 

beginning of the article and the results at the end are consistent. You may 

be surprised to discover that inconsistency is not all that uncommon. You 

should be cautious about basing your own decisions on a study that falls 

into this trap because the authors quite possibly did not know what they 

were doing.

The discussion of results should also make sense, which does not neces-

sarily mean that you will agree with the results. Remember that science is 

open-minded. Do not disregard a study simply because you disagree with 

the discussion of its conclusion. Indeed, you will hopefully come to appre-

ciate really good studies that change your own thinking.

Finally, the discussion should include an honest review of the study’s 

shortcomings: things that went wrong during the experiment, relevant 

omissions that were discovered after the study was completed, measure-

ment errors that were unexpectedly introduced during the data-collection 

process, research subjects who failed to cooperate with the established pro-

cedures, and so on. If a study is potentially important to you, spend some 

time listing significant shortcomings that might have been missed—or at 

least, not reported—by the author. Your confidence in the study should 

normally be reduced in direct proportion to the number of concerns on 

your list that are not addressed in the discussion section.

Expect some variation in adherence to the standard format presented 

here. Journals are constantly trying new formats to save money on 

production costs and to increase the visual appeal of the printed page. 
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Electronic publication has introduced even more changes in the way 

studies ultimately reach the end user. Traditional journals certainly could 

be improved, so I anticipate many changes with considerable enthusi-

asm—especially as journals improve the integration of print and elec-

tronic media.

Still, changes in the way studies are published must not be allowed to 

distort the demands of science. The development of more user-friendly, 

visually appealing formats does not mean we can disregard content. 

Everything from “Introduction and Problem Statement” to “Results and 

Discussion” might soon begin to appear in new and different ways, but the 

evaluation criteria in this chapter will be just as important.

We must not let the medium become the message when it comes to sci-

ence. We already know better than to judge a book by its cover or a Web 

site by its graphics. By the same line of reasoning, we should also know 

better than to judge a study by its appearance. Great presentation must not 

be allowed to divert our attention from sloppy science. The quality of the 

contents still matters. Let the reader beware.
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2
Experimentation: The Foundation 
of Scientific Studies

The delivery of medical services is constantly challenged and frequently 

changed by new discoveries or new ideas. Researchers propose a new drug 

as an improved cure for a disease. Surgeons promote a new technique 

that supposedly corrects a physiological problem better than the tradi-

tional procedure. Policy analysts push new legislation that will presum-

ably improve quality or increase access without increasing costs. Health 

benefit managers change the way their plans pay for care with the intent 

of reducing total costs. Management gurus claim their new technique will 

improve employee productivity.

The list of new possibilities goes on and on, raising real-world ques-

tions for the healthcare decision maker who might make changes based 

on new information.

Does the new approach really make the reported difference?

Will it produce the same results in my setting?

Should a change be made here?

Not surprisingly, today’s health administrator or clinician-executive is 

constantly confronted with the question of which changes to embrace and 

which to ignore. The most common place to turn for answers is published 

literature—the journal articles and monographs reporting studies that 

have been conducted on proposed changes. The results of recent studies 

are constantly put forward as reasons why certain things should or should 

not be done in the healthcare delivery system.
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Chapter 1 identified the fundamental principles of science that ought 

to be evident in the literature, emphasizing a generally accepted publica-

tion format that helps guide our assessment of the scientific integrity of 

a study. Chapter 2 now completes the overview of good science by dis-

cussing experimentation, the actual process of scientific research to see 

if something probably makes a difference. As we will see in later chapters 

that deal directly with statistics, the word probably in the previous sen-

tence is very important. A scientific experiment never proves anything 

with absolute certainty; it just suggests the extent to which an observed 

difference might have been explained by chance. The strength of a finding 

grows with reproducibility, that is, with a growing number of researchers 

getting the same results when conducting the same experiment.

Together, Chapter 1 and Chapter 2 provide the foundation for statistical 

analysis—the form and the function, to borrow a fitting phrase from archi-

tecture. Even though this is a statistics book, this chapter simply completes 

the first part of the joint condition set out at the beginning of Chapter 1: 

Good science and good statistics go together. If the science in a study is not 

valid, the statistical analysis does not matter. You need to judge an article 

on its scientific merits before you review its statistical analysis, so let us 

finish constructing the scientific foundations of a good study.

WHAT IS AN EXPERIMENT?

The concept of an experiment has been defined in many different ways, 

ranging from deeply philosophical to everyday practical. Rather than get-

ting lost in an ethereal (although potentially interesting) discussion of the 

deeper meanings of experimentation, I believe that today’s decision maker is 

adequately served by an understanding of the concept in its practical, mod-

ern form. Healthcare decision makers need to understand the experiment 

in its relevant, contemporary usage rather than ignore the concept because 

it has been subject to nuances in meaning over time and across disciplines.

Above all else, health administrators and clinician-executives need to be 

able to decide whether an adequate experiment is at the heart of a study 

claiming something makes a difference. This chapter provides a practical 

framework for judging the extent to which an experiment does what it 

is supposed to do. When a study makes research-based claims but fails 
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to adhere adequately to the proper criteria of experimental method, seri-

ous questions are raised about the wisdom of using the study as the basis 

for managerial or clinical decisions. When a study does meet these crite-

ria, the decision maker can then proceed with assessing the quality of the 

study’s statistical analysis.

Way back in high school, when memorizing “handy-dandy” definitions 

seemed to be the foundation of learning, I was taught that an experiment

is a systematic approach to discovering unknown relationships in the world 

around us or to testing an ideas about those relationships. I cannot remem-

ber who deserves credit for this particular definition, but it has served me 

well over the years. One of the twentieth century’s most famous scientists, 

René Dubos, has provided a complementary focus on the dual nature of 

the concept:

The experiment serves two purposes, often independent one from the 

other: it allows the observation of new facts, hitherto either unsuspected or 

not yet well defined; and it determines whether a working hypothesis fits 

the world of observable facts.1

In much the same spirit, Kuhn refers to experimentation as “the fact-gath-

ering activities of normal science … resolving some of its residual ambi-

guities and permitting the solution of problems.”2

The different dimensions of experimentation would lead to discussion 

of corresponding difference in experimental method in a book on science. 

However, since this is a book on applied statistics for healthcare decision 

makers, we will focus our attention on the relevant (that is, the second) 

part of the preceding definitions: testing an idea about relationships, 

determining whether a working hypothesis fits the world of observable 

facts, or solving problems.

Please note a particularly important part of the first “handy-dandy” defi-

nition presented above. It states that an experiment is a systematic approach 

to inquiry. Experiments follow well-established, identifiable steps from 

start to finish. The steps in this system are presented here in conventional 

order to serve as a benchmark for your qualitative evaluation of research 

1 Quoted in W. I. B. Beveridge, The Art of Scientific Investigation (New York: Vintage Books, 1950), 

p. 19.
2 T. S. Kuhn, The Structure of Scientific Revolutions (Chicago: University of Chicago Press, 1962), p. 
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articles. Studies that do not adhere to the basic system of experimentation 

are likely to be flawed in ways that might get you in trouble if you use them 

to guide your own decisions. Be cautious when you encounter a study that 

strays very far from the system, especially if the deviation from standard 

practice is not clearly identified and adequately defended.

The Hypothesis

The first formal step in the experimental process is specification of the 

hypothesis: a tentative statement about the expected outcome of an experi-

ment and the mechanism by which it occurs. The hypothesis should be 

clearly and meaningfully presented. Further, it should be stated in an arti-

cle’s abstract and adequately discussed in the introduction and problem 

statement.

By long-standing and sensible tradition, the hypothesis should be stated 

in negative form, known as the null hypothesis and commonly abbrevi-

ated as H0. Here are a few examples of properly phrased null hypotheses 

that might appear in articles of interest to healthcare decision makers:

Capitation (fixed fee per member per month) does not influence cli-

nicians’ treatment decisions.

The payment mechanism does not affect the outcomes of patients 

treated for infectious diseases.

Consumption of fatty foods does not affect an individual’s risk of 

coronary artery disease.

The length of hospital stay does not improve patients’ recovery from 

ophthalmologic surgery.

The volume of operations performed by surgical teams does not 

affect patient outcomes.

The alternative hypothesis, abbreviated as Ha, is stated in positive form. 

For example, the Ha for the first sample H0 above would be “Capitation 

influences clinicians’ treatment decisions.” Research should always test 

the null hypothesis (H0). As will be shown in Chapter 6, the alternative 

hypothesis (Ha) is adopted only if the null hypothesis is rejected as a result 

of statistical analysis of experimental data.

Why has the nuance between H0 and Ha persisted for so many years? 

Why not just test the alternative hypothesis? A sensible historical tradition 
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and a contemporary problem have led to recent efforts to focus on the null 

hypothesis.

The historical reason for the convention of testing H0 is the need for 

consistency among studies. The scientific concern with reproducibility is 

best met when studies of the same question are directly comparable, and 

comparability is less prone to error when all studies test the same version 

of the hypothesis. Imagine, for example, the situation where 10 studies of 

the same general issue all “proved” their research hypotheses. Wow, 10 

studies in the same area, all coming to the same conclusion! Sounds like a 

strong preponderance of evidence in favor of the hypothesis—until closer 

inquiry shows that five studies tested H0 and five tested Ha, which in real-

ity shows an inconclusive 50:50 split in the studies.

The contemporary problem reinforcing the importance of test-

ing null hypotheses is called publication bias. Shrinking budgets for 

research and growing rewards for discoveries have caused science to 

become very competitive over the past several decades, which in turn 

has caused researchers and journals to put more emphasis on “proving” 

something. Those who accepted a null hypothesis (H0) began having 

difficulty finding journals that would print their studies. Sadly, publi-

cation bias in favor of alternative hypotheses (Ha) greatly hindered the 

dissemination of extremely important information about what does not

work—negative knowledge. Some of the better journals have recently 

recognized and corrected the problem, but healthcare decision mak-

ers still need to be wary of the possibility that the literature may only 

include studies that found something made a difference. Journals have 

had a tendency to suppress equally important studies that failed to 

detect differences.

The null hypothesis should also be stated at the beginning of the experi-

ment, before any data are collected and examined. Indeed, experimental 

design and data-collection techniques should be tailored to the hypoth-

esis. The practice of stating the hypothesis before conducting the experi-

ment and collecting the data, known as a priori specification, is important 

because the human mind is sharp enough to spot trends in the numbers. 

Researchers who look at data first run the real risk of specifying a hypoth-

esis that simply confirms patterns already evident in the data, even though 

the patterns may be spurious or random.

Unfortunately, hypotheses are often poorly defined, misplaced, or miss-

ing altogether in healthcare studies. The situation seems to have been 
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improving over the past few years due to the explicit efforts of the editors 

of some leading journals, but decision makers should still look carefully at 

the hypothesis. Any study that does not have an identifiable, clearly stated 

a priori hypothesis is suspect from the start. (Hopefully, it will be stated 

as a null hypothesis.)

A considerable amount of work should be done between specifying the 

hypothesis and conducting the actual experiment. This work—from con-

ducting the literature review to planning the research method and mak-

ing financial arrangements to conduct the experiment in an acceptable 

manner—will be largely transparent to the person reading a study’s final 

report. Be thankful that you are spared the minute details of manag-

ing research, but be watchful for any hints that shortcuts may have been 

taken. If you want or need to know more about specific details that are 

not worthy of journal space (for example, How much did the survey cost? 

How was patient confidentiality protected when the medical records were 

reviewed by the research assistant?), get in touch with the principal inves-

tigator. Researchers tend to be friendly, albeit quiet, people who do not 

mind returning phone calls.

The Experiment

The hypothesis raises a question. The experiment provides an answer, not 

the answer (due to the requirement of reproducibility). Like symphonies, 

experiments come in several forms, but all are variations on a model that 

has been around for a few hundred years. The basic and most important 

form of scientific experiment—commonly represented in the world of 

healthcare by the randomized controlled trial, or RCT—is presented in 

this section as a benchmark for the evaluation of studies that might influ-

ence your decisions regarding the allocation of scarce resources in a com-

petitive market.

Do not forget a crucial point from the beginning of this book if you 

are wondering why you should care about the scientific correctness of a 

study’s experiment. The quality of research to see if something made a 

difference was not nearly as important to a decision maker’s success back 

in the days of fee-for-service reimbursement when third-party payers 

wrote checks that covered all costs retrospectively, including the costs 

of bad decisions. In today’s era of limited resources and accountability, 

administrative or clinical decisions based on flawed studies are expensive. 
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Using bad information can result in what is commonly described as a CLA 

(career-limiting act). Knowing how to spot a bad experiment might help 

you avoid a CLA.

The general model of an experiment has six distinct steps. If they are 

not followed, the validity of the study is cast in doubt because something 

other than the experimental effect may account for any differences found 

in the research. Therefore, you need to be familiar with the six steps in an 

experiment in order to evaluate the integrity of an experiment. I tell my 

students to memorize them and learn how to apply them. (In other words, 

if you were using this book for my course, this material would very likely 

be on the exam.)

1. Randomly Select the Study Sample from the Population

The population is the entire, defined group of people, institutions, or other 

entities that might be changed by the experimental effect specified in the 

hypothesis. For example, a population might be all the doctors in staff 

model health maintenance organizations in California, all the persons in 

the United States with hypertension, all registered nurses working in teach-

ing hospitals, and so on. The population should be carefully defined in the 

written report of the study. It defines the realm in which an experimental 

effect may be appropriate for everyday use if the experiment produces a 

desired difference greater than what could be explained by chance.

A sample is a representative subset of a population. Research is conducted 

on samples when testing every single member of the population would 

cost too much money or take too much time, and statistics was developed 

to meet the special conditions created by the common practice of conduct-

ing research on samples. Technically speaking, statistics is not necessary 

when a whole population is being tested because inferences from a sample 

to a population are not necessary.

Random selection is the acceptable method for making sure that the 

sample is a representative subset of the population. Populations can have 

a lot of built-in diversity in terms of age, sex, race, income, physiology, 

health status (physical and mental), health history, education, insurance, 

and other factors that might interact with an experimental effect. The 

diversity with respect to these factors in the sample groups needs to be 

comparable to the corresponding variation in the population.
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Nonrandom methods are quite likely to produce a study sample that does 

not represent the population, which in turn produces bad research. Letting 

people volunteer for an experiment, a process known as self-selection, is a 

particularly good example of a potential problem. Individuals who believe 

they will benefit from an experimental effect (for example, a new drug 

being tested) are much more likely to sign up for the study than those 

THE RANDOMIZED CONTROLLED TRIAL

The randomized controlled trial (RCT) is in some ways the scientific 

equivalent of a trial in our judicial system. An experiment effectively 

puts a hypothesis on trial. Evidence is gathered and weighed to see if 

the proposed relationship between cause and effect is demonstrated 

beyond a reasonable doubt. A scientific trial, like its courtroom coun-

terpart, has procedural rules: randomness and control. If a study falls 

short on its adherence to these rules, a mistrial should be declared, 

and the result should not be used as precedent for decisions made by 

healthcare administrator, clinicians, and policymakers.

Randomness is the procedural requirement governing selection of 

subjects for the RCT. To be random, each possible outcome of the pro-

cess (for example, each person in the population being studied) must 

have an equal chance of being selected for participation in the research 

trial, and each act of selection much be independent of the others. In 

other words, no test subject should be allowed in the experiment on 

any basis other than luck of the draw. Chance is the only factor that 

fully meets the requirement of randomness.

The control in an RCT is the set of factors that isolate the experi-

mental effect, minimizing—or, preferably, eliminating—the possi-

bility that any other factor might explain the outcome of the trial. 

(The experimental effect is the change being tested by the hypothesis, 

such as the new drug, the modification in a surgical procedure, the 

different payment system, the modified staff pattern, and so forth.) 

The concept of control requires that everything else be the same so 

that the only variation is the experimental effect. It is science’s equiv-

alent of economics’ ceteris paribus, all other things being equal. The 

difference is that economists assume it; scientists require it.
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who do not expect to be helped. Consequently, studies conducted on a self-

selected sample will not truly test the effect on the entire population.

Random selection does not guarantee a perfectly balanced sample, but 

it is not subject to the potential for bias inherent in the nonrandom alter-

natives. Randomness leaves the selection to chance, not human judgment 

with its potential for bias. When used to produce a sample of sufficient 

size, random selection from the population is an essential foundation to 

good research. (The important and related topic of sample size is discussed 

in Chapter 4.) The more the sample selection process deviates from ran-

domness, the less you should act on the basis of the study’s results.

2. Randomly Assign the Study Sample to 
Experimental and Control Groups

Once the representative sample has been selected from the population, its 

subjects must then be divided into groups so that an experiment can be 

conducted. The number of groups depends on the nature of the research. 

If only one experimental effect is being tested, two groups need to be cre-

ated. One group, called the experimental group, will be created to receive 

the experimental effect. The other group, called the control group, will be 

treated like the experimental group in every respect except one; it will not 

receive the experimental effect.

The study sample needs to be extended to more than two groups if the 

trial involves more than one experimental effect. For example, if research-

ers wanted to investigate whether quality of care was changed by three 

new nurse staffing models, four groups would have to be created: three 

experimental groups and the control group (the “no-change,” business-

as-usual nursing model). The same outcome would be required to test 

the impact of different doses of a drug, different levels of patient partici-

pation in payment for care, different levels of experience in performing 

a surgical procedure, and so on. Always look for a control group, plus 

a number of experimental groups equal to the number of experimental 

effects being tested.

Assignment of subjects from the study sample to the experimental 

groups must be made randomly for the very same reasons that random 

selection must be used to draw subjects from the population. The sub-

jects in the experimental and control groups need to represent the popula-

tion, and the experimental effect should be the only difference between 
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the groups. Random assignment is the only approach consistent with 

the assumption underlying statistical analysis—that the outcome might 

be explained by the luck of the draw. Any assignment process that takes 

chance out of the picture correspondingly violates the assumption that 

makes statistics appropriate for analyzing the study’s data, so make sure 

that a study’s sampling from the population and assignment to research 

groups were done randomly.

3. Establish Pretest (Baseline) Measures for 
Experimental and Control Groups

Since statistical analysis was developed to evaluate the likelihood that an 

observed difference is explained by an experimental effect rather than by 

chance, decision makers want to be as certain as possible that any differ-

ence between pretest and posttest measures occurred as a result of the 

experiment. Randomness is our best protection against finding differ-

ences that have nothing to do with the experiment, but it is not perfect. 

Fortunately, we have an easy way to detect this potential problem: estab-

lishing baseline measures of all groups before the experiment.

Taking pretest measurements provides built-in protection against the 

possibility of confusing intergroup differences that existed before the 

experiment with posttest differences that likely occurred as a result of the 

experiment. The logical reason for taking this step is pretty obvious, but 

many researchers either (1) fail to mention it in their published reports or 

(2) do not bother taking the baseline measurements. The first situation 

can be a sign of sloppy writing that may force you to call the researchers if 

the study’s findings are potentially important to you. The second situation 

is enough to invalidate the study because the researchers simply do not 

have enough information to know if posttest differences between groups 

already existed at the beginning of the experiment.

Establishing baselines also forces researchers to address measurement 

in advance of their experiments. Data collection and measurement should 

be defined in the early stages of research for much the same reasons that 

the hypothesis should be specified before the experiment. Waiting until 

after the experiment to decide what to measure and how to measure is 

a common flaw, so watch out for it. On the other hand, the existence of 

baseline measurements is a good sign.
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4. Administer an Experimental Effect to an Experimental Group Only

This simple step is the crux of an experiment, and it should be self-explan-

atory. The key considerations are to make sure that the control group goes 

on about business as usual (that is, nothing changes for its subjects) and 

that the experimental effect is the only difference between the experimen-

tal group and the control group.

Of course, the experimental effect should also be applied equally to all 

members of the experimental group. A study’s published report should 

include enough information to make you confident that these things were 

done. Judge accordingly.

5. Establish Posttest Measures for Experimental and Control Groups

In Step 5, the same pretest measurements that were taken in Step 3 

need to be taken after the experimental effect is administered in Step 

4. This step is also self-explanatory, so detailed discussion should not 

be necessary here. However, make sure that the posttest measurements 

were made in strict accord with the same procedures that were used to 

collect the pretest numbers with which they will finally be compared 

in Step 6.

Any changes in data-collection techniques or measurement between 

Step 3 and Step 5 can give a false appearance of experimentally induced 

differences. In this situation, such differences are explained by the data-

gathering process rather than the experimental effect. Researchers will 

occasionally use someone else’s measurements (such as U.S. Census or 

state health department data) for the baseline and collect their own post-

test data. This practice can easily introduce a measurement error that 

invalidates the study.

6. Analyze Experimental Data for Statistical Significance

Statistics, at last! The use of statistical analysis is the final step in a research 

trial. It is not appropriate in research studies unless all the preceding steps in 

the experimental process have been properly executed. Chapters 5 through 

8 describe in detail how statistics should be applied to specific tasks of ana-

lyzing experimental data, so the important point here is to make sure that 

statistics is put in its proper place—at the end of the experiment.
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Having established the essential scientific foundations of quantitative 

analysis, we are now ready to move on to the “real” stuff of statistics: data. 

This is where most statistics books start, but as the first section of this 

book has shown, the numbers are meaningless if they are derived from 

inappropriate applications of scientific method or experimental design. I 

trust that the very different starting point of this book has proven worth-

while. You now know what questions to ask and what answers to require 

in your decision about whether a study is of sufficient quality to influence 

your activities as a healthcare decision maker.

EVALUATION STUDIES

A scientific experiment is the appropriate method for assessing the like-

lihood that an identifiable experimental effect explains an observed dif-

ference. It is the best tool we have for investigating specific cause-effect 

relationships. However, some people are interested in investigating the 

relationship between programmatic interventions (for example, antismok-

ing education, stress management counseling, physician peer review) and 

changes in a targeted population. This form of inquiry is commonly called 

program evaluation or evaluation research.

Evaluative studies are designed to measure a program’s relative success 

in meeting predetermined program objectives. Measuring the attain-

ment of objectives is not the same thing as testing a hypothesis, and 

the procedures for evaluating a program are much less rigorous than 

the comparable steps in the scientific method. In particular, evaluative 

studies are not controlled. They can show the extent to which program-

matic goals were met, but they cannot demonstrate that the program 

made a difference in the scientific sense. Program evaluation can be 

done very well and can be quite useful, but it should not be confused 

with scientific research.

Scientific research starts with a hypothesis. Evaluative studies start with 

the identification of measurable objectives for the program. Evaluators 

then define quantitative and qualitative criteria for measuring the objec-

tives, take appropriate baseline measurements, and make the same mea-

surements at periodic intervals (such as at the end of each program year). 
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The program’s success is measured by the extent to which the program’s 

participants performed as desired.

For example, a smoking cessation program aiming for a 25 percent 

1-year success rate would be evaluated quite favorably if 32 percent of the 

participants had actually quit smoking at the end of the first 12 months. 

On the other hand, the evaluation of the 32 percent “success” rate would 

not be favorable if the program’s predetermined goal had been to get 

everyone (100 percent) to quit smoking. In either case, the actual causes 

of observed changes cannot be explained with a degree of statistical confi-

dence because evaluation is not a controlled experiment.
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IISection 

The Fundamental 
Importance of Data

Governments are very keen on amassing statistics. They collect them, add 

them, raise them to the nth power, take the cube root, and prepare won-

derful diagrams. But you must never forget that every one of these figures 

comes in the first instance from the village watchman, who puts down 

whatever he damn pleases.

Sir Josiah Stamp, 1896

Inland Revenue Department (England)
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3
Numbers Good and Bad: How 
to Judge the Quality of Data

The first section of this book began with the proposition that good sci-

ence and good statistics must go hand in hand. Its two chapters provided 

a framework for evaluating the scientific integrity of procedures used to 

collect data for the types of studies that healthcare executives and care-

givers typically consult when deciding whether a certain decision might 

make a desired difference in organizational or clinical performance. A 

common theme appeared in the discussions of both scientific method and 

experimental design: Good statistics cannot be used to compensate for 

bad science. To borrow an old metaphor that makes the same point in 

considerably more picturesque language, you cannot make a silk purse 

out of a sow’s ear.

The same point holds equally true when it comes to the numbers that 

get crunched and made into studies. Good data and good statistics must

go hand in hand if a study is to be of any value; good statistical analysis 

cannot be used to compensate for bad data. The quality of the numbers is 

a separate issue from the quality of the method used to collect them, so 

this chapter takes a careful look at the characteristics of good data and 

provides helpful hints for evaluating them. (By the way, data is a plural 

word; datum is the singular form. Get used to saying, “Data are …” It 

shows you are sophisticated. Well-edited publications use the word with 

proper subject–verb agreement.)
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LETTING THE NUMBERS SPEAK FOR THEMSELVES

We Americans have a fascination with data that I have not found in other 

countries. Numbers have remarkable presence and power in our daily 

lives. From “factoids” on CNN Headline News to the multicolored charts 

in USA Today, from C-Span’s unadorned coverage of expert testimony at 

congressional hearings to player and team stats crammed onto the sports 

pages, data are at the core of our daily experiences. (Indeed, more than 

one sportswriter has argued that baseball is our national pastime precisely 

because it produces so many statistics. Where else but the United States 

could “Rotisserie Leagues” attract as much attention as the game itself?) A 

day without numbers seems almost, well, un-American.

Unfortunately, we are not very discriminating when it comes to accept-

ing data. We implicitly assume that numbers are correct, that numbers 

would not lie. We tend to accept data as reality. We hardly ever stop to pon-

der the fact that data are nothing more than arbitrarily defined measure-

ments of the world around us. They cannot be any more accurate than the 

ruler or the scale or the sensor or the thermometer or the counting device 

that was used to take the measurements. And even when the measure-

ment is precise, the data that ultimately come to a researcher’s or decision 

maker’s attention are no more accurate than the meter reader or the typist 

or the proofreader who was responsible for transferring the numbers from 

the measuring instrument to the data-reporting system. Fortunately, the 

automated transfer of digital data from measuring devices to computer-

ized data bases effectively eliminates transcription errors, but it still does 

not guarantee that the data are appropriate measures of the phenomena 

being observed.

Obviously, data error can be introduced into the process at any num-

ber of points along the way. The quantitative information that ultimately 

crosses our desks is not necessarily accurate, so we should be concerned 

about the quality of data before we base decisions on them. Data users 

need to have their own version of the computer programmer’s aphorism, 

“Garbage in, garbage out” (GIGO). Bad data in, bad statistics out, or some-

thing like that. (Please get in touch with me if you come up with a more 

elegant or catchy way to express this fundamental truth.) To operational-

ize the importance of good numbers, let us develop a user-friendly discus-

sion of issues concerning the quality of data.
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OF GRAPES AND GRAINS

Two “sentinel events” in my life have sparked a career-long interest 

in the quality of data. Note that both these experiences took place 

outside the United States. Residents of other countries seem to have 

a naturally healthy skepticism concerning data, perhaps because 

quantitative information has not been trivialized by overuse.

My first exposure to flawed data happened when I was taking an 

international economics seminar at the University of Paris. I was in 

a group of four students assigned the task of bringing together in 

one source the available data on a neighboring country that did not 

publish its economic statistics in any single document. Curiously, 

we discovered that the country’s reported exports of wine exceeded 

reported production. One of the numbers had to be wrong because 

a country could not ship more wine than it could produce, n’est-ce 

pas? Well, a reporter heard about our finding and looked further 

into the question. He created an international scandal by discovering 

and reporting that both numbers were correct, but the “wine” being 

shipped abroad contained a lot more than grape juice (that is, water, 

oil, and other liquids too unpleasant to mention). Although the mea-

surements were correct, I quickly learned that the definitions of data 

were just as important as the measurements themselves. Domestic 

wine and exported wine were not the same thing, even though they 

were sold in the same liter bottles.

A few years later, at the University of Geneva, I studied with a pro-

fessor who was an expert in the United Nations’ databases. He had 

become suspicious of the field crop yields being reported by some 

developing countries, so he fashioned an indestructible tub that held 

exactly one bushel of grain and spent a summer visiting agricultural 

reporting stations in Africa and Asia to compare his accurate ves-

sel with the volume of the bushel measures used locally. He found 

such a wide discrepancy in this presumably standardized measure-

ment unit that many of the UN’s agricultural statistics were declared 

meaningless—even though government planners and grain traders 

had been relying on the data for years. I learned that a bushel is not 

a bushel is not a bushel.
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WHAT ARE DATA?

Generally speaking, data are the stuff that makes statistics possible and 

necessary. Statistics was not even invented until governments started 

collecting lots of data in the eighteenth century. (The etymological root 

of statistics is state, as in political unit or nation–state. The word itself 

reflects statistics’ origin as a tool to help states—that is, governments—

manage an ever-growing volume of numbers that measured the popula-

tion and the economy.)

Data are the recorded and reported measures of real-world phenomena—

the values of variables, which are the possible numeric (that is, quantita-

tive) measures of an event or experiment. As such, data can be no more 

accurate than the instruments and the systems used for recording and 

reporting them. To accept data as truth is to assume implicitly that the 

people who compile them are careful and honest. Because the recording 

and reporting of data involve humans, we ought to know better than to 

accept numbers without reservation. We need to think of data as more 

than just numbers.

Data by themselves are not usually very useful. They need to be seen as 

one of the links in a chain of activities that helps us make the right (or, 

under the circumstances, the best possible) decisions. Many philosophers 

of science have written about the chain of events that links thought to 

action in the quantitative world. Harlan Cleveland has summarized this 

reasoning in a five-part, interactive process1 I use as the basis for a concep-

tual model that helps put data in their rightful place:

1. Thought: The initial stage of quantification, characterized by conjec-

ture, curiosity, hypothesis, and so on.

2. Data: Thoughts quantified to become “undigested observations, 

unvarnished facts.”

3. Information: Numbers put into useful form, “organized data.”

4. Knowledge: “Organized, internalized information.”

5. Wisdom: “Integrated knowledge … which can be used to do some-

thing,” such as make good decisions.

1 Harland Cleveland, The Knowledge Executive: Leadership in an Information Society (New York: E. 

P. Dutton, 1985), pp. 22–23.
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The important point of this model is that data are only part of the big pic-

ture. Careful thinking is an essential first step that should be taken before 

data are collected in the second step. Neither of these steps is covered in 

traditional statistics texts or courses, but both are essential foundations 

for proper applications of statistics. Descriptive statistics (Chapter 5) is the 

tool for the third step in this model, organizing data to create informa-

tion. Inferential statistics (Chapter 6), relational statistics (Chapter 7), or 

explanatory statistics (Chapter 8) are then used in the fourth step to turn 

information into useful knowledge.

Do not get lost in philosophical nuances of the difference between the 

fourth and fifth steps: knowledge and wisdom. Wisdom is the art of being 

a good, experienced decision maker. Statistical analysis of data can give 

you knowledge, but it cannot make you wise. And if you want to use data 

wisely, you need to be very sensitive to two very important (that is, these 

concepts will be on the exam) measures of the quality of data: validity 

and reliability.

Validity

Validity refers to the meaningfulness of data, the extent to which the vari-

able being measured truly represents the underlying thing or phenomenon 

that is under investigation. I know this definition sounds a bit philosophi-

cal, but validity of data is analogous to the concept of essence that I learned 

back in my undergraduate philosophy class. To a philosopher, essence is 

the fundamental nature of something as conveyed by its name. The word 

chair, for example, conveys a very specific image in the mind’s eye. A chair 

is something to sit on, but not everything you can sit on is a chair. You can 

sit on an upturned garbage can, but it does not have the essence of a chair. 

The essence, or validity, of “chairness” comes from having four legs and a 

seat and a back, all in general proportions that are relatively comfortable 

to a seated person.

Valid data are those pieces of information that meaningfully represent 

the subject of a study, just as a word can define the essence of an object. 

Suppose you want to collect data to learn more about teen pregnancy in 

order to decide whether a certain intervention is likely to make a differ-

ence. How do you measure teen pregnancy? Well, studies commonly mea-

sure the magnitude of the problem with the reported number of babies 

born to unmarried mothers under 18 years of age, a statistic available from 
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the local health department. Is it valid? No way! It measures only pregnan-

cies brought to term.

Terminated pregnancies are part of the problem but are not included 

in the number commonly used to measure it. The statistic further fails 

to capture the unwanted births to teen moms who got married to avoid 

social stigmatization. It also misses the local girl who gets pregnant but 

goes to another data unit (city or state) to have her baby. When we use 

the out-of-wedlock number, we only measure part of the problem—which 

provides an invalid picture of the whole problem.

Once sensitized to the issue of validity, you will find—as I frequently 

do—that many studies are themselves invalidated because they rely on 

data that are imprecise measures of the phenomenon under investigation. 

For example, the payment rates of diagnosis-related groups (DRG) have 

been used as indicators of the cost of providing a hospital service, which 

is misleading because DRGs have never been set on the basis of actual 

production costs. Malpractice complaints have been used to measure 

quality of care, which is invalid because most actual cases of negligent 

practice never end up in court and because most malpractice suits that 

go to trial are decided in favor of the doctor. Patients’ hospital records are 

often used to provide data about the quantity of care, but hospital records 

can give an incomplete picture because they do not always capture related 

outpatient services, care purchased from hospitals or doctors outside the 

data-gathering system, or services obtained from alternative providers 

(such as massage therapists or acupuncturists) whose data never enter 

the system.

Consequently, as you review studies that might influence your manage-

rial or clinical decisions, spend a few moments thinking about the valid-

ity of the data being used in a study. Ask yourself if the variable that was 

measured is a meaningful proxy for the problem under investigation. If 

the study uses data from an apple orchard to make statistically significant 

statements about orange groves … well, you get the point.

Reliability

Reliability refers to the accuracy of measurement, the repeatable precision 

of the quantification process. We tend to assume that researchers always 

make sure their data are accurate. They do not, so we should not. We need 
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to look carefully for signs that the data are potentially inaccurate (even 

though they might be extremely valid).

Measurement error can be a serious problem in one of several differ-

ent ways. First, researchers have been known to use uncalibrated instru-

ments—balance scales that have not been checked for years, thermometers 

with separated columns of mercury, computer files that have never been 

verified, and so on. The problem is particularly serious in multisite or 

time-series trials when instruments are not calibrated at all data-gathering 

locations and at the beginning and end of the study. Imagine a two-year, 

multisite study that uses patient weight as a measure of treatment effect. 

The results could be meaningless if the scales at one site read high and the 

scales at another read low or if weights at the beginning and end of the 

study are recorded on different, uncalibrated scales.

Even when instruments are calibrated, a second form of fatal measure-

ment error (error that kills a study, not a patient) can occur if the calibra-

tion is not performed with respect to a national or international standard. 

Pathologists deal with this potential problem by using reference standards; 

in other words, their laboratory instruments are calibrated against sam-

ples that are certified to be accurate at specific levels of precision. Think of 

the reference lab when you review a study’s data. You have reason to doubt 

the results of a study if you do not find evidence of calibration to a com-

mon standard when calibration is necessary.

A third type of problem with reliability is errors in recording data. This 

problem is hard to identify because primary data (that is, data collected 

specifically for the study) are almost never displayed in published reports. 

Here, you can give the benefit of the doubt to the authors unless you spot 

an obvious indication of recording error. The more the data were trans-

formed during the study, however, the greater the opportunity that an 

observation was improperly read or erroneously recorded.

Problems of validity and reliability are all the more likely to occur when 

a study uses secondary data (that is, data that were collected by somebody 

else for another purpose). My favorite good example of a bad example is 

the U.S. Census and many of its component surveys related to consumer 

spending. Census data are definitely not calibrated. Take income statis-

tics, for example; if you and I are both asked to report our income on the 

census form, you might very precisely report the salary from your job as 

a healthcare decision maker but fail for whatever reason to mention siz-

able net earnings from the rental properties you own. (Remember, this 
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is the census, not the IRS.) On the other hand, a self-employed person 

never knows how much money will be made in the current year, so his or 

her advance statements of income will be a wild guess. Further, since we 

only fill out the census forms every 10 years, a bureaucrat is responsible 

for attempting to adjust the data to the current year. (I will not even try to 

discuss all the reliability problems inherent in letting someone else adjust 

data that were flawed from the start.)

Secondary income data from the decennial census get used in all sorts 

of research—such as studies of health status and income or health ser-

vices utilization and income—that could be useful to decision makers. But 

the results are not very useful if the data are flawed. Many comparable 

problems can arise with numbers from any secondary source because they 

were not collected specifically for the purpose of the hypothesis under 

study. Some researchers do not even pay sufficient attention to issues of 

data quality when they collect primary data.

Unfortunately, the validity and reliability problems are seldom discussed 

in research articles, so you need to be sensitive to them and to interpret 

studies with an appropriately sized grain of salt. Here are a few other areas 

where you will generally need to judge for yourself because researchers 

tend not to deal fully with the potential problems.

Location Bias

Researchers tend to collect data and conduct studies close to home. 

Consequently, not a whole lot of research gets done in inner cities, 

remote rural areas, or other areas where researchers tend not to live and 

work. Be wary of location-specific studies that implicitly or explicitly 

extrapolate their results to other areas where different circumstances 

might lead to different results. Do not use a study in your setting if you 

think it is not directly comparable to the locale where the research was 

conducted.

Sex Sampling Bias

Although my experience suggests that the research community tends to 

be sexually balanced (that is, male and female researchers in proportion 

that does not suggest widespread discrimination on the basis of gender), 

© 2009 by Taylor & Francis Group, LLC



research itself has focused disproportionately on white men. Federal 

investigations have highlighted the relative inattention to women in clini-

cal research, and Congress takes occasional action to direct more funding 

to research involving the female population. Results of studies involving 

men are often invalid when extrapolated to women, so be attentive to the 

possibility of this problem. The same problem exists with respect to race 

and age. Members of minority groups and children are seldom represented 

in proportion to their numbers in the population.

Dollar Measurement Bias

Our basic monetary unit is a key variable in many studies that will cross 

a decision maker’s desk. The dollar might seem to be about as valid and 

reliable as a measure could get, but it is not. A major problem with money 

as a measure is variation in its value (that is, how much it will purchase) 

over time. We all know that a dollar today buys a whole lot less than it did 

10 or 20 years ago, but economists have yet to devise a good technique for 

expressing the dollar in some constant value. The consumer price index is 

the common approach to the problem of standardizing the value of the dol-

lar over time, but it is inherently flawed (see “The Consumer Price Index”).

Adjusting the dollar for differences in purchasing power in different loca-

tions at the same time is an equally vexing problem. For example, a low-

income mother in the inner city and an upper-class mother in the suburbs 

do not get the same care for the same amount of money. The sum of $300  

will purchase one visit to the downtown hospital’s emergency room or 

three visits to a suburban pediatrician—hardly an equal purchase for the 

same dollar amount. Also, some people get health services without pay-

ing for them (for example, Medicaid or charity care patients), so studies of 

out-of-pocket medical expenditures can understate care actually received. 

Finally, international comparisons of healthcare spending are approxima-

tions at best, due to the imprecision introduced by the use of fluctuating 

exchange rates to standardize the value of different currencies.

Counting Error

The databases available to healthcare researchers present some vex-

ing problems related to the seemingly simple measurement activity of 

counting. For example, subjects with more than one name (for example, 
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THE CONSUMER PRICE INDEX

Economists have long recognized the need to adjust time-series data 

for changes in the buying power of the monetary unit. The consumer 

price index is the best solution devised so far, but it has limitations 

that need to be understood by those who use it.

The foundation of a price index is a market basket of goods that is 

priced periodically, such as monthly or annually. The composition of 

the market basket is carefully defined to represent consumption pat-

terns in the base year, and all the items in the basket are then priced. 

The total cost of the basket is assigned an index value of 100. In each 

subsequent market period, the identical market basket of goods and 

services is priced at current value. The total cost of the basket in each 

subsequent period is then expressed in terms of percent change from 

the base year index value of 100.

To illustrate the principle, imagine a market basket of goods that 

cost $60 in the base year; $60 becomes the index value of 100. At the 

end of the next year, the cost of the same goods has risen to $66, a 10 

percent increase from the previous year. The index value of the $66 

market basket at the end of this year is 110, a 10 percent increase over 

the base index of 100. In other words, a price index is a relative (per-

cent) expression of differences in absolute (dollar) values over time.

The medical care component of the Consumer Price Index, commonly 

designated the MCPI, illustrates the major problem with price indexes. 

The base year for the MCPI was 1967, so the original market basket 

included medical goods and services that were common at the time: 

Tetracycline was the representative prescription drug, a hernia repair 

was the surgical procedure, and a house call was one of the included 

doctor services. Obviously, the typical medical market basket several 

decades later would not include these items due to dramatic changes in 

medical science, so the market basket needs to be changed. But chang-

ing the market basket invalidates comparisons with the base year.

Price indexes are only valid over time when the market basket 

is unchanged over the same period of time. Frequent and major 

changes in the medical market basket effectively make price indexes 

meaningless for long-term studies in healthcare.
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maiden name and married name, name correctly and incorrectly spelled) 

or identification number (for example, multiple Social Security numbers) 

will be identified as different people in a database. Studies that rely on 

counts of patients would correspondingly overestimate the actual size 

of the population. Another common problem is created by the fact that 

some clinicians or patients prefer to schedule multiple visits for a multi-

step therapy, while others might prefer a single visit. A study that ignored 

this fact might conclude that more care was provided in the former situ-

ation because the patient had more visits, but the two situations may be 

identical in clinical terms. The costs of standardizing the count can be 

substantial, so many researchers conduct studies without addressing it.

Definitional Error

In health studies, a rose is not necessarily a rose is not necessarily a rose. 

For example, a study comparing health services utilization under different 

practice arrangements could produce misleading results in the absence of 

procedures to standardize the definition of key variables such as a patient 

visit. A member of a health maintenance organization (HMO) might 

be seen by a nurse practitioner for the same care provided by a primary 

care physician under a fee-for-service plan. If only doctor contacts were 

counted as patient visits, the care given to the HMO member would be 

understated. Questions have even been raised about the validity of equat-

ing all doctor visits. Is the care provided by a subspecialist the same as the 

care provided by a generalist? The issue is occasionally researched, hope-

fully with valid and reliable data.

Adjustment Error

Some studies and many media stories about those studies fail to make 

relative adjustments for absolute differences in key variables when they 

report results. Five deaths in each of two different study sites might give 

the impression that there was no difference between the sites, but the 

difference would be highly remarkable if one were a rural community 

with 2,000 inhabitants and the other a city with 200,000. On the other 

hand, the difference would be interpreted quite differently if the five 

deaths occurred over two years in the small town and over two days in 

the city. Standardization for population, time, and other measurement 
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standards is always important when samples are not identical, but stud-

ies do not always make the necessary adjustments. Do not be fooled by 

unadjusted results.

Time Measurement Error

Time would seem to be about as standardized as a measure can get, 

but several distortions can be found in healthcare studies. For example, 

be on the lookout for studies that fail to distinguish between calendar 

year and fiscal year. Hospital cost studies occasionally lump data into 

the same year for comparison purposes, even though some of the hos-

pitals start their fiscal years as much as three quarters later than the 

others—close to a year’s difference. A few studies of the early impact of 

prospective payment committed a similar error by comparing hospitals 

at specific points in time even though hospitals were brought into the 

diagnosis-related group (DRG) system in staggered fashion over sev-

eral years (that is, a hospital that had been receiving DRG payments for 

some time could have been compared with one that was still receiving 

retrospective cost-based reimbursement).

The quality of data has received a lot of attention in this chapter because 

it is one of the most important considerations in judging the overall worth 

of a study. You should become familiar with these issues so that you are 

comfortable applying them in your own reviews of published literature. 

You should also be on the lookout for other data-related problems that 

have not been included in this chapter. With additional experience and 

careful thinking, you may well identify even more items that need to be 

added to this important list.2

TYPES AND LEVELS OF MEASUREMENT

Just as the world is divided into two types of people—those who divide the 

world into two types of people and those who do not—data are divided into 

2 Please contact me if you do develop some useful additions. I will gratefully include them in subse-

quent editions of this book so that others can benefit from your careful thought and observation.
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A TIMELY PROBLEM WITH PRIMARY DATA

Using secondary data greatly increases the potential for problems 

with reliability and validity of data because data collection is not 

tied directly to experimental design, but using primary data—data 

collected specifically for a particular study—does not automatically 

make the problem go away.

I was once asked to read a master’s of science in health admin-

istration (M.S.H.A.) thesis written by a nurse who managed the 

emergency department of a large, urban hospital. She had studied 

whether a new model of patient triage made any difference in patient 

outcomes in her department, a place where time is an important ele-

ment in quality of care. The research design was exceptional. It had 

a good hypothesis, clear problem statement, nice review of the litera-

ture, well-controlled sample selection, careful research design, and 

the like. Her data analysis was also thorough and thoughtful. To col-

lect the data for her study, she had prepared a data form to be filled 

out by caregivers.

I was impressed with everything except one aspect of her approach 

to data collection. Time was a key variable in her analysis, and all 

employees who treated a patient wrote down the beginning and end-

ing times of their contact with the patient: for example: “started con-

tact at 7:38 a.m. and ended contact at 7:51 a.m., for 13 minutes of 

care.” In particular, the total duration of treatment was defined by 

the difference between the starting time on the first sheet and the 

ending time on the last. Yet, I could not find any evidence that all 

the caregivers had been asked to calibrate their watches during the 

study.

I called the student and issued a challenge: set a very accurate time-

piece to Greenwich Mean Time (GMT) and compare its time with 

the time on every clock in the ER (such as employees’ wristwatches, 

wall clocks, radio clocks, time indications on computer screen, and 

so forth) that might have been used to record the times on the data-

collection sheets. I then asked her to plot the deviations from GMT.

“Ouch,” she exclaimed when she called me back. Differences in 

the various timepieces accounted for nearly one-third of the total 
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two types: parametric and nonparametric. The distinction between para-

metric and nonparametric data is one of the most important theoretical 

concepts in statistics, yet it is commonly ignored or barely mentioned in 

statistics textbooks.3 In instances where the distinction is barely men-

tioned, some authors go so far as to state that the distinction is unimport-

ant. I disagree, and I hope you will too, after reading this section.

I am among the purists who believe that the difference between para-

metric and nonparametric data is important and needs to be understood 

by anyone who wants to use statistics correctly. Indeed, why would statis-

ticians have spent so much time developing distinctly different theoretical 

approaches to the analysis of parametric and nonparametric data if there 

were no consequential differences between them? Parametric and non-

parametric statistical tests exist because parametric and nonparametric 

data are different, and good researchers are careful to match the type of 

statistical test to the type of data. Looking for a proper match between 

type of test and type of data should be an important part of your assess-

ment of a published study.

The key issue in the difference between parametric and nonparametric 

data is consistency in the unit of measurement. Parametric measurement 

is consistent from user to user; nonparametric measurement is not. Do not 

read this statement as a pejorative comment on nonparametric data. Both 

forms of measurement are extremely useful when properly analyzed. (I 

will admit one bias. Although I have nothing against nonparametric data 

3 Four of the nine statistics texts in my personal library do not even mention the distinction, much 

less discuss it. In my opinion, the distinction gets adequate discussion in only two of the five 

texts that do mention the differences between parametric and nonparametric measurement and 

its importance to statistical analysis.

variation in treatment time between the experimental and control 

groups. She repeated the experiment with coordinated clocks, got 

an A+ on the revised thesis, and went on to graduate cum laude. To 

the best of my knowledge, she never did publish the study, but if it 

had been published in its original version, ER directors all around 

the country might have made a change that was based on unreliable 

data, even though the rest of the study would have been highly rated 

according to the criteria presented in this book.
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and use them in my own research, I believe that parametric measurement 

should be used whenever possible because parametric statistical tests are 

more powerful than their nonparametric counterparts. Nonparametric 

data are very helpful when parametric data are not possible.)

Parametric Data

Parametric measurement has consistent, and therefore universal, mean-

ing. The scales of parametric measurement have the same gradations 

everywhere they are used. By extension, parametric data are those obser-

vations on variables that do not have to be defined beyond being identified 

by name because everyone has the same understanding of the basic mea-

surement unit and its subdivisions. Further, the distance between points 

on the scale is everywhere the same.

The meter is a good example of a parametric measure of distance. The 

meter is universally defined as one ten-millionth of the distance from 

the equator to the pole, measured along a meridian. (The meter has been 

defined even more precisely in terms of the wavelength of radiated light 

under specific conditions.) A platinum bar exactly one meter in length is 

kept at the International Bureau of Weights and Measures in Paris, and it 

serves as the international standard for calibrating all other meter sticks. 

Assuming the use of properly calibrated instruments, a research subject 

measuring 1.74 meters in height in Germany is exactly as tall as a subject 

measuring 1.74 meters in Pakistan. Authors who might be doing a study 

of Germans and Pakistanis do not have to define height in any way other 

than a meter because a meter is a meter is a meter. That is parametric.

There are similarly consistent units of measure for time, weight, volume, 

color, and other attributes that have been universally defined. In other 

words, data measured in units that speak for themselves are parametric. 

Two levels of parametric data, ratio scales and interval scales, are further 

defined. For both, the intervals between points on the scale are always the 

same. The difference is that a ratio scale has a true zero (such as weight, 

time, temperature on the Kelvin scale), whereas an interval scale does not 

have a true zero (such as temperature on the Fahrenheit scale). Do not 

worry about the difference between ratio and interval scales. Just be sure 

that you know how to recognize parametric data.

From the perspective of statistical theory, the neat thing about parametric 

data is a built-in, group-to-group consistency in the unit of measurement. 
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As will be shown later in the discussion of inferential statistics, a consis-

tent measurement scale is the condition that makes theoretically possible 

the most powerful comparisons of distributions from experimental and 

control groups to see if actual differences between them are greater than 

any difference that might be explained by chance. (Do not worry if this 

point does not quite make sense now; you should be able to understand 

it after reading Chapters 5 and 6.) The mathematical operations of para-

metric statistical tests—in other words, the computations expressed in all 

those equations involving sums of squared deviations from the means, 

square roots of the sample sizes, and the like—are made possible by the 

fact that distributions of different samples can all be reduced to measure-

ment along a scale that has universal meaning and consistent distances 

between points.

Nonparametric Data

Nonparametric measurement is defined by the user, and the definition 

is arbitrary. Therefore, nonparametric data do not have universal mean-

ing, nor do they have any uniform distance between points on the mea-

surement scale. Consequently, comparisons between groups cannot be 

made on a single scale because magnitudes are not necessarily consistent 

from group to group or even within groups. For this reason, nonpara-

metric data are also called “distribution-free” data. (Statistics borrowed 

the term parametric from mathematics, where it refers to the specific 

distribution of values in a function. Therefore, nonparametric effectively 

means not distributed.)

Subjective assessment of consumer satisfaction is a good example of 

user-defined measurement. Using a common data-gathering tool called 

a Likert scale, customers at the ABC Health Center might be asked to 

respond to the following item on a questionnaire:

How do you rate the quality of your care at ABC Health Center?

_____ Bad
_____ Poor
_____ Fair
_____ Good
_____ Excellent
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A consecutive number is assigned to each response (Bad = 1, Poor = 2, 

Fair = 3, Good = 4, and Excellent = 5) so that each patient’s response can 

be entered into a database for computerized analysis.

Not to be outdone, the XYZ Health Center also decides to conduct a con-

sumer satisfaction survey. It, too, uses a Likert scale on its questionnaire:

How do you rate the quality of your care at XYZ Health Center?

_____ Excellent
_____ Good
_____ Fair
_____ Poor

A consecutive number is assigned to each response (Excellent = 1, Good 

= 2, Fair = 3, and Poor = 4) in order to allow data analysis by computer.

Both approaches to data gathering are perfectly defensible, but you can 

immediately see how the user-defined nature of this process prevents mean-

ingful comparison of the results. The ABC survey used a five-point scale 

going from worst to best, while the XYZ survey used a four-point scale going 

from best to worst. Is consumer satisfaction identical at ABC and XYZ if the 

average score of 100 patient responses per clinic was 4.0? Obviously not; it is 

good at ABC and poor at XYZ. To make any sense of the information, you 

need to be told the exact scale and numerical scoring method because there 

is no universally accepted measure of subjective information.

To further complicate matters, two patients who received absolutely 

identical treatment at ABC Health Center would probably give different 

ratings if they had different expectations. A new patient whose point of 

reference was the Mayo Clinic might tend to rate ABC somewhat more 

critically than a new patient who had received all previous care from an 

inner-city Medicaid mill. In the absences of a calibrated satisfaction meter 

that we can attach to a patient’s arm like a blood pressure cuff, we must 

realize that a nonparametric scale does not provide a consistent measure 

from subject to subject.

This example clearly shows that nonparametric data are much less pre-

cise than their parametric counterparts. However, in spite of the limita-

tions of nonparametric measurement, nonparametric data are useful, and 

they can be analyzed by statistical tests that use a different (vis-à-vis para-

metric) theoretical approach to comparison. The computational founda-

tion of nonparametric statistical tests will be described in later chapters. 
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For now, the important point to remember is that nonparametric data are 

fundamentally different from parametric data, and they should be ana-

lyzed with the appropriate nonparametric test. Dozens of nonparametric 

tests have been developed to reflect the special characteristics of distribu-

tion-free data based on arbitrary, user-defined measurement.

This chapter has presented some very important information about the 

quality of data and the fundamental differences between data that have 

universal meaning and known distributions and data that do not. Studies 

should be judged according to these qualitative considerations. However, 

before exploring the statistical models that transform data into informa-

tion and information into knowledge, let us look at one more important 

part of the big picture: data-collection processes.

© 2009 by Taylor & Francis Group, LLC



4
Samples and Surveys: How 
Numbers Should Be Collected

Each of the three previous chapters explored a basic building block of 

good research: scientific method, experimentation, and data. If a study 

conforms acceptably well with the qualitative criteria discussed under 

each of these headings, its quantitative information may be suitable for 

statistical analysis, and—assuming good statistical practice—its findings 

may be worthy of a decision maker’s careful consideration.

As strange as it may seem, valid and reliable data can be collected in 

ways that cast serious doubt on the final results of a study. Imagine, for 

example, researchers selecting a biased sample (for example, asking only 

cigarette smokers to participate in a study of attitudes toward smoking 

bans in public places, or choosing only hospitalized patients for a study of 

a community’s general level of health) and then measuring the subjects’ 

opinions or health status with the utmost care and precision.

Just as good statistics cannot overcome bad science, good measurement 

cannot overcome bad data collection. How the data are collected is as 

important as how good the data are, so let us add this fourth general area 

of concern to the list of criteria that need to be met before the statistical 

analysis is reviewed.

SAMPLE SELECTION

One of the important characteristics of good data collection, random sam-

pling, has already been addressed in the context of experimental research 
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(see Chapter 2). A sample data set is biased if some members of the popula-

tion it represents were more likely than others to be included in the sam-

ple. The more a study’s sampling deviates from a random process where 

every member of the population has an equal probability of being selected, 

the less meaningful the study’s results are—even if awesome effort was 

dedicated to validity and reliability.

Acceptable approaches to random sampling are the subject of numerous 

books and journal articles that can be easily identified by any reader who 

really needs to know how to select a proper research sample. However, 

for the purposes of this book, being sensitive to the issue is sufficient. If a 

study’s authors do not convince you that the sampling process was truly 

random, especially when you can plausibly imagine how some people in 

the population might have been systematically excluded from the sample, 

you have reason to doubt the data unless the researchers provide a convinc-

ing case for using a nonrandom procedure to select the study’s sample.

Randomness requires a little help when a study needs to include subjects 

who are sparsely represented in the population. The desirable approach in 

such circumstances is called stratified sampling. If, for example, I wanted 

to study some aspect of the relationship between health status and ethnic 

origin in a typical rural area, a random sample of sufficient size would eas-

ily produce enough Anglos and Latinos because both groups are large and 

together constitute perhaps 90 percent of the population in many rural 

counties. However, the Asian population in an area of interest might be 

less than 5 percent of the total. If it is growing fast, it should be included 

in any study that might be used to change the local allocation of health 

resources. A random sample of the entire population would likely produce 

a disproportionately small number of Asians in the sample, so we would 

need to find some way to compile a list of all ethnic Asians and then ran-

domly select subjects from that list to ensure including enough Asians in 

the study.

SAMPLE SIZE

Selecting samples the right way is an essential attribute of a good experi-

mental study conducted to see if something makes a difference, but ran-

domness is not the only issue that matters. The sample must also include 
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enough subjects to be representative of the population. Consequently, 

the size of the sample must meet certain standards. Samples that are 

too small cast serious doubt on a study’s findings, so some general 

guidelines are needed for determining the minimally acceptable sizes 

of research samples.

Not surprisingly, the issue of minimum sample size is directly related to 

the concept of randomness. Random selection is used to prevent human 

intervention from intentionally or unintentionally creating differences in 

the control and experimental groups used to test a hypothesis, but ran-

domness has the potential to introduce a bias of its own in small samples. 

In other words, even a random sample that is too small can fail to produce 

representative data. Here is why …

The prototypical random event is the toss of a fair coin, one where either 

outcome (that is, a head or a tail) is equally probable and each toss is inde-

pendent of every other. We do not have to be rocket scientists to expect 

that the number of heads and the number of tails should be equal or very 

close to equal over the long haul with a fair coin, but we also know from 

experience that the two possible events do not alternate in lockstep order. 

If I get a head on the first flip, I am just as likely to get a head on the sec-

ond toss and on the third toss, and so on. (Imagine how useless coin flips 

would be if random events occurred in predictable order—head, tail, head, 

tail, head, tail, and so on. We might as well let the home team always start 

out with the football.)

STATISTICAL ABBREVIATIONS

Sample size is commonly abbreviated with the lowercase letter n, fol-

lowed by the equal sign and a number. For example, n = 72 means 

the sample included 72 subjects. An uppercase N refers to the size of 

the population from which the sample was drawn.

The conventional practice in statistics is to use an uppercase let-

ter as the abbreviation for a population parameter and the same let-

ter in lowercase to indicate the corresponding measure for a sample. 

Sometimes Greek letters are used instead of familiar letters from our 

Roman alphabet, but the practice of using capital letters for popula-

tions and small letters for samples is the norm in either instance.
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Just how many times must we flip a coin before the outcome of this per-

fectly random event produces the expected outcome, an equal number of 

heads and tails? For example, is 10 flips (n = 10) enough? Well, if we repeat-

edly flip a fair coin 10 times and record the results of each trial of 10 tosses, 

we will discover that five heads and five tails occurs slightly less than 25 per-

cent of the time. (Go ahead and do this exercise if you need to be convinced. 

Professors of large classes in introductory statistics often have each student 

record the results of 10 coin tosses. When the results for the whole class are 

analyzed, only about one student in four reports getting an equal number of 

heads and tails.)

If 10 tosses were enough to make the sample an accurate reflection of the 

population, we should find five heads and five tails occurring almost all 

the time, not 25 percent of the time. Consequently, n = 10 is not enough to 

approximate the predictable outcome of a random event. Flipping a coin 

10 times does not consistently yield the “right” answer: an equal number 

of heads and tails. What about 20 tosses, 30, 40, or 50?

In other words, just how big does a random sample have to be in order to 

serve as an acceptable proxy for the population it represents? The conven-

tional answer is minimum sample sizes of 30, all other things being equal. 

Therefore, when you review studies, you generally want to see at least 30 

subjects in the control group and in each experimental group.

Note carefully that the expectation is 30 subjects per group, not a total 

of 30 subjects involved in the experiment. Since every good experiment 

has at least two groups—a control group and one or more experimental 

groups—the minimum number of subjects that needs to be included in 

a research experiment under normal circumstances is effectively 60. If 

one or more of the samples has fewer than 30 subjects, the study’s results 

might be explained not by the experimental effect, but by the small sam-

ple size.

Why is n = 30 generally accepted as the minimum size of sample that over-

comes the problem of small numbers? The answer lies in probability theory, 

and explaining it would go beyond the scope of this book. In a nutshell, a 

mathematical formula is used to compute the distribution of probabilities 

for various sample sizes. The theoretical distribution of random events con-

verges toward an acceptable level of certainty (95 percent) when the sample 

size reaches 30 cases. (Personally, I am comfortable with a minimum of 30, 

but I much prefer samples sizes in the range of 60 to 100 because I like the 

extra margin of statistical power provided by larger samples.)

© 2009 by Taylor & Francis Group, LLC



Although n = 30 is a good rule-of-thumb minimum for evaluating 

research studies, much larger samples are necessary under some cir-

cumstances. To make the point with a common metaphor, a needle in a 

haystack is quite unlikely to be found among the first 30 straws drawn at 

random. Therefore, if a study involves something very uncommon in the 

population, such as patients with a rare disease or persons over 100 years 

of age, larger samples may be needed just to ensure that the sampling pro-

cedure yields enough subjects for comparisons.

Stratification is generally a suitable solution to this problem when the 

study group can be readily identified for targeted sampling, but very large 

samples are sometimes the only defensible way to conduct a study. Be on 

the lookout for this possibility. Other than suggesting you think carefully 

about the possibility that a larger-than-normal sample is needed to ensure 

sufficient inclusion of something relatively rare in the population, I do not 

know any simple approach to determining just how large the sample needs 

to be. If you suspect a problem with sample size in a study that is very 

important to you, consult a statistician who can assess the probabilities 

for you.

All other things being equal, can a sample be too large? Theoretically

speaking, no, because increasing the size of the sample is the key to increas-

ing the power of the test. A statistical test becomes stronger as the sample 

size gets larger, that is, as the size of the sample approaches the size of the 

population. Indeed, statistical tests are not even necessary when the sample 

is the population because probabilistic inference—the principal function 

of statistics—is irrelevant when everything can be directly measured and 

compared. So, in theory, a sample cannot be too large. Practically speak-

ing, however, samples can be larger than they need to be. Beyond a certain 

point, adding to the sample size reaches a point of diminishing marginal 

returns. Selecting the extra subjects becomes relatively expensive for the 

small increase in statistical power.

Researchers need to make trade-offs in a world where funding is tight, and 

sample size is just one of many factors that needs to be balanced. Some try 

to impress us with a large n, but a big sample is misleading if it is obtained 

at the expense of the other attributes of good research. Conversely, some 

researchers waste our time with studies based on samples that are too small, 

even when the study is practically perfect in every other respect. Samples 

containing at least 30 randomly selected and randomly assigned subjects are 

usually large enough to support the probabilistic foundation of statistical 
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analysis. Adding to the sample size is desirable when resources allow, but 

enough is enough. Time, money, and other resources put into increasing the 

size of the sample could often be better expended on activities to improve 

randomness, control, precision of measurement, and the like.

RESPONSE RATE

A randomly selected sample of 30 or more subjects does not automati-

cally confer the credibility of probability in all circumstances. It is large 

enough to be theoretically defensible when every randomly selected sub-

ject is entered into the study’s database, but problems start to occur when 

selected or intended subjects have the opportunity not to be included in 

the database—in other words, not to respond to the invitation to join in 

the study. Therefore, attention to the rate of response should be one of the 

criteria you use when deciding whether to be swayed by reports of some-

one else’s research.

The major problem inherent in nonresponse is the possibility that sub-

jects who choose not to participate in a study are different from those who 

do respond in some way that would change the interpretation of results. If 

its nonparticipating subjects are no different from its participants, a study 

is not adversely affected by nonresponse. However, many researchers fail 

to realize (or realize and fail to reveal) how nonresponse may cause some 

very important information to be kept out of the database.

An excellent example of the potential problem can commonly be found 

in studies of consumer satisfaction. Imagine 120 randomly selected per-

sons responding to a written survey sent to 200 active patients of a medical 

group. The sample seems good on first examination, randomly selected 

and well in excess of 30 subjects. Even the 60 percent response rate seems 

impressive … until you start to think of reasons why 80 patients did not 

return the survey form. Does the missing 40 percent include all the mem-

bers of minority groups, patients who perceive the clinic is so insensitive to 

their concerns that completing the survey would be a waste of time? Does 

the group of nonrespondents include all the really dissatisfied patients, 

people who are afraid to express their true opinions for fear of retribution 

on the next visit? Does it include all the visually impaired elderly who had 

trouble reading the form?
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The list of possible reasons for nonresponse goes on and on, and that is 

the point. Unless researchers can describe the missing participants and 

present plausible arguments why nonrespondents are not different from 

the respondents in any way that would influence interpretation of the data, 

a less-than-perfect response rate is a real reason for concern. As a decision 

maker wondering whether to be influenced by a study, you should stop to 

think about any unexplained or unconvincingly explained nonresponses. 

Above all, be on the lookout for studies that downplay the significance of 

nonrespondents on the unproved assumption that they are no different 

from the respondents. Response rate is a significant issue. The more it falls 

below 100 percent, the more it needs to be addressed in the interpretation 

of findings.

Also, be on the lookout for perfectly balanced samples within 100 per-

cent response rates. In my experience as a health marketing consultant, I 

have on several occasions been given the results of “random” community 

surveys to assess unmet needs, consumer satisfaction, and competitors. I 

am very suspicious when the sample includes exact multiples of 100 per-

sons—and even more dubious when the sample is equally divided between 

men and women, users and nonusers, insured and uninsured, and so on. 

This seemingly perfect outcome results from a deceptive practice used in 

the survey research business. The survey participants are actually drawn 

at random, but the surveyors keep sampling until they achieve the desired 

mix of respondent characteristics. What they do not tell you, to create 

an illustrative example, is that 900 people were contacted to produce the 

“perfect” sample of 500, a 55 percent response rate. So what about the 400 

persons (45 percent) who refused to participate in the study or were deleted 

from the sample because their category was already filled?

The research community does not have a commonly accepted threshold 

for deciding when a response rate is a significant problem. My personal 

experience makes me very uncomfortable with unexplained response rates 

below 80 percent, and even that number varies up or down with the circum-

stances (that is, with other factors that I think might be relevant). However, 

I do have serious reservations about the large number of published studies 

that draw conclusions with response rates below 60 percent.

Rather than provide a minimum response rate that might give you a 

false sense of security, I urge you to think carefully about the possible rea-

sons for nonresponse and to interpret results in consideration of related 

reasons that might lead to different interpretations of a study’s data. After 
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grappling with this issue a few times, you may be ready to join me in wish-

ing that researchers would put more money into getting high response 

rates from small (n ≥ 30) samples rather than low response rates from 

large samples.

INFORMATION SYSTEMS

The information system itself can become a factor in defining the quality of 

data in a study. Ideally, the system used to collect, store, and report infor-

mation should be neutral, keeping the data as pure as possible. However, 

data are handled with varying degrees of care, and you need to be aware 

of the fact that some apparent findings are the result of problems with the 

information system.

I first became sensitized to this problem in the mid-1980s when a state 

health department hired me to evaluate the method used to gather infor-

mation about infectious diseases. The information was collected on a 

monthly basis from physicians’ offices by the county health departments; 

the state office then compiled the reports from the counties. I visited the 

local health department offices in six counties, ranging from remote rural 

to major urban. Well, to make a long story short, I found six totally differ-

ent approaches to data collection. At one extreme, the county sanitarian 

placed telephone calls to friends at a few doctors’ offices, multiplied their 

estimates of infectious disease visits by a factor based on “experience,” and 

filled in the forms that were then sent to the state. At the other extreme, the 

county nurse visited randomly selected offices, reviewed patient records, 

and estimated the overall rate using a formula from the Centers for Disease 

Control (CDC) in Atlanta before sending the data to the state system.

Everyone was trying to do the best job with the resources at hand, but 

the county-by-county approaches to data collection were so different that 

the centrally reported numbers were clearly not comparable. My analy-

sis caught the attention of the health department in another state, which 

invited me to conduct the same analysis there. The results were identical. 

The information in the state database was collected and reported in sev-

eral different ways, raising serious questions about the consistency of the 

data. The lesson: central databases can be misleading if they do not include 

clearly understood and uniformly applied mechanisms to ensure the 
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comparability of data from different sources. When studies use data from 

a central source that has not implemented a standard system, differences 

attributed to an experimental effect might be nothing more than differ-

ences in data reporting. Please note that the problem is comparability, not 

necessarily validity and reliability. The different suppliers of information 

could all be making meaningful and accurate measurements, but they are 

not necessarily measuring the same thing.

SURVEY RESEARCH

Although this book has included some comments about survey research, 

most of the discussion so far has pertained to time-series data made pub-

licly available by large organizations such as the Department of Health and 

Human Services, the Center for Medicare and Medicaid Services (CMS), 

the National Institutes of Health, state health departments, the Census 

Bureau, hospital associations, medical societies, and insurance industry 

groups. A considerable amount of the research of interest to healthcare 

decision makers uses the databases that these national organizations have 

been publishing periodically for the past several decades.

An interesting historical fact is worth noting here. Very little informa-

tion was collected by any of these groups prior to the 1960s because health-

care in the United States was an issue between doctor and patient; in other 

words, it was “none of the government’s business.” Epidemiological data 

about specific diseases were just about the only measurements taken on an 

annual basis until healthcare became the government’s business with the 

creation of Medicare and Medicaid in 1965. Consequently, most nonclini-

cal figures for years prior to the late 1960s—data on medical expenditures, 

health services utilization, professional personnel, and the like—are retro-

spective estimates, not information actually collected at the time. They are 

subject to the problem of reconstructing data many years after the fact, so 

be cautious when reviewing studies that use older data.

Also, be attentive to potential problems introduced when reporting agen-

cies change the way they define and measure key variables. For example, 

as part of an extensive analysis of medical practice costs that I conducted 

in 2008, I reviewed several decades of data collected by government agen-

cies and professional organizations. The definitions and measurement of 
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practice costs were changed several times during this period, which raised 

serious questions about common uses of the data in research articles and 

policy papers. Unfortunately, the changes were not obvious in the tables 

where the data were presented. I had to read footnotes and appendixes to 

identify issues that raised serious questions about the common practice of 

comparing the practice cost data over time.

Gathering data from survey research—conducting interviews with or 

administering questionnaires to the research subjects themselves—has 

become a common alternative to using numbers from institutional data-

bases. In the not-too-distant past, studies tended to rely mostly on data 

about subjects: patients, providers, purchasers, and other participants in 

the healthcare system. Survey research has great potential for providing 

decision makers with different and better information about the behav-

ioral dimensions of healthcare delivery. Asking consumers or providers 

to explain their attitudes and behaviors is at least as sensible as trying to 

construct explanations from descriptive data such as income, sex, ethnic 

status, and education.

A carefully conducted survey is a powerful research tool, but like the 

data-collection methods described in the previous chapter, surveys are 

subject to problems that can weaken the findings of studies based on their 

data. This chapter concludes with a discussion of key methodological 

issues pertaining to survey research. The list is by no means exhaustive, 

but it does address the problems I have encountered most often in review-

ing the literature aimed at healthcare managers and clinician-executives. 

Consider these issues when you are deciding how much credibility to give 

to a survey-based study. And do not hesitate to seek additional informa-

tion if your own common sense suggests problems above and beyond 

those mentioned here.

Survey Bias

Compared to the impersonal process of collecting information from indi-

vidual or organizational records, the personalized approach of surveys can 

itself be a source of bias, that is, a systematic distortion of the results. For 

example, a person being surveyed might be less than truthful in answer-

ing questions if he or she feels that specific responses might be made 

available to a health professional or personal friend who works for the 

organizational sponsor of the survey. Fear of retribution or other adverse 
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consequences is known to distort survey responses, leading in particular 

to the suppression of negative perspectives.

The existence of credible mechanisms to ensure each respondent’s ano-

nymity and/or confidentiality is extremely important in surveys where 

respondents might believe a consequence could result from the informa-

tion they provide to a surveyor. (If a survey is anonymous, the information 

will be reported but the survey’s sponsors will not have any way to trace it 

to individual respondents. If a survey is confidential, the identities of the 

participants are revealed, but the information they provided cannot be 

linked to them.) To give appropriate protections, the use of outside sur-

veyors is often necessary in interviews where respondents might be asked 

to provide controversial or embarrassing information.

Therefore, your own evaluations of studies involving survey data should 

look for bias that might be introduced by the relatively personal nature of 

the process. If you encounter a survey that would make you think twice 

about giving honest answers, you can safely assume that unreliable infor-

mation was provided by many of the people who answered the questions. 

That you would not want to base your own decisions on such a study goes 

without saying.

Respondent Objectivity

Sadly, the information provided by people who respond to surveys is not 

always accurate. Flaws in the data system are not the only source of inac-

curacy. People have been known to misunderstand survey questions, to 

embellish responses, even to lie more often than researchers would like to 

admit. Therefore, your assessment of a study needs to address the possibil-

ity that survey data may be flawed to the point that the value of the study 

itself is diminished.

Social stigmatization can have a major influence on the objective value 

of survey data. People responding to surveys do not like to be embarrassed 

by giving answers that conflict with social expectations, so the wording 

of survey questions is very important. For example, people know that 

smoking is no longer acceptable in many social circles (especially those 

inhabited by health professionals who conduct surveys!), so many smokers 

will respond in the negative when asked, “Do you smoke?” On the other 

hand, they will be disarmed by and much less likely to lie when the ques-

tion is asked, “How many cigarettes did you smoke yesterday?” Likewise, 
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dental researchers have known for years that three times (that is, once 

after every meal) is by far the most common answer to the question, “How 

many times do you brush your teeth each day?” The estimated frequency 

of toothbrushing drops considerably when people are asked, “When was 

the last time you brushed your teeth?”

Similar problems occur with distressing (or amusing, depending on 

your perspective) regularity in political surveys. For example, after-

the-fact examination of surveys about healthcare reform shows why 

so many politicians overestimate public support for proposed changes. 

Questions were generally worded to elicit expressions of discontent 

with the current system in comparison with various ideal systems 

already proposed by politicians. Few polls asked the relevant ques-

tions: “Do you trust the government to make the proposed change?” 

and “How much more are you willing to pay for the proposed change 

in healthcare?”

Wording the questions is a skill that separates good survey research-

ers from bad ones. By extension, differences in wording can make the 

difference between good and bad surveys because respondents’ objectiv-

ity is directly affected by how questions are phrased. Competent survey 

researchers also know how to use several different approaches to the same 

general questions for internal validation of responses. When skillfully 

managed, the inclusion of differently worded questions in different parts 

of a survey can directly assess the overall objectivity of the responses.1

Unless you have formally studied survey research, you probably do not 

have the skills to develop a good survey, but you can identify a lot of bad 

ones simply by thinking carefully about the questions that were asked in 

a study.

One final note on this very important point: Good surveys are pretested, 

usually several times, before they are used to collect the data that are ana-

lyzed for statistical significance. All other things being equal, be favor-

ably inclined toward a research article when the “Methodology” section 

describes how the survey instrument was developed, pretested, revised, 

and retested before being used in the final study. I know from embar-

rassing personal experience that the first version of a survey is usually 

1 For a classic example of the level of sophistication that can be applied to survey design, see John 

B. Lansing and James N. Morgan, Economic Survey Methods (Ann Arbor: Institute for Social 

Research, University of Michigan, 1971).
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full of ambiguities that will distort responses. (I believe that most other 

researchers would agree with me, at least under the influence of truth 

serum.) Developing a good survey instrument can require as much effort 

as the rest of the study. If you have doubts about the objectivity of the 

data-collection instrument, you are wise to have doubts about the survey 

because, as the saying goes, “GIGO” (garbage in, garbage out).

Survey Format

Wording is not everything. The layout of the form or the pattern of the inter-

view is also a very important factor that can enhance or diminish the value 

of data obtained from a survey. The survey instrument is seldom presented 

in any detail in the published report of a study, but the format is sufficiently 

important that you will benefit from being aware of key issues. Here are a 

few criteria you can apply to the extent possible. (If a survey is very impor-

tant to you, request a copy of the data-collection form or the interview tem-

plate. You can then address all the issues raised in this section.)

A good survey begins with an introductory explanation of the study’s 

purpose and clear instructions for responding. The introduction should 

give the reason for the survey and identify the sponsor, and both should 

be honest. Many surveyors use healthcare surveys somewhat covertly, try-

ing to conceal the real reason for the survey or the organization that will 

receive and use the information. In my experience, this approach is coun-

terproductive because respondents will not give full and honest answers if 

they suspect the surveyor is being less than totally honest with them. This 

problem becomes particularly serious if the respondents have any con-

cerns about their anonymity.

After some unpleasant graduate school experiences with using less-

than-honest approaches to surveying, I have been completely open in 

describing the purpose and identifying the client in the hundreds of sur-

veys I have conducted. (Indeed, I refuse to conduct surveys for potential 

clients who want to hide something from the respondents.) Many par-

ticipants in my surveys have told me how much they appreciate the “no-

secrets” approach, and they have frequently indicated they would not have 

shared their true opinions if they had suspected the survey had a hidden 

agenda. Consequently, I am extremely skeptical of the results of surveys 

that fail to reveal or intentionally conceal the purpose and the end user of 

the information.
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Clear instructions are important, especially in written surveys. The 

respondents need to be told how many responses to make on each item (for 

example, “Check only one response” vs. “Check all applicable responses”). 

As simple as this issue may seem, a remarkably large number of survey 

respondents will provide useless information if the acceptable number of 

responses is not perfectly clear. An example of a properly answered ques-

tion seems to help improve compliance. To ensure accurate interpretation 

of results, respondents to written surveys should also be told the signifi-

cance of leaving an item unanswered. As will be shown in the following 

discussion of data extraction, a blank item can be very aggravating to a 

conscientious researcher.

The layout of a written survey is also important on paper and online. 

Experienced survey researchers know that an uncluttered, “user-friendly” 

form with ample white space (areas with no printing) promotes desired 

compliance and reduces undesired responses such as intentional sabotage 

and respondent fatigue. Bad layout can overcome good questions, so you 

have some reason to care about the visual appearance of survey instru-

ments used to collect information for studies that might influence your 

decisions.

Finally, a survey’s outcome can be influenced for better or for worse 

by the language used on a written form or by an interviewer. Words 

and contexts that are perfectly clear to health professionals who write 

the survey questions may have different or no meaning to the laypeople 

who answer them. A good survey will use the language of the respon-

dents, not the researchers. Imagine, for example, the difference in a 

layman’s (that is, not a health professional’s) response to the two fol-

lowing questions:

Has either of your parents suffered a cerebrovascular accident?

Has either of your parents ever had a stroke?

A respondent without awareness of medical vocabulary may make up an 

answer to the first question rather than admit not knowing the definition 

of a cerebrovascular accident. Consequently, good surveys use the pretest 

stage to make sure that respondents understand the questions. Although 

survey forms are seldom included in research articles, significant questions 

are often presented in the discussion section, which gives you an opportu-

nity to make your own assessment of the match between the vocabulary 

© 2009 by Taylor & Francis Group, LLC



of the researchers and the vocabulary of the respondents. A study’s results 

are cast in doubt if the surveyors and the respondents were not talking the 

same language.

Data Extraction

Having just addressed the importance of using common language, I am 

somewhat embarrassed to continue my review of survey-related issues 

with the use of a term I have “invented.” (In other words, data extraction

is not an established term within the world of statistics.) However, the 

absence of a professional term to encompass the underlying concern just 

might suggest a lack of proper attention to a problem that occurs much 

more often than most researchers would like to admit.

I use this made-up term, data extraction, to refer to the process of 

transferring the respondent’s answers on a survey form to the digital data 

analyzed by the researcher. A study’s results are distorted to the extent 

that something is gained or lost in the translation from survey form to 

computerized database because statistical analysis assumes that the data 

being analyzed are the actual research observations. Statistics does not 

compensate for errors in transcription. This is another potential problem 

that is difficult to evaluate based on the information typically provided in 

a research report, but it may be one worth pursuing if the published study 

gives you any hints that the researchers were less than careful in the pro-

cess of extracting the data from the survey instrument.

The unreadable response is one of the biggest problems in this respect. 

Many people write on survey forms the way many doctors write on pre-

scription pads: illegibly. If the researchers or their clerical assistants who 

enter data into the computer have to make guesses (for example, “Is 

that number a 2 or a 7?”), error can easily be introduced into the study. 

Consequently, giving people options to check can lead to better results 

than giving them blanks to fill in.

The ambiguous response is similarly vexing. Does a check halfway 

between the boxes marked “yes” and “no” mean “maybe?” Does it mean 

more “no” than “yes” if it is closer to “no,” but still outside the box? (This 

problem reinforces the need to have clear instructions with good exam-

ples on every survey.) The problem can be bad enough if only one person 

is responsible for interpreting the responses when creating the database, 

but imagine how it is compounded if several people are reviewing the 
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forms and entering the data—each with his or her own interpretation of 

ambiguous responses. Good research reports tell you how the problem 

was handled and what bias might have been introduced by the research-

er’s intervention.

Last, but not least, the blank response on a survey form may seem 

like a minor problem compared to the illegible or ambiguous response. 

Not so! Blanks create all sorts of problems in statistical analysis because 

they reduce the sample size on any given item. Computing the mean of a 

sample, the first step of just about all statistical tests, should be adjusted 

for blank responses. However, some researchers are rather sloppy in this 

regard, using the size of the whole sample rather than the number of sub-

jects in the sample who actually responded on each separate item. The 

appropriate solution is to adjust the computation of each mean for the 

number of complete responses, but some researchers who do not want to 

sacrifice sample size actually estimate values for the missing items. Either 

way—failing to change computations to reflect the different sample size of 

each item or estimating (that is, making up) values for blank responses—a 

study’s findings are biased.

My students and I know from experience that these “data extraction” 

problems occur fairly often. We become suspicious when a report of 

survey-based research fails to mention its approach to dealing with illeg-

ible, ambiguous, or missing responses. Our suspicions change to outright 

rejection of a study’s findings when its authors use their own subjective 

judgments to fill in the blanks. Conversely, we have special respect for 

researchers who openly address problems with uninterpretable data and 

then leave well enough alone.

I could go on and on with a discussion of problems inherent in the 

ways data are collected, but that would defeat the purpose of this book. 

In the unlikely event that you wish to become an expert in this interest-

ing area, a search of online scientific periodical indexes will allow you 

to locate articles that provide more detail on the problems I have sum-

marized here and to identify additional problems not even mentioned in 

this chapter.

However, because you are a busy healthcare decision maker and because 

healthcare decision makers are intelligent people, I think I have provided 

enough information to make you aware of the problem. By taking the time 

to think about a particular statistical study in the spirit of the issues raised 

in this chapter, you will be able to spot serious data problems on your own. 
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Indeed, you have paid your dues by learning the basic scientific steps that 

must be taken before data are suitable for statistical analysis. You are ready 

to move on. So now, without further ado, the act you have been waiting 

for: the statistics!
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IIISection 

The Different Types 
of Statistics

Always use the right tool for the job.

William C. Bauer, Sc.D. 

My Father
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5
Descriptive Statistics: The 
Foundation of Comparisons

Statistics is like a toolbox, full of different mathematical tools for working 

on numbers. Each tool in the box has its proper uses, but no single tool 

does everything. The tool you choose depends on the job. Like a skilled 

craftsperson who knows how to match the tool with the task, a good stat-

istician knows which statistical tool is appropriate for the type of data to 

be worked. A decision maker who relies on the statistician’s works needs 

to know enough to make sure that the job was done with the right tool.

Each of the final four chapters of this book describes a different type of 

tool—the statistical equivalents of wrenches, hammers, screwdrivers, and 

drills. (I hope you appreciate this metaphor, but please do not try to figure 

out which tool corresponds to which branch of statistics.) Much to my 

surprise, most of my students who have already taken one or two statistics 

courses have not been explicitly taught the differences in the types of sta-

tistical tools, so the four divisions of this last section reflect an important 

educational point. Each chapter title defines a meaningful division within 

the field.

Once a study has met all the scientific requirements related to exper-

imentation and data, the first purely statistical task is to determine the 

desired analytical outcome so that the right statistical test (tool) can be 

selected for the job of data analysis. This step in the conduct of inquiry is 

very important. Many studies are seriously flawed by mismatches between 

the statistical tool, the type of data to be analyzed, and the desired frame-

work of analysis. Bluntly stated, part of a decision maker’s evaluation of 

critical information should address the match between the desired type of 

analysis (the job) and the type of statistical test (the tool) used to do it.

© 2009 by Taylor & Francis Group, LLC



The vast majority of all statistical work reviewed by healthcare decision 

makers falls into one of four general categories. The categories encompass 

statistical tools that are designed to:

Describe

Compare

Relate

Explain and predict

The relevant question to be asked at the beginning of any statistical work 

is whether the end product is to be a description of the data from a sin-

gle sample, a comparison of data from two or more samples, a study of 

the relationship between variables, or a model to explain the relationship 

between two or more variables in such a way that future values of the 

relationship can be predicted on the basis of understanding relationships 

from the past. The statistical toolbox contains different devices for get-

ting each of the jobs done, depending on the materials to be transformed 

(for example, parametric or nonparametric data, small or large samples). 

The right tool can produce useful information for the decision maker. The 

wrong tool can produce useless or even harmful misinformation, which 

leads to bad decisions.

THE FIRST STEP: WHAT HAVE WE HERE?

Descriptive Analysis

No matter what the final product—a description, a comparison, a rela-

tionship, or an explanation and prediction—descriptive statistics should 

be the first tool out of the box because it is used to shape the data for 

the other products. Note that descriptive statistics produces very helpful 

information by itself. It is a tool worth using even when nothing more 

will be done with the numbers. But it is a tool that must be used if other 

products are desired because the two principal outputs of descriptive 

statistics—the measure of the middle of the numbers in a sample and 

the measure of the dispersion of the rest of the numbers around the mid-

dle—are required in the mathematical formulas for the other statistical 
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tests. In other words, descriptive analysis must be performed in order to 

study comparisons, to identify relationships, and to make explanations 

and predictions.

Imagine a pile of numbers, figuratively speaking. This pile contains all 

the data gathered from each case, the researcher’s terms for each subject 

in a sample. The observations (measured values of the variables on each 

case) will usually be entered into the database in the order in which they 

were collected, which means the data will initially appear in random 

order in studies where random case selection is required. As you imagine 

this pile of randomly distributed numbers, also think about the difficulty 

of trying to describe it in any way that would permit comparison with 

comparable data sets from other samples (which is what most of statistics 

is all about).

Since descriptive statistics is the foundation of the rest of statistics, 

I will develop a hypothetical database to illustrate the use of descrip-

tive tools. As an author, I would plausibly be interested in the age of the 

people who buy my books, so I decide to do a study. I begin by randomly 

selecting 30 people who own copies of this book. (Ideally, I would draw a 

sample of 100 owners of the book because I prefer more powerful analy-

sis, but n = 30 is theoretically acceptable and will not take up as much 

space as a sample of 100 cases.)

This simple-sounding first step in my hypothetical study immediately 

raises issues presented in the previous chapters of this book. For example, 

the method for identifying the population (that is, all purchasers of this 

book) would need to be evaluated if I want this to be a scientific study. I 

might end up with a bias toward younger owners if I sampled only stu-

dents who bought the book for a statistics class. I would miss many older 

health professionals who are accustomed to learning on their own because 

they have less time available to take classes. So, for illustrative purposes, 

please join me in assuming that this book, like computer software, is reg-

istered to each owner. I can draw a random sample from the registration 

files and contact the 30 selected individuals.

Next, I need to determine the age of each person in the sample, a task 

that raises another research issue from the previous section. Should I ask 

for age, or year of birth? People are occasionally known to lie about their 

age, so year of birth is a more reliable response. Assuming that I get a 100 

percent response rate and do not have to investigate the possibility of some 
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systematic bias created by nonresponses, I end up with a preliminary data 

set that looks like Table 5.1.1

Well, what have we here? The values of the age variable appear in no 

particular order (consistent with the random selection of the 30 subjects), 

so the first step toward describing the sample’s data is to put the values of 

the variable in order, as in Table 5.2.

Range

Now that the subjects’ ages are arranged in order from lowest value to highest 

value, we can make the first descriptive statement about the data—defining 

the range of the distribution. The range is fixed by the endpoints of the dis-

tribution of the values in the sample. In this example, the range is 27 years to 

82 years. The difference between the two endpoints—55 years—is another 

way to look at the range, but knowing the endpoints (that is, the lowest and 

highest values) is the most useful first step in descriptive statistics.

Note carefully that the case numbers are no longer in order once the 

values of the parametric variable, age, are ranked from lowest to high-

est. This should not cause any concern because the case number is not a 

variable in this study. Indeed, it is not a variable at all. It is nothing more 

than an identification tag that allows us to keep track of all the variables 

for each case. (We will add variables to this example in later chapters.) The 

case number is equivalent to the name and social security number on a 

patient record.

Because the case number is a name, it is sometimes called a nominal 

variable, but calling it a variable of any kind is misleading. Nominal vari-

ables have absolutely no quantitative significance. They measure nothing, 

so they should not be subjected to any statistical analysis. To my utter 

amazement, I occasionally encounter a study that performs statistical tests 

on a nominal variable. You need not read any further in a study if you 

encounter such silliness. Indeed, this practice may be the purest form of 

“garbage in, garbage out.” (Imagine the irrelevance of the average Social 

Security number of persons included in a sample.)

1 I have retained the data from the original edition of this book for these illustrations, which 

explains why the year is listed as 1995. Updating the year for each subsequent edition would be 

cumbersome, and it would quickly be outdated because new editions are not published each year.
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TABLE 5.1

Age of Book Owners, March 1995

Case

Year of Birth 

(YOB)

Age

(1995 minus 

YOB)

1 1958 37

2 1940 55

3 1961 34

4 1966 29

5 1944 51

6 1951 44

7 1959 36

8 1953 42

9 1932 63

10 1950 45

11 1938 57

12 1948 47

13 1964 31

14 1942 53

15 1947 48

16 1939 56

17 1936 59

18 1960 35

19 1958 37

20 1947 48

21 1913 82

22 1944 51

23 1946 49

24 1957 38

25 1968 27

26 1959 36

27 1948 47

28 1940 55

29 1947 48

30 1955 40
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TABLE 5.2

Age of Book Owners, March 1995

Case

Year of 

Birth (YOB)

Age (1995 

minus YOB)

25 1968 27

4 1966 29

13 1964 31

3 1961 34

18 1960 35

7 1959 36

26 1959 36

1 1958 37

19 1958 37

24 1957 38

30 1955 40

8 1953 42

6 1951 44

10 1950 45

27 1948 47

12 1948 47

15 1947 48

20 1947 48

29 1947 48

23 1946 49

5 1944 51

22 1944 51

14 1942 53

2 1940 55

28 1940 55

16 1939 56

11 1938 57

17 1936 59

9 1932 63

21 1913 82
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Nominal variables have their place, just not in statistical tests. However, 

a closely related concept, the ordinal variable, is suitable for statistical 

analysis. Ordinal values indicate the numerical order of the cases once 

they have been ranked according to a true variable: 1 for the first on the 

list, 2 for the second, 3 for the third, and so on.

Ordinal variables are nonparametric. Why? Because the quantitative dif-

ferences between the consecutively ranked cases are not necessarily equal. 

In the example I created for this book, the ordinal value of the youngest 

owner is 1, and the ordinal value of the next to youngest is 2—yielding a 

difference of 1 between the ordinal values. But the youngest owner is 27 

years old, and the next owner on the list is 29 years old, for a difference of 

2 years in the parametric variable, age. Ordinal variables lack the precision 

of parametric measurement, but they can yield useful information when 

worked with an appropriate nonparametric tool.

MEASURES OF CENTRAL TENDENCY

Describing and comparing piles of numbers requires a fixed frame of ref-

erence, the numeric equivalent of a surveyor’s benchmark. The middle of a 

distribution is one of the two descriptive references embodied in the math-

ematical formulas of contemporary statistics. (The other descriptor, dis-

persion, is the subject of the next section of this chapter.) Indeed, the center 

of a sample’s data is the point from which other statistical parameters are 

measured. It is “ground zero,” the place where measurement starts.

This convention is logical, but it turns out not to be simple because the 

center can be defined in several different ways. The three common mea-

sures of central tendency—median, mode, and mean—are all important, 

but they are not necessarily identical. (The different concepts of central 

tendency are also called “first moments about the mean” in some statistics 

books.) Each of the three measures of central tendency and the differences 

between them should be memorized by anyone who reads published stud-

ies because authors will use the terms without defining them. (Authors 

will also use them incorrectly on occasion. You might be bamboozled by 

their ignorance if you cannot immediately recall the important distinc-

tions between the measures of central tendency.)
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Median

The median is the middle value, the halfway point when the data from all 

cases are laid out in a line. My favorite device for remembering the mean-

ing of the median is to think of a four-lane divided highway. The median 

is the middle of the road; it divides the highway in half. The statistical 

median is the number at the middle of the ordered values.

To find the median, put all the numbers in a distribution in an ordered 

row. Then, find the number that is at the middle of the distribution. 

Here are all the values from Table 5.2 of my hypothetical database laid 

out in order:

27, 29, 31, 34, 35, 36, 36, 37, 37, 38, 40, 42, 44, 45, 47,

47, 48, 48, 48, 49, 51, 51, 53, 55, 55, 56, 57, 59, 63, 82

The sample size is 30, so the midpoint occurs between the 15th and 16th  

numbers in the sequence. Since value of number 15 and value of number 

16 are both 47, the median for this distribution is 47.

A minor problem can occur in situations like this, where the sample 

size contains an even number of values, if the two values that bracket the 

middle are not the same. Common practice is to define the median as the 

midpoint between two unequal values that border the middle (for exam-

ple, 47.5 if the 15th value had been 47 and the 16th had been 48), but this 

is a little misleading since 47.5 was not an actual value. Be aware of the 

potential problem, but do not lose any sleep over it. The problem does not 

exist when the sample size includes an odd number of values because a 

true middle value exists in that case.

Mode

The mode is the value that occurs most frequently in a distribution. Mode 

comes from a French phrase commonly used in English—à la mode—

which means stylish, the most popular fashion, the thing seen most often. 

(It does not mean that the numbers are covered with ice cream, but the 

practice of topping off a piece of pie à la mode with ice cream comes from 

the fact that it was once the rage.)

To find the mode, look at frequency (that is, the count) of each value in 

a distribution to find the value that occurs the most. Creating a frequency 
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distribution is the first step in the process, and one you would be wise to 

learn to do because frequency distributions can help you understand the 

databases you create in your own work as a healthcare decision maker. 

Table 5.3 is the frequency distribution for my hypothetical database of 30 

randomly selected owners of this book.

The mode is 48 years because 48 occurs more frequently than any other 

value in this particular pile of numbers—more elegantly called a distribu-

tion. Distributions can also be multimodal. For example, if another value 

had also occurred three times, the distribution would be bimodal.

TABLE 5.3

Frequency Distribution: Age of 

Book Owners, March 1995

Value Frequency

27 1

29 1

31 1

34 1

35 1

36 2

37 2

38 1

40 1

42 1

44 1

45 1

47 2

48 3

49 1

51 2

53 1

55 2

56 1

57 1

59 1

63 1

82 1
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The frequency distribution is an important first step in organizing and 

describing data. However, it can be rather cumbersome when many of the 

values occur infrequently, as in this example where most of the numbers 

occur only once. To simplify matters without losing important informa-

tion about the distribution, the data are divided into logical categories of 

equal width. Each division is called a cohort or cell and includes the total 

count of all values in the cell. In practice, open-ended cells are permit-

ted at the top and bottom of the distribution. Consistent with the com-

mon epidemiological practice of classifying age in 10-year cohorts, the 

frequency distribution for my study can be meaningfully simplified as 

illustrated in Table 5.4.

The final step in developing this particular measure of central tendency 

is to present the data in a chart called a histogram. The histogram for my 

hypothetical data set is illustrated in Figure 5.1.

The key to creating informative histograms is knowing how to deter-

mine a sensible cell width. I know of no uniformly valid rule to guide 

the task, other than that there is no substitute for experience. Since histo-

grams are extremely useful for presenting data, I suggest you learn how to 

make them by practicing with your own data. Just about any spreadsheet 

or statistics program will allow you to make very nice-looking histograms 

on your own Mac or PC.

Graphic presentations of statistical information should be clearly and 

adequately labeled with a title and additional footnotes as necessary. A 

brief description of the data and the date of the data should appear as a 

title above the table or graph. Footnotes should provide additional details 

of interest to the expected users of the information, such as the source 

TABLE 5.4

Frequency Distribution by Cohort: Age of 

Book Owners, March 1995

Value Frequency

Under 26 0

26–35 5

36–45 9

46–55 11

56–65 4

Over 65 1
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of the data (from the American Medical Association’s Survey of Medical 

Practice or the Internal Revenue Service, for example) and detailed defini-

tions of the data (such as annual gross billings to third-party carriers, or 

personal income to physicians as reported on Form 1040).

Sloppy or incomplete labeling is a real problem in published reports of 

healthcare studies. For example, the date of data collection is often miss-

ing, which can be aggravating because knowing the time period of data 

is very important if data from different studies are to be meaningfully 

compared. And even when the date is reported, the reader cannot always 

tell whether the date refers to the time when the data were collected or 

the time when the data were reported. The time lag between data collec-

tion and publication is commonly 1 or 2 years in healthcare studies, so an 

article’s failure to be clear on this point can make the data fairly useless 

in a fast-changing, highly competitive market such as healthcare. Online 

publication can be much faster, but it does not eliminate the importance 

of labeling data with the time they were collected.

Mean

The mean is the principal measure of central tendency. It is usually the 

first factor to be computed in statistical equations and is one of the two 

summary statistics, along with the standard deviation, that provides the 

mathematical basis for comparing two or more distributions. It is not 
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FIGURE 5.1
Frequency distribution by cohort: Age of book owners, March 1995.

© 2009 by Taylor & Francis Group, LLC



necessarily better than the other measures of central tendency in any 

absolute sense, but it has one significant advantage over its two counter-

parts. The mean can be manipulated algebraically; the median and the 

mode cannot. Since algebra was the main mathematical tool used when 

statistical concepts were developed during the nineteenth century, the 

mean became the building block of statistical analysis. (Do not waste any 

time worrying about this historical fact because I believe it is on the way 

to becoming irrelevant, as argued in the introduction, “Slide-Rule Science 

in the Computer Age?”)

To compute the mean value of a variable, add together all the values of 

the variable and then divide the sum by the number of values. This opera-

tion is expressed by the standard equation for the mean:

xi

n

x
i

n

1 (5.1)

The large, angular shaped letter is sigma, the standard mathematical 

symbol that instructs you to sum a series of numbers. The little i just below 

the sigma tells you where to start the series, so i = 1 means start with the 

first number, or 27 years in my hypothetical data set. The n on top of the 

sigma tells you to add all the numbers in the sample since it is not limited, 

so add all the values up to and including 82 years. (If the notation on top 

read n = 15, you would know to add only the first 15 numbers in the set.) 

The n below the line tells you to divide the sum by the sample size. All this 

equals “x-bar,” which is the mathematical nickname for the mean, which 

is also known as the arithmetic average. If you wish to make the computa-

tion for yourself, you should get the value of 46.0 years as the mean age of 

owners of this book.

Although the mean is mathematically convenient, it has one potential 

problem that is apparent in my hypothetical example: it can be substan-

tially influenced by extreme values. The 82-year-old owner of this book 

really brings up the average, in spite of the cluster of owners in the two 

lowest cohorts (26–35 and 36–45). The median (47 years) and the mode 

(48 years) give different values of the center of the distribution, but the 

mean (46.0) will serve as the measure of central tendency for subsequent 

statistical analysis. This outcome shows the importance of having three 
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measures of central tendency and knowing the difference between them. 

It also shows the importance of looking at the complete distribution of the 

data so you will be aware of any outliers—extreme values that influence 

the mean.

If you are thinking that a simple solution would be to remove the 

octogenarian from the sample, you are forgetting the earlier discus-

sion of random selection (Chapter 4, Sample Size). Statistics relies 

on random selection to prevent bias, so removing the outlier would 

be a violation of the rules on which statistical analysis is built. If we 

are unhappy with the distortion created by including the 82-year-old 

owner in the random sample, the scientifically appropriate solution 

is to draw a larger random sample, not to inject human judgment by 

removing the subject.

I occasionally encounter published studies that remove an outlier from 

the sample without thinking twice about it, so be on your guard. (Indeed, 

deleting both the high and low values from a sample before computing 

the mean used to be a common practice.) Random selection is not always 

perfect, but the discussion at the beginning of the next chapter will show 

why it is a central foundation of statistical analysis. Intervening to “cor-

rect” perceived imperfection in a random sample may seem logical, but 

it is a gross violation of a theoretical assumption that makes statistics 

possible.

MEASURES OF DISPERSION

Overview

Defining the middle of a distribution is a sensible step in the process 

of turning data into information. Median, mode, and mean are good 

summary statistics. They help us understand the numbers in a sample. 

However, by themselves, the commonly accepted measures of central ten-

dency do not provide enough information to accomplish the principal task 

of statistics: the study of differences within or between samples. Defining 

the dispersion of numbers within a distribution is just as important as 

defining the middle.
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Figure 5.2 demonstrates the theoretical importance of dispersion. Sample 

A and Sample B have the same mean, but the values in Sample A are widely 

dispersed in comparison to those in tightly clustered Sample B.

We might assume that the samples were similar if the mean were the 

only descriptive statistic available to us. However, Figure 5.2 shows how 

wrong we could be if we used only a measure of central tendency to com-

pare distributions. The dispersion of values around the center is every bit 

as important as the center itself.

As will be shown in Chapter 6, statistical equations incorporate quanti-

tative expressions of both the middle and the spread. Do not let your deci-

sions be swayed by a study that does not present both. In particular, resist 

the temptation to be influenced by media reports that mention only one 

of the descriptive parameters. Journalists are known to create mislead-

ing stories by reporting only the measure of central tendency in stories 

about research. In particular, they often confuse the median and the mean 

and treat these different concepts as synonyms for average. The concept of 

average is essentially meaningless in the popular press.

Fortunately, measures of dispersion—often categorized as second 

moments about the mean—tend to be used more consistently, when they 

are used at all. The simplest measure of dispersion in common use is the 

range, which was discussed previously in this chapter (see “Range”) since 

it is immediately defined when data are put in order. Several other mea-

sures of dispersion have been developed over the years, but only one of 

them needs to be covered in this book because it is the only one likely to 

be used in studies that will be reviewed by healthcare decision makers. 

X
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FIGURE 5.2
A demonstration of differences in dispersion.
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(In other words, I am sparing you a lengthy discussion of information 

that is interesting in theory but useless in practice. You can find in-depth 

explanations of the infrequently used measures of dispersion in a typical 

statistics text if you have the time and interest.)

Standard Deviation

The standard deviation is the commonly accepted approach to expressing 

the dispersion of values within a set of data. Conceptually, the standard 

deviation is a measure of the average difference between each of the vari-

able’s values in a distribution and the mean of all the values. The more 

the values are spread out, the higher the standard deviation should be. 

However, computing the standard deviation is not as simple as it sounds 

because the sum of differences between the mean and each value of the 

variable is zero, and the computational approach needs to give appropriate 

weight to outliers (such as the 82-year-old in the hypothetical sample of 

owners of this book).

The mathematical equation for the standard deviation of a sample is a 

bit intimidating in print:

S
X Xi

n

( – )

–

2

1
(5.2)

However, the computation is actually pretty simple. The first step is to 

calculate the difference between the mean and each of the values in the 

sample. The result of this computation, the mean difference for each of 

the 30 cases in my hypothetical data set, is shown in the third column of 

Table 5.5.

Note that the sum of the mean differences is zero, so the average mean 

difference would also be zero (0  30 = 0). This produces a useless measure 

of dispersion because anyone can plainly see that the numbers are spread 

out. Something more needs to be done. The conventional solution is to 

square the mean differences from the sample and then sum them, which 

produces a value of 3,882 as shown in the fourth column of Table 5.5.

The next step in computing the standard deviation for a sample is to 

divide the numerator, the sum of squared deviations, by the sample size 

minus one (the n – 1 in the denominator of the equation), which equals 
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TABLE 5.5

Initial Steps in the Computation of the Standard 

Deviation

Case Age  X – Xi ( X – Xi)
2

1 37 9 81

2 55 –9 81

3 34 12 144

4 29 17 289

5 51 –5 25

6 44 2 4

7 36 10 100

8 42 4 16

9 63 –17 289

10 45 1 1

11 57 –11 121

12 47 –1 1

13 31 15 225

14 53 –7 49

15 48 –2 4

16 56 –10 100

17 59 –13 169

18 35 11 121

19 37 9 81

20 48 –2 4

21 82 –36 1,296

22 51 –5 25

23 49 –3 9

24 38 8 64

25 27 19 361

26 36 10 100

27 47 –1 1

28 55 –9 81

29 48 –2 4

30 40 6 36

SUM = 0 3,882
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29 in the example since the sample size is 30. This step yields a quotient 

of 133.86. The final step is to take the square root of 133.86, essentially 

undoing the squared function that was introduced in the numerator to 

overcome the problem of the mean differences adding up to zero. This 

computation produces a value of 11.57 years, the standard deviation in the 

age of the sample of persons who own this book.

The denominator of the equation for the standard deviation merits 

two comments:

First, the term (n – 1) defines degrees of freedom in the analysis. 

This arcane concept reflects the fact that the number of values 

free to vary is reduced by one once the sample mean has been 

calculated. Although the concept of degrees of freedom has no 

direct impact on a decision maker’s ability to understand statisti-

cal analysis in research reports, it is important in the selection 

of decision values from statistical tables—in the unlikely event 

that you ever need to consult a table to find the threshold value 

of a statistical test at which the null hypothesis would be rejected. 

(This task is now handled quite effectively by software and com-

puters. Most of us will live the rest of our lives without ever hav-

ing to consult a statistical table that incorporates sample size and 

degrees of freedom.)

Second, the impact of adjusting the formula for degrees of freedom—

that is, of dividing the numerator by (n – 1)—decreases as sample 

size increases. The larger the denominator, the smaller the quotient 

and the final value of the standard deviation. For example, all other 

things being equal, n = 30 produces a smaller value for the standard 

deviation than n = 10. The statistical significance of tests for differ-

ences is strengthened by smaller values of the standard deviation, 

which is another reason why bigger is better when it comes to the 

size of the random sample.

The standard deviation has no absolute meaning in any cosmic sense; it 

cannot be reduced to a demonstrable, repeatable truth. It is an artificial 

construct developed back in the early nineteenth century by a mathema-

tician who was devising simple ways to summarize a lot of astronomi-

cal numbers. Other approaches to expressing variation have also been 
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ESTIMATORS

Statistics has at least three common meanings, a fact that can create 

confusion. Generically, the term refers to a specific form of quantita-

tive analysis, such as the subject of this book. In lay usage, statistics 

is used as a synonym for data, as in “Let’s collect some statistics.” To 

statisticians, the term encompasses the summary measures used to 

describe and compare numbers. For example, the various measures 

of central tendency and dispersion are statistics. These moments 

about the mean and the other products of statistics’ many equations 

are also known within the field as estimators.

Nonstatisticians who use statistical information should be aware of 

the concept of estimation because it reflects the imprecision inherent 

in statistics. In one sense, the very existence of three different mea-

sures of central tendency—median, mode, and mean—demonstrates 

the lack of a single, precise, universally accepted way to define the 

middle of the data from a sample. Likewise, the standard deviation is 

just one estimate of dispersion. From the broader perspective of sam-

pling and probability, summary statistics calculated with data from 

randomly drawn samples are estimates of true population param-

eters. If we had the time and the money to study entire populations, 

we would not need statistics. The declining costs and rising power of 

computers, along with the digital transformation of our data bases, 

will surely reduce the need for statistics. We will not need to make 

inferences from samples because we will increasingly have complete 

population data at our fingertips.

The history of statistics is largely the story of mathematicians and 

other scientists developing new and hopefully better ways to esti-

mate population values from sample data. The perfect estimator has 

not yet been developed (and probably never will be), so anyone who 

relies on statistical analysis should keep in mind that statistics is still 

essentially an art dedicated to making the best possible guess under 

the circumstances. Statisticians are being honest, not cute, when 

they use the term guesstimate.
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developed, but none has gained the same level of acceptance. The standard 

deviation does provide us with a useful benchmark for comparing the dis-

persions of different distributions.

The important point is that the traditional approach to looking for differ-

ences between samples requires having a consistent way to measure disper-

sion from sample to sample, and the standard deviation serves the purpose 

well when quantitative analysis is reduced to comparisons of descriptive 

statistics. It is not very sophisticated in comparison with new analytical 

techniques made possible by the power of modern computers, but it has 

been widely accepted and universally understood for well over 100 years. 

In other words, it is a tradition—a paradigm waiting to be displaced.
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6
Inferential Statistics: Studies 
of Differences

Shaping sample data with descriptive tools is only the first step in sta-

tistical analysis. Several useful and interesting tasks can be performed 

with other techniques in the statistical toolbox. The most common 

of these tasks is undoubtedly the comparison of data from different 

samples to assess the likelihood that the subjects in the samples come 

from different populations. The tool to study differences is inferential 

statistics. Literally, its name reflects the need to make inferences—to 

arrive at a conclusion by reasoning from incomplete evidence, accord-

ing to Webster’s—since we do not know everything about the situation. 

(This sounds like the daily circumstance of today’s health profession-

als, yes?)

The proper application and the meaningful interpretation of inferen-

tial statistics both require understanding the tool’s theoretical basis. 

Researchers who do not know the underlying theory can create mislead-

ing information, and decision makers who do not understand the theory 

can be misled. I have concluded after a quarter century of teaching that 

the essential theoretical foundations of inferential statistics are not ade-

quately presented in most statistics texts or courses. Therefore, consistent 

with my goal of emphasizing understanding over believing, this chapter 

puts the emphasis on theory in order to correct the imbalance that leads to 

bad decisions. (My students are almost all very smart, so I feel comfortable 

placing the blame on the instructional side. If the theory behind inferen-

tial statistics had been well presented, they would have learned it.)

© 2009 by Taylor & Francis Group, LLC



THE NORMAL DISTRIBUTION

Inferential statistics is made possible by the characteristics of a very special 

distribution, the famous “bell-shaped” curve.1 It is also called the normal 

or Gaussian distribution (after a nineteenth-century German mathemati-

cian, Carl Gauss, who elaborated the properties of a distribution originally 

developed during the seventeenth century by a Swiss theologian named 

Jacques Bernoulli).2 It is illustrated in Figure 6.1.

The normal distribution has three properties that allow us to make 

probabilistic statements about differences:

1. The three measures of central tendency are identical in the normal 

distribution. Median, mode, and mean all have the same value.

2. The curve is perfectly symmetrical (and looks like a bell). The distri-

bution of values above the middle is a mirror image of the distribu-

tion of values below it.

3. The shape of the normal distribution can be expressed in a mathemati-

cal equation that allows us to define the area under every part of the 

curve.

This third property is especially useful. By definition, we know that half 

the values under the curve are below the midpoint (that is, the median, 

mode, and mean), and half the values are above it. More to the point of 

statistical analysis, however, differential calculus can be used to compute 

additional breakdowns in the area under the curve. (I will bet that you 

never expected to see the day when differential calculus would prove use-

ful!) The area defined by the mean plus one standard deviation includes 

34 percent of the values in the distribution (the same as 34 percent of 

the area under the curve). Because the normal distribution is perfectly 

1 The distribution gained considerable attention through the controversial book by Richard 

Herrnstein and Charles Murray, The Bell Curve: The Reshaping of American Life by Differences in 

Intelligence (New York: Free Press, 1994). I am pleased to observe that the heated debate surround-

ing their analysis centered on the fundamental issues of science and data that were presented in 

the first two parts of this book. I wish commentators had been equally concerned with scientific 

and quantitative integrity during the 1993–94 debate over healthcare reform. I think we would 

have saved a lot of time and money if they had bothered to evaluate the debate from these impor-

tant perspectives.
2 Jean-Jacques Droesbeke and Philippe Tassi, Histoire de la Statistique (Paris: Presses Universitaires 

de France, 1990).
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symmetrical, the area defined by the mean minus one standard deviation 

also includes 34 percent of the area under the curve. Add these two facts 

together, and we know that 68 percent of the values in the distribution lie 

between one standard deviation below the mean and one standard devia-

tion above it.

Next, differentiating the equation for the standard normal curve shows 

that the mean plus two standard deviations includes 48 percent of the dis-

tribution. By extension, 96 percent of the area under the curve—the same 

as 96 percent of the values in the distribution—lies between two standard 

deviations below the mean and two standard deviations above it. Finally, 

the mean plus and minus three standard deviations includes 99 percent of 

the area, or 99 percent of the values in the distribution. Please note that 

these neat relationships hold only for the normal distribution, the bell-

shaped curve. They are illustrated in Figure 6.2.

One slight modification in these relationships is needed to adjust the 

relative portions of the underlying distribution for standard statistical 

practice. Researchers traditionally like to use a 95 percent figure when 

applying the normal distribution to their statistical analysis, and 95 per-

cent of the area under the curve is encompassed by the region between 

–1.96 standard deviations below the mean and +1.96 standard deviations 

above the mean. The area defines the 95 percent confidence interval. (This 

distinction would not be necessary if scientists had been inclined to be 96 

percent confident in their analyses.) The 95 percent relationship is very 

important, so Figure 6.3 provides an illustration to imprint the concept in 

X
–

FIGURE 6.1
Normal distribution.
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your mind and give you a visual framework for the subsequent discussion 

of inferential statistics.

Inferential statistics is made possible by an obvious relationship between 

the area under the normal distribution’s curve and the probabilities associ-

ated with drawing values randomly from the distribution it represents. To 

understand this very important theoretical point, imagine a bell-shaped 

curve representing the distribution of a sample with 100 cases (n = 100). 

Any one of the 100 cases has an equal probability of being picked, but 

a case with the modal value has the highest probability of being picked 

because the mode occurs most frequently, by definition.

X
–

—2S—3S —1S +1S +2S +3S

99%

96%

68%

FIGURE 6.2
Relative interval areas under the curve: Normal distribution.

X–
—1.96S +1.96S

95%

FIGURE 6.3
Ninety-five percent interval: Normal distribution.
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Likewise, a case with the mean value is most likely to be picked because 

the mean and the mode are identical in a normal distribution, and the 

chances of drawing a case below the median are equal to the chances of 

drawing a value from above the median because the median divides the 

values in half. Last, but not least (in other words, this point is important), 

a value between –1.96 standard deviations and +1.96 standard deviations 

will be drawn 95 times out of 100. Cool!

Just in case you are wondering where statisticians found this useful rela-

tionship, here is a very brief digression on the origin of distributions. (If 

you do not care, skip two paragraphs. This material will probably not be 

on the test.) The bell-shaped curve is just one of many distributions that 

embody the probability of important events and help us conduct statistical 

analysis. The normal distribution occurs commonly in real life. Height, 

weight, test scores (once upon a time, before grade inflation), and many 

biological and behavioral variables are found to be normally distributed. 

The normal distribution corresponds quite nicely with the types of com-

mon events that end up being reported in healthcare journals.

However, the normal distribution does not cover all situations. Consider 

an event that occurs rarely, such as randomly drawing the single green ball 

from a box that also contains 999 otherwise identical orange balls. The 

probability function for this one-in-a-thousand event can be worked out 

theoretically and verified empirically. It produces the Poisson distribution,

which does not look anything like a bell-shaped curve. It is very lopsided 

and skinny. Indeed, a unique distribution can be calculated for every pos-

sible combination of green and orange balls in a box, and non-normal 

distributions such as the Poisson are relevant in some situations. Do not 

hesitate to ask a statistician for an explanation and help in the infrequent 

situation where you encounter one of these other distributions.

Back to the topic at hand, let us illustrate the relationship between distri-

bution of values and probability with the hypothetical example of people 

who own this book. Each and every one of the 30 owners in the sample 

would have an equal probability of being selected in a random drawing, 

but a 48-year-old has the highest probability of being drawn because 48 

years is the most common age in the sample (3 out of 30). Owners who 

are 36, 37, 47, or 55 are next most likely to be selected because the sample 

contains two owners with each of these ages.

Further, an owner older than the median (that is, 47 years, the age that 

divides the group of owners in half) is just as likely to be drawn as an 
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owner younger than 47. (By the way, the probability of drawing someone 

younger than 47 is not p = 0.50 because 2 of the 30 owners are 47 years 

old. The probability of drawing someone from below the median is 14/30, 

or p = 0.4666, because only 14 owners are below the median. The same 

probabilistic relationship applies to drawing an owner with an age above 

the median.)

However, the probability of drawing the mean value in my hypothetical 

example is not equal to the probability of drawing the median value or 

PROBABILITY AND ODDS

By definition, the sum of the probabilities of all possible outcomes 

of an experiment equals 1.00. If one outcome is a sure thing (that 

is, no other outcome is possible), its probability is 1.00. At the other 

extreme, something that absolutely cannot happen has a probabil-

ity of 0.00. If an event has only two possible outcomes and they are 

equally probable, the probability of each equals 0.50. For example, 

the probability of getting a head on each toss of a fair coin is 0.50; it 

is written as p = 0.50.

Simple probabilities are easy to calculate when you know the total 

number of possible outcomes and the number of times that each 

individual value could occur. For example, if a box contains 100 

tennis balls, and 22 of them are green, the probability of randomly 

drawing a green ball is 22/100, or p = 0.22. Assuming all the other 

tennis balls are orange, the probability of drawing an orange ball at 

random is 78/100, or p = 0.78. The basic concept of probability is suf-

ficient for the purpose of this book, but many complex applications 

of probability theory have been developed. Consult a textbook on 

probability if you are interested in learning more.

The concept of odds is a bit different. Take, for example, the flip 

of a fair coin. Since heads and tails are equally likely, the odds are 

50:50, which yields an odds ratio (50 divided by 50) of 1.00 which is 

not the same as p = 1.00. If the odds of some event (for example, the 

estimated chances of Democrats or Republicans winning an elec-

tion) are 60:40, the odds ratio is 1.50 (60 divided by 40). Statistics 

deals with probabilities, so be careful not to confuse probabilities 

with odds.
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the modal value—a key feature of normally distributed data. Why not? 

First, the mean age is 46 years, yet no 46-year-old owners appeared in my 

randomly selected sample of 30 cases. The mean value cannot be drawn 

because it is not there. Second, the mean is not equal to the mode (48 years) 

or the median (47 years). Therefore, by definition and by observation, we 

must conclude that my hypothetical sample is not normally distributed. In 

fact, if you look carefully at the random samples used in studies intended 

to influence healthcare decision makers, you will quickly discover that 

samples are almost never normally distributed. Bell-shaped curves with 

special attributes such as 95 percent confidence intervals are remarkably 

rare in research studies.

We seem to have a problem here. I have already shown that statis-

tics provides tools for comparing randomly drawn samples including 

at least 30 cases and that these probability-based comparisons are made 

possible by the special characteristics of normally distributed data. 

Have I wasted your time by developing an example that is unusable? Do 

researchers keep drawing samples until their sampling produces normal 

distribution? Please bear with me while I explain how statistics handles 

this problem. What follows is the theoretical foundation of modern 

statistics. I hope you will understand it so you can decide whether to 

believe it.

THE CENTRAL LIMIT THEOREM

Since the founders of statistics were primarily empiricists—government 

officials and scientists in search of reasonably efficient estimators to sim-

plify the task of understanding databases that were too large to be com-

prehended by themselves—they discovered a special property of random 

selection of data from distributions that were not necessarily normal. Even 

when a population is non-normal, a special procedure can be used to pro-

duce a normal distribution. Here is how it works.

The process requires drawing repeated small samples, usually n = 10, 

from a known population that is not normally distributed. The mean 

of each sample is calculated and recorded. An amazing thing happens 

when the distribution of these sample means is plotted as a histogram. 

As the number of samples grows larger, the mean of the distribution of 
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sample means converges on the true mean of the population. The larger 

the number of samples, the more closely the mean of the sample means 

estimates the true population mean. Indeed, as the number of samples 

approaches infinity, the mean of the sample means becomes the popula-

tion mean. Further, the distribution of the sample means is a bell-shaped 

curve. (I can assure you that the procedure does work. Like many gradu-

ate students taking statistics, I once spent many hours doing this exer-

cise, and it produced exactly the results promised by the theory. If you 

need to be convinced but do not want to take the time, hire your kids to 

do it.)

Voilà! We have a demonstrably effective method for creating a nor-

mal distribution from data that are not normally distributed. The fact 

that research samples are almost never normally distributed does not 

prevent us from making probabilistic inferences based on the special 

characteristics of a normal distribution because we can create a nor-

mal distribution that converges on the actual value of the population 

mean by applying the central limit theorem. Pretty neat, theoretically 

speaking.

STANDARD ERROR (OF THE MEAN)

Thanks to the central limit theorem, we know we can come very close to 

determining the mean of a population by drawing a very large number of 

small samples, plotting the distribution of these sample means, and cal-

culating the mean of the sample means. But there was one problem with 

putting this theory into practicing back when statistics was developed. 

Drawing all those samples and computing all those sample means and 

the mean of the sample means took a lot of time and effort, and statis-

tics was developed to save time and effort. (Remember that the slide rule 

was the state-of-the-art computational aid at the time. Mechanical adding 

machines were several decades in the future, and the electronic calculator 

would not arrive for almost a century.)

Consequently, the mathematically sophisticated but computationally 

challenged founders of statistics developed an estimator—a shortcut, if 

you will—to approximate the mean of the sample means. They explored 

the theoretical trade-off between using a lot of small samples (for example, 
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n = 10, as used in the development of the central limit theorem) and using 

one bigger sample to see just how large a single sample would have to be 

to produce an acceptable approximation of the population mean. Their 

efforts to simplify the process of finding a population mean produced 

the concept of standard error. The standard error is used in compara-

tive statistics because it embodies the likelihood of a difference between 

a sample mean and a population mean; the standard deviation by itself 

does not.

The standard error of the mean is a straightforward application of the 

general concept of standard error. Its very name, standard error, reflects 

the fact that the mean of a single sample is an imperfect approximation 

of the population mean, but the theory and mathematics behind the con-

cept suggest that a randomly drawn sample of 30 cases can provide an 

acceptable approximation of a population mean—one that can be used for 

purposes of comparing different samples to assess the likelihood that they 

came from the same population.

Note carefully the use of acceptable in the previous sentence. A sample 

size of 30 is the minimum that produces 95 percent confidence when a sin-

gle random sample is used to approximate a whole population. (As I argued 

when discussing sample sizes back in Chapter 4, I feel much more comfort-

able with larger samples.) The equation for the standard error of the mean 

shows why:

SE
s

n
x  (6.1)

The equation says that the standard error of the mean is the standard 

deviation for a sample divided by the square root of the sample size. Since 

we would like the error to be as small as possible—that is, we want the 

estimated mean to be as close to the population mean as possible—a larger 

denominator is better than a smaller denominator. Obviously, the way to 

increase the value of the denominator is to increase the sample size. The 

larger the sample size, the smaller the estimated error for a given standard 

deviation. The probability of error still exists as the sample size increases, 

but at least it declines.
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QUICK REVIEW 

You have now seen the theoretical concepts that lead up to inferential sta-

tistics, the branch of statistics used in most studies that are intended to 

influence the decisions of health professionals.

A sample of 30 or more cases is drawn randomly from a population. 

Descriptive statistics is used to define the middle (mean) and the spread 

(standard deviation) of the distribution of values in this sample.

Applying the theory behind the central limit theorem, the standard 

error of the mean is then computed with a formula that adjusts for 

the possibility of error inherent in estimating the population mean 

from a sample. The standard deviation for the sample and the stan-

dard error of the mean provide the basis for the most common sta-

tistical comparisons of different samples.

When all these preliminary steps are done properly, the summary 

statistics (estimators) of different samples can be compared through 

the use of various mathematical equations. The result is a tool for 

testing the null hypothesis (H0) that the different samples came from 

the same population with a specified level of confidence.

Behind all of these steps is the assumption of randomness. If the sample 

selection process is not random, the statistical analysis is flawed, period. 

The theory of statistics requires randomness, so pay special attention to 

sampling techniques when you evaluate research-based studies. Do not 

base decisions on studies that relied on anything other than the luck of the 

draw to collect the data.

HYPOTHESIS TESTING

Now for the fun part: using statistics to analyze research data. Assuming that a 

study was conducted according to the principles of scientific research, as covered 

in Section I, and that it has paid appropriate attention to the quality of data, as 

covered in Section II, statistics has some special tools for evaluating the quanti-

tative information. Section III provides a conceptual understanding of the basic 

tools for analyzing research data to see if something makes a difference.
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Please note that I just promised to explain the basic tools. Statisticians 

have developed many different versions of these tools to meet the needs of 

special situations. Explaining all the tools and their nuances would defeat 

the purpose of this book, making it every bit as cumbersome as the sta-

tistics text that probably baffled you when you previously took the course. 

I am comfortable, however, that this book explains the general theory of 

statistics well enough to help you understand the specialized statistical 

tools, if and when you encounter them.

That said, I have concocted a hypothetical experiment to illustrate how 

inferential statistics actually works. I am interested in knowing whether 

this rather unconventional book makes any difference in a typical health 

professional’s understanding of statistics, so I will start this exercise by 

specifying a null hypothesis.

H0: Reading Statistical Analysis for Decision Makers in Healthcare does 

not affect a health professional’s understanding of statistics.

In other words, I am going to conduct a study to test the proposition 

that this book you are reading simply does not make a significant differ-

ence, that it does not affect your understanding of statistics one way or the 

other. The acceptance or rejection of this hypothesis should help you make 

an important decision whether or not to buy and read this book. If the 

null hypothesis is accepted, you might as well spend your time and money 

in a more productive way because the book does not make a statistically 

significant difference.

The hypothesis leads to an experiment, beginning with the random 

selection of 60 students from the entering class at the University for Health 

Professionals. Next, the researcher randomly assigns these students to two 

statistics classes so that n = 30 in each sample, and the same standardized 

statistics test is administered to both classes to establish baseline scores 

before the students are exposed to any formal instruction in the subject. 

Each class is then taught the same way by the same statistics professor 

using the same text, Statistics the Traditional Way. However, we intro-

duce an experimental effect by additionally assigning this book, Statistical 

Analysis for Decision Makers in Healthcare, to one of the classes. At the 

end of the semester, the students in both classes take an identical final 

examination (not the test used to establish the baseline).

As a result of the experiment, we can produce summary statistics from 

two distributions of data:
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1. The mean and standard deviation of the test scores of the statistics 

students in the class that only used Statistics the Traditional Way as 

the assigned text (the control group).

2. The mean and standard deviation of the test scores of the students 

who also used Statistical Analysis for Decision Makers in Healthcare

(the experimental group).

The first step in the basic statistical procedure for making a probabilistic 

inference about differences between two samples is to compare the mean 

of both samples. If using this book probably did not make a significant 

difference, as posited by the null hypothesis, we would expect a small dif-

ference between the sample means, as shown in Figure 6.4.

On the other hand, as shown in Figure 6.5, we would expect to see a big 

difference between the sample means if using this book made a big differ-

ence in students’ understanding of statistics. (This approach to measurement 

raises the question whether the test score is a valid measure of students’ 

understanding. I will let you think through that issue on your own.)

The first question of inferential statistics is how much difference can 

exist between the two means before they are likely to have come from dif-

ferent populations—specifically, that the students who used this book in 

addition to the traditional text probably understand statistics differently 

from the students who did not use it, with everything else being the same 

(controlled). The closer the sample means, the more likely they came from 

X C X E  

FIGURE 6.4
Small difference between sample means.
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the same population—which means that the experimental effect did not 

make a difference. This initial concern with the difference between the 

sample means is reflected in the numerator of the equations for the basic 

tools of inferential statistics.

However, we have also seen that dispersion is an equally important fac-

tor in defining a set of data, so standard deviations—converted to standard 

errors in order to bridge the gap between the practical reality of a single 

sample and the central limit theorem’s expectation of many samples—also 

need to be brought into the picture when two or more samples are com-

pared. The denominators of the equations of inferential statistics effectively 

combine the variation within the samples by “pooling” the standard errors 

of each distribution. Before looking at the equations, let us take one more 

look at the comparison of means, with dispersion added to the picture.

The two means pictured in Figure 6.4 look close together in comparison with 

the two means pictured in Figure 6.5, but the addition of dispersion (variance) 

can give a totally different picture. The two sample means in Figure 6.6 are 

just as close to each other as the two sample means in Figure 6.4. Likewise, the 

distances between the sample means in Figure 6.5 and Figure 6.7 are equal. 

However, the distributions around the two means in Figure 6.6 are quite nar-

row, and the distributions around the two means in Figure 6.7 are rather broad. 

All other things being equal, sample size would be the most likely explanation 

of the apparent differences in dispersion. The sizes of the samples in Figure 6.6 

are probably much larger than the sizes of the samples in Figure 6.7.

X C X E  

FIGURE 6.5
Large difference between sample means.
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Yes, I laid a trap with Figures 6.4 and 6.5. You are not alone if you con-

cluded that the relatively close-together means in Figure 6.4 were much 

more likely to be from the same distribution than the far-apart means in 

Figure 6.5. Now, with dispersion added around each mean, you hopefully 

see the need to reevaluate the situation. These very simple figures show 

why statistics cannot make any inferences about the likelihood of sample 

differences without considering both central tendency and dispersion, 

with additional attention to the sizes of randomly drawn samples.

These four elements—mean, standard deviation (converted to standard 

error), sample size, and random selection of the samples—are the theoreti-

cal foundations of traditional statistical models that allow us to evaluate 

experimental data in order to see if something makes a difference. One 

X
–

C X
–

E

FIGURE 6.7
Large difference between sample means and small sample size.

X
–

C X
–

E

FIGURE 6.6
Small difference between sample means and large sample size.
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more illustration will complete the picture of what happens conceptu-

ally when health professionals use statistical tools to transform data into 

information.

Figure 6.8 depicts a population that is normally distributed (that is, bell 

shaped), with the 95 percent confidence interval bounded by a point 1.96 

standard errors below the mean and a point 1.96 standard errors above 

the mean. Conceptually, the equations of inferential statistics compare the 

difference between the means of two or more samples to the length of 

the 95 percent confidence interval on a scale expressed in units of stan-

dard deviation about the mean. This conversation is accomplished by the 

z score, which is explained at some length in most traditional statistics 

books. (Since you will never see the z score in the published report of a 

study, I see no reason to develop it for you here. Your success as a health-

care decision maker will not depend in any way on understanding this 

intermediate step in statistical computations.)

Accepting the Null Hypothesis

If the distance between the sample means (the numerator in the equations of 

inferential statistics) obtained through a proper experiment is short enough 

to fit within the 95 percent confidence interval of a population distribu-

tion with dispersion defined by the pooled variances of the samples (the 

denominator in the same equations), we can be 95 percent confident that 

the two samples came from the same population because we would draw 

X
–

–1.96 SE +1.96 SE

FIGURE 6.8
Distribution of population for evaluating sample differences.
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sample means within this interval 95 times out of 100. In this case, the null 

hypothesis would be accepted, and the report of the study should conclude 

that the experimental effect—the new staffing model, the revised surgical 

procedure, the capitated payment mechanism, this book, or whatever else 

was being tested—did not make a statistically significant difference.

Rejecting the Null Hypothesis

Again assuming that all the theoretical conditions of science and statistics 

have been met, statistical analysis will reject the null hypothesis if the dis-

tance between the sample means is longer than the 95 percent confidence 

interval in the population distribution created by the statistical tool. (Of 

course, other confidence intervals can be defined thanks to the neat math-

ematical properties of a normal distribution. I have used a 95 percent con-

fidence interval for illustrative purposes because it is so common, but 99 

percent confidence intervals are also used.) Rejecting the null hypothesis 

means that the experimental effect did make a statistically significant dif-

ference at the chosen level of confidence.

An important qualification needs to be attached to this discussion of my 

hypothetical example. In accord with common practice, my null hypoth-

esis states only that the experimental effect (reading this book) did not 

affect a health professional’s understanding of statistics. Therefore, the null 

hypothesis could be rejected in one or two ways: either (1) using this book 

led to a significant improvement in statistical understanding as measured 

by the score on the final exam, which would be indicated by the mean of 

test scores from the experimental group being above the mean test score 

of the control group and beyond the 95 percent confidence interval, or (2) 

using this book led to a significant decrease in statistical understanding as 

measured by the test score, which would be indicated by the mean experi-

mental group test score being below the comparable figure for the control 

group and likewise outside the confidence interval.

If the publisher and I wanted to bamboozle potential customers, our 

promotional materials could claim that a scientific study showed this book 

had a statistically significant impact on health professionals’ understand-

ing of statistics. This would be true, even if the individuals who used this 

book understood a whole lot less than those who did not use it. Potential 

buyers who did not know any better might be really impressed with the 

claim, even though the statistical test that supported our claim does not 
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STATISTICAL SIGNIFICANCE

Studies seem to take great pride in reporting that their findings are sta-

tistically significant. Exactly what does “statistically significant” mean? 

Is it a big deal? The answers suggest that statistical significance does not 

necessarily deserve the cosmic power commonly associated with it.

What does it mean? The rather tautological answer derives from 

the central limit theorem and the probabilistic properties of a normal 

distribution. By definition, we can expect to draw randomly a sample 

mean from within the 95 percent confidence interval 95 times out 

100. Obviously, a mean outside this range will be drawn 5 times out of 

100. The probability of drawing a mean outside the confidence inter-

val is the level of significance, commonly called the p value.

Since the confidence interval and the level of significance account 

for all possible outcomes, probability theory says that the sum of their 

respective probabilities must equal 1.00 (100 percent). If the confi-

dence interval equals 0.95 (95 percent), the p value must equal 0.05 

(5 percent). Likewise, the 1 percent level of significance corresponds 

with a 99 percent confidence interval. In other words, the level of 

significance is the probability that chance alone, not the experimen-

tal effect, accounts for the observed outcome (such as the difference 

between the sample means in inferential statistics).

Is statistical significance a big deal? Not necessarily. The concept 

relates only to the null hypothesis, which states that the experimen-

tal effect makes zero difference. Rejecting the null hypothesis indi-

cates that the experimental effect does make a difference—that is, 

that the difference is not zero—but it does not tell us how big the 

difference actually is. Indeed, very small differences can be highly 

significant (that is, very unlikely to be explained by random sampling 

error, or chance) and very big differences can be explained by chance 

(for example, the result of a small sample size).

Statistical significance by itself does not mean that a study has 

made a major discovery, nor does it necessarily endow a finding with 

practical significance. A savvy reader of research reports knows not 

to be unduly swayed by a low p value, recognizes the possibility of 

rejecting a true null hypothesis (Type I error) or accepting a false 

null hypothesis (Type II error) due to the vagaries of nature, and 

remembers that a single study proves nothing—no matter how sta-

tistically significant its finding.
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distinguish between a desirable effect and an undesirable effect. Such is 

the potential problem with a two-tailed test.

When research has the potential to fall into this trap, the statistical anal-

ysis can be based on a one-tailed test, which fixes the decision point only at 

the upper or lower ends of the distribution, but not both. In other words, 

the analysis of the data from my hypothetical experiment would be con-

ducted to reject the null hypothesis only when the mean of the experimen-

tal group is above the upper limit of the chosen confidence interval. The 

null hypothesis would also be restated to reflect the one-tailed approach: 

Reading Statistical Analysis for Decision Makers in Healthcare improves a 

health professional’s understanding of statistics.

The single, upper-tailed approach would help me avoid the potential 

embarrassment of exposing an undesirable effect, but it also fails to fore-

warn potential buyers who undoubtedly would not want to buy the book 

if they knew it was likely to confuse them even more than Statistics the 

Traditional Way. One-tailed and two-tailed tests have their respective 

strengths and weaknesses. Be sure to look at the relationships of the sam-

ple means when you review a study that might affect your own decisions if 

the authors do not deal adequately with this issue. (Fortunately, most do.)

TEST STATISTICS

Recognizing that researchers would want to compare data from two or 

more samples in order to assess the probability that they were from the 

same population—which means accepting the null hypothesis that the 

experimental effect did not make a difference—statisticians have developed 

several statistical tools for this purpose. Each of the tools is really a math-

ematical equation where the difference between means is the numerator, 

and the standard error of the difference between means is the denomina-

tor. (Remember that the standard error in the denominator incorporates 

the dispersion and sample size of each compared distribution.)

Even though I do not believe you need to do the computations your-

self in order to evaluate statistical information in your day-to-day roles as 

decision makers, I believe you do need to understand what happens when 

these equations are used to compute the values of the test statistics. One 

more point of theory needs to be explained before we look at the equations 
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of the three basic tools of inferential statistics. To repeat an important 

point I made in the introduction, I do not care at all whether you can 

perform the computations, but I care a whole lot whether you can tell if 

someone else used the right statistical tool for the job. Computers can do 

the calculations, but only you can do the thinking!

Here is what happens with an inferential test statistic. The values of the 

descriptive statistics from each sample (mean, standard deviation, and 

sample size) are plugged into the numerator and denominator of the test 

statistic equation, which yields a quotient. The greater the value of the quo-

tient, the greater the probability that the samples did not come from the 

same population. When the computed value of the test statistic passes a 

certain critical value (also called decision or threshold value), the distance 

between the means is effectively too long to fit within the chosen confi-

dence interval on the measurement scale, the null hypothesis is rejected, 

and the study has demonstrated a statistically significant difference at the 

stated p value. On the other hand, if the computed value of the test statistic 

falls below the threshold value for the chosen level of significance, the null 

hypothesis is accepted because we are not sufficiently confident that the 

samples came from different populations.

The critical values for each of the test statistics are themselves computed 

with equations that reflect the probability characteristics of the underly-

ing distribution for given sample sizes. These resulting values are usually 

presented for the most common levels of significance and sample sizes in 

tables at the back of computationally oriented statistics book. (A British 

brewmaster named Gossett developed the computations and the corre-

sponding mathematical proof around the beginning of the twentieth cen-

tury. He published them under the pseudonym Student, which is why the 

basic inferential test is called Student’s t.)

For example, imagine that the computed value of a test statistic for sig-

nificant differences is 3.26 with a sample size of 64, and the proverbial table 

at the back of the book gives a critical value of 2.17 at a 95 percent con-

fidence interval (p value = 0.05) for this sample size. Since the computed 

value (3.26) from the study data is greater than the decision value (2.17) 

from the standard statistical table, the null hypothesis is rejected. We would 

conclude that the experimental effect made a difference greater than would 

be explained by sampling error only 5 times out of 100. Suppose we then 

decide to evaluate the result at a 99 percent confidence interval, for which 

the critical value is 3.47. We would accept the null hypothesis in this case 
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because the computed value (3.26) is less than the value from the table (3.47), 

meaning that the difference found by the study is not statistically significant 

at p = 0.01.

In contrast to this example from the not-too-distant days when research-

ers had to go to a table at the back of the book to find the decision value 

of the test statistic, today’s computer-based statistics programs simply 

print the p value at which the null hypothesis would be rejected, in other 

words, the value at which the results would be statistically significant. In 

the made-up example from the previous paragraph, the printout might 

simply say the null hypothesis would be rejected at p = 0.027.

This example shows that all sorts of games can be played with p values. 

Indeed, I have often suspected that some researchers were competing to 

see who could make a conclusion based on the smallest p value, as if a low 

level of significance were a sign of good research. Unsophisticated readers 

or researchers might jump quickly to the conclusion that the study found a 

really big difference when the results become statically significant at a very 

small p value, when all that really can be said, statistically speaking, is that 

the difference was very unlikely to be explained by chance.

t Test

The t test is the appropriate statistical tool to test for the possibility of sig-

nificant difference in the independent means of two samples of parametric 

data. The basic mathematical formula for computing the value of the test 

statistic, t, is shown in Equation 6.2.

t i = 
x –x
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n
+

S
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1
2

1

2
2

2

(6.2)

In accord with the previous section’s conceptual discussion, notice how 

the numerator of the basic t-test equation incorporates the difference 

between the means of the two samples and how the denominator pools 

the standard errors of the means to estimate the population distribution 

from which the sample means might have come. Statisticians have devel-

oped some variations in the t-test equation to reflect differences in the 

data, such as the possibility that the means are correlated—in other words, 
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not independent. (Correlation is the subject of the next chapter, so do not 

worry if you do not understand this concept yet.)

F Test (Analysis of Variance)

The t test is the right tool for the statistical job when only two samples of 

parametric data need to be compared, but many studies require analyz-

ing data from three or more groups. For example, I might be interested in 

comparing the statistical knowledge of three different groups: (1) students 

who used a traditional statistics text, (2) students who used this untradi-

tional text, and (3) students who used no text at all but only attended lec-

tures. This experiment would produce three different sets of sample data 

to test the null hypothesis that there is no difference in the distribution 

of postcourse test scores for students in each of the groups. (Accepting 

the null hypothesis would imply that using either book does not make a 

difference because students who only attended lectures are probably from 

the same population as those who also used a textbook. So that you and I 

will both feel better about the time we have each spent on this book, let us 

assume this null hypothesis is rejected.)

Statisticians have developed the F test for the purpose of analyzing para-

metric data from more than two samples. Also called analysis of variance 

and abbreviated ANOVA, the F test looks for significant differences in the 

ratio of two estimates of the potential variation within a population (see 

Equation 6.3).

F =
S

S

b

w

2

2 (6.3)

Like the t-test equation, the formula for computing F is a ratio that 

incorporates the samples’ means and dispersions. However, the F numera-

tor is an estimate of the observed variability among the means of the three 

or more groups, which is not quite the same thing as the absolute scaled 

difference between two means used in the numerator of the t test. The 

numerator in the F ratio is computed with the means themselves, not the 

mean differences. The denominator is an estimate of the variability within 

groups, and the actual scores in the groups are used to compute it.
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If the variances between the means are the same as the variances within 

the samples, the F ratio will equal unity (1.00). However, the value of the 

ratio will be greater than 1.00 if the sample means are relatively spread out 

while the variances within the sample distributions are relatively similar. 

Accepting or rejecting the null hypothesis for F is accomplished the same 

way the hypothesis is tested for t. The computed value for the study data is 

compared with the critical value from a statistical table, incorporating the 

degrees of freedom in the numerator and the denominator at the desired 

level of significance (p value). The null hypothesis is accepted if the value 

computed from the sample data is below the value from the standard table 

and rejected if the computed value is greater.

Since the purpose of this book is to help you understand concepts rather 

than struggle with computations, two final illustrations (Figure 6.9 and 

Figure 6.10) should help clarify how the F test works.

Although the means in both figures are the same (that is, the numera-

tors of the corresponding F ratios will be the same), the distributions of 

sample data around the sample means obviously are not. The value of the

FIGURE 6.10
Large dispersion within sample distributions.

FIGURE 6.9
Small dispersion within sample distributions.
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F ratio will be higher for the situation represented by Figure 6.9 because 

the variation in means (the numerator) is relatively large compared to the 

relatively small dispersions within the samples’ distributions (the denomi-

nator). The denominator in the computed F ratio for Figure 6.10 will be 

larger due to the greater variation within the distributions, which yields 

a lower value for the ratio. (Just in case you have not thought much about 

fractions lately, the value of a ratio with a constant numerator goes down 

as the denominator goes up.) In other words, Figure 6.9 is more likely to 

reflect a statistically significant difference between the three samples; it 

has a higher F-ratio value.

Unfortunately, an F value that causes us to reject the null hypothesis does 

not indicate where the statistically significant difference actually is. It tells 

us that the overall differences in the samples are greater than the differ-

ences that would be explained by chance (that is, random sampling error), 

but it does not tell us which of the three groups accounts for the difference. 

Looking at the data may aid conjecture about the outcome, but statisticians 

disagree on what, if anything, can be done to identify specific factors that 

actually caused the statistically significant value of the F ratio. Exploring 

this issue is far beyond the scope of this book, but raising it is not. If you 

ever need to understand all the nuances of a study that draws conclusions 

on the basis of an F test, you should either discuss the issue with a statisti-

cian or read one of the many available books on analysis of variance.

You do need to know, however, that special F tests have been designed 

for a variety of situations. I have illustrated the general concept with a 

one-way analysis of variance, designated one-way because only one fac-

tor—the use of a book—varies in my hypothetical experiment. However, 

statisticians have customized F tests for experiments where several dif-

ferent possibilities are researched simultaneously. Imagine, for example, 

an experiment to test the combined impact of two different books and 

two different instructional techniques. This study would generate data for 

four samples: (1) students who used a traditional textbook in a statistics 

class, (2) students who used this untraditional book in a statistics class, (3) 

self-instructed students who used a traditional text, and (4) self-instructed 

students who used this untraditional text. A two-way analysis of variance 

would be used to test the null hypothesis in this case.

Fortunately, multidimensional F tests are rare in the types of studies 

conducted for the benefit of healthcare decision makers. Few who read 

this book will ever need to dig deeper into the issue. If you do encounter 
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a complex analysis of variance in a study that might be important in your 

situation, you will also want to look very carefully at the research method-

ology because multidimensional studies are extremely difficult to conduct. 

Problems with control and sample size are tough to handle, once again 

reminding us that good statistics cannot compensate for bad research.

Chi-Square Test

The t-test statistic for comparing parametric data from two samples and 

the F-test statistic for comparing parametric data from three or more 

samples are extremely useful, but they are not the appropriate tools for 

all situations. Nonparametric (or categorical) data occur frequently and 

defensibly in healthcare studies, but they do not provide the sample-to-

sample consistency in measurement that is central to the theory behind 

t and F.3 Statisticians have developed another tool, chi-square (often indi-

cated with the Greek Χ), for testing hypotheses when nonparametric data 

are involved.

Actually, chi-square is only one of many “distribution-free” test statistics 

tailored to the special characteristics of categorical data, but it is the most 

commonly used nonparametric tool. The theoretical foundations of chi-

square, as explained in the following paragraphs, provide a good basis for 

understanding the general concept of nonparametric methods for testing 

hypotheses. However, just as different versions of t and F may be needed to 

reflect special situations involving parametric variables, one of the other 

nonparametric tests may be more appropriate than chi-square.

You probably do not need to become familiar with the many different 

nonparametric tests (such as Kruskal-Wallis one-way analysis of variance, 

Friedman two-way analysis of variance, Mann-Whitney U, Wilcoxon, 

Scheffé, and so forth) unless you decide to conduct your own studies and 

do your own statistical analysis. Understanding chi-square should be suf-

ficient to make you an intelligent interpreter of the results of nonpara-

metric tests used in other people’s studies. In my experience, researchers 

who are smart enough to use nonparametric tests on categorical data are 

also usually smart enough to know which nonparametric test to use. Take 

3 Review the discussion in Chapter 3 if you need a refresher on the important difference between 

parametric and nonparametric measurements.
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DOES TYPE OF DATA REALLY MATTER?

A theoretical difference of opinion divides statistical practitioners 

into two camps: those who are bothered by using parametric tests on 

nonparametric data (purists like me), and those who are not. Many 

researchers and authors of statistics books think we purists are too 

picky when we argue that the basic parametric tools, t and F, should 

not be used for the statistical analysis of nonparametric data.

The reason for the purist position is straightforward. As shown 

in the figures that illustrated the theoretical reasoning behind para-

metric tests (for example, Figure 6.6 and Figure 6.7), means and stan-

dard deviations from different samples of parametric data can be 

compared precisely because they are measured along a single scale 

with units of constant length and universal meaning. For example, a 

standard deviation of 2.50 years of age from an experimental group 

would be exactly twice as large as a standard deviation of 1.25 years 

of age from a control group.

If you are confused, look again at the figures in the middle of this 

chapter to see how parametric tests are made possible by consis-

tently measured numbers with meaningful distributions. The t and

F equations only make theoretical sense because the data from dif-

ferent samples can be added and subtracted. Taking the differences 

of means in the numerators and pooling dispersions in the denomi-

nators would be hard to justify if the samples were measured with 

dissimilar rulers—the proverbial problem of comparing apples and 

oranges.

By definition, nonparametric data do not have a consistent and 

meaningful measurement scale, and they are distribution free. For 

example, the distance between one value on a typical nonparamet-

ric scale (for example, “fair”) and the value above it (for example, 

“good”) is not necessarily equal to the distance to the value below it 

(for example, “poor”). So how can anyone justify analyzing nonpara-

metric data with parametric tools, which were built on a theoretical 

assumption of consistent measurement and known distributions?

Researchers who are willing to analyze nonparametric data with 

parametric tests do not usually say the purists are wrong. They (the 
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a statistician to lunch if you feel the need to double-check the use and 

interpretation of statistics in a study that is especially important to you.

Since nonparametric data cannot be meaningfully summarized and com-

pared via means and dispersions, another approach had to be developed to 

explore the possibility of statistically significant differences between two 

sets of sample data. The rather ingenious solution to the measurement prob-

lem is based not on descriptive statistics but on frequencies. Chi-square 

compares frequencies that were actually obtained with the frequencies that 

would be hypothetically obtained if there were no difference between them. 

The greater the deviation between the actual frequencies and the hypothet-

ical frequencies if the groups were identical, the greater the likelihood that 

the samples are from different populations. Hence, the key to computing 

chi-square is the difference between obtained and expected frequencies.

To see how the process works, imagine a study to see if clinicians (such 

as nurses, physical therapists, and physicians) and nonclinicians (such as 

hospital administrators, clinic managers, and financial officers) under-

stand statistics any differently after taking a one-semester statistics class. 

The subject data are purely categorical. The subjects are either clinicians or 

nonclinicians, observations that cannot be measured on any parametric 

scale. Under ideal conditions, we might be able to develop a parametric 

measure of statistical understanding, such as test scores on standard-

ized examination, but reality and practicality will almost certainly dic-

tate using a nonparametric measure of statistical understanding as well. 

Assume we can select (randomly, of course!) and survey 500 clinicians 

and 500 nonclinicians who have taken a one-semester course in statistics, 

and we determine whether they passed or failed the course.

unpurists?) just believe a mismatch between type of statistical test 

and type of data does not matter very much. Purists believe it does. 

After all, why did statisticians take the time to develop nonparamet-

ric tests if parametric tools would do the job? Because the two types 

of data are so different, they should be worked with different tools!

The field of statistics does not have a supreme authority to resolve 

such disputes, so you have to decide this issue for yourself. I hope 

you will join the purist camp and be attentive to the proper match 

between type of data and statistical test.
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Conceptually, which means simplified for illustrative purposes, the pro-

cess of analyzing categorical data with chi-square begins by putting the 

study data in a table of the form shown in Table 6.1. The chi-square statis-

tic is computed by summing the squares of the differences in all four cells 

and dividing this sum by the expected value (in this case, the pass rate 

of all health professionals who take a one-semester statistics class). If the 

study (observed) data are identical to the expected rates of passing a statis-

tics course, the value of chi-square will be zero. However, the value of chi-

square will begin to increase as the study data in one or more of the cells 

begin to deviate from the expect value, and at some point the computed 

value of chi-square will become larger than a value that could be explained 

by chance (sampling error).

The critical or decision values for chi-square have been computed and 

are readily available in standard tables, so the final step in the process for 

hypothesis testing with chi-square is the same as the process used with t

or F. The null hypothesis is accepted at the specified p value if the com-

puted chi-square is below the decision value from a standard table. The 

null hypothesis is rejected if the computed value is greater than the deci-

sion value from the table, which means the samples are likely to be differ-

ent populations at the specified level of significance.

Nonparametric test statistics such as chi-square are very useful when 

circumstances dictate the use of categorical data, but they are less pre-

cise than their parametric counterparts. For reasons I do not understand, 

many healthcare studies collect parametric data and then put them into 

categories before beginning data analysis. This practice is acceptable (as 

long as the categorized data are analyzed with nonparametric statistics!), 

but it is not necessary since computers can analyze the original paramet-

ric data just as fast as they can analyze the grouped data—and the results 

are more powerful in a statistical sense.

TABLE 6.1

Chi-Square Analysis

Pass Fail

Clinicians Observed – Expected 

= Difference

Observed – Expected 

= Difference

Nonclinicians Observed – Expected 

= Difference

Observed – Expected 

= Difference
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THE END OF THE TUNNEL

Congratulations, you have made it through the toughest part of statis-

tics. You should now understand how descriptive statistics can be used 

to summarize large collections of data and how the summary numbers 

can be used to test hypotheses stating that data from different samples 

are from the same population. You have also seen how and why different 

statistical tools were developed to turn different types of data into useful 

information. I hope this approach has demystified statistics to the extent 

that you will know how statistics ought to work the next time you read 

a study.

By extension, I hope you have developed the knowledge-based courage 

to defend yourself against statistical malpractice. Indeed, if this approach 

has been really successful, you probably understand the theory of statistics 

better than most of the people who write the studies that fill the journals 

that clutter your desk. Do not be afraid to doubt what you read now that 

you know what is going on when statistical analysis takes place. Much of 

the healthcare literature we read is seriously flawed and deserves to be 

doubted. Making better decisions will be your long-term reward for being 

cautious when you review published studies. And for getting this far in the 

book, your immediate reward is the next chapter; it is very short and has 

lots of illustrations.

© 2009 by Taylor & Francis Group, LLC



7
Relational Statistics: Studies 
of Relationships

Healthcare professionals have good reason to be interested in quantitative 

relationships. Their professional activities and their careers can be affected 

by answers to questions about the interactions between variables that may 

be under their control. For example, does average patient revenue decline 

as length of stay increases? Does cardiac risk increase with a patient’s 

weight? Does a hospital administrator’s income rise with experience? Is 

the mortality rate for a given procedure in a hospital inversely propor-

tional to the number of times it is performed there each year? Does overall 

health status of a city’s population decline as urban density increases? The 

decisions you make are likely to be affected by the results of studies that 

address questions such as these.

Statisticians have developed several mathematical tools for defining dif-

ferent dimensions of relationships. This chapter describes the basic con-

cepts behind relational statistics and shows how they can help inform 

decision making in healthcare. It also identifies important limitations of 

relational studies so that you will not commit the errors of making unwar-

ranted conclusions about causality or linearity. (Many people, especially 

journalists and politicians, regularly commit the error of drawing conclu-

sions about causes from relational studies.)

DIRECTION OF RELATIONSHIPS

This general concept is really simple. Two variables can be related posi-

tively, negatively, or not at all. The specific statistical name for the relation-

ship between two variables is correlation.
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Positive correlation exists when two variables move in the same 

direction at the same time. If one variable is increasing, the other 

variable tends to be increasing as well. Positive correlation also exists 

when they decline together because two negatives make a positive. 

Hence, the key to positive correlation is simultaneous movement in 

the same direction, not necessarily movement in a positive direction. 

Plausible examples of positively correlated variables in healthcare 

would include hospital executives’ incomes and years of employment 

in a particular position, individual health status and years of educa-

tion, physician visits and prescribed medications, and the number of 

journal articles read and clinical knowledge.

Negative correlation exists when two correlated variables move in dif-

ferent directions. As one goes up, the other generally goes down (and 

vice versa). The key to negative correlation is the opposition in move-

ment, not the existence of a negative direction in one of the variables. 

Indeed, by definition, one of the two negatively correlated variables has 

to be moving in a positive direction. As we saw in the previous para-

graph, the correlation is positive if both variables decline at the same 

time. Examples of negative correlation from the world of healthcare 

could include a person’s life expectancy and the number of cigarettes 

smoked, the average cost per procedure and the number of procedures 

performed (the economic principle of increasing marginal returns), an 

individual’s weight and the average number of minutes per day spent 

exercising, and maybe even a health professional’s understanding of 

statistics and the number of traditional statistics books read—on the 

theory that more reading only made matters worse.

Zero correlation exists when two variables do not move together in 

any identifiable, repeated pattern. They are as likely to go in the same 

direction as in opposite directions. Nothing can be said about the 

expected nature of the relationship with any degree of confidence 

because the relationship appears to be random. Examples of uncor-

related variables might include the number of applicants to a nurs-

ing school and the amount of the application fee, physicians’ class 

rank in medical school and annual income, or the number of pri-

mary care residents and the number of doctors selecting rural practi-

cal locations.
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Studies that identify the direction of a relationship can certainly enhance 

a health professional’s understanding of the environment in which she 

or he works, but knowing the direction of an association is not enough 

to lead to intelligent analysis and decision making. The strength of the 

relationship must also be known before any action is taken. Except in 

the case of zero correlation, the direction and the strength of a correla-

tion are totally unrelated, so learn to look at both. (Above all, avoid the 

belief that positive relationships are more significant or stronger than 

negative relationships. I have encountered several students who had this 

misconception, presumably because positive numbers are greater than 

negative numbers. In statistical correlation, direction and magnitude 

must not be confused.)

STRENGTH OF RELATIONSHIPS

The statistical tool that measures the strength of relationships between 

two variables is the coefficient of correlation, most commonly abbrevi-

ated by the small letter r. Consistent with points made in the two previous 

paragraphs, the value of the coefficient of correlation is 0.00 when no asso-

ciation exists between two variables, but r will have a value different from 

0.00 whenever a measurable relationship does exist. The highest possible 

value for the coefficient of correlation, r, is 1.00—which indicates a perfect 

correlation between two variables. Let us look at a few figures to see what 

this means in practical terms.

The figures that will be used to illustrate correlation are called scat-

ter plots. Scatter plots are visual displays of the corresponding values of 

the variables that are being studied for correlation. All you need to cre-

ate a scatter plot are the values of two variables—for example, variable X

and variable Y—for all the cases in a sample or population. To show how 

this works, let us assume we have collected valid and reliable informa-

tion on annual income and number of hours worked per year for a ran-

domly selected sample of pharmacists. The data are presented in Table 7.1. 

(I am using a sample of only six cases to keep the example simple; ran-

dom samples of 30 or more would be needed if we were actually doing a 

study and wanted to be reasonably certain that the sample represented the 

population.)
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Figure 7.1 shows the scatter plot created when these data are plotted 

against each other for the six pharmacists in the sample. The number next to 

each dot (data point) corresponds to the case number of the pharmacist.

A comment needs to be made about the common use of variables X and 

Y in relational statistics and graphic conventions you may remember from 

your high school algebra class. Do not confuse a scatter plot with the for-

mal algebraic practice of assigning x to the independent variable and y

to the dependent variable when graphing linear equations of the form y

= mx + b. Assignment of variables to the x (horizontal) and y (vertical) 

axes is arbitrary in the process of creating scatter plots, but most computer 

programs for creating scatter plots will force you to use the conventional 

TABLE 7.1

Data from a Hypothetical Sample of Pharmacists

Pharmacists 

(Case #)

Variable X
(Annual Income)

Variable Y
 (Hours Worked per Year)

1 $37,000 2,000

2 $45,000 1,900

3 $28,000 1,750

4 $49,000 2,200

5 $51,000 2,100

6 $54,000 1,900

Annual Income
$60,000

$50,000

$40,000

$30,000

$20,000

$10,000

1,500 1,600 1,700 1,800 1,900 2,000 2,100

Hours
Worked

3

6

2

5

4

1

FIGURE 7.1
Scatter plot of hypothetical data from a sample of pharmacists.
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X and Y framework with its implication of a functional (explanatory) rela-

tionship. As you will see later in this chapter, dependence (causality) is not 

addressed by the coefficient of correlation.

The three scatter plots presented in Figure 7.2 show different levels of 

positive correlation between variable X and variable Y. (Use your imagina-

tion to define the two variables in this illustration. I was tempted to define 

variable X as hours spent reading this book and variable Y as some mea-

sure of understanding statistics, but by now you should be able to create 

examples that are directly relevant to your own situation.) The direction is 

pretty obviously positive in all three illustrations because the data points, 

the joint values of the two variables for each case in the sample, have a 

perceptibly upward trend.

The strength of the relationships increases from left to right in the three 

illustrations in Figure 7.2. The correlation coefficients would be approxi-

mately r = 0.20 on the left, r = 0.50 in the middle, and r = 0.80 on the right. 

Notice in particular that the points begin to converge toward a straight 

line as the coefficient of correlation increases.

Figure 7.3 shows what happens when the relationship between data 

points is perfect. All the data points fall on a straight line, and the coeffi-

cient of correlation attains its limit value. In Figure 7.3, r = +1.00 since the 

two variables move in the same directions. The value would be r = –1.00 if 

the values of the two variables moved together with equal precision in the 

opposite direction. If the value of one variable is known when r = 1.00 or r

= –1.00, the value of the other variable can be known with certainty—not 

estimated with error—because the relationship between the two variables 

is perfectly linear.

FIGURE 7.2
Scatter plots with increasingly positive correlation.
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TEST STATISTICS

Just as statisticians have developed many hypothesis-testing tools to reflect 

differences in data types and experimental circumstances, they have also 

developed a variety of test statistics for studying correlation. Using the 

right tool for the job is just as important in studying relationships as it is 

in testing for differences. Let us look at the basic parametric and nonpara-

metric approaches to correlation analysis because they will handle most 

jobs as long as they are properly matched to the type of data. Out-of-the-

ordinary situations will give you another excuse to invite a statistician to 

lunch for a discussion that goes beyond the scope of this text.

Parametric Correlation

The Pearson product–moment coefficient is the standard tool for examin-

ing the relationship between two parametric variables. (Karl Pearson, 

a British mathematician, was one of the founders of modern statistics 

in the late nineteenth and early twentieth centuries.) Pearson r was 

designed specifically for situations where the observations on X and Y

for each case (for example, annual income and hours worked) are dis-

tributed normally, have approximately equal variability around their 

respective means, and have a linear relationship. Deviations from these 

assumptions correspondingly weaken the validity of Pearson r as a mea-

sure of correlation.

FIGURE 7.3
Scatter plot with perfect positive correlation.
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True to my promise to make this book conceptual and not mathemati-

cal, I will explain how Pearson r is computed but spare you the lengthy 

computations that are involved in the process. (If you really feel the need 

to see the math in all its detail, go to the chapter on correlation in your old 

statistics textbook. I guarantee you nothing has changed, no matter how 

long ago you took statistics.) See Equation 7.1 for Pearson r.

r=
xy

NS Sx y

(7.1)

The numerator gives the sum of the products of the differences 

between each value of X and Y and the respective means of X and Y for 

each case in the sample. The denominator multiplies the product of the 

standard deviations for the distributions of X and Y by the sample size. 

If only one value of Y exists for each and every value of X and the distri-

butions are symmetrical, the computed value of r will be one (r = 1.00 

or –1.00) because the numerator and the denominator will be identical. 

On the other hand, if equally and proportionally varied values of the 

mean differences exist for both X and Y, the differences in the numera-

tor will cancel one another, and the value of the numerator will be zero 

(r = 0.00).

Although I am pleased if the coefficient of correlation makes some sense 

following this simplified explanation, I do not believe that understanding 

the equation is essential for healthcare decision makers who will be inter-

preting the works of others rather than doing the work themselves. The 

two most important points to retain from this discussion are the impor-

tance of the assumptions behind the formula and the interpretation of the 

coefficient itself. In particular, do not base any decisions on Pearson r if 

you cannot be sure that the study’s authors made sure it was the right tool 

for the job.

Nonparametric Correlation

One of the most obvious mistakes would be analyzing nonparametric data 

with Pearson r. The Pearson product–moment coefficient is based on very 

strict assumptions about the underlying distribution of the data, so it is 

not the right tool to use for categorical, distribution-free data. Fortunately, 
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several statistics have been developed to examine correlation when one 

or both of the numbers are nonparametric. The Spearman rank-difference 

coefficient of correlations, often labeled ρ, is appropriate for estimating the 

relationship between two ranked variables. Kendall’s Tau was developed 

for use when both variables are nonparametric.

Computer programs will generally provide a p value (level of signifi-

cance) along with the correlation coefficient. The level of significance of 

the correlation coefficient—the probability that random sampling error 

explains the outcome—can also be a relevant factor if the analysis was 

conducted to estimate intervariable relationships within a population. 

Randomness and sample size are every bit as important in relational sta-

tistics as they were in inferential statistics when sample data are used to 

provide estimates of population parameters; the same conditions must 

be met. The sample size should contain at least 30 cases, and larger sam-

ples will reduce the role potentially played by chance. Also, the sample 

should have been drawn completely at random. The p value is meaning-

less when these conditions are violated.

LINEAR VERSUS NONLINEAR RELATIONSHIPS

The discussion so far has addressed only linear relationships: relation-

ships that can be best expressed as straight lines over the entire rele-

vant range of values of the two related variables. Indeed, the correlation 

coefficients covered in this chapter should not be used if the underlying 

relationship is anything other than linear. Figure 7.4 shows how a lin-

ear model can lead to erroneous and misleading conclusions when it is 

applied to nonlinear data.

Assuming that this scatter plot illustrates the paired relationships of two 

variables of parametric data, the approach taken by the Pearson product–

moment correlation equation is conceptually represented by the straight 

line. Overall, the differences between the X and Y values and the line balance 

out because the number of points above and below the line is roughly equal.

However, the straight line does a lousy job of reflecting the actual dis-

tribution of points above and below the line. It fails to reflect the fact that 

almost all the points above the line are in the middle of the distribution 
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and all the points below the line are at the ends. (This situation lays the 

foundation for the subject of the next chapter, regression.)

Figure 7.5 presents two other nonlinear relationships that will be corre-

spondingly misinterpreted if analyzed with the standard correlation coef-

ficients presented in this chapter.

The illustration on the left obviously represents a cyclical relationship. 

The illustration on the right shows an exponentially increasing relation-

ship. Again, both are characterized quite inaccurately when the correla-

tion coefficient is computed with a model that assumes the data are all 

distributed in linear fashion (that is, symmetrically distributed on both 

sides of the line throughout the entire range).

FIGURE 7.4
Nonlinear data and linear correlation line.

FIGURE 7.5
Nonlinear data sets.
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The solution to each of the problems pictured in Figures 7.4 and 7.5 is 

to use a nonlinear model, one that matches the shape of the data with 

the appropriate mathematical function, such as a quadratic equation for 

Figure 7.4. The nonlinear world is the realm of statistical subspecialists 

and applied mathematicians. Expect to spend some extra time finding a 

properly qualified expert if you need help dealing with nonlinear data that 

are important to you, and do not even try to read books on the subject if 

you do not have skills in nonlinear math.

A good researcher will always look at the data before computing a 

correlation coefficient. Therefore, one of the signs of a good correla-

tion study is evidence that the researchers examined scatter plots to 

ensure a proper match between the data and the statistical tool used to 

examine them. Be suspicious if a study reports correlations with any 

of the tools covered in this chapter without first verifying the linearity 

of the data. Indeed, analyzing nonlinear data with linear test statistics 

can be much more misleading than working nonparametric data with 

parametric tools.

CORRELATION AND CAUSALITY

The coefficient of correlation can help us understand important relation-

ships and can even be used (with appropriate qualifications) as a predic-

tive tool. However, anyone who uses the results of correlation studies 

must avoid the temptation to draw the conclusion that one of the vari-

ables is responsible for changes in the other. Correlation models only 

look at how two variables tend to move together, which is something 

very different from identifying the cause of the relative movements. For 

example, years of education and income are strongly correlated, but 

higher education by itself does not explain higher income. Intelligence, 

work habits, background, and interpersonal skills are factors that might 

actually explain income—and they may or may not be products of 

education.

By itself, correlation analysis does not embody control, a priori speci-

fication, and other scientific steps that are needed to address causality. 

However, a sophisticated application of the basic principles of correla-
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tion analysis can be used to study causality and explain outcomes. It is 

regression analysis, the topic of the next chapter.
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8
Explanatory Statistics: 
Studies of Causality

As shown in the preceding chapter, the tools of relational statistics can be 

used to estimate the strength and direction of changes in two variables. 

But correlation coefficients do not tell us whether one of the variables 

causes the change in the other or whether the changes in both are due to 

the effect of some other variable not included in the analysis. We must, 

therefore, resist the temptation to draw conclusions about causality on the 

basis of relational statistics.

We need to work data with a different set of tools if we want to explain 

relationships in a way that allows predicting the new value of one vari-

able as a result of changes in the values of other variables. Regression 

analysis is the statistical tool that allows us to explain and predict—

that is, to make probabilistic statements about—causality. It allows us 

to study the simultaneous or lagged influence of several variables on 

another one.

Regression analysis is a relatively new tool, one of the few branches of 

statistics developed and popularized in the last half of the twentieth cen-

tury. Indeed, the growth of explanatory statistics is itself explained by 

development of the computer because regression analysis requires hun-

dreds or even thousands of calculations that are exceedingly tedious and 

time-consuming when performed by hand. Without computers, explana-

tory statistics would not be as popular as it is today. (Do not worry; I am 

not about to break my no-math promise by working through a sample 

problem and losing you this late in the book!)
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STATISTICAL MODELS

The difference between inferential and explanatory statistics is a direct 

reflection of the difference between a hypothesis and a model. The first 

step in inferential statistics is to specify a hypothesis, but the first step 

in regression analysis is to construct a theoretical model. As shown in 

Chapter 6, a null hypothesis is a verbal statement that an experimental 

effect does not make a difference. Testing the hypothesis requires an 

experiment. The null hypothesis is rejected or accepted at a specified level 

of significance.

On the other hand, a model is an equation that expresses the theo-

retical mathematical relationships between two or more variables. A 

model does not require an experiment. Rather, it requires collecting 

data—past values of all the variables in the model’s equation—and solv-

ing the model’s equation with these values. The result is measured by 

how well the data fit the theoretical equation. A model is good or bad, 

not accepted or rejected. Model builders keep respecifying the equation 

by adding and deleting variables, either until they are happy with the 

fit or until they conclude that a good model is not possible under the 

circumstances.

Building mathematical models is fun. You may wish to try your hand 

at it someday. You do not have to go to the expense, in terms of time 

and money, of conducting an experiment. All you need is an accessible 

database that includes observations on the variables that need to be 

included in the model. However, all the requirements of good data are 

still critical. Models are no better than the validity and reliability of the 

data used to construct them. Randomness and sample size are also rel-

evant if the model uses data from a sample to draw conclusions that will 

be extended to a population. All of this book’s previous comments on 

the principles of science and the quality of data still hold. Good model 

building cannot compensate for bad science or bad data. “Garbage 

in, garbage out” is as relevant to statistical models as it is to scientific 

experiments. Therefore, the quality of data and data-collection methods 

must be one of your primary concerns when you review studies that use 

the tools of explanatory statistics.

Data-related problems are rather abundant in the published literature 

that uses regression analysis. Do not be surprised if you encounter some 
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seriously flawed models, and do not rely on their conclusions when you 

make your own on-the-job decisions. On the other hand, do not prejudge 

all such studies; each has to be evaluated on its own merits. Some good 

work is being done with this relatively new tool. I hope that the overall 

quality of model-based studies will improve as researchers and journal 

editors become more familiar with the correct use of the method.

Regression models have been developed for both linear and nonlinear 

applications, so researchers must be careful to match the model and the 

data accordingly. As was the case with relational statistics, the results 

obtained with a linear regression model are only meaningful if the ana-

lyzed data are related in linear fashion. A nonlinear model must be used if 

the data lie along a curve rather than a straight line.

Nonlinear regression analysis is extremely complicated; it goes well 

beyond the scope of introductory statistics books, including this one. 

Consequently, the discussion in this chapter pertains only to linear regres-

sion analysis. If you want to learn about nonlinear models, you will have 

to consult a book dedicated specifically to them—but you would probably 

be wasting your time because nonlinear regression is hardly ever used in 

the literature prepared for healthcare decision makers.

Linear regression, on the other hand, is used relatively often for stud-

ies in the healthcare literature. Hence, one of your first tasks in evaluat-

ing a published study that employs regression analysis is to make sure 

the report’s authors verified the linearity of the data before they used 

the linear model. In effect, the regression model in most common use 

today, known as the ordinary least squares (OLS) model, calculates the 

slope of a straight line that minimizes the distances between each data 

point and the line. The reported results are suspect if you have any rea-

son to believe that linear regression analysis was used to analyze non-

linear data.

One other introductory point needs to be made before we look at the 

regression model and its underlying assumptions. Regression is concep-

tually similar to correlation, but regression has one major advantage. 

While the correlation analysis can address the interactions of only two 

variables at one time, several variables can be studied simultaneously 

with a regression equation. Therefore, the specific focus of the fol-

lowing discussion of explanatory statistics is OLS multivariate linear 

regression.
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THE BASIC EQUATION OF MULTIVARIATE 
LINEAR REGRESSION

The basic model of multivariate linear regression analysis is built around 

an equation of the following form:

Y = β1X1 + β2X2 + β3X3 + … + βnXn + e (8.1)

Each of the letters in this equation has a specific meaning and its 

own name:

The letter to the left of the equal sign, Y, represents the dependent 

variable, the factor whose value is explained by the other variables in 

the model. A model can only have one dependent variable.

The X factors to the right of the equal sign represent the independent 

variables that explain the value of Y. The β (beta) in front of each X is 

the coefficient that actually quantifies the impact of the correspond-

ing independent variable on the value of the dependent variable (Y). 

The dots between the two plus signs indicate a continuing series of n

variables (e.g., if the model had five independent variables, the series 

would extend to β5X5).

The values of each β are the solutions to the regression equation, called 

the regression coefficients. They are the unknowns determined by 

the computer when it performs all those complex calculations I men-

tioned a few paragraphs back.

The e at the end of the equation is the error term; it is also called the 

alpha in some statistics books. Either way (e or α), this is the constant 

that balances the equation, roughly equivalent to the remainder in a 

division problem.

To illustrate the interpretation and application of a multivariate linear 

regression equation with a simple example, let us pretend that a study of 

the number of children in two-parent families (the dependent variable, Y)

had been studied as a function of the number of years the parents had been 
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married (independent variable X1) and net family income (independent 

variable X2). Suppose we collect the observations on all three variables 

from 200 randomly selected two-parent families, enter the values into 

our computer, and tell the computer to solve the regression equation. The 

answer on the computer printout should look like something like this:

Y = 0.11 X1 + 0.026 X2 – 0.27

Once our computer has used the sample of 200 randomly selected fami-

lies to calculate the beta regression coefficients (+0.11 and +0.026) and the 

error term (–0.27), we can use the model to predict the number of children 

we would expect to find in any other two-parent family from the same 

population. All we need to do is multiply the number of years the parents 

have been married (X1) by 0.11, add the family’s net income (X2) multi-

plied by 0.026, and then subtract 0.27. For example, if we know the parents 

of another family have been married for 14 years and earn a net family 

income of $57,800 per year, the model estimates the number of offspring 

as 0.11(14) + 0.026 (57,800) – 0.27, or 3.31 children.

If a regression model has good predictive value according to statistical 

criteria described in the following pages, the newly selected couple is likely 

to have three children. A proper regression model can be very helpful to 

decision makers; it allows them to predict the unknown value of impor-

tant dependent variables based on the values of independent variables for 

which measurements are available.

SPECIFYING THE MODEL

Selecting the best independent variables to include in a regression equa-

tion, a process known as specifying the model, is arguably the most 

important task performed by researchers who use explanatory statistics in 

their studies. Specification is the skill that separates good statistical mod-

elers from bad ones. I have developed an example to show you how the 

task ought to be performed. Some of the essential theoretical assumptions 

behind linear regression are embodied in proper specification and are also 

covered in this discussion.
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A priori (that is, before the fact) thinking is as important to explana-

tory statistics and predicting as it is to inferential statistics and hypothesis 

testing because the human mind can spot random trends in the numbers. 

Consequently, a study based on regression analysis should include evidence 

that the authors specified the model before looking at the data. Hats off to 

the study where data were collected after the researchers decided which 

variables to include in the equation. Be suspicious of the study where the 

researchers specified the model after reviewing the data.

To begin the proper a priori process of selecting variables, researchers 

should precisely define the model’s dependent variable (Y). I have selected 

the physician-to-population ratio in urban areas as Y for this example 

because healthcare decision makers can benefit from understanding how 

the supply of physicians is determined in their market. I am limiting this 

illustration to urban areas since we have ample evidence that the supply of 

physicians in rural areas is determined by a different set of factors. Being 

very specific at this stage is important because a model will be weakened if 

it covers too much territory (literally or figuratively).

The next step is to identify factors that might explain how many physi-

cians will be located in an urban area. This exercise will create a list of inde-

pendent variables that can be considered for inclusion in the regression 

analysis. A brainstorming session involving people who know something 

about physicians’ locational decisions might produce the following list:

Population

Per capita income

Unemployment rate

Number of hospital beds

Combined tax rate (sales + property + income).

Percent of population with health insurance coverage

Number of cultural facilities (museums, concert halls, botanic gar-

dens, etc.)

Distance to major recreational areas (mountains, lakes or ocean, etc.)

Number of college and professional sports teams

Per-student spending on public education

Some fundamental issues must be addressed before the final list of inde-

pendent variables is selected for analysis. One of the most important con-

cerns is the independence of the independent variables. The multivariate 
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linear regression model is based on an assumption that the independent 

variables are just that—independent and uncorrelated. The results of 

regression analysis are distorted to the extent that any of the independent 

(X) variables are correlated with each other or with the error term, so good 

researchers will carefully consider the possibility of relationships between 

the explanatory factors before specifying the model.

The potentially correlated independent (explanatory) variables need to 

be identified and discussed. Ideally, the best one will be retained for the 

model, and the others will be discarded. In my example, I would prob-

ably have to choose between per capita income and per-student spending 

on public education because they have a good possibility of being related. 

(Personally, I would retain per-student spending on education because 

the area’s income is related to other factors as well. Besides, based on my 

experience as an economist, I believe income figures are neither valid nor 

reliable.) Population and the number of hospital beds are also likely to 

be correlated. This situation might be resolved by combining both into a 

single variable: hospital beds per 1,000 residents.

The next issue for discussion is the distribution of values of the inde-

pendent variables. For regression analysis to work properly, the variances 

(dispersions) within the distributions of each independent variable should 

be constant. This condition is homoscedasticity. Consequently, an a pri-

ori discussion of the independent variables should consider whether the 

distributions may have different shapes. For example, if the distribution 

of unemployment rates in the sample cities is bimodal and skewed while 

the values of all other variables are distributed normally, unemployment 

should not be included in the equation.

Each potential violation of the assumptions of the multivariate linear 

regression model has a name:

Multicollinearity occurs when two or more of the independent (X)

variables are correlated.

Autocorrelation results if the independent variables are correlated 

with the error term.

Heteroscedasticity (see previous paragraph) exists when the data vio-

late the assumption of constant variances in the distributions of val-

ues for the independent variables.
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The occurrence of any of these problems can reduce the precision of the 

regression estimates. Of course, the fundamental assumption of linear 

relationships between the dependent variable and each of the independent 

variables must also be met in order for the model to have an acceptable 

degree of explanatory power.

The number of independent variables to include in the model needs 

to be determined after the initial list has been reviewed and revised. 

Regression equations can have too many variables, a condition known as 

overspecification. Basically, the complexity of the computational process 

causes a model’s power to decline as the number of variables increases. 

Statisticians differ in their opinions about the maximum number of vari-

ables to include in a regression equation.

My graduate school statistics professors contended that five or six inde-

pendent variables was a good limit, and my subsequent experience has 

made me comfortable with this maximum. Indeed, including more than 

half a dozen variables is almost always a good sign that the researchers did 

not take time to think before running the data. You have good reason to 

be suspicious of a study if its results are based on an overspecified regres-

sion model. (I have been amazed to see equations with 10 to 20 variables in 

prestigious journals in the recent past. The results of such studies should 

be labeled with a user’s advisory warning!)

In my opinion, you also have good reason to be suspicious of a study if 

the researchers used a procedure known as stepwise regression to select the 

variables for the equation. The stepwise approach lets the computer find 

the “best fit” by adding independent variables one at a time in different 

combinations until the model reaches its maximum explanatory power. A 

stepwise model involves no a priori thinking by the researchers, and that 

bothers me a lot because the stepwise protocol will find random associa-

tions and give them the appearance of being causal.

EVALUATING A MULTIVARIATE 
LINEAR REGRESSION MODEL

The model can be run once the regression equation is specified with a 

clearly defined dependent variable and an appropriate number of inde-

pendent variables. To explain how the process would proceed from there, 
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let us assume that we have methodically selected the following variables 

for our effort to identify factors that explain the doctor supply:

Y = Number of physicians in a metropolitan statistical area (MSA)

X1 = Hospital beds per 1,000 residents

X2 = Percent of population with health insurance coverage

X3 = Number of cultural facilities

I would probably include two or three more independent variables if I 

were really going to test this model; three will suffice for illustrative pur-

poses. Assume also that I randomly select 60 metropolitan statistical areas 

(MSAs) from a list of the hundreds of MSAs in the United States in order 

to keep the entire process manageable. Now we need numbers to crunch, 

so we would look for databases that provide valid and reliable information 

about the selected variables. After a visit to a reference library and a few 

online searches of digital databases, I should be able to gather the data I 

need: the same-year observations on all four variables (Y, X1, X2, and X3)

for the randomly selected 60 cities in the sample. The 240 data points are 

entered into the on-screen format of a statistics program that will calcu-

late the unknowns, the three regression coefficients, and the error term.

Once the calculations are completed, the computer printout will give us 

a result that should look something like the equation below.

Y = 4.03 X1 – 0.07 X2 + 41.92 X3 + 2.07

(2.24) (3.71) (0.47)

F = 6.35 (p = 0.09)

R2 = 0.32

This same information should be included in the published report of any 

study that uses linear regression analysis to explain a causal relationship, 

so learning the meaning of these test statistics on the printout will help 

you decide whether to rely on researchers’ claims.

I must forewarn you, however, that most authors do not present the 

regression test statistics in their articles. When it comes to providing the 

information you and I need in order to decide whether to have confidence 
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in a regression equation, the prevailing attitude in healthcare journals 

seems to be “Trust us” or “You wouldn’t understand if we told you.” Well, I 

am absolutely not inclined to trust authors’ interpretations of test statistics 

I cannot see for myself—especially when I know that many researchers do 

not understand the finer points of regression analysis. (There ought to be a 

law preventing anyone from using regression software until he or she has 

passed a test on the basic model.) I urge you to be equally cautious. Do not 

base your own decisions on a regression-based study that fails to present 

the test statistics.

The first test statistic in a typical printout is the t value, which appears 

in parentheses below each regression coefficient. It tests the null hypoth-

esis that the computed coefficient for each independent variable is not 

significantly different from zero in its paired relationship with the 

dependent variable. If the t value is above the critical value, the relation-

ship is statistically significant at the desired level of significance. If the t

value is below the threshold value, chance sampling error could account 

for the observed relationship. As a rule of thumb, t = 2.00 is the decision 

point for p = 0.05, so you do not need to consult a table if you are com-

fortable operating with a 95 percent confidence interval.

To see how this works in practice, look at the t value for independent 

variable X1. It is 2.24, which is above 2.00 (the threshold value at p = 0.05), 

so the 4.03 multiplier computed for the number of hospital beds per 1,000 

residents is statistically significant. The coefficient for X2 is also signifi-

cant, but note that the value of the multiplier (0.07) is very small. In other 

words, the percentage of the population with insurance coverage has an 

effect greater than that which would be expected by chance, but its effect 

is almost inconsequential. On the other hand, the coefficient for X3 is quite 

large (41.92), but it is not statistically significant. The coefficient’s value 

could be explained by sampling error.

I have intentionally invented computed coefficients (β and t-test values) 

to focus your attention on the difference between magnitude of effect and 

statistical significance. The two phenomena are different. A big differ-

ence can be explained by sampling error, and a small difference can be 

very real (that is, not explained by the luck of the draw). Make sure that a 

study clarifies this distinction before you base your own decisions on its 

reported results.

The sign of each regression coefficient, positive (+) or negative (–), is also 

important to evaluating the independent variable’s effect on the dependent 
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variable. The sign does not matter if the t value suggests that a coefficient’s 

true value is not statistically significant from zero. In this situation, the 

independent variable does not explain changes in the dependent variable, 

which means the X is probably not a cause of changes in Y.

On the other hand, a coefficient’s sign does matter in a statistical sense 

if the computed t value suggests that the relationship between the Y and 

an X is significantly different from zero. If the sign is positive, X and Y

move in the same direction. An increase in the X term causes an increase 

in Y, and a decrease in X causes a decrease in Y. (Do not forget, however, 

that the actual magnitude of the changes might be very small.) When the 

sign of the computed coefficient is negative, a change in an X leads to the 

opposite change in the Y. The value of the dependent variable decreases as 

the value of the independent variable increases, and vice versa.

Looking at the signs of significant independent variables is one of the 

most useful features of multivariate linear regression analysis. Decision 

makers can benefit from knowing not only that a change in one vari-

able probably causes a measurable change in another but also that the 

change occurs in a predictable direction. This information can be very 

useful to a healthcare executive or clinician who controls independent 

variables, as long as he or she knows that the regression model was 

properly crafted.

Following t values and signs for the regression coefficients, the next 

statistics presented in a typical regression printout is usually the F value.

Whereas the t values are related only to the paired relationships between 

the dependent variable and each independent variable (such as Y and 

X1, Y and X2, Y and X3, and so on), the F value encompasses the entire 

model. As was the case with hypothesis testing in inferential statistics, 

the critical value for F must be taken from a standard table that takes 

into account sample size and degrees of freedom. If the computed F is 

greater than the standard table value, the relationships in the model are 

likely to be real at the selected confidence interval. If not, the observed 

relationships between the dependent and independent variables could 

theoretically be explained by the luck of the draw (sampling error). 

Hence, you can see why knowing the F value is an important factor in 

your own evaluation of a published study. Authors who withhold the 

information may have something to hide, or they may not know what 

they are doing.
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The last statistic presented in a typical regression printout is the 

R2 value, technically called the coefficient of multiple determina-

tion. R-squared (R2) is the percent of variation in the dependent vari-

able explained by the independent variables included in the model. For 

example, if R2 = 0.32 for my illustrative model, 32 percent of the varia-

tion in physician supply in the same data from 200 cities is explained 

by the number of hospital beds, the relative extent of health insurance 

coverage, and the number of cultural facilities. I strongly suggest that 

you also learn to think in terms of the converse: R2 = 0.32 means that 68 

percent of the variation in the number of physicians is not explained by 

the model’s independent variables.

With this defense mechanism, you will not be misled by the many stud-

ies that try to make a big deal of a small R-squared. How big does R2 need 

to be? That is a question you have to answer for yourself, but I do not take 

a model seriously until it explains at least 60 percent of the variation in the 

dependent variable; that is, the value of R2 would have to be at least 0.60 

before I would make a decision based on a regression analysis that other-

wise met all the tests of believability.

I would not give any credence whatsoever to a study that fails to report 

a model’s R-squared value, even if some t and F values are significant. Just 

as a statistically significant variable can have a very small effect on the 

dependent variable, several statistically significant variables can explain 

very little variation in the overall model. In my experience, the value of 

R2 is not presented in at least half of all healthcare studies that use regres-

sion analysis, which makes them just as useless as a research report that 

claimed statistically significant differences without report the p value. 

(Journal editors, take note: Require full statistical disclosure as a condi-

tion of publishing any study.)

In an ideal world, the report of a regression-based study would also 

include the values of the test statistic for multicollinearity, heteroscedas-

ticity, and autocorrelation. These three tests show respectively how well 

the model conforms with the theoretical assumptions of independence 

between the X variables, equal variances within the distributions, and 

zero relationship between the independent variables and the error term. 

However, these three statistics are almost never reported, not even in the 

most rigorous journals, so I will not present them in this illustrative dis-

cussion. As long as authors demonstrate appropriate attention to t, F, and 

R-squared, I am generally willing to give them the benefit of the doubt on 
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the tests of compliance with model assumptions. However, I would con-

tact the researchers for a discussion if a model were especially important 

to my situation.

So far, this chapter has presented the principal linear regression model 

developed for analyzing parametric data. Indeed, the model’s underlying 

theoretical requirement of equal variances in the distributions can only be 

met by parametric data. By definition, categorical data violate this assump-

tion because they are distribution free. The results are correspondingly 

flawed when OLS multivariate regression is used to compute coefficients 

for models that involve nonparametric data. The practice of using a para-

metric model to explain relationships involving nonparametric data is 

extremely common, but that does not make it right. I trust you will not 

base important decisions on studies that do it.

The good news is that regression models have been developed to deal 

with nonparametric data. Under the general heading of logistic regression 

analysis, these models (for example, Logit, Probit) use probability theory 

to create assumed distributions for the values of categorical variables. The 

nonparametric models provide useful tools for analyzing distribution-free 

data, and they deserve respect when they are used on their own terms. 

However, they are not as powerful as parametric models applied to para-

metric data.

Once again, I am accustomed to being called a purist for taking the 

position that nonparametric data should not be analyzed with parametric 

explanatory models. Researchers who are not bothered by this practice 

generally argue that a mismatched analysis is better than no analysis at 

all, especially when categorical data are the only available numbers. (I still 

believe strongly that no study at all is better than a bad study.) We purists 

are not swayed by their position because we can usually think of valid, 

parametric ways to measure the subject of interest.

For example, many nonparametric variables are created by lumping 

parametric data into categories, such as taking the income data from indi-

vidual tax forms and reconstructing it in groups such as under $20,000, 

$20,000–$29,999, $30,000–$39,999, and so on. The simple solution to this 

problem is to return to the original, pregrouped data and use them for 

the analysis. Another misapplication is the common practice of arbitrarily 

assigning a number to sex (for example, 0 = female, 1 = male) and includ-

ing sex as an independent variable in a regression model. This problem can 

be easily and appropriately solved by specifying two different equations, 
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one for female and one for male. Indeed, this may be the only appropriate 

approach in light of growing knowledge about clinically significant differ-

ences between men and women.

REFINING REGRESSION MODELS

Assuming that all steps in the regression analysis have been properly fol-

lowed, a big question usually remains after the first run of the data: Can the 

model be improved? There would seem to be plenty of room for improve-

ment if the t and F values show little or no statistical significance and 

R2 shows that very little variation in the dependent variable is explained 

by the independent variables. In many such instances, the model can be 

strengthened by respecification that begins with rethinking the relation-

ships and replacing some or all of the variables. This process is legiti-

mate as long as it involves careful thought prior to each respecification. 

It becomes very questionable once it deteriorates to trying every possible 

combination of variables to see if anything works, the human equivalent 

of stepwise regression.

Many researchers seem to feel they have failed if their repeated efforts 

at respecification do not produce statistically significant relationships and 

good explanatory power. Consider another possibility—namely, that no 

clear and consistent order is there to be found. A regression model may 

fail to identify strong explanatory relationships for the pure and simple 

fact that none exists. Chaotic systems do not have any causal relationships 

to reveal, and many aspects of today’s healthcare system arguably are in a 

state of chaos.

We would all be better served if journals would print properly con-

ducted explanatory studies that found nothing significant. In my opin-

ion, this would be preferable to the current practice of publishing only 

those studies that “find” significant causal relationships but use poor 

methodology. A well-executed regression model that reveals nothing 

may be very useful to today’s healthcare decision maker. On the other 

hand, a flawed study that reports erroneous conclusions can make mat-

ters worse.
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APPLICATIONS OF EXPLANATORY STATISTICS

Regression analysis has a lot to offer when it is properly applied. This 

chapter’s hypothetical study of factors that might explain the physician 

supply is a simplified example of work actually done with the tool by 

many researchers (myself included) in the 1970s and 1980s. Explanatory 

models have a lot to offer in situations where experiments are infeasible 

but historical data are readily available—as long as the data are good. 

There are several promising areas for further applications of explanatory 

statistics:

Quality of care, particularly studies of relationships between out-

comes and clinical factors such as providers’ experience and educa-

tion, frequency of performing a procedure, institutional size, and 

so on.

Financial performance, including studies to analyze profit or loss, 

economies of scale, and input or labor substitution.

Demand for health services, with special emphasis on patients’ char-

acteristics that explain visits to providers, severity of medical condi-

tions, and use of ancillary services.

Enrollment in payment plans, examining potentially causal factors 

such as health status, health history, and income.

A good explanatory model in areas such as these can produce valuable 

information to support administrative and clinical decisions or public 

policy. For example, pretend you are vice president of marketing for a 

growing capitation plan. Regression analysis of enrollment data for the 

past 20 quarters suggests that the number of hours spent in direct sales 

and spending for online ads are both statistically significant variables in 

explaining new memberships in the plan, but the relationship between 

enrollment and sales effort is positive, and the relationship with online 

ads is negative. You do not have to be a financial genius to see how such 

information can help you allocate next year’s sales budget between direct 

marketing and Web sites.

© 2009 by Taylor & Francis Group, LLC



Explanatory studies can generally help you identify variables worthy of 

your attention. Knowing the magnitude of statistically significant relation-

ships helps determine where effort and resources can best be expended, 

and knowing the direction of these relationships helps focus on which 

explanatory factors to promote and which to impede. Expect to see even 

more use of explanatory statistics, but be sure to apply the lessons of this 

chapter to make sure the studies are worthy of your consideration.
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Postscript: Statistics 
in Perspective

I have decided to end this book the way it began, with some comments 

about my particular perspective on statistics and your use of the informa-

tion contained in these pages. The book was written to give you the skills 

needed to be a competent evaluator and user of statistical analysis per-

formed by other people. If I have been successful in meeting my goal for 

this book, you may actually now know more about the underlying theory 

and proper practice of statistics than many people who conduct the stud-

ies and write the reports that cross your desk. Others may know how to 

compute a particular test statistic, but you know whether it should have 

been computed in the first place.

Here are a few parting thoughts that will help you get the maximum 

benefit out of the time and effort you have spent reading this book and 

traditional texts on the subject:

1. My “purist” view of the theory and practice of statistics is not a sign 

of disrespect for quantitative analysis in general or statistics in par-

ticular. Statistical tools are not perfect, but they are the best tools we 

have until the next generation of analytical techniques is perfected 

and introduced into daily practice. Statistical analysis most defi-

nitely can provide us with useful information and knowledge when 

its tools are used correctly. My critical comments about sloppy or 

inappropriate use of statistics absolutely must not be interpreted as 

cynical criticism of statistics. (On the other hand, these comments 

are critical of sloppy researchers.) We can use statistical tools well as 

long as we are aware of their limitations.

2. The next generation of analytical techniques has been under devel-

opment for the past decade, and its first tools are beginning to have 

an impressive impact on the analysis of information in healthcare. 

Computer networks and advanced software are beginning to liber-

ate us from analysis limited by the capabilities of a slide rule. For 
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example, new analytical tools with amazing graphical interfaces 

allow us to observe changes continuously over time; we do not need to 

make inferences because we can see what is actually happening under 

different (i.e., experimental) conditions. Nonlinear analysis is also 

becoming much more accessible. I am most excited by the evolution 

of bioinformatics, a rapidly growing set of tools that allows research-

ers to understand biological activity at the molecular level—providing 

a superior alternative to randomized controlled trials in many appli-

cations. I urge you to familiarize yourself with the advancements in 

quantitative analysis by reading relevant articles in Science, Nature,

Scientific American, the New York Times, and other publications that 

report on the process (not just the results) of research.

3. Pay close attention to quality of data. Expect good numbers from 

others. Make sure that measurement and data storage are handled 

properly whenever they are under your control. The next generation 

of analytical techniques will be largely worthless if the quality of 

numbers is not improved in the process. If I am cynical, even hostile, 

toward any issue addressed in this book, it is the prevailing insensi-

tivity to validity and reliability of data. If I have one favor to ask of 

you, it is to join me in making sure that we have good numbers to 

analyze and in exposing bad numbers in studies that are intended to 

induce changes in healthcare.

4. Remember that statistics is only a tool to help you make decisions. A 

well-done study provides useful information, but the human mind 

alone has the capacity to turn that information into knowledge. Test 

statistics impart no information about the political and personal 

contexts within which healthcare decision makers must operate 

today and in the foreseeable future. I have faith that good thinkers 

will always be worth more than good statisticians—especially when 

good thinking is accompanied with creative vision about the excit-

ing realm of possibilities for bringing healthcare into the twenty-

first century.

Good luck to you as you try to change healthcare for the better. I hope 

this book provides some help for dealing successfully with the many chal-

lenges that lie ahead.
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