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Preface to the First Edition

Clinical trials are experiments performed on human subjects, usually
patients, in order to assess the efficacy of a treatment that is under investi-
gation. Over the last two to three decades randomized concurrently con-
trolled clinical trials have become established as the method which
investigators must use to assess new treatments if their claims are to find
widespread acceptance. The methodology underpinning these trials is firmly
based in statistical theory, and the success of randomized trials perhaps
constitutes the greatest achievement of statistics in the second half of the
twentieth century. As such it is important that students of statistics should
be able to study this area of their subject as soon as possible in their courses.

Whereas there are many excellent books on clinical trial methodology,
almost all are written for the practitioner, whether statistician or doctor, who
is about to participate in the running of a trial. There is a natural tendency
in such books both to cover administrative issues and to keep to a minimum
any mathematical passages. However, while trial administration is of
undoubted importance, too much emphasis on it is unnecessary and an
unwelcome distraction for students making their first acquaintance with the
underlying principles. Moreover, for a readership whose knowledge of math-
ematics is likely to be substantially greater than their knowledge of medicine,
many of the principles involved can be introduced more precisely and suc-
cinctly by the appropriate use of mathematics. This book is intended as an
introduction to the statistical methodology that underpins randomized con-
trolled trials, and is aimed primarily at the student of statistics. Administra-
tive aspects receive little emphasis and, if it is believed that it would help
the primary readership, a mathematical approach is adopted.

Although it is hoped that many will find the book useful as an introduction
to the subject, the needs of final-year undergraduate or postgraduate stu-
dents at British universities have been my main concern. However, there is
considerable variation within this group in the statistical techniques they
already know, and I have attempted to rely only on a few basic prerequisites.
This has led to a slight distortion of the subject matter. For example, so that
a knowledge of logistic regression is not needed for this book, trials with
binary outcomes are given less prominence than might be expected from
their prevalence in practice. The complete avoidance of survival analysis
perhaps leads to an even greater distortion. However, I believe these distor-
tions are justified by the wider accessibility that results.

The view of clinical trials embodied in this book is, of course, my own.
This has been formed over many years through collaboration and contact
with many colleagues, both doctors and statisticians and so many people

© 2006 by Taylor and Francis Group, LLC



have been involved that it would be impossible to list them all. However, I
must acknowledge, in particular, the tremendous debt I owe to Peter Armit-
age, Michael Healy, and David Appleton. I am also most grateful to Peter
Farr for permission to use his data in the exercises in Chapter 8.

JNSM

Newcastle upon Tyne
Autumn 1999
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Preface to the Second Edition

The change of publisher between editions, from Edward Arnold to Chapman
& Hall/CRC, has given me the opportunity to make corrections and add
some new material. The aim, to write a book for students of statistics focus-
ing on statistical rather than administrative aspects of clinical trials, remains
the same. Some extra material on more sophisticated methods for balancing
treatment allocations has been added to Chapter 4. The main change is the
addition of Chapter 7, which is largely concerned with the analyses of
clinical trials with binary or survival time outcomes. Many trials have out-
comes of this kind, and in the preface to the first edition I acknowledged
that the exclusion of outcomes of these forms was a distortion of the subject.
This was done to ensure that the book did not require the reader to be
familiar with more sophisticated methods of analysis, such as logistic regres-
sion and proportional hazards models. On reflection, this was an unneces-
sary restriction. None of the chapters in the book depend on Chapter 7, so
those wishing to avoid this material can still avoid it. The chapter is quite
long because an attempt has been made to provide brief introductions to
the required techniques.

I am grateful to all those who have commented on the previous edition,
whether informally or in book reviews. The errata supplied by Craig
Borkowf and Miland Joshi were especially useful. I am also very grateful to
Professor Peter Farr for his permission to use the data from the PUVA vs.
TL-01 trial to illustrate much of Chapter 7.

JNSM

Newcastle upon Tyne
Winter 2005
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1

What Is a Randomized Controlled Trial?

1.1 Definition and Key Features

A randomized concurrently controlled clinical trial is simply an experi-
ment performed on human subjects to assess the efficacy of a new treat-
ment for some condition. It has two key features, which in the simplest
case are as follows:

1. The new treatment is given to a group of patients (called the treated
group) and another treatment, often the one most widely used, is
given to another group of patients at the same time — this is
usually called the control group. This is what makes the trial con-
currently controlled.

2. Patients are allocated to one group or another by randomization.
This can be thought of as deciding on the treatment to be given by
the toss of a coin, although more sophisticated methods are usually
employed, as we shall see.

It is often understood that the controls are concurrent and these trials are
referred to simply as randomized controlled trials or, in this book, RCTs.
The following should be noted:

1. Itis possible, and often desirable, to compare more than two treat-
ments in a single trial. However, much of the exposition herein is
restricted to this simple case because most of the essential ideas
behind RCTs are then most transparent.

2. Trials are applied to many different modes of treatment. Most of
this book will use examples of drug trials, in which the patients are
given tablets. However, RCTs are used to compare all manner of
interventions, for example, new surgical procedures, screening pro-
grams, diagnostic procedures, etc. Some examples are given in the
next section.
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2 Introduction to Randomized Controlled Clinical Trials

3. It may seem unnerving that a visit to the doctor could result in your
being given a treatment, not on the basis of the doctor’s knowledge
or expertise, but on the toss of a coin. Not only is it unnerving, but
you may well be given what turns out to be the inferior treatment.
For these, and other reasons, there is an important ethical aspect to
the conduct of RCTs, which sets them apart from experiments in
areas such as agriculture or industry.

1.2 Historical Context and the Nature of RCTs

1.2.1 Historical Background

Throughout history, mankind has been afflicted by disease and has
attempted to devise treatments to cure or ameliorate the suffering of the
afflicted. It is assumed that this is a desirable aim, and it is also desirable to
know which treatments work, which do not, and whether one treatment is
better than another. As will be seen later in the book, some of these questions
are rather simplistic, but they are, in essence, what RCTs are about.

In the past, the effectiveness of treatments has often been decided by
reference to ad hoc usage in the hands of some eminent authority. Indeed,
this approach was widespread until quite recently: RCTs — as we know
them today — made their entrance only in the period since the Second World
War. However, since medieval times, there have been isolated attempts to
obtain empirical evidence on the effectiveness of treatments.

Example 1.1: Some Early Trials

Treatments Compared
and Results

Investigator, Date, and

Condition Being Treated Reference

Wounds sustained in battle to
capture the castle of Villaine

Treatment of scurvy on board
HMS Salisbury

Boiling oil vs. a digestive of
egg yolks, oil of roses, and
turpentine. The latter, a new
treatment, was found to be
superior

Two patients allocated to
each of cider, elixir vitriol,
vinegar, nutmeg, sea water,
and oranges and lemons.
Those given oranges and
lemons showed “... the
most sudden and visible
good effects”

Ambroise Paré, 1537. Quoted
in FR Packard, The Life and
Times of Ambroise Paré,
Hoeber, New York, 1921, pp.
27,163.

James Lind, 1747. Lind, J., A
Treatise of the Scurvy, Sand
Murray Cochran,
Edinburgh, 1753, pp.
191-193.
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1.2.2 Impact of RCTs and Importance of Statistics

The RCT is the introduction of the scientific method into the process of
comparing treatments. As with the cases in Example 1.1, empirical evidence
is sought to settle the question of whether one treatment works better than
another, that is, we observe the effects of the treatments on the groups and
compare them. The following should be noted:

1. Our test of whether one treatment is better than another is based on
observing the treatments when they are applied to patients.

2. It is not based on any theory of how the treatments might work
(although that presumably played a role in bringing the treatments
to trial in the first place).

3. Itis not based on anecdotal evidence, perhaps gained from a doctor
“trying out” the treatment in an uncontrolled manner.

4. Itis not based on any appeal to authority or on the basis of anyone’s
opinion.

Over the last 50 years, RCTs have become established as the primary and,
in many instances, the only acceptable source of evidence for the efficacy of
new treatments. So much so that claims for the efficacy of a treatment on
the basis of points 3 or 4 in the preceding list, which used to be commonplace,
now are seldom heard, are treated with scorn, and, in the case of point 3,
may even be illegal or unprofessional. An excellent source for information
on the evolution of trials (and much other material on trials) is the James
Lind Library, found at http:/ /www.jameslindlibrary.org.

The use of empirical evidence to settle the matter is what makes statistics
important in RCTs. Not all patients will react to treatment in the same way,
and whether the difference between the two treatment groups is important,
given the variation in the response observed within each group, is clearly a
statistical question. Indeed, the RCT is of little value unless the results
obtained can be generalized to as yet untreated patients; this inference from
the sample to the population is a statistical exercise. As with any inferential
process, the quality of the inference will be higher if the data used are
collected appropriately. Again, statistical ideas are of the utmost importance
in the design of RCTs, although the use of classical designs, such as random-
ized blocks and split-plots are not often used in RCTs.

RCTs are used to gather empirical evidence about differences between
treatments. However, in this area there is a delicate balance between evidence
and belief. It is unlikely that a treatment will ever be subjected to the rigors
of an RCT if no one believes it represents an improvement on the status guo.
You therefore will find people involved in the conduct of RCTs who believe
that one treatment (usually the new one) may be superior. However these
people will also acknowledge that their beliefs are essentially unsupported
and might be even be mistaken. Simply believing that one treatment is
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superior to another is not a justification for acting on that belief: such justi-
fication requires you to collect evidence to prove or refute your beliefs and
the RCT is the currently accepted tool for doing this.

RCTs are therefore of the utmost importance to modern medicine and
statistics, and statisticians are of the utmost importance to RCTs. However,
none of the preceding discussion explains what it is about RCTs that have
given them this position of importance. This omission will be rectified if
answers can be given to the following, and this will be attempted in the
course of Section 1.3 of this chapter.

1. Why do you need to compare groups anyway?
2. What is so important about randomization?

3. How do you compare groups?

1.2.3 Ethical Issues

RCTs are essentially experiments and, though these may not have been
commonplace in medicine until recently, scientists have been performing
experiments for centuries; so is there anything new about RCTs? In the sense
of the scientific logic that underlies the use of RCTs, the answer is probably
no. Nevertheless, even if the logical basis of the experimental method is
common to most scientific disciplines, many methods and matters of detail
are often peculiar to a new field of enquiry, and much of this book will be
concerned with techniques largely encountered only in RCTs.

However, there is one fundamental feature of RCTs that sets them apart
from virtually all other experiments: the experimental units are people. This
places various ethical responsibilities on the investigator. We will not con-
sider the ethical implications of RCTs in detail, but will note three issues that
are of utmost importance.

1. Apatient must never be given a treatment that is known to be inferior.

2. Patients must be fully informed about all the circumstances sur-
rounding the treatments in the trial, including possible adverse reac-
tions and side-effects they may experience. Once informed, patients
must only be entered into the trial if they give their consent, prefer-
ably in writing. Withholding consent must not compromise their
further treatment in any way. Only in very exceptional circumstances
does the investigator not need to obtain informed consent and, in
some countries, even these cases are proscribed.

3. Patients who have entered a trial may withdraw at any time and
they must then receive the most appropriate treatment available
outside the trial.

Other ethical issues that have implications for points of methodology are
mentioned when the relevant methodology is discussed.
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The interests of patients are safeguarded by the Declaration of Helsinki,
which outlines the ethical constraints that surround experimentation on
human subjects. This is an international statement of principle and different
countries implement it differently. In the U.K., each health authority has an
ethics committee that must approve all proposals for experiments involving
human subjects. No reputable medical journals will publish the description
of research that has not obtained such approval. The Declaration of Helsinki
is a statement of the policy of the World Medical Association with regard to
medical research involving human subjects. It was first adopted in 1964 and
has been revised and amended from time to time since then: the latest version
can be found at the organization’s website, http://www.wma.net.

1.3 Structure and Justification of RCTs

Figure 1.1 is a schematic diagram of an RCT. It possesses five key items:

A population of eligible patients.

A group of patients recruited from this population.
Existence of (at least) two treatment groups.
Allocation to treatment is by randomization.

AN

Outcome measures in the treatment groups are compared at the end
of the trial.

The reason for each of these components is considered in the following
text: 1 and 2 in Subsection 1.3.1, 3 in Subsection 1.3.2, and 4 and 5 in
Subsection 1.3.3 of this chapter.

1.3.1 Eligible Patients

In order to conduct an RCT you need a supply of patients who may benefit
from the treatment under investigation. These will usually be recruited from
a hospital clinic, ward, or a general practice as they present with, or attend
for treatment of, their condition. It may be thought that any such patient
might profitably be recruited into the trial. However, such a casual approach
has a number of disadvantages.

1. The type of patients recruited in this way will be difficult to describe.
Many early trials in the treatment of cancer created confusion
because different trials admitted patients with widely differing char-
acteristics. Some recruited patients with advanced disease and
reported disappointing rates, whereas other trials considered such
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« Population of patients as defined by

eligibility criteria (Population P).

Patients recruited
(Sample A)
Formal entry totrial Eligible patients who, for some
(patients agresing to participate; reason were not entered in the
sample B) trial (often refused consent)

S~

Randomization

Treatment group 1 / \ Treatment group 2

I's

Compare Outcomes

FIGURE 1.1
Recruitment to a randomized controlled clinical trial.

patients to be beyond treatment with the agent concerned and
recruited only patients with less advanced disease. This resulted in
widely varying estimates of the cure rate. The problem was made
worse because the trial reports were often not explicit about the
types of patients who were treated. It is therefore important that the
report of any trial should describe precisely which patients it was
intended to treat.

2. Most trials need to enroll so many patients that the trial has to run
for many months, possibly even years. Patients are usually recruited
to a trial as they present. With such sequential recruitment, it is
possible that without clear criteria for recruitment, the type of patient
recruited changes over the duration of the trial. Some trials, known
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as multicenter trials, recruit from several centers, which may be in
different parts of a city, different parts of a country, or even from
several countries, and achieving consistency between centers with-
out a set of clear criteria would be especially difficult.

3. The aim of the trial is to generalize its results to all patients who are
similar to those treated in the trial. Without a strict set of eligibility
criteria it is more or less impossible to describe to which types of
patients the results of the study can be applied. Even with a clear
set of eligibility criteria this is not a simple matter.

Example 1.2: Example of Eligibility Criteria (Brandjes et al.,
1997, Lancet, 349, 759-762)

Following a deep vein thrombosis (DVT), a blood clot in the veins of the
leg, complications and recurrence known as postthrombotic syndrome can
arise. A randomized trial was performed to determine if wearing sized-to-
fit graded elastic compression stockings reduced the incidence of post-
thrombotic syndrome. The eligibility criteria for the trial were as follows.

Patients were included if they were attending the center running the trial
with venogram-proven DVT.

Patients were excluded if they also had the following:

A life expectancy of less than 6 months

Paralysis of the leg

Bilateral DVT (i.e., thrombosis occurred in both legs)
Leg ulcers or extensive varicosis (e.g., varicose veins)

Already using compression stockings

Patients were entered into the trial if they satisfied the inclusion criterion,
satisfied none of the exclusion criteria, and gave informed consent. The
investigators considered 315 consecutive cases that satisfied the inclusion
criterion and excluded 20 patients with life expectancy less than 6 months,
11 with leg paralysis, 10 already wearing stockings, and 3 with leg ulcers. A
further 77 refused to give consent so the trial proceeded with the remaining
194 patients.

The purpose of eligibility criteria is thus to define clearly the patients who
might enter the trial and so allows consistent recruitment and clear descrip-
tion of the scope of the trial.

Broadly speaking, the eligible population is the group of patients to whom
we would like to generalize our results. However, it should be noted that
no formal attempt is made to ensure that the patients actually recruited are
representative of the population of eligible patients. This is, at least in part,
because there will seldom be an adequate sampling frame for this popula-
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tion: put simply, we are generally unaware of the eligible patients until they
appear at the clinic. Moreover, as Example 1.2 shows, not all potentially
eligible patients who arrive at the clinic enter the study, as many may refuse
to give their consent.

It follows that, even with carefully defined eligibility criteria, the group of
patients to whom we may generalize our results is not easily delineated.
However, judgments on this issue would be much more difficult in the
absence of eligibility criteria.

1.3.2 The Need for Concurrent Controls

If you want to see if a new treatment works, why not give it to a patient and
see if he or she gets better? If the outcome of the disease is invariable, then
this approach might be tenable. Hill (1962, Chapter 1), writing of the pre-
streptomycin era, pointed out that tuberculous meningitis was always fatal,
so the recovery of any patient treated with streptomycin provided evidence
of the value of the drug. However, instances in which the outcome of a
disease is invariable are, these days, extremely rare and can, for practical
purposes, be ignored. Instead, patients, their disease, and their reaction to
treatment are all variable to some extent. Measuring and accounting for this
variability is what gives statistics its central role in RCTs.

If recovery is uncertain, and we give all our patients the new treatment,
then we will not know which of the patients who recover do so because of
the treatment or because they would have done so anyway. The solution is
to include a second group of patients, often called a concurrent control group
or simply a control group, in the trial who do not receive the new treatment.
At the end of the trial the aim is to ascribe any differences between the two
groups to the new treatment. As in the uncontrolled study, some patients
given the new treatment would have recovered anyway, but there will be a
similar subgroup in the control group and their effect cancels out in the
comparison of the groups. The following points about the use of a concurrent
control group should be noted.

1. The control group may receive any treatment, except the new one.
In fact, if there is an effective treatment (on which you hope to
improve with the new treatment), then it would be unethical to
withhold this from the control group. The trial is then a comparison
of the new treatment with the best currently available treatment. If
there is no accepted treatment available, then the control group may
receive no treatment at all (that is, what they would usually have
received), or they may receive a sham treatment known as a placebo.
The use of placebos raises a number of important issues and will be
considered more fully in Chapter 5.

2. The treatment groups are usually assessed on the basis of suitable
summaries, such as their means. That is, we examine the data to see
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Treated

60 70 80 90 100

Diastolic blood pressure (mmHg)

FIGURE 1.2
Hypothetical distribution of blood pressure in treated and control groups.

if there is evidence that the mean of the treated population differs
from that of the control population. We do not look at the effective-
ness on a patient-by-patient basis, so there may well be instances in
which some individuals do worse on the “superior” treatment than
some others on the “inferior” treatment.

Figure 1.2 shows the distribution of diastolic blood pressure in a
group treated with a new drug intended to reduce blood pressure
and in a control group. Although the new drug appears to work
well insofar as the average blood pressure of the treated group is
lower than that of the control group, a reasonable proportion of the
control population has lower blood pressure than the treated pop-
ulation. Of course, this may just reflect the distribution of blood
pressure in the population as a whole: those with low blood pressure
in the control group may well have had even lower blood pressure
if they had received the new drug.

3. Atreated group and a control group is the simplest possible arrange-
ment for an RCT. Trials with more than two groups are often used.
For trials involving conditions for which there is no accepted treat-
ment, you may have two control groups — one receiving a placebo
and the other receiving the current treatment, i.e., nothing at all. More
elaborate arrangements, such as factorial treatments are possible, as
are groups in which different doses of the same treatment are used.

4. It is important that the groups be as alike as possible in all respects
other than treatment. This is an issue of the utmost importance and
is considered more fully in the next section.
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Example 1.3: Some Examples of Control Groups

Condition Treated Group Control
Obstructive coronary artery disease ~ Excimer laser coronary Balloon angioplasty
(Lancet, 1996, 347, 79-84) angioplasty
Cytomegalovirus (CMV) Ganciclovir High-dose acyclovir

prophylaxis in liver transplant
patients
(Lancet, 1995, 346, 69-74)
Neonatal hypocalcemia Antenatal vitamin D Placebo supplements
(BMJ, 1980, 281, 11-14) supplements
Diabetes mellitus in childhood and ~ Special education classes in Usual clinic visits only
adolescence addition to usual clinic visits
(Arch. Dis. Child., 1989, 64,
997-1003)

1.3.3 Allocation at Random

Figure 1.1 shows that having defined a population of eligible patients (pop-
ulation P) and having recruited a group from this population (sample A),
the subset of these who formally enter the trial (sample B) are allocated at
random to the treatment groups. There are three primary justifications for
the use of this method of allocation.

1. In principle at least, it ensures that the groups to be given the dif-
ferent treatments are comparable.

2. The allocation to treatment is unknown at the time of entry to the trial.

3. There is a statistically sound estimate of error available for the com-
parison of the two treatment groups.

1.3.3.1 Comparable Groups

The aim of an RCT is to assess the relative merits of the treatments being
studied. If the treatment groups differ at the end of the trial, it is important
that we should be able to assert that this is because of the different treatments.
Clearly, if the treatment groups differed systematically before the trial ever
started then this would be impossible. Randomization is the means by which
the ability to state that the difference in treatment groups is caused by the
difference in treatments is achieved.

An important point to bear in mind when considering RCTs is that the
aim of randomization is to make the two treatment groups comparable with
one another. They are not, individually, necessarily representative of the
population of eligible patients. To be more specific, suppose the following:

1. The outcome measured on an individual patient formally entered
into the trial is a random variable X
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2. Neither treatment has any effect

3. We measure the difference in effect of the treatments by comparing
means, with the mean in group i (i = 1, 2) being X,

Now, if E(X)=p then, because each of the treatment groups is a random
sample from the group entered into the trial, it follows that
E(X;) =u=E(X,), so the difference in treatments is measured by X; — X,,
which has zero expectation, i.e., we have an unbiased estimate of the effect
of treatment.

Notice how this formulation depends only on the expectation of X within
the group entered into the RCT. No attempt is made to ensure that sample A,
those recruited from the population P, is actually a random sample from P.
Moreover, sample B is not a random subsample of sample A — those agreeing
to take part in a trial will usually be systematically different from those not
agreeing. If the mean of the variable X in population P is u’ it is likely
that u' # p. However, none of this affects the preceding argument, which sim-
ply ensures that the treatment groups are comparable with one another.

Of course, the hope is that, in some sense, |1 — u" is not too large, otherwise
it will be very difficult to generalize the results of the trial. However, it is
important to note that no formal attempts are made to ensure that ‘u —u'
0 and that this does not affect the validity of the RCT.

Randomization is intended to ensure that groups are comparable: for
example, in two randomized groups the proportion of female patients should
be similar, the proportion of patients with blue eyes should be similar, and
the distribution of the severity of disease should be similar. The range of
prognostic factors, i.e., features of the patient that are related to their outcome
(see Chapter 4, Section 4.5) should be similarly represented in the two
groups. An important feature of randomization is that it should achieve
comparability with respect to all prognostic factors, including those that are
unknown to the investigators.

It should be noted that several methods of randomization are possible and
that, especially in smaller studies, some of these are more effective than
others in achieving comparable groups. This issue will be considered in more
detail in Chapter 4.

1.3.3.2  Allocation Unknown at Entry to the RCT

If the treatment a patient is to receive is known to the doctor before the
patient is formally entered into the study, then the decision as to whether
or not the patient is actually entered may be affected. This can cause bias
and will be considered more fully in Chapter 2, Subsection 2.2.1.

1.3.3.3 Valid Estimate of Error

Under very general conditions, two groups can be compared using methods
that can be justified by the act of randomization. The usual assumptions,
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such as normality, are not then necessary. This will be mentioned in more
detail in the final section of Chapter 7.

Exercises

1. Ina clinical trial, outcomes are measured in 100 patients, 50 having
been randomized to treatment 1 and 50 to treatment 2: the outcomes
are continuous but not normal. This can be represented in Minitab
using column C1 to contain 100 numbers drawn from a nonnormal
distribution (e.g., try generating them using Calc -> Random Data
-> Lognormal and plotting a histogram or normal probability plot
to confirm their nonnormality) and setting fifty 1s and fifty 2s in
column C2 (they can be set arbitrarily, but fifty 1s followed by fifty
2s will do). The file RANDCHK.MTB contains the following
Minitab code.

et k99=k99+1

note apply random pernutation to C2 and put results
in C4

random 100 c3;

uniform0.0 1.0.

sort c2 c4;
by c3.

note copy outcones for treatnent 1 to Cl1, for 2 to
Cl12

copy cl cli;
use c4=1.
copy cl clz;
use c4=2.

note conpute t statistic in k4 [sqgrt(1/50+1/50)=0. 2]
| et kl=nean (cll)
[ et k2=nean (c12)
| et kll=stdev(cll)
et kl2=stdev(cl2)
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l et k3=sqrt((K11**2+k12**2)/2)
l et k4=(k1-k2)/(k3*0.2)

note store result in next available row of C5
I et c5(k99)=k4
end

(a) Explain how the code mimics what happens in a controlled trial
in which there is no treatment effect.

(b) If the following were entered in the Session window of Minitab,

| et k99=0
exec ‘randchk’ 10000

e what would you obtain in ¢5? What distribution would you
expect it to have?

(c) Enter the preceding code into a text file (or use the STOR com-
mand in Minitab) and run it. What do you find? Calculate the
cumulative distribution function of the t-distribution on an ap-
propriate number of degrees of freedom (or of a normal distri-
bution, as it will be very similar), sort these values, and plot them
against a column containing 1,/10001, 2/10001, ..., 10000/10001.
What do you find and what does it mean?

Note that if X is a random variable with cumulative distribution function
F(.), then F(X) is uniformly distributed on [0,1].
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Bias

At the conclusion of an RCT, the investigators are eager to calculate a number
that measures the difference between the treatments. The presence of some
degree of sampling error in this number is inescapable, but excluding from
this number any systematic effect other than the treatment effect is the
overriding aim of much of the methodology that surrounds RCTs. Such
unwanted systematic effects are called biases.

2.1 What Is Meant by Bias in RCTs?

Suppose that the outcome variable in treatment group 1 of an RCT is repre-
sented by a random variable X; and that in group 2 by X,. An assumption
that is commonly made, and one that will often be made throughout this
book, is that the effect of treatment is additive, giving E(X;)=p+1,
and E(X,) =u+1,, where p is the expected value of either X at randomiza-
tion. In these terms, the main aim of the RCT is to estimate T=1, —1,; T is
often referred to as the treatment effect. -

Suppose that the mean outcome in group i is X;, then if all goes well with
a trial, it follows that X; — X, is an unbiased estimator of 1. However, in
practice, many things can happen which ensure that a trial does not go well,
leading to the possibility that X; — X, does not provide an unbiased estimate
of 7. Some general remarks are worth making at this point.

1. The methodology of RCTs is preoccupied with methods for avoiding
bias. This is in marked contrast to the aims of classical designed
experiments, such as randomized blocks and Latin squares. Here,
simple differences between the means of treatment groups are unbi-
ased: the full analysis is needed to ensure that irrelevant sources of
variability are excluded from the computations of the standard
errors that attend the differences in means. In other words, the
emphasis is on increasing precision rather than avoiding bias. In
RCTs the design is usually so simple that there is little opportunity

15
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for improving precision (but see Chapter 6 and Chapter 11 for some
qualifications of this statement).

2. Insaying that problems may lead to X; — X, being a biased estimator
of T we are going beyond the usual notion of a biased estimator often
encountered in mathematical statistics. If we take a sample of n
independent copies of a variable with a normal distribution, mean
1, standard deviation o, then we know that E(s) # 6, where s is the
sample standard deviation. In other words s is a biased estimator of
o. However, this is a feature of the estimator we have chosen to use,
and an unbiased estimator can be recovered if we use:

TG (n-D)3(n-1)

I'(3n)

in place of s. In other words, the data are perfectly capable of pro-
viding an unbiased estimator of ¢; we just need to use an unbiased
estimator. When we speak of a biased estimate of T in an RCT, we
usually mean that something has gone wrong with the data collec-
tion, and the data collected may be incapable of providing an unbi-
ased estimator. In the proofs of E(X; — X,) =1 that are widely
encountered in textbooks of mathematical statistics, there is usually
a preamble that states that the variables forming the means are
independent, identically distributed random variables from the
respective distributions. In biased trials it is some aspect of this
condition that has been violated.

2.2 Types of Bias

In the course of conducting an RCT many practical problems that could lead
to bias will be encountered. It is useful to describe some of these under the
following headings.

Selection bias
Allocation bias
Assessment bias
Publication bias

AR e

Stopping rules

These terms will now be explained in turn. Terms 2, 3, and 5 will be dealt
with briefly in this chapter and more fully in subsequent chapters; publica-
tion bias will not be considered in detail in this book.
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2.2.1 Selection Bias

Selection bias can occur when the decision to enter a patient to an RCT is
influenced by knowledge of which treatment the patient will receive when
entered. In a well-run RCT selection bias should not occur, because the
patient will be formally entered into the study before the treatment is
chosen. Indeed, it is for this reason that there is a procedure of formal entry
to the trial (see Figure 1.1 in Chapter 1); once a patient is formally entered
into the trial they are entered in a patient log, and randomized. They cannot
then be removed from the trial. Of course, a patient may exercise their right
to withdraw from the study at any time but, as far as possible, data from
that patient will have to be analyzed at the conclusion of the study (see
Chapter 9).

If the doctor admitting patients to the RCT is not happy with a particular
eligible patient receiving one or more of the trial treatments, then that patient
should not be entered into the trial at all. This causes no problem of bias —
selection bias is a problem only if some patients might be entered if they
are sure to receive (or not to receive) certain treatments. However, it would
be disturbing if many consenting, eligible patients were not entered in this
way; in the notation of Subsection 1.3.3 of Chapter 1, it would tend to
make ‘ w— u" uncomfortably large. It may point to a defect in the specifica-
tion of the eligibility criteria or the doctor may not be a suitable investigator
for this RCT.

It may seem that if a patient is eligible and agrees to enter the trial that is
the end of the matter and foreknowledge of the treatment on the part of the
admitting doctor cannot affect matters. However, before any patient is
entered into any trial, the benefits and adverse effects of all the trial treat-
ments must be fully explained. The doctor may know that if a patient con-
sents to entering the trial they will get a certain treatment. If the doctor has
reservations about the suitability of that treatment for that patient, it will be
difficult for the doctor, either consciously or more often subconsciously, not
to emphasize the negative aspects of the trial. This increases the chance that
the patient will not agree to enter the trial. Note that we are not discussing
the situation in which the patient is told what treatment they are to receive
before obtaining their consent.

Problems of selection bias can occur in nonrandomized studies, for exam-
ple, in which patients are allocated alternately to one of two study treat-
ments. In general, this cannot happen with randomized studies, unless the
person admitting patients to the RCT also prepared the randomization list.
Preparing a randomization list in advance can be good practice but should
never be done by anyone involved with the recruitment of patients — it is
best done by the trial statistician. Some methods of random allocation, if
inadequately implemented, can lead to similar problems (see Chapter 4,
Section 4.2). Example 2.1 is a hypothetical example which, although rather
stylized, illustrates the nature of the problem that can arise.
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18 Introduction to Randomized Controlled Clinical Trials

Example 2.1: Hypothetical Example of Selection Bias

Consider a trial to compare two treatments for a serious malignant disease.
One treatment (N) is nonsurgical and not invasive (it involves a course of
tablets with limited side effects), whereas the other treatment (S) involves
surgery and most patients take 2 or 3 months to recover from the operation.
Eligible patients are to be allocated to N or S alternately by a single doctor.

Patients agreeing to enter the trial have had the severity of their disease
graded as 1 or 2 on the basis of a biopsy sample taken earlier: grade 2
indicates more severe disease. The proportion of patients with grade 1 dis-
ease is A and that with grade 2 is 1-A.

The survival time for patients, X, has mean i, for patients with type 1
disease: this is expressed as E(X | 1) =y, and, similarly, E(X |2) = u,. As type
1 patients have less severe disease we suppose u, >H,. Also,
E(X) = M1y +(1-2)u, is the mean survival time for untreated patients. We
further suppose that treatment by N changes mean survival by 1, with a
similar definition for 15. It is also supposed that this change affects the
mean survival equally for type 1 and type 2 patients. Therefore, in an
obvious notation:

B(X|N,D=p, +1y  E(X|N,2)=p, +1y

E(X|S, )=+t E(X|S,2)=u, +14

It follows that if we admitted all patients equally to the trial, the mean
survival time in group N would be

E(X|N,1)Pr(1| N)+E(X|N,2)Pr(2| N) = (U + Ty )A + (U, + Ty )1 =A) =+ 1y

Similarly, that in group S would be p + 15 so the difference in treatment
means would be E(X|N)-E(X|S)=1y — 15, i.e.,, the estimate would be
unbiased.

The nature of the disease is such that all the eligible patients are essentially
willing to enter the study. However, the doctor is uneasy about submitting
patient with severe disease (type 2) to the risks and pain of a surgical
operation. This is reflected in the way the doctor explains some of the risks
of the trial to type 2 patients whom he knows will receive S. As a result,
there is a probability p that a type 2 patient destined for S will refuse to enter
the study. If A denotes the event of being admitted to the trial, this situation
can be described by the equations

Pr(A|N,1)=1 Pr(A|N,2)=1 (2.1)
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Pr(A|S,1)=1 Pr(A|S,2)=1-p=9q (2.2)

We can only base our calculations on patients admitted to the study, so
our estimate of treatment effect is now not E(X|N)-E(X|S) but
E(X|A,N)-E(X|A,S).

We need to calculate E(X | A,N) and E(X | A, S). The first step in this is to
note that

E(X|A,N)=E(X|A,N,1)Pr(1]A,N)+E(X|A,N,2)Pr(2| A,N)
and
E(X|A,S)=E(X|A,S,1)Pr(1|A,S)+E(X|A,S,2)Pr(2| A,S)

In order to compute Pr(1| A, N) we apply Bayes’ theorem to Equation 2.1,
thus:

Pr(1|N) Pr(A|1,N)Pr(1|N)

P14, N)=Pr(A[LN) L ) IN)  Pr(A[N,1)Pr(1|N)+Pr(A[N,2)Pr(2 | N)

Now Pr(1|N) =Pr(1) = A because allocation to N is independent of patient
type, as allocation happens before questions of admission to the RCT arise.
Substituting from Equation 2.1 gives Pr(1|A,N)=A and hence
Pr(2|A,N)=1-A. A similar calculation gives Pr(1|A,S)=b=1-
Pr(2| A,S) where

po M
Atq(l-n)

Also, once the information on the type of patient and the treatment to be
allocated is known, the expected value of X is independent of whether or
not the patient is admitted to the trial. Thatis, E(X|N,1)=E(X | A,N, 1), etc.
This is probably obvious for all types of patients except type 2 patients
allocated to S. However, it is assumed that those patients of this type who
refuse to enter are selected with probability p, independently of the distri-
bution of their survival time. In truth, this is likely to be a little unrealistic,
but it will suffice for this example. It follows that

E(X|A,N)=E(X|N,1)Pr(1| A,N)+E(X|N,2)Pr(2| A,N)

= (1 + T A+ (W + T )(1=A) = Ay + (1= M), + Ty

© 2006 by Taylor and Francis Group, LLC



20 Introduction to Randomized Controlled Clinical Trials

and

E(X|A,S)=E(X|S,1)Pr(1| A,S)+E(X|S,2)Pr(2| A,S)

= (U +T5)b +(Uy +T5)(1=b) = by +(1-b)u, + 15

From this, it follows that the estimate of treatment effect that is obtained
from the trial is

E(X|A,N)-E(X|A,S) =1y —Ts + (A =D)(K; —1,)

Cw pAMI-=M)(1, —U,)
N A+q(1-2)

Thus, the different way the entry to the trial of patients destined for N
and S has been handled has led to a bias in the estimate of treatment effect.
Three points should be noted about this result.

1. If all patients of type 2 destined for S are admitted, i.e.,, p = 0, the
bias disappears.

2. If patients of type 1 and type 2 have the same mean survival time
the bias also disappears.

3. Asp,—u, >0, E(X|A,N)-E(X|A,S) <1ty —Ts. If N is the superior
treatment, i.e., Ty —T5 >0 then the bias reduces the apparent size of
the benefit N confers relative to S. This has occurred because the
manner in which the doctor handled the entry procedure meant that
patients who have a poorer mean survival time are relatively under-
represented in the S group, which consequently appears to have a
superior mean survival time. If S is the superior treatment then for
the same reason the trial will exaggerate this superiority.

2.2.2 Allocation Bias

Patients have many factors that can affect the outcome of their therapy,
regardless of the treatment group they are allocated. These prognostic factors
might be, for example: whether the tumor is advanced or not; whether initial
disease control was good; higher or lower natural levels of immunity;
whether or not a patient can walk (ambulatory status). Randomization will,
in principle, lead to groups that are balanced, in the sense that the distribu-
tion of these factors will be similar in the different treatment groups. How-
ever, simple randomization, in which effectively the allocation to treatment
is made by the toss of a coin, is obviously a stochastic phenomenon, and
there may be particular trials in which balance on an important prognostic
factor may not be achieved. This could lead, for example, to a trial of ther-
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apies for multiple sclerosis in which one treatment group has a much higher
proportion of nonambulatory patients than the other. The treatment in the
group with a higher proportion of nonambulatory patients is very likely to
compare poorly with other treatments in the trial, simply because the
patients in this group have more severe diseases.

This failure to form comparable treatment groups means that the compar-
ison of treatments is biased and we refer to this form of bias as allocation
bias. The problem can be addressed, at least for known prognostic factors,
by a variety of methods: see Section 4.5 and Section 4.6 in Chapter 4.

2.2.3 Assessment Bias

At the end of the trial, and often during its course, observations are made
on a variety of outcome variables. Many of these will be entirely objective,
such as whether a patient has died or the concentration of hemoglobin in
the blood. Other variables are less objective: the proportion of the body
covered with plaques of psoriasis is usually assessed by a dermatologist
using various rules of thumb; blood pressure (systolic) is usually measured
by reducing the pressure in the cuff of a sphygmomanometer until the sound
of a pulse can be heard in an artery of the arm. Other variables, such as
measures of quality of life, though clinically very important, are necessarily
highly subjective.

If the observer knows the treatment being given to the patient and if the
measurement of an outcome variable contains an element of subjectivity,
then it is possible that the value of an observation might be influenced by
the knowledge of the treatment. For example, in a trial of treatments
designed to reduce blood pressure, the observer’s views on the effectiveness
of a treatment may affect his judgment of when the noise of a pulse can be
heard. Similar problems can arise when patients know which treatment they
are receiving. Even if these problems do not occur, the possibility that they
might can affect the credibility of the trial. Measures to deal with such
assessment bias are discussed in Chapter 5.

2.2.4 Publication Bias

The ultimate aim of an RCT is to influence medical practice. This is generally
done by publishing a report of the results of the trial in a medical journal.
Reports submitted to a reputable medical journal will be subject to peer
review, in which experts in the field are asked to judge the suitability of the
paper for publication. On the advice of these experts, and depending on a
number of other factors, the decision whether or not to publish a paper rests
with the editor of the journal.

In recent years, a view has formed among medical scientists that papers
reporting positive findings are more likely to be published than those that
do not. More often than not, positive findings means that a statistically
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significant difference between treatments has been demonstrated. If we take
significant to equate to P < 0.05, then even if there is no treatment effect, one
trial in twenty would be expected to demonstrate a significant effect. If these
trials are more likely to be published then the medical literature will clearly
be misleading.

This is a genuine problem but not one we will consider further, although
some related matters will be mentioned in Chapter 12. Some progress is
being made in this area. One example is provided by the leading medical
journal, The Lancet, which will now review papers reporting RCTs before the
study is conducted, and will either reject the submission or give an under-
taking to review the report once the trial is complete.

2.2.5 Stopping Rules

Once a trial has been started, how will it stop? A crude possibility that is
clearly unsatisfactory when assessing the stochastic outcomes of a trial is to
keep analyzing the data as the trial continues and stop when a promising
result has been obtained. This would obviously induce a bias. Such practices
can have ethical advantages but can only be condoned scientifically if they
are done as part of a prespecified method for assessing data in this way;
some of these methods are discussed in Chapter 8. A simpler way to stop
without any suspicion of bias of this form is to run the trial until a specified
number of patients have been treated. A method of specifying the number
of patients is described in Chapter 5.

Exercises

1. It has recently become apparent that various disorders of the stom-
ach are due to infection with a bacterium Helicobacter pylori
(H. pylori). Thus, for example, stomach ulcers are now treated with
a short course of antibiotics that eradicate the H. pylori. The presence
of H. pylori in a person’s gut can be detected with reasonable cer-
tainty by analyzing a sample of the patient’s breath.

In a general practice, there are many patients suffering from stomach
problems for which, despite much investigation, no cause could be
found (dyspepsia of unknown origin). These patients are treated by
giving tablets T to reduce the amount of acid secreted by the stom-
ach: they take these tablets permanently. It was decided to run a trial
to see if giving antibiotics to eradicate H. pylori was preferable to a
maintenance dose of T. The outcome would be the amount of indi-
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gestion remedy (a simple antacid) used by the patient in the year
that the trial would last.

It is proposed to randomize patients to two groups, one receiving T
for the whole year and the other receiving antibiotics for the first
three weeks of the year. In the group randomized to receive the
antibiotics, it was suggested that the breath test should be adminis-
tered and the antibiotic given only to those who gave a positive test.
Those patients given antibiotics could then be compared with those
given tablets. Explain why this would give a biased comparison and
suggest alternatives that would be unbiased.
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How Many Patients Do I Need?

3.1 Criteria for Sample Size Calculations

An RCT is used to gather evidence about the relative merits of two or more
treatments. In order to do this we recruit eligible patients, allocate them
randomly to the treatments under investigation, and then assess their out-
comes. How do we know when to stop? There are broadly two possibilities.

1. You keep recruiting until the question of which treatment is superior
is settled.

2. You decide beforehand how many patients you need to recruit and
you only analyze when this number has been recruited.

Superficially, alternative 1 seems much the more attractive and such so-
called sequential methods have long been scrutinized by statisticians. How-
ever, the implementation of this method is fraught with difficulty, especially
from the frequentist (i.e., non-Bayesian) point of view adopted in this book,
and further discussion is postponed until Chapter 8.

Alternative 2 is, in fact, the approach most often used in practice. By having
a fixed target for recruitment, however that is set, you immediately acquire
the advantage that you have a known and objective stopping rule. One way
of causing a problem with the interpretation of a trial is not to have an
explicit stopping rule. If you do not specify at the outset of the trial how
and when you will stop the trial, detractors could raise the objection that
you stopped when you did because you thought it might favor your pre-
ferred treatment. Although this may not be the case at all, the inability to
rebut any such allegation would weaken the trial report.

However, you also need to specify a total number of patients that is, in
some sense, adequate for your purposes. In rather nonspecific terms, an RCT
is about gathering evidence about the difference between the treatments,
and the more patients you recruit, the more evidence you obtain. There are
problems with obtaining both too much as well as too little evidence.

25

© 2006 by Taylor and Francis Group, LLC



26

Introduction to Randomized Controlled Clinical Trials

1. If you recruit too few patients, then you may be unable to settle

questions that are central to the aim of the RCT. This is not only
scientifically inadequate, it is ethically unsound. An RCT exposes
one group of patients to an inferior treatment, which is partly justi-
fied because the evidence thereby obtained will be of benefit to
future patients. If your trial produces no such evidence, then you
have exposed some patients to an inferior treatment and have gained
nothing for future patients.

. On the other hand, it is also unethical to recruit many more patients

than you need to settle the primary question asked in the RCT. If
you could have decided that treatment A was better than treatment
B on the basis of data from 100 patients, but recruited 200, then the
patients allocated to treatment B from the final 100 recruits could
have been saved from exposure to an inferior treatment.

This is the background to why we need to set a sample size in an RCT.
However, it is very vague: what is the primary question, what do we mean
by adequate evidence to settle the question? These notions need to be made

more precise.

3.1.1

The Primary Question

Most RCTs record many variables on each patient. However, at the outset
of the trial, there are advantages to designating one of these variables as the
primary outcome variable. One of the advantages is that we can focus on
this variable when we try to decide how large the trial ought to be: we aim
to gather sufficient evidence to settle questions about this variable.

Example 3.1: Outcome Variables and Primary Outcome

Variables

Trial

Some Outcome Measures

Primary Outcome

Zanamivir vs. placebo for

treatment of influenza A and B

(Lancet, 1998, 352, 1877-1881)

Comparison of “hospital at
home” vs. acute hospital care
(BM]J, 1998, 316, 1796-1801)
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. Amount of cough mixture

used

. Days to alleviation of

symptoms

. Amount of paracetamol used

. Quality of life measures
. Physical functioning at 4

weeks and 3 months

. Time in hospital/“hospital at

home”

. Mortality at 3 months

Days to alleviation of
symptoms

Time in hospital/
“hospital at home”

Continued.
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Trial Some Outcome Measures Primary Outcome

Scandinavian Simvastatin 1. Serum LDL cholesterol Mortality
Survival Study on the lowering 2. Serum triglyceride
of cholesterol on patients with 3. Mortality
coronary heart disease (Lancet, 4. Whether patient needed
1994, 344, 1383-1389) bypass surgery

3.1.2 Adequate Evidence

If the primary outcome variable X is distributed with mean p in the control
group and mean L+ 7T in the treated group then the aim is to learn about 7,
the treatment effect, either by estimating it or testing the null hypothesis that
it is zero. One could think of adequate evidence in terms of making the
standard error of some estimator of T small in some sense. However, the
difficulty of defining small, combined with the strong interest that is usually
focused on the test of the null hypothesis Hy: T = 0, means that adequate
evidence is usually thought of in terms of having adequate power to test H,,.
Therefore, before proceeding to the details of how we calculate a sample
size, it will be useful to review some general features of hypothesis tests.

3.2 Hypothesis Tests
3.2.1 General Remarks

The result of performing a hypothesis test is a probability, universally known
as the P-value of the test. It is important to be clear what the P-value does
mean and, perhaps more importantly, what it does not mean. A definition,
appropriate to a test comparing groups, is as follows:

If the null hypothesis is true, the P-value is the probability of obtaining
a difference between the groups (as measured by the test statistic T) as
large as or larger than that observed.

More informally, if we assume there is no treatment effect (i.e., T = 0), then
differences between the treatment groups that are very extreme are unlikely
to occur by chance and their improbability is reflected in small P-values. If
a P-value smaller than 0.05 is obtained, then this is generally accepted as
providing evidence that the null hypothesis is false. A P-value less than
about 0.01 would provide stronger evidence against the null hypothesis. A
P-value of 0.1, and certainly of 0.5, would not provide such evidence, as the
observed data would be entirely compatible with data drawn from popula-
tions in which the null hypothesis was true.
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It is of the utmost importance to understand that a P-value compatible
with the truth of the null hypothesis does not mean that the null hypothesis
is true. It is obvious that any dataset compatible with the truth of T =0 is
also compatible with the truth of T = € for any sufficiently small, but nonzero,
e. If we do not have enough evidence to demonstrate that t© # 0, then this
might be because t = 0 but, in practice, it is much more likely to be because
we have not gathered sufficient evidence.

This is a convenient place to note that P-values are sometimes interpreted
by noting whether they are above or below one of several conventional
thresholds. So, for example, a difference between two treatment groups
might be said to be significant at the 5% level if P < 0.05, or at the 1% level
if P < 0.01, etc. This method was almost universal when P-values had to be
obtained from tables; space constraints meant that it was only practical to
tabulate the critical values of test statistics at these conventional levels of
significance. This is not wholly satisfactory because there is, in practice, likely
to be little difference between studies yielding P = 0.04 and P = 0.06, and it
would not be sensible to deem that one study showed evidence of a treatment
effect whereas the other did not. Now that computers are widely available,
we are no longer restricted simply to quoting whether P-values are above
or below given thresholds, and reports of RCTs should quote the P-value to
two significant figures (unless it is very small, when one significant figure
may suffice). However, the practice of deeming that a difference is significant
at the 1000:% level (with o usually 0.05 or 0.01) is also applied in the calcu-
lation of samples sizes, as will be seen in the next section. This is necessary
because it is needed to define a fixed rejection region for a test, without
which the sample size calculation could not proceed.

3.2.2 Implication for RCTs

Suppose we conduct an RCT and perform a hypothesis test on the primary
outcome variable. If this leads to a P-value that is less than about 0.05, we
would conclude there was evidence of a treatment effect (i.e., T#0) and all
would be well. However, what can be concluded from the trial if a nonsig-
nificant P-value is obtained, say P > 0.05? The preceding discussion shows
that we cannot conclude that there is no difference between the treatments.
The P-value indicates the data are consistent with no treatment effect, but
they are also consistent with some effect. Clearly, by itself, this is useless.
We need to design the RCT in such a way that we avoid making such an
unhelpful statement.

If the data are compatible with T=0 then we observed that they would
also be compatible with T =¢ for sufficiently small e. So, a nonsignificant
result in our trial means we have failed to distinguish between “no effect of
treatment” and “a small, but nonzero, effect of treatment.” However, failure
to distinguish between no effect and a very small effect may be of no interest.
For example, if a new drug for lowering blood pressure actually achieved a
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mean reduction 0.1 mmHg (mm of mercury, the usual unit for blood pres-
sure) greater than that of the standard treatment then this would not repre-
sent a therapeutic advance. Failure to detect such a small treatment effect
would be unimportant. What we must do is ensure that our trials have a
reasonable chance of detecting differences that are clinically important. In
fact, the term small is ambiguous and we should talk about differences that
are clinically important and clinically unimportant. In order to do this, we
must ensure that the size of the trial is sufficiently large to detect clinically
important treatment effects, and the means of doing this will be described
more precisely in the next few sections.

3.2.3 One-Sided vs. Two-Sided Tests

Suppose we have measured blood pressure in patients randomly allocated
to one of two drugs designed to reduce blood pressure. At the end of the
study, we could test the null hypothesis of no treatment effect by performing
an unpaired t-test. Suppose the calculated statistic is ¢, the P-value is usually
computed as

P =Pr(| T t]) = F(~ | t])+ {1- (| ¢])}

where T is a random variable with a Student’s t-distribution having the
appropriate number of degrees of freedom and F is the cumulative distribu-
tion function of this distribution. This is a two-sided P-value. Thus values
of ¢ that are large in absolute size, whether positive or negative, lead to small
P-values. In other words, differences between the treatment groups in either
direction (treatment A better than treatment B, or treatment B better than
treatment A) provide evidence against the null hypothesis. Put more for-
mally, this form of the test corresponds to testing

Hy:1=0 versus H T#0.

alternative

At the outset of an RCT, there may be a good deal of optimism that the
new treatment (A) will be an improvement over the standard treatment (B).
If treatment A being better than treatment B corresponds to T >0, then there
may be a temptation to perform the test of:

H,:t=0 versus H t>0.

alternative

The P-value would then be

P=PxT >t)=1-FE(t)
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with T and t defined as before. This is the one-sided P-value and if t > 0, it
will be a half of the two-sided P-value (because T is symmetrically distrib-
uted about 0). Superficially, this may be rather attractive — we have halved
our P-value and so appear to have a greater chance of obtaining a conclusive
result in our RCT. We have achieved this by altering the alternative hypoth-
esis and this is not as innocuous as it may seem. Small P-values will be
obtained from large positive values of t. Large negative values of ¢t do not
result in small P-values and provide no evidence against the null hypoth-
esis. Suppose that in our trial, contrary to prior expectation, the group
receiving A fared much worse than the group receiving B. Our specification
of H jjormarive T > 0 effectively means that we must accept this as a chance event
which casts no doubt at all on our null hypothesis of no difference between
treatments. Prior expectations for new treatments are notoriously overop-
timistic and few medical statisticians would be prepared to dismiss such
an outcome so lightly. Consequently, one-sided hypothesis tests are seldom
used; in this book, unless otherwise stated, hypothesis tests are taken to be
two-sided.

3.3 Sample Size for a Normally Distributed Variable

Suppose we have randomly allocated n patients to treatment group 1 and
m patients to treatment group 2. Suppose also that the primary outcome
variable, X, has a normal distribution with mean p in group 1, mean pu+1
in group 2, and common standard deviation 6. We wish to test the null
hypothesis Hy : 1=0 vs. H, : ©#0, and if x;,x, are the sample means and s
is the pooled estimate of standard deviation, we compute:

which under H, has a t distribution with n + m — 2 degrees of freedom. The
difference between the groups would be said to be significant at the 100a%
level if:

| D>ty (n+m=2)

where t,(v) is such that Pr(T > t(v)) = £ when T has a Student’s t distribution
with v degrees of freedom.

As v tends to infinity, the distribution of T tends to that of a standard
normal variable Z, and t;(v) tends to the corresponding quantile, z;, of the
standard normal distribution where, to be specific, Pr(Z > z;) = &. For all
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practical purposes this limit is achieved when v = 40. As it is rare for sample
sizes for RCTs to be less than 40, we approximate the limits based on the ¢-
distribution by those based on the normal distribution, so a difference is said
to be significant at the 1000% level if | D |> z,,.

Thus, given the data, we can compute D and we reject H, if D lies outside
the interval [~z,,,,z,,,] or, equivalently, if x, — x, falls outside the interval

[—za/zsk(m, n)r Za/zs;‘(mr 1’1)]

where A(m,n) = L + 1 . What is the probability of this event? If H,, is true,
m n

then by construction, the answer is o, this is sometimes referred to as the
type I error rate of the test. However, what if H, is false and 1 takes some
nonzero value? This quantity,

Pr(Reject H, | 1) = y(1)

is the power function of the test. The standard notation for power is 1 - f3,
as P is usually reserved for Pr(Accept H, | T) = 1—- y(1), the type Il error rate.
We can compute Pr(Reject H, | 1) if we continue to use a normal approxima-
tion for the distribution of D, and note that its variance and mean are
approximately 1 and t/(cA(m, 1)), respectively. The situation is illustrated in
Figure 3.1: we simply need to compute the probability that a normal variable
with this mean and variance falling outside the acceptance region
[=2y/2 2,21, shown as the shaded box in Figure 3.1.

- Distribution of D
under Hy /

/\\

Distribution of D
under alternative

Acceptanceregion 0 T/(GA,)
D

for test of H,

FIGURE 3.1
Distribution of test statistic under null and alternative hypotheses.
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Probability of rejecting H,

7 (in units of g)

FIGURE 3.2
Plot of power function.

If we use @ to denote the cumulative distribution function of the standard
normal distribution, this is simply:

T Tl ao
q)(_zi"_csk)Jr[l_(D(Z;“_csk)J_l B=wy(1) (3.1)

The plot of y against T is known as the power curve of the test. This is
illustrated in Figure 3.2 at the 5% level of significance for three circumstances:
first, a trial with 20 patients in each group, so A = 1/ V10 = 0.32; second, a
trial with 200 patients in each group, so A = 1/10 = 0.1; the third example is
another trial with a total of 400 patients but with 50 in one group and 350
in the other, so A = 2/V175 = 0.15.

The graph in Figure 3.2 has the following features:

1. All the curves pass through (0, 0.05), as t© = 0 corresponds to H, and
the probability of rejecting the null hypothesis must then be the
significance level of the test.

2. As the value of T moves away from 0, the probability of rejecting
the null hypothesis increases.

3. For a given nonzero value of 1/0, the probability of rejecting the null
hypothesis is smallest for the trial with 40 patients and largest for
the trial with 400 patients, equally divided between the groups. The
trial with 350 patients in one group and 50 in the other has lower
power than that with 400 patients who are equally divided between
the groups. In general, the power increases as A decreases, and the
power depends on sample size only through the quantity A.
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4. At any given value of /6, we can make the power of the trial any
value (> o) we choose simply by selecting the appropriate value of
A, which in turn corresponds to recruiting the appropriate number
of patients.

Equation 3.1 allows any one of o, B, 7/0, and A to be found once the other
three have been specified. When planning a study, the significance level, o,
is the easiest to deal with as it is usually set at 0.05 or 0.01. As illustrated in
Figure 3.2, for any test, the power will be high for high values of /6 and
low for low values, so the next step is to decide what is the smallest value
of this ratio of interest. In practice, few doctors will be able to specify the
ratio directly, and this step actually has two parts: (1) specification of the
minimum clinically important difference, T,; and (2) obtaining an estimate
of 6. We then decide the power our test ought to have: often values of 90%
or 80% are chosen, i.e,, 1-B=0.9 or 1-=0.8. We then solve Equation 3.1
for A to obtain the sample size of the study.

Equation 3.1 could be solved numerically, but an approximation is possible
that yields a solution in closed form. Without loss of generality we may
assume T, >0. In practice, the first term in Equation 3.1 is negligible as it
is the probability that the test rejects H, because D is improbably large, not
in the direction of 1), but in the opposite direction (indeed, such cases would
lead to H,, being rejected but with the wrong inference being drawn about
the sign of the treatment difference). Finding A then amounts to solving;:

Bz, ~ ) =p=1-y(1), (3.2)

and as by definition ®(z;) =1~ and by symmetry ®(-z) =1- ®(z), we can
use the monotonicity of @ to obtain:

T
67[\7{ =23 +2y, - 3.3)

Of course, we are interested in the sample sizes, and so it is useful to recast
Equation 3.3 in terms of n and m. If a given value of A yields the desired
power, then we would usually (but not invariably; see Chapter 4, Section
4.4) want to ensure that we obtained A subject to using the minimum total
number of patients, say m +n =2N. From the definition of A we have

k2

A2 My
2N 2N

N =

where k = 2 (m —n) (such that m = N +k, n= N - k). Any N which solves this
will obey N =217, with equality when k = 0. Thus, any given value of A is
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achieved for a minimal total number of patients by using two groups each
of size N. In this case A" = /2N, and substituting in Equation 3.3 gives:

26%(z3 +2,,)
N=— 2 (3.4)
Tm

This is the formula that is widely used to determine the size for an RCT
when the outcome variable is, at least approximately, normal. The “noisier”
the measurements, i.e., the larger o, the larger the trial needs to be. Also,
you need a larger trial to detect a smaller difference in treatment means, t,,.

Example 3.2: Determining the Size of a Trial (MIST study
group, Lancet, 1998, 352, 1877-1881)

A randomized trial to assess the effectiveness of zanamivir, a new treatment
for influenza, compared a group randomly allocated to the new treatment
with a group randomly allocated to a sham (or placebo) treatment. When
planning the trial the investigators decided that the primary variable would
be the number of days to the alleviation of symptoms (with alleviation and
symptoms defined precisely elsewhere in the plan of the study).

A previous study suggested that a sensible value for ¢ was 2.75 d and the
minimal clinically relevant difference that the trial should have good power
to detect, T,,, was taken to be 1 d.

The investigators used a significance level of 5% and specified a power of
90%, so o.=0.05 and = 0.1. These figures give:

z,, =196
2
25 =128
2

S ~756

Tm

Substituting in Equation 3.4 gives N =2x7.56 x 3.24> =158.8. Thus the
study requires about 160 patients to complete the trial in each group.

3.4 Sample Size for a Binary Variable
3.4.1 Formulation

In many trials the outcome variable cannot be said to be normally distrib-
uted, even approximately. Similar formulae to those in Section 3.3 of this

© 2006 by Taylor and Francis Group, LLC



How Many Patients Do I Need? 35

chapter can be derived for many types of outcome. One of the most impor-
tant is when the outcome variable is binary, i.e., success or failure, yes or no,
0 or 1. Examples include: “The transplanted kidney produced urine within
30 d” or it did not; “The patient was alive 3 years after the procedure” or
they died within that period; “The patient was clear of psoriasis within a
month” or not. In general discussion, we will often refer to outcomes as
positive or negative, success or failure, or 0 or 1 if it is convenient to attach
numerical values to these attributes.

In such trials, the groups are compared by considering the proportion of
positive outcomes in each group. The number of successes in the group given
treatment A, R,, will have a binomial distribution Bi(n,,n,), where n,
patients are allocated to this treatment group, and similarly for treatment B.
The size of the trial will be calculated to give adequate power to test the null
hypothesis H; : ®, = n5. The observed proportion of positive outcomes in
the group given X is py = Ry /ny, where X is A or B.

In this formulation, there is no free parameter corresponding to ¢ as in the
case of normal outcomes. This is because p, has variance n,(1-7,) / n,, ie.,
it is determined by the same parameter that defines its mean. This depen-
dence between mean and variance complicates the calculation of a sample
size and it is preferable to transform the data in such a way that there is no
longer any such dependence. This requires an approximation technique
known as the delta method and this will now be explained before we proceed
to developing a formula for binary outcomes analogous to Equation 3.4.

3.4.2 The Delta Method

Suppose the random variable X has mean p and variance 6° = 6*(1), what
is the mean and variance of f(X) for a general “well-behaved” (e.g., differ-
entiable as often as we like) function f ? An exact answer requires evaluation
of a sum or integral and often these will not have a closed form. Application
of a number of seemingly crude approximations gives a formula that works
remarkably well. First, expand f(X) in a first-order Taylor series about L,

giving
fX)=f)+(X=f (W) (3-5)

and hence:

(FOO-fw) =(x -] [FwT (3.6)

Taking expectations of Equation 3.5, we get E(f(X)) = f(1); this can be used
in the left-hand side of Equation 3.6, so that when we take expectations of
this equation we obtain:
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var(f(X)) = o*(w)[ f '(u)]2

This series of approximations, which works well in practice, is known as
the delta method.

A common application of the technique is to find a transformation to a
scale on which, at least approximately, the variance is unrelated to the mean.
This is done by solving the differential equation 6*(u)[ f*(W)]* = constant. We
illustrate this using the case of interest in the present application, namely in
which R has a binomial distribution with parameters n and n. If we
set X = R/ n then X has mean = and variance n(1—m) / n. If f(X) is to have
constant variance we need to solve:

T1-T)r., 2 _ . _
T[f (TI:)] = K = constant ,

that is, we need to evaluate

1
oc 7d
fm J n(l-m) ;

Substituting u> =m in the integral, we obtain the solution f(r)=
arcsin(\/;) where of course the arcsin is evaluated in radians. As
[f(m)? =1/[4n(1-m)] it follows that arcsin(\/g) has variance 1/(4n),
approximately. This transformation is sometimes referred to as the angular
transformation.

3.4.3 Sample Size Formula

If a success is coded as 1 and a failure as 0, then p is the mean of these n
variables, so the central limit theorem applies and p has an approximate
normal distribution. The approximation is usually tenable provided n
exceeds about 30 and 7 is not near its extremes, say between 0.15 and 0.85.

Also, the linear approximation in Equation 3.5 shows that if X is normally
distributed then, to the approximation in Equation 3.5, f(X) is also normally
distributed. Consequently, we have that arcsin(+/p, ) is approximately nor-
mally distributed with mean arcsin(y/n, ) and variance 1/(4n,). We could
then test H, : m, = nt; at the 1000% level by observing if

D arcsin(\/pj )— arcsin(\/p: )

%M”A/”B)
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falls within [-z,,,,2,,,], with A defined as in Section 3.3. This is analogous
to the definition of D in Section 3.3. The analogue of ¢ is 1/2 and of =
is arcsin(y/m, ) —arcsin(4/7 ), so the required formulae for sample size are

2 (arcsin(\/a )— arcsin(\/g ))

Mny,ng)

=2Zy+2z
B2,
and, if we take two groups each with N patients,

2
N (zp + z%a)

2
Z(arcsin T, —arcsin nB)

Although there is no ¢ to specify, we still need to specify the same number
of items when planning a trial as in the normal case. This is because

arcsin(4/m, ) — arcsin(4/7y ) is not a function of T, — 15, so we cannot just spec-

ify the treatment difference, we need to specify the expected success rates

on both treatments in order to calculate arcsin(4/n, ) —arcsin(y/m; ). In prac-

tice, this is often convenient because you have a good idea of the value of
one, as it is likely to correspond to the standard treatment, and the other can
be found by specifying a clinically important difference that you wish your
trial to be able to detect.

Example 3.3: Determining the Size of a Trial with a Binary
Outcome (Lancet, 1994, 344, 1655-1660) (Smith et al., 1994)

Two methods for the management of malignant low bile duct obstruction
are surgical biliary bypass and endoscopic insertion of a stent. An RCT was
performed to compare these approaches.

The primary outcome of the trial was the binary variable: “Did the patient
die within 30 d of the procedure?” The trial was designed to test the null
hypothesis at the 5% significance level with 95% power, i.e., . = 0.05 and
= 0.05. The trial wanted to be able to detect a change in mortality rate from
20% to 5%. This gives the figures:

z,, =196
2
z5 =1.65

and hence
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No (1.65+1.96)*

) 2 (arcsin(\/()._Z) - arcsin(\/0.0S))

S =1149

So we should aim to allocate 115 patients to each treatment.

Note that if we had wanted to detect a change from 0.45 to 0.3, i.e., the
same change n, — 1z, we would have needed 269 patients in each group.
This clearly demonstrates that, unlike the normal case, we need to specify
not simply the difference in means, but where that difference is located.

This method, using the angular transformation, is entirely respectable and
follows easily from the method adopted for normally distributed outcomes.
Alternative methods are available and one which is quite widely used is
described in Section 4.6 of Armitage et al. (2002).

3.5 General Remarks about Sample Size Calculations

Calculating the number of patients needed for an RCT is one of the tasks
that the medical statistician is called on to do frequently. Many clinical
colleagues believe that this is an entirely objective and routine piece of
arithmetic requiring little judgment. Obviously, once o, B, o, and t,, have
been specified in Equation 3.4, then it is just a matter of arithmetic. Also, the
values of a and [ are chosen by the investigator and usually present few
difficulties. However, obtaining an estimate of ¢ is often quite difficult:
values can sometimes be found from the literature; in other cases it is nec-
essary to execute a small pilot study to obtain an estimate. Of course, if the
pilot study is small then the confidence interval for ¢ will be wide. The value
of N is quite sensitive to changes in the value used for c.

It is often more difficult than might be imagined for the doctor to know
what is a clinically important difference and hence specify t,,. This is likely
to be a greater difficulty when the outcome variable is something that has
just been identified as being of potential importance, but there is little clinical
experience in measuring this quantity. It is sometimes sensible to pick a
feasible sample size and then plot the curve similar to that in Figure 3.2 to
see how the power of the study changes with t,,. However, this practice has
its dangers, because it gives the investigator the opportunity to decide that
a given value should be ascribed to t,, simply because a study of convenient
size would then have adequate power, and not because there was a good
biological or clinical reason to support the choice of 1,,. Even without plot-
ting this graph doctors are often overoptimistic about the value of the new
treatment and run trials that are too small because they specify a value of T,
that is unrealistically large.
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In practice, recruiting an adequate number of patients for a trial is often
the most difficult aspect of clinical research. RCTs cannot continue indefi-
nitely: technology and treatments change and your study will become out-
dated: staff running the trial will leave and motivation may fall: financial
resources are limited (staff have often to be recruited to work full-time on
the running of the trial). One approach is to determine how many patients
are likely to be recruited over the period that it is feasible to run the trial
and using this value of N, together with values for o, ¢, and t,, use Equation
3.4 to find the power, 1-f, that can be achieved. If the largest feasible trial
has too little power then it may be best to abandon the trial, at least in its
current form. Unfortunately, this approach can lead to trials that are too
small because, rather than abandon a study altogether, investigators may
persuade themselves that an unacceptably low power, say 60% or 65%, may
after all be adequate.

When designing a study, it is important for the statistician to perform
sensitivity analyses so that they are aware how sensitive their recommenda-
tions for N are to uncertainty in the specification of parameters such as c.
Designing studies with binary outcomes can be a little easier, as there is often
a good deal of information about the success rate on one of the treatments,
thereby reducing the uncertainty in the formulation.

The preceding methods for determining sample size are probably the ones
most widely used in practice. However, for virtually all other aspects of
RCTs, statisticians have emphasized the need to focus on estimation of the
treatment effect, rather than hypothesis testing. In many respects, it is unfor-
tunate that sample size calculations have become dominated by ones that
ensure hypothesis tests have good properties. This is particularly the case
for variables whose novelty makes it difficult to specify a clinically important
difference — such difficulties often arise because the science is insufficiently
mature for hypothesis testing to be an appropriate way to proceed. In these
cases, it may be more sensible to determine a sample size that tries to ensure
that the width of a confidence interval is below some specified value.

Exercises

(a) Celiac disease is a condition that impairs the ability of the gut to
absorb nutrients. A useful measure of nutritional status is the
biceps skinfold thickness, which has standard deviation 2.3 mm
in this population. A new nutritional program is proposed and
is to be compared with the present program. If two groups of
equal size are compared at the 5% significance level, how large
should each group be if there is to be 90% power to detect a
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change in mean skinfold of 0.5 mm? How many would I need if
the power were 80%?

(b) Suppose I can recruit 300 patients, what difference can I detect
with 80% power?

(c) Suppose I decide that a change of 1 mm in mean skinfold is of
interest after all. How many patients do I need for a power of
80%?

(d) What would be the effect on this value if 2.3 mm underestimates
o by 20%? If it overestimates ¢ by 20%?

(e) Assuming that 2.3 mm is a satisfactory estimate of 6, what sample
sizes would we need to achieve 80% power to detect a mean
difference of 1 mm, if we opted to allocate patients to the new
and control treatments in the ratio 2:1?

. In a trial of a new treatment for stroke, a thrombolytic (blood-thin-

ning) agent was compared with placebo. The outcome was whether
or not there was a favorable outcome (i.e., a binary variable) as
assessed with the aid of a scale widely used by physicians in the
field. The trial was designed to have 80% power to find an improve-
ment (at the 5% significance level) of 0.1 in the proportion with
favorable outcome. How many patients, n, would be needed in each
group if the proportion responding favorably in the placebo group
was 0.3? How would this change if the proportion responding on
the placebo group was thought to be 0.2? What would be the number
if the proportion responding on placebo were 0.6? Comment on your
final answer. (cf. Hacket et al., 1998.)

. For x,y €[0,1] define f(x,y) = arcsin(\/;) - arcsin(\/;). Prove that

f(x,y)=f(1-y,1-x) and explain the relevance of this result to the
determination of sample sizes for RCTs with a binary primary
outcome.

. In an RCT in which the outcome has a normal distribution, a trial

was designed to have power 90% to detect a difference in mean
treatment effect of T with a two-sided test at the 5% level. If the trial
results in treatment means such that x; — x, =t, what P-value do
you obtain? (You may assume that the trial is sufficiently large that
the t-distribution can be closely approximated by a normal distribu-
tion and that the pooled sample standard deviation is essentially
equal to the value of ¢ used to plan the study.) What is the P-value
if x, -x, =11?

. An RCT is planned to have the size needed to detect a clinically

important difference at the 5% significance level. The trial recruits
this number and the analysis of the trial gives P < 0.05. Does this
mean that a clinically important difference has been found?
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6. The t-statistic for comparing two normal outcomes is
D =(x, —x)/sh where A = /-1 + 1 with m and n are the group sizes,
s is the pooled standard deviation, and the numerator is the differ-
ence in sample means. If the population standard deviation is ¢ and
the true mean treatment difference is 1, the expectation of D is stated
to be approximately t/(6A). Show this, stating why it is only an
approximation.

7. Find the error in the approximation in Question 6 when there are
30 patients; 100 patients in the trial and each group has the same size.

(You are reminded that the density of a %* variable on N degrees of

freedom is x/*N"Ve" /2% / K(N), where K(N)=T'(1 N)2"*™, and
MUN-H_ 1,
rGN)  JiN-1

8. Use a method analogous to the delta method to derive an approxi-

mate formula for E(arcsin/R / N') when R has a binomial distribu-
tion with parameters N and =.

that

9. Use Minitab to generate 10000 random variables R from a binomial

distribution with parameters N and =. Calculate arcsiny/R/ N and

find its variance. Compare this with its approximate theoretical
value. Do this for all combinations of N = 10, 30, and 100 and & =
0.05, 0.2, and 0.5. Comment.
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Methods of Allocation

4.1 Simple Randomization
4.1.1 Chance Imbalance of Group Sizes

The archetypal view of a two-group RCT is of the doctor flipping a coin in
order to decide how to treat a patient. In principle, this is indeed what
random allocation to treatment calls for. There are several practical reasons
why this precise method is, perhaps, not ideal. It might be difficult to assure
oneself that the coin is unbiased; it may be inappropriate for the doctor to
know what treatment is allocated; flipping the coin in front of the patient
may overemphasize the aspect of uncertainty in their management. How-
ever, all these are practical matters and the essential statistical feature of this
view is correct, namely that each patient is allocated to one of the trial
treatments with a fixed probability, independently of all the previous allo-
cations. This method is, effectively, the one that is used in many large trials.

However, at least in small trials, there are statistical defects with this
method. Suppose there are two treatment groups, A and B, and each of 2n
patients is allocated to either group, independently with equal probability.
The number in group A, N ,, then has a binomial distribution, Bi(2n, ). The
size of the larger group, N, takes values in the set {n,n+1,...,2n} with
probabilities:

n

Pl‘(NmaX _ n) _ (21’[)(;)2;1
Pr(N, =r)=2(2n)(1)2n r=n+1,...,2n
max " 2 seees

These probabilities are plotted in Figure 4.1 for n=15. For n = 15,
Pr(N ax =20) =0.10, so there is a substantial chance that the two groups will

max —

end up with markedly differing sizes. This is disadvantageous from a prac-
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FIGURE 4.1

Distribution of larger group size in a trial of 30 patients with two treatment groups formed by
simple randomization.

tical point of view, as it may mean that less experience is gained with the
new treatment. It also has a statistical disadvantage in that the factor A in
Equation 3.3 in Chapter 3 achieves its minimum when the groups have equal
size and values of A greater than the minimum reduce the power of the study
unnecessarily.

Example 4.1: The Effect of Unequal Sample Sizes

on Power

Suppose we are designing an RCT to detect a clinically important difference
equal to a standard deviation, i.e., T, /o =1, at the 5% significance level. If
the study recruits 30 patients then the power 1- can be found from Equa-

tion 3.3 of Chapter 3 as
1-p=a| |72 196
30

where 1, patients are allocated to one group and n, to the other (so
n, +n, = 30).

If the group sizes are equal, n, = 15 = n, then we find the power is 78%.

If one group has size 20 and the other 10 then the power is 73%.

If one group has size 6 and the other 24 then the power is 59%.

Thus, an imbalance of 2:1 has not resulted in serious loss of power, whereas
more marked imbalance has given rise to a more noticeable loss. However,
if it can be avoided, it would be better not to lose any power in this way.
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4.1.2 Distribution of A

The distribution of M(N 4, N3) is clearly important in determining the effect
of unequal allocation on power. In fact the distribution of A is easier to
handle. Now,

_N,2n-N,) n*-X?
2n 2n

7\‘—2

7

where X has been written for N, — n. The normal approximation to the
binomial distribution is good, even for quite small values of 2n when the
probability of success is 1/2. If we apply this approximation to N, and then
transform to X we find that, approximately, X has a normal distribution with

mean 0 and variance J n. Consequently, we can write X = Z,/7n where Z

has a standard normal distribution (i.e., mean 0, variance 1) and hence:

2n

7\/—2

_172
n—+2

N =

As Z? has a y” distribution on one degree of freedom, we can readily
describe the approximate distribution of A>. The probability that A exceeds
any given A, can be approximated using this result.

4.1.3 Practical Consequences

The loss of power caused by imbalance in the sizes of the treatment groups
is not serious unless the imbalance is marked. Indeed, we will take advan-
tage of this observation in Section 4.4 of this chapter. However, the difficulty
in recruiting sufficient patients is widely encountered in practice and no
loss in power should be tolerated because of an avoidable artifact that brings
no benefits.

Simple randomization to treatment groups A and B can be thought of as
generating a sequence of As and Bs, each entry in the sequence being equally
likely to take either value and is independent of all other elements of the
sequence. For example, the following sequence was generated using the
random number generator in Minitab:

1 2 3 4 5 6 7 8 9 10
A A A A A A B B B B

The first patient entered into the trial receives treatment A, patient 2 gets
A, patient 7 gets B, etc. (of course, the practical implementation of this
sequence would be such as to conceal the next treatment to be allocated
from the admitting doctor). This unrestricted approach, which allows any
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random sequence to be used for allocation, can lead to groups of markedly
different sizes.

4.2 Random Permuted Blocks
4.2.1 Random Permuted Blocks of Fixed Length

The problem of unbalanced group sizes can be solved by a form of restricted

randomization known as random permuted blocks, or RPBs. The following are
all the sequences of length 4 that comprise two As and two Bs:

1. A A 2. A

B B B

B B A 3. A
A A 5. B

B B A B
A A B 6. B

B
A A

These short sequences are referred to as blocks. A list of independent
identically distributed random numbers is then generated, each element
being chosen from {1, 2, 3, 4, 5, 6} with equal probability. Each number in
this list is then replaced by the block of two As and two Bs that corresponds
to that number in the preceding key. See Example 4.2 for how this is done.

This results in a sequence in which each patient is equally likely to receive
A or B but the randomization has been restricted to allow only sequences
of As and Bs such that at no stage along that sequence does the foregoing
number of As and Bs differ by more than 2. Indeed after every fourth patient
the two treatment groups must have the same size.

The use of blocks of length four is arbitrary but constitutes a sensible
compromise between blocks of length two and longer blocks. Blocks of
length two impose too great a restriction on the randomization, for reasons
which will be mentioned in section 7.6. Blocks longer than eight have two
disadvantages: (1) they can allow the difference between group sizes to
become too large and (2) the number of such blocks,

2m
m
. 10 .
where 2m is the block length, becomes large (e.g., [ 5 )= 252), which makes

the technique rather unwieldy. Blocks of length six and, occasionally, eight
are useful as we will see in the next subsection.

Although we have introduced RPBs for trials with just two treatments,
RPBs can be used for any number of treatments. For example, for three
treatments all blocks of length six comprising two As, two Bs, and two Cs
could be written down and indexed by the first M positive integers, where
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in this case, M = 90. Random numbers can be chosen with equal probability
from {1, 2, ..., M} and this sequence can be changed into a sequence of As,
Bs, and Cs in an analogous manner to the two-treatment case.

Example 4.2: Preparing a List of Treatment Allocations Using
RPBs with Block Length Four

1. Generate a list of random numbers, each equally likely to take one
of the values in {1, 2, 3, 4, 5, 6}. Suppose this results in the following:
51,13, ...

2. In the enumeration of all blocks of length 4 comprising two As and
two Bs, 5 corresponds to the block BAAB, 1 to AABB, and 3 to ABAB.

3. Replacing 5,1,1,3 by the preceding blocks gives the treatment allo-
cation sequence BAABAABBAABBABAB, ...

4. Patients entering the study are then allocated in turn to the treat-
ments indicated by this list, so the first patient gets B, the second A,
the third A, and so on.

There is, however, a potentially serious drawback to the way of implement-
ing RPBs, which has just been described. This occurs if the trial is organized
in such a way that the doctors involved in the study know which treatments
patients already in the study have received. In some trials, e.g., those that
compare different types of surgical operations, or which compare surgical vs.
nonsurgical treatments, it is almost inevitable that those admitting patients
to the trial will know what past patients have received. As the numbers
receiving each treatment must be equal every fourth patient, then after 3
(modulo 4) patients have been admitted (i.e., after 3, 7, 11, 15, etc., patients)
knowledge of previous treatments and of the block length allows the next
treatment to be predicted with certainty. For example, with blocks of length
four, if three patients have been allocated to surgery and four to the nonsur-
gical alternative, then the next patient will receive surgery. In some circum-
stances, the allocation of the next two patients can be predicted with certainty.

This means that selection bias may once again become a problem. It is not
as bad as with some nonrandom methods of allocation, e.g., alternation, in
which the fate of every patient can be predicted with certainty. With blocks
of length 4, the fate of the nth patient can never be predicted with certainty
if n =1 or 2 modulo 4. Nevertheless, the allocation of over 25% of patients
in the trial could be known in advance of their allocation, and this is more
than sufficient to permit an unacceptable level of selection bias.

4.2.2 RPBs with Random Block Length

There are several ways to modify the way RPBs are implemented in order
to avoid the potential for selection bias inherent in the use of RPBs with
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fixed block length. The methods are all similar and a simple version is
described in the following text.

The 20 blocks of length 6 comprising 3 As and 3 Bs are enumerated as
follows.

1. AA A B B B 2. A A B A B B 3. A°A B B A B
4 A A B B B A 5. A B A A B B 6. A B A B A B
7. A B A B B A 8 AAB B A A B 99A° B B A B A
10. A B B B A A
1. B B B A A A 122 B B A B A A 13 B B A A B A
14 B B A A A B 5. B A B B A A 16 B A B A B A
17 B A B A A B 8. B A A B B A 19 B A A B A B
200 B A A A B B

One method to produce a list of treatment allocations using RPBs with
random block length is as follows:

1. Set a counter i equal to 1.

2. Generate a random number X from the set {4, 6}, where
Pr(X=4)=1.

3. If X = 4 then generate a random number Y from the set {1, 2,..., 6}
(each number equally likely) and set S, to be the block of length 4
corresponding to Y in the enumeration in Subsection 4.2.1 of this
chapter.

4. If X = 6 then generate a random number Y from the set {1, 2,..., 20}
(each number equally likely) and set S; to be the block of length 6
corresponding to Y in the preceding enumeration.

5. If you have allocated all patients then stop; otherwise, increment i
by 1 and go to step 2.

The sequence S, S,,...,5;, ... is then a sequence of As and Bs that have been
produced using RPBs with random block length. This sequence has the
following properties.

1. Each patient is equally likely to receive A or B.

2. The number of patients allocated to the two groups can never differ
by more than three.

3. The possibility of selection bias is negligible.

Selection bias is greatly reduced because the doctor will never know the
length of the current block. The only time when it will be possible to predict
accurately is when the numbers in the two treatment groups differ by three.
As this is only possible with blocks of length 6 and only then with blocks 1
and 11, the chance of this happening is small. Any doctor trying to predict
the next allocation will soon stop because failure will be so frequent.
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4.3 Biased Coin Designs and Urn Schemes

Random permuted blocks are an effective and easily understood method for
ensuring that more or less equal numbers of patients are allocated to all
treatments in the trial. However, the use of RPBs has the drawback of poten-
tially being predictable at certain stages of the allocation procedure, although
the size of this effect can be reduced by the use of several randomly chosen
block lengths. More subtle ways of achieving balance are available, and
although these are attractive, they are not yet as widely used as RPBs. The
methods are all essentially stochastic and as such eliminate the problem of
occasional allocations being predictable. They work by adjusting the prob-
ability of treatment allocation as the trial proceeds in such as way that the
probability of assignment to overrepresented treatments is reduced. There
are many variants of these methods, and two approaches will be outlined
in the following text.

4.3.1 Biased Coin Designs

In a trial to compare treatments A and B, suppose that after n patients have
entered the study, the number allocated to treatment A is N (1) and to B is
Ng(n). Write the imbalance in treatment numbers as D(n) = N,(n) — Ng(n) =
2N,(n) — n. The biased coin design was introduced by Efron (1971) and
changed the allocation probability according to the value of D(n) as follows:

If D(n) = 0, allocate patient n+1 to A with probability */>.
If D(n) < 0, allocate patient n+1 to A with probability P.
If D(n) > 0, allocate patient n+1 to A with probability 1 — P.

where P is some probability !/2 < P < 1. If D(n) is negative, then this means
that there are more patients allocated to B than to A, so allocating to A with
a probability greater than !/2 will tend to bring the allocation back into
balance. Clearly, the situation with D(n) positive is analogous.

If at any stage of the trial the absolute imbalance, |D(n)|, is j (> 0) then
the imbalance after the next patient is allocated, | D(n + 1) |, must be either
j+1orj—1.As the scheme works to reduce the imbalance, the probability
of the former is 1 — P and of the latter is P. If the trial is ever in exact balance,
| D(n)| = 0, then after the next allocation we must have |D(n) |= 1. The
degree of imbalance |D(n + 1)| depends, in a stochastic fashion, only on
the previous imbalance, | D(n) |: indeed the imbalances form a simple ran-
dom walk on the nonnegative integers with a reflecting barrier at 0 and
transition probabilities:

Pr(|D(n+1)| =1 ||D(m)| =0)=1
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Pr(|D(n+1)| =j+1||D@)| =j)=1-P
Pr(|D(n+1)| =j-1||D@| =) =P

A consequence of this observation is that some pertinent properties of this
method of allocation can be discerned from known properties of random
walks (Rosenberger and Lachin, 2002, p. 43). One such result, which has some
bearing on the choice of P, is that, in the long run, the probability of exact
balance after the allocation of 21 patients is approximately 2 — P-. (Exact
balance is clearly impossible after an odd number of patients, which is why
we only consider D(.) with an even argument.) When P = 1 exact balance is
assured, but in this case the biased coin design is a deterministic sequence of
alternating treatments. An intermediate value, such as P = 2/s gives the prob-
ability of exact balance '/2 and P =3/4 increases the chance of balance to 2/s.

This method of allocation reduces the chances of imbalance and gives
more balanced allocations than complete randomization. However, the
method does use the same probability P to attempt to restore balance,
whatever the degree of imbalance. A possible modification is a scheme in
which the probability of allocation to the underrepresented treatment
increases as the imbalance increases. Methods of this kind will be described
in the following subsection.

4.3.2 Urn Models

The allocation methods referred to as urn methods are based the classic
probabilist’s device of an urn or urns containing balls of different colors, or
in this application, bearing different treatment labels. Patients are allocated
by randomly choosing a ball from the urn and assigning the patient to the
treatment written on the selected ball. The urn initially contains two balls,
one labeled “treatment A” and the other ‘treatment B’. The first patient is
allocated by randomly choosing one of these balls. The selected ball is
returned to the urn and a further ball, labeled with the letter of the treatment
which was not chosen, is added to the urn. The procedure for allocating a
patient is repeated. However, there is now a 2:1 chance that the trial will be
balanced after the second allocation. If this happens, then adding a ball
labeled with the treatment not chosen will result in the urn containing two
balls labeled A and two labeled B, so the next patient is equally likely to
receive either treatment. On the other hand, if the second patient received
the same allocation as the first, then the urn will contain four balls, three
labeled with the so-far unallocated treatment, thus increasing further the
chance that the next patient receives the unallocated treatment. As the trial
proceeds the method naturally and stochastically limits the chance of a
severe imbalance.

The scheme outlined in the preceding paragraph was first proposed by
Wei (1977, 1978) and could be referred to as a UD(1,1) allocation, as the urn
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starts with one ball for each treatment and one ball is added at each alloca-
tion. A more general scheme is the UD(r,s) allocation in which the urn
initially contains r balls of each kind and at each allocation s balls of the type
not just allocated are added. The method extends naturally to trials with K
(>2) treatments: the urn starts with » balls of each kind and at each allocation
s balls corresponding to each of the unallocated treatments are added, i.e.,
a total of s(K — 1) balls are added.

Put crudely, the method weights allocation quite substantially toward
achieving balance in the early stages of a trial but is likely to be close to
simple randomization once the trial has been running for a reasonable
period. The transition probabilities for the imbalance |D(n)| can be found
by counting the allocations made among the first n patients. Suppose that n
patients have been allocated and N,(n) of these have received treatment A,
so D(n) = N(n) — Ng(n) = 2N s(n) — n. If the allocation uses a UD(r, s) scheme
then there will be 2r + ns balls in the urn — 2r initially with s added after
each of the n allocations. Of these, there will be r + N (n)s balls labeled B —
r initially and s balls of type B are added after each allocation to treatment
A. If we require the transition probabilities for | D(n)| rather than D(n) we
need to be slightly careful about signs. Suppose that j > 0, then

Pr(D(n+1) = j—1|D(n) = j, D(n) > 0) =

Pr(| D(n+1)|= j-1| D)= j, D(n) > 0)

is the probability that the trial, which currently has an excess of patients on
treatment A, becomes less imbalanced at the next allocation. This will happen
if we allocate the next patient to B, an event which will have probability:

Pr(| D(n+1)|=j—1D(n) >0, | D(n)|=j) =

r+N,(m)s r+3(n+Dn)s 1 +M (4.1)

2r+ns 2r+ns 2 2(2r +ns)

On the other hand, if the trial currently has an excess of patients receiving
treatment B, then for j still positive, the probability the trial becomes less
imbalanced at the next stage is

Pr(D(n+1)=—-j+1 ‘D(n) =—j,D(n)<0)=Pr(|D(n+1)|=

j—1| D(n) = j, D(n) < 0)

As this is the probability that treatment A is allocated next it is
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Pr(| D(n+1) | j—1/D(n) < 0,| D(n) |= j) =
r+Ng()s _r+3(n=D@m)s 1 D(m)s (4.2)
2r+ns 2r +ns 2 2(2r +ns)

By the symmetry of the process, an imbalance of a given magnitude is
equally likely to be in either direction, so Pr(D(n)>0“D(n) |=j>0)=
1

Pr(D(n) <0 “ D(n)|=j>0)= . Using this expression to combine Equation 4.1

and Equation 4.2 using the law of total probability we get

Pe(| DO+ 1) =1 D) == 5+ 21 43)

A similar argument considering the probability of increasing the imbalance
at the nth allocation gives

1_|D(m)]s

Pr(| D(n+ Df=j+ 1] | D(m) =) = 22+ 19)

(4.4)

When supplemented by the equation for the case j = 0, namely
Pr(|D(n+1) = 1‘ | D(n)|=0)=1, Equation 4.3 and Equation 4.4 govern the
evolution of the allocation. Equation 4.3 and Equation 4.4 show that when
imbalance is present, the probabilities that the next allocation reduces or
increases the imbalance are adjusted up and down from !/2 by an amount
proportional to the degree of imbalance. The presence of # in the denomi-
nator of these adjustments means that the size of the adjustment will tend
to decrease as the trial progresses. As stated before, in the long run, the
allocation scheme tends to simple randomization, although this is certainly
not the case in the short term.

The investigator will need to choose values for r and s. If 7 is large com-
pared with s then the initial allocations will be quite similar to complete
randomization, because they will be dominated by the balls originally in the
urn rather than by those added subsequently. Tighter initial control over the
degree of imbalance is achieved by ensuring that s is large relative to r. In
fact, a degree of simplicity is achieved by using the special case with r = 0,
with the convention that the first patient is equally likely to be allocated to
A or B. The UD(0,1) scheme is suitable for many applications.

Urn schemes are attractive and probably underused. They ensure closer
balance than simple randomization without the problems of selection bias
which may accompany random permuted blocks. Other urn schemes are
possible: the Ehrenfest urn scheme uses two urns, one labeled A and the
other B. Initially each urn contains w balls: one of these is chosen and, if it
is in urn A, then treatment A is allocated and the ball is replaced in urn B.

© 2006 by Taylor and Francis Group, LLC



Methods of Allocation 53

Probabilistically, balance is achieved because at the next allocation there are
more balls in urn B than urn A, so allocation to the underrepresented treat-
ment is higher than to the overrepresented treatment. Unlike Wei’s urn
design the number of balls stays constant. The interested reader should
consult Rosenberger and Lachin (2002, Chapter 3) for more details of this
and many of the other issues discussed in this section.

The allocations made under biased coin and urn schemes depend on the
previous allocations but not, of course, on the outcomes of the patients
treated. As such, there is no difficulty in using these methods to prepare
allocation lists before the trial starts. Designs in which the allocation
depends on the outcomes of previously treated patients, so-called response-
adaptive designs do exist but are beyond the scope of this book. For those
interested in this topic, a good place to start is Chapter 10 of Rosenberger
and Lachin (2002).

4.4 Unequal Randomization

Suppose we are designing a study to compare a new inhaled steroid for the
treatment of asthma with the existing preparation. The outcome variable is
the forced expiratory volume in 1 sec (FEV1) in liters, a measure of lung
function. It is decided that the trial should have 90% power to detect, at the
5% level, a change in FEV1 of 0.25 | and the standard deviation of FEV1 is
known to be 0.5 1, so 1) /0 = 1. Using Equation 3.3 we obtain A =0.154. If
the two groups are of equal size, the number in each group, 7, is given by:

n=21"2=84

Thus if we run an RCT in which 168 patients are allocated equally between
the two groups then we will have power of 90% to detect a difference of 0.251.

However, suppose the patients are not allocated equally but the number in
one group is 6 times the number in the other group. It follows that the groups
have sizes 168 / (1+6) and 1686 / (1+6) and hence the power becomes:

cp[@_l.%]

1+6

In Figure 4.2 this is plotted against 6. As expected the power declines as
0 increases, but the decline is not rapid. When 6 = 2 the power has only
declined to 86% and when 6 = 3 the power is 80%. However at 6 = 4 it is
74% and by 6 = 8 the power is only 53%. It is unlikely that we would tolerate
a drop in power from 90% to 74% but this only occurs when one group is
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FIGURE 4.2
Power plotted against ratio of group sizes 6.

four times the size of the other, i.e., the groups have markedly different sizes.
The loss in power that occurs when one group is twice the size of the other,
relative to the power for groups of equal size, is from 90% to 86%, a difference
that is unlikely to be important. However, if the group receiving the new
treatment is twice the size of the other, then valuable extra experience in the
use of the treatment might be obtained.

Unequal allocation can be very useful and is probably underused in prac-
tice: it can provide investigators with greater experience of a new treatment
and may even encourage recruitment in certain trials. Although it inevitably
entails some loss of power, provided the imbalance is no greater than 2:1,
the loss is unlikely to be noticed. RPBs could easily be adapted to provide
a means of ensuring an imbalance close to 2:1. Treatment allocation
sequences could be built by randomly selecting from the 15 blocks of length
6, comprising 4 As and 2 Bs.

4.5 Stratification
4.5.1 The Problem of Allocation Bias

If the only use of RPBs was to ensure balance of group sizes across the whole
trial, then it is unlikely that they would be used very much. Imbalance in
group sizes sufficient to cause an appreciable loss of power is very unlikely.
However, RPBs are widely used in practice, usually in combination with a
technique known as stratification. Stratification is used to control the imbal-
ance between the groups, not with respect to their size but with respect to
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their composition. Although randomization will, in principle, produce
groups that are balanced with respect to any prognostic factor, in practice,
treatments groups that are not alike with respect to important prognostic
factors can and do occur. This problem, and its consequences, are made
explicit in Example 4.3.

Example 4.3: Imbalance with Respect to Prognostic Factors
Suppose we wish to compare a new method of treatment (D) with the
existing method (U) to see if it improves the glycemic (i.e., blood sugar)
control of patients under 16 years of age who suffer from type I diabetes
mellitus. The outcome is a normally distributed variable known as HbAlc,
which is the percentage of hemoglobin that has formed a complex with blood
sugar. A higher value represents poorer control.

Suppose the RCT will recruit 2n patients and, within the patient population
being recruited to the trial, a proportion 6 are children (defined as patients
under 12 years of age); the remaining patients, namely those over 12 years
are referred to as adolescents.

Suppose we form two treatment groups each containing n patients (per-
haps by using RPBs). Then the number of children in the group receiving
D, Mp will have the binomial distribution Bi(n1, 6). The number of children
in the group receiving U, M, has the same distribution as My, and is inde-
pendent of it. Thus, on average, we expect 6n children in each group. This
is essentially what we mean when we say that, in principle, randomization
will produce balanced groups: on average the groups will be balanced, but
in any given trial, the actual numbers could be out of balance by an amount
governed, in this example, by the two independent Bi(n, 8) distributions. (In
practice, one would expect a value of 6 between about 0.4 and 0.6, although
the precise value of 6 will not affect the following analysis.)

What you eat is a very important factor in achieving good glycemic control.
Parents of children with diabetes know about this and, as they largely control
the diet of their children, can impose an appropriate diet. Parents have
conspicuously less control over what adolescents eat. It is widely accepted
by doctors that there is a deterioration in glycemic control as patients pass
through adolescence, although this is not wholly due to dietary factors.

Suppose that the treatment has no effect. Suppose also that the expected
value of HbAlc is p. for children and pu, for adolescents: it is expected
that p, >l (typical values might be 6.5 to 9% for children and 7 to 11% for
adolescents).

The mean HbAlc in the group receiving D is then

Mp n
in + 2 X,
i=1 i=Mp+1

n

© 2006 by Taylor and Francis Group, LLC



56 Introduction to Randomized Controlled Clinical Trials

where X,..., X Mp are the HbAlc values for the children in the group and the
other Xs refer to adolescents. The expected value of this (over the distribution
of HbAlc) is

Mplc +(n—Mpu,
n

The corresponding quantity in group U is, of course,

My +(n—My)u,
n

The expected difference in treatments would then be the difference of these
quantities, namely

(Mp = My) (e —Ma)

Because we have assumed the treatment has no effect this should be zero.
However, because we are confident that ., > i, this will only be true if M,
equals M,;. Although this is true on average, it is certainly not guaranteed
to be the case in any given trial in which we have only one realization for
each of the random variables M, and M,,.

Example 4.3 shows that an imbalance between the treatment groups in
prognostically different types of patients leads to a biased trial. This type
of bias, known as allocation bias, was described informally in Subsection
222,

Example 4.3 is a very simple instance of allocation bias. In all trials there
are likely to be several important prognostic factors which, if allocated
unevenly between the treatment groups, could undermine the validity of
the whole study. In Example 4.3, it would be relatively easy to argue that an
additional important prognostic factor would be the length of time a patient
has had diabetes.

Randomization will, in principle, allocate all prognostic factors, includ-
ing ones whose importance is unsuspected by the investigators, evenly
between the treatment groups. However, in practice, this may not be the
case, especially with small studies, and we need to intervene in the ran-
domization in order to ensure that specific factors are evenly spread across
the treatment groups. Obviously we can only do this for factors we know
are prognostically important: we must continue to rely on the good average
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properties of randomization to achieve balance with respect to unknown
prognostic factors.

4.5.2 Using Stratification

Stratification is the simplest solution to the problem of allocation bias. Rather
than allocate all patients in one process, we allocate patients of different
types separately. So, for the case illustrated in Example 4.3 we would prepare,
using RPBs, not one allocation list but two. One would be used for children
and the other for adolescents. As we allocated children to the two treatments
using RPBs, the number of children receiving each treatment will be very
similar (differing by no more than half the maximum block length). The
same holds good for adolescents, thereby producing a trial that is balanced
with respect to this prognostic factor.

It is essential to realize that the allocation within each stratum must use
some form of restricted randomization. If simple randomization is used, then
within each stratum the numbers of patients in each treatment group may
not be close, so the proportions of each type of patient in each treatment
group may be quite different. Another way to think of this is that if allocation
is by simple randomization, then each patient is allocated independently of
all others, so the allocation is unaffected by whether or not patients are
grouped into strata. With restricted randomization, this independence is lost
and the stratification has an effect. Methods for achieving balanced alloca-
tions other than RPBs, such as those outlined in Section 4.3 of this chapter,
can be used; it is just simple randomization that must be avoided.

In practice, when admitted to the study, the patient would have to be
identified as a child (under 12) or adolescent (12 or over). If it had been
decided to take account of the length of time the patient had diabetes, for
example, by stratifying patients into those who were or were not diagnosed
within the previous year, then this fact would also have to be known. In this
case, you would need to prepare four allocation lists: one for children diag-
nosed within the last year, one for children who have had the disease for
more than a year, and two more lists for the recently and not-so-recently
diagnosed adolescents.

Of course, prognostic factors do not need to have just two levels. For
patients who have had their diabetes for ¢ years, you could have three
categories: e.g., t <1,1<t<5and t > 5. Had this been the case then six, not
four allocation lists would have been needed. If there are K prognostic
factors, with levels ¢,,¢,,...,{,, then the number of allocation lists needed
would be IT,/¢,. This can easily become so large that the method becomes
too unwieldy to be practicable (allocation lists are often held as sets of sealed
envelopes in busy ward offices: for a trial with 3 prognostic factors at 2, 3,
and 4 levels you need 24 such sets and keeping track of these in this envi-
ronment for the duration of, say, a 2-year trial, is beyond the current capa-
bilities of medical science).
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4.6 Minimization

For one or two prognostic factors, each at two levels, using RPB within strata
is probably the simplest method for avoiding allocation bias. However, for
more complicated trials an alternative method has been available since the
mid-1970s and is becoming more popular amongst investigators. This
method, known as minimization, eliminates the awkwardness of using RPBs
within strata by noting that RPBs within strata actually attempts to achieve
more balance than is likely to be necessary. The drawback of the method is
that it is only implemented conveniently using a computer. Until relatively
recently, this was a major drawback and the recent proliferation of suitable
computers in wards and hospital offices probably goes a long way to explain
its recent increase in popularity.

It must be conceded that a good deal of the unmanageability of RPBs
within strata would be eliminated if it were implemented on a computer.
However, as the following subsection will explain, the method does have
further difficulties.

4.6.1 Minimization for Two-Treatment Trials

Suppose there are four prognostic factors, with I, ], K, and L levels, respec-
tively. Altman (1991, Subsection 15.2.3) gives an example of such a trial in
the treatment of patients with breast cancer. The prognostic factors are age,
dichotomized as < 50 or > 50; stage of disease (I or II vs. III or IV); period
between diagnosis of cancer and of effusion, < 30 months or > 30 months;
and whether the patient was pre- or postmenopausal. So [ =] =K =L =2.

At some stage of the trial, suppose n;, patients who have these prognostic
factors at levels i, j, k, and [, respectively, have been recruited. Let the number
of patients in this Category, who have been allocated to treatment A or B, be
denoted by n,]k, and nl]k,, respectively, so n,]k, ékl + nl]kl

RPB within strata would ensure that n,]k, niy <5 b for each quadruplet
(i,j,k1), where b is the maximum block size used in the RPBs. The impracti-
cality of the method arises because there are so many quadruplets. However,
this is an excessive aim: we generally do not want to know that we have
balance in the numbers of patients under 50, have disease stage I or II, have
been more than 30 months between diagnoses, and are postmenopausal.
Indeed, many such subgroups will contain few patients, perhaps of the same
order as the block length in the RPBs. In these circumstances, RPBs can fail
to provide adequate balance.

Generally speaking, we are concerned that the groups are balanced with
respect to age, disease status, interval, and menopausal status individually.
This follows because we usually believe that outcomes (survival time, sup-
pose) might be longer in younger patients, but we usually do not have reason
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to believe that this difference changes systematically depending on whether
the patient also has stage I or II disease, is postmenopausal, etc.
It follows that it is sufficient to ensure that each of the following is small:

A p—
i+++

B ©_ . A B
n Mipe|, €achi=1..1; \ni, —nj,

,eachj=1,...,];

A B
Myikr — Mpr

,eachl=1,...,L

A B
(R [

,eachk=1,...,K ;

where a + sign denotes summation over that subscript, so, e.g., nfj++ =
Zi,k,lng}d'

Thus, [+ ] +K+L conditions, rather than IJKL conditions, are imposed;
in the example, 8 conditions rather than 16 are imposed.

The method of minimization is implemented as follows.

1. The first patient is allocated by simple randomization.

2. Suppose that at some stage of the trial the number of patients with
prognostic factors i, j, k, | allocated to treatment A is n;?k,, and simi-
larly for ngk,.

3. A new patient is entered to the trial who has prognostic factors at
levelsw, x,y,z.

4. Form the sum

A B A B A B A B
(nw+++ T Mgt ) + (n+x++ My ) + (n++y+ - n++y+ ) + (n+++z Nt )

5. If the sum is negative (i.e., allocation to B has predominated thus
far) then the new patient is allocated to A with probability P. If the
sum is positive, she is allocated to B with probability P. If the sum
is zero she is allocated to A with probability !/>.

Some statisticians would be happy to use a value of 1 for P, whereas others
would prefer to keep an element of randomness in the allocation procedure
and simply take a large value for P, such as 0.8. The use of P < 1 could be
defended on the grounds that it amounts to a final protection against selec-
tion bias. Although knowledge of the current values of n,,, etc., would allow
the next allocation to be predicted if P = 1, in practice it is extremely unlikely
that a doctor would recall such details and would have to deliberately seek
to subvert the trial in order to predict the next allocation. The relative com-
plexity of the method is likely to be a sufficient protection against selection
bias. However, nothing is lost and a little is gained by using P < 1, and this
is becoming the accepted approach.
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Example 4.4: Application of Minimization (Altman,

(1991, Subsection 15.2.3), citing LS Fentiman et al., 1983)

A trial was conducted in which breast cancer patients were randomized to
receive Talc or Mustine as treatment for pleural effusions (fluid between the
walls of the lung). The four prognostic factors are: age, stage of disease, time
in months between diagnosis of breast cancer and diagnosis of pleural effu-
sions, and menopausal status.

The application of minimization to this trial can be exemplified by sup-
posing that 29 patients have already been allocated. The disposition of these
patients among the prognostic factors and treatment groups is given in the
following table:

Example after 29
General Case Patients

Mustine (A) Talc (B) Mustine (A) Talc (B)

Age 1. <50 nt,., nl., 7 6
2. >50 Myyis Moyt 8 8
Stage 1.IorII s nP. 1 11
2. Il or IV Niper nb., 4 3
Time interval 1. <30 months ni .. nb., 6 4
2. >30 months nlo. n? . 9 10
Menopausal status 1. Pre nt n? 7 5
2. Post nf++2 nf++2 8 9

Suppose the next patient is a postmenopausal woman aged 55 with stage Il disease whose
pleural effusions were diagnosed 20 months after her diagnosis of breast cancer. The relevant
sum from step 4 of the preceding algorithm is

A B A B A B A B
(n2+++ —Mppis ) + (n+2++ My ) + (n++1+ - n++1+) + (n+++2 - n+++2)

= (8-8) + (4-3) + (6-4) + (8-9) = 2

The sum is positive so this patient is allocated to B (Talc) with probability 0.8 and the
preceding table is updated.

Minimization does not, of course, have to use four prognostic factors
and it is straightforward to see how the methods would have to be mod-
ified to accommodate a different number. It is also possible to allow judg-
ments about differences in the relative importance of the prognostic factors
to be incorporated into the allocation: this can be done by changing the
sum in step 4 to a weighted sum. The technique can also be used to allocate
more than two treatments: the extension required for this is not so trans-
parent but, as it involves no essentially new ideas, it will not be covered
in this book.
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Exercises

1. Suppose an RCT is conducted in which patients are randomly allo-
cated with probability !/2 to one of two treatment groups: N,
and N, patients are allocated to each group and the total number
of patients N =N, +N, is fixed. What is the distribution of N,?
Recall that

Mm,n) = %+%

By writing X = N, — 1 N and using a suitable normal approximation
(or otherwise), show that N—4A(N,,N,)” has a yx* distribution
with one degree of freedom. Hence, find L (in terms of N) such
that Pr(A < L) =0.95. Comment on the implication for RCTs.

2. A trial in which the total number of patients N is fixed allocates
randomly to two groups, each with probability !/2, the random
variables representing the numbers in the two groups are N;,N,.
Show that the minimum value of A, A_;,, occurs when N, = N, (you
may assume N is even). Show also that, approximately,

L7
r. )] N

min

where Z is a random variable with a standard normal distribution.
Find the value of n such that

Pr(A/ Ay, > 1.5)=0.05: find N such that Pr(A / A, > 1.1) = 0.05.

3. An RCT is being conducted to compare treatments A and B. The
allocation is being performed using random permuted blocks (RPBs)
of two lengths, namely four and six. Ten blocks are generated for
the trial, the length of each block being chosen with probability !/2
and then for a given length, each possible block of equal numbers
of As and Bs is chosen with equal probability. What is the probability
that at some stage of the trial the number of patients allocated to
treatment A exceeds the number allocated to B by 4? What is the
probability that the number of patients on one treatment never
exceeds the number on the other by more than two?
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4. When allocating patients to two treatments using RPBs of length
four, the allocations for the next two patients can sometimes be
predicted with certainty. What are these circumstances? What is the
probability of this?

5. Suppose that in Minitab you store 4N values in columns C1, C2, and
C3 as follows:

C1-T C2 C3

A 1 0.199694
B 1 0.795802
A 1 0.660433
B 1 0.969484
A 2 0.231470
B 2 0.834883
A 2 0.279835
B 2

0.403979

Column C1 comprises As and Bs alternating; column C2 comprises
blocks of four 1s, four 2s, etc., ending with four Ns; column C3
contains 4N random numbers from a uniform distribution on (0,1).

Define C4 by the command Let CA4=C2+C3. An allocation list
that is essentially constructed by RPB can be formed in C5 by enter-
ing the command

sort Cl1 C5;
by 4.

This stores in C5 the result of applying to C1 the permutation that
sorts C4 into ascending order. Explain why.

6. When n patients have been allocated to a trial comparing treatments
A and B, the number of patients allocated to A (B) is N,(n) (Ng(n))
and D(n) = |N,(n) — Ng(n)|. If the allocation uses a biased coin
design that allocates to treatment A with probability P (/2 < P < 1)
when there is an excess of patients on B, it can be shown that the
long-run (stationary) probability of imbalance 2k is

lim P(D@2n) = 2k) =" "2 k=0
H—co 7

G

- r2k+1

k>0

(Efron, 1971), where r = P/(1 — P). Show that this is a probability
distribution and find its mean. Comment on the relation of the mean
to the value of P.
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7. A trial uses an urn scheme UD(1,5) to allocate patients to one of two

10.

treatments, A and B. Show that at the outset the probability of
allocation to A for any patient entering the trial is 1/2.

Suppose the imbalance between the numbers of patients in each of
the two treatment groups of a trial is D(n), when a total of n patients
have been allocated. It can be shown that when allocation follows a
UD(r,s) scheme then for large n

Pr(| D(n)[>r) szll—q{r\/gﬂ

where @ is the standard normal distribution function. Find the cor-
responding approximation when allocation is by simple randomiza-
tion. Plot the two against a range of values of n when r = /10, i.e,,
what is the chance of an imbalance greater than 10% of the total trial
size? Relate this to possible loss in power.

In an RCT, the minimal clinically important difference one standard
deviation and we wish to detect this at the 5% significance level. If
patients are to be allocated equally to the two groups, how many
are needed in total to achieve 90% power? To achieve 80% power?
If these numbers of patients were allocated unequally, with the ratio
of the size of the larger group to the smaller being 6, what would
now be the values for the preceding powers for =2 or 6 =37

There are two prognostic factors, disease stage i (classified into I
categories) and age j (classified into | categories) that affect the
outcome, X, of an RCT. The outcome for a patient in categories i and
j has expectation §; + a; + 1, if the patient received treatment A
and 9, + o, + 15 if treatment B was given. Suppose n;, of the patients
in categories i and j are allocated to treatment A and the remaining
n; are allocated to B. The mean outcome of all the patients in the
group receiving treatment A is X, and the corresponding quantity
in group B is X;. What is the expectation of X, — X;? Show that the
bias is eliminated if our allocation procedure ensures that for each
iand j:

— — *
E Njs = E Mg and E Mg = E np (%)
i i j j

63

Show that this is satisfied if 1, = n;; for all pairs (i,j). By means of a simple
example show that conditions (*) are less restrictive than requiring 1, =1
for all pairs (i,j). How does this relate to allocation by RPB within strata and
minimization?
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5

Assessment, Blinding, and Placebos

5.1 Double and Single Blindness
5.1.1 General Principles

A potentially important source of bias in a trial arises when either the patient
or the doctor knows which treatment the patient is receiving. Many involved
in trials are hopeful that the new treatment will turn out to be an improve-
ment on the standard treatment. If an outcome measure has any element of
subjectivity whatsoever and the investigator assessing the outcome is aware
of which treatment the patient received, then two problems arise:

1. The investigator may err in favor of the new treatment.

2. Even if 1 does not occur, the inability to exclude that it might have
happened will seriously weaken the credibility of the study.

Similar problems can arise if the patient knows which treatment they are
receiving. This can be an important problem for outcomes that relate to a
patient’s quality of life, levels of pain, etc.

For this reason, many trials are run as single- or double-blind trials. In a
single-blind study, the patient is unaware of the treatment being given. In
a double-blind study, neither doctor nor patient knows what treatment is
being given.

Various comments are appropriate at this point.

1. The importance of making a trial blind depends on the objectivity
of the outcomes of the trial. If the outcome is whether or not the
patient is alive at the end of the study, then it is difficult to see that
knowing the treatment gives rise to any error in the assessment of
the variable “alive/dead.” However, unless you are only interested
in “death from any cause,” problems remain. Deciding whether a
death was due to a particular cause, such as a tumor, can be surpris-
ingly difficult, and one which can call upon a pathologist to make
a judgment that has a subjective component.

65
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2. The safety of the patient is of paramount importance, and in any
study in which the doctors treating the patient do not know what
treatment is being given, there must be some provision, should an
emergency arise, for them to find out.

3. Some studies simply cannot be blind. Obvious examples are trials
comparing surgical with nonsurgical treatment for some condition.

If a trial is run double-blind, then the assessment of outcome is no less
subjective, but equally, there is no possibility of the assessor tending to make
slightly higher blood pressure readings (for example) on the patients getting
the new treatment, simply because the assessor does not know who is getting
the new treatment. Some assessments will be a little too high, some a little
too low, but this cannot happen systematically with treatment — the subjec-
tivity might increase the standard deviation but cannot change the mean.

A very useful way of running a trial double-blind is to have the assessment
of outcome made by someone outside the treatment team, usually another
doctor in the relevant specialty who is not otherwise involved with these
patients. In this way, the doctors responsible for the clinical management of
the case are fully aware of the treatment being given to the patient but are
unable to influence the data collected for the RCT. If the trial is not single-
blind, then you need to be careful to ensure that the patient does not “break
the blind” for the assessing doctor (“The blue tablets were very awkward to
swallow, doctor”).

Example 5.1: Example of Blinding Using an

Independent Assessor

Two possible treatments for coronary artery disease, in which the artery has
become blocked by fatty deposits, are coronary artery bypass graft or balloon
angioplasty. The former is an operation that replaces diseased coronary
arteries using veins from the leg. It involves opening the chest and leaves a
large and obvious scar down the chest. The latter involves passing a tube
through an artery in the arm or leg and into the diseased artery and then
widening it by inflating the balloon that is built into the walls of the tube.
This leaves little or no scarring.

An outcome measure may well be ECG changes while walking on a tread-
mill. Problems of subjectivity arise because the interpretation of the ECG
trace by the cardiologist will, to some extent, be a matter of judgment.
Patients need to have electrodes attached to their chest for the ECG, so need
to reveal their scar, thereby giving away which treatment they received.
However, a technician will probably obtain the trace and if this is passed to
a cardiologist unconnected with the treatment of the patient, then a blinded
assessment is possible.

In some trials the analysis is also carried out blind. Obviously, the statistician
needs to know, for example, that patients 1, 2, 6, 7, 10, ..., all received the
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same treatment, say treatment A, and that patients 3, 4, 5, 8, 9, ..., all received
B, but there is no need for the statistician to know any more. In particular,
which of A or B is the new treatment and which is the standard need not be
revealed. At first, this may seem strange, as there is little the statistician can
do to bias things, is there? In fact, a statistical analysis involves many elements
of judgment: should I transform this variable by taking logs, should I assess
the difference using proportions or odds, or do I need to include this variable
as a covariate? Each of these decisions may result in an analysis that changes
the evidence presented concerning the new treatment. If you are working for
a drug company whose future depends on whether the drug is approved for
use by doctors, your judgments must be above suspicion and seen to be so.
An unequivocal way to do this is to perform the analysis without knowing
the identity of the treatment. Even if your interest in the success of the treat-
ment is less direct than in this example, it does no harm to be able to claim
that your analysis was carried out without this possibility of bias.

In summary, it should be noted that blindness is used to exclude assessment
bias and to exclude the suspicion of assessment bias. For the latter reason it
should be used even in cases in which you might think the outcome had so
little by way of a subjective component that blindness was unnecessary.

5.2 Placebos

Placebos are treatments that look similar to the real thing but contain no
active ingredient. Clearly, there are no such things as placebo operations
(although trials using “sham” surgery have been reported). Placebo injec-
tions are sometimes given. The major use of placebos is in trials in which
the treatment is an orally administered preparation, usually a tablet or cap-
sule. Placebos must look, smell, feel, and taste the same as their active
counterparts.

Placebos have essentially two roles, one is to take account of the placebo
effect, whereas the other is to achieve blindness in certain types of RCT.

5.2.1 The Placebo Effect

In many conditions no standard therapy either is available or routinely used.
Investigators contemplating an RCT to assess a new treatment in these
circumstances have to decide how to handle the control group. The absence
of any standard therapy means that it would be justifiable simply to carry
on as before with the control group and give them no treatment at all.
However, a problem arises because of what is known as the placebo effect.
This is when a patient exhibits a response to being given a treatment, even
though the treatment has no active component and cannot be having a direct
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Comparison A

Untreated Group A—— Placebo Group

. Comparison B
Comparison C

Active Treatment Group

FIGURE 5.1
Possible comparisons in a trial with untreated and placebo groups.

effect on the condition being treated. This can arise simply because the
patient reacts positively to “something being done” about their condition.
This effect can be marked in minor psychiatric disorders and can extend to
things such as hypertension (raised blood pressure). Moreover the effect
might be quite genuine — a patient with hypertension may be reassured by
being treated, thereby reducing the anxiety that was partially responsible
for the raised blood pressure.

If a trial is such that an active treatment group could be compared with a
control group that is either given a placebo or completely untreated, then
the possible comparisons are shown in Figure 5.1.

1. Comparison B would give a measure of the effect of the active
component of the drug, because the only difference between the
groups is the active component. Both groups would be subject to
any placebo effect, so this would cancel out in the comparison.

2. Active treatment or no treatment at all are the only options that are
likely to be countenanced for future practice: doctors are seldom
prepared to use placebos outside a trial as it could be construed to
amount to deception. Because of this, comparison C is the compar-
ison with greatest clinical relevance, as it compares the only groups
that might be used in practice. However, a trial that only made
comparison C would not be able to tell whether any effect observed
was due to the active component or the placebo effect. Few doctors
would be happy in using a treatment when they are unsure if the
source the efficacy is the active component. For this reason some
trials include both untreated and placebo control groups.

3. If both types of control are present, then it becomes possible to make
comparison A, which is a direct measure of the placebo effect.
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5.2.2 The Role of Placebos in Blinding

A slightly different role for placebos is their use to achieve blindness. If one
treatment group receives no treatment at all and the other group receives
something, then it is clearly impossible to make the trial either double-blind
or, given the need to explain to the patient about all treatments in the trial,
to make it single-blind. If you give patients in the control group a placebo
that looks identical to the active treatment then you can readily achieve
blindness. Of course, the comparison being made changes in the manner
demonstrated in the explanation to Figure 5.1. Comparison C would be lost,
but if assessment bias was a major problem, then sacrificing a biased com-
parison C for an unbiased comparison B may be necessary.

Placebos can also be used in trials that compare two active treatments
using what is called a double-dummy technique. Suppose you wish to compare
two treatments one given as a blue tablet, the other as a red tablet, so
blindness cannot be achieved.

Group A: — Group B:

blue active tablet Comparison not blind:  red active tablet
one group gets red, the
other blue

Most pharmaceutical companies will supply placebo versions of their
products. You could then obtain placebo red and blue tablets and give group
A placebo red tablets in addition to the active blue tablets, and group B
placebo blue tablets in addition to the active red ones.

Group A: — Group B:
blue active tablet Comparison blind: red active tablet blue
red placebo both groups getredand  placebo

blue

The resulting trial is then blind, with the only difference between the
groups being the difference in the active components of the red and blue
tablets.

Example 5.2: Example of Using a Placebo to Achieve Blindness
and Exclude a Placebo Effect

When a kidney is transplanted into the recipient, an undesirable feature is
that the kidney does not pass urine from the ureter more or less as soon as
the kidney has been grafted into place — this is referred to as delayed graft
function (DGF). An RCT was proposed to assess whether flushing the kidney
prior to implantation with a special chemical would reduce the incidence of
DGE. However two problems arose:
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1. In the middle of an operation, there are numerous fluids flowing
around the implantation site, and it would be difficult for the sur-
geon to be certain that a drop of fluid really was urine emerging
from the ureter. The surgeon has to make this judgment but, if he
or she knows that the chemical has just been flushed through the
kidney, then his judgment may err in the direction of claiming that
urine had been seen when the chemical was used.

2. If flushing the kidney with the new chemical reduces DGF, is it the
new chemical or the flushing that has made the difference?

Both these difficulties can be overcome if a control group is used in which
kidneys are flushed with saline. The patient has been randomized to one or
other group by pharmacy and allotted a trial number. The anesthetist draws
up a liquid from a bottle, labeled only with the trial number, into a syringe
and passes it to the surgeon. The surgeon now is blind to the treatment
difference, so problem 1 cannot cause a bias, and the only difference between
the groups is the chemical.

5.3 Practical Considerations

We have defined blindness as being unaware of the treatment being given,
but in practice several degrees of this are possible.

Perhaps the most satisfactory way to run a double-blind trial is for the
randomization to be handled by the pharmacy. When a patient has been
entered to the trial, the doctor sends the patient to pharmacy with a note
which says that they have entered the trial. The pharmacist will have set up
a numbered randomization list:

Patient Allocation

1 diuretic
2 diuretic
3 beta-blocker
4 diuretic

10 beta-blocker

The first patient receives the drug against their number (in this case
diuretic), the second patient the drug against number 2, etc. The patient will
receive a bottle of pills (or possibly two bottles if a double-dummy technique
is being used), each labeled with only the trial number. Hospital pharmacies
usually have 24-h contact numbers, so the blind can be broken at any time
that an emergency might arise.
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This system is far preferable to one in which patients are given bottles
labeled A or B. Even if the doctor does not know which is which of A or B,
it is likely he or she will soon find out. If a single case of a side-effect or
adverse reaction that only happens with one of the drugs occurs, then the
blind will be broken for all patients.

Other methods of randomization involve placing a predetermined
sequence of random allocations into sealed envelopes. Alternatively, tele-
phoning to a central randomization center is possible.

Exercises

1. Explain what is meant by a single-blind trial and a double-blind
trial? What are the important features of an outcome variable when
deciding whether or not to make a trial double-blind?

2. In a randomized controlled clinical trial, one treatment is a tablet
that must be given twice a day, morning and evening, whereas the
other treatment must be given three times, morning, evening, and
midday. Can you make the trial double-blind? If so, how?
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Analysis of Results

6.1 Example

Throughout this chapter it will be convenient to use data from a real trial to
illustrate the application of certain techniques and how they are interpreted.

One of the long-term complications of diabetes is kidney disease or nephr-
opathy. One of the problems that can exacerbate this condition is raised blood
pressure, and therefore there is some purpose to seeing if medication can reduce
blood pressure in this group of patients. An RCT was reported by Hommel et
al. (1986) in which insulin-dependent patients with diabetic nephropathy were
randomized to receive either Captopril, a drug intended to reduce blood pres-
sure, or a placebo (reduction of blood pressure is not quite the whole story:
Captopril is one of a class of drugs that will reduce blood pressure, but it also
has other actions that are thought to be of specific benefit in diabetic nephrop-
athy). The systolic blood pressure was measured before randomization, giving
a baseline value and then again after one week on treatment. The data are given
in Table 6.1 with all blood pressures in mmHg.

The trial is quite small and in this respect is not wholly typical (it appeared
to recruit all eligible, consenting patients attending the investigators’ clinic
in 1984). However, in other respects its structure is similar to many trials.

6.2 Use of Confidence Intervals

The randomization should have produced groups that are comparable, so
the primary comparison is between the outcomes X in the two groups. The
summary statistics for the two groups can easily be computed as

Sample Size  Mean (mmHg) SD (mmHg) SE (mmHg)

Captopril 9 135.33 8.43 2.8
Placebo 7 141.86 6.94 2.6

73
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TABLE 6.1
Data from Trial by Hommel et al. (1986)
Captopril Placebo
Baseline  Outcome at Baseline  Outcome at

Patient (B) 1 Week (X) Patient (B) 1 Week (X)

1 147 137 1 133 139

2 129 120 2 129 134

3 158 141 3 152 136

4 164 137 4 161 151

5 134 140 5 154 147

6 155 144 6 141 137

7 151 134 7 156 149

8 141 123

9 153 142

Source: From Hommel, E. et al. (1986), Effect of Captopril on kidney func-
tion in insulin-dependent diabetic patients with nephropathy, British Med-
ical Journal, 293, 467—470.

The difference in sample mean systolic blood pressure is 141.86 — 135.33
= 6.53 mmHg. Is this evidence that blood pressure has been reduced in the
group taking Captopril? The first step is to exclude the possibility the dif-
ference has arisen by chance, so a hypothesis test is performed.

The assumption of equal variances in the two groups seems reasonable,
so the pooled estimate of standard deviation is

\/ 8% 8.432 +6 X 6.942

=7.82 mmHg
8+6
The t statistic is then:
P
7823+

Under the null hypothesis that the mean systolic blood pressure at the end
of the week of treatment is the same in the two treatment groups, this statistic
will have a t-distribution with 14 degrees of freedom. From this we obtain
P =0.12.

As discussed in Section 3.2, this does not provide strong evidence against
the null hypothesis, so we cannot assert that treatment with Captopril has
had any effect on blood pressure. However, neither can we assert that Cap-
topril has had no effect.

When planning the study, we hope to avoid this kind of outcome by
ensuring that a “nonsignificant” result is unlikely if the true difference
between the groups is above a minimal, clinically important threshold. How-

© 2006 by Taylor and Francis Group, LLC



Analysis of Results 75

ever, even if carefully planned, obtaining a nonsignificant P-value does not
mean that the true difference between the groups is necessarily less than the
clinically important minimum. Among the reasons for this are

1. If, for example, the trial has been planned to have a power of 80%
to detect a difference of 8 mmHg, then we still have a 1 in 5 chance
of failing to detect a clinically important difference.

2. Sample size estimates are sensitive to the values chosen for the
parameters on which they are based, and an unfortunate choice of
these may have led to us underestimating the number of patients
that were really needed to have 80% power.

3. Practicalities may mean that we simply failed to recruit the number
of patients we said we needed.

In addition to these difficulties, there may be interest in a difference
between treatments even if it is less than that previously specified to repre-
sent the threshold of clinical importance.

We are left with a test result that is compatible with a true treatment effect
of zero, =0, but which is also compatible with other true treatment
effects T# 0. Here compatible means that the data are unable to reject the
null hypothesis that the treatment difference is 7 at the 5% level. We want
to know what values of T are compatible with the data. That is, we wish to
determine the set:

|653 r|

782,[

where t, 475 is the value that cuts off the top 2.5% of the t-distribution with
14 degrees of freedom. Performing the arithmetic gives the result
{T |[-19<t< 15.0}: note that 0 is in this set, as it must be because we have
already found that a zero treatment difference is compatible with the data.
Rewriting this for the general case, the analogue of Equation 6.1 is

Sty =2.145 (6.1)

||x1 x2 T|

syny +ny'

= tn +15-2,0.975
12

which can be written as

- = 1, 1 - = [, 1
{T |1 =X =ty iny20075S\ T F 1y STEX =X+, 0 200755\ + 115 }
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Of course, this is simply the 95% confidence interval for the treatment
effect. One of the definitions of a 1000:% confidence interval is as the set of
values of a parameter that cannot be rejected by a significance test performed
at the 100(1 — )% level.

It follows that we can be 95% sure that the change in mean blood pressure
effected by Captopril is somewhere between a reduction of 15 mmHg and
an increase of about 2 mmHg. It may be that this is adequate for clinical
purposes: a change in mean blood pressure of 2 mmHg is probably of no
clinical importance, so we have excluded the possibility that Captopril may
increase blood pressure by a clinically important amount. However, Capto-
pril is a powerful drug with potent side effects and few doctors would be
happy to prescribe it without good evidence that it did some good, as
opposed to evidence that its main effect will not do harm and then rely on
the vague hope that it might do some good.

This example illustrates how much more informative it is to present a
confidence interval than simply to give the result of a significance test.
Confidence intervals should be used to present the results of all RCTs,
whether or not the hypothesis test of no treatment difference is significant.
Appropriate confidence intervals should also be used when the outcome is
not normal, e.g., when it is binary. There is nothing unusual about the
application or interpretation of confidence intervals when they are applied
to RCTs, it is simply that they are especially informative in this context.

Confidence (about the location of the treatment effect) is the concept that
should be used once data have been collected: it is the analogue of power at
the planning stage. Some trials attempt to calculate the power they have
achieved once the trial has been concluded. This might be possible by comput-
ing y(x; — x,), where y is the power function defined in Section 3.2. This is
inappropriate because W is a function of the parameter and not the sample. It
is unclear what is achieved by computing vy at x; — x,. Computing y(x; — x,) -
because it is the best estimate of power at the true treatment difference not only
ignores the sampling variation in x, — x, but also the fact that power at the true
difference is not usually of interest, it is the power at clinically important
thresholds that usually demands attention. Attempts to compute post hoc
power are unhelpful and should be eschewed in favor of confidence intervals.

6.3 Baselines: Uses and Abuses

In Section 6.1 of this chapter, values of blood pressure were also recorded
before the patients were randomized: such measurements are often called
baseline measurements. Could these values be usefully incorporated into the
analysis? The answer is yes. Although there are several ways to do this, only
the best one will be described in Section 6.4. Other methods, some of which
are mistaken, are described below.
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6.3.1 Comparison of Baseline Values

Randomization ensures that the baseline values (which cannot be affected
by any difference in treatments) in the treatment groups are all samples from
the same population. So, on average, they will be balanced between treat-
ment groups. However, as with any prognostic factor, imbalances may occur
in any particular trial (cf. Section 4.5). The extent of any imbalance could be
assessed by looking at the baseline data from the trial. For the example this
gives the following results.

Baseline Mean (mmHg)  Baseline SD (mmHg)

Captopril 148.0 11.4
Placebo 146.6 12.3

These look reassuringly balanced, but why not do things properly and
compare these data using a hypothesis test? Performing a ¢-test gives P =.81.

Informally assessing the difference between baseline values by computing
means and standard deviations may offer some reassurance about balance
and is quite acceptable, but the final step is logically flawed. A hypothesis
test is used to see if the difference between two groups could be due to
chance. In an RCT, the groups are formed by randomization, so the difference
between baselines must, by construction, be due to chance. Comparing base-
lines using significance tests is only appropriate if you suspect that the
randomization is flawed for some reason.

6.3.2 Analyzing Change from Baseline

The drug is intended to reduce blood pressure. If it does so by similar
amounts in each person, then the values after one week will still exhibit
marked variation because everyone started from a different value. A way
around this would be to analyze the change in blood pressure over the week.
The same analysis as shown in Section 6.2 of this chapter would be presented,
but instead of using the values in columns 3 and 6 of Table 6.1, we would
use the difference between columns 3 and 2 and compare it with the differ-
ence between columns 6 and 5. If this is done we obtain:

Sample Mean Change SD of Change SE of Change

Size (mmHg) (mmHg) (mmHg)
Captopril 9 12.67 8.99 3.00
Placebo 7 471 791 2.99

The difference in mean changes shows that Captopril reduces blood pres-
sure by nearly 8 mmHg more than placebo. A two-sample t-test gives P =
0.086 with a 95% confidence interval for the difference in changes of (1.3, 17.2).
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The P-value is a little smaller, the treatment effect is still in favor of
Captopril and has similar magnitude to that obtained previously, the con-
fidence interval is also of similar width to that obtained before. It is reas-
suring that the two analyses do not point to conclusions that are
qualitatively at odds with one another. However, the analyses are different
— 50 is one analysis better than the other? To answer this, it is helpful to
develop some theory.

Suppose a baseline measurement from group 1 (placebo) is represented
by the random variable B, and the corresponding outcome is X;, with B,, X,
similarly defined for group 2 (Captopril). Suppose:

E(X;)=u
E(X,)=pn+n1
E(B,) =E(B,) = g

The randomization entitles us to assume the two baselines have a common
mean. It is convenient (and often reasonable in practice) to assume:

var(X,) = var(X,) = var(B,) = var(B,) = ¢°

The sample mean of the Xs in group 1 will have expectation L and in group
2 it will be u+1, so the difference in means will have expectation 1, as
required. If we analyze not the outcomes X but the differences X-B, then the
analogous quantity has expectation:

E(X, - B,)—E(X; - B;)=(u+1t—ug)—(L—Up)=7

So the analysis based on changes is also unbiased. The analysis ignoring
baselines is based on data with variance 6*, whereas that based on change uses

var(X, — B,) = var(X,) + var(B,) -2 cov(X,, B,)

=6’ +06>-2pc’ =26%(1-p)

where p is the true correlation between X and B, which is assumed to be
the same for both groups. There is an identical expression for var(X; — B,).
It follows that the analysis of changes from baseline uses variables with
a different variance and, if p > 7, it will be a smaller variance. This makes
sense: if there is marked positive correlation between baseline and out-
come such that higher outcomes go with higher baselines, etc., then some
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of the variability between patients will be reduced if we remove some of
the variability by studying changes from baseline. Thus, if the baselines
have a correlation with outcome that exceeds /2, we should obtain nar-
rower confidence intervals and more powerful tests by studying changes
rather than raw outcomes. If the correlation is below !/2, then using
change from baseline is essentially just introducing unhelpful noise into
the analysis.
More will be said about the use of baselines in Section 6.4.

6.3.3 An Erroneous Analysis Based on Change from Baseline

Another way to use baselines that is too often encountered is to assess
changes separately within each treatment group and then make some infor-
mal comparison of the results. An application to the present example will
make this clearer.

Within each group, perform a paired t-test on the difference between
baseline and outcome, giving

t Statistic
(Degrees of Freedom)  P-Value

Captopril 4.23 (8) .003
Placebo 1.58 (6) 17

There appears to be strong evidence that Captopril effects a change in
blood pressure, whereas there is no such evidence for placebo. As there is a
change in blood pressure for Captopril but not for the placebo, a difference
between the treatments has been established.

This analysis is flawed. There are two criticisms:

1. Having conducted an RCT, in which the primary aim is to compare
two groups, it is an odd approach to make this comparison so indi-
rectly, namely through P-values.

2. Amore direct problem is that the logic is flawed. The P-value of 0.17
in the placebo group does not show that there is no effect in the
placebo group — it demonstrates that we cannot reject the null
hypothesis, and not that the null hypothesis is true. Consequently,
there may well be a difference in the placebo group, perhaps com-
parable to that in the Captopril group, so from the comparison of
P-values we certainly cannot conclude that there is a difference
between treatments.

The proper analysis is, as always with RCTs, to compare directly the
differences in the treatment groups, i.e., as in Subsection 6.3.2.
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FIGURE 6.1
Plot of final blood pressure against baseline, distinguishing the treatments.

6.4 Analysis of Covariance
6.4.1 Baseline Bias Leads to Outcome Bias

Consider the following observations.

1. It is common to find that outcome measurements are related to the
corresponding baseline measurement — often quite strongly related.
In the example in this chapter, it would not be surprising if the
patients who started with the higher blood pressures finished with
the higher blood pressures, notwithstanding the effect of the treat-
ment. This is indeed the case and is demonstrated in Figure 6.1.

2. Although randomization ensures that, on average, the baseline mea-
surements will be balanced between the treatment groups, it does
not follow that in a given trial the baseline values in the two groups
will be identical.

If the outcome is positively related to the baseline, and if in a given trial
the baseline is higher in one group than the other, would we not expect the
outcome also to be higher in that group, even in the absence of a treatment
effect? If this is the case, how could we then decide if a difference in outcomes
was related to a difference in treatments or is simply the difference we would
expect given that the baselines were different? To be more specific, in the
example the baseline mean blood pressure in the Captopril group was 148.0
mmHg, whereas in the placebo group it was 146.6 mmHg; so if Captopril
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and the placebo had the same effect, should we not expect the Captopril
group to have slightly higher mean blood pressure at the end of the study?
(Clinically, the difference of 1.4 mmHg is unimportant and the randomiza-
tion has performed well in this instance, but the difference illustrates the
general point and, in any case, it might have been greater.)

This problem is indeed genuine. Randomization is worthwhile not only
because of its desirable average properties but because its use means that,
by and large, differences between treatment groups are not large. However,
for variables that are strongly associated with the outcome, it is often fruitful
to use a method of analysis that makes allowance for the imbalances that
remain despite randomization. This method is the analysis of covariance
(ANCOVA). It has several advantages and can be introduced in several ways:
the following introduction is framed around its use in RCTs.

The ideas behind the rest of this section apply to all manner of outcomes,
but we will restrict our attention to the case when the baseline and outcome
have a normal distribution. We will also need some results for jointly dis-
tributed normal variables and these will now be derived.

6.4.2 Interlude: Bivariate Normal Variables

Suppose X and Y are two random variables that are jointly normally distrib-
uted. For our purposes, this essentially means that X and Y each have a
normal distribution with means and variances j,,6% and L, ,G6}, respec-
tively, and the correlation between X and Y is p.

By this definition

E(Y)=py

However, suppose we know that X has the value x, what is now the
expected value of the corresponding Y? If p > 0 then higher values of X are
associated with higher values of Y, so if, for example, x is from the upper
part of the X distribution, the distribution Y conditional on this value of X
is not the same as the unconditional distribution of Y. Consequently, the
expectation of Y conditional on X = x, written E(Y | X = x), is not the same
as E(Y).

This is illustrated in Figure 6.2, which shows a typical elliptical contour
of the joint density function. The distribution of the Ys associated with X =
1 is clearly shifted up relative to the unconditional distribution of Y.

However, if W is another random variable that is independent of Y, then
specifying a value for W does not affect the distribution of Y, so:

E(Y |W =w) = E(Y)

Also, if two normal variables are uncorrelated, they are independent. We
can use these two observations to calculate E(Y | X = x).
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A contour of the bivariate normal distribution.

The first step is to compute the covariance of X and Y — kX for any constant
k. This is straightforward, as

cov(X,Y = kX) = E[(X —uy )(Y = kX =y +kuy)]

= E[(X — (Y —y) — k(X —px)*]

_ 2
=pox0y — ko

This is zero if k =po, / 6x =P, say. Therefore, as Y — kX is also normally
distributed, X and Y —BX are independent, hence:

E(Y -BX | X =x) =E(Y - BX) =1y —Buy

However, conditioning on X = x means we take X to be fixed at this value,
so E(BX | X = x) =Bx, and so we obtain the result we want:

E(Y| X =x) =y +B(x —ux)

We can use the same general approach to obtain var(Y | X = x). The defi-
nition of this quantity is

var(Y | X =x)=E[(Y-E(Y | X =x))*| X=x]=E(Y?*| X =x)-[E(Y | X = x)]’
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In order to evaluate this we need an expression for E(Y? | X = x). To obtain
this, we use the same device as before and note that X and (Y —BX)? are
independent. Consequently, we obtain:

E[(Y —BX)" | X = x]=E[(Y —BX)*]=§* +(1y —Buy)’

where S* = 6} +B%0% —2Bpo, 6y = 65 (1—p*) (substituting for B).
Expanding the left-hand side we find that this expression is equal to:

E[Y? | X = x]-2BxE(Y | X = x) +p*x* =E[Y” | X = x] - 2Bx(uy —Bux) - Bx*

Equating the two expressions and rearranging we obtain:

E[Y? | X =x]= S +(1y —Buy)” +2Bx(1y —Buy) +p7x?

Expanding the square of E(Y | X = x) =, +B(x —puy) =(1Uy —Buy) +Px we
obtain:

[E(Y | X = 0)F = (1y —Bux)? +2Bx(ky —Buy) +p*x

and subtracting these expressions we find:
var(Y | X = x) =S* =65 (1-p?)

Note that the conditional variance of Y does not depend on x. Note also
that the conditional variance of Y never exceeds the unconditional variance
and is only equal to it when the variables are uncorrelated.

6.4.3 Allowing for Baseline Imbalance: The Theory

Suppose that the outcome measurement from a clinical trial is a random
variable X, which has mean i in the control group (C) and mean [ + 7 in the
new treatment group (T), so the aim of the RCT is to obtain an estimate of
T, the treatment effect. Suppose also that the standard deviation of X is ¢ in
both groups. Suppose further that the measurement of the same quantity at
the start of the trial, the baseline, is a random variable B. By randomization,
this will have the same true mean [z and standard deviation in both groups;
it is convenient and not all that unrealistic to assume that this standard
deviation is the same as that for X, i.e., 6. The true correlation between B
and X is p, again assumed to be the same in both groups. It is also convenient
to assume that the RCT comprises groups of equal size N.
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If we observe baseline values b;, b,, ..., by, then, given these values, we
find:

E(X;|b;)=pn+pb; —nz) Group C 62
6.2
E(X;|b)=u+1+p(b; —nz) Group T

Denote the mean of the Xs by X, in group C and X, in group T, with the
mean of the observed baselines in the two groups being b and b;. From this
we obtain:

E(XT_S(C |ET/EC):T+p(ET _Ec) (6.3)

So, if we start from the observation that in our particular trial there is an
imbalance in the baseline values, X; — X is not unbiased. There is an extra
term in Equation 6.3 that allows for the difference you would expect in
outcome because of the difference in baselines. Even if there is no treatment
effect, X; — X will not have zero expectation; put more loosely, if you do
not start with groups that are quite alike, you should not expect to end up
with groups that are alike. The exception is if p = 0, i.e., if baselines and
outcomes are unrelated, then imbalance in baselines has no effect on the
outcome. However, this situation rarely occurs in practice.

The problem cannot be solved by analyzing changes from baseline, that
isif we use (X; —b;) — (X —bc) to estimate 7. This is because it follows from
Equation 6.3 that

E[(X7 —by) = (Xc —bc) | by, bel=1+(p—1)(br —bc)

and in practice p will never be 1; so using change from baseline does not
provide an unbiased estimate. o

Of course, if we adjust for baseline imbalance by using (X; —X.)—-
p(br —bc), then this quantity will have expectation T as we require. Moreover,
as the correlation between X; — X and B; — B.. is p, the result in the previous
subsection shows that

var[(X; — Xc) - p(by —be)] = var[ Xy - X 1(1-p?)

_20°(1-p?)
N

Thus, by taking account of the baseline values in the manner described,
we have not only obtained a more accurate estimate of t, we have one which
has a smaller variance.
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6.4.4 Allowing for Baseline Imbalance: The Practice

The previous subsection outlines how we ought to go about taking account
of baseline information, but it is not a practical proposition as it stands. An
obvious problem is that the proposed estimator (X, — XC) p(b -b c)
depends on the unknown parameter p. The second problem is that, in prac-
tice, we would not wish to impose the constraints that the variance of the
baseline should equal to the variance of the outcome nor that the treatment
groups have equal size.

The solution is to analyze the data using a statistical model in which the
expectation of the outcome includes a linear term in the observed baseline.
Thus we fit the model:

X;=u+; +¢; in group C

X;=W+T+Y,; +¢; ingroup T

where ¢;5 are independent, normally distributed errors, with mean 0 and
variance 6. The observed outcomes are x,,x,,.. - Xn,4n. and the baselines
are by, b,,...,by ,y. where groups T and C have sizes Ny, N, respectively.
The parameters 1,7, and 6 need to be estimated from the data and, for the
first three, this is done by minimizing the sum of squares:

S(w,T,v)= Z(x —u-1-1b,)? Z(x —u—b;)

inT iinC

If the estimates thereby obtained are denoted by [1, T, and ¥ we estimate 62 by:

62= S(fb%/?)
N;+N-.-3

This technique is a well-established statistical method known as the anal-
ysis of covariance (ANCOVA) and is implemented in many statistical pack-
ages. In Minitab (version 14), you can apply this method to the data from
Section 6.1 of this chapter by selecting successively the menus Stat ->
ANOVA -> General Linear Model .... Three columns of data are required:
the columns “Outcome” and “Baseline” are self-explanatory and the column
“Treatment” is a text column whose entries are T for Captopril and C for
placebo (this slightly odd coding is to conform to our notion of T = “test”
and C = “control,” in which placebo is naturally the control). In the dialog
box that is presented following the preceding choice of menus, you enter

1. “Outcome” in the Responses box
2. “Treatment” in the Model box
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You must click on the Covariates ... box and then enter “Baseline” in the
Covariates box.

Under Options: ... it is convenient to put “Treatment” in the Display least
squares means corresponding to the terms: box.

The output obtained (after slight editing) is as follows:

General Linear Model: Outcome vs. Treatment

Anal ysi s of Variance for Qutcone using Adjusted SS for
Tests

Sour ce DF Seq SS Adj SS Adj M F P
Basel i ne 1 374.66 409.11 409.11 11.88 0.004
Tr eat nent 1 202.04 202.04 202.04 5.87 0.031
Error 13  447.75 447.75 34.44

Tot al 15 1024.44

S = 5.86872 R-Sq = 56.29% R-Sq(adj) = 49.57%

Term Coef SE Coef T P
Const ant 71.16 19.62 3.63 0.003
Basel i ne 0.4578 0.1328 3.45 0.004
Tr eat nent

C 3.589 1.482 2.42 0.031

Least Squares Means for Qutcone

Treatnent ©Mean SE Mean
C 142. 2 2.221
T 135.0 1.958

The estimates of the various parameters can be found from this output as
follows.

1. 6%1is found as the mean square (M5 column) in the Error row of
the Analysis of Variance table, namely 34.44 (mmHg?). Its square

root, S, can be found in the line below the table starting S =
5.86872.

2. ¥ is found under Coef in the table of output below the Analysis of
Variance table: it is in the row corresponding to Basel i ne —
so ¥=0.4578. Both [i and T can be found from the same table,
although there is usually little interest in (i. The Treatment column
is a text column with entries C and T, so internally Minitab must
ascribe a numerical code for these, and it has used 1 and 1, respec-
tively. Thus, in essence, Minitab fitted the model
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x; =W+ 4+, +¢; in group C (Placebo)
x; =W =7+, +¢; in group T (Captopril)

This is easily seen to be equivalent to the preceding model, once we
have made the identifications u =W +1’, 0+ 1= —1'. The estimates
of W and 7’ are the numbers under Coef corresponding to Constant
and Treatment, respectively, i.e., 71.16 and 3.589. From the identifi-
cation of the parameters in the two models, note that 1=-27', giv-
ing T=-2x3.589 = -7.179 mmHg. This shows that after adjustment
for baseline blood pressure, patients treated with Captopril have a
mean blood pressure 7.18 mmHg lower than those given the placebo.
This adjusted value compares with a reduction of 6.53 mmHg based
on an analysis of outcomes alone (cf. Section 6.2). The adjusted
reduction is slightly greater than the unadjusted change, reflecting
the fact that the Captopril group started with a slightly higher mean
blood pressure than the placebo group.

3. Some users of clinical trial results would want adjusted (or least
squares) means to be presented. These are not fundamental quanti-
ties, as they depend for their definition on certain conventions. Nev-
ertheless they are encountered quite often. In general, if the mean
response in group i is y;, the mean covariate in group i is z; and the
estimate of the coefficient for the covariate is ¢, then one convention
for the definition of an adj ust ed mean for group i is y; —c(z; — z)
where z is the mean of the covariate computed across all groups.
This is the convention adopted by Minitab in the preceding output.
Thus, our estimate for 1, namely (x; — xc)—¥(b; —bc), following
from Equation 6.3, can be found as the difference between the
adj ust ed nmeans, namely, 135.05-142.23 = —7.18 mmHg, agreeing
with the preceding estimate of t.

The test of the null hypothesis T =0 is performed in the Analysis of Vari-
ance table and the P-value is found in the appropriate column under the
row labeled Tr eat nent, so P = 0.031. The P-value is smaller than in the
earlier analyses based on outcome alone or on change. This is, at least in
part, because the inclusion of the baseline information has reduced the
residual variance. In the analysis of outcomes alone, the residual standard
deviation was 7.82 mmHg, whereas in the present analysis it is reduced to
V34.44 = 5.87 mmHg.

A 95% confidence interval for the adjusted difference is found from the
standard error associated with the estimate of T. This is found next to the
estimate of 3.589 under the column SE Coef and has value 1.482. The
standard error of T is therefore 2 x 1.482 = 2.964. Thus, a 95% confidence
interval for the adjusted treatment effectis 7.179 + £ 4,515 X 2.964, where £ g5,
=2.160 is the two-sided 95% point of the ¢ distribution with the same degrees
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of freedom as for the estimate of 6% This gives a confidence interval of
(0.78, 13.58) mmHg for the adjusted reduction in blood pressure on Capto-
pril, relative to the placebo.

6.4.5 Conditional vs. Unconditional Inference

It has been asserted in various parts of this chapter that X; —X. and
(X; —Br)—(X¢ — Bc) are unbiased estimators of 7. Then in Equation 6.3, it
is shown that the expectation of X; — X is 1+ p(b; —b), that is we have a
biased estimator, as is the estimator based on changes from baseline. This
raises the question of the consistency of these assertions. -
_There is, in fact, no contradiction. When claiming that X; — X, and
(X1 —Br)—(X¢ — Bc) are unbiased for 1, we are taking expectations over all
possible outcomes X and all possible baselines B; we say that the expectations
are unconditional. To put it more loosely, before we had any data we knew
that the average of these quantities taken over hypothetical repetitions of
the trial, including repetitions of the baseline values, is the required treatment
effect. When claiming that the expectation of X; — X is T+ p(b; —b.), we are
taking the baseline values to be fixed at the values we actually observed.
The average of X; — X over hypothetical repeated trials that had the same
baseline difference as that we actually observed would not give T but the
biased T+ p(b; —b.). We say the expectation is conditional. Conditional and
unconditional expectations are not necessarily equal, as Figure 6.2 illustrates.

However, this explanation raises the next question: why do we treat the
baselines as if they were fixed at the observed value and are we entitled to
do so? Why do we not also take the outcomes to be fixed?

Taking the outcomes to be fixed would destroy our ability to make any
statistical inferences, so this is clearly an unhelpful approach. We are not
solely interested in the estimates of the treatment effect in this trial, but we
want to know what can be said about what treatment effects might have
been found if we had repeated the trial. However, it is the treatment effect
that is the focus of our attention and the baseline values, being taken before
treatments are administered, cannot contain direct information on the effect
of the treatment. So we are not concerned about how baselines vary across
repeated trials. If the outcomes vary less in the conditional distribution than
in the unconditional one, we may be able to make more precise inferences if
we work with this conditional distribution rather than the unconditional one.

This is a heuristic explanation of the deep statistical property of ancillarity.
Ancillary statistics contain no direct information on the parameters of inter-
est, and the principle of ancillarity asserts that inferences will be improved
if they are made conditional on the observed values of the ancillary statistics.
It also demonstrates the important point that the argument does not work
if the baseline values do contain direct information about the treatment effect.
It is of the utmost importance that baselines are taken before any adminis-
tration of treatment to ensure they cannot be affected by it.
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6.4.6 Some General Remarks on Covariates

6.4.6.1 Choice of Analysis

In this chapter, three analyses of the introduced data in the first section,
differing in the way they make use of baseline data, have been presented.
The first analysis ignored baselines, the second considered changes from
baseline, and the third included the baseline as the covariate in an analysis
of covariance. Three different sets of results were obtained, and the most
important aspects of these are summarized in the following table.

T 95% Confidence Interval  P-Value
Ignoring baseline 6.5 mmHg 1.9, 15.0 mmHg 0.12
Change from baseline 8.0 mmHg 1.3, 17.2 mmHg 0.086
Baseline as covariate 7.2 mmHg 0.8, 13.6 mmHg 0.031

The results are broadly the same but there are differences and, in particular,
the P-values change noticeably. An investigator eager to obtain P <.05 might
be more easily persuaded of the value of using the baseline as a covariate
after seeing this table. This raises an important point about choosing analy-
ses. With a choice between a range of legitimate analyses, there is the danger
of choosing one because it gives more appealing results; this is discussed
further in Chapter 9.

6.4.6.2 Other Types of Covariate

The second analysis in the preceding table, namely the change from baseline,
is only possible if we can subtract the baseline from the outcome, and this
is only possible if they measure the same variable. The presence of a coeffi-
cient v in the adjustment by ANCOVA, namely (x; — x.)— ¥(b; —bc), means
that the baseline does not have to be the same variable, nor even have the
same units, as the outcome when adjustments are made this way. Although
the pre-randomization value of the outcome variable is often an important
baseline, it is not the only possibility. As long as the values were obtained
before randomization, and so cannot be affected by the treatment, consider-
ing other baseline variables is a legitimate and possibly desirable approach.

6.4.6.3 Which Covariates Should Be Used?

The observation that ANCOVA allows a wide range of variables measured
at baseline to be used to adjust the treatment effect opens up an important
but complicated area. In most trials, many variables are recorded at baseline
and using them all is not a practical or desirable proposition. However, some
of the variables could profitably be used in this way, so how do we choose
which variables to use?

An analysis of a trial with a normal outcome using ANCOVA does two
things that are potentially beneficial. First, it allows for chance imbalances
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that have occurred in a variable despite randomization. Second, it gives a
more precise estimate of the treatment effect, because some of the variation
in the outcome can be ascribed to concomitant variation in the covariate. If
the covariate is not related to the outcome, then the second advantage does
not hold good, and adjustment for imbalances in variables that are unrelated
to the outcome does not have value. It is therefore important that only
baseline variables that are related to the outcome variable, the so-called
prognostic variables, be contemplated as possible covariates in an ANCOVA.

One approach to selecting covariates is to choose those baseline variables
that are imbalanced, perhaps by looking for variables that exhibit a statis-
tically significant difference at baseline. The practice of performing signif-
icance tests on baseline variables to obtain reassurance regarding the
balance of the treatment groups has been criticized in Subsection 6.3.1. The
use of significance testing just proposed is slightly different. If a large
number of variables are observed at baseline, then a few will be not be
balanced just by chance, and the proposed approach could be seen as
identifying which ones exhibit chance imbalance and thus should be used
to adjust the estimate of the treatment effect. Unfortunately, this method
is not helpful for two reasons. First, there is no guarantee that the variables
found to be imbalanced are prognostic, so the imbalance may be immate-
rial. Second, if a variable is closely related to the outcome, then an imbal-
ance that fails to reach conventional levels of statistical significance may
still have a marked effect on the estimate of the treatment effect and some
adjuctment should be used.

The safest approach to selecting the variables that are to be used in adjust-
ing the treatment effect using ANCOVA is to decide which variables should
have this role in the primary analysis before the trial commences. These will
usually comprise important prognostic variables. If after the trial is run, a
prognostic variable was overlooked, or a variable is unexpectedly found to
be related to the outcome, then these variables could be included in a sec-
ondary analysis in order to check the sensitivity of the estimate found in the
primary analysis.

There is a special place in this approach for variables used to stratify the
allocation of patients. Only prognostic variables will be used to stratify the
allocation, so these variables should always be included as covariates in the
ANCOVA. This applies whichever technique, e.g., RPB within strata or
minimization, has been used to balance the allocation. There should be little
imbalance between the treatment groups with respect to variables that have
been used to stratify the allocation, so the ANCOVA is likely to have little
to achieve by way of adjusting for baseline imbalances in these variables.
However the prognostic nature of the stratifying variables means that
including them in the analysis will give a more precise estimate of the
treatment effect. This advantage can only be realized by including the vari-
ables in the ANCOVA.

A further and more subtle way ANCOVA can be used to extract informa-
tion from baseline covariates is to investigate whether the treatment effect
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differs between different types of patient. To do this, the ANCOVA needs to
include a term for a treatment by covariate interaction, with the covariate in
question defining the types of patient. This amounts to looking for subgroup
effects, which is a delicate matter that will be discussed in detail in Chapter 9.

Exercises

1. Suppose that the outcome measurement from a clinical trial is a
random variable X, which has mean u in the control group (C) and
mean L+ 7T in the new treatment group (T), and standard deviation
oy in both groups. Suppose further that the measurement of the same
quantity at the start of the trial, the baseline, is a random variable
B, which by randomization will have the same mean p; and stan-
dard deviation 6 in both groups. The correlation between B and X
is p, assumed to be the same in both groups.

If we observe baseline values b,, b,, ..., by,) then, given these
values, show that the expected difference in the means in the two
groups, X, X, is

(6}

E(;(T _ic |ET/EC):T+P X (ET _Ec)
B

(¢}

2. An RCT is conducted to compare a control group C (with N
patients) with a treated group T (with N patients) in which the
outcome, x;, and baseline, b;, are assumed to be related by the fol-
lowing model (¢;s are independent normal errors with zero mean
and common variance)

X; =W+, +¢€; in group C

X;=W+T+Y,; +¢; ingroup T

The estimators of the parameters W, T,y, namely [i,7,7, are the values
of the parameters that minimize:

SMLT = Y (== T+ Y (i~ =y,

iinT iinC

(a) By differentiation, show that the estimators satisfy the following:
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N N, Nb (i Nx
N, Ny Ngb || 2 |=|Nx; |,
Nb  Ngby Sy \9 S

where N =N, + N, b,b; are the means of the b; over both groups
or in group T, respectively, with similar definitions for x, x;. Also,

S = D b2, Sh = ) b,

with both summations taken over all patients in the study.
(b) Show that for any value of ¥, the first two rows of the preceding
matrix equation are satisfied by i =x. —9b., 1=(X; —X)—

?(Z;T - EC ), with the obvious definitions for x,b..

(c) Hence show that

N =% )b =)+ D (%, ~ % )b, ~be)

g = iinT _ iinC _
D (b, -br Y+ (b~ bc)?
iinT iinC

(d) Explain, in qualitative terms, how the estimator in (c) is the
sample analogue of the population quantity shown in question 1.

3. Note that the answer to question 2 (c) can be written as

D (b —br)+ Y xi(b,be)

"=iinT iinC
D (bi=br)?+ Y (b, - be)?
iinT iinC

(a) Show that in any random sample, the covariance between x
and XA.x;, where the A;s are constants such that XA, =0, is zero.

(b) Use this result to show that, in the notation of question 2,
cov(x; —xc,%)=0.

(c) Hence find an expression for the variance of 7 in terms of var(y)
and other relevant quantities.

(d) By substituting for the x; from the underlying model, find an
expression for the variance of 7.

4. The following data are from a small trial in which patients with
familial adenomatous polyposis (FAP) were treated with Sulindac
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(S) or placebo (P). FAP is a condition in which the patient is predis-
posed to the formation of polyps (small growths) in the colon which,
although not serious in themselves, may turn into colon cancer. The
number of polyps in the colon were counted before randomization
and after 12 months of treatment with P or S. The data in the fol-
lowing table are the logs (to base 10) of the numbers of polyps (data
from Giardiello et al., 1993, cited in Piantadosi [2005, p. 425] renum-
bering patients and omitting cases with missing data at 12 months).

Log (Base 10) Number of  Log (Base 10) Number of Treatment

Patient Polyps at Baseline Polyps at 12 Months (1 = Sulindac)
1 0.84510 0.60206 1
2 0.69897 1.41497 0
3 1.36173 1.20412 1
4 1.54407 1.60206 0
5 1.04139 1.14613 1
6 1.07918 1.20412 0
7 0.84510 1.04139 0
8 2.50243 2.63749 0
9 2.20412 1.41497 1

10 0.90309 0.84510 1
11 1.30103 1.65321 0
12 1.04139 1.50515 0
13 1.38021 1.90309 0
14 1.53148 1.53148 1
15 1.73239 1.57978 0
16 1.47712 1.75587 0
17 1.00000 0.84510 1
18 1.30103 0.00000 1
19 1.07918 0.90309 1

Ignoring the baseline information, test the null hypothesis that the
treatment has had no effect on the log of the number of polyps.
Estimate the difference in the effects of the two treatments. Between
what limits would you expect this difference to lie?

5. Reanalyze the data in question 4, but this time, do not ignore
baseline information. Use analysis of covariance in Minitab (or any
other suitable package) to compare treatments with baseline value
as the covariate. What is now the P-value for the comparison of
the treatments? What is the difference in the adjusted treatment
means? (Remember to use Options to display means corresponding
to the treatment term, and Graphs can be useful to check whether
the assumption of normal residuals is reasonable.) Repeat the anal-
ysis, still using baseline as a covariate but with outcome equal to
the difference between the value at 12 months and baseline. Com-
ment on the differences and similarities between the analyses. (In
Minitab 14, you will need to use the general linear model option
under ANOVA.)
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Further Analysis: Binary and Survival Data

In Chapter 6, some of the key ideas behind the analysis of data from ran-
domized trials were introduced. The development was entirely in terms of
a normally distributed outcome. This was because: (1) the methods used,
such as t-tests, were likely to be widely familiar, (2) the effect to be estimated
is unambiguous, namely, the difference in means, and (3) the theory behind
certain aspects, such as the way baseline information is taken into account,
is relatively accessible. In this chapter, some further aspects of the analysis
of data from RCTs will be considered.

The first issue that will be addressed is that the outcome variable in many
trials is not normally distributed. A lack of space does not permit a compre-
hensive review of all kinds of outcomes, and our attention will be focused
on two types — binary data and survival data, with greater emphasis being
given to the former. Both of these types of outcomes will, to a certain extent,
require the fitting of a statistical model and, in general, the issue of how well
the model fits the data needs to be considered. The second issue is that a
powerful alternative approach to the analysis of all kinds of data from an
RCT exists, which is based directly on the way patients are randomized. This
will be introduced briefly in the final section of this chapter.

7.1 Binary Data: An Example and a Statistical Model

Gordon et al. (1999) reported a trial comparing two treatments for psoriasis.
This is a scaly, itchy skin condition that can be treated by exposing the
affected area to ultraviolet (UV) light. However, as is now widely known
through campaigns warning of the dangers of sunbathing, there are risks
associated with exposing the skin to too much UV radiation. Therefore,
dermatologists try to refine the use of this treatment so as to minimize the
toxic effects of the treatment while maintaining its efficacy. UV light can be
classified into shorter wavelength radiation (UVB) and longer wavelength
(UVA). Giving patients a drug, methoxsalen, followed by exposure to UVA,
is an established treatment for psoriasis, often referred to as PUVA therapy

95
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(the “P” comes from Psoralen, the proprietary name for methoxsalen).
Shorter wavelength UVB is not, in general, as effective as PUVA, but is likely
to be less toxic. A new lamp, known as the TL-01 lamp, that focused the
radiation into a narrow band of the UVB spectrum was developed, which
was thought to be highly effective in treating psoriasis. Gordon et al. (1999)
reported a comparison of PUVA with TL-01.

The principal outcome is whether or not the patient was clear of psoriasis
at or before the end of the course of treatment. This was a judgment made
on the basis of clinical observation by a dermatologist who was unaware of
which treatment the patient had received (cf. Chapter 5). For each patient,
this outcome takes one of two possible outcomes, namely, clear or not clear.
As discussed in Subsection 3.4.1, the natural way to model this kind of
response is using the binomial distribution. The number of patients clearing
on PUVA, R;, will have a binomial distribution Bi(np, ), where 1, patients
have received PUVA, and m; is the probability a patient treated with PUVA
clears in the defined period. A similar distribution, Bi(ny, ny), applies to the
number of patients who clear when allocated to TL-01.

The aim of the analysis is to make inferences about m, and m; Point
estimates of these quantities and point and interval estimates for some mea-
sure of discrepancy between these parameters will all be needed. In addition,
ways to test the null hypothesis that n, = ©; will be required.

7.2 Point Estimates and Hypothesis Tests

7.2.1 Methods Based on Informal Derivations

Suppose that the data observed in a trial of PUVA vs. TL-01 are written with
the notation in Table 7.1. The actual values obtained in the trial reported by
Gordon et al. (1999) are shown in Table 7.2.

The parameter nt,, the proportion of patients who clear when treated with
PUVA, can be estimated by the corresponding sample proportion, p, = rp/11p,
where 7}, is the realization. The mean and variance of the binomial distribu-
tion show that the expectation of this estimator is m, and its variance is

TABLE 7.1

General Notation for Outcomes from a Trial
with Binary Outcome

Cleared Did Not Clear Total

TL-01 It Np—7tr Ty
PUVA p np—Tp fp
Total r N-r n

© 2006 by Taylor and Francis Group, LLC



Further Analysis: Binary and Survival Data 97

TABLE 7.2

Principal Outcomes from the PUVA vs. TL-01 Trial
Cleared Did Not Clear Total

TL-01 32 19 51

PUVA 41 8 49

Total 73 27 100

Source: Reported in Gordon, PM. et al. (1999), A random-
ized comparison of narrow-band TL-01 phototherapy and
PUVA photochemotherapy for psoriasis, Journal of the
American Academy of Dermatology, 41, 728-732.

np(1 —mp)/np If we write y;, for the variable, which is 1 if the ith patient
receiving PUVA clears and 0 otherwise, then

11D

p = Zyip
i-1

and, therefore, the central limit theorem suggests that the sampling distri-
bution of p, can be approximated under many circumstances by a normal
distribution. Consequently, we could test the null hypothesis that &, = n; by
referring (pp — pr) to a normal distribution with mean 0 and a suitable
variance. The variance is

nP(l_nP)+nT(1_nT) (7.1)
np nr '

and this could be estimated by replacing m, and n; with p, and p4, respec-
tively. However, as the test statistic is calculated assuming that n, = n; = 7,
say, then it may be better to use

n(l—n)[1+1J (7.2)
np  Nfr
as the variance of (p, — p;) under the null hypothesis. In calculations © would
be replaced with p, an estimate of the common probability of clearance under
the null hypothesis. As the null hypothesis essentially says that the distri-
butions under the two treatments are the same, the data from them can be
pooled, giving an estimate of the probability of clearance from all the patients
of p = (rp + r1)/(np + ny). Therefore, a test of the null hypothesis can be found
by computing
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7 (Pr —Pr) (7.3)
11
Fe-oli )

The test is completed by referring this statistic to a standard normal
distribution.

Implementing these methods for the trial of Gordon et al. (1999) gives the
following:

The proportion of patients clearing on PUVA is estimated to be
pp=41/49 = 0.84.

The proportion of patients clearing on TL-01 is estimated to be
pr=32/51 =0.63.

These point estimates summarize what is perhaps the simplest, most easily
understood, and most important aspect of the study, namely, the proportion
clearing on each treatment.

A test of the null hypothesis n, = ©; requires an estimate of the common
proportion clearing, assuming the null hypothesis is true, namely p = (41 +
32)/(49 + 51) = 0.73. Using this value, the statistic in Equation 7.3 can be
found as

0.8367 —0.6275

7 =
J073x0.27 x (5 +2)

=2.357

(Note the use of extra precision in the calculation.) The probability that a
standard normal variable exceeds this value is 1 — ®(2.357) = 0.0092. For a
two-sided hypothesis test (see Subsection 3.2.3, of Chapter 3), this needs to
be doubled, giving P = 0.018. This provides good evidence that there is a
difference between the probabilities of clearance with the two treatments.

Another way of testing the same hypothesis is the widely used %> test,
which is actually equivalent to the test just described. The test proceeds by
working out the version of Table 7.2 that would be “expected” if the null
hypothesis were true. The expected table is found by noting that under the
null hypothesis, the probability of clearance is 73/100 and, therefore, the
number of patients receiving PUVA who would be expected to clear is (73/
100) x 49 = 35.77. Similar arguments lead to the other entries in the expected
table and these are given in Table 7.3.

The next stage is to compute a statistic, X?, which measures, in some sense,
the distance between the expected table and the table that was actually
observed. If this statistic is large, then this furnishes evidence against the
null hypothesis. If the elements of the observed and expected tables are o;
and e, i =1, ..., 4, then the so-called 2 statistic is defined as
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TABLE 7.3
Table of Expected Values from Table 7.2
Cleared Did Not Clear Total

TL-01  37.23 13.77 51
PUVA 3577 13.23 49
Total 73 27 100
4
=Y ome) (7.4)
i=1 €i

If the null hypothesis is true, then X? has a 2 distribution with one degree
of freedom. For observed and expected values in Table 7.2 and Table 7.3,
respectively, X? has the value

(32 -37.23) L (19— 13.77) C 35.77)> L 8- 13.23)*
37.23 13.77 35.77 13.23

=5.553

This gives P = 0.018, which is the same as derived using the statistic in
Equation 7.3. In fact, it should be noted that the test statistic just derived,
5.553, is the square of that derived before, 2.357. In fact, it is generally true
that X2 = Z2, so the tests are almost wholly equivalent. The only distinction
between them is that with the approach based on Equation 7.3, it is possible
to conduct a one-sided test, whereas this is not possible with the 2 test.

7.2.2 Methods Based on More Formal Derivations

Although the informal methods are readily understood and adequate in
straightforward circumstances, they do not lay a useful foundation for
more complicated analyses. These can be derived using more formal meth-
ods, such as maximum likelihood. Before embarking on more complicated
methods, it is useful to see how the formal approach would work in the
simpler cases.

Using the definition of y;, adopted earlier, the contribution to the likeli-
hood from the ith patient allocated to PUVA is nt;” (1-1,)" ", and a similar
expression is obtained for patients allocated to TL-01. Combining these into
the complete likelihood L(n,,n; |[{yp}, {yr)) and gathering like factors
together gives

L(rp, mr [{yp b {yir ) = L(np, mp | 1p, np 1, 770) = g (1= 10p) " P oyf (1= 10y )" 777

and the corresponding log likelihood is
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Ump, Ty | np, 1y, 1p,17) = 1p log Ty + (np — 1) log(1-7p)

+ rplog my + (ny — 1) log(1—my)

Here, and throughout this chapter, all logarithms are to base e. Differenti-
ating the log likelihood with respect to m, and m; and setting equal to zero
shows that the maximum likelihood estimators are fi, =r,/np, = pp
and t; = rp/n; = py, respectively. It is comforting to observe that the estima-
tors based on a sound theoretical method coincide with the intuitively based
ones used previously. If we assume that the probability of clearance is the
same for both treatments, ©t, then the maximum likelihood estimator of the
common probability of clearance is found by maximizing
U(w, 7| np, ng, 1y, 1) With respect to w, and this also yields the same estimator
as that obtained earlier when the null hypothesis n, = m; was assumed,
namely, Tt = P.

The likelihood ratio test of the null hypothesis n, = ©; is formed by con-
sidering the difference between the value of the log likelihood maximized
over both parameters and the corresponding value under the null hypoth-
esis, i.e., when the two parameters are constrained to have a common value,
n. If the null hypothesis is true then, for sufficiently large n, and n
G? =2{U(Tp, Ry | np, 1y, 15, 1r) = L(T, T | 1p, 11r, 7, 7)) Wil follow a y2 distribution
with one degree of freedom (because there is one more parameter under the
alternative hypothesis than under the null). Evaluating this expression gives
the following test statistic:

—_ rP

[ T, n T ny —r
G2 p 10g(i) +(np — 1p) log( Pnp )+ 1 108(%) +(np —17)log( TnT L)

__(VP +1p)log(p) — (np — 1p + 1y — 1) log(1 - p)

L log(, )+ (np =ry)logl =)+ 1 log( L)
s
+(nr rT)log(Tp))

This second form can be rewritten in a simple manner in terms of the
elements of the observed and expected tables (Table 7.2 and Table 7.3, respec-
tively), namely

4
G 22 0, 1og(zf) (7.5)
i=1 i

© 2006 by Taylor and Francis Group, LLC



Further Analysis: Binary and Survival Data 101

and this has value 5.687 for the data from the PUVA vs. TL-01 trial, giving
P =0.017. Although the formula looks quite different, the value is similar to
that obtained from Equation 7.4. In fact, under the null hypothesis, G? and
X? are asymptotically equivalent.

7.3 Interval Estimates for the Binary Case

7.3.1 Different Measures of Difference between Treatments

Unlike hypothesis tests, interval estimates or confidence intervals attempt to
measure the size of the difference between the effects of a treatment, rather
than simply focus on whether or not there is a difference. When the outcome
is continuous, the difference is almost always summarized by the difference
in treatment means, W, — U,. Occasionally, the ratio of means, W,/u,, is con-
sidered, although this is often done when the outcome variable has a skewed
distribution and then the ps will be geometric means. Even if the ratio is
chosen to summarize the discrepancy between treatments, the analysis is
broadly the same as for the difference; the data are usually transformed using
logs before a conventional analysis is applied. A feature of summarizing
treatment differences when the outcome is binary is that there are several
commonly used ways of measuring the difference between two proportions
Tp, Tp. The various measures of difference require rather different approaches.

For binary data, the difference, ©t, — n;, often referred to as the absolute risk
difference (ARD), is certainly used. However, the risk ratio (RR), ny/n;, the
odds ratio (OR), {r,/(1 — ®p)}/{w;/ (1 — ®y)}, and the number needed to treat
(NNT), 1/(n, — =), are also encountered quite frequently. The ARD is a
natural way of measuring the treatment difference. If the outcome is “cured”
or “not cured,” then N x ARD is the number of extra patients you would
expect to cure if you treated N patients with P rather than T.

The NNT has its origins in clinical trials with binary outcomes. It is moti-
vated by being the value of N such that N x ARD = 1, that is, it is the number
of patients you would have to treat before you would bring benefit to one
extra patient if you used the better treatment. For example, if ©, = 0.25 and
ny = 0.2, then ARD = 0.05 and NNT = 20, so after treating 20 patients with
P, you would expect to have cured 5 patients, whereas with T you would
have expected to cure only 4. If the proportions are small, say 0.02 and 0.01,
then NNT = 100, so a clinician might feel that the difference is not sufficiently
large for a change of practice to be worthwhile, especially if aspects such as
cost and safety are not in favor of P. The fact that ARD and NNT are
reciprocals of each other means that many statisticians are not wholly per-
suaded of the need for both measures. However, it must be conceded that
many clinicians find NNT easier to interpret than ARD. Nevertheless, NNT
has some awkward statistical properties, as will be seen when interval esti-

© 2006 by Taylor and Francis Group, LLC



102 Introduction to Randomized Controlled Clinical Trials

mates of NNT are discussed in the following text, and its use must be
approached with care.

The other measures, RR and OR, are more often found in epidemiology,
but they do appear quite frequently in the reporting of trials (especially ORs).
Apparently, quite impressive differences can be reported with these mea-
sures: for example, if m, = 0.003 and m; = 0.001 then RR = 3, so a patient
would be expected to be three times more likely to be cured using P than T.
However, in this case NNT = 500, which gives a less impressive view of the
difference between the treatments. These measures arise more naturally
when the issue of baseline adjustment is considered. This will be covered in
Section 7.4, essentially, the key technique is logistic regression and, as will
be seen in that section, the OR is a natural measure of difference when logistic
regression is used.

Substituting estimates of m, and nt; in the formulae for RR, OR, and NNT
gives straightforward estimates of each of the measures of difference. The
only complications are if one or possibly both of the estimates is 0 (OR and
RR) or 1 (OR) or if the estimates coincide (NNT). Methods for obtaining
interval estimates will be explained in the next subsection.

7.3.2 Interval Estimates or Confidence Intervals
7.3.2.1 Interval Estimates for ARD and NNT

A very widely used and easily implemented method for finding a confidence
interval for the ARD is to note that the distribution of (p, — py) — (np, — 7y) is
approximately normal with mean 0 and variance that can be estimated by
pp(1—pp)/np + pr(1 — pr)/np Consequently, a 100(1 — )% confidence interval
is given by

Do —pr _Zlu\/PP(l_PP) " pT(l_pT),

Nnp nr (7 6)

pp—pT+Zlu\/pP(1_pP)+pT(l_pT)
2 np nr

where the probability that a standard normal variate falls between *z, is
1 - o. It is convenient to recall that for a 95% confidence interval, o = $.05
and z, = 1.96.

A‘H,Zmed to the PUVA vs. TL-01 trial, we obtain ARD = 0.836 — 0.627 =
0.209, with 95% confidence interval (0.041, 0.378). Thus, there is evidence
that the proportion of patients who clear is higher if PUVA is used rather
than TL-01, although the lower limit of the confidence interval shows that
the difference may not be that marked.

Taking the reciprocal of the ARD gives an estimate of the NNT of 1/0.209
= 4.78. Thus you need to treat nearly five patients before one more patient
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is cleared if you use PUVA than if you use TL-01. Taking reciprocals of the
limits of the interval estimate for ARD gives the 95% confidence interval for
NNT as 2.65, 24.39. The NNT is the reciprocal of a quantity that is approx-
imately normally distributed and therefore has a distribution with long tails,
as exemplified by the wide interval estimate for NNT.

To see what complications arise when the difference is not significant, it
is useful to consider a smaller trial. Suppose, for illustration only, that the
trial had only been about half the size reported in Table 7.2. To be specific,
suppose 25 patients had been treated in each group and 16 had cleared with
TL-01 and 20 with PUVA. Then the ARD would have been 0.16, with 95%
confidence interval (-0.085, 0.405). The smaller sample size has led to a
confidence interval spanning 0; on the basis of the reduced trial, PUVA could
be superior to TL-01 but the superiority of TL-01 has by no means been ruled
out. As before, the NNT can be estimated as the reciprocal of the ARD, i.e.,
1/0.16 = 6.25. However, because the confidence interval spans 0, trying to
construct a confidence interval from the reciprocals of the limits of the
interval for ARD, namely, 2.470 and 11.775, needs great care.

There are several difficulties. The first is that if ©, — n; = 0, then the treat-
ments have the same effect, and you would not expect to cure more patients
on one treatment rather than the other, no matter how many you treated.
Therefore, it is quite reasonable that in this case the NNT is infinite. However,
if an interval estimate for ARD includes 0, then in some way, an interval
estimate for NNT must include infinity. The second problem is that in defin-
ing NNT, we have been rather cavalier about the consequences of different
signs for the ARD. When only point estimates are considered, any difficulties
can be avoided. Negative ARDs, which would correspond to negative NNTs,
can be avoided by taking the difference in the other direction. This approach
can be used to form confidence intervals when, as in the real PUVA vs. TL-01
trial, both limits are positive (possibly after adjusting the direction of the
difference). However, this casual approach cannot be sustained when the
limits of the confidence interval for ARD do not have the same sign.

Part of the problem is, as Altman (1998) pointed out, that the terminology
is not sufficiently specific. A positive NNT can be thought of as the number
of patients you need to treat before one additional patient benefits from the
better treatment, which Altman suggested might be called the NNTB, the
“number needed to benefit one extra patient.” Although a negative NNT
can be interpreted (after removal of the negative sign) as the NNTB by using
the “other” treatment, it could also be interpreted, without this reversal in
the order the treatments are compared, as the “number needed to harm one
extra patient” (NNTH) on the inferior treatment. Being able to interpret
both positive and negative NNTs allows interval estimates for NNTs to be
framed corresponding to intervals for ARD that span 0. Suppose the confi-
dence interval for n, — n;is (-L, U), with L, U > 0. As the value of n, — m;
decreases from U to 0, the corresponding NNT, actually the NNTB, increases
from 1/U without limit as 0 is approached. As m, — m; decreases from 0
toward -L, NNT increases from — to its lower limit, —=1/L. The interval
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FIGURE 7.1

The interval estimate for NNT when the confidence interval for ARD spans 0. The interval for
ARD is the bold horizontal line and the corresponding interval for NNT is the union of the
emboldened parts of the vertical axis (extended to infinity in both directions).

estimate for NNT is therefore the union of (—e,~1/L) and (1/U,e°); thus, the
negative interval corresponding to an interval (1/L, ) for the NNTH and
the positive part being an interval for the NNTB. The situation is illustrated
in Figure 7.1. Note that if x € [-1,1] then 1/x cannot lie in (-1,1), thus,
provided the confidence interval for ARD is proper, in the sense that it lies
wholly within [-1,1], then no part of the interval for NNT can lie within
(=1,1). The interval unavailable to NNT is shown as that between the dot-
ted/dashed tramlines in Figure 7.1.

For the confidence interval for ARD for the preceding artificially reduced
trial, namely, (-0.085, 0.405), the 95% confidence is that, for PUVA more
beneficial than TL-01, more than 2.47 patients need to be treated with PUVA
for one more patient to clear and, when TL-01 is more beneficial, more than
11.78 patients need to be treated with PUVA to have one fewer patient clear.
Although Altman (1998) has tried hard to present confidence intervals for
NNTs in a convincing way, there is no doubt that NNT is at its least com-
pelling when this must be derived from a confidence interval from an inter-
val for ARD, which spans zero.

7.3.2.2 Problems with the Confidence Interval for ARD and a
Simple Solution

The confidence interval in Equation 7.6 is easy to compute and is very widely
used. It is also widely implemented in statistical software. Nevertheless, it
has a number of flaws and was the worst-performing method of the 11
scrutinized by Newcombe (1998). If the denominators of the proportions are
not too small and the probabilities are not too close to 0 or 1, then the
problems are not too great. However, the method has coverage probability
much lower than its nominal value. The putative 95% interval is closer to a
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90% or even 85% interval. Another difficulty is that the limits of Equation
7.6 are not guaranteed to lie within [-1,1].

Newcombe (1998) considered several methods, including profile likeli-
hood methods, most of which were computationally awkward. For a single
proportion, an interval derived from score statistics* is relatively easily
implemented. Newcombe described an ad hoc adaptation of this methodol-
ogy to the case of two independent samples, which is also easy to implement.
This method has good coverage properties and gives limits that must lie
within [-1,1]. The rationale for the method is described briefly here. The
derivation has three parts.

1. An alternative interval estimate is found for the case of a single
proportion.

2. It is noted that the interval estimate for the difference in Equation
7.6 has a width that is the square root of the sum of squares of the
widths for the confidence intervals of the individual proportions
making up the difference.

3. The new interval estimate argues by analogy with 2 using widths
derived in 1. Some slight adaptations are needed because the inter-
valsin 1 are not symmetric about the point estimate of the parameter.

The first point proceeds by noting that a 100(1 — )% confidence interval
for a single proportion w, estimated by p with denominator n could be
found as

- M<za ={n (p—n)Zngan(l—n)/n}

Jri(l-m)/n T

The analogous interval to Equation 7.6 for a single sample can be obtained
by substituting p for © in the expression on the RHS of the inequality in the
second version shown in the preceding text: this might be called the elemen-
tary method. The alternative pursued here is to solve the quadratic in «
implied by setting the inequality to equality in the aforementioned second
expression: this is referred to as the score-based method. The required interval
estimate is ([, u), where I < u are the solutions of the quadratic; the solutions
are always distinct and in the interval [0,1]. The situation can be seen graph-
ically in Figure 7.2, illustrated using the data from the PUVA group in the
PUVA vs. TL-01 trial, with p = 41/49. Note that p is not the midpoint of /
and u; this fact and the reason for it can clearly be seen in Figure 7.2.

* Score statistics are based on consideration of the slope of the log likelihood function, and its
rate of change, near to the maximum likelihood estimate.
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FIGURE 7.2
Graphical illustration of score-based interval for a single proportion, p = 41/49 = 0.837; 95%
limits are 0.709 and 0.915; zy, = 1.96.

A formal adaptation of these arguments to the two sample case is not
straightforward. However, Newcombe (1998) proceeded as follows. The
interval in Equation 7.6 can be written as

[ 2 2 [ 2
Pp —Pr —\Wp + Wt ,Pp —Pr T\ Wp + W7

where w;, (wy) is the width, measured from the point estimate p, (py), using
the elementary method for a single sample. Newcombe’s approach is to
proceed analogously, but using the widths based on the score-based method.

An immediate difficulty is that for the score-based method, the widths p;
- Ip and up — pp are unequal. Newcombe used the lower limit for p, and the
upper limit for p; when constructing the lower limit for p, — p;, and vice
versa for the upper limit, giving:

Pp—Pr _\/(PP 1) +(uy _PT)Z Pr —Pr +\/(F7T — 1) +(up _Pp)2

Although slightly intricate, all the calculations are easy to perform and no
iterative methods are needed. The method has a somewhat ad hoc basis but
its performance, as assessed in the simulation studies reported by New-
combe (1998), is impressive and far superior to that of Equation 7.6.
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The interval for m, — nt; from the PUVA vs. TL-01 trial using the score-based
method is 0.035, 0.367, which compares with 0.041, 0.378 for the interval
based on Equation 7.6.

7.3.2.3 Interval Estimates for RR and OR

Before dealing with the details of interval estimates for these quantities, it
is worth thinking a little more carefully about these scales for measuring the
discrepancy between two proportions — they are very different to those for
ARD and NNT. The first thing to note is that both RR and OR are necessarily
nonnegative and, in each case, the null value, i.e., the value when the two
treatments are the same is one. Thus, RR = OR =1 if, and only if, ARD = 0;
so a test of the null hypothesis that ARD = 0 is equivalent to testing RR =
OR = 1. Thus, special tests for RR and OR are not needed — those described
in Section 7.2 of this chapter remain appropriate. New approaches are only
needed for deriving confidence intervals, which is reasonable as confidence
intervals are concerned with measuring differences, and new measurement
scales are being used here.

The order in which we compare two treatments in a trial is arbitrary. If
we compare PUVA with TL-01 we would obtain one difference, ARD,
whereas if we made the comparison in the other direction we would obtain
—ARD. Moreover, confidence intervals for ARD should lie in [-1,1], and
intervals for a difference computed in the opposite direction will also lie
in the same interval, being the reflection of the first interval about the
origin. For an RR or OR, the discrepancy between the proportions is mea-
sured by a ratio, so comparing PUVA with TL-01 would give an estimate
for the RR of p,/pr = (41/49)/(32/51) = 1.334. However, a comparison the
other way round would give an essentially equivalent RR of p;/p, = 1.334!
= 0.750. In other words, comparing treatments the other way around on
the RR scale gives values that are reciprocals of one another. The limits of
an interval estimate for an RR are nonnegative and those for the same
comparison, but made in the opposite directions, will be reciprocals of the
original interval. For example, if the interval estimate is (10, 100) when the
comparison is made in one direction, the interval becomes (0.01, 0.1) in the
other direction.

These observations should focus attention on the inherent lack of symme-
try in the RR scale. A very large RR (say, 1000) is in essence the same as a
very small RR (say, 0.001) because the direction of the comparison is arbitrary.
Therefore, there is an equivalence between the interval [1,e¢) and (0,1] in that
any value in the former (which is of infinite width) has a natural partner in
the latter (of width 1). Consequently, there is a clear sense in which the
intervals (1/2, 2), (1/3, 3), (}/4, 4) are all symmetric intervals — one treatment
might be two, three, or four times as good as the other, or possibly the other
treatment might be two, three, or four times as good. If two treatments were
equivalent, then interval estimates for the RR (or OR) ought to be symmetric
about 1 (the null value) in this sense. Consequently, when constructing
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intervals for RR, we should not expect them to follow the additively sym-
metric format point estimate = z x SE.

However, intervals such as ('/2, 2) and (!/3, 3) are additively symmetric
when expressed on the log scale, so if (!/3, 3) is the interval estimate for RR,
the corresponding estimate for log RR is (log('/3), log(3)) = (-log(3), log(3)),
which is symmetric in the additive sense about the null value for log RR,
which is log(1) = 0. Therefore, it is likely to be sensible to try to construct an
interval for log RR along the customary lines of point estimate + z X SE in a
way that it would not be for RR directly.

An interval estimate for log RR can be obtained by a direct approach.
Define ¢ = log(n,/n;) and consider its natural estimate log(p,/pr) = log(pp)
— log(pr). The approximate normality and independence of the estimated
proportions together show that log(pp/p;) is approximately normal with
mean ¢ and variance var(log(pp)) + var(log(pr)). Applying the delta method
(see Subsection 3.4.2) gives:

2
var(log(pp)) = Varaog(rp)) _Tp(l-mp) (1J 11
np np Tp NpTtp Np
so an estimate of this variance is 7' — 11;'. Note that in applying the delta
method, we have used the fact that the derivative of log x is x, so in using
these results, it is essential that natural logarithms are used throughout.
From the result that log(p,/py) is approximately normal with mean ¢ and
variance 7, — ;' +1;' — n;', we can derive an approximate 100(1 — 0)% con-
fidence interval for ¢ as (Ixz, Ugg):

1 1 1 1
Ixg =log(pp /pT)—zéa\/—+—,

T, Hp ¥p  Np

1 1 1 1
ugg = log(pp /PT)‘*Z;O(\/_‘F_

p Hp ¥ Np

with the corresponding interval for the RR being (e'* , e"#*).

All the aforementioned remarks about the RR apply equally well to the
OR. The log OR, y, namely, log[{rn,/(1 - ©tp)}/{n:/(1 — w;)}], is naturally esti-
mated by

p Ny —1r
log[ X
np —1p Ty

An argument analogous to that just used for RR gives a 100(1-0t)% confi-
dence interval for y of (Ipg, Upr), Nnamely
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7, N —1 1 1 1 1
log Ex—T Ttz |—+ +—+
np —1p 7 2°\Ip Np—Tp Ty Np—Ip

with the corresponding confidence interval for OR being (¢'% , e"*). As with
the interval for ¢, and for the same reason, the natural logarithm must be
used in this formula.

Note that if any of the entries in Table 7.1 is zero then the above formulae
will not be defined. In this case one possible solution is to add /2 to each
element in that table, and then to apply the preceding formulae, giving:

o ++ e 1 1 1 1
log 21>< lziziu -+ o+ o+ :
nP_rP+E rTJ'_E 2 TP+5 np—rp‘f‘z rT+E TlT—TT‘f‘?

This straightforward, seemingly rather heuristic approach is slightly less
ad hoc than might appear at first glance. If c is added to each element in Table
7.1 and the log OR calculated as before, then ¢ = 1/2 minimizes the bias in
the log OR.

7.3.2.4 Summary of Results

The results of applying each method to the PUVA vs. TL-01 trial are shown
in Table 7.4. This trial shows a clear advantage for PUVA, and the intervals
do not contain the null value. To illustrate the methods when the difference
between the treatments is not clear-cut, the reduced, hypothetical version of
the trial, introduced in the discussion of NNT, in which the clearance pro-
portions are 20/25 (PUVA) and 16/25 (TL-01) is also presented.

The hypothesis test that there is no difference between the treatments
shows clear evidence of a difference for the full trial (with P = 0.018) but not
for the reduced trial P = 0.208). Consequently, the 95% confidence intervals
for the full trial do not include the null value for the measure but they do

TABLE 7.4

Point and Interval Estimates for the Different Measures of Discrepancy for Real
and Reduced PUVA vs. TL-01 Trial

Full Trial (P = 0.018) Reduced Trial (P = 0.208)
Measure of Point 95% Confidence Point 95% Confidence
Discrepancy Estimate Interval Estimate Interval
ARD (Equation 7.6) 0.209 0.041, 0.378 0.160 —-0.085, 0.405
ARD (Newcombe) 0.209 0.035, 0.367 0.160 -0.088, 0.384
NNT 4.78 2.65, 24.39 6.25 (2.47 ,00)U(—o0, 11.78)
RR 1.334 1.044, 1.704 1.25 0.878, 1.780
OR 3.043 1.181, 7.842 2.25 0.628, 8.058

Note: Treatments compared as PUVA minus or over TL-01.
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for the reduced trial. For ARD the null value is 0, for the RR and OR itis 1,
and for the NNT it is essentially an infinite value, the values are included
in the interval estimates for the reduced version of the trial but not for the
full trial. Notice also that the OR tends to give a rather more exaggerated
value than the RR.

7.4 Adjusting Binary Outcomes for Baseline Observations

7.4.1 Using a Logistic Model

In Section 6.3, the role of observations taken before randomization, so-called
baseline variables, was discussed. Methods based on differences were seen
to have poorer properties than the method of analysis of covariance. In this
technique, a linear model was used to allow estimation of treatment effects,
adjusted for one or more baseline variables. In Subsection 6.4.5, the need to
include any variables used in the stratification of the treatment allocation
was described. If the trial compares treatments A and B, then the model used
could be presented as, e.g.,

outcome; = U + T [; + B, X baseline value;; + 3, x baseline value,; + error;

where [; is an indicator function taking the value 1 if treatment A had been
allocated and 0 if B had been allocated to patient i. When the outcome is
binary, there is also a need for a method to adjust treatment effects for
baseline imbalances or to allow for stratification of the allocation.

An approach that is widely used is similar to that described in Subsection
6.4.3 and 6.4.4, and uses a version of the preceding model. However, some
adaptations of the model for normal outcomes are necessary to make it
suitable for binary data. Adding an error term to a mean is natural for normal
outcomes — an outcome will have a normal distribution if, and only if, the
error term is normally distributed. If the outcome has a binomial distribution,
then deviations of this variable from the mean of the binomial variable will
not follow a binomial distribution. Consequently, an analysis based on a
binomial likelihood, with the amended model

mean outcome; = L + T [; + B; X baseline value; + 3, X baseline value,,
is to be preferred. There is one further problem, namely, that the mean
outcome is the probability the binary outcome has value 1. As this must be
between 0 and 1, problems arise because the linear term on the right-hand

side is not similarly constrained. The final amendment is to use

f(mean outcome;) = 1 + T I; + B; X baseline value;; + B, X baseline value,,
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where f(.) is a function that maps (0,1) to the whole real line. This approach
is essentially a description of a generalized linear model for a binary out-
come. See McCullagh and Nelder (1989) for a full treatise on this class of
models and Collett (2002) for an account focused on binary data.

The usual approach to the analysis of binary data is to use a logistic
regression, which is obtained when we choose f(n) = log{n/(1-m)}: this is
extensively discussed in Collett (2002). This form of f is known as the logit
function and is the natural logarithm of the odds of the outcome taking the
value 1.

Suppose such a model was fitted to data from a trial comparing two
treatments, A and B, in which the effect of two baseline variables, say x, and
X,, had to be taken into account. Suppose that an outcome of 1 indicates a
successful outcome and 0 a failure, then if © = Pr(successful outcome) the
model gives:

logit(m) = log (JIJ =log(odds of success) = L + T+ B;x; +B,x,
-

(treatment A)

logit(m) = log (1n) = log(odds of success) = L+ B,x; +B,x,
-7
(treatment B)

If a patient has given values for x; and x,, then taking the difference
between these expressions shows that

log(odds of success on treatment A) —log(odds of success on treatment B)

1 odds of success on treatment A
odds of success on treatment B

) =log(OR) = .

In other words, 7 is the log OR, or e is the OR of success on treatment A
relative to treatment B, adjusted for variables x; and x,. In other words,
whereas changes in the values of the baseline variables x, and x, may give
rise to changes in the probability of successful treatment, 7 is a measure of
the difference between treatments for patients with the same baseline values.

Models for adjusted ARD might have been obtained had f(x) = x been used
in the preceding analysis and for adjusted RR if f(x) = log(x) had been used.
However, neither function maps (0,1) to the whole real line, so difficulties
could arise in the modeling procedure. These models can be used, but their
use is a delicate matter and they are not routinely employed. When an
adjusted treatment difference is required for a trial with a binary outcome,
the OR is a convenient measure to use.
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The preceding illustration uses two baseline variables. However, there is
nothing special about two variables and more or fewer can be used as
required, although as with any regression model, some judgment needs to
be exercised to keep the number in check. Also, the variables can be contin-
uous or categorical; in the latter case, a variable with c levels would require
¢ — 1 dummy variables to be fitted.

7.4.2 Fitting a Logistic Regression

The standard way to fit a logistic regression is to use maximum likelihood.
To explain this analysis, a notation is needed for the variables fitted in the
model, and the vector notation x/ B to denote the variables fitted for the ith
patient will be used. This is simply

where x; is the value on the ith patient of the jth of g4 + 1 variables and f;
are the elements of the (g + 1)-dimensional vector B. Usually, x;, = 1 for all
i, such that B, corresponds to p in the notation used in the previous section,
and x; = 0 or 1 depending on whether treatment A or B was allocated, so
B, corresponds to 7T in the previous notation.

If m; is the success probability for the ith patient (i = 1, ...,n), then the
logistic model specifies these 1 parameters in terms of the g + 1 parameters

B, via the n expressions logit(m;) = x{B. The log likelihood of the data is

(({m,} | data) = Y [y, log(r,)+(1 -y, log(1 -]

i=1

1-m,

=) [y log(-—)+log(1- )]

where y;is 1 or 0 depending on whether the ith patient is successfully treated
or not. This can be rewritten in terms of the 3, as

#({B;}| data) = z[yixm “log(1+¢%)]

The model is fitted by choosing the B; that maximize this expression. This
can be done in a variety of ways but, in general, a numerical method is
needed because no explicit solution is available. One approach is to solve
the g + 1 normal equations 9//dB, =0 and these are
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Z(yi_ni)xirzor 7’:0, ...,q
i=1

A

Suppose that the maximizing values of the Bs are denoted by {B,}. The
general theory of maximum likelihood estimation shows that for large 7, the
covariance of the estimates 8, and B, is given by (r, s)* element of the inverse
of the matrix with (r, s) element equal to —E(9%¢/dB,dP,) (with variances
given by the case r = s). These expectations are quantities given by

n

Zni(l—ni)x,-,xis, r,5=0,...,9 (7.7)

i=1

This matrix can be estimated by substituting ft; for 7;, the former being
the latter evaluated at {3}, i.e.,

n

Zﬁi(l_&i)xirxis/ T’,S: 0/ /q (78)

i=1

The estimate of T = 3, is the estimate of the log OR, adjusted for the

variables x,,...,x;. The estimate of the standard error of [.3)1, {0y, , is the

square root of the entry in column 1 and row 1 of the inverse of the matrix
in Equation 7.8 (remembering the numbering starts at 0), and this can be
used to perform a test of the null hypothesis that the adjusted log OR is zero
and to form confidence intervals for the adjusted log OR and adjusted OR.

The test of the null hypothesis computes the ratio [31 / {011 ; under the null

hypothesis this will approximately have a standard normal distribution. The
100(1 — a)% confidence interval for the adjusted log OR is

([31 — 2,0 ,ﬁl +2,,4/0;;) and the interval for the adjusted OR is found by
2 2

exponentiating the ends of the this interval.

An alternative way to perform the hypothesis test is to evaluate the max-
imized log likelihood, which we could write as /(By,B;,{B;}, | data). Then
refit the model, but with the term for the treatment effect omitted, this could
be written ((B,,{B;};», |data). General maximum likelihood theory implies
that under the null hypothesis B, = 0, 2[/(Bo,B;,{B;}. | data) - £(B,,
{B;};>> | data)] follows a y* distribution with 1 degree of freedom. This test,
called the likelihood ratio test, is broadly equivalent to the one previously
described for large samples but often has better properties in smaller sam-
ples. The approach can be extended to yield confidence intervals, a technique
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known as profile likelihood intervals, but this is beyond the scope of this book
(but see question 6 in this chapter).

7.4.3 Adjusting the OR in the PUVA vs. TL-01 Trial

The first approach will use logistic regression, which can be fitted in many
packages including Minitab and R; in this illustration we will use R. The
variable fitted, other than the constant term and the indicator for the treat-
ment, is the plaque size, which is a binary variable. The plaque size is a
description of the nature of the psoriasis affecting the patient. In psoriasis,
scaly areas arise on the skin and, in some patients, the predominant size of
these scales is large, whereas in others it is small. It was believed before the
trial started that it would be harder to achieve clearance in patients with
predominantly large plaques. Consequently, the treatment allocation used
random permuted blocks stratified according to whether the predominant
plaque size was above or below 3 cm (cf. Section 4.4).

The following analysis is purely illustrative. As explained in Subsection
6.4.5, the model should include all variables used in the stratification of the
allocation. This means that plaque size must be included. To maintain the
simplicity of the exposition the other variable used in stratification in the
real trial, skin type, is not considered here but it would have to be included
in any genuine analysis.

Fitting this model in R gives the output in Table 7.5. The first thing to note
is the variables used for fitting treatment have been coded as 1 for PUVA
and 0 for TL-01 and the variable for plaque size has used 1 for large plaques
and 0 for small plaques. Given this, we can interpret the fitted model, namely

Pr(clearance)

log =1.200+1.2195I(treatment = PUVA) —

1- Pr(clearance)

1.4352I(plaque size = large))

where I(.) denotes an indicator function taking values 1 and 0, according to
whether or not the argument is true. The aforementioned coefficients are
shown in Table 7.5, under Coef f i ci ent s in the column headed Est i mat e.
In terms of the notation of Subsection 7.4.2, the values 1.200, 1.2195, and
-1.4352 are, respectively, BO/Bl/B2 The odds of clearance can be estimated
from this equation for the following four groups:

TL-01 PUVA

Small plaques  exp(1.200) = 3.320 exp(1.200 + 1.2195) = 11.240
Large plaques  exp(1.200 - 1.4352) = 0.790  exp(1.200 —1.4352 + 1.2195) = 2.676

These figures illustrate the nature of the model; though the odds of clearing
is lower for patients with large plaques, those patients with a given plaque

© 2006 by Taylor and Francis Group, LLC



Further Analysis: Binary and Survival Data 115

TABLE 7.5
R Output from Fitting a Logistic Regression to the Data from the PUVA vs. TL-01 Trial

Cal | :
glm(formula = Cear ~ Treatnment + Plaque, famly = binom al,
data = gordon)

Devi ance Resi dual s:
M n 1Q Medi an 3Q Max
—-2.2382 -1.0793 0.4129 0.7434 1.2788

Coefficients:

Esti mat e Std. Error z val ue Pr(>| z])
(I'ntercept) 1.2000 0. 3994 3. 005 0. 00266 **
Tr eat ment 1.2195 0. 5099 2.392 0.01676 *
Pl aque —1. 4352 0. 4975 —-2.885 0. 00392 **
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 **’ 0.05 '.” 0.1 ° * 1

(Di spersion paraneter for binomal famly taken to be 1)
Nul | devi ance: 116.65 on 99 degrees of freedom
Resi dual devi ance: 102.00 on 97 degrees of freedom

Al C. 108

Nunber of Fisher Scoring iterations: 4

Note: Effect of treatment is adjusted for baseline plaque size.

size who were treated with PUVA have odds of clearing exp(1.2195) = 3.385
times greater than similar patients treated with TL-01.

The null hypothesis that, once adjusted for the effect of plaque size, the
treatment has no effect can be tested by noting that the estimated standard

error of [31 is 0.5099, in the column headed Std. Error in Table 7.5. The

ratio [31 / {011 = 1.2195/0.5099 is given in the next column of the table and

the corresponding P-value is 0.017. The 95% confidence interval for adjusted

OR can be found by first finding the interval for its logarithm, namely,

(By — 21, \JOn1 /By + 21, \[011) = 1.2195 £ 1.96 x 0.5099 = 0.2201, 2.2189, which
2 2

gives an interval for the adjusted OR of 1.246, 9.197.

The residual deviance for this model, found toward the bottom of the
output in Table 7.5 is 102.00; this is essentially -2 x maximized log likelihood.
The corresponding value for the model omitting the term for the treatment
is 108.19. The likelihood ratio test proceeds by referring 108.19 — 102.00 =
6.19 to a x* variable on 1 degree of freedom, giving P = 0.013. This is similar

to the P-value obtained from the ratio [§1 / \JOn -
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TABLE 7.6
R Output from Fitting a Logistic Regression to the Data from the PUVA vs. TL-01 Trial

Cal | :
glm(formula = Cear ~ Treatnent, famly = binomal, data = gordon)

Devi ance Resi dual s:
M n 1Q Medi an 3Q Max
-1.9039 -1.4053 0.5971 0. 9655 0. 9655

Coefficients:

Estimate Std. Error z val ue Pr(>|z])
(I'ntercept) 0.5213 0.2896 1.800 0.0719.
Tr eat ment 1.1128 0. 4830 2.304 0. 0212~
Signif. codes: 0 ‘***' 0.001 ‘** 0.01 ‘*’ 0.05‘'.” 0.1 1

(Di spersion paraneter for binomal famly taken to be 1)
Nul | devi ance: 116.65 on 99 degrees of freedom
Resi dual devi ance: 110.96 on 98 degrees of freedom

AIC 114.96

Nunmber of Fisher Scoring iterations: 4

Note: Effect of treatment but with no adjustment for plaque size.

In Table 7.6, the same approach is taken but with no variable included for
plaque size — in other words, the analysis of the treatment effect is not
adjusted for any variable. The log OR is estimated as 1.1128, with confidence
interval (0.1661, 2.059), which transforms to point and interval estimates for
the OR of 3.043 and (1.181, 7.842), which coincide with those from Table 7.4.
Therefore, when this method is applied with no adjusting variables in the
model, the results do indeed reduce to the unadjusted values found in
Subsection 7.3.2. Also, the adjusted OR and confidence interval, namely, 3.385
and (1.246, 9.197) are not too far from the unadjusted values. The degree of
adjustment effected by the inclusion of the plaque size variable in the anal-
ysis might be anticipated to be small because the allocation was stratified
by plaque size.

The method can be used in just the same way to adjust for baseline
variables that are continuous, such as age. The recommendations regarding
which covariates to include are broadly similar to those outlined in Subsec-
tion 6.4.5. Although the use of logistic regression to allow for baseline vari-
ables in an RCT is desirable, the benefits obtained are not quite the same as
for a normal regression and continuous outcome. The logistic regression
allows for adjustment of imbalances between groups, but the position vis-
a-vis improved precision is more subtle than might be imagined and is
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beyond the scope of this book: a fuller discussion can be found in Robinson
and Jewell (1991).

It should also be noted that the logistic regression is essentially a statistical
model and some consideration needs to be given to whether or not the model
fits the data. Sophisticated model checks can be employed, but these are
standard for models for binary data and will not be considered here: the
interested reader should consult Collett (2003).

7.4.4 An Alternative Approach

An approach to adjusting for baseline variables, which does not use a logistic
regression exists. It is somewhat less flexible, e.g., adjusting for continuous
variables is not really possible. On the other hand, because the method does
not require the use of a complex fitting algorithm for which a computer is
essential, it is probably more transparent, and this can be advantageous when
explaining the analysis to non-statisticians.

The method divides the data into strata and compares the treatments
separately within each stratum and then combines the results from each
stratum. As such it is an approach which fits well with stratified allocation,
and will prove useful in Section 7.6 on randomization models. The ideas
involved in a stratified analysis can be implemented in several ways, and
the one discussed in the following text is associated with the names of Mantel
and Haenszel. The method gives similar answers to the use of logistic regres-
sion. Underlying the combination of results across strata is the assumption
that the difference between the treatments is the same for all strata. However,
a similar assumption is made when adjustments are based on logistic regres-
sion — the model contains a term for a treatment effect and terms for the
adjusting variables but no interactions between the two. The issue of differ-
ing treatment effects between different groups of patients is a delicate one
that is discussed more fully in Chapter 9.

In order to understand the formulae associated with the Mantel-Haenszel
(MH) procedure it is necessary to have a brief digression into slightly deeper
properties of 2 x 2 tables, and this requires some knowledge of the hyper-
geometric distribution.

7.4.4.1 The Hypergeometric Distribution
Consider the key part of Table 7.1 reproduced as follows:

It Ny =Tt Ny
p np—Tp np
r n—r n

In the context of a clinical trial, the group sizes, n; and n,, are (or should
be) largely fixed before the trial starts. The total number of patients who
clear, 7, is not fixed in advance but depends on the parameters of the two
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binomial distributions, Bi(n; wt;), Bi(n,, 7p). The likelihood of the data can be
written as

g T
n?(l—m)"ﬁ"Pn?(l—m)”ﬂr{li‘;J (J; ) (=7 (1= mep)”
P T

The kernel of this likelihood, which is the part in which the data and
parameters are inextricably linked, comprises the first two factors that
involve the odds m,/(1 - np) and m;/(1 —n;). This can be rewritten
as 0"/2y"712 where ¢ is the product of the odds and v is the odds ratio.
The interest in the analysis is due to the discrepancy between the treatments
and this is captured by y, with ¢ being a nuisance parameter. The expression
from the likelihood also shows that r is a sufficient statistic for ¢. Standard
statistical theory indicates that we should make our inferences about y
from the distribution of the data conditional on the sufficient statistic for
the nuisance parameter, because this maneuver eliminates ¢ from the dis-
tribution to be used for inferences about y. In other words, we base infer-
ences on the table with not only the group sizes fixed but also r is taken to
be fixed.

The distribution of (rp, r;) conditional on r is, of course, essentially the
same as the distribution of any one element of the 2 x 2 table, because with
all the marginal totals fixed, knowledge of just one element within the body
of the table fixes all the other values. We therefore focus on the distribution
of r; conditional on r. This is Pr(R; = a | R = r) and is the simplest form of
the hypergeometric distribution; in writing this expression upper case letters
are used to denote the random variables underlying the realizations written
in the above table.

In computing this distribution, there are two issues that need to be
addressed. The preceding expression denotes the conditional probability that
the top-left cell in the 2 x 2 table has value 4, and we need to think carefully
what range of values are possible for a. The second issue is that we need to
compute Pr(R = r) and, in general, this does not have a neat closed form.
However, our use of the hypergeometric distribution will only extend to
performing tests of the hypothesis that y = 1 and, under this hypothesis,
Pr(R = r) is simply a binomial probability.

The constraints on the value of a arise from the fact that none of the four
values within the 2 x 2 table can be negative. A first attempt might set the
range at 0 <a <min{r, n;}. However, this range might be too extensive because
rp =1 —a < np and this implies that a = r — n;,, so the range for a is, in fact,
max{0, r — np} < a < minfr, ng}.

Now, Pr(Ry=a | R=7%)=Pr(Rp=a & R=7)/Pr(R=71)=Pr(R;=a & R, =
r—a)/Pr(R = r). This can be calculated under the assumption that y =1 as
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(nTJTEa(l—TC)nT_a( np ]nr—a(l_n)np—rﬂz [nT][ np ]
a r—a a r—a

[FJra-e g
r r

The use of this distribution is largely confined to its mean and variance,
which can be calculated in the usual way. The mean is

9 P [N ) i
R
(’ZJ(’Z‘H”J

r

where the first summation is over the range of a. The second expression
comes from manipulating the binomial coefficient; if the range of summation
includes a = 0 then this term is omitted as it does not affect the result. The
third summation can be calculated by noting that it is the coefficient of z'~!
in the expansion of (1+2)"7"'(1+z)" = (1+z)""". Observe that the answer is
the expected value calculated in the ad hoc approach to the computation of
the %2 test outlined in Subsection 7.2.1. The variance can be found similarly
and is [nynpr(n — 1))/ [n?(n-1)].

7.4.4.2 The Mantel-Haenszel Method

The concern underlying stratification in a clinical trial is that the outcome
depends on the stratifying variable and this must not be imbalanced between
the groups. In terms of the present example, this would mean that the
probability of clearing will be different for patients with large and small
plaques. However, the difference between the treatments in patients with
large plaques may be the same as that for patients with small plaques.

The position is shown in Table 7.7, in which the data from the TL-01 vs.
PUVA trial are shown broken down by plaque size. The proportion of
patients with small plaques who clear is 84%, whereas for patients with large
plaques the figure is 58%. The data in Table 7.7 are presented as two 2 x 2
tables, one for each type of patient. The difference between treatments can
be described by first applying separately to each of the tables any of the
measures discussed in Subsection 7.3.1 of this chapter. In this section, empha-
sis is placed on using the OR; an analogous method using ARD can be found
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TABLE 7.7

Data from the T1-01 vs. PUVA Trial, Shown Separately for Patients with
Small and Large Plaques

Small Plaques Large Plaques
Cleared Not Cleared Total Cleared Not Cleared Total
TL-01 23 6 29 9 13 22
PUVA 25 3 28 16 5 21
Total 48 9 57 25 18 43
OR =217 OR =4.62

in Section 15.6 of Armitage, Berry, and Matthews (2002). The differences
obtained in this way are then combined appropriately.

A test that the two treatments have the same effect can be constructed by
considering in turn the 2 x 2 tables for patients with small and large plaques.
If the subscript k refers to the plaque size (k = 1 or 2 according to whether
the plaques size is small or large, respectively) then rp denotes the number
of patients with plaque of size k who cleared when given PUVA. A similar
modification to the notation will apply to the other symbols in Table 7.1,
with 7 remaining as the total number of patients and n; (r;) being the total
number (number clearing) with plaque size k. If the treatments do have the
same effect then, taking the group sizes within each type of patient and the
1, to be fixed then r,; and rp, have independent hypergeometric distributions.
From the preceding calculations, the means and variances of these distribu-
tions are seen to be

rn Nyt (1 — 1
e = X and pp, = L 1 (1 k),k=1,2

y ”i(”k -1

Consequently, (p, — €py) + (p, — €p,) has mean zero and variance vp; +Up,.
Approximating this quantity by a normal distribution (the r quantities are
sums, so a central limit theorem argument gives a basis for this), the Man-
tel-Haenszel test refers

_ [(7’1?1 —epy) +(7py — epz)]z

Upy +Upy

MH

to a y? distribution on one degree of freedom.
For the data from the TLO1 vs. PUVA, the following values are obtained

r e v

Small plaques (k=1) 25 28x48/57 =23.579  29x28x48x9/(572x56) = 1.928
Large plaques (k=2) 16  21x25/43 = 12209  22x21x25x18/(432x42) = 2.677
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Consequently, the Mantel-Haenszel statistic is

. [(25-23.579) + (16 - 12.209)]2
- 1.928 +2.677

= 5.899

which gives P = 0.015. The square root of MH is 2.43, which is close to the
z value for the treatment effect adjusted for plaque size obtained using the
logistic regression reported in Table 7.5.

The estimate of the OR separately for plaque size is

T (g = Ti) k=12
Tre(1py = 1)

The combined estimate of the OR proposed by Mantel and Haenszel (1959) is

erk(n]"k =)/

k

Zer(nPk —Tp) / My

k

For the TL-01 vs. PUVA trial this estimator has value

(25x6) /57 +(16 x13) / 43

(23x3)/57+(Ox5) /43 o0

A 95% confidence interval can be computed using the method given by
Robins, Breslow, and Greenland (1986). The formula for this method is
straightforward to compute if somewhat intricate to present: a description can
be found in the cited paper or in Section 19.5 of Armitage, Berry, and Matthews
(2002). Applying this method gives the interval estimate to be (1.234, 8.860).
These values are close to the values found for the OR (3.385) and its 95%
confidence interval (1.246, 9.197) found earlier using logistic regression.

Although the Mantel-Haenszel method may have some advantages in
terms of the transparency of the method, the widespread availability of
appropriate software makes logistic regression almost the universal choice
for analysts. However, the Mantel-Haenszel has attractive features, both
conceptual and practical, when a randomization model is used. This method
will be described briefly in Section 7.6.

Two comments are pertinent here. First, the approach of measuring the
difference between the treatments and then combining these is necessary. A
simpler alternative which might be thought to be adequate would be to
combine the data and then measure the treatment difference. Adding the two
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tables together (thereby recovering Table 7.2) and then computing the OR,
or some other measure, will often give broadly similar results. However, if
the variable distinguishing the tables is associated with the outcome, and the
treatment groups are imbalanced with respect to this variable then combining
the tables before analysis leaves the analysis open to Simpson’s paradox.

A full description of this phenomenon is in Section 15.6 of Armitage, Berry,
and Matthews (2002) but a brief illustration in general terms is in Figure 7.3.
The outcome scale could be quite general, but for definiteness, it can be
thought of as the proportion cured. The figure supposes that a trial compares
treatments A and B and that patients are of one or two types. For each type
of patient, treatment B gives a higher outcome than treatment A. The out-
come for all the patients receiving a given treatment is a weighted combi-
nation of the outcome for each type of patient and therefore lies between
the outcomes for each type taken individually. In the figure, the open circles,
denoting the combined outcome, must lie between the closed circles. How
close the outcome for the treatment group as whole is to the outcome of one
or other type of patient depends on the make-up of the treatment group in
terms of patient type. If the make-up of patient type is different between the
treatment groups, then the position of the overall outcome for each can be
located differently relative to the outcomes for each patient type for the
treatments. In extreme cases, this can lead to the situation illustrated in
Figure 7.3, in which the outcome for the combined treatment groups is
actually lower for treatment B.

For stratified random allocations, this difference in make-up of the treat-
ment groups should not occur. This is why analysis of Table 7.2 is valid,
even if an analysis respecting the stratification is preferable. The approach
parallels the use of the logistic regression. Analyzing the 2 x 2 tables for
each plaque size and then combining the results is analogous to fitting the
model with a term for plaque size and a term for treatment effect used in
Subsection 7.4.3.

A second point is that the approach of combining estimates of treatment
effect from patients of different types assumes that the true measure of
difference between the treatments is the same in each such group. For exam-
ple, the difference observed in OR for the patients with small and large
plaques, 2.17 and 4.62, is taken to reflect sampling variation. Of course, the
possibility exists that the treatment effect may actually be different for the
two types of patient. Methods derived in a similar manner to the Man-
tel-Haenszel procedure are available to address this issue but are not con-
sidered here. The same issue arises when using a logistic model — the
treatment effect is estimated without checking if a term for the interaction
between the effect of treatment and the plaque size is significant. However,
this is a more complicated issue than it may at first appear because of matters
related to how models to be fitted or tests to be performed are chosen. This
is essentially a matter of looking for subgroup effects — a subtle and sur-
prisingly troublesome aspect of the analysis of clinical trials — which is
mentioned in Chapter 9.
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FIGURE 7.3

Simpson’s paradox; the outcome (solid circles) is higher for treatment B than treatment A for
patients in both group 1 and group 2; for the combined groups, the outcome (open circles) is
higher for treatment A than B.

7.5 Survival Analysis

A common form of data that arise in clinical trials is survival data (or lifetime
data). Data of this form are usually times until some event. Much of the
motivation behind the development of this branch of statistics came from
the rise in the number of trials in the treatment of cancer that occurred in
the 1960s and 1970s. In these cases, the event concerned was often death or
the metastatic spread, i.e., the spread of cancer to parts of the body remote
from the site of the original tumor. Other examples of events might be a
disease being cured or time to death from a specific cause. Occasionally,
survival data may not involve time explicitly — it may refer to the number
of visits a patient makes to the hospital before a cure is effected.

There are two aspects of survival data which mean that the methods
considered so far in this book are inadequate for this kind of data. Although
survival data are essentially continuous, they are often quite noticeably
skewed, so methods based on the normal distribution are not generally
encountered in this area of statistics.
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The second aspect is that the survival times are not always fully observed.
For some patients in a sample, the event in question will be observed and
so too will the time to that event. However, for other patients the event will
not be observed. Examples of why this might happen may be because the
study closes before the event has occurred to some of the patients, or because
the patient leaves the study. For such patients, the survival time cannot be
observed. However, for these patients a time ¢, say, will be observed at which
they were last seen free of the event in question. Although the survival time
is unknown, we do know something about it — it must exceed t. These
partially observed survival times are known as censored times.

An analysis that treated censored times as if they were fully observed
would clearly be unsatisfactory and biased; it would report survival expe-
riences that were systematically shorter than appropriate. An analysis that
ignored censored times would also be inadequate, as it would waste infor-
mation and potentially be biased. For example, if half of a sample of patients
died quickly but the other half lived for a long period, then many studies
would close before the latter group of patients died and the survival times
on these patients is likely to be censored. Consequently, an analysis that
ignored the survivors would inevitably underestimate the survival time of
the underlying population. An important component of the analysis of
survival data is to ensure that censored times are incorporated into the
analysis appropriately.

Survival data analysis is a newer branch of statistics than the analysis of
normally distributed or binary data. Moreover the demands of accommo-
dating censored observations and the skewed shape of the usual survival
distribution make this a more challenging branch of the subject. It is also
one in which pitfalls abound and Altman (1991, Section 13.5) outlines some
of these. In this section, only a very superficial presentation will be
attempted; a good introduction to more thorough treatments can be found
in Collett (2003). In this section, ways of describing the survival experience
of samples of patients will be considered together with ways of assessing
whether this differs between groups and how to adjust for baseline values.

7.5.1 The Hazard Function, the Survival Curve, and Some Estimators

In the analysis of normally or binomially distributed data, attention is nat-
urally focused on the parameters of the distributions, as other aspects of
these distributions, such as their shape, are well understood. In a survival
analysis, it is common to find that more attention is paid to the shape of the
whole distribution, perhaps because no one distribution has a role analogous
to that which the normal distribution has in the analysis of continuous data.
The most easily understood quantity is the survival function, 5(t), which is
the probability that an individual survives more than time ¢.

The survival curve is the plot of 5(t) (vertical axis) against ¢ (horizontal
axis). The definition has two general consequences: first, as an individual is
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Probability survive>t: S(t)
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FIGURE 7.4
Example of two survival curves.

certain to survive more than zero time, S(0) = 1; second, as it is impossible
for an individual to survive more than time t, without surviving all times t;
< t,, S(t) cannot increase t gets bigger. Figure 7.4 shows two examples of
survival curves.

A second and somewhat less accessible quantity that is nonetheless impor-
tant in survival analysis is the hazard function h(t). This is the probability
that an individual who has survived up to time ¢ fails just after time t — a
measure of the instantaneous failure probability at time ¢. If T denotes the
random variable for the survival time then the definitions of S(¢t) and h(t) are

Pr(t<T <t+s|T >t)
S

S(t)=Pr(T >t) and h(t)= Liron

The definition of conditional probability allows the second expression to
be written as h(f) = f(£)/S(t) = =S (t)/S(t) where f(.) is the probability density
of T. Unlike the survival function, which must lie between 0 and 1, the hazard
function can take any positive value. The log of the hazard function is thus
useful in the modeling of survival data in a way that is analogous to the
logit of the probability of success in logistic regression.

Estimates of these functions can be obtained in two ways. One way is to
assume that the functions arise from some underlying distribution for T
which has a form known up to the value of some parameters — the para-
metric approach. The other approach is to try to make progress without
making any assumptions about the distribution of T — a nonparametric
approach. The two approaches are available for continuous data, but the
second method is not widely adopted in statistical circles, partly because
methods based on the normal distribution have been found to be so widely
applicable. The lack of any obvious counterpart to the normal distribution
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for survival data has meant that nonparametric (and as will be encountered
later, semi-parametric) methods are widely used in survival analyses. Nev-
ertheless, both methods have their virtues and some attention will be paid
to both approaches.

In the descriptions that follow, the terminology usually adopted is that
death is taken as the “event,” but it should be kept in mind that this is merely
a convenience that fits with the general survival terminology, and the event
in question could have many other interpretations.

7.5.1.1 The Kaplan-Meier Estimator

The idea behind this nonparametric estimator is that S(t) is calculated by
first dividing the interval [0,t] into many short, contiguous intervals, so

[0,t]= U[Skrsk+1]

where s; < s;,; with s; = 0 and s, = t. The probability of surviving beyond
time t is then calculated as the product of the probabilities of surviving each
of the successive intervals [s;, s;,;]. As the Kaplan-Meier estimator is non-
parametric, no distributional form is assumed and the probability of surviv-
ing [sy, 5i,1] is simply estimated as 1 — Q, where Q is the number who die in
the interval divided by the number at risk of death in that interval. A
consequence is that the estimate of S(t) only changes at those values of ¢ at
which a death occurs, so the plot of S(¢) against ¢ will be a series of horizontal
lines, with steps down at the times at which deaths occur. To be more precise,
suppose that deaths are observed at times ¢, < t, < ... < t, and that the number
dying at time ¢; is d; out of a number at risk at that time of 1. Then if ¢ is in
the interval [t t;,;) then S(t) is estimated by

I —a.
§(t)=H7(nfn_d’)
=0

Note that the number at risk at ;,; will be the number at risk at ¢, less the
number dying at ¢ less the number with survival times censored at values
in the interval [t ¢,,;). In this way, the calculation incorporates information
from individuals with censored survival times for as long as they were

observed and only excludes them after this time.

7.5.1.2  Parametric Estimators

This approach assumes that the distribution of T follows some particular
form, specified up to unknown parameters, and then these are estimated
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from the data. A particularly simple distribution is the exponential distribu-
tion, with density f(t) = Aexp(-Af), survival function S(f) = exp(—At) and
mean survival time equal to 1/A. This distribution is not particularly flexible
and often does not fit survival data well. A related, more useful distribution
is the Weibull distribution that has an additional parameter, y, known as the
shape parameter. For this distribution, S5(t) = exp(—At"), so the exponential dis-
tribution is the special case when y = 1. For the Weibull and the exponential
distributions, the unknown parameters are estimated by maximum likeli-
hood. The important ideas are the same for both distributions, so although
the Weibull distribution is of more use in practice, it is technically more
awkward, and the exponential distribution will suffice for the following
discussion.

Suppose that the sample comprises n times t,, f,, ..., t, with m of them
fully observed and the remaining n — m are censored. Let §;, §,, ..., §, be a
series of indicators, with §; = 1 if the ith observation is fully observed and
9, = 0 if it is censored. The likelihood would usually be computed as the
product of the density functions evaluated at the values in the sample.
However, for the censored times the densities would not be the correct
probability to use because for cases with §; = 0 we only know that the survival
time exceeds t;. For such observations, the survival function gives the correct
contribution to the likelihood. Consequently, the required likelihood, L, can
be written as

L=[Tre) " se)"™

The log likelihood for an exponential distribution is therefore found as

/= ZSi(logh— L) — 2(1—5,.)xt,. = mlog A~ th,. =mlogh—At, , say.(7.9)

i=1 i=1 i=1

Note that the sum of the §;s is simply the number of fully observed times,
m. The maximum likelihood estimator, A, is therefore m/t, and the expected
information is m/A2. Consequently, the variance of A is approximately A?/
m, which can be estimated as m / tf. Notice that the denominator in the
expression of the variance of A is not the sample size, 1, but the number of
fully observed times, m. Censored times need to be incorporated into the
analysis to make full use of the data and to avoid bias, but if the aim is to
learn about the distribution of survival times, there is a limit to what can be
learnt from incompletely observed times. Thus, it is important that trials in
which the outcome is a survival time should follow the patients for long
enough that a sufficient number of events is observed.
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The dependence of the standard error on m rather than n has important
consequences for the calculation of sample sizes for trials in which the
primary outcome requires a survival analysis. The power may first be
expressed in terms of m, the number of fully observed times. An essentially
separate calculation is then needed to determine the number of patients who
need to be recruited and for how long they need to be followed in order that
the analysis be based on a sufficient number of fully observed times. This
important issue is not pursued here; interested readers can consult Chapter
9 of Machin et al. (1997).

The estimated survival curve for the analysis based on the exponential
distribution is the plot of t vs. e, which is the analogue of the Kaplan-Meier
plot from the nonparametric analysis. A single number summary could be
the estimated mean survival time, A7, or the estimated median survival
time, L' log 2. The analogue of the mean is not readily obtained from the
Kaplan-Meier plot, but the median time can be readily found as the value
on the time axis corresponding to !/2 on the vertical axis.

Example 7.1: (Part I) Survival Analysis of the PUVA vs.
TL-01 Trial
The trial comparing two treatments for psoriasis introduced previously (Gor-
don et al. 1999) as an example of a trial with a binary outcome admits a
second analysis using methods from survival analysis. Each patient has to
attend the phototherapy clinic on several occasions. The number of visits
each patient had to make before their psoriasis cleared was recorded, and
there is interest in which treatment required fewer visits. If a treatment
requires fewer visits to achieve clearance, then this may be preferable as it
may reduce toxicity and patient inconvenience, enhance compliance, and
reduce waiting times for new patients. The data on the number of atten-
dances are shown in Table 7.8. The number of visits until clearance was not
observed for patients who did not clear, and the observations for these
patients are considered to be censored for the purposes of analysis.

In the first analysis of these data the information on plaque size will not
be used.

TABLE 7.8
Data on Number of Visits to Clearance in the PUVA vs. TL-01 Trial

PUVA  Small Plaques  2,3%6%6,7,7,8,8,9,9,9,10, 10, 11, 11, 13, 13*%, 15, 15, 16, 16, 16,
16,17, 22, 27, 28, 30
Large Plaques 2%, 7,9, 11, 12, 13, 14%, 16, 16, 16, 18, 19, 20, 21, 22, 25, 26%, 29, 32%,
32%, 34
TL-01 Small Plaques 10, 11, 12, 13, 13, 14%, 15, 16, 16*, 16, 17, 17, 17, 19, 19%, 21, 21, 23,
24,24, 24, 24*, 26, 29, 30, 32, 33*, 35%, 36
Large Plaques 7%, 11, 14, 17%, 19*%, 21, 23%, 24%, 24*, 24, 24, 26, 26*, 27%, 31*, 31*, 31,
32%, 32%, 33, 34%, 36

Note: Asterisks denote censored observations.
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TABLE 7.9

Calculations for the Kaplan-Meier Estimator
of the Survival Curve for the TL-01 Group

L 1 d; (n;—d)In; S(t;)
0 51 0 1 1

10 50 1 0.980 0.980
11 49 2 0.959 0.940
12 47 1 0.979 0.920
13 46 2 0.957 0.880
14 44 1 0.977 0.860
15 42 1 0.976 0.840
16 41 2 0.951 0.799
17 38 3 0.921 0.736
19 34 1 0.971 0.714
21 31 3 0.903 0.645
23 28 1 0.964 0.622
24 26 5 0.808 0.502
26 18 2 0.889 0.446
29 14 1 0.929 0.415
30 13 1 0.923 0.383
31 12 1 0.917 0.351
32 9 1 0.889 0.312
33 6 1 0.833 0.260
36 2 2 0.000 0.000

Assuming an exponential distribution for the numbgr of visits, the esti-
mated parameter for the patients treated with PUVA is A, = 41/754 = 0.0544
because, from Table 7.8, the sum of the number of visits is 2 + 3 + 6 + ...
+ 32 + 34 = 754, and the number of patients on PUVA who cleared is 41. The
corresponding quantities for TL-01 are 1154 and 32, giving A, = 0.0277.

The Kaplan—-Meier estimator cannot be shown so succinctly; the calcula-
tions for the the TL-01 group are set out in Table 7.9. The number at risk at
time 0 is the sample size, namely 51. At the time of the first clearance, i.e.,
at 10 visits, the number at risk is only 50 because of the censored observation
at 7 visits. The number at risk at each of the subsequent few times is the
number at risk at the previous time less the number clearing at the previous
time. However, this fails going from visit 14 to visit 15: the number at risk
at visit 15 is 42, which is not 44 — 1 because there is a censored observation
at visit 14. The construction of the table proceeds in this way: the entries in
the final column, i.e., the estimated survival probabilities, are found as the
partial products of the previous column. The estimator for the PUVA group
is found in the same way.

Figure 7.5 shows the Kaplan—Meier plots and the estimated survival curves
assuming an exponential distribution.

Note that in Figure 7.5, there are occasional small vertical lines on the
Kaplan-Meier estimates. These indicate the visit numbers at which censored
values have been observed — there are fewer of these than censored obser-
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FIGURE 7.5
Kaplan-Meier plots and exponential survival curves for the PUVA (dashed lines) and TL-01
(solid lines) treatment groups. Probability of non-clearance plotted against the number of visits.

vations because they are not plotted when censored observations occur at a
visit number at which a clearance also occurs.

7.5.2 Comparing Survival Curves

Aswith all clinical trials, comparison of the treatment groups is of paramount
importance. Therefore, a means of testing a suitable null hypothesis and
deriving appropriate confidence intervals is needed. The usual null hypoth-
esis is that the survival curves under the different treatments are the same.
A confidence interval is usually presented in terms of a suitable numerical
summary, and the one that will be mentioned briefly in the following is the
hazard ratio.

For a parametric analysis, the null hypothesis that the survival curves are
the same reduces to assessing the equality of the parameters defining the
distributions. Standard likelihood methods, such as the likelihood ratio test,
can be used for this.

If no distributional form is assumed, then various tests are possible, per-
haps the most widely used of which is the log-rank test. This is computed
by forming a series of 2 x 2 tables and then combining information across
these tables in a way which is essentially the same as for the Mantel-Haen-
szel method described in Subsection 7.4.4. The method constructs a 2 x 2
table at each time at which an event is observed in either group. Suppose
events are observed at times ¢; and at this time n; patients are “at risk” of
the event and d; events are observed. Suppose also that the groups are labeled
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1 and 2 and in the following subscripts 1 and 2 refer to these groups, so the
table at time ¢, is

Group Number “Surviving” Number “Failing” Number “at Risk”

1 1y — dy dy 1y
2 Ty = dy; dy; 1y
Total ni—d; d; n

J ] J j

If the null hypothesis is true, i.e., if the survival curves are the same, then
the number of failures would be expected to be distributed pro rata between
the groups, with the expected number in group k being ¢,; = n,; x (d;/n;)). Of
course, e;; + e, = dy; + d,. From the discussion of the Mantel-Haenszel test
in Subsection 7.4.4, it follows that if the margins of this table are taken to be
fixed, then d;; has a hypergeometric distribution with mean e;; and variance
v, where

_ Myyyd;(n; — dy)

! n?(n; —1)

As the numbers failing at successive times are independent, under the null
hypothesis, U = X,(d;; —e;;) will have asymptotically a normal distribution
with mean 0 and variance V' = Z,0;. The log-rank test is obtained by referring
U%/V to a x* distribution on one degree of freedom.

In fact, several variants of the log-rank test are available. A commonly
used version notes that under the null hypothesis, the expected number of
events in group k is E; = Ze;; and the observed number is O, = X d,;. The
standard formula for y? is applied and the alternative test statistic is

0,-E) (0:-E)
E, E,

(7.10)

It can be shown (see question 7 in this chapter) that this is always less than
U?/V so always provides a slightly conservative test (i.e., larger P-value).

In terms of estimating a difference between the groups, a quantity that is
widely used is the hazard ratio, which is

h — OI/EI
Oz/Ez

As with the odds ratio, a confidence interval for h first requires that a
confidence interval for log(h) be found. Again, as with the odds ratio, the
base of the logarithms must be e. The formula for the variance of log(h) is
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var(h) = Ei + Ei
1 2

There are alternative formulae and which is preferable and when is dis-
cussed in Section 17.6 of Armitage, Berry, and Matthews (2002).

Example 7.1: (Part II) Comparing Survival Curves in the PUVA
vs. TL-01 Trial

If an _exponential distribution is assumed for the time to clearance and
if £,(Ap) denotes the maximized log likelihood for the group given PUVA,
with ¢;(A;) being the corresponding quantity in the TL-01 group, then the
log likelihood for the two groups is simply the sum of these, because the
groups are independent. Substituting the expression for the maximum like-
lihood estimator into Equation 7.9 gives the following expression for the
maximized log likelihood,

mp log(mp / t,p)—mp +mylog(my / t.r)—my

where m is the number of fully observed times and ¢, is the sum of all times
and, as usual, subscripts P and T refer to the PUVA and TL-01 groups,
respectively. The null hypothesis is that A, = A; and, under this hypothesis,
the maximized log likelihood is

mlog(m /t.)—m

where the quantities have the same meanings as before and the absence of
subscripts indicates that they refer to the combined groups. Therefore, the
likelihood ratio test of the equality of the distribution to clearance in the two
groups is found by referring

2{mplog(mp / t,p)+mylog(my / t,;)—mlog(m /t,)}

to a y2 distribution on one degree of freedom. The confidence interval for
the difference between A, and A; can be found by computing the asymptotic
variances of the estimate of each parameter, namely A} / 1, and A% / 1.
Therefore, a 95% confidence interval can be estimated as

Mmp My

m m
- L4196 |2+
t+P t+T t+P t+T
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For the PUVA vs. TL-01 trial, the pertinent values for PUVA are m;, = 41 and
t,p =754, and for TL-01 m; = 32 and ¢, = 1154; so m = 73 and ¢, = 1908. This
gives a likelihood ratio test statistic of 8.22 and thus P = 0.004. The estimated
difference in the parameters is 0.0266 and the associated 95% confidence
interval is (0.0074, 0.0459). In fact, the parameters are hazard rates and a
more usual way to estimate their difference is through the hazard ratio (see
question 6 in this chapter).

The calculations for the log-rank test are rather less succinct. Rather than
write down the 2 x 2 table at each appropriate time, the key quantities should
be tabulated. These are 1p; and dp;, and the corresponding values for the TL-
01 group, and the other quantities required can easily be calculated from
these. These values, together with some other useful quantities are shown
in Table 7.10.

The observed and expected numbers of events in the PUVA group are,
respectively, 41 and 24.242. Note that in this group, more events have been
observed than would have been expected under the null hypothesis, as in
this example, an event is a good outcome (clearance of psoriasis), in keeping
with the emerging picture that PUVA is the superior treatment. This is in
distinction to many survival analyses in which the outcome is bad (death or
relapse). The corresponding values for TL-01 are 32 and 48.758. The value
of V is not shown in the table but is 14.797. So the log-rank statistic can be
calculated as (41 —24.242)?/14.797 = 18.98, P < 0.001. The alternative expres-
sion for the log-rank statistics gives

(41-24.242)° N (32-48.758)*
24.242 48.758

=17.34

which also yields P < 0.001

The value of O, /E, is 41/24.242 = 1.691 and for O, /E; it is 32/48.758 =
0.656, so the hazard ratio & is 1.691/0.656 = 2.578. The log of h is 0.947 and
the standard error of this quantity is the square root of 24.2427! + 48.7587,
which is 0.2485. The 95% confidence interval for log(h) is (0.4595, 1.4337), so
the confidence interval for h is (1.583, 4.194).

Therefore, there is clear evidence that a patient will clear after fewer visits
on PUVA than on TL-01. The chance of clearing on PUVA is over twice as
large as on TL-01 as measured by the hazard ratio with a lower limit to the
confidence interval of about 1.5.

7.5.3 Adjusting Survival Analyses for Baseline Values

As in clinical trials with continuous and binary outcomes, it is often the case
that the analyst would wish to adjust analyses of survival outcomes for
baseline observations. This is possible and can be done in an analogous way,
i.e., by fitting a model that involves not only a term indicating the treatment
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TABLE 7.10

Calculations for the Log-Rank Test Comparing the Survival Curves of
the PUVA and TL-01 Groups

PUVA TL-01
t; np;  dp; ep; ny  dy eg; w=np+ny di=dy+dy
2 49 1 0.49 51 0 0.51 100 1
6 46 1 0474 51 0 0.526 97 1
7 44 3 1.389 51 0 1.611 95 3
8 41 2 0.901 50 0 1.099 91 2
9 39 4 1.753 50 0 2.247 89 4
10 35 2 1.235 50 1 1.765 85 3
11 33 3 2.012 49 2 2.988 82 5
12 30 1 0.779 47 1 1.221 77 2
13 29 2 1.547 46 2 2.453 75 4
14 26 0 0.371 44 1 0.629 70 1
15 25 2 1.119 42 1 1.881 67 3
16 23 7 3.234 41 2 5.766 64 9
17 16 1 1.185 38 3 2.815 54 4
18 15 1 0.306 34 0 0.694 49 1
19 14 1 0583 34 1 1.417 48 2
20 13 1 0.295 31 0 0.705 44 1
21 12 1 1.116 31 3 2.884 43 4
22 11 2 0.564 28 0 1.436 39 2
23 9 0 0243 28 1 0.757 37 1
24 9 0 1.286 26 5 3.714 35 5
25 9 1 0.333 18 0 0.667 27 1
26 8 0 0615 18 2 1.385 26 2
27 7 1 0.318 15 0 0.682 22 1
28 6 1 0.3 14 0 0.7 20 1
29 5 1 0526 14 1 1.474 19 2
30 4 1 0.471 13 1 1.529 17 2
31 3 0 0.2 12 1 0.8 15 1
32 3 0 0.25 9 1 0.75 12 1
33 1 0 0.143 6 1 0.857 7 1
34 1 1 0.2 4 0 0.8 5 1
36 0 0 0 2 2 2 2 2
Sum 41 24.242 32 48.758

allocated but also the values of baseline observations, such as stratification
variables. These are quite advanced statistical techniques, and this section
will be a very superficial introduction to this area of statistics — those
interested in a more thorough treatment should perhaps start with Collett’s
(2003) book.

The idea is to model the hazard, and this is done on the log scale. This is
in part for reasons similar to those that applied to the use of the logit function
in the adjustment of binary outcomes, and also because it leads naturally to
an adjusted estimate of the hazard ratio. If the hazard for patient i at time ¢
is written as h(t|x;) to emphasize its dependence on a vector of covariates
x;, then most models assume that
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log I1,(t| x,) = log h(t)+z Bx; . (7.11)
j

where the f3; are parameters to be estimated and x;;, x, ..., x;, are baseline
observations. The function h(t) is a baseline hazard function.

These models are known as proportional hazards models because the hazard
functions for the different patients are all proportional. If you consider
h,(t|x,)/h(t| x,) for patients r and s then the preceding model implies that
this ratio does not depend on t. Consequently, patients may have different
hazards, perhaps because they are older or had more advanced disease when
they presented, but the extent of this difference is unchanged over time.
When using this kind of model this is an aspect that needs to be checked.

So, for example, if X f.x; = B,x;, + B;x;; with x;, = 1 for all patients and x;; =
1 or 0, according to whether treatment A or B was allocated, then the differ-
ence in the log hazard for a patient on treatment A from a patient on treat-
ment B is simply B,; thus the hazard ratio between patients receiving
treatment A relative to treatment B is exp(B,). If, instead, a more complicated
model with, e.g., X Bx; =Byx;, +Bix;; +B,x;, with x;, being the age of the
patient was used, then exp(;) would still be the hazard ratio between the
treatments but now adjusted for age.

As with the analyses discussed in the previous subsections, an approach
making a distributional assumption for the survival time can be adopted or
avoided. In this context, the difference largely hinges on the extent to which
the baseline hazard, h(t), is specified. If the distribution of survival time is
assumed to come from a family of distributions, then h(f) can be derived. If
the density of the survival time is Ae™ then h(t) = A, i.e., a constant, and the
model is simply a linear model for this constant hazard.

A more subtle approach, introduced by Cox (1972), is to avoid specifying
the form of h(t) altogether. This approach relies on a method known as partial
likelihood to derive estimates of the Ps and associated variances without
specifying the distribution of the survival times any more fully than is
implied by Equation 7.11. These are complicated semiparametric models and
checking them requires experience. Moreover, interpreting and explaining
these models to clinicians can be difficult. Nevertheless, the methodology is
powerful and widely used. It is also a natural extension of the methods
discussed thus far. If the Cox proportional hazards model is fitted with a
term for the treatment effect and there are no adjusting variables, then the
test that the coefficient of the treatment term is zero is the log-rank test
introduced in the previous subsection.

In the same way that the Mantel-Haenszel procedure is an alternative to
the logistic regression for adjusting binary outcomes — there are alternative
ways to adjust survival analyses for baseline observations, although these
are more relevant to categorical variables. The main such test is the stratified
log-rank test. If the data are divided into K strata, then the quantity U and
its variance V defined in the previous subsection can be computed separately
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in each stratum, giving K pairs of values (U, V), ..., (U, Vi), and then the
test statistic is computed as

k=

—

5]

strat —

=

Vi

=1

=~

This still has a y? distribution on one degree of freedom if the null hypoth-
esis is true. In this case, the hypothesis allows the survival curves to differ
between strata — it is simply that there must be no difference between
treatments within each stratum.

There is a stratified counterpart to the simplified version of the log-rank
statistic given in Equation 7.10. Suppose that expected and observed num-
bers of events on treatment 1 in stratum k are written as E;; and Oy, respec-
tively, with E,, and O,; being the corresponding quantities for treatment 2.
The simplified version is then

5050 f5 5]

k=1 + k=1 k=1
K K
E Elk E EZk
k=1 k=1

which also has a x? distribution on one degree of freedom if the null hypoth-
esis is true.

Example 7.1: (Part ITI) Survival Analysis in the PUVA vs. TL-01
Trial after Adjusting for Plaque Size

The following shows an analysis in R of the number of visits in the trial
using a model that includes a term for the treatment effect and a term for
the plaque size. The model used is the Cox proportional hazards model. The
main item of interest is the hazard ratio adjusted for plaque size, the confi-
dence interval, and the P-value. These are found on the second line marked
treatment, showing that the hazard ratio adjusted for plaque size is 3.16,
with confidence interval (1.95, 5.14). The P-value is given on the first line
marked treatment as 0.0000034. The term for plaque size is also significant
but is of no direct interest.
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coxph(formula = Surv(visits, clear) ~ 1 + Treatnment +
pl ague, data = Survdat)

n = 100
coef exp(coef) se(coef) z p
Tr eat ment 1.151 3.163 0.248 4.65 3.4e-06
Pl aque 0. 975 0.377 0.253 -3.86 1.1e04

exp(coef) exp(-coef) |ower.95 upper.95
Tr eat ment 3.163 0. 316 1.95 5.141
Pl aque 0.377 2.652 0.23 0. 619

Rsquare = 0.285 (max possible = 0.996)

Li keli hood ratio test = 33.5 on 2 df, p = 5.24e-08
Wal d test = 32.2 on 2 df, p = 1.03e-07
Score (logrank) test =34.3 on 2 df, p = 3.49e-08

The stratified log-rank test can be summarized by showing the observed
and expected numbers of events within each stratum, and these are calcu-
lated using the method described in the previous subsection.

Plaque Size Treatment  Observed Events Expected Events

Small TL-01 23 33.92
Small PUVA 25 14.08
Large TL-01 9 16.07
Large PUVA 16 8.93

Applying the simplified version of the stratified log-rank statistic amounts
to summing across the plaque size categories and then applying the simpli-
fied formula in Equation 7.10 to the aggregated table.

Summed Over Plaque Size =~ Observed Events  Expected Events

TL-01 32 49.99
PUVA 41 23.01

The simplified statistic is then

(32-49.99) (41-23.01)

+ =20.54
49.99 23.01
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The full version of the stratified log-rank statistic for these data is 22.84.
It should be noted that the variances needed to compute this value cannot
be calculated from the summary of the data given here.

Both statistics give P < 0.0001 and are in line with the findings of the
preceding Cox regression. The square of the z statistic for treatment given
in the Cox regression, i.e., 4.65=21.62 is close to the log-rank statistics
presented earlier.

7.6 Analyses Using Randomization Models

Although ways of analyzing randomized clinical trials have been described
in this and the previous chapter, the randomization has had no direct impact
on the way the analyses have been performed. When two groups are to be
compared with respect to a continuous outcome, then a ¢-test is often used,
and this can be done whether or not the groups have been formed by
randomization. Of course, the randomization entitles us to infer that any
differences found can be ascribed to the effect of the treatment, and the
randomization will generally result in balanced groups, but these are not
requirements of the ¢-test. It is usually necessary to make some assumptions
to ensure the validity of the tests used, and the analyst will have to check
these in the course of the analysis. These assumptions are made about the
population from which the data are supposed to have come and, in this
sense, the application of these models to trial data does not differ from their
application to suitable data obtained without the use of randomization. This
approach to analyzing clinical trials could therefore be called a population
model approach.

There is another approach that does not assume a model for the outcome
variable and instead relies for its validity on the act of randomization used
to produce the groups. It is widely applicable and powerful, though it is
perhaps better suited to performing tests of hypotheses than producing point
or interval estimates. The need to allow for the stratification of the treatment
allocation in the analysis arises very naturally with this approach. Some of
the key ideas and some simple applications will be discussed briefly in this
section: further development can be found in the excellent text by Rosen-
berger and Lachin (2002). This approach could be referred to as the random-
ization model approach.

7.6.1 Randomization Models: Simple Randomization

The basis of this approach is to assume that the data observed in the trial
are the data that would have been observed on these patients regardless of
any treatment allocation. This is essentially the null hypothesis of no treat-
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TABLE 7.11

Data from Hommel et al. Rewritten for a Randomization Analysis

Treatment Allocations

Actual Alternative Alternative
Patient Baseline  Outcome  Allocation Allocation I  Allocation II
1 147 137 C P P
2 129 120 C P C
3 158 141 C C C
4 164 137 C C C
5 134 140 C C P
6 155 144 C C C
7 151 134 C P C
8 141 123 C C P
9 153 142 C P P
10 133 139 P C P
11 129 134 P P C
12 152 136 P P P
13 161 151 P C C
14 154 147 P C P
15 141 137 P C C
16 156 149 P P P
| statistic| 1.65 0.93 0.44

Note: The patients are numbered in a single sequence not within treatment groups
as in Table 6.1.

Source: Hommel, E. et al. (1986), Effect of Captopril on kidney function in insulin-
dependent diabetic patients with nephropathy, British Medical Journal, 293, 467-470.

ment difference, but it also embodies the notion that the data are fixed. This
is in distinction to the population model approach, in which the data are
realizations of random variables described in the specified model and refers
to conditions on the parameters of the model. With the randomization model,
the only random component is the treatment allocation, and it is this which
is used to drive the inferences.

The data in Table 7.11 are the data presented in Chapter 6 on the Captopril
trial run by Hommel et al. (1986) but written in a form more suitable for the
current discussion. The difference between the treatment groups was
assessed by computing a ¢ statistic and this is shown again in Table 7.11 at
the foot of the column headed “Actual Allocation.” The analysis in Chapter
6 assumed a population model, namely, that the data are from a normal
distribution with common variance for the two groups; on the basis of this
a P-value of 0.12 was obtained.

In the randomization analysis, the outcomes are taken as fixed and it is
the treatment allocation labels that provide the randomness. The difference
between the groups is measured by some statistic D = D(g;), where g, is an
allocation of treatments to patients. In the following we will take D to be the
usual t-statistic but, in principle, any suitable measure could be used. Sup-
pose that the possible allocations that could be made are the set S = {1, a,,
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., ag}, then the allocation procedure generates a probability distribution
over this set, and if A denotes a random variable with this distribution then
we can write this as

Pr(A=a)=p,k=1,..,K

The allocation actually made can be written as a,,, € S, and D, = D(a,,,)
is the observed value of the statistic measuring the difference between the
samples. Under the null hypothesis that the allocation has no effect on the
observed outcomes, the P-value ascribed to the test is the probability that D
is as or more extreme than D,,,. This can be written as

pP= ZI(D(ak) >D,,.)Pr(A = a,) (7.12)

k=1

where I(E) is the indicator function of the event E. This is simply a way of
writing the sum of the probabilities of allocations that lead to measures D
as least as extreme as the observed measure.

Evaluating P requires several things to be specified. In principle, we need
to know the probability distribution induced on S by the allocation proce-
dure, i.e., the Pr(A = a,). We also need to choose the measure D, and the set
S also requires some thought.

If the trial was run using simple randomization, then all the allocations
that could arise might be thought to be the relevant set S. For the Captopril
vs. placebo trial, S would comprise all possible sequences of length 16,
{T,, ..., T1s}, where each T, was equally likely to be C (Captopril) or P (pla-
cebo). There are 2! = 65,536 such sequences and each one is equally likely,
so for this allocation, Equation 7.12 is simply the proportion of these alloca-
tions that give rise to differences between the treatment groups, which
exceed the observed value.

Next to the actual allocation in Table 7.11 are two columns with alternative
allocations and the corresponding value of the modulus of the ¢-statistic. To
implement the preceding randomization test for this trial, we would have
to generate in turn all 2!¢ possible allocations and compute |t| for each. The
P-value would then be the proportion of these allocations that gave values
of |t| >1.65.

There are two aspects of this approach that deserve comment, one practical
and one statistical. The practical problem is that systematically generating all
65,536 possible allocations, though not onerous for modern computers, is not
something that is easily done in most general statistical packages. Specialist
routines are available (e.g., Chase, 1970) but are not widely used. One reason
is that evaluating every term in Equation 7.12 requires 65,536 terms to be
evaluated, and this is from a very small trial. A trial of 500 patients would
give rise to 2°0 = 3.3 x 10'* possible allocations, and evaluating all these would
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be impossibly onerous, even for modern computers. Fortunately, it would also
be unnecessarily onerous as alternative approximations to the sum in Equa-
tion 7.12 are possible. A further problem is that complete evaluation requires
the analyst to handle the two extreme allocations in which all patients are
allocated to the same treatment, in which case D cannot be evaluated.

This leads on to the statistical issue. Under simple randomization over the
set S just described, the number of patients allocated to Captopril, N, say,
is a random variable. As N is a statistic that contains no information about
the difference between the treatments, it is an ancillary statistic, and the
principle of ancillarity alluded to in Subsection 6.4.5 suggests that inferences
would be improved if the analysis conditioned on the observed value, n,
of N¢. This amounts to redefining the set S as the set of all possible ways in
which 9 of the 16 patients can be given Captopril and 7 can be given placebo.
The sum in Equation 7.12 is now over just these allocations and there are K

= [196] = 11,440 possibilities, each with equal probability. In Table 7.11 the

column headed “Alternative Allocation I” gives an example of an allocation
that would be in both versions of S. The allocation in the column headed
“ Alternative Allocation II” is an example that would be in the first definition
of S but not the second, because it allocates 8 patients to each of Captopril
and placebo. This approach leads to an analysis with better theoretical cre-
dentials and also neatly avoids the problem of extreme allocations in which
only one treatment is allocated.

Even with such a small trial and with the reduced set S, the sum in
Equation 7.12 still has 11,440 terms. The corresponding sum for a trial of 200
patients, with 100 allocated to each treatment, would require over 9 x 10%®
terms. Fortunately, complete enumeration of this sum is not necessary
because adequate approximations are available. Looking again at the sum
in Equation 7.12, it can be seen that P is simply the expected value of
I(D(A) =z Dy, over the distribution of A induced by the allocation procedure.
It can, therefore, be approximated by randomly sampling from this distri-
bution, evaluating I(D(A) = D) for each allocation chosen, and then com-
puting the mean of these values, that is

J
Y 1(D(a) = D,,)
B

This is a randomization test of the null hypothesis. We simply generate |
random allocations from the set S and estimate P by the proportion of these
random allocations that lead to a value of D exceeding D,.

This has been done for this example taking S to be the set with 9 allocations
to Captopril and 7 to placebo; the histogram of the | = 2000 values is shown
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FIGURE 7.6
Histogram of 2000 t-statistics, each formed by comparing the treatment groups for a random
allocation of 9 patients to Captopril and 7 patients to placebo.

in Figure 7.6. The modulus of the t-statistic obtained from the data actually
observed is 1.65 and, of the 2000 randomly chosen allocations, 277 gave a -
statistic with modulus > 1.65. Therefore, a two-sided P-value can be calcu-
lated as 277/2000 = 0.1385. This is similar to the value of P = 0.12 reported
in Section 6.2, but this new value depends for its validity only on the act of
randomization and not on any assumption of normality.

The value of | was chosen rather arbitrarily. A heuristic basis for choosing
] is to approximate how accurately P; estimates P in Equation 7.12 by noting
that the variance of P, will be approximately P(1-P)/], and this must be less
than or equal to 1/(4]). Therefore, with | = 2000, the standard error of P; will
not exceed 1/ (8000) = 0.011; so the estimate should be within about 0.02 of
the value of P. The approximations are because this calculation is based on
binomial sampling of an infinite population, but it should be reasonably
good provided ] is not close to K, the size of the set S.

7.6.2 Randomization Models: Stratified Randomization

The principle of ancillarity was used to restrict the set S to those allocations
that have the same number of patients on each treatment as in the observed
allocation. This is reasonable if simple randomization is used, but what if
some form of restricted randomization was used? In this case, the set S
should be the set of allocations that could have arisen under the particular
restricted scheme that was used in the trial.

Consider as an example the binary outcome that the patient cleared in the
period of treatment in the PUVA vs. TL-01 trial. The preceding randomization
analysis can also be applied here. The null hypothesis is that the outcomes,
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TABLE 7.12

Structure of Data from the T1-01 vs. PUVA Trial, Shown Separately for
Patients with Small and Large Plaques

Small Plaques Large Plaques
Cleared Not Cleared Total Cleared Not Cleared Total
TL-01 48 —x x-19 29 25-y y-3 22
PUVA x 28-x 28 y 21—y 21
Total 48 9 57 25 18 43

Note: Observed values of x and y are 25 and 16, respectively.

cleared or not cleared, are taken as fixed and that they are unaffected by which
treatment label is allocated to the patient. In the trial, 51 patients are allocated
to TL-01 and 49 to PUVA. When the set S is being constructed, it is necessary
to ensure that only allocations with 51 patients on TL-01 and 49 on PUVA are
used. However, it also has to be taken into account that the allocation was
stratified by the patient’s plaque size, and the principle of ancillarity applies
within each stratum. Once this is taken into account, the only allocations that
can be permitted in S are those that keep the numbers fixed on each treatment
within each stratum. Also, the total number of patients who clear within each
stratum will be fixed under the null hypothesis. This is because under the
null hypothesis, the outcomes are fixed, and it is only the allocation of treat-
ments that is random. Consequently, the possible tables are shown in Table
7.12, where x and y are integers in the ranges 19 < x <28 and 3 < iy <21, respec-
tively. Therefore, S can be generated as the set of allocations which 28 PUVA
and 29 TL-01 labels to the 57 patients with small plaques and 21 PUVA and
22 TL-01 labels to the 43 patients with large plaques.

One candidate for the role of D(a;) in Equation 7.12 is the Mantel-Haenszel
statistic, namely

B [(rPl +1py) = (epy + epz)]z

Upy +0Upy

This is calculated for each of the allocations in S or for each of the randomly
sampled allocations if a randomization test is used. The P-value is the pro-
portion of these statistics that exceed the value for the observed statistic. In
calculating this proportion, some simplifications are possible. Fixing the sizes
of the treatment groups and the number of patients clearing within each
stratum means that v, and ey, k = 1, 2, are the same for each allocation in
S. In determining the relative sizes of the statistics, the denominator is
unimportant and the numerator simplifies to T(x, y) = (x + y — 35.788)~

An alternative and natural approach might be to consider the adjusted
OR, as estimated by the Mantel-Haenszel estimator, as a measure of the
difference between the groups. For this example, the Mantel-Haenszel odds
ratio can be written as
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FIGURE 7.7
Values of log OR for 2000 random allocations, stratified by plaque size, for the PUVA vs. TL-
01 trial. The observed value is 1.197.

43x(x—19)+57y(y — 3)
43(48 — x)(28 —x) + 57(25-y)(21-y)

OR(X, y) =

For the measure based on the test statistic, an allocation with values x and
y is counted as being at least as extreme as the observed value, T(Xq,e, Yobs)
=T(25,16), if T(x, ¥) = T(Xops, Yobs)- However, if the odds ratio is used, care is
needed to accommodate the aspects of this scale of measurement, which
were mentioned in Subsection 7.3.2. An allocation is counted as being at least
as extreme as the observed value if OR(x,y) =2 OR(X,s,Yops) (@ssuming that,
as here, the observed odds ratio is calculated in the direction that gives a
value greater than or equal to one), or if OR(x,y)™" £ OR(Xyps,Yops) = OF,
equivalently, but more succinctly, if |log OR(x,y) |2|10g OR(X s, Y ops) |-

The results of 2000 random allocations, each stratified by plaque size, are
shown in Figure 7.7. Thirty-six of these allocations gave an OR at least as
extreme as the observed value, giving a P-value of 0.018. This is close to the
values reported in Subsections 7.4.3 and 7.4.3 for the population model
approach. If the measure used was the test statistic, then 39 of the allocations
were at least as extreme as the observed value (P = 0.0195); this included
the 36 cases that were more extreme under the other measure together with
three other cases. These three cases all had x + v = x,,, + Yo two had x =
24 and one had x = 23. This close agreement arises because most of the
variation in OR(x, y) occurs only as x + y changes, a feature that is illustrated
by the contour plot in Figure 7.8.
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FIGURE 7.8

Contour plot of log OR(x, y); colors change with modulus of the plotted value. Predomination
of bands from NW to SE indicate that OR(x, y) changes little as coordinates change subject to
X + Yy = constant.

Figure 7.7 is much more discrete than the histogram shown in Figure 7.6.
This is because of the discrete nature of the sample space, namely, integer
values subject to 19 <x <28 and 3 <y <21. This means that only 10 x 19 =
190 values of OR(x, y) are possible and many of these may occur with such
low probability that they may not arise in a sample of 2000 allocations. For
T(x, y) the situation is even more marked because this statistic depends only
on x + y, and there are only 28 possible values for this sum.

In Equation 7.12 we were rather cavalier about whether to use the condi-
tion I(D(a,) 2 D) or I(D(a;) > D,,) and, for distributions that do not
exhibit discreteness, the difference is minor. For cases such as those just
encountered, some authors make a compromise by using the mid-P-value,
in which cases with D(a,) = D, are only counted as !/2 toward the number
exceedances, i.e.,

Pris = D (D(@,) > Dy Pr(A = )+ 2 D' 1(D(@,) = Dy ) Pr(A = 1,)

k=1 k=1
For the tests based on OR(x, y), and T(x, y) the mid-P-values are 0.01675

and 0.01475, respectively. Further details on mid-P-values can be found in
Section 4.4 of Armitage, Berry, and Matthews (2002).
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7.6.2.1 Stratified Randomization: Exact Analysis

Consider for a moment only those patients with small plaques in the PUVA
vs. TL-01 trial. If X denotes the random variable underlying the observation
x in Table 7.12, then the distribution of X induced by the random allocation
can, in this case, be worked out explicitly. To do this, consider the n, patients
with small plaques written out schematically as follows, each box represent-
ing a patient. The patients have been numbered so that those who clear
occupy the first r; boxes.

L1 [ 2] n [ net | | | [ n-1 [ n |

The random allocation places #,, Ps (for PUVA) and nyy = n; —np; Ts (for
TL-01) in the boxes shown, for example, as

P T T T P T P p T p T p T T
1 2 7 r+1 n;-1 1,

There are n, places where 1, P labels have to be placed, and this can be

done in( n J ways. The Pr(X = x) can be found as the proportion of these
Npy

allocations that have x P labels in the first r boxes (i.e., among the patients

who cleared). The number of ways that x of the P labels can be allocated

"
among the 1, boxes representing the cleared patients is ( ! J For each of these
x

n—-n

} ways of allocating the remaining np, — x P
Mpy — X

allocations, there are(

labels among the 1, — r, patients who did not clear. Therefore, the number

of allocations that give X = x is ( o ](rl ), giving
np —x )\ x

Pr(X =x)= \p1 = X)\Y)
1y )
[nPl
This shows that X has a hypergeometric distribution, just as in the popu-
lation models. The corresponding distribution for patients with large plaques
is also hypergeometric and independent of the first distribution. Therefore,

for this example, the randomization and the population models coincide,
even though the derivations are quite different. Any differences in the
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P-values obtained will simply reflect the adequacy of the normal approxi-
mation to the hypergeometric distribution invoked in Subsection 7.4.3 of this
and the number of random allocations employed in the randomization tests.

7.6.2.2 Blocked Allocations

In specifying the set S of allowed random allocations, the main principle
was to include only those allocations that could have occurred under the
random allocation scheme used. If a trial comparing two treatments recruits
4n patients and 2n are allocated to each treatment, then the foregoing dis-

cussion would suggest that S would contain all (;MJ possible ways of allo-
n

cating 2n patients to each treatment. However, this will not be appropriate
if the allocation has used a restricted scheme such as random permuted
blocks (RPBs, cf. Section 4.2). This method of allocation would not, for
example, allow the first 211 patients to be allocated to one treatment and the
last 2n patients to the other, but this allocation would be counted in the total

4
of (zn) mentioned before. If RPBs with blocks of length 4 are used, then
n
there are 6 possible blocks and, therefore, the number of possible allocations

is 6". This is much smaller than (471

) } In many randomization analyses this
n

feature is ignored, although this is probably done more for convenience than
to deliberately ignore the principle involved.

Exercises

1. Show that X? (Equation 7.4) and G? (Equation 7.5) are asymptotically
equivalent under the null hypothesis that the clearance rates are the
same in the two treatment groups. It may help to note that G? can
be written as

22310g(2)+ 22(0 - e)log(i)

2. Show that Newcombe’s method (Subsection 7.3.2.2) for the confi-
dence interval for the difference in two proportions never results in
limits that are outside [-1,1].
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3. In the example considered in the first four sections of this chapter
the outcome was a binary variable, 1 meaning that the patient
cleared and 0 meaning that they did not. From a mathematical point
of view, the values 0 and 1 are essentially arbitrary and just serve
as labels to the two possible outcomes. Suppose the outcome asso-
ciated with 1 had not been cleared and 0 meant cleared, then the &
parameters would measure the probability of not clearing and the
principal estimates would have been:

The proportion of patients not clearing on PUVA is estimated to be
pr=28/49 =0.16

The proportion of patients not clearing on TL-01 is estimated to be
pr=19/51 =037

Compute the table corresponding to Table 7.4 for this new definition
of the parameters. Comment on what you find.

4. Show how Equation 7.8 can be used to derive the formula for the
CI for the log OR given in Subsection 7.3.2 of this chapter.

5. Derive the formula for the variance of the hypergeometric distribu-
tion quoted in Subsection 7.4.4 of this chapter.

6. For exponential survival times, show that the parameter A is the
hazard rate. It is usual to compare hazard rates in two groups
through the hazard ratio. Use likelihood methods to derive a test
that the hazard ratio is one, and show that this is equivalent to the
test given in Subsection 7.5.2. Find a confidence interval for the
hazard ratio. You may find it useful to write A, = WA, and work with
the parameterization (A, ). Interested readers may wish to inves-
tigate the concept of profile likelihood and apply it to this problem.

7. Show that the simpler version of the log-rank test statistic is smaller
than that defined in Subsection 7.5.2 as U2/ V. You may wish to note
that because 4, is a positive integer

o, = Mindi(n = d;) _ mynyd;
i~ 2 = 2 7
n:(n; —1) n;

8. Look up Stirling’s approximation to n! and use it to find an approx-
imation to the ratio of the sizes of two randomization sets for a trial
comparing two groups, each with 2n patients. The first set considers
all possible allocations of 2n patients to each treatment group and
the second only allocations that could have arisen from the use of

random permuted blocks with blocks of length 4.
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Monitoring Accumulating Data

8.1 Motivation and Problems with Repeated Analysis
of Data

Clinical trials generally run for many months or even years. A consequence
of this is that, for a trial with a fixed size (as outlined in Chapter 3), the
results for the patients who enter at the start of the trial will become available
before the patients entering the trial later are recruited. Trials are undertaken
when the investigator does not have evidence whether one treatment is
superior to another, but it is conceivable that this situation will change as
the trial proceeds. Adequate evidence to settle which treatment is superior
may have accumulated long before the trial runs to its planned conclusion.
If this is so, and the investigator does not take notice of this evidence, then
the patients entered into the trial after this point, and who receive the inferior
treatment, will be receiving a treatment that could have been known to be
inferior on the basis of the evidence from the first part of the trial. It is
therefore important in maintaining an ethically defensible trial to take
account of this issue. However, if a trial is stopped early on the basis of naive
methods, serious statistical problems arise that can undermine the results of
the study. In extreme cases, the medical community may feel it has to dis-
count the results from the trial and that a new trial is justified. If this happens,
then the net effect may be that, in total, many more patients are exposed to
the inferior treatment than might have been the case had the original trial
run to its planned conclusion.

The only way to decide whether the information already collected is suf-
ficient to determine if a treatment is superior is to analyze the data in hand.
However, if this is done in an uncontrolled way, the suspicion will arise that
the trial has been stopped because one treatment appears better than the
other. This is indeed why the exercise would be undertaken, but it must be
remembered that any difference found is a statistical difference, and these
can arise by chance, even when no genuine difference exists. Indeed, the
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FIGURE 8.1
Accumulated t-statistics against combined sample size for simulated data in which null hy-
pothesis is true.

main problem with repeatedly analyzing accumulating data is that the
chance that a type I error will occur rises substantially.

Figure 8.1 illustrates this point. Outcomes from a trial of 200 patients were
simulated from a single normal distribution. The patients were allocated to
one of two treatments using random permuted blocks of length four. The
two groups were compared with a t-test using just the first four patients.
A second ¢ statistic was found using the first five patients, a third using six
patients, and so on until finally all 200 were compared. The resulting -
statistics are plotted against the number of patients used in the comparison,
together with the 95% limits for the relevant t-distribution. The data are
from a single distribution so the null hypothesis is known to be true, but
out of 197 t-tests, 39 are significant at the 5% level. If this represented data
from a real trial, then analyzing the data after the results from each patient
became available would lead to the conclusion of a difference by the 15th
patient. Even if stopping so early were proscribed, there would have been
subsequent opportunities to conclude that there was good evidence of a
treatment effect. If the trial had been allowed to run its course to 200
patients, the P-value would not have been below 0.05. It is clearly important
that any credible scheme for repeatedly scrutinizing data during the course
of a trial must take account of the potential this process has to inflate the
type I error rate.

Although repeatedly inspecting the data can lead to false claims of a
treatment difference where none exists, the ethical, practical, and financial
advantages of stopping a trial early, if there is a genuine difference, means
that it is worth pursuing methods that allow this possibility. Some of these
will be discussed in the following sections.
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8.2 Sequential and Group Sequential Methods
8.2.1 Using Repeated Significance Tests

Sequential methods intended for use in clinical trials were pioneered by
Armitage (1975). They often use procedures that are collectively known as
the repeated significance test method. In many of these, it is assumed that the
trial compares two treatments, A and B, and patients are recruited in pairs
with one member of each pair being randomly allocated to A and the other
to B. The data are analyzed as the results from each pair become available.

The procedure is to stop the trial when a significance test yields a (two-
sided) P-value less than o, or when N pairs have been recruited, whichever
happens sooner. The values of 0" and N are chosen so that the whole pro-
cedure has a type I error rate o and power 1 - B to detect a specified treatment
difference. The value o is often called a nominal significance level, because
obtaining a P-value less than o does not entitle the analyst to assert “P < o”
in the usual way, instead the user can only claim “P < o”. If the trial termi-
nates when N pairs have been recruited, the trial has not obtained evidence
against the null hypothesis. Repeated tests at the o’ level will give rise to a
type I error rate that is in excess of o, and the procedure chooses o < o
such that the inflated type I error rate comes out at o. The value of o that
corresponds with a given o depends on how many times you might end up
inspecting the data, i.e., o’ depends on N as well as o.. Moreover, the calcu-
lation that determines o from N and « is not straightforward, because the
successive P-values computed in this procedure, being based on datasets
that differ by only two observations, are highly correlated.

If the outcome is binary, in the sense that the result from treating each pair
of patients is “A is superior to B” or “B is superior to A” (with ties dis-
counted), then the null hypothesis corresponds to © = !/2, where © = Pr(A
is superior to B). A trial that has 95% power to detect a value of © = w, and
with overall type I error of 0.05 would have the values of N and o given in
Table 8.1.

TABLE 8.1
Values for Sequential Binary Trial
T o N
0.95 0.0313 10
0.85 0.0193 25
0.75 0.0118 61
0.70 0.0081 100

Source: Data from Armitage, P., Berry, G., Mat-
thews, J.N.S. (2002), Statistical Methods in Med-
ical Research, 4th ed., Blackwell, Oxford, p. 618.
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However, trials using this methodology are seldom used in practice. This
is largely because of practical difficulties: patients rarely present in pairs;
results for patients often take some time to become available; the organiza-
tion required to analyze the data after every one or two patients should not
be underestimated, especially in a large multicenter study. An alternative is
to use a group sequential design (Pocock, 1977; O’Brien and Fleming, 1979).
In this kind of design the data are inspected after every successive group of
2n patients have been recruited. The group size, 2#, is often 20, 30, or even
larger. Each group will contain patients receiving both treatments and,
indeed, the use of a technique such as random permuted blocks could ensure
that n patients receive each treatment. Consequently, there is a natural com-
parison available from each group that replaces the need for patients to be
recruited in pairs.

Group sequential trials proceed in a manner analogous to the fully sequen-
tial version. At the outset, the overall type I error rate, o, and the power,
1 -, to detect a specified departure from the null hypothesis are set. After
the results for each successive group of 2n patients has become available,
the treatments are compared using an appropriate hypothesis test. If P < o/,
a nominal significance level, then the trial is stopped and a difference sig-
nificant at P < o is declared. There is a maximum number of groups N, and
if P < o is not obtained by the time these results are analyzed, the trial is
stopped with the conclusion that no evidence against the null hypothesis
has been found at the 1000% level. The successive analyses are usually
referred to as interim analyses.

The value of o is essentially determined by the values of . and N, and as
N is now the number of groups, it will generally be much smaller than the
values for N under a fully sequential procedure. Values for N between 2 to
10 are not uncommon.

Suppose that the outcome has a normal distribution with standard devi-
ation ¢ and that the difference in the treatment means is 7. It will be seen in
the next subsection that the power of the trial 1 - B will depend on N, o, o,
and p = (‘c\/; )/ (G\/E ). The relationship among these five quantities cannot
be expressed in closed form, and numerical integration is needed to deter-
mine the power given the rest. From tables of these integrations, it is possible
to apply linear interpolation techniques to obtain tables of i as a function
of 1 - B, N, o, o, and these are valuable in the design of group sequential
trials. Table 8.2 gives the values of 1 and o for a few values of N for a trial
with o = 0.05 and 1B = 0.90 (Pocock, 1977).

In practice Table 8.2 would be used as follows. Suppose the intention is to
run a trial having type I error of 5% and with a power of 90% to detect a
treatment difference of 0.25 standard deviation. It follows that t/oc = 0.25,
and hence p = 0.25V(!/2n1). The number of patients to be recruited for each
treatment in each group is then given by solving:

1. 0.25V(1/2n) = 2.404 (so n = 185) if a maximum of two interim analyses
are planned (N = 2)
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TABLE 8.2

Some Important Values for Group Sequential Designs with 5% Type I
Error and 90% Power (Pocock, 1977)

N 1 2 3 4 5 10 15 20
m 3242 2404 2.007 1.763 1.592 1.156 0.956 0.835
o 0.05 0.0294 0.0221 0.0182 0.0158  0.0106 0.0086 0.0075

2. 0.25V(1/2n) = 1.592 (so n = 81) if a maximum of five interim analyses
are planned (N = 5)

3. 0.25V(1/2n) = 1.156 (so n = 43) if a maximum of ten interim analyses
are planned (N = 10)

In case 1, two analyses are performed and the trial stopped if the P-value
obtained is less than 0.0294. With more planned analyses, each test gets
stricter, so with N = 10, an interim analysis would have to yield P < 0.0106
for a difference to be declared at the 5% level.

Obviously, different numbers of planned interim analyses could be
explored. It should be noted that the case N = 1 (only one analysis is planned)
is the usual fixed sample size trial envisaged in Chapter 3. When planning
a group sequential trial, it is important to be aware of the total number of
patients your trial will require if it does not terminate early, which is 2nN.
For the preceding three cases, this value is 740, 810, and 860, respectively.
These figures compare with that for the fixed size trial of 672 (N = 1). In
other words, in order to maintain a given power, there is a price to be paid
for repeated inspection in terms of the maximum possible sample size.
However, it should be remembered that in the case N = 1, the investigator
is guaranteed to require all 672 patients, whereas in the other designs there
is a chance that fewer will be needed.

8.2.2 Some Theory for Group Sequential Designs with Normal Outcomes

In the preceding subsection it has been asserted that there is a relationship
between the power of the trial 1 — B, the type I error rate, o, the nominal
type I error rate, o, the standardized treatment difference 1/c, the group size
2n, and the maximum number of interim analyses, N. The nature of the
relationship will now be examined. The theory that follows is much more
transparent if it is assumed that ¢ is known. This apparently unrealistic
stance will be adopted, both because of the clarity it brings and because, in
practice, estimating ¢ has a negligible effect on the quantities that will be
derived. The approach followed is that of Armitage, McPherson, and Rowe
(1969) and McPherson and Armitage (1971).

Suppose the mean responses to treatments A and B in the ith group
are X ,;, Xp;, respectively, each based on n patients. The outcome variable is
assumed to have a normal distribution with standard deviation ¢
and d; = x,; — X5 then has a normal distribution with mean t and variance
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26?%/n. The hypothesis test based on the observed treatment means from the
first M groups is performed using

M > M
21\/26 /n :;'Sj

which has mean Mu = (M’c\/; )/ (0\/5 ) and variance M. Under the null
hypothesis, S, has zero mean and the trial terminates at the first M such
that|S,, [>a,, or when M = N. If each interim analysis tests at the o level
then ay, = z,,,,N M , where z,,, is the two-sided 1000.% point of the standard
normal distribution. However, for reasons that will become clear in the next
subsection, it will be convenient to use the more general notation a,, for the
critical point of this interim analysis.
It is clear that S; has a normal distribution and also that for M > 1

Sy =Sy_1 +8y , provided |S,, ;< ay., 8.1)

It is this proviso that complicates the determination of the distribution of
Sy which would otherwise be normal, being the sum of independent normal
random variables. The density function of S, can be found recursively from
the formula for the density of the sum of two random variables.

If X and Y are two random variables with density functions fyx and f,,
respectively, then the density of Z = X + Y, fx,,, is given by

fxav(2) = J.fx(”)fy(z —u)du (8.2)

where the integration ranges over the range of X or an appropriate subset thereof.
If we use ¢ to denote the density of a standard normal variable,

o(x) = J;—nexm—;xz)

then f; = ¢. The density of S, f,(Sy) (or f(Sy ;1) if the dependence on the
parameter | needs to be emphasized), can be found by applying Equation
8.2 to Equation 8.1:

a

FuSuiw = [ fua(0(S, —p-wdu; M =2, ..., N)

—AaM-1
the integration ranges from a4, to a,,, because S,, is only defined if S, lies

in that range. There is no closed form solution to this set of equations and
numerical integration is needed to evaluate a general f,,(.).
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The probability that the trial terminates without giving a significant result
at the 1000% level is simply Pr(|Sy |[<ay); so the chance of a type I error is
the complement of this probability when p =0, i.e,,

o =Pr(Type I error)=1- JaN fn(u;0)du (8.3)

This is implicitly an equation in N variables, namely, 4, a,, ..., ay. In order
to solve the equation, extra information is required. One way to supply this
is to assume that each interim analysis is performed at the same significance
level, 1000% so ay; =z, ,,NM , for M =1, ..., N, and now Equation 8.3 is an
equation for a single variable o. It is the numerical solution to an equation
of this type that provides the entries in the last row of Table 8.2.

Using the values of a;, a,, ..., ay obtained from the solution of Equation
8.3, the power of the trial can be found by computing the probability of
obtaining a significant result when the mean treatment difference, and hence
L, is not zero. This gives

1-p=1- [ futuiwdu (3.4

Numerical methods are again needed to solve this equation, either for 1 -
B, given , or for y, given 1 — B. This explains the remark in Subsection 8.2.1
of this chapter that the power of the trial depends on the treatment difference
T through u = (‘c\/; )/ (G\/E ). It is through the solution of equations of a type
similar to Equation 8.4 that the second line of Table 8.2 is obtained.

It should be noted here that if a trial terminates early, then there are
problems with obtaining an unbiased estimate of the effect of treatment.
The difference in means is simply KS,, / M with K =062/ n, and though
this is an unbiased estimator of T for a fixed-size trial, it is not so in a
sequential trial. This is because the relevant expectation is actually
(K/ M)E(Sy | 1Su > am,| Sk I€ ae, k=1,..., M —1) which will not, in general,
be 1. Methods for attempting to correct the bias are available but are beyond
the scope of this book.

8.2.3 Other Forms of Stopping Rule

The collection of critical points a,, a,, ..., ay defined earlier constitute a
stopping rule, in the sense that a trial is stopped early if an interim analysis
provides a test statistic that exceeds the relevant a,,. The rule in which each
test uses the same nominal significance level, i.e., ay =z, VM , is often
associated with the name of Pocock, who was the first to’propose its use
(Pocock, 1977).

The Pocock boundaries have two related properties that may, in some
circumstances, be disadvantageous. The first is that it is not difficult for a
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trial to be halted early using this scheme. As part of the rationale for adopting
a sequential approach was that it should be possible to stop a trial early if
it turns out that one treatment was noticeably more beneficial, it may be
surprising to see this property listed as a potential problem. However, some
authors have argued that it would be unwise to allow a trial to stop very
early unless there was an overwhelming (and unsuspected) benefit attached
to one treatment. If a trial stops very early on the basis of a difference that
is any less than this, then it may be viewed as uncompelling by other workers
in the field. If a trial is stopped early, but near to its planned maximum size,
then there is at least a substantial body of data available for analysis. If a
trial is stopped after, say, one or two of a maximum of ten planned analyses,
little data will have been collected. The effort involved in the mounting the
trial could be wasted if other workers in the field do not accept that it was
justified to stop the trial so early.

A second difficulty with the Pocock boundaries is more to do with com-
munication with colleagues who are not in the field of statistics. The final
interim analysis is made at the same level of significance as all the others
so, for example, with 10 planned analyses, a test is only significant for an
overall type I error of 5% if P < 0.0106. Suppose the trial terminates after ten
analyses with P > 0.0106 in each interim analysis but with the P-value for
the final analysis (i.e., based on the whole trial) equal to 0.03. Had you not
performed any interim analyses, then you could have legitimately claimed
the results were significant at the 5% level, but you cannot do so now, simply
because you have analyzed these data throughout their collection. Many
clinicians find this point, which emerges from the frequentist approach to
significance testing, difficult to accept.

A way to avoid both these problems is to make the early tests of significance
at a much more stringent level than the later tests, with the overall type I error
rate, determined through Equation 8.3, held at the same value as before,
usually 5%. A significant result arises at an early test only if there is a very
large difference observed between the treatments. A consequence of maintain-
ing the overall type I error rate at its usual level is that the later tests become
less stringent and therefore closer to the value for a fixed-size trial. It is con-
sequently less likely that a trial will terminate after N groups in such a way
that the final analysis is embarrassingly different from the fixed-size result.

The Pocock boundaries were derived from Equation 8.3 by imposing the
constraint ay, =z, \/M on thea,, a,, ..., ay. Alternative boundaries are found
by imposing different constraints. As S,, is a sum, the Pocock boundaries
maintain a constant significance level by allowing the a,; to increase as VM.
The so-called O’Brien-Fleming boundaries (O’Brien and Fleming, 1979)
allow decreasing levels of significance to terminate the trial at increasing M
by specifying a, = a, = ... = ay. Using this stopping rule the nominal signif-
icance level used as the critical point for the Mth interim analysis changes
with M. An example for N = 5 is given in Table 8.3. Notice that the final
nominal significance level for the O’Brien—-Fleming rule is much closer to
0.05 than it is for the Pocock rule.
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TABLE 8.3

Nominal Significance Levels for Mth Interim Analysis for Various Stopping
Rules with o = 0.05

M 1 2 3 4 5
Pocock 0.0158  0.0158 0.0158 0.0158  0.0158
O’Brien—Fleming 5x10° 0.0013 0.0085 0.0228 0.0417
Haybittle-Peto 0.001 0.001 0.001 0.001 0.05

Fleming, Harrington, and O’Brien ~ 0.0038  0.0048  0.0053  0.0064  0.0432

Other rules are also possible. An informal one associated with the names
of Haybittle (1971) and Peto et al. (1976) is to use a very stringent level of
significance for the first N — 1 tests, such as P = 0.001 if N > 3 (perhaps P =
0.01 if N = 2 or 3), with the final test being conducted at the level of the
overall type I error, a. This rule was proposed on heuristic grounds before
the preceding, more formal approach had been derived. The idea is that the
effects of repeated testing at the 0.001 level are negligible and need not be
reflected in the level of the final test. The overall type I error will now exceed
0.05. This could, in principle, be corrected by determining a value for ay

from Equation 8.3 when for M < N, a,, =z, VM but the difference from

Zp02s VN would be practically unimportant. Some statisticians do, however,

perform the final analysis at the 4.9% level.

A further boundary due to Fleming, Harrington, and O’Brien (1984) is to
ensure that the probability of a type I error at the Mth analysis (i.e., the trial
stops erroneously at the Mth interim analysis when t = 0) is constant for
M=1, ..., N -1, with the final significance level being chosen to ensure that
the overall type I error is a. To be specific, for M < N,

Ty =Pr(|Sy > ay;| Sk |€a, K=1,..., M=1|H,)

- LM Fur(14;0)du +J': Fur(14;0)du

is the probability of a type I error occurring at the Mth analysis. This bound-
ary demands n,; =m,;, M < N and ®y = a.— (N —1)m,. As it stands, these con-
straints do not determine the boundaries. The analyst has the freedom to
set Ty so that it is close to o and this has been done in Table 8.3. The
boundary was introduced to be intermediate between the Pocock and
O’Brien-Fleming boundaries because the latter were felt to be too strict in
the early stages.

A more flexible approach is to perform interim analyses in such a way
that they “spend” the type I error rate, o, a little at a time as the review
process continues. This method does not require the maximum number of
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interim analyses to be specified in advance. A description of the method is
beyond the scope of this book but interested readers can find an account in
Lan and DeMets (1983).

8.3 Other Approaches to Accumulating Data
8.3.1 SPRT and Triangular Test

The classical approach to the sequential testing of data is Wald’s sequential
probability ratio test (SPRT). In its simplest form, this test attempts to dis-
tinguish between two specific hypotheses, H, and H,;, under which the
accumulating data, x;, x,, ..., x,, ..., have densities f,(x;, x,, ..., X,, ...) or fi(xy,
Xy ...y X, ...), Tespectively. The SPRT works by computing successively

):fl(xerZ/"'/
n

X
L, =exp(l &
P folxy, x5, %

)
8.5
5 (8.5)
If A< L, <B, then the test requires that another observation be obtained
and the test repeated. If L, < A, then the procedure is terminated and H; is
accepted; if L, > B then H, is accepted. The user is required to specify before-
hand the error probabilities that will be acceptable. These are the probabil-
ities of declaring for H, when it is false and for H, when that is false. From
these probabilities, values of A and B can be found from simple formulae.
If the data are normally distributed with variance 62 and mean y, under
H; then Equation 8.5 becomes

ln = {(l'll _HO)tn _%”(M% _”’5)} / 02

where t, =x; +x, +...+x,.

The procedure can be implemented by plotting ¢, against n and following
the sample path until it crosses one of the boundaries, which can be plotted
on the chart as the lines

t, =6 log A/ (1, — o)+ 3 (L, + 1)

and

t, =6%log B/ (1 — o)+ 211y + 1)
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t, (SPRT) or ¢Z (triangular)

n (SPRT) or 92V (triangular)

FIGURE 8.2
Continuation regions for SPRT and triangular test.

These are parallel lines and an example of such boundaries is shown in
Figure 8.2. It follows that there is no finite upper bound on the sampling
region, and the procedure cannot be guaranteed to terminate by any pre-
specified time (it can, however, be shown that the procedure does terminate
at some stage with probability 1).

The inability to specify a time by which a trial must terminate is a serious
practical shortcoming of the simple SPRT. Various alternative methods have
been proposed, one of the most popular being the triangular test, which is
advocated by Whitehead (1992). The method works with quantities based
on the likelihood, namely the score statistic, Z, and the observed information,
V. This has the advantage that the method can be applied readily to different
types of outcome measure, not just those with a normal distribution
(although it should be noted that the methods in Subsection 8.2.1 can also
be adapted to nonnormal responses). If the parameter under investigation
is @, then to a good approximation, Z~N(8V,V), and it is assumed that the
null hypothesis is 8 = 0. The trial is run assuming an error probability o,
where this is both the probability of obtaining a significant result when 6 =
0 (i.e., the type I error) and of not obtaining a significant result when 6 = 6,
the analogue of the minimal clinically important difference t,, from Chapter
3 (ie., 1 — a is the power). The successive points are plotted on a graph
of 8,,Z vs. 83,V and the trial terminates when one of the following bound-
aries is crossed:

0,,Z =2log(20) +2 63,V (lower boundary);

0,,Z = —2log(20) + 163,V (upper boundary).
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These are straight lines, but unlike for the SPRT, they are not parallel, so
they meet when V = V*, say, and the trial cannot continue beyond this point.
In most trials, V is proportional to 7, the number of patients recruited, so
this effectively imposes an upper limit on the number of patients that could
be recruited.

An example is given in Figure 8.2. If the upper boundary is crossed then
the null hypothesis is rejected, whereas if the lower boundary is crossed it
is not. As shown in Figure 8.2 the triangular test is a one-sided test, that is,
the testis of H, :6=0 vs. H, : 0 >0 (cf. Subsection 3.2.3). Modifications that
implement two-sided test are available.

The triangular tests have many advantages and are very flexible. They are,
however, technically rather more complicated than the repeated significance
test methods outlined earlier in this chapter.

8.3.2 Bayesian and Likelihood Approaches

In the Bayesian approach to the analysis of data, inferences about the param-
eter of interest, 6, say, are based on the posterior density of 6, given the data
observed. The process starts with the analyst quantitatively specifying his
or her beliefs about 0 in a prior distribution, which has density n(6). If the
data available at time f are x(t), with likelihood L(x(t) | 8), then the posterior
density, n(0 | x(t)), is

(6 | x(1)) o< L(x(t) | 6)n(6) (8.6)

with the constant of proportionality set so that (6 | x(t)) integrates to one
over the parameter space. This gives a natural way for updating information
about 6 in the light of new data. Suppose 0 is a parameter measuring the
effect of a treatment, then it may be that the evidence about 6 contained
in (0 | x(t)) is insufficient to terminate the study, and data are collected until
time ' > t. If x(t') — {x(#)} is used to denote the new data collected between ¢
and t’, then the new posterior is obtained by updating the old posterior using
Equation 8.6, i.e.,

(0 | x(t) e L(x(t") — {x(£)} | 0)m(6 ] x(£))

Sequential analysis, therefore, fits naturally with a Bayesian approach to
the analysis of clinical trials. Unlike the frequentist approach, sequential
Bayesian analysis differs little from nonsequential Bayesian analysis. This is,
in part, due to the lesser importance attached to hypothesis testing in the
Bayesian framework.

Bayesian methods for RCTs are still not widely used in practice, but they
are undoubtedly becoming more prominent and in years to come, things
may be very different (see Spiegelhalter, Abrams, and Myles [2003] for a
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fuller discussion of this approach to RCTs). The reliance of Bayesian methods
on prior distributions perhaps hinders its adoption in RCTs more than in
other fields. Although there are undoubtedly prior beliefs held about treat-
ments, there are at least three broad reasons why a Bayesian approach may
not be readily accepted. First, the prior beliefs, though undoubtedly present,
might be difficult to quantify. Second, different experts will have different
prior beliefs. Much work is in progress on these matters. A third and perhaps
more fundamental issue is the nature of the distinction between belief and
evidence. In a sense, there are only beliefs in a Bayesian analysis, albeit ones
expressed precisely using the language of probability theory. The Bayesian
viewpoint sees Equation 8.6 as the means of modifying one’s beliefs in the
light of the data. Many clinicians see the collection of data in an RCT as a
means of collecting definitive evidence about the relative efficacies of treat-
ments, untainted by anyone’s beliefs. In practice, there may be little substance
to this objection, as most RCTs are likely to be so large that the posterior in
Equation 8.6 will be dominated by the contribution from the likelihood for
all but the most absurdly concentrated priors, but it may be more difficult
to persuade clinical colleagues to accept the underlying principles.

The advantages that the Bayesian approach holds for sequential analysis
largely stem from the likelihood principle that is implicit in this approach,
namely, that all information relevant to inference is encapsulated in the
likelihood function. Some statisticians hold to this principle without sub-
scribing to a Bayesian viewpoint. They too have an easier time with sequen-
tial analysis than does the frequentist.

8.3.3 Adaptive Allocation

Adaptive allocation is when the chance a patient receives a treatment
depends on the outcomes of previous patients. Although this topic is not
strictly about sequential analysis, it shares many of its features. In particular
there is an underlying intention to limit the number of patients allocated to
the inferior treatment. Various methods have been proposed, such as the
simple “play-the-winner” rule. This method assumes that allocation is made
by selecting balls from an urn. If there are two treatments, say black and
white, then there are balls of these two colors in the urn. Initially, there is
one ball of each color. If the treatment allocated, say white, is successful,
then another white ball is added to the urn; otherwise a black ball is added
to the urn. Therefore, in the long run, patients will be more likely to receive
the more effective treatment. This method assumes that the result of the
previous patient is available when the next patient needs to be allocated
(and that it is reasonable to summarize how they fared using a binary
outcome). To judge by their prevalence in actual use, such methods have
greater theoretical than practical appeal. They can lead to groups that are of
very different sizes, and the final inferences about treatment effects can be
difficult to make.
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A recent and widely discussed example of this kind of trial was used to
compare a new form of treatment for severe lung disease in newborn infants.
Conventional respiratory support was compared with a way of oxygenating
blood outside the body, known as extracorporeal membrane oxygenation
(ECMO). The trial was designed as follows. Patients were allocated to treat-
ment using randomly permuted blocks of size 4 until 4 deaths occurred on
one of the treatments. At that point, all subsequent patients were allocated
to the other treatment, until 4 patients die on the new treatment or until the
testing procedure in the trial established the superiority of that treatment.
In this case, the statistical methodology required that at least 28 patients
receiving ECMO survive before the fourth death on ECMO during the
nonrandomized phase of the study. The figure of 28 was computed on the
basis of the results in the randomized phase, in which 4 out of 10 patients
died on conventional therapy and 0 out of 9 died on ECMO. In the second
(ECMO-only) phase, only 20 patients were actually recruited and only one
of them died.

The results from this trial gave rise to wide-ranging discussion of the
attendant statistical methodology with a bewildering range of conclusions.
The lack of a statistical consensus on how to handle these designs cannot
encourage their acceptance in the medical community, and for the present
they are likely to remain little used. Interesting discussions of the issues can
be found in articles by Ware (1989) and Begg (1990).

8.4 Data Monitoring Committees

Section 8.2 and Section 8.3 of this chapter only scratch the surface of a wealth
of statistical techniques that have been devised for the problem of repeatedly
analyzing data accumulating in an RCT. Despite this apparent embarrass-
ment of methodological riches, none of the methods is wholly satisfactory.
The problem is essentially that the methods are too formalized to reflect the
huge complexity of the process that surrounds the decision whether or not
to terminate a trial, particularly a major trial, early. The methods usually
examine a single variable for evidence that one treatment is superior to the
others. Most of the frequentist methods are concerned with controlling the
type I error rate. In the background to many of these methods, there is a
suggestion that once the trial has been terminated with evidence in favor of
a treatment, then that treatment will generally be adopted in medical practice
henceforth. Such a conception is certainly too simplistic.

In practice, matters are much less one-dimensional than this. The decision
to terminate a trial must take into account many features. The trial may well
have to stop early, not because one treatment is plainly more efficacious with
respect to, say, levels of blood pressure, but because one treatment is asso-
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ciated with a worryingly high incidence of cases of irregular heartbeat. A
trial may present evidence that the new treatment is noticeably less effica-
cious than the existing treatment. A treatment may have an impact on an
outcome variable other than the one it was thought likely to affect. Should
investigators be as ready to abandon a study in the light of unexpected
evidence (which they might argue is more likely to represent chance varia-
tion) than if things turn out to be as extreme but in the anticipated direction?

A more contentious issue concerns the degree of evidence that investiga-
tors want to present. Some triallists have argued that in order for the results
of a study to change medical practice, the levels of evidence required are
more extreme than is often realized, but if such evidence is not adduced,
then the trial has been pointless. This has led some trials to continue until
differences with P < 0.0000001 have been achieved. It could be argued that
the superior treatment could have been identified much earlier in the study,
so some patients have been exposed unnecessarily to inferior treatment. The
argument turns on what is seen as the end of the trial and what is necessary
to achieve it. The conflict between the individual and collective ethics that
it presents is not an easy one to resolve.

These issues imply that the decision to terminate a study early depends
on many factors, and it is risible to suppose that they can be summarized
in a sequence of hypothesis tests. In major trials, it is now good practice to
have a data and safety monitoring committee. The responsibility of this
committee is to periodically review the evidence currently available from
the trial and to recommend to those running the trial whether the trial should
continue, perhaps in a modified form, or terminate. The multidisciplinary
nature of the decision to terminate a major trial should be reflected in the
membership of the committee, which should include both doctors and stat-
isticians, and possibly others with relevant expertise. Such membership
emphasizes that statistical thinking is an essential component of the process,
but should not dominate it. The decision of this committee will carry less
conviction if those making it were too closely involved with the trial, thus
the members of the committee should not be trial investigators. The delib-
erations of the committee must be attended by the trial statistician in order
to have the relevant interim analyses available, but other trial investigators
should not be involved.

One of the possible decisions that a data and safety monitoring committee
may make is to agree to have an additional interim analysis. This can be
very awkward for designs with stopping rules such as Pocock or
O’Brien-Fleming, where N is specified in advance. It may, therefore, be
helpful to have the additional flexibility of the Haybittle-Peto boundary or
the alpha spending function approach when designing a trial.

A valuable discussion of these complex issues can be found in Pocock
(1993) and a fuller discussion in the book devoted to this topic by Ellenberg,
Fleming, and DeMets (2002).
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Exercises

1. A group sequential design for a normally distributed outcome uses
Pocock boundaries with overall type I error rate of 5% and is planned
to have a maximum of 5 analyses and a power of 90%. If 20 patients
are recruited to each arm of the study in each group, what size of
treatment difference can be found (give your answer in units of the
standard deviation of the outcome)? If this size of effect is to be
found from a similar trial with N = 10, how many patients are needed
on each treatment in each group? Compare the maximum possible
number of patients.

2. If a group sequential design comparing treatments A and B is to
recruit twice as many patients to treatment B than A in each group,
how should the theory in Subsection 8.2.2 be amended?

3. Although the functions f,,(.) were derived from formula for a den-
sity, they are not conventional densities and some care is needed in
their interpretation. For example

J:N fn@)du+ J‘:N fy@u)du#1- L:N Fuo(u)du

Describe precisely what the event is whose probability is determined
by fu(). (You may find it helpful to work through the case N =2 in
detail.)

4. What event has probability defined by J‘i NfN(u)du + JmfN(u)du?

5. Write down an expression for the mean number of patients required
in a group sequential trial.

6. In a group sequential trial using Pocock boundaries, with overall
type I error 0.05 and N = 2, what is the expected number of patients
required?

7. Show explicitly that

j Folu;0)du = Pr(| Sy [€ 2y, M=1,..,N —1)

for N = 2.
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Subgroups and Multiple Outcomes

9.1 The Role of Subgroups in Randomized Clinical Trials

The discussion of RCTs so far has focused on comparisons of two (or more)
groups of patients. The results of the trial will, usually, be generalized to a
wider population as defined by the eligibility criteria used when the patients
were recruited. As such, the results will be taken to apply equally to all the
patients in the trial.

However, the patients will not all be the same: they may be male or female,
they may be adults or children, they may be breast-fed or bottle-fed, they
may have tumors that have spread beyond the primary site or not. Moreover,
it may occur to the investigators that the treatment might have different
effects on the different types of patients. Indeed, it is natural for doctors to
ask this type of question as they do not treat “average” patients — they treat
the patient before them, and if the patient is female and they think that the
drug may not work so well in females, then it is certainly relevant to ask if
this really is the case. These more homogeneous groupings of patients are
referred to as subgroups.

Although quite reasonable, this way of thinking needs to be approached
carefully. The doctor not only knows that the patient is female but that she
is a child, was bottle-fed as a baby, her parents do not have the disease, etc.
If you try to find how the treatments compare using only the data on little
girls who were bottle-fed and had no family history of the disease, you will
probably find very few, if any, patients of this kind in your trial and little
can learned about the treatment effect on them. You need to adopt a sensible
compromise between, on the one hand asking questions about subgroups
that are so refined they are too small to provide worthwhile evidence and,
on the other hand, failing to find differences between important subgroups.

The analysis of subgroups of patients is essentially a secondary exercise.
The number of patients needed for a trial will almost always be determined
on the basis of the number of patients as a whole and not on the numbers
in certain subgroups. It follows that analyses of subgroups will necessarily
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have less power to detect the difference originally postulated as important
when the trial was planned.

There are two distinct problems when considering subgroup analysis,
which are as follows:

1. Given the different subgroups, how do you assess if the treatment
effect differs between them?

2. How do you choose the subgroups in the first place?

These questions will be addressed in turn.

9.2 Methods for Comparing Subgroups

In the following subsections a method for comparing simple subgroup effects
is described. Throughout these sections, it is worth bearing in mind that we
are not concerned directly with the size (or indeed the existence) of a treat-
ment effect per se, but with the homogeneity of any effect there might be
across the subgroups.

In the examples in this chapter, we will be concerned exclusively with
subgroups that have two levels: male or female, breast-fed or bottle-fed, etc.
However, subgroups can be determined with many levels: ABO blood group,
eye color or, indeed, with a continuum of levels, as with age. We are inter-
ested in assessing whether the effect of one factor, the treatment group, is
different at different levels of the factor or covariate determining the sub-
group. In terms of statistical models, we are considering treatment by cova-
riate interactions. For subgroups defined by a continuous variable or having
more than two levels, the usual methods for testing interactions in statistical
models can be applied. Although these can also be used for subgroups with
just two levels, we develop some simple alternatives as described in the
following text.

9.2.1 Approximate Theory

For a variable defining two subgroups of patients (you can think of them as
males, M, and females, F), a simple piece of theory that gives an approximate
test of the null hypothesis of equal treatment effect in the two subgroups
and is applicable to several different kinds of outcome can be derived. The
theory assumes the parameter estimates have normal distributions and that
variation in estimates of standard errors can be ignored. This is usually
sensible when the trial has reasonable size. It is foolish to attempt serious
subgroup analyses in small trials as the subgroups will then be even smaller,
and the whole exercise is likely to be fruitless.

© 2006 by Taylor and Francis Group, LLC



Subgroups and Multiple Outcomes 167

Suppose the expectation of the outcome in subgroup F is

0/, when given treatment A

83 when given treatment B

Similar definitions for subgroup M apply to 8',085" . The estimates of these
quantities are, respectively, 6% ,0%,06% ,6M and the corresponding variances
are 0,050}, v} The treatment effect in subgroup F is 1, = 0, =0} and in

Mis t,, = 0¥ -0}
The null hypothesis of interest is T, =1,, and a natural test statistic for
this is

(6% —65) — (6} ~ 6}
s.e.(numerator)

7 =

and, under the null hypothesis, this will have a standard normal distribution.
This is usually referred to as a test of interaction. Because 0 A,eg,e A,GM are
independent, the denominator of the preceding is found to be

\/(fo +0p) + (v +03')
so a test of the null hypothesis is obtained by referring:

_ (65 —6p) - (84 - 63)

9.1
J@h +05) + (0 +0b) -

to a standard normal distribution. A 95% confidence interval for the differ-
ence between the treatment effects is

(65, —B)— (BY —BY) £ 1.96\(0), + ) + (01 +0})

Note that this is a difference in treatment effects: it is not a difference
between those treated with A and those with B but of how the difference
between the treatments does itself differ between the subgroups F and M.

This theory will now be illustrated using two examples.

9.2.2 Practice: Continuous Outcomes

A controlled trial of vitamin D supplementation for the prevention of neo-
natal hypocalcemia (low levels of calcium, which can lead to rickets and
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TABLE 9.1
Data from Neonatal Hypocalcemia Trial
Breast-Fed Bottle-Fed

Supplement Placebo  Supplement Placebo
Treatment mean 2.445 2.408 2.300 2.195
Number of babies n 64 102 169 285
SE 0.0365 0.0311 0.0211 0.0189
Treatment effect 0.037 0.105
SE 0.0480 0.0283
P-value 0.44 0.0002

Note: All calcium levels in mmol/1.

other skeletal problems) was reported (Cockburn et al. 1980). Expectant
mothers received either supplements of vitamin D or placebo. Several end-
points were measured, but we will consider only the serum calcium of the
baby at 1 week of age. It was thought that the effect of vitamin D supple-
mentation might be different in babies who were breast-fed from those who
were bottle-fed. Table 9.1 is based on data from the study.

The 6%,65,0%,05 are the simple treatment means, given in the row “treat-
ment mean” in Table 9.1. The sample variances of the treatment means,
the v}y, vf, v}, v3's of the previous subsection, are simply the usual variance
for a mean, s> / n and the SEs for the preceding treatment means are just the
square roots of these. o o

The “treatment effect” row shows 8, — 6} and 6% —6%', and the corre-
sponding standard errors are \ o}, +v5 and Yo} + v, To test the null hypoth-
esis that the effect of vitamin D is the same for breast-fed and bottle-fed
babies, we compute the quantity in Equation 9.1, namely

0.037 -0.105 _0.068

Z= __
J0.0365% +0.03112 +0.02112 + 0.0189? 0.0557

=-1.22

which gives P = ®(-1.22) +[1-$(1.22)] = 0.22.
Thus, there is no evidence that vitamin D supplementation affects bottle-
fed and breast-fed babies differently.

9.2.2.1 An Erroneous Analysis

At this point, it is worth taking a moment to discuss a flawed method for
assessing subgroup effects. The P-values in Table 9.1 are those relevant to
testing the null hypotheses:

0!, =0}, i.e., no treatment effect in the breast-fed group
0 =0}, i.e., no treatment effect in the bottle-fed group
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TABLE 9.2

Percentages and Proportions of Babies with RDS in Trial of
Antenatal Steroid Therapy

Pre-eclampsia Groups  Steroid Group  Placebo Group  P-Value

With pre-eclampsia 21.2% 7/33 27.3% 9/33 .57
Without pre-eclampsia 7.9% 21/267 14.1% 37/262 .021

and are found by referring (6%, —6%)/ o +vf and OY —0M) / \Joll + oM to
a standard normal distribution.

The P-values obtained for the breast-fed and bottle-fed groups are,
respectively, 0.44 and 0.0002. The temptation is to say that there is a clear
effect of vitamin D supplementation in bottle-fed babies but not in breast-
fed babies, so the treatment works for the former but not the latter. This
contradicts the analysis we have just presented, so which is correct? The
answer is that the comparison of the two P-values does not demonstrate
a subgroup effect. The value of 0.44 in the breast-fed group does not
establish that there is no effect in this group, but merely that we have no
evidence — perhaps the breast-fed group was too small to provide such
evidence.

9.2.3 Practice: Binary Outcomes

When applying the methods from Subsection 9.2.1. To binary outcomes, the
role of 8%, etc., is taken by the proportion of successes 7, and

my(1-m))

F _
vy = ;
Ny

where 1}, etc., are the numbers of patients in the different groups.

The example of a subgroup effect when there is a binary outcome comes
from a controlled trial of maternal steroids for the prevention of neonatal
respiratory distress syndrome (RDS) in the baby. It is a trial of giving a drug
(a steroid, dexamethasone) or a placebo to expectant mothers to see if using
steroids in this way led to fewer of their babies having severe breathing
difficulties. Unlike the previous example, the outcome is binary, i.e., whether
or not the baby had RDS (Collaborative Group on Antenatal Steroid Ther-
apy, 1981).

The subgroups to be studied here are whether or not the mother developed
preeclampsia during her pregnancy (dangerously high blood pressure), see
Table 9.2.
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If we use F to denote the mothers with pre-eclampsia and M for the
remainder, and A for steroid and B for placebo then:

nh =7/33=0212 o} =0212x0.788/33 np=9/33=0273 v}, =0.273x0.727 /33
=0.00506 =0.00601

ni =21/267=0.079 o} =0079x0921/267  my =37/262=0.141 ovy' =0.141x0.859 /262
=0.000273 =0.000462

The quantity from Equation 9.1 can now be written as

_ (0.212 -0.273) - (0.079 - 0.141) _ 0.001
+/0.00506 +0.00601 +0.000273 +0.000462 ~ 0.109

Z =0.0092

and P = ®(-0.0092) + 1 - ®(0.0092) = 0.99. This large P-value means there is
no evidence that antenatal steroid therapy affects babies born to mothers
suffering from preeclampsia differently from the way it affects babies born
to mothers who do not suffer from this condition. Again comparison of
P-values would have led us astray (see final column of Table 9.2). The treat-
ment effects are similar in the two subgroups (as measured by the ARD, see
subsection 7.3.1) and the difference in P-values arises from the different SEs,
which in turn arises from the difference in the sizes of the two subgroups.

9.3 Methods of Selecting Subgroups

A subtle but important problem in the analysis of subgroups in RCTs is the
question of how the subgroups arose in the first place. The patients in
virtually any trial will exhibit many features that could be used to define
subgroups. If the results of comparing treatment effects using many sub-
groups are reported, those reading the report will need to know why the
comparisons were made. If subgroups defined by 20 variables are com-
pared, then even if the null hypothesis is true, so that there is no treatment
effect, you would expect one of the analyses to yield a result significant at
the 5% level. This is intuitively obvious and can be seen more formally as
follows. Suppose the P-value for the analysis testing the null hypothesis
that treatment effect is the same for all subgroups determined by the ith
variable is P,. Define

I;=1if P, <0.05, 0 otherwise
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As there is no treatment effect, for all i Pr(I; = 1) = 0.05. The expected num-
ber of significant tests is

20 20 20 20
E(Z I)= ZE(L) - ZPr(L -1)= 20.05 -1
i=1 i=1 i=1 i=1

(Note that we do not assume that the Is are independent.) Thus, if there is
indiscriminate identification of many subgroups, there is the chance that
someone will appear to suggest a difference where none really exists. The
critic will be suspicious that the investigator trawled through the data
looking for something positive to report: these suspicions will be heightened
if the overall result of the trial failed to reach a conventional level of statis-
tical significance.

However, there may well be occasions when there is good reason to believe
that the treatment effect is not the same for patients in different subgroups.
In other trials marked differences in treatment effect may be observed and,
if genuine, could be a finding of considerable importance. We must distin-
guish two sorts of subgroups.

1. Subgroups that were identified as being of potential interest before
the data were collected. These should be limited in number, and
there should be an apparent clinical or biological reason for the
interest. For example, in the comparison of different types of com-
pounds used to treat breathing difficulties in very premature babies,
the timing of the administration of treatment is critical and closely
controlled for babies born in the center running the trial. However,
the close control of timing may not have been possible for babies
born elsewhere and subsequently transferred to the center. The “out-
born” and “in-born” babies form subgroups that are identified at
the outset of the trial, and there is good prior reason to suspect that
the effect of treatment may differ between these subgroups.

2. Subgroups whose apparent importance is post hoc, and arises only
through the result of performing analyses on the data.

If the treatment effect appears to differ across subgroups identified as in
1, then the phenomenon should be taken much more seriously than if the
subgroups came to light through the process in 2.

Example 9.1: Subgroups Reported in the Antenatal Steroid Trial
(Collaborative Group on Antenatal Steroid Therapy (1981))
Subgroups based on the following variables were reported.

1. Sex of baby: male, female
2. Mother developed preeclampsia or did not develop preeclampsia
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Mode of delivery: vaginal, cesarean (in labor), cesarean (not in labor)
L/S ratio (a measure of maturity of baby): immature, not assessed
Race: White (not Hispanic), Black (not Hispanic), other

Duration in study: <24 h, 24 h to 1 week, >1 week

Gestational age at delivery: < 30 weeks, 30 to 34 weeks, > 34 weeks

® N

Premature rupture of membranes: yes, no

Example 9.1 demonstrates the range of subgroup analyses that are some-
times reported for a trial. There is no indication in the paper how these
subgroups were selected. A difference in the treatment effect between boys
and girls was reported. However, no similar difference has been found in
any subsequent trials of ante-natal steroid therapy (Crowley et al., 1990).
This illustrates the hazardous nature of making inferences about subgroups.

9.4 Qualitative Interactions

A useful distinction between qualitative and quantitative interactions or
subgroup differences has been made. In the latter, the size of the treatment
effect varies between the subgroups, but it is always in the same direction,
whereas in the former, one treatment is better for some patients and the other
treatment is better for the remaining patients. It has been argued that quan-
titative interactions are not surprising and, indeed, can be functions of the
scale on which the response is expressed, e.g., if a main effects model is
appropriate once the response has been log-transformed, then it is inappro-
priate on the original scale. On the other hand, a qualitative interaction
(sometimes called a crossover interaction) cannot be an artifact of the scale
of measurement and, moreover, if it is genuine, it is clearly of great clinical
importance. This is illustrated in Figure 9.1.

The figure represents a trial comparing two treatments split into two
subgroups: the origin is no treatment effect in either group, and the diagonal
shows equal treatment effects in the two subgroups. Quantitative, or non-
crossover, interactions are represented by the unhatched parts not on the
diagonal, whereas points in the shaded area showed interactions in which
different treatments were superior in the two subgroups, that is, qualitative
or crossover interactions.

An example in which the possibility of a qualitative interaction arose was
the National Surgical Adjuvant Breast and Bowel Project trial that compared
treatments for breast cancer with acronyms PFT and PF (PF is a chemother-
apeutic agent and PFT is PF plus tamoxifen) in 1891 patients (Fisher et al.,
1983). The following table (Table 9.3) is taken from Gail and Simon (1985)
and shows the variation of treatment effect with age (above or below 50
years) and progesterone receptor status (PR: above or below 10 fmol).
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FIGURE 9.1
The regions in which interactions are quantitative or qualitative.

TABLE 9.3

Results from the National Surgical Adjuvant Breast and Bowel Project Trial
Age < 50 Age 250 Age <50 Age 250
PR <10 PR <10 PR =210 PR =210

PF PFT PF PFT PF PFT PF PFT

Proportion disease 0.599  0.436 0.526  0.639 0.651  0.698 0.639  0.790
free at 3 years

SE 0.0542 0.0572  0.0510 0.0463 0.0431 0.0438 0.0386 0.0387
D 0.163 -0.114 —0.047 —-0.151

s 0.0788 0.0689 0.0614 0.0547

D?/s? 4.28 2.72 0.59 7.58

In this table, D is the difference in proportions disease free between the
treatment groups and s is its SE.

At first sight, there appears to be an advantage to PF for women under 50
with PR < 10 but with PFT preferable for the other three groups. A standard
test for interaction is highly significant (P = 0.0097). Clearly, such a conclusion
would have a major impact on how the results of the trial were used. In such
circumstances, it is important to use the most appropriate statistical procedure.

A problem with the standard test for interaction can be described as
follows. Suppose there are k subgroups and the treatment effects are 6,,...,0,:
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the standard test for interaction tests the null hypothesis H,:6, =6, =...=6;
against a general alternative, that is, one that includes both qualitative and
quantitative interactions. A more specific test that is easily applied and based
on a likelihood ratio test is available. This replaces the preceding null hypoth-
esis with the hypothesis of no qualitative interaction, that is the vector of 6s
must lie in either the set of all positive effects or all negative effects, that is,
O"UO™ withO" ={0:6,20alli} and O" ={6:6, <0 all i}.

To apply the procedure, obtain estimates of the 8; and their standard errors,
say D;and s, and compute (I(E) is the indicator function of event E)

Q" =Y (D}/s)I(D; >0)
Q =) (D/sHI(D, <0)

If min{Q",Q7} exceeds c(a, k), then we can reject the hypothesis of no qual-
itative interaction; value of ¢ can be found in Gail and Simon (1985).

When applied to the preceding table, values obtained for Q*,Q" are,
respectively, 10.89 and 4.28, and as ¢(0.05,4) = 5.43 and ¢(0.1,4) = 4.01, we
find 0.05 < P < 0.1, so the evidence of a qualitative interaction is weaker than
it was for a general interaction.

Qualitative interactions need careful analysis and the method of Gail and
Simon is worth considering in these circumstances.

9.5 Multiple Outcomes

Thus far we have considered RCTs as experiments in which we assess
the effect of a treatment on an outcome variable. The variable is carefully
chosen to measure some important aspect of the disease being studied.
However, in more general and colloquial terms, we are interested in
which of the treatments makes the patient better or makes them get better
more quickly. Being made better, although unquestionably relevant, is
usually too subjective and difficult to define for scientific purposes. We
reduce the problem to the measurement of an outcome variable in an
attempt to make the task of measuring improvement in health more easily
defined and reproducible. However, this reduction is achieved at the cost
of trying to measure a very complex process, the well-being of a patient,
in a single variable.

In fact, most clinical trials do not try to measure the well-being of a patient
in a single variable but actually measure numerous variables relevant to the
condition being studied. However, this raises statistical problems similar to
those encountered when several subgroups are compared.
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Example 9.2: Outcome Measures for a Trial of Open vs.
Laparoscopic (Key-Hole) Appendicectomy (Tate et al., 1993)

1. Doses of pethidine in first 24 h 2. Total doses of pethidine (a pain killing drug)
3. Hospital stay in days 4. Wound infection
5. Wound erythema (redness) 6. Prolonged pyrexia (temperature)
7. Time to reintroduction of liquid diet 8. Urinary retention
9. Requirement of analgesia 10. VAS* score for pain in first 24 h
11. VAS score for nausea in first 24 h 12. Reintroduction of solid diet
13. Respiratory complications 14. Ileus (temporary paralysis of the bowel)

* VAS = Visual analogue scale, marking a 10-cm line to represent severity of symptom.

The measurement of several outcomes is universal. In cardiovascular trials,
it is common to record variables such as mortality (all causes), mortality
(from ischemic heart disease [IHD]), incidence of myocardial infarction
(heart attack), presence of IHD, cardiac output, ejection fraction, and walking
distance. In cancer trials, as well as all causes mortality and disease specific-
mortality, survival at several conventional times (usually 1, 2, and 5 years),
tumor response, various cytometric measures of cell proliferation and,
increasingly, measures of quality of life are recorded. In asthma trials mea-
sures of quality of life and frequency of attacks may often accompany the
vast range of lung function and other tests, such as FEV1, PEFR, FVC, PD20
(all measurements of lung function).

One of the concerns that investigators have is that if there are several
outcome variables, then the chance that at least one of them will provide a
significant P-value will be larger than the nominal Type I error rate. Cor-
rections for this have been devised and a rather crude one is described in
the following section. However, two general comments should be made at
this stage.

1. The severity of the problem should not be overstated. Although
aimed at the overall goal of improving the health of the patient, it
may be entirely legitimate to enquire what effect the treatment has
on variables that often measure quite different aspects of the dis-
ease process. Put more crudely, if you ask 4 questions, you should
expect 4 answers. Problems are most acute when the 4 questions
are based on variables that measure very similar aspects of the
disease.

2. You would tend to expect treatment effects to be consistent across
the variables. For example, an exercise and diet program designed
to improve cardiovascular fitness would be expected to: reduce
blood pressure, lower blood cholesterol, and increase various mea-
sures of lung function. Techniques beyond the scope of this course
are available that take account of such expectations.
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9.6 Correction of P-Values

9.6.1 Boole’s Inequality

It is useful to remind oneself of the following. Suppose A;, A,,..., A, are
events, then Boole’s inequality is

Pr(UA,]SiPr(Ai)

This is proved as follows. It is well-known and easy to show that for any
events A and B

Pr(A U B) = Pr(A) + Pr(B) — Pr(A n B) < Pr(A) + Pr(B)

The proof of Boole’s inequality follows by induction. It is clearly true for
k =1.1f it is true for k — 1, then the preceding result for A and B applied with

A=A, shows it is true for k, hence the result.

9.6.2 Application to RCTs

If there are k outcomes and the corresponding treatment comparisons yield
P-values P, P,, ..., P, then even if the treatment has no effect on any of the
outcomes, simply by chance, one of the P-values may be small. If we aim for
an overall type I error rate of 1000%, then it is not sufficient to consider a trial
as confirming the superiority of one treatment simply if a single P falls below
o. The Bonferroni inequality states that if the treatment has no effect then:

Pr(sma]lest P value < Z) <o

The inequality follows by noting that under the null hypothesis, a P-value
has a uniform distribution on [0,1], so Pr(P; <a /k)=a/k for each i. The
inequality follows by setting A; = {P; <o/ k}, noting that the event that the
smallest P-value is less than o/ k is
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U

and applying Boole’s inequality. Note that we do not assume the Ps are
independent, and indeed they are unlikely to be so as they arise from data
collected on the same patients.

This inequality is used is to deem that a test is not significant at the 100a:%
level unless the corresponding P-value is less than o/ k.

The approach is not satisfactory for a variety of reasons. Perhaps the most
important is that by concentrating on the minimum P-value, the method is
very conservative. For example, if a trial had four outcomes and the resulting
P-values were 0.01, 0.7, 0.8, 0.9 then the preceding procedure would consider
the trial significant at the 5% level, whereas one with P-values 0.03, 0.04,
0.05, 0.05 would not be significant, despite a pattern that may seem to
provide more consistent evidence against the null hypothesis.

Several alternative approaches exist and some of these are outlined briefly
in Section 9.7 of this chapter. However, they are often not necessary because
a commonsense approach can cause an important reduction in the scale of
the problem. An extreme form is to designate one variable as the variable
that will be subject to a hypothesis test. This is often too extreme and vari-
ables could be grouped such that each group measures a common aspect of
the disease.

An example is provided by the appendicectomy trial in Example 9.2.
The 14 variables come in different groups, each group measuring a spe-
cific aspect. The table in Example 9.2 can be rearranged to show the
variables grouped according to whether variables measure aspects of
“pain,” “diet,” “stay in hospital” and “complications in hospital,” and
“late complications” (see Table 9.4). As all the variables within a group
will attempt to measure aspects that are related, they will often exhibit
high correlations. This could lead to interpretational problems of several
similar P-values. It may be possible to restrict hypothesis testing to one,
preselected, variable within each group. Although there will still be sev-
eral hypothesis tests, the problem is much more manageable with five as
opposed to 14 tests.

9.7 Some Alternative Methods for Multiple Outcomes

This section outlines some of the more sophisticated methods that are avail-
able for dealing with multiple outcome measures in RCTs. They make use
of statistical methods that are not needed elsewhere in this book and are not
fully explained in this text. Some readers may wish to omit this section.
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TABLE 9.4
Outcomes in Appendicectomy Trial Arranged by Outcome Type

Outcome Measures in Open vs. Laparoscopic Appendicectomy Trial
Pain

1. Doses of pethidine in first 24 h 2. Total doses of pethidine

3. Requirement of analgesia 4. VAS score in first 24 h
Diet
5. Reintroduction of liquid diet 6. Reintroduction of solid diet

7. VAS score for nausea
Stay

8. Hospital stay
Complications in hospital

9. Ileus 10. Retention of urine
11. Respiratory complications 12. Prolonged pyrexia
13. Wound erythema

Late complications

14. Wound infection

9.7.1 Extension to Bonferroni Inequality

It was mentioned that the Bonferroni inequality outlined in Subsection 9.6.2
was conservative because it considered only the smallest P-value. A modified
Bonferroni procedure, proposed by Simes (1986), is based on all the ordered
P-values, Iy, < B, <...< R, rather than just P,,: the trial is considered posi-
tive if P < jo/k foranyj=1,...,k. If the P-values are independent, then the
procedure has overall type I error of o. In the general case, unlike with the
classical Bonferroni inequality, the procedure is not conservative. However,
the procedure has type I error rate much closer to o than the classical version
for a wide variety of correlation patterns. Under this procedure the second
set of P-values in Subsection 9.6.2 would be considered significant.

9.7.2 Multivariate Methods

A more general approach to the problem of multiple outcomes is to consider
that the outcome from each patient is a k-dimensional vector, that is, all the
outcomes are considered simultaneously. The null hypothesis when compar-
ing treatments A and B would then be t=p, —u,; =0, with each element in
this equation now a k-dimensional vector. The multivariate analogue of the
t-test is Hotelling T? test, which refers:
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Tw:;{((:ll_g)l)(xfx —X5)S7 (X4 — Xp)

to an F distribution with k and n — k — 1 degrees of freedom. Here x,, x are
the sample means on treatments A and B, based on n,,n; patients, respec-
tively, and S is the pooled sample dispersion matrix and n =n, + n,.

It is very unlikely that all outcomes from an RCT will be continuous, so
the assumption this method makes that all the outcomes have a normal
distribution is unrealistic. Even if this were the case, the test will lack power.
This is because the test is of T = 0 vs. T#0. The alternative to the test, therefore,
accepts deviations from the null hypothesis in any direction for each out-
come. In practice, if a treatment is superior, it will tend to change related
outcomes in consistent ways. For example, in Example 9.2, an earlier rein-
troduction of a solid diet would be expected to be associated with a lower
VAS for nausea.

O’Brien (1984) has proposed several tests that attempt to focus attention
on alternative hypotheses which indicate consistent departures from the null
hypothesis. The method described here attempts to combine information
across variables that will be defined on different scales, so the variables must
first be transformed to a common scale. This is done by taking the difference
from the variable’s mean, computed ignoring the treatment groups, and
divided by the pooled within-treatment standard deviation. In the following,
it is assumed that this has already been done.

The procedure can be motivated by the model

My =u+plandpy =p—pl

where 1 is the k-dimensional vector of ones. This model effectively states
that we expect similar deviations on all (standardized) variables. If this is
the case, then it is intuitive that we can get a more sensitive test of a treatment
effect by looking at the mean of the standardized variables on each patient.
This amounts to testing the null hypothesis § = 0 by referring

Nylg {1T(]7A - I?B)}Z
n17Ss1

to F on 1 and n — 2 degrees of freedom. In this formula, y; is the sample
mean vector of the standardized variables in the group receiving treatment
i. If the jth standardized variable on patient 7 is y,;, then the preceding
amounts to a simple univariate two sample t-test of the two sets of within-
patient means, y, =k (y,; + ¥,» +...+ y,). Modifications of the tests to allow
variation from the null hypothesis in different, but still prespecified direc-
tions, have been discussed and amount to replacing the vector 1 in the
preceding with a different, but known vector.
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9.7.3 O’Brien’s Rank-Based Method

It is commonplace to find that several important outcomes are not normally
distributed; for example, outcomes will often be categorical. The following
rank-based approach is a useful and efficient method that should work with
a range of variables from normal through non-normal continuous to cate-
gorical, provided that the grouping of the last is not too coarse. Suppose that
the data are arranged as follows:

Variable
Treatment Group  Patient 1 2 k
A 1 YAH YAlZ YAlk
A 2 YAZl YAZZ YAZk
B 1 YBH YBIZ YBlk
Yijk
B ng stgl YBnBZ YBan

The procedure starts by replacing each observation with its within-col-
umn rank, that is, by its within-variable rank (that is the only rank one
could sensibly take, you cannot rank a blood pressure and a heart rate!).
The result is shown in the following table, where the S; are the within-
patient sums of ranks, namely:

k
Syi = ZRXM
=1

where X = A or B. If a treatment tends to produce a favorable effect across
the variables, then the ranks across the variables will be lower in this treat-
ment group, and so the rank sums will also be lower in that treatment group.
The test is accomplished by performing a t-test to compare the S; between
i=Aandi=B.

The method can be used for more than two groups, in which the S; are
compared using a one-way analysis of variance.

Ranks of Variables

Treatment Group  Patient 1 2 k Rank sum
A 1 RAll RAlZ RAlk SAl
A 2 RAZl RAZZ RAZk SAZ
B 1 RBll RBlZ RBlk SBl
Spty
B Mg R R, , R, .

Bry 1 Br,
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Exercises

1. In a trial to compare the effects of a diuretic (D) and beta-blocker
(B) on blood pressure, the null hypothesis of no treatment effect was
tested separately in males and females, giving P-values of 0.03 and
0.4, respectively. Does this provide evidence that the treatment
affects males and females differently? Justify your answer.

2. A clinical trial is performed to compare two treatments, A and B,
that are intended to treat psoriasis (a scaly, itchy skin condition).
The outcome shown in the following table is whether the patient’s
skin cleared within 16 weeks of the start of treatment, i.e., a binary
variable. The data are shown separately for those with fair and

dark skins.
Fair Skin Dark Skin
Treatment A  Treatment B Treatment A  Treatment B
Cleared 9 5 10 3
Did not clear 17 21 15 20

Source: Data available by kind permission of Professor PM. Farr, Department
of Dermatology, Royal Victoria Infirmary, Newcastle upon Tyne, U.K.

a. Test, separately for patients with fair and dark skin, the null
hypothesis that the proportion of patients whose skins cleared is
the same for the two treatments. Present your analyses. Does this
provide evidence that the treatment affects patients with fair and
dark skins differently?

b. Test the null hypothesis that the treatment effect is the same for
patients with fair and dark skins. Give a P-value and a 95%
confidence interval for a suitably defined quantity.
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Protocols and Protocol Deviations

10.1 Protocols: Their Nature and Role

There are virtually no RCTs run today that do not have a trial protocol. The
trial protocol is a document that serves several purposes. Broadly, these fall
into three groups.

1. The reasons why a trial needs to be run in the first place are docu-
mented in the protocol: this will include descriptions of the inade-
quacies of existing therapies and of the ways the new treatment or
treatments might improve matters.

2. The protocol is an operations manual for the trial. For example, how
the patients are assessed for eligibility and by whom, where blood
samples are to be sent, how treatment allocations are to be made,
what treatments are to be used and their doses, who is allowed to
know who gets what treatment, when outcomes are to be assessed
— all these should and more be specified in the protocol.

3. The protocol is the scientific design document for the trial. The
methods for allocation, the ways of assessing outcomes, the size of
the trial are all justified in the protocol. In addition, the conduct of
a clinical trial is improved if certain decisions are taken, and are seen
to be taken, before data are collected. Such decisions are documented
in the protocol.

The protocol can be a complicated document that evolves through several
stages before the first patient is recruited. Different agencies will have inter-
ests that require them to accord different emphases to the different aspects
of the protocol. Ethics committees and funding bodies will often concentrate
on 1, whereas editors of medical journals and regulatory authorities (which
assess certain types of trial to see if drugs can be put on the market) will
scrutinize 3. Those involved in the trial on a day-to-day basis will concen-
trate on 2.

183
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The way a trial is reported is of the utmost importance if those in the wider
community are to learn about the results and to be convinced by them. A
group of those interested in good trial methodology, together with editors
of leading medical journals have cooperated to produce the CONSORT
statement, which amounts to guidelines regarding how a trial should be
reported. A convincing (and honest) report of a study can only arise from a
convincing study, so the guidelines are well worth consulting when design-
ing a trial and writing the accompanying protocol. The output of the CON-
SORT group can be found at http:/ /www.consort-statement.org.

It is not the intention of this book to prepare readers immediately to take
on the role of a trial statistician, so we will say much less about protocols
than could be said, and roles 1 and 2 will be ignored. Discussion of role 3
will be brief, but there are statistical issues that should be mentioned.

Numerous problems that might be termed problems of multiplicity occur in
the conduct of an RCT. Examples of these which have been mentioned
already in this book are the following:

1. Which subgroups should be examined to see if differences in treat-
ment effect exist?

2. Which of the outcome variables is of primary importance and which
are secondary?

3. Should outcomes be compared using baseline information, and if
s0, how? Should the outcome variable be transformed?

If answering these questions is left until after the data are collected, then
the results of the trial may be given less credence than might otherwise be
the case. This is because the results will be open to the suspicion that the
choices made in 1 to 3 may have been made to enhance the apparent effect
of one treatment at the expense of the others. The choices do not need to
have been made in this way for the trial to be less compelling — the
inability of the investigators to exclude the possibility of this form of bias
is sufficient to damage the trial. If the choices were all made and docu-
mented in the protocol, then they could not have been influenced by the
results, and the trial would command greater respect. Indeed, some jour-
nals now make a preliminary decision to publish a trial on the basis of the
protocol, not soley on the basis of the results, as a means of avoiding
publication bias (cf. Subsection 2.2.4).

10.2 Protocol Deviation

The protocol describes which patients should be recruited to the trial, how
they are treated and monitored during the trial, and how they are assessed
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at its conclusion. However, even in the best-run trials, things will happen
that ensure that not all patients adhere to the protocol. Patients may not take
the tablets in the quantities and at the times specified in the protocol, they
may not turn up at the clinic for outcome measurements to be assessed or
they may assert their right to withdraw from the study. If such problems
affect a high proportion of the patients in the trial, then the whole study
could be undermined. Such protocol deviations have serious and sometimes
surprisingly subtle consequences. We will illustrate these by considering two
specific forms of protocol deviation, namely treating patients that are not
eligible for the trial and those given a treatment other than that which was
allocated by the randomization.

10.2.1 Ineligible Patients

In 1966, the British Medical Research Council (MRC) conducted an RCT to
compare surgery and radiotherapy for the treatment of operable lung cancer.
Only patients who were thought to be suitable for surgery were entered into
the trial, but in 1966 the imaging technology available to help to assess
suitability for surgery was much less advanced than it is now.

The situation illustrated in Figure 10.1 arose. Some patients with inoper-
able tumors were entered into the study because the preoperative assess-

N/

Inoperable patients

Radiotherapy Surgery group
group

FIGURE 10.1
An example of ineligible patients in a trial.
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ment of the status of the tumor was mistaken. Often this would be because
of the precise location of the tumor within the lung or thorax. If allocated
to surgery, the surgeon would, at operation, be able to identify the patient
as one on whom the operation could not proceed as planned, and the
mistaken assessment of an operable tumor would be revealed. However, if
the patient had been allocated to the radiotherapy group, the mistake would
not have come to light.

This poses a major problem for the trial. The patients in the unshaded
surgery group in Figure 10.1 (those on whom the surgeon could operate)
cannot be compared with those in the unshaded radiotherapy group because
we cannot identify these patients. Randomization ensures that similar pro-
portions of patients with inoperable tumors appear in both treatment groups.
However, patients with inoperable tumors are likely to have more advanced
cancer and have a shorter life expectancy. Consequently, comparing the
unshaded surgery group with the entire radiotherapy group will bias the
comparison in favor of surgery because the radiotherapy group contains a
subgroup of patients with poorer prognoses that has been excluded from
the surgery group.

An approach to dealing with this problem is outlined in Section 10.3 of
this chapter.

10.2.2 Administration of Treatment Other than That Allocated

Patients sometimes receive treatments other than the one allocated at ran-
domization. This can occur for several reasons, including;:

1. Refusal by the patient to take the allocated treatment.

2. Failure to comply with the treatment regimen specified in the
protocol.

3. The doctor imposes a change in the interests of the well-being of the
patient.

An example of problems arising from 3 is shown in Table 10.1, which
relates to a trial in which medical and surgical treatments for angina were
compared (European Coronary Surgery Study Group, 1979). Patients were
randomly allocated to surgical or medical groups but surgery was per-
formed on some of the patients allocated to medical treatment and some
patients allocated to surgery did not have an operation and received medical
treatment. Numbers of patients in these groups, together with the numbers
who did receive the treatment to which they were allocated, are given in
Table 10.1.

An important outcome variable was whether or not the patient was alive
2 years after they entered the study. The percentage of patients in each
category who died within 2 years of entry to the study is also shown in
the table.
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TABLE 10.1
Outcomes in Angina Trial
Allocated to Surgical Treatment Allocated to Medical Treatment
Actually Received Actually Received Actually Received Actually Received
Surgical Treatment = Medical Treatment Surgical Treatment = Medical Treatment
Number of patients 369 26 48 323
Two-year mortality rate 15 4.1% 6 23.1% 2 4.0% 27 8.4%

(number and percentage)

Source: European Coronary Surgery Study Group (1979), Coronary-artery bypass surgery in stable angina pectoris: survival
at two years, Lancet, i, 889-893.
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If we compare the groups who actually received the treatment they were
intended to have, we find that the 2-year mortality on surgery (4.1%, 15
deaths out of 369 patients) compares favorably with that on medical treat-
ment (8.4%, 27 deaths out of 323 patients). Applying a x” test gives P = 0.018,
suggesting that the difference has not arisen by chance.

On the other hand if we compare the groups as they were formed by
randomization, then surgical treatment does not appear to do so well.

Mortality for those allocated to surgical treatment is 6415 5.3%
26 + 369
. . . 2427
Mortality for those allocated to medical treatment is ————=7.8%
48 +323

Applying a y” test gives P = 0.16, so chance now becomes a plausible
explanation of the observed difference between the treatments.

A clue about what might be going on comes from the high mortality
(23.1%) attached to patients randomized to surgery but who received med-
ical treatment. It is a strong possibility that these patients were sufficiently
ill that the surgeon did not believe that an operation was in their best interests
— their chances of surviving it were too low to proceed — so they were
given the medical option. Similar patients allocated to medical treatment
would simply proceed with their allotted treatment. Hence, in the compar-
ison between those who received the treatments to which they were allo-
cated, a group of high-risk patients has been removed from the surgery
group. It follows that this comparison is biased and potentially misleading.

A safer option is to compare the groups as formed by randomization,
notwithstanding the fact that some of those allocated to surgery got medicine
and vice versa. A rationale for this, both mathematical and clinical, is given
in the next section.

10.3 Analysis by Intention-to-Treat
10.3.1 Informal Description

When faced with all manner of deviations from the protocol, not just the
preceding descriptions, there is no entirely satisfactory solution. However,
there is a guiding rule that should only be broken in the full knowledge of
the potential consequences. The principle is that you should compare the
groups as they were formed by randomization, regardless of what has sub-
sequently happened to the patients. You are not necessarily analyzing the
patients according to how they were treated, but according to how you
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intended to treat them. Because of this, the principle is often referred to as
the dictum of analysis by intention-to-treat.

The justification of the approach is that any other way of grouping the
patients cannot be guaranteed to have been comparable at the start of the
study. Admittedly, you will often compare groups that are “contaminated” in
some way — in the example in Subsection 10.2.2, each allocated treatment
group contains a few patients who are given the other treatment.

Although there are no fully satisfactory solutions, comparing apparently
strange groups can often be viewed in ways that make the comparison seem
less strange. In the example in Subsection 10.2.1, if surgery turned out to be
the treatment of choice in the future, then patients found to have inoperable
tumors only at surgery would continue to arise. We would need to decide
how to treat such patients; in the MRC trial they were offered radiotherapy.
In other words, there will never be a time in clinical practice when surgery
is appropriate for all patients, and the provision of alternatives for those
whose tumors cannot be excised is implicit in the allocation of surgery.
Consequently, a more realistic approach is to view the trial as comparing
“the policy of offering surgery but accepting that some will need to resort
to radiotherapy with the policy of offering radiotherapy.”

The comparison of the groups as randomized is then an appropriate way
to compare these policies.

10.3.2 Theoretical Description

A more mathematical description can be given. It is rather simplistic but
illustrates the issues quite clearly. For definiteness, we will use the exam-
ple of the surgery vs. radiotherapy trial, although the principle applies
more widely.

The outcome, survival time, X, is supposed to have different means for
different types of patients and these are listed below.

1. Operable tumors allocated to radiotherapy have mean, say,
Ho +Tx =E(X|O,R)

2. Operable tumors allocated to surgery have mean
uo +15 =E(X|0O,S)

3. Inoperable tumors allocated to radiotherapy have mean
Hy+ 1 = E(X[IR)

4. Inoperable tumors allocated to surgery have mean
W+t =E(X|I,S)

The terms U, 1, represent the mean survival time for the patients with,
respectively, operable and inoperable tumors (and it is likely that pu, > u,).
The change in mean survival time that surgery and radiotherapy confer are,
respectively, T¢, Ty, and the aim of the trial is to estimate T; —T5. Note that
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the mean in group 4 contains the term 7, rather than 14 because patients in
the surgery group with inoperable tumors receive radiotherapy.

Suppose that the proportion of patients who have inoperable tumors is A,
which, because of randomization, we expect to be the same in the two
groups. We write Pr(I) = A for the probability that a patient has an inoperable
tumor, and Pr(O) for the complementary probability.

The mean survival time in the radiotherapy group is

E(X|R)=Pr(I)E(X |I,R)+Pr(O)E(X|O,R)
=My +7R) +(1=A)(Ho +Tr)
=My +(1-Muo + 15
If the radiotherapy group were compared with the group of patients who
actually received surgery, then we would be comparing this mean with a
group that has mean y, +715. Consequently, the difference in treatment
means would have expectation:
E(X[R)-E(X[0,8) =My +(1-Muo + T = (Mo +T5)
=Mu; —Ho) + T —Ts

As we do not expect L, to equal it;, the comparison of these groups pro-
vides a biased estimator. Moreover, the presence of the |1 parameters means
that we have little idea how this quantity relates to the quantity of inter-
est Ty — Ts.

The mean survival time for the group allocated to surgery, regardless of
which treatment they actually received, is

E(X|S)=Pr()E(X|I,S)+Pr(O)E(X|O,S)
=My + 1) +(1=A) (1o +7T5)
=My +(1=MUo + Mg —Tg) +T5

and the difference between the means of the groups as randomized is,
therefore:

E(X|R)-E(X|S) =My +(1=Mup +Tr]=[My; + (1= Mg +M(Tg — Tg) + Ts]
=(1-2A)(tg —7s)

Again we get a biased result, but this time, the bias only depends on the
quantity of interest, Tz — T and A. We know that (1-A)(tz —T5) is an atten-
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uated version of T, — 75, as 0 < A < 1. Also, we see that the comparison is
unbiased when A =0, i.e., when there are no patients with inoperable tumors
(so there would not have been a problem in the first place). The groups are
identical if A = 1, i.e., if all patients have inoperable tumors so no one ends
up with surgery and the comparison is then vacuous.

The preceding derivation makes many dubious assumptions, so it would
be unwise to suppose that in these (and related) circumstances, the compar-
ison of randomized groups necessarily leads to an attenuated estimate of
the treatment effect. Nevertheless, the results are not without an aspect of
realism and do serve to illustrate the nature of the difficult problem that the
intention-to-treat dictum attempts to address.

Because comparisons of the groups as randomized is the only comparison
that is based on comparable groups, it should always be presented in the
report of the trial. Other analyses, such as the comparison of the groups of
patients who were actually treated as specified in the protocol (usually called
the per protocol analysis) can be presented but should be interpreted cautiously.

Exercises

1. Pain from muscle strains generally lasts about two weeks. A trial
was performed to compare a fortnight of treatment with one of two
types of painkiller for the relief of pain from this condition. One
treatment was paracetamol (acetaminophen) with codeine (C) and
the other was indomethacin (I). About 20% of the patients random-
ized to I complained of stomach pains within 2 d of starting treat-
ment and had to stop taking the treatment. Your clinical colleague
suggests comparing those allocated to C with those who completed
two weeks taking I. What is wrong with this strategy? What com-
parison should be made? This would be an instance of what dictum?
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Some Special Designs: Crossovers,
Equivalence, and Clusters

The trials considered so far have all been of a simple kind, often referred to
as parallel group designs, in which individual patients are allocated to one of
the treatments under investigation, and the intention is to assess if the
treatments used differ. However, there are many other kinds of trials, and
three more specialized designs will be described in this chapter. In crossover
trials, patients may receive, in turn, several of the treatments under investi-
gation. In cluster randomized trials, it is not individual patients but groups
of patients or other subjects who are randomized to different treatments.
Equivalence trials seek to establish equivalence, rather than difference,
between treatments.

11.1 Crossover Trials

In all the trials considered so far in this book, each patient has received just
one of the treatments being compared. This is natural for a majority of
diseases and conditions. Investigation of a new material for use in the con-
struction of plasters for fractures, new approaches to removing the appendix
and antithrombolytic treatment (preventing blood clots) following heart
attacks are examples of trials in which each patient will have the opportunity
of only one treatment. However, what about conditions such as asthma and
diabetes, which cannot be cured? What about comparing different dialyzer
membranes for patients having kidney dialysis thrice a week? Such patients
could be given several treatments.

Trials in which the aim is not to cure a condition present the possibility of
giving more than one treatment to each patient. Such trials are known as
crossover trials.

The main advantage of using a crossover trial is that the outcome of a
patient when given treatment A is not compared to the outcome from some
different patients given treatment B but to the outcome from the same patient
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when given B. Crossover trials therefore seem to offer the possibility of
obtaining more precise treatment comparisons.

11.2 The AB/BA Design

For two treatments, the simplest form of crossover design would be to give
each patient treatment A and then follow it with B. However, the results
would be ambiguous for a reason that has two forms.

1. If Aappeared worse than B, it may be that the treatment given second
does better, whatever it is, and had we given the treatments in the
opposite order, it would have been B that fared worse. This is not
entirely fanciful; if blood pressures are measured serially, they are
commonly found to be higher the first few times they are measured.

2. If all the patients start the trial at the same time, there may be a trend
that affects the outcomes. One instance might be if all the readings
from the laboratory were higher on Monday than Tuesday.

To overcome this, the simplest form of crossover trial that is used randomly
allocates patients to two groups. Patients in group 1 receive the treatments
in the order AB, whereas those in group 2 receive them in the opposite order.
The times when treatments are given are referred to as treatment periods or
simply, periods. The design is represented schematically in the following table.

Treatment Allocations in the AB/BA Design

Period 1 Period 2
Group 1 A B
Group 2 B A

This design overcomes the problems described in 1 and 2. If A appears to
do worse than B in group 1, this can only be ascribed to an order or period
effect if B appears to do worse than A in group 2.

11.3 Analysis of AB/BA Design for Continuous Outcomes
11.3.1  The Theory

An analysis needs to take account of several features.
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1. It should ensure that pairs of measurements from a single patient
be kept together, in some sense.

2. There may be systematic differences between the treatment periods
as well as treatment effects.

In the following it is assumed that the numbers of patients allocated to
groups 1 and 2 are n; and n,, respectively. It will also be assumed that the
outcome has a normal distribution.

The analysis starts from a model for the outcome. In group 1, the outcome
on patient i (i = 1, ..., ny) in period j (j = 1,2) is assumed to be x;. For i =1,
ey Ny,

Xq=U+m +7T, +&; +¢; (period 1) and x,, =u+m, + 15 +&; + ¢, (period 2)

Here, m; (j =1,2) is the systematic effect of period j, T,, T are the systematic
effects of treatment, and |1 is a general mean. The term &, represents the effect
of the ith patient. Patients may have a tendency to always give a high or
low response, and we model this by taking &; to be a normal random variable
with mean 0 and variance 6. Note that the same realization of &; appears
in the outcome for both periods. The € terms are independent error terms
with zero mean and variance 6°.

For group 2, an identical argument gives, fori =n, + 1, ..., n; + n,,

Xq=U+7m, +T5+E; +¢; (period 1) and x,, =u+mn, +1, +&; + ¢, (period 2)

The term &, represents the variability that exists between patients. How-
ever, this should not affect our analysis as the adoption of a crossover design
has effectively eliminated this source of variation. This gives the clue on how
to proceed most simply. We can remove &, from the analysis by taking dif-
ferences within each patient. The differences in group 1 are:

di=xqj—xp,=n+14+m; i=1, ., m

1

where T =n, -1, T=1, — T, and M; = €; — €;,. The first of these parameters
measures the difference between the treatment periods, the second is what
we are interested in, namely, the difference between the treatments, and the
third is another error term, with zero mean and variance 6> = 26°. In group
2, the differences are:

di=xqg—xp,=n—-t+m;, i=n+1, .., n+n,
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Therefore, the expected value of the differences in group 1 is t+7 and in
group 2 is m—t. If there is no treatment difference, then T =0, and the two
sets of differences have the same expectation. In other words, the hypothesis
of no treatment difference in the AB/BA design is tested simply by using a
two-sample t-test to compare the two sets of within-patient differences.

If the mean sample difference in group k is d,, k = 1,2 then E(d, — d,) = 27.
So, an estimate of the treatment difference tis 1(d; —d,). A confidence inter-
val for 7 can be found by dividing the ends of the usual confidence interval
for the difference between the means of the two sets of differences by 2. This
procedure is illustrated in the following text.

Note that the term &; was eliminated from the analysis by taking differ-
ences. Hence, the precision of the results depends only on the variance of
the €s, 6> and not on the variance of §;, 3. For outcomes that differ much
more between individuals than within individuals, the elimination of a
relatively large variance component 6 from analysis is valuable. This is a
mathematical expression of the intuitive observations that it is better to use
a patient as his or her own control.

11.3.2  An Application

Children suffering from enuresis (bed wetting) are given a drug to alleviate
their problem. The drug is given for a fortnight, and the outcome is the
number of dry nights (out of 14) observed. The control drug is a placebo.
Patients are allocated to group 1, in which the drug is given for a fortnight.
At the end of this period, a placebo is administered for a fortnight and the
same outcome variable is recorded. In group 2, the placebo is given first
followed by the drug. The data for 29 patients are shown in Table 11.1.
The mean differences in the two groups are

Group 1:d; =2.824  Group 2: d, =-1.25

The mean in group 1 is positive, and as this is the mean of differences
(drug-placebo), it suggests that the number of dry nights is larger on the
drug than the placebo. The mean in group 2 is negative, and as this is the
mean of differences (placebo-drug), it again suggests that the number of dry
nights is larger on the drug than the placebo.

Does this stand up to more careful scrutiny? To do this we compare the two
sets of differences using a two-sample f-test. Doing this in Minitab, with group
1 differences in a column named Group 1, etc., we obtain the following output:

Two-Sanple T for Goup 1 vs. Goup 2

N Mean St Dev SE Mean
Goup 1 17 2.82 3. 47 0. 84
Group 2 12 -1.25 2.99 0. 86
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TABLE 11.1
Data from Enuresis Trial: Number of Dry Nights out of 14
Group 1 Drug > Placebo Group 2 Placebo > Drug
Patient Period1 Period 2 Difference Patient Period1 Period2 Difference
1 8 5 3 18 12 11 1
2 14 10 4 19 6 8 -2
3 8 0 8 20 13 9 4
4 9 7 2 21 8 8 0
5 11 6 5 22 8 9 -1
6 3 5 -2 23 4 8 —4
7 13 12 1 24 8 14 -6
8 10 2 8 25 2 4 -2
9 6 0 6 26 8 13 -5
10 0 0 0 27 9 7 2
11 7 5 2 28 7 10 -3
12 13 13 0 29 7 6 -1
13 8 10 -2
14 7 7 0
15 9 0 9
16 10 6 4
17 2 2 0

Source: Data from Armitage P., Hills, M. (1982), The two-period crossover trial, The Statistician,
31, 119-131.

95% Cl for mu Goup 1 - nu Goup 2: (1.54, 6.61)

T-Test mu Goup 1 = mu Goup 2 (vs. not =): T = 3.29
P = 0.0028 DF = 27

Bot h use Pool ed StDev = 3.28

We see that the test of the null hypothesis that the means in the two groups
are the same, i.e., T =0, yields P = 0.0028, indicating that the drug does appear
to alleviate the problem.

The difference in means, d, —d, = 4.074, and the preceding output shows
that an associated 95% confidence interval is (1.54, 6.61).

At the end of Subsection 11.3.1, The Theory, it was shown that
E(d, -d,)=27, ie., d; —d, is an unbiased estimator not of the quantity of
interest but of twice that quantity. Consequently, the estimator of t is
3(d, —d,) = 2.037 nights. A 95% confidence interval for T is (*/2 x 1.54, /2 x
6.61) = (0.77, 3.31) nights.

11.4 The Issue of Carryover

An obvious potential problem with a crossover trial is that the effects of the
treatment given in period 1 may still persist during period 2. Such a persis-
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tence of a treatment effect is known as a carryover effect. What might be the
effect if such a phenomenon were present?
A way to investigate this is to adapt the model presented in Subsection
11.3.1. This can be done as follows, using the notation of that subsection.
In group 1, so for i =1, ..., n;, we leave the model for period 1 unchanged
(carryover cannot affect the first period), but add a term y, to the model for
period 2.

Xy =U+T +T,+E +¢;, (period 1) and

Xp =U+T, +T5+7, +&;+€, (period 2)

The response in period 2 might be affected by the persistent effect of
treatment A given in period 1, and y, is a parameter that represents this
effect. Similarly for y;, so the model for responses in group 2, i.e., for
i=n;+1, ..., n, +n,, becomes

X =UW+T +T5+8 +¢€, (period 1) and

Xpp =U+T, +T4 +Vp +§,’ +€, (period 2)

If we did not take any notice of this amended form of the model and
decided to estimate treatment effect as before, i.e., using 1(d, —d,), what
would we actually be estimating? B

From the amended model, it follows that E(d,)=n+1-7, and
E(d,) =mn—1-Y3, and hence, E[ ] (d, —d,)] =1~ ]y, wherey =y, — ;. There-
fore, if there is a carryover effect, i.e., y #0, and it is ignored in the analysis,
the estimator of 1 is biased.

What can be done about this? One proposal that was widely followed for
many years was to perform a preliminary analysis to test the null hypothesis
that y = 0. Such a hypothesis test is simple to implement: it is a two-sample
t-test comparing the sums s; = x;; + x;, between groups 1 and 2. The proce-
dure continued as follows:

1. If the test rejected the null hypothesis y = 0 then the data from period
1 only were compared using the usual t-test for a parallel group trial
(to which this study has now been reduced).

2. If the test could not discredit y =0 then the procedure described in
Section 11.3 of this chapter is followed.

This approach is not recommended now because there are several prob-

lems. The most transparent one is that &; has not been eliminated from the
test of y = 0. So this test is affected by between-patient variation. This is likely

© 2006 by Taylor and Francis Group, LLC



Some Special Designs: Crossovers, Equivalence, and Clusters 199

to be large, and as the size of the trial would be determined by a sample
size calculation based on the smaller variance G, it is likely that the test
of y=0 has poor power. Consequently, the decision to follow the procedure
in Section 11.3 of this chapter may well be taken even in the presence of a
substantial nonzero value of 7.

The recommended approach is not to use this particular crossover design
when there is a possibility of a carryover effect. You should try to use
nonstatistical arguments, perhaps based on the half-lives of drugs, etc., to
decide how long treatment effects are likely to persist. The AB/BA design
can then be used if the treatment periods are separated by “washout periods”
whose duration is sufficient to ensure that carryover cannot occur.

11.5 Equivalence Trials
11.5.1 General Remarks

There are circumstances when the aim of a trial is not to detect differences
between the treatments under study but to establish that, for all practical
purposes, the efficacy of two treatments is equivalent. It may be that one
treatment might be thought to be safer than another, one might be cheaper,
or there may be advantages in terms of convenience.

A fundamental feature of an equivalence trial is that the usual hypothesis
test is of little value. Failing to establish that one treatment is superior to the
other is not the same as establishing their equivalence; see Subsection 3.2.1.
On the other hand, a difference that is detected may have little importance
and could well correspond to clinical equivalence.

The usual method when determining the equivalence of two treatments,
A and B, is to compute a 95% confidence interval or, in general, a 100(1 — o) %
interval for the difference in the treatment means, 1, and u,. For the pur-
poses of illustration, it will be assumed that the standard deviation of the
outcomes, o, is known. If n, and n; patients are recruited to each group,
then the confidence interval is

(d-z,,0M,d +2z,,0M) (11.1)

where d is the difference in the sample means, z; is such that Pr(Z> z;) = £,
where Z is a standard normal variable and, as in Chapter 3, A =Vn,' +n;".
A commonly used method is to consider the treatments to be equivalent
if both ends of the interval in Equation 11.1 lie within the prespecified
interval of equivalence (-9, ). If this does not occur, then equivalence has
not been established. There is a more general formulation using an inter-
val (8, ,6,), which can be helpful when comparing a new treatment with a
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standard, and there is less concern if the new treatment is better than the
standard. This refinement of the methodology will not be pursued here. The
specification of § must be made in close collaboration with clinical experts
and is, in some ways, analogous to specifying T,, in a conventional parallel
groups trial (cf. Chapter 3).

The methods explained in Chapter 3 for determining the size of a conven-
tional RCT do not apply directly to equivalence studies, because they are
focused on a test of the hypothesis 1=, —u,; =0, which is inappropriate in
this setting. The calculations and associated error probabilities required for
equivalence trials are set out in the following subsection.

11.5.2 Sample Sizes for Equivalence Trials with Normally
Distributed Outcomes

It should be recalled that the null hypothesis can only be discredited, it
cannot be shown to be true. In the context of an equivalence trial, it is
therefore useful to think in terms of the null hypothesis representing differ-
ence and the alternative being equivalence. These hypotheses might be writ-
ten as

HO:M>8 vs.Hl:MSS

It should be noted that there is no point in trying to establish exact equiv-
alence, § = 0, as there will always be some uncertainty in our estimates, and
such a null hypothesis would never be discredited. As with conventional
trials, two kinds of mistakes can be made when conducting an equivalence
trial: it can be concluded that the treatments are equivalent when they are
not, or it can be concluded that genuinely equivalent treatments are not
equivalent. In terms of the preceding hypotheses, these are the type I and
type Il errors, respectively. As with conventional trials, the sample size is set
to place acceptable values on these error probabilities.

Two treatments will be deemed equivalent if the interval in Equation 11.1 lies
within (-8,8). This amounts to requiring that d € (—¢,¢) where ¢=06-2z, GA.
Note that it would be impossible to assert equivalence if & <z, o). The distri-
bution of d is normal with mean T and standard deviation GA,>so

Pr(;le(—g,g)):@(Q_T)_q)(_Q—T 0T —5—1
Ao

1 11.2
- +z,,) (112)

The chance of asserting equivalence when the treatments are not equiva-
lent (which in terms of parameters we take to mean “c‘ 239), i.e., the type I
error rate varies with 7, reaching a maximum over the region of difference,
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"c‘ >0, when ‘i: 8. The type I error rate is taken to be the value of Equation
11.2 when 1 =0, which is

28 25
(D(—z;a)—Q(z;a—M):;oc—d{z;u—m) (11.3)

The power of the trial, 1 - B, is the probability of declaring the treatments
are equivalent when they really are equivalent. For this purpose, the power
is defined as the value of Equation 11.2 when there is exact equivalence, i.e.,
T = 0. Hence

)
1-B=20| ——-2z, |[-1
P (7\.(5 Zz‘*]

and, therefore,

)
173P=y)= q)(kc_ Z;a)
It follows that
8/(A0) = (23, +214) (11.4)

so if the two treatment groups have the same size, n, we have

2

c
11:28—2(2%m+z%ﬁ)2 (11.5)

tSubstituting 8/(Ao) = (z%a +Z%B) into Equation 11.3 gives the type I error
rate as

el —D(—y. — ~1
=0 — z%a Zz%ﬁ)~2a

assuming a reasonable power, say, >70%. Therefore, if equivalence is based
on a 100(1 — 0)% confidence interval, then the type I error rate is 100(*/20.)%,
so a 95% confidence interval has type I error 2.5%.
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11.5.3 Comparison of Conventional and Equivalence Trials

The roles of t,,, the minimal clinically important difference, and 6 are similar,
especially in the way they appear in the formulae in Subsection 11.5.2 of this
chapter. However, it will often be prudent to use a value of & substantially
smaller than a value of 1), used in a related but conventional trial. In a trial
looking for a difference, a clinician may only be interested in changing
treatments if the new therapy offers a substantial advantage. In an equiva-
lence trial, evidence is sought to support the interchangeability of the two
treatments, and it may then be appropriate to demand a closer agreement
in their mean response. A further reason why equivalence trials are often
larger than conventional trials can be found from comparing formulae in
Equation 3.3 of Chapter 3 and Equation 11.4. The term z; in Equation 3.3 of
Chapter 3 becomes 21[3 in Equation 11.4 and as le > zg, this will increase the
required sample size’

There are many less technical issues surrounding equivalence trials but
these will not be discussed in depth. A general comment that is often made
concerns the standard of execution of these studies. In a conventional trial,
sloppy conduct is not at all in the interests of the investigator: e.g., poor data
recording and checking will increase ¢ and make it more difficult to find
genuine differences. In an equivalence study, sloppiness tends to increase
the chances that the investigator will be unable to discover a difference,
which is now the aim of the study. This is certainly true if part of the
sloppiness includes an inappropriate analysis. However, if the analysis is
based on comparing the confidence interval in Equation 11.1 with a prespec-
ified interval of equivalence, then poor technique will tend to widen Equa-
tion 11.1, thereby reducing the chance it will be contained within a properly
chosen interval of equivalence. It is, nevertheless, worth reinforcing that poor
technique, such as inadequate attention to blindness, can cause problems for
an equivalence study that are every bit as severe as those caused to conven-
tional trials.

11.6 Cluster Randomized Trials

11.6.1 Introduction and Rationale

The trials described up to this time have allocated each patient to a treatment,
or in the case of crossover trials, a sequence of treatments. As RCTs have
become more widely accepted as the method of choice for the assessment
of treatment efficacy, there has been an increase in the areas in which inves-
tigators have wanted to use this methodology. However, application in areas
different from the traditional use in clinical medicine, which essentially deals
with the health of individual patients, often gives rise to a particular diffi-
culty. This is that it is no longer appropriate to randomize individual patients

© 2006 by Taylor and Francis Group, LLC



Some Special Designs: Crossovers, Equivalence, and Clusters 203

but whole clusters, or groups of patients must be allocated en bloc to a given
treatment. These are known as cluster randomized or group randomized trials.

One example is provided by a trial designed to assess the impact of
improved methods for the treatment of sexually transmitted diseases (STDs)
on the incidence of HIV infection in a rural region of Tanzania, near Mwanza
(Grosskurth et al., 1995). The treatment comprised a program that among
other things, involved the training of health center staff to manage STDs
better, the provision of better laboratory facilities in Mwanza, and the pro-
vision of a reliable supply of effective drugs for the treatment of STDs. Twelve
large communities, each being the catchment area of a health center, were
involved in the study. The RCT had to apply the improved methods and
compare these with the current methods. Individuals cannot be randomized
as the methods are not applied to the patients but to the staff of the health
centers, each serving many hundreds of patients. Therefore, the community
and its health center were randomly allocated to receive the improved treat-
ment scheme or the current scheme. With only twelve communities in the
trial, if the communities exhibit substantial initial differences in their HIV
incidences, it is clear that the randomization could lead to substantial dif-
ferences between the two treatment groups. This was indeed the case: com-
munities near to major roads or the shore of Lake Victoria did exhibit higher
incidence of HIV infection than did more remote communities. To overcome
this, the investigators formed six pairs from the communities, matched with
respect to their location and a number of other factors. One member of each
pair was randomly allocated to the new treatment scheme and the other
received the standard treatment.

This illustrates a general feature of cluster randomized trials: the number
of clusters is generally much lower than the number of patients in the usual
individual-patient parallel group study. Often, small numbers of clusters
arise when each cluster comprises many patients and, in these cases, the
clusters may not be particularly heterogeneous, so important imbalances
might not arise. However, as the preceding example shows, this is by no
means always the case and, in these instances, paired designs such as that
just described are used.

Another example is provided by a study that is similar insofar as it is
aimed at assessing the effect of an intervention in primary care. The study
is designed to assess whether additional training of nurses and GPs in a
general practice would improve the care of patients with newly diagnosed
type II diabetes mellitus (Kinmonth et al., 1998). Forty-one practices in the
south of England were randomized to the status quo or to receive additional
training for their staff. The outcomes were measures of quality of life and of
diabetic control. In this trial there was no pairing of practices.

The main statistical problem that arises with this sort of study is that you
cannot analyze the data as if the patients themselves had been individually
randomized to treatment. It cannot be assumed, ab initio, that responses on
patients that are from the same cluster are independent. Such a correlation
could arise because of similarities in the way certain measurements are taken
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by the practice nurse, or that methods for sending samples to the laboratory
might differ more between practices than they do within a practice. For
variables such as measures of quality of life, less tangible aspects, such as
the atmosphere within a practice, could have a bearing. If these responses
have a positive correlation, then they will be more similar than would be
expected if they were independent. If the method used for the analysis
assumes that the individual responses are independent then the estimated
variance will be too small. This can be seen more formally as follows.

Suppose the outcome of the jth individual in the ith cluster is represented
by a continuous random variable X; with mean i ,,1; in treatment groups
A and B, respectively, and variance 6% Suppose also that responses within
a cluster have correlation p and that responses in different clusters are inde-
pendent. The estimate of variance, computed from one of the treatment
groups (so the mean of each response is the same), but without regard to
the presence of clusters is

6t =" (11.6)

K
the ith cluster has size n; and N = Z n;, where there are K clusters. The mean
i=1

K n
is computed without taking account of the clustering, so X = ZZX,-]» / N.

=1 j=1

Expanding the numerator of Equation 11.6 and taking expectations we obtain:

ko
E(N-1)6%)=No* - N"E[ 13" ' [x, ~E(X,)]

=1 j=1

K
=No? - N7"'var ZT,-
i=1
1 K
_Ne2_ & ,
=No N Zvar(Tl)

i=1

as clusters are independent and T; is the sum of responses in cluster i. This
variance can be computed as
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var(T;) = Z var(X;) + 2 cov(X;, Xy)
j=1

j#l

=n,6% +n,(n; —1)po?

so the expectation of Equation 11.6 is 6°(1— Cp) where

Z”i(”i -1)

N(N - 1)

Thus if the analyst supposed that Equation 11.6 was a valid estimate of error,
then the analysis would be biased with too small a value used for the estimate
of standard deviation, with a consequent exaggeration of the significance of
treatment effects.

11.6.2 Methods of Analysis for Cluster-Randomized Trials

A valid method of analysis is to use the simple treatment means, X ,, X;,
found ignoring clustering and to adapt the preceding calculations so that a
legitimate standard error for X, — X is used. The variance of a treatment
mean is, in the notation of the previous subsection,

N_Zvar[iTi]z Zvar(T) N- ch +n,(n; — 1)pc?)

i=1

o’
=—|1+
N Pl

Thus the effect of clustering is to increase the variance of the sample mean
by a factor [1+p(Zn7 / N —1)]. If the clusters all have the same size, 1, then
this factor becomes [1+ p(n—1)]. Thus, the variance, V, of X, — X, can be
found as the sum of this expression for the two treatment groups and a test
of the null hypothesis of no treatment difference can be made by referring
(X, —X3)/\V to a standard normal distribution.

There remains the problem of how to estimate the variance of an individual
response, 67, and the within-cluster correlation p. Naive methods for 6> have
been shown to be misleading.

Maximum likelihood methods could be employed but a simpler approach
can be used. In this a model is postulated for the outcomes from a cluster-
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randomized trial. The model has some similarities to the model proposed
in Subsection 11.3.1 for a crossover trial. The idea is that the response on the
jth individual in the ith cluster is modeled by

Xij =Ur+G; + & (11.7)

where T is either A or B, depending on which treatment was applied in the
ith cluster. The terms ¢; are independent random variables with zero mean
and common variance 6;,. The term G, is a random variable, also with zero
mean, independent of €, which measures the effect of the ith cluster. As
with the random variable measuring the patient effect in a crossover trial, &;,
the same realization of G, is applied to each member of the cluster. The
variance of G; is 65. Consequently, responses in a cluster that has a larger
value of G; will all tend to be higher, and it is this feature of the model that
induces the within-cluster correlation needed to make the model reasonable.
More specifically, the variance of any member of a cluster is 6 = 65 + Gy,
and the covariance of any two members of the same cluster is, from Equation
11.7, for j# ¢:

E[(X; —ur)(X, —ur) | = E[ (G, +€,)G, +2,) |= 0%

It follows that the within-cluster correlation p = 62 / c’.

Estimates of 6% and 6}, can be found as the standard between- and within-
group variance components applied in each treatment group, and the results
averaged appropriately across the treatments. Alternatively, the mixed
model in Equation 11.7 can be fitted directly to all the data. Estimates
of 6% and p can be found from their relationships with 6% and o7, .

An alternative and simpler analysis is to compute the mean response
within each cluster, X;, and use these means as if they were raw data in a t-
test. The clusters are independent, so the analysis is free from the difficulties
due to within-cluster dependency. A potential criticism is that a t-test
assumes each number used in the test has the same variance. As the variance
of the mean of the ith cluster is 62 + 63, / n;, this is not true unless the clusters
all have the same size. However, the analysis will lose only a little efficiency
if either the clusters have similar sizes or if 6% is substantially larger than o7,
in which case the term varying with cluster size is relatively unimportant.

11.6.3 Sample Size Estimation for Continuous Outcomes from
Cluster-Randomized Trials

If the method of analysis is affected by the presence of clustering, so too is
the manner in which sample sizes are estimated. In the absence of clustering,
the formula for the size of each group is given by Equation 3.4 of Chapter 3
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2 2
267 (z5 + z%a)

T

where o is the type I error rate, 1 —  is the power to detect a difference
of 1,,, and 67 is the variance of the response of an individual patient. The
formula provides a link with N because the variance of each treatment mean
is 6%/N.

For a cluster randomized trial, the variance of the treatment mean is
not ¢* / N but (6° / N)[1+p(Zn? /N -1)]. A difficulty with cluster-random-
ized trials is that the sizes of the clusters may well not be known when the
trial is planned. In this case, it is essential to have some idea about this
quantity, perhaps through an estimate of the likely average cluster size, n,.
If this is available, the variance of the mean is taken to be (6* / N)[1+p(n, = 1),
and itis 6*[1+ p(n, — 1)] that is used in place of 6° in the sample size formula;
that is, the total number of patients in the clusters receiving each treatment
should be

26 (1+p(n, = D)z +2,,,)°

T

(11.8)

As can be seen, the presence of clustering means that the planning of a
cluster-randomized trial requires knowledge not only of all the quantities
needed for Equation 3.4 of Chapter 3 but additional information about the
size and effect of clustering, through 7, and p.

An alternative approach is to base the calculation of sample size on the
cluster means, giving a formula for the number of clusters that should receive
each treatment. If the outcome follows the model in Equation 11.7, then the
variance of the sample mean should be used in Equation 3.4 of Chapter 3
giving the number of clusters receiving each treatment as

2(og + 0y /n,)(z5+2,,)
2

(11.9)

T

11.6.4 General Remarks about Cluster-Randomized Trials

Cluster-randomized trials raise many complicated practical issues. The sam-
ple size estimates in the previous subsection are just one example. They
require the specification of not only the usual quantities but of the cluster
size and the intraclass correlation, which is likely to need extensive experi-
ence of the area of application before the trial can be planned adequately.
Sensible assessment of the sensitivity of the required number of patients will
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generally require the statistician to investigate the effect of a range of values
for p in Equation 11.8.

Other issues, such as the way withdrawals and dropouts are handled, and
the meaning of informed consent, present problems that are absent from
conventional trials. On a more technical level, the foregoing discussion has
concentrated on continuous outcomes for good reason. The technicalities
presented by binary outcomes are rather more formidable. Recent develop-
ments in hierarchical data-analysis do, however, mean that the efficient
analysis of cluster-randomized trials is becoming easier.

Exercises

1. The following data are from an AB/BA crossover trial in which
patients are treated with two bronchodilators (a widely used form
of inhaled drug designed to help patients with asthma), namely
salbutamol (S) and formoterol (F). The outcome presented in the
following table is the peak expiratory flow (PEF) in liters per minute
(I/min). Patients were randomized to receive the drug in the order
F then S or S then F (Data from Senn and Auclair, Statistics in Med-
icine, 1990, 9, 1287-1302).

PEF in Period 1 PEF in Period 2 Order
Patient (1/min) (1/min) (1=FS,2=SF)
1 310 270 1
2 370 385 2
3 310 400 2
4 310 260 1
5 380 410 2
6 370 300 1
7 410 390 1
8 290 320 2
9 250 210 1
10 380 350 1
11 260 340 2
12 90 220 2
13 330 365 1

Analyze the preceding data, assuming that there is no carryover
effect of treatment; be careful to define the statistical model that you
use. Make sure that your analysis includes a test of the null hypoth-
esis that there is no difference in the mean treatment effect when
treated with formoterol or salbutamol. You should also provide point
and interval (95%) estimates of the treatment effect, making sure
that you define clearly what you mean by this term. Compute similar
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quantities using the parallel group trial formed from the data in the
first period and comment.

2. Suppose that the assumption of no carryover cannot be sustained
on nonstatistical grounds and it is decided to try to use the data to
assess if carryover is present. Suppose that the model for the
responses is now:

Xy =U+T +T+E& +g, (period 1) and

Xp =W+T, +To+Y,+E& +€, (period 2)

in the F then S group and in which the terms are as defined in Section
11.4 of this chapter but with A and B replaced by F and S to conform
with the present application.

(a)What is the expectation of S; = x;; + x;,? What is the correspond-
ing expectation in the S and F group?

(b) What null hypothesis does a two-sample t-test between the two
samples of S;s test? Perform this test using the data from question
1. What conclusion can you draw?

(c) If you proceed with the analysis used in question 1 but the true
model is that shown in this question, what is the expectation of
the treatment estimator? What is a 95% confidence interval for
the bias term?

3. The model for the outcomes on the ith patient from an AB/BA
crossover trial is as follows:

Sequence Period 1 Period 2
AB(i=1,...,n) X =U+T +T,+E +¢€; Xp =U+T, +T5+& +€5
BA(G=n+1,..,2n) Xg =U+T +T+8& +€, Xp =U+T, +T4+E +€p

where L is the general mean, T is the effect of period j (=1,2), the
treatment effect of interest is T=1, — 15, and §;, ¢; are independent
residuals with zero mean and variances 63,67, respectively.

(a) Define d; = x;; —x;, and let the mean of these in sequence AB
be d,; and similarly for dg,. Also let x; 5, X;5, be the mean re-
sponses in period 1 for patients allocated to sequences AB and
BA, respectively. Show that J(d,; —dp,) has the same expecta-
tion as X, 5 — X;5, and identify this quantity.

(b) Find the variance of J(d,s — d3,) and of X, 55 — X;, and the ratio
R of these quantities.

(c) If 63 = 66 evaluate R and comment on the implication of this
value when deciding whether to use a crossover design or a
parallel group design.
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4. The type I error rate in an equivalence trial is given by Equation
11.2, with "c‘ >0. The actual value varies as T changes within this
region, reaching a maximum when M = 8. Prove that this is true.

5. Suppose that the outcome in a cluster randomized trial follows
Equation 11.7. Show if the required number of patients is estimated
by Equation 11.8, then this is consistent with the number of clusters
needed as computed by Equation 11.9.

6. A parameter 6 is to be estimated and M independent observations
are available. Each observation has mean 6 and the ith, 6,, has vari-
ance v;. It is proposed to estimate 0 using a statistic of the form

3 b,

where the w; are positive weights that sum to one. Show that the
estimator with minimum variance is

(S (S8

7. Apply the result of question 6 to the cluster-mean analysis of a
cluster-randomized trial. Comment on the properties of the estima-
tor derived.
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Meta-Analyses of Clinical Trials

12.1 What Are Meta-Analyses, and Why Are
They Needed?

The early chapters of this book may have given the impression that an RCT
is undertaken to establish whether one treatment is superior to another and,
provided the trial is properly conducted and of adequate size, that at the
conclusion of the trial there will be a clear-cut answer about which is the
better treatment. Moreover, once such a study has been published, it is
unlikely that it would be ethically defensible to run another similar trial.
Thus, the reader might have been led to believe that clinical research largely
comprises a collection of well-conducted studies which each settle once and
for all, which of the particular treatments is superior for the condition under
study. In reality things are quite different.

Even if the badly run studies are discounted, there are many reasons why
several RCTs may be run that test virtually the same treatments for virtually
the same type of patients. Studies do vary in the details of the treatments,
perhaps using different doses or treating for different durations, or recruit-
ing patients using different eligibility criteria. Even the best planned and
executed studies can fail to recruit adequate numbers of patients; perhaps
a trial has to be terminated early because of slow recruitment or the depar-
ture of key trial personnel. Studies can plan to recruit too few patients
because the investigators overestimated the minimal clinically important
difference; thus, although their study may have been nonsignificant, col-
leagues did not accept that it ruled out the possibility of a clinically impor-
tant difference. Large studies are often run for a number of years, and even
if one such should prove sufficiently decisive to make new trials unneces-
sary, many may still be in progress when these results are published. The
decision about the continuation of an existing trial in the light of strong,
new, but perhaps not fully digested results can be one of the most difficult
decisions for the triallist.

211
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The result of this environment is that the literature will contain many
reports of trials that all aim to compare the same, or very similar treatments
for more or less the same condition. There is the further complication that
the results of some trials will not make it into the literature at all. This may
be because no journal would accept the report, perhaps because the trial was
too small, or because the investigators did not submit their work, possibly
because they felt it was defective in some way or because it did not report
a definitive result. This can give rise to the issue of publication bias men-
tioned in Subsection 2.2.4 of Chapter 2. A related, but slightly different
problem is finding all published material: there are currently about 20,000
biomedical journals publishing around 2,000,000 articles each year, so locat-
ing all relevant articles is not a trivial task.

The clinician who wants to know what treatment to use for a given con-
dition is then faced with an array of individual studies, each relevant, to a
greater or lesser extent, but all slightly different. A natural response to this
position is for experts in the field to write review articles that collate, com-
pare, discuss, and summarize the current results in that field. Reviews,
sometimes called narrative reviews, in which the author discusses the results
selected have been around for decades. Meta-analyses or overviews of clin-
ical trials have a much shorter history, stretching back only 15 to 20 years.
These are quantitative reviews of all the available evidence. In some cases,
meta-analyses try to obtain the original data from RCTs but, more commonly,
they attempt to combine the published summaries of the results of a trial.

Meta-analyses attempt to combine results from trials and in this sense,
serve a similar purpose to a narrative review: they attempt to present a
digestible summary of numerous disparate pieces of research. However, by
combining large and small studies, they are based on a larger number of
patients than is found in any one trial, so there should, in principle, be
benefits in terms of power to detect treatment differences and increased
precision for estimates of treatment effect. In this way, the results from small,
inconclusive studies can contribute to an overall picture that is very com-
pelling. By combining results from several studies, each using its own treat-
ment regimen and eligible patients, the clinician is able to put the results of
the studies in a broader context. Even if the results of the trials are not
identical, consistency of results across a broad range of patients and regimens
can be very reassuring.

Many trials, even if they have adequate power overall, are not big enough
to provide strong evidence about the effect of treatment in important sub-
groups of patients. A further advantage of meta-analyses is that they may
allow such investigations in which previously it may have been thought
necessary to run a new study. In general, it is becoming an important part
of a trial protocol (see Section 10.1) to present a meta-analysis of studies in
the area of the proposed trial, to demonstrate that a new trial is justified and
the question being asked cannot be answered using data that have already
been collected.

© 2006 by Taylor and Francis Group, LLC



Meta-Analyses of Clinical Trials 213

12.2 Some Methodology for Meta-Analysis
12.2.1 Data Collection

The way data are collected for inclusion in a meta-analysis is an issue of
central importance to the subject. Indeed, the term systematic review seems
to be gaining acceptance as the term for the means of attempting to collect
all data from the research literature that are relevant to a particular question.
Only once a systematic review has been completed can a meta-analysis
proceed. Despite its pivotal position, the problems faced by those undertak-
ing systematic reviews are more concerned with issues of information
retrieval than statistics, so it is not central to the theme of this book and will
not be given the attention that it actually warrants.

Most systematic reviews of medical topics these days start with a search
of a computerized database of the medical literature. A widely used and
important database is Medline. This can be searched for keywords in the title
or keyword list of the paper. Although one of the best and most widely used
databases, Medline is far from exhaustive and the process cannot stop once
all the reports in Medline have been identified. Searching through the reports
cited in the papers that have been identified typically results in several new
studies coming to light. Knowledge of who are the active researchers in the
field is also helpful, as these people can often supply further information:
they are a particularly valuable source of information concerning unpub-
lished studies.

Once all the studies have been identified, they can be subjected to a meta-
analysis. There is some dispute about the extent to which the analyst can
interfere with the selection of studies at this stage. Some authors argue that
all identified trials must be included whereas others argue that it is wrong
to include studies whose methodological quality is clearly inadequate.
Some authors suggest scoring studies for quality and use this score either
to decide on the inclusion of the study or to weight the study when it is
included. One of the difficulties is that all studies will have some flaws,
and omitting any studies will necessarily require the exercise of judgment.
Although this will introduce some subjectivity, it is difficult to see how
worthwhile aggregations of data can emerge without the exercise of some
well-informed judgment.

12.2.2 Estimating the Overall Effect Using a Fixed-Effects Model

One of the aims of a meta-analysis is to adduce an estimate of the effect of
the treatment being assessed based on all the trials that have been identified.
The outcomes of trials differ widely and can be continuous or binary or some
other measure. To make the following as general as possible, it will be
assumed that the true overall effect is 8 and the estimate from the ith study
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is éi, i=1, ..., k. The 0s could be differences of means, of proportions or, as
is quite common, log odds ratios (the logarithm is used because log odds
ratios have a distribution much closer to normal than does the odds ratio
itself). It is also assumed that the only source of variability affecting 6; is
sampling variability, which is measured by the usual sampling variance v;.

This model is known as the fixed-effects model because the result from each
study is considered to estimate the same quantity 6, with deviations from
this essentially reflecting differences in the size of the trial (and some other
factors affecting the sampling variation). In some ways, this is reasonable;
the 6, are all summaries from RCTs and, if the underlying methodology is
sound should all be unbiased estimates of the treatment effect.

The minimum-variance estimator of 6 based on the 9, is

where w; =v;", and the subscript F emphasizes that a fixed-effects model is
in use. Thls estimator has variance 1/ (Zw;), and, assuming , is reasonably
close to normally distributed, a 95% confidence interval for 9 is

6, +1.96/ D w,

The example used in Subsection 9.2.3 was from a trial of the effect of giving
steroids or placebo to expectant mothers to see if it had an effect on the
incidence of respiratory complications in their babies. An overview in this
area was reported by Crowley et al. (1990) and Table 12.1 gives the results
from 12 of the trials reported in the overview. The aim of this particular
analysis is to see if the use of steroids given before preterm birth had an
effect on the number of deaths among very young babies.

The preceding method can be applied to these data. The first step is to
compute the odds ratio, i.e., the odds of death if steroids are administered
relative to the odds if a placebo is used. If the entries in columns 2 to 5 of
one row of Table 12.1 are 4, b, ¢, d, respectively, then the odds ratio is found
as [(a+3)(d+ D]/ [(b+3)(c+ )], where halves have been added to obtain
less biased estimates and to avoid difficulty in the case of trial 6.

The sampling variance for the natural log of this odds ratio is estimated
by (a+1)7" ++1H) " +(c+1)7" +(d+1)". Computing the odds ratio for these
trials gives the 51xth column of Table 12.1. The weights for the fixed effect
model can be found as described earlier, with 8, taken as the log odds ratio
for the ith trial; they are presented in column 7 of the table. It can be seen
that most weight is attached to the largest trials, as would be expected when
weighting only takes account of sampling variation.
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TABLE 12.1

Results from 12 Trials of the Effect of Maternal Steroid Therapy
on Early Neonatal Death and Weights Applied by Fixed- and
Random-Effects Meta-Analysis

Steroid Group  Control Group  (Qdds Weights
Trial Dead Alive Dead Alive Ratio Fixed Random
1 36 496 60 478 0.58 0.33 0.24
2 1 68 5 56 0.22 0.02 0.03
3 3 61 12 46 0.21 0.04 0.06
4 5 51 7 64 0.92 0.05 0.06
5 2 79 10 53 0.16 0.03 0.04
6 0 38 0 42 1.10 0.00 0.01
7 14 117 20 117 0.71 0.12 0.13
8 36 335 37 335 0.97 0.26 0.22
9 7 114 13 111 0.54 0.07 0.09
10 1 70 5 70 0.27 0.02 0.03
11 2 65 7 52 0.27 0.03 0.04
12 5 29 5 26 0.90 0.04 0.05

Source: Data from Crowley, P., Chalmers, 1., Keirse, M.J.N.C. (1990), The
effects of corticosteroid administration before preterm delivery: an over-
view of the evidence from controlled trials, British Journal of Obstetrics and
Gynaecology, 97, 11-25.

The fixed-effect estimate of the overall log odds ratio is found to be —0.480,
which corresponds to an odds ratio of 0.62. The 95% confidence interval
expressed on the odds ratio scale is (0.48, 0.79).

12.2.3 Estimating the Overall Effect Using a Random-Effects Model

The idea that each 6, estimates the same quantity because each RCT provides
an unbiased estimate of the treatment effect is not necessarily plausible. This
argument overlooks the clinical heterogeneity of the trials — slightly differ-
ent types of patient, slightly different treatment regimens, etc. — so it is
probably unwise to assume that the only source of difference between the 0,
is sampling variation. The hypothesis that the only difference between the ;
is sampling variation can be tested by computing:

k
Q= zwi(éi - éF)Z
i=1

If the hypothesis is true, then Q has a x* distribution with k — 1 degrees of
freedom. However, this test has low power, and a nonsignificant result
should certainly not be taken as evidence of homogeneity of the treatment
effects in the k trials. This hypothesis test is not all that valuable, and the
real value of computing Q will become clear in a moment.
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If éi does not estimate 6, what does it estimate? It is, in fact, assumed to
estimate 6;. However, if each trial has its own separate effect, what is the
point of combining the studies at all? This would be the case if the 6, were
simply k separate effects, but this formulation would not reflect the under-
lying situation. Although the trials may not all estimate the same thing, the
studies are similar, and this must be reintroduced to the formulation in
some way.

The usual approach, which is not without its oddities, is to assume that
the underlying trial effects are actually a random selection from a population
with mean 6 and variance ¢2. This is known as the random-effect model. To be
able to construct confidence intervals, it will also be assumed that the 6, are
normally distributed.

To be more precise, the random-effect model assumes that, given the 9,,
the observed effects are 6 ~N(8;,v,) and 8, ~ N(8,5?). It follows that the 6
can be written 9 =0+m; +¢;, where 1,, ¢, are independent random Varlables
with zero mean and variances ¢’,v;, respectively. Hence
Var(e )= (5 +v,=w;", say. It follows that the random-effects estimator is
() R = ZW, 9 / Zw;, with variance 1/ (Zw;). As with the fixed-effects model, the
95% conﬁdence interval is

6,£196/,/) @,

Because w; <w; for each i, it follows that the random-effects confidence
interval is wider than the fixed-effects interval. This is to be expected, as the
random-effects model has incorporated an extra source of variability into
the analysis.

However, w; depends on 62, so an estimate of this quantity is needed before
a random-effects analysis can proceed. This is provided by

=max-0,

Q-(k=1) (12.1)

Do (Xet) B

note that the formula uses weights w;, not w;. If the number of trials (k) is
small, then this estimate will be imprecise.

The value of Q computed for the data from Table 12.1 is 14.05, which gives
P =0.23. However, though there is little evidence of heterogeneity between
the studies, the low power of this test means that it is sensible to estimate ¢°
and proceed to a random-effects analysis. The preceding formula gives
6% =0.061 and the random-effects weights are given in the final column of
Table 12.1. Note that the larger trials still receive the most weight, but the
weighting is less heavily in favor of the large studies. The random-effects
estimate of the log odds ratio is —0.549, with corresponding odds ratio 0.58,
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and 95% confidence interval (0.42, 0.79). The confidence interval is wider
than that for the fixed-effects analysis, but the difference is slight because
the estimate of 6° is small.

12.3 Some Graphical Methods for Meta-Analysis
12.3.1 Meta-Analysis Diagrams

This is not an accepted term, but the diagrams that are to be described are
ubiquitous in reports of meta-analyses, so the term seems appropriate. They
are sometimes known as forest plots. Figure 12.1 shows summaries of the
results from the trials in Table 12.1 in this widely seen format.

The vertical axis is arbitrary, being merely a way of displaying the data
from the separate trials. For each trial, the odds ratio is shown by the plotted
point, and the associated 95% confidence interval is shown by the length of
the horizontal line. Care should obviously be taken to ensure that the plotted
difference, whether an odds ratio as in this case, or a difference in means, is
calculated in a consistent direction across all the trials. In Figure 12.1, all odds
ratios have been arranged so that values less than 1 correspond to steroids
being better than placebo. In this case, it is also sensible to display the odds
ratios on a log scale. Note that the trial with a very wide confidence interval
is the trial with zero deaths in either treatment group (trial 6 in Table 12.1).

The overall estimate of the odds ratio, and its associated confidence inter-
vals, calculated using both fixed-effects and random-effects models are
shown at the bottom of Figure 12.1.

Steroids better Placebo better

Trial
l
|

.01 1 1.0 10.0 100
Odds ratio

FIGURE 12.1
Plot of trials from Table 12.1.
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One of the disadvantages of this way of displaying the data from the meta-
analysis is that the most dominant features of the plot, such as the wide
interval for trial 6, are actually the least important features of the data. The
large trials that report estimates with highest precision (and hence are most
important in determining the overall estimate) are the ones with the smallest
confidence intervals and therefore are among the least conspicuous features
of the plot. A simple device that goes some way to counteract this feature
is to order the vertical axis such that the trials are listed in increasing order
of the width of their associated confidence interval. This way the important
trials appear first.

12.3.2 Sensitivity Plots for Random-Effects Analysis

Again, there is no widely accepted name for these plots. They are seen much
less often than those described in Subsection 12.3.1 of this chapter and,
indeed, much less often than they deserve to be seen. They are due to
Thompson (1993).

The idea is that the definition of the overall estimate for the random- effects
model, GR =Xw, 6 / Xw;, depends on the unknown between-trial variance 6°.
Usually an estimate of this is provided by Equation 12.1 but, being a measure
of the variation between just a few trials, this estimate is often imprecise.
However, it is the estimate 0 that is of direct interest, not 62, so it is useful
to investigate how 0, varies w1th different values of 6°. It may be that quite
a substantial variation in o” about 6* makes little difference to the value
of 8, in which case imprecision in the estimate of o’ is urumportant

The sensitivity plot computes 8, = 8;(c?) for a range of Values of 6%, and
the result is inspected. This is shown in Figure 12.2 (a) for 6> between 0 and
5 (recall 6 = 0.061, so this range represents a substantial variation about the
observed value). .

It can be seen from Figure 12.2 (a) that the estimate of 6, obtained from
the various values of 6> do not vary substantially, changing from 0.62 to 0.54
as 6” changes from 0 to 5.

A difficulty in producing one of these plots is to decide on the range of ¢’
that should be used. Obviously, the range will include 6 and, usually, it will
be appropriate to include o’ =0 as this corresponds to the fixed-effects
model (i.e., 0, = GR(O)) It is often more difficult to decide on the limit at the
upper end of the range. The case 6> =« is interpretable because it corre-
sponds to giving equal weight to each study, but is obviously impossible to
include on a plot such as Figure 12. Z(a) For this reason, 1t is sometlmes
convenient to plot GR(G ) not against 6° but against S* =c° /(6> +67), so
the cases S> =0, /2, and 1 correspond to cases of fixed effects, random
effects, and equal weighting, respectively. Such a plot appears in Figure
12.2(b). Inspection of the vertical scale of these plots shows that the overall
estimate of the odds ratio changes little over most of the range of 6>. For
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FIGURE 12.2 R .
(a) Plot of sensitivity of 8; to changes in value of 62. (b) Plot of sensitivity of 8; to changes in
value of 62 (transformed scale).

very large values of 6°, Figure 12.2(b) shows that the estimate of effect
changes much more rapidly than at smaller values of 6°, but even here the
change in the estimate is not that marked.

12.3.3 Funnel or Radial Plots

In these plots, that are sometimes also called Galbraith plots after their
originator, the values of 0, / se(H,), sometimes called the effect size, are plotted
on the vertical axis and the precision of each trial, 1/se(8;), is plotted on
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FIGURE 12.3
Plot of effect size against precision for trials in Table 12.1.

the horizontal axis. The trials from Table 12.1 are plotted in this way in
Figure 12.3.

The estimate 6;, in this application, the log odds ratio, can be found as the
slope of the line joining the origin and the point for the ith trial. In some
cases, a circular scale is appended so that by extrapolating the line from the
origin to the ith point out to this scale, the odds ratio can be read directly.
The use of such a radial scale is the basis of one of the names for this type
of plot.

The regression line through the origin has slope equal to the overall effect
size from a fixed-effects model. Figure 12.3 includes this and also the line
with slope equal to estimate from the random-effects model. The link with
regression shows means that the plot provides a clear method of identifying
the trials that are important in determining the overall estimate, at least for
the fixed-effects model.

It might be expected that the trials in this kind of plot would cluster
symmetrically about the line representing some measure of the overall effect.
The variability of each point in the vertical direction is the same by the
construction of the effect size. However, one use of these plots is to attempt
to detect publication bias. A plausible way publication bias might arise is if
small studies that show positive effects are more likely to be published than
small studies that do not show any positive effects. Large studies are less
likely to have their publishability judged on their findings, as negative
findings from a sufficiently large study may well be thought to be clinically
important. In this case, the studies would not appear to cluster symmetri-
cally about a regression through the origin. A method of detecting such
asymmetry that has been proposed is to fit a regression that is not con-
strained to pass through the origin: the fitted intercept then becomes a
measure of the asymmetry.
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12.4 Some General Issues in Meta-Analysis
12.4.1 Random-Effects and Intertrial Variation

The fixed-effects model has been described earlier as implausible because it
is thought unreasonable that different trials, with their differing designs, will
necessarily estimate the same quantity, with the only variability being sam-
pling error. The alternative is to use a random-effects model in which the
size of effect that each trial is actually trying to determine is considered to
be a sample from a population with given mean and variance. This is a
slightly odd formulation — trials will have been designed quite deliberately
to have the different characteristics that they actually possess, not because
they have arisen by chance.

Of course, this does not preclude modeling the variation between trials by
a random variable. In statistics generally the term random variation can apply
to widely varying types of difference. At one extreme some random variation
will be as genuinely unpredictable as it is possible to imagine, such as times
of emissions of particles in radioactive decay. On the other hand some dif-
ferences are consigned to random variation because we did not or could not
delve deeper into what makes the items differ. If you can look deeper, then
a more informative analysis may well emerge.

This is certainly the case with a meta-analysis. A random-effects model is
really a first step — a comprehensive analysis would entail investigating why
results from different trials might have differed. Studies with older patients
may have systematically different effects from those treating younger
patients; studies using surgical rather than medical treatments for heart dis-
ease may have different outcomes. The detection of such clinical heteroge-
neity is clearly important. Once statistical heterogeneity has been found, it
is important to go back to the trials and try to identify sources of clinical
heterogeneity that could account for these differences. However, the number
of studies is often too small for a formal statistical modeling approach to be
worthwhile, and simpler graphical methods can often be very valuable.
Although of great importance, this topic will not be pursued here.

12.4.2 Position of Meta-Analysis

In medical circles, and particularly for RCTs, meta-analysis has rapidly
gained a position of prominence. Many ethics committees and other relevant
bodies now demand evidence in the form of a formal review of existing
evidence before a trial can be permitted to proceed. Institutions have been
established whose sole purpose is the collation and dissemination of research
results. Despite this, it would be wrong to give the impression that the
present role of meta-analysis is uncontroversial and universally accepted.
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Critics cite many defects with meta-analyses (see, for example, Eysenck
1995). They dislike the aggregation of many studies whose qualities are
widely different and are scornful of methods for weighting such studies
according to some quality score. They also question the population to which
the results of a meta-analysis can be applied.

Many studies actually measure related outcomes in ways that make them
awkward to combine. For example, lung function might be measured as
forced expiratory volume in 1 sec (in liters) or as a percentage of an unspec-
ified maximum capacity. Combining such measures in a convincing way
seems impossible. Indeed, the distinction is increasingly being made
between the systematic review, which collects the information, and the meta-
analysis, which computes a quantitative summary. It is acknowledged that
it may not always be possible or desirable to apply a meta-analysis to a
given systematic review.

Exercises

1. Compute the fixed and random effects and their confidence intervals
for the data in Table 12.1.

2. Show that E(6*) = 6* in Equation 12.1. It may be useful to split the
calculation into two. First, compute the expected value of Q, given
the random effects {6} and then take the expectation over the dis-
tribution of the random effects.

3. Explain, mathematically and intuitively, why the case 6° =« corre-
sponds to a summary that gives equal weight to all the trials.

4. Show that the fixed-effects estimate 6, is the slope of the regression
through the origin for the Galbraith plot.
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Further Reading

This book has attempted to provide a broad view of the statistical issues
underlying RCTs. However, it should by now be clear that running any
sizable RCT is a major undertaking requiring close collaboration between
workers from many disciplines. All investigators will need some knowledge
of the medical, administrative, ethical, and statistical issues that underpin
the trial, as well as a deeper knowledge of their own speciality. This book
has not attempted to cover many of these facets, and those wishing to be
more closely involved with actual trials will need to take their study further.

Fortunately, there are many excellent books that will cater for the needs
of those wishing to extend their knowledge, and some of these are mentioned
in the following text. This is, however, a highly selected and personal view
of an extensive literature.

Books on Clinical Trials in General

One of the most valuable books in this field is still
Pocock, S.J., Clinical Trials: A Practical Approach, Wiley, Chichester, 1983.
A comprehensive and more recent reference is

Piantadosi, S., Clinical Trials: A Methodologic Perspective, 2nd ed., Wiley, Chichester,
2005.

The following book is more idiosyncratic than either of the preceding books,
but it is important for the view it propounds on the explanatory and prag-

matic aspects of clinical trials.

Schwartz, D., Flamant, R., and Lellouch, J., Clinical Trials (translated by Healy, M.].R.),
Academic Press, London, 1980.

Many of the terms that are encountered in this field can be found as entries
in the excellent book:

223
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Armitage, P. and Colton, T. (Eds.), Encyclopedia of Biostatistics, 2nd ed., Wiley, Chich-
ester, 2005.

Books on More Specialized Topics

The main reference on sequential trials is
Armitage, P., Sequential Medical Trials, 2nd ed., Blackwell, Oxford, 1975.
A much more recent publication is

Whitehead, J., The Design and Analysis of Sequential Clinical Trials, 2nd ed., Ellis Hor-
wood, Chichester, 1992.

A very comprehensive reference for crossover trials is

Jones, B. and Kenward, M.G., Design and Analysis of Cross-Over Trials, 2nd ed., Chap-
man & Hall/CRC Press, Boca Raton, FL, 2003.

A more personal view can be found in:
Senn, S.J., Cross-Over Trials in Clinical Research, 2nd ed., Wiley, Chichester, 2002.
A substantial reference for cluster-randomized trials is

Murray, D.M., Design and Analysis of Group-Randomized Trials, Oxford University
Press, Oxford, 1998.

Many of the issues that attend meta-analyses are covered in a collection of
articles that are published in:

Egger, M., Smith, G.D., and Altman, D.G., Systematic Reviews in Health Care: Meta-
Analysis in Contest, BM] Publishing, London, 2001.

A comprehensive treatise is
Whitehead, A., Meta-Analysis of Controlled Clinical Trials, Wiley, Chichester, 2002.

Interesting discussions of many of the ethical issues involved in RCTs can
be found in:

Silverman, W.A., Human Experimentation: A Guided Step into the Unknown, Oxford
University Press, Oxford, 1985.
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Many groups of investigators use RCTs and most of the books cited do not
assume the point of view of any particular group. However, the pharmaceu-
tical industry is a large and important user of RCTs, and a book which largely
takes this perspective is

Senn, S., Statistical Issues in Drug Development, Wiley, Chichester, 1997.
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Solutions to Exercises

Chapter 1

1.

a. The data are set in column C1 and are drawn from a single
population. Labels for two treatments are given in column C2 in
systematic order. The first part of the macro generates 100 ran-
dom numbers in a third column and then sorts this in ascending
order. The permutation required to do this is a random permu-
tation and is applied to column C2, placing the resulting set of
treatment labels in column C4. This set of treatment labels is an
allocation of the outcomes that would have occurred from ran-
domizing the 100 patients into two groups.

b. The macro computes a signed t-statistic in k4 and assigns it to
the next available row of column C5. In this way, the result of
performing repeated randomizations and forming the ¢-statistic
can be investigated. Although the data do not have a normal
distribution, they have been divided into two groups at random
and the t-statistics should still follow the t-distribution on 98
degrees of freedom.

c. The datain column 1 are a sample from the distribution of exp(Z),
where Z is a standard normal variable, having sample mean 1.85
and standard deviation 2.11. Running the macro in the question,
evaluating the cumulative distribution function of the t-distribu-
tion on 98 degrees of freedom at C5, and plotting the result as
suggested in the question gives the following graph. The null
distribution of the t-statistic is the t-distribution (despite the
marked nonnormality of the data) as the straight line in the graph
on the following page demonstrates.

227
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Chapter 2

1. The comparison is biased because we are not comparing groups
formed by randomization. The groups to receive antibiotics or T
were comparable when randomized, but patients in the antibiotic
group who did not test positive for H. pylori were excluded. It is at
least plausible that these individuals may be less seriously diseased,
so we are leaving a group of such patients in the T group but
excluding them from the antibiotic group, thereby biasing the com-
parison (plausibly in favor of T).

Four possible alternatives are as follows:

¢ Perform the breath test before randomization and only randomize
those with a positive breath test. All patients receiving antibiotics
are compared with all patients receiving T and the comparison is
unbiased. This is probably the best option but has the disadvantage
that entry to the trial depends on the results of a test that is not 100%
accurate; some patients with H. pylori will test negative and not be
offered a treatment that would help.

* Randomize patients before the breath test and give antibiotics to all
randomized to that group, regardless of the outcome of the breath
test. Again, comparison of the groups receiving antibiotics and T
would be as formed by randomization and therefore comparable.
The disadvantage is that antibiotics would be given to patients in
whom there is no infection; antibiotic treatment can lead to problems
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and the doctor may feel he needs some evidence of infection before
exposing a patient to such a risk, however small.

e Perform the test as described in the question, but compare all those
randomized to antibiotics with all those randomized to T, regardless
of whether or not they actually received antibiotics. Again, this
would be unbiased because we are comparing groups as formed by
randomization. However, the trial would need to decide what treat-
ment should be offered to those randomized to antibiotics who had
negative breath tests. If they were given T, then the trial would be
less powerful than it might have been because of the presence of a
proportion of identically treated patients in both groups.

¢ Perform the trial as in the question but perform the breath test in
the T group too, and then compare only those with positive breath
tests. Although this is probably far better than the suggestion in the
question, the groups being compared (allocated to antibiotics and
then found to have positive breath test vs. allocated to T and then
found to have positive breath test) have not been formed solely by
randomization, so this comparison cannot be claimed to be unbiased.

Chapter 3

1.

a. Here, 6 =2.3 mm, t,, = 0.5 mm and, if each group contains n pa-
tients, A =+/2 /n. To find the size of each group in a trial with
power 1-f at the two-sided 1000.% level, we need to solve:

Ty 05 7—
5—27'3 %7’[ —1.96+Zﬁ
which gives:

2n={4x23%(1.96 + )}’

For 1-B=0.9,0.8, we obtain z,,,z,, = 1.28,0.84 and substituting
in the preceding equation gives the total number of patients as
889 (90%) or 664 (80%).

b. The smallest difference detectable with 80% power from 300
patients occurs when both groups contain 150 patients. Hence
A =475 =53 and

© 2006 by Taylor and Francis Group, LLC



230 Introduction to Randomized Controlled Clinical Trials

Tu 5\/5
=Ty =196+2), =196+0.84
or M 23 0
giving 1, = 0.744 mm
c. Here, we simply repeat the calculation for 80% power in question
1 (a) with 1), =1, i.e., we find n satisfying:

1 [fn=196+084
2.3

giving 21 ={2x2.3x(1.96 + 0.84)}2 =166

d. If using 2.3 mm underestimates ¢ by 20% then we replace 2.3 in
the preceding equation by 2.3+ 0.8, or if using 2.3 mm overesti-
mates 6 by 20% then 2.3 goes to 2.3 + 1.2, so the preceding sample
size estimate changes by a factor of 082 o0r1.272,1ie., 166 chang-
es to 260 or 116. This illustrates how sensitive sample size calcu-
lations are to apparently slight changes in the values used for
the parameters in the formulae.

e. Assume the smaller group contains n patients and the larger, 21,

and so A" =/(2n) / 3 . For 80% power to detect a 1-mm differ-

ence at the 5% level we need:

J2n
2343

giving groups of 62 and 124.

=196+0.84 = n=32[23x(1.96+0.84)]

2. Write n;,®, for the proportions believed to respond favorably on,
respectively, the new treatment and placebo. We are looking for
sample sizes that give 80% power to detect a change n; —t, =0.1 at
the 5% level when n, = 0.3 or 0.2 or 0.6. Thus, we need to solve the
following equation for n:

2 (arcsin(\lo.l +7p)— arcsin(\/g))

\/2/11

=2y, +1.96 =0.84+1.96 =2.8

Hence n = 2.8%/ [2(arcsin(/0.1+ 7, ) —arcsin(\/n,)?] = 355 or 195

when ©t, = 0.3 or 0.1. When nt, = 0.6 we obtain n = 355, so the number
required to detect a difference of 0.3 to 0.4 is the same as for 0.6 to
0.7. We are looking to detect a change in the proportion of successes,
but the definition of success in terms of the binary variable is essen-

© 2006 by Taylor and Francis Group, LLC



Solutions to Exercises 231

tially arbitrary, so if we had decided to determine the size of the trial
based on reducing the proportion with unfavorable outcomes by 0.1,
from 0.7 to 0.6, we would have been determining the sample size
for the same trial. So a change from 0.7 to 0.6 must give the same
sample size as a change from 0.3 to 0.4.

3. Let6=arcsin(\/x7),0 SGS%n,so x=sin?0 and hence 1-x = cos? 0 =
sinz(% n—0); thus arcsin(\V'1—x) = - arcsin(V x). Applying this for-
mula to the two terms in f(1-y,1-x) gives the required result.
An alternative way of saying that you want to determine the sample
size needed to detect a change in the proportion of successes
from nt, to my is to say you want to determine the sample size
needed to detect a change in the proportion of failures
from1-m, to 1-m; As what is labeled success and failure is arbi-
trary from a mathematical point of view, the sample size obtained
starting from n, and =, in the usual formula must coincide with that
obtained starting from 1-m, and 1—my. This is guaranteed by the
identity proved in this question.

4. The RCT was planned to have power 90% at the 5% significance
level, so we know 1,,/(c)A) = z,, +25 =196 +1.28 =3.24. When the
data are collected, we calculaté the t-statistic, (¥, — X,)/(sA), and we
are told that the numerator is numerically equal to t,, and that s = &,
thus the t-statistic is approximately 1,,/(cA) = 3.24. Consequently,
the two-sided P-value is

P = ®(-3.24) + 1- ®(3.24) = 0.0012

If x, —x, = ;1) then P = ®(-3.24 /2) +1-®(3.24 / 2) = 0.105.

5. No. The trial may have been designed to provide a high probability
of giving a significant result if the true difference between treatments
was Ty, but if the true difference is less than this, there may still be
a substantial chance of having a significant result. A more precise
analysis is possible. Suppose the trial is designed to have power
1-PB to detect a difference of 1,, at the 5% level but the actual dif-
ference is (t,,, a difference less than the minimal clinically important
but nonzero difference corresponds to 0 <{ < 1. The probability of a
significant difference at the 5% level is then

Pr(Z>zl )+Pr(Z<—zl )=1-9| z, S +®| -z, _5u
2 2 2* Ao 2* Ao

where Z is a normal random variable with mean (Cr,,)/(Ao) and
variance 1. By the planning of the trial, we know that
(Cry)/(Ao) = £(1.96 + z;), so the preceding probability is
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1- ®(~Lzy +1.96(1-§)) + B(-1.96(1+§) — {z;)

For 90% power, i.e., zz = 1.28, this can be plotted as a function of ¢

The graph below shows, for example, that even when the true
effect is only 60% of that used in planning the trial, there is still about
a 50% chance of obtaining a significant result.
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6. As x; —x, is independent of s, it follows that it is also independent
of 1/s, hence:

E(D) — E(El - E)\‘Z)E(57 )

and if we approximate E(s™') by 6™' then we obtain E(D)=1/ Ac.

7. To obtain the exact expectation of D, we need to obtain an exact
expression for E(s™') and use it to replace 6" in the formula in ques-
tion 6. Now, (vs?) / o’ hasa y? distribution withv =m +n -2 degrees
of freedom. Therefore, E(c / (s\/; ) = (G/ Jv )E(s™') = E(X ?) where X
has a %? distribution with v degrees of freedom. This expectation can
be evaluated as

K(v)_lj 2 e dx :K(v)_l_[ EAR S NI Ui
0 0 K(v)

and from the definition of K, we find that this is
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2%(\/—1) r(%(v _ 1)) _ 1
Z%V INCAY) v-2

from which we obtain E(s?)=6"Vv/(v—2). Thus the exact expec-
tation of D is E(D) = (t/ (Ao))V (v / (v—2)). Our approximation is thus
a slight underestimate, by about 3.5% for two groups each of size
15 falling to 0.5% with two groups of 100. Note that use of the
approximation will give sample sizes that are slightly too large, so
the error is conservative (as well as very slight).

8. Write f(u) = arcsin(\/; ). Then, applying a first-order Taylor expan-
sion of R/N about its mean, we obtain E(f(R/N))=f(n)+
~—=m)f'(n). Hence, to first-order E(f(R/ N)) = f(r). However, we
can go further by using a second-order Taylor expansion to

obtain E(f(R/ N)) = f(r) + (& - m)f () + L (2 — )>f "(m), and hence
BUR/ N =)+ 52/ ).

Evaluating the second derivative gives

E(arcsin(+R / N)) = arcsin(\/;) -3 N%

Note that the new correction vanishes when © =1, so the original

formula is correct to second order in this case. Note also that the sign
of correction changes as © changes from below to above 1 and that
the magnitude of the correction increases as m tends to its limit of 0 or 1.

9. The exercise is perhaps most efficiently performed by setting k99 =
0 and then executing the following macro 9 times:

[ et k99=k99+1

| et k98=k99+3

[ et k10=pi (k99)

et k1l1=nn(k99)

base 401

random 10000 c3;

bi nom al k11 k10.

| et c3=asin(sqrt(c3/kll))
| et kl=nean(c3)

| et k2=asin(sqrt(k10))

| et k3=k2-(1-2*k10)/(8*kll*sqgrt(k10*(1-k10)))
| et k4=stdev(c3)

l et k5=1/(2*sqrt(k1ll))
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copy k1-k5 ck98
end

with column pi being 0.05 0.05 0.05 0.2 0.2 0.2 and 0.5 0.5 0.5 and
nn containing 10 30 100 10 30 100 10 30 100. Note that the line base
401 is not really necessary as it simply ensures that each run is based
on the same underlying string of pseudorandom numbers. This
essentially exists so that readers can reproduce the results in the
following table exactly.

N=10 N=30 N=100

a 0.142 0.194 0.220
n=005 b 0.226 0.226 0.226
c 0.174 0.208 0.220
a 0.428 0.456 0.462
n=02 b 0.464 0.464 0.464
c 0.445 0.457 0.462
a 0.786 0.786 0.786
n=05 b 0.785 0.785 0.785
c 0.785 0.785 0.785

Line a is the mean of the 10000 arcsin(+/R / N') values, b is arcsin(\/; ),
and c is the second-order correction from question 8. The approxi-
mations look very good for all N when = is 0.5 and also when it is
0.2 or 0.05 unless N = 10 when the approximation appears poorer.

N=10 N=30 N=100

n=005 a 0.180 0.117 0.053
b 0.158 0.091 0.050
n =02 a 0.195 0.094 0.050
b 0.158 0.091 0.050
n=05 a 0.171 0.092 0.050
b 0.158 0.091 0.050

Here a is the standard deviation of the 10000 arc?/'ul(\/R / N) values
and b is the theoretical standard deviation, 1/(2vN). The approxi-
mation is good for N = 30 and N = 100, provided = >0.05. The
approximation is less good for N = 10 and = = 0.05.

Chapter 4

1. N; has a binomial distribution with parameters N and 1. From
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7\'(N1/N2) = L_ﬁ_i
Ny N,
we see that A2 =N;N, /N=(IN+X)AN-X)/N=1N-X.
The distribution of N, is well approximated by the normal distribu-

tion with mean } N and variance ; N, so X has an approximate
normal distribution with mean 0 and the same variance.

Hence Z =2X / /N has a standard normal distribution. Z2 has a x>
distribution with one degree of freedom and, as A2 = %N - ZTZ, the
result follows. Also, Pr(A<L)=Pr(A> >L?)=Pr(N-4A2 <N -
417%) =Pr(x; < N —4L7). Setting this equal to 0.95 and noting that
the 95% point of a * distribution with one degree of freedom is 3.84,

we find L =2 /+/N —3.84 . Thus, as the size of the trial increases, the
value of A is 95% certain to be less than an amount that gets smaller,
thereby increasing the power of the trial. Moreover, as the minimum
value of A occurs when the groups have the same size, we know

that A is 95% certain to be between (2 / m ,2/AJN-3.84), so the
width of the range over which 2 is likely to vary decreases with N.

2. MNy,N,)=yN'+N;' ={|N/(N,N,). Writng N;=!N-X,
N, =1N+X this becomes MN;,N,)=N/(1N?-X?), which is

clearly minimized when X =0and A, =2/ JN . Ifwe approximate
the distribution of the number of patients in group 1 by a normal
distribution, we find we can approximate the distribution of X by

that of %Z\/ﬁ , where Z has a standard normal distribution. It fol-
lows that A =+ N — 1 7% Hence (A/Ayp) 2 =1-Z2/N and Pr(A/A
> &) = Pr([A/ Al ? < €2) = Pr(Z2/N > 1 -&72).

Setting this equal to 0.05, we obtain N(1-§&?)=3.84 because
Pr(Z* > 3.84)=0.05.

Setting & successively to 1.5 and 1.1 and solving gives N = 6.9 and
22.1, respectively.

‘min

3. Using RPBs with blocks of length six or less means that the numbers
of patients allocated to the two treatments cannot differ by more
than three, so the probability that the numbers differ by four is 0.
The numbers on the two treatments can differ by more than two
only if at least one of the blocks generated is either AAABBB or
BBBAAA. Call these bad blocks. The probability that the ten blocks
generated do not include a bad block is (1-p)'® where p is the prob-
ability that a generated block is bad. Now p = Pr(generate bad block)
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= Pr(AAABBB or BBBAAA | choose block length 6)Pr(choose block
length 6); Pr(choose block length 6) = 1/2, and first factor is 1/10
because there are 20 possible blocks, 2 of which are bad. Hence,
required probability is (1-5)" =0.599.

4. The allocation of the next two patients can be predicted when (1) the
treatments already allocated are known (so trial cannot be double
blind), (2) 4r + 2 patients have already been allocated, for some non-
negative integer r, and (3) the last two patients received the same treat-
ment. Assuming (1) is satisfied, then after recruiting 4r +2 patients,
two of the six possible blocks (AABB or BBAA) would allow prediction,

so the probability of being able to predict the next two treatmentsis 1/3.

5. The first four cells of C4 contain random numbers uniformly dis-
tributed on (1,2), the second four are distributed on (2,3) and so on,
with the last four uniformly distributed on (N,N +1). Thus, the
permutation that places the elements of C4 in ascending order must
keep the first four rows in the first four rows, albeit possibly in a
different order, the second group of four will similarly stay in the
second group of four rows, etc. When this permutation is applied
to C1, the two As and Bs in the first four rows will be permuted in
a uniform random way (i.e., any of the 4! permutations is equally
likely). Similarly, the two As and two Bs in rows 5 to 8 will be
randomly permuted back into rows 5 to 8, and so on. C1 will contain
As and Bs in random order, with rows 4r—3,...,4r (r > 0) containing

two As and two Bs, i.e., it is an RPB allocation.

6. Asp > 1,r>1, so each of the terms in the question is positive. It
remains to show that the sum of the terms is one and this will be
accomplished if we show

O 1
(7’2 - 1)27 =1
k=1 r

The summation is simply an infinite geometric progression with first
term and common ratio both equal to r2, so the sum is r(1 — r2)~!
= (r* - 1)7, as required. As p tends to 1, r increases without limit, so
the distribution tends to that which places all its probability on the
case of exact balance (as would be expected from the definition of
a biased coin design with p = 1).

The mean is found by evaluating

(-1~ k
2D
k=1

and using the standard result (for a < 1) that
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i ia' =a(l-a)?
i-1

we see that the mean is 2r(r> — 1) =2p(1 —p)/(2p - 1). If p = 1, the
mean imbalance is 4/3 but this value increases markedly as p tends
to 1, as shown in the following figure.

Mean long term imbalance
using biased coin design
with allocation probability p

Mean imbalance

0.6 0.7 0.8 0.9 1.0

p

7. Part of the problem here is to work out what is required. The whole
point of the urn scheme is that during the trial some patients will
be allocated to A with probability greater than + and some with a
lower probability. However, these are conditional probabilities, con-
ditioned on the state of the trial just before a patient is allocated.
The question asks for the probability of allocation to A of any future
patient at the outset of the trial. This is interpreted to mean the
unconditional probability of allocation of the nth patient (say) to A.
Let R(n) denote the allocation of the nth patient. The proof that
Pr(R(n) = A) = 1 proceeds by induction on n. It is clear that Pr(R(1)
= A) =1 and we assume that Pr(R(m) = A) =1 for all m <n. If the
number allocated to B among the first n patients is Ny() then

E(Ny() = E Y I(R(m)=B)
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where 1(Q) is the indicator function for event Q (i.e., itis 1 or 0 as
Qs true or false) and where the expectation is taken over all possible
allocations R(m), m = 1, ..., n. Under the assumption Pr(R(m) = A)
=1 = Pr(R(m) = B), this sum is 1n. Now from the definition of the
UD(r,s) scheme Pr(R(n+1) = A) can be found from

r+5sNg(n)

Pr(R(n+1)= A|Ny(m)=">"2

The expectation of this over all possible values of Ng(n) is simply
Pr(R(n+1) = A) because

Pr(Rn+1)=A)= ZPr(R(n +1)= A|Ngy(n) = k)Pr(Nyz(n) = k)
K

:2 r+sk Pr(N, (1) = k) = r+sENg(n) _r+ysn 1

- 2r+sn 2r+sn S 2r+sn 2

So, the inductive step has been proved, and the result that at the
outset, each patient is equally likely to be allocated to A or B has
been established.

8. Under simple randomization, the distribution of D(n) = 2N ,(n)-n is
approximately normal with mean 0 and variance n. Therefore,
| D(n)| > r corresponds to |Z| = |D(n)| /Nn >r/\Nn where Z has a
standard normal distribution so

pr(|Z|>r/\/Z)=1—CI>U;J+‘D{‘\;;Jzz[l_q)(\/%ﬂ

This is same expression as for the urn scheme but for the factor of
V3 in the numerator. Consequently, the probability of a given imbal-
ance is smaller for the urn scheme than for simple randomization
because of this factor. Setting r = 1/10, we compare 2(1 — ®(0.1Vn))
with 2(1 — ®(0.1V3n)). The results are given in the following text. As
seen in Chapter 3, the power is related to sample size through the
quantity A. For an imbalance of r and total trial size 1, we have

1 1 4n 1 _ 2
x_\/i(”—f)+§(n+r) _\/nZ—r2 _2\/;1(1—0.12) - J;(“O'OOS)

when r = n/10.
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The factor 1.005 becomes 1 when r = 0. So an imbalance of 10% will
have a minimal effect on power. The following plot shows that even
for trials as small as 50, there is only a very small chance of an
imbalance this large if an urn scheme allocation is used. For simple
randomization, even for trials as large as 100, there is still a proba-
bility of more than 0.3 of a larger imbalance and a good chance of
an imbalance that will have a noticeable effect on power.

Probability of an imbalance more than
10% of total size of trial

0.50
1

0.25
1

T T T T T T 1
0 50 100 150 200 250 300
solid line is simple randomization

dashed line is urn scheme allocation

9. If the minimum clinically important difference is a standard devia-
tion, then t,,/6 = 1 and the equation for finding the sample size that
has power of 1-f and two-sided significance level a. is

M =z5+2, =+nm/(m+n)

where m and n are the sizes of the two groups. Setting
a=0.05,3=0.10r 0.2 we obtain A" =1.28 +1.96 (power = 0.9) or
L7 =0.84+1.96 (power = 0.8). Putting m = n and solving we obtain
a total sample size, 2n, of 42 for a power of 0.9 and 31 (which we
would round to 32 in practice) for a power of 0.8.

If now we decide that m = 6n, so the (fixed) total number of patients
is N =n(1+0), then the power 1-f = ®(z;) is now determined by

M=z 42, =n6/(1+6) = VNO/(1+6) or 1-p = B(-1.96 +/N6/(1+6))

This can be evaluated for 6=1,2,3 (1 is as a check on the powers
we were supposed to achieve), to give the following powers
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Planned power for equal Actual Powers
group sizes 6=1 6=2 06=3
0.9 0.9 0.86 0.80
0.8 0.8 0.75 0.68

0.8 (if you rounded N to 32) 0.81 0.76 0.69

10. Write n, | = Zni]»A for the number of patients allocated to treat-

ij

ment A. The expectation of 1,X, is ZnijA(Si +0; +14) which can
ij
be written as

E nad; |+ E N a0 |+ 1Ty

i j

with a similar expression for the expectation of n 5 X and where a +
sign in place of a subscript denotes summation over that subscript.
The required expectation is, therefore:

1

Nou N, Noa Ny
¥ -2 . 2{ ) ]aj (5 T)
ny ng ; ny ng
If condition * is satisfied then n, = n; and so (*) ensures that the
coefficients of the oo and 6 terms are all zero and the estimator is
unbiased.

The condition * can be satisfied by the following arrangement in
which n;, # n:

i=1 i=2 Nyjar Nyjp
j=1 A:10 B:5 A:5 B:10 15,15
j=2 A5 B:10  A:10 B:5 15,15

M Nivp 15 15 15 15

(There are many other possible configurations.)

Minimization attempts to achieve balance by trying to satisfy (*),
whereas stratification looks to obtain balance by ensuring for each
pair (i, j) that 1, = n.
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Chapter 5

1. A single-blind trial is one in which the patient is unaware of the
treatment they are receiving. In a double-blind trial, neither the
patient nor the doctor* knows what treatment is being given. (It may
be that the doctors involved in the clinical management of the patient
know which treatment has been allocated and it is the doctor assess-
ing the outcome who is unaware of treatment being administered.)

It is important to take account of the element of subjectivity in the
outcome measure before deciding on the necessity of making a trial
double blind. If the outcome could clearly be subject to bias, such
as a blood pressure measurement or a clinical assessment (for exam-
ple, how much of the body is covered with plaques in psoriasis or
size of a goiter), then it is important that, if at all possible, the trial
be conducted double blind. However, if the outcome is, for example,
a laboratory result such as serum sodium concentration, then blind-
ness may be less important. However, other aspects may be impor-
tant: in some diseases, the attitude of the doctor treating the patient
may have an effect on the progress of the patient, so it may be
inappropriate to describe the trial as double-blind if the doctor treat-
ing the patient knows what treatment they receive, even if the out-
come is assessed by an independent doctor who is unaware of the
allocated treatment.

2. Suppose the tablets to be given twice a day are green and those three
times per day are red. It is supposed that each manufacturer will
supply placebos that appear identical to the active red or green
tablets. The trial can be made double blind by administering the
following regimen.

Allocated Treatment

Twice a Day Three Times a Day
Morning Green active: Placebo red Red active: Placebo green
Midday Placebo red: Placebo green* Red active: Placebo green*
Evening Green active: Placebo red Red active: Placebo green

Note: Itis a matter of judgment whether you need to include green placebo
tablets at midday; the trial would remain double-blind in their ab-
sence. It might help to maintain a blind. Suppose a patient feels dizzy
half an hour after taking the tablets, then feeling dizzy half an hour
after midday may lead them to infer that the red tablets were active.
On the other hand, the administration of a scheme with a green
placebo tablet at midday may be unworkable, as it would require
patients in the twice-a-day group to have two sorts of green tablets.
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Chapter 6

1. For bivariate normal variables Y, X, we know E(Y | X =x)=u, +
B(x —Wy), where B=poy, / 6. If, in the situation described in the
question, the response on patient i is X; and the observed baseline
is b;, then

E(X;|b;) = +B(b; —up) Group C

E(X,

b)=p+t+p(b;—us)  GroupT

with B=pcy / 6;. We can take means of these expressions within
each treatment group and obtain

- 6y — -
E(XT_XC|bT/bc)=T+PGX(bT_bC)
B

a. The derivatives of the sum of squares are as follows:

gfl:_2{Z(xi—u—T—'Ybi)"‘z(xi_u_Ybi)}

iinT iinC

S
iZ—{Z(xi_M_T_Ybi)}

iinT

=—2{zxi—NTu—Nﬂ—Yzbf}
finT finT
gi=—Z{Zbi(xi—u—r—ybi)+zbi(xi—M—Ybi)}

iinT iinC
= —2{2xibi —NEM—NTETT_YZI?"Z}

The estimators of the parameters are solution to the system of
equations, which results when these quantities are set equal to

© 2006 by Taylor and Francis Group, LLC



Solutions to Exercises 243

zero, and it is this system that is shown in matrix notation in the
question.

b. Substitute the given expressions for 1,7 in the first two of these
equations to see that they provide solutions for any ¥.

c. Substituting the given expressions for [1,7 in the third of these
equations and solving for ¥ gives the required solution. In order
to obtain the exact form printed in the question, recall that for
any bivariate sample of size n Z(§; — £)(n; — M) = Z&m, —nkn.

d. The correction in population terms for baseline imbalance is to use

E(X; - X |by,bo) =1+ pz—X(ET —bc), so the corrected estimate of T
B

is (X; — X0 ) - pG—X(ET —b.) and the coefficient of the baseline dif-
Op

ference is cov(X,B)/var(B), which is essentially the expression in (c),

once we allow different means in the two treatment groups.

a. cov(f,Zlix,-) = E(z Axx;)— E(E)E(E A;x;). Now the second
term vanishes because E(z Ax;)= z%iE(xi) = uz A; =0. The
first term also vanishes because E(xx;) = E(xx,), as all the xs have

the same distribution, hence E(Zkifxi)zz‘ki}i(fxi):

2 AE(xx,)=0.

b. Start by noting that

D b, =bp)+ Y x,(bi~be)

iinT iinC y y

Y= - = Yr +Yc
D b=br)?+ Y (b, be)?

iinT iinC

where ¥, depends only on the xs in group T and similarly for {.
Then cov(xy —Xx¢,¥) =cov(Xy — X, Y7 +¥c) = cov(xy,¥r)
—cov(Xc,¥c), as X7 is independent of ¥ as they depend on data
from different groups (and similarly for x. and ¥;). Now, ¥, can
be seen to be of the form XA;x; where ZA; =0, so the application
of the result from (a) shows that the first term in
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cov(xy,¥7)—cov(Xc,¥c) vanishes, and a similar observation
for ¥ shows that the second term vanishes.

c. From question 2 (b) 1 = (X; — ) = ¥(by — bc) and from part (b) of
this question we obtain

var(?) = var(x; — xc) +(by —be)? var(y) = 6> (N7 + N2 + (b, — b )? var(y)

in(bi - BT)+Z x;(b; — Ec)

§=iinT _ iinC -
D G5+ Y (b, -be)
iinT iinC
Z(I-H‘T‘*‘Ybi+5i)(bi_ET)+Z(U+Vbi+5i)(bi_Ec)
iinT iinC
D -5+ (b, -be)
inT iinC
Zgi(bi_ET)'i_zgi(bi_EC)
=y 1T _ iinC _
(6, =B+ (b~ b
iinT iinC

Now the variance of left-hand side is the variance of the second
term on the right, which is

> var(e, )b~ by ) + Y var(e, )b ~be)

iinT iinC
2
[Z(bi b+ Y (0, —bcf]

iinT iinC

using the independence of the residuals, and substituting var(E:)
= o gives

var(y) = o’
L WORTE Ny R :

iinT iinC

4. The means and SDs of the log,, of the numbers of polyps at 12
months in the two treatment groups are as follows:

Treatment n Mean SD

Sulindac 9 0944 0462
Placebo 10 1.630 0.434
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A two-sample t-test gives P =.004 and the 95% confidence interval
for the mean when treated with Sulindac — mean when given pla-
cebo is (-1.12, -0.25). Thus there is good evidence of an effect of
Sulindac. However, the data are compatible with a true mean effect
T anywhere between -1.12 and —0.25.

Although the logarithm of the number of polyps is a more suitable
quantity for analysis, the actual number of polyps is a more familiar
and interpretable quantity for the clinician. It is therefore helpful to
recast the preceding analysis in terms of numbers of polyps. To do
this, note that the arithmetic mean of the logarithms of the number
of polyps is the logarithm of the geometric mean of the number of
polyps. Therefore, if the true geometric means of the number of
polyps on Sulindac and placebo are, respectively, u§,us, then the
preceding difference in arithmetic means, 0.944 — 1.630 = —0.686, is
an estimate of log(u§ /uy), and the interval is a 95% confidence
interval for log(ug /u5). Consequently, the estimate of ug /s is
107%%% =0.21 and the 95% confidence interval is (107'2,107°%) =
(0.076,0.56). Thus, we estimate that the number of polyps when
treated with Sulindac is 21% of the number when given placebo, but
this factor could be between 8% and 56%.

5. The outcome from using analysis of covariance with the log(number
of polyps) at 12 months as the response and the log(number of
polyps) at baseline as the covariate with treatment as the “model,” is

Ceneral Linear Mddel: |0gl012 nont hs versus Rxn

Factor Type Level s Val ues
Rxn Fi xed 2 Pl acebo, Sulindac

Anal ysi s of Variance for | o0gl0l12nont hs, using Adj usted
SS for Tests

Sour ce DF Seq SS Adj SS Adj M F P
| ogl0Obaseline 1 2.1212 1.6552 1.6552 15.15 0.001
Rxn 1 1.7641 1.7641 1.7641 16.14 0.001
Error 16 1.7485 1.7485 0.1093

Tot al 18 5.6339

S = 0.330578 R-Sq = 68.96% R-Sq(adj) = 65.08%

Term Coef SE Coef T P
Const ant 0.4249 0.2341 1.82 0.088
| oglObaselin 0.6598 0.1695 3.89 0.001
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Least Squares Means for |0gl1012nont hs

Rxn Mean SE Mean
Pl acebo 1. 5959 0. 1049
Sul i ndac 0.9812 0.1106

The P-value for the difference between treatments is now 0.001,
whereas before the baseline differences were taken into account, it
was P = 0.004. Although in practical terms the change in the P-value
is unimportant, it is instructive to consider the baseline means, which
are 1.25 (Sulindac) and 1.36 (placebo). The difference in means if the
baseline is ignored is 0.944 — 1.630 = —0.686, whereas the difference
in the adjusted means is 0.981 — 1.596 = -0.615, so when the initial
imbalance is taken into account, i.e., that the placebo group had a
slightly higher mean log(number of polyps), the treatment effect is
reduced slightly. It might be thought that this would increase the P-
value, but the analysis of covariance estimates ¢ as 70.1093 = 0.331,
whereas the t-test used a pooled SD of 0.447. It is this increase in
precision that is responsible for the reduction in the P-value. Once
the variability in the baseline is taken into account, the residual
variability in the outcome is also reduced.

If the change from baseline is computed in the column “change”
and the analysis of covariance performed on this variable as the
response but other features of the analysis unchanged, then an edited
version of the output from Minitab is as follows:

Ceneral Linear Mdel: Change versus Rxn

Factor Type Level s Val ues
Rxn Fi xed 2 Pl acebo, Sulindac

Anal ysi s of Variance for change, using Adjusted SS for

Tests

Sour ce DF Seq SS Adj SS Adj M F P
| oglObaseline 1 0.2576 0.4400 0.4400 4.03 0.062
Rxn 1 1.7641 1.7641 1.7641 16.14 0.001
Error 16 1.7485 1.7485 0.1093

Tot al 18 3.7702

S = 0.330578 R-Sq = 53.62% R-Sq(adj) = 47.83%
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Term Coef SE Coef T P
Const ant 0. 4249 0.2341 1.82 0.088
| ogl0Obasel i n- 0. 3402 0.1695 -2.01 0.062

Least Squares Means for change

Rxn Mean SE Mean
Pl acebo 0. 2870 0. 1049
Sul i ndac -0. 3277 0.1106

The P-value for the treatment effect is unchanged, the coefficient for
the baseline has been reduced by 1. The difference between the
adjusted means is unchanged, although the individual means have
reduced by 1.309, which is the mean of all the baseline values in the
analysis. These changes could be predicted because if the outcome
at 12 months obeys the model x; =u+1+7b; +¢; (in the treated
group, T omitted in placebo group), then the change, d; = x; - b,
obeys d; =u+71+(y—1)b; + €, etc. The P-value for the coefficient y
changes because the estimate is closer to 0 after subtracting 1 but its
standard error remains unchanged.

Chapter 7

1. Starting with

4
G*=2Y olog| &

we want to get to an expression that does not involve logs and does
use squared terms. This suggests that an expansion might be useful.
We know log(1+x) = x -7 x> for small x but the expression for G2 is
not obviously in the required form. However, under the null hypoth-
esis, 0/e will not, at least for larger samples, deviate too far from
one. It might be thought that writing o/e = 1+(d/e) where d =0 —¢
and applying the expansion would be the way forward. It should
also be noted that the method of construction for 4 means that >d =
0. In fact this direct approach does not work (do you see why not?)
and it is necessary to follow the hint in the question and apply this
approach to alternative expression for G2
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2Zelog(g)+22(o—e)log(§)=22610g(1+d/e)+22dlog(1+d/e)
Lo,
Y P e

where terms in 4° have been neglected.

2. Firstof all, note that va® +b* <|a|+|b|. The upper limit for the inter-
val for the difference in proportions by Newcombe’s method is
pp—pr +V[(pr —1)* +(up —pp)*l and by the result just noted this
must be less than or equal to pp, —p; +(pr =) +(up —pp) =up —1Ip.
This difference must lie in [-1,1] because by the method of their
construction both u, and Iy lie in [0,1]. A similar argument shows
that the lower limit is also in [-1,1].

3. The recalculated table is

Point and Interval Estimates for the Different Measures of Discrepancy for
Real and Reduced PUVA vs. TL-01 Trial: Reversing Direction of Comparison
from Table 7.4

Full Trial (P = 0.018) Reduced Trial (P = 0.208)
Measure of Point 95% Confidence Point 95% Confidence
Discrepancy Estimate Interval Estimate Interval
ARD (Equation 7.6)  —0.209 -0.378, —0.041 -0.160 -0.405, 0.085
ARD (Newcombe) -0.209 -0.367, —0.035 -0.160 -0.384, 0.088
NNT* 4.78 2.65, 24.39 6.25 (2.47, 00) U (—o0, -11.78)
RR 0.438 0.212, 0.907 0.556 0.217, 1.425
OR 0.329 0.128, 0.847 0.444 0.124, 1.592

Note: Formally the signs here would reverse but it is not sensible to talk in terms of a
negative NNT, and the way to express the change is that the NNTB on one treatment
would change to an NNTH on the other treatment.

Essentially this table is unchanged from Table 7.4. The P-values are
unchanged and the point and interval estimates for ARD change
sign — this is sensible if one treatment clears a larger proportion
than the other (a positive ARD) then it will fail to clear a smaller
proportion than the poorer treatment. The NNT is also essentially
unchanged. The OR in the above table (and the corresponding
confidence intervals) can be obtained from the corresponding quan-
tities in Table 7.4 by taking reciprocals. This is a consequence of
using the odds, rather than the probability, to measure risk. The
relabeling essentially maps 1 — 1 — © and, under this transforma-
tion, OR — 1/O0R.

The only difference is that the RR under one labeling is not simply
related to the RR for the other labeling. Using simpler figures, if the
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probability of cure on treatment A is 0.2 and on treatment B is 0.1,
then the RR of cure on A relative to B is 2. However, the RR of failure
to cure on A relative to B is 0.8/0.9 = 0.89. Indeed, if the RR of cure
were still 2 but arising from individual cure probabilities of 0.4 and
0.2, then the RR of failure to cure would not be 0.89 but 0.6/0.8 = 0.75.

As the labeling is mathematically arbitrary, some statisticians have
argued that this dependence of the RR on an arbitrary feature of the
problem limits the usefulness of the RR. Although the RR should
not be used without realizing this property, it must be conceded that
the symmetry between cured and not cured, survived and died, is
not all that apparent, and the labeling chosen may well reflect the
clinical nature of the problem under study and not simply a math-
ematical formalism.

4. The unadjusted log OR and its confidence interval can be found by
using the logistic regression with a general mean x;y =1 and x;; = 1
if treatment Pis given and x;; = 0 if treatment T is given. No adjusting
variables x; (s > 1) are used. The estimate of B, is the estimate of the
log OR we require. The normal equations are

2(% -m)x, =0, r=0,...,9
i=1

In this model m; has just two possible values: n, = exp(B,+B,)/[1+
exp(By+P.)] if patient i received P and m; = exp(By)/[1+ exp(By)] if
patient 7 received T. The preceding equation for » = 1 gives

Z(J/i_np):():rp_npnp

where the summation is over those patients receiving P. This gives
the usual estimator for n The equation for r = 0 gives

Z(yi —m;)=0=r—npn, — NNy

where the summation is now over all patients. Combining this with
the previous result shows that the usual estimator for m; is also
obtained. Solving the equations relating the n and B parameters
shows that the estimator of B, is log({rp(r-r1)}/#r(1np-1p)}).

The (7, s) element of the information matrix of 8, and B, is given by

© 2006 by Taylor and Francis Group, LLC



250 Introduction to Randomized Controlled Clinical Trials

which is

(nPﬁ:P(l_ﬁ-’P)-i_nTﬁ’T(l_f[T) ”Pﬁp(l_ﬁp))
”P&p(l_ﬁ:p) nPfEP(l_fEP)

rP(nP_rP)+rT(nT_rT) 1p(np —1p)

np nr np
1p(1p —1p) 1p(1p = 1p)
np np

The inverse of this is

o(1p = 1p) _To(np = 1p)
npiiy 1p np
tprp(np —1p)(np —1p) | 1p(np —1p)  1p(np —1p) " rr(ng —1r)
np np Ny

The variance of ﬁl is the bottom right element of this matrix, i.e.,

nrtp(p — 1p) + npry (i — 17) _ nr + Mp
1oty (np — 1p)(ny — 17) rr(ny —rp)  1p(np —1p)
1 1 1 1

fr (np=1p) 1 (Mp—1p)

which agrees with the formula in Section 7.3.

5. The variance of the hypergeometric distribution is V = E(R?) — M?
where R is a random variable with the hypergeometric distribution
specified in Subsection 7.4.4 and M is the mean of the distribution
= ng/n. The smallest possible value of R is g, = max{0, r — np} and
the maximum value is ag = min{r, n;}: define a, = max{a,, 2}.

Rather than evaluate V directly from the previous expression, it is
easier to note that the variance can be expressed as V = E(R(R - 1))
+ M — M?2. The expectation on the right-hand side of this expression is
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72 =np(ny - 1) rr=1)
(n) n(n—1)
r

Adding M — M? to the preceding equation and simplifying gives the
result V = [npnpr(n—r)]/[n*(n=1)].
6. The density of an exponential survival time is Ae and the survival
function is —e™, so the hazard function, which is the ratio f(t)/S(t)
is A.
Writing A = WA, , the log likelihood becomes

U(hp, W) =mploghp—Apt, p +mylog(Whp) = ApWt,;
so the score function is

ol _mp

My m
= + =yt =——tp— VYt
a}\’P }\‘P +P 7\‘P \V +T }\’P +P \V +T
o m
—=—"F- 7\'Pt+T
CATEA

Setting these equal to zero and solving, you obtain
= (myt,p)/(mpt,;), which is the ratio of the estimates of the A
parameters found in the text. The numerical value is 0.510. This is
the hazard ratio of clearance on TL-01 relative to PUVA, i.e., the
comparison is the opposite way round to that in the test. The com-
parison in this direction can be recovered by taking the reciprocal
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of this, which is 1.96, which is slightly closer to 1 than the value
found from the nonparametric analysis.

The information matrix is

R ) (m
N2 My | |25 T
o BCR fo
oy oyt ) Uy

and the bottom right-hand element of its inverse is (my?) / (mymp) at
the maximum likelihood estimator. Therefore, a standard 95% con-
fidence interval is found as [1+1.96+/m / (mymp)]. This interval is
(0.28, 0.75).

An alternative is to use profile likelihood methods. This considers
the function p(y) = ((Ap,, ¥) where L, is the value of A, that maxi-
mizes the log likelihood when the hazard ratio has the value .
Fixing the hazard ratio at y and differentiating the log likelihood
with respect to A, we get

a  m -
mzfp_t+P_wt+T:0:>kpw =

om
t+P + Wt+T

(noting that the second derivative is negative, so this turning point
is a maximum) and hence

p(y) = mloghp, +my logy = Ap, (Wh.r +1,p)

=my logy —mlog(yt,; +t,,)—m+mlogm

General likelihood theory indicates that a 95% confidence interval
for y is {\y [ p(¥) — p(w) < 1.92} where 1.92 features because it is half
of 3.84, which is the 95% point of a x? distribution on one degree of
freedom. The profile log likelihood for y, which is the name for p(y),
in this example is, therefore, p(y) =32log v —73log(1154y +754)
(the terms not involving the argument can be omitted). This is plot-
ted in the following figure. The maximum occurs at 0.510, and from
the plot the 95% profile likelihood interval is (0.32, 0.81), which is
similar to the interval obtained from the ordinary likelihood. The
confidence interval for the comparison in the opposite direction is
simply the reciprocal interval, namely (1.23, 3.13).
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7. Note that because E; + E, = O, + O,, we have (O, -E,)* =(0,—-E,)’
and, therefore, the simplified version of the log-rank statistic can be
written as (O, —E,)*(E;' +E,")=(0, —E,)*(E, +E,) / (E,E,) = Lg, say.
We seek to show that Lg < U? /V,but the hint in the question shows
that U2 /V'<U?/V where V'=3v,, so if we show that
Ly <U?/V'the desired result follows. On noting that
Ly =U*(E, +E,)/(E,E,), this latter inequality amounts to
V'(E, +E,) < EE,. Is this true?

Note thatE,+E,=2d; and V' =X%dx,(1-x;) where x; = ny/n,
Therefore, the inequality holds if and only if

ijxj(l —x;) < ijijwj(l— x;)

where w; =d, / Zd; are positive numbers that sum to one. The right-
hand side of the above inequality is Zwx; —(ijxj)z, and so the
inequality holds if and only if

PRREORERIREHRT

This does hold because it follows from the Cauchy-Schwartz ine-
quality.

8. Stirling’s approximation states that for large 1, n! = v2nnn"e™. The
size of the first set is

© 2006 by Taylor and Francis Group, LLC



254 Introduction to Randomized Controlled Clinical Trials

4n

2n
and of the second is 6", because there are 6 blocks of length 4 com-
prising 2 of each treatment. Applying Stirling’s approximation gives

(411]_ (4n)!  8mn4*"n*re™ 44 16"

o) (@ G e ™ oot

and dividing this by 6" gives the required ratio as (8/3)" /v2nn .
This increases without limit as n increases. For a trial with 400
patients, n = 100, this ratio is approximately 1.6 x 10*..

Chapter 8

1. From Table 8.2 a group sequential trial with N =5, oo = 0.05, and 1
~ B =09 hasp=(tn)/(ov2) =1.592. If n = 20 then /o = 0.503,
that is, a difference of about 1 a standard deviation can be detected.
If a trial with N =10 is used then L= (‘c\/_) / G\/7) =1.156 and using
1/ = 0.503 we obtain n = 10.56; so we would need to recruit 11
patients to each arm of each group in the new trial. The total number
of patients that might be needed, 2nN, is 200 for N = 5 and 220 for
N =10, although the rounding of # in the latter means that the power
is now likely to be slightly more than 90%.

2. In the development of the theory of group sequential trials, it is
important that

comprises independent increments with mean 1 and unit variance.
If the definition
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is used when the groups have sizes n and 2n, then the §; will not
have unit variance, so a scale factor must be introduced. If each 8 is
multiplied by 2/V3 then the scaled 6 will have unit variance and
the previous theory will apply, although in power calculations you
now use W =[tV(2n)]/[oV(3)]. The test can be based on the S,, for
trials with equal group size (with n now interpreted as the size of
the smaller group), provided the continuation region is|S,; < b, ,
where by, =a,,\(3) /2.

3. The case N = 2 involves the equation

£ = [ Fwets - wu

and on the right-hand side f;(u)d(s — u)du is, ignoring infinitesi-
mals, Pr(S; = u, and 8, =s— u). This is summed not over all possible
u but over those with modulus less than 4,. The summation, there-
fore, yields Pr(S, =5, and | S, |[<a,) or, slightly more precisely,

f>(s)ds =Pr(S, e(s,s+ds), and | S, [< a;)

In general f,(s)ds = Pr(Sy, €(s,s +ds), and |S;[<a;,j=1,.., M-1). It
follows, for example, that

JmfN(u)du —Pr(|Sy [<ay, M=1,.,N-1)

which explains the inequality in the question and why the fs are not
densities.

4. From the answer to question 3, it is clear that

JHN fN(u)du+r fu()=Pr(Sy|> ay and|S,,|<a,,, M=1,..,N-1)

i.e., the probability that a significant result was found at the final
analysis.

5. If M is the random variable that records the number of groups
recruited by termination, then the expected number of patients is
2nE(M), so an expression for E(M) will suffice. This is plainly

N-1

Y mPr(|S, [>a,il S [< @)+ NPr(|S, [<a,,m=1,..,N -1)

m=1
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where the final term arises because N groups are recruited if the trial
has not terminated by the (N —1)th group, regardless of the result at
the final analysis. This can be written as

Emjmfmw;u)du+Nj_:fN<u;u>du

where R(m) =[—e,—-a, U[4a,,,].

The trial recruits either 4n patients or 2n patients, the latter only if
the trial terminates at the first interim analysis, which it does with
probability p. The expected number of patients is therefore 2n(2(1 -
p) + p) = 4n — 2np. It only remains to evaluate p. This is

[ ¢<u—u>du+j:¢<u—u>du

= @(-a — ) +1-®(a, —p) = O(-zy, ~ W +1- Dz, — 1)

This is o if p = 0 and increases if p is nonzero. The plot against . is
shown in the following figure.

2.0 1
1.8 1
1.6
1.4 4

1.2 9

Expected number of patients/2n

1.0 T 1
-4.0 0.0 4.0

7. In the case N = 2, we have

£29) = [ oturots -y

© 2006 by Taylor and Francis Group, LLC



Solutions to Exercises 257

where a has been used for 4, to save writing. Now rearrangement
of the integrand gives this as

;e_%sz Ja ~(u-1s du

In order to answer the question, we need to show that the integral
of this over the whole real line is Pr(|S,; | <a). The expression is the
product of the density of a normal random variable, s, with mean
zero and variance 2 with the probability that a normal random
variable with variance 1 and mean 1 s lies between 11, where s is the
first random variable. Thus, the integral required is the expectation
of ®(a—-3S )\/5 )= D((—a - %S)\/E ) over the distribution of S. How-
ever, ®((a— 7S )\/5 ) is the probability that a standard normal variable
Z, independent of S, is less than (a— %S)\/E , so the required expres-
sion can be written as

EsEs(I(Z < (a—1S2)) ~ EsEys(I(Z < (-a— L S)V2))

where I(E) is the indicator function of event E. Now the repeated
expectation is just the expectation over the joint distribution of S
and Z. The first indicator function is just I( g 5Z+735S<a)and the
random variable - s L+ 7S is normal with mean 0 and variance 1 +
1 x2=1,s0the repeated expectation is simply the probability CI)(a)
and a similar calculation obtains for the term with — and so the
required result is obtained.

Chapter 9

1. No. Although the P-value of 0.03 provides evidence of an effect of
treatment among males, the value of 0.4 does not demonstrate that
there is no effect on females. The value of 0.4 means that the data
from the females are compatible with a range of treatment differ-
ences, which will include a difference of zero. However, depending
on the precision of the estimate for females, the range could be wide
and encompass values that are compatible differences for the data
from males.

a. The first step in this analysis is to compute the proportion of
patients who clear in the trial in the four groups. These are shown
in the following table:
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Fair Skin Dark Skin
Treatment A  Treatment B Treatment A  Treatment B

Proportion clearing 0.35 0.19 0.40 0.13

There are at least two approaches to testing the null hypothesis
of no treatment effect in the two subgroups. The first is to perform
a x” test for the 2 x 2 table given in the question under each skin
type. For patients with fair skin, we obtain x> =156, P = 0.21,
and for patients with dark skin x> = 4.41, P = 0.04.

An alternative approach is to compute (p, —pg)/s.e.(p4 — Ps)-
and refer this to a standard normal distribution. The denominator
is evaluated as the square root of p,(1—p,)/n, +ps(1—pg)/ng,
where p,,n, are, respectively, the proportion of patients clearing
and the number of patients allocated to A, with similar defini-
tions for treatment B.

For patients with fair skin, we obtain p, =0.35, p; =0.19,
and p,(1=p,)/n, +pg(1=pg)/ng =0.121%; 50 (ps —pp)/se(py -
py) = 1.32, from which we obtain P = ®(-1.32) + {1 - d&(1.32)} =
0.19. (The result is similar to the % test but not identical — if we
had used a pooled proportion to calculate the preceding denom-
inator then the results would have been exactly the same — see
Section 7.2.)

For patients with dark skin, we obtain p, =040, p, =0.13
and p,(1-pa)/n, +ps(1-pg)/ng =0.120%, so (p, —py)/s-e(ps—
‘py) = 2.25, from which we obtain P = ®(-2.25) + {1 - ®(2.25)} =
0.024.

A naive interpretation of these results is that there is an effect
of treatment on patients with dark skin, but not on those with
fair skin, hence the treatment affects the two types of patients
differently. However, this is false. Although there is evidence that
treatment A clears a higher proportion of patients with dark skin
than does treatment B, there is no evidence that this is not the
case in patients with fair skin. The P-value of 0.21 (or 0.19) for
patients with fair skin means that there is no evidence against
the null hypothesis, not that the null hypothesis is true — we
may simply not have gathered sufficient data in this group to
provide evidence against the null hypothesis.

b. The appropriate way to test the null hypothesis that the treatment
effect is the same for patients with fair and dark skin is first to
compute the difference in the treatment effects, that is
(P — pB*) —{ph — pE™} = {0.40-0.13} - {0.35-0.19} = 0.11 and
then to divide this by an estimate of its standard error, namely,
pg)ark(l _ pgark)/ngurk + p[B)urk(l _ pgark)/ngark + piair(l_ piair )/niair +
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pE (1= phny /nki = 0.120% +0.1212 = 0.17042. The test statistic is
therefore 0.11/0.1704 = 0.65, and the P-value is P = ®(-0.65) +
{1-®(0.65)} = 0.52. There is, therefore, no evidence against the
null hypothesis that the treatment effect is the same for patients
with dark and fair skins. The difference in these treatment effects
is 0.11 and the 95% confidence interval for this difference is
0.11£1.96 x0.1704 = (-0.22, 0.44). Thus, although there is no ev-
idence that the treatment has different effects on the two groups
of patients, the data are also compatible with there being quite
a wide range of possible differences in the treatment effects.

Chapter 10

1. Comparing those allocated to C with only those who did not with-
draw from treatment with [ is a comparison of groups not formed
by randomization, hence the comparison cannot be claimed to be
unbiased. You might wish to perform various analyses of these data,
but one analysis that must be performed is the analysis that com-
pares the groups as formed at randomization, with as complete
follow-up as possible of those who had to stop taking indomethacin.
Despite its obvious limitations, this analysis attempts to compare
like with like. Indeed, the estimate obtained from this approach is
an unbiased estimate of the overall effect of a policy of offering C
or L. In practice, it may have been necessary to have an alternative
to I available to offer to those unable to persist with taking this drug.
This is the analysis by the dictum of intention to treat.

Chapter 11

1. The first step in the analysis is to form the differences between the
responses from a patient in the two periods. It is not important
whether you take the differences (period 1 — period 2) or (period 2
— period 1) but you obviously need to make sure that the sign of
your estimator accords with the direction you ascribe to the treat-
ment difference you present. This solution follows the approach in
Subsection 9.3.1, namely period 1 — period 2. This difference is cal-
culated and stored in a column named di f f er ence.

The model used for the PEFRs is that given in Subsection 11.3.1,
namely,
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Sequence F then S

Xq =M+, +T,+&; +¢€; (period 1) and x,, =pu+mn, + 15 +&; +¢;, (period 2)

Sequence S then F

Xp=W+mn, +15+E; +¢&;, (period 1) and x,, =pu+m, + 1 + &, +¢€;, (period 2)

with xs denoting the appropriate PEFR. The treatment effect (for-
moterol — salbutamol) is defined as 1 — T and the model for the
within-patient differences implied by the preceding model is

di=x3;—X, =N+T+M; T=Tp—Tg; T="7,; — N, (sequence F then S)

with d; = x;; — x;, = T — T+, in the other sequence.

So the difference in the means of the two groups is 21. A t-test
comparing the sequences with respect to these differences tests the
null hypothesis that 2t = 0, which is obviously the same as a test of
the hypothesis of no treatment effect, i.e., T = 0. The difference in
means between the sequence groups and the associated confidence
interval need to be divided by 2 to provide point and interval esti-
mates of 1. The result of applying a two-sample ¢-test (with variances
assumed equal) to the column “di f f er ence” is

Two- Sanple T for Difference

FS/SF N Mean StDev SE Mean
FS 7 30.7 33.0 12
SF 6 -62.5 44. 7 18

95% Cl for mu (FS) - mu (SF): (46, 141)

T-Test nmu (FS) = nu (SF) (vs not =): T =4.32 P =0.0012
DF = 11

Both use Pooled StDev = 38.7

The P-value of 0.0012 indicates that there is clear evidence of a
difference between the treatments. The difference in the means is
30.7 + 62.5 = 93.2 1/min, with 95% interval estimate (i.e., confidence
interval) of (46, 141) I/min. Dividing these by 2 gives the following
point and interval estimates for t of 46.7 1/min and (23.0 70.5) 1/
min, respectively.
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The data from the first period form a parallel group trial with the
mean in the “F then S” group being u + 1, + 1, and that in the “S then
F” group being W+ 1, +T5. From this, it follows that the difference
in the means of the two groups, using period 1 data only,
is T=1T; —Ts, 50 a t-test on these two groups gives a P-value that
tests the same null hypothesis as above and directly provides point
and interval estimates for 7.

Two- Sanple T for Period 1

FS/SF N Mean StDev SE Mean
FS 7 337.1 53.8 20
SF 6 283 105 43

95% Cl for mu (FS) - mu (SF): (-46, 153)

T-Test mu (FS) = nu (SF) (vs not =): T = 1.19 P =0. 26
DF = 11

Bot h use Pooled StDev = 81.4

The point estimate for T is 54.1 1/min with 95% confidence interval
from -46 1/min to 153 1/min. The P-value is 0.26. This analysis
provides an estimate of the treatment effect that, though admittedly
not all that close, is similar to the 46.7 1/min found from the analysis
using both periods. However, the null hypothesis of no treatment
effect, which was decisively rejected in the previous analysis, cannot
now be rejected, and the confidence interval is much wider than that
obtained before. The reason for this is that the first approach using
the data from both periods has eliminated between-patient variabil-
ity from the analysis; the pooled standard deviation is 38.7 1/min.
The second approach does not remove this source of variability from
the data, which in this instance is substantial, as can be seen from
the pooled standard deviation of 81.4 1/min in the second analysis.

a. The required expectation is calculated as the expectation of:
Si =X+ Xp WA +Tp +§ +€; +U+T, + T +Vp +E + €,
=2U 4T + T, +Tp+Tg+ Y +28,+€,; +€p
The terms in § and € are random variables with zero mean, so
the required expectation is [il+y,, where Q=2u+7m,+7,+1T;

+ 1, . The corresponding expectation in the S then F group is
obtained by interchanging the subscripts F and S in the preceding
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equation. This leaves [I unchanged so the expectation of the s; in
the S then F group is L +7vs.

b. The null hypothesis tested by comparing the s; in the S then F
with the s; in the F then S group is that the means in the two
groups are the same, namely y¢ = v;; that is, the carryover of
Sinto F is the same as the carryover of F into S.

The t-test comparing the two sets of sums can be performed
in Minitab and the output is shown in the following table, in
which the column “sunt’ is the result of adding “peri od 1” to
“period 2.”

Two- Sanple T for Sum

FS/SF N Mean StDev SE Mean
FS 7 644 114 43
SF 6 629 174 71

95% Cl for nmu (FS) - mu (SF): (-163, 191)

T-Test mu (FS) = mu (SF) (vs not =): T = 0.18 P =0.86
DF = 11

Both use Pool ed StDev = 145

The P-value is 0.86, implying that we cannot reject the null hy-
pothesis that the carryover is the same for S and E. The estimate
of y; —vs is the difference in the means which is 644 — 629 = 15
1/min, with 95% confidence interval (=163, 191) 1/min.

c. The estimator of the treatment effect using the data from periods
1 and 2 is 2(dg gens — ds menr ), and if the model with carryover is
the true model, then E[ 5 (dg pens — s enr )] = (Tr = Ts) = 3 (YF = Vs)
(cf. Section 11.4). So if the analysis in question 1 is used, the bias
is =2 (Yr — ¥s). From the preceding entity we see that a 95% con-
fidence interval for the bias term is — 7 x (-163,191) = (-95.5,81.5)
I/min. Thus, the bias in our estimate of the treatment effect (46.7
1/min) could be very substantial. Testing for a carryover effect
and, if the hypothesis of equal carryover effect cannot be rejected,
proceeding as if it were genuinely absent is a procedure that can
lead to very misleading results. Unless carryover can be excluded
on nonstatistical grounds, then the AB/BA design is probably
not to be recommended.

a. The expectation of%(EAB—EBA) is equal to that of J(d, —d,,)
(or any two ds one from each sequence). Now
E[ld]=2(n+m +14—pu-m,—15)=L1(m, — 7w, +1) and E[1d,,]
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3(m—m,-1); so required expectation is 1. Also,
Elx 45 —Xipa ] = (UW+ T +T4 —U—Ty —Tp) =T, as required.
b. As the differences in the two sequences are independent,

Var[%(gAB —dgy)]= n {var(d ) + var(dp, )}
and

var(d ;) = var(d,) / n =26/ n , var(dy,) = var(d,,) / n =26 / n
S0

207 20,

Var[%(dAB —dga)]= i{

n n n
Again, X, 5, X5, are independent, so var[x,,; — X5, ] = var[x; 5]
+ var[x,z,] and this is equal to

var[x,]/ n+var[x,,]/n=(c5+06%)/n+(c;+06%)/n=2(cz+6>)/n

Hence R =2{1+(c% / 6°)}.

c. If 63 =607 then R = 14. Thus, if we chose to perform a parallel
group trial (essentially use period 1 data only), then the standard
error of the estimator of the effect of treatment would be V14 =
3.74 times greater than that you would obtain using a crossover
design if the between-patient variance was six times the within-
patient variance. Thus, if there is the opportunity to run a cross-
over trial and there is substantially greater variation between
patients than within, then a crossover trial can pay very worth-
while dividends.

0—71

4. Write §(1)=¢(_Zl J_(D(—S—T

+z,, | and note (remembering
7\’0 50& EO!

that ®(—z) =1- ®(z)) that
S+ —-0+1
&(—T)—(D(M—Z;a)—q)( 7\‘0 +Z;0¢)

S

=&(1)
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Also note that

T T
coofat)-of a1 )

where

and so

a'<r>=;c{¢(—/*‘ 7;)‘¢[A_>;J}

where ¢ is the standard normal density. Assuming that equivalence
is possible, A > 0. As ¢ is symmetric about 0, with a maximum at 0
and decreases as its argument increases in magnitude, it can be seen
that £'(1) <0 for T > 0 and &'(1) >0 for T < 0. Hence, §(1) reaches a
maximum over the region T < -8 at T=-8 and over the region 1> &
at T=238. The result §(—1) = (1) shows that these maxima are equal,
hence the required result.

The number of patients required on each treatment as found from
Equation 11.8 is

26%(1+p(n, = D)(z4 + 2., )
N = 2

v

If the cluster mean approach is taken, then the number of clusters
on each treatment is estimated by Equation 11.9 to be

2(og + 03 /n,)(z5+2,,)
2

N Clusters — 2
Tm

so, given the average cluster size, n,, the two estimates will be con-
sistent if
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na(GZG +G%V / na) = 62(1+p(na _1))

As the outcome follows Equation 11.7, p= 6% / 6* and 6* = 65 + G}y.
Hence, n,(c% +03, / n,)=n,pc> +c°(1-p)=c*(1+p(n,—1)) as
required.

6. The variance of Zwiéi is wavi and minimizing this subject to

E w; =1 requires the unconstrained minimization of

Zw?vi—k(Zwi—l)

where A is a Lagrange multiplier. Differentiating with respect to the

weights and setting to zero gives w,; = 2 Av;", that is the weights for

the minimum variance estimator are proportional to the reciprocal
of the corresponding variance. The variance

-1 " -1
of (Zv{l) (z v;le,.) can also be found as (Zv[l) .

7. The estimator of the treatment effect is X} — X}/, where each term
is the weighted mean of the cluster means that receive, respectively,
treatment A or B. The variance of this estimator is V, +Vj
where V. = var(X}) for T = A or B. The minimum variance estima-
tor of the treatment effect is, from question 6, when the weight
applied to the ith cluster mean is proportional to (6g + 067, / 1;)™
Also,

Vi = (Z(Gé +oy /n)” )

where the sum is over clusters receiving treatment T. A test of the
null hypothesis of no treatment effect can be made by refer-
ring (XZ{ - ng) JV, +V; to astandard normal distribution.

These results are exact provided that the weights are known,
which entails knowledge of 6%, 67,. Estimates will be available from
standard techniques for variance components, but the properties of
weighted analyses, which may be optimal when weights are known,
can be much poorer when the weights themselves are estimated
from the data.
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Chapter 12

1. The procedure is an application of the formulae in Subsection 12.2.2
and Subsection 12.2.3. As a check, some of the intermediate steps
are shown here.

Log Odds R )
Trial Ratio \/Z w; w0, w; w,0;
1 —0.54226 0.21916  20.8203  -11.290 9.20088 —4.98925

2 -1.49188 0.93850 11354  -1.6938 1.06221 —-1.58468
3 -1.55255 0.63520 24784  -3.8479 2.15455 —-3.34504
4 -0.08507 0.59167 2.8565  —0.2430 2.43470 -0.20712
5 -1.83116 0.72561 1.8993  -3.4779 1.70310 -3.11865
6 0.09885 2.01234 0.2469 0.0244 0.24330 0.02405
7 -0.34628 0.36711 74202  -2.5694 5.11712 -1.77194
8 -0.02703 0.24500  16.6597  -0.4503 8.28635 -0.22397

9 -0.61434 0.47446 44423 27291 3.49938 —2.14980
10 -1.29928 0.93640 1.1404  -1.4818 1.06666 -1.38589
11 -1.31985 0.75342 1.7617 23251 1.59159 —2.10066
12 -0.10725 0.65975 22974  -0.2464 2.01643 —-0.21625

Total 63.159 -30.330  38.376 -21.069

Consequently, 6, = -30.330 / 63.159 = —0.4802 and 6, = —21.069/
38.376 = -0.5490, with standard errors of 1/ V63.159 = 0.1258 and 1/
V38.376 = 0.1614, respectively.

2. Note that

Q= zwz‘(éi _éP)2 = szézz _(2‘4“’;)éfE

Given the {91.} , E(8? |{9i}) =07 +w;". Also,

£ o) =T £|(Ted |

Now, this can be written as

SO ) S R e

i#f
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and as the sampling errors on the different trials are independent
this is

(Zw) Zw (07 +w; )+2wwéé

i#]

(Xea) +( X (o]

Therefore,

EQI{o,h=k-1+) w6} - (zw) (Zwiﬂi)z

Now, E(Q) = E(E(Q|{6,})), where the outer expectation is taken over
the distribution of the {6;}. Using

E(z“wiei)2 = va1r(§:w,-6,-)+92 (Zwi)z =(z:wi2)($2 +0° (sz‘)z

and E(8?) = 6* +6°, we find

E(Q) = k- 1+GZ(Zwi)+GZ(Zwi)—(zw,-)_l [ozzw,? +6? (Zw)z]

The terms in 6” cancel and the expectation of

—(k-1)
Zw —(Zw )/ZW

is seen to be 62. It can occur that Q < k — 1, in which case the estimate
would be negative, which would not be sensible and this explains
why the maximum is included in Equation 12.1.

3. Intuitively, if the between-trial variation is very large compared with
any of the sampling variation, then the sampling variation is unim-
portant, and as each trial is affected equally by the between-trial
variation, equal weighting of the trials is appropriate. Mathemati-
cally, it is noted that the overall estimate is
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Zéi(cz +0,)" B Zéi(1+0’2vi)’l
Yooyt Y aron)!

and as 6° — o, each of the weights tends to one.
If the model y = Bx + e is fitted, then the estimate of P is

(o) /(2]

Applying this to a Galbraith plot, y; = 6, /se(6,) =6, / \/Z
and x; =1/ \/v—l . Substituting in the preceding equation gives the
estimate of slope as

as required.
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