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Preface

A preface is an opportunity for you and me to share an amiable conversation before 

the serious work starts. If you give me a moment, I will share with you my motiva-

tions for writing an introductory text about the statistical monitoring of clinical 

trials, a staple of modern research efforts in heatlhcare.  

I am pleased to have been involved in clinical research for eighteen years. 

Many of my efforts focused on preparations for and presentations to Data Monitor-

ing Committees (DMCs), each of which was tasked with overseeing the conduct of 

a particular clinical study. During these activities, I have spoken with many clini-

cians about the epidemiology and biostatistical foundation of this mode of clinical 

research.  

 In my experience, nothing confuses a DMC member as do these so-called 

“stopping rules” for monitoring the conduct of a healthcare research study. The idea 

of prematurely ending a study makes intuitive sense to the clinical members of the 

committee. The rules themselves with their arcane terminology are the problem. 

Descriptions of “group sequential procedures” and “stochastic curtailment” provide 

no useful handholds for the clinician working to understand this slippery but essen-

tial subject. The fact that neither medical school nor residency curricula discuss any 

of the details of these procedures is one possible explanation for the continued lack 

of understanding among clinicians. In general, the non-statistical members of newly 

conceived DMCs in the 21st century are just as confused about statistical monitor-

ing guidelines as were their clinical predecessors who sat on DMCs in the 1980s.  

 A major reason for this continued confusion is that clinical investigators, 

although blessed with the motivation to do research, commonly do not have strong 

mathematical backgrounds. Although many have worked hard to develop the basic 

understanding of epidemiology and biostatistics necessary to be an effective inves-

tigator, the underlying mathematical details of commonly used monitoring proce-

dures as frequently presented remain beyond the scope of their training. 

 Of course, the statistical literature has much to say on the subject of moni-

toring rules in clinical research. Beginning with the manuscripts of Armitage and 

Wald in the 1940s, the statistical treatment of this topic slowly expanded until the 

late 1970s, when it exploded. The recognition of the importance of the monitoring 

of clinical research, in concert with the complexity of the underlying mathematics 

has attracted the best and the brightest of biostatisticians. Their devotion to the 

study of the underlying mathematical structure of monitoring procedures has re-

sulted in a body of knowledge that is both evolutionary and illuminating. However, 

because it tends to be scripted in the technical and exclusionary language of ad-

vanced mathematics, the writing tends to enlighten only the sophisticated analyst. 
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The text by Christopher Jennison and Bruce Turnbull [1] is a fine example of a 

comprehensive treatment of a difficult statistical subject. 

The technical writing style that has been implemented in the field of “in-

terim monitoring” should come as no surprise. However, work in this area, pro-

pelled forward by the strong rowing of capable statistical theorists, can leave the 

clinical investigator behind in its wake. Required to apply complex processes that 

they do not understand, the clinical investigator commonly finds little introductory 

material available. In addition, clinical researchers with no quantitative background 

have difficulty communicating with biostatisticians or experienced trial methodolo-

gists who have much experience but little time to explain these issues to their inex-

perienced colleagues. Thus, investigators who wish to learn about these mathemati-

cal procedures are hard pressed to identify readily understandable source material.  

The purpose of this text is to fill that gap. If you know nothing about 

monitoring guidelines in clinical trials, then this book is for you.  

I have chosen to begin this book with a brief history of monitoring rules in 

clinical research. Although this is the first chapter in this book, it needn’t be the 

first chapter that you read. Being nontechnical, it might be most useful to view its 

contents as a pleasant oasis in a desert of more complicated discussion. Its consid-

erations of the interactions between scientists serves to convey something about the 

people who were involved in these important historical efforts. The observation that 

the epidemiologist Bradford Hill suffered from tuberculosis years before he helped 

design an early clinical trial to study this disease may be a mere curiosity to some; 

to others it helps to explain his intellectual fortitude in working with skeptical clini-

cians.

For the same reason, I have broken up some of the technical arguments 

that appear in later chapters with an occasional vignette. As my students frequently 

remind me, it is best to have a joke close by when discussing anything mathemati-

cal.

I must confess that this is not a book about the operation of DMCs. That 

material has been very nicely developed in Data Monitoring Committees in Clinical 

Trials: A Practical Perspective by Susan Ellenberg, Thomas Fleming, and David 

DeMets (John Wiley & Sons, Ltd., West Sussex, 2002). Their text is very broad in 

scope, focusing on the DMCs evolution and contemporary operation. Our focus 

here is on statistical monitoring procedures that these DMCs devise and utilize, not 

on the DMCs themselves.  
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One final note. An important segment of the current clinical investigator 

population is comprised of women. Therefore, I have alternated the use of gender in 

the hypothetical illustrations offered by this text. Although this is the most illustra-

tive and the least exclusionary approach, it does require mental alacrity on your part 

as the genders change from example to example.  

Lemuel A. Moyé 

The University of Texas  

School of Public Health 

Houston, Texas 

July, 2005 
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Introduction 

Statistical monitoring procedures are the body of computations that aid clinical in-

vestigators in determining if a research program should be suspended prematurely. 

Specifically, these guidelines are used to guide the complex decision to end a clini-

cal study if the investigation is very likely to produce either (1) an early positive 

benefit, (2) an early indication of harm, or (3) a neutral effect at the time the study 

is scheduled to end (expressed as stopping for “futility”). Research scientists and 

members of clinical trial oversight committees rely upon these procedures, collo-

quially expressed as “stopping rules”, but more correcting described as “monitoring 

guidelines”.  

Although clinical investigators accept the application of statistical and epi-

demiologic principles in clinical research, the procedures used to terminate clinical 

studies often appear opaque to the statistically naïve investigator. Nevertheless, 

these guidelines have become ubiquitous in healthcare research. In 1998, the Office 

of the Inspector General of the Department of Health and Human Services man-

dated that the Food and Drug Administration (FDA) and the National Institutes of 

Health (NIH) develop such procedures and standards for U.S. trials. In response, 

the NIH has generated policies to require safety monitoring plans for all phase III 

NIH-funded studies, and the FDA has issued a draft guidance document on the es-

tablishment and operation of the committees that perform such monitoring. In addi-

tion, the Institutional Review Boards (IRBs) that govern the ethical conduct of 

clinical investigation at many research centers developed their own sets of instruc-

tions for the application of oversight procedures. These monitoring responsibilities 

reside in the Data Monitoring Committees (DMCs) of the individual clinical 

research projects.  

This new requisite for formal statistical monitoring of clinical research 

places clinical investigators in a dilemma. As researchers in a study, they have to 

satisfy the monitoring requirements of their institutional review board. Alterna-

tively, if they are members of a DMC, then their input into the discussions that cali-

brate the statistical monitoring device of the study is required. However, these in-

vestigators are commonly ill equipped to deal with the issues of modern statistical 

monitoring of clinical trials. Thus, they are unable to fruitfully engage in the discus-

sion, development, or defense of the use of these tools.  

Well-motivated, but statistically unsophisticated clinical investigators can 

learn the correct use and interpretation of these monitoring procedures when pro-

vided with a learning tool that informs them in clear language. This tool would al-

low them to steadily increase their knowledge of, experience with, and intuition 

about these procedures. Statistical Monitoring of Clinical Trials: Fundamentals for 

Investigators is this tool. Specifically, it provides the discussion of these statistical 

devices that clinical investigators need, representing a user-friendly introduction to 
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monitoring procedures for these scientists. These essential statistical considerations 

are rarely taught in introductory biostatistics or medical statistics classes.  

Chapter One of Statistical Monitoring of Clinical Trials: Fundamentals for 
Investigators provides an overview of the evolution of monitoring procedures in 

clinical research. Randomized, blinded controlled clinical trials, available for only 

sixty years, are a relatively new tool in clinical investigation, and remain controver-

sial. The ethical concerns raised by this investigational methodology have called for 

the interim monitoring of these studies. This demand in turn has generated a rela-

tively new application for Brownian motion, one completely unforeseen by its pro-

genitors, including Albert Einstein.  

Chapter Two provides a review of the basic statistical thought process re-

quired in clinical research and directly applicable to interim monitoring. The set of 

circumstances that permit one to generalize the results from a single small sample 

to a population of thousands or millions of subjects has direct bearing on the suc-

cessful application of statistical monitoring of clinical trials. These situations and 

their limitations are discussed in detail. In addition, the foundation principles of 

statistical hypothesis testing, confidence intervals, and the Bayes approach are each 

described.  

Chapter Three develops the elementary principles of probability that are 

required to understand the principles behind the interim review of clinical research 

results. The differences between subjective and objective probability are discussed, 

and the roles of each in the statistical monitoring of clinical trials are explained. In 

addition, the concept of probability as an area under a curve is illuminated, with 

special emphasis given to the normal distribution. Finally, elementary examples of 

the use of probability for the early termination of a clinical research effort are pro-

vided. Chapters Two and Three provide the foundation for the rest of the text.  

Chapter Four addresses the need for monitoring procedures in clinical re-

search. This chapter lays out for the clinical scientist the problems that arise when 

one attempts to use traditional hypothesis testing procedures to draw conclusions 

about a clinical study’s interim results. It provides, through the use of discussion 

and examples, the elaboration the clinical scientist needs in order to develop insight 

into the basic behavior of statistical monitoring tools. Investigators have become 

familiar with the idea of a test statistic’s location (i.e., whether the test statistic is 

greater than 1.96). In this chapter, that notion is supplemented with the observation 

that a test statistic follows a particular path to arrive at its current location. An ex-

amination of that path’s properties reveals new information that can provide accu-

rate predictions of the test statistic’s location in the future. This concept is new to 

most clinical investigators, and is elaborated in detail without heavy reliance on 

mathematics. It is here that the link between Brownian motion and clinical monitor-

ing procedures is motivated.  

Capitalizing on the insight provided in Chapter Four, Chapter Five intro-

duces the basic group sequential approach of Pocock and O’Brien–Fleming, fol-

lowed by discussions of the Haybittle–Peto and Lan–DeMets derivatives. The tri-

angular designs popularized by Whitehead are briefly discussed. Chapter Six devel-

ops conditional power in a way that illuminates the circumstances in which a clini-

cal trial may be stopped early for a beneficial finding based on a “look forward” 

approach.
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Chapter Seven describes the use of monitoring procedures to identify 

harmful effects of the tested intervention. This is a natural introduction to the cur-

rent use of asymmetric monitoring procedures. In addition, the problem of deciding 

to discontinue a study because of an unanticipated finding in one of several safety 

measures is developed. The many unexpected safety considerations that can arise 

during the study’s execution amplify the importance of this issue. This chapter also 

introduces the notion of stopping a clinical trial early due to “futility”.  

 Chapter Eight provides an introduction to the use of monitoring proce-

dures using the Bayes paradigm. Each chapter ends with a relevant problem set. 

This book can serve as a reference text for clinical scientists at all levels of 

training, being especially useful for healthcare graduate students and junior physi-

cian-scientists. Its readers require basic college algebra, plus one course in health-

care statistics. Its contents are of interest to students attending medical schools, 

graduate schools with an emphasis in healthcare research, and schools of public 

health. In addition, the contents of Statistical Monitoring of Clinical Trials: Fun-

damentals for Investigators are applicable to workers in health departments, private 

institutes, and government regulatory agencies. This book is also useful for judges 

who, not uncommonly, have to learn about the ethical conduct (and, therefore, the 

ethical monitoring) of clinical research efforts.  

This text’s incorporation of background material as well as in-depth dis-

cussion requires some guidance for its optimal use. There are several sections in 

Chapters 5, 6, and 7 which have a “*” in their title, signifying that the material is 

more challenging for students with a weak background in probability. In addition, 

the appendices, providing some in-depth mathematical development, can also ap-

pear formidable to a student with one background course in statistics.  

Therefore, this book may be successfully used as the basis for a basic, in-

troductory course on monitoring rules in clinical trials by focusing on Chapters 1 

through Chapter 7, ignoring (1) all of the starred sections in Chapters 5, 6, and 7 

and (2) the contents of Appendices A through D. However, those with a stronger 

mathematics background, after reviewing the historical introduction, can move di-

rectly to Chapter 4 and proceed through Chapter 8, covering the details of Appendi-

ces A through E as needed.  

One caveat. Healthcare researchers regardless of their level of mathemati-

cal sophistication, should spend some time in Chapter Two, which discusses the 

statistical reasoning process in medicine. The experience of the author is that, with-

out this review, many researchers unfortunately use statistical monitoring proce-

dures as a tool to identify the “smallest p-value the quickest way” leading to impor-

tant setbacks in the development of both research programs and research careers. 



1

1
Here, There be dragons…. 

What will clinical research look like in the year 2065?  

The veil of uncertainty shielding our view of the future blocks any detailed re-

sponse to this provocative question. We might attempt the answer that “in 2065, 

research will strike the right balance between compassion on the one hand, and the 

needs of investigational science on the other, their interaction being governed by a 

overarching ethic.” However, this is more of a hope than an observation. Try as we 

might, we cannot reliably comment on the methodology to be implemented in the 

mid-21st century.  

Just as, we have only the dimmest view of clinical investigation 60 years 

from now, early clinical trialists working in the 1940s could not imagine what clini-

cal investigation would look like at the end of the 20th century. In the years follow-

ing World War II, clinical trials fought for acceptance and respectability, struggling 

to take root in a soil often poisoned by cultural resistance. Many researchers in the 

1940s hoped that the “clinical trial” would die a quick death, rubbed out by the 

ethical dilemmas raised by its use of randomization and treatment blinding.  

At that time, linking the random movement of a pollen grain to observa-

tions of a clinical trial’s treatment effect would have been dismissed as fanciful 

science fiction. The ideas of Brownian motion were too abstract to be helpful; they 

were too far removed from any recognizable structure on the clinical research map. 

These mysterious mathematical tools, like the unknown reaches of the earth located 

far from Europe on an ancient map, would have simply been stamped with the ad-

monition, “Here, there be dragons.” 

The following preliminary discussion will etch out the brief history of 

clinical trials and Brownian motion as these separate fields drifted toward each 

other. We will see that the mixture of these diverse disciplines has been predictably 

unpredictable, an observation that we must keep in mind as we plan the trials of the 

21st century.  



2 1. Here, There be Dragons

1.1 Clinical Investigation Before the 1940s 
Clinical investigation has been a human endeavor for over two thousand years. The 

most common building block in the edifice of health study is the case report. A case 

report is a summary of a single patient’s findings and the communication of those 

findings to the medical community. A case series is a collection of case reports, 

linked together by a common thread (e.g., all of the patients were seen by the same 

doctor, or each of the patients was exposed to the same agent, e.g., quinine).  

It is easy to understand how the growth of general medical knowledge has 

been propelled by the use of case reports. The delivery of healthcare has been gov-

erned by the interaction between a single, concerned, responsible provider and his 

patient. This relationship is private and privileged. However, it has historically been 

conducted in isolation, by physicians and nurses widely separated from each other. 

The idea of a community was well established. However, the concept of a medical 

community (i.e., a collection of practitioners who worked together to jointly expand 

their knowledge base) was one that took many generations to develop.  

Therefore, medical care was delivered for hundreds of years by practitio-

ners, who, working alone with incomplete knowledge, made decisions that directly 

affected the lives of their patients, and indirectly, their patients’ families and com-

munities. The one, natural learning tool these physicians could use was the active 

sharing of their experiences among themselves. This served to expand their exper-

tise, suggest alternative approaches to healthcare, and extend their knowledge. This 

shared experience is at the heart of the case report.  

The core thesis of this approach was best captured by Celsus (circa A.D. 

25) [1], who stated that “Careful men noted what generally answered the better, and 

then began the same for their patients.” For the next 1900 years, advances in clini-

cal medicine occurred through the combined use of careful observations, clear re-

corded descriptions, and deductive reasoning. The discovery that gunshot wounds 

could be healed without the application of burning hot oil [2] demonstrated that a 

case report-style observation could uncover new information and overturn prior, 

erroneous principles in medicine. When medical journals began to appear, the pri-

mary medical information that they dispersed was that of the case report.* Those 

physicians who had more exposure and experience with a medical issue compiled 

their case reports together into a case series that they would publish. This continues 

to this day. Examples are diet drugs and heart valve disease [3] and radiation poi-

soning [4]. 

However, case reports have well-established difficulties. Although they re-

flect very clear and honest observations, the degree to which a single case report 

represents a general phenomenon in the population can be subject to debate. Even 

though they are useful, the variability of observations across patients makes it diffi-

cult to assess whether one patient’s findings summarized in a case report can be 

easily translated to others.  

However, what the case report and essentially all investigative mecha-

nisms in medicine hope to illuminate, by examining both the environment (e.g., 

                                                          
* One of my favorites is an 1822 issue of Lancet, whose feature article was titled, “The big-

gest hernia that I have ever seen in a shipyard worker”. 
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exposure to a toxin or a potential cure) and the patient’s response, is the true nature 

of the exposure–outcome relationship. This true nature could be simply an associa-

tion, or it could be causal.  

An association is the coincidental occurrence of an exposure and an out-

come. Its recognition (e.g., the relationship between coffee drinking and pancreatic 

cancer) typically does not require direct action by the medical community. A causal 

relationship, on the other hand, signifies that the exposure excites the production of 

the outcome. This more powerful, directed relationship incites the medical and 

regulatory communities to action. For example, the conclusion that exposure to 

citrus fruits reversed the symptoms of scurvy incited action by the British navy to 

mandate the storage of fresh fruit in the provisions of its crews for long sea voyages 

[5]. On the other hand, links between the use of cutting and bleedings and the re-

mission of yellow fever were merely associative. Thus, when we as physicians ex-

amine a case report’s details, we sift through the provided clinical descriptions in 

order to discern if the relationship between the exposure and the outcome is either 

causative or associative.  

Epidemiologists are specialists who identify the determinants or causes of 

disease. They have developed criteria that would be useful in ascertaining whether 

an exposure causes (i.e., excites the production of) the disease. Elaborated by Sir 

Austin Bradford Hill [6], these tenets are based on a common sense approach to 

determining causality and are remarkably free from complicated mathematical ar-

guments. These criteria acknowledge that more disease cases in the presence of the 

risk factor than in its absence raise a causal suspicion. In addition, determining that 

greater exposure (either by dose or duration) to the risk factor produces a greater 

extent of disease amplifies our sense that the exposure is controlling the disease’s 

occurrence and/or severity. These two features are important characteristics of a 

cause–effect relationship.  

Other questions posed by Hill permit us to explore the “believability” of 

the relationship. Is there a discernible mechanism by which the risk factor produces 

the disease? Have other researchers also shown this relationship? Are there other 

examples that help us to understand the current exposure–disease relationship? The 

nine precise Bradford Hill criteria are: (1) strength of association, (2) temporality, 

(3) dose-response relationship, (4) biologic plausibility, (5) consistency, (6) coher-

ency, (7) specificity, (8) experimentation, (9) analogy. These are well elaborated in 

the literature [7]. 

Diligent attempts to determine whether specific case reports and case se-

ries can satisfy these causality criteria continue to provide invaluable service to 

patients and communities. The link between methylmercury exposure and birth 

defects in communities surrounding Minamata Bay, Japan, [8], and the establish-

ment that thalidomide was the cause of the birth defects phecomelia and achondro-

plasia [9] are just two 20th century examples of the ability of case reports and case 

series to establish causal relationships that produced public health action. The iden-

tification of (1) the relationship between tick bites and Lyme disease, and (2) the 

link between new illnesses among postal workers and anthrax exposure in 2001 are 

recent examples of their continued value.  
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1.2 Limitations of Case Reports 
Although medical knowledge has progressed through the sensitive and intelligent 

use of case reports and case series, there is no doubt that the illumination provided 

by these investigational tools is also profoundly limited. There are four major criti-

cisms of the value of case reports and case series in determining the causal nature of 

an exposure–disease relationship. They are that (1) case reports and case series do 

not provide quantitative measures of the relationship between an exposure and a 

disease, (2) case reports do not always rule out other competing causes of disease, 

(3) case reports are subject to biases of selection (i.e., the manner in which the case 

report was selected may make it unreasonable to believe that its occurrence reflects 

an important finding in the population), and (4) measurements made in the case 

report may be nonstandard. These limitations reduce the contribution of case re-

ports to our understanding of the exposure–disease relationship.  

One of the most remarkable deductive failures of case reports was their 

false identification of the effects of cardiac arrhythmia suppression [10]. In the 

1970s, considerable attention was provided to the potential of new therapies (spe-

cifically, the drugs encainide, flecainide, and moritzacine) for the treatment of dan-

gerous ventricular arrhythmias. It was believed that these new drugs would be more 

effective and produce fewer side effects than the traditional, poorly tolerated medi-

cations. The effectiveness and safety of these newer drugs were examined in a col-

lection of case series. At first, only the sickest patients were given the new therapy. 

When these patients survived, the investigational drug was credited with saving the 

patient’s life. However, if the patient died, then the patient was commonly deemed 

“too sick to be saved” and the drug was not debited for the death.  

Based on these observations, despite some opposition, a consensus devel-

oped in the cardiology community that patients with arrhythmias would benefit 

from the use of these new drugs. After a period of intense deliberation, the Federal 

Food and Drug Administration (FDA) approved the new antiarrhythmic agents. As 

a consequence of this approval, physicians began to prescribe the drugs not just to 

patients with severe rhythm disturbances, but also to patients with milder arrhyth-

mias. This new use was consistent with the growing consensus that these drugs 

would be beneficial in blocking the progression of dysrhythmia from mild heart 

arrhythmias to more serious rhythm disturbances.  

Only after the drugs were approved and on the market was a study carried 

out that incorporated a control group and the use of randomization. This trial, called 

CAST (Cardiac Arrhythmia Suppression Trial), demonstrated that, not only did the 

new therapies not save lives, but their use caused excess mortality [11]. The find-

ings from CAST, demonstrated the lethality of medications whose safety had been 

“demonstrated” by case series.  

1.3 Genesis of the Clinical Trial 
By the 1940s, the limitations of the case series as an investigational tool in medi-

cine were evident. However, the evolution of this tool into a device resembling a 

clinical trial required the patient efforts of the epidemiologist Sir Austin Bradford 

Hill.
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A clinical trial is a medical experiment that is carried out in a unique re-

search setting that must be carefully constructed. The previous section discussed the 

complicated series of arguments that an investigator must go through in building a 

causal argument. The clinical trial is the research environment in which many of 

these properties of the causal argument are already embedded. Upon the beginning 

of the clinical trial’s execution, the only missing feature of the causal argument is 

the strength of association. This final component is provided by the execution of the 

study.  

Specifically, in a well-designed and well-executed clinical trial, the simple 

demonstration of a clinically and statistically significant strength of association 

between the randomly allocated intervention and the prospectively defined primary 

analyzes is all that is necessary to demonstrate the causal nature of the relationship. 

This very special situation can only be successfully constructed with (1) a clear 

statement of the clinical question, (2) a simultaneous focus on epidemiological and 

biostatistical principles, and (3) disciplined research execution. There are several 

comprehensive references that discuss in detail the methodology of clinical trials 

[12,13,14].  

The 1930s was a cauldron of new ideas for clinical research. The United 

Kingdom Medical Research Council’s (MRC) Statistical Council and Statistical 

Research Unit was organized in 1927 [5]. One of its responsibilities was to design 

and conduct clinical trials in order to investigate promising treatments for modern 

diseases. The council was adaptive and flexible, opening itself to new and exciting 

research ideas. One innovative concept was the incorporation of several investiga-

tors dispersed throughout a country, all following the same protocol into one re-

search effort. This was the early model for what we now call a multicenter study.  

In the mid-1940s, the MRC had the opportunity to evaluate the effect of a 

new therapy, streptomycin, as a possible treatment for tuberculosis. Streptomycin 

was a new antibiotic that had not yet demonstrated its effectiveness in clinical ex-

periments. Although it was relatively plentiful in the United States, its availability 

was limited in impoverished post-war England. The resulting study, conducted by 

the MRC, was to become the template for the modern clinical trial. 

Bradford Hill was asked to design this study. Being both an epidemiolo-

gist, as well as a patient who had tuberculosis as a youth,* he held a special appre-

ciation of the complexity of the work required to conclude that streptomycin would 

be safe and effective for this disease. Hill wished to develop a research paradigm 

that would produce a clear and unbiased assessment of the effects of the antibiotic. 

Beginning with the established notion of an experiment in which the researcher has 

control over the use of an intervention,† Hill successfully argued for three features 

of the study that were not commonly used in clinical experiments at that time. 

                                                          
* Hill himself had contracted tuberculosis as a young man. He survived a lung abscess, artifi-

cial pneumothorax, and a two-year hospitalization twenty-five years before his pivotal strep-

tomycin study. 
† An experiment in which the researcher has control of the intervention is different from an 

observational study, where the investigator has no control of the intervention. An example of 

an observational study would be that of John Snow’s evaluation of the effect of the source of 

water on the occurrence of cholera, in which the subjects chose their water source.
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These were (1) a control group, (2) an external rather than an internal method of 

selecting the therapy for each individual patient, and (3) blinding, or a procedure to 

mask both patients and physicians to the identity of the therapy to which any par-

ticular patient was assigned [15]. The modern clinical trial emerged from the first 

attempts to apply these innovations [16]. 

It is these three features that, in combination, differentiate the clinical trial 

from other forms of clinical investigation. However, the incorporation of the use of 

a control group, the random allocation of therapy, and blinding, so essential to the 

transformation of the clinical experiment into a modern clinical trial, was fraught 

with controversy. Hill’s proposal for their incorporation produced dissension 

among the clinicians involved in this tuberculosis study. Before we discuss the 

strong reactions of the research and medical communities to these devices, a reac-

tion that grew to require the need to monitor these studies, we must say a few words 

about these tools and their intended purposes.  

1.4 The Requirement for Control  
In the 1940s, the need for a control group was not self-evident to clinical investiga-

tors, and it was still common to research potentially new therapies without having 

patients as comparators. An example was the evaluation of penicillin, in which 

many of the early studies were conducted without a control group.  

There were two main justifications for the absence of control groups in 

clinical research. The first was the belief that, when the treatment effect was large, 

then a comparison group would be unnecessary. The second was an ethical one; 

withholding an experimental treatment was unjustified and harmful when the natu-

ral history of the disease (e.g., tuberculosis) was associated with profound morbid-

ity and mortality.*

In this environment, Hill’s argument for the inclusion of a control group 

was not well received by the clinicians who would carry out the study. Those who 

believed that streptomycin could only have a beneficial effect argued forcefully 

against the need for a control group. These investigators knew the natural history of 

tuberculosis; including a comparator group would not substantially add to the body 

of knowledge concerning the fate of these ill patients. On the other hand, strepto-

mycin’s effects were not complete unknowns because the drug had already been 

partially evaluated in the United States. Why, they asked, withhold a therapy from 

                                                          
* This idea of control group was turned on its head in the Tuskegee syphilis experiment, in 

which a known, effective therapy was deliberately withheld. For forty years between 1932 

and 1972, the U.S. Public Health Service (PHS) conducted an experiment on 399 African-

American men in the late stages of syphilis. These men, for the most part illiterate share-

croppers from one of the poorest counties in Alabama, were never told what disease they 

were suffering from or of its seriousness. Informed that they were being treated for “bad 

blood,” their doctors had no intention of curing them of syphilis. The data for the experiment 

was to be collected from autopsies of the men, and they were thus deliberately left to degen-

erate under the ravages of tertiary syphilis—which can include tumors, heart disease, paraly-

sis, blindness, insanity, and death. “As I see it,” one of the doctors involved in the study ex-

plained, “we have no further interest in these patients until they die.” Additional information 

is available from http://www.infoplease.com/ipa/A0762136.html. 
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ill patients (likely to die using the standard treatment of care), that was probably 

safe and could help them? 

Hill countered that streptomycin had been incompletely studied to date and 

must be considered to have unknown effects. If, he argued, the safety and efficacy 

of streptomycin had already been established, there would be no need to re-evaluate 

the drug in England.  

This scenario was especially disturbing to clinicians, because one of the 

worst things that they could do would be to give patients with a serious illness a 

drug that exacerbated their condition. The only way that they could remove the pos-

sibility that streptomycin could have harmful effects was by examining patients 

who would not be exposed to the drug. By helping the investigators to appreciate 

the limitations of their knowledge about streptomycin therapy, they opened them-

selves to the idea that streptomycin could be harmful. Investigators discovered that 

an important new ethical action for them would be to separate their belief about the 

need for a therapy from their objective knowledge about that therapy’s effects. 

Those who could not would have a difficult time working in the clinical trial era, an 

observation that is true to this day.  

Hill also believed that the high level of efficacy produced by a new ther-

apy could be misleading if that same high level was also seen in the control group. 

He later demonstrated the importance of a comparison group by revealing that a 

high success rate for the use of antihistamines to treat the common cold was 

matched by similar striking findings in a control group [5].  

However, acknowledgment of the need for a control group in the tubercu-

losis study begged the question of which patient should receive the streptomycin as 

opposed to the control group therapy. As difficult as the fight to include a control 

group was, the struggle between the clinicians and Hill over therapy allocation 

would prove to be tougher.  

1.5 The Dilemma of Randomization  
The random allocation of an experimental intervention is a hallmark of modern 

experimental design.* The use of random treatment allocations was catapulted to 

prominence in the mid 1920s by the statistician Ronald Fisher [17,18]. Although 

Fisher’s name is most commonly associated with the use of inference testing in 

statistics (about which we will have more to say in Chapter Two), he was also one 

of the pioneers of the use of randomization in research. 

 Because Fisher worked in agronomy, the first research applications of the 

random allocation tool were in agriculture. Under Fisher’s guidance, new agrarian 

interventions (e.g., investigational seed formulation or new fertilizer compositions) 

were allocated randomly to different plots of ground of equal area distributed across 

the fields. This mix was carefully controlled so that each plot of ground was as 

                                                          
* It is important to distinguish the random allocation of therapy from the random selection of 

subjects from the population. The random selection of subjects from the population is used in 

creating the sample, helping to ensure that the sample of patients that is selected for the re-

search is representative of the population from which the sample was selected. The random 

allocation of therapy occurs after the individual has been selected for the sample. It uses the 

rules of probability to determine what therapy the patient receives.  
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likely to receive the new treatment as it was to receive the standard. The resulting 

patchwork of intervention and control applications helped to ensure that there were 

no differences between the plots that received the new applications from those that 

received the standard treatment. Because characteristics of the plots (e.g., proximity 

to each other, soil moisture and content, insect infestation) did not determine the 

plot’s treatment, these characteristics were removed as possible explicators of the 

differences in crop yields. This idea of random allocation rapidly took root in agrar-

ian research.  

Several years passed before clinical investigators began to explore the pos-

sible utility of this procedure for their own work. However, unlike in agrarian re-

search, ethical issues quickly arose in the clinical research arena. It was common 

for physicians to select the treatment of the research subject. This decision process 

was simply a natural extension of the habit pattern of physicians in practice who 

chose the medication for their patients. Therefore, both patients and physicians 

were comfortable with this historical approach to treatment allocation in clinical 

research.  

Nevertheless, traditional motivations for the therapy allocation contained 

capricious elements. Inextricably embedded in the decision process were judgments 

based on the patient’s characteristics (e.g., their severity of illness, gender, ethnic-

ity, or financial status). As long as the selection criteria considered characteristics 

of the patient, it would be impossible to clearly attribute the result seen at the end of 

the research to the therapy itself.* The random allocation of therapy would solve 

this problem by creating the environment in which the only difference between pa-

tients who receive the intervention and those who did not is the intervention itself, 

the attribution of effect would be clear [19].  

Early efforts at implementing this procedure in clinical research were first 

attempted in the United States. In 1931, twenty-four individuals who were institu-

tionalized at the Detroit Municipal Tuberculosis Sanatorium were recruited for a 

study [20]. These cases were individually matched, producing twelve pairs of pa-

tients. For each pair, a coin was flipped, and the result of the toss determined which 

patient of a pair of two would received the active therapy (sanocrysin and sodium-

gold thiosulfate injections) versus control group therapy. 

 Seven years later, 1640 subjects at the University of Minnesota volun-

teered to receive one of four treatments (three treatments were vaccines, the fourth 

was a placebo) for the prevention of the common cold. Each student believed that 

he had received a vaccine when, in fact, the therapy that he received was randomly 

selected [21]. However, many physicians rebelled against this concept of allowing 

chance to select the therapy of choice, and the random selection mechanism was 

prevented from entering the mainstream of clinical research for two decades. 

The idea of randomization as a tool re-emerged in Hill’s tuberculosis clini-

cal trial fifteen years later. What Hill sought was an allocation mechanism that did 

not consider personal data, and he believed that the only alternative selection 

mechanism would be a random one. However, Hill’s suggestion that randomization 

                                                          
* This is because those factors that determined therapy allocation would be confused, or con-

founded with the therapy selection; this confusion makes it difficult to attribute the differ-

ences in clinical findings between the control and treatment group to the therapy. 
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be used in the tuberculosis study ignited a firestorm of debate among its investiga-

tors. Physicians could understand the problems generated by poorly planned ther-

apy allocation decisions (e.g., giving the active therapy to only men, and control 

therapy to only women). However, the notion of making a therapy choice based on 

the flip of a coin was alien to most, and abhorrent to some.  

The motivations for their strong feelings are clear, and resonate to this day. 

Physicians are trained to be patient oriented. This patient orientation leads us to 

bring the best of our knowledge, training, experience, and expertise to the patient’s 

bedside. Specifically, when we construct a treatment regimen for a patient, we do it 

using all of our knowledge about the patient on the one hand, and our expertise with 

medications. The resultant treatment plan is custom-made for the patient. Woe to 

the physician who, at the bedside, in front of the patient’s family, flips a coin to 

determine what therapy the patient will receive! 

Yet flipping a coin is exactly what randomized therapy is. Hill was obliged 

to patiently and repeatedly explain to skeptical clinicians what the word “random” 

really meant. To most clinicians and laymen, then and today, a random process is 

one that is unplanned, unpredictable, and haphazard. To them, weather could be 

random, but not a patient’s therapy. However, to Hill, random meant a systematic 

approach in which probability, governed by well-understood laws of chance, would 

be allowed to prevail. Hill patiently explained that by using chance rather than 

choice to select the treatment assignment [22], the experiment would provide the 

independent assessment of a therapy effect, allowing one to “equalize in the two 

groups the distribution of other characteristics that may be important” [23].  

Although Hill had won the fight to include a control group in the tubercu-

losis study, there is controversy about his success in incorporating the random allo-

cation of therapy. Some suggest that he followed a formal randomization procedure 

using envelopes completed at a central office that contained each patient’s therapy 

assignment [5]. Others claim that Hill was unsuccessful in persuading the clinicians 

of the advantages of the random allocation of therapy. These sources argue that the 

dogged resistance of the physicians to the concept of randomized therapy ultimately 

led Hill to set the randomized approach aside, replacing it with a strategy of alter-

nating therapy (i.e., the first patient gets active therapy, the second gets control ther-

apy, etc.), a strategy that was more palatable to the investigators [24]. In either case, 

the trial could only proceed when he avowed to accept a full share of the ethical 

responsibility for these new trial designs. This willingness on his part was an 

important reason why clinicians agreed to participate in the studies that Hill de-

signed [5].  

Ultimately, the idea of the random allocation of therapy has embedded it-

self into good clinical trial methodology. However, there continue to be difficulties 

with its acceptance by some workers, as the following event demonstrates. 

In a randomized, unblinded, multicenter trial designed 

to compare the effect of different strategies for reducing diastolic 

blood pressure on the occurrence of strokes, a nurse with estab-

lished clinical credentials was placed in charge of randomizing 

patients to either control or active treatment at one clinical cen-
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ter.* One of the patients recruited into this study was an elderly 

gentleman. Although the patient met the eligibility criteria for 

the clinical trial, he suffered from several comorbid, cardiovas-

cular conditions. The nurse accepted him into the program, fol-

lowed the randomization procedure, and entered him into the 

control group. During the subsequent follow-up visits, the nurse 

and patient became friends. Shortly thereafter, the patient ex-

perienced a clinical endpoint and subsequently died.  

The nurse was genuinely saddened by her friend’s 

death, and gave his demise important consideration. She re-

viewed her previous decision to follow the randomization 

scheme that had assigned him to receive the control therapy, 

now wondering whether she was involved in, if not responsible 

for, his death. After some reflection, she concluded that her pa-

tient should have received more aggressive treatment for his hy-

pertension. Deducing that it was the patient’s comorbidities, in 

combination with the absence of active therapy that killed him, 

she resolved that clinically ill patients would never receive con-

trol group therapy at her center. From that point on, any patient 

who, in her estimation, had not only hypertension, but suffered 

from other related conditions (e.g., congestive heart failure, dia-

betes mellitus, or a prior heart attack) would receive active ther-

apy. If the randomization procedure suggested otherwise, then 

she would merely alter it in this regard.  

The outcome of this decision to use active therapy in the sicker patients at 

this one center was predictable. This allocation of therapy produced a “canceling 

out” effect, where the beneficial “positive” effect of the medication was canceled 

by the “negative” effect of the comorbidities’ presence. Because this cancellation 

did not take place in the control group, a systematic bias was now in place that 

would underestimate the effect of the active antihypertensive treatment. Undoing 

the randomization process had confused the effects of the therapy with those of the 

comorbidities, diluting the effect of the medication on the stroke rate at this center.  

Although it is easy to criticize this nurse, careful consideration reveals a 

deeper, more fundamental issue than the mere inappropriate use of her authority. 

This nurse’s only wish was to deliver the best possible care that she could for her 

patient. However, she was unable to separate her complete belief in the therapy 

from her true lack of knowledge of the treatment’s effects. Comfortable in her be-

lief, this nurse could not stand idly by while a machine made what, in her view, 

were inappropriate treatment decisions. Her reaction resonates with physicians and 

nurses who come into research with a strong practice background.†

                                                          
* This occurred before the days of computer-generated randomization procedures, that were 

instituted for, among many reasons, increasing the difficulty of violating the randomization 

protocol.
† The problem is much less common among the new generations of clinical trial methodolo-

gists, that is, research investigators and their project managers.  
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Clinical trial methodologists have effectively and persuasively argued that 

randomization is necessary in clinical trials [25]. In addition, advances in its im-

plementation have been developed (stratified randomization and adaptive randomi-

zations are but two examples) to more flexibly incorporate its advantages into clini-

cal studies. Nevertheless, many of the clinicians whose patients are selected for 

these studies continue to struggle to understand the necessity of a procedure that 

appears to be the antithesis of the good practice of medicine. Nevertheless, ran-

domization is the only currently available procedure ensuring independence be-

tween a patient’s characteristics and their research therapy allocation.  

   

1.6 Blinding 
The final adaptation that Bradford Hill introduced into the streptomycin study was a 

blinding mechanism that masked knowledge of the therapy assignment. In his tu-

berculosis study, patients were not told what treatment they were receiving. In fact, 

these patients were not even told that they were participants in a study! [5]* Al-

though this last adaptation is unacceptable in our contemporary research environ-

ment, the utility of blinding is uncontested.  

Blinding in a clinical study protects the study from influences that can dis-

tort the size of the treatment effect. In the previous section, we stated that the moti-

vation for the use of the random allocation of therapy in a clinical trial is to ensure 

that the only difference between subjects who receive the intervention to be studied 

and those who do not is the therapy itself. Thus, at the time of the therapy assign-

ment (commonly referred to as the baseline), the distribution of all patient 

characteristics (e.g., demographics, lifestyle, previous medical history, and physical 

examination findings) is the same between the two groups; the two groups of pa-

tients are equivalent except for the therapy exposure. 

Unfortunately, beginning a clinical trial with equivalent patient groups 

does not guarantee that the trial will end with this equivalence property intact. If the 

investigators are to be assured that any difference that is seen between the active 

group and the control group at the end of the trial can be ascribed to the randomly 

allocated therapy, the two groups of patients must not only have equivalent charac-

teristics at the baseline; the patients must also have equivalent experiences during 

the study (e.g., equal compliance with the assigned therapy) excepting the effects of 

the intervention. Ensuring this equivalent post-randomization experience is compli-

cated when the patient and/or the physician knowing the identity of the medication 

that the patient is taking. Blinding is the collection of procedures that restrict 

knowledge of the treatment identity. Their implementation increases the likelihood 

that a patient’s post-randomization experience will reflect the effect of the interven-

tion and nothing else.  

For example, if a patient knows that she is on placebo therapy, she may 

believe that her condition is more likely to deteriorate than to improve. This will 

lead to actions that are motivated, not by the action of the study medicine to which 

                                                                                                                               

* This was not the first time a clinical study was blinded. In the Detroit Sanatorium study 

discussed previously, patients were not told which therapy they were placed on (sham subcu-

taneous injections of distilled water served as the placebo therapy in that experiment). 
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she is assigned, but by her perceptions of what that therapy is. This patient may 

adjust other medications that she is taking based on her belief in the ineffectiveness 

of the study medication. This same perception can lead her to provide relatively 

negative quality of life reports and self-assessments to the clinical investigator. If 

this conviction takes root in the majority of patients who are assigned to the control 

group, the investigators might conclude that the placebo experience is less satisfac-

tory than it actually is. Alternatively, patients who know that they were assigned to 

active therapy may be inclined to believe the therapy is helping them. This belief 

has its own invigorating effect. 

The influence of these belief systems is strong and, if left unchecked, will 

blur the investigator’s view of the therapy’s true effect. In order to counterbalance 

the influence of these constructs, investigators instituted single-blind trials in which 

patients were not informed of their therapy assignment. In these single-blind stud-

ies, patients do not know whether they are on active therapy or placebo therapy.  

It is important to note that the single-blind approach does not suppress the 

belief system; it simply distributes it equally across the two groups of patients. This 

distribution spreads the effect throughout the entire cohort, rather than concentrate 

it in one group, thereby removing it as a source of bias.*

 Physician knowledge of the medication that the patient is taking can also 

skew the objective evaluation of the effect of the therapy. Physicians commonly 

agree to be a participant in these studies because they have feelings (sometimes 

strong feelings) about the effect of the compound that is being studied. These strong 

feelings can influence the way a physician treats a patient during the course of the 

study, leading them to (1) insist that the patient be compliant with the medication, 

and (2) express to the patient the importance of returning for all of the scheduled 

follow-up visits that the clinical trial requires.  

 In addition, doctors may choose to use other concomitant medications 

much more aggressively in patients who do not receive active therapy. At the end of 

the follow-up period, these same physicians may be more diligent in seeking out 

adverse outcomes from patients who are randomized to the treatment group of the 

trial that the investigator believes is ineffective and/or produces more side-effects. 

Each of these maneuvers can adversely affect the assessment of the therapy’s influ-

ence. In order to distribute these effects randomly among the physicians who treat 

patients in the study, these investigators are blocked from knowing the medication 

that their patient is taking.  

 Studies in which neither the physician nor the patient knows the effect of 

the therapy are known as double-blind trials. The 1938 University of Minnesota 

study† was not only one of the first randomized studies, but was also one of the first 

investigations in which blinding was implemented. In that circumstance, neither the 

randomized students nor the physicians knew which treatment any individual stu-

dent received [21].  

                                                          
* Bias is a systematic influence that distorts the treatment effect measure. For example, in an 

unblinded trial, the negative perceptions of patients who know that they are in the control 

group affect only the control group, thus providing a misleading measure of the effect of the 

therapy.  
† This study was discussed on page 8.
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 Double-blind studies can be difficult to sustain because of the known ef-

fects of the medication that are not mimicked by placebo therapy. A fine example 

of (1) the need to maintain a double-blind in a clinical trial and (2) the lengths to 

which investigators must go to preserve the double-blind property of a clinical trial 

is the evaluation of the use of arthroscopic surgery as a tool for relieving the pain 

and disability associated with osteoarthritis of the knee in which sham surgery was 

implemented [26].  

 However, as useful as the blinding mechanism is, double-blind trials can 

put the treating physician in a difficult situation. For treating physicians, the fact 

that the therapy that was selected for a patient is based on chance and not patient-

specific knowledge is a difficult enough concept. Their practice difficulties are 

compounded by the ignorance of the therapy that was ultimately selected for the 

patient. Physicians intervene to save lives and minimize morbidity by swift and 

decisive action. This decisive action is based on firm knowledge about the patient; a 

key component of that knowledge is the patient’s history, including his record of 

medication use. Physicians commonly don’t know how they are going to deliver 

safe and effective care for their patients within the strictures of these binding limita-

tions.  

 Consider an example from the CARE (Cholesterol and Recurrent Events) 

Trial [27]. This study was designed to examine the effect of the HMG-CoA reduc-

tase inhibitor pravastatin on the occurrence of clinical endpoints in patients with 

normal levels of low-density lipoprotein (LDL) cholesterol. When the study was 

carried out in the early 1990s “normal” LDL-cholesterol levels were considered to 

be in the 115–175 mg/dl range.  

 CARE patients were randomized to receive pravastatin or placebo. It was 

accepted at the time that pravastatin would reduce LDL-cholesterol levels by ap-

proximately 25%. The study was designed to test whether this effect on LDL-

cholesterol levels would translate into a reduction in the primary endpoint of fatal 

and nonfatal myocardial infarction (MI). Patients would be followed for five years.   

 Because CARE was a double-blind trial, the clinical investigators did not 

know the therapy assignment for any of their patients. However, because pravas-

tatin had such a profound effect on lipid levels, an examination of the patient’s 

LDL-cholesterol levels in her chart would reveal the patient’s assigned therapy. 

Therefore, not only were the physician and patient blinded to therapy assignment; 

they were also blinded to lipid levels. Physicians who followed these patients were 

told to send blood drawn for lipid levels to a central certified laboratory where lipid 

assays would be run.  

 The CARE clinical and data coordinating centers worked together to fol-

low these lipid measures. If a patient’s LDL cholesterol level was too high, the 

clinical center was contacted, and the physician investigated the circumstances, 

encouraging the patient to resume study medication if the patient stopped taking the 

assigned medication, or to add adjunct therapy. Because the necessity of the ma-

neuver for one of his patients could unblind the physician, sham instructions were 

also provided for a patient in the opposite treatment group at the same clinical cen-

ter. However, this was not a perfect mechanism as the following example shows. 
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 “You are going to lose a patient from your trial, and 

worse, I am going to lose a patient from my practice because of 

this study,” a CARE clinical investigator raged at the coordinat-

ing center over the phone. This physician had enrolled a patient 

into the study and had been following this quiet gentleman care-

fully. All blood work drawn for this patient was, per protocol, 

sent to the central laboratory. Over the course of the follow-up 

visits, the patient would occasionally ask how his cholesterol 

levels were doing, to which the physician replied that the choles-

terol levels were fine. After all, if the cholesterol levels were 

higher than 175 mg/dl, then the doctor would have heard from 

the coordinating center. Thus, the clinician felt comfortable in 

reassuring the patient who was always gratified by this news.  

 However, today’s visit was different as both the patient 

and his wife, were present. The wife, clearly angry, demanded 

that her husband remove himself from the study. She would not 

stand by while her husband’s care and treatment were neglected! 

Her husband, normally quiet, was also visibly agitated.  

 When the clinical investigator asked why they were so 

upset, the patient’s wife began by explaining that she and her 

husband had gone to a mall to do some shopping. While there, 

she had noticed that the mall management had arranged for 

shoppers to have their cholesterol levels screened. When she 

suggested to her husband that he be checked, he declined, saying 

that “The CARE physicians had been monitoring my choles-

terol.” However, she insisted because, “You’ve already had one 

heart attack. What’s the harm in checking?”  

 She was shocked a week later to learn that her hus-

band’s LDL cholesterol level was over 225 mg/dl, “in the dan-

gerous range”. She confronted her husband with the results, and 

now here they were in the clinical investigator’s office, confront-

ing him. 

 Discussions commenced between the coordinating cen-

ter and the clinic physician in an attempt to resolve this diffi-

culty. They concluded that the best action to take would be to 

confirm the elevated LDL-cholesterol level. Blood was drawn 

although the patient was in his office, and the certified central 

CARE laboratory agreed to process the specimen quickly. The 

patient, his wife, and the clinical center were gratified when the 

central laboratory’s result revealed that the LDL-cholesterol 

level was much lower than the mall’s result. The best explana-

tion for the disparity was the difference in the quality of the two 

laboratories.   

With no knowledge of the patient’s LDL-cholesterol, the clinical investigator was 

at a disadvantage in working with his patients, and was unprepared for the third-

party LDL-cholesterol assay.   
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1.7 Hill’s Results 
After Hill’s steadfast and persistent efforts, the tuberculosis study was started with 

(1) alternating therapy selection, and (2) blinding. The total study consisted of 107 

patients, all of whom were admitted to the hospital in 1947. The study treated and 

followed patients for one year and produced clear results (Table 1.1).  

Table 1.1. Results of Tuberculosis Clinical Trial

Follow-Up
Total patients

Patients Percent Patients Percent

6-month mortality 4 7 14 27

12-month mortality 12 22 24 46

Streptomycin Group Control Group
n = 55 n = 52

Both six-month and twelve-month crude mortality rates were reduced in the strep-

tomycin group. The difference at twelve months was statistically significant [5].  

The study was accepted as a clear success. The simultaneous introduction 

of three devices (a control group, external therapy selection mechanism, and blind-

ing) in the same experiment improved the ability of the scientists to draw clear and 

unambiguous conclusions about the effects of streptomycin. Much was made of the 

fact that very little statistical analysis was required [28]. However, the same tools 

that provided such clarity also generated a new ethical concern, from which arose 

the need to monitor clinical research in a new and imaginative way.  

1.8 The Monitoring Rationale 
The effective use of (1) a control group, (2) randomized therapy allocation, and (3) 

double-blind masking procedures can produce unambiguous clinical trial results. 

However, as is commonly the case in the evolution of science, each step out of an 

old problem is a step into a new one. The new problem in this circumstance was the 

occurrence of unanticipated effects in blinded clinical experiments.  

Investigators designing a trial give important consideration to many fac-

tors. Two of these are (1) the primary analysis of the study, and (2) the duration of 

time that patients will be followed. The primary analysis is that specific quantitative 

evaluation (e.g., mortality effect) that will determine whether the study is positive. 

The duration of follow-up is the anticipated time that the intervention will need in 

order to produce its measurable effect on the primary endpoint in patients. The du-

ration of follow-up depends on the therapy and the endpoint. For example, if one 

wishes to determine the effect of angiotensin converting enzyme inhibitor (ACE-i) 

therapy on the blood pressure of patients with mild diastolic hypertension, one need 
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only follow patients for a few weeks. However, if one wishes to observe the effect 

of these same agents on stroke rates, one must follow these same patients for years.*

Unfortunately, good planning does not always produce accurate predic-

tions. Because the question of the effect of therapy is an open one, it is difficult for 

investigators to know precisely how long it will take the therapy to reveal its effect. 

Also, because the research sample is just one of many possible samples from the 

population, the play of chance can produce an aberrant therapy effect (either harm-

ful or helpful) in the sample that does not represent the true therapy effect in the 

population. These two influences can combine to provide surprising results at unan-

ticipated durations of follow-up. Most disconcertingly, these effects can occur quite 

early during the conduct of a clinical trial, demanding immediate action on the part 

of the investigators. However, if the investigators are blinded to the therapy as-

signments, they cannot observe and assess these early effects.  

An early reflection of this concern was the desire to identify a procedure 

by which a study could come to an early conclusion without the need to either ran-

domize an unnecessarily large number of patients, or to expose patients senselessly 

to a therapy that was proving to be inferior. This desire was satisfied by the adapta-

tion of the tool of sequential testing.  

1.9 Early Monitoring Tools: Sequential Trials 
Like many aspects of clinical trials, the concept of sequential testing is simple. Pa-

tients are recruited into a clinical trial two at a time. One member of the pair is ran-

domly chosen to receive active therapy; the second receives the control treatment. 

After a short period of time, the response to therapy of each of the two patients is 

assessed. A second pair of patients is then recruited, following the same procedures 

as were followed for the first. The information of this second pair is added to that of 

the first pair to compute a cumulative effect of the therapy. A decision is now made. 

If this cumulative analysis demonstrates a clear benefit of the therapy, the trial is 

stopped in favor of the active therapy. If the trial demonstrates a clear disadvantage 

associated with the active therapy, the trial is stopped in favor of the control group. 

If neither benefit nor hazard is demonstrated, the trial is permitted to continue, and 

another pair of patients is recruited. Thus, the trial is analyzed sequentially after 

each pair of patients is treated and evaluated. Trials that are designed to function in 

this way are sequential clinical trials. 

The idea for sequential testing was first generated in industry, where prod-

ucts have to be inspected for defects [29]. The procedure was adapted to clinical 

trial use by Abraham Wald, who attributed his ideas to discussions at the Statistical 

Research Group in Columbia and the Bureau of Ordinance at the Navy Department 

in 1943 [30]. Wald created the Sequential Probability Ratio Test (SPRT) to assess 

the early effect of therapy in these studies.† Peter Armitage outlined the basic mod-

ern principles of sequential clinical trials, writing what has become the seminal text 

                                                          
* Because blood pressure changes can be measured in each patient, enough information is 

available that permits an early assessment of the effect of the therapy. Strokes, on the other 

hand, are relatively uncommon. Therefore, patients must be followed longer in order for 

enough strokes to occur in study participants.  
† Wald died shortly thereafter in 1950 during an airplane accident. 
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for the implementation of this methodology [31]. According to Armitage, one of the 

most important advantages of this approach is the ethical consideration that obvi-

ates the unnecessary use of any inferior treatments. In addition, less data was gener-

ally required to come to a conclusion about the effect of therapy. A final advantage, 

as pointed out by Bross, is that, because the computational burden was not im-

mense, the analysis could be carried out in the absence of a statistician [32]! 

However, although this innovation marked the first development of a sys-

tematic procedure in which the effect of therapy could be assessed in an ongoing 

manner, the sequential monitoring design has important restrictions. The require-

ment that the monitoring evaluation be executed for each pair of recruited patients 

demands that there be a rapid determination of efficacy [33]. This restriction pre-

cludes its use in studies where the endpoints may not occur until months or years 

have elapsed. 

1.10 Data Monitoring Committees 
Clinical investigators had to solve the issue of identifying the unanticipated early 

appearance of a therapeutic benefit or hazard that was not expected to emerge for 

months or years without unblinding the investigators of the study. This produced 

the need for Data and Safety Monitoring Boards (DSMBs), now known as Data 

Monitoring Committees DMCs [34].  

 The concept of a monitoring committee arose in the 1950s, emerging from 

the ferment of ideas produced from the careful study of early clinical trials follow-

ing Hill’s tuberculosis study. Evolving informally for approximately a decade, the 

popularity of these groups increased in the clinical trial community. However, their 

structure and function solidified when the National Institutes of Health undertook a 

review of the process in the 1960s. The resulting report of Bernard Greenberg 

served as a blueprint for the organization and oversight of large, multicenter clinical 

trials.

A DMC is a relatively small collection of august scientists who have par-

ticular expertise in the clinical question addressed by the trial. This distinguished 

group of scientists commonly includes clinicians, clinical researchers, methodolo-

gists (e.g., biostatisticians or epidemiologists), and sometimes, an ethicist. The cen-

tral charge of this group is to review all of the data in its blinded and unblinded 

form* and to determine if either an early therapeutic triumph or early therapeutic 

catastrophe has occurred. 

 The mandate of the DMC has expanded in recent years to review not just 

the effect of therapy but to examine other barometers of the trial’s status as well. It 

is not uncommon now for DMCs to review the progress of patient recruitment, to 

be notified of protocol violations, and to ensure that the statistical and epidemiol-

ogical assumptions that underlie the sample size computation are correct. This 

group then makes recommendations to the investigators and the sponsors of the 

study concerning the clinical trial’s status. It is the responsibility of this group to 

                                                          
* Sometimes even the DMC is blinded to the identity of the therapy effects. In this “triple-

blind study,” the DMC sees the results categorized not as active versus control group find-

ings but, instead, as “Group A” and “Group B.”  
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ensure that the trial is executed according to its protocol and to be on the alert for 

early signs of therapeutic benefit or harm.  

The Greenberg report called for a mechanism that would permit the early 

termination of a clinical trial when unanticipated early information obviated the 

trial’s continuation [34]. However, exactly how the DMC was to make a determina-

tion of early benefit or harm was an open statistical question. The dataset that is 

collected by a well-designed and well-executed clinical trial is a random sample 

from a much larger population of patients. That sample very likely contains a signal 

that identifies the true nature of the relationship between the intervention and the 

disease in the population from which the sample was obtained. However, samples 

also contain, just through their random aggregation of subjects, false leads. This 

background noise can distort and, in some cases, overwhelm the efficacy signal.  

It can be difficult to correctly discern this signal at the conclusion of the 

research effort, when all patients in the study have completed their follow-up and 

have had their data collected and analyzed. The task that Greenberg placed before 

the DMC was to identify this signal when only a fraction of the trial’s total time has 

elapsed, and only a few patients have data to be analyzed. This was a hazardous 

undertaking. Bradford Hill [35] wrote a prescient comment about the problems that 

would face such a committee. The committee, he wrote,  

“…has to walk a wobbly rope, balancing between panicking 

over something that is suggestive but may turn out to be unim-

portant and doing nothing because the case is unproven and yet 

may turn out to be true so that harm is meanwhile done.” 

1.11 Gaining Experiences in Monitoring: CDP 
One of the first randomized clinical trials that demonstrated the difficulties pre-

sented by the interim monitoring of clinical trials was the Coronary Drug Project 

(CDP). Executed in the 1970s, this trial was designed to assess the effectiveness of 

different strategies in reducing the risk of atherosclerotic disease in men.*

CDP was one of the largest projects of its time, randomizing 8341 patients 

from 55 clinical centers. Each patient was randomized to receive either placebo or 

one of the following five therapies; (1) low-dose estrogen, (2) high-dose estrogen, 

(3) clofibrate, (4) dextrothyroxine, or (5) nicotinic acid. Patients were followed for 

a minimum of five years.  

Early interim evaluations of the effect of therapy were carried out by the 

DMC of the study. It was clear to its members that (1) both of the estrogen doses 

                                                          
* A reasonable question to ask is why the CDP investigators chose to exclude women. Al-

though cultural issues during this period cannot be excluded, one motivation derives from the 

sample size consideration. Because the trial’s principal evaluation would be based on a com-

parison of the number of endpoints in each of the study’s treatment groups, enough of these 

endpoints must occur for a precise assessment. In general, the rarer the endpoint, the greater 

the number of patients required to collect a sufficient number of them. Because, in general, 

atherosclerotic cumulative morbidity and mortality rates are greater in men than in women, 

the sample size of the trial and the consequent resources required to execute the trial could be 

reduced by focusing only on men. 
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and 2) the dextrothyroxine treatment arm were ineffective: these study treatments 

were discontinued. However, continued interim evaluations of the effect of therapy 

suggested that there might be a harmful effect of clofibrate on the cumulative total 

mortality rate. In fact, during the first 40% of the study, the trend was for excess 

mortality in this treatment arm.  

It was exactly this type of trend that the DMC was commissioned to detect 

and to which it was charged to respond. However, the committee members wisely 

recognized that such early results could be influenced by two factors. The first was 

that the excess early deaths that occurred in the clofibrate treatment arm were oc-

curring simply because the vicissitudes of chance had produced for the investigators 

a pattern of death that was not truly reflective of the effect in the population. The 

second is that the estimates of high early death rates were based on a relatively 

small number of deaths in a small cohort with a short follow-up period. If the num-

ber of patients recruited into the trial increased, and the length of follow-up time 

increased, then better, more precise estimates would be obtained.  

This decision not to stop, but to continue to follow the clofibrate patients 

to the study’s end was a controversial decision by the DMC. If mistaken, this action 

could have slowed the acceptance of these large-scale, expensive studies by the 

medical community. However, by the time the study ended, the harmful cumulative 

mortality trend had disappeared, and clofibrate was found to be equivalent to pla-

cebo therapy [34]. 

 The DMCs decision to continue the study was sound. However, one of the 

surprising findings to observers of this study was that an early deleterious trend for 

clofibrate could be so misleading about the final effect of that therapy. Specifically, 

a therapy that proved in the end to have only a placebo effect could, just through the 

play of chance, produce a trend that “masqueraded” as a harmful one, Apparently, 

therapies could produce very misleading short-term trends about their long-term 

effects.

This was a new complication. It was well known that the analysis of the 

final results of clinical trials could be a perplexing process. However, through the 

joint albeit complex management of sound methodology, p-values, magnitudes of 

effect, and confidence intervals, the research community had gained some intuition 

and comfort with comprehending clinical trial results. Now, the successful interim 

monitoring of these experiments would require a entirely new level of intuition.  

Very few workers at the time anticipated that a useful key to this ethical 

and clinical problem would be held by the gentle movement of pollen grain.  

1.12 Ceaseless Agitation 
Robert Brown’s independent thought would either make him or break him as a sci-

entist. Born in Scotland in 1773, he was the son of the fiercely independent Scottish 

Episcopalian minister, James Brown, who was himself widely known for his strong 

intellect [36]. Educated at the Marischal College in Aberdeen, Robert went on to 

study medicine at the University of Edinburgh. After graduation, he focused on his 

developing love for botany, leaving time only for the study of German grammar in 

the morning and seeing patients from 1:00 PM to 3:00 PM in the afternoon. His 
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botanical appreciation was fostered by a sustaining relationship with Sir Joseph 

Banks, an eminent botanist. 

Brown’s particular focus was on the use of the microscope to describe the 

anatomy of the reproductive systems of plants. During these intense sessions of 

careful still observation, Brown could not help but notice the incessant agitation of 

the minute pollen particles in an aqueous suspension, vibrating with an unexplained 

force. The movement was always apparent, but not uniform. This activity was com-

plex, generating movement in three dimensions. However, it one were to consider 

just one-dimensional movement (i.e., up or down) and plot this movement over 

time, the motion appeared to be haphazard with no discernable purpose (Figure 

1.1).  
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Figure 1.1. Simulation of the one-dimensional movement (i.e., either up

or down) over time that is the hallmark of Brownian motion. 
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 Disciplining himself, Brown entered into a period of intense study and 

careful explanation of these findings. After his well-considered research revealed 

that the movement could not be explained by currents in the fluid in which the pol-
len grains were suspended, nor by gradual evaporation of this fluid, he revealed his 

findings to others.  

The tepid response to Robert Brown’s revelations quickly disabused him 
of the idea that he had discovered something of value. Careful microscopists had 

identified this type of movement before,* and it was felt that the phenomenon was 

                                                          
* The phenomenon was first observed by Jan Ingenhouz in 1785, according to sources used 

by Eric Weisstein’s World of Physics, which can be found on the Internet at 

http://scieneworld.wolfram.com/physics/BrownianMotion.html.  
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of no real importance. The current, accepted dogma was that this motion was a 

property of the pollen grain, a particle that, in the early 19th century, was assumed 

to have life all of its own [37]. However, Brown’s intellect would not permit him to 
accept this explanation without evidence, and his independent spirit drove him on to 

identify a more exact explanation for this movement. His demonstrating of this phe-

nomenon within pollen grains that had been preserved for years in an alcohol-based 
solution voided the argument that this vibration was a force of life. However, 

Brown’s revelation that even rocks, when broken into sufficiently small particles, 

exhibited this same motion, led his adversaries to concede that the movement was 
neither a property of life, nor of organic substances. The movement was a physical 

property. 
His willingness to commit his combination of independent spirit and intel-

lectual prowess produced a rigorous counterargument to these accepted explica-

tions. His exertions earned the property of matter that he studied the sobriquet, 
“Brownian movement”, that was later renamed Brownian motion. Brown died in 

1858.*

1.13 Early Explanations for Brownian Motion 
Although Robert Brown revealed that Brownian motion was a physical property of 
small particles, a definitive explanation for its cause was not within his grasp. De-

bate ensued through the middle to the end of the 19th century for the root cause of 

this movement.  
By the 1860s, the persistence of the phenomenon and the absence of a uni-

fying explanation drew the attention of theoretical physicists. The characteristics of 

the motion were quite simple and remarkable. It was agreed that, when a particle 
was exhibiting Brownian motion,  

1. It was equally likely to move in any direction.  
2. Its future motion was unrelated to its past motion.  

3. Its motion never stopped.  

These central properties of Brownian motion have been adopted by clinical trial 

methodologists to describe the movement of a function of a test statistic during the 
course of a clinical trial. However, at the time, this perpetual unpredictable (or to 

use the language of the time, irregular) movement generated excitement in the field 

of physics.  
Detailed investigations determined that the combination of a small particle 

size and a low fluid viscosity produced faster motion [38]. This concept, when con-

sidered with an earlier observation that higher temperatures led to more rapid 
Brownian motion, suggested that a possible explanation lay in the molecular motion 

that was occurring in the surrounding liquid. However, ultimately, a comprehensive 

and satisfactory explanation of this 19th century phenomenon had to wait for the 

                                                          
* He died on June 10, 1858, just a week before Charles Darwin received Wallace’s paper on 

the theory of “survival of the fittest.” In fact, Brown’s death freed up a date at the Linnean 

Society at which Darwin could present his own controversial and order-shattering lecture on 

the theory of evolution.  
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mind of the most eminent scientist of the 20th century, Albert Einstein. By offering 

a unifying explanation for Brownian motion, Einstein quite inadvertently provided 

a tool for monitoring clinical research that would lay dormant for 60 years.  

1.14 Enter the Mathematicians 
In his doctoral dissertation submitted in 1905 to the University of Zurich, Albert 

Einstein developed a statistical molecular theory of liquids [39]. In a separate con-
temporaneous paper, he applied this theory to identify the effect of molecules on a 

larger mass. He could not have imagined the implications of this work for monitor-

ing clinical research.  
The idea that a liquid or gas is made up of molecules that are always mov-

ing and colliding with each other was a core component of the kinetic theory of 
matter. Without performing any experiments, Einstein reasoned that, if the theory 

of the existence of atoms was correct, then atoms in a liquid, speeding along on 

their “infinitely many” paths, must have collisions with each other and with larger 
particles. The effect on these larger particles would be movement, but what kind of 

movement would that be?  

An exact solution to this problem was theoretically available through the 
application of Newton’s well-known equations of motion and force. However, this 

solution would have to take into account each of the billions of moving molecules 

and collisions each instant. No such practical solution to this theoretical problem 
was available. Einstein took the novel and innovative perspective of solving the 

problem statistically (i.e., in the aggregate) rather than providing a precise solution 

for the result of every collision [40]. 
Einstein thought that the resulting effect of these collisions on larger parti-

cles would be movement. This motion was due to the difference in pressure pro-

duced by the collisions on one side of the particle from the collisions on the other 
side. Because this “pressure differential” was random, changing from one moment 

to the next as the collisions changed randomly, the movement of the particle would 

be random.  
Einstein then took the next step to quantitate this movement. He focused 

on the one-dimensional movement of the particle (i.e., a limited form of motion in 
which the particle could only move in one dimension, either up or down).* Specifi-

cally, over a period of time, the particle would tend to drift from its starting point, 

moving randomly up then down over time. Kinetic theory made it possible to com-
pute the probability of a particle P moving a certain distance x from its starting 

point in relation to the elapsed time t and the viscosity of the fluid D. Einstein also 

used the kinetic theory of gases to derive the diffusion constant for such motion in 
terms of fundamental parameters of the particles and liquids [41].† On the basis of 

                                                          
*This is called one-dimensional Brownian motion. Molecular particles in reality exhibit 

three-dimensional Brownian motion, simultaneously oscillating up and down, side to side, 

and in and out. Multidimensional Brownian motion is a more complicated topic and is be-

yond the scope of this discussion.  
† This work was used by Perrin as a basis for the computation of Avogadro’s number.  
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this work, Einstein deduced that 
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By letting 2 2Dt , we recognize the quantity on the right-hand side of 

expression (1.1) as the formula for finding probabilities under the standard normal 

or “bell-shaped” distribution. This curve typically arises when the variable of inter-

est is the sum of many independent forces. Einstein’s derivation was a natural and 
satisfying “fit” to the idea that the microscopic particle’s motion is the sum of ran-

dom pushes in different directions.  

However, perhaps the most remarkable observation about Einstein’s parti-
cle motion work was that Einstein knew nothing of the observations of Robert 

Brown [38]! Einstein did not know that the process he had just described quantita-

tively had in fact been observed a century earlier. This independent evaluation and 
identification of Brownian motion cemented the veracity of the kinetic theory of 

gasses in the minds of physicists.*

1.15 Trajectory Mathematics  
Einstein developed the notion that a statistical treatment of complex systems could 
provide useful insight into the behavior of complex systems (like the trillions of 

molecular bombardments that a microscopic pollen granule sustains in suspension). 

However, it was difficult to do anything of practical importance with this result, 
primarily because the mathematics of probability had not yet been sufficiently de-

veloped. However, this last giant step that moved this field towards the application 
of clinical science was undertaken by a mathematical prodigy, Norbert Wiener.  

The first problem to which Norbert Weiner turned his attention was the 

mathematics of Brownian motion.† Much had happened in probability because of 
Einstein’s 1905 publication fifteen years earlier, and Wiener was intrigued by the 

new possibilities. Was is possible to compute the probability that a particle would 

                                                          
*The French physicist Jean-Baptiste Perrin was successful in verifying Einstein’s analysis, 

and for this work was awarded the Nobel Prize for Physics in 1926. 
† The story of Norbert Wiener is not just the demonstration of the power and idiosyncrasies 

of a mathematical personality. It is a story of remarkable parental persistence and optimism. 

Norbert Wiener’s father responded to his son’s poor academic performance by personally 

removing him from school and tutoring his son himself. The result was miraculous. Six years 

after he professed a crippling and limiting weakness in mathematics, Norbert Weiner was 

admitted to Tufts College at the age of eleven. He completed his undergraduate studies when 

he was fourteen, upon which time he was admitted to Harvard graduate school. Pursuing 

training first in zoology, and then mathematics he completed his PhD at 18. Shortly thereaf-

ter, he became a mathematics instructor at MIT, where he remained for his entire career. He 

was 24 years old.  
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follow a pre-specified trajectory? Weiner recognized that it would be impossible to 

predict the precise path that a microscopic particle being bombarded by trillions of 

molecules every moment along the way would follow. The number of equations 
that would need to be solved would be far beyond the calculating ability available. 

However, he reasoned, it might be possible to determine the likelihood of certain 

trajectories or paths; to compute, for example, the probability that a particle, after a 
time period of one second, has moved at least one unit up from its starting point 

There were many trajectories the particle could follow. A fraction of those would 

meet this criteria. How likely was this fraction?  
Many eminent mathematicians attempted to solve this problem, attempting 

to link Einstein’s theoretical work to this practical application.* Wiener actually did 
it, by creating (1) a new concept, the stochastic process, and (2) an innovative 

measure that still bears his name Wiener measure. Wiener measure permits the 

accurate computation of these excursion probabilities that are critical to modern 

statistical monitoring procedures in clinical research. Essentially, clinical trial 

methodologists today model the movement of a test statistic much as Einstein and 
Wiener modeled the movement of particles, using the normal distribution. 

Wiener himself was somewhat of an eccentric. His speech, like his writ-

ings were difficult to understand. All too often, Wiener was unable to resist the 
temptation to say everything that came into his mind. He could not separate 

mathematics from its implications, nor its implications from his personal experi-
ences. It was as though in Wiener’s mind, the person he was addressing instantane-

ously changed from a layman, to a mathematician, and then to Wiener himself [42].  

It was the first formal demonstration that probability theory could be ap-
plied to events that occur randomly in time, and it created the new study of stochas-

tic processes, This field was essentially a creation of Norbert Wiener. The mathe-

matical tools were now available to compute probabilities of trajectories.   

1.16 Momentum Builds for Monitoring Procedures 
As clinical trials grew in scope and complexity in the 1960s and the role of the 

DMC crystallized, the need for formalized monitoring procedures accelerated. This 

led to the development of statistical monitoring procedures that provided a solid 
structure to guide the DMCs evaluation process. Heybittle [43] and Peto forged 

important new tools that typified early attempts to provide DMCs with rigorous 

quantitative advice on terminating a clinical research effort prematurely.  
A newer class of procedure was disseminated in the 1970s. This body of 

calculations, termed group sequential procedures, was the first successful attempt to 

apply the underlying mathematics used to describe Brownian motion to the devel-
opment of statistical monitoring procedures in clinical research. They are the basis 

of the most commonly used clinical trial monitoring rules, and are the computations 

that produce the graphic depiction of monitoring procedures most familiar to inves-
tigators. These figures commonly divide a graph into regions of trial termination or 

trial continuation (Figure 1.2).  

                                                          
* Including the likes of Borel, Lebesque, Lévy, Banach, Fréchet, and even the preeminent 

mathematician, A N Kolmogorov.  
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 Pocock [44] and the work of O’Brien and Fleming in 1979 [45] were the 
first products of this new area of investigation. Taking its name from its authors, the 

O’Brien–Fleming procedure is the progenitor of many of the modern monitoring 

procedures used in clinical trials. Important and useful advances and adaptations of 
this approach were developed by Lan and DeMets [46,47,48]. Whitehead [49, 50] 

produced another perspective on these issues. The popular innovation of stochastic 

curtailment was introduced in the 1980s [51,52,53], and the notion of conditional 
power was introduced by Halperin et al. [54]. 

At this point, the vocabulary of clinical trial methodology began to swell 

with statistical neologisms. One new phrase was group sequential boundaries, or the 
curves appearing on the test statistic versus time graph that separates one decision 

choice (e.g., to terminate the trial for harm), from another (e.g., continue the study) 

(as in Figure 1.2). Group sequential procedures are the body of assumptions and 
statistical calculations that produce these boundaries. The concepts of stopping for 

“benefit”, “harm”, and “futility” entered the clinical research jargon during the 

early 1980s. 

1.17 Bayesian Considerations 
Alternative procedures for monitoring clinical studies have considered Bayesian 

methods. The Bayesian approach is more than the introduction of new statistical 

methodology. It represents a different statistical paradigm that formally incorpo-
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rates (1) the use of prior information, and (2) the construction of a loss function that 

helps to gauge the effect of different decisions on the investigators. The link be-

tween Bayesian tools and statistical monitoring of clinical research was explored in 
the 1980s [55,56,57]. This philosophy has generated discussion [58] and the devel-

opment of additional methodology [59,60]. Its use as a monitoring procedure in 

clinical research will be discussed in Chapter Eight. 

1.18 “Then they’ll get it right…”  
Born June 18, 1981, Jesse was a real character in a lot of ways, so much so that his 

parents considered giving him the name “Jesse James” Geisinger.* Three years 
later his rambunctious and normal infancy was shattered by the emergence of wild 

and unpredictable behavior. He became erratic, and his speech patterns rose to lev-

els of harshness and belligerence. Stunned by the sudden appearance of this bizarre 
behavior, his family struggled with possible explanations. Some thought Jesse was 

possessed. Others feared that he, like other family members before him, had 

schizophrenia. However, a trip to the doctor and an adjustment in his diet returned 
Jesse to normal. His parents could not understand the dramatic beneficial effect of 

protein reduction in his diet, but they were thankful nevertheless. They returned to 

their state of twitchy alertness that all parents of active children come to accept.  
Three weeks later, Jesse plopped himself in front of the television, went to 

sleep, and would not wake up. Rushed to the emergency room by his frantic par-

ents, they were told that their son was in a stage 1 coma. Eleven days later, Jesse 
Geisinger was released from the hospital, three years of age, alert, carrying with 

him the new diagnosis ornithine transcarbamylase deficiency syndrome (OTC), a 

rare metabolic disorder.  
The doctors thought that Jesse’s form of the disorder was mild and could 

be controlled by medication and a protein-sparing diet. However, as Jesse grew, he 

continued to struggle with his diet and medications, resulting in metabolic de-
rangements that in turn produced repeated hospitalizations. After discussions 

among Jesse, his parents, and the physicians at the University of Pennsylvania, 

Jesse was admitted to a clinical trial in which a viral vector would be used to alter 
Jesse’s defective DNA.  

On a Monday, Jesse was infused. That night he had a fever. Tuesday he 
was jaundiced and disoriented. Within a few days, Jesse Geisinger died.  

The resulting investigation revealed many ethical problems with the treat-

ment of Jesse Geisinger, including lax oversight of the research effort and conflict 
of interest. From the perspective of Jesse’s parents 

There is so much more to Jesse’s story. I can't help but 
believe that they will kill this with time and money, as they al-

ways seem able to do. Who is "they"? They are heartless and 

soulless industry and their lobbying efforts; they are the politi-

                                                          
*  This brief account of the life and death of Jesse Geisinger is taken from 

http://www.sskrplaw.com/gene/jessieintent.html. 
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cians and bureaucrats more interested in placating industry than 

in protecting the people, they are doctors so blinded in their 

quest for recognition that they can’t even see the dangers any-
more. Let them apply Jesse’s intent to their efforts, and then 

they’ll get it right. 

In 1998, after this and other ethical lapses in the conduct of clinical trials, 

the Office of the Inspector General of the Department of Health and Human Ser-

vices put forward recommendations to help ensure the safety of clinical trial par-
ticipants that had important implications for monitoring clinical research. Most of 

these recommendations focused on the conduct of institutional review boards 
(IRBs) and DMCs. In response, the Federal Food and Drug Administration (FDA) 

initiated discussion on the appropriate conduct and oversight of clinical research. 

The resulting document, entitled Guidance for Clinical Trial Sponsors on the Estab-
lishment and Operation of Clinical Trial Data Monitoring Committees [61] pro-

vides preliminary statements as to the need and constitution of DMCs.  

This guidance focuses on the needs, composition, and operation of the 
DMC in contemporary clinical research. In addition, this report reinforced the ra-

tionale for the use of monitoring procedures in clinical research. The need to con-

trol overall false positive error rates during the sequential monitoring procedure, 
and the requirement to end a clinical experiment early in the face of clear demon-

stration of benefit, harm, or futility were clearly acknowledged. As a result of this 

investigation, the use of statistical monitoring devices dramatically increased. 
Therefore, at the turn of the century, the well-motivated, mathematically 

challenging procedures for incorporating interim monitoring devices into clinical 

research was in the process of codification by regulatory bodies, signifying its ac-
ceptance as standard practice in the ethical conduct of clinical research.  

1.19 Balancing the Equation 
I have provided a brief history of clinical research here, recounting some of the 

major waves that have lifted and thrust clinical research, and, specifically, interim 
monitoring procedures forward to their current position. The next task is to demon-

strate how these interim monitoring approaches actually work, and, perhaps more 
important, what they reveal about the population from which the research sample 

was obtained. Because these concepts are primarily quantitative, a brief review of 

some basic underlying statistical principles will precede our introductory discus-
sions of the need for monitoring and path analysis.  

However, before we begin these new conversations, we should perhaps 

pause for just a moment to be sure that we have the appropriate ballast to counter-
balance our upcoming discussions. The power of mathematics will be demon-

strated. However, mathematics, in and of itself, does not provide the answer to the 

complicated philosophical and ethical considerations that arise in clinical research. 
Perhaps Norbert Weiner [62] said it best, in the following quote  
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One of the chief duties of a mathematician in acting as an advi-

sor to scientists is to discourage them from expecting too much 

of mathematicians 

This remark is prescient for the application of quantitative interim monitoring pro-

cedures in clinical research. Making the correct decision to terminate a clinical trial 
is a multifaceted problem; only some, and not all of those faces are mathematical 

ones. Speaking of the chi-square test, Bradford Hill said that, “Like fire, it is a good 

servant, but a bad master.” Careful, thoughtful clinical investigators will weigh both 
the quantifiable and the nonquantifiable alike as they examine each component of 

the philosophical dilemma that they face. Although the value of a test statistic may 
trigger a decision-making process, its value in and of itself, is insufficient to end the 

research endeavor.  

In the end, it is our success in balancing the “human equation” that counts. 
Mathematics is an important consideration, but not the only important consideration 

in that good effort. This is a perspective that we will strive to maintain in the fol-

lowing chapters.  
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2
The Basis of Statistical Reasoning in Medicine 

2.1 The Cow in the Investigator’s House 
Consider the following Russian folk proverb: 

There is a poor farmer who is preparing for the coming 

winter. Although he had a miserably small and unproductive plot 
of land and an old cow, his only possession of any value is his 

house. In reality, it’s just a one room shack, but he is neverthe-

less proud of it and its warm fireplace.  
The winter that comes is especially brutal. On one 

frigid day, the farmer looks out from his warm room and sees his 

cow, shivering and mooing in the harsh wind outside. He thinks 
for a moment, and then lets the cow into his house with him. The 

farmer doesn’t approve of what he has done. He doesn’t like the 

idea of letting an animal into his house. He detests the fact that 
the animal takes up so much of his room. He hates the smell. But 

he needs the cow to survive. So, in order to live, he gets used to 
it.*

Health researchers with a nonmathematical background “get used to statistics” in 
order to survive in research. Appearing to be an amorphous mixture of hard unfor-

giving mathematics and nebulous concerns about “the freak of chance”, statistics 

can seem to be the worst of everything. A successful businessman relates the fol-
lowing story.  

Sure, I enjoyed mathematics in high school and in col-
lege. I actually made the mistake of trying to take a second 

course in college algebra, and did fine, right up until we got to 

this thing called “e to the x”. When asked about the ingredients 

                                                          
* Taken from a debate between Soviet Premier Nikita S. Khrushchev and members of the 

Soviet Politburo in 1962, at the height of the Cuban Missile Crisis.  
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that made up this curious entity, the professor said “I can’t tell 

you exactly what “e” is, but “x” can be anything.” That’s when I 

got up, walked right out of the math building, and over to the 
business school! 

To the many healthcare researchers who have no special training in 
mathematics, statistical thinking is like entering a hall of mirrors. Investigators are 

interested in proving what they believe, yet statistics seems to focus on disproving 

what they don’t believe. Interpreting multiple endpoints in studies can be particu-
larly complex and troublesome, because although some results are generalizable, 

others are not. These counterintuitive complications deepen the suspicion that many 
investigators hold about this mysterious field. Most researchers go into research not 

because of statistics, but in spite of it.  

Clinical investigators need not be experts in statistical computation, but 
they should be experts in statistical reasoning, that is identifying that relatively 

small set of circumstances that justify applying results from small samples to large 

populations. The reliability of the results of a clinical trial rest on the investigators’ 
abilities to separate a true signal of a population effect from the background noise 

created by the random aggregation of subjects in the sample. A unifying philosophy 

is critical for interpreting these experiments.  
Appropriate statistical reasoning in the presence of interim monitoring is 

an even more delicate matter. The smaller number of subjects, greater imprecision 

in the effect size estimates, and the occasional unplanned nature of the analysis 
combine to complicate, and commonly obfuscate, the best interpretation. Thus, suc-

cessful implantation of interim monitoring requires not just calculation, but a clear 

view of that calculation’s meaning. 
This chapter provides a brief overview of the salient statistical issues in 

clinical research, serving as a preamble for the discussion of monitoring guidelines 

that is the main subject of this text. Useful references for more detailed discussions 
of these issues are available [1,2,3,4].  

2.2 Research, Populations, and Samples 
The purpose of research is simply to learn, and learning in healthcare requires that 
we study patients. However, we are faced with the inescapable observation that we 

cannot study everyone in the population that we wish to understand.  

2.2.1 The Tail Wagging the Dog 
Consider a researcher who wishes to execute a clinical trial to assess the effect of a 
new intervention on the overall mortality rate for stroke patients. However, when 

we press her, we discover that she has a much larger, more audacious goal. There is 

no question of her clear honest intent to learn about the effect of therapy in these 
300 patients. However, she is more focused on applying her results to the U.S. 

stroke population. Specifically, she wishes to take the findings from her 300 patient 

study and apply them to the 600,000 patients who have a stroke in the United States 
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each year. If she could have, she would have studied all 600,000 patients, but this 

was logistically, financially, and ethically* impossible.  

Thus, even though she would like to study the entire population, she can-
not. What are the implications of this restriction? We know for certain that 600,000 

– 300 = 599,700 patients about whom she wants to learn, she in fact will never 

study. These subjects were never recruited, never randomized, never treated, never 
followed, and never measured. Yet she claims that she will learn something of 

value about these unevaluated subjects. This is tantamount to allowing a very small 

tail to wag a very big dog.  
Specifically, studying a small sample drawn from a large population leaves 

most of the population unstudied and introduces uncertainty. Of course the diffi-
culty is compounded when the researcher ends a study before its scheduled termina-

tion time. An early conclusion produces less information available to serve as the 

basis of generalization to a population. How then can her answer be assured when 
not just most of the population of interest, but in the case of interim monitoring, 

much of the sample of interest remains unstudied in her research effort?  

The simple and honest response is that there is no guarantee that any sam-
ple-based answer is correct. However, there are practices that the investigator can 

follow that will improve the reliability of the sample-based finding. Specifically, 

these procedures will make it more likely that the sample’s results closely reflects 
the answer residing in and governing the population from which the sample was 

drawn. However, even with the use of these modern approaches, the ability to gen-

eralize the results from a sample to a population remains limited. Furthermore, the 
best statistical monitoring effort can not compensate for the weaknesses of a poorly 

designed and badly executed research effort.  

2.3 Three Principles of Sample-Based Research 
The primun movens of sample-based research is to generalize results from a small 
sample to a large population. Yet the justification for this extension is not in the 

motivation, but in the research effort’s procedures. Good methodology is greatly 

assisted by mathematics; however, application of the best research efforts requires 
an appreciation of sampling that is not so easily quantifiable.  

The act of selecting a sample of subjects from the population at large is a 
combination of science and art. The scientific aspect of sampling is simply the 

mathematical mechanism used to identify the relatively small number of subjects 

from the population who will comprise the sample. The art of the process is the 
ability to tailor the sample to provide clear objective answers to the questions that 

generated the research. This sculpting ability can be sensitively applied only when 

the investigator understands what a sample can, and cannot provide.  
Because the primary purpose of the research is to learn about a population, 

the primary purpose of the sample is to represent that population. Each individual 

selected in the sample is selected not just for his or her own attributes, but also to 
stand in for the many hundreds, thousands, or sometimes millions of patients who 

                                                          
*Many patients, for varied personal reasons, would in all likelihood not have consented to the 

study.  
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were never selected for the sample. Therefore, it is simply not enough to measure 

the germane events that occur in an individual. These occurrences must be evalu-

ated in a way that allows that measurement to represent the unobtainable observa-
tions from the unselected members of the population. This difficulty is compounded 

by the early termination of a study, because the number of subjects on which the 

termination decision is made is commonly only a fraction of the number of subjects 
the researchers prospectively declared was the minimum number necessary to com-

plete the effort. In a sense, the “representative value” of a single subject’s meas-

urements increases in the early termination environment.  
In addition, the investigator recognizes that there is another phenomenon 

complicating efforts to generalize his results. Different samples, when selected 
from a single population, will contain different individuals with different life ex-

periences, producing different data. Although the data can be similar across some 

samples, other samples will reveal marked differences. This sample-to-sample vari-
ability is called sampling error. Because the number of subjects on which an early 

termination decision rests is smaller than the number required to complete the 

study, the potential effect of sampling error is greater at the interim monitoring 
point than at the conclusion of the study. 

The presence of sampling error raised the question of how likely it is that, 

despite the investigator’s best efforts, the population generated an unrepresentative 
sample. This possibility is always present in sample-based research, and has an im-

portant impact on the use and interpretation of monitoring procedures. Therefore, 

investigators who wish to draw conclusions from this type of research are obligated 
to report the degree to which sampling error may have influenced their results.  

We may summarize these three principles of good methodological* execu-

tion of sample-based research as  

Principle 1. Clearly define your question, then select from the population a 

sample that is representative of the population and whose 
study will be responsive to your query. 

Principle 2. Carry out your sample-based measurements in such a way that 
the findings in your sample can stand for not just the sample 

results but can also accurately represent the results that oc-

curred if the study had been carried out in every member of 
the population. 

Principle 3.  Accurately measure and report the degree to which sampling 

error may have misled you.  

2.3.1 Analysis Triaging 
By their nature, investigators will and must analyze what they believe is illuminat-

ing, informative, and interesting. However, they are also obligated to report those 

findings clearly and in a manner that provides the best interpretation of these re-

                                                          
* The issue of ethics is central to a productive research effort, but is not the subject of this 

chapter.  
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sults. Some analyzes have a clear interpretation and are the most generalizable. 

Others are not.  

Analysis triage can guide the investigators’ consideration of generalizable 
versus hypothesis-generating results. This triage process divides a research effort’s 

evaluations into several clearly defined categories, each of which has a clear inter-

pretation. It is a two-phased process.  
The first phase determines if the candidate analysis is confirmatory or ex-

ploratory. Is the analysis to be prospectively planned or data driven? The major 

advantages of prospectively planned analyzes are that the estimates of effect size, 
confidence intervals, and standard errors are trustworthy. Alternatively, data-driven 

evaluations, although commonly carried out, and frequently exciting, are less reli-
able. Post hoc, exploratory results should be executed and reported, but they must 

be clearly labeled as exploratory. These evaluations require confirmation before 

they can be integrated into the fund of knowledge of the medical community.  
The second level of triage during the design phase of the clinical trial is 

carried out among the prospectively planned analyzes, dividing them into primary 

analyzes or secondary analyzes. Primary analyzes are those analyzes on which the 
conclusions of the trial rest. Each of the primary analyzes will have a prospectively 

set type I error level attached to it in such a way that the overall (or familywise) 

type I error rate does not exceed the community accepted level (traditionally 0.05). 
The trial will be seen as positive, null (no finding of benefit or harm), or negative 

(harmful result) based on the results of the primary analyzes. It is important to note 

that a clinical trial can have more than one primary evaluation. If appropriately de-
signed, the study can be judged as positive if any of those primary endpoints is 

positive.  

Secondary endpoints are prospectively declared analyzes in which no at-
tempt is made to control the familywise error rate. Typically, each secondary analy-

sis is typically interpreted at nominal (i.e., judged significant if the p-value is less 

than 0.05) levels. Secondary analyzes, being prospectively designed, produce trust-
worthy estimates of effect sizes, precision, and p-values. However, because secon-

dary analyzes do not control the familywise error, the risk of a false positive finding 
to the population is too great for confirmatory conclusions to be based upon them. 

Therefore, the role of secondary endpoints is to provide support for the primary 

endpoint findings, and not to serve as independent confirmatory analyzes.  
In the typical clinical trial, there are more exploratory analyzes than there 

are prospectively declared endpoints, and more secondary endpoints than there are 

primary endpoints. This is a finding that is consistent with the statement that a small 
number of key questions should be addressed, accompanied by careful deliberation 

on the necessity and extent of adjustment for multiple comparisons [5].  

We will return to these three principles in Chapters Five through Seven 
and the impact that they have on monitoring clinical research. 

2.4 The Monitoring Complication 
The two issues of (1) a sample’s ability to represent a population, and (2) the role of 

sampling error are twin forces that, if not correctly assessed and balanced, can de-
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stroy the utility of a clinical study’s results. This is, of course, why clinical research 

must be carefully designed and executed.  

Methodological execution requires that the investigator collect a specified 
number of patients who meet clearly defined criteria and follow them until the end 

of the study. Only a result of at least a pre-specified magnitude, measured with ap-

propriate precision would be considered positive. However, an investigator who is 
tasked with monitoring the research effort often finds herself in the position of 

working to draw a conclusion about a research effort’s results before the study is 

completed. If the study was designed to randomize a precise number of patients and 
follow them for a pre-specified time period in order to draw an unambiguous con-

clusion from the study, then doesn’t the early termination of a study undermine this 
well-considered effort? 

In many circumstances, the answer is yes. The early termination of a 

study, if incorrectly managed, will undercut the researchers’ efforts to produce a 
clearly interpretable research result. However, there is a precise set of circum-

stances in which a clinical research effort may be terminated early and still provide 

adequate assurances of the result’s validity. The clinical investigator’s role is to 
design the research effort so that these circumstances can be created and preserved 

during the study’s execution. 

 The statistical methodology that governs the monitoring of clinical re-
search must be embedded in the design of a research effort so that its execution, and 

reliance on its conclusions does not undermine the overall research effort. It must 

be prospectively detailed, unambiguous, and lead to conclusions that are supported 
by all of the trial’s methodology, in concordance with the three aforementioned 

principles of sample-based research. These are important constraints, and within 

these constraints, very few studies can be ended early. Our goal is to understand 
how the intelligent use of statistical monitoring procedures can aid in the identifica-

tion of that precise set of circumstances that would lead to the successful and early 

termination of a clinical research effort.  

2.5 The Need for Prospective Design 
The need for a clear early statement for the design of a research effort has two gen-

eral motivations. Although the first is self evident the second is hidden. However, 
like an iceberg, it is the second, submerged component that is commonly the most 

damaging when not recognized.  

2.5.1 Sample Vision 
The first motivation for the prospective design of a study is administrative. Any 
enterprise, including scientific endeavors, that requires resources needs careful 

planning to first obtain and then utilize those resources. If one is going to carry out 

a study evaluating the effect of a genome-drug interaction on short-term lung func-
tion (e.g., forced expiratory volume at 1 second (FEV1)) then the necessary logistics 

must be in place to produce precise, reproducible measures of FEV1. If, on the other 

hand, the purpose of the study is to provide information about the long-term mortal-
ity of its participants, then different measurement mechanisms must be in place. 

These include (1) the legal mechanism to obtain hospital charts and death certifi-
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cates,* (2) the availability of specialists to determine the cause of death, and 3) the 

expertise to carry out the appropriate analyzes. Each of these designs is feasible, but 

requires different resources, and time is required to make these resources available. 
Clearly, knowing what the study will measure allows the investigator to husband 

the necessary resources for the study.  

2.5.2 Advantages of the Random Sample 
A second reason for a prospective design is that early thought must be given to how 
the sample will be selected. A sample should be selected that, in general, represents 

the population. However, more specifically, the sample must allow a clear depiction 
of the relationship that the investigator wishes to illuminate in the population. Ide-

ally, this will involve a random selection mechanism. 

We have discussed one use of random mechanisms in clinical research ear-
lier. In Chapter One, discussion focused on attribution of effect, a property that is 

most directly produced by the random allocation of therapy.† However, the random 

allocation of therapy is a procedure that is executed after a subject has been selected 
for sample inclusion. The random selection of subjects is a different mechanism, 

with a different motivation. 

If each population member has the same likelihood of being chosen for the 
sample, then no member is excluded a priori at the expense of another, and there are 

no built-in biases against any subject based on that subject’s individual characteris-

tics. The procedure that precludes this bias is the random selection mechanism, and 
this process generates a simple random sample. The process by which individuals 

are selected randomly from the population for the sample ensures that every patient 

in the population has the same opportunity (statisticians say the same constant prob-
ability‡) of being selected for the sample.  

2.5.3 Limitations of the Random Sample 
There are two caveats that we must keep in mind when considering simple random 

samples. The first is that they are rarely achieved, due to the operation of a set of 
exclusion criteria. These exclusion criteria are required for logistical and ethical 

reasons. Sometimes they are used to identify a cohort or collection of individuals 
that are most likely to demonstrate the relationship that the research is designed to 

identify.§ Because each exclusion restricts a patient from entering the study based 

on a characteristic of that patient, the body of exclusion criteria makes the sample 
less representative of the general population. The inability of most clinical trials to 

                                                          
* This aspect of clinical research has become both more important and frustrating as society 

has become more concerned and restrictive about access to the personal information of indi-

viduals.
† Discussed on pages 7–10. 
‡ There are more complicated mechanisms that involve random selection. Only the simplest 

is described here. 
§ A fine example is clinical trials that exclude patients who are believed by the investigator to 

be (1) unlikely to comply with the intervention if it is self-administered over a period of time 

or (2) unwilling to complete a rigid follow-up attendance schedule.  
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achieve a sample that even approximates a simple random sample is an important 

limitation of this research tool.  

A second caveat is the incomplete operation of the random chance mecha-
nism in small samples. Because samples exclude most patients from the population, 

we would expect that a particular sample is not going to represent each of the in-

numerable descriptive facets of the population. A sample of 1000 patients from a 
population of 19 million diabetic patients will not provide representative age–

ethnic–educational background combinations.* It is asking too much of the sam-

pling mechanism to produce a relatively small sample that is representative of each 
and every property and trait of the individuals in the population. Thus, the sample 

must be shaped by the investigator so that it is representative of the population for 
the traits that are of greatest interest. This contouring process represents a compro-

mise. The sample is created to be representative of some aspects of the population, 

therefore it is not going to be representative of others. Thus, the resulting sample 
will have a spectrum of representation, accurately reflecting a relatively small num-

ber of traits of the population, and producing inaccurate depictions of others.  

Investigators who are unaware of this spectrum, and who therefore report 
every result from their study as though those results were valid and generalizable 

simply because they were produced by a random sample, can mislead the medical 

community. This is a dangerous trap for investigators because it is so easy to collect 
unrelated but “interesting” data from a study that was itself designed to evaluate a 

separate question.  

For example, consider an investigator interested in determining the change 
in exercise tolerance in patients with congestive heart failure. After she collects a 

sample of 300 patients and assesses their exercise tolerance over time, she also que-

ries them about the frequency of hospitalizations for heart failure. In the end, this 
investigator reports not just the rate of change of exercise tolerance, but also the 

hospitalization rate of her cohort. She thinks that this is appropriate because she 

believes that the sample was “representative”, and therefore, the hospitalization 
data are just as reliable as the exercise tolerance data. However, the study was not 

designed to measure hospitalizations. Patients who were likely to be hospitalized 
could not meet the entry criteria for exercising, and thus never had the opportunity 

to enter the study. Hospitalization discharge data was not collected with the same 

attention to detail as exercise tolerance data. Thus, the ease of collecting data for an 
evaluation that was not considered during the design of the study, in concert with a 

sample that was nonrepresentative of hospitalization rates combine to provide a 

misleading statement about the hospitalization rates for these patients. 
This situation is complicated when the study is being monitored for effi-

cacy and safety. During the interim evaluations of this study, the investigator exam-

ines both exercise tolerance data and hospitalization rates. As the dataset grows, 
trends appear and disappear in the dataset for both exercise tolerance and hospitali-

zations. However, the hospitalization rate interim results can be misleading. The 

                                                          
* For example, if the proportion of subjects who are Hispanic, greater than 65 years of age, 

and have a graduate school education is less than 1 in 1000, then a sample of 1000 patients is 

not likely to select any members of the population with these characteristics at all, and the 

sample will be unresponsive to any questions about this subgroup.  
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combination of (1) a set of conditions that deselected patients likely to be hospital-

ized, (2) the inability to obtain good quality data for hospitalization rates, and (3) 

the random aggregation of subjects in a sample combine to create trends that are not 
representative and would provide only a misleading perspective on what trends in 

sample hospitalization rates actually imply for the population at large.

Thus, simple random samples are only representative of the aspect of the 
population that they were explicitly and overtly designed to measure. Observing a 

population through a sample is like viewing a complicated and intricately detailed 

landscape through glasses. It is impossible to grind the glass lens so that every ob-
ject in the landscape can be viewed with the same sharp detail. If the lens is ground 

to view near objects, then the important features of the distant objects are distorted. 
On the other hand, if the lens is ground for the clear depiction of distant objects, 

then near objects are blurred.  

This is a major motivation for concentrating a research effort on a small 
number of inquiries. By focusing on this short list of questions, investigators are 

able to choose a sample containing patients with the desired characteristics. How-

ever, the wise investigator understands that, by focusing on a small number of pro-
spectively stated questions and selecting a sample that provides representative 

views of these issues, the sample may not be representative of other characteristics 

of the population. The sample’s results will most likely be generalizable for the 
questions that it was designed to answer, but not for much else.  

2.5.4 Trustworthy Estimators 
Measurements on research subjects are combined into estimators that are known by 

specific names (e.g., means, standard deviations, odds ratios, and relative risks). 
However, they all have the same function—to provide a reliable estimate of a quan-

tity in the population.

It is easy in this modern computational era to take the reliability of these 
estimators for granted. However, decades of work were required to identify them 

and to gain consensus on their use [6].* These estimators have pleasing mathemati-

cal properties and are designed to work well in the sampling error environment. It is 
important to note that they were not designed to remove sampling error. Instead, 

they channel it into both effect size estimates (e.g., means) and the variability of 
these estimates (e.g., standard deviations and confidence intervals). If the researcher 

is also interested in inference (i.e., statistical hypothesis testing), then statistical 

procedures will channel sampling error into p-values and power. Thus, when used 
correctly, statistical methodology will appropriately recognize and transmit sam-

pling error into familiar quantities that researchers can interpret.

The estimators were designed to perform well in the presence of sampling 
error. However, for them to function effectively, there can be no other source of 

                                                          
*The idea of repeating and combining observations made on the same quantity appears to 

have been introduced as a scientific method by Tycho Brae towards the end of the 16th cen-

tury. He used the arithmetic mean to replace individual observations as a summary measure-

ment. The demonstration that the sample mean was a more precise value than a single meas-

urement did not appear until the end of the 17th century, and was based on the work of the 

astronomer Flamsten.
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random variability. When other, nonsystematic error is present in the research, the 

estimators on which we rely become unreliable; that is, they no longer measure 

what they were intended to measure. This most commonly happens in the paradigm 
of “random research”. * Specifically, random research is the circumstance when a 

sample-based dataset produces an answer to a question that the investigator did not 

prospectively think to ask.
We already know that one difficulty with the random research paradigm is 

that the sample was not created to answer the nonprospectively asked question 

whose answer is suggested by the data analysis. However, a second difficulty lies in 
the environment in which the estimator is now expected to operate. A sample will, 

if interrogated often enough, suggest a provocative answer to a question that it was 
not designed to address. The difficulty with accepting this solution is that other 

samples from the same population will suggest (1) a different and most times, less 

provocative answer to this question, and (2) other provocative answers to other 
questions. These surprise results, being random, appear and disappear across sam-

ples; it is not the population transmitting its “signal” through the sample but instead 

is merely the sampling error “noise” making itself heard.  
Estimators function appropriately when they incorporate random data that 

is gathered in response to a fixed question. They do not perform so well when the 

selection of the research question is itself random, that is, left to the data. Operating 
like blind guides, these estimators mislead us about what we would see in the popu-

lation based on our observations in the sample. The result is a wavering research 

focus, leaping from one provocative finding to the next, careening wildly about on 
the random waves of sampling error. Therefore, a primary purpose of the prospec-

tive design is to fix the research questions, so that their analysis is well an-

chored.[7]† This distinction between confirmatory and exploratory analyzes will be 
particularly important (if not troublesome) in the discussion of interim monitoring 

for safety in Chapter Seven.  

2.6 The Role of Probability and Statistics 
The requirement of a sample with its consequent sampling error complicates the 
interpretation of healthcare research. The implications of sampling error are pro-

found, forcing the investigator to predict or estimate what would happen in the 
population based on what is observed in the sample. Sampling error can distort the 

view of the population, and if the research questions are not insulated from the ef-

fects of sampling error, this source of variability can wreck the ability of the estima-
tors to provide any useful information at all.  

Because the researchers’ efforts to predict and estimate population effects 

from sample findings (1) are quantitative, and (2) must acknowledge and incorpo-
rate the notion of random error, it is only natural that they incorporate statistics. 

Statistics focuses on the ability to first estimate a population quantity based on data 

that is obtained from a sample, and then, if necessary, infer a population relation-

                                                          
* This issue is discussed in Chapter 2 of [4]. 
† The problems with midstream changes in analysis plans occasionally rises to the level of 

public awareness. This most recent was a statement by an FDA scientist.   
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ship (e.g., treatment-induced lower cumulative fatal and nonfatal stroke rate) from 

observations in the population. We will now turn our attention to the basic idea 

behind statistical inference. 

2.7 Statistical Inference 
The preceding discussion of the use of the sample has prepared us for the notion of 

statistical inference. The purpose of drawing the sample is to learn something of 

value about the population from which the sample was obtained, that is, to infer 
from the sample to the population. Statistical inference is the process by which that 

inference is carried out.  
We already understand some of the pivotal steps in the inference process. 

The researcher must choose the appropriate estimators. The environment in which 

these estimators operate must not be shaken by the perturbations generated by 
changes in a research protocol that are induced by findings in the data. These con-

cepts are central to the ability of these estimators to estimate what they were de-

signed to measure. 
Statistical inference focuses on what to do with these estimators once they 

have been obtained. Although the concept of statistical inference in healthcare is 

well accepted, there have been important and continuous disagreements as to how 
this inference should be carried out. The use of formal hypothesis testing, a tradi-

tion that has strong roots in the medical research community, took root in the 1940s 

and remains a central component of healthcare research. This paradigm involves the 
construction of null and alternative hypotheses, and ultimately the generation of a 

p-value. The groundswell of enthusiasm for this perspective has been tracked and 

discussed [8]. In fact, the hypothesis testing scenario has become so popular that the 
notion of statistical inference and statistical hypothesis testing have become syn-

onymous in healthcare research. However, there are other approaches to drawing 

conclusions from a sample to a population that do not involve formal hypothesis 
testing that have demonstrated themselves to be worthy competitors.  

2.7.1 Confidence Intervals 
Although there has been a 60 year tradition of carrying out formal statistical hy-
pothesis testing, an influential community of epidemiologists has developed a con-

tinuous and formidable resistance to its application to healthcare research. The ap-

pearance of misleading research results from studies that have abused the hypothe-
sis testing scenario, in concert with the combination of sample size, effect size, and 

variability into one number has caused many in epidemiology to eschew the p-value 

for the confidence interval[9]. 
The confidence interval provides important and useful information about 

the role that sampling error plays in the generation of the result. Incorporating the 

point estimate and its standard error, the confidence interval provides a readily in-
terpretable assessment of the point estimate’s precision.  

This concept can be illustrated by an example from a recent clinical study. 

The Heart Outcomes Prevention Evaluation (HOPE) trial was designed to assess the 
effect of the ACE-i therapy ramipril on clinical measures of cardiovascular disease 

[10]. It was well-designed, and executed in accordance with its protocol (i.e., the 
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research effort was concordantly executed). At its conclusion, one of its major find-

ings was the effect of ramipril on the combined measure of myocardial infarction 

(MI), stroke, or cardiovascular (CV) death. The relative risk for this effect was 
0.78* and the 95% confidence interval was 0.70 to 0.86[11]. 

This 95% confidence interval draws attention to the range of possible val-

ues of the relative risk in the population from which the HOPE sample was drawn. 
A common interpretation of the confidence interval is conveyed by saying that it is 

likely that the value of the true relative risk lies somewhere in this 0.70 to 0.86 

range.†

Although useful, sole reliance on the confidence interval has its opponents. 

One criticism of the confidence interval approach is that it does not easily lead to 
dichotomous decisions (e.g., is the therapy effective ). Some workers rely on 

whether the confidence interval contains the value 1 (signifying no therapy effect) 

as evidence that the therapy is unlikely to be effective in the population; therefore 
this is tantamount to carrying out a hypothesis test, a procedure that the worker may 

be attempting to avoid. Finally, the confidence interval, much like the estimate of 

the relative risk itself, is only accurate insofar as the research environment is a con-
cordant one. Data-based changes in the protocol undermine the confidence interval 

estimate as easily as they destabilize the estimate of the relative risk.   

2.7.2 Bayesian Procedures 
An alternative to the traditional hypothesis testing paradigm is the implementation 
of Bayes procedures. Their underlying philosophy is distinct enough from the stan-

dard (or frequentist approach) to statistical inference that many now view the two 

perspectives as polar opposites, and the literature is replete with vigorous debates 
between the zealots of each philosophy. However, here we will steer well clear of 

these controversies, contenting ourselves with a brief review of each approach.  

2.7.2.1 Classical Statistics (the “Frequentists”) 
Classical statistics is the collection of statistical techniques and devices that evalu-

ate the accuracy of a technique in terms of its long-term, repetitive accuracy [12]. 

The conclusion from any particular research effort may be wrong. However, if the 
experiment were repeated many times, the application of classic hypothesis testing 

procedures would produce the correct answer most times. This concept of the over-

                                                          
* The relative risk of the effect of therapy demonstrated a 1 – 0.78 = 0.22 or 22% reduction in 

the incidence of the combined endpoint associated with the use of ramipril.  
†This is not the most accurate definition, because it suggests that the variability is associated 

with the population relative risk which, in this paradigm, is constant. The sample-to-sample 

variability is associated with the location of the 95% confidence interval and whether it con-

tains the population relative risk. The most accurate interpretation of the HOPE-generated 

confidence interval is as follows. If there were 100 samples obtained (in this case, this would 

mean that 100 HOPE studies were performed), each with its own confidence interval, then 

95% of these confidence intervals would contain the true population relative risk. Of course, 

with only one study, and one confidence interval, we do not know one way or the other 

whether this confidence interval contains the true value of the relative risk.  
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all accuracy of the procedure buoys the confidence of the classical statistician, even 

though the wrong conclusion may be obtained from any particular experiment. 

However, for researchers who have much of their time (and sometimes, the taxpay-
ers or stockholders’ money) bound up in an important research effort, this observa-

tion can produce a small shock. The realization that sampling error can lead to an 

erroneous result in even an expensive, well-designed, and well-executed research 
effort is not very comforting. 

We have already seen this principle in operation. The use of the confi-

dence interval to estimate a relative risk does not guarantee that any particular ex-
periment will generate a confidence interval that contains the true value of the rela-

tive risk. Instead, the underlying principle provides an assurance that, in the over-
whelming number of samples (95% of these samples for a 95% confidence inter-

val), the confidence interval will contain the population relative risk.  

Another frequentist characteristic is the focus on not just what has oc-
curred, but what has not occurred in a research program. How these non-

occurrences are handled can have a dramatic impact on the answer to a scientific 

question, and preoccupation with them can bedevil the investigator . 

2.7.2.2 The Bayesians 
Like classical statistics, Bayes theory is applicable to problems of parameter esti-

mation and hypothesis testing. The Bayesian formulation is based on a principle, 
termed the likelihood principle, which states that a decision should have its founda-

tion in what has occurred, not in what has not occurred.  

Like frequentists, Bayesians are interested in parameter estimation and hy-
pothesis testing. Bayesians estimate the population parameter  of a distribution 

(just as frequentists do). However, unlike frequentists who believe that the parame-

ter is constant, Bayesians treat the parameter as though it itself has a probability 

distribution. This is called the prior distribution, signified as .

Once the prior distribution is identified, the Bayesian works forward, next 
identifying the probability distribution of the data given the value of the parameter. 

This distribution is described as the conditional distribution (because it is the distri-

bution of the data conditional on the value of the unknown parameter) and is de-

noted as 1 2 3, , ,..., | .nf x x x x  This step is not unlike that of the frequentist. When 

attempting to identify the mean change in blood pressure for a collection of indi-
viduals, both the frequentist and the Bayesian may assume that the distribution of 

blood pressures for this sample of individuals follows a normal distribution with an 

unknown mean, whose estimation is the goal. However, the frequentist treats this 
unknown mean as a fixed parameter. The Bayesian assumes that the parameter is 

not constant, but changes over time. Its distribution is called the prior distribution.

The Bayes process continues by combining the prior distribution with this 
conditional distribution to create a posterior distribution, or the distribution of the 

parameter  given the observed sample, denoted as 1 2 3| , , ,..., .nx x x x  From the 

Bayes perspective, the prior distribution reflects knowledge about the location and 

behavior of  before the experiment is carried out. After the experiment is executed, 
the researcher has new information in the form of the conditional distribution. 



46 2. Statistical Reasoning in Medicine

These two sources of information are combined to obtain a new estimate of . To 

help in interpreting the posterior distribution, some Bayesians will construct a loss 

function, which identifies the penalty that they pay for underestimating or overes-
timating the population parameter. Bayesian hypothesis testing on the value of the 

parameter is based on the posterior distribution.  

The Bayesian approach to statistical analysis makes unique contributions. 
It explicitly considers available prior distribution information, and allows construc-

tion of a loss function that directly and clearly states the loss (or gain) for each de-

cision. However, the requirement of a specification of the prior distribution can be a 
burden if there is not much good information about the parameter to be estimated. 

Similarly, the choice of the loss function can be difficult to justify from a clinical per-
spective.

Several interim monitoring procedures have been developed that reflect 

the Bayes perspective about which we will have more to say in Chapter Eight.  

2.7.3 Hypothesis Testing Paradigm 
The scientific method, easily recognized as the driving force motivating research 

efforts, begins with an idea. Investigator conceived and formulated, this idea is 

commonly an affirmative one; for example, a new class of drug is an acceptable 
alternative to coumadin for the prevention of stroke in patients with atrial fibrilla-

tion (AF). This clinical postulate either represents scientific truth or it does not. In 

order to determine the accuracy and applicability of the researcher’s concept, the 
investigators carry out an experiment. During the design of this research, the clini-

cal hypothesis is converted into one (or a collection of) statistical hypotheses.  

The scientific method begins with a hypothesis or initial idea that the re-
searcher hopes to prove. If A is the cumulative stroke rate in the active group, and 

C is the cumulative stroke rate in the control group, then the investigator believes 

and states his clinical hypothesis as A < C . However, statistical hypothesis testing 
commonly begins with a hypothesis that the researcher hopes to disprove or nullify. 

Thus, the investigator who believes the new class of drugs is beneficial will com-

monly state a null hypothesis. In the current example, the null hypothesis is that 
patients who are assigned to the new class of drugs will have the same stroke rate as 

those patients who were assigned to coumadin. Thus, the statistical null hypothesis 
is not that A < C but that A = C. It is this null hypothesis that the investigator 

wishes to disprove or nullify with the experiment’s results.   

The reason for this change of emphasis from a positive clinical hypothesis 
to a null statistical hypothesis deserves some discussion. The investigator cannot be 

blamed for his first impression that, by being forced to turn away from proving an 

affirmative hypothesis to disproving a null one, he has lost the intellectual initiative. 
However, the investigator must recognize that he himself has chosen to be involved 

in an act of nullification. Specifically, he has chosen to nullify the current approach 

that is used to prevent post-AF thrombotic events.  
Prior to the investigator’s research, the current, accepted standard of care 

in the medical community is that coumadin is the best outpatient therapy available 

to reduce the stroke rate in patients with AF. By believing that the new class of 
drugs is better than coumadin, clearly an affirmative concept, the investigator an-
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nounces his nonacceptance of the assertion that the accepted standard of care is 

optimum. He wishes to nullify this belief, and he will do that by designing a trial 

that demonstrates the effectiveness of the new class of drug.  
The design of the clinical trial is central to this process. Patients are ran-

domized to active or control group therapy in order to minimize differences be-

tween the groups. Investigators endeavor to ensure that patients are treated similarly 
across the two groups. They work to reduce differences in compliance with medica-

tion between the groups. The investigators determine the occurrence of clinical 

endpoints without knowledge of the patient’s assigned therapy. This system is con-
structed so that, if the current standard of care is correct, there will be no differ-

ences in the cumulative stroke rates between the two groups. Thus, if there are im-
portant differences in the stroke incidence rates, they can be due to only two rea-

sons: (1) the freak of chance produced by the random aggregation of patients in the 

research sample, or (2) the therapy actually made a difference.  
Therefore, the null hypothesis is merely a mathematical characterization of 

the current practice of medicine. It is consistent with an underlying theme of the 

clinical trial; that is, if the therapies being tested have the same effect on the clinical 
endpoint, then the data and the trial support the state of the art, or the null hypothe-

sis.

When the findings are more extreme, they are commonly described as 
“unlikely to be due to chance alone”. This means that the sample-to-sample vari-

ability is too small to serve as the only explanation for the large difference in the 

stroke rates between the two groups. This statement has come to be encapsulated in 
the p-value.  

2.7.4 P-Values 
The p-value is a measure of sampling error. It is simple in concept, but its long and 

complex history is undeniable. Before we put their use in context, let’s first discuss 
what p-values are supposed to be, and then acknowledge what they have become.

 When the positive conclusions of a well-designed, concordantly executed 

research program are placed in her hand, the researcher must acknowledge two pos-
sible explanations for the results. The first is that the sample truly represents the 

findings of the larger population. However, the second explanation is that the sam-
ple’s results are due to sampling error and do not represent the population.  

This second explanation is motivated by what sampling error can produce 

in the absence of a real treatment effect in the population. In this situation, the posi-
tive research finding does not accurately reflect relationships in the population. In-

stead, the positive sample findings are unique to the sample. They are not seen in, 

nor are they representative of, the population. Just as a “population” of 1000 fair 
coins when flipped could produce a “sample” of five coins that all showed “heads”, 

a population that has no effect can produce a sample which contains, just through 

the play of chance, an important “treatment effect”. 
Because sampling error is always present in sample-based research, we 

can never know for sure whether a sample’s results are representative of the popula-

tion or just due to the play of chance. The p-value simply measures the likelihood 
that sampling error has produced a positive result in the research sample of the in-



48 2. Statistical Reasoning in Medicine

vestigator. If sampling error produced the research result, the researcher would be 

wrong in concluding that the effect seen in her sample represents a true finding in 

the population. The p-value is the probability that a population in which there is no 
effect would produce a sample that demonstrates an effect.* The smaller the p-

value, the less satisfactory is the explanation that sampling error explained the re-

sults, and the more likely a truly representative research result was identified.  
 The idea of the p-value and significance testing is based on the work of 

the agricultural statistician Ronald Fisher.† As he worked through the design and 

analyzes of agrarian experiments in the 1920s, he stated that, if there was a greater 
than five percent chance that a population that had no positive findings produced a 

sample with positive findings, the positive findings in the sample should be dis-
carded because the likelihood that they were due to the random, meaningless 

aggregation of events was too great [13,14].  

This was the beginning of “significance testing”, and the “p < 0.05” con-
cept. There is no deep mathematical theory that points to 0.05 as the optimum type I 

error level—only tradition. The rise and pre-eminence of the 0.05 level has its roots 

less in science and more in the “sociology of science”, as 1940s journal editors and 
senior grant reviewers struggled with differentiating worthy scientific results from 

second-tier ones [15,16].  

Unfortunately, many researchers have substituted the 0.05 criterion for 
their own thoughtful, critical review of a research effort, and this replacement has 

led to uninformed research interpretation. Poole [17] pointed out that the mechani-

cal reflexive acceptance of p-values at the 0.05 level is the nonscientific, easy way 
out of critical and necessary scientific discussions. For example, highly statistically 

significant effects (i.e., results associated with small p-values) have been produced 

by small, inconsequential effect sizes. In other research efforts, small p-values 
themselves were rendered meaningless when the assumptions on which they had 

been computed were violated. In addition, there is the observation that statistical 

significance may not indicate true scientific, biological, clinical, or economic sig-
nificance [18,19, 20, 21, 22].  

The reduction of a complex research endeavor’s result to a single p-value 
is perhaps at the root of the inappropriate role of significance testing. This conden-

sation effort may be due to the fact that the p-value is itself constructed from sev-

eral constituents. Sample size, effect size, and effect size variability are important 
components of the p-value and are directly incorporated into the p-value’s formula-

tion. However, in reality, what is produced is not a balanced measure of these im-

portant contributory components, but only a measure of the role of sampling error 
as a possible explanation for the results observed in the research sample. Thus, p-

values are deficient reflections of the results of a research effort, and must be sup-

plemented with additional information (the research effort’s concordance,‡ sample 

                                                          
* The  error rate is the type I error rate that is set before the research begins. The p-value is 

the measure of  that is based on the result of the research. 
† This is the same Ronald Fisher whose contribution of the tool of randomization was dis-

cussed in Chapter One.  
‡ Concordance is the desirable property of research that derives from the tight match between 

the research execution and the plans for its execution as stated in the research protocol.  
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size, effect size, and effect size precision) in order for the study to receive a fair and 

balanced interpretation [23]. The investigator must jointly consider these measures 

when interpreting a research endeavor’s results.  

2.7.5 Statistical Power 
Consider a research effort that is designed to identify the effect of a therapeutic 

intervention in a sample of patients. As we saw previously, sampling error can pro-

duce from a population in which there is no therapeutic effect of interest a sample 
in which there is a significant treatment effect. This misleading sample is generated 

by the random and unpredictable selection of subjects in the sample, that is, by 
chance alone.   

However, the influence of sampling error can be equally insidious when 

the study results are not positive. After all, it is quite possible that a population in 
which there is a treatment effect of interest may produce a sample in which there is 

no effect. In this case, the researcher is compelled to conclude that, because his 

research sample produced no effect of interest, the therapy is not effective for its 
studied use. However, this would be a false result because this sample that pro-

duced the null finding was produced by chance alone. This is called a type II error.

The probability that a population in which there is an important treatment effect 
also produces a sample containing that same effect is the power of the study, and 

may be computed as simply 1 .Power Type II errorP

 Unlike the case of the p-value, where there has been a strong tradition of 

setting the threshold at 0.05, the minimal acceptable power for a study has been a 

standard that has changed over time. Acceptable power levels can extend up to and 
sometimes exceed 95%. Rarely, however, is a study acceptable that is based on a 

power level of less than 80%.  

 Which one of the type I error or type II error the reader of a well-designed 
and concordantly executed* study should track depends on the findings of the re-

search. If the study results are positive, then the reader must focus on the likelihood 

that a false positive study could be produced through sampling error. This is a con-
cern that focuses on the p-value. If, on the other hand, the study findings are null, 

the reader turns her attention to the power of the study. If the power of the study is 
high, she may assume that it is unlikely that a population in which the research ef-

fect was important would produce by chance alone a sample in which the research 

effect was absent.  
 During the design phase of the study, the researcher will not know which 

of these two errors may occur, so he must design the study with a priori concern for 

each of these errors.  

                                                          
* Of course, if the research is not designed well, or is executed poorly, then these measures of 

sampling error can be corrupted and therefore, inaccurate. One learns how well the research 

was designed and executed from an examination of the methodology section of the manu-

script. See Chapter 4, Section 3.2 Systematic Reviews from Moyé [22].  
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2.8 Conclusions 
Study results from undisciplined research efforts can produce provocative findings 
with no lasting value. The same tendency, left unchecked, will also plague the re-

sults produced from the interim monitoring on clinical research. These intermediate 

results, based on smaller samples, powered by small p-values, can with loud voice 
point the medical community in the wrong direction.  

As long as research is based on drawing a sample from a population, sam-

pling error will play a role in the product of that research. Two important precepts 
to follow are (1) clearly define your question, (2) select from the population a sam-

ple that is representative of the population, and (3) develop a clear a priori protocol 
and follow that protocol during the conduct of the research. Adhering to these prin-

ciples will contain the extent and the limit the role of sampling error as an explana-

tion of the research results, be they interim results or the final results of the study.  
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3
Probability Tools for Monitoring Rules

Commonly, the application of statistical procedures to a clinical research endeavor 
ends with a hypothesis test. Clinical monitoring doesn’t end with a test statistic, but 

begins with one. The investigator holds the value of a test statistic at a particular 

point in time in her hand, and then, using this test statistic, attempts a prediction of 
the probability of a future outcome. Because this future event is only one of many 

possible events, probability is central to its evaluation. 

Our purpose here is to gain the intuition in probability that we need in or-
der to be able to assess the interim results of a clinical research activity. That re-

quires that we review the concept of actions that produce unpredictable events, and 

acquire a basic understanding of how probability tools operate on these events. Be-
cause the reader is most likely uninterested in the inner workings of mathematical 

models, the computations involving those models are not reproduced here.* There-

fore, although probability has a deep history and is enveloped in a lush literature, 
we will not overstay our welcome. 

3.1 Using Probability to Monitor Research 
Probability computes the likelihood of events that occur from actions. An action is 
a maneuver that results in an uncertain outcome (e.g., flipping a coin). These out-

comes or events are identifiable, but the knowledge of exactly which outcome will 

be produced by the next action is not available a priori.  
Probability is an important tool for the clinical monitor who, with an in-

terim result available, wishes to learn if the study will ultimately be positive. At this 

interim point in time, there are many possible future results. Commonly the types of 
study results are collected into classes or categories of results. One example is the 

collection of results that are all positive, that is, that show a beneficial effect of the 

tested clinical intervention.
Even though the clinical investigator will commonly not be the scientist 

who carries out the actual probability computation, he bears the key responsibility 

of constructing and articulating the clinical event whose probability holds his inter-

                                                          
* In all likelihood, the reader will have a statistician or some other quantitative specialist that 

will carry out the necessary computations. 
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est. This is not a trivial matter, and often requires a good deal of thought. Although 

the investigator can be excused from knowing the details of the probability models, 

he is fully accountable for understanding the event whose probability he has re-
quested to be computed. 

3.2 Subjective Probability 
Probability is ubiquitous and is a concept that is frequently incorporated in conver-

sation. Commonly, it is not used mathematically, but is instead used merely as a 
vehicle to convey an opinion. For example, an attending physician who is discuss-

ing a case with medical students may conclude rounds with the comment, “We need 
to wait for all of the lab analyzes to return, but the patient, in my view, probably 

does not have subacute bacterial endocarditis.” Rushing away to a staff meeting, he 

stops to receive a brief telephone call from his daughter that leads him to believe 
that, “She probably is not going to find a job this summer.” During the meeting, he 

learns that the faculty parking lot, “Will probably be replaced,” by a new campus 

building. At the conclusion of the meeting, he receives another call, this time from 
the car mechanic who says his wife’s car, “Will probably not be repaired,” in time 

for the weekend.  

Each of these four examples demonstrates the use of a type of amorphous 
nonquantitative probability. No formal evaluation was embedded in the preceding 

four probability assessments, yet each statement conferred an assessment of the 

most likely outcome of an action. These probabilities are referred to as subjective
probabilities. They are based on one’s personal beliefs, cultural opinions, and atti-

tudes.  

Subjective probabilities can be complicated, representing a diffuse mixture 
of qualitative as well as quantitative components. In the aforementioned examples, 

there was no satisfying, intuitive mathematical device that would produce an as-

sessment for the attending physician of the likelihood of the events of interest. A 
natural and human response on his part was to fill this gap with his own experience.  

 It is important not to disparage the notion of subjective probability. To a 

great extent, subjective probability is used in monitoring a clinical research effort. 
As the monitor, we may receive a good deal of quantitative information. Some of it 

is rigid and formal, for example, whether a test statistic has crossed a threshold or 
boundary value. Other information is based on qualitative evaluations for example, 

the findings of other endpoints in the research effort, or the results of other investi-

gations that are conducted in parallel with the one in question. Ethical concerns are 
certainly nonquantitative and play a central role in the review process.  

It is up to us as physicians and scientists monitoring the study to integrate 

this information from multiple sources correctly. We do this by first combining the 
mathematical and non-mathematical information. This mixture will leave gaps in 

our information; these gaps demonstrates the complexity of the decision process. 

We react to these missing components by filling them in with pieces of ourselves, 
using not just our intuition, knowledge, training, experience, and expertise but also 

our personality, biases, hopes, and fears. This is the heart of subjective probability. 

Although this is all that we will say about it, its role in assessment of interim results 
is undeniable.  



3.3 Probability as Relative Frequency 55

3.3 Probability as Relative Frequency 
As useful and as necessary as subjective probability is, a main focus of the monitor-

ing effort for clinical research is on the mathematical assessment of probability. 

This is most directly related to the action–outcome scenario. We define an action as 
a sequence of occurrences resulting in an unknown outcome. A simple action is the 

flip of a coin. A more complex action would be the combination of eventualities 

that produces a particular interim result in a clinical study.  
Outcomes or events are the results of an action. The possible outcomes of 

this action are identifiable, but precisely which outcome will occur is unknowable. 
The collection of all possible events is the universe or sample space of events. Of 

the sample space of events, we are concerned about the occurrence of events of 

interest. We may define probability as  

[ ] .
frequency of all events of interest

event of interest
frequency of all possible events

P

For example, we are interested in flipping a coin twice. Let H represent a head, and 
T represent a tail. We are interested in the event where the two flips provide differ-

ent results. Our universe of events is {H, H}, {H, T}, {T, H}, {T, T}. The event of 

interest is {H, T}, {T, H}. We compute the probability as  

, , ,
[ ] .

, , , , , , ,

frequency H T T H
alternating results

frequency H H H T T T T H
P

In this case the frequency is just the number of events. Thus, 

2 1
[ ] .

4 2
alternating resultsP

The two critical aspects of computing probability are (1) identification of the event 

of interest and (2) the ability to count or “measure” them*. These can both be com-
plicated, so we will spend time on each of them.  

Probability is a mathematical function, but is unlike any mathematical 

function that you may have been exposed to in college algebra or calculus. Typi-
cally, we think of mathematical functions that are simple mappings, that is, they 

map or convert one number to another. A simple example of this is the function 

( ) 5 .f x x This function merely defines a rule that governs the conversion of one 

number to another. In this case, the rule is to take the first number or argument, and 

                                                          
* Assigning an appropriate measure to uncountably many paths of Brownian motion was the 

central contribution of Norbert Weiner to Brownian motion predictions that has become so 

useful in applying Brownian motion to clinical research monitoring. 
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multiply it by five. A more complicated function is 2, .xf x y
y

Here, the func-

tion maps two arguments, x and y, to a single number ( , ).f x y  In this case, if x is a 

patient’s weight in kilograms, and y is his height in meters, then ( , )f x y represents 

his body mass index or BMI.  

Probability is a function with a very different argument. The argument of 

probability is not always a real number, but is best thought of as a set, or a collec-
tion of items.  

3.4 Decomposing Events 
We will have many events for which probabilities are required in modern monitor-

ing procedures in clinical trials. The problem that faces the investigator is the prob-
ability computation of a complicated event or outcome (Figure 3.1).  

P( )

Complicated

Event

Figure 3.1. The desire to compute the probability of complex

monitoring events. P( ) signifies the probability function.

Complicated

Event

This complicated event may be very easily stated, for example, the event that the 

study being monitored will produce a negative or harmful result.* This is an easy 

event to conceptualize. However, exactly how one goes about computing the prob-
ability of such an event is unclear, because the random aggregation of clinical cir-

cumstances that produce this event seems both innumerable and unpredictable.  

One important way that a probabilist approaches complex problems is 
through the strategy of deconstruction and construction. Essentially, a complicated 

problem is disassembled into simpler components. These simple components, being 

                                                          
* In this text, a positive study is a study where the intervention produces a beneficial effect. A 

negative study demonstrates a harmful effect, and a null study produces neither benefit nor 

harm. Every attempt will be made to ensure that the research context is clear in order to re-

duce any confusion through the use of these terms.  
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easier to understand, are studied and understood. This understanding leads to a 

knowledgeable reconstruction of the original complicated problem and its solution.  

In the circumstance of monitoring clinical research, this approach trans-
lates into taking apart the complicated event whose probability is sought into sim-

pler events. This deconstruction is both straightforward and reproducible. The sim-

ple events have probabilities that are more easily computed. Then, using the rules of 
probability, the solution to the original problem is assembled from the probability 

of the individual components. The sequence is (1) event deconstruction, (2) prob-

ability computation, and (3) probability reconstruction. (Figure 3.2).  

P( )

P( )

P( )

P( )
P( )

P( )
P( )P( )

P( )P( )

Deconstruct event

Compute probabilities

of the simple events

P( )Assemble probability

Simple 

Events

Figure 3.2. Computing the probability of complex monitoring events. The complicated 

event is deconstructed to a collection of simple events whose probabilities are easily 

computed. These probabilities are then reassembled into the probability of the original, 

complex event. 

Thus, in order to carry out these operations, we need to know how to deconstruct a 

complex event into a combination of simpler events whose probabilities we can 

easily find.

3.4.1 Combinations of Events
Consider a collection of events A1, A2, A3, …, An as events whose probabilities can 

be computed. For example, consider a hospital that has 100 patients from which we 

would like to select a small sample of five patients to determine their insurance 
status. Let A1 be the event that the first patient is part of the sample of size 5. A2 is 

the event that the second patient is in the sample, and A3 is the event that the third 

patient is in the sample. Finally, A100 is the event that the 100th patient is in the sam-
ple.

 In this scenario, it makes sense for us to be able to compute the probabili-
ties of each of these events (which we will do shortly). However, there are many 

other events that could occur that are of interest as well. For example, the event that 
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both patient 1 and patient 2 are in the sample of size 5 is a possibility whose prob-

ability we might like to compute. Another event of interest is that either patient 1 or 

patient 2 is in the sample of size 5. Also, the event that neither patient 1 nor patient 
2 is in the sample of size 5 would be interesting. These latter events, although more 

complicated than the events signified by A1, A2, A3, …, A100, are nevertheless related 

to them. We will describe these relationships, and then show how to compute the 
probabilities of these events.   

3.4.2 Joint Occurrences 
Monitoring rules in clinical trials commonly focus on the computation of events 
that involve the joint occurrences of events (e.g., computing the probability that a 

measure of effectiveness exceeds a value when 50% and 75% of the trial’s total 

follow-up time has elapsed). Therefore the ability to successfully understand and 
manipulate probabilities of joint occurrences is critical to understanding these 

monitoring procedures. The event that A1 and A2 occur means that both events must 

be satisfied. Using the insurance example, a joint event would be that both patient 1 
and patient 2 must be in the sample of size 5. The inclusion of either is not suffi-

cient; both must be present. We signify this compound event as 21A A , and read it 

as the event A1 and A2. The compound event that requires both events must occur is 

known as an intersection. * There are many possible intersections from our collec-

tion of events A1, A2, A3, …, A100. Examples are 2319A A (the 19th and 23rd patient 

are in the sample of size 5), and 95 9694A A A  (the 94th, 95th, and 96th patients are 

in the sample of size 5). These are called the probabilities of joint occurrences, or 

joint probabilities.

 How we compute probabilities of these joint events depends on the rela-
tionships between the events. Events can be mutually exclusive. If they are not mu-

tually exclusive, they can be independent or dependent. The definitions of these 

properties are straightforward. 

3.4.3 Mutual Exclusivity 
Two events E1 and E2 are mutually exclusive if the occurrence of one makes the 

occurrence of the other impossible. For example, if E1 is the occurrence of a head 

on the single flip of a coin, and E2 is the occurrence of a tail then E1 and E2 are mu-
tually exclusive. This is because a single flip of a coin produces one and only one 

result.
 A moment’s reflection reveals that intersections of mutually exclusive 

events are impossible. In the coin-flipping scenario where E1 and E2 are mutually 

exclusive, we may write 
1 2 0.E EP  Thus, computing the probability of joint 

events is trivial when the events are mutually exclusive.  

 Returning to the hospital scenario, the answer to the question, “Are A1 and 
A2 mutually exclusive?” is no, because both patient 1 and patient 2 can each be part 

                                                          
* Probabilists frequently state this as “A1 intersect A2”.
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of the sample of five patients. The next question that we ask is are A1 and A2 inde-

pendent. 

3.4.4 Independence 
When events are not mutually exclusive, we must examine the events carefully for  
other useful properties. Among the most useful is the notion of independence. 

Events can be independent or dependent. Events are independent if the occurrence 

of one event tells us nothing about the occurrence of the other. Dependent events 
are events where the occurrence of one event allows us to adjust the probability of 

the occurrence of the other event.  
Most of us have a general understanding of the concepts of dependence 

versus independence. However, although these two properties are somewhat intui-

tive, we need to elaborate on their fundamental characteristics. The descriptors “in-
dependence” or “dependence” are properties of a relationship. We don’t ask if the 

occurrence of macular degeneration is “independent.” We do ask if the occurrence 

of macular degeneration is dependent on or independent of the patient’s age. The 
property of independence/dependence describes the state of the relationship be-

tween events.*

Specifically, at its most fundamental level, independence describes a rela-
tionship between two events that is characterized by the fact that the occurrence of 

one of these events provides no information about the occurrence of the other. An 

observer who notes the occurrence of one event learns nothing about the occurrence 
of the second event if the two events are independent. Consider the thought process 

of a doctor who is examining a patient who may or may not be suffering from a 

urinary tract infection. During his examination, the doctor may notice the patient’s 
hair color. However, the observation that the patient’s hair is black does not influ-

ence the likelihood that the patient is suffering from a bladder infection. Hair color 

is uninformative about the occurrence of the infection, and knowledge of the pa-
tient’s hair color does not help the doctor one way or other. We say that the two 

events of hair color and the presence of a urinary tract infection are independent of 

each another [1].  
If E1 and E2 are independent, we say that E1 is independent of E2, or 

1 2 .E E  If 1 2 ,E E then
1 2 1 2 .E E E EP P P  When the events are inde-

pendent, then the probability of their joint occurrence need not be zero, but it is 

simply the product of the probabilities of the independent events.  
As a simple example, consider the action of flipping a fair coin twice. We 

are interested in computing the probability of a head on the first toss and a head on 

the second toss. Let E1 be the event of a head on the first toss, and E2 the probability 
of a head on a second toss. Then E1 and E2 are not mutually exclusive. However, in 

this circumstance, the events E1 and E2 are independent. We can therefore, compute  

                                                          
* Even when words and expressions such as sovereign, autonomous, self-determination, or 

self-rule are used to describe independence, there is a relationship implied, for example, 

“sovereign from what?”. 
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1 2 1 2

1 1 1
.

2 2 4
E E E EP P P

The computation of the joint event probability when the events are independent is 

typically very simple. In fact, one of the fortunate consequences of selecting simple 

random samples is that this procedure produces subjects whose experiences are 
independent of each other. This independence in turn permits the computation of 

the joint occurrences of events as the product of the individual probabilities. This 

simple assumption is the bedrock on which the use of commonly used statistical 
estimators (e.g., means, variances, and incidence rates) are computed.  

3.4.5 Dependence 
We have seen that when the events are either mutually exclusive or independent, 
the computation of the probability of their joint occurrence is relatively simple. This 

is not the case when the events are dependent. However, the dependent circum-

stance will be the most useful for us in many clinical research monitoring circum-
stances.

Dependent relationships can be complicated, requiring thoughtful consid-

eration. When two events are dependent, the observer can gain useful knowledge 
about the possibility that the second event occurred by knowing the first event’s 

occurrence status. Thus, dependent relationships can be very informative—

however, the observer must understand the nature of the dependency. Specifically, 
she must know how to apply her knowledge of the first event’s occurrence to up-

date, re-evaluate, and thereby improve her assessment of the likelihood of the oc-

currence of the second event.  
Although physicians in their day-to-day practice may not formally think of 

events as being dependent, we nevertheless learn to link events in helpful ways. For 

example, a patient admitted to an emergency room complaining of chest pain will 
undergo a diagnostic evaluation that will provide information about the likelihood 

that the patient has suffered a myocardial infarction (MI). This information includes 

a complete history of the symptoms of the chest pain (e.g., where is the pain lo-
cated? Is the discomfort a pressure sensation? Is there associated pain in the jaw or 

the arms? Was there sweating with the discomfort? Was there any nausea or vomit-
ing associated with the episode?) This is followed by a complete medical and fam-

ily history, leading to a thorough physical exam and evaluation of the patient’s 

blood assays, electrocardiogram, and other cardiac diagnostic tools.  
 Each of these procedures is designed to reveal useful information about the 

cause of the patient’s chest pain and, based on these evaluations, the treating physi-

cian will come to a conclusion and make treatment recommendations. If the diag-
nostic workup of the patient reveals her to be a 20-year-old female whose chest 

pain (associated with contusions, soft tissue pain, and swelling) occurred shortly 

after falling from a horse onto a fence, then the likelihood that the cause of the chest 
pain is a heart attack is dramatically reduced. Of course, substernal crushing chest 

pressure–pain in a 59-year-old obese male with a long history of cigarette smoking 

and hyperlipidemia who has sustained a heart attack in the past and who currently 
has ST-T segment elevations on his electrocardiogram is a set of circumstances that 
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is easily recognized as predictive of a heart attack. In each case, the events that the 

patient experienced before and during the emergency room visit were not independ-

ent of whether the patient was experiencing a heart attack. In fact, these events were 
evaluated precisely because they shed important light on the likelihood of a heart 

attack.* The dependence between the diagnostic findings and the assessment of the 

likelihood of a heart attack was used to advantage by permitting the findings of the 
diagnostic testing to change the emergency room doctor’s assessment of the likeli-

hood that the patient was having an MI. 

Conditional probability is most useful because it is commonly difficult to 
articulate the nature of the dependency persuasively and completely using other 

quantitative approaches. Consider, for example, the relationship between health 
care access and cultural background. It has been well established that some cultures 

in the United States visit physicians and healthcare providers more commonly, re-

ceive prescriptions at a greater frequency, and are more likely to receive prenatal 
care than others. However, the precise nature of the connection is unknown. There 

is no formula which accurately and reliably depicts the nature of the relationship, a 

relationship that remains after adjusting for the easily anticipated sociodemographic 
predictors of health care access (e.g., age, gender, and the presence of comorbidity. 

Thus, the nature of the relationship is beyond the ability of sociology to completely 

discern with modern statistical tools, although its presence is undeniable. By 
developing the probability of health care access given the person’s cultural 

background, conditional probability allows a precise estimate of the magnitude of 

the dependency without having to elucidate the dependency’s nature.  
We may specifically denote the probability of an event A when the event B

has occurred as |A BP . This probability may be computed as  

| .
A B

A B
B

P
P

P
 (3.1) 

The motivation for this formula may be most visible demonstrated graphically 

(Figure 3.3). 

                                                          
* On the other hand, part of the diagnostic workup of a patient with a possible MI does not 

include interrogating the patient about their rate of fingernail growth. Rapid fingernail 

growth provides no useful information about the occurrence of a heart attack, and we say that 

rapid fingernail growth and the occurrence of an MI are independent events.
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Figure 3.3. Development of conditional probability.
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Consider the following example of a conditional probability. An investiga-

tor is monitoring a clinical study that is based on the value of the test statistic. The 
test statistic includes the number of patients in the research effort, and is denoted as 

Tn. The investigator knows that 300 3 0.001,TP signifying an infrequent event. 

As the trial progresses, he learns that the value of the test statistic when the number 

of patients in the trial is 200, T200, is greater than 3, and is told by the biostatistician 

that 200 3 0.025TP  In addition, the investigator knows that the probability that 

both T300 > 3 and T200 > 3 is 0.013. He is interested in 300 2003 | 3 .T TP  From 

this information he can compute 

300 200

300 200

200

3 3 0.013
3 | 3 0.52.

3 0.025

T T
T T

T

P
P

P

Without knowing the size of the test statistic when 200 patients were in the trial, the 

unconditional probability that the test statistic is greater than three when 300 pa-

tients are in the study is 0.001. This is a small number, representing an unlikely 
event. However, knowing the value of the test statistic at the intermediate point 

when 200 patients were enrolled in the study increases the probability that T300 > 3 

to 0.52, a 520-fold increase. Knowledge of the value of the test statistic for n = 200 
informed the process.  
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Examining the formula for conditional probability, we may write, in the 

case of dependent events, that | .A B A B BP = P P As was the case with the 

scenario of independence, the probability of the joint occurrence of events is the 

product of probabilities. However, when the events are dependent, one of the prob-

abilities to be used in this product is a conditional probability.  
 Thus, when faced with computing the probability of the joint occurrence 

of events A and B, we just decide if the events of interest are mutually exclusive, 

independent, or dependent. If the events are mutually exclusive, then 0.A BP

If the events are independent, then .A B A BP P P Finally, if the events 

are dependent, then | |A B A B B B A AP P P P P  (Figure 3.4). 

Figure 3.4. Computing the probability of joint events.

A and B are mutually exclusive

A and B are independent

A and B are dependent

.A BP = 0

.A B A BP = P P
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| .

A B A B B

B A A

P = P P

= P P

Event                                         Probability

3.4.6 Unions of Events 
The implementation of statistical monitoring in clinical trials requires us to identify 
and combine simple events into more complicated events of interest. The intersec-

tion is one such tool. A second device of interest is the union of events.  

The union of two events signifies that at least one of them occurs. We 

write the possibility that either event A occurs or event B occurs as A B , com-

monly stated as “A union B”, or “A and/or B”.
Computing the probability of this event follows directly from examination 

of the possible ways that this can occur (Figure 3.5).  

From Panel A of Figure 3.5, the events A and B are mutually exclusive. In 
this case the probability of the occurrence of either the event A or the event B is 

simply the sum of the probabilities: .A B A BP P P  However, in Panel 

B where the two events A and B are not disjoint, the simple addition of the prob-

abilities of the events is inappropriate. This is because both event A and event B
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include the event .A B  Thus, in the case of nondisjoint events, the simple addi-

tion of AP and BP would include the A BP twice; we must remove one of 

these redundant components. Thus .A B A B A BP P P P

 The consideration of event unions is essential in the monitoring of clinical 
research. One common scenario occurs when the monitoring investigator is con-

cerned about the occurrence of either a beneficial effect or a harmful effect. Con-
sider the example in which a clinical study’s protocol contains the prospective dec-

laration that its results will be monitored 20% into the trial’s total duration of fol-

low-up.

Figure 3.5. Examination of the union of two events A and B.

Panel A

Panel B

A B

A BA B

The test statistic at this point is denoted T20%. The evaluation of interest is 

the effect of the intervention on the change in National Institutes of Health Stroke 
Score (NIHSS). It is determined that T20%  3.5 would be an overwhelming positive 

effect. Alternatively, T20%  –2.5 would reflect important harm. Thus, the investiga-

tor is interested in 20% 20%3.5 2.5 .T TP  Because these two events are mu-

tually exclusive, then this probability can be decomposed into the sum of two 

probabilities, 20% 20% 20% 20%3.5 2.5 3.5 2.5 .T T T TP P P

3.4.7 Unions and Intersections in Monitoring
The preceding elementary example that involved monitoring clinical events in-
volved mutually exclusive outcomes. However, a circumstance in which the events 

of interest are not mutually exclusive is readily available. Suppose the same inves-

tigator, in addition to the concern about the effect of the intervention on improve-
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ment in the NIHSS, is also concerned about a harmful effect on the rate of in-

tracerebral bleeding events. In this case, we have another test statistic, S20%. that 

reflects the occurrence of intracerebral bleeds when 20% of the total time of the 
trial has elapsed. The investigator would consider terminating the study if S20% < –

1.5.

In this case, the event to stop the trial is the more complicated union of 
T20%  3.5 and/or, T20%  – 2.5 and/or S20%  –1.5. The region of interest can be 

readily identified (Figure 3.6). We can write from an observation of this figure that 

20% 20% 20%

20% 20% 20%

20% 20% 20% 20%

3.5 2.5 1.5

3.5 2.5 1.5

3.5 1.5 2.5 1.5 .

T T S

T T S

T S T S

P

P P P

P P
   (3.2)

Figure 3.6. Union of efficacy and safety events in a clinical study.

NIHSS 

improvement

NIHSS worsening

Bleeding Adverse Event

20% 3.5T 20% 2.5T

20% 1.5S

Although the probabilities of each of the individual events (commonly called mar-

ginal probabilities)
20% 20%3.5 , 2.5 ,T TP P  and 

20% 1.5 ,SP  can be 

more easily identified, the two joint probabilities 20% 20%3.5 1.5T SP and 

20% 20%2.5 1.5T SP  require additional work. At first examination, the 

evaluation of these probabilities can appear to be difficult. However, their values 
may be more accessible by writing them as the probability of joint events, for which 

we can apply our previous discussion of conditional probability. For example, we 
may write  

20% 20% 20% 20% 20%3.5 1.5 1.5 | 3.5 3.5 ,T S S T TP P P
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and

20% 20% 20% 20% 20%2.5 1.5 1.5 | 2.5 2.5 .T S S T TP P P

Substituting these results for the joint probabilities into expression (3.2), we have 

20% 20% 20%

20% 20% 20%

20% 20% 20%

20% 20% 20%

3.5 2.5 1.5

3.5 2.5 1.5

1.5 | 3.5 3.5

1.5 | 2.5 2.5 .

T T S

T T S

S T T

S T T

P

P P P

P P

P P

The joint probability of the threshold event has been disassembled into marginal 

probabilities and conditional probabilities. The advantage offered by this formula-

tion is that the conditional probabilities are usually more easily estimated by clini-
cians.

3.4.8 Complements 
One final useful feature in constructing events of interest is the use of complements. 
Any element that is not in the set A is in the complement of A. The complement of a 

set is its opposite. The complement of the set A is the set Ac, termed “A comple-

ment” or “Not A”. In general 1 .cA AP P

 The consideration of complements of clinical sets of interest can be par-

ticularly valuable. As an illustration, consider the example of a clinical trial that is 

designed to determine the effect of therapy on patients who have diabetes mellitus. 
The intervention of the study is such that the investigators consider developing a 

monitoring rule that is subgroup-dependent, that is, a different threshold for discon-

tinuing the trial is developed for different subgroups of patients.* In this circum-
stance a monitoring rule is sought for patients with profound disease (in this case, 

patients who suffer from diabetic retinopathy and diabetic nephropathy), that is 

different from the monitoring rule that is developed for the remaining patients.  
However, who are the remaining patients? If we define the set R as pa-

tients with diabetic retinopathy and N as the set of patients with diabetic nephropa-

thy, then R N signifies patients who have both sequela. The complement of this 

set,
c

R N is interesting (Figure 3.7). The complement of R N  consists of 

diabetes patients who have neither diabetic retinopathy nor diabetic nephropathy, or 
only one. The complement of the intersection is the union of the complement of R

(i.e., any diabetic patient with neither retinopathy nor nephropathy or isolated reti-

                                                          
* This must be defined very carefully, because drawing conclusions from subgroup analyzes 

can be hazardous. See [1] for a discussion of the difficulties posed by undisciplined subgroup 

analyzes and more references.  
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nopathy), and the complement of N ( i.e., any diabetic patient with neither retinopa-

thy nor nephropathy, or isolated nephropathy).*

Set R

Set NR N

Figure 3.7. Set complements for monitoring diabetes trial.

Diabetic

nephropathy

Diabetic 

retinopathy

All diabetics in study

3.5 Investigator Perplexity 
The ability of probability to operate on collections or sets of objects provides im-
portant flexibility for its application. We have already seen some important uses of 

this set function. However, we will have to broaden the way that this set function 

operates if we are to use it to full advantage in its application to monitoring clinical 
research.  

 For example, consider the results of tosses of two flips of a fair coin, 
whose outcomes are {H H}, {H T}, {T H}, and {H T}. Each of these four outcomes 

is discrete and has probability assigned to it (Figure 3.8). In many circumstances in 

which the outcomes are individualized and discrete, we can assign probability to a 
point. This is the simplest approach to the application of probability. However, this 

intuitive procedure, although satisfactory in many settings, will not work when 

there are too many outcomes. There are common circumstances in healthcare re-
search in general, and statistical monitoring of clinical research in particular, where 

there are simply too many possibilities for the procedure of assigning a positive 

probability to each will work. 
For example, consider an investigator who is monitoring a clinical trial 

that is evaluating the effect of an intervention. When 25% of the follow-up time of 

the study is completed, he is told that the value of the test statistic at this interim 

                                                          
* DeMorgan’s law states that 

c c cA B A B  and .
c c cA B A B
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point is T25% = 2.08. A reasonable question for him to ask is, “How likely is the 

value of that test statistic under the null hypothesis of no therapy effect?”  

{H H} {T H}{H T} {T T}

P
ro

b
ab

il
it

y

Figure 3.8. Probability as point mass.

 This is a clear and reasonable question. The investigator has an interim 
outcome, and simply desires to learn the probability of that outcome. In order to 

answer this question, we need to compute the probability of all outcomes so that the 

relative frequency of the value 2.08 can be calculated. However, every number is a 
possible outcome, and any way that we try to assign positive probability to each 

number in the set of all numbers produces a total probability that is greater than 

one. If the investigator attempts to make the problem easier by restricting the 
possible values of the test statistic to only positive numbers, the answer is the same. 

This attempt to simplify the problem by reducing the number of possibilities by half 

did not help. In fact, any way that we try to assign nonzero probability to all of the 
numbers in an interval will fail.  

This result understandably perplexes many investigators. The paradigm 

that we have thus far used to compute probability has permitted probability to be 
assigned for each set. Probability can be assigned in this way so that the events that 

occur from actions that produce a large number of finite events can be computed. 

There are even cases where positive probability can be assigned to an infinite num-
ber of events that may result from an action. So it seems peculiar that some actions 

which produce an infinite number of events can have positive probability assigned 
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to them, and others cannot. What is getting in our way is our ability (or inability) to 

count.

3.5.1 Countably versus Uncountably Many 
Positive probability can be assigned when the events are denumerable or countable. 
This simply means that there is a way to either count them all, or alternatively, to 

set up a procedure such that, if we had enough time, we could count them all.  

In the previous example of two flips of a coin, we can clearly count the 
four outcomes {H H}, {H T}, {T H}, and {H T}. An example of an action that pro-

duces an infinite number of possible outcomes is the number of radioactive parti-
cles that are delivered to a tumor site during a treatment period for a patient’s liver 

cancer. The result of this action produces the set of non-negative integers 0, 1, 2, 3, 

… . There are an infinite number of them, but if we had enough time, we could 
count them all. By simply going in order, we would not miss any of them. It would 

just take us forever[2].*

However, some actions produce many more outcomes. An example is an 
experiment that randomly produces a number between zero and one. How can we 

count all of these numbers, each one representing a different outcome? We start the 

counting process with zero, but what follows that? Any choice that we make for the 
second number will miss an infinite number of others. Not only can we not count 

them all, we cannot set up a mechanism of counting them that will enumerate all of 

the numbers in this [0, 1] interval. We say that this set of numbers on the [0, 1] in-
terval is nondenumerable, or dense, and that the [0,1] interval contains uncountably 

many elements. Density is a property of any interval on the real number line. It is 

this property of density (i.e., the fact that there are too many numbers to know how 
to count) that foils our attempts to assign positive probability to each and every 

number lying within the interval.  

We must be careful here. The problem that has arisen is not with the con-
cept of probability. It is the measurement of probability as point mass that must be 

set aside. In this new paradigm, the probability of a given individual point has no 

meaning. We therefore replace it with the idea of assigning probability not to a 
point, but to an interval (Figure 3.9).  

                                                          
* The typical probability model for this action is the Poisson model. If Y is the number of 

particles that are detected from time (0, t), then ,
!

k

t
t

Y k e
k

P where  is the in-

tensity of particle arrival. This probability model has seen widespread use, including predict-

ing the number of arrivals to an emergency room, the likelihood of judicial vacancies on the 

United States Supreme Court, and the frequency of kicks that soldiers received from horses 

in the 19th century Prussian Army!  
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A B C

Figure 3.9. Probability as area. The individual points on the x-axis A, B, and C have 

no probability attached to them, but the interval from A to C has probability as 

measured by the area under the curve (cross-hatched).

A simplified explanation would be that, because all of the possible events 

(i.e., points in an interval) are not denumerable, we cannot assign a positive prob-

ability to each one. We therefore, combine adjacent points into intervals. This col-
lection of intervals is denumerable, and we can assign or compute a positive prob-

ability to any one of them. This probability is assigned as area.  

Returning to the plight of our investigator who was left holding the interim 
result of T25%= 2.08, our answer to the question of, “What is the probability of this 

occurrence,” must be, “zero.” However, we can compute a more helpful solution by 

changing the relevant event from a single point to that of an interval. For example, 
we can compute the probability that the test statistic at this interim point in the 

study lies in the interval from 2.08 to infinity (i.e., is more extreme than 2.08).  
Thus, when outcomes of actions are all of the points in an interval of the 

real number line, we replace the idea of the probability of a point with the idea of 

probability as area.*

3.5.2 Applicability to Monitoring Clinical Studies 
The previous conversation that led us to set aside the notion of only using point 

mass for probability has two important implications for the investigator interested 

in the statistical monitoring of clinical research.  
The first implication is that he will be in the same position as the investi-

gator who had the interim value of the test statistic in the illustration provided in the 

                                                          
* The idea of combining point mass probability and the probability as area is an exciting one 

(at least, to probabilists!). It has a direct application to the Bayesian approach to the statisti-

cal monitoring of clinical results, and will be discussed in Chapter 8). 
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previous subsection. A decision-making process may be triggered by the interim 

value of a test statistic. However, as we have seen, the probability of any one value 

of the test statistic is zero. Prospective knowledge of the difficulty with computing 
the probability of a single value of the test statistic motivates the investigator to an a 

priori focus on regions or intervals of possible test statistics that are of clinical rele-

vance to him.  
 Secondly, this problem is compounded by the fact that, just as there are 

uncountably many numbers on the real line, there are also uncountably many paths 

that a test statistic can follow over time. We can now anticipate that the answer to 
the question, “What is the probability of the path that my test statistic took” will 

also be “zero.” This will motivate us to focus not on a single individual path, but on 
collections of paths.  

   

3.6 The Normal Distribution 
3.6.1 Introduction
Although there are many probability distributions that have been discovered over 

the past 300 years, the most frequently used one is the “bell-shaped curve.” (Figure 

3.10). 
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Figure 3.10. Probability of an interval is provided as an area under the normal 

distribution.

Formally known as the Gaussian distribution,* it is the probability distribution that 

is commonly used in the statistical monitoring of clinical trials. The events whose 

                                                          
* Named for Karl Friedrich Gauss (1777–1855), a calculating prodigy who lived in the 18th

century. His contributions to mathematics were numerous, include the development of the 
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probability it provides are intervals on the real number line. The likelihood of any 

interval on that real line is the area under the curve depicted in Figure 3.12.  

The formula for the curve is complicated. If z is a point on the real line 
than f(z) is computed as  

2

2
1

( ) .
2

z

f z e  (3.3) 

The complexity of this formula begs the question of how could an expression that is 

so esoteric be so useful. There are two reasons for its ubiquity. The first is that, oc-
casionally, an action is carried out whose outcomes have the precise probability that 

is the area under equation (3.3).  

The second, most common reason for its omnipresence in applied prob-
ability focuses on the nature of outcomes from actions. These events are commonly 

composed of the resultant of many influences. These influences are small and direc-
tional. Some of these influences produce positive effects whereas others have nega-

tive effects. The sum of these myriad small effects produces a resultant outcome 

that follows the normal distribution. Although the mathematics of this are quite 
precise,* the implications are remarkable. In fact, the widespread use of this result is 

the motivation for the nickname of “normal distribution” for the bell-shaped curve.  

An example of this was provided in Chapter One in which the movement 
of pollen grain was produced by the sum of positive and negative effects. In fact, a 

comparison of the rightmost side of expression (1.1) in Chapter One with expres-

sion (3.3) above demonstrates that the formulas are identical. We will rely on this 
correspondence as we discuss the particular statistical monitoring procedures in 

subsequent chapters.  

3.6.2 Using the Normal Distribution
An important advantage in using the normal distribution is the relative ease of pro-
ducing probabilities from it. Although the actual production of probabilities re-

quires one to use a table (Appendix E), fortunately we need use only one table to 

produce probabilities for the many different normal distributions. This is due to the 
ease of transformation of normal random variables and the notion of symmetry.  

3.6.2.1 Simplifying Transformations 
The normal distribution is not just a single distribution, but is instead a family of 
them. There are an infinite number of normal distributions, each one characterized 

by its unique mean µ and variance 2. The mean provides the location of the distri-

bution, and the variance characterizes the dispersion of the variable around that 
mean (Figure 3.11).  

                                                                                                                               
normal distribution, contributions to calculus theory, and the discovery of the “least squares” 

approach to model building.  
* The central limit theorem governs this use of the normal distribution.
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Figure 3.11. Different locations and dispersions of two normal distributions. 

Figure 3.11 provides two examples, or members from the family of normal distribu-

tions, their locations and dispersal or “spread” governed by the mean and variance 
of each.

The fact that the location and the shape of a normally distributed variable 

is governed by its mean and variance suggests that the investigator must incorporate 
these two parameters into any computation of the probabilities using these distribu-

tions. Because there are an infinite number of combinations of these parameters, a 

first impression is that these computations can rapidly become unwieldy. Fortu-
nately, this complexity is removed by the fact that each member of the family of 

normal distributions can be related or transformed to another normal distribution. 
This observation produces the simplifying principle that any normal variable can be 

related or reduced to a single normal distribution. This single normal distribution 

has a mean of zero and a variance of one, and is known as the standard normal 
distribution.

Therefore, if X follows a normal distribution with mean µ and variance 2,

then X, and any event involving X can be transformed to a normally distributed 
variable with mean 0 and variance 1. Specifically, if X follows a normal distribution 

with mean µ and variance 2, then 
X u

follows a normal distribution with mean 

0 and variance 1.  
Because every normally distributed random variable can be converted to a 

standard normal distribution, we require only a single set of tables that provide 
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probabilities from the normal distribution. For example, we can use this fact to 

compute the probability that each of the normally distributed variables that appears 

in Figure 3.11 is less than the value 0.50. For the first, if X follows a normal distri-
bution with mean 1 and variance 2, then 

1 0.50 1
0.50 1 0.50 1

2 2

0.50 1
0.353 0.362.

2

X
X X

Z Z

P P P

P P

For the second case, we compute  

0.50 1
0.50 1.50 0.933.

1
X Z ZP P P

We will take advantage of this tool repeatedly in our work in computing probabili-

ties involving monitoring procedures.  

3.6.2.2 Symmetry 
A second useful characteristic of the normal distribution is its property of symme-

try. Examination of the curves in Figures 3.10 and 3.11 reveal that the shape of the 
normal distribution is a mirror image of itself when divided at the mean. This pro-

duces some useful computation simplifications. Begin with a variable Z that follows 

the normal distribution. We know that the 0 0ZP  from the concept of prob-

ability as area. We also know from use of the property of symmetry that 

0 0 .Z ZP P  Because the sum of these probabilities must equal one, we 

see that 10 0 .
2

Z ZP P

In fact, the use of symmetry produces the relationship that for any value z , 

Z z Z zP P  (Figure 3.12). This style of computation is frequently util-

ized. If we define ( ) ,ZF z Z zP  then we know that ( ) 1 ( ).Z ZF z F z  This 

equality is used to compute the p-values for two-sided testing from the normal dis-

tribution. Let TS be the test statistic that is produced from a statistical hypothesis 

test, and |TS| be its absolute value. Then, if TS follows a standard normal distribu-
tion,   

2 .p value Z TS Z TS Z TSP P P
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Figure 3.12. Symmetry of the normal distribution. 

3.7 Probability and Monitoring Procedures
The value of probability for us is to provide a metric to assess the relative likeli-

hood of various outcomes of a clinical study that has not yet been completed. We 

are now in a position to begin to see how this would work.  
An investigator who is responsible for monitoring a study has the value of 

the test statistic S0 at the study’s inception (time 0). He also has the value of the test 

statistic St at some interim time t. With no intermediate values of the test statistic, 
this investigator cannot know the exact path that the test statistic took as it moved 

from S0, to St. He has only these two values (Figure 3.13). 
 The investigator would like to know how extreme the value of the test sta-

tistic St is at time t. Another way to phrase this inquiry is, how extreme is the path 

that produced the test statistic St? A little thought reveals that there are many paths 
that the test statistic could have taken to arrive at the value St at time t. In fact, there 

are uncountably many paths that the test statistic could have followed. If the inves-

tigator is interested in computing the relative likelihood of a path that produced the 
test statistic St, then the counting problem he faces is immense.  
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Figure 3.13. Measurement of test statistic in a clinical study at the  interim time 

point t.
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However, the problem is solvable if we move away from consideration of 

paths that all wind up at the same point, and instead move to the idea of computing 
the relative frequency of test statistics that lie in an interval of interest. An example 

would be the region of test statistics that are at least as extreme as the observed test 

statistic. If the investigator can identify the collection of test statistic paths that each 
produce a test statistic falling within the interval of interest, we are closer to our 

goal, because we can use the probability as area concept to produce the probability 

of that interval. By computing the probability of that interval, we have learned the 
probability of the collection of paths that produce test results in that interval. This is 

one use of statistical monitoring in clinical research (Figure 3.14). In this case, the 
likelihood of more extreme values of the test statistic is computed by applying the 

normal distribution to the interval of more extreme values.  

 This rather sophisticated application of probability must be further moti-
vated, which is the topic of Chapter 4.  
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Figure 3.14. Measurement of test statistic in a clinical study at the interim time point t

with probability assessment. The shaded region is the probability of paths that produce 

more extreme values of the test statistic at time t.
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More extreme values

Problems 

1. An investigator is studying the effect of a new therapy to reduce the extent 
of the neurologic damage produced by stroke. The only known serious ad-

verse event produced by the therapy is intracranial hemorrhage (ICH). The 

probability that any one patient suffers from an ICH 0.14. Your statistician 
tells you that, if the occurrence of an ICH in one patient does not inform 

you one way or another about the occurrence of an ICH in another patient, 
then the probability that there are k patients who suffer in ICH in this case 

series of 42 patients is  

42!
0.14 0.86 .

! 42 !

k n k
X k

k k
P

Using this formula, compute the following.  

a. P[exactly one patient in this study suffers an ICH]. 

b. P[no patients suffer an ICH]. 

c. P[at least one in this study who suffers an ICH]. 

d. P[between 5 and 10 patients in this study suffers an ICH]. 

e. P[either less than 5 or greater than 35 patients suffers an ICH]. 
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For the following problems, let Tp be the value of the test statistic for the effect 

of therapy in a well-designed, well-executed clinical trial when p percent of the 

follow-up period has elapsed. Thus, T50 is the value of the test statistic when 50% of 

the trial has been completed and T100 is the value of the test statistic when 100% of 

the follow-up period of the trial has elapsed (i.e., when the trial has ended).  

2. An investigator is interested in designing a monitoring guideline to help her 

discontinue a study, based on the value of the test statistic. Let T.20 represent 

the value of the test statistic when discontinuing a study. She would like to 

compute the likelihood that the test statistic at the conclusion of the study is 

greater than 1.96, given the value of the test statistic when 20% of the follow-

up period has elapsed, T20. She is told that the 20 1.96 0.34.TP  Show  

100 100 20 100 201.96 0.34 1.96 | 1.96 0.66 1.96 | 1.96 .T T T T TP P P

3. An investigator is interested in tracking a test statistic’s performance over time. 

He knows that 
30 3.5 0.005.TP  Complete the last column in Table 3.1.  

Table 3.1. Conditional Probabilities of Reaching a Threshold at T30

X

5 0.00010 0.0000030

7 0.00050 0.0000040

10 0.00070 0.0000100

15 0.00090 0.0000900

20 0.00100 0.0005050

25 0.00300 0.0025000

30
3.5 | 3.5

X
T TP

30
3 .5 3 .5

X
T TP3.5

X
TP

Does information about the distribution of the test statistic when 30% of the 

information is available depend on the distribution of the test statistic at earlier 

points in the execution of the trial? 
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4
Issues and Intuition in Path Analysis  

4.1 Pondering the Meaning of It All 
Monitoring is an ethical requirement of modern clinical research, and its application 

must balance the need for the study to end when clear evidence demonstrates the 

direction and magnitude of the treatment effect with the requisite for precise and 

persuasive estimates of that treatment effect. In addition, difficulties generalizing 

from a sample to a population are compounded by the new problem of generalizing 

from only a fraction of the sample to the larger population.  

 In addition, the investigator is beset by the vexing problem of drawing 

conclusions from a stream of unpredictable data observed for only a short period of 

time. Observing a random process for a relatively brief time during which one 

hopes to see its long-term target presents its own problems, as the following illus-

tration, adapted from [1] demonstrates.  

In a rush to get to the hospital, the university, the airport, or the 

institute, you get caught in a traffic jam that stretches out for 

miles in front of you There are two lines of slowly moving traf-

fic, and you slide into one, nudging in behind the car in front of 

you. As it turns out, I am in the car immediately behind you, and 

because you chose one lane, I choose the other. There we are, 

side by side in two different lanes of traffic, sitting still more 

than we are moving. You have a statistician in your car as a pas-

senger, and nudging him, you point to my car, saying, 

 “You’re an expert in these things. How likely is it that 

we will pull ahead of Lem?”  

Answering with smooth assuredness, he says, “You will 

definitely pull far ahead of him. Just be patient.” 

 However, as you watch, I slowly pull ahead of you. 

First I am one car length ahead of you, then two, and then three 

full car lengths. A few minutes later, I am out of sight. You are 

befuddled, but your statistician still appears remarkably confi-

dent. Turning to him, you remark, “I thought that you said I 

would pull ahead of him?” 

“Yes, I did. And I will say it again. You will pull far 

ahead.”



80 4. Issues and Intuition in Path Analysis

“Well, just when was that going to happen?” 

“You have to wait an infinite amount of time.” 

It just takes you a moment to compose your answer, 

“So do you. Get out!”  

After your passenger steps out, now himself looking be-

fuddled, you are left alone (still stuck in traffic) to ponder the 

meaning of it all.  

The trends appearing in research data that are collected, analyzed, and then 

sent to a DMC can appear to be like the relative movement of traffic in the preced-

ing example. First a pattern appears, suggesting one result. This pattern then disap-

pears, replaced by another ephemeral trend. One reason that results from random 

data are so challenging is because their content can frequently appear to be unreli-

able. We want to believe what they “say”, but if we wait a little longer they “say” 

something else. Perhaps it is not quite fair to conclude that this incoming data is 

misleading, but it can be fickle.*

4.2 Generalization Complexities 
In Chapter Two, we described the types of misleading conclusions from samples 

that are the product of sample-to-sample variability or sampling error. Because 

sampling error is embedded in the data, actually insinuating itself into the study 

results, a careful and discerning eye is required to separate the signal that reflects a 

true population effect from the background noise.  

The circumstance is not less, but more, perilous when scientists contem-

plate discontinuing a study early. Consider an investigator who is designing a study 

of 400 patients in order to examine the effect of a new therapy on the reduction of 

systolic blood pressure (SBP) in patients with isolated systolic hypertension (ISH). 

Understanding that any attempt to generalize the results of a 400 patient study to a 

population of millions of patients might be hazardous, she proceeds carefully. She 

chooses a sample size that was computed based on her best estimate of (1) the ef-

fect of her therapy on SBP, (2) the variability of SBP, and (3) acceptable levels of 

type I and type II error rates. In addition, she selects her subjects as randomly as 

possible in order to reduce the problems that she would have in extending her find-

ings.  

Finally, she also knows that her assumptions about the study findings 

might be wrong. For example, the intervention might be far more effective in reduc-

ing SBP than she anticipated. Alternatively, a new and unanticipated adverse effect 

may appear in these subjects that would require her to terminate the study early. In 

recognition of these possible outcomes, she begins the thought process that would 

lead to the justifiable early termination of the study.  

It is relatively easy to understand the ethical difficulties that would ensue 

if premature study termination were not possible. However, early termination is not 

without its own set of difficulties. A principal problem involves generalizability. 

                                                          
* Another point of view is that we are just too impatient. If we could wait an infinite amount 

of time, the clear solution would be readily apparent.
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The investigator’s initial plans required her to recruit, randomize, and follow 400 

patients in order to provide assurances to the medical and regulatory community 

that sampling error had been adequately controlled (Figure 4.1 Panel 1). Now, she 

is contemplating the possibility that she may have to end the study before that goal 

is achieved. Thus, in the case of early termination, there are two levels of generali-

zation. The first involves extending the results of the analysis that was carried out 

on only a fraction of the data to the entire sample; the second is to generalize from 

the sample to the entire population (Figure 4.1Panel 2) 

Panel 1

Panel 2

Population

Population

Sample

Figure 4.1. Comparing the task of generalizing a sample result to the population

(Panel 1), to generalizing from a fraction of the sample to the population (Panel 2). 

Sample

All sample data is evaluated before generalization 

is attempted.

Only a fraction of the sample data is evaluated, leading to

prediction of the result of the sample, and then the final

generalization to the population.

Thus, in circumstances where there will be early termination of a research effort, 

there must be especially tight control over the type I error rate if the result is to sur-

vive this two-step generalization process. In addition, we must ensure that the esti-

mates of effect sizes are especially trustworthy in order to successfully guide the 

investigator through these multiple levels of generalization to a clear view of the 

population findings.  

4.3. Why Are Special Tools Necessary? 
We have provided ample motivation for the need to monitor clinical studies; how-

ever, we have not yet justified the use of any particular procedure to carry out this 

monitoring. In fact, the investigator who has observed the wealth of tests already in 
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service* may be forgiven for asking the question, “Why is yet one more test neces-

sary?” However, there are three new issues in clinical trial monitoring that the clas-

sic hypothesis testing procedures do not directly address. They are (1) repeated test-

ing of data, (2) variability, and (3) the notion of dependency.  

4.3.1 Repeated Testing
We have established that one of the most important issues in generalizing results 

from a sample to the population is the effect of sampling variability. One notewor-

thy way in which sampling error can mislead an investigator is by the construction 

(through the random aggregation of subjects in a sample) of a result that can appear 

to be clinically relevant but at the same time is not representative of the population. 

The two types of sampling errors that clinical researchers measure are the type I or 

alpha error rate and the type II or beta error rate, as discussed in Chapter One. The 

medical and regulatory communities are comfortable with drawing conclusions 

from concordantly executed studies† when these rates are kept at acceptably low 

levels.  

However, these rates can grow to unacceptably high levels when statistical 

testing is carried out repeatedly in the same research effort. The monitoring of a 

clinical study during the course of its follow-up period is a clear example of this 

phenomenon. Other illustrations are multiple endpoint evaluation, subgroup ana-

lyzes, and the evaluation of different contrasts between the arms of a clinical trial 

with more than two treatment groups. Difficulties with these analyzes have been 

well elucidated in the literature [2,3,4]. The particular problems induced in the in-

terim monitoring setting have also been elaborated [5].  

The principal difficulty with multiple analyzes is that the overall false 

positive error rate or alpha error rate increases with the number of tests that are exe-

cuted. Thus, although each test provides the same level of protection, the integrity 

of the overall process degrades. This is easily demonstrated. Consider an example 

of a clinical study that assesses the ability of a therapy to reduce the fatal stroke rate. 

At the conclusion of the research, the investigator plans to construct a test statistic 

that will produce a type I error rate of 0.05. However, the investigator intends to 

have the study monitored every year until the five-year study has concluded. At 

each monitoring point, he is looking for an early demonstration of the same effect 

that he hopes will be demonstrated at the conclusion of the five-year study. There-

fore, a treatment effect finding resulting in a p-value  0.05 for any of the five ana-

lyzes would be sufficient for him.  

At first appearance, this collection of tests may appear to offer substantial 

protection against the occurrence of an alpha error or false positive results. After all, 

this 0.05 level of protection was satisfactory for drawing conclusions at the end of 

the research effort. If it will be adequate when applied at the end of the study, why 

wouldn’t it afford adequate protection during the interim monitoring times?  

                                                          
* T-tests, chi-square tests, tests of equality of proportions, life table analyzes, and Bayes pro-

cedures are but a few of the many types of test statistics brought to bear in the evaluation of 

clinical research data.  
† A concordantly executed study is one that is follows its prospectively written protocol.  
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The problem is produced by the change in the fundamental event of inter-

est to the investigator. When there was only one evaluation at the conclusion of the 

study, the focus of his attention was the occurrence of a type I error at the end of the 

study. With the institution of multiple monitoring, the question is now, “What is the 

probability that the study produces a false positive result either at the end of the 

study or during the monitoring procedures?” Because the study could be stopped at 

every monitoring point, we now need the probability that it meets the criteria for 

early termination at any one of these points.  

Assuming for the moment that these tests (designed to determine the supe-

riority of treatment) are independent of one another,* this probability is easy to 

identify. Let  be the probability that at least one type I error occurs. Then, when 

there is only one hypothesis test at the end of the study,  = 0.05. However, when 

there are five such tests, we must find the probability of at least one type I error. We 

begin by finding the probability of no type I errors. The P[no type I error on the 

first test ] = 1 – 0.05 = 0.95. Thus 

P[no type I error on all five tests] = (0.95)5

P[at least one type I error on the five tests] = 1 – (0.95)5 = 0.226. 

The likelihood of a type I error has increased from 0.05 to 0.226, representing more 

than a fourfold increase. A more complete examination reveals the rapid increase in 

the overall type I error rate (sometimes called the familywise error rate or FWER [6, 

7]) as a function of the number of tests (Figure 4.2.)Armitage et al. [8] took this one 

step further by computing the probability that a test statistic that follows the stan-

dard normal distribution will exceed any threshold under the null hypothesis. This 

demonstration revealed that, if an investigator evaluated his data five times during 

the course of a study, the actual type I error level is 2.5 to 4 times as large as he had 

planned.† These evaluations are the quantitative justification for the use of the pejo-

rative term “testing to significance”.  

The underlying reason driving this phenomenon is the random sample. As 

the sample grows, the data randomly aggregates and disaggregates in different pat-

terns, sometimes making sense, other times not, but always random. As the data set 

increases, the inclusion of additional data provides continued opportunity for the 

data points to randomly arrange themselves into the pattern for which the investiga-

tor was looking. Just as searching the clouds long enough will eventually reveal the 

ephemeral shape of an elephant, or a ship moving backwards, the continued inter-

rogation of data, itself randomly aggregated, will reveal the interesting pattern that 

the investigator anticipated. As Miles pointed out, “If you torture a dataset long 

enough, it will tell you want you want” [9]. 

                                                          
* We will see shortly that they are not independent at all, but this scenario is provided solely 

for illustration.
† This is a basis for requiring smaller type I errors during the interim monitoring procedure. 



84 4. Issues and Intuition in Path Analysis

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Tests

Figure 4.2. Increase in overall type I error as a function of the number of independent 

tests performed. 
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4.3.2 Variability 
Another phenomenon that, like repeated testing, is produced by the sampling proc-

ess is the notion of variability. One of the implications of sample-to-sample vari-

ability is the following: because one sample’s data is different from that of another, 

then the estimates of quantities produced from one sample, such as a relative risk, 

will be different than those produced by another sample. Because samples ran-

domly chosen are equally valid, the investigator has no reason to prefer one value 

of the estimate over that of another. Investigators therefore use this concept of vari-

ability to inform them about the accuracy of the estimate.  

 To statisticians, variability is captured in a measure called the variance.

This is the degree to which an estimate varies from its long-term average.* To in-

vestigators, a useful assessment of variability is conveyed by the 95% confidence 

interval, a concept that we discussed earlier.†

 Monitoring procedures commonly involve a sample’s early assessment of 

a population measure, (e.g., an effect size). An important problem that is induced 

by the early evaluation of an estimate produced by an incoming data stream is that 

                                                          
* If T is an estimate of a parameter , and we denote the long-term average of  as E[ ], then 

the variance of  is E[ T – E{ } ]2.The exponent of two is used because it (1)keeps positive 

deviations of T from its long run average from being canceled out by negative deviations, (2) 

it is easy to work with mathematically (i.e., the ability to take a derivative is unimpaired), 

and (3) it is relatively easy to calculate.  
† Discussed in Chapter One, Section 1.7.1. 
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the variability of the estimate is much greater early in a study than it is later in the 

study.  

 As an example, consider a clinical trial that is designed to assess the effect 

of therapy on the intracranial hemorrhage (ICH) rate in adults. Let IC be the cumu-

lative ICH rate in the control group, and IA be the corresponding quantity in the 

active group. It is believed that IC = 0.12, and IA = 0.09, generating a relative risk of 

R = 0.09/0.12 = 0.75. This translates into a 1 – 0.75 = 0.25 or 25% reduction in the 

ICH rate that would be attributable to therapy.  

 However, this is the effect of the therapy in the population at large. From 

this population, the investigators must choose a series of samples from which they 

accumulate an estimate of the relative risk. Using Monte Carlo simulation, we can 

approximate the experience of the investigators in their efforts to accurately esti-

mate the relative risk of therapy in the population (Figure 4.3)  
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Figure 4.3. Monte Carlo simulation of relative risk estimate as a function of 

the sample size of the trial. Small sample sizes induce large variability in the 

relative risk estimate.
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 From Figure 4.3 we see that drawing samples of observations from a popu-

lation with a relative risk of 0.75 produces estimates of relative risk that exhibit 

substantial variability. This variability is most pronounced when the sample size of 

the study is small. For example, with 100 patients enrolled in the study (50 patients 

in each of the active and control groups) we observe that the actual estimates of this 

relative risk range from less than 0.50 to almost 4.0. Thus, even though the relative 

risk in the population is 0.75, suggesting a moderate benefit, it is quite likely that a 

population in which the true relative risk is 0.75 could have produced an estimate as 

large as 3.75. Therefore, an investigator who observes a relative risk in their small 
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sample of 0.75, must question how close this estimate is to the true population rela-

tive risk. Although the estimate of 0.75 is on target and within the investigator’s 

expectations, it is not very informative because the population relative risk could be 

quite different.  

 As the study progresses, and the sample size increases, the available in-

formation from which the relative risk is contracted improves. For example, when 

the study has recruited and followed 1000 patients (ten times as many patients as 

were in the study when the range of relative risks extended from 0.25 to almost 

4.0), the range of relative risks observed becomes much smaller (0.50 to 1.25). This 

is a much more precise estimate of the relative risk.  

 The fact that a larger sample size produces a more precise relative risk is 

intuitive, and the implications for the simple application of effect size threshold for 

identifying a relative risk are clear. Important effect sizes when identified very early 

in a study, are remarkably unreliable and cannot be embraced as definitive. Thus, 

monitoring rules must reflect this observation by demanding a much larger effect 

size earlier in the study than would be required later when the information is more 

precise and reliable. This is reflected in the shape of the curves of Figure 1.2 in 

Chapter One, reproduced here (Figure 4.4. 

 he lines in Figure 4.4reflect the magnitude of the test statistics that is re-

quired for recommending that the study be terminated. It reveals that a greater 

strength of evidence is required in the early part of a study to suggest early termina-

tion. This requirement is in part due to the observation that treatment effect meas-

ures are much less reliable early in a study. 

4.3.3 Dependence 
The application of repeated hypothesis testing on an incoming stream of data from 

an ongoing clinical research program produces two problems that we have dis-

cussed thus far. The first is the inflation of the sampling error rates that is induced 

by the repeated testing. The second is the unreliability of estimates that are based on 

very small samples. A third issue which requires special consideration is that com-

monly, the different examinations of the data are dependent on one another.  

 This is the concept of dependency that we saw in Chapter Two. There, this 

idea of dependence was demonstrated through the evaluation of conditional prob-

ability, a tool that will be useful for us here as we begin the development of basic 

interim monitoring procedures. Dependence arises in the interim monitoring situa-

tion because the interim evaluation of clinical research involves the sequential ex-

amination of accumulating data. Data that is evaluated at a current monitoring point 

contains new data that has not yet been assessed plus data that has been evaluated in 

an earlier monitoring appraisal. The inclusion of this data that has already been as-

sessed induces a dependence between the two evaluations. 
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Figure 4.4. Example of monitoring boundaries for efficacy and harm taken 

from Chapter One (Figure 1.2). Crossing the upper boundary (A) suggests that 

there is substantial evidence of efficacy, whereas crossing the lower one (B) 

suggests substantial evidence for harm.
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 A simple way to appreciate this dependency concept is to consider the 

following hypothetical circumstance. An investigator plans to end a study when she 

has concluded an evaluation of 50 patients. The investigator takes an “interim look” 

at her study results when 49 patients have completed their evaluation. Knowledge 

of the result when n = 49 provides useful information for her when n = 50. In fact 

the assessment when n = 50 has changed very little from the evaluation when n = 

49, and our intuition tells us that the “early” evaluation has all but completely in-

formed her about the results at the conclusion of the study. The early examination 

does not tell her about the result of the 50th patient, but it does inform her about the 

cumulative study finding of all 50 patients. 

 Acknowledging the presence of dependence begs the question of how this 

dependence can be used to the investigator’s advantage. We can now demonstrate 

how this dependency can be used to formally “update” a probability of interest for 

us. Consider an investigator who is interested in measuring left ventricular ejection 

fractions (LVEF) for a series of patients who have diabetes mellitus. The patients 

she observes are from a population that the literature suggests has a mean LVEF of 

65 and a standard deviation of 7. However, the observer notes that many patients 

have LVEFs greater than 65; she would like to understand the reason for the dis-

crepancy between her observation and the literature. She knows, for example, that, 

through the influence of sampling error, a population with a mean LVEF of 65 can 

produce a sample with a larger mean. However, she also understands that the 
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greater the difference between the sample mean and 65, the less likely the explana-

tion that the large sample mean was due to the play of chance; it is more likely that 

the population mean itself is greater than 65.  

 During the design phase of this study, the investigator computes some 

probabilities of interest. She assumes that her data follow a normal distribution with 

mean 65 and standard deviation of 7. Call mX  the sample mean LVEF based on m

observations. Then, at the end of the study 100X  follows a normal distribution with 

the same mean µ = 65. The variance of the mean is 2 49 0.49.
100

 With this 

as background, she can make statements about the likely values of 100X  based on 

this distribution. For example, she can compute the probability that 100X  67 if the 

underlying population mean is 65 as 

100
100

65 67 65
67 (0,1) 2.86 0.002.

0.49 0.49

X
X NP P P

 Thus, it is unlikely that the mean LVEF of 100 patients will be greater than 

67 if the population mean is 65. The observation of a sample mean greater than 67 

is therefore, evidence that, in a concordantly conducted research program, the popu-

lation mean is likely to be greater than 65. 

 The investigator plans to recruit 100 patients for the study, but will moni-

tor the results of the study (in this case, examine the sample mean) when she has 50 

patients enrolled. Assume that she observes 50 70.X  How likely is it that at the 

conclusion of the study, the investigator will observe 100 67X  given 50 70?X

From Appendix A, we see that nX  still follows a normal distribution but with 

mean µc and variance vc, where 

2

2
,

mc

c

m
X

n

n m
v

n

where 0 < m n p. Thus, the new mean for nX  that is now conditioned on the 

value of mX  depends on both m and .mX  The variance of nX  that is conditioned 

on the value of mX  depends on m.

 Assume that the investigator knows that the mean of the first 50 observa-

tions is 70, that is, 50 70.X  The mean and variance of 100X  given 50 70X are
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2

50
65 70 65 67.50.

100

100 50
49 0.245.

100

c

cv

She can now compute 

100 50

100

67 | 70

67.5 67 67.5
(0,1) 1.01 0.844.

0.245 0.245

X X

X
N

P

P P

Note that knowledge of the prior mean left ventricular ejection fraction has changed 

the probability that the mean at the end of the study will be greater than 67. Without 

knowledge of the value of 50 ,X the probability was 0.002. With this information, 

the probability is 422 times greater. The important new information about the first 

50 observations has changed the anticipated mean of the 100 observations (Figure 

4.5) 

 The preceding computation begs the question of how large would the sam-

ple mean based on 50 observations have to be in order to have at least a 95% 

chance of having the mean based on 100 observations be greater than 67. This is a 

useful question that gets to the heart of interim monitoring. By identifying such a 

boundary for mX , the investigator can consider terminating the study if this bound-

ary is reached, because it is very likely that, had she continued the study, 100X

would be greater than 67. The general result is provided in Appendix A, from 

which we see that    

2

2
67 1.645 .

n n m
b

m n

In this case n = 100, m = 50, and µ = 65. We can compute 

2

100 100 50
67 1.645 49 65 65 70.63.

50 100
b
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Figure 4.5. The unconditional distribution of the mean LVEF from 100 observations has a 

mean = 65 and a variance = 0.49. The conditional distribution based on knowledge of the

first 50 observations have a larger mean of 67.5, and a smaller variance of 0.245.  

Thus, if the mean based on 50 observations is at least 70.63, the probability that the 

mean at the end of the study, 100 ,X is greater than 67 is 0.95. If this probability is 

deemed high enough, then the investigator might consider stopping the study when 

50 subjects are enrolled and 50 70.63.X

 The identification of this level of dependence has allowed us to link a past 

event (in this case, 50 70.63X ) with a future event ( 100 67X ) and therefore, 

compute a threshold for action based on a value of a statistic at a monitoring point. 

This is a type of computation that we will come back to in succeeding chapters.  

4.4 Following Trajectories 
The fundamentally new statistical principle for us in monitoring clinical research is 

the concept of path analysis. It is perhaps intuitively obvious that tracking the mag-

nitude of the treatment effect over time would be a useful feature in the ongoing 

assessment of clinical research. However, the interpretation of these trajectories can 

be complicated. We already know that we must keep in mind the issues of multiple 

testing and variability, although simultaneously incorporating the notion of depend-

ency considerations.  
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We will now identify some additional characteristics of these treatment ef-

fect trajectories, allowing us, in the end, to apply some of the discussion of Chapter 

One.   

4.4.1 Riding the Path of an Effect Size 
We can begin our discussion of trajectories in clinical research by considering a 

hypothetical clinical trial that is designed to assess the effect of a therapy that the 

investigator believes will reduce the incidence of fatal strokes in patients who have 

diabetes mellitus. The investigator plans to randomize patients to either active or 

control group therapy and then follow these patients for a year. At the conclusion of 

the research, he plans to compare the cumulative fatal stroke rate in the active group 

with that of the control group.  

However, suppose that we have a unique vantage point. Rather then being 

required to wait until the end of the study to observe the difference in the number of 

fatal strokes between the control group and the active group, we are instead permit-

ted to watch this difference develop on a daily basis for the duration of the study. If 

we were permitted to “ride the effect size path”, tracking its every movement, what 

would it look like? 

To help in this depiction, define SA(t) as the number of fatal strokes that 

occurs in the active group at time t, and SC(t) the number of fatal strokes that occurs 

in the control group at that time. We will use a very elementary definition of effect 

size, SC(t) – SA(t) , tracking this difference as time passes. At the beginning of the 

trial t = 0, and SC(0) = SA(0) = 0. As recruitment begins, patients receive their treat-

ment and start to accrue follow-up time. Fatal strokes begin to occur, and the differ-

ence SC(t) – SA(t) immediately registers them. If the number of fatal strokes in the 

control group is greater than in the active group, our difference becomes positive. 

Alternatively, the difference becomes negative when there are more fatal strokes in 

the active group than there are in the control group.  

However, clinical events are not very predictable; in fact, they occur ran-

domly during the follow-up period, and will commonly aggregate just through the 

play of chance (Figure 4.6). 

Figure 4.6 demonstrates that the path followed by the difference SC(t) – SA(t) wan-

ders. If there has been a recent sequence of fatal strokes in the control group, the 

difference will inch its way upward. If a recent cluster of fatal strokes occurred 

among patients in the active group, then SC(t) – SA(t) will decrease, perhaps becom-

ing negative. With no consistently positive or negative force, this difference will 

meander in one direction then in another.  

 There are many possible trajectories that SC(t) – SA(t) could fol-

low. After its initial value of 0, it could take off rapidly in a positive direction, or 

actually do the reverse and become rapidly negative as the number of fatal strokes 

in the active group exceeds the number of these events in the control group. Alter-

natively, the difference SC(t) – SA(t) could hover around zero. However, the number 

of available paths that this difference SC(t) – SA(t) could follow is too large to tabu-

late. With each new day, the location of SC(t) – SA(t) could be different, spawning a 

new collection of paths that are too numerous to begin to count. 
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Figure 4.6. Cumulative difference in the number of fatal strokes in a clinical trial

from day 0 to day 129.
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 This is a phenomenon that we saw in Chapter Two. Thus, if we wanted to 

consider assigning a probability to each of these paths, we would find that just as 

we could not assign positive probability to each point in an interval on a real line, 

we cannot assign positive probability to each possible path of SC(t) – SA(t).

  From Figure 4.6 we see that as time progresses, the number of fatal 

strokes in the control group is exceeding the number of active group fatal strokes. 

From our vantage point, we cannot help but begin to feel some excitement. After a 

dip in the difference that led to SC(t) – SA(t)= –3 early in the study, the number of 

fatal strokes in the control group has consistently exceeded those of the active 

group, producing a positive value of SC(t) – SA(t). If this difference is sustained (and 

from Figure 4.7 this is precisely what appears to be happening), the feeling that the 

trial is demonstrating a beneficial effect of therapy begins to develop momentum 

itself. Natural questions, for example, “Has this difference been sustained long 

enough, and is there an extreme point (or extreme trajectory) that this difference 

could follow that would suggest that we “do something” about the study?” arise. 

However, when allowed to continue, we observe that the trajectory of SC(t) – SA(t)

abruptly changes (Figure 4.7).  
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Figure 4.7. Cumulative difference in the number of fatal strokes in a trial

from day 0 to day 262.
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  The positive values of SC(t) – SA(t) which have produced and sustained a 

beneficial trajectory have now been followed by a relative increase in the number of 

deaths that have been sustained in the active group; this new tendency produced a 

decrease in the value of SC(t) – SA(t). However, the underlying assumption that pro-

duced this graph is that there is no difference in the population between SC(t) and 

SA(t). The fluctuations in SC(t) – SA(t) are those induced by chance alone, and not by 

any change in the execution of the study. There was no alteration of the entry crite-

ria of the study, nor was there a change in the follow-up procedures mandated by 

the protocol. The endpoint committee whose task it was to determine whether a 

death was due to a fatal stroke has not been unblinded to therapy assignment, and 

no other aspect of that committee’s modus operandi has altered. As far as we can 

tell, there is no reason for the trajectory alteration.  

 Early optimism is now replaced by concern as the number of fatal strokes 

in the active group exceeds those in the control group, and pressure again builds to 

once again “do something” about the study. However, continued observation pro-

duces yet a different trajectory (Figure 4.8). 



94 4. Issues and Intuition in Path Analysis

-15

-10

-5

0

5

10

15

0 50 100 150 200 250 300 350

Figure 4.8. Cumulative difference in the number of strokes in a clinical trial 

over the entire course of the study.
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This figure reveals yet another important and radical change in the direction of the 

difference in fatal strokes SC(t) –SA(t). A final surge in the number of control group 

fatal strokes has increased the difference in the number of these events between the 

two groups, leading to a difference that is close to zero at the end of the study.  

4.4.2 The Direction of Random Drift 
If there were no therapy effect on the fatal stroke rate, we might expect that the 

difference SC(t) – SA(t) would hover around zero, moving slightly positive, then 

“adjusting” to turn slightly negative over time. However, this is not the case. The 

“adjustments” commonly occur only after large excursions. Typically, large posi-

tive excursions are followed by large negative excursions.  

Thus, in the absence of a treatment effect, there will nevertheless be 

marked, even extreme excursions in SC(t) – SA(t) over time. This property can be 

cause for concern, because this random movement will “mimic” the appearance of a 

treatment effect. However, in the absence of a treatment effect, if enough time is 

permitted to elapse, large positive excursions will be matched by large negative 

ones. This will lead to an “average” value of the treatment effect that is close to 

zero. However, this small average value masks the appearance of trajectories that 

contains wide negative ones (Figure 4.9. *

                                                          
* This is not an unfamiliar setting. For example, the mean temperature of Indianapolis, Indi-

ana is 47 degrees Fahrenheit. This moderate value does not reveal that the temperatures in 
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Figure 4.9. Four trajectories of the estimate of efficacy in the absence of a treatment

effect.

The last panel of Figure 4.9 is particularly illustrative of the need to follow the 

process for sufficient time. An investigator might assume from this panel that the 

effect of therapy was harmful out to 350 days. However, the data in the panel was 

generated assuming no difference in the effect of the therapy on stroke. If the proc-

ess were observed “long enough” the negative trend will reverse.  

4.4.3 Two Path Influences 
This demonstration reveals several interesting properties of effect size trajectories 

over the course of the study. There are two influences that would affect the path or 

trajectory of SC(t) – SA(t) over time. The first is the treatment effect. If the active 

therapy is very effective, we might expect an early, rapid, and sustained decline in 

the path of SC(t) – SA(t) over time. The random movement induced by the play of 

chance remains in effect; however, if the treatment effect is large, SC(t) – SA(t) will 

tend to get larger over the course of time. Similarly, a harmful effect of the active 

treatment might produce an early increase in the difference. 

 The second influence on the path of SC(t) – SA(t) is a random one. This 

random influence is the explanation for the roughness or bumpiness of the trajec-

tory. The investigator may have confidence in his ability to predict the fatal stroke 

rate at the conclusion of the study and therefore may have very good and useful 

                                                                                                                               
the winter can plunge to 25 degrees below zero, and that summertime temperatures com-

monly exceed 90 degrees.  
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estimates of the difference in the number of fatal strokes between the two groups at 

the study’s conclusion. However, he most certainly cannot predict what new strokes 

that he will learn about on any given day. This is influenced by a host of factors: 

some known, but many unknown. The ensemble of these influences is a random, 

unpredictable effect on the difference SC(t) – SA(t). Thus, the effect of therapy influ-

ences the long-term trajectory of SC(t) – SA(t) and the daily movement is visibly 

affected by the random influences. 

4.4.4 Trajectory Concerns 
An issue that is of concern is the large swing in the path of the difference in the 

fatal stroke rate between the control and active group as the trial progressed. Posi-

tive trajectories of the SC(t) – SA(t) are followed by negative ones. In this study, in 

which there is no effect of the intervention on the fatal stroke rate, we anticipated 

that the difference in strokes between the two groups SC(t) – SA(t) would be close to 

zero. However, this was only true in the coarsest sense of the term. The difference 

in the end wound up near zero. However, the path was punctuated by excursions 

away from zero. Another example reveals a trajectory over three years of time pro-

duced from an evaluation in which there is no effect of therapy (Figure 4.10).  

Again, large positive movements are followed by large negative move-

ments. These swings or excursions become greater and greater as the trial proceeds. 

Thus, although it is true that SC(t) – SA(t) remains small when averaged over the 

duration of the trial, it by no means stays close to zero for the duration of the study. 

This is a cause for concern. One can hardly consider terminating a study early based 

on the appearance of a large treatment effect, if these large effects are likely to be 

mimicked in studies where the effect of therapy is absent. 

4.4.5 Memoryless 
If anything comes as a surprise in these demonstrations, it is the appearance of these 

wild deviations in the value of SC(t) – SA(t). Under the assumption of no treatment 

effect, we would expect the value of this difference to be close to zero in the long 

run, and it is only natural to assume that SC(t) – SA(t) will tend to “stay close” to 

zero throughout the duration of the study. 

The preconception that the values of SC(t) – SA(t) will stay near zero comes 

from the recognition that there is no systematic influence pushing it away from 

zero. In the absence of this pressure, we anticipate that the difference will remain 

close to zero (i.e., it has inertia). However, just as there is no consistent force that 

pushes it away from zero, neither is there a stabilizing power that keeps the differ-

ence near zero. In the absence of these consistent and sustaining influences, the 

difference SC(t) – SA(t) fluctuates wildly. It meanders well away from zero, only to 

eventually return to zero, after which it moves away once again. These counterin-

tuitive excursions are the hallmark of a process that is momentumless. We say that 

the process is memoryless.
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Figure 4.10. Projected cumulative difference in the number of strokes in a 

clinical trial over the entire course of the study lasting over 900 days.
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 A process is memoryless if an examination of its prior trajectories does not 

inform us about its future. Memoryless processes can make us feel somewhat un-

comfortable because we are used to being able to examine the history of a system in 

order to gain important information about its future behavior. In fact we create sys-

tems that contain and embed useful memories, thereby permitting us to learn about 

the future based on an examination of the past. 

 As an example, consider the relationship that develops between spouses. 

Their history is a long and intertwined one. Over the years, they develop joint 

memories and experiences that are rich with understandings, misunderstandings, 

apologies, and illumination. They learn when it is best to speak up and when it is 

best to stay silent. Over time, each partner learns about the other, observing, under-

standing, and then predicting the reaction of each other to various circumstances. 

This is a process that is rich with informative history and deep memories, allowing 

one member of the relationship to react to and thereby influence the other.  

A memoryless alternative would be the situation in which one wakes up 

every morning to face a new different partner with whom one has no past experi-

ence. With no useful memories to guide you, how do you proceed in your interac-

tions with the new partner? You have no history with this person, no shared experi-

ences, no understanding. What do you know about him? How can you relate to her? 

How do you make decisions together when the reaction to anything that you do or 

say is unpredictable? You develop no useful momentum with the person because 

anything that you may have happened to learn about him or her that day is undone 

by the presence of a new partner the next morning when you start the process all 
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over again. This is a memoryless process. The product of memoryless processes is 

wide, unpredictable swings.  

 Monitoring rules in clinical research are commonly based on memoryless 

processes and we have to develop new intuition to work satisfactorily with them.  

4.4.6 Alternative Measures 
The previous sections demonstrated the wild swings that can occur in the path of a 

treatment effect over time. These swings that we now know typify a memoryless 

process can complicate any attempt to draw useful and reliable conclusions from 

the observations of extreme trajectories. A natural alternative to monitoring the 

treatment itself would be to monitor the test statistic. In the example of the hypo-

thetical clinical trial that is designed to monitor stroke rates, this would mean that 

we need to monitor not SC(t) – SA(t) but  

( ) ( )

( ) ( )

C A

C A

S t S t

Var S t S t
.

The difference between the path that is followed by the treatment effect SC(t) – SA(t)
and that of the test statistic is profound (Figure 4.11). We see that, although the path 

of the treatment effect is subject to large fluctuations, the test statistic’s trajectory is 

substantially moderated. It is by no means a smooth path, but division by the stan-

dard deviation of the difference buffers and protects its trajectory from large excur-

sions. 

However, although the use of the test statistic appears to confer an advan-

tage to the monitoring process, we must observe that we can be misled by this mod-

eration as well. Recall that, earlier in this chapter, we discussed the variability oc-

curring in samples based on small amounts of data. Because populations in which 

there is no treatment effect can produce small samples that have large treatment 

effects, we cannot rely on the findings of a treatment effect in a small sample, and 

must wait until the sample is larger and a more precise estimate is produced.  

Examining the trajectory of the test statistic does not convey this important 

principle. In fact, the test statistic, by being a “normed” treatment effect, is specifi-

cally designed to remove the effect of variability. It does this by dividing the treat-

ment effect by its standard deviation at each point in time so that its variance is one. 

This division occurs early in the trial when the variance is large, as well as later in 

the trial when the variance is small. 
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Figure 4.11. The trajectory of the test statistic over time has a more moderate 

trajectory than that of the treatment effect. 
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Thus, by scaling the treatment effect in this matter, its graph conveys the 

false notion that the precision of the treatment effect is the same, when we know, to 

the contrary, that when the sample is small, the precision of the treatment effect 

estimate is unacceptably poor.  

4.4.7 Dilemmas and Resolutions 
The preceding examinations have provided some useful insight into how the moni-

toring of a treatment effect might usefully guide the decision to terminate a clinical 

trial early. However, these same examinations have uncovered some complexities 

in monitoring treatment effects. We saw that there is substantial variability that 

surrounds the estimate of the treatment effect. In addition, the process is a memory-

less one, producing wide unpredictable swings in the trajectory of the treatment 

effect. These two influences tend to make the treatment effect’s path very difficult 

to predict. In fact, the large excursions that the treatment effect experiences get 

even larger over time.  

 We have also seen that following the trajectory of the test statistic is not 

the solution because, by incorporating variability, it provides a false assurance of 

the homogeneity of the precision of the estimate of the treatment effect. Finally, we 

have the multiple comparisons issue to address, an obligation that we must meet if 

we are to successfully control sampling error in drawing conclusions.  

The previous consideration of the issues raised by following a treatment 

effect over the course of time raises special needs for the monitoring tool that we 
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can now articulate. Specifically, we require a measure that incorporates (1) the 

magnitude of the treatment effect itself, (2) the different degree of variability of the 

treatment effect that occurs over the course of study, (3) the likelihood of important 

excursions in the trajectory over time, and (4) the memoryless property. Fortu-

nately, we have already been exposed to such a process. Each of these properties 

that we attribute to the excursions of a treatment effect over time is already con-

tained in the water-suspended movements of a minute pollen grain.  

4.5 Brownian Motion 
As pointed out in Chapter One, over the course of approximately 100 years, several 

scientists observed, described and then mathematically derived the properties of 

Brownian motion. In this section, we will discuss some of the mathematical details 

that are most useful for the application of this process to the development of moni-

toring rules in clinical research.  

 Our focus is on the description of the movement of an element. That ele-

ment may be a speck of pollen, or the trajectory of a function of a treatment effect 

in a clinical study. Specifically, we will concentrate on identifying the position of 

that element at a particular time t; we will denote the location of that element B(t).

Our discussion is limited to one-dimensional movement, that is, the movement of 

the element is either up or down, over the course of time. Thus, the expression B(0)

= 0 states the location of the element at time 0 is 0 (or at the origin). The statement 

B(1) = 2 says that the location of the element at time 1 is 2. The statement B(2) = –1 

states that the location of the particle at time 2 = –1 (Figure 4.12).  
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Figure 4.12. The location B(t) of the element at three points in time.

After a description of the mathematical properties of standard Brownian 

motion, we discuss how one actually computes probabilities for the location of the 
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element that exhibits Brownian movement, and apply these probabilities to relevant 

computations in clinical research. 

4.5.1. Standard Brownian Motion 
The mathematical properties of Brownian motion are well defined, and our discus-

sion will be limited to its very elementary, central properties.* However, as we 

enumerate and begin to work them, we will also be sure to link these properties to 

clinical research monitoring, the central area of application here. The following 

elementary discussion of Brownian motion is taken from [10]. 

4.5.1.1 Property 1: B(0) = 0 
Although it is theoretically possible for the process to have any value at any point in 

time, the movement must begin from some place. Standard Brownian motion be-

gins at location 0 at time t = 0. This is consistent with the magnitude of the treat-

ment effect at the beginning of a study. 

4.5.1.2 B(t) Is Normally Distributed  
The position of the element at some future time t can not be known until that time 

arrives. However, predictions can be made about the likely location of the element. 

Specifically, standard Brownian motion follows a normal distribution. The mean of 

this distribution is 0, and the variance is t. We say that B(t) ~ N(0, t).  

 The invocation of the normal distribution here is comforting because it is a 

distribution that is ubiquitous, easy to work with, and has properties with which we 

are comfortable. However, the variance of B(t) requires special attention. It is not 

constant (unlike the mean, which is always zero), but actually increases in time. If 

we are at time 0, we are relatively assured where the element will be at time 0.001. 

We are less sure of the location of the particle at time 1, and are much less sure of 

the particle’s location at time t = 100. The farther into the future that we wish to 

predict, the less certain we are of the element’s location at that future point (Figure 

4.13).  

Figure 4.13 provides a sense of the probable positions of the element for 

time points t1, t2, t3, and t4 when examined from the starting time t = 0. The rotated 

normal curves provide a sense of the certainty about the element’s location. When 

only a relatively short time has elapsed from t = 0 to t = t1 the element has not had 

much time to move away from its initial location of 0, and the narrow curve reflects 

our high confidence that the element is not far from 0. 

                                                          
* There are other properties of Brownian motion that, although not of direct relevance to us 

in these more general discussions nevertheless retain interest. For example, Brownian motion 

is an incredibly jerky process with the element changing its location instantaneously and 

randomly. Thus, although line segments can be drawn between adjacent locations of the 

element, these segments are so short that their slopes cannot be computed. Mathematicians 

describe this process as being continuous but not differentiable. 
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Figure 4.13. Probability distribution of location of a Brownian  element. As time increases, 

the distribution disperses, with the more extreme locations becoming more probable.
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By the time t = t2, quite a bit more time has elapsed, and, although the most likely 

interval of locations for the particle remains around zero, there is now a substantial 

probability that the element has moved away from zero. This tendency towards a 

greater likelihood of locations of the element away from zero increases as the 

elapsed time increases from t1 through t2 to t3.

This property of increasing variance with increasing time is an appropriate 

model to use for monitoring many clinical effects in a research effort over time. We 

are more certain of the cumulative magnitude of the treatment effect a short dis-

tance into the future because, even though it is impossible to predict the size of the 

treatment effect contained in the data that has not yet appeared, its impact on the 

cumulative treatment effect observed thus far will be relatively small. However, the 

farther out in time we wish to project, the greater the quantity of data yet to arrive, 

and the greater the impact of this data on the cumulative treatment effect. Thus, we 

are less and less certain of the magnitude of the treatment effect as we make more 

distant projections.  

4.5.1.3 B(t) Is Memoryless 
We discussed the memoryless feature of Brownian motion in Section 4.5.4 when 

we explored the reasons for the reversals in the large excursions of the treatment 

effect over time. This notion of memoryless is commonly expressed mathematically 

through what is known as the independent increment property. Consider two time 

intervals [t1, t2], and [t3, t4] where t1 < t2 t3 < t4. Then the change in the position of 

the element from time t1 to t2, denoted by B(t2) – B(t1) provides no information 
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about the change in the location of the element from t3 to t4, denoted by B(t4) – 

B(t3). We say that the change in the location of the element B(t4) – B(t3) is inde-

pendent of an earlier change in its position B(t2) – B(t1). Because future changes in 

the element’s location are not linked to past changes, the movement of the element 

is momentumless. 

4.5.2 B(t) Conditioned on the Past 
Although a movement of a Brownian element in the past provides no information 

about the future movement of the position, a past position can be very useful in 

predicting a future position of the particle.  

As an example, suppose that we are interested in the position of the ele-

ment at time t = 100. If the current time is t = 0, then all that we know about the 

element’s location at time t = 100, a point that is far into the future, is that the ele-

ment’s position at that time will follow a normal distribution with a mean of 0 and 

variance 100. Essentially, the position of the particle could be almost anywhere at 

time t = 100 (Figure 4.14, Panel 1).  

However, suppose we are now at time t = 99, and we know that B(99) = 7. 

This information should inform us about the likely position of the element at t = 

100. After all, the particle has only one time unit to change its location. Although 

any magnitude of movement is possible, we do not expect that in this short period 

of time, the particle will radically change its position. We would therefore, expect 

that the particle would remain close to 7 (Figure 4.14, Panel 2). 

Figure 4.14. The future location of the element is much less certain when attempting

to predict ten time units into the future (Panel 1), than when trying to predict one time 

unit into the future (Panel 2). 
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It is this type of reasoning that is invoked when predicting the future position of a 

Brownian element based on information about its past.  

This concept of Brownian motion conditioned on the past may be stated 

mathematically as follows. If we are given two time points t1 and t2 such that t1 < t2,

and we know the location at the first time point, that is, B(t1) = a , then the probabil-

ity distribution of B(t2), although remaining normally distributed, has different pa-

rameters. Specifically, its mean is no longer zero, but is now a and its variance is (t2

– t1). This is commonly stated as the translation property of Brownian motion. It is 

as though the Brownian element, having arrived at B(t1) = a, starts again, but now 

all future positions must be relative to a, and all future times must be based on a 

starting time of not 0 but t1. Applying this to the previous example, we compute that 

the probability distribution of the location B(100) when we know that B(99) = –7 is 

a normal distribution with mean –7 and variance 100 – 99 = 1. This provides a 

much more precise estimate of the element’s location than what could be obtained 

from the starting point of the process at t = 0. 

As another example, suppose that we wish to find the probability that a 

Brownian element’s future location is greater than b at time t2 (i.e., B(t2) b ) given 

that we know the current location at time t1 is B(t1) = a. We simply use the normal 

distribution to compute  

2 1 2 1

2 1

2 1

| ,

0,1

1 ,Z

B t b B t a N a t t b

b a
N

t t

b a
F

t t

P P

P

where FZ(z) is simply the probability that a standard normal random variable is less 

than some value z.

When first considering this concept of using past information about 

Brownian motion to predict the future, it may seem that we have arrived at a con-

tradiction. We have said that Brownian motion is memoryless, yet it would seem 

that the past “memory” of the element’s location at time t1 has helped us to predict 

its future location at time t2 > t1.. However, the “memoryless” in the memoryless 

process refers to memory about momentum. A rapid increase that the particle ex-

perienced in the past does not affect the likelihood of a rapid increase in that ele-

ment’s position in the future. The most recent past position is valuable in making 

future predictions. How the element reached that position (either by an increase or 

by a decrease) is irrelevant.  

Another way to say this is, if we have (1) a sequence of time points t1, t2,
t3, …tn–1, and (2) the location of the element B(t1), B(t2), B(t3), …, B(tn–1) at each of 

these time points, then, of all of the information that we have, the only information 

that is of use to us is the most recent, that is, tn–1 and B(tn–1). In predicting the future 
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location of a Brownian element it is not past trajectories that are predictive. Only 

the most recent past time and position at that time are helpful.*

4.5.3 The Reflection Principle 
If we are to apply the tool of Brownian motion to the statistical monitoring of clini-

cal trials, we will need to implement this process’ principles in order to compute 

paths of interest. If, for example, an investigator has a function of a treatment effect 

that follows Brownian motion, she can compute the probability that this element 

will exceed the value one at time t = 2, as  

1
(2) 1 (0,2) 1 (0,1) 0.240.

2
B N NP P P

This computes the relative frequency of all paths that start at location zero at time t

= 0 and, two time units later, have a location that is at least one unit away from the 

origin. However, upon reflection, she may decide that this is not the primary event 

of interest to her. This computation considers only those paths, that, regardless of 

the location of the particle at any time point less than two, had a value of at least 

one at time point 2. It does not consider, for example, those paths that produced 

locations exceeding the value one at any time between zero and two but were not 

greater than one at time 2. On consideration, she may be interested in computing 

the probability of these paths as well.  

This second consideration requires us to develop the idea of an element’s 

maximum location. We wish to consider the frequency of paths that attain a maxi-

mum location that is greater than one at any time point t such that 0 < t  2. This 

problem, admittedly appearing complicated at first glance, has a simple solution, 

although an exact proof of the solution is beyond the scope of this discussion. Con-

sider the time t when B(t) first reaches the value of one. Then, after that time, there 

are two possible paths, B(t) and 1 ( ) 1 ,B t which are the mirror image of each 

other (Figure 4.15). 

Each of these paths has the same probability of occurrence. This is the re-

flection principle. Consideration of this observation leads to the conclusion that  

0 2
max ( ) 1 2 (2) 1 2(0.240) 0.480.

t
B t BP P

The probability that the maximum excursion of B(t) exceeds a value a during a time 

period 0 < t T is simply twice the probability that the location at the end time T is 

greater than the value of interest. This is a result that will be of use to us as we de-

velop monitoring rules for clinical research. 

                                                          
*A less confusing way to discuss the “memoryless” property of Brownian motion is to say 

that it is “path-memoryless”. However, this is not the tradition, so we will not use this alter-

nate terminology.  
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Figure 4.15. Reflection around the line B(t) = 1 beginning at the first point where

B(t) >= 1. 

4.5.4 Brownian Motion with Drift 
A review of our discussion up to this point (it is hoped, not a memoryless process), 

reveals that we are working to develop the concept of Brownian motion into a use-

ful implement for monitoring ongoing clinical research. In fact, in our mind’s eye, 

it is becoming increasingly easy to see the similarities between a clinical effect of 

interest in research and a pollen grain. Both are moving first in one direction, then 

in another over time.  

This analogy is useful when there is no overall treatment effect. However, 

because the purpose in almost all of clinical research is to identify an effect of in-

terest, all useful monitoring tools must be able to effectively identify this type of 

result as rapidly as prudent. We therefore, have to consider how our view of the 

Brownian element’s movement changes when there is a systematic influence on its 

location.  

Our understanding of Brownian motion discussed thus far has assumed 

that the tendency for the element to move in a positive direction is counterbalanced 

by an equal force that pushes it to the negative. However, what would happen if the 

element were caught up in a strong steady current upward? In this circumstance, the 

particle would be swept along by the current, moving in an upward direction. Ran-

dom forces would still be in operation. However, whereas before these random 

forces were the only tendencies governing the particle’s position, now there is an 

additional systematic pressure operating to produce movement in one direction.  
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This systematic component is called drift. Brownian motion with drift has 

the same hallmarks of standard Brownian motion. The probability distribution of 

the element’s location remains normal with increasing variance. Furthermore, the 

memoryless property of the process remains intact. However, the mean location of 

the element is different under a drift assumption from that of standard Brownian 

motion. Under standard Brownian motion, the element’s mean location is zero. If 

the element is drifting, its mean location is µt where µ is the drift parameter. This is 

the only mathematical difference between standard Brownian motion and Brownian 

motion with drift (Figure 4.16).  

Figure 4.16. Brownian motion with positive drift (black) and with drift removed 

(gray).
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Examination of Figure 4.17 reveals that probabilities for path locations 

will be different for an element undergoing Brownian motion with drift when com-

pared to standard Brownian motion. As we have seen earlier, if B(t) is following 

standard Brownian motion, then  

( ) (0, ) (0,1) 1 .Z

a a
B t a N t a N F

t t
P P P

However, if the element is undergoing drift with drift parameter µ, then the compu-

tation is  

( ) ( , ) (0,1) 1 .Z

a t a ut
B t a N t t a N F

t t
P P P
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For example, the probability that an element undergoing standard Brownian motion 

is greater than the value 1 at time t = 1 is 11 0.159.
1

ZF  However, if the 

drift parameter is µ = 1, then this probability becomes 
1 (1)(1)

1 0.50.
1

ZF

The probability that an element “drifting” upward will exceed a value is greater 

than the probability that standard Brownian motion that is experiencing no drift will 

exceed that value. The notion of Brownian motion will be useful as we consider 

monitoring clinical research under the assumption that there is an underlying treat-

ment effect. 

4.6 Monitoring Research and Brownian Motion 
Monitoring clinical research over time has special quantitative needs, and it is only 

natural that we reach out to the standard statistical tools that have been so reliable in 

the analysis of clinical research. However, the demands of clinical research moni-

toring reveal that we will need more than the usual support that comes from statisti-

cal measures. Concerns about sampling error inflation demonstrated that repeated 

testing is not going to be a sufficient protection against the occurrence of large 

sampling errors. In addition, the fact that our repeated evaluations are dependent 

upon each other begs the question of how to reflect these interrelationships into any 

analysis that we execute. We will need special tools to effectively deal with the 

demands of a rigorous clinical research monitoring program.  

A review of Brownian motion reveals that the properties of this type of 

movement closely align with the monitoring procedure. The fact that Brownian 

motion follows a normal distribution matches nicely with the normality assumption 

that accompanies many of the analyzes that we carry out in clinical research. The 

dependence of the location of a Brownian element on its previous position matches 

with our assessment of the behavior of a treatment effect that is built on accumulat-

ing data over time. In addition, there is a one-to-one correspondence between the 

notion of drift and the presence of a nonnull effect in a research effort.  

The link between the properties of Brownian motion and the challenges 

that are raised by treatment effects over time would seem to be a direct and useful 

one. Therefore the focus of the next chapters is on the use of clinical trial monitor-

ing procedures that have their basis in Brownian motion.  

Problems 

1. What is the new generalization issue of sample-based research that is intro-

duced by the use of interim monitoring procedures? 

2.  What are the three statistical issues that are raised by the development of statisti-

cal monitoring tools? 

3. An investigator attempts to monitor her ongoing research effort using the fol-

lowing tool. She generates a test statistic at 25%, 50%, 75%, and 100% of the 
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time in the study. She will reject the null hypothesis when the p-value of any of 

these tests is less than 0.001. Assuming that the evaluations are independent, 

what is the familywise type I error rate? What do you think of the utility of this 

approach? 

4. Consider an investigator who is interested in monitoring his research during its 

conduct. He plans to assess the value of the test statistic using the following 

procedure 

                 

  Percent Time Elapsed in the Trial    Two-Sided P-value

0.20         0.001 

0.40         0.005 

0.60           0.008 

0.80           0.010 

Assuming each of these evaluations is independent of the other, show that the 

type I error level remaining for the final hypothesis test at the end of the study 

is 0.027, if the overall alpha error rate is to be 0.05. 

5. Consider an investigator who is interested in monitoring his research during its 

conduct. He plans to assess the value of the test statistic using the following 

procedure 

  Percent Time Elapsed in the Trial    Two-Sided P-value

0.30 

0.50    0.004 

0.75    0.005 

0.90    0.006 

1.00    0.035 

Show that the maximum type I error rate for the first evaluation point of the 

trial is 0.001 assuming that the tests are to be computed independently and the 

total alpha to be expended is 0.05. 

6. An investigator is monitoring a clinical trial using a function of the effect size 

that follows Brownian motion with no drift. In this circumstance, the time in 

the study is measured as percent of time that has elapsed. Compute the prob-

ability that this Brownian element exceeds 1.96 when  

a. 5% of the follow-up time of the study has elapsed. 

b. 15% of the follow-up time of the study has elapsed. 

c. 40% of the follow-up time of the study has elapsed. 

d. 75% of the follow-up time of the study has elapsed. 

e. 100% of the follow-up time of the study has elapsed. 

7. An investigator is monitoring a clinical trial using a function of the effect size 

that follows Brownian motion with a drift parameter of µ = 1. In this circum-
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stance, the time in the study is measured as percent of time that has elapsed. 

Compute the probability that this Brownian element exceeds 1.96 when  

a. 5% of the follow-up time of the study has elapsed. 

b. 15% of the follow-up time of the study has elapsed. 

c. 40% of the follow-up time of the study has elapsed. 

d. 75% of the follow-up time of the study has elapsed. 

e. 100% of the follow-up time of the study has elapsed. 

8. Investigators are working to identify the circumstances under which a clinical 

study may be stopped early. They will be monitoring a function of the effect 

size that follows Brownian motion, and will monitor the clinical study when 

40%, 80%, and 90% of the duration of the trial have elapsed. Assuming the 

drift parameter is µ = 0.75, the investigators are interested in stopping the study 

when the value of Brownian motion exceeds 3.0 at 40%, 2.5 at 80%, and 2.2 at 

90%. Compute 

a. The probability that each of these boundaries is exceeded given that 

the Brownian element has no drift. 

b. The probability that each of these boundaries is exceeded when the 

drift parameter is µ = 0.75. 

c. The probability that the Brownian element will exceed 1.96 at the end 

of the study (i.e., when the follow-up time is 100%) when each of the 

boundaries is exceeded taken one at a time under the assumption of no 

drift. 

d. The probability that the Brownian element will exceed 1.96 at the end 

of the study (i.e., when the follow-up time is 100%) when each of the 

boundaries is exceeded taken one at a time under the assumption of a 

drift parameter of 1.96. 
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5
Group Sequential Analysis Procedures 

Give us the tools, and we will finish the job 
     Winston Churchill 

Having now completed a brief review of the motivation for monitoring guidelines, 

and an examination of the building blocks needed to understand the background 

mathematics of tools to monitor efficacy, we are now prepared to demonstrate and 

explain their use in modern clinical trial practice.  

5.1 Sounding the Alarm 
Ethical imperatives motivate the use of statistical monitoring procedures. The 

proper use of these devices protects patients whose future recruitment to the study 

may be obviated by the study’s early termination. In addition, monitoring tools help 

to safeguard patients by minimizing their exposure to unhelpful and sometimes 

harmful interventions in clinical research. However, although we concentrate on the 

development and use of these monitoring devices, we must also remember that 

monitoring is more than simple mathematics.  

In clinical monitoring, the subjective can sometimes overshadow the ob-

jective. These subjective, commonly nonquantitative, considerations include a 

qualitative assessment of the uniformity of the findings across all study participants. 

An examination of the occurrence of expected and unexpected adverse events must 

also be assessed.* Typically, the findings of other independent, sometimes parallel, 

research efforts are available; if so, these results must also be folded into the 

termination deliberations. In addition, the biological plausibility of the efficacy 

response that motivated the termination discussion must be reviewed and, if 

possible, understood.  

The role of mathematics in the decision process to terminate a study is 

much like that of a vigilant security guard or soldier. It is his job to “sound the 

                                                          
* This is the topic of Chapter Seven. 
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alarm.” Carefully trained to be on the lookout, he identifies and transmits prelimi-

nary, but potentially important, findings. However, the response to these warnings 

should not be reflexive. Deliberations based on the alarm must be carefully consid-

ered, proceeding only when all relevant facts and decision implications are well 

illuminated and in full view.  

In clinical trials, the mathematical monitory announced by a “stopping 

rule” is simply preliminary. Ultimately, its computations may be hastened, incorpo-

rated, or overruled by other, more important, human imperatives. This critical ac-

knowledgment will be the foundation upon which we build our understanding of 

modern monitoring guidelines in clinical research.  

5.2 Group Sequential Defined 
In the 1980s a set of procedures was developed that have become widely used and 

accepted in clinical research. They have come to be known as group sequential 
procedures.

The term “group sequential procedure” entered the clinical research lexi-

con in the late 1970s [1]. It now appears frequently in research protocols, peer re-

viewed manuscripts, and at IRB and DMC deliberations. However, as is true with 

many commonly used phrases that have their genesis in a technical field, the ver-

nacular use of the term has blurred its meaning. Our discussion must therefore be-

gin with a definition of the term “group sequential procedure”.  

Group sequential procedures are simply processes that analyze groups of 

patients sequentially. At the conclusion of a study, data on all recruited patients 

becomes available for analysis. This is, of course, not the case during the interim 

study period. The first interim examination includes patients who were among the 

first recruited. Patients who are subsequently recruited have their data incorporated 

into a subsequent group for examination. Thus, the groups are examined in the or-

der in which their data becomes available, i.e., sequentially.  

The genesis of the term “group sequential” itself is historical. Wald [2] and 

Armitage [3] developed the idea of sequential testing in clinical research.* How-

ever, at that time, the term applied solely to the pair-by-pair analysis of patients; 

two patients were recruited, one per treatment group, and had their data analyzed. If 

the trial was permitted to continue, this same procedure was executed for the next 

pair of patients. Thus, pairs of patients were evaluated sequentially.  

Work in the 1960s expanded this idea. The notion of sequential testing was 

retained. However, the concept of evaluating patients in pairs was impractical as 

clinical research designs evolved. Specifically, in the newer protocols (1) consecu-

tive patients were not always in alternating treatment groups,† and (2) the outcome 

of interest that would determine the effectiveness of the treatment would not be 

known for months or even years after they were recruited into the study. Thus, the 

                                                          
* Discussed in Chapter One. 
† The block size is the collection of patients in which the therapy assignment is balanced. If 

the block size is two, then a pair of patients is divided into one treatment and one control 

patient. However, larger block sizes (e.g., a block size of four) might result in treatment as-

signment allocation such that the assigned therapy actually may not alternate from patient to 

patient.  
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analysis plan of sequenced pairs was replaced by an analysis plan that focused on 

sequenced groups of patients (Figure 5.1). 

Time

Figure 5.1. The process of group sequential analysis. Groups of patient data arrive

chronologically and are combined into an accumulating data set for evaluation.
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In the group sequential procedure, each group’s data is added to the data 

that has been collected and is already available from the previous groups. This 

process generates a growing body of knowledge that sheds light on the emergence 

of efficacy in the study. The utility of analysis plans based on grouped sequenced 

data was recognized by Pocock [1]. 

5.3 Group Sequenced Data and Brownian Motion 
The concept of the group sequential analysis makes good sense, but begs the ques-

tion as to how this incoming grouped data should be analyzed. Fortunately, we are 

now in a position to address the salient issues raised by the concept of group se-

quential analysis.  

Chapter Four demonstrated how accumulating data that is gathered a 

group at time, with each group’s data added to a growing dataset, represents a body 

of information that contains built-in dependencies. Thus, the optimal analysis 

would be one that takes this dependency into account. An advantage of this ap-

proach would be to minimize the inflation of the type I error rate as the growing 

dataset is sequentially analyzed.  

However, the nature of the dependence i.e., exactly how a previous exami-

nation of early data illuminates our analysis of current data must be elucidated in 

order for the investigator to make the appropriate adjustments. The important work 

of unraveling this dependency was carried out by Slud and Wei [4]. Their efforts 

demonstrated that measures of efficacy in clinical research that were derived from 



116 5. Group Sequential Analysis Procedures

group sequential data could be transformed into an element that followed Brownian 

motion. This finding permits us to apply much of the understanding that we have 

about Brownian motion to the analysis of incoming data.  

In group sequential procedures, we commonly need to convert the measure 

of efficacy that the investigator is using (commonly a test statistic) into a statistic 

that follows Brownian motion. We will call this transformed efficacy measurement 

a Brownian element, or monitoring device. This, we will see later, is a very easy 

step. We will then be in a position to translate a statement in probability about the 

clinical efficacy measure into an equivalent statement about the Brownian element. 

Because the events are equivalent, an answer to this latter question will provide the 

required solution to the first question about the level of therapy effectiveness.  

We may think of this entire process as a five step operation to address the 

question, “Is there sufficient measure of efficacy at this point in the study to con-

sider its early termination?” 

Step 1. Have in hand a measure of efficacy at a point in the study 

Step 2. Convert the question of early efficacy into a probability question.  

Step 3. Convert this measure of efficacy into a Brownian element and con-

struct an equivalent probability question about the Brownian ele-

ment.  

Step 4. Answer the probability question about the Brownian element. 

Step 5. Translate this answer back to the answer for the original question 

about the level of clinical efficacy.  

Step 1 merely requires that the investigator have a test statistic at the interim moni-

toring point. Once we accomplish step 2, then steps 3 through 5 are relatively easy 

to take. 

5.4 Analysis Classes for Group Sequenced Data 
The next important issue is the use of the incoming, group sequenced data to ad-

dress whether the research should be discontinued early because of an early finding 

of efficacy. There are, in general, two accepted approaches to the examination of 

this question. 

5.4.1 Looking Backward 
Assume that an investigator has a measure of efficacy at an interim point in the 

study. She wishes to determine if its value suggests that the study should be termi-

nated early. One perspective would be to infer something about the pattern or tra-

jectory of the efficacy measure; if the path that it followed from the beginning of 

the study was an atypical one under the assumption that there was no efficacy, then 

its unusual track may suggest that the underlying null hypothesis of no efficacy was 

wrong. Therefore, a natural procedure that she might use would be to look back-

ward to see if the path that the statistic has followed was particularly unanticipated. 

If its observed trajectory deviates substantially from the expected trajectory under 

the assumption of no efficacy, then the investigator would be inclined to believe 

that some consideration should be given to terminating the study (Figure 5.2).  
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Figure 5.2. First group sequential procedures looked backward.  The question asked is,

“How likely is the path (under the null hypothesis) of the test statistic that led to its present

position?” The path (grey) is typically not known. The only known quantity is the test

statistic (in black). 

In Figure 5.2, the current value of the monitoring statistic is noted by the black ball. 

With this quantity in hand, the investigator looks back to the beginning of the study, 

asking how likely is it that the monitoring statistic would have the value it currently 

has if there were no substantial early emergence of clinical effectiveness in the re-

search. If the monitoring statistic was very likely to follow the observed trajectory 

under the null hypothesis of no treatment effect, then the observed value of the 

monitoring statistic is consistent with the hypothesis of no therapy effect; this sug-

gests that nothing out of the ordinary has occurred, and that the trial should be al-

lowed to continue. This “look backward” approach is the first group sequential pro-

cedure that came into general acceptance in the 1970’s. 

It is important to note that the investigator does not know the details of the 

daily oscillations of the monitoring device over time. She only knows the value at 

its current point and the value at the origin. Because many paths could occur that 

would lead to the current value of the monitoring device, she must compute the 

relatively frequency of all of these paths under the null hypothesis. She cannot do 

this directly if she remains focused on the clinical measure of efficacy, but she can 

accomplish it if she translates the process to one involving a Brownian element.   

5.4.2 Looking Forward 
A second collection of procedures addresses the question of early efficacy from a 

different perspective. Rather than take a look backward over the path that has been 

traversed, the investigator looks forward to the end of the study (Figure 5.3). In this 

scenario, the investigator with the monitoring device in hand, asks, “How likely is it 
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that the test statistic will fall in the critical region at the end of the study?” If this is 

a very likely scenario, then the investigator may be tempted to end the study early. 

This forward-looking approach is one that projects the future path of the monitoring 

statistic.
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Figure 5.3 A look forward approach. This perspective assesses the likelihood that the test

statistic will lead to rejection of the null hypothesis at the conclusion of the study.  

 Both the backward look and the forward look are group sequential proce-

dures, because they each examine data that are accumulated in “groups” over time. 

Both sets of procedures use the concept of Brownian motion in order to assess the 

relevant probabilities for the investigator. In this chapter we will focus on the pro-

cedures that look backwards. The forward look procedure, more commonly de-

scribed as a conditional power or stochastic curtailment [5], will be the focus of 

Chapter Six.  

5.5 Analysis Complexities
Group sequential procedures are natural and intuitive perspectives to develop. The 

statistical procedures that have been developed to support these perspectives are, in 

principle, elementary, and in some circumstances, are straightforward (Figure 5.4). 
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 In Figure 5.4 the measure of efficacy from a Brownian element is plotted 

over time. Two scenarios are presented, each represented by a single path. The 

lower path reflects the movement of the Brownian element over time in the clinical 

circumstance when the therapy measure is not effective. In this scenario, the effi-

cacy measure moves both above and below zero. As we have come to expect, the 

monitoring device measure has excursions of increasing magnitude from zero as 

time progresses. However, over the course of time, the measure demonstrates no 

persistent tendency to remain either above or below zero. The average location of 

the point is close to zero, although the number of large excursions away from zero 

increases.  

The second scenario from Figure 5.4 demonstrates a treatment positive 

path. In this circumstance, there is important consistent motion of the efficacy 

measure away from zero. Although there are both positive and negative excursions, 

the number of positive movements exceeds the negative ones. The Brownian ele-

ment is consistently lifted above zero. In this case, the efficacy measure is clearly 

embedded in the efficacy path. 

In the scenario presented in Figure 5.4, any statistical procedure that is 

chosen will have a relatively easy task of differentiating between the two depicted 

paths, because they clearly separate. Even in this case, however, the earlier the re-

search program is evaluated, the more difficult it becomes to discern on which par-

ticular path the efficacy point lies.  

However, in other circumstances, the results are not so clear cut. Consider 

the monitoring scenario that occurs when the treatment effect is not considered to 
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be as dramatic as was observed in the previous example. In this new scenario it can 

be very difficult to separate the “no-effect” path from that of a treatment effect 

(Figure 5.5).  
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Figure 5.5. It can be difficult to distinguish between a borderline beneficial treatment effect 

path (dark) from a path of no effect (gray).
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 In this setting, there is substantial overlap between the efficacy path when 

the efficacy is small versus when there is no efficacy whatsoever. Any statistical 

procedure that we can envision will have difficulty in discriminating between these 

two scenarios.  

Examples of this scenario are clinical studies in which the effect of the 

therapy that is being tested takes years to appear. One such illustration is the CARE 

study. This clinical trial evaluated the effect of the HMG-CoA reductase inhibitor 

pravastatin on the five year cumulative incidence rate of fatal and/or nonfatal myo-

cardial infarction [6]. In this circumstance, it took two years of follow-up before the 

signal of treatment efficacy emerged from the background, sampling error noise.*

5.6 Using Brownian Motion to Monitor Efficacy 
We pointed out in the previous section that one intuitive way to assess which path is 

best represented by the small number of available efficacy measurements is to re-

view the trajectory that has been traversed thus far. The question addressed by this 

look-back approach is, given the data that have been observed, how likely is it that 

                                                          
* One might argue that the dilemma of attempting to separate a signal that takes at least two 

years to develop (as was the case in CARE) be obviated by simply not monitoring the pri-

mary analysis of the study for two years. However, one of the goals of interim monitoring is 

to be vigilant for the unexpected, a responsibility that requires the DMC to deliberately inject 

itself into discussions produced from the conundrum represented in Figure 5.5.  
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the path traveled by the efficacy measure is consistent with the expected path. Con-

sider the following adaptation of Figure 5.4 (Figure 5.6).  
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Figure 5.6. Attempting to distinguish a clear treatment effect based on one interim point.
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In Figure 5.6, there is one interim measure of efficacy whose value at time t is d.

The figure also presents two of the many possible paths for the Brownian element, 

one indicative of no treatment effect, the second demonstrating a positive treatment 

effect path. The task of the investigator is to determine which of these paths is most 

consistent with the interim measure of efficacy seen to have the value d.

5.6.1 Introductory Computations 
Recall that the look-back procedure simply asks how likely is the path that the 

monitoring device has taken up to the current point. However, in order to answer 

this question we must clarify a condition. Is this question being asked under the null 

hypothesis of no therapy effect, or under the alternative hypothesis in which an ef-

fect is present? This condition will have a critical effect on our assessment of the 

likelihood of the monitoring statistic’s path. 

If for the moment we work under the null hypothesis, then the question 

might be phrased as, “How likely would an interim value of the monitoring statistic 

d be at time t be under the assumption of no treatment effect,” However, recall that 

there are uncountably many possible values for the Brownian element at time t
(Figure 5.7). 
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Figure 5.7. Four different paths that have a value of 2.49 at time 1.20. The look backwards 

procedure computes the probability of these four (and all other) paths that have a value at least 

as large as 2.49 at time 1.20.
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Because the probability of any one of them is zero, we therefore must rephrase the 

question to “How likely are all of the paths that produce a monitoring statistic with 

a value at least as large as d at time t under the assumption of no treatment effect?” 

This permits us to use the probability as area concept from Chapter 3. Because we 

are following a Brownian element, the solution is easy.  

( ) (0, ) (0,1) 1 ,Z

d d
B t d N t d N F

t t
P P P     (5.1) 

where N(0,1) refers to a variable that follows a normal distribution with mean zero 

and variance one. This is a result that we saw from Chapter Four. The assumption 

of no treatment effect permits us to work under the assumption of standard 

Brownian motion. If the value from expression (5.1) is large, then the interim ob-

servation of the Brownian element being equal to or exceeding d is quite likely un-

der the null hypothesis of no treatment effect. Because a noneffective therapy 

would be expected to provide paths containing the point d, we do not have evidence 

that the therapy is exerting an effect merely because the path arrived at point d.

 However, the question of the current path’s likelihood could also be ad-

dressed under the alternative hypothesis. In this setting, there is a treatment effect. 

This new assumption is equivalent to assuming that the Brownian element has a 

drift associated with it. Recall from Chapter Four that this drift parameter was des-

ignated as µ. Thus, in order to address the question of how likely is the observed 

path assuming a treatment effect, we write  
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( ) ( , ) (0,1) 1 .Z

d t d t
B t d N t t d N F

t t
P P P    (5.2) 

As an example, consider a clinical experiment in which at time t = 2, d = 5. Then 

we can compute under the null hypothesis:  

5
(2) 5 (0, 2) 5 (0,1)

3

5
1 1 2.89 0.002.

3
Z Z

B N N

F F

P P P

This suggests that a path that is at least as extreme as having a value of 5 at time t = 

2 is very unlikely. However, that same path, when considered from the alternative 

where the drift parameter µ = 3 is much more likely. We compute using equation 

(5.2) that  

5 9 5 9
(3) 5 ( (3)(3), 3) 5 (0,1) 1

3 3

1 2.31 0.990.

Z

Z

B N N F

F

P P P

Thus, this same path for the test statistic is very much more likely under the alterna-

tive hypothesis than under the null hypothesis, and we would be very tempted to 

reject the null hypothesis in favor of the alternative assumption of a treatment ef-

fect.

  Of course the complexity of the monitoring problem is compounded when 

one has only a small number of points (i.e., three or four) on which to decide 

whether it is likely that an early treatment effect is emerging. The difficulty that is 

raised with only having a relatively small number of locations on the efficacy path 

is that these points can be consistent with many (in fact, uncountably many) paths. 

The analysis task before us is to identify the class or category of points most consis-

tent with the data that has been collected thus far.  

5.6.2 Information Time  
It is perhaps a truism that, if all of the information were available immediately and 

at once in clinical research, then there would be no need for monitoring. Therefore, 

monitoring clinical research for efficacy relies on a fundamental operational princi-

ple of clinical studies: information on efficacy becomes available over the course of 

time.  

However, the mere passage of time is not always synonymous with accrual 

of information, i.e., clinical events. For example, consider the monitoring design for 

a clinical study. The randomized, controlled clinical trial is designed to assess the 

effect of therapy on the total mortality rate at one year. The sample size for the 
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study is computed to be 1200 patients. Based on the anticipated mortality rate that 

these patients will experience, the investigators anticipate that at the one-year con-

clusion of the study, there will be 100 total deaths in the trial.  

If the investigators wish to monitor the study at the 50% time point, then 

what proportion does 50% reflect? A natural but wrong answer might be that 50% 

simply identifies that point when 50% of the follow-up time has elapsed, that is, 

50% measures the passage of time. However, commonly deaths do not occur uni-

formly over time. Sometimes they occur earlier than anticipated, whereas in other 

circumstances the deaths are late events. Occasionally, the investigators actually 

overestimate the death rate so that it takes longer than one year to accrue the 100 

deaths that the investigators would need to conclude the study.  

Thus, the pertinent contribution to the monitoring device is not the passage 

of time, but the accumulation of deaths. This realization is the motivation for the 

term information time.* The information time is simply the fraction of the total 

number of endpoint events being monitored that have been collected at a given 

point in the follow-up period of the clinical trial. In this example, what provides 

ballast to the interim efficacy analysis is not the passage of time, but the number of 

deaths. 

Therefore, in group sequential procedures, information time replaces ac-

tual time in monitoring clinical events. The use of information time severs the link 

between the passage of real time, which is coincidental to the monitoring process, 

and the accrual of clinical events which is central to the monitoring procedure.  

5.6.3 Monitoring Device and Brownian Motion 
Implementing this concept of information time permits us to link a device or statis-

tic that follows Brownian motion to the original test statistic. Our goal now is to 

identify a function of the monitored data that follows Brownian motion, and then 

show how that function is related to the actual test statistic. This will permit us to 

convert complicated events involving the test statistic into simpler events that fol-

low Brownian motion. 

 As a first example, consider a very basic research design. An investigator 

is interested in examining the 24-hour post-surgical mortality rate p for patients 

who undergo limb amputation. At the conclusion of the study, the investigator will 

have examined N patients. Under the null hypothesis, this rate p is believed to equal 

some value p0 that is available from the literature. The investigator is interested in 

conducting an interim review of his data when the results are available for only n of 

the patients, where 0 n < N. The question to be addressed is what device (i.e., 

what function of the data) should be used to monitor this process.  

 Let xi be the mortality status of the ith patient in the trial. Let xi = 1 if the ith

patient dies within 24 hours of surgery, and xi = 0 if this patient survives at least as 

long as 24 hours. By the end of the study, results will be available for i = 1, 2, 3,…, 

N. In this case the best estimator of the 24-hour mortality rate based on N patients is 

                                                          
* This is an approximation of Fisher’s information, which is related to the inverse of the vari-

ance. 
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However, at the interim point of examination of the data, the result 

is available for only n patients. We turn to what we know about the probability dis-

tribution of this clinical event of interest to aid in the construction of the monitoring 

device.  

We know that the mean of xi is p0 under the null hypothesis, and its vari-

ance is 0 01 .p p Invoking the central limit theorem discussed in Chapter Three, 

we may write that  

0 0 0

1

, 1 .
n

i

i

x N np np p  (5.3) 

We have seen that if the monitoring statistic that we are working to find is to have a 

distribution that follows Brownian motion, then its mean and variance must be a 

function of “information time”. Begin by dividing the sum of the xi’s by N to 

reveal

1

0 0 0
, 1 .

n

i

i

x
n n

N p p p
NN N

              (5.4) 

Note that the left hand side of expression (5.4) is not the sum of observations di-

vided by the square root of the number of those observations. The number of obser-

vations reflected in the numerator is n, the total number available at the interim 

monitoring time point. However, the number of observations reflected in the de-

nominator is N, the total number that is available in the population.  

The changes in the mean and variance of the normal distribution on the 

right hand side of expression (5.4) are based on two facts: (1) a variable that fol-

lows a probability distribution when divided by a constant has its mean divided by 

that same constant, and (2) its variance is the original variance divided by the 

square of that constant. We proceed by writing 

1

0

0 0 0 0

, .
1 1

n

i

i

x
n n

N p
NN p p N p p

          (5.5) 

An examination of the variance of this new variable expressed in (5.5) reveals that 

it is exactly the proportion of total patients expected by the study’s conclusion. This 

proportion is the information time, and we write .nI
N

 Note that, at the begin-

ning of the study, there are no patients and I = 0. At the conclusion of the study, 

n N  and I = 1. This gradual accrual of information over time is exactly what 

information time is designed to measure.  

If the null hypothesis is true, and the post-surgical mortality rate is equal to 

p0, then it is easy to see that the monitoring device 
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0
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is normally distributed with mean 0 and variance n
N

. Thus, if the null hypothesis 

H0: p = p0 then the statistic 

0
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0 0
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n

i

i

x np

Np p

 follows standard Brownian motion. It is this statistic that will be our monitoring 

device (Figure 5.8). 
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Figure 5.8. Monitoring device (MD) for estimating 24-hour post-surgery mortality 

rate over information time.

M
D

0

1

0 0
1

n

i

i

x np

MD
Np p

The difficulty with this device is that it is unfamiliar. Being such, the in-

vestigators will have some difficulty couching clinical events of interest in terms of 

this unrecognized statistic. If this device is to be useful, we must be able to convert 

statements about the measure of effect in the study (in this case, the disparity be-

tween the observed and predicted post-surgical mortality rate) into equivalent 

events that involve the monitoring device. Focusing on the monitoring device B(I),
we may write:  
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0
01

0 0 0 0

( ) .
1 1

n

i
ni

x np
n x pn

B I B
N N p p N p p

         (5.6) 

Multiplying by N
n

 we have 

0 0 0

0 0 0 0 0 0

.
1 1 1

n n nn x p n x p x pN n N
B

Nn n N p p p p p p

n

  (5.7) 

But the expression on the right hand side of equation (5.7) is simply the test statistic 

for a test of the hypothesis H0: p = p0 versus Ha: p p0 using a one sample binomial 

test of proportions. In this circumstance, the test statistic is computed when there 

are n observations available, or .nI
N

We will call this test statistic TS(I). There-

fore, we have demonstrated that  

( )
( ) ( )

N B I
TS I B I

n I
 (5.8) 

or

( ) ( ).B I I TS I                                              (5.9) 

This is the statement of equivalence that we need. We are now in position to con-

vert events that involve test statistics into an event that involves Brownian motion.  

 To show that both the monitoring device (which under the null hypothesis, 

follows standard Brownian motion) and the test statistic can measure equivalent 

events, consider the following example. Assume that with 40 subjects in the study, 

the investigators have observed 5 post-surgical deaths. They would like to compute 

how likely this event is under the null hypothesis using a look backward approach. 

With this data in hand, they compute 5 0.125.
40

nx  They calculate that, at this 

point, 40 0.40,
100

I  and the investigators can compute TS(0.40) as  

0

0 0

0.125 0.05
(0.40) 2.18.

1 0.05 1 0.05

40

nx p
TS

p p

n

If the investigators were then to directly compute a p-value for this test statistic, 

they would observe that p = 0.029, which might suggest to them that the study 
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could be discontinued. The computation considered from the Brownian motion per-

spective follows. The investigators compute 

(0.40) 2.18 0.40 (0.40) 0.40 2.18

(0.40) 1.379 .

TS TS

B

P P

P

Here, we have converted an event involving a test statistic into an event involving 

Brownian motion. The absolute value simply addresses the concern about both 

large positive and large negative deviations of the observed from the expected post-

surgical mortality rate; this is the equivalent of carrying out a two-tailed test. We 

can now apply what we know about computing probabilities involving Brownian 

motion to this circumstance, writing 

1.379
| (0.40) | 1.379 | (0, 0.40) | 1.379 2 (0,1)

0.40

2 1 2.18 0.029.Z

B N N

F

P P P

Thus, in this scenario, the computation of the relevant probability leads to the same 

result.  

However, we have not come all this way to merely compute an easily ob-

tained probability by using a more complex Brownian motion argument, but instead 

to expand the repertoire of events whose relative frequencies are available. An 

event of interest to the investigators is, given that the test statistic is equal to 2.18 

when 40% of the events are available, what is the probability that it will be greater 

than 2.18 when 60% of the information is available under the null hypothesis of no 

treatment effect? This is a computation that will have important implications for us 

in the next chapter. Recalling the discussion of conditional probability of Chapter 

Three, we can describe the probability of interest as  

(0.60) 1.96 | (0.40) 2.18 .TS TSP  (5.10) 

This is a computation that would be difficult to approach using only what we know 

about test statistics and hypothesis testing. However, its solution is straightforward 

if we convert this event to one involving Brownian motion. Remembering that 

( ) ( )B I ITS I , we first convert the probability in (5.10) to  

0.60 (0.60) 0.60 1.96 | (0.40) 2.18 .TS TSP

Multiplying each side by I does not change the event, but simply produces an 

equivalent event that is now couched in terms of Brownian motion. Applying the 

same transformation to the condition (0.40) 2.18TS  reveals 
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0.60 (0.60) 0.60 1.96 | 0.40 (0.40) 0.40 2.18 .TS TSP

We may now write this probability in terms of Brownian motion 

(0.60) 1.52 | (0.40) 1.38 .B BP

The conditional probability in terms of the original test statistic has now been con-

verted to an equivalent test statistic for Brownian motion. However, recognizing 

that this is the probability of an event that is conditioned on the past, we can write 

(0.60) 1.52 | (0.40) 1.38 (0.60 0.40) 1.52 1.38

(0.20) 0.14 .

B B B

B

P P

P

The real utility of Brownian motion appears in this setting. The conditional prob-

ability that was an obstacle when the event appeared in terms of a test statistic is 

easily handled when it is rewritten in terms of Brownian motion. We can now 

quickly finish the computation. 

(0.20) 0.14 (0,0.20) 0.14

0.14
(0,1) (0,1) 0.313 0.337.

0.20

B N

N N

P P

P P
    (5.11) 

We see that given the test statistic has value of 2.18 when 40% of the information 

time is available, the probability that the test statistic at 60% of the information time 

is at least that value is 0.337. We will return to this type of computation when we 

discuss conditional power in Chapter Six.  

5.7 Boundaries and Alpha Spending Functions 
The style of computation that was provided in the previous section has been both 

revealing and interesting. Specifically, the introduction of Brownian motion pro-

vides a tool for us to compute the probability of complicated events involving in-

terim measures of efficacy in clinical research. Useful as these computations may 

be, though, there are two concerns about them that we must confront. The first is 

that the calculations are not prospective, and the events whose probability that they 

compute have thus far been data-based. For example, the previous illustration ex-

amined the possible location of future values of the test statistic at 60% information 

time, based on the value of the test statistic when 40% of the information was avail-

able. This was a question that was not raised until TS(0.40) was recognized, that is, 

it was a question based on the contents of the incoming data stream. Although the 

computation was illuminating, interest was not generated in it prospectively. As we 
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saw in Chapter Three, the answers to data-driven questions have important limita-

tions.  

Secondly, we have not yet dealt with the accumulating type I error issue 

that accompanies multiple hypothesis tests on the same dataset. This is relevant 

here because the investigator can make a decision at I = 0.40 to discontinue the 

trial. Because that decision will be driven in part by the value of the monitoring 

device, a device which we know to be influenced by sampling error, the influence 

of this error must be tracked and reported.  

The O’Brien–Fleming and Lan–DeMets procedures are based on an adap-

tation of this approach and allow us to deal with these two important issues. The 

ubiquity of interim monitoring devices is due in large part to solutions to each of 

these questions. Specifically, mathematical advances now allow the use of a pro-

spectively declared computation to govern when actions should be considered to 

terminate the study for efficacy. In addition, calculations can now appropriately 

accumulate accurate type I error rates over the course of the repeated monitoring 

assessments.  

5.7.1 Boundary Values 
The need for a prospectively declared decision rule for considering termination of a 

study is addressed by the concept of a boundary. This boundary divides the location 

of the monitoring device into regions. One region suggests that the study can be 

terminated because sufficient information has been gathered concerning the pres-

ence of efficacy. If the monitoring device falls into the other region, then sufficient 

efficacy has not yet been produced and the research should be permitted to con-

tinue. Although the computation of these boundary values can be easily accom-

plished on almost any computer, the actual calculations are nevertheless compli-

cated. This is especially true of the look-back procedures, as well as some Bayesian 

paradigms. However, an understanding of how the boundary values are computed, 

as well as the motivation for the shape of the regions is well within our reach.  

Before we begin these discussions, however, we must recall that crossing 

any such boundary is only one piece of information to consider in terminating a 

study.  

5.7.1.1 Motivating the Shape of the Boundary 
As we saw earlier, the boundary of a monitoring statistic serves as a guide to aid us 

in our reaction to the value of that statistic at an interim point during the execution 

of the trial. However, the shape of these regions has undergone continued evolution. 

Initially these regions were simply rectangles, demarcated by straight lines. How-

ever, the increased sophistication of mathematical procedures now permits the in-

vestigator to consider boundaries that have complex shapes. Each of these shapes 

can be linked to the underlying assumptions of the monitoring device, and to the 

particular needs of the trial that is being monitored. The important message for the 

investigators is that they have a role to play in choosing the shape of the monitoring 

boundary. The creation of a boundary instantly solves the prospective decision rule 

(Figure 5.9). This prospectively drawn boundary allows interim monitoring deci-

sions to be in place based only on a priori considerations. This permits us to avoid 
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relying on the appearance of trends in the data that may be due to sampling error. 

The flat boundary approach was used by Pocock [1].  
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Figure 5.9. A flat line boundary that separates the possible locations of the 

monitoring device into two regions; (1) a continuation region and (2) a 

termination region. 
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However, this flat line of demarcation of Figure 5.9 suggests that the strength of 

evidence for a research effect is independent of the information time at which the 

monitoring device is interrogated, an assumption that we now recognize must be 

carefully considered in clinical circumstances.  

An alternative is a boundary that has a positive slope. The class of tests 

developed to address this circumstance falls under the rubric of the Whitehead Tri-

angular Test [7,8]. An advantage of this procedure is that the computations needed 

to compute its boundary values are not especially complicated, and its boundaries 

align closely with those of Wald’s sequential probability ratio test [9].   

In order to address the concern that early values of the monitoring device 

provide less stable information because they are based on relatively small datasets, 

the flat boundary is commonly replaced by the use of the sloping boundary (Figure 

5.10).  



132 5. Group Sequential Analysis Procedures

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 5.10. The sloping boundary approach. Higher values of the monitoring 

device are required early in the study to trigger the consideration  of terminating 

the study.  
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The sloping boundary approach institutes the requirement that the criteria for dis-

continuing a clinical trial actually change over the course of time. Early in the study 

the boundary is higher, requiring that the monitoring device itself be larger.  

This approach aligns nicely with both the mathematics and our underlying 

intuition based on the reliability of the monitoring device. Recall that, early in the 

study, the clinical trial has information on only a small number of subjects, and the 

number of clinical events on which the value of the monitoring device rests is 

small. Therefore, the measure of efficacy, even though it is the best estimator avail-

able, is likely to be very imprecise. Specifically, this means that other small sam-

ples obtained from the same population of patients will have substantially different 

measures of efficacy. Therefore, the only way that the investigators can have confi-

dence in this estimate is if its very extreme.*

 As we move to the right along the x-axis of Figure 5.10, information time 

increases. More data is accumulated, and the estimator begins to “settle down”. The 

influence of sample-to-sample variability decreases as the number of clinical events 

increases. This increase improves the precision of the estimator, and the estimate of 

the treatment effect becomes more reliable. Thus, with more confidence in the es-

timator, the investigators can allow themselves to be persuaded by more moderate 

levels of efficacy than earlier in the study. The estimator is not likely to move 

wildly or unpredictably because its base is now on a larger number of clinical end-

                                                          
* Examine Figure 4.3, page 87 to see how extreme effect size estimators can become in small 

samples.  
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points. The closer the trial is to its scheduled ending point, the more reliable is the 

data, and the less extreme its level of efficacy must be to carry persuasive weight 

with the investigators.  

 Investigators track the value of the monitoring device by tracking its posi-

tion relative to the boundary on a graph (Figure 5.11). 
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Figure 5.11. Successive values of the monitoring device over time in a 

clinical study. When the boundary is crossed, termination may be

considered. 
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It was Canner [10] who suggested the idea of sloping boundary to decrease the like-

lihood that the monitoring device would exceed a boundary early in the trial. How-

ever, an important consideration in the computation of the boundary value is the 

type I error rate. How the investigators choose to allocate the type I error over the 

course of the study is a major determinant in the shape of the boundaries for early 

termination.  

5.7.2 Alpha Spending Functions* 
Both the motivation for and the shape of the boundary values for the monitoring 

device used to examine the interim results of clinical results have been elucidated at 

this point in our discussions. We will now turn our attention to how one actually 

computes the boundary values.  

The need to conserve the overall type I error and the computing ability af-

forded by Brownian motion are central to this process. Recall from Chapter Four 

that the repeated testing of sample-based data actually inflates the level of the type I 

error rate, increasing the likelihood of drawing an erroneous conclusion from the 

study solely based on the vicissitudes of sampling error. We anticipate that there 
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may be an opportunity to reduce this likelihood by taking into account a built-in 

dependency in the dataset. The source of this dependency lies in the group sequen-

tial process in which repeated analyzes are carried out on an accumulating collec-

tion of data. This data contains subjects that have been analyzed early in the study 

as well as new groups of data that have been recently collected and are being ana-

lyzed for the first time (Figure 5.1).  

It was the paradigm-breaking research of O’Brien–Fleming that provided a 

relatively simple and easily understood procedure for converting a “single test 

clinical trial” (i.e., a trial that was designed to carry out a single hypothesis at its 

scheduled conclusion) into a monitored research program with alpha error conser-

vation [11]. The O’Brien–Fleming chi-square test offered investigators the oppor-

tunity to monitor their clinical study on an ongoing basis, using Brownian motion 

considerations and the built-in dependency in group sequential data to control the 

overall type I error rate.* The Haybittle–Peto procedures [12,13] are also useful 

tools to develop interim procedures for clinical studies. However, they, like the 

O’Brien–Fleming procedures, require that the number of interim analyzes be pre-

specified. This work has been generalized by Wang and Tsiatis to demonstrate 

mathematical monitoring procedures that produce boundaries of a different variety 

of shapes [14].  

What is important for the investigator to keep in mind is that they have an 

important voice in the shape of the boundary region. Mathematics in these fields 

can now support boundary computations to accommodate a wide range of consid-

erations. The investigator, working with the statistician, should choose the shape of 

the boundary that will meet the ethical concerns that attend the interim monitoring 

procedures. Once this has been chosen, the statistician can then carry out the de-

tailed computations.  

The Lan–DeMets procedures [15] raised the idea of an alpha spending 

function to prominence. Simply, an alpha spending function is the relationship be-

tween the type I error rate and the information time at which that error is expended. 

Alpha spending functions distribute the type I error rate across the interim monitor-

ing points of a clinical study. The determination of these type I error rates is made 

in a way that conserves the overall type I error. 

The alpha spending functions are incorporated with Brownian motion con-

cepts to construct the boundary values for monitoring the clinical trial. The smaller 

the type I error rate chosen for termination of a clinical trial at a particular boundary 

value, the greater the threshold must be for the test statistic for early termination 

consideration.

The modern use of the group sequential procedures has been nicely elabo-

rated by Fleming [16]. The complicated mathematics are but one of a sequence of 

specific steps that investigators should follow in determining the group sequential 

procedures. The specific steps are  

                                                          
* When the boundary values generated by the O’Brien–Fleming group sequential procedures 

are graphed using the monitoring statistic as the y-axis, the boundary is flat. However, when 

the test statistic is used as the z-axis, the boundary decreases over time. See Jennison and 

Turnbull [9] for details.  
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Step 1:  First select the overall type I error e.

Step 2: Set value of the interim monitoring alpha levels, 1, 2, 3, …, k

and so on.  

Step 3: Choose critical regions for the monitoring device such that the 

probability that the first time the monitoring device falls in the 

critical region at interim monitoring point j is j.

Step 4: Monitor the research effort. Consider terminating the study at in-

terim time point j if the monitoring device exceeds the boundary 

value at information time Ij.

Note that these steps in creating a boundary for the early conclusion of a 

study are most useful when executed in concordance with the three principles of 

sample-based research, elicited in Chapter Two.* Using a backward look procedure, 

the mathematics no longer require the investigator to pre-specify the number of 

interim monitoring points. However, concerns about the misleading affects of sam-

pling error require the investigator and/or the DMC to state the number of a priori 

examinations there will be and to work diligently to keep the number of monitoring 

times to a minimum. This requires them to balance the effect of sampling error that 

crescendos as the number of interim examinations of the data increase on the one 

hand, with the ethical concern to examine the interim data as frequently as the eth-

ics of the study require. 

In the popular O’Brien–Fleming and Lan–DeMets paradigm in which the 

investigator asks “How likely is the path that test statistic has traversed from the 

beginning of the study under the null hypothesis?” these boundary values are avail-

able, but can be difficult to compute.  

As a simple introductory example, consider an investigator who wishes to 

monitor a clinical program at information times t1 and t2 where 0 < t1 < t2 < 1. She 

would like to compute boundary points for the monitoring device that, under the 

null hypothesis, follows standard Brownian motion in a way that conserves type I 

error. The investigator is interested in computing the boundary values b1 and b2

such that if B(t1) b1 or B(t2) b2, then there is sufficient evidence to consider ter-

minating the trial for early efficacy. Extending to the scheduled end of the trial, we 

can also choose a value b3 such that if B(1) b3, then the study ends with a positive 

result.  

She proceeds under the assumption that she will end the study the first 

time the monitoring device B(t) exceeds the boundary set for it. This means she 

would consider ending the study if B(t1) b1. She would also end the study if B(t2)

b2 when at time information time t1, B(t1) were less than b1, Thus, she could set 

analysis specific alpha levels 1, 2, and 3, such that 

                                                          
* Without following the principles of prospective declaration of a clear study design and 

analysis plan, the research results that are reported during an interim monitoring evaluation, 

regardless of effect size, revert to exploratory findings which must be repeated, commonly at 

great expense.  
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1 1 1
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P

P

P

       (5.12) 

Each of these events would be type I errors under the null hypothesis of no efficacy. 

Note that the use of joint probabilities allows us to incorporate the notion of de-

pendence in our computations.  

 Clearly b1 can be identified. Following the computation from Chapter 

Four, we can compute 

1
1 1 1 1 1

1

0, 0,1 .
b

B t b N t b N
t

P P P

Because we know from a consideration of the percentiles from a normal distribu-

tion that 
11 1

0,1 ,N ZP  we have that 
1

1
1

1

,
b

Z
t

 or 
11 1 1

.b Z t

However, the second line of expression (5.12) introduces new complexities. It first 

requires us to identify the joint distribution of B(t1) and B(t2). Of course, B(t1) and 

B(t2) are not independent. The correlation coefficient reflecting their dependence is 

1

2

.
t

t
* Thus, we can write the mathematical function that can be used to com-

pute joint probabilities involving B(t1) and B(t2). Specifically, if we let x1 = B(t1)

and x2 = B(t2), then the formula used to compute probability that we seek is 

2 2
2 1 1 1 2 1 2

1 2 1

1 2

2

2

, 1 2

1 2 1

1
, .

2

t x t x x t x

t t t

X Xf x x e
t t t

 (5.13) 

                                                          
* The correlation between B(t1) and B(t2) can be identified by first finding the covariance of 

x1 = B(t1) and x2 = B(t2) and dividing by the product of the standard deviations of x1 and x2 . 

Begin by writing 1 2 1 2 1 2 1 2, .Cov x x E x x E x E x E x x  The last equality holds 

because the mean of a standard Brownian motion process is zero. The joint expectation can 

be solved by invoking the double expectation argument that allows us to find means of func-

tions of two or more variables, that is, 
1 2 11 2 | 2 1 .x x xE g x x E E g x x Applying this 

tool, we find 
1 2 1 1 2 1 1

2

1 2 | 2 1 1 | 2 1 1.x x x x x x xE x x E E x x E x E x E x t  The correlation 

follows  

1 2

1 2 1 1

21 2

,
.

x x

Cov x x t t

tt t
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Although the volume under the curve of this service is relatively easy to 

visualize (Figure 5.12), the evaluation of the volume under this surface, which 

measures the probability of the event of interest is complicated mathematically.*

In order to compute the values of the boundary, statisticians turn to com-

puter packages that can carry out this quadrature, or numerical integration. These 

calculations directly approximate the areas (r volumes of regions) under these com-

plicated curves. It is this style of calculation that is required to compute 

1 1 2 2 2
B t b B t bP  and to compute the more complicated probability 

1 1 2 2 3 31B t b B t b B bP .

Example:

Open to the possibility that greater post-stroke physical activity may reduce the in-

hospital recuperative following an acute stroke, investigators design a clinical trial 

to compare the three-week discharge rates of these patients. In the past, the propor-

tion of patients who are hospitalized for more than three weeks is 11%. They hope 

to reduce this to 8.25%, that is, a 25% reduction.  

 The IRB requires the incorporation of an interim monitoring procedure 

into this study. The investigator plans to evaluate the interim data at five different 

                                                          
* The required computation is  

2 2
2 1 1 1 2 1 21

1 2 1

2

2

2

2 1

1 2 1

1
.

2

t x t x x t xb

t t t

b

e dx dx
t t t

For those who know calculus, this problem may be analytically approached in two ways. 

Unfortunately, neither approach yields an analytic solution. The first is to carry out the inte-

gration sequentially, by first integrating out the variable x2. This process involves completing 

the square of the exponent, and thereby converting the integrand into the product of two 

functions of x1. The first is a component of the normal distribution with respect to x1. The 

second is the cumulative distribution function that is also a function of x1. The result leads to 

the identification of the integral 

21
1

2
1 1

1

2

b
x

v
ZF g x e dx

v
where the functions g and the 

variance v are functions of t1 and t2. This can be integrated numerically but there is no closed 

form solution.  

A second approach would be to write the variance-covariance matrix of x1 and x2

using standard matrix notation, that is 
1 1

1 2

.
t t

t t
 This symmetric, positive definite matrix 

can be written in its principal form, that is, ,PDP' where P is the matrix of orthonormal 

characteristic vectors of  and D is the diagonal matrix of characteristic values of . Using 

this approach, one can write '2 2 2
1 1 1 1

2PDP' = PD D P' = . This permits a linear trans-

formation of the original correlated normally distributed random variables x1 and x2 into two 

uncorrelated independent variables w1 and w2 by 
11 1'2

2 2

.
w x

w x
w . The new region of 

integration is very complicated, and again, the integration does not yield a closed form solu-

tion.
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information times (0.20, 0.40, 0.60, 0.80, 1.00). The investigator recognizes that the 

idea of terminating the study very early can only be justified with a high efficacy 

rate. Computations by Reboussin, Kim, DeMets and Lan[17]provide the boundaries 

(Table 5.1).  

0.00

0.10

0.20

0.30

0.40

0.50

-5.00 -4.00 -3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 4.00 5.00

-5.00

-2.50

0.00

2.50

5.00

1
B t

2
B t

Figure 5.12. The surface whose enclosed volume for a specific region that must 

identified to find the boundary values in the look backward approach. 
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Table 5.1 Boundary Values for Test Statistic Comparing Mortality Rates

in a Clinical Trial

Information Time Boundary Value Alpha

0.2 4.877 0.000001

0.4 3.357 0.000394

0.6 2.680 0.003681

0.8 2.290 0.011011

1.0 2.030 0.021178

Note the alpha spending function. Minimal alpha is used or “spent” at the early 

evaluation for I = 0.20. The overall type I error is controlled at the 0.05 level. Re-
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call that, in this case, information time at point j is ,j
j

n
I

N
 where nj is the num-

ber of patients in the study at time point j and N is the total number of patients re-

quired to conclude the study. The graph of the test statistic versus time reveals the 

alpha spending function used for this evaluation (Figure 5.13). The investigator 

decides to review her data at information times 0.10, 0.50, 0.80. The boundary val-

ues for this process are easily depicted (Figure 5.13).  
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Figure 5.13. Efficacy boundary values for mortality rate in stroke trial.

Problems 

1  Define the term group sequential procedure. Specifically how does the evalua-

tion of data using a group sequential framework induce dependency in the 

analysis? 

2. What are two major criticisms of the straight line or flat line boundary as a tool 

to use to monitor the efficacy of a study? 

3.  An investigator is interested in monitoring his study using an O’Brien–Fleming 

approach which is a Lan–DeMets type of alpha spending function. He will 

monitor the study at one and only one interim point. The investigators choose 

an interim value of the type I error  as  = 0.0005. Compute and compare the 

value of the boundary of the Brownian monitoring procedure at each of I = 

0.10, I = 0.25, and I = 0.60. 
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4. An investigator has put prospective interim monitoring rules in place for her 

clinical study. Under the alternative hypothesis, the anticipated drift in the 

monitoring device is µ = 0.15. If the monitoring statistic has a value of 2.57 at 

information time I = 0.10, compute the likelihood of the null and alternative 

hypotheses. Repeat the computation for I = 0.75. 

5.  An investigator is interested in comparing the difference in left ventricular ejec-

tion fractions between Mexican-American (MA) and non-Hispanic White 

(NHW) patients in heart failure. Let xi, i = 1, 2, 3, …, N represent the LVEF 

measurements on the MA patients, and let yi, i = 1, 2, 3, …, N represent the 

LVEF measurements on the NHW subjects. Patients are recruited into the 

study, and have their ejection fractions calculated. It is anticipated that the 

study will require 2N patients, however, it will be monitored when 2n patients 

(n MA and n NHW subjects) have been observed in each group where 0 < n

N. Let MA  and 2

MA be the population mean and variance of the LVEF for MA 

patients, and similarly, NHW  and 2

NHW  be the corresponding parameters for 

NHW patients. Assume that both 2

MA  and 2

NHW  are known quantities. The 

clinical hypothesis test of interest is that the mean LVEF of MA is the same as 

that of NHW subjects.  

A. Following the development in Section 5.6.3, demonstrate that the monitor-

ing statistic B(I), where  

1 1

2 2
( )

n n

i i

i i

MA NHW

x y

B I
N

   follows a normal distribution with variance nI
N

.

B. Show that under the null hypothesis the mean value of B(I) is zero.  

C. Demonstrate that, under the alternative hypothesis of MA – 0,NHW  the 

expected value of B(I), ( )B Iu is

( )
2 2

.
MA HW

B I

MA NHw

N
u I

where nI
N

.

D.  Show that 
( )

( )
B I

TS I
I

where  

2 2

( ) .
1

n n

MA NHW

x y
TS I

n
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E.  Compute the value of the monitoring statistic B(I) when n = 15, N = 150, 

57, 43,X Y 15, 20.MA NHW What is the information time for this 

calculation? 

6.  Assume that an investigator measures changes in carotid blood flow in a collec-

tion of N individuals over time. Let xi,1, be the first carotid blood flow meas-

urement on the ith subject, and xi,2 be the second carotid blood flow measure-

ment. The investigator is interested in using these paired measurements to 

evaluate the change in carotid blood flow over time. Assume the difference in 

the mean carotid blood flow follows a normal distribution. Let the mean of the 

difference between carotid blood measures be µD and the variance of the differ-

ence be 2 .D  The null hypothesis is H0: 0D  versus the alternative that the 

mean change in carotid blood flow is not zero.  

A. Show that  

,1 ,2

1( )

n

i i

i

D

x x

B I
N

 is normally distributed with mean DI N  and variance I where nI
N

.

B.  Show that ( )
( )

B I
TS I

I
where  

2
( ) .

n n

D

x y
TS I

n
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6
Looking Forward: Conditional Power 

Brownian motion is useful when monitoring clinical trials. It is naturally incorpo-

rated into the group sequential procedure approach, permitting us to take advantage 

of the indwelling dependence that we have seen is present in this set of calculations.  

The focus that we have provided so far has been one where the investiga-

tor, interim monitoring statistic in hand, looks back over the course of the study 

completed thus far. This look-back assesses the likelihood of the path that the moni-

toring statistic has taken. The probability of this and similar paths can be computed 

under either the null hypothesis of no therapy effect, or an alternative hypothesis 

representing the presence of efficacy.  

However, we have also observed that, except for the most elementary 

events, probability computations involving the look-back procedure can lead to 

complicated calculations requiring special software [1]. In addition, the computa-

tion of the boundary values built to prospectively guide efficacy determinations 

leads to computational complexity. Thus, although the traditional and highly valued 

look-back procedures have been and remain important tools in the modern monitor-

ing of clinical research, the actual computations can be difficult for physician-

investigators to carry out for themselves.  

In most cases, this computational obstacle is of no real disadvantage to the 

clinical investigator. In the end, it is more important for the investigator to retain 

control over the event whose probability is computed than to focus on the underly-

ing mathematics of the computation. However, there are circumstances in which the 

investigator is interested in computing the probability of several different events, 

and it can be most helpful if the investigator can actually carry out the computation, 

or at least, be able to see and understand how it works.  

This chapter will focus on a collection of procedures that permit the inves-

tigator to compute probabilities and boundary values useful in monitoring ongoing 

clinical research, using a look-ahead procedure. 
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6.1 Notation and Perspective 
We will continue to use the notation that we have developed. The trial will be 

monitored at a point I where 0 I  1. The value of the test statistic at information 

time I is TS(I). The value of the Brownian element is B(I), where ( ) ( )B I I TS I .

The look forward procedure focuses on predicting future paths of the test 

statistic using the Brownian motion framework. This is useful because, if some 

paths are extremely likely based on the information obtained thus far in the trial, the 

investigator may consider terminating the study early, precisely because of the high 

relative likelihood of this future trajectory (Figure 6.1). 
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Figure 6.1. The conditional power approach uses assumptions about the trajectory of 

the monitoring device to project the likelihood of its future paths. This allows the 

investigator to compute the probability that the test statistic will fall in the critical 

region at the conclusion of the study, given the current value of the monitoring device.  
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From Figure 6.1, it is clear that there is a positive trajectory for the moni-

toring device. Regardless of whether the investigator assumes that the monitoring 

device continues its strong positive track into the future, or becomes a driftless 

process, simple computations involving Brownian motion permit the investigator to 

compute the probability of the test statistic landing in a region of interest at the 

study’s end. If these computations suggest that the test statistic will fall in the criti-

cal region at the conclusion of the study, then consideration of termination proce-

dures can begin. 

These predictive computations can be carried out for any time point in the 

future. Of course, as we would expect, the farther into the future that we wish to 

project, the less accurate the projection will be.  
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6.2 Example of a “Forward Look” Computation 
As an illustration, assume that an investigator in a clinical research effort has a test 

statistic of 2.30 at the I = 0.50 interim time point in the study. She would like to 

compute the probability that the test statistic will be at least as large as 1.96 at the 

75% information time point. She begins the computation with the statement  

(0.75) 1.96 | (0.50) 2.30 .TS TSP                 (6.1) 

 The conditional probability in terms of the test statistic is difficult to solve, 

so we first convert this to Brownian motion, multiplying each event in expression 

(6.1) by .I  This reveals 

0.75 (0.75) 0.75 1.96 | 0.50 (0.50) 0.50 2.30

0.75 (0.75) 1.697 | 0.50 (0.50) 1.626 .

TS TS

TS TS

P

P

       (6.2) 

Because we know that ( ) ( )B I I TS I  we may rewrite the last line of expression 

(6.2) as 

(0.75) 1.697 | (0.50) 1.626 .B BP                 (6.3) 

Recalling our discussion in Chapter Four concerning Brownian motion conditioned 

on the past, expression (6.3) may now be written as  

(0.75 0.50) 1.697 1.626 (0.25) 0.071 .B BP P

Under the null hypothesis of no treatment efficacy for the period of information 

time over which the prediction must be made,* that is, 0.50 I  0.75, the calcula-

tion becomes 

(0.25) 0.071 (0,0.25) 0.071

0.071
(0,1) 1 0.142 0.444.

0.25
Z

B N

N F

P P

P

Thus, the forward evaluation procedure suggests that there is a 44% chance that the 

test statistic will be greater than 1.96 when 75% of the information time has 

elapsed, given the value of the test statistic is 2.30 at I = 0.50.  

 The investigator can carry out this style of predictive computation for any 

future event of interest. For example, she may be interested in the value of the test 

                                                          
* We will have much more to say about this assumption later in this chapter. 
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statistic at the conclusion of the trial, based on its current value at I = 0.50. If she 

wishes to have the type I error for the final hypothesis test be 0.05, (i.e., the test 

statistic must be at least as large as 1.96 for a two-tailed evaluation), she may com-

pute

(1.00) 1.96 | (0.50) 2.30

1.00 (1.00) 1.00 1.96 | 0.50 (0.50) 0.50 2.30

1.00 (1.00) 1.96 | 0.50 (0.50) 1.626

(1.00) 1.96 | (0.50) 1.626

(1.00 0.50) 1.96 1.626 (0.50) 0.334

(0.50) 0.3

TS TS

TS TS

TS TS

B B

B B

B

P

P

P

P

P P

= P 34 (0,0.50) 0.334

0.334
(0,1) 1 0.472 0.318,

0.50
Z

N

N F

P

P

 (6.4) 

which is the probability that the test statistic is in the critical region at the end of the 

study. Comparing this answer to the (0.75) 1.96 | (0.50) 2.30 0.444,TS TSP

we observe that the probability that the value of the test statistic at I = 0.75 will be 

greater than 1.96 given its value of 2.30 is actually greater than the analogous 

(1.00) 1.96 | (0.50) 2.30 .TS TSP

This bears some examination. The region that the test statistics will fall in 

for each of these computations is the same. What is different is the period of time 

over which the prediction is required. Specifically, the farther into the future one 

wishes to predict, the more variability is associated with the location of the test sta-

tistic.

6.3 Nomenclature 
This type of forward look procedure is known among statisticians and clinical trial 

specialists as conditional power. As is the case with many of the interim monitoring 

procedures, there are many contributors to the development of this approach.  

 The philosophy first appeared in industry as quality control specialists 

turned their attention to screening a lot of n manufactured items for acceptability. 

The decision rule used at the time claimed that the lot was acceptable if it contained 

less than c defectives; that is, brand the lot as unacceptable if it contained c or more 

defective items. However, the lot must be acceptable if there are n – (c – 1) non-

defects,* and so it was suggested that by monitoring the number of nondefectives, 

the sample of tested items could be reduced. This reduction is described as curtail-

ment [2]. One could curtail the examination by scanning for non-defectives. 

                                                          
* The lot meets the bare minimum requirement of acceptability if there are c defective items, 

and n – c non-defective items. If there are n – c + 1 nondefectives, then the lot must be ac-

ceptable. 
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 In this industrial circumstance, the scanning ceased as soon as the result 

became inevitable. However, why wait for inevitability? Interim probability compu-

tations would allow one to compute how likely it is that the lot would be acceptable 

based on the results of the lot’s partial scan. This modification was termed 

stochastic curtailment. It is this expression that was transferred to the clinical trial 

arena and is now used as a moniker for the look forward procedure. A somewhat 

more user-friendly descriptor has come to be known as conditional power [3].*

 The conditional power computation that we have illustrated thus far can be 

generalized. Assume the value of the test statistic at information time I1 is s1, that is, 

1 1.TS I s  We are interesting in the probability that 
2 2TS I s  for 0 I1 I2

1, or  

2 2 1 1| .TS I s TS I sP  (6.5) 

We first convert this event to an event involving the monitoring device that follows 

standard Brownian motion under the null hypothesis.  

2 2 1 1 2 2 2 2 1 1 1 1

2 2 2 1 1 1

| |

| .

TS I s TS I s I TS I I s I TS I I s

B I I s B I I s

P P

P

We now use what we know about Brownian motion conditioned on the past to write 

2 2 2 1 1 1 2 1 2 2 1 1

2 1 2 2 1 1

2 2 1 1

2 1

2 2 1 1

2 1

|

0,

0,1

1 .Z

B I I s B I I s B I I I s I s

N I I I s I s

I s I s
N

I I

I s I s
F

I I

P P

P

P         (6.6)  

When I2 = 1, this simplifies to  

2 1 1

1

1 .
1

Z

s I s
F

I
                     (6.7) 

Recall that this calculation is carried out under the hypothesis of standard 

Brownian motion, that is, under the null hypothesis of no treatment effect. Thus, the 

standard Brownian motion assumption in the conditional power computation as-

                                                          
* Bayesians have re-worked this notion, describing their adaptation as predictive power. This 

is described in Chapter Eight.  
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sumes that any research effect in the study has already been seen. This is known as 

conditional power computed under the null hypothesis, or 0 .PC H

Conditional power may also be computed under the alternative hypothesis. 

Under this alternative hypothesis, we assume that the Brownian element experi-

ences drift with parameter µ. In this case 

2 2 1 1

2 2 1 1 2 2 2 2 1 1 1 1

2 2 2 1 1 1

2 2 2 1 1 1 2 1 2 2 1 1

|

| |

| .

| .

TS I s TS I s

TS I s TS I s I TS I I s I TS I I s

B I I s B I I s

B I I s B I I s B I I I s I s

P

= P P

P

= P P

As this point, the drift parameter must be incorporated.  

2 1 2 2 1 1 2 1 2 1 2 2 1 1

2 2 1 1 2 1

2 1

2 2 1 1 2 1

2 1

,

0,1

1 .Z

B I I I s I s N I I I I I s I s

I s I s I I
N

I I

I s I s I I
F

I I

P P

P   (6.8) 

When I2 =1, and we wish to predict to the end of the study, we find 

2 1 1 1

1

1
1 .

1
P a Z

s I s I
C H F

I
            (6.9) 

This style of computation was popularized by Lan and Wittes [4]. 

6.4. Examples of Conditional Power Computations 
As an example, consider an investigator who is interested in computing conditional 

power for a clinical trial designed to assess the effect of therapy on the recurrent 

fatal and nonfatal stroke rate of patients who have suffered a stroke. In this study, 

patients who have had a stroke within the past six months are randomly allocated to 

receive either active or control group therapy. They are then followed for three 

years, during which time the number of fatal and nonfatal strokes is compiled. At 

the conclusion of the study, the investigators plan to carry out a standard survival 

analysis, comparing the recurrent stroke rate in the active group with the stroke rate 

in the placebo group.  

 It is anticipated that the incidence of fatal and nonfatal strokes in the con-

trol group will be 23%. The investigators anticipate that there were be a 20% reduc-
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tion in this rate in the active group, resulting in a fatal/nonfatal stroke rate of 

(0.23)(1 .20) 0.184 18.4% in the active group. This leads to sample size (num-

ber of patients in the active group + number of patients in the control group) of 

2778. 

 The investigators plan to execute a standard lifetable analysis of the data, 

intending to calculate a log rank test statistic at the conclusion of the study. How-

ever, the study’s DMC will monitor this log rank statistic over the course of the 

study, using a conditional power computation to monitor for the occurrence of un-

anticipated early efficacy. The study is to be conducted with a type I error rate of 

0.04 at the conclusion of the study, requiring a test statistic at the conclusion of the 

study of at least 2.054.*

 In a trial where the endpoint is dichotomous, the information time is meas-

ured as the proportion of endpoint events that have occurred in the study [5]. For 

this example, information time is proportional to the number of fatal/nonfatal 

strokes that have occurred. The total number of strokes that are expected is the total 

number anticipated in the active group 2778 0.184 256
2

 plus the number of 

fatal and nonfatal strokes that are anticipated to occur in patients recruited to the 

control group 2778 0.23 282
2

or 538.  

 At an interim monitoring point in the study, the DMC is provided with the 

following information. There have been 424 fatal/nonfatal strokes in the study, and 

the test statistic is 2.5. They would like to compute the conditional power of this 

finding under a variety of assumptions.  

 Their first computation is under the assumption that no further effective-

ness will be seen for the remainder of the trial. The information time for this interim 

examination is 424 0.788
538

or 78.8%. This is CP(H0) and is computed using 

formula (6.7) as  

2.054 0.788 2.5
1 2.054| 0.788 2.5 1

1 0.788

1 0.358 0.642.

Z

Z

TS TS F

F

P

     (6.10) 

There is a 64.2% chance that the log rank test statistic will fall in the critical region 

at the conclusion of the study, given that its current value at 78.8% information 

time is 2.5. However, this computation is based on the assumption that no further 

efficacy is experienced for the duration of the time. This means the events will oc-

cur in the active and control groups at the same rate.  

 In order to explore additional scenarios, the DMC computes the condi-

tional power under the assumption that the relative risk for the occurrence of fa-

tal/nonfatal strokes for the duration of the study is 0.80, corresponding to a 20% 

                                                          
* The issue of type I error conservation under conditional power will be discussed in the next 

section.  
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reduction of the fatal/nonfatal stroke rate, consistent with the alternative hypothesis. 

The conditional power computation must now proceed under the alternative hy-

pothesis according to (6.9). The drift parameter µ for this study is computed from 

the relative risk for the remainder of the trial R, and the total number of events (in 

this case the total number of fatal and nonfatal strokes in the study) (E) as 

ln .
4

ER                                           (6.11) 

 Using this formulation produces the following conditional power computation. 

2 1 1 1

1

1
1

1

538
2.054 0.788 2.5 ln 0.80 1 0.788

4
1

1 0.788

1 1.55

0.939.

a Z

Z

Z

s I s I
CP H F

I

F

F

This finding can produce vigorous debate for the DMC. Under the alternative hy-

pothesis, there is substantial conditional power, and some might argue that early 

termination of the study should be implemented. Alternatively, a conservative 

stance would be to accept the computation under the null hypothesis; since there is  

only 64.2% conditional power in this scenario, the study result is not inevitable, and 

the trial should be continued. In fact, conditional power can be computed under a 

range of alternative hypotheses of the relative risk (Figure 6.2). 

 The best advice in this circumstance is for the DMC to integrate these 

conditional power computations with other information available to it before it 

makes a recommendation.. For example, the announcement of the findings of a 

companion study demonstrating the effectiveness of the same intervention in a 

similar but independent sample of patients may improve the persuasiveness of the 

lower CP(Ho) calculation. Alternatively, the appearance of an important adverse 

effect associated with the intervention being tested may convince the DMC that 

there must be ironclad assurance that the intervention’s benefits will adumbrate its 

risks. In this case, the DMC may argue that insufficient conditional power has been 

demonstrated by the CP(H0) computation to justify early termination, and that the 

study should continue.  

   



6.5 Type I Error Under Conditional Power 151

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Figure 6.2. Conditional power as a function of the relative risk for the remainder of the 

trial (overall alpha = 0.04, 78.8% information time).
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 In each circumstance the statistical monitoring computation is just the be-

ginning and not the end of the deliberation for early termination of the trial.   

6.5 Type I Error Under Conditional Power 
One of the attractive features of the conditional power calculation (in fact, the same 

attractive feature that is common to all group sequential procedures) is its ability to 

directly compute the probability of complicated events that are of interest to inves-

tigators. However, being cognizant of the need for overall type I error rate control 

requires that our attention turn to the issue of multiple comparisons.  

Let  be the type I error rate that is set for the hypothesis test at the con-

clusion of the trial. Let be the overall type I error rate, that is, the probability of 

making at least one type I error from the k interim evaluations that are performed 

during the course of the study. We know that, in general due to the fact that 

multiple tests are carried out.* However, the built-in dependence in the Brownian 

motion process produces substantial saving for the total type I error expended dur-

ing the course of the interim evaluations. If  is the conditional power of the study, 

then Grimmett and Stirzaker [6] demonstrated that the overall type I error rate of 

the study  is related to  and  by  

                                                          
* Recall that, in the independence assumption in which k hypothesis tests are carried out, 

can be approximated by k for small .
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.                                                   (6.12) 

 One important implication of this finding relates to the magnitude of the 

type I error rate penalty one must pay for interim evaluations. In environments 

where the conditional power is large, the overall penalty that one pays for the use of 

this interim monitoring procedure is relatively small. For example, if a researcher is 

interested in carrying out a single hypothesis test at the conclusion of the study at 

the  = 0.05 level, but she plans to consider terminating the trial early if CP(H0) = 

0.95, then the maximum total type I alpha expended is 0.052. This represents a 

small inflation in the overall type I error rate. 

This simple calculation is more useful if it is implemented prospectively. 

In this circumstance, the investigator would first choose the overall type I error rate 

for the research effort, and the conditional power level at which she would consider 

terminating the study. With these two quantities, she can approximate the test spe-

cific alpha error rate at the conclusion of the study by .  For example, if she 

wishes to control the overall alpha error rate at 0.05, then the type I error rate for 

the hypothesis test being monitored is (0.05)(0.95) = 0.0475. This value is then used 

as the alpha threshold on which the individual computations for conditional power 

should be based. Thus, from expression (6.7), she computes CP(H0) as

2 1 1

1 0.0475 / 2 1 1

1 1

1

1 |

1 |

1.982
1 .

1

P

Z

C H TS s TS I s

TS Z TS I s

I s
F

I

0
= P

P

Note that the test statistic of 1.982 is not very different from the value of 1.96 that 

would be the traditional value for the Z percentile if no correction for multiplicity 

were required. If the value of the test statistic at I1 = 0.65 is 2.8, then  

1 1

1

1.982 1.982 0.65 2.80
1 1

1 1 0.65

1.982 0.65 2.80
1 1 0.466 0.679.

1 0.65

P 0 Z Z

Z Z

I s
C H F F

I

F F

=

A second implication of the computation  is that this multiplicity 

correction for conditional power is not a function of the number of interim evalua-

tions of the trial. Whether the investigations evaluate the data at one interim point 

or evaluate the data repeatedly during the course of the trial, the multiplicity correc-

tion remains the same.  
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However, seasoned investigators understand the dangers of interpreting 

this observation as carte blanche authority to evaluate the interim data in a frequent 

and unplanned fashion during the trial’s conduct. Although  is well controlled for 

multiple interim data evaluations, sampling error can still provide misleading in-

formation about the magnitude of efficacy, as well as the incidence of adverse 

events. Thus, even in the face of the relatively small correction for multiplicity of 

type I error in the conditional power environment, a prospectively planned, disci-

plined, and well-structured monitoring process reduces the likelihood of erroneous, 

sample-error-driven results.  

6.6 Boundary Values and Conditional Power 
Boundary values identified by investigators that provide guidance in monitoring 

clinical studies are readily available from conditional power analyzes. In this cir-

cumstance, the investigators wish to compute the value b such that the probability 

that the test statistic falls in the critical region at the conclusion of the study (when 

the test statistic equals b at information time I1) is at least some value  ( i.e.,  = 

95%) . The probability statement for this occurrence is

1 / 2 1
1 | .TS Z TS I bP  (6.13) 

The solution of this problem is straightforward and appears in Appendix C.

1 / 2 1 1

1

1
.

Z Z I
b

I
                                     (6.14) 

The easily implemented equation (6.14) produces readily computable 

boundary values. An examination of the value of these boundaries as a function of 

both information time and conditional power reveals some expected features (Fig-

ure 6.3).  

We can observe two important characteristics of the curves presented in 

Figure 6.3. The first is that, for a given conditional power, the boundary values de-

crease as a function of information time. This is consistent with the pattern we have 

seen for other group sequential procedures, and is reflective of the relative impreci-

sion of estimators obtained early in a clinical research effort. This imprecision leads 

us to reject modest levels of efficacy that may appear initially in a research effort as 

sufficient reason to discontinue a study.  
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Figure 6.3. Boundary values as a function of conditional power (legend) and 

information time. Type I error = 0.05 (two-tailed).

1.96

 Secondly, Figure 6.3 demonstrates the relationship between the magnitude 

of the boundary value and the level of conditional power. Essentially, the greater 

the conditional power, the greater the efficacy level required to cross the boundary

for consideration of early termination. This observation is actually a natural conse-

quence of the definition of conditional power. The larger the conditional power 

value, the greater the likelihood of a positive conclusion at the end of the study 

based on the value of the interim result. Essentially, the more “inevitable” the in-

vestigator wishes a positive research conclusion to be, the stronger must be the 

measure of efficacy of the current data.  

6.7 Conditional Power Computations
As an example of the use of these boundary values, consider a group of investiga-

tors interested in examining the effect of a new therapy that will reduce the occur-

rence of fatal and nonfatal strokes. This will be a randomized, controlled clinical 

trial. In the population that is being studied, the cumulative four-year fatal/nonfatal 

stroke rate is expected to be 18%. The investigators anticipate that the intervention 

will reduce this rate by 25%. Assuming a two-sided type I error rate of 0.05, and a 

power of 90%, the required sample size of the study is 2745 patients.  

 After these preliminary computations, the investigators turn to incorpora-

tion of conditional power-based interim monitoring procedures. They are willing to 
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consider stopping the trial for early benefit* if their interim results provide at least 

90% conditional power, that is, the probability that the test statistic will fall in the 

critical region at the conclusion of the study (based on the interim result) is at least 

90%.  

 An early first step to incorporate conditional power is to adjust the compu-

tation of the familywise error for the multiple evaluations that will take place during 

the course of the study. Using formula (6.12), the investigators first adjust the over-

all familywise error rate down from  = 0.05 to  = (0.05)(0.90) = 0.045. Thus, the 

evaluation at the end of study must be carried out at the 0.045 level. This adjusted 

type I error rate produces a new sample size computation of 2822 subjects required 

for the study, a change that represents a (2822  2745)/2745 = 2.8% increase.  

Knowledge of the total number of patients who experience at least one 

event in the study is necessary in order to compute information time accrual. The 

total number of patients with events in the control group is 2822 0.18 254.
2

The total number of events in the active group is 2822 (0.75) 0.18 191,
2

 re-

sulting in 254 + 191 = 445 total fatal/nonfatal strokes required in the study. This 

will be used as the denominator of the information time calculations that the inves-

tigators will carry out.  

 The investigators decide to provide interim evaluations at 25%, 50%, and 

90% information time, corresponding to the points when 112, 223, and 400 events 

have accrued, respectively. The overall type I error rate, conditional power, and 

information time are used to compute the boundary values using equation (6.14)

(Table 6.1).  

Table 6.1. Upper Boundary Values for Early Termination

(Two Sded, Type I Error Rate = 0.045, 90% Conditional Power

Information Time Number of Events Upper Boundary

0.25 111 6.23

0.50 223 4.12

0.90 401 2.54

During the study, at the 50% information time point, the investigators observe that 

the test statistic is 4.54. Because this is greater than the boundary value of 4.12, 

they have met the statistical criteria for discontinuing the study. However, as we 

have seen, the investigators would be wise to consider the entire weight of evidence 

before they decide to stop the study. This includes, but is not limited to: (1) the 

magnitude of the effect size (in this case, the risk reduction in the occurrence of 

fatal and nonfatal strokes, (2) the effect of the intervention on secondary endpoints, 

and (3) the occurrence of adverse events reasonably believed to be associated with 

                                                          
* Consideration for stopping for harm is covered in Chapter Seven.  
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the intervention. The joint consideration of these events would lead to a more fully 

informed decision to terminate the study.  

6.7.1 Monitoring the Number of Events* 
Occasionally, an investigator is interested in computing a boundary value that is not 

based on the test statistics, but on the number of events in a clinical study. For ex-

ample, a researcher is carrying out an assessment of the rate of intracerebral hemor-

rhages in patients treated for acute stroke. She believes the underlying rate is p0. At 

the conclusion of her work, the investigator will have recruited and followed N pa-

tients. However, she would like to monitor the study at interim information time 

nI
N

 when n patients have been observed. We now know that we can compute a 

conditional power-based boundary value. Specifically, if she is interested in the 

conditional power 
1 / 2 1

1 | ,TS Z TS I bP then the boundary value for 

this procedure is  

1 / 2 1 1

1

1
.

Z Z I
b

I
                                       (6.15) 

This is a boundary value in terms of the test statistic. However, the investigators are 

interested not in a boundary value for the test statistic, but in the boundary value for 

the number of intracerebral hemorrhages. Because the test statistics at information 

time TS(I) based on n observations is  

0

1

0 0
1

n

i

i

x np

np p

we may write 

       
0

1

0 0
1

n

i

i

x np

b
np p

or  

          0 0 0

1

1 .
n

i

i

x np b np p

Incorporating the value of b we find that the number of intracerebral hemorrhages is  

1 / 2 1

0 0 0

1

1
1 .

n

i

i

Z Z I
x np np p

I
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6.8 Following Trajectories: Brownian Bridges* 
During the interim monitoring of clinical research, investigators commonly have 

more questions about the trajectory of their research results than whether the results 

will fall in the critical region. They may be concerned about whether a particular 

trajectory continues on what may be a path to a value that would trigger some ac-

tion before the study is over.  

For example, consider a randomized clinical trial that is designed to evalu-

ate the effect of therapy on the combined endpoint rates of total mortality and total 

hospitalizations. The investigators hope to reduce the cumulative incidence of this 

combined endpoint by 20% from its one-year incidence of 15%. The sample size 

for the trial, assuming a power of 90%, conditional power of 95%, and a two-sided 

type I error rate of 0.05 (adjusted for conditional power to 0.048) is 5520. They 

plan to evaluate the study results at 20%, 50%, 75%, and 90% information times. 

Using equation (6.14), they compute the following boundary values for efficacy 

(Table 6.2).  

Table 6.2. Upper Boundary Values for Early Termination

(Two Sded, Type I Error Rate = 0.045, 95% Conditional Power

Information Time Number of Events Upper Boundary

0.25 186 6.81

0.50 373 4.45

0.75 559 3.24

0.90 671 2.64

The trial proceeds as planned, and the investigators observe that TS(0.25) = 2.8. In 

this situation (Scenario 1), they are interested in whether the boundary value of will 

be reached at I2 = 0.50. 

A simple conditional power computation produces the result. From equa-

tion (6.6), this is readily computed to be  

0 (0.50) 4.45 | (0.25) 2.8

0.50 4.45 0.25 2.8
1

0.50 0.25

1 3.49 0.

P

Z

Z

C H TS TS

F

F

P

The low value of this probability should come as no surprise; it is com-

puted conservatively that is, it assumes that there is no further demonstration of 

efficacy after the I1 = 0.25 information time point. An alternative computation in 

this setting is .P aC H  In fact, the conditional power computation under each as-

sumption is useful and informative (Figure 6.4). 
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Figure 6.4. Mapping the trajectory of the test statistic relative to the conditional power  

boundary values under the null and alternative hypotheses.

0PC H

P a
C H

For this computation, the drift parameter is required. Recall from expres-

sion (6.11) that the drift parameter ln .
4

ERR  In this example, the relative 

risk of 0.80 (corresponding to a 20% reduction in events) and E = 745 produces a 

drift parameter of 3.045. Thus, P aC H may be computed from equation (6.8) as  

2 2 1 1 2 1

1

(0.50) 4.45 | (0.25) 2.8

1
1

0.50 4.45 0.25 2.8 3.045(0.50)
1

0.50 0.25

1 0.448 0.327.

P a

Z

Z

Z

C H TS TS

I s I s I I
F

I

F

F

P

 Under the alternative hypothesis, the probability of crossing the boundary 

at I = 0.50 is 0.327. While still not likely, this probability is substantially greater 

than the probability of crossing the boundary under the null hypothesis.



6.8 Following Trajectories: Brownian Bridges* 159

Alternatively, the scientists monitoring the trial may be interested in track-

ing the test statistic’s path after it has already crossed a monitoring boundary (Sce-

nario 2, Figure 6.5). 
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Figure 6.5. Mapping the future trajectory of the test statistic relative to the end of the 

study under the null and alternative hypotheses.
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In this latter circumstance, even though the monitoring boundary was crossed, the 

investigators nevertheless continued the study. This might be justified in order to 

(1) collect information on secondary endpoints, (2) to precisely measure the uni-

formity of treatment effects on subgroups, or (3) to gather additional safety infor-

mation.  

These computations provide the probability that the movement of a 

Brownian element that is fixed at one value (the current value of the transformed 

test statistic), will fall in a region at a particular information time point in the future. 

The computation makes no assumption about the occurrence of monitoring between 

information time points 0.25 and 0.50; they produce only an estimate of the prob-

ability that the value of the test statistic will exceed a value at information time 

0.50. In fact, no assumption is made about the value of the test statistic at any in-

formation time point I lying between 0.25 and 0.50.  

An alternative would be to map the anticipated path that the investigators 

believe the test statistic will follow. Specifically, there may be specific interest in 

determining if the test statistic will remain on its current trajectory [7]. This is an 

activity that might be most easily executed by those whose task it is to produce and 

monitor the test statistic on a more frequent basis than the DMC (e.g., the coordi-

nating center or data center for the study).  

This type of computation is produced from what is known as tied-down 

Brownian motion. Tied-down Brownian motion, or a Brownian bridge is simply a 
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generalization of Brownian motion that was conditioned on the past. Recall that, if 

B(t) is standard Brownian motion and its value at time t1 is known where t1 t, then 

the probability distribution of B(t) conditioned on B(t1) = a is normal with its mean 

equal to a and its variance equal to t – t1.

Tied-down Brownian motion is Brownian motion conditioned on both the 

past and the future. In this circumstance, there are two times t1 and t2 such that t1 t
t2. The values of B(t1) and B(t2) are known, that is, B(t1) = a and B(t2) = b. In this 

case, the Brownian element may exhibit independent movement between these two 

points, but is fixed or tied-down at each of times t1 and t2 (Figure 6.6). 
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Figure 6.6. Brownian motion tied down to zero at t = 0 and 1.
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The behavior of the Brownian element in Figure 6.6 exhibits the anticipated rapid 

random movement of Brownian motion. However, the extent of its excursions are 

limited. Because the value of B(0) = B(1) = 0, the variance of the movement is lim-

ited at these two points to zero. In fact, the variance of this tied-down Brownian 

motion increases from t = 0 to t = 0.5, and decreases thereafter (Figure 6.7). 
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In general, if B(t) is Brownian motion tied-down at t = t1 and t = t2, such that B(t1) = 

a, and B(t2) = b, then it can be shown (Appendix C) that B(t) follows a normal dis-

tribution with mean µB and variance vB where  

2 1 2 1

2 1 2 1 2 1

B

t t a t t b t t t t
a b

t t t t t t
            (6.16) 

and

2 1

2 1

.B

t t t t
v

t t
                                        (6.17) 

Note that the mean of this process is a weighted sum of the two tied-down values of 

B(t) were t1 t t2. When t = t1, the summand in µB that includes b becomes zero, 

and µB = a. As t is allowed to increase, the contribution of the term involving b in-

creases until it becomes the major contributor to µB. Finally, at t = t2, µB = b. This 

behavior, in combination with the small variance of B(t) at both t = t1 and t = t2,

leads to the characteristic appearance of tied-down Brownian. Also note that when 

a b, the Brownian bridge takes the drift parameter into account. (Figure 6.8). 
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 The concept of tied-down Brownian motion would be useful to investiga-

tors who are interested in looking for deviations in the value of the test statistic 

from its trajectory. This trajectory can either be the desired one (that is, under the 

alternative hypothesis), or the anticipated one (that is, the past trajectory of the 

Brownian element). Deviations from the path can be taken as a warning sign that an 

unexpected path is emerging.  

 As an illustration, consider the original example of this section in which an 

investigator observes the value of the test statistic TS(0.25) = 2.8, and wishes to 

observe the expected trajectory of the test statistic. Specifically, she wishes to know 

if the movement is on a trajectory to attain the value of 4.45 when I = 0.50.  

 In this circumstance we note that the process is tied-down at the value 2.8 

at I = 0.25 and the value 4.45 for I = 0.50. Information time will be allowed to in-

crease in this range 0.25 I  0.50. Writing the event in terms of Brownian motion, 

we convert the statement that TS(0.25) = 2.8 to an equivalent one involving a 

Brownian element, that is, (0.25) 0.25 2.8 1.4.B Similarly, we can write 

TS(0.50) = 4.45 as B(0.50) = 3.147. The tied-down Brownian process is now cali-

brated. Its mean µB can be written as 
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The variance can be rewritten as  

2 1

2 1

0.50 0.25
4 0.50 0.25 .

0.50 0.25
B

I I I I I I
v I I

I I
     (6.19) 

This information allows us to build a 95% confidence interval around the Brownian 

process. Recall that if a variable x follows a normal distribution with mean µ and 

variance 2, then a 95% confidence interval for x, CI(95), is LB x UB, where  

1.96

1.96 .

LB u

UB u
                                              (6.20) 

Such a confidence interval can be identified for the Brownian element for every 

point I such that 0.25 I  0.50. Using the equations from (6.20), incorporating the 

mean from equation (6.18), and the variance from equation (6.19), we can write  

2

2

( ) 7 0.35 1.96 4 0.50 0.25 7.84 1.12 0.63.

( ) 7 0.35 1.96 4 0.50 0.25 7.84 12.88 1.33.

LB I I I I I I

UB I I I I I I
 (6.21) 

.

For example, for the case where I = 0.40, the expected value of the Brownian proc-

ess is 7(0.40) – 0.35 = 2.45, and the 95% confidence interval is (1.44, 2.57). 

However, it would be most convenient to write these expressions not in 

terms of the Brownian element, but directly for the test statistic. Recall that the test 

statistic TS(I) and B(I) are related by 
1

2( ) ( ),TS I I B I where I is a known constant. 

Thus, the mean µTS can be written as 

1
2

1

7 0.35

4 0.50 0.25 .

TS

TS

I I

v I I I
                                (6.22) 

This mean and confidence interval can be graphed as a function of I, for 0.25  I 

0.50 (Figure 6.9). 
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Figure 6.9. Expected mean value (Mean) of expected test statistic trajectory and 

its 95% lower bound (LB) and upper bound (UB) confidence interval. 

We are now in a position to write the general result for tracking the trajec-

tory of a test statistic across information time using tied-down Brownian motion. In 

general, let TS(I1) and TS(I2) be fixed for 0 I1 < I2  1. Then for any information 

time I such that I1 I I2 , we can identify the mean µTS(I) and variance vTS(I) of

TS(I) as  

1
2 12

( ) 1 2

2 1 2 1

2 1

( )

2 1

,

TS I

TS I

I I I I
I TS I TS I

I I I I

I I I I
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           (6.23) 

and the lower bound (LB) and upper bound (UB) of the 1–  confidence interval can 

also be computed as 

1
2 1 2 12

1 2 1
2

2 1 2 1 2 1

1
2 1 2 12

1 2 1
2

2 1 2 1 2 1

.

.

I I I I I I I I
LB I TS I TS I Z

I I I I I I I

I I I I I I I I
UB I TS I TS I Z

I I I I I I I
 (6.24) 



6.9 Significance Levels and Early Termination* 165

6.9 Significance Levels and Early Termination* 
Chapter Five and Chapter Six focused on the methodology of group sequential pro-

cedures to establish quantitative criteria to discontinue a study. The early termina-

tion of the study will produce for the investigators a test statistic and a p-value. The 

interpretation of these findings from a study that was terminated early can be prob-

lematic.  

We have seen in Chapter Two that, even when permitted to proceed to its 

scheduled termination, a study’s conclusions can be misleading when only the p-

value of the result is conveyed. Difficulties in methodology can make the p-value u-

interpretable, and small sample size, or the presence of important variability in the 

measure of effect can make reliance on the p-value misleading. For these reasons, 

the study methodology, sample size, confidence interval, and p-value must be inter-

preted jointly. 

This perspective is easily translated to the early termination environment. 

However, there is a new question raised by the early conclusion of the study. Is the 

p-value of the study different from what it would have been if the study had been 

allowed to continue? An affirmative answer begs the question of whether the p-

value produced by early termination should be discounted.  

There are arguments on either side of this question. First, we must be clear 

on the circumstances. Any p-value that is produced by early termination when there 

was no prospective plan in place for interim monitoring is highly suspect, and most 

times should be discarded.* The role of sampling error in not just producing the 

data, but in creating the decision rule to stop the study when it was terminated is too 

distorting for the p-value to have any meaning in this circumstance.  

However, when the p-value is produced from a clear, prospective, and 

competent interim monitoring plan resulting in early termination, a case can still be 

made for adjusting the p-value that is produced from the study. The issue in this 

case is not whether the study should have been terminated early. The concern is 

whether a p-value produced from a study that was concluded before its scheduled 

end is “equivalent” to a p-value that would have been produced if the study had 

been allowed to run its course. Some of the discussion has taken place in regulatory 

circles, where an argument has been made that the p-value for early termination of 

the study should be p , where  is the family wise error of the study for the one 

analysis. For example, if the  threshold at the conclusion of the study is 0.045, but 

the study was terminated when 75% information time for a p-value of 0.005, then 

the p-value of the study should be reported merely as less than 0.045. 

However, this extreme argument itself leads to counterintuitive conclu-

sions in some circumstances. Consider the hypothetical scenario of a clinical trial 

that following its prospectively declared, well-conceived interim monitoring plan, is 

ended at I = 0.95, with a p-value of 0.001 and conditional power of 95%. Should 

this p-value be adjusted up to (0.05)(0.95) = 0.0475 (a 475-fold increase) simply 

because it was concluded (5%) early?  

                                                          
* This is consistent with the requirement of the three principles delineated in Chapter Two for 

the prospective design of sample-based research in healthcare.  
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This reasoning suggests that if there is any adjustment to the p-value the 

extent of the adjustment might be best based on the unelapsed time of the trial, that 

is, a study that produces a test statistic leading to early termination at time I, TS(I)
should be adjusted for the un-elapsed information time in the study, 1 – I. This idea 

might be pursued as follows. Let p(I) be the p-value of the test statistic that leads to 

the termination of the study at information time I. Then define the p-value adjusted 

for early termination pT(I) as simply 

( ) ( ) 1 1.Tp I p I I  (6.25) 

When I = 0, the adjusted p-value is equal to 1. If the study is concluded as sched-

uled, then I = 1, and pT(I) is simply the original p-value. However, this function 

heavily discounts p-values that produce early termination. For example, a p-value 

of 0.007 that produces an early termination at I = 0.50, generates pT(I) = 0.504!. 

This may seem like an extreme adjustment. However, an examination of the condi-

tional power for early termination Cp(H0) produces  

0
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1 0.719 0.236,
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suggesting that there is indeed insufficient evidence to stop the study.  

Problems 
1. Let TS(I) be a test statistic, such that ( ) ( )B I I TS I follows standard 

Brownian motion. Compute the following probabilities.

a. (0.65) 2.7 | (0.15) 4 .TS TSP

b. (0.35) 2.7 | (0.15) 2 .TS TSP

c. (0.90) 1.65 | (0.50) 3.4 .TS TSP

d. (0.90) 2.1. | (0.80) 3.1 .TS TSP

2. Let TS(I) be a test statistic such that ( ) ( )B I I TS I follows Brownian motion 

with drift parameter = 2.034. Compute the following probabilities. 

a. (0.70) 3.2 | (0.40) 1.2 .TS TSP

b. (0.50) 1.5 | (0.05) 3.9 .TS TSP

c. (0.85) 3.0 | (0.25) 2.0 .TS TSP
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d. (0.40) 2.1. | (0.30) 2.1 .TS TSP

3. Suppose two clinical trials (clinical trial A and clinical trial B) are executed to 

answer the same scientific question by analyzing the same prospectively de-

clared endpoint at the 0.05 level, unadjusted for multiple analyzes. Clinical trial 

A uses a conditional power interim monitoring procedure where Cp(H0) = 0.95. 

Clinical trial B has no interim monitoring procedure. Each of the two studies 

ends with a test statistic of 1.97. Contrast the interpretation of the results of the 

two clinical trials.  

4. Suppose two clinical trials (clinical trial C and clinical trial D) are executed to 

answer the same scientific question by analyzing the same prospectively de-

clared endpoint at the 0.05 level, adjusted for multiple comparisons. Each uses 

a conditional power interim monitoring procedure where Cp(H0) = 0.95. Clini-

cal trial C has one interim look. Clinical trial D incorporates 10 interim looks. 

What is the difference in the type I error rate expended at each interim monitor-

ing procedure for the two clinical trials? What are the other important interpre-

tative differences between the methodologies used for these two clinical trials? 

5. A clinical trial is designed to demonstrate that a clinical intervention can re-

duce the occurrence of the combined endpoint of fatal and nonfatal strokes by 

30%. The cumulative event rate for fatal/nonfatal strokes in the control group 

is 12%. The two-sided alpha error rate for the single evaluation of the one pri-

mary endpoint at the conclusion of the study is 0.025 (adjusted for interim 

looks) to be carried out with 90% power. The trial size for this trial, (i.e., the 

total number of patients required for the study) is 3578, adjusted for interim 

evaluations. Fill in the following table (Table 6.3). 

Table 6.3. Upper Boundary Values for Early Termination

(Two Sided, Type I Error Rate = 0.0225 90% Conditional Power)

Information Time Number of Events Upper Boundary

0.25

0.50

0.75

0.90

6. Show that the drift parameter in tied-down Brownian motion such that B(t1) = 

B(t2) = 0, t1 t t2, is equal to zero. 

7. Show that the drift parameter in tied-down Brownian motion such that B(t1) = 

a, B(t2) = b, t1 t t2, is equivalent to the drift parameter for tied-down 
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Brownian motion W(t) where 1 2

1 2

( ) ( ) ,
t a t b

W t B t
t t

, where the drift 

parameter µ is 
2 1

( )
.

b a t
t t

8. A researcher conducts a clinical trial that is governed by an interim monitoring 

procedure. At the scheduled monitoring time of I = 0.30, the test statistic is 

3.89, producing a two-sided p-value of 0.0001. Compare and contrast CP(H0)

and pT(0.30). 
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7
Safety and Futility 

7.1 Scope of This Chapter 
At this point, we have discussed the implementation of modern statistical tools to 

monitor the interim results of clinical research for efficacy. There is an important 

ethical component to this imperative. The early termination of a clinical trial that 

has clearly established the effectiveness of an intervention can reduce the antici-

pated number of patients who have been exposed to the control group therapy, a 

therapy demonstrated to be inferior to the active intervention. The trial’s early ter-

mination can also lead to the rapid dissemination of the study’s positive result to the 

medical and regulatory communities. This practice spreads the knowledge, use, and 

benefits of the therapy to patients at large. These ethical concerns are reason 

enough to justify the monitoring of clinical research.  

However, there are other products of clinical trial results that raise their 

own ethical concerns. Clinical research, at its heart, is an examination of the un-

known. In medicine, the unknown, although frequently promising, can produce 

unforeseeable, but unmistakable harm. Thalidomide, and the two antiarrhythmic 

agents encainide and flecainide are examples of compounds whose blossoms of 

promise turned to sharp thorns of disappointment as agents intended to help have 

instead harmed. The long experience of healthcare research requires investigator-

based vigilance for the possibility of the occurrence of avoidable injury. This re-

quirement for the safe treatment of patients is both oath driven, and a clear expecta-

tion of the subjects enrolled in the study. These motivations combine to make safety 

the principal reason for monitoring clinical research.  

Finally, the occurrence of a pattern of results that suggests that the study 

has produced neither a beneficial nor a harmful effect requires examination as well. 

The continued use of a therapy with perhaps minor, but nevertheless definable, ad-

verse events in the absence of benefit can be difficult to justify ethically as well as 

economically. The idea of discontinuing a study because of the absence of an effect 

of the compound (described in the vernacular as stopping for futility) is recognized 

as yet another justification for terminating a study early and will receive special 

treatment in this chapter as well.   
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7.2 Complication in Safety Monitoring 
The ethical concern for safety introduces a new complexity into the interpretation 

of interim monitoring results. Essentially, the primacy of the admonition, “First, do 

no harm,” complicates the interpretation of exploratory analyzes. Recall that con-

firmatory analyzes, themselves the product of prospectively declared plans, are 

most easily generalizable. They produce reliable estimates of effect sizes, effect 

size variability, and type I error rates. In addition, prospective consideration of the 

type and number of statistical hypotheses to be tested leads to tight control of the 

familywise error rate. Exploratory analyzes, on the other hand, hold none of these 

features. These latter analyzes that are suggested by the data rather than by prospec-

tive planning produce inaccurate estimators and must be repeated (or confirmed) 

before they can be generalized.*

With this distinction in place, the evaluation of efficacy examinations in 

clinical research is clear and straightforward at both the conclusion of the study and 

during an interim examination. Consider a hypothetical clinical trial designed to 

determine the effect of an intervention on patients who have suffered a stroke. The 

primary analysis for this clinical trial is the effect of therapy on the total mortality 

rate. If the study’s design and execution follows the three principles elaborated in 

Chapter Two, that is, the study has been (1) carefully considered with a precise, 

prospectively declared protocol, (2) executed in accordance with that protocol,† and 

(3) produces a type I error rate below the a priori declared threshold for a clinically 

significant level of efficacy, its results on the primary endpoint would be heralded 

as positive. However, assume in that same study, that the therapy was observed to 

produce a reduction in the myocardial infarction rate. Because the therapy’s effect 

on the myocardial infarction rate was not prospectively declared, and its results 

would be seen as exploratory‡, requiring confirmation before they can be general-

ized.

 However, in the reverse setting, where both the findings for mortality and 

the myocardial infarction rate indicate harm and not benefit, the ability to interpret 

the situation is complicated. Again, the prospective nature of the research design 

                                                          
* The reasons for the different interpretations of exploratory versus confirmatory analyzes are 

discussed in Chapter Two. 
† This is defined as concordant execution. 
‡ Because both the effect of therapy on the total mortality rate and the effect of therapy on the 

myocardial infarction rate appear to be equally reliable to the observer, both being produced 

from the same database, concluding that only the myocardial infarction finding be discounted 

may appear capricious. However, because the trial was not designed to examine the myocar-

dial infarction issue, the ability of the study to ensure that (1) it had an appropriate sample 

size for the evaluation of the effect of therapy on heart attacks, and (2) the investigators col-

lected all of the cases of heart attacks (including silent myocardial infarctions) even though 

they never said that they would must be questioned. Secondly, the “positive” finding of ther-

apy on the myocardial infarction rate was based on an unplanned interrogation of the data-

base. This inquiry rose to prominence solely because of its unanticipated and surprising find-

ing. Allowing the data to suggest answers in this fashion introduces a new sampling error 

component into the analysis that undermines the traditional estimates of effect size, preci-

sion, p-values and power.  
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that is focused on mortality permits the investigators to conclude that the study pro-

duces a confirmatory evidence of harm. However, the identification of an early 

harmful effect of the intervention on the cumulative myocardial infarction rate is 

problematic. Clearly, the finding of an increased risk of myocardial infarction asso-

ciated with the therapy is crippled by the exploratory nature of the analysis. How-

ever, the occurrence of this finding for harm in all likelihood would not, and could 

not, be reproduced. The ethics of protecting subjects from known and suspected 

dangers precludes the initiation of a new confirmatory research effort in order to 

demonstrate that the intervention excites the production of myocardial infarctions.*

Thus, although confirmatory findings of harm carry the same weight as 

those of efficacy, exploratory findings of harm commonly carry more weight than 

exploratory findings of efficacy. This places a greater burden on investigators, who 

must balance the ethical requirement to adequately warn about adverse events with 

the scientific need to avoid misdirection about the risks of an intervention. This is a 

challenge to healthcare research in general and interim monitoring in particular. 

Because, confirmatory analyzes for harm will be the most persuasive, investigators 

make their strongest possible case when they execute as many confirmatory ana-

lyzes as possible.

 Although we will suggest two strategies to address this issue of multiple 

safety measures, the best strategy begins with good a priori knowledge. During the 

design phase, investigators can strengthen the interim analyzes that they have in 

mind for the safety monitoring by carrying out an in-depth review of the evidence 

of adverse effects produced by the intervention that they plan to study. This will 

allow them to put prospective monitoring rules in place that provide rigor in detect-

ing the early occurrence of several different adverse events.  

7.3 Monitoring Safety for Primary Endpoints 
We begin with the simplest case for monitoring safety in a clinical trial: the creation 

of a guideline for early termination triggered by the occurrence of harm appearing 

in the primary analysis of a study. Recall from Chapter Two that primary analyzes 

have two defining characteristics: (1) the well-designed evaluation is described a 

priori, and (2) a type I error rate is prospectively conferred in such a way as to 

minimize the overall or familywise type I error rate. In this circumstance, our pre-

vious discussion of group sequential procedures readily applies to this setting, and 

investigators carrying out a two-tailed hypothesis test can easily construct a moni-

toring procedure for harm.  

7.3.1 Symmetric Boundaries 
As an example, consider a prospective, randomized, double-blind clinical trial de-

signed to determine the effect of an anticoagulant therapy on the total mortality rate 

of patients with coronary artery disease. Patients are followed for two years in the 

study. The evaluation at the conclusion of the study will be a two-tailed evaluation, 

                                                          
* Other information may become available that would allow the evaluation of the possibility 

of harm produced by the intervention. Additional concurrent studies, case control, and his-

torical cohort studies may provide some illumination of this issue.  
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and the investigators will monitor for both a beneficial or harmful effect of mortal-

ity during the interim examination times at I = 0.10, 0.30, 0.50, 0.75. We will de-

velop the boundary values for benefit and for harm using the conditional power 

approach, with conditional power  = 0.90.  

Recall from Appendix C that the boundary values for efficacy during the 

interim examination period can be written as 

1 / 2 1 1
( ) ,e

Z Z I
b I

I
                            (7.1) 

where be(I) denotes the boundary value for efficacy at information time I. Use of 

the percentile value 1
2

 reminds us of the two-sided nature of test. The event 

that illuminates the possibility of harm is the probability that the test statistic is “too 

negative”, that is, it falls into the lower tail of the probability distribution, given that 

the test statistic at information time I is equal to b. This may be written as 

2

(1) | ( ) .TS Z TS I bP  Appendix C also revealed that the boundary for harm 

is

/ 2 1
( ) ,h

Z Z I
b I

I
                                (7.2) 

where bh(I) denotes the boundary value for harm at information time I. If the condi-

tional power for benefit is equal to that of harm, then ( ) ( )h eb I b I  and the 

boundary region is symmetric. This is illustrated in the current example in which 

the conditional power is 90% and the familywise error rate at the conclusion of the 

study is (0.90)(0.05) = 0.045 (Table 7.1).*

If we take the point of view that, ceteris parabus, the magnitude of the test 

statistic provides an indication of the magnitude of efficacy, then the use of sym-

metric boundaries signals that the investigators require equal strength of evidence 

for identifying benefit as well as harm.  

                                                          
* This computation is simply the adjustment in the final type I error of the trial given that 

interim monitoring will take place. Its motivation was discussed in Chapter Six.  
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Table 7.1. Symmetric Boundary Values for Early Termination

(Two-Sided, Type I Error Rate = 0.045, 90% Conditional Power)

Information Time Upper Boundary Lower Boundary

0.10 10.18 -10.18

0.30 5.62 -5.62

0.50 4.12 -4.12

0.75 3.05 -3.05

1.00 2.00 -2.00

The depiction of these boundaries graphically reveals the type of curves 

that have come to symbolize the use of group sequential procedures in the statistical 

monitoring of clinical research (Figure 7.1). 
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Figure 7.1. Conditional power monitoring guidelines with equal consideration 

given to the early appearance of efficacy or harm. 

T
es

t 
S

ta
ti

st
ic

Terminate for efficacy

Terminate for harm

Information Time

0.10             0.30                  0.50                    0.75                   1.00

In this circumstance, both extreme positive values and extreme negative values of 

the test statistic are cause for concern and can precipitate discussions for early trial 

termination.
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7.3.2 Asymmetric Boundaries 
The previous treatment demonstrates the ease of developing boundary conditions

for harm as well as for benefit that can be used in the interim monitoring of clinical 

research. However, there is no mathematical requirement for the use of symmetric 

boundaries, and boundaries that provide less conditional power for harm can be 

readily generated. Consider the example in the previous section, now developed 

requiring 95% conditional power for benefit, and 80% conditional power for harm 

(Table 7.2).  

Table 7.2. Asymmetric Boundary Values for Early Termi

(Type I Error Rate for Benefit = 0.0237, 95% Conditional

Benefit; Type I Error Rate for Harm 0.020, 80% Conditio

for Harm).

Information Ti Upper BounLower Boundary

0.10 11.20 -9.02

0.30 6.13 -5.04

0.50 4.45 -3.75

0.75 3.24 -2.86

1.00 1.98 -2.05

There are several interesting observations available from Table 7.2. First, 

we must acknowledge that the boundary values are less extreme for harm than for 
efficacy. Although this is an anticipated outcome from the asymmetrical assump-

tion that is the foundation of Table 7.2, it is also true that the important asymmetry 

in conditional power, 95% for efficacy, now 80% for harm, did not produce overly 
moderate boundary values for assessing the presence of harm. Even with a 

0.95 0.80
15.7%

0.95
 reduction in conditional power, the boundary values for 

stopping for harm remain substantial (Figure 7.2). The reduction in conditional 

power was not so great as to overshadow the unreliability of early estimates of mor-
tality (and therefore, the test statistic that is based on mortality). Thus, large (nega-

tive) values of the test statistic are still required early in the study in order to insti-
gate conversation about terminating the study early for the presence of an adverse 

finding for the primary endpoint.  
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Figure 7.2. Asymmetric conditional power monitoring guidelines. 95% 

conditional power for benefit and 80% conditional power for harm for the 

primary endpoint. 

T
es

t 
S

ta
ti

st
ic

Terminate for efficacy

Terminate for harm

Information Time
0.10             0.30                  0.50                    0.75                   1.00

7.3.3 Multiple Prospective Safety Endpoints*
The computation for the boundary values for the value of a test statistic for the in-
terim monitoring of the efficacy and safety of a single, prospectively declared pri-

mary endpoint is relatively straightforward. However, this is a fairly rare circum-

stance in clinical research. Commonly, although the investigator must acknowledge 
that one safety consideration is the demonstration of harm produced by the inter-

vention, a second and more complex problem is that other adverse events may be 

produced by the intervention being evaluated. We will evaluate this circumstance 

by first assessing how one can monitor multiple prospectively declared adverse 

events.

 When an intervention is considered for formal study in a clinical trial, the 
therapy has already established at least the suggestion of a side-effect profile. 

Knowledge of this side effect profile is necessary in order to provide the best treat-

ment for these patients in the study. For example, if patients in a clinical study are 
likely to experience blurred vision as a consequence of the intervention, then the 

trial mechanism can incorporate frequent examinations for the occurrence of 

blurred vision. In addition, adjunct therapy can be considered to alleviate the impact 
of this troublesome adverse effect. 

 Similarly, foreknowledge of the occurrence of a serious adverse event pro-

file can direct the monitoring plan of a clinical study. Understanding the risk profile 
of an intervention permits the researchers to tailor the monitoring plan of the study 

to the magnitude of the intervention’s risk that patients must bear. Because the in-
vestigators can only justify the use of the intervention when its benefits outweigh its 
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risks, the monitoring procedure can be sculpted to be a manifestation of this risk–

benefit balance. This realization can be constructively framed within the confines of 

type I error consideration and conditional power.  

 Consider the following example. Clinical trial investigators are interested 

in investigating the effect of an intervention that is believed to reduce the stroke 

mortality rate. Subjects are recruited into the study while experiencing a stroke, and 
then, in addition to being provided the state-of-the-art stroke treatment, are random-

ized to receive either the intervention or placebo therapy. In this study, the investi-

gators measure the severity of the stroke by assessing the patients’ abilities to effec-

tively control their movements and express themselves. This assessment is captured 

in the National Institutes of Health Stroke Scale (NIHSS). A patient’s capabilities 

are graded, and points are given for the abnormalities observed in accordance with 

pre-stated criteria. A score of 0 reflects no difficulty at all, whereas patients with 

profound post-stroke disability can have stroke scores above forty.
The investigators wish to demonstrate that the therapy in which they are 

interested limits the stroke size in patients assigned to the active group. Thus, the 

researchers want to track the trajectory of the NIHSS stroke score from the baseline 
measurement (taken when the patient enters the hospital) to 28 days after the stroke 

has occurred. It is their hope that the change in NIHSS score will lead to greater 

improvement in the patients assigned to the intervention than in patients assigned to 
placebo therapy.  

However, the investigators also recognize that the intervention is associ-

ated with serious adverse events. One of these is internal bleeding. The second is 
acute liver injury, as measured by dramatic rises in liver enzyme levels. Although 

the need for the most precise estimates of these adverse events for these patients 

would require greater, rather than fewer patient numbers, the investigators recog-

nize the need to capably and ethically monitor the study, perhaps terminating it 

early if the therapy appears unsafe. Based on the philosophy that, if the therapy is to 

be worth its risks, then the potential for benefit must be greater than the potential 
for internal bleeding or liver damage, the investigators allocate type I error during 

the design of the trial in this risk-averse research climate (Table 7.3).  

Table 7.3. Allocation of Familywise Error for Benefit and Harm

Endpoint Test-Specific Familywise Conditional Adjusted Test

Alpha Error Power Specific

Benefit

Stroke scale 0.025 0.95 0.024

0.025

Harm

Stroke scale 0.025 0.50 0.013

Internal bleeding 0.150 0.50 0.075

Liver injury 0.100 0.50 0.050

0.275
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The investigators demonstrate through the design of this study (as por-

trayed in Table 7.3) the importance of providing adequate protection for patients 

against the harm of serious adverse effects. The familywise error is the type I error 
allocated to the interpretation of the statistical hypothesis test at the conclusion of 

the study. Although it is appropriately low for benefit (at the 0.025), it is high (more 

than ten times higher) for the identification of a harmful effect.  
Examining the finding for serious adverse events in greater detail, observe 

that for each of the types of the three serious adverse events (stroke scale, internal 

bleeding, and liver injury) the test-specific alpha error rate is high, revealing the 
sensitivity of the investigators to the occurrence of these serious adverse events. It 

is these large selections for the test-specific alpha error rates for serious adverse 
events that produce the high familywise error rate for harm of 0.275. Essentially, 

the investigators are willing to accept a large type I error rate in order to ensure that 

they do not miss the occurrence of a harmful effect that can occur in the population 
at large.

Proceeding across Table 7.3, we observe that the investigators take an ad-

ditional step to ensure that the monitoring rule is appropriately attuned to the possi-
bility of the occurrence of harm. We would not be surprised to observe the high 

conditional power for efficacy. However, the prospectively declared, conditional 

power choices of 50% are quite low, again reflecting the investigators desire to go 
out of their way in identifying a potentially important relationship between the oc-

currence of these serious adverse events and the therapy.  

The boundary values produced from these computations are instructive 
(Table 7.4). Specific boundary values are computed for each of the one efficacy 

measure and the three harm measures. The boundaries are endpoint-specific, be-

cause each endpoint has its own test-specific alpha error and its own conditional 
power. 

Table 7.4. Boundary Values for Multiple Endpoints

Endpoint Test-Specific Conditional Boundary Values

Alpha Power Information Time

0.10 0.30 0.50 0.75 1.00

Benefit

Stroke scale 0.025 0.95 11.20 6.13 4.45 3.24 1.98

Harm

Stroke scale 0.025 0.50 -7.09 -4.09 -3.17 -2.59 -2.24

Internal bleeding 0.150 0.50 -4.55 -2.63 -2.04 -1.66 -1.44

Liver injury 0.100 0.50 -5.20 -3.00 -2.33 -1.90 -1.64

Each of the endpoints for harm is allocated its own familywise error rate and conditional power

A graphic depiction is also revealing (Figure 7.3 ). 
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Figure 7.3. Asymmetric conditional power monitoring guidelines for multiple 

endpoints for harm (NIHSS, internal bleeding, liver failure). Alpha errors and 

conditional power are each test-specific in accordance with Table 7.4.  The 

familywise error for benefit is 0.025 and the familywise error for harm is 0.275. 
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In their attempt to balance the role of sampling error and the occurrence of 

these adverse events, the investigators accept the risk of making a type I error to 
identify a risk of serious adverse events in the population.  

It is also important to note that this type of computation is governed by pa-

rameters that the investigators select. Specifically, the researchers choose the test-
specific type I error rates and the conditional power for the endpoint monitoring.  

7.3.4 Combined Safety Endpoints* 
Typically in designing a clinical research effort, investigators will choose an end-
point that is a composite of several different but related endpoints. This type of 

endpoint is a combined endpoint or a composite endpoint. For example, a clinical 

research effort may wish to focus on the occurrence of fatal and nonfatal stroke. In 
this circumstance, every patient who has had a fatal stroke, as well as patients who 

survive but have a nonfatal stroke are counted as having endpoints.  

The advantages of this approach are well described [1]. A carefully con-
structed combined endpoint can helpfully broaden the definition of a clinical end-

point when the disease being studied has different clinical consequences. This ex-

pansion commonly increases the incidence of the endpoint, reducing the sample 
size of the trial. Alternatively, the use of a combined endpoint can increase the sen-

sitivity of the research effort to detect moderate levels of therapy effectiveness.  

 Typically, these combined endpoints are constructed with the view that the 
therapy will be beneficial, producing a positive effect on the occurrence of the 

combined endpoint. However, there is no methodological barrier to constructing a 
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combined safety endpoint. The advantage of a combined safety outcome is that 

sensitivity to the occurrence of dangerous trends in the safety data can be enhanced 

with tighter control of the familywise error rate.  
 As an example, consider the effect of an intervention that is designed to 

reduce coronary artery vasoconstriction. The intervention must be delivered intra-

venously. The primary endpoint for this study is the occurrence of fatal or nonfatal 
myocardial infarction. The researchers are concerned about the adverse effects of 

this intervention on the lungs. The investigators suspect that the therapy can pro-

duce a collection of nonserious but troublesome respiratory adverse effects. How-
ever, they are also concerned about the occurrence of more serious adverse events 

that affect the lungs. 
In their attempt to monitor for the occurrence of pulmonary adverse 

events, the investigators choose to create two combined endpoints. The first, termed 

Pm, is designed to capture the first occurrence of either of the following mild ad-
verse events: (1) complaint of a new, dry cough, (2) mild but non-limiting wheez-

ing. The second combined endpoint, termed Ps combines the occurrence of serious 

adverse events, for example, dyspnea, hemoptysis, acute bronchitis, and hospitali-
zation for pulmonary illness (Table 7.5).  

The investigators are interested in monitoring the occurrence of these 

events for the possibility of harm. 

Table 7.5. Combined Endpoints for Safety Monitoring

Combined endpoint Components

Combined endpoint P m Dry Cough

Nonlimiting wheezing

Combined endpoint P s Dyspnea

Hemoptysis

Acute bronchitis

Hospitalization for pulmonary event

For each of these endpoints, the investigators are interested in computing boundary 
values for the test statistic that reflects the effect of therapy for each of them (Table 

7.6). 
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Table 7.6. Boundary Values for Multiple Safety Endpoints

Endpoint Test-Specific Conditional Boundary Values

Alpha Power Information Time

0.05 0.25 0.50 0.70 1.00

Benefit

Fatal/nonfatal MI 0.025 0.90 10.18 5.62 4.12 3.05 2.00

Harm

Fatal/nonfatal MI 0.025 0.50 -7.09 -4.09 -3.17 -2.59 -2.24

P m 0.010 0.99 -14.35 -7.81 -5.62 -4.03 -2.33

P s 0.250 0.50 -3.64 -2.10 -1.63 -1.33 -1.15

MI = myocardial infarction

Table 7.6 provides the test-specific alpha, conditional power, and resulting bound-

ary values for measuring the boundary values based on information time for moni-
toring the clinical events. There is one primary endpoint that maintains the efficacy 

focus. The boundary values for it are as anticipated, given the test-specific alpha 
and the high conditional power. 

 In addition, there are three monitored endpoints for harm. The first is of 

course the primary endpoint, fatal/nonfatal myocardial infarction. The second is the 
combined endpoint for safety, assessed with a test-specific alpha level of 0.01, and 

99% conditional power. The low test-specific alpha and high conditional power for 

Pm suggest that only hyperextreme findings for the occurrence of this endpoint, 
measuring mild pulmonary function disease, would lead to the trial’s early termina-

tion. The limiting, sometimes tragic, consequences of the adverse events that com-

prise the occurrence of Ps suggest that this safety endpoint be very carefully and 
sensitively monitored. This sensitivity is transmitted through the high test-specific 

alpha (0.025) and low (50%) conditional power (Figure 7.4). 
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Figure 7.4. Asymmetric conditional power monitoring guidelines for multiple combined 

endpoints.  Alpha errors and conditional power are each test-specific in accordance with 

Table 7.6.  
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7.4 Monitoring Safety in Small Samples* 
Clinical research involving small samples commonly presents conundrums for 

monitoring adverse events. Contemporary IRBs are as focused to the safe conduct 

of these studies that commonly enroll relatively small numbers of patients as they 
are in the much larger clinical efforts. However, small clinical studies can make the 

group sequential procedure unwieldy. Data may not arrive in groups, but instead 

becomes available on a patient-by-patient basis.  
A common scenario in these situations is the following. An investigator is 

focused on the occurrence of an adverse event rate in a series of patients in whom 
he is studying an IRB-approved intervention. He knows the background rate of the 

adverse event. His major safety concern is whether the occurrence of the adverse 

event in his study is exceeding the background rate. Specifically, he wishes to learn 
how many additional patients he must observe in order to have some assurance that 

the event rate is greater than the background rate. If these additional patients are a 

small number, he has enough information to terminate the study.  
For example, an investigator is studying a new intervention for stroke, but 

for which bleeding is an important adverse event rate. The background rate for an 

intracranial hemorrhage is 6%. She has observed 100 patients in her study so far, 
and, in this cohort, 3 patients have experienced this event. The IRB has approved 

the recruitment of an additional 50 patients for the study. How many patients with a 

severe bleeding event must occur in this subsequent cohort of 50 patients in order to 
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be confident that the bleeding rate in the entire study cohort is greater than the 

background rate of 6%?  

The evaluation is straightforward. Let the underlying background rate of 
the internal bleeding be denoted by pB. In her cohort, the investigator has observed 

n0 patients thus far, of which k0 patients have experienced an adverse event. The 

study will recruit another n1 patients. We need to find the number k1 of patients 
who, if they have an internal bleeding event in this second cohort of n1 patients will 

boost the study adverse event to the level that the investigator can feel confident 

that the study’s rate is greater than the background rate. Then at the conclusion of 
the next segment of the study, the cumulative event rate observed in the study is p
where 

0 1

0 1

.
k k

p
n n

The concern is whether p is greater than the background rate (denoted by pB) of the 
adverse event. We can use the confidence interval to help determine how much 

greater the study rate should be from the background rate. Specifically, the investi-

gator would be alarmed if Bp p  fell outside of its 1 –  confidence interval. If we 

denote Z1–  as the 1 –  percentile value of the normal distribution, then p is ex-
treme if  
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This provides the smallest number of adverse events that we can tolerate in the next 

n1 patients that will provide evidence that the rate of adverse events in the study is 

greater than the background rate. For example, suppose that the investigator antici-

pates the baseline rate for internal bleeding is 6%, and 3 patients have been ob-

served in 100 patients, with the study poised to recruit an additional 50 patients. 

Then, in this circumstance pB = 0.06, k0 = 3, n0 = 100, n1= 50, and Z0,975 = 1.96. The 

minimum value of k1 is

1

(0.06) 0.94
0.06 1.96 100 50 3 11.3.

100 50
k

In this example, if 12 patients out of the next 50 experience an ICH, then 

the total event rate is 
3 12

15 /150 0.10.
(100 50)

 The number of adverse 

events can be counted in the next 50 patients, and if it exceeds 12, termination ac-

tivity should be considered.  

A small sample procedure is available if the size of the trial is deemed too 

small to apply the normal distribution. For example, an investigator is carrying out 

an uncontrolled study evaluating the safety of an intervention. Specifically, she 

needs to assure herself that the rate of adverse events observed in this trial is not 

greater than that experienced in the population not subjected to the intervention.  

Given that there are anticipated to be N patients recruited and followed in 

the study, in which A of them will have adverse events. The accepted rate of ad-

verse events is anticipated to be p0. Thus A = Np0 is the expected number of patients 

anticipated to have adverse events at the trial’s conclusion. However, at the current 

time in the study there are n(k) patients recruited, k of which have experienced an 

adverse event. The investigator needs to know the probability that the total number 

of adverse events at the study’s conclusion exceeds Np0, given the current results, or  

0 | ( ) .A Np n k kP

If we assume that the number of adverse events A follows a binomial dis-

tribution, we may compute this probability directly. Because n(k) patients have al-

ready been enrolled, producing k adverse events, then in the remaining N – n(k)

patients yet to be observed, there must be greater than Np0 – k adverse events to 

exceed the threshold. However, the number of remaining adverse events in N – n(k)

also follows a binomial distribution, thus, we may write 

0

( )
( )

0 0 0 0

( )
| ( ) ( ) 1 .

A n k
A n k jj

j Np k

A n k
A Np n k k A n k Np k p p

j
P P
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For example if there are 3 patients with adverse events in 7 patients, and 

the study will recruit 50 patients with an adverse event rate of 10%, then the prob-

ability that this event rate will be exceeded is  

0

( ) 43
( ) ( )

0 0

2

( ) 43
1 (0.10) 0.90 0.818.

A n k
A n k j A n k jj j

j Np k j

A n k
p p

j j

Thus there is an 82 percent chance that the number of adverse events at the 

conclusion of the trial will exceed 5.  

7.5 Exploratory Monitoring for Safety 
The previous two sections described processes by which prospectively declared 

rules for monitoring adverse events can be generated. These rules can be sensitively 

calibrated to the concerns of the investigator who wishes to understand the risks and 

benefits of the therapy under consideration. However, that entire discussion’s foun-

dation was the prospective identification of risks and benefits. With foreknowledge 

of the adverse event profile of the intervention, and some appreciation of the fre-

quency at which these adverse events appeared, the researcher is able to place pro-

spectively declared rules in place. 

 However, many times adverse events occur that were completely unsus-

pected during the course of a clinical research effort which catch the researcher by 

surprise. The occurrence of de novo breast cancer in women exposed to lipid lower-

ing agents during the course of a cardiovascular clinical experiment, the occurrence 

of dangerous new arrhythmias generated by an intervention that suppresses other 

rhythm disturbances, and the production of liver failure in medications designed to 

reduce insulin sensitivity are but a few examples of unanticipated adverse effects 

that can be produced by a new intervention.  

This illustration suggests that although monitoring procedures can provide 

clear warning that a treatment signal has been detected, the presence of this signal 

does not provide prima facie evidence for early termination of the research effort. 

That decision is more complex, requiring thoughtful consideration of both the effi-

cacy and the safety of the compound. Ultimately, the decision to discontinue a 

study is not a mathematical one, but a clinical and ethical decision.  

 The use of viruses as vectors for the transformation of the patient’s ge-

nome with a new DNA strand multiplies the concern for adverse events. The new 

genome with its altered DNA sequence can conceivably produce many unantici-

pated effects on organ tissue and germ cells. The concern for safety in this new cir-

cumstance predominates, but one doesn’t know where the adverse events will ap-

pear, or whether they will appear at all.  

Statistical monitoring rules do not provide much guidance in this scenario. 

The absence of prospective identification, in concert with the large probability of a 

type I error generated by multiple interrogations of the adverse event data confound 

any attempt to apply statistical rigor to the evaluations executed on behalf of the 

patients. This is the conundrum of safety-based monitoring. The predomination of 
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ethical considerations requires the researcher to sometimes set aside statistical pre-

cepts in order to be assured that patients are not being harmed in the research effort 

or in the population. This is unacceptable when one is building an argument for 

efficacy, but is required in the examination of safety. The asymmetry of this cir-

cumstance finds its genesis more in an oath than in science.  

The following are other useful tools in assessing the validity of an unan-

ticipated adverse event finding.  

7.5.1 Monitor Widely 
Researchers must lead diligent adverse event report evaluations. Just as physicians 

cannot diagnose diseases of which they have never heard, researchers cannot ethi-

cally weigh the implications of serious adverse events that they are not measuring. 

Thus, the researchers must cast a wide net in order to capture the occurrence of all 

adverse events.  

The National Institute of Neurologic Disorders and Strokes (NINDS) re-

quires that each DMC-monitored trial have an assigned Medical Safety Monitor 

(MSM) who bears responsibility for the review of individual serious adverse events 

(SAEs). This monitor must not be an investigator, and report these adverse events 

to DMCs on a regular basis. In clinical trials, the MSM should be a physician who 

is not involved in the study and who has no conflict of interest. They can suggest 

protocol modifications to prevent the occurrence of particular adverse events (e.g., 

requiring more frequent measurement of laboratory values).  

The MSM will prepare regular reports concerning SAEs (not grouped by 

therapy assignment) for the principal study investigator, the DMC, or, where ap-

propriate, other agencies (e.g., the FDA and collaborating biopharmaceutical com-

panies or device manufacturers).  

Should unexpected or an unanticipated high rate of SAEs occur, the ad-

verse event monitor must immediately notify the principal study investigator and 

the DMC.  

7.5.2 Assessing Unanticipated Adverse Events 
We have focused on the statistical monitoring of clinical research. However, we 

saw in Chapter One that these quantitative tools have been in use for approximately 

sixty years, (from the earliest work of Wald [2]). This is a relatively short period of 

time in the history of clinical investigation. However, the assessment of whether the 

occurrence of the event is related to a treatment has been a cerebral process that has 

evolved for hundreds of years. Useful skills have been amassed by scientists in the 

implementation of nonstatistical evaluations of the relationship between an event 

(be it either adverse or salubrious) and an exposure. In the setting of exploratory 

endpoint analyzes, where statistical assessments are not quite so reliable, these 

other nonstatistical assessments rise to new prominence.  

The occurrence of an exposure and an adverse event occurring in the same 

patient (or group of patients) begs the question of whether the relationship between 

the two is associative or causal. An associative relationship is merely that the expo-

sure and the disease occurred coincidentally in the same patients, for example, the 

occurrence of breast cancer in women taking HMG-CoA reductase inhibitor (i.e., 
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statin) therapy for elevated lipid levels. It is a passive relationship. On the other 

hand, a causal relationship is active. An exposure causes a event if the exposure 

excites the production of the event. It is an active relationship, a relationship with 

directionality. An example is the causal relationship between liver hepatotoxicity 

and thiazolidienedione therapy for diabetes mellitus.  

When statistical tools are less useful, other tools of observation become 

more valuable. In 1965, Hill [3] described the nine criteria for causality arguments 

in healthcare. These nine rules or tenets are remarkably and refreshingly devoid of 

complex mathematical arguments, relying instead on natural honest intuition and 

common sense for the inquiry into the true nature of a risk factor–disease relation-

ship. The questions Dr. Hill suggested should be posed by the investigators in their 

assessment of the true nature of the exposure–disease relationship.  

The evaluation begins with a simple assessment of numbers. Are there 

many more adverse event cases when the intervention is present, and fewer disease 

cases when the intervention is absent? If this question has been affirmatively an-

swered, other questions follow. Does a greater exposure to the risk factor produce a 

greater extent of disease? Other questions asked by Hill explore the “believability” 

of the relationship. Some of these are: is there a discernible mechanism by which 

the risk factor produces the disease? Have other researchers also shown this rela-

tionship? Are there other such relationships whose demonstration helps us to under-

stand the current risk factor– disease relationship?  

Consistency requires that the findings of one study be replicated in other 

studies. The persuasive argument for causality is much more clearly built on a col-

lection of studies involving different patients and different protocols, each of which 

identifies the same relationship between exposure to the risk factor and its conse-

quent effect. There are numerous examples of collections of studies with different 

designs and patient populations, but that nevertheless successfully identify the same 

hazardous relationship between an exposure and disease. Identification of case se-

ries involving different series of patients in different countries and different cul-

tures—yet each series producing the disease after the exposure would satisfy these 

criteria. Because research findings become more convincing when they are repli-

cated in different populations, different studies that examine the same exposure–

disease relationship and find similar results add to the weight of causal inference.  

The specificity of a disease is directly related to the number of known 

causes of the disease. The greater the number of causes of a disease, the more non-

specific the disease is, and the more difficult it is to demonstrate a new causal agent 

is involved in the production of the disease. The presence of specificity is consid-

ered supportive but not necessary, and researchers no longer require that the effect 

of exposure to an agent such as a drug be specific for a single disease. 

Exposure must occur before the disease develops for it to cause that dis-

ease. A temporal relationship must exist in order to convincingly demonstrate cau-

sation.* This criterion can be clearly satisfied by a case report that accurately docu-

ments that the exposure occurred before the disease.  

                                                          
* Protopathic bias, or the result of drawing a conclusion about causation when the disease 

process precedes the risk factor in occurrence can result without appropriate attention to the 

condition.
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An evaluation of a relationship between occurrences of the adverse events 

and either the dose or duration of the intervention is also useful. The observation 

that a more intense exposure produces a greater frequency or severity of adverse 

events adds new strength to the notion that the relationship between the intervention 

and the adverse event is a causal one. In addition there should be some basis in the 

scientific theory that supports the relationship between the supposed “cause” and 

the effect. However, observations have been made in epidemiological studies that 

were not considered biologically plausible at the time but subsequently were shown 

to be correct.  

It is important to note in the application of these tenets that satisfaction of 

all nine is not required to establish to the satisfaction of the medical community that 

a causative relationship exists between the exposure and the disease. Hill himself 

stated [3]: 

None of my nine viewpoints can bring indisputable evi-

dence for or against the cause–and–effect hypothesis, and none 

can be required as a sine qua non.

 However, these tenets are invaluable in the assessment of intervention-

adverse event relationships.  

7.5.3 The Need for Balance 
Because early data suggesting a treatment effect may be misleading, investigators 

require additional support before they feel justified in terminating a research effort. 

Although an examination of the treatment effect over the course of the study may 

suggest that the research should end prematurely, other considerations may require 

the study to proceed to the end.  

An example of this is the THRIVE III study [4]. Venous thromboembolic 

(VTE) phenomena (e.g., pulmonary emboli) are life-threatening events. Should the 

patient survive a first VTE, he is at risk for developing a subsequent VTE episode. 

The standard preventive therapy for the occurrence of additional VTE’s is the ad-

ministration of anticoagulant therapy for six months. However, whether an addi-

tional course of thromboembolic therapy beyond six months is necessary remains 

an open question. THRIVE III was a clinical trial that was prospectively designed 

to address this issue. Its objective was to assess whether use of oral coagulation 

prophylaxis after a six-month anticoagulation treatment for VTE reduced the recur-

rent rate of VTE.  

THRIVE III was a double-blind, randomized, placebo-controlled parallel 

group multinational study that compared the efficacy of ximelagatran, a new oral 

anticoagulant, to placebo therapy. It recruited patients from Europe, South America, 

Canada, Mexico, Israel, and South Africa. There were 2466 patients randomized, 

1223 of whom received the study drug. The prospectively declared primary analysis 

was the effect of therapy on recurrent VTE.  

The findings for the study were striking. The placebo group experienced a 

12.6% risk of recurrent VTE over the 18-month follow-up. The risk for recurrent 

VTE in the treatment group was 2.8%, substantially less than that seen in the con-
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trol group arm of the study. The risk ratio was 0.16 (95% CI 0.09 to 0.30, p = 

0.0001). Furthermore, the graphical depiction of the THRIVE III results reveals a 

clear early separation of the cumulative incidence of the primary endpoint (Figure 

4.1). 
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Figure 7.5. Percent reduction in recurrent venous thromboembolism (VTE) 

for ximelagratran versus placebo in THRIVE III, demonstrating an early treatment benefit.
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 The separation between these curves began immediately and continued 

inexorably for 18 months, demonstrating a profound treatment effect over the 

course of the study. However, the clear early emergence of a treatment effect begs 

the question of why was it necessary to continue this study for 18 months. Could 

the study not have been stopped at 15 months, or even 12 months of follow-up?  

7.5.4 The Clinical Ethic versus Mathematics  
The early and accelerating separation between the event curves of the placebo and 

active group event rates suggests that early termination was possible. In fact, an 

interim evaluation of the THRIVE III results supported this conclusion. However, 

the situation for the DMC was more complex. A major adverse effect of anticoagu-

lation is bleeding. The risk of a major bleeding event, not depicted in Figure 4.1, 

required additional time to elucidate. Also, evidence of liver toxicity developed, an 

adverse event whose precise incidence estimate required additional follow-up time. 

Thus, the emergence of an early treatment effect, although suggesting that early 

termination may be necessary, does not provide the entire picture. An important 

motivation for continuing the trial in the face of this clear clinical benefit is the 

identification of other effects of the drug. 
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7.6 Monitoring for Futility 
It is ethically important to monitor a research effort for premature evidence of bene-

fit or harm to the participants. However, early termination of the study in the face of 

an impending null finding (i.e., a finding of neither benefit nor harm) has important 

advantages as well.  

Prematurely concluding a clinical research effort because it is likely that 

the test statistic will not fall in the critical region, and will therefore provide a null 

finding, has become known as stopping for futility in clinical research jargon. The 

use of the term is understandable, but unfortunate. Investigators have powerful mo-

tivations to conduct research that they believe provides a palpable benefit to their 

patients. When it is unlikely that their research effort will provide this finding, and 

will thus contradict their hopes, it is easy to think of the research exercise as futile.  

However, well-designed clinical studies are informative regardless of 

whether the findings are beneficial, harmful, or null. The identification of a null 

finding can and should close down a promising but ultimately unproductive avenue 

of research. This premature termination will allow the allocation of unspent human 

and financial resources to other investigative possibilities. The quicker the result 

can be determined, the sooner this reallocation can commence. Resources for clini-

cal trials are finite and, in, an increasingly cost-conscious environment in which 

many promising interventions compete for scant research dollars, the earlier the 

study can be reliably discontinued, the better [5].  

This observation has resonated in the lay press. The New York Times [6] 

reported that only 8% of pharmaceutical products that are studied ever make it to 

market. Even a small improvement in the ability to predict an early outcome, par-

ticularly early failures, could save hundreds of millions of dollars in drug develop-

ment costs.  

We might expect, that, just as the probability tools that we have described 

thus far can produce effective measures of the early emergence of efficacy or 

safety, they can also produce measures of how likely the study will produce neither. 

A simple adaptation of the use of conditional power can provide very useful and 

comprehensible measures of “futility”.  

7.6.1 Constructing a Futility Index 
The development of the statistical argument for futility using conditional power is 

analogous to that for efficacy. In that case, the investigator was willing to consider 

early termination under a collection of conservative circumstances. In the process 

of monitoring for efficacy, the finding that the test statistic was likely to fall into the 

critical region was not sufficient to discontinue the study. This likelihood had to be 

large under the circumstance that no subsequent efficacy was produced by the in-

tervention. If, based on the eventuality that the only effectiveness of the interven-

tion had already been seen, and no new efficacy would occur, it was still likely that 

the test statistic would fall in the critical region at the study’s conclusion, then the 

investigator could consider terminating the study early. This is a very conservative 

and useful condition. 
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 This style of conservative thinking can be readily applied to the condition 

of early termination for lack of effect. Here, the efficacy of the intervention is ab-

sent up to an information time point I in the study (Figure 7.6).  
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Figure 7.6. Possible values of a test statistic versus information time. Note the complete 

absence of a trend, suggesting that the study may be terminated early. 
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In Figure 7.6, the clinical research effort has proceeded until 80% of the informa-

tion time has elapsed, with no sign of effectiveness of the studied intervention. One 

approach to the consideration of futility would be to just consider stopping the trial 

if this set of circumstances were to continue to occur. However, a more conserva-

tive tack to take would be to contemplate early termination even if some degree of 

late efficacy occurred. Specifically, the trial might be stopped even when new, late 

efficacy reveals itself, but this efficacy was not sufficient to lift the test statistic into 

the critical region of the study (Figure 7.7). 

 In Figure 7.7, the study results have revealed no positive or useful measure 

of effectiveness. If the study were to continue with the same lack of effect, an ar-

gument could be made for early futility. However, even with the presence of late 

efficacy, it may still be too late for the findings of the study to reverse themselves 

and produce a test statistic that will fall in the critical region at the conclusion of the 

study. Figure 7.6 shows several different, late paths of the test statistic that changes 

the direction for the test statistic. Each one of these paths assumes a different value 

of the efficacy that itself appears late in the study. However, for each of these paths, 

the test statistic still fails to fall in the critical region, and therefore, produces a null 

result.  

 Therefore, the conservative solution for futility is one that assumes that 

late efficacy appears in the study. If, even with the occurrence of this late efficacy 

the test statistic is not likely to fall in the critical region, researchers can consider 

terminating the research effort early because of lack of effect.  
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Figure 7.7. Trajectory of a futile outcome. The arrows represent the late efficacy (or harm) 

that could appear but still be associated with a null outcome of the study. 
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7.6.2 Calculation for Futility 
Our plan is to identify an event that captures the dynamics of the futile research 

circumstance, including the appearance of late efficacy. Once we have that event, 

we can use what we know about conditional power to find its probability.  

We seek to identify a boundary value f for the test statistic that has a value 

at a particular information time I, TS(I). This boundary will determine whether con-

sideration should be given to ending the trial. If the value of the test statistic at in-

formation time I falls below the boundary value f, then it is very unlikely that the 

test statistic will fall in the critical region at the conclusion of the study, and consid-

eration should be given to ending the trial for futility. Alternatively, if TS(I) is 

greater than f, then the study should be continued because there is substantial prob-

ability that the study will be positive.   

 Furthermore, the lower the probability that the test statistic falls in the 

critical region at the conclusion of the trial, the more futile the result. Thus, high 

“futility” is linked to small values of conditional power. This is unlike the circum-

stance that led to consideration of study termination for either efficacy or safety. In 

those situations, high value for conditional power leads to early termination. In the 

case for futility, the trial will be terminated in the event of low conditional power.  

 In the conditional power environment, this may be written as  

1 / 2
1 | .fCP TS Z TS I fP
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We subscript the conditional power with f to denote we are computing conditional 

power computation for futility. In this circumstance, we allow  to be a small value, 

that is,  = 0.10. Our goal is to identify the value of the test statistic f at information 

time I such that, any value of TS(I) that is less than f suggests that the study should 

be terminated early. The development in Appendix C carries out the mathematics of 

this calculation in detail, and we find that the value of f is

1 / 2 1
1 1

.
Z Z I I

f
I

This solution is a function of several quantities that we have come to recognize. The 

quantity 1 / 2Z  denotes both the type I error rate at which the statistical significance 

of the test will be assessed at the conclusion of the study, and the sidedness of the 

test.* As anticipated, f is also a function of the conditional power  which is man-

dated to be low, and the information time I when the futility assessment is to be 

made. However, there is a new component that is included in this computation, µ.

This is the drift parameter, associated with the alternative hypothesis.  

7.6.3 Futility Under Alternative Drift*
Recall in Chapter Six that conditional power can be computed under not just one, 

but a collection of assumptions about the direction of the test statistic. When con-

sidering predictions about the location of the test statistic at the conclusion of the 

trial based on its value at information time I, we determined that the conservative 

solution would be to assume that all of the efficacy that had occurred in the trial 

occurred prior to the current information time I. This was equivalent to believing 

that there would be neither positive nor negative drift of the test statistic for the 

remainder of the study, that is, the drift parameter µ for the remainder of the study 

was 0. This we denoted as 0 .pC H

 As pointed out earlier, the situation is different when faced with the possi-

bility of early termination for futility. True futility occurs when, even in the face of 

late efficacy, the study is not likely to arrive at a positive conclusion. Thus, we must 

assume that there is upward drift for the 11 I  unexpired duration of the study. If 

the test statistic is still not very likely to enter the critical region at the conclusion of 

the study, the study might very well be stopped at information time I1 because it is 

unlikely to be positive.  

 In a clinical study designed to compare the relative frequency of events 

between two treatment groups (i.e., mortality), the drift parameter is  

ln ,
4

ER

                                                          
* One-sided or two-sided.
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where R is the relative risk associated with the therapy effect and E is the total 

number of events that are expected in the study. For relative risks that reflect a risk 

reduction, the drift parameter is positive (Table 7.7). 

Table 7.7. Drift Parameters in a Clinical Trial Designed to Determine

Efficacy as a Funtion of the Relative Rrisk and Total Number of

Endpoints

Relative Risk 

0.65 0.70 0.75 0.80 0.85 0.90

50 1.52 1.26 1.02 0.79 0.57 0.37

100 2.15 1.78 1.44 1.12 0.81 0.53

Total 200 3.05 2.52 2.03 1.58 1.15 0.75

endpoints 300 3.73 3.09 2.49 1.93 1.41 0.91

400 4.31 3.57 2.88 2.23 1.63 1.05

500 4.82 3.99 3.22 2.49 1.82 1.18

600 5.28 4.37 3.52 2.73 1.99 1.29

In the scenario of a clinical research effort designed to measure the occur-

rence of discrete events, we may write  

1 / 2 1 1 ln 1
4

.

EZ Z I R I
f

I
                     (7.3) 

The determination of the relative risk R and E which are used in the drift calculation 

that is necessary for futility is the subject of discussion by investigators and not 

uncommonly, by the DMC. Some argue that the best measure of these two quanti-

ties comes from the study protocol, where these quantities are specified and used in 

the study sample size determination. Others suggest that the relative risk and pro-

jected total number of events should come from the estimates generated by the 

study itself. However, each of these can easily be presented to the DMC.  

 The following is an illustration of how efficacy/safety boundaries can be 

developed for a clinical trial. Consider a study that is designed to assess the effect 

of a novel ultrasound therapy on the occurrence of the combined endpoint of fatal 

and nonfatal stroke rate in patients at risk for stroke. A major risk factor for stroke 

is the development of left atrial enlargement. The enlarged chamber can lead to the 

generation of blood clots, that, when broken free from the main clot on the atrial 

wall, travel through the left side of the heart to the organ systems of the body. 

Sometimes these dislodged clots travel to the brain where they can produce a 

stroke. The intervention to be studied in this trial is a unique hypersonic device that 

is designed to break up these atrial blood clots. When appropriately focused on the 
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atria, the delivered ultrasonic will break the clot up, reducing the risk of embolic 

stroke.

All patients must have left atrial enlargement when they enter the study. 

Subjects who meet these criteria are recruited into one of two treatment groups. The 

control treatment group receives standard preventive therapy for stroke. The active 

group receives, in addition to this therapy, regular ultrasonic debridement of the left 

atrium.  

 This ambitious study is anticipated to take six years to complete. The ex-

pected cumulative fatal/nonfatal stroke rate in the control group is 13%. The inves-

tigators believe that this novel therapy will reduce the fatal/nonfatal stroke rate by 

25%. They would like to carry out the statistical hypothesis test on the primary 

endpoint at 95% power, with an alpha error rate of 0.0225 (for efficacy only; type I 

error level for harm is considered separately below), after adjustment for 90% con-

ditional power.* These considerations produce a sample size of 5074 patients, with 

2537 subjects recruited to each of the two groups. The investigators plan to monitor 

the trial using 90% conditional power for efficacy.  

As they plan the trial, the scientists initially consider monitoring at 10%, 

30%, 50%, and 75% information time (Table 7.8). 

However, the researchers are particularly nervous about the occurrence of 

harmful effects in the study associated with the intervention. This concern focuses 

on the possibility the ultrasonic treatment may produce thrombus flecks and debris 

that are insufficiently granulated by the process. Thus, it is feared that these flecks, 

once broken free of the atrial wall by the ultrasound, may travel through the outflow 

tract, into the carotid arteries, and to the brain. Once there, they can occlude a ves-

sel, thereby producing a stroke. The investigators decide to allocate a type I error of 

0.05 specifically to assess this possibility of harm. Thus, the total, prospectively 

declared type I error for the study is 0.0225 + 0.05 = 0.0725. To further amplify 

their concern for the occurrence of this dangerous event, the researchers choose to 

monitor safety at 80% conditional power.  

                                                          
* This adjustment is discussed in Chapter Six. Its purpose is to adjust the type I error rate for 

the multiple evolutions that take place during the monitoring process.  
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Table 7.8 Asymmetric Boundary Values for Early Termination

(Two-Sided, Type I Error Rate = 0.0225, 95% Conditional Power

for Benefit Type I Error Rate 0.050, 80% Conditional Power for Harm)

Information Upper Lower

Time Boundary Boundary

0.10 11.27 -7.73

0.30 6.17 -4.29

0.50 4.48 -3.17

0.75 3.26 -2.39

1.00 2.00 -1.64

An additional concern of the investigators is that the intervention will be 

ineffective. The ultrasonic device has a panoply of nonserious adverse events asso-

ciated with its use, and treatments must be repeated. In addition, it is expensive. 

The investigators would like to move on quickly to other possible interventions if 

the atrial hypersonic treatment is found to be ineffective. They therefore build in 

boundaries for the absence of effect into their monitoring rules.  

Using equation (7.3) they can compute values of the test statistic below 

which there is inadequate demonstration of efficacy (Table 7.9). 

Table 7.9 Boundary Values for Test Statistic for Futility

as a Function of Information Time and the Conditional Power

Information Conditional power (v )

time 0.10 0.15 0.20

0.50 -0.51 -0.34 -0.20

0.60 0.14 0.27 0.37

0.70 0.70 0.79 0.86

0.80 1.18 1.24 1.28

0.90 1.61 1.64 1.66

0.95 1.81 1.83 1.84

0.99 1.97 1.97 1.97

Table 7.9 provides the upper bound of the test statistic (i.e., the futility in-

dices) as a function of the information time in the study. Three different conditional 

power assessments are examined: 0.10, 0.15, and 0.20. From this table, one may 

easily observe the relationship between the futility index and the conditional power 

as a function of information time (Figure 7.8).  
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Figure 7.8. Test statistic (futility index) as a function of information time

and conditional power.

Conditional Power

Figure 7.8 requires careful consideration. Note that, for fixed information 

time, larger conditional powers are associated with greater boundary values, consis-

tent with our findings for efficacy and safety.  

However, Figure 7.8 demonstrates that the futility index or test statistic 

boundary increases as the information time increases. This is different from the 

relationship between efficacy (or safety) boundary values and information time, 

where we observed that the boundary values get closer to zero as the information 

time increases. This new relationship requires a closer examination. 

At the relatively early information time of 0.50, the study really cannot be 

described as futile because, essentially, any positive value of the test statistic is 

above the futility boundary, a finding consistent with continuing the trial. However, 

as follow-up time in the study increases, the effect of future efficacy diminishes, 

and there emerge positive values of the test statistic for which the study should be 

terminated early. This is because, even though the test statistic is positive, it is 

unlikely that, even with the full force of efficacy appearing for the remainder of the 

study, the test statistic will be lifted into the critical region at the study’s conclu-

sion.

Thus, the closer the study is to its planned termination, the smaller the in-

fluence of efficacy in the unelapsed information time, and the larger the test statistic 

may be without being moved into the critical region by the declining influence of 

future efficacy. The prospectively declared monitoring values for efficacy, safety, 

and futility can be combined into one figure (Figure 7.9 ). 
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Figure 7.9. Monitoring guidelines for safety, efficacy, and futility in a clinical trial:

alpha (benefit) = 0.0225, alpha (harm) = 0.05), Cp (benefit) = 0.95, Cp (harm) = 0.80, 

futility index (benefit) = 0.20, futility index (harm) = 0.10.

Figure 7.9, reveals the boundary values and decisions that are considered 

within each boundary crossed. Crossing the upper or lower boundaries leads to the 

consideration of terminating the study for early efficacy or harm. Crossing the 

boundary to the right leads to the contemplation of early termination for futility. 

The lower bound for futility is computed following the reasoning of the calculation 

of the upper futility boundary. The formula for this upper boundary is provided in 

Appendix C as  

/ 2 1 1

1

1 1
,s

Z Z I I
f

I

where ln .
4

ER  In this circumstance of futility for safety, the relative risk 

R is greater than one, signifying hazard.  

It is important for the investigators to keep in mind that they control the 

contours of these regions by choosing the type I error, the conditional power, and 

the futility indices for both efficacy and harm. For example, if they envision stop-

ping the trial for only extreme magnitudes of efficacy early, they can set the type I 

error for benefit to 0.001, 99% conditional power, and futility of 0.10. By setting 

alpha for harm at a high value, 0.10, in concert with a relatively low conditional 

power for harm (0.10), and low futility index 0.005, they are simultaneously quite 

sensitive to the early occurrence of harm (Figure 7.10). 
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Figure 7.10. Alternative example for monitoring for safety, efficacy, and futility in a

clinical trial. Alpha (benefit) = 0.001, alpha (harm) = 0.10), Cp (benefit) = 0.99, 

Cp (harm) = 0.80, futility index (benefit) = 0.10, futility index (harm) = 0.20.

Thus, investigators with their appreciation of the benefits and risks of the interven-

tion can calibrate the monitoring process of the clinical research so that I provides 

the best patient-protective characteristics.  

Problems 

1. Describe the complications in interpreting exploratory safety evaluations ver-

sus exploratory efficacy evaluations.  

2. An investigator is interested in monitoring a clinical research effort for efficacy 

and safety. The information time points at which the study will be monitored 

are I = 0.40 and I = 0.80. Compute the boundary values for 90% conditional 

power for the test statistic assuming a two-sided alpha error of 0.05. 

3. An investigator is interested in monitoring a clinical research effort for efficacy 

and safety. The information time points at which the study will be monitored 

are I = 0.40 and I = 0.80. Compute the boundary values for 90% conditional 

power for the test statistic assuming an alpha error of benefit of 0.01, and an 

alpha error for harm of 0.04. 

4. An investigator is interested in monitoring a clinical research effort for efficacy 

and safety. The information time points at which the study will be monitored 

are I = 0.40 and I = 0.80. Compute the boundary values for 90% conditional 
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power for benefit and 80% conditional power for harm assuming an alpha error 

of benefit of 0.01, and an alpha error for harm of 0.04. 

5. What are the advantages of the use of a combined adverse event endpoint? 

6. An investigator is carrying out a small prospective clinical study to assess the 

effect of a promising new agent to reduce the severity of ischemic bowel syn-

drome. A serious adverse effect of this condition is gastrointestinal obstruction. 

In this ill cohort of patients, it is anticipated that 16% will obstruct. Currently, 

the investigator has treated 30 patients in her study and has observed 3 patients 

who developed gastrointestinal obstruction after use of the new active agent. If 

another 40 patients are to be recruited into the research effort, what is the 

minimum number of patients that will suffer obstruction in this new cohort or-

der so that the 95% confidence interval for the obstruction rate centered on a 

rate of 0.16 is exceeded.  

7. In what circumstances will use of the Hill causality tenets adumbrate the reli-

ance on statistical tools in monitoring clinical research? 

8. Why does the development of the conservative futility concept assume that 

there is underlying efficacy in the remainder of the study, but the underlying 

conservative conditional power for efficacy computation assumes that there is 

no efficacy for the unexpired duration of the study? 

9. A clinical trial recruits 600 patients in order to assess the efficacy of a therapy 

for toxic megacolon. The background mortality rate is 40%, and the investiga-

tors anticipate that they will produce a 25% reduction in this rate. The two-

sided type I alpha rate is 0.05 and 80% power. Compute the futility index for 

efficacy at information times of 70%, 80%, and 90% for a conditional power of 

10%.  
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8
Bayesian Statistical Monitoring 

Scientific progress ensures that the innovative ultimately become commonplace. 

Such is the case with monitoring procedure in clinical trials. The exciting work in 

the 1970s and 80s that produced the group sequential procedures of Pocock [1], 

O’Brien–Fleming [2], Lan–DeMets [3,4], the triangle procedures of Whitehead 

[5,6], and the conditional power approach of Halperin [7], have become the ac-

cepted norm in clinical trial research, and their implementation has standardized the 

interpretation of interim results of these studies.  

Bayes procedures are important new innovations in the statistical monitor-

ing of clinical trials. Their emphasis on what has come to be known as the “likeli-

hood principle”, or the concept that one need focus only on what has occurred, 

rather than what has not happened, provides a useful, exciting, and sometimes illu-

minating perspective on the clinical research paradigm. However, Bayes procedures 

do not come without their own risks. The contribution of “prior information” and 

the construction of a “loss function” can be obstacles to both the construction of the 

Bayes result and the acceptance of that result by the medical community. This 

chapter focuses on the incorporation of the Bayes philosophy into the design of 

clinical research.  

8.1 Frequentist versus Bayesian Philosophy 
The frequentist philosophy is the cornerstone of classical mathematical statistics 

and hypothesis testing. Based on probability, it focuses on the relative frequency of 

the occurrence of an event.  

However, there are two concerns about this approach that disturb some 

workers. The first is its reliance on what has not happened, a consequence of the 

definition of relative frequency. The second criticism is the frequentist philosophy’s 

silence on the reliability of one experiment. The frequentist perspective concen-

trates on long-term, rather than short-term reliability. 

As a simple illustration, consider the experiment of flipping three fair 

coins simultaneously, and asking how likely it is each will show a head. In comput-

ing this probability, we simply count the eight different events {HHH}, {HTH}, 
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{HTT}, {HTH}, {THH}, {THT}, {TTT}, and {TTH}. Because each is equally 

likely, we compute that the probability of {HHH} is 1/8. Note that the computation 

of this probability focuses on not only what was observed, but on the seven possible 

events that did not occur. Other examples of the difficulty considering what has not 

occurred are discussed by Lindley [8] and Berger [9]. 

Secondly, stating that the event {HHH} will occur 1 in 8 times is not 

meant as an exact prediction to be applied to all flips of the three coins. We cannot 

guarantee that if the three coins are flipped 8 times, {HHH} will appear once, or 

that in 16 flips, {HHH} will appear twice. The solution 1/8 refers to the long run 

frequency of occurrence. If one were to carry out the experiment 100 times, or bet-

ter yet, 1000 times, we would expect the sequence {HHH} to occur in 1/8th of the 

flips. We computed the estimate 1/8 not as a measure of short-term behavior, but as 

a long-term predictive measure. 

While classical statisticians develop procedures and estimates that are ac-

curate in the long-term, they are relatively mute on the interpretation of an estima-

tor from a single experiment, stating instead that, if the experiment were repeated, 

the sample estimates would be close to the population values many more times than 

not. However, as we pointed out in Chapter Two, the researcher’s perspective is not 

focused on long-term accuracy. The scientists, after having expended a good deal of 

their own work (and, commonly, other’s people’s money) in the research effort, are 

focused on how accurate their single experiment is.  

The interpretation of the p-value serves as a fine example of this dilemma. 

Suppose an investigator conducting a clinical trial in patients susceptible to stroke, 

assesses the effect of an active therapy versus control therapy on the observed fatal 

stroke rate. The p-value generated from this evaluation is the probability that a 

population in which the therapy is not effective produces a sample that demon-

strates the observed treatment effect. However, what the researcher really needs to 

know is whether his particular results were produced by simple chance and sam-

pling error* or instead were driven by a true therapy effect in the population. He has 

a question about his specific result; yet this is a question that is not answered by the 

p-value, which instead focuses on what would occur if many experiments were car-

ried out.  

Like classical statistics, Bayes philosophy is applicable to problems of pa-

rameter estimation and hypothesis testing. However, there are several important 

differences between the Bayesian and frequentist approaches. One is that the 

Bayesian formulation is based on the likelihood principle. The likelihood principle 

states that a decision should have its foundation in what has occurred, not in what 

has not happened.  

In addition, although Bayesians, like frequentists, are interested in parame-

ter estimation and hypothesis testing. Bayesians do not believe that the parameter 

of a distribution is constant, but instead believe that the parameter has a probability 

distribution. This is called the prior distribution, or .  For example, when at-

                                                          
* Sampling error is the concept that a population will produce different samples, and that 

these samples, containing different subjects with different life experiences, will contain dif-

ferent estimates of the same effect. This variability from one sample to another is termed 

sampling error. This is discussed in Chapter Two.  
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tempting to identify the mean change in blood glucose for a collection of individu-

als, both the frequentist and the Bayesian may assume that the distribution of blood 

glucose for this sample of individuals follows a normal distribution with an un-

known mean, whose estimation is the goal. However, the frequentist treats this un-

known mean as a fixed parameter. The Bayesian assumes that the parameter has its 

own probability distribution. 

Once the prior distribution is identified, the Bayesian works forward, next 

identifying the probability distribution of the data given the value of the parameter. 

This distribution is described as the conditional distribution (because it is the distri-

bution of the data conditional on the value of the unknown parameter) and is de-

noted as 1 2 3, , ,..., | .nf x x x x  This step is not unlike that of the frequentist. The 

Bayes process continues by combining the prior distribution with this conditional 

distribution to create a posterior distribution, or the distribution of the parameter 

given the observed sample, denoted as 1 2 3| , , ,... .nx x x x

From the Bayes perspective, the prior distribution reflects knowledge 

about the location and behavior of  before the experiment is carried out. The exe-

cution of the experiment provides new information that is combined with the prior 

information to obtain a new estimate of . To help in interpreting the posterior dis-

tribution, some Bayesians will construct a loss function that identifies the penalty 

that they pay for underestimating or overestimating the population parameter. 

Bayesian hypothesis testing is based on the posterior distribution,  

As we pointed out in Chapter Two, the Bayesian approach to statistical 

analysis makes unique contributions. It explicitly considers prior distribution in-

formation, providing direct, new, and important input into the computational proce-

dure. It allows construction of a loss function that directly and clearly states the loss 

(or gain) for each decision. Bayes procedures have admirable flexibility in cases 

where the relationship between the frequentist’s p-value is disconnected from the 

loss the community suffers in the face of a mistaken scientific conclusion. How-

ever, the requirement of a realistic specification of the prior distribution can be a 

burden if there is no information about the parameter to be estimated. Similarly, the 

choice of the loss function can be difficult to justify from a clinical perspective.  

The work of Spiegelhalter et al. [10] lays out the basics of the application of 

the Bayes concept to monitoring rules in clinical research. This work uses a conditional 

power argument as part of its methodology, a procedure with which we are comfort-

able. Throughout the following illustrations of the Bayes perspective on clinical trial 

monitoring, we will use this approach, pointing out the distinctions between the Bayes-

ian and frequentist philosophies.  

8.2 An Example of a Bayes Monitoring Rule  
In this first illustration, we focus on an investigator who wants to determine if the 

cranial application of ultrasound reduces the progression of stroke. She focuses on 

patients admitted to her stroke service, planning to randomize patients who have 

suffered a stroke to either the active group or the control group. To blind the study, 

every patient receives a “sonic treatment”. For the patients in the control group, this 
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consists of merely mild and harmless buzzing, meant to simulate the sensation of 

ultrasound. Patients in the active group receive the actual ultrasound treatment. 

All patients will be followed until they are discharged from the hospital. 

The endpoint of the study is the duration of hospital stay, which she has observed 

has a mean of 13 days and standard deviation of 4 days. The researcher hopes to 

demonstrate that patients who receive the ultrasound will have a hospital stay that is 

on average three days shorter then the average hospital stay of patients in the con-

trol group. She will carry out the hypothesis test at the end of the trial with a two 

sided type I error rate of 0.05 and a power of 90%. These assumptions produce a 

sample size of 76 patients, 38 in each group. She will monitor the clinical study at I

= 0.50, that is, when 50% of her randomized cohort have been discharged from the 

hospital. 

This information is typically enough for the frequentist statistician to plan 

the evaluation of both the data at the monitoring time point and the final assessment 

of the data at the conclusion of the study. However, the traditional Bayesian re-

quires there to be a more complete elaboration of one concept. 

8.2.1 Prior Distribution 
The additional step required by the Bayesian is the probability distribution of the 

effect produced by the ultrasound. If we define this difference in days hospitalized 

between the active and the control group as , then the investigator has stated the 

problem as though there were only two possible values for this parameter:  = 0 

consistent with the null hypothesis of no reduction in days hospitalized, or  = –3, 

consistent with an ultrasound-induced three day reduction. However, the Bayesian 

permits greater freedom of choice for the reduction in hospital days through the 

specification of a probability distribution on the possible values of . This will be 

.

 The prior distribution can be any known probability distribution that is 

appropriate for the setting.* It is up to the investigator to specify the probability 

distribution function. As its name implies, it is best if based on “prior information” 

from the medical or research community. In this example, the investigator chooses 

to let  be any one of –5, –4, –3, –2, –1, or 0. We can assign probability to each of 

these values, defining the prior distribution for  (Table 8.1).  

                                                          
* Sometimes, Bayesians will actually use a distribution for  which is not a probability 

distribution, that is, the sum of the probabilities for all disjoint events is not one. This is 

called an improper prior, and leads to important interpretative complexities.  
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Table 8.1. Probability Distribution for Effect of Therapy

Designed to Reduce Post-Stroke Hospitalizalion Duration

Reduction Probability

0 0.05

-1 0.15

-2 0.20

-3 0.30

-4 0.20

-5 0.10

We see from Table 8.1 that the investigators believe that there is a 15% chance that 

the actual reduction in post-stroke hospital duration is 1 day. Mathematically, we 

would write this as 
1

0.15 ,1  where the quantity 
1

1 is equal to when 

= –1 and 0 otherwise. Because there are other values of , each of which have their 

own probability, we proceed by writing the entire prior distribution as  

0 1 2 3 4 5
0.05 0.15 0.20 0.30 0.20 0.10 .1 1 1 1 1 1 (8.1) 

which simply reflects the six different possible values of . In general if there are k

possible values for , 1, 2, 3, … k, with probabilities p1, p2, p3, …, pk. then we 

would write the prior distribution  as 
1

.
k

K

k

k

p 1

8.2.2 Computing the Power 
The investigator now has a wider range for possible values of effectiveness, each 

attached to a prior probability. She can now consider the probability that the test 

statistic will fall in the critical region at the trial’s conclusion given the value of the 

test statistic at information time I. Recall from Chapter Six that we wrote that the 

probability the test statistic at information time I2, TS(I2) will be greater than value 

s2 given that at an earlier time I1 the test statistic TS(I1) is equal to some value s1 as 

2 2 1 1
| .TS I s TS I sP We showed that  

2 2 1 1 2 2 2 2 1 1 1 1

2 2 2 1 1 1 2 1 2 2 1 1

| |

| .

TS I s TS I s I TS I I s I TS I I s

B I I s B I I s B I I I s I s

P P

P P

In the case of our investigator, I1 = 0.50, I2 = 1, and s2 = 1.96. She can write 
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1 11 1.96| 0.50 0.50 1.96 0.50 .TS TS s B sP  P        (8.2) 

If this were going to be the standard conditional power computation that we devel-

oped in Chapter Six, we would make the conservative assumption that the mean of 

the Brownian motion process was zero. This we saw was equivalent to assuming 

that there would be no additional efficacy in the unexpired duration of the study. 

This assumption would permit us to complete the computation in expression (8.2) 

to find 

1 1

1

1

1

1 1.96| 0.50 0.50 1.96 0.50

0.50, 0.50 1.96 0.50

1.96 0.50
0,1

0.50

1 2.77 .Z

TS TS s B s

N s

s
N

F s

P  P

P

P

      (8.3) 

However, because the Bayesian model acknowledges the availability of prior in-

formation, our task is to now incorporate it into the conditional power computation. 

Recall that, in the presence of drift, the calculation of expression (8.3) becomes  

1 1

1

1

1

1 1.96| 0.50 0.50 1.96 0.50

0.50 , 0.50 1.96 0.50

1.96 0.50 0.50
0,1

0.50

1 2.77 0.50 ,Z

TS TS s B s

N s

s
N

F s

P  P

P

P

    (8.4) 

where µ is the drift parameter of the Brownian process. The investigator’s task is to 

now convert the prior information about the mean change in duration of hospital 

days  into a statement about the drift parameter µ. This we can easily accomplish. 

Recall from Chapter Six that the drift parameter is  

2
,

2

N
 (8.5) 

where N is the half of the number of subjects required for the study and 2 is the 

variance of the change in hospital stay within the treatment group.*

                                                          
* This assumes the number of subjects recruited to each group is the same. The demonstra-

tion follows easily from the observation that if xi is the hospital stay of an active group pa-
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 Because the investigator knows that the prior distribution of 

is
1

.
k

K

k

k

p 1  for K = 5, the prior distribution for the drift parameter µ is  

21
2

.
k

K

k N
k

p 1

This simply means that for every possible value of  under the prior distribution, we 

take that value and multiply it by 22
N  to get the possible value of the drift 

parameter µ.

8.2.3 Incorporating the Prior Information 
At this point, the investigator has developed the prior information for the effect of 

therapy in this research effort that was designed to demonstrate that a clinical inter-

vention during the evolution of a stroke could reduce hospital duration. This prior 

information was transformed into the parameter , the difference in hospital stay 

between the intervention group and the control group.  

 We have also developed the conditional power for monitoring the study at 

50% information time. This was a function of µ, the drift parameter. Finally, we 

linked µ to  in such a way to have the prior distribution for µ. It now remains to 

incorporate µ into the conditional power development.  

 Recall that we need to compute the conditional power which we saw was 

1 11 1.96| 0.50 0.50 , 0.50 1.96 0.50TS TS s N sP  P

                                                                                                                               
tient, and yi is the duration of hospital stay of a control group patient, then xi – yi follows a 

normal distribution with mean  and variance 2 2
. From this we can see that 1 1

22

n n

i i

i i

x y

N

follows a normal distribution with mean

22

n N

N

and variance .n
N

 Because the information time ,nI
N

we can write the mean of this 

distribution as  

22

n N

N
or as µI where  

2
.

2

N
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when µ itself has a probability distribution. We have the probability given the value 

of µ, which is simply  

1 1

1

1 2

1 1.96| 0.50 0.50 , 0.50 1.96 0.50

1.96 0.50 0.50
1

0.50

1.96 0.50 0.50
2

1 .
0.50

Z

Z

TS TS s N s

s
F

N
s

F

P  P

Using the observation that the prior distribution is simply a weighted average of the 

drift parameters, we may write 

1 2

1

1

1.96 0.50 0.50
2

1 1.96| 0.50 1
0.50

k

k Z

k

N
s

TS TS s p FP

the weighted average of the conditional power for each of the six different values of 

.

 Assume that the investigator has observed a test statistic of 2.75 at the 

50% information time point, she may compute the conditional power of her study 

(Table 8.2).  

Table 8.2. Predictive Power for Test Statistic of 2.75

(I=0.50, Two-Sided Type I Error = 0.05)

( ) Drift Conditional

Parameter Power

0.0 0.05 0.000 0.491

-1.0 0.15 1.541 0.857

-2.0 0.20 3.082 0.985

-3.0 0.30 4.623 0.999

-4.0 0.20 6.164 1.000

-5.0 0.10 7.706 1.000

Predictive Power = 0.950
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The final computation has become known as predictive power. Note that the com-

putation is actually straightforward. The investigator simply computes the condi-

tional power for each of the values of efficacy , and then averages them, using the 

values as the weights. As we would expect, the larger the values of efficacy, 

the greater the permitted drift for the unexpired duration of the study, and the 

greater the conditional power.  

 As we might expect, the final predictive power is a function of the prior 

distribution .  Alternative assumptions about the possible values of the effec-

tiveness of the ultrasound treatment produce very different assumptions about the 

predictive power at I = 0.50 (Table 8.3). In this setting, we see that more conserva-

tive assumptions about the effect size of the ultrasound treatment’s effect, which 

placed greater probability on smaller reductions in the hospitalization duration, pro-

duced a strikingly smaller predictive power.  

 It is important to note that each of the computations is correct only for the 

prior distribution on which it is based. Thus, the investigators are best served by a 

clear understanding of the prior distribution and its influential role in computing 

predictive power.  

Table 8.3 Predictive Power for Test Statistic of 2.75, with an 

Alternative Assumption for the Prior Distribution ( ).

(I=0.50, Two Sided Type I Error = 0.05).

( ) Drift Conditional

Parameter Power

0.0 0.15 0.000 0.491

-0.5 0.35 0.771 0.700

-1.0 0.40 1.541 0.857

-2.0 0.05 3.082 0.985

-2.5 0.04 3.853 0.997

-5.0 0.01 7.706 1.000

Predictive Power = 0.760

8.3 Using Continuous Prior Information 
In the previous example, when the prior information was discrete, the Bayes predic-

tive power was a weighted average of the conditional powers produced from each 

of the values of the therapy effectiveness. 

 However, prior information can be continuous as well as discrete. In these 

latter settings, the computations become somewhat more complicated, but, from the 

investigator’s point of view, the solution is the same, that is, a weighted average of 

conditional powers.  
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As an example of the use of continuous prior information, continuous prior 

distribution for a clinical effect will be incorporated to create a Bayesian monitor-

ing procedure for a clinical trial. In this experiment, patients who are suffering from 

an acute stroke are recruited into a clinical trial. All patients are treated within two 

hours of arrival at the emergency room with t-plasminogen activator (tPA). In addi-

tion, patients are infused with a new therapy to reduce mortality. Prior information 

suggests that the new therapy will profoundly amplify the therapeutic effect of tPA 

in improving survival. 

It is anticipated that in the population of stroke patients, the three-year 

mortality rate is 25%. The investigators are interested in producing a risk reduction 

of 20%, equivalent to a 80% relative risk of mortality associated with therapy. As-

suming 90% power, and a two-sided type I error rate of 0.05, the investigators re-

quire 2922 total patients, 1461 in each of the two groups. Based on this information, 

the total number of deaths in the study is anticipated to be 

(1461)(0.25) (1461)(0.25)(0.80) 658.

 The investigators are interested in computing the boundary values for a 

monitoring procedure that is based on a conditional power computation. This would 

require the simple application of the procedures discussed in Chapter Six. However, 

in the current setting, the investigators are interested in modeling the prior informa-

tion for the relative risk associated with therapy , where

2
ln

2 .
2

a ba
e                    (8.6) 

One advantage of using this functional form for the distribution of the relative risk 

is that, by choosing different values of the constants a and b, one can select from a 

variety of shapes for the prior information (Figure 8.1). 
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Figure 8.1. Different prior distributions for the relative risk in a clinical trial. 
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It is important to remember that the form of the prior distribution is chosen to repre-

sent the combination of prior beliefs about the value of the relative risk. Thus, the 

investigators have the freedom to calibrate  with their sense about the possi-

ble values of the relative risks. After much discussion among themselves they settle 

on the values a = 2.9 and b = 0 (Figure 8.2).  
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Figure 8.2. Prior distribution of relative risk of an intervention for total mortality Note the

region under prior distribution that is associated with hazard (shaded arrow).
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This distribution of the values of the relative risk  in Figure 8.2 expresses 

the prior knowledge and beliefs of the investigators in the likely values of the rela-

tive risk. Most of the distribution of probability is amassed over values of the rela-

tive risk that are less than one, suggesting that the intervention will be effective. 

However, there is substantial probability associated with the likelihood that the in-

tervention will have very different levels of effect. Note particularly the degree of 

probability associated with a hazard that may be produced by the intervention.  

The investigators wish to compute boundary values for monitoring guide-

lines. Recall from Chapter Six that the boundary value computation monitoring a 

clinical trial was based on our ability to identify that value d such that 

1 / 2 11 | .TS Z TS I dP We see from Appendix D that the prior distri-

bution, originally in terms of  can be converted to be a function of the drift pa-

rameter µ. This work reveals that the prior distribution of the drift parameter µ is 

normal with mean 2 ,
4

E b
a

 and variance 2 .
4

E
a

 In this case, where E = 658, 

b = –1, and a = 4.0, the mean of the drift is –3.21, and its variance is 3.21 (Figure 

8.3). 
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Figure 8.3. Prior probability distribution for the drift parameter in a clinical trial designed to 

examine stroke treatment efficacy.

f

mean= -3.2

variance = 3.2

We are now in a position to compute
1 / 2 11 | .TS Z TS I dP From Ap-

pendix C, we know that 

0 1 / 21 | .CP H TS Z TS I dP         (8.7) 

Following the development in Appendix D, we find that the boundary value d is

2

1 1
2

3.2 1 3.2 1
.

Z I Z I
d

I

The boundary values for this scenario can be easily computed as 

2
1.28 3.2 1 0.50 1.96 3.2 1 0.50

2.86.
0.50

d
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This is substantially lower than the value of d = 4.05 that is derived from a 90% 

conditional power computation for a two-sided type I error level of 0.05. The 

boundary value for the Bayesian predictive power assumption is less extreme be-

cause of the assumption that efficacy will be present for the remaining 50% of the 

study. This assumption of remaining efficacy means that the boundary value need 

not be so extreme in order for the probability to be high that the test statistic will 

fall in the critical region at the duration of the trial.  

8.4 Mixing Prior Information  
One of the important advantages in applying a Bayesian approach in statistical 

monitoring procedures is its ability to incorporate prior information into the compu-

tation of predictive power. However, with this flexibility comes the requirement of 

identifying a prior distribution that is defensible to the research and medical com-

munity. Although sometimes straightforward, this can be a complicated task.  

In the previous example, we chose as a prior distribution for the therapy’s 

efficacy,
2

ln
2

2

a ba
e .

This distribution is remarkably malleable, as we saw from Figure 8.1, with its shape 

varying substantially for different values of parameters a and b. In the previous 

example, the investigator chose the prior distribution a = 4 and b = 1. However, the 

involvement of more than one investigator in the research can lead to disagreements 

about the content of the prior information; each may choose a different shape for 

the prior distribution of the level of efficacy and thus the location of .

 Sharing all of the available information among investigators can help to 

resolve these differences. However, in the end, there may no single values for the 

parameters a and b that satisfy them. In this circumstance, it is possible to construct 

a mixture of prior distributions that adequately represents the collection of prior 

beliefs held by the investigators.  

 Assume the presence of two investigators 1 and 2, each of whom has his or 

her own values for the parameters a and b, (a1, b1) and (a2, b2): that is, they each 

have their own prior distribution, denoted as 1  and 2 .  We can define a 

combined or mixture prior as 
1 21 ,p p  where p is a constant 

between zero and one. Combining the prior distributions in this way allows each 

investigator’s prior information to contribute to all subsequent computations involv-

ing .  Insisting on a value of p such that 0 p 1 assures us that the rules of 

probability discussed in Chapter Three remain completely intact.* In general, if 

there are K different prior distributions 1 2 3, , ,..., ,K we can 

                                                          
* Some Bayesians dispense with the notion that the prior probabilities have to sum to one. 

The use of improper priors can in some cases be illuminating. 
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construct the prior distribution 
1

K

i i

i

p  when the collection of pi are 

chosen such that 
1

1.
K

i

i

p  Examinations of four examples of this mixture prior 

demonstrate that this combination process adds a new dimension of richness 

to the shapes of the prior distributions that are available to the investigators (Figure 

8.4). 
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Figure 8.4. Possible prior distributions that demonstrate divergent or convergent opinions 

about the effect of a therapy for the acute treatment of strokes. 
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With this type of mixture prior distribution, the predictive power and its 

associated boundary values are easy to calculate. Essentially, because the prior dis-

tribution is a weighted average over each member of the collection of prior distribu-

tions, then based on our earlier work, we know that both the predictive power and 

the boundary values are weighed averages of their values as well.  

To illustrate this process, if the investigators choose to compute the predic-

tive power of stopping at information time I based on the value of the test statistic 

TS(I) = s1, they would compute 

1 1 1 1 1 11 1.96| 1 , 1 1.96 .TS TS I s N I I s IP  P

Recalling that under the Bayesian paradigm, the parameter µ has a normal distribu-

tion with mean 2 ,
4

E b
a

 and variance 2
24

E
a

, we use the result from 

Appendix D to simply demonstrate that the predictive power continues to be the 
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probability of a normally distributed quantity with mean and variance related to the 

information time and the prior distribution. Thus, the predictive power can be writ-

ten as  

1 1 12

1 1
4

12

1.96 1
4

1 1.96| 1 .

1
4

Z

E
s I b I

a
TS TS I s F

E
I

a

P

   (8.8)

where s1 is the value of the test statistic at information time I1, and a and b are the 

parameters that the investigators chose to calibrate the prior distribution.  

If the investigators instead had chosen a mixture prior distribution that 

produced the kinds of distributions that are depicted in Figure 8.4, then the predic-

tive power is closely related to expression (8.8),  

1 1 12

1 1
41

12

1.96 1
4

1 1.96| 1 ,

1
4

iK
i

i Z

i

i

E
s I b I

a
TS TS I s p F

E
I

a

P

which is simply a weighted sum of the predictive powers. This computation is sim-

ply the weighted sum of normal probabilities.  

The idea of a mixture distribution can also be incorporated into the identi-

fication of boundary values for the interim monitoring. Recall that we find the 

boundary value of the test statistic d at information time I1 by solving 

0 1 / 2
1 | .CP H TS Z TS I dP         (8.9) 

Appendix D reveals the solution for the boundary value d to be 

2

1 2 21
2

1 1 1
4 4

.

E E
Z Z I I b I

a a
d

I
    (8.10) 

In order to incorporate the mixture of prior probabilities as in Figure 8.4, we simply 

need to write expression (8.10) as  
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2

1 2 21
2

1

1 1 1
4 4

.

i
K

i i

i

i

E E
Z Z I I b I

a a
d p

I

As an example, consider four investigators interested in executing a clinical trial to 

study the effect of a caffeine-ethanol in association with reduction in body tempera-

ture to reduce the severity of stroke. The investigators have widely different points 

of view about the effect of therapy (Figure 8.5). 
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Figure 8.5. Each of four investigators has his own assessment of the relative risk afforded

by the investigational therapy. 

Each panel in Figure 8.5 reflects an investigator’s sense of the prior infor-

mation about the value of the relative risk . Values of  less than one mean the 

therapy is beneficial, and values greater than one denote hazard. The first investiga-

tor’s point of view is that there is likely to be a relatively small, beneficial effect of 

the drug. Investigator 2 and investigator 3 believe that the therapy is likely to be 

quite effective, and investigator 4’s prior belief reflects high confidence in a moder-

ate degree of efficacy.  

 The investigators discuss among themselves, but despite their best efforts 

not one of them can convince the remaining three to give up her individual prior. 

The researchers therefore construct a composite prior based on the following 

weights: investigator 1 (0.20); investigator 2 (0.40); investigator 3 (0.30), investiga-

tor (0.10). These weights are then easily used to assemble the composite prior to 
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represent the combined sense of the investigators’ prior beliefs (Figure 8.6). Note 

that the weights sum to one. 

Examination of Figure 8.6 clearly reviews the influence of the investiga-

tors’ own beliefs in the construction of the prior distribution. The composite distri-

bution is bimodal, reflecting the strong beliefs of investigators two and three in sub-

stantial benefit afforded by the therapy as well as the sense from investigators 1 and 

4 that the relative risk will be higher.  
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f

Figure 8.6. Consensus for the prior distribution for the effect of therapy.

Once the prior distribution is obtained, the investigators can use expression (8.8) to 

easily compute the conditional power for the value of test statistic at any informa-

tion time I . 
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Table 8.4. Conditional Power Using a Mixture of Prior Distributions

(Test Statistic = 5.1)

Prior 1 Prior 2 Prior 3 Prior 4 Mixture

Information a= 5 3 1 25

Time b= 0 3 –0.25 5

0.1 0.394 0.987 0.386 0.746 0.664

0.2 0.606 0.992 0.446 0.953 0.747

0.3 0.773 0.994 0.497 0.998 0.801

0.4 0.883 0.994 0.541 1.000 0.836

0.5 0.945 0.993 0.581 1.000 0.860

0.6 0.975 0.991 0.617 1.000 0.877

0.7 0.989 0.989 0.650 1.000 0.888

0.8 0.995 0.985 0.681 1.000 0.897

0.9 0.998 0.979 0.709 1.000 0.904

1.0 0.999 0.970 0.735 1.000 0.908

8.5 Conclusions 
Bayes procedures are an important new contribution to the statistical monitoring of 

clinical research. The incorporation of prior information provides flexibility to the 

investigator and a smooth, defensible, and reproducible way to incorporate the prior 

information into the monitoring procedure.  

However, the requirement of the explicit specification of the prior distribu-

tion can be problematic if there is not much good information about the parameter 

to be estimated. In general, in order to be useful, prior distributions must reflect the 

state of information about the level of efficacy although at the same time avoiding 

unnecessary mathematical complexity. Like other design parameters, this should be 

completely pre-specified before the trial commences. 

Each of the Bayes and frequentist perspectives’ are useful, and one should 

not always be considered preferable to the other. If there is good prior information, 

the Bayes approach is a natural alternative. However, if there is little or no prior 

information, the researcher might be best served by staying with the classical per-

spective. In any event, scientists should make their decision prospectively.  

Problems 
1. Can you show that the conditional power computation in Section 8.2 is the 

same as the Bayesian predictive power when the prior is 0 ?1

2. Compute the predictive power for the monitoring situation described in Section 

8.2 under the following scenarios. 
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a.
0 1

0.50 0.50 .1 1

b.
0 4

0.50 0.15 .1 1

c.
0 5

0.05 0.95 .1 1

3. Describe in words the difference in the prior information contained about  in 

each of the four panels of Figure 8.4.  

4. In a particular research situation in which there are K different prior distribu-

tions 1 2 3, , ,..., ,K we can construct the prior distribution 

1

K

i i

i

p  when the collection of probabilities pi are chosen such that 

1

1.
K

i

i

p  How does permitting the alternative assumption that 
1

1
K

i

i

p affect

the predictive power?  
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Boundary Value for Normal Mean  

Our goal here is to compute a minimum boundary value for the observed mean of a 

collection of normally distributed random variables based on a previously identified 

mean value. Specifically, let m represent the number of observations on which the 

interim assessment is made, such that 0 < m < n. We know the probability distribu-

tion of nX . We need to find the probability distribution of nX  given mX . It can be 

demonstrated that, if x1, x2, x3, …, xp are independent and each follows a normal 

distribution with mean µ and variance 2, and mX  is known, nX  still follows a 

normal distribution but with mean µc, and variance vc where*

2

2
,

mc

c

m
X

n

n m
v

n

where 0 < m n p. Thus, the new mean for nX  that is now conditioned on the 

value of mX  depends on both m and .mX  The variance of nX  that is conditioned 

on the value of mX  depends on m.

 If we let b be the upper bound of ,mX  we need to compute b such that  

67 | 0.95.n mX X bP

                                                          
* This demonstration follows from a simple transformation of variables. 
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Under the condition mX b , recall that the mean for nX  is m b
n

 and 

its variance is 2
2

n m

n
. We may therefore, subtract this mean and divide by 

the standard deviation to write the preceding expression as  

2 2

2 2

2

2

67

0.95

67

(0,1) 0.95.

n

m m
X b b

n n

n m n m

n n

m
b

n
N

n m

n

P

P

Because we also know that (0,1) 1.645 0.95,NP we can write  

2

2

67

1.645.

m
b

n

n m

n

We now solve for b

Continuing, 

2

2

2

2

2

2

67

1.645

67 1.645

67 1.645 .

m
b

n

n m

n

m n m
b

n n

m n m
b

n n
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2

2

2

2

67 1.645

67 1.645 .

m n m
b

n n

n n m
b

m n

If mX b  there is a 95% probability that 67.nX
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Appendix B 

Conditional Brownian Motion 

One of the most interesting and useful features of Brownian motion is the unique 

nature of the dependence. This dependence can easily be characterized, and this 

characterization is based on the parameters of the distribution. The section will use 

some of the features of the multivariate normal distribution in order to identify the 

probability distribution of (1) Brownian motion conditioned on the past, and (2) 

Brownian motion conditioned on both the future and the past (Brownian bridge). 

B.1 Nomenclature and Background Mathematics 
The goal of this appendix is to identify the probability density function of Brownian 

motion conditioned on the past, and Brownian motion conditioned on both the past 

and the future. This work is straightforward, and for the neophyte to Brownian mo-

tion, even illuminating. However, it will require a preamble of mathematics, which 

is provided before derivation of the main results.  

B.1.1 Notation 
The results will be in terms of standard Brownian motion B(t). If x = B(t), then the 

probability density function of x is
2

2
1

( ) .
2

x

t
Xf x e

t
                                          (B.1) 

As was pointed out in Chapter Three, it is the area under this curve that produces 

the probabilities for events involving possible interval values of x. In addition, it 

will be helpful to define times t1, t2, and t3 such that 0 < t1 t2 t3. Define x1 = 

B(t1), x2 = B(t2), and x3 = B(t3).
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B.1.2 Multivariate Normal Distributions 
Two random variables W and V follow a joint normal distribution if the function 

that governs their probability computations (i.e., the probability density function) is  

1

2

, 1/ 2

1
( , )

2 det

w
w v

v

w
w v

v

W Vf w v e  (B.2) 

where the mean of W is ,W the mean of V is .V  The quantity is known as the 2 

x 2 variance-covariance matrix of the random variables W and V when they are as-

sembled into a 2 by 1 vector 
W

V
. In the circumstance of two random variables,  

( ) ( , )

( , ) ( )

Var W Cov W V

Cov W V Var V
.

In the cases that will be evaluated in this appendix 0.W V  In this case equa-

tion (B.2) may be written as  

1

2

, 1/ 2

1
( , )

2 det

w
w v

v

W Vf w v e                (B.3) 

In the case of three jointly distributed normal random variables, W, V, and Y, each 

with means of zero, we may generalize equation (B.3) to write 

1

2

, , 1/ 2

1
( , , )

2 det

w

w v y v

y

W V Yf w v y e                    (B.4) 

where  

( ) ( , ) ( , )

( , ) ( ) ( , )

( , ) ( , ) ( )

Var W Cov W V Cov W Y

Cov W V Var V Cov V Y

Cov W Y Cov V Y Var Y

                 (B.5) 

B.2 Covariance and Brownian Motion Elements 
If we are to apply formulas (B.3), and (B.4) to the joint distribution of Brownian 

motion elements, we will need to identify the elements of the variance-covariance 

matrix  This requires us to find the covariance between two Brownian elements.  
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As defined in section A.1. let t1, t2 be times such that 0 < t1 t2 , and define x1 = 

B(t1), x2 = B(t2). We must identify the covariance of x1 and x2. This covariance is 

defined as  

1 2 1 2 1 2 1 2,Cov X X E X X E X E X E X X         (B.6) 

where E[W] is the expected value or mean of the random variable W. The right-

most equality stems from the fact that in the circumstance of standard Brownian 

motion, 
1 2 0.E X E X

To compute 1 2E X X , we use a double expectation argument, i.e., 

1 21 2 1 2 1 1
, , |X XE g X X E E g X X X x . Applying this result to 

1 2 1 2, ,g X X X X and computing the inner expectation first, we find  

2 2 2

2

1 2 1 1 1 2 1 1 1 2 1 1 1 1 1
| | | .X X XE X X X x E x X X x x E X X x x x x

Continuing, 

1 2 1

2

1 2 1 2 1 2 1 1 1 1, | .X X XCov X X E X X E E X X X x E x t

This last result follows from
22 2

1 1 1 1 1
.t Var X E x E x E x  Thus, the 

covariance of two Brownian elements x1 = B(t1) and x2 = B(t2) is the minimum of 

the times t1 and t2.

 The correlation between these elements follows. 

1

1 2 1 1

1 2

2 21 2

,
, .

,X X

Cov X X t t
Corr X X

tt t

where 0 t1 t2. Note that when t1 = 0, the correlation between B(0) and B(t2) is 

zero. This correlation increases as t1 approaches t2, reaching its maximum value of 

one when t1 = t2.

B.3 Brownian Motion Conditioned on the Past 
With this as background, we can now find the distribution of a Brownian motion 

element that is conditioned on the past. Let 0 < t1 t2 and x1 = B(t1), x2 = B(t2). We 

are interested in the probability distribution of x2 given x1. Relying on the discus-

sions in Chapter Three, we write  

1 2

1

, 1 2

2 1

1

,
| .

X X

X

f x x
f x x

f x
(B.7) 
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We know that 

2
1

1

1

2

1

1

1

2

x

t

Xf x e
t

. Using equation (B.3), we write that  

1
1 2

2

1 2

1

2

, 1 2 1/ 2

1
,

2 det

x
x x

x

X Xf x x e              (B.8) 

From our examination of the covariance between two Brownian motion elements, 

we know from the previous section that  

1 1 2 1 1

1 2 2 1 2

,
.

,

Var X Cov X X t t

Cov X X Var X t t
           (B.9) 

The 2

1 2 1 1 2 1det ,t t t t t t  and we can write  

1

1 1 2 1

1 2 1 1 1 2 1

1t t t t

t t t t t t t
              (B.10) 

Applying these results to the exponent of equation (B.8), we have 

1 2 1 1

1 2 1 2

2 1 1 21 2 1

2 2

1 2 1 1 2 2 1

1 2 1

1 1 1

2 2

21
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 (B.11) 

We can then write the conditional density of x2 given x1 as  

2 2
1 2 1 1 2 2 1

1 2 1
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1
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2 2 2
1 2 1 1 2 2 1 1
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t t tf x x

f x x
f x

e
t

e
t t

(B.12) 

Examining the exponent of the last line of expression (B.12), we find  
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2 2 2

1 2 1 1 2 2 1 1
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             (B.13) 

Completing the square for the term 2

2 1 22x x x  reveals  

2 2

2 2 2 2 1 1

2 1 2 1 1

2 1 1 2 1 1

2 2 2

2 2 1 2 1 1

2 1 2 1

2 1 2 1 1 2 1 1

2

2 1
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1
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t t t t t t t t

x x
t t

With this simplification of the exponent, we may now write the conditional density 

of x2 given x1 .

2

2 1
2 1

1

2

2 1

2 1

1
|

2

x x
t t

f x x e
t t

           (B.14) 

This is the density of a normal random variable with mean x1 and variance t2 – t1.

B.4 Brownian Motion Conditioned on the Past and 
Future
We are now in a position to find the distribution of a Brownian element that is con-

ditioned both on the past and the future. In this circumstance, we are given and x1 = 

B(t1), x2 = B(t2), and x3= B(t3) where 0 < t1 < t2 < t3 . Following the previous devel-

opment of section A.3, we  

1 2 3

1 3

, , 1 2 3

2 1 3

, 1 3

, ,
| , .

,

X X X

X X

f x x x
f x x x

f x x
(B.15) 

Using equation (B.3), we are able to write the denominator of this conditional prob-

ability distribution as that 

2 2
1 3 1 1 3 2 1

1 3 1

1 3

21

2

, 1 3

1 3 1

1
,

2

t x t x x t x

t t t

X Xf x x e
t t t

. We pro-

ceed with developing the numerator of expression (B.15) 
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1
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, , 1 2 3 3
1/ 2

2

1
, , .

2 det

x

x x x x

x

X X Xf x x x e              (B.16) 

From our examination of the covariance between two Brownian motion elements, 

we know from the previous section that  

1 1 2 1 3 1 1 1
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           (B.17) 

The 1 3 2 2 1det .t t t t t Using elementary row and column operations, we 

can write  
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          (B.18) 

Applying these results to the exponent of equation (B.16), we have 
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(B.19) 

We can then write the conditional density of x2 given x1 and x3 as
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2 2 231
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(B.20) 

This last expression requires simplification. Begin by writing 

3

2
1 3 2 2 1 1 3 1

1 3 2 2 1 3 2 2 1

1 3 1 3 1

1

2 1 1

1 2
2

2

t t t t t t t t

t t t t t t t t t

t t t t t

This simplification reveals that the variance of the conditional distribution of x2

given x1 and x3 will be 
3 2 2 1

3 1

.
t t t t

t t
We can use this observation to guide our 

simplification of the exponent. Begin by writing the exponent as 

2 2 231
2 2 1 3
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Note that only the first two terms contain the variable x2. Completing the square 

with respect to x2 and simplifying reveals that the exponent can be written as 

2

3 1 3 2 1 2 1 3

2

3 2 2 1 3 1

1
.

2

t t t t x t t x
x

t t t t t t

Thus, the conditional probability can be written as  
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2
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This is a normal distribution with mean 
3 2 1 2 1 3
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 and variance  
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Boundary Values and Conditional Power  

Our goal here is to compute a minimum boundary value for efficacy/harm and the 

boundary value for stopping a clinical research effort because of the all but inevita-

ble absence of clinical effect (futility). These computations will be carried out under 

conditional power assumptions.  

C.1 Monitoring for Efficacy or Harm 
In this setting, the investigators wish to compute the value b such that, if the test 

statistic at information time I is equal to b, then the probability that the test statistic 

falls in the critical region at the conclusion of the study is at least some value 

when  is large (i.e.,  = 0.95). The probability statement for this occurrence is  

0 1 / 2
1 |CP H TS Z TS I bP             (C.1) 

To solve for b, we first convert expression (C.1) to a statement involving a 

Brownian motion event.  

1 / 21 |B Z B I IbP

Recognizing this as Brownian motion conditioned on the past can write.  

1 / 21B I Z IbP

Because the investigator is working under the null hypothesis, this expression may 

be written as  
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1 / 2

1 / 2

0,1

0,1 .
1

N I Z Ib

Z Ib
N

I

P

P

However, because 
10,1N ZP , we may now write 

1 / 2 1

1

1
1

Z I b
Z

I
                         (C.2) 

Solving expression (C.2) for b reveals 

1 / 2 1 1

1

1
.

Z Z I
b

I
                        (C.3) 

The probability statement for this occurrence for harm is  

0 / 21 |CP H TS Z TS I bP             (C.4) 

To solve for b, we first convert expression (C.1) to a statement involving a 

Brownian motion event.  

/ 21 |B Z B I IbP

Recognizing this as Brownian motion conditioned on the past can write.  

/ 21B I Z IbP

Because the investigator is working under the null hypothesis, this expression may 

be written as  

/ 2

/ 2

0,1

0,1 .
1

N I Z Ib

Z Ib
N

I

P

P

However, because 0,1N ZP , we may now write 
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/ 2

1

Z Ib
Z

I
                         (C.5) 

Solving expression (C.2) for b reveals 

/ 2 1
.

Z Z I
b

I
                        (C.6) 

C.2 Calculation for Futility 
A similar style of calculation may be carried out to compute the value of a bound-

ary value such that, if achieved, would reflect the low likelihood of a positive re-

search result even under the most optimistic case. In this circumstance, the investi-

gators are concerned about the relatively low probability that the test statistic will 

fall in the critical region at the end of the study, given the test statistic at informa-

tion time I1 is equal to a value f. In the conditional power environment, this may be 

written as  

1 / 2 11 | .aCP H TS Z TS I fP              (C.7) 

where  is a small value (i.e.,  = 0.10). 

 We proceed as we did before, converting the event in expression (C.7) to 

an equivalent event involving Brownian motion, then invoking the property of 

Brownian motion conditioned on the past.  

1 / 2 1 1 1

1 / 2 1 1

1 1 / 2 1

1 |

(1) |

(1 ) .

TS Z I TS I f I

B Z B I f I

B I Z f I

P

P

P

              (C.8) 

At this point, we note that under the alternative hypothesis, the Brownian process 

has a nonzero drift parameter µ. We may now rewrite the last line of expression 

(C.8) as  

1 1 1 / 2 11 , 1 ,N I I Z f IP

standardizing to  

1 / 2 1 1

1

1
(0,1) .

1

Z f I I
N

I
P                 (C.9) 
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The probability of the event in expressed in (C.9) is low. We may therefore, write 

1(0,1) .N ZP  This statement, in combination with (C.9) reveals 

1 / 2 1 1

1

1

1
,

1

Z f I I
Z

I

which, when solved for f, reveals  

1 / 2 1 1 1

1

1 1
.

Z Z I I
f

I
              (C.10) 

A similar computation can be carried out for futility examining the issue of safety. 

In this circumstance, the investigators are concerned about the relatively low prob-

ability that the test statistic monitoring safety will fall in the critical region at the 

end of the study, given the test statistic at information time I1 is equal to a value fs.

where fs denotes the futility value for safety. In the conditional power environment, 

this may be written as  

/ 2 1
1 | .a f sCP H TS Z TS I fP              (C.11) 

where f denotes conditional power for safety, and, as for the futility computation 

for efficacy is a small value. 

 We proceed as we did before, converting the event in expression (C.7) to 

an equivalent event involving Brownian motion, then invoking the property of 

Brownian motion conditioned on the past.  

/ 2 1 1 1

/ 2 1 1

1 / 2 1

1 |

(1) |

(1 ) .

f s

s

s

TS Z I TS I f I

B Z B I f I

B I Z f I

P

P

P

              (C.12) 

At this point, we note that under the alternative hypothesis, the Brownian process 

has a nonzero drift parameter µ. We may now rewrite the last line of expression 

(C.8) as  

1 1 / 2 11 , 1 ,N I I Z f IP

standardizing to  
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/ 2 1 1

1

1
(0,1) .

1

s

s

Z f I I
N

I
P                 (C.13) 

The probability of the event in expressed in (C.9) is low. We may therefore, write 

(0,1) .
ss N ZP  This statement, in combination with (C.9) reveals 

/ 2 1 1

1

1
,

1
s

sZ f I I
Z

I

which, when solved for fs, reveals  

/ 2 1 1

1

1 1
.s

Z Z I I
f

I
              (C.14) 
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Appendix D 

Supporting Bayesian Computations 

In Chapter Eight, we focused on the computation of a boundary value for a test sta-

tistic in a clinical trial with total mortality as a primary endpoint, and a prior distri-

bution 

2
ln 2

.
2

a ba
e

Investigators choose the values of the constants a and b consistent with the current 

medical knowledge. Our goal is to incorporate this prior distribution into a condi-

tional power computation that would produce the boundary values that would guide 

interim monitoring of the trial.  

Recall from Appendix C that, if the investigators wish to compute bound-

ary value d such that, if the test statistic at information time I is equal to d, then the 

probability that the test statistic falls in the critical region at the conclusion of the 

study is at least some value  when  is large (i.e.,  = 0.95). The probability state-

ment for this occurrence is  

0 1 / 2
1 | .CP H = = TS Z TS I dP              (D.1) 

To solve for d, we first convert expression (D.1) to a statement involving a 

Brownian motion event.  

1 / 2(1) | .= B Z B I I dP

Recognizing this as Brownian motion conditioned on the past can write.  

1 / 2(1 ) .= B I Z I dP                                (D.2) 
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The traditional conditional power approach assumes that there is no efficacy for the 

unexpired duration of the study. However, in the Bayesian setting, we assume that 

there is efficacy for the remainder of the study at a level dictated by the prior distri-

bution .  Let the drift parameter be µ. Then we may transform expression 

(D.2) to  

1 / 2(1 ),1 .= N I I Z I dP             (D.3) 

This probability can be evaluated conditional on the value of µ. However, we only 

have the prior distribution in terms of the relative risk . Our plan is to link µ to 

for which we have a prior distribution. Recall from Chapter Six that the drift pa-

rameter µ can be written in terms of the relative risk  as

ln ,
4

E
                        (D.4) 

where E is the anticipated total number of primary endpoint events in the trial. To 

convert prior probability distribution for , to the probability distribution to µ, 

using expression recall that  

2
ln 2

.
2

a ba
e                    (D.5) 

Begin by writing ln .w Then ,we  and .wd e dw Then we may write 

2

2

ln 2

2

2

.
2

wa e b w

w

aw b

a
w e e

e

a
e

Letting ,
4

E
w  we may transform w to .
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2

2

2

2

4
2

1

42
4

2

4

2

1
.

2
4

a b
E

E
b

E a

a

a
w e

E

e
E

a

Thus, the prior distribution of µ,  is normal with mean 24
E b

a
 and vari-

ance 2 .
4

E
a

This result must now be used to identify the distribution of Brownian motion with 

mean 1 I  and variance 1 I  where µ itself is a random variable following a 

normal distribution with mean 24
E b

a
 and variance 2 .

4
E

a

We will solve the problem in general. Let X be a variable that follows a 

normal distribution with mean 1 I  and variance 2. Let µ itself follow a nor-

mal distribution with mean  and variance 2.  We must identify the unconditional 

probability for X. From | ,X Xf x f x u we may write 

2 2

2 2

2 2

2 2

(1 )

2 2

2 2

(1 )

2 2

2 2

|

1 1

2 2

1

2

X X

x I

x I

f x f x u

e dx e d

e dxd

        (D.6) 

Our goal will be to complete the square in the exponential, adding the 

terms that will allow us to carry out the integration with respect to µ. It will then 

remain for us to recognize the remaining terms which will be in terms of , 2, and 
2. We proceed by defining the exponent in the last line of expression (D.6) as A

and writing  
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2 2 2 2
(1 ) (1 )1

2 2 2 222 2

2 22 2(1 )1
.

2 2 2 22

x I x IA

x I

Continuing,  

2 2 2 2 2 2

1 2 22 2(1 )
2 22

1 2 22 2(1 )
2 2

2

1 2 2 21 2 1
2 22

A x I

x I

I I x x

Define  

2

2 2

2 1 I

Continuing, with the goal of substituting the value one for the coefficient of µ2, we 

find 

2
2 2 2

2

2 2

2 1 21
2

2 22 1 1

I x
x

A
I I

which may be rewritten as  

2
2 2 2

2

2 2

2 1 21 1
2

2 22 21 1

I x
x

A
I I

(D.7)            

Completing the square for the term 

2

2

2

2 1

2 ,
2 1

I x

I
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we find 

2

2

2

2 2 2

2

2 2 2

2

2 2

2 2

2 1

2
2 1

2 2 21 1 1

2
2 2 21 1 1

2 21 1

.
2 21 1

I x

I

I x I x I x

I I I

I x I x

I I

(D.8) 

Substituting the last line of (D.8) for 

2

2

2

2 1

2
2 1

I x

I
in expression 

(D.7), we may now write  

2 2
2 2

2 2 2

2 2 2

2
2

2

2 21 1 21 1

2 2 22 21 1 1

2 1
1

( )
22 1

I x I x
x

A
I I I

I x

C x
I

Returning to expression (D.6) we may write 

2 2

2 2

2
2 2

2 2 22

22

(1 )

2 2

2 2

11

12
1( )

2 22

2

( )

2

1

2

1 1

22 1 2
2 1

1
.

22 1

x I

X

I x

I

IC x

C x

f x e dxd

e e du

I

I

e

I

because the integrand is the probability density function of a normally distributed 

random variable with mean 
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2

2

2 1

2 1

I x

I

and variance 
2 2

2
.

2 1 I
 It now remains to identify C(x).

2

2
2 2 2

2 2

2
22 2 2 2

2 2
2 2

2 12
2 ( )

2 21 1

2 2 21 1

2 21 1

I x
x

C x
I I

x I I x

I I

Further simplification reveals 

2 24 2 2 2 2 2

2
2

2
4 2 2

2
2

2 2 21 1

2 ( )
2 1

2 22 1 1

.
2 1

x I x I

C x

I

I x I x

I

Cancellation of terms produces 
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2 2 2

2

2

2

1
( ) 2 (1 ) (1 )

22 1

1
(1 ) .

22 1

C x x I x I

I

x I

I

Thus, the probability function of X is 

2

22

1
(1 )

2 1

2

1
.

22 1

x I

I

Xf x e

I

a function that we recognize as a normal distribution with mean 1 I and vari-

ance
22 1 .I

 For the setting that was discussed and elaborated in Chapter Eight, 

2
2 2, 1 , .

4 4
E Eb I

a a
 Thus, for b = 1 a = 4, and E = 658, the 

mean of X is 3.21 1 I , its variance is 
4

3.21 1 .I

D.1 Application to Predictive Boundaries 
To compute the predictive power using this prior distribution and we 

recall that the investigators choose to compute the predictive power of stopping at 

information time I1 based on the value of the test statistic TS(I1) = s1. They would 

compute 

1 1

1 1 1 1 1 1

1 1 1 1

1 1.96|

(1) 1.96 | (1 ) 1.96

1 , 1 1.96 .

TS TS I s

B B I I s B I I s

N I I s I

P

P P

P

The right hand side of the previous expression is a computation that would be a 

function of the drift parameter µ. However, we know that µ has a prior distribution. 

The work from the previous section demonstrates that µ is normally distributed with 

mean 2 1
4

E b I
a

 and variance 
4

2 1 .
4

E I
a

 Thus, we may complete the 

conditional power computation by writing 
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1 1

1 1 1 1

4

1 12 2

1 1.96|

1 , 1 1.96

1 , 1 1.96 .
4 4

TS TS I s

N I I s I

E E
N b I I s I

a a

P

P

P

Continuing, we can write 

1 1 12

4

12

1 1 12

4

12

1.96 1
4

0,1

1
4

1.96 1
4

1 .

1
4

Z

E
s I b I

a
N

E
I

a

E
s I b I

a
F

E
I

a

P

And the predictive power is a function of the value of test statistic s1 at information 

time I1, and values of the parameters a and b in the prior distribution .Recall

that we find the boundary value of the test statistic d at information time I1 by solv-

ing

0 1 / 2
1 |CP H TS Z TS I dP         (D.9) 

As we saw in Chapter Five, we need to solve for the value of d, we first convert 

expression (D.9) to a statement involving a Brownian motion event,  

1 / 21 |B Z B I I dP

Recognizing this as Brownian motion conditioned on the past we can write  

1 / 21 ,B I Z I dP

which now can be written as  

1 / 21 , 1 .N u I I Z I dP              (D.10) 

Using the Bayesian perspective, we know that µ has a prior distribution associated 

with it, which in our current paradigm, is a normal distribution. We demonstrated 



Supporting Bayesian Computations 247

earlier in this appendix that when the values of µ are averaged out, that expression 

(D.10) continues to follow a normal distribution mean 2 1
4

E b I
a

 and vari-

ance
4

2 1 .
4

E I
a

 Thus, expression (D.10) becomes. 

2

1 / 22 2
1 , 1 1 .

4 4

E E
N b I I I Z I d

a a
P

Simplification yields 

4

1 / 22 2

1 / 2 2

4

2

1 , 1
4 4

1
4

0,1 .

1
4

E E
N b I I Z I d

a a

E
Z I d b I

a
N

E
I

a

P

P

Because we know that 
1

(0,1) ,N ZP  we can write 

1 / 2 2

4

2

1
4

.

1
4

E
Z I d b I

a

E
I

a

It simply remains to solve for the boundary value d,

1 / 2 2

4

2

4

1 / 22 2

4

1 / 2 2 2

1
4

.

1
4

1 1
4 4

1 1
4 4

.

E
Z I d b I

a

E
I

a

E E
I Z I d b I

a a

E E
Z I b I

a a
d

I
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And we observe that the boundary value is a function of the conditional power ,

the type I error at the end of the study , the information time at which the test sta-

tistic will be assessed I, and the parameters a and b of the prior distribution for the 

therapy’s effectiveness .
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Appendix E 

Standard Normal Probabilities 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

z

Z zP

0

z P(Z < z) z P(Z < z) z P(Z < z) z P(Z < z)

-3.00 0.001 -1.55 0.061 -0.10 0.460 1.35 0.911

-2.95 0.002 -1.50 0.067 -0.05 0.480 1.40 0.919

-2.90 0.002 -1.45 0.074 0.00 0.500 1.45 0.926

-2.85 0.002 -1.40 0.081 0.05 0.520 1.50 0.933

-2.80 0.003 -1.35 0.089 0.10 0.540 1.55 0.939

-2.75 0.003 -1.30 0.097 0.15 0.560 1.60 0.945

-2.70 0.003 -1.25 0.106 0.20 0.579 1.65 0.951

-2.65 0.004 -1.20 0.115 0.25 0.599 1.70 0.955

-2.60 0.005 -1.15 0.125 0.30 0.618 1.75 0.960

-2.55 0.005 -1.10 0.136 0.35 0.637 1.80 0.964

-2.50 0.006 -1.05 0.147 0.40 0.655 1.85 0.968

-2.45 0.007 -1.00 0.159 0.45 0.674 1.90 0.971

-2.40 0.008 -0.95 0.171 0.50 0.691 1.95 0.974

-2.35 0.009 -0.90 0.184 0.55 0.709 2.00 0.977

-2.30 0.011 -0.85 0.198 0.60 0.726 2.05 0.980

-2.25 0.012 -0.80 0.212 0.65 0.742 2.10 0.982

-2.20 0.014 -0.75 0.227 0.70 0.758 2.15 0.984

-2.15 0.016 -0.70 0.242 0.75 0.773 2.20 0.986

-2.10 0.018 -0.65 0.258 0.80 0.788 2.25 0.988

-2.05 0.020 -0.60 0.274 0.85 0.802 2.30 0.989

-2.00 0.023 -0.55 0.291 0.90 0.816 2.35 0.991

-1.95 0.026 -0.50 0.309 0.95 0.829 2.40 0.992

-1.90 0.029 -0.45 0.326 1.00 0.841 2.45 0.993

-1.85 0.032 -0.40 0.345 1.05 0.853 2.50 0.994

-1.80 0.036 -0.35 0.363 1.10 0.864 2.55 0.995

-1.75 0.040 -0.30 0.382 1.15 0.875 2.60 0.995

-1.70 0.045 -0.25 0.401 1.20 0.885 2.65 0.996

-1.65 0.049 -0.20 0.421 1.25 0.894 2.70 0.997

-1.60 0.055 -0.15 0.440 1.30 0.903 2.75 0.997
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R
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exploratory monitoring and adverse 

events, 185 

monitoring multiple endpoints, 175 

motivation for monitoring, 169 

small sample monitoring, 181 

symmetric monitoring, 172 

samples 

3 principles of sample-based research, 

35

advantages of random sampling, 38 

generalize to populations, 34 

sampling

and monitoring clinical research, 37 

limitations of random samples, 39 

sequential trials. See interim monitoring 

set functions. See probability 

statistical inference 

and confidence intervals, 43 

clinical versus statistical hypotheses, 

46

hypothesis testing paradigm, 46 

introduction, 43 

p-values, 47 

statistical hypothesis generation, 46 

statistical power, 49 

statistics 

troubles physicians have, 33 

stochastic curtailment. See conditional 

power

T

The CAST Trial, 4 

Thomas Moore, 28 

tied down Brownian motion. See
conditional power 

U

unions. See events and sets 

W

Wald, Abraham, 16 

Whitehead. See interim monitoring 

triangle test, 131 

Wiener, Norbert. See Brownian motion 

X
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example of monitoring, 187 
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