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Preface

The 11th edition of Statistics at Square One has three innovations: 
extensive use of free statistical software, a separate chapter on diag-
nostic tests and a separate chapter on summary measures for binary 
data. These latter two are aimed at general practitioners as well as 
others, and should contain much of the material they are likely to 
find about statistics in the Applied Knowledge Test (AKT) for the 
Royal College of General Practitioners (RCGP).

The recent availability of general free statistical software has meant 
that I have been able to remove all the details of how to derive results 
using calculators. One advantage of free software from an author’s 
viewpoint is that it can now be assumed that all the readers are using 
the same programs. However I have retained formulas, because with-
out them the computer software is just a “black box”. I have added a 
section to some chapters on formula appreciation, because the formu-
las give clear messages about the assumptions underlying the methods. 
I have also suggested some exercises in “playing with the data” since 
the advantage of using computers is that it is little additional effort to 
change the data and see the effect on the results. This exercise empha-
sizes which assumptions are important and which are less so.

I have chosen three main packages that are freely available to stu-
dents, and cover all the material in this book. These are OpenOffice 
Calc, OpenEpi, and OpenStat. All the statistical methods in the book 
are illustrated using one of these packages in the final chapter. I am 
grateful to the originators of these packages for allowing me to ref-
erence them, and to the myriad of unpaid contributors who have 
meant that the standards in these packages approach those of pack-
ages that one has to pay for. However, they come with no guaran-
tees and results should be replicated if they are to be published.

The use of free software should make the book attractive in 
countries where cost of licensed software is an issue.

I am grateful to my colleagues Jenny Freeman, Steven Julious 
and Stephen Walters for comments on various parts of this book 
and for support.

MJ Campbell
Sheffield

www.sheffield.ac.uk/scharr/sections/hsr/statistics/staff/campbell.html
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CHAPTER 1

Data display and summary

Types of data

The first step, before any calculations or plotting of data, is to 
decide what type of data one is dealing with. There are a number 
of typologies, but one that has proven useful is given in Table 1.1. 
The basic distinction is between quantitative variables (for which 
one asks “how much?”) and categorical variables (for which one 
asks “what type?”).

Quantitative variables can either be measured or counted. 
Measured variables, such as height, can in theory take any value 
within a given range and are termed continuous. However, even 
continuous variables can only be measured to a certain degree of 

Table 1.1 Examples of types of data.

Quantitative

Measured Counted

Blood pressure, height, weight, age Number of children in a family

Number of attacks of asthma per week

Number of cases of AIDS in a city

Categorical

Ordinal (ordered categories) Nominal (unordered categories)

Grade of breast cancer Sex (male/female)

Better, same, worse Alive or dead

Disagree, neutral, agree Blood group O, A, B, AB
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accuracy. Thus, age is often measured in years, height in centimeters. 
Examples of crude measured variables would be shoe or hat sizes, 
which only take a limited range of values. Counted variables are 
counts with a given time or area. Examples of counted variables 
are number of children in a family and number of attacks of 
asthma per week.

Categorical variables are either nominal (unordered) or ordinal 
(ordered). Nominal variables with just two levels are often termed 
binary. Examples of binary variables are male/female, diseased/
not diseased, alive/dead. Variables with more than two categories 
where the order does not matter are also termed nominal, such as 
blood group O, A, B, AB. These are not ordered since one cannot 
say that people in blood group B lie between those in A and those 
in AB. Sometimes, however, the categories can be ordered, and the 
variable is termed ordinal. Examples include grade of breast cancer, 
or a Likert scale where people can “agree”, “neither agree nor disa-
gree”, or “disagree” with some statement. In this case, the order 
does matter and it is usually important to account for it.

Variables shown in the top section of Table 1.1 can be converted 
to ones below by using “cut-off points”. For example, blood pres-
sure can be turned into a nominal variable by defining “hyper-
tension” as a diastolic blood pressure greater than 90 mmHg, and 
“normotension” as blood pressure less than or equal to 90 mmHg. 
Height (continuous) can be converted into “short”, “average”, or 
“tall” (ordinal). In general, it is easier to summarize categorical 
variables, and so quantitative variables are often converted to cat-
egorical ones for descriptive purposes. To make a clinical decision 
about a patient, one does not need to know the exact serum potas-
sium level (continuous) but whether it is within the normal range 
(nominal). It may be easier to think of the proportion of the popu-
lation who are hypertensive than the distribution of blood pressure. 
However, categorizing a continuous variable reduces the amount of 
information available, and statistical tests will in general be more 
sensitive—that is, they will have more power (see Chapter 6 for 
a definition of power)—for a continuous variable than the corre-
sponding nominal one, although more assumptions may have to be 
made about the data. Categorizing data is therefore useful for sum-
marizing results, but not for statistical analysis. However, it is often 
not appreciated that the choice of appropriate cut-off points can 
be difficult, and different choices can lead to different conclusions 
about a set of data.
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These definitions of types of data are not unique, nor are they 
mutually exclusive, and are given as an aid to help an investigator 
decide how to display and analyze data. Data which are effectively 
counts, such as death rates, are commonly analyzed as continu-
ous if the disease is not rare. One should not debate overlong the 
typology of a particular variable!

Stem and leaf plots

Before any statistical calculation, even the simplest, is performed, 
the data should be tabulated or plotted. If they are quantitative 
and relatively few, say up to about 30, they are conveniently writ-
ten down in order of size.

For example, a pediatric registrar in a district general hospital is 
investigating the amount of lead in the urine of children from a 
nearby housing estate. In a particular street, there are 15 children 
whose ages range from 1 year to under 16, and in a preliminary 
study the registrar has found the following amounts of urinary 
lead (µmol/24 h), given in Table 1.2.

Table 1.2 Urinary concentration of lead in 15 children from housing estate 
(µmol/24 h).

0.6, 2.6, 0.1, 1.1, 0.4, 2.0, 0.8, 1.3, 1.2, 1.5, 3.2, 1.7, 1.9, 1.9, 2.2

Stem Leaf

3 2
2 6 0 2

0 6 1 4 8
1 1 3 2 5 7 9 9

Figure 1.1 Stem and leaf “as they come”.

A simple way to order, and also to display, the data is to use a 
stem and leaf plot. To do this we need to abbreviate the observations 
to two significant digits. In the case of the urinary concentration 
data, the digit to the left of the decimal point is the “stem” and the 
digit to the right the “leaf”.

We first write the stems in order down the page. We then work 
along the data set, writing the leaves down “as they come”. Thus, 
for the first data point, we write a 6 opposite the 0 stem. These are 
as given in Figure 1.1.
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We then order the leaves, as in Figure 1.2.
The advantage of first setting the figures out in order of size 

and not simply feeding them straight from notes into a calculator 
(e.g. to find their mean) is that the relation of each to the next can 
be looked at. Is there a steady progression, a noteworthy hump, 
a considerable gap? Simple inspection can disclose irregularities. 
Furthermore, a glance at the figures gives information on their 
range. The smallest value is 0.1 and the largest is 3.2 µmol/24 h. 
Note that the range can mean two numbers (smallest, largest) or 
a single number (largest minus smallest). We will usually use the 
former when displaying data, but when talking about summary 
measures (see Chapter 2) we will think of the range as a single 
number.

Median

To find the median (or midpoint) we need to identify the point 
which has the property that half the data are greater than it, and 
half the data are less than it. For 15 points, the midpoint is clearly 
the eighth largest, so that seven points are less than the median 
and seven points are greater than it. This is easily obtained from 
Figure 1.2 by counting from the top to the eighth leaf, which is 
1.50 µmol/24 h.

To find the median for an even number of points, the procedure 
is illustrated by an example.

Suppose the pediatric registrar obtained a further set of 16 uri-
nary lead concentrations from children living in the countryside in 
the same county as the hospital (Table 1.3).

To obtain the median we average the eighth and ninth points (1.8 
and 1.9) to get 1.85 µmol/24 h. In general, if n is even, we average 
the (n/2)th largest and the (n/2 � 1)th largest observations.

The main advantage of using the median as a measure of loca-
tion is that it is “robust” to outliers. For example, if we had acci-
dentally written 34 rather than 3.4 in Table 1.3, the median would 

Stem Leaf

3 2
2 0 2 6

0 1 4 6 8
1 1 2 3 5 7 9 9

Figure 1.2 Ordered stem and leaf plot.
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still have been 1.85. One disadvantage is that it is tedious to 
order a large number of observations by hand (there is usually no 
“median” button on a calculator).

An interesting property of the median is shown by first subtract-
ing the median from each observation, and changing the negative 
signs to positive ones (taking the absolute difference). For the data 
in Table 1.3, the median is 1.5 and the absolute differences are 0.9, 
1.1, 1.4, 0.4, 1.1, 0.5, 0.7, 0.2, 0.3, 0.0, 1.7, 0.2, 0.4, 0.4, 0.7. The 
sum of these is 10.0. It can be shown that no other data point will 
give a smaller sum. Thus the median is the point “nearest” to all 
the other data points.

Measures of variation

It is informative to have some measure of the variation of observa-
tions about the median. A simple measure is the range, which is the 
difference between the maximum and minimum values (although 
in Statistics, it is usually given as two numbers: the minimum and 
the maximum). The range is very susceptible to what are known as 
outliers, points well outside the main body of the data. For example, 
if we had made the mistake of writing 32 instead 3.2 in Table 1.2, 
then the range would be written as 0.1 to 32 µmol/24 h, which is 
clearly misleading.

A more robust approach is to divide the distribution of the data 
into four, and find the points below which are 25%, 50%, and 75% 
of the distribution. These are known as quartiles, and the median is 
the second quartile. The variation of the data can be summarized 
in the interquartile range, the distance between the first and third 
quartile, often abbreviated to IQR. With small data sets, it may not 
be possible to divide the data set into exact quarters, and there are a 
variety of proposed methods to estimate the quartiles. One method 
is based on the fact that for n observations we can theoretically have 
values less than the smallest and greater than the largest, so if we 
order the observations there are n � 1 spaces between the obser-
vations, but n � 1 areas in total. Thus the 1st, 2nd, and 3rd quar-
tiles are estimated by points which are the (n � 1)/4, (n � 1)/2, and 

Table 1.3 Urinary concentration of lead in 16 rural children (µmol/24 h).

0.2, 0.3, 0.6, 0.7, 0.8, 1.5, 1.7, 1.8, 1.9, 1.9, 2.0, 2.0, 2.1, 2.8, 3.1, 3.4



6   Chapter 1

3(n � 1)/4 points. For 15 observations, these are the 4th, 8th, and 
12th points and from Figure 1.2, we find the values 0.8 and 2.0 
which gives the IQR. For 16 points, the quartiles correspond to the 
4.25, 8.5, and 12.75th points. To estimate, say the lower quartile, we 
find the 4th and 5th points, and then find a value which is one quar-
ter the distance from the 4th to the 5th. Thus the 4th and 5th points 
are 0.7 and 0.8, respectively, and we get 0.7 � 0.25(0.8 � 0.7) � 
0.725. For the upper quartile we want a point which is three quar-
ters the distance from the 12th to the 13th points, 2.0 and 2.1, and 
we get 2.0 � 0.75 � (2.1 � 2.0) � 2.075. The median is the sec-
ond quartile and is calculated as before. Thus the three quartiles are 
0.725, 1.85, and 2.075.

An alternative method, known as Tukey’s hinges, is to find the 
points which are themselves medians between each end of the 
range and the median. Thus, from Figure 1.2, there are eight points 
between and including the smallest, 0.1, and the median, 1.5. Thus 
the midpoint lies between 0.8 and 1.1, or 0.95. This is the first quar-
tile. Similarly the third quartile is midway between 1.9 and 2.0, or 
1.95. Thus, by this method, the IQR is 0.95 to 1.95 µmol/24 h. These 
values are given by OpenStat. For large data sets, the two methods 
will agree, but as one can see, for small data sets they may differ.

Data display

The simplest way to show data is a dot plot. Figure 1.3 shows the 
data from Tables 1.2 and 1.3 together with the median for each set. 
Take care if you use a scatterplot option in a computer program to 
plot these data: you may find the points with the same value are 
plotted on top of each other.

Sometimes the points in separate plots may be linked in some 
way; for example, the data in Tables 1.2 and 1.3 may result from 
a matched case–control study (see Chapter 13 for a description of 
this type of study) in which individuals from the countryside were 
matched by age and sex with individuals from the town. If pos-
sible the links should be maintained in the display, for example by 
joining matching individuals in Figure 1.3. This can lead to a more 
sensitive way of examining the data.

When the data sets are large, plotting individual points can be 
cumbersome. An alternative is a box–whisker plot. The box is 
marked by the first and third quartile, and the whiskers extend to the 
range. The median is also marked in the box, as shown in Figure 1.4.



Data display and summary   7

0

0.5

1

1.5

2

2.5

3

3.5

Le
ad

 c
o

n
ce

n
tr

at
io

n
 (

�
m

o
l/2

4
h

)

Urban
children
(n � 15)

Rural
children
(n � 16)

Figure 1.3 Dot plot of urinary lead concentrations for urban and rural 
children (with medians).
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Figure 1.4 Box–whisker plot of data from Figure 1.3.
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Table 1.4 Lead concentration in 140 urban children.

Lead concentration (µmol/24 h) Number of children

0– 2

0.4– 7

0.8– 10

1.2– 16

1.6– 23

2.0– 28

2.4– 19

2.8– 16

3.2– 11

3.6– 7

4.0– 1

4.4

Total 140

It is easy to include more information in a box–whisker plot. 
One method, which is implemented in some computer programs, 
is to extend the whiskers only to points that are Q1 � 1.5 � IQR 
to Q3 � 1.5 � IQR, where Q1 and Q3 are the first (lower) and third 
(upper) quartiles, respectively, and to show remaining points as 
dots. This way, outlying points are shown separately.

Histograms

Suppose the pediatric registrar referred to earlier extends the urban 
study to the entire estate in which the children live. He obtains fig-
ures for the urinary lead concentration in 140 children aged over 
1 year and under 16. We can display these data as a grouped fre-
quency table (Table 1.4). These can also be displayed as a histo-
gram as in Figure 1.5. Note one should always give the sample size 
on the histogram.

Bar charts

Suppose, of the 140 children, 20 lived in owner occupied houses, 
70 lived in council houses, and 50 lived in private rented accom-
modation. Figures from the census suggest that for this age group, 
throughout the county, 50% live in owner occupied houses, 30% 
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in council houses, and 20% in private rented accommodation. 
Type of accommodation is a categorical variable, which can be 
displayed in a bar chart. We first express our data as percentages: 
14% owner occupied, 50% council house, 36% private rented. We 
then display the data as a bar chart. The sample size should always 
be given (Figure 1.6).

Common questions

What is the distinction between a histogram 
and a bar chart?
Alas, with modern graphics programs, the distinction is often lost. 
A histogram shows the distribution of a continuous variable and, 
since the variable is continuous, there should be no gaps between 
the bars. A bar chart shows the distribution of a discrete variable 
or a categorical one, and so will have spaces between the bars. It 
is a mistake to use a bar chart to display a summary statistic such 
as a mean, particularly when it is accompanied by some measure 
of variation to produce a “dynamite plunger plot.”1 It is better to 
use a box–whisker plot.
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n � 140

Figure 1.5 Histogram of data from Table 1.4.
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How many groups should I have for a histogram?
In general one should choose enough groups to show the shape 
of a distribution, but not too many to lose the shape in the noise. 
It is partly aesthetic judgement but, in general, between 5 and 15, 
depending on the sample size, gives a reasonable picture. Try to 
keep the intervals (known also as “bin widths”) equal. With equal 
intervals, the height of the bars and the area of the bars are both 
proportional to the number of subjects in the group. With unequal 
intervals, this link is lost, and interpretation of the figure can be 
difficult.

Displaying data in papers

•  The general principle should be, as far as possible, to show the 
original data and to try not to obscure the design of a study in 
the display. Within the constraints of legibility, show as much 
information as possible. Thus if a data set is small (say �20 
points) a dot plot is preferred to a box–whisker plot.
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Figure 1.6 Bar chart of housing data for 140 children and comparable 
census data.
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•  Note that the quartiles are points not areas, so one can say an 
observation is above the third quartile or in the top quarter, not in 
the top quartile. There are only three quartiles and four quarters.

•  When displaying the relationship between two quantitative vari-
ables, use a scatterplot (Chapter 11) in preference to categorizing 
one or both of the variables.

•  If data points are matched or from the same patient, link them 
with lines where possible.

•  Pie charts are another way to display categorical data, but they 
are rarely better than a bar chart or a simple table.

•  To compare the distribution of two or more data sets, it is often 
better to use box–whisker plots side by side than histograms. 
Another common technique is to treat the histograms as if they 
were bar charts, and plot the bars for each group adjacent to 
each other.

•  When quoting a range or IQR, give the two numbers that define 
it, rather than the difference.

•  The median and IQR should be given to the same accuracy as the 
original data or one extra significant digit if an average of two 
points is needed. Thus in Table 1.3, the original data are quoted 
to one decimal place and the median to two decimal places.

Exercises

1.1  From the 140 children whose urinary concentration of lead 
was investigated, 40 were chosen who were aged at least 1 year 
but under 5 years. The following concentrations of copper 
(in µmol/24 h) were found.

0.70, 0.45, 0.72, 0.30, 1.16, 0.69, 0.83, 0.74, 1.24, 0.77,
0.65, 0.76, 0.42, 0.94, 0.36, 0.98, 0.64, 0.90, 0.63, 0.55,
0.78, 0.10, 0.52, 0.42, 0.58, 0.62, 1.12, 0.86, 0.74, 1.04,
0.65, 0.66, 0.81, 0.48, 0.85, 0.75, 0.73, 0.50, 0.34, 0.88

(a)  Draw a stem and leaf plot and find the median, range, and 
quartiles.

(b)  Playing with the data: Change the value 1.24 to 2.24. See 
how the statistics found in (a) are affected. Change 0.36 
to �0.36 and also look at the results.

1.2  A physician in an emergency room (ER) is collecting data. What 
sort of data are the following: Time in minutes waiting in 
ER, triage outcome (no injury, minor injury, major injury), 



12   Chapter 1

number of cases of road accident victims in the ER, type of 
accident in the ER (fall, road accident, assault)?

Reference

1. Freeman JV, Walters SJ and Campbell MJ. How to Display Data. Oxford: 
Wiley-Blackwell, 2007.
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CHAPTER 2

Summary statistics for 
quantitative data

Summary statistics summarize the essential information in a data 
set into a few numbers, which, for example, can be communi-
cated verbally. The median and the interquartile range discussed 
in Chapter 1 are examples of summary statistics. Here we discuss 
summary statistics for quantitative data.

Mean and standard deviation

The median is known as a measure of location; that is, it tells us 
where the data are. As stated in Chapter 1, we do not need to 
know all the data values exactly to calculate the median; if we 
made the smallest value even smaller or the largest value even 
larger, it would not change the value of the median. Thus the 
median does not use all the information in the data and so it can 
be shown to be less efficient than the mean or average, which does 
use all values of the data. To calculate the mean, we add up the 
observed values and divide by their number. The total of the val-
ues obtained in Table 1.2 was 22.5 µmol/24 h, which was divided 
by their number, 15, to give a mean of 1.50 µmol/24 h. This famil-
iar process is conveniently expressed by the following symbols:

x
x

n
�

∑

x  (pronounced “x bar”) signifies the mean; x is each of the values 
of urinary lead; n is the number of these values; and Σ, the Greek 
capital sigma (English “S”), denotes “sum of”. A major disadvantage 
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of the mean is that it is sensitive to outlying points. For example, 
replacing 2.2 by 22 in Table 1.2 increases the mean to 2.82 µmol/24 h, 
whereas the median will be unchanged.

A feature of the mean is that it is the value that minimizes the 
sum of the squares of the observations from a point, in contrast to 
the median which minimizes the sum of the absolute differences 
from a point (Chapter 1). For the data in Table 1.2, the first obser-
vation is 0.6 and the square of the difference from the mean is 
(0.6 � 1.5)2 � 0.81. The sum of the squares for all the obser-
vations is 9.96 (see Table 2.1). No value other than 1.50 will 
give a smaller sum. It is also true that the sum of the differences 
(i.e. allowing both negative and positive values) of the observa-
tions from the mean will always be zero. 

As well as measures of location we need measures of how vari-
able the data are. We met two of these measures, the range and 
interquartile range, in Chapter 1.

The range is an important measurement, for figures at the top 
and bottom of it denote the findings furthest removed from the 
generality. However, they do not give much indication of the aver-
age spread of observations about the mean. This is where the stand-
ard deviation (SD) comes in.

The theoretical basis of the standard deviation is complex and 
need not trouble the user. We will discuss sampling and popula-
tions in Chapter 4. A practical point to note here is that, when the 
population from which the data arise have a distribution that is 
approximately “Normal” (or Gaussian), then the standard devia-
tion provides a useful basis for interpreting the data in terms of 
probability.

The Normal distribution is represented by a family of curves 
defined uniquely by two parameters, which are the mean and the 
standard deviation of the population. The curves are always sym-
metrically bell shaped, but the extent to which the bell is com-
pressed or flattened out depends on the standard deviation of the 
population. However, the mere fact that a curve is bell shaped does 
not mean that it represents a Normal distribution, because other 
distributions may have a similar sort of shape.

Many biological characteristics conform to a Normal distribution 
closely enough for it to be commonly used—for example, heights 
of adult men and women, blood pressures in a healthy population, 
random errors in many types of laboratory measurements, and 
biochemical data. Figure 2.1 shows a Normal curve calculated from 
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the diastolic blood pressures of 500 men, mean 82 mmHg, standard 
deviation 10 mmHg. The limits representing �1 SD, �2 SD, and 
�3 SD about the mean are marked. A more extensive set of values 
is given in Table A (Appendix).

The reason why the standard deviation is such a useful measure 
of the scatter of the observations is this: if the observations follow 
a Normal distribution, a range covered by one standard deviation 
above the mean and one standard deviation below it (x  �1 SD) 
includes about 68% of the observations; a range of two standard 
deviations above and two below (x  � 22 SD) about 95% of the 
observations; and of three standard deviations above and three 
below (x  � 3 SD) about 99.7% of the observations. Consequently, 
if we know the mean and standard deviation of a set of observa-
tions, we can obtain some useful information by simple arith-
metic. By putting one, two, or three standard deviations above 
and below the mean, we can estimate the range of values that 
would be expected to include about 68%, 95%, and 99.7% of the 
observations.
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Figure 2.1 Normal curve calculated from diastolic blood pressures. 500 
men, mean 82 mmHg, standard deviation 10 mmHg.
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Standard deviation from ungrouped data

The standard deviation is a summary measure of the differences of 
each observation from the mean of all the observations. If the dif-
ferences themselves were added up, the positive would exactly bal-
ance the negative and so their sum would be zero. Consequently the 
squares of the differences are added. The sum of the squares is then 
divided by the number of observations minus one to give the mean of 
the squares, and the square root is taken to bring the measurements 
back to the units we started with. (The division by the number of 
observations minus one instead of the number of observations itself 
to obtain the mean square is because “degrees of freedom” must be 
used. In these circumstances they are one less than the total. The 
theoretical justification for this need not trouble the user in practice.) 
However, consider having only one observation in a data set. In this 
case the mean of the data is just that point. If we used a divisor of 
n, then we would have the variance � 0/1 � 0. You might say, well 
that is true, the variance is zero, because there is no variability about 
that point. However we are trying to estimate the variance of the 
population (see Chapter 4). If we used n � 1 we get 0/0 which is not 
estimable, which is also true when trying to estimate the variance of 
a group from a single observation.

To gain an intuitive feel for degrees of freedom, consider if we 
had a row of n fence posts. How many fence panels would we need 
to make a fence? The answer is n � 1. Once we know where the 
first fence post is, this determines where the others are. Thus, we 
need to estimate the mean before we can calculate the standard 
deviation and the mean determines where the data “are”. The cal-
culation of the standard deviation is illustrated in Table 2.1 with 
the 15 readings in the preliminary study of urinary lead concentra-
tions (Table 1.2). The readings are set out in column (1). In column 
(2) the difference between each reading and the mean is recorded. 
The sum of the differences is 0. In column (3) the differences are 
squared, and the sum of those squares is given at the bottom of the 
column.

The sum of the squares of the differences (or deviations) from 
the mean, 9.96, is now divided by the total number of observation 
minus one, to give a quantity known as the variance. Thus,

Variance
)

�
�

�
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.

x x

n

2

1
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In this case we find:

Variance mol/24 h)2� �
9 96

14
0 7114

.
. ( .µ

Finally, the square root of the variance provides the standard 
deviation:

 
SD

)2
�

�

�

Σ(
,

x x

n 1
 (2.1)

from which we get:

SD mol/24 h.� �0 7114 0 843. . µ

This procedure illustrates the structure of the standard deviation, 
in particular that the two extreme values 0.1 and 3.2 contribute 
most to the sum of the differences squared.

Table 2.1 Calculation of standard deviation.

(1)

Lead Concentration

(µmol/24 h)

(2)

Differences From mean

x � x–

(3)

Differences Squared

(x � x–)2

0.1 �1.4 1.96

0.4 �1.1 1.21

0.6 �0.9 0.81

0.8 �0.7 0.49

1.1 �0.4 0.16

1.2 �0.3 0.09

1.3 �0.2 0.04

1.5 0 0

1.7 0.2 0.04

1.9 0.4 0.16

1.9 0.4 0.16

2.0 0.5 0.25

2.2 0.7 0.49

2.6 1.1 1.21

3.2 1.7 2.89

Total 22.5 0 9.96

n � 15, x  � 1.50.
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Standard deviation from grouped data

We can also calculate a standard deviation for count variables. For 
example, in addition to studying the lead concentration in the urine 
of 140 children, the pediatrician asked how often each of them had 
been examined by a doctor during the year. After collecting the 
information, he tabulated the data shown in Table 2.2 columns (1) 
and (2). The mean is calculated by multiplying column (1) by col-
umn (2), adding the products, and dividing by the total number of 
observations. Thus the mean number of visits is 455/140 � 3.25.

As we did for continuous data, to calculate the standard devia-
tion, we subtract the mean from each of the observations in turn and 
then square it. In this case the observation is the number of visits, 
but because we have several children in each class, shown in column 
(2), each squared number (column (4)) must be multiplied by the 
number of children. The sum of squares is given at the foot of column 
(5), namely 218.2500. We then use the formula to find the variance:

Variance � �
218 25

139
1 57

.
.

and

SD� �1 57 1 25. . .

Table 2.2 Calculation of the standard deviation from count data.

(1)

Number of 

visits to or 

by doctor

(2)

Number of 

children

(3)

Col (1) � 3.25

(4)

Col (3) squared

(5)

Col (2) � Col (4)

0 2 �3.25 10.5625 21.1250

1 8 �2.25 5.0625 40.5000

2 27 �1.25 1.5625 42.1875

3 45 �0.25 0.0625 2.8125

4 38 0.75 0.5625 21.3750

5 15 1.75 3.0625 45.9375

6 4 2.75 7.5625 30.2500

7 1 3.75 14.0625 14.0625

Total 140 218.2500
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The use of OpenStat to calculate these statistics is shown in 
Chapter 14.

Note that although the number of visits is not Normally distrib-
uted, the distribution is reasonably symmetrical about the mean. 
The approximate 95% range is given by:

3.25 � 2 � 1.25 � 0.75 to 3.25 � 2 � 1.25 � 5.75

This excludes two children with no visits and five children with six 
or more visits. Thus there are 7 of 140 � 5.0% outside the theo-
retical 95% range.

It is common for discrete quantitative variables to have what is 
known as a skewed distribution, that is, they are not symmetrical.

Clues to lack of symmetry from derived statistics are:
• The mean and the median differ considerably.
•  The standard deviation is of the same order of magnitude as the 

mean, but the observations must be non-negative.
Sometimes a transformation will convert a skewed distribution 
into a symmetrical one. When the data are counts, such as number 
of visits to a doctor, often the square root transformation will help, 
and if there are no zero or negative values a logarithmic transfor-
mation may render the distribution more symmetrical.

Data transformation

An anesthetist measures the pain of a procedure using a 100 mm 
visual analogue scale on seven patients. The results are given in 
Table 2.3, together with the loge transformation (the ln button on 
a calculator).

The data are plotted in Figure 2.2, which shows that the outlier 
does not appear so extreme in the logged data. The mean and median 
are 10.29 and 3 respectively, for the original data, with a standard 
deviation of 20.22. Where the mean is bigger than the median, the 
distribution is positively skewed. For the logged data, the mean and 
median are 1.24 and 1.10, respectively, which are relatively close, 

Table 2.3 Results from pain score on seven patients (mm).

Original scale: 1, 1, 2, 3, 3, 6, 56

Loge scale: 0, 0, 0.69, 1.10 1.10, 1.79, 4.03
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indicating that the logged data have a more symmetrical distribution. 
Thus it would be better to analyze the logged transformed data in 
statistical tests than using the original scale.

In reporting these results, the median of the raw data would be 
given, but it should be explained that the statistical test was carried 
out on the transformed data. Note that the median of the logged 
data is the same as the log of the median of the raw data—however, 
this is not true for the mean. The mean of the logged data is not 
necessarily equal to the log of the mean of the raw data. The anti-
log (exp on a calculator) of the mean of the logged data is known 
as the geometric mean, and is often a better summary statistic than 
the mean, for data from positively skewed distributions. For these 
data the geometric mean is 3.45 mm.

Several points can be made:
•  If two groups are to be compared, a transformation that reduces 

the skewness of an outcome variable often results in the stand-
ard deviations of the variable in the two groups being similar.

•  A log transform is the only one that will give sensible results on 
a back transformation.

•  Transforming variables is not “cheating”. Some variables are 
measured naturally on a log scale (e.g. pH).
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Figure 2.2 Dot plots of original and logged data from pain scores.
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Between subjects and within subjects standard 
deviation

If repeated measurements are made of, say, blood pressure on an 
individual, these measurements are likely to vary. This is within 
subject, or intrasubject, variability, and we can calculate a stand-
ard deviation of these observations. If the observations are close 
together in time, this standard deviation is often described as the 
measurement error. Measurements made on different subjects vary 
according to between subject, or intersubject, variability. If many 
observations were made on each individual, and the average taken, 
then we can assume that the intrasubject variability has been aver-
aged out and the variation in the average values is due solely to the 
intersubject variability. Single observations on individuals clearly 
contain a mixture of intersubject and intrasubject variation, but we 
cannot separate the two since the within subject variability cannot 
be estimated with only one observation per subject. The coefficient of 
variation (CV%) is the intrasubject standard deviation divided by the 
mean, expressed as a percentage. It is often quoted as a measure of 
repeatability for biochemical assays, when an assay is carried out on 
several occasions on the same sample. It has the advantage of being 
independent of the units of measurement, but also it has numerous 
theoretical disadvantages. It is usually nonsensical to use the coef-
ficient of variation as a measure of between subject variability.

The mode

The mode is the most common value and along with the mean and 
the median is a measure of location. It can be used for grouped con-
tinuous data, for count data and for categorical data. For example, 
in Table 1.4 the modal value of the distribution is 2.0–2.4 (µmol/
24 hr) and in Table 2.2 the modal number of visits to a doctor is 3. 
The mode is only used for describing data.

Common questions

When should I quote the mean and when should I 
quote the median to describe my data?
It is a commonly held misapprehension that for Normally distrib-
uted data one uses the mean, and for non-Normally  distributed 
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data one uses the median. Alas, this is not so: if the data are 
approximately Normally distributed, the mean and the median 
will be close; if the data are not Normally distributed, then both 
the mean and the median may give useful information. Consider 
a variable that takes the value 1 for males and 0 for females. This 
is clearly not Normally distributed. However, the mean gives the 
proportion of males in the group, whereas the median merely tells 
us which group contained more than 50% of the people. Similarly, 
the mean from ordered categorical variables can be more useful 
than the median, if the ordered categories can be given meaning-
ful scores. For example, a lecture might be rated as 1 (poor) to 5 
(excellent). The usual statistic for summarizing the result would be 
the mean. For some outcome variables (such as cost), one might be 
interested in the mean, whatever the distribution of the data, since 
from the mean can be derived the total cost for a group. However, 
in the situation where there is a small group at one extreme of a 
distribution (e.g. annual income), the median will be more “repre-
sentative” of the distribution.

When should I use a standard deviation to summarize 
variability?
The standard deviation is only interpretable as a summary meas-
ure for variables that have approximately symmetric distributions. 
It is often used to describe the characteristics of a group, for exam-
ple, in the first table of a paper describing a clinical trial. It is often 
used, in my view incorrectly, to describe variability for measure-
ments that are not plausibly normal, such as age. For these vari-
ables, the range or interquartile range is a better measure. The 
standard deviation should not be confused with the standard error, 
which is described in Chapter 4 and where the distinction between 
the two is spelled out.

Formula appreciation

We can see from formula (2.1) that values a long way from the 
mean contribute much more to the variance and standard devia-
tion. This is confirmed in Table 2.1, which shows that the two 
extreme values contribute nearly half the value of the variance. 
Note that in Table 2.2, the groups contributing the most to the var-
iance are not the most extreme ones, since the weighting is less for 
these groups.
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Reading and displaying summary statistics

•  In general, display means to one more significant digit than the 
original data, and standard deviations to two significant figures 
more. Try to avoid the temptation to spurious accuracy offered 
by computer printouts and calculator displays!

•  Consider carefully if the quoted summary statistics correctly 
summarize the data. If a mean and standard deviation are 
quoted, is it reasonable to assume 95% of the population are 
within 2 SD of the mean? (Hint if the mean and standard devi-
ation are about the same size, and if the observations must be 
positive, then the distribution will be skewed.)

Exercises

2.1  In the campaign against smallpox, a doctor inquired into the 
number of times 150 people aged 16 and over in an Ethiopian 
village had been vaccinated. He obtained the following figures: 
never, 12 people; once, 24; twice, 42; three times, 38; four 
times, 30; five times, 4. What is the mean number of times 
those people had been vaccinated and what is the standard 
deviation? Is the standard deviation a good measure of varia-
tion in this case?

2.2 Referring to the data in Exercise 1.1
(a)  Obtain the mean and standard deviation, and an approxi-

mate 95% range. Which points are excluded from the 
range mean �2 SD to mean � 2 SD? What proportion of 
the data is excluded?

(b)  Playing with the data: see how changing the value 1.24 to 
2.24 affects the statistics found in (a).

2.3  The following data were found in a study of asthmatic chil-
dren. What are the best ways of graphically displaying the 
summaries of these data?
(a)  Peak flow: data quantitative and symmetrically distributed.
(b)  Number of episodes of wheeziness per day: data quantita-

tive and with skewed distribution.
(c)  Social class of the child’s parents: data qualitative and 

 categorical.
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CHAPTER 3

Summary statistics for 
binary data

Summarizing one binary variable

Recall that binary data only take one of two values such as “alive” 
or “dead”, “male” or “female”. We assign values 0 and 1 to the two 
states. For a single variable there are two ways of summarizing the 
information, proportions and odds. Proportions can be classified as 
risks or rates.

Consider 10 observations:

1 1 1 1 1 0 0 0 0 0

We could say that 5 out of 10 observations were 1, that is, a pro-
portion 0.5 or a percentage 50% were 1. A proportion that is com-
mon in medicine is a prevalence. This is defined as the number of 
people in a population with a particular condition divided by the 
number of people in the population. This is sometimes multiplied by 
a round number such as 1000, so we have the prevalence per thou-
sand, which is easier to understand. For example, the prevalence of 
type II diabetes is currently 0.003 or 3 per thousand people.

A proportion is a special sort of ratio, in that it must lie between 
0 and 1. Another sort of ratio is a rate. This is the proportion of 
events that occur within a given time period. For example, the pop-
ulation of the UK is approximately 60 000 000. Every year about 
600 000 people die. Thus the crude mortality rate for the UK is 
600 000/60 000 000 � 1/100 or 0.01. This is often expressed per 
1000, so that we say the crude mortality rate for the UK is about 
10 per thousand per year. If the data referred to earlier arose 
because we followed up a group of 10 people for (say) a year and 
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5 developed a disease, then we often refer to the proportion as a 
risk of developing the disease. Strictly speaking, epidemiologists 
would call this an incidence rate and would require a time period to 
be specified. When one hears a risk quoted, always ask over what 
period of time. (After all, in the long run, the risk of death is one!)

An alternative way of looking at the 10 observations is to say 
that out of the 10 observations 5 observations were 1, and 5 were 
0, that is, a ratio of 5:5, or what is known as an odds of 1 to 1. 
Statisticians drop the “to 1” as being understood. We might say 
something has a fifty-fifty chance, meaning a probability of 0.5. 
Odds are commonly used amongst the horse racing fraternity, 
where odds of 10 to 1 mean that out of 11 races they would expect 
a horse to win only once. Usually in betting, odds are bigger than 
one (since bookmakers would not quote you odds on something 
they thought is likely to happen). However, odds can be less than 
one, and so, unlike proportions, their only restriction is that they 
must be positive. In general, if you have x events and y non-events, 
the odds of an event are x/y and the proportion is x/(x � y). It is a 
simple matter to relate odds (o) to proportions (p). The odds of an 
event are o � p/(1 � p). Thus the odds are the ratio of the propor-
tion of 1’s to the proportion of 0’s. Rewriting the equation, we find 
that p � o/(1 � o). Thus an odds of 1 implies a proportion of 0.5.

Summarizing the relationship between 
two variables

Things become more interesting when we have two groups, and 
we will start with what is known as a 2�2 contingency table 
(it actually has three columns but the totals are not included in the 
description) as shown in Table 3.1.

We express the risk in group 1 as p1 � a/(a � b) and the risk in 
group 2 as c/(c � d).

Table 3.1 2�2 Contingency table for comparison of two groups.

Outcome Total

Positive Negative

Group 1 a b a � b

Group 2 c d c � d
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As an example, consider Zar et al. who report on a trial of iso-
niazid for the treatment of tuberculosis in children with HIV.1 The 
outcome was death after 6 months follow-up. The results are given 
in Table 3.2.

Under the placebo there was a risk of p1 � a/(a � b) � 21/131 � 
0.160 of dying 6 months after randomization. In the isoniazid 
group, the risk was p2 � c/(c � d) � 11/132 � 0.083.

To compare two proportions, what we really want is to look at 
the contrast between differing therapies. We can do this by looking 
at either the difference in risks or the ratio of risks.

Consider the difference in risk first. If we ignore the sign, this is 
sometimes known as the absolute risk difference (ARD), or if the risk 
in the intervention group is lower than the control as the absolute 
risk reduction.

Thus ARD � |p2 � p1| (where the “||”means ignore the sign)

The difference in risks in this case is 0.160 � 0.083 � 0.077 or 
7.7%. One way of thinking about this is if 100 patients were 
treated under placebo and 100 treated under isoniazid, we would 
expect 16 to have died on placebo and 8.3 on isoniazid. Thus an 
extra 7.7 died under placebo. Another way of looking at this is 
to ask: how many patients would be treated for one extra person 
to be saved by isoniazid? If 7.7 extra deaths resulted from treat-
ing 100 patients per group, and so 100/7.7 � 13 patients per group 
would be treated for 1 death to be saved in the intervention group. 
Thus roughly if 13 patients were treated to placebo and 13 to iso-
niazid, we would expect 1 fewer patient to die on isoniazid. This 
is known as the number needed to treat (NNT) (or if the treatment is 
harmful, the number needed to treat for harm, NNTH) and is sim-
ply expressed as the inverse of the absolute risk difference.2

Thus NNT � 1/|p2 � p1|

The NNT has been suggested by Sackett et al.3 as a useful and clini-
cally intuitive way of thinking about the outcome of a clinical trial. 

Table 3.2 Results from the isoniazid trial after 6 months follow-up.1

Dead Alive Total

Placebo 21 110 131

Isoniazid 11 121 132
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For example, in a clinical trial of pravastatin against usual therapy to 
prevent coronary events in men with moderate hypercholestremia 
and no history of myocardial infarction, the NNT is 42. Thus you 
would have to treat 42 men with prevastatin to prevent one extra 
coronary event, compared with the usual therapy. It is claimed that 
this is easier to understand than the relative risk reduction, or other 
summary statistics, and can be used to decide whether an effect is 
“large” by comparing the NNT for different therapies.

However, it is important to realize that comparison between 
NNTs can only be made if the baseline risks are similar. Thus, 
suppose a new therapy managed to reduce 5 year mortality of 
Creutzfeldt–Jakob disease from 100% on standard therapy to 90% 
on the new treatment. This would be a major breakthrough and 
has an NNT of 1/(1 � 0.9) � 10. In contrast, a drug that reduced 
mortality from 50% to 40% would also have an NNT of 10, but 
would have much less impact.

We can also express the outcome from the isoniazid trial as a risk 
ratio or relative risk (RR), which is the ratio of the two risks, experi-
mental risk divided by control risk.

 
RR /� �

�

�
p p

a c d

c a b2 1
( )

( )
 (3.1)

This is also sometimes called the incidence rate ratio (IRR). In the iso-
niazid trial RR � 0.083/0.16 � 0.52.

With a relative risk less than one, we can also consider the rela-
tive risk reduction (RRR).

RRR � (p1 � p2)/p1

This is easily shown to be 1 � RR and is often expressed as a per-
centage. Thus a child in the isoniazid trial has 1 � 0.52 � 0.48 � 
48% reduced risk of death in 6 months compared with placebo. In 
epidemiology, we can regard the isoniazid group as “exposed” and 
the placebo group as “unexposed”. The RRR is then known as the 
prevented fraction in the exposed. In Chapter 14, Table 3.2 is ana-
lyzed using OpenEpi, which produces not only the estimates dis-
cussed in this chapter but also measures of uncertainty (confidence 
intervals) which are to be discussed in Chapter 5.

We can also summarize the trial in terms of odds. The odds of 
death on the placebo are (21/131)/(110/131) � 21/110 � 0.191 
and on isoniazid they are 11/121 � 0.091.
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The odds ratio (OR)�
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In the notation of Table 3.1, this can be shown to be:

 
OR �

ad

bc
 (3.2)

In this case the OR � 0.091/0.191 � 0.48. In this case the odds 
ratio has almost the same value as the relative risk.

The odds ratio and the relative risk are related by:
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p
 (3.3)

We illustrate this relationship in Table 3.3. This demonstrates an 
important fact: the odds ratio is a close approximation to the rela-
tive risk when the baseline risk is low, but is a poor approximation 
if the baseline risk is high.

Treatments can do harm as well as good. As an example, consider 
Kennedy et al. who report on the study of acetazolamide and furo-
semide versus standard therapy for the treatment of post-hemorrhagic 
ventricular dilatation (PHVD) in premature babies.4 The outcome was 
death or a shunt placement by 1 year of age. The results are given in 
Table 3.4.

Here the risk in the control group is 0.46 and in the intervention 
group it is 0.65. The relative risk of death or shunt in the interven-
tion group compared with standard therapy is 1.42. This can be 

Table 3.3 Odds ratios and relative risks for different values of absolute 
risks.

p2 p1 Relative risk 

p2/p1

Odds ratio 
p / p
p / p
2 2

1 1

(1 )
(1 )

�

�

0.1 0.05 2.00 2.11

0.3 0.15 2.00 2.42

0.5 0.25 2.00 3.00

0.7 0.35 2.00 4.33
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expressed as a 42% increased risk (not an increase of 142% as is 
sometimes suggested). The NNTH is 1/|0.46 � 0.65| � 5.3 � 6, so 
only 6 children need to be treated in each group for one extra to 
experience harm.

As a ratio of two numbers, the relative risk hides the actual size 
of the numbers. Thus a relative risk of 2 could be 8 people out of 
10 having an event compared with 4 people out of 10, or it could 
be 2 people out of 1000 having an event compared with 1 person 
out of 1000. These have a completely different interpretation. This 
when a relative risk is quoted always ask about the absolute risks 
as well, so that a proper interpretation can be made.

For example, the risk of deep vein thrombosis in women on a 
new type of contraceptive is 30 per 100 000 women years, com-
pared to 15 per 100 000 women years on the standard type. Thus 
the relative risk is 2, which shows that the new type of contracep-
tive carries quite a high risk of deep vein thrombosis. However, an 
individual woman need not be unduly concerned since she has a 
probability of 0.0003 of getting a deep vein thrombosis in 1 year on 
the new drug, which is much less than if she were pregnant!

Relative risks versus odds ratios

The odds ratio may not seem like an intuitively obvious statistic, 
but it has some useful properties. Consider an exposure which 
in low risk group has been found to double one’s risk of disease. 
What would happen in a high risk population, where say the risk 
of the disease in the unexposed group was already over 50%? 
Clearly one cannot simply multiply the risk by the incidence in the 
unexposed to get the risk in the exposed, since one would get a 
risk greater than 1, (i.e. more than certain!). However, there are 
no such problems with the odds ratio.

A further use for the odds ratio arises when the data come from 
a cross-sectional study or a case–control study (see Chapter 14 for 

Table 3.4 Results from the PHVD trial.4

Death/shunt No death/shunt Total

Standard therapy 35 41 76

Drug plus standard 

therapy

49 26 75
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a discussion of these types of studies). In a case–control study, it is 
not possible to calculate a relative risk directly, but one can use the 
odds ratio to estimate the relative risk.

Suppose there are two conditions A and B, which are present or 
absent, and we wish to see if there is an association between the 
two. We rewrite Table 3.1 as Table 3.5.

We can argue across the rows:
Given condition B is present, the odds for A being present are a/b.
Given condition B is absent, the odds for A being present are c/d.
Thus the odds ratio for A being present, given B being present 

relative to B being absent is (a/b)/(c/d) � ad/bc. We say 'the odds 
ratio of A given B � ad/bc.

However we can also argue down the columns.
Given condition A is present, the odds for B being present are a/c.
Given condition A is absent, the odds for B being present are b/d.
Thus the odds ratio for B given A is (a/c)/(b/d) � ad/bc.
Thus the odds ratio for A given B is the same as the odds ratio 

for B given A.
To illustrate this consider Table 3.6, showing the prevalence of hay 

fever and eczema in a cross-sectional survey of 11 year old children.5,6

If a child has hay fever, the risk of eczema is 141/1069 � 0.132 
and the odds are 141/928 � 0.152. If a child does not have hay 
fever, the risk of eczema is 420/13945 � 0.030 and the odds are 

Table 3.5 2�2 Table for association studies.

Condition A

Present Absent Total

Condition B Present a b a � b

Absent c d c � d

Total a � c b � d

Table 3.6 Association between hay fever and eczema in 11 year old 
children.5,6

Hay fever present Hay fever absent Total

Eczema present 141 420 561

Eczema absent 928 13 525 14 453

Total 1069 13 945 15 014
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420/13525 � 0.031. Thus the relative risk of having eczema, given 
that a child has hay fever, is 0.132/0.030, which is 4.40. We can 
also find the odds ratio of having eczema given that a child has hay 
fever as 0.152/0.031 � 4.90.

We can consider the table the other way around, and ask what 
is the risk of hay fever given that a child has eczema. In this case, 
the two risks are 141/561 � 0.251 and 928/14453 � 0.064, and 
the relative risk is 0.251/0.064 � 3.92. Thus the relative risk of 
hay fever given that a child has eczema is 3.92, which is not the 
same as the relative risk of eczema given that a child has hay fever, 
which is 4.40. However, the two respective odds are 141/420 � 
0.336 and 928/13 525 � 0.069, and the odds ratio is 0.336/0.069 � 
4.87, which to the limits of rounding is the same as the odds ratio 
for eczema, given a child has hay fever of 4.90.

The fact that the two odds ratios are the same can be seen from 
the fact that

OR �
�

�

141 13525

928 420

and this remains the same if we switch rows and columns.
Thus we can either say the children with hay fever have five 

times the odds of getting eczema, or that children with eczema 
have five times the odds of getting hay fever. This will be approxi-
mately true for risks because hay fever and eczema are quite rare 
in the population, but would not be true if the incidence was 
higher.

Another useful property of the odds ratio is that the odds ratio 
for an event not happening is just the inverse of the odds ratio for 
it happening. Thus, the odds ratio for not having eczema, given 
that a child has hay fever, is just 1/4.90 � 0.204. This is not true 
of the relative risk, where the relative risk for not getting eczema 
given a child has hay fever is (420/561)/(13 525/14 453) � 0.80, 
which is not 1/3.92 � 0.2551.

Odds ratios and case–control studies

The design of case–control and cohort studies will be discussed in 
Chapter 13. These relate exposure to some hazard to outcome in 
the form of disease or death. A cohort study measures exposure 
and then observes events to answer the question, if one is exposed 
to a hazard (E) what is the probability of disease D (i.e. Prob(D|E))? 
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(This reads as the probability of disease given exposure. A case–
control study argues the other way around. It measures events and 
looks backwards for exposure (i.e. Prob(E|D)).

The outcome from a case–control study can be expressed as a 2�2 
table as shown in Table 3.7.

Notice that the “outcome” in Table 3.1 has been replaced by 
whether a subject is a case or a control. Thus a “case” may be 
someone who has died and a “control” someone who is still alive. 
The odds ratio of being a case given exposure is ad/bc. It is tempt-
ing to think of the relative risk as (a/(a � b))/(c/(c � d)). However, 
we will demonstrate that this cannot be the case. Firstly, observe 
that we cannot think of (a � c)/n as the prevalence of the disease, 
since in case–control studies the relative number of cases to con-
trols can be decided by the investigator. It is common to use the 
same number of cases and controls, and yet one would not think 
that the prevalence was 50%. Similarly, the usual measure of the 
relative risk no longer holds. 

Suppose the investigator decided to double the number of con-
trols as shown in Table 3.8. It is a simple matter to show that the 
estimate of the “relative risk” is changed from {a/(a � b)}/{c/(c � d)} 
to {a/(a � 2b)}/{c/(c � 2d)}, which are different when b and d are 
non-zero. However, the estimate of the odds ratio remains as ad/bc. 
Thus the odds ratio is unaffected by the case/control ratio, but the 
“relative risk” is. Since the risk of disease if someone is exposed to 

Table 3.7 2�2 Table for a case–control study.

Case Control Total

Exposed a b a � b

Not exposed c d c � d

Total a � c b � d n

Table 3.8 2�2 Table for a case–control study with double the number of 
controls.

Case Control Total

Exposed a 2b a � b

Not exposed c 2d c � d

Total a � c 2b � 2d
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a hazard cannot be related to how many controls the investigator 
chose, one can see that the estimator of the relative risk in a case–
control study is invalid.

However, when the assumption of a low absolute risk holds true 
(which is usually the situation for case–control studies), then the 
odds ratio and the relative risk are close, and so in this case the odds 
ratio is assumed to approximate the relative risk that would have 
been obtained if a cohort study had been conducted instead of a 
case–control study.

Paired alternatives

Sometimes it is possible to record the results of treatment or some 
sort of test or investigation as one of two alternatives. For instance, 
two treatments or tests might be carried out on pairs obtained by 
matching individuals, or the pairs might consist of successive treat-
ments of the same individual. The result might then be recorded as 
“responded or did not respond”, “improved or did not improve”, 
“positive or negative”, and so on. These types of studies may be 
crossover trials or matched  case–control studies and are described 
in Chapter 13. The results can be set out as shown in Table 3.9.

The proportion of those who responded on treatment A is 
pA � (e � f)/n

The proportion which responded on treatment B is pB � (e � g)/n
The difference in the proportions of responses is pA � pB � 

(f � g)/n 
Note that we do not need to know the separate values of the 

number of pairs who both responded or both did not respond to 
calculate this difference.

Table 3.9 can be rewritten as a 2�2 table as shown in Table 3.10, 
but now the numbers in the table refer to the number of pairs.

It can be shown that the odds of responding to A compared to 
B are:

ORpaired � f/g

Note that here we do not need to know e, h, or n. This seems 
rather counterintuitive. However, consider a situation where we 
want to know whether one of two drugs is better. We use a crosso-
ver design in which each patient gets both drugs in random order. 
Then if the patient responds to both, this does not tell us which of 
the two is better. Similarly if the patient does not respond to either, 
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we have no information as to which is better. It is only when a 
patient responds to one and not the other do we glean any infor-
mation as to which drug is better.

For example, a registrar in the gastroenterological unit of a large 
hospital in an industrial city sees a considerable number of patients 
with severe recurrent aphthous ulcer of the mouth. Claims have been 
made that a recently introduced preparation stops the pain of these 
ulcers and promotes quicker healing than existing preparations.

Over a period of 6 months, the registrar selected every patient 
with this disorder and paired them off, as far as possible, by refer-
ence to age, sex, and frequency of ulceration. Finally she had 108 
patients in 54 pairs. To one member of each pair, chosen by the 
toss of a coin, she gave treatment A, which she and her colleagues 
in the unit had hitherto regarded as the best; to the other member 
she gave the new treatment, B. Both forms of treatment are local 
applications, and they cannot be made to look alike. Consequently, 
to avoid bias in the assessment of the results, a colleague recorded 
the results of treatment without knowing which patient in each 
pair had which treatment. The results are shown in Table 3.11.

The observed difference in proportions is:

23/54 � 10/54 � 0.241

Table 3.10 Layout for paired data.

Subject Getting B

Positive Negative Total

Subject Positive e f e � f

Getting A Negative g h g � h

Total e � g f � h n

Table 3.9 Results from a matched or paired study.

Member of pair receiving 

treatment A

Member of pair receiving 

treatment B

Pairs of patients

Responded Responded e

Responded Did not respond f

Did not respond Responded g

Did not respond Did not respond h

Total n
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The odds ratio is 10/23 � 0.43. Thus the odds of responding on 
A are 0.43 times that of responding on B. We will explore these 
data further in Chapter 8 where paired data are tested using a 
McNemar’s test.

Summary: choice of summary statistics for 
binary data from a non-matched study

Table 3.12 gives a summary of the different methods of summariz-
ing a binary outcome for a prospective study such as a clinical trial.

Common questions

When should I quote an odds ratio and when should I 
quote a relative risk?
The odds ratio is difficult to understand and most people think of it 
as a relative risk anyway. Thus for prospective studies, the relative 

Table 3.11 Data aphthous ulcer study.

Treatment B

Responded Did not respond

Treatment A Responded 16 10

Did not respond 23 5

Table 3.12 Methods of summarizing a binary outcome in a two group 
prospective* study: Risk in group 1 (control) is p1, risk in group 2 is p2.

Term Formula Observed in the 

isoniazid trial

Absolute risk difference 

(ARD)

|p1 � p2| 0.160 � 0.083 � 0.077

Relative risk (RR) p2/p1 0.083/0.160 � 0.52

Relative risk reduction 

(RRR)

(p1 � p2)/p1 (0.160 � 0.083/0.16 � 0.48

Number needed to treat 

or harm (NNT or NNTH))

1/|p1 � p2| 1/0.077 � 13

Odds ratio (OR) {p2/(1 � p2)}/{p1/(1 � p1)} (0.083/0.917)/(0.160/0.840) � 

0.48

*For example, a trial or a cohort study—not a case–control study.



36   Chapter 3

risk should be easy to derive and should be quoted, and not the odds 
ratio. For case–control studies, one has no option but to quote the 
odds ratio. For cross-sectional studies, one has a choice, and if it is 
not clear which variables are causal and which are outcome, then 
the odds ratio has the advantage of being symmetric, in that it gives 
the same answer if the causal and outcome variables are swapped. 
A major reason for quoting odds ratios is that they are the output 
from logistic regression, an advanced technique discussed in Statistics at 
Square Two.7 These are quoted, even for prospective studies, because 
of the nice statistical properties of odds ratios. In this situation, it is 
important to label the odds ratios correctly, and consider situations 
in which they may not be good approximations to relative risks.

Formula appreciation

Equation (3.1) can be derived simply from Table 3.1, since the odds 
of a positive outcome in group 1 are a/b and those in group 2 are 
c/d so the ratio is ad/bc. In equation (3.3) one can see that if the RR 
is close to 1 it will also be close to the OR.

Reading and displaying summary statistics

•  If a relative risk is quoted, is it in fact an odds ratio? Is it reason-
able to assume that the odds ratio is a good approximation to a 
relative risk?

•  Always ascertain the absolute risk difference, when considering 
relative risks.

•  If an NNT is quoted, what are the absolute levels of risk? If you 
are trying to evaluate a therapy, does the absolute level of risk 
given in the paper correspond to what you might expect in your 
own patients?

•  Always display measures of uncertainty about estimates (see 
Chapter 5).

Exercises

3.1  A recent advert in the medical press for clopidogrel reads as 
follows: “It’s great to be a statistic! 20% relative risk reduction”. 
A 20% relative risk reduction means that when patients given 
active treatment are compared with patients given placebo:
(a) 20% of those given the active treatment will benefit.
(b) We can be 20% sure that the treatment works.
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(c) The difference in risks is 0.2.
(d)  Risk in the treatment group is 80% of that in the control 

group.
3.2  The CURE study examined the use of clopidogrel and aspirin 

in acute coronary syndromes. It showed that the combined 
risk of cardiovascular death, stroke, and myocardial infarction 
was 11.4% in the placebo group and 9.3% in the clopidogrel 
group. The risk of major bleeding increased by 1% using clopi-
dogrel and aspirin drugs.
(a) This can be described as a risk difference of 2.1%.
(b)  This means the number needed to treat for one to benefit 

(NNTB) is around five.
(c)  The data can be reported as a relative risk reduction of 

around 80%.
3.3  A report of the CURE study in the medical press read as fol-

lows: “Treating unstable angina and non-Q wave myocar-
dial infarction with clopidogrel and aspirin resulted in a 20% 
reduction in the risk of myocardial infarction, stroke, and vas-
cular death. The risk of major bleeding increased by 1% using 
clopidogrel and aspirin drugs”.
(a)  The report suggests that the benefit of treatment is much 

greater than the risk of bleeding.
(b)  If both differences were reported as absolute risk differ-

ences, the reduction in vascular events would be 2.1% 
and the increased risk of bleeding would be 1.0%.

3.4  A pharmaceutical representative provides the following infor-
mation on a randomized controlled trial of “Supersporin”, a 
new antifungal treatment for fungal nail infection compared 
with oral terbinafine.

Number of patients

“Supersporin” treated 

group

Terbinafine treated 

group

Cured at 12 weeks 40 20

Not cured � 12 weeks 60 80

Which ONE of the following values is the ABSOLUTE 
REDUCTION in the risk of being cured in the “Supersporin” 
group? Select ONE option only.

20%, 40%, 50%, 60%, 100%
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3.5  How many patients would need to be treated with 
“Supersporin” to cure one patient with a fungal nail infection 
who would not have been cured with terbinafine? Select ONE 
option only.

1, 2, 2.5, 5, 10

3.6  In a prospective study of 241 men and 222 women undergo-
ing elective inpatient surgery, 37 men and 61 women suffered 
nausea and vomiting in the recovery room.8 Find the relative 
risk and odds ratio for nausea and vomiting for women com-
pared to men.

References

1. Zar HJ, Cotton MF, Strauss S, et al. Effect of isoniazid prophylaxi on 
mortality and incidence of tuberculosis in children with HIV: ran-
domised controlled trial. BMJ 2007;334:136–9.

2. Cook RJ and Sackett DL. The number needed to treat: a clinically useful 
measure of treatment effect. BMJ 1995;310:452–4.

3. Sackett DL, Richardson WS, Rosenberg W and Hayne RB. Evidence-Based 
Medicine: How to Practice and Teach EBM. New York: Churchill Livingstone, 
1997.

4. International PHVD Drug Trial Group. International randomised con-
trolled trial of acetazolamide and furosemide in post-haemorrhagic ven-
tricular dilatation in infancy. Lancet 1998;352:433–40.

5. Strachan DP, Butland BK and Anderson HR. Incidence and prognosis 
of asthma and wheezing from early childhood to age 33 in a national 
British cohort. BMJ 1996;312:1195–9.

6. Bland JM and Altman DG. Statistics notes: the odds ratio. BMJ 
2000;320:1468.

7. Campbell MJ. Statistics at Square Two, 2nd ed. Oxford: Wiley-Blackwell, 
2006.

8. Myles PS, Mcleod ADM, Hunt JO and Fletcher H. Sex differences in 
speed of emergency and quality of recovery after anaesthetic: cohort 
study. BMJ 2001;322:710–11.



39

Statistics at Square One, XIth edition. By M.J. Campbell and T.D.V. Swinscow. 
Published 2009 by Blackwell Publishing, ISBN: 9781405191005.

CHAPTER 4

Populations and samples

Populations

In statistics the term “population” has a slightly different meaning 
from the one given to it in ordinary speech. It need not refer only 
to people or to animate creatures—the population of Britain, for 
instance, or the dog population of London. Statisticians also speak 
of a population of objects, or events, or procedures, or observa-
tions, including things such as the quantity of lead in urine, visits 
to the doctor, or surgical operations. A population is thus an aggre-
gate of creatures, things, cases, and so on.

Although a statistician should clearly define the relevant popu-
lation, he or she may not be able to enumerate it exactly. For 
instance, in ordinary usage, the population of England denotes the 
number of people within England’s boundaries, perhaps as enu-
merated at a census. But a physician might embark on a study to 
try to answer the question “What is the average systolic blood pres-
sure of Englishmen aged 40–59?” But who are the “Englishmen” 
referred to here? Not all Englishmen live in England, and the social 
and genetic background of those that do may vary. A surgeon may 
study the effects of two alternative operations for gastric ulcer. But 
how old are the patients? What sex are they? How severe is their 
disease? Where do they live? And so on. The reader needs pre-
cise information on such matters to draw valid inferences from 
the sample that was studied to the population being considered. 
Statistics such as averages and standard deviations, when taken 
from populations, are referred to as population parameters. They are 
often denoted by Greek letters; the population mean is denoted 
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by µ (mu) and the standard deviation denoted by σ (lower case 
sigma).

Samples

A population commonly contains too many individuals to study con-
veniently, so an investigation is often restricted to one or more sam-
ples drawn from it. A well-chosen sample will contain most of the 
information about a particular population parameter, but the relation 
between the sample and the population must be such as to allow 
true inferences to be made about a population from that sample.

Consequently, the first important attribute of a sample is that 
every individual in the population from which it is drawn must 
have a known non-zero chance of being included in it; a natural 
suggestion is that these chances should be equal. We would like 
the choices to be made independently; in other words, the choice 
of one subject will not affect the chance of other subjects being 
chosen. To ensure this we make the choice by means of a process 
in which chance alone operates, such as spinning a coin or, more 
usually, the use of a table of random numbers. A limited table is 
given in the Table B (Appendix), and more extensive ones have 
been published.1 A sample so chosen is called a random sample. 
The word “random” does not describe the sample as such, but the 
way in which it is selected.

To draw a satisfactory sample sometimes presents greater prob-
lems than to analyze statistically the observations made on it. 
A full discussion of the topic is beyond the scope of this book, and 
here we only offer an introduction.

Before drawing a sample, the investigator should define the 
population from which it is to come. Sometimes, he or she can 
completely enumerate its members before beginning analysis—for 
example, all the livers studied at necropsy over the previous year, 
all the patients aged 20–44 admitted to hospital with perforated 
peptic ulcer in the previous 20 months. In retrospective studies of 
this kind, numbers can be allotted serially from any point in the 
table to each patient or specimen. Suppose we have a population of 
size 150, and we wish to take a sample of size five. Table B contains 
a set of computer generated random digits arranged in groups of 
five. Choose any row or column, say the last column of five digits. 
Read only the first three digits, and go down the column starting 
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with the first row. Thus we have 265, 881, 722, etc. If a number 
appears between 001 and 150 then we include it in our sample. 
Thus, in order, in the sample will be subjects numbered 24, 59, 
107, 73, and 65. If necessary we can carry on down the next col-
umn to the left until the full sample is chosen.

The use of random numbers in this way is generally preferable 
to taking every alternate patient or every fifth specimen, or act-
ing on some other such regular plan. The regularity of the plan 
can occasionally coincide by chance with some unforeseen regu-
larity in the presentation of the material for study—for example, 
by hospital appointments being made from patients from certain 
practices on certain days of the week, or specimens being prepared 
in batches in accordance with some schedule.

As susceptibility to disease generally varies in relation to age, 
sex, occupation, family history, exposure to risk, inoculation state, 
country lived in or visited, and many other genetic or environ-
mental factors, it is advisable to examine samples when drawn to 
see whether they are, on average, comparable in these respects. 
The random process of selection is intended to make them so, but 
sometimes it can by chance lead to disparities. To guard against 
this possibility the sampling may be stratified. This means that a 
framework is laid down initially, and the patients or objects of the 
study in a random sample are then allotted to the compartments of 
the framework. For instance, the framework might have a primary 
division into males and females and then a secondary division of 
each of those categories into five age groups, the result being a 
framework with 10 compartments. It is then important to bear in 
mind that the distributions of the categories on two samples made 
up on such a framework may be truly comparable, but they will 
not reflect the distribution of these categories in the population 
from which the sample is drawn unless the compartments in the 
framework have been designed with that in mind. For instance, 
equal numbers might be admitted to the male and female categor-
ies, but males and females are not equally numerous in the gen-
eral population, and their relative proportions vary with age. This 
is known as stratified random sampling. For taking a sample from 
a long list, a compromise between strict theory and practicalities is 
known as a systematic random sample. In this case, we choose sub-
jects a fixed interval apart on the list, say every tenth subject, but 
we choose the starting point within the first interval at random.
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Unbiasedness and precision

The terms unbiased and precision have acquired special mean-
ings in statistics. When we say that a measurement is unbiased, we 
mean that the average of a large set of unbiased measurements 
will be close to the true value. When we say it is precise, we mean 
that repeated measurements will be close to one another. However 
these may not necessarily be close to the true value. We would like 
a measurement that is both unbiased and precise. Some authors 
equate unbiasedness with accuracy, but this is not universal and 
others use the term accuracy to mean a measurement that is both 
unbiased and precise. Strike2 gives a good discussion of the problem.

An estimate of a parameter taken from a random sample is 
known to be unbiased. As the sample size increases, it gets more 
precise.

Randomization

Another use of random number tables is to randomize the alloca-
tion of treatments to patients in a clinical trial. This ensures that 
there is no bias in treatment allocation and, in the long run, the 
subjects in each treatment group are comparable in both known 
and unknown prognostic factors. A common method is to use 
blocked randomization. This is to ensure that at regular intervals 
there are equal numbers in the two groups. Usual sizes for blocks 
are two, four, six, eight, and ten. Suppose we chose a block size of 
ten. A simple method using the table of random numbers given in 
Table B in the Appendix is to choose the first five unique digits in 
any row. If we chose the first row, the first five unique digits are 3, 
5, 6, 8, and 4. Thus we would allocate the third, fourth, fifth, sixth, 
and eighth subjects to one treatment and the first, second, seventh, 
ninth, and tenth to the other. If the block size was less than ten, we 
would ignore digits bigger than the block size. To allocate further 
subjects to treatment, we carry on along the same row, choosing 
the next five unique digits for the first treatment. In randomized 
controlled trials, it is advisable to change the block size from time 
to time to make it more difficult to guess what the next treatment 
is going to be.

It is important to realize that patients in a randomized trial are 
not a random sample from the population of people with the dis-
ease in question but rather a highly selected set of eligible and will-
ing patients. However, randomization ensures that in the long run, 
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any differences in outcome in the two treatment groups are due 
solely to differences in treatment.

Variation between samples

Even if we ensure that every member of a population has a known, 
and usually an equal, chance of being included in a sample, it does not 
follow that a series of samples drawn from one population and fulfill-
ing this criterion will be identical. They will show chance variations 
from one to another, and the variation may be slight or considerable. 
For example, a series of samples of the body tempera ture of healthy 
people would show very little variation from one to another, but the 
variation between samples of the systolic blood pressure would be 
considerable. Thus the variation between samples depends partly on 
the amount of variation in the population from which they are drawn.

Furthermore, it is a matter of common observation that a small 
sample is a much less certain guide to the population from which 
it was drawn than a large sample. In other words, the more mem-
bers of a population that are included in a sample the more chance 
will that sample have of accurately representing the population, 
provided a random process is used to construct the sample. A con-
sequence of this is that, if two or more samples are drawn from a 
population, the larger they are the more likely they are to resem-
ble each other—again provided that the random technique is fol-
lowed. Thus the variation between samples depends partly also on 
the size of the sample. Usually, however, we are not in a position 
to take a random sample; our sample is simply those subjects avail-
able for study. This is a “convenience” sample. For valid general-
izations to be made, we would like to assert that our sample is in 
some way representative of the population as a whole, and for this 
reason the first stage in a report is to describe the sample, say by 
age, sex, and disease status, so that other readers can decide if it is 
representative of the type of patients they encounter.

Standard error of the mean

If we draw a series of samples and calculate the mean of the obser-
vations in each, we have a series of means. These means generally 
conform to a Normal distribution, and they often do so even if the 
observations from which they were obtained do not (see Exercise 4.3). 
This can be proven mathematically and is known as the “central 
limit theorem”. The series of means, like the series of observations 
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in each sample, has a standard deviation. The standard error of the 
mean of one sample is an estimate of the standard deviation that 
would be obtained from the means of a large number of samples 
drawn from that population.

As noted above, if random samples are drawn from a population, 
their means will vary from one to another. The variation depends 
on the variation of the population and the size of the sample. We 
do not know the variation in the population, so we use the vari-
ation in the sample as an estimate of it. This is expressed in the 
standard deviation. If we now divide the standard deviation by the 
square root of the number of observations in the sample, we have 
an estimate of the standard error of the mean, SEM�SD/ n . It is 
important to realize that we do not have to take repeated samples 
in order to estimate the standard error; there is sufficient informa-
tion within a single sample. However, the concept is that, if we 
were to take repeated random samples from the population, this is 
how we would expect the mean to vary, purely by chance.

A general practitioner in Yorkshire has a practice which includes 
part of a town with a large printing works and some of the adja-
cent sheep farming country. With her patients’ informed consent, 
she has been investigating whether the diastolic blood pressure of 
men aged 20–44 differs between the printers and the farmworkers. 
For this purpose, she has obtained a random sample of 72 printers 
and 48 farmworkers and calculated the mean and standard devi-
ations, as shown in Table 4.1.

To calculate the standard errors of the two mean blood pressures, 
the standard deviation of each sample is divided by the square root 
of the number of the observations in the sample.

Printers: SEM mmHg� �4 5 72 0 53. / .

Farmers: SEM mmHg� �4 2 48 0 61. / .

Table 4.1 Mean diastolic blood pressures of printers and farmers.

Number Mean diastolic blood 

pressure (mmHg)

Standard deviation 

(mmHg)

Printers 72 88 4.5

Farmers 48 79 4.2
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These standard errors may be used to study the significance of the 
 difference between the two means, as described in successive chapters.

Standard error of a proportion or a percentage

Just as we can calculate a standard error associated with a mean, so 
we can also calculate a standard error associated with a percentage 
or a proportion. Here the size of the sample will affect the size of 
the standard error, but the amount of variation is determined by 
the value of the percentage or proportion in the population itself, 
and so we do not need an estimate of the standard deviation. For 
example, a senior surgical registrar in a large hospital is investigat-
ing acute appendicitis in people aged 65 and over. As a preliminary 
study, he examines the hospital case notes over the previous 10 
years and finds that of 120 patients in this age group with a diagno-
sis confirmed at operation 73 (60.8%) were women and 47 (39.2%) 
were men.

If p represents one percentage, 100 � p represents the other. 
Then the standard error of each of these percentages is obtained 
by (1) multiplying them together, (2) dividing the product by the 
number in the sample, and (3) taking the square root:

SE percentage �
�p p

n

( )100

which for the appendicitis data given above is as follows:

SE percentage �
�

�
60 8 39 2

120
4 46

. .
.

Problems with non-random samples

In general, we do not have the luxury of a random sample; we 
have to make do with what is available, a convenience sample. In 
order to be able to make generalizations, we should investigate 
whether biases could have crept in, which mean that the patients 
available are not typical. Common biases are:
•  hospital patients are not the same as ones seen in the community;
• volunteers are not typical of non-volunteers;
•  patients who return questionnaires are different from those who 

do not.
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In order to persuade the reader that the patients included are typ-
ical, it is important to give as much detail as possible at the begin-
ning of a report of the selection process and some demographic 
data such as age, sex, social class, and response rate.

Common questions

What is an acceptable response rate from a survey?
If one were taking a sample to estimate some population param-
eter, then one would like as high a response rate as possible. It is 
convention to accept 65–70% as reasonable. Note, however, that 
valid inferences can be made on much smaller response rates, 
provided no biases in response occur. If one has data on the non-
responders such as age or gender, it is useful to report it with the 
responders, to see if there are any obvious discrepancies.

Given measurements on a sample, what is 
the difference between a standard deviation and a 
standard error?
A standard deviation is a sample estimate of the population param-
eter σ; that is, it is an estimate of the variability of the observations. 
Since the population is unique, it has a unique standard deviation, 
which may be large or small depending on how variable the obser-
vations are. We would not expect the sample standard deviation to 
get smaller because the sample gets larger. However, a large sample 
would provide a more precise estimate of the population standard 
deviation σ than a small sample.

A standard error, on the other hand, is a measure of precision of 
an estimate of a population parameter. A standard error is always 
attached to a parameter, and one can have standard errors of any 
estimate, such as mean, median, fifth centile, even the standard 
error of the standard deviation. Since one would expect the preci-
sion of the estimate to increase with the sample size, the standard 
error of an estimate will decrease as the sample size increases.

When should I use a standard deviation to describe 
data and when should I use a standard error?
It is a common mistake to try and use the standard error to describe 
data. Usually it is done because the standard error is smaller, and 
so the study appears more precise. Statistical software often gives 
both in a single command, with no guidance as to which to use. 
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If the purpose is to describe the data (e.g. so that one can see if the 
patients are typical) and if the data are plausibly Normal, then one 
should use the standard deviation (mnemonic D for Description 
and D for Deviation). These are the sort of result one would see in 
the first table of a paper. If the purpose is to describe the outcome 
of a study, for example, to estimate the prevalence of a disease, or 
the difference between two treatment groups, then one should use 
a standard error (or, better, a confidence interval; see Chapter 5) 
(mnemonic E for Estimate and E for Error). Thus, in a paper, one 
would describe the sample in the first table (and so give, say, SD of 
blood pressure, and age range) and give estimates of the effects in 
the second table (and so give SEs of blood pressure differences).

Reading and reporting populations and samples

•  Report carefully how the sample was chosen. Were the subjects  
simply patients who happened to be about? Were they consecu-
tive patients who satisfied certain criteria?

•  Report differences in defining demographic factors between the 
sample and the remaining population.

•  List the reasons for exclusions, and compare responders and 
non-responders for key variables. In questionnaire surveys, 
describe how target population was obtained, and give numbers 
of people who refused to complete the questionnaire or who 
were “not available”.

•  When reading a paper, from the information given ask whether 
the results are generalizable.

Exercises

4.1  The mean urinary lead concentration in 140 children was 
2.18 µmol/24 h with standard deviation 0.87. What is the 
standard error of the mean?

4.2  In Table B (Appendix) giving random numbers between 
0 and 9, what would one expect the distribution of the digits 
to look like. Without doing any involved calculation, estimate 
the mean.

4.3  For the first column of five digits in Table B, take the mean 
value of the five digits and do this for the first 20 rows of five 
digits in the column. Plot a histogram of these means and find 
their mean and standard deviation.

What would you expect a histogram of the means to look like?
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What would you expect the mean of the 20 numbers to be? 
Given that the standard deviation of the numbers in Table B is 
2.87, what do we expect the standard deviation of the means 
going to be? How does this compare to the observed standard 
error?
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CHAPTER 5

Statements of probability 
and confidence intervals

We have seen that when a set of observations have a Normal dis-
tribution, multiples of the standard deviation mark certain limits 
on the scatter of the observations. For instance, 1.96 (or approxi-
mately 2) standard deviations above and 1.96 standard deviations 
below the mean (�1.96 SD) mark the points within which 95% of 
the observations lie.

Reference ranges

We noted in Chapter 1 that 140 children had a mean urinary lead 
concentration of 2.18 µmol/24 h, with standard deviation 0.87. We 
assume that urinary lead concentrations are Normally distributed. 
In this case, the points that include 95% of the observations are 
2.18 � (1.96 � 0.87), giving an interval of 0.48 to 3.89. One of the 
children had a urinary lead concentration of just over 4.0 µmol/24 h. 
This observation is greater than 3.89 and so falls in the 5% beyond 
the 95% probability limits. We can say that the probability of each 
of such observations occurring is 5%. Another way of looking at 
this is to see that if one chose one child at random out of the 140, 
the chance that their urinary lead concentration exceeded 3.89, or 
was less than 0.48, is 5%. This probability is usually expressed as a 
fraction of 1 rather than of 100, and written P � 0.05.

Standard deviations thus set limits about which probability 
statements can be made. Some of these are set out in Table A 
(Appendix). To use Table A to estimate the probability of finding 
an observed value, say a urinary lead concentration of 4.8 µmol/
24 h, in sampling from the same population of observations as the 
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140 children provided, we proceed as follows. The distance of the 
new observation from the mean is 4.8 � 2.18  � 2.62. How many 
standard deviations does this represent? Dividing the difference 
by the standard deviation gives 2.62/0.87 � 3.01. This number is 
greater than 2.576 but less than 3.291 in Table A, so the probabil-
ity of finding a deviation as large or more extreme than this lies 
between 0.01 and 0.001, which may be expressed as 0.001 � P 
� 0.01. In fact Table A shows that the probability is very close to 
0.0027. This probability is small, so the observation probably did 
not come from the same population as the 140 other children.

To take another example, the mean diastolic blood pressure of 
printers was found to be 88 mmHg and the standard deviation 
4.5 mmHg. One of the printers had a diastolic blood pressure of 
100 mmHg. The mean plus or minus 1.96 times its standard devia-
tion gives the following two figures:

88 � (1.96 � 4.5) � 96.8 mmHg

88 � (1.96 � 4.5) � 79.2 mmHg

We can say therefore that only 1 in 20 (or 5%) of printers in the 
population from which the sample is drawn would be expected to 
have a diastolic blood pressure below 79 or above about 97 mmHg. 
These are the 95% limits. The 99.73% limits lie 3 SD below and 
three above the mean. The blood pressure of 100 mmHg noted in 
one printer thus lies beyond the 95% limit of 97 but within the 
99.73% limit of 101.5 (� 88 � (3 � 4.5)).

The 95% limits are often referred to as a “reference range”. For 
many biological variables, they define what is regarded as the nor-
mal (meaning standard or typical) range. Anything outside the range 
is regarded as abnormal. Given a sample of disease free subjects, an 
alternative method of defining a normal range would be simply to 
define points that exclude 2.5% of subjects at the top end and 2.5% 
of subjects at the lower end. This would give an empirical normal 
range. Thus in the 140 children we might choose to exclude the three 
highest and three lowest values. However, it is much more efficient 
to use the mean � 2 SD, unless the data set is quite large (say �400).

Confidence intervals

The means and their standard errors can be treated in a similar fash-
ion. If a series of samples are drawn and the mean of each calculated, 
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95% of the means would be expected to fall within the range of two 
standard errors above and two below the mean of these means. This 
common mean would be expected to lie very close to the mean of 
the population. So the standard error of a mean provides a state-
ment of probability about the difference between the mean of the 
population and the mean of the sample.

In our sample of 72 printers, the standard error of the mean was 
0.53 mmHg. The sample mean plus or minus 1.96 times its stand-
ard error gives the following two figures:

88 � (1.96 � 0.53) � 89.04 mmHg

88 � (1.96 � 0.53) � 86.96 mmHg

This is called the 95% confidence interval, and we can say that there 
is only a 5% chance that the range 86.96 to 89.04 mmHg excludes 
the mean of the population. If we take the mean plus or minus 
three times its standard error, the interval would be 86.41 to 89.59. 
This is the 99.73% confidence interval, and the chance of this inter-
val excluding the population mean is 1 in 370. Confidence intervals 
provide the key to a useful device for arguing from a sample back to 
the population from which it came.

The standard error for the percentage of male patients with 
appendicitis, described in Chapter 4, was 4.46. This is also the 
standard error of the percentage of female patients with appendici-
tis, since the formula remains the same if p is replaced by 100 � p. 
With this standard error, we can get 95% confidence intervals for 
the two percentages:

60.8 � (1.96 � 4.46) � 52.1 and 69.5

39.2 � (1.96 � 4.46) � 30.5 and 47.9

These confidence intervals exclude 50%. Can we conclude that 
males are more likely to get appendicitis? This is the subject of the 
rest of the book, namely inference.

With small samples—say under 30 observations—larger multi-
ples of the standard error are needed to set confidence limits. This 
subject is discussed under the t distribution (Chapter 7).

There is much confusion over the interpretation of the prob-
ability attached to confidence intervals. To understand it, we 
have to resort to the concept of repeated sampling. Imagine tak-
ing repeated samples of the same size from the same population. 
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For each sample calculate a 95% confidence interval. Since the 
samples are different, so are the confidence intervals. We know 
that 95% of these intervals will include the population parame-
ter. However, without any additional information, we cannot say 
which ones! Thus with only one sample, and no other information 
about the population parameter, we can say there is a 95% chance 
of including the parameter in our interval. Note that this does not 
mean that we would expect with 95% probability that the mean 
from another sample is in this interval. In this case, we are consid-
ering differences between two sample means, which is the subject 
of the next chapter.

Large sample standard error of difference 
between means

Consider now the mean of the second sample. If the sample comes 
from the same population, its mean will also have a 95% chance 
of lying within 1.96 standard errors of the population mean, but if 
we do not know the population mean, we have only the means of 
our samples to guide us. Therefore, if we want to know whether 
they are likely to have come from the same population, we ask 
whether they lie within a certain range, represented by their 
standard errors, of each other.

If SD1 represents the standard deviation of sample 1 and SD2 the 
standard deviation of sample 2, n1 the number in sample 1 and n2 
the number in sample 2, a formula denoting the standard error of 
the difference between two means is:

 

SE (diff)
SD SD1

2
2
2

� �
n n1 2

⎛

⎝
⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
 (5.1)

or SE (diff) SE SE1
2

2
2� �

Large sample confidence interval for the 
difference in two means

From the data in Table 4.1, the general practitioner wants to com-
pare the mean of the printers’ blood pressures with the mean of 
the farmers’ blood pressures.
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Analyzing these figures in accordance with the formula given 
above, we have:

SE (diff) mmHg� � �
4 5

72

4 2

48
0 805

2 2. .
.

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

The difference between the means is 88 � 79 � 9 mmHg. For large 
samples, we can calculate a 95% confidence interval for the differ-
ence in means as:

9 � (1.96 � 0.805) to 9 � (1.96 � 0.805)

which is:

7.42 to 10.58 mmHg

For a small sample, we need to modify this procedure, as described 
in Chapter 7.

Standard error of difference between 
percentages or proportions

The surgical registrar who investigated appendicitis cases, referred 
to in Chapter 4, wonders whether the percentages of men and 
women in the sample differ from the percentages of all the other 
men and women aged 65, and over who were admitted to the sur-
gical wards during the same period. After excluding his sample of 
appendicitis cases, so that they are not counted twice, he makes 
a rough estimate of the number of patients admitted in those 
10 years and finds it to be about 12–13 000. He selects a system-
atic random sample of 640 patients, of whom 363 (56.7%) were 
women and 277 (43.3%) men.

The percentage of women in the appendicitis sample was 60.8% 
and differs from the percentage of women in the general surgical 
sample by 60.8 � 56.7 � 4.1%. Is this difference of any signifi-
cance? In other words, could this have arisen by chance?

There are two ways of calculating the standard error of the dif-
ference between two percentages: one is based on the null hypoth-
esis that the two groups come from the same population; the other 
on the alternative hypothesis that they are different. For Normally 
distributed variables, these two are the same if the standard devi-
ations are assumed to be the same, but in the binary case the 
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standard deviations depend on the estimates of the proportions, 
and so if these are different so are the standard deviations. Usually, 
however, even in the binary case, both methods give almost the 
same result.

Confidence interval for a difference in 
proportions or percentages

The calculation of the standard error of a difference in proportions 
p1 � p2 follows the same logic as the calculation of the standard 
error of two means; sum the squares of the individual standard 
errors and then take the square root. It is based on the alternative 
hypothesis that there is a real difference in proportions (further 
discussion on this point is given in Common questions at the end 
of this chapter).
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Note that this is an approximate formula; the exact one would use 
the population proportions rather than the sample estimates.

With our appendicitis data, we have:
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Thus a 95% confidence interval for the difference in percentages is:

4.1 � (1.96 � 4.87) to 4.1 � 1.96 � 4.87

  � �5.4 to 13.6%

Confidence interval for an odds ratio

The appendicitis data can be rewritten as a 2�2 table given in 
Table 5.1.

As discussed in Chapter 3, the odds ratio for males versus 
females is OR � ad/bc, which is given by 73 � 277/363 � 47 � 
1.185. This means that women are about 20% greater risk of being 
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an appendicitis case than men. It turns out to be easier to calculate
the standard error of the loge odds ratio. The standard error is 
given by:1

 
SE ( ORelog )� � � �

1 1 1 1

a b c d
 (5.3)

Thus the standard error is given by:

1

73

1

363

1

47

1

277
0 203� � � � .

The loge of the odds ratio is 0.170.
Thus a 95% confidence interval for the loge OR is given by:

0.170 � 1.96 � 0.203 to 0.170 � 1.96 � 0.203

 or �0.228 to 0.578

To get a 95% confidence interval for OR, we need to take antilogs 
(ex). Thus a 95% confidence interval for the odds ratio is e�0.228 to 
e0.578, which is 0.80 to 1.77. Note how this confidence interval is 
not symmetric about the odds ratio of 1.19, in contrast to that for a 
difference in proportions.

If there were no difference in the proportion of males to females 
for the two surgical groups, we would expect the OR to be 1. Thus 
if the 95% confidence interval excludes 1, we can say there is a sig-
nificant difference between the groups. In this case, the confidence 
interval includes 1, in agreement with the earlier lack of signifi-
cance from the statistical test.

Table 5.1 Appendicitis data.

Cases

Appendicitis Surgical (not appendicitis)

Females 73 (a) 363 (b)

Males 47 (c) 277 (d)

Total 120 640
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Confidence interval for a relative risk

Consider the isoniazid trial described in Table 3.2. Using the nota-
tion of Table 3.1, the standard error of the logarithm of the relative 
risk is given by:1

SE RR(log )� �
�

� �
�

1 1 1 1

a a b c c d

Thus the standard error is given by:

SE RR(log ) .� � � � �
1

21

1

131

1

11

1

132
0 351

The relative risk is given by 0.52 and so the logarithm is �0.654.
Thus a 95% confidence interval for the log relative risk is:

�0.654 � 1.96 � 0.351 to �0.654 � 1.96 � 0.351

�1.42 to 0.040

and so the 95% confidence interval for the relative risk is:

0.242 to 1.04

Confidence intervals for other estimates

For any estimate, it is possible to find a confidence interval. A gen-
eral method is via what is known as the bootstrap.2 This method 
takes repeated samples, with replacement, from the original data 
and recalculates estimate. With a large number of samples, a range 
of values will be obtained, from which it will be possible to cal-
culate where 95% (say) of them lie. In general, any worthwhile 
package will give a confidence interval to an estimate, and so for 
example OpenEpi gives confidence intervals for all the estimators 
given in Chapters 2 and 3. Different methods may give different 
values and one should consult the program manual for advice on 
which method is best under which circumstances.

Common questions

What is the difference between a reference range and a 
confidence interval?
There is precisely the same relationship between a reference range 
and a confidence interval as between the standard deviation and 
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the standard error. The reference range refers to individuals and 
the confidence intervals to estimates. It is important to realize that 
samples are not unique. Different investigators taking samples 
from the same population will obtain different estimates of the 
population parameter, and have different 95% confidence inter-
vals. However, we know that for 95 of every 100 investigators, the 
confidence interval will include the population parameter (we just 
don’t know which ones).

If I repeated a study with the same sample size, 
would the new results fall in the confidence 
interval 95% of the time?
This is a common misperception. It ignores the fact that the new 
study has its own uncertainty, which needs to be included in the 
calculation. In fact, there is an approximately 84% chance of the 
new results falling within the 95% confidence interval. For further 
discussion, see Julious et al.3

Reading and reporting confidence intervals

•  In general, confidence intervals are best restricted to the main 
outcome of a study, which is often a contrast (i.e. a difference) 
between means or percentages. There is now a great empha-
sis on confidence intervals in the literature, and some authors 
attach confidence intervals to every estimate in a paper, which is 
not a good idea!

•  The Vancouver guidelines state “When possible, quantify find-
ings and present them with appropriate indicators of measure-
ment error or uncertainty (such as confidence intervals)”.4

•  To avoid confusion with negative numbers, it is best to quote a 
confidence interval as “a to b” rather than “a � b”.

Formula appreciation
A geometric interpretation of equation (5.1) is that if SE1 and SE2 
are sides of a triangle joined by a right angle, then SE (diff) is the 
length of the side of the triangle opposite the right angle. As an 
aside, the right angle comes about because we assume that samples 
1 and 2 are independent (sometimes termed orthogonal). If they are 
not, for example, if some people feature in both samples 1 and 2, 
then formula (5.1) is no longer valid. Note that in equation (5.2), 
we can exchange p1 with 1 � p1 and p2 with 1 � p2. Thus the SE 
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of the difference between 95% and 10% is the same as the SE for 
5% and 10%, and for 95% and 90%. In formula (5.3), if any of a, 
b, c, d is small, then the SE will be large, irrespective of how big 
the others are.

Exercises

5.1  A count of malaria parasites in 100 fields with a 2 mm oil 
immersion lens gave a mean of 35 parasites per field, standard 
deviation 11.6 (note that, although the counts are quantitative 
discrete, the counts can be assumed to follow a Normal distri-
bution because the average is large). On counting one more 
field, the pathologist found 52 parasites. Does this number 
lie outside the 95% reference range? What is the reference 
range?

5.2  What is the 95% confidence interval for the mean of the pop-
ulation from which this sample count of parasites was drawn.

5.3  In one group of 62 patients with iron deficiency anemia, the 
hemoglobin level was 12.2 g/dl, standard deviation 1.8 g/dl; in 
another group of 35 patients the hemoglobin level was 10.9 g/dl, 
standard deviation 2.1 g/dl. What is the difference in means 
and the standard error of this difference? Give an approximate 
95% confidence interval for the difference.

5.4  In an obstetric hospital, 17.8% of 320 women were delivered 
by forceps. What is the standard error of this percentage? In 
another hospital in the same region, 21.2% of 185 women 
were delivered by forceps. What is the standard error of the 
difference between the percentages at this hospital and the 
first? What is the difference between these percentages of for-
ceps delivery with a 95% confidence interval?

5.5  Calculate the difference in proportions (also known as the 
absolute risk reduction (ARR)) and a 95% confidence interval 
for the difference in proportions of children who died or had a 
shunt for the data given in Table 3.4.

5.6  For the data in Table 3.6, calculate the odds ratio for the rela-
tionship between eczema and hay fever, and find a 95% confi-
dence interval.
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CHAPTER 6

P-values, power, type I 
and type II errors

We saw in Chapter 4 that the mean of a sample has a standard 
error, and a mean that departs by more than twice its standard 
error from the population mean would be expected by chance 
only in about 5% of samples. Likewise, the difference between 
the means of two samples has a standard error. We do not usually 
know the population mean, so we may suppose that the mean of 
one of our samples estimates it. The sample mean may happen to 
be identical with the population mean, but it more probably lies 
somewhere above or below the population mean, and there is a 
95% chance that it is within 1.96 standard errors of it.

Null hypothesis and type I error

In comparing the mean blood pressures of the printers and the 
farmers, we are testing the hypothesis that the two samples came 
from the same population of blood pressures. The hypothesis that 
there is no difference between the population from which the print-
ers’ blood pressures were drawn and the population from which the 
farmers’ blood pressures were drawn is called the null hypothesis.

But what do we mean by “no difference”? Chance alone will 
almost certainly ensure that there is some difference between 
the sample means, for they are most unlikely to be identical. 
Consequently, we set limits within which we shall regard the sam-
ples as not having any significant difference. If we set the limits 
at twice the standard error of the difference, and regard a mean 
outside this range as coming from another population, we shall on 
average be wrong about one time in 20 if the null hypothesis is in 
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fact true. If we do obtain a mean difference bigger than two stand-
ard errors we are faced with two choices: either an unusual event 
has happened or the null hypothesis is incorrect. Imagine tossing a 
coin 5 times and getting the same face each time. This has nearly 
the same probability (6.3%) as obtaining a mean difference big-
ger than two standard errors when the null hypothesis is true. Do 
we regard it as a lucky event or suspect a biased coin? If we are 
unwilling to believe in unlucky events, we reject the null hypoth-
esis, which in this case is that the coin is a fair one.

To reject the null hypothesis when it is true is to make what is 
known as a type I error. The level at which a result is declared sig-
nificant is known as the type I error rate, often denoted by α. We 
try to show that a null hypothesis is unlikely, not its converse (that 
it is likely), so a difference which is greater than the limits we have 
set, and which we therefore regard as “significant”, makes the null 
hypothesis unlikely. However, a difference within the limits we 
have set, and which we therefore regard as “non-significant, does 
not make the hypothesis likely. To repeat an old adage, “absence of 
evidence is not evidence of absence”.

A range of not more than two standard errors is often taken as 
implying “no difference” but there is nothing to stop investigators 
choosing a range of three standard errors (or more) if they want to 
reduce the chances of a type I error.

Testing for differences of two means

To find out whether the difference in blood pressure of printers 
and farmers could have arisen by chance, the general practitioner 
erects the null hypothesis that there is no significant difference 
between them. The question is, how many multiples of its standard 
error does the difference in means represent? Since the difference 
in means is 9.0 mmHg and its standard error is 0.805 mmHg, the 
answer is 9.0/0.805 � 11.2. We usually denote the ratio of an esti-
mate to its standard error by “z”, that is, z � 11.2. Reference to Table 
A (Appendix) shows that z is far beyond the figure of 3.291 standard 
deviations, representing a probability of 0.001 (or 1 in 1000). The 
probability of a difference of 11.1 standard errors or more occurring 
by chance is therefore exceedingly low, and correspondingly the null 
hypothesis that these two samples came from the same population 
of observations is exceedingly unlikely. The probability is known as 
the P-value and may be written P �� 0.001.
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Sometimes an investigator knows a mean from a very large 
number of observations and wants to compare the mean of her 
sample with it. We may not know the standard deviation of the 
large number of observations or the standard error of their mean, 
but this need not hinder the comparison if we can assume that the 
standard error of the mean of the large number of observations is 
near zero or at least very small in relation to the standard error of 
the mean of the small sample.

This is because in equation (5.1), for calculating the standard 
error of the difference between the two means, when n1 is very 
large then SD1

2
1/n  becomes so small as to be negligible. The for-

mula thus reduces to

SD2
2

2n

which is the same as that for standard error of the sample mean.
Consequently, we find the standard error of the mean of the 

sample and divide it into the difference between the means.
For example, a large number of observations have shown that the 

mean count of erythrocytes (measured � 1012 per litre) in men is 
5.5. In a sample of 100 men, a mean count of 5.35 was found with 
standard deviation 1.1. The standard error of this mean is SD/ n, 
1 1 0 11. ./ 100 � . The difference between the two means is 5.5 � 
5.35 � 0.15. This difference, divided by the standard error, gives 
z � 0.15/0.11 � 1.36. This figure is well below the 5% level of 1.96 
and in fact is below the 10% level of 1.645 (see Table A). We there-
fore conclude that the difference could have arisen by chance.

Testing for a difference in two proportions

For a significance test, we have to use a slightly different formula for 
the standard error of a difference in proportions to that given in the 
previous chapter. This one is based on the null hypothesis that both 
samples have a common population proportion, estimated by p.
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From the appendicitis data referred to in Chapter 4, to obtain p we 
must amalgamate the two samples and calculate the percentage of 
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women in the two combined; 100 � p is then the percentage of men 
in the two combined. The numbers in each sample are n1 and n2.

Number of women in the samples: 73 � 363 � 436

Number of people in the samples: 120 � 640 � 760

Percentage of women: (436 � 100)/760 � 57.4

Percentage of men: (324 � 100)/760 � 42.6

Putting these numbers in the formula, we find the standard error 
of the difference between the percentages is:

57 4 57 4 42 6
4 92

. . .
.

�
�

�
�

42.6
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This is very close to the standard error estimated under the alter-
native hypothesis.

The difference between the percentage of women (and men) 
in the two samples was 4.1%. To find the probability attached to 
this difference, we divide it by its standard error: z � 4.1/4.92 � 
0.83. From Table A (Appendix), we find that P is about 0.4 and so 
the difference between the percentages in the two samples could 
have been due to chance alone, as might have been expected from 
the confidence interval. Note that this test gives results identi-
cal to those obtained by the χ2 test without continuity correction 
(described in Chapter 8).

The P-value

It is worth recapping this procedure, which is at the heart of sta-
tistical inference. Suppose that we have samples from two groups 
of subjects, and we wish to see if they could plausibly come from 
the same population. The first approach would be to calculate the 
difference between two statistics (such as the means of the two 
groups) and calculate the 95% confidence interval. If the two 
samples were from the same population, we would expect the 
confidence interval to include zero 95% of the time, and so if the 
confidence interval excludes zero we suspect that they are from a 
different population. The other approach is to compute the proba-
bility of getting the observed value, or one that is more extreme, if the 
null hypothesis were correct. This is the P-value. If this is less than 
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a specified level (usually 5%), then the result is declared signifi-
cant and the null hypothesis is rejected. These two approaches, the 
estimation and hypothesis testing approach, are complementary. 
Imagine if the 95% confidence interval just captured the value 
zero, what would be the P-value? A moment’s thought should 
convince one that it is 2.5%. This is known as a one-sided P-value, 
because it is the probability of getting the observed result or one 
bigger than it. However, the 95% confidence interval is two sided, 
because it excludes not only the 2.5% above the upper limit but 
also the 2.5% below the lower limit. To support the complemen-
tarity of the confidence interval approach and the null hypothesis 
testing approach, most authorities double the one-sided P-value to 
obtain a two-sided P-value (see below for the distinction between 
one-sided and two-sided tests).

P-values, confidence intervals, and clinically 
important results

Simply because we have rejected a null hypothesis, this does not 
mean we have found an important result. It is useful to think in 
terms of a clinically important difference. For example, a general 
practitioner might prescribe a drug which reduced blood pressure 
by 10 mmHg but not one that reduced it by 1 mmHg, because the 
former is clinically worthwhile. Suppose we are comparing a new 
treatment with a standard and we know what a clinically impor-
tant result is. Suppose we run five studies and have the results as 
shown in Figure 6.1.

1

2

3

4

5

No
difference

Clinically important
difference

Figure 6.1 95% Confidence intervals for five studies.
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In study 1, we have a statistically significant result which is also 
clinically important. In study 2, we have a statistically significant 
result, but the confidence interval suggests that it is plausible that 
the results are not clinically important. In study 3, the results are 
statistically significant but not clinically important. This could be the 
outcome from a very large clinical trial. In study 4, we have a result 
which may be clinically important, since the center of the confi-
dence interval is bigger than the minimum clinically important dif-
ference. However it is not statistically significant. Finally, study 5 is 
neither statistically significant nor clinically important. This may be 
a useful result if one was interested in proving two treatments were 
equivalent.

Alternative hypothesis and type II error

It is important to realize that when we are comparing two groups, a 
non-significant result does not mean that we have proved the two 
samples come from the same population—it simply means that we 
have failed to prove that they do not come from the same popu-
lation. When planning studies, it is useful to think of what differ-
ences are likely to arise between the two groups, or what would 
be clinically worthwhile; for example, what do we expect to be the 
improved benefit from a new treatment in a clinical trial? This leads 
to a study hypothesis, which is a difference we would like to demon-
strate. To contrast the study hypothesis with the null hypothesis, it 
is often called the alternative hypothesis. If we do not reject the null 
hypothesis when in fact there is a difference between the groups, 
we make what is known as a type II error. The type II error rate is 
often denoted as β. The power of a study is defined as 1 � β and is 
the probability of rejecting the null hypothesis when it is false. The 
most common reason for type II errors is that the study is too small.

The relationship between type I and type II errors is shown in 
Table 6.1. One has to imagine a series of cases, in some of which 
the null hypothesis is true and in some of which it is false. In 
either situation we carry out a significance test, which sometimes 
is significant and sometimes not.

The concept of power is only relevant when a study is being 
planned (see Chapter 13 for sample size calculations). After a study 
has been completed, we wish to make statements not about hypo-
thetical alternative hypotheses but about the data, and the way to 
do this is with estimates and confidence intervals.
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Common questions

Why is the standard error used for calculating 
a confidence interval for the difference in two 
proportions different from the standard error 
used for calculating the significance?
For nominal variables, the standard deviation is not independent 
of the mean. If we suppose that a nominal variable simply takes 
the value 0 or 1, then the mean is simply the proportion of 1’s and 
the standard deviation is directly dependent on the mean, being 
largest when the mean is 0.5. The null and alternative hypotheses 
are hypotheses about means, either that they are the same (null) 
or different (alternative). Thus for nominal variables, the stand-
ard deviations (and thus the standard errors) will also be different 
for the null and alternative hypotheses. For a confidence interval, 
the alternative hypothesis is assumed to be true, whereas for a sig-
nificance test the null hypothesis is assumed to be true. In gen-
eral, the difference in the values of the two methods of calculating 
the standard errors is likely to be small, and use of either would 
lead to the same inferences. The reason this is mentioned here is 
that there is a close connection between the test of significance 
described in this chapter and the χ2 test described in Chapter 8. 
The difference in the arithmetic for the significance test, and that 
for calculating the confidence interval, could lead some readers to 
believe that they are unrelated, whereas in fact they are comple-
mentary. The problem does not arise with continuous variables, 
where the standard deviation is usually assumed independent of 
the mean, and is also assumed to be the same value under both 
the null and alternative hypotheses.

It is worth pointing out that the formula for calculating the 
standard error of an estimate is not necessarily unique; it depends 
on underlying assumptions, and so different assumptions or study 

Table 6.1 Relationship between type I and type II errors.

Null hypothesis

False True

Test result Significant Power Type I error

Not significant Type II error
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designs will lead to different estimates for standard errors for data 
sets that might be numerically identical.

Why is the P-value not the probability that the null 
hypothesis is true?
A moment’s reflection should convince you that the P-value could 
not be the probability that the null hypothesis is true. Suppose 
we got exactly the same value for the mean in two samples (if 
the samples were small and the observations coarsely rounded 
this would not be uncommon; the difference between the means 
is zero). The probability of getting the observed result (zero) or a 
result more extreme (a result that is either positive or negative) 
is unity—that is, we can be certain that we must obtain a result 
which is positive, negative, or zero. However, we can never be cer-
tain that the null hypothesis is true, especially with small samples, 
so clearly the statement that the P-value is the probability that the 
null hypothesis is true is in error. We can think of it as a measure 
of the strength of evidence against the null hypothesis, but since it 
is critically dependent on the sample size we should not compare 
P-values to argue that a difference found in one group is more 
“significant” than a difference found in another.

Why is 5% usually used as the level by which results 
are deemed “significant”
There are a number of different suggestions as to why 5% has 
achieved such iconic status. The most prosaic is that it nearly cor-
responds to a difference of two standard errors. Another derives 
from the way the great statistician RA Fisher tabulated P-values. 
However, a simple class experiment is to toss a coin repeatedly and 
tell the class that the outcome is a “head” irrespective of the true 
outcome. They usually start to disbelieve you after 4 or 5 heads. 
Since the probability of 4 heads is 1/16 and 5 is 1/32, the “per-
son in the street” generally starts to disbelieve results which have 
a probability in this range. However, there are reasons to suggest 
that a smaller threshold may be appropriate (see below).

What is the difference between a one-sided 
and a two-sided test?
Consider a test to compare the population means of two groups A 
and B. A one-sided test considers as an alternative hypothesis that 
mean A is greater than mean B. A two-sided test considers as an 
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alternative that mean A is either greater or less than B. Since the 
one-sided test requires a stronger assumption, it is more power-
ful. However, it leaves one in a dilemma if the observed mean of A 
is much less than the observed mean of B. In theory, one cannot 
abandon the one-sided alternative hypothesis and choose a two-
sided one instead. Since, in most cases, we are genuinely uncer-
tain as to which direction to choose, two-sided tests are almost 
universal. The main exception may be when one is trying to show 
two treatments are equivalent, for example, lumpectomy compared 
with radical mastectomy for breast cancer. Then the question is 
whether lumpectomy is worse for survival, and we are not worried 
if it might be better. Note that at the beginning of this chapter, we 
referred to the probability of the same side of a coin turning up 
after five tosses as 6.3%, whereas just earlier we gave the prob-
ability of 5 heads as 1/32 � 3.1%. In the former case, we were not 
concerned whether we saw a head or a tail and so used a two-
tailed test, whereas in the latter case we specified a head and so 
used a one-tailed test.

Are there other methods of statistical inference?
We reiterate the definition of a P-value: the probability of getting an 
observed result, or one more extreme, if the null hypothesis were 
true. As stated above, it is not the probability of the null hypoth-
esis being true; the null hypothesis is assumed true in this case. If 
D represents data and H the null hypothesis, the P-value is P(D|H) 
(probability of the data given the hypothesis) and not P(H|D) (prob-
ability of the hypothesis given the data). To get from one to the other 
we need Bayes’ theorem. This states that P(H|D) is proportional to 
P(D|H) � P(H). The term P(H) is termed the prior distribution and 
measures our prior beliefs about the distribution of the treatment 
response (there are difficulties about specifying this but the distribu-
tion can be based on earlier studies and clinical judgement). The pos-
terior distribution is the measure of our beliefs about the distribution 
of the treatment response after we have collected the data. This com-
bines both our prior beliefs and the observed data from the current 
trial. We can then use the posterior distribution to give an estimate 
of the likely treatment response with a credibility interval to give a 
range of plausible values. A Bayesian credibility interval is analogous 
to a frequentist confidence interval. Provided one has a sufficient 
quantity of data, one would like the data to inform our beliefs after 
the study, and the prior distribution to have little effect. We can also 
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set what is known as a “vague” or non-informative prior distribu-
tion. There may be difficulties formulating these, but essentially they 
are such that we will only rely on the observed data for inference. 
In this case, the one-sided P-value can be interpreted as a probability 
about the null hypothesis (Burton et al.1). If by chance two means 
are found to be identical, then the one-sided P-value is 0.5. A vague 
prior distribution would chosen so that initially we have no preju-
dice about where the difference in means is to be. With P � 0.5, we 
say that the most likely hypothesis is the null one. However, there is 
a fifty-fifty chance that any other hypothesis could be true.

However, suppose one had results from two clinical trials. One 
was a test of aspirin versus placebo for the treatment of headache, 
and we found P � 0.04. The other was a test of a homeopathic 
remedy versus control for ill health, and out of several outcomes, 
headache also had a P-value of 0.04. Does one give equal weight 
to these two P-values? In general the answer would be no; one 
has a stronger prior belief about the efficacy of aspirin. Goodman 
suggested using what are known as Bayes factors in these cases.2 
He argues that what is needed is an inferential index that doesn’t 
simply accept or reject a hypothesis, but tells us how far we have 
come when we have collected data. We can use Bayes factors 
to convert prior odds of competing hypotheses to posterior odds. 
Assuming a Normal outcome the strongest Bayes factor is given by 
exp(�z2/2). Thus from Table A (Appendix), if P � 0.05, z � 1.96, 
then the Bayes factor is 0.15. Similarly the Bayes factor correspond-
ing to P � 0.01 is 0.04. Suppose we thought there was a fifty-fifty 
chance of the null hypothesis being true. This is an odds of 1 and 
so if P � 0.05 the smallest posterior odds are 0.15, or a probabil-
ity of 0.15/(1 � 0.15) � 0.13. If P � 0.01 then the posterior prob-
ability becomes 0.035. These results are quite surprising. A 50% 
chance of the null hypothesis being true is not high, and yet with 
P � 0.05 there is still at least a 13% chance of the null hypothesis 
being true. It is only when P � 0.01 does the posterior probabil-
ity drop below 1 in 20. This led Sterne and Smith3 to suggest that 
P � 0.05 is only moderate evidence against the null hypothesis; 
P � 0.01 is moderate to strong and P � 0.001 is strong to very strong.

Reading and reporting P-values

•  If possible present a precise P-value (e.g. P � 0.031) rather than 
a range such as 0.02 � P � 0.05.
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•  Do NOT report values of P � 0.05 as “n.s.”. Instead give the 
exact P-value.

•  It is unnecessary to go beyond two significant figures for P-values, 
and for small values P � 0.001 will usually suffice.

•  Some computer programs give small values as P � 0.000. Report 
P � 0.001 instead.

•  Do not use phrases such as “tending toward significance” for 
P-values just over 0.05. Quote the actual P-value and perhaps 
use other corroborating details (biological plausibility, direction 
of the result, other people’s results) to decide whether or not to 
reject the null hypothesis. Remember that the 0.05 level is not 
an absolute barrier to deciding to reject or not. However, also 
remember that other people may have differing beliefs and so 
not accept your decision.

•  Beware P-values from exploratory studies (Chapter 13) which 
do not have a limited number of prior null hypotheses. They 
may be the result of 'data-dredging' which involves testing a 
large number of hypotheses to find the most 'significant' result.

Exercises

6.1  A clinical trial to compare a mouthwash against a control 
found a difference in plaque score after 1 year of 1.1 units, 
P � 0.006 (two sided). The following are true or false.
(a) The probability that the null hypothesis is true is 0.006.
(b)  If the null hypothesis were true, the probability of getting 

an observed result of 1.1 or greater is 0.003.
(c)  The alternative hypothesis is a mean difference of 1.1.
(d)  The probability of the alternative hypothesis being true is 

0.994.
(e)  The probability that the true mean is 1.1 units is 95%.

6.2  The 95% confidence interval for the mean difference in scores 
was found to be (0.3 to 1.9 units). The following are true or false.
(a)  We are 95% sure that the true mean lies between 0.3 and 

1.9 units.
(b)  If the study were repeated many times, the 95% confi-

dence interval would include the true mean 95% of the 
time.

(c)  If we repeated the study with the same sample size, we 
would expect the mean difference to be within 0.3 to 1.9 
units 95% of the time.
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(d) The study is clinically important.
(e) The power of the study is greater than 80%.

6.3  What is the P-value associated with the results given in 
exercise 5.3?
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CHAPTER 7

The t tests

Previously we have considered how to test the null hypothesis that 
there is no difference between the mean of a sample and the popu-
lation mean, and no difference between the means of two samples. 
We obtained the difference between the means by subtraction, and 
then divided this difference by the standard error of the difference. 
If the difference is 1.96 times its standard error, or more, it is likely 
to occur by chance with a frequency of only 1 in 20, or less.

With small samples, where more chance variation must be 
allowed for, these ratios are not entirely accurate because the 
uncertainty in estimating the standard error has been ignored. 
Some modification of the procedure of dividing the difference by its 
standard error is needed, and the technique to use is the t test. Its 
foundations were laid by WS Gosset, writing under the pseudonym 
“Student” so that it is sometimes known as Student’s t test. The pro-
cedure does not differ greatly from the one used for large samples, 
but is preferable when the number of observations is less than 60, 
and certainly when they amount to 30 or less.

The application of the t distribution to the following four types 
of problem will now be considered:
1 The calculation of a confidence interval for a sample mean.
2  The mean and standard deviation of a sample are calculated and 

a value is postulated for the mean of the population. How signif-
icantly does the sample mean differ from the postulated popula-
tion mean?

3  The means and standard deviations of two samples are cal-
culated. Could both samples have been taken from the same 
population?
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4  Paired observations are made on two samples (or in succes-
sion on one sample). What is the significance of the difference 
between the means of the two sets of observations?

In each case the problem is essentially the same—namely, to 
establish multiples of standard errors to which probabilities can 
be attached. These multiples are the number of times a difference 
can be divided by its standard error. We have seen that with large 
samples 1.96 times the standard error has a probability of 5% or 
less, and 2.576 times the standard error a probability of 1% or less 
(Table A in the Appendix). With small samples, these multiples are 
larger, and the smaller the sample the larger they become.

Confidence interval for the mean 
from a small sample

A rare congenital disease, Everley’s syndrome, generally causes 
a reduction in concentration of blood sodium. This is thought to 
provide a useful diagnostic sign as well as a clue to the efficacy of 
treatment. Little is known about the subject, but the director of a 
dermatological department in a London teaching hospital is known 
to be interested in the disease and has seen more cases than any-
one else. Even so, he has seen only 18. The patients were all aged 
between 20 and 44.

The mean blood sodium concentration of these 18 cases was 
115 mmol/l, with standard deviation of 12 mmol/l. Assuming that 
blood sodium concentration is Normally distributed, what is the 
95% confidence interval within which the mean of the total popu-
lation of such cases may be expected to lie?

The data are set out as follows:

Number of observations 18

Mean blood sodium concentration 115 mmol/l

Standard deviation 12 mmo1/l

Standard error of mean SD/ 12/ 18 mmol/ln � � 2 83.

To find the 95% confidence interval above and below the mean, 
we now have to find a multiple of the standard error. In large sam-
ples we have seen that the multiple is 1.96 (Chapter 5). The dif-
ficulty is that in theory the standard deviation should be already 
known. When the standard deviation is estimated from the data, 
the Normal distribution is only an approximation, even when the 
original data are Normally distributed. The approximation becomes 
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poorer for small samples and the correct distribution is known as 
the t distribution. To find the t-value associated with say, a prob-
ability of 0.05, we use the TINV function in OpenOffice Calc. As 
the sample becomes smaller, t becomes larger for any particu-
lar level of probability. Conversely, as the sample becomes larger, 
t becomes smaller and approaches the Normal values given in 
Table A (Appendix), reaching them for infinitely large samples.

Since the size of the sample influences the value of t, the size 
of the sample is taken into account in relating the value of t to a 
probability. Rather than the sample size we enter the “degrees of 
freedom”. The use of these was noted in the calculation of the 
standard deviation (Chapter 2). In practice, the degrees of freedom 
for a single mean amount to one less than the number of observa-
tions in the sample. With these data we have 18 � 1 � 17 d.f. This 
is because only 17 observations plus the total number of observa-
tions are needed to specify the sample, the 18th being determined 
by subtraction.

To find the number by which we must multiply the standard 
error to give the 95% confidence interval, we find the 5% point of 
t with 17 d.f. from OpenOffice Calc to discover the number 2.110. 
The 95% confidence intervals of the mean are now set as follows:

Mean � 2.110 SE to Mean � 2.110 SE

which gives us:

115 � (2.110 � 2.83) to 115 � 2.110 � 2.83

          or 109.03 to 120.97 mmol/l

We may then say, with a 95% chance of being correct, that the 
range 109.03 to 120.97 mmol/l includes the population mean. 
Likewise for a 99% confidence interval the t-value is 2.898:

which gives a 99% confidence interval of:

115 � (2.898 � 2.83) to 115 � (2.898 � 2.83)

         or 106.80 to 123.20 mmol/l

Difference of sample mean from population 
mean (one sample t test)

Estimations of plasma calcium concentration in the 18 patients 
with Everley’s syndrome gave a mean of 3.2 mmol/l, with standard 
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deviation 1.1. Previous experience from a number of investigations 
and published reports had shown that the mean was commonly 
close to 2.5 mmol/l in healthy people aged 20–44, the age range of 
the patients. Is the mean in these patients abnormally high?

The assumptions are:
•  Data are representative of people with Everley’s syndrome (in 

this case we have a convenience sample).
• Data are quantitative and plausibly Normally distributed.
•  Data are independent of each other. This assumption is most 

important. In general, repeated measurements on the same indi-
vidual are not independent. If we had 18 measures of plasma 
calcium on 15 patients, then we have only 15 independent 
observations.

We set the figures out as follows:

Mean of general population, µ 2.5 mmol/l

Mean of sample, x 3.2 mmol/l

Standard deviation of sample, SD 1.1 mmol/l

Standard error of sample mean, SD/ n �1 1 18. / 0.26 mmo1/l

Difference between means µ � x  � 2.5 � 3.2 �0.7 mmol/l

t � difference between means divided by standard error of sample mean

t
x

n
�

�
�

�
��

µ
SD/

0 7

0 26
2 69

.

.
.

Degrees of freedom, n � 1 � 18 � 1 � 17.
Using OpenOffice Calc TDIST, we find P � 0.015 (two sided). It 

is therefore unlikely that the sample with mean 3.2 came from the 
population with mean 2.5, and we may conclude that the sample 
mean is, at least statistically, unusually high. Whether it should be 
regarded clinically as abnormally high is something that needs to 
be considered separately by the physician in charge of that case.

Difference between means of two samples

Here we apply a modified procedure for finding the standard error 
of the difference between two means and testing the size of the 
difference by this standard error (see Chapter 5 for large samples). 
For large samples we used the standard deviation of each sam-
ple, computed separately, to calculate the standard error of the 
difference between the means. For small samples we calculate a 
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combined standard deviation for the two samples. The following 
example illustrates the procedure.

The addition of bran to the diet has been reported to benefit 
patients with diverticulosis. Several different bran preparations 
are available, and a clinician wants to test the efficacy of two of 
them on patients, since favorable claims have been made for each. 
Among the consequences of administering bran that requires test-
ing is the transit time through the alimentary canal. Does it differ 
in the two groups of patients taking these two preparations?

The null hypothesis is that the two groups come from the same 
population. By random allocation the clinician selects two groups 
of patients aged 40–64 with diverticulosis of comparable sever-
ity. Sample 1 contains 15 patients who are given treatment A, and 
sample 2 contains 12 patients who are given treatment B. The tran-
sit times of food through the gut are measured by a standard tech-
nique with marked pellets and the results are recorded, in order of 
increasing time, in Table 7.1.

Table 7.1 Transit times of marker pellets through the alimentary canal of 
patients with diverticulosis on two types of treatment: unpaired comparison.

Transit times (h)

Sample 1 (treatment A) Sample 2 (treatment B)

44 52

51 64

52 68

55 74

60 79

62 83

66 84

68 88

69 95

71 97

71 101

76 116

82

91

108

Total 1026 1001

Mean 68.40 83.42
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The assumptions are:
•  The two samples come from distributions that may differ in their 

mean value, but not in the standard deviation.
• The observations are independent of each other.
•  The data are quantitative and plausibly Normally distributed. 

(Note in the case of a randomized trial, this last assumption is 
less critical, see Common questions.)

These data are shown in Figure 7.1. The assumptions of approxi-
mate Normality and equality of variance are satisfied. The design 
suggests that the observations are indeed independent. Since it is 
possible for the difference in mean transit times for A � B to be 
positive or negative, we will employ a two-sided test.
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Figure 7.1 Transit times for two bran preparations

With treatment A, the mean transit time was 68.40 h and with treat-
ment B 83.42 h. What is the significance of the difference, 15.02 h?

Find the pooled variance:
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When the difference between the means is divided by this standard 
error, the result is t. Thus,

t
x x

s

n

s

n
p p

�
�

�

( )1 2

2

1

2

2

⎛

⎝
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⎞

⎠

⎟⎟⎟⎟⎟⎟

The test has (n1 � 1) � (n2 � 1) degrees of freedom.
For the transit times of Table 7.1,

Treatment A n1 � 15, x1 � 68 40. , s1 � 16.474

Treatment B n2 � 12, x2 � 83 42. , s2 � 17.635

sp
2

(
�

� � �

� � �
�

14 271 3927 11 310 9932

15 1 12 1
288 82

. .

) ( )
.

SE( 1 2x x� � � �) ( . / . / ) .288 82 15 288 82 12 6 582

t �
�

�
83 42 68 40

6 582
2 282

. .

.
.

OpenOffice Calc TDIST (two sided) shows that with 25 degrees of 
freedom (i.e. (15 � 1) � (12 � 1)), P � 0.02.

This degree of probability is smaller than the conventional level 
of 5%. The null hypothesis that there is no difference between the 
means is therefore somewhat unlikely.

A 95% confidence interval is given by:

x x t n n1 2 1 2 SE� � � � �( )2

OpenOffice Calc TINV(0.05;25) � 2.06 

The 95% confidence interval becomes:

83.42 � 68.40 � 2.06 � 6.582

15.02 � 13.56 to 15.02 � 13.56

 or 1.46 to 28.58 h.

These results are also given using OpenStat in Chapter 14.
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Unequal standard deviations

If the standard deviations in the two groups are markedly differ-
ent, for example if the ratio of the larger to the smaller is greater 
than two, then one of the assumptions of the t test (that the two 
samples come from populations with the same standard devia-
tion) is unlikely to hold. An approximate test, due to Sattherwaite 
and described by Armitage et al.,1 which allows for unequal stand-
ard deviations, is described below. Another version of this test is 
known as Welch test.

Rather than use the pooled estimate of variance, compute:

SE( 1 2
1
2

1

2
2

2

x x
s

n

s

n
� � �)

⎛

⎝
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⎞

⎠

⎟⎟⎟⎟⎟

This is the large sample estimate given in equation (5.1), and is anal-
ogous to calculating the standard error of the difference in two pro-
portions under the alternative hypothesis as described in Chapter 6.

We now compute

d
x x

x x
�

�

�

(

SE (
1 2

1 2

)

)

We then test this using a t statistic, in which the degrees of freedom are:

 

d.f.
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[( / ) /( )] [( / ) /( )]

2

2 21 1
 (7.1)

This is a complicated formula but luckily is implemented in 
OpenStat where the results are shown in Chapter 14. The unequal 
variance t test tends to be less powerful (i.e. slightly less likely to 
give a significant result) than the usual t test if the variances are 
in fact the same, since it uses fewer assumptions. It should not 
be used indiscriminately because, if the standard deviations are 
different, how can we interpret a non-significant difference in 
means, for example? Often a better strategy is to try a data trans-
formation, such as taking logarithms as described in Chapter 2. 
Transformations that render distributions closer to Normality often 
also make the standard deviations similar. If a log transformation is 
successful, use the usual t test on the logged data.
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We find in this case that SE � 6.632, d � 2.26, and d.f. � 22.9, 
or approximately 23. OpenOffice Calc gives P � 0.034, very close 
to that given by the equal variance test. This might be expected, 
because the standard deviations in the original data set are very 
similar, and so using the unequal variances t test gives very similar 
results to the t test which assumes equal variances. It can also be 
shown that if the numbers of observations in each group are simi-
lar, the usual t test is quite robust.

Difference between means of paired 
samples (paired t test)

When the effects of two alternative treatments or experiments are 
compared, for example in crossover trials, randomized trials in 
which randomization is between matched pairs, or matched case–
control studies (see Chapter 13), it is sometimes possible to make 
comparisons in pairs. Matching controls for the matched variables 
can lead to a more powerful study.

The test is derived from the single sample t test, using the fol-
lowing assumptions.
1 The data are quantitative.
2  The distribution of the differences (not the original data) is plausi-

bly Normal.
3 The differences are independent of each other.

The first case to consider is when each member of the sample 
acts as his own control. Whether treatment A or treatment B is 
given first or second to each member of the sample should be 
determined by the use of the table of random numbers (Appendix, 
Table B). In this way any effect of one treatment on the other, 
even indirectly through the patient’s attitude to treatment, for 
instance, can be minimized. Occasionally it is possible to give both 
treatments simultaneously, as in the treatment of a skin disease by 
applying a remedy to the skin on opposite sides of the body.

Let us use as an example the studies of bran in the treatment of 
diverticulosis discussed earlier. The clinician wonders whether tran-
sit time would be shorter if bran is given in the same dosage in three 
meals during the day (treatment A) or in one meal (treatment B). A 
random sample of patients with disease of comparable severity and 
aged 20–44 is chosen and the two treatments administered on two 
successive occasions, the order of the treatments also being deter-
mined from the table of random numbers. The alimentary transit 
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times and the differences for each pair of treatments are set out in 
Table 7.2.

In calculating t on the paired observations, we work with the 
difference, d, between the members of each pair. Our first task is 
to find the mean of the differences between the observations and 
then the standard error of the mean, proceeding as follows:

Find the mean of the differences, d .
Find the standard deviation of the differences, SD.
Calculate the standard error of the mean SE( ) SD/d n� .
To calculate t, divide the mean of the differences by the standard 

error of the mean

t
d

d
�

SE( )

For the data from Table 7.2, we have d ��6.5 , SD � 15.1, and 
SE( ) 4.37d � . Thus,

t � �6.5/4.37 � �1.487

Table 7.2 Transit times of marker pellets through the alimentary canal of 
12 patients with diverticulosis on two types of treatment.

Transit times (h)

Patient Treatment A Treatment B Difference A � B

 1 63 55 8

 2 54 62 �8

 3 79 108 �29

 4 68 77 �9

 5 87 83 4

 6 84 78 6

 7 92 79 13

 8 57 94 �37

 9 66 69 �3

10 53 66 �13

11 76 72 4

12 63 77 �14

Total 842 920 �78

Mean 70.17 76.67 �6.5
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Using OpenOffice Calc TDIST with 11 degrees of freedom (n � 1) 
and ignoring the minus sign, we find P � 0.165. The null hypothesis 
is that there is no difference between the mean transit times on these 
two forms of treatment. From our calculations, it is not disproved. 
However, this does not mean that the two treatments are equiva-
lent. To help us decide this we calculate the confidence interval.

A 95% confidence interval for the mean difference is given by:

d t d� �n 1SE( )

In this case at P � 0.05 with 11 d.f. t � 2.201 (from OpenOffice 
Calc TINV) and so the 95% confidence interval is:

�6.5 � 2.201 � 4.37 to �6.5 � 2.201 � 4.37 h

or �16.1 to 3.1 h

This interval is quite wide, so that, even though it contains zero, 
we cannot really conclude that the two preparations are equiva-
lent, and should look to a larger study.

The second case of a paired comparison to consider is when two 
samples are chosen and each member of sample 1 is paired with 
one member of sample 2, as in a matched case–control study. As 
the aim is to test the difference, if any, between two types of treat-
ment, the choice of members for each pair is designed to make 
them as alike as possible. The more alike they are, the more appar-
ent will be any differences due to treatment, because they will not 
be confused with differences in the results caused by disparities 
between members of the pair. The likeness within the pairs applies 
to attributes relating to the study in question. For instance, in a 
test for a drug reducing blood pressure, the color of the patients’ 
eyes would probably be irrelevant, but their resting diastolic 
blood pressure could well provide a basis for selecting the pairs. 
Another (perhaps related) basis is the prognosis for the disease 
in patients: in general, patients with a similar prognosis are best 
paired. Whatever criteria are chosen, it is essential that the pairs 
are constructed before the treatment is given, for the pairing must 
be uninfluenced by knowledge of the effects of treatment.

Further methods

Suppose we had a parallel clinical trial with more than two treat-
ment arms. It is not valid to compare each treatment with each 
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other treatment using t tests because the overall type I error rate 
a will be bigger than the conventional level set for each individual 
test. A method of controlling for this is to use a one way analysis of 
variance and is discussed in Statistics at Square Two.

Common questions

Should I test my data for Normality before 
using the t test?
It would seem logical that, because the t test assumes Normality, 
one should test for Normality first. The problem is that the test 
for Normality is dependent on the sample size. With a small sam-
ple a non-significant result does not mean that the data come from 
a Normal distribution. On the other hand, with a large sample, a 
significant result does not mean that we could not use the t test, 
because the t test is robust to moderate departures from Normality—
that is, the P-value obtained can be validly interpreted. There is 
something illogical about using one significance test conditional on 
the results of another significance test. In general it is a matter of 
knowing and looking at the data. One can “eyeball” the data and 
if the distributions are not extremely skewed, and particularly if 
(for the two sample t test) the numbers of observations are similar 
in the two groups, then the t test will be valid. The main problem 
is often that outliers will inflate the standard deviations and render 
the test less sensitive. Also, it is not generally appreciated that if the 
data originate from a randomized controlled trial, then the process 
of randomization will ensure the validity of the t test, irrespective 
of the original distribution of the data. This is because the P-values 
from what is known as the randomization test, which is a non-para-
metric test (see Chapter 10) and does not require the assumption 
of Normality, can be shown to be close to those of the t test.2 (RA 
Fisher3 wrote “ …the physical act of randomization…affords the 
means in respect of any particular body of data, of examining the 
wider hypothesis in which no normality of distribution is implied”.)

Should I test for equality of the standard deviations 
before using the usual t test?
The same argument prevails here as for the previous question 
about Normality. The test for equality of variances is dependent on 
the sample size. A rule of thumb is that if the ratio of the larger to 
smaller standard deviation is greater than two, then the unequal 
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variance test should be used. In view of the fact that when the vari-
ances are similar, the equal variance and unequal variance t test tend 
to agree, there is a good argument for always doing the unequal var-
iance test. With a computer one can easily do both the equal and 
unequal variance t test and see if the answers differ.

Why should I use a paired test if my data are paired? 
What happens if I don’t?
Pairing provides information about an experiment, and the more 
information that can be provided in the analysis the more sensitive 
the test. One of the major sources of variability is between subjects 
variability. By repeating measures within subjects, each subject 
acts as their own control, and the between subjects variability is 
removed. In general this means that if there is a true difference 
between the pairs, the paired test is more likely to pick it up: it 
is more powerful. When the pairs are generated by matching the 
matching criteria may not be important. In this case, the paired 
and unpaired tests should give similar results.

Formula appreciation

In formula (7.1), the only real effect occurs when there are une-
qual sample sizes in the two groups as well as unequal variances. 
If the sample sizes are approximately similar then again the t test is 
quite robust.

Reading and reporting t tests

•  Lack of Normality is not too much of a worry because, as stated 
earlier, the t test is remarkably robust to lack of Normality, par-
ticularly if the numbers of data points are similar in the two 
groups. However, one should check that the data are independ-
ent, and that the variances are similar in the two groups.

•  Always report the t statistic, its degrees of freedom, and P-value. 
Also give the estimate and confidence interval. Thus, the transit time 
study for a two sample t test would be reported as t � 2.28, d.f. � 25, 
P � 0.031, difference in means 15.02 h, 95% CI 1.46 to 28.58 h.

Exercises

7.1  In 22 patients with an unusual liver disease, the plasma alka-
line phosphatase was found by a certain laboratory to have a 
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mean value of 39 King–Armstrong units, standard deviation 
3.4 units. What is the 95% confidence interval within which 
the mean of the population of such cases whose specimens 
come to the same laboratory may be expected to lie?

7.2  In the 18 patients with Everley’s syndrome, the mean level of 
plasma phosphate was 1.7 mmol/l, standard deviation 0.8. If the 
mean level in the general population is taken as 1.2 mmol/l, 
what is the significance of the difference between that mean 
and the mean of these 18 patients?

7.3  In two wards for elderly women in a geriatric hospital, the fol-
lowing levels of hemoglobin (g/dl) were found:

Ward A:   12.2, 11.1, 14.0, 11.3, 10.8, 12.5, 12.2, 11.9, 13.6, 
12.7, 13.4, 13.7;

Ward B:  11.9, 10.7, 12.3, 13.9, 11.1, 11.2, 13.3, 11.4, 12.0, 
11.1.

What is the difference between the mean levels in the two 
wards, and what is its significance? What is the 95% confi-
dence interval for the difference in treatments?

7.4  A new treatment for varicose ulcer is compared with a standard 
treatment on 10 matched pairs of patients, where treatment 
between pairs is decided using random numbers. The out-
come is the number of days from start of treatment to healing 
of ulcer. One doctor is responsible for treatment and a second 
doctor assesses healing without knowing which treatment each 
patient had. The following treatment times were recorded:

Standard treatment: 35, 104, 27, 53, 72, 64, 97, 121, 86, 41 days;

New treatment: 27, 52, 46, 33, 37, 82, 51, 92, 68, 62 days.

What are the mean difference in the healing time, the value 
of t, the number of degrees of freedom, and the probability? 
What is the 95% confidence interval for the difference?
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CHAPTER 8

The χ2 tests

The distribution of a categorical variable in a sample often needs 
to be compared with the distribution of a categorical variable in 
another sample. For example, over a period of 2 years, a psychia-
trist has classified by socioeconomic class the women aged 20–64 
admitted to her unit suffering from self-poisoning—sample A. At 
the same time she has likewise classified the women of similar 
age admitted to a gastroenterological unit in the same hospital—
sample B. She has employed the Registrar General’s five socio-
economic classes, and generally classified the women by reference 
to their father’s or husband’s occupation. The results are set out in 
Table 8.1.

Table 8.1 Distribution by socioeconomic class of patients admitted to 
self-poisoning (sample A) and gastroenterological (sample B) units.

Socioeconomic 

class

Samples Proportion in 

Group A
A B Total

a b n � a � b p � a/n

I 17 5 22 0.77

II 25 21 46 0.54

III 39 34 73 0.53

IV 42 49 91 0.46

V 32 25 57 0.56

Total 155 134 289
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The psychiatrist wants to investigate whether the distribution of the 
patients by social class differed in these two units. She therefore erects 
the null hypothesis that there is no difference between the two distri-
butions. This is what is tested by the chi-squared (χ2) test (pronounced 
with a hard ch as in “sky”). By default, all (χ2) tests are two sided.

It is important to emphasize here that χ2 tests may be carried 
out for this purpose only on the actual numbers of occurrences, 
not on percentages, proportions, means of observations, or other 
derived statistics. Note, we distinguish here the Greek (χ2) for the 
test and the distribution and the Roman (X2) for the calculated sta-
tistic, which is what is obtained from the test.

The χ2 test is carried out in the following steps:
For each observed number (O) in the table find an “expected” 

number (E); this procedure is discussed below.

Subtract each expected number from each 
observed number

O � E

Square the difference (O � E)2

Divide the squares so obtained for each cell of the 
table by the expected number for that cell 

(O � E)2/E

X2 is the sum of (O � E)2/E.
To calculate the expected number for each cell of the table, con-

sider the null hypothesis, which in this case is that the numbers in 
each cell are proportionately the same in sample A as they are in 
sample B. We therefore construct a parallel table in which the pro-
portions are exactly the same for both samples. This has been done 
in columns (2) and (3) of Table 8.2.

Table 8.2 Calculation of the χ2 test on figures in Table 8.1.

Class (I)

Expected numbers O � E (O � E)2/E

A (2) B (3) A (4) B (5) A (6) B (7)

I 11.80 10.20 5.20 �5.20 2.292 2.651

II 24.67 21.33 0.33 �0.33 0.004 0.005

III 39.15 33.85 �0.15 0.15 0.001 0.001

IV 48.81 42.19 �6.81 6.81 0.950 1.099

V 30.57 26.43 1.43 �1.43 0.067 0.077

Total 155.00 134.00 0 0 3.314 3.833

X2 � 3.314 � 3.833 � 7.147, d.f. � P � 0.13.
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The proportions are obtained from the totals column in Table 
8.1 and are applied to the totals row. For instance, in Table 8.2, 
column (2), 11.80 � (22/289) � 155; 24.67 � (46/289) � 155; in 
column (3), 10.20 � (22/289) � 134; 21.33 � (46/289) � 134, and 
so on.

Thus by simple proportions from the totals, we find an 
expected number to match each observed number. The sum of 
the expected numbers for each sample must equal the sum of 
the observed numbers for each sample, which is a useful check. 
We now subtract each expected number from its corresponding 
observed number.

The results are given in columns (4) and (5) of Table 8.2. Here 
two points may be noted.
1 The sum of these differences always equals zero in each column.
2  Each difference for sample A is matched by the same figure, but 

with opposite sign, for sample B.
Again these are useful checks.

The figures in columns (4) and (5) are then each squared and 
divided by the corresponding expected numbers in columns (2) 
and (3). The results are given in columns (6) and (7). Finally these 
results, (O � E)2/E, are added. The sum of them is X2.

Having obtained a value for X2 � Σ[(O � E)2/E], we use 
OpenOffice Calc CHIDIST to find the corresponding probabil-
ity from the χ2 distribution. Just as with the t distribution, we 
must enter the degrees of freedom. To ascertain these requires 
some care.

When a comparison is made between one sample and another, 
as in Table 8.1, a simple rule is that the degrees of freedom equal 
(number of columns minus one) � (number of rows minus one) 
(not counting the row and column containing the totals). For the 
data in Table 8.1, this gives (2 � 1) � (5 � 1) � 4. Another way 
of looking at this is to ask for the minimum number of figures 
that must be supplied in Table 8.1, in addition to all the totals, to 
allow us to complete the whole table. Four numbers disposed any-
how in samples A and B, provided they are in separate rows, will 
suffice.

Using OpenOffice Calc CHIDIST, we find that the probability 
associated with an X2 value of 7.147 is 0.13. This is well above the 
conventionally significant level of 0.05, or 5%, so the null hypoth-
esis is not disproved. It is therefore quite conceivable that in the 
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distribution of the patients between socioeconomic classes, the 
population from which sample A was drawn were the same as 
the population from which sample B was drawn.

Fourfold tables

A special form of the χ2 test is particularly common in practice and 
quick to calculate. It is applicable when the results of an investi-
gation can be set out in a “fourfold table” or “2�2 contingency 
table”.

Consider the isoniazid trial described Table 3.2. For convenience 
the results are reproduced in Table 8.3.

The null hypothesis is set up that there is no difference between 
placebo and isoniazid. Using the above method we find X2 � 3.418 
and P � 0.064. So, despite an apparently considerable difference 
between the proportions of deaths in the placebo and isoniazid 
groups, the probability of this result or one more extreme occur-
ring by chance is more than 5%.

We now calculate a confidence interval of the differences 
between the two proportions, as described in Chapter 5. We could 
calculate the confidence interval on either the rows or the col-
umns, and it is important that we compare proportions of the out-
come variable, that is, death.

P1 � 21/131 � 0.160, P2 � 11/132 � 0.083, P1 � P2 � 0.077

SE( )
0.160 0.840

131

0.083 0.917

1321 2P P� �
�

�
�

�
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ 0 040.

The 95% confidence interval is:

0.077 � 1.96 � 0.040 to 0.077 � 1.96 � 0.040

                                     � �0.0014 to 0.1555

Table 8.3 Results from the isoniazid trial after 6 months follow-up.

Dead Alive Total

Placebo 21 110 131

Isoniazid 11 121 132
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Thus the 95% confidence interval is wide, and includes zero, as 
one might expect because the χ2 test was not significant at the 5% 
level.

Small numbers: Yates’ correction and Fisher’s 
exact test

When the numbers in a 2�2 contingency table are small, the χ2 
approximation becomes poor. The following recommendations may 
be regarded as a sound guide.2 In fourfold tables a χ2 test is inap-
propriate if the total of the table is less than 20, or if the total lies 
between 20 and 40 and the smallest expected (not observed) value 
is less than 5; in contingency tables with more than one degree of 
freedom, it is inappropriate if more than about one-fifth of the cells 
have expected values less than 5 or any cell an expected value of 
less than 1.

When the values in a fourfold table are fairly small, a “correction 
for continuity”, known as the “Yates’ correction”, may be applied.3 
Although there is no precise rule defining the circumstances in 
which to use Yates’ correction, a common practice is to incorporate 
it into χ2 calculations on tables with a total of under 100 or with 
any cell containing a value less than 10.

An alternative which is valid for any sample size is known as 
Fisher’s exact test. This is a test which computes the probability 
of the observed table, given the marginal totals. The one-sided 
P-value is the sum of the probability of the observed table and tables 
that yield a smaller probability. A two-sided P-value can be either 
double the one-sided value or the sum of the probabilities less than 
the observed one but in the opposite direction. It is “conservative”, 
which means that in general, when the null hypothesis is true it 
rejects the null hypothesis with a lower probability than we would 
expect from the preset the type I error rate. To counter this, a mid-
P version was introduced, which computes half the value of the 
observed table and the sum of the more extreme probabilities. This 
is to be preferred. These are described in detail in earlier versions of 
this book and all these tests are now routinely available in OpenEpi 
and OpenStat, and so not discussed further here.

Comparing proportions

Earlier in this chapter we compared two samples by the χ2 test to 
answer the question “Are the distributions of the members of these 
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two samples between five classes significantly different?” Another 
way of putting this is to ask “Are the relative proportions of the 
two samples the same in each class?”

For example, an industrial medical officer of a large factory 
wants to immunize the employees against influenza. Five vac-
cines of various types based on the current viruses are available, 
but nobody knows which is preferable. From the work force, 1350 
employees agree to be immunized with one of the vaccines in the 
first week of December, so the medical officer randomizes individ-
uals into five approximately equal treatment groups using a com-
puter generated random number scheme. In the first week of the 
following March, he examines the records he has been keeping to 
see how many employees got influenza and how many did not. 
These records are classified by the type of vaccine used (Table 8.4).

In Table 8.4 the figures are analyzed by the χ2 test. For this we 
have to determine the expected values. The null hypothesis is that 
there is no difference between vaccines in their efficacy against 
influenza. We therefore assume that the proportion of employees 
contracting influenza is the same for each vaccine as it is for all 
combined. This proportion is derived from the total who got influ-
enza, and is 225/1350. To find the expected number in each vac-
cine group who would contract the disease, we multiply the actual 
numbers in the total column of Table 8.4 by this proportion. Thus 
280 � (225/1350) � 46.7; 250 � (225/1350) � 41.7; and so on. 
Likewise the proportion who did not get influenza is 1125/1350.

The expected numbers of those who would avoid the disease 
are calculated in the same way from the totals in Table 8.4, so that 

Table 8.4 People who did or did not get influenza after inoculation with 
one of five vaccines.

Types of vaccine Numbers of employees

Got influenza Avoided 

influenza

Total Proportion 

got influenza

I 43 237 280 0.18

II 52 198 250 0.21

III 25 245 270 0.09

IV 48 212 260 0.18

V 57 233 290 0.20

Total 225 1125 1350
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280 � (1125/1350) � 233.3; 250 � (1250/1350) � 208.3; and so 
on. The procedure is thus the same as shown in Tables 8.1 and 8.2.

The calculations made in Table 8.5 show that the X2 statistic 
with four degrees of freedom is 16.564, and so P � 0.002. This is a 
highly significant result. But what does it mean?

Splitting of χ2

Inspection of Table 8.5 shows that the largest contribution to the 
total X2 comes from the figures for vaccine III. They are 8.889 and 
1.778, which together equal 10.667. If this figure is subtracted 
from the total X2, 16.564 � 10.667 � 5.897. This gives an approxi-
mate figure for X2 for the remainder of the table with three degrees 
of freedom (by removing the vaccine III we have reduced the table 
to four rows and two columns). We then find that P � 0.117, a 
non-significant result. However, this is only a rough approxima-
tion. To check it exactly we apply the X2 test to the figures in 
Table 8.4 minus the row for vaccine III. In other words, the test 
is now performed on the figures for vaccines I, II, IV, and V. On 
these figures X2 � 2.983; d.f. � 3; P � 0.394. Thus the probabil-
ity falls within the same broad limits as obtained by the approxi-
mate shortcut given above. We can conclude that the figures for 
vaccine III are responsible for the highly significant result of the 
total X2 of 16.564. Some care is needed because we have chosen 
one value out of a possible five. A very conservative test, known 
as the Bonferroni test, is to multiply the P-values obtained by the 
number of tests performed and conclude significance if the value 

Table 8.5 Calculation of χ2 test on figures in Table 8.4.

Types of 

vaccine

Expected numbers O � E (O � E)2/E

Got 

influenza

Avoided 

influenza

Got 

influenza

Avoided 

influenza

Got 

influenza

Avoided 

influenza

I 46.7 233.3 �3.7 3.7 0.293 0.059

II 41.7 208.3 10.3 �10.3 2.544 0.509

III 45.0 225.0 �20.0 20.0 8.889 1.778

IV 43.3 216.7 4.7 �4.7 0.510 0.102

V 48.3 241.7 8.7 �8.7 1.567 0.313

Total 225.0 1125.0 0 0 13.803 2.761

X2 � 16.564, d.f. � 4, P � 0.002.
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is still less than a critical value such as 5%. In this case the P-value 
associated with an X2 value of 10.667 with 1 d.f. using OpenOffice 
Calc CHIDIST is 0.0011, and since 5 � 0.0011 is 0.0055 this is still 
well below the conventional 0.05.

But this is not quite the end of the story. Before concluding from 
these figures that vaccine III is superior to the others, we ought 
to carry out a check on other possible explanations for the dispar-
ity. The process of randomization in the choice of the persons to 
receive each of the vaccines should have balanced out any differ-
ences between the groups, but some may have remained by chance. 
The sort of questions worth examining now are: Were the people 
receiving vaccine III as likely to be exposed to infection as those 
receiving the other vaccines? Could they have had a higher level of 
immunity from previous infection? Were they of comparable socio-
economic status? Of similar age on average? Were the sexes compa-
rably distributed? Although some of these characteristics could have 
been more or less balanced by stratified randomization, it is as well 
to check that they have in fact been equalized before attributing the 
numeral discrepancy in the result to the potency of the vaccine.

χ2 test for trend

Table 8.1 is a 5�2 table, because there are five socioeconomic 
classes and two samples. Socioeconomic groupings may be thought 
of as an example of an ordered categorical variable, as there are 
some outcomes (e.g. mortality) in which it is sensible to state that 
(say) social class II is between social classes I and III. The χ2 test 
described at that stage did not make use of this information; if we 
had interchanged any of the rows, the value of X2 would have 
been exactly the same. Looking at the proportions p in Table 8.1, 
we can see that there is no real ordering by social class in the pro-
portions of self-poisoning; social class V is between social classes I 
and II. However, in many cases, when the outcome variable is an 
ordered categorical variable, a more powerful test can be devised 
which uses this information.

Consider a randomized controlled trial of health promotion in 
general practice to change people’s eating habits.4 Table 8.6 gives 
the results from a review at 2 years, to look at the change in the 
proportion eating poultry.

We give each category a score. Usually we choose a linear score 
and it is convenient to center it on the middle category (although 
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this does not affect the result. Here we have scored the three 
categories �1, 0, 1. With “a” being the count in for each outcome 
category in the intervention column, “n” the number of subjects in 
each outcome category, and “N” the total number of subjects the 
χ2 test for trend is calculated in the following way:

E ax
a nx

N
E nx

nx

Nxp xx� � � �Σ
Σ Σ

Σ
Σ

and 2
2( )

then

 
X /( )2 2� E E pqxp xx

 (8.1)

which yields

X2 � 19.072/(269.54 � 0.5056 � 0.4944) � 5.20

This has one degree of freedom because the linear scoring means 
that when one expected value is given all the others can be deter-
mined directly, and we find P � 0.02. The usual χ2 test gives a 
value of X2 � 5.51; d.f. � 2; P � 0.064. Thus the more sensitive χ2 
test for trend yields a significant result because the test used more 
information about the experimental design. The values for the 
scores are to some extent arbitrary. However, it is usual to choose 
them equally spaced on either side of zero. Thus if there are four 
groups the scores would be �3, �1, �1, �3, and for five groups 
�2, �1, 0, �1, �2. The X2 statistic is quite robust to other values 
for the scores provided that they are steadily increasing or steadily 
decreasing. OpenEpi uses a slightly different method known as the 
Mantel–Haenszel method but gives similar results (Figure 14.10).

Table 8.6 Change in eating poultry in randomized trial.4

Intervention Control Total Proportion in 

intervention

Score

a b n p � a/n X

Increase 100 78 178 0.56 1

No change 175 173 348 0.50 0

Decrease 42 59 101 0.42 �1

Total 317 310 627 0.51
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Note that this is another way of splitting the overall X2 statistic. 
The overall X2 will always be greater than the X2 for trend, but 
because the latter uses only one degree of freedom, it is often asso-
ciated with a smaller probability. Although one is often counseled 
not to decide on a statistical test after having looked at the data, it 
is obviously sensible to look at the proportions to see if they are 
plausibly monotonic (go steadily up or down) with the ordered 
variable, especially if the overall χ2 test is non-significant.

Comparison of an observed and a 
theoretical distribution

In the cases so far discussed, the observed values in one sample 
have been compared with the observed values in another. But 
sometimes we want to compare the observed values in one sample 
with a theoretical distribution.

For example, a geneticist has a breeding population of mice in 
his laboratory. Some are entirely white, some have a small patch of 
brown hairs on the skin, and others have a large patch. According 
to the genetic theory for the inheritance of these colored patches 
of hair, the population of mice should include 51.0% entirely 
white, 40.8% with a small brown patch, and 8.2% with a large 
brown patch. In fact, among the 784 mice in the laboratory 380 are 
entirely white, 330 have a small brown patch, and 74 have a large 
brown patch. Do the proportions differ from those expected?

The data are set out in Table 8.7. The expected numbers are 
calculated by applying the theoretical proportions to the total, 
namely 0.510 � 784, 0.408 � 784, and 0.082 � 784. The degrees of 

Table 8.7 Calculation of X2 for comparison between actual distribution and 
theoretical distribution.

Mice Observed 

cases

Theoretical 

proportions

Expected 

cases

O � E (O � E)2/E

Entirely 

white

380 0.510 400 �20 1.0000

Small brown 

patch

330 0.408 320 10 0.3125

Large brown 

patch

74 0.082 64 10 1.5625

Total 784 1.000 784 0 2.8750
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freedom are calculated from the fact that the only constraint is 
that the total for the expected cases must equal the total for the 
observed cases, and so the degrees of freedom are the number of 
rows minus one. Thereafter the procedure is the same as in pre-
vious calculations of X2. In this case X2 comes to 2.875. Using 
OpenOffice Calc CHIDIST with 2 d.f. we find that P � 0.238. 
Consequently the null hypothesis of no difference between the 
observed distribution and the theoretically expected one is not dis-
proved. The data conform to the theory.

Chi-squared test for difference in two counts

The total number of deaths in a town from a particular disease var-
ies from year to year. Suppose that in 1 year we had observed O1 
deaths and in the subsequent year O2 deaths and we wished to test 
whether there had been a change between the 2 years (provided 
our attention had not been drawn to a sudden change). Under 
a null hypothesis of no change between the 2 years, we would 
expect E � (O1 � O2)/2 deaths in each year. Then a chi-squared 
test of the change would be:
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It is important to note that the deaths must be independently 
caused; for example, they must not be the result of an epidemic 
such as influenza. The reports of the deaths must likewise be inde-
pendent; for example, the criteria for diagnosis must be consistent 
from year to year and not suddenly change in accordance with a 
new fashion or test, and the population at risk must be the same 
size over the period of study.

In spite of its limitations this method has its uses. For instance, 
in the town of Carlisle, the number of deaths from ischemic heart 
disease for 1 year was 276. Is this significantly higher than the total 
for the previous year, which was 246? The difference is 30. The 
chi-squared test is χ2 � 302/(276 � 246) � 1.72. Using OpenOffice 
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Calc CHIDIST with 1 d.f. gives P � 0.2. The difference could there-
fore easily be a chance fluctuation.

This method should be regarded as giving no more than approxi-
mate but useful guidance, and is unlikely to be valid over a period 
of more than very few years owing to changes in diagnostic tech-
niques. An extension of it to the study of paired alternatives follows.

Paired alternatives

As stated earlier, paired data can arise in crossover trials where a 
subject has one treatment followed by another, or in a matched 
case–control study, where a case is matched by certain charac-
teristics with a control. Consider the example of paired data as 
described in Table 3.9. The significance of the results can then be 
simply tested by McNemar’s test. As discussed in Chapter 3, the pairs 
of results where both case and control have an event, or where 
both case and control fail to have an event (with numbers e and h, 
respectively) can be discarded. Thus conditional on observing only 
one event, under the null hypothesis of no difference between 
cases and controls, the expected number of events for both cases and 
controls is (f � g)/2, with observed values f and g.

McNemar’s test is then
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f g
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We find that for the χ2 values, each with 1 d.f., P � 0.024 and 
P � 0.037, respectively. This calculation is also shown using 
OpenEpi in Figure 14.11.

Extensions of the χ2 test

If the outcome variable in a study is nominal, the χ2 test can be 
extended to look at the effect of more than one input variable, 
for example, to allow for confounding variables. This is most eas-
ily done using multiple logistic regression, a generalization of multi-
ple regression, which is described in Chapter 11. If the data are 
matched, then a further technique (conditional logistic regression) 
should be employed. These are described in more detail in Statistics 
at Square Two.

Common questions

There are a number of tests of association 
for a 2�2 table. Which should I choose?
When the numbers are large it matters little which test to use. 
When the numbers are small, one should be cautious in placing 
too much emphasis on differing results. However in general I pre-
fer the mid-P exact test because it generally has better properties.

I have matched data, but the matching criteria were 
very weak. Should I use McNemar’s test?
The general principle is that if the data are matched in any way, 
the analysis should take account of it. If the matching is weak, 
then the matched analysis and the unmatched analysis should 
agree. In some cases when there are a large number of pairs with 
the same outcome, it would appear that the McNemar’s test is 
discarding a lot of information, and so is losing power. However, 
imagine we are trying to decide which of two high jumpers is the 
better. They each jump over a bar at a fixed height, and then the 
height is increased. It is only when one fails to jump a given height 
and the other succeeds that a winner can be announced. It does 
not matter how many jumps both have cleared.

Formula appreciation

We will see a similar equation to (8.1) in equation (11.2) in the 
regression chapter, which suggests the chi-squared test for trend is 
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in fact a form of regression and so has similar assumptions, such as 
linearity. Note that in equation (8.2), we do not need to know the 
size of the population from which the cases came. This is because 
it is assumed to be the same from one year to the next, and the 
expected values can be calculated simply from the observed counts.

Reading and reporting chi-squared tests

•  It is convention to use the Greek χ2 to denote the test and the 
distribution, but the Latin X2 for the observed statistic, such as 
“from the χ2 test we obtained X2 � 5.1…”

•  Chi-squared tests with many degrees of freedom are often ill-
specified and the results should be treated with caution. If non-
significant, they do not imply that certain results are unlikely by 
chance, and if significant it is unclear what has been proven.

•  Report the X2 statistic, the degrees of freedom, and the P-values, 
with the estimated difference and a 95% confidence interval 
for the true difference. Thus in the isoniazid example, we write 
X2 � 3.418, d.f. � 1, P � 0.064, difference in proportions 0.077, 
95% confidence interval �0.0014 to 0.1555.

Exercises

8.1  In a trial of new drug against a standard drug for the treat-
ment of depression, the new drug caused some improvement 
in 56% of 73 patients and the standard drug some improve-
ment in 41% of 70 patients. The results were assessed in five 
categories as follows:

New treatment: much improved 18, improved 23, unchanged 
15, worse 9, much worse 8; Standard treatment: much improved 
12, improved 17, unchanged 19, worse 13, much worse 9.

What is the value of X2 which takes no account of the ordered 
value of data, what is the value of the X2 test for trend, and 
the P-value? How many degrees of freedom are there? What 
is the value of P in each case?

8.2  An outbreak of pediculosis capitis is being investigated in a 
girls’ school containing 291 pupils. Of 130 children who live in 
a nearby housing estate 18 were infested and of 161 who live 
elsewhere 37 were infested. What is the X2 value of the differ-
ence, and what is its significance? Find the difference in infes-
tation rates and a 95% confidence interval for the difference.



100   Chapter 8

8.3  The 55 affected girls were divided at random into two groups 
of 29 and 26. The first group received a standard local applica-
tion and the second group a new local application. The efficacy 
of each was measured by clearance of the infestation after one 
application. By this measure the standard application failed 
in ten cases and the new application in five. What is the X2 
value of the difference (with Yates’ correction), and what is its 
significance? What is the difference in clearance rates and an 
approximate 95% confidence interval?

8.4  A general practitioner reviewed all patient notes in four prac-
tices for 1 year. Newly diagnosed cases of asthma were noted, 
and whether or not the case was referred to hospital. The fol-
lowing referrals were found (total cases in parentheses): prac-
tice A, 14 (103); practice B, 11 (92); practice C, 39 (166); 
practice D, 31 (221). What are the X2 and P-values for the 
distribution of the referrals in these practices? Do they sug-
gest that any one practice has significantly more referrals than 
others?

8.5  Carry out a chi-squared test on the data from Table 3.4 to 
determine if there is an association between therapy and death 
or shunt in the PHVD trial. How does this correspond with the 
results of the confidence interval calculation in Exercise 5.5?

8.6  Carry out a chi-squared test on the data from Table 3.6 to 
determine if there is an association between hay fever and 
eczema. How does this result compare with the results for the 
confidence intervals for odds ratios in Exercise 5.6?

8.7  Carry out a chi-squared test on the data from Table 5.1 to 
determine if there is a gender difference in appendicitis rates. 
Given that the estimate of the log odds ratio is 0.170, and its 
standard error is 0.203, find the corresponding P-value from 
the z statistic. Contrast the P-values.

8.8  A dermatologist tested a new topical application for the treat-
ment of psoriasis on 48 patients. He applied it to the lesions 
on one part of the patient’s body and what he considered to 
be the best traditional remedy to the lesions on another but 
comparable part of the body, the choice of area being made 
by the toss of a coin. In three patients both areas of psoriasis 
responded; in 28 patients the disease responded to the tradi-
tional remedy but hardly or not at all to the new one; in 13 it 
responded to the new one but hardly or not at all to the tra-
ditional remedy; and in four cases neither remedy caused an 
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appreciable response. Did either remedy cause a significantly 
better response than the other?

Note in this exercise the purpose of the study would be to deter-
mine which treatment to try first, in the absence of any further 
information. Clearly, if the first treatment fails, there is little lost in 
trying the other.
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CHAPTER 9

Diagnostic tests

To consider the evaluation of a diagnostic test, we have to sup-
pose initially that there is a definite way to decide if someone has 
a particular condition. For example, to diagnose a cancer, one 
could take a biopsy, to diagnose depression one could conduct an 
interview with a psychiatrist, and to diagnose a walking problem 
one could video a patient and have it viewed by an expert. This 
is sometimes called the “gold standard” (since currencies used to 
be valued against gold). Often the gold standard test is expensive 
and difficult to administer. We require a test which is cheaper and 
easier to use. Initially we will consider a simple binary situation in 
which both the gold standard and the diagnostic test have either a 
positive or negative outcome (disease is present or absent).

The situation is best summarized by the ubiquitous 2�2 
Table 9.1. In writing this table, always put the gold standard on the 
top and the results of the test on the side.

Table 9.1 Standard table for diagnostic tests.

Gold standard

Positive Negative

Diagnostic test Positive a b a � b

Negative c d c � d

Total a � c b � d n � a � b � c � d



Diagnostic tests   103

The numbers “a” and “d” are the numbers of true positives and 
negatives, respectively. The number “b” is the number of false pos-
itives, because although the test is positive the subjects don’t have 
the disease, and similarly “c” is the number of false negatives.

Example:
Consider the study by Kroenke et al.1 who surveyed 965 people 
attending primary care centers in the USA. They were interested 
in whether a family practitioner can diagnose generalized anxiety 
disorder (GAD). They asked two simple questions (the GAD2 ques-
tionnaire): “Over the last 2 weeks, how often have you been both-
ered by the following problems?” (1) feeling nervous, anxious, or 
on edge and (2) not able to stop or control worrying. The patients 
answered each question from “not at all”, “several days”, “more 
than half the time”, and “nearly every day”, scoring from 0, 1, 2, 
3, respectively. The scores for the two questions were summed and 
a score of over 3 was considered positive. Two mental health pro-
fessionals then held structured psychiatric interviews with the sub-
ject over the telephone to diagnose GAD. The professionals were 
ignorant of the result of the GAD2 questionnaire.

The results from Kroenke et al.’s study are given in Table 9.2.
We now want to derive some summary statistics from these 

tables. These are the prevalence, the sensitivity, and specificity of the 
test, and the positive predictive value (PPV).

The prevalence of the disease is the proportion of people diag-
nosed by the gold standard and is given by (a � c)/n. For the GAD 
example it is 73/965 � 0.076 � 7.6%.

Given a person has the disease, the sensitivity of the test is the 
proportion of people who have a positive result on the diagnostic 
test. This is given by a/(a � c) � 63/73 � 0.86.

Table 9.2 Results from Kroenke et al.1

Diagnosis by mental health 

professional

Positive Negative

GAD2 �3 (�ve) 63 152 215

�3 (�ve) 10 740 750

Total 73 892 965
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Suppose a test is 100% sensitive. Then the number of false nega-
tives is zero and we would expect Table 9.3.

Now suppose a patient has a negative test result. From Table 9.3 
we can see this means we can be certain that the patient does not 
have the disease. Sackett et al. (1997) refer to this as SnNout, that 
is for a test with a high sensitivity (Sn), a negative result rules out 
the disease.

Given a person does not have the disease, the specificity of the 
test is the proportion of people who have a negative result on the 
diagnostic test. This is given by d/(b � d). For the GAD example it 
is 740/892 � 83%.

Suppose a test is 100% specific. Then the number of false posi-
tives is zero and we would expect Table 9.4.

Now suppose a patient has a positive test result. From Table 9.4, 
we can see this means we can be certain the patient has the dis-
ease. Sackett et al.2 refer to this as SpPin., that is for a test with a 
high specificity (Sp), a positive test rules in the disease.

Useful mnemonic
SeNsitivity � 1 � proportion false negatives (n in each side)
SPecificity � 1 � proportion false positives (p in each side)

What subjects really want to know, however, is “if I have a posi-
tive test, what are the chances I have the disease?” This is given by 

Table 9.3 Results of a diagnostic test with 100% sensitivity.

Gold standard

Positive Negative

Diagnostic test Positive a b a � b

Negative 0 d d

Total a b � d

Table 9.4 Results of a diagnostic test with 100% specificity.

Gold standard

Positive Negative

Diagnostic test Positive a 0 a

Negative c d c � d

Total a � c d n
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the Positive Predictive Value (PPV) which is a/(a� b). For the GAD 
example this is 63/215 � 29%. The probability of an event given 
a negative predictive test is c/(c � d) � 1.3%. One way of looking 
at the test is that before the test the chances of having GAD were 
7.6%. After the test they are either 29% or 1.3% depending on 
the result, but note that even with a positive test the chances of 
having GAD are only about 1/3.

Sensitivity and specificity are 
independent of prevalence; positive 
predictive value is not

To show this suppose that in a different population the prevalence 
of the disease is double that of the current population (assume the 
prevalence is low, so that a and c are much smaller than b and d 
and so the results for those without the disease are much the same 
as the earlier table). The situation is given in Table 9.5.

We see that the sensitivity is now 2a/(2a � 2c) � a/(a � c) as 
before. The specificity is unchanged. However, the PPV is given 
by 2a/(2a � b) which is greater than the earlier value of a/(a � b) 
(if a is very small relative to b, then the PPV increases directly as 
the prevalence increases). This highlights that sensitivity and spec-
ificity are characteristics of the test and will be valid for different 
populations with different prevalences. Thus we could use them in 
populations with high prevalence, such as elderly people, as well 
as with low prevalence, such as for young people. However, the 
PPV is a characteristic of the population and so will vary depending 
on the prevalence. In general, where the prevalence is low, even a 
positive result will mean it is likely that one has the disease, as will 
be shown in Exercise 9.1.

Table 9.5 Standard situation but with a doubling of the prevalence.

Gold standard

Positive Negative

Diagnostic test Positive 2a b 2a � b

Negative 2c d 2c � d

Total 2a � 2c b � d
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Likelihood ratio
It is common to prefer a single summary measure, and for a diag-
nostic test the most useful measure is the likelihood ratio for a pos-
itive test LR(�). This is defined as:

LR( )
Probability of positive test given the disease

Probab
� �

iility of positive test without disease

Sensitivity

1 speci
�

� fficity

For the GAD example we find that LR(�) � 0.86/(1 � 0.83) � 5.06.
One reason why this is useful is that we can use it to calculate 

the odds of having the disease given a positive result. Recall from 
Chapter 3 that the odds of an event are defined as p/(1 � p), where p 
is the probability of the event. Before the test is conducted, the prob-
ability of having the disease is just the prevalence, and the odds are 
simply {(a � c)/n}/{b � d)/n} � (a � c)/(b � d). Thus for GAD, the 
odds are 0.082 which are close to the prevalence of 0.076 because 
the prevalence is quite low.

A useful result is derived from what is known as Bayes’ theorem 
and states:

  Odds of disease after positive test � odds of disease before 
   test � LR(�)

We can get the odds after a positive test directly from the PPV 
since the odds of disease after a positive test is PPV/(1 � PPV). For 
the GAD example odds � 0.29/(1 � 0.29) � 0.41.

We can also get this from Bayes’ theorem since:

Odds of disease before test � LR(�) � 0.082 � 5.06 � 0.41

Thus knowing the LR(�) gives a simple way to estimate how 
likely someone is to have a disease, if one knows the prevalence or 
probability of disease before the test, without having to set up the 
2�2 table.

It is important to recall that the sensitivity, specificity, and LR(�) 
are all estimates. They have an associated uncertainty attached to 
them, and methods of estimating this are discussed in Chapter 5. 
OpenEpi, as a matter of course, gives confidence intervals for these 
values as shown in Chapter 14.
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ROC curves

For a diagnostic test that produces results on a continuous or ordi-
nal scale, we need to select a convenient cut-off value to calculate 
the sensitivity and specificity. For example, the GAD2 question-
naire has possible values from 0 to 6. Why should one choose the 
value of 3 as the cut-off? For a cut-off of 2 the sensitivity is 0.95, 
the specificity is 0.64, and the LR(�) is 2.6.1 One might argue 
that since a cut-off of 3 has a better LR(�) then one should use it. 
However, a cut-off of 2 gives a higher sensitivity, which might be 
important. It should be noted that a sensitivity of 100% is always 
achievable by stating that everyone has the disease, but this is at 
the expense of a poor specificity (similarly a 100% specificity can 
be achieved by stating no one has the disease. If the prevalence 
is low, this tactic will have a high accuracy, that is it will be right 
most of the time, but sadly wrong for the important cases). A dis-
cussion of the different scenarios for preferring a high specificity or 
sensitivity is given in the next section. A simple graphical device 
for displaying the trade-offs between sensitivity and specificity is 
a receiver operating characteristics (ROC) curve (the unusual name 
originates from electrical engineering). This is a plot of sensitivity 
versus one minus specificity for different cut-off values. A putative 
plot for the diagnosis of anxiety by different cut-offs on the GAD2 
questionnaire is shown in Figure 9.1. The line of equality is also 
shown, which is what one would expect if the test had no power 
to detect disease.

ROC curves are particularly useful for comparing different 
diagnostic plots, a plot which is consistently nearer the left-hand 
side and the top is to be preferred. However, further considera-
tion is beyond this book and the reader is referred to Machin and 
Campbell3 (Chapter 10).

Diagnosis and screening

There is an important distinction between diagnosing a disease and 
screening for it. In the former case, there are usually some symp-
toms, and so we already suspect that the patient has something 
wrong with them. If a test is positive we will take some action. In 
the latter case, there are usually no symptoms, and so if the test is 
negative the person will have no further tests. Recalling Sackett’s 
mnemonics SpPin and SnNout, for diagnosis we want a positive 
test to rule people in, so we want a high specificity. For screening 
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we want a negative test to rule people out, so we want a high sen-
sitivity. Thus mass mammography will have a fairly low threshold 
of suspicion, to ensure a high sensitivity and reduce the chances 
of missing someone with breast cancer. The subsequent biopsy of 
positive results will have a high specificity to ensure that if, say, 
mastectomy is to be considered, the doctor is pretty sure that the 
patient has breast cancer.

As a final point, it is worth mentioning that there are a number 
of conditions to be met before one would instigate a mass screen-
ing program. One is that catching the disease early makes a differ-
ence to prognosis. Another is that there is a treatment available 
if we did diagnose a patient with a disease. Based on the paper 
by Kroenke et al., should GPs begin screening for anxiety? The 
answer in general is no; in the absence of trials showing improved 
patient benefit and the lack of simple treatments for generalized 
anxiety, it would be difficult to justify screening an asymptomatic 
population.
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Figure 9.1 An ROC curve for different cut-offs on the GAD2 questionnaire 
(Kroenke et al.1) showing the different cut-off values and the line of 
equality.
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Reading and reporting diagnostic tests

1  Always report confidence intervals measures of sensitivity and 
specificity.

2  Always report the prevalence of the condition, or if reading a 
paper, check that it is reported since this will change one’s inter-
pretation of the predictive value.

3 Report how the subjects were chosen for the diagnostic test.
4  Question whether treatment would be changed depending on 

the result of a diagnostic test.

Exercises

9.1  The prevalence of a disease is 1 in 1000. A test has a sensitivity 
of 100% and specificity of 95%. What is the probability a per-
son has the disease given a positive result on the test? (Hint, 
think of a population with 10 000 people.)

9.2  Suppose the prevalence of diabetes is 3%. A urine test has a 
likelihood ratio for a positive test of 15. What is the probability 
that a person with a positive test has diabetes?
(a) 0.31; (b) 0.45; or (c) 0.98.

9.3 The following statements are true or false:
(a) Sensitivity depends on prevalence. (b) The ROC curve is 
a graph of sensitivity versus specificity. (c) Specificity is one 
minus the proportion of false positives. (d) For a screening test 
we require a high specificity.

References

1. Kroenke K, Spitzer RL, Williams JB, Monahan PO and Lo�we B. Anxiety 
disorders in primary care: prevalence, impairment, comorbidity and 
detection. Ann Intern Med 2007;146:317–25.

2. Sackett DL, Richardson WS, Rosenberg W and Haynes RB. Evidence 
Based Medicine. Churchill Livingstone, 1997;102

3. Machin D and Campbell MJ. Design of Studies for Medical Research. 
Chichester: John Wiley and Sons Ltd, 2005.



110

Statistics at Square One, XIth edition. By M.J. Campbell and T.D.V. Swinscow. 
Published 2009 by Blackwell Publishing, ISBN: 9781405191005.

CHAPTER 10

Rank score tests

Population distributions are characterized, or defined, by param-
eters such as the mean and standard deviation. For skew distribu-
tions, we would need to know other parameters such as the degree 
of skewness before the distribution could be identified uniquely, 
but the mean and standard deviation identify the Normal distribu-
tion uniquely. The t test described earlier depends for its validity on 
an assumption that the data originate from a Normally distributed 
population, and, when two groups are compared, the difference 
between the two samples arises simply because they differ only in 
their mean value. However, if we were concerned that the data did 
not originate from a Normally distributed population, then there 
are tests available which do not make use of this assumption. 
Because the data are no longer Normally distributed, the distribu-
tion cannot be characterized by a few parameters, and so the tests 
are often called “non-parametric”. This is somewhat of a misnomer 
because, as we shall see, to be able to say anything useful about 
the population we must compare parameters. As was mentioned 
in Chapter 6, if the sample sizes in both groups are large, lack of 
Normality is of less concern, and the large sample tests described in 
that chapter would apply.

The author Wilcoxon and the authors Mann and Whitney sepa-
rately described rank sum tests, which have since been shown to 
be the same. Convention has now ascribed the Wilcoxon test to 
paired data and the Mann–Whitney U test to unpaired data.

Paired samples

Boogert et al.1 (data also given in Shott2) used ultrasound to record 
fetal movements before and after chorionic villus sampling. The 
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percentage of time the fetus spent moving is given in Table 10.1 
for 10 pregnant women.

If we are concerned that the differences in percentage of time 
spent moving are unlikely to be Normally distributed we could use 
the Wilcoxon signed rank test using the following assumptions:
1 The paired differences are independent.
2 The differences come from a symmetrical distribution.
We do not need to perform a test to ensure that the differences 
come from a symmetrical distribution: an “eyeball” test will suffice. 
A plot of the differences in column (4) of Table 10.1 is given in 
Figure 10.1 and shows that distribution of the differences is plau-
sibly symmetrical. The differences are then ranked in column (5) 
(negative values are ignored and zero values omitted). When two 
or more differences are identical, each is allotted the point half way 
between the ranks they would fill if distinct, irrespective of the 
plus or minus sign. For instance, the differences of –1 (patient 6) 
and �1 (patient 9) fill ranks 1 and 2. As (1 � 2)/2 � 1.5, they are 
allotted rank 1.5. In column (6) the ranks are repeated for column 
(5), but to each is attached the sign of the difference from col-
umn (4). A useful check is that the sum of the ranks must add to 
n(n � 1)/2. In this case 10(10 � 1)/2 � 55.

The numbers representing the positive ranks and the negative 
ranks in column (6) are added up separately and only the smaller 

Table 10.1 Wilcoxon test on fetal movement before and after chorionic 
villus sampling.1,2

Patient 

number

Before 

sampling

(2)

After 

sampling

(3)

Difference 

(before–after)

(4)

Rank 

(5)

Signed

rank 

(6)

 1 25 18 7 9 9

 2 24 27 �3 5.5 �5.5

 3 28 25 3 5.5 5.5

 4 15 20 �5 8 �8

 5 20 17 3 5.5 5.5

 6 23 24 �1 1.5 �1.5

 7 21 24 �3 5.5 �5.5

 8 20 22 �2 3 –3

 9 20 19 1 1.5 1.5

10 27 19 8 10 10
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of the two totals is used. In this case the smaller of the ranks is 23.5. 
For n � 10 we calculate:

z
T n n

n n n
�

� �

� �

( )/

( )( )/

1 4

1 2 1 24

On the null hypothesis that the difference in pairs has a mean of zero, 
z is approximately Normally distributed with mean zero and standard 
deviation one.

From the data of Table 10.1 we find that:

z �
� �

� �
�

23 5 10 11 4

10 11 21 24
0 408

. /

/
.

From Table A (Appendix) we find P to be about 0.69.
For values of n less that 10, there are tables available from 

www.faculty.vasser.edu/lowry.

Figure 10.1 Plot of differences in fetal movement with mean value.
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Let T be the smaller of the ranks and let n be the number of 
pairs. A confidence interval associated with the test is described by 
Campbell and Gardner3 and Altman et al.,4 and is easily obtained from 
the program CIA5 or from an R program described in Chapter 14. 
The median difference is zero. CIA gives the 95% confidence inter-
val as �2.50 to 4.00. This is quite narrow and so from this small 
study we can conclude that we have little evidence that chorionic 
villus sampling alters the movement of the fetus.

Note, perhaps contrary to intuition, that the Wilcoxon test, 
although a rank test, may give a different value if the data are 
transformed, say by taking logarithms. Thus it may be worth plot-
ting the distribution of the differences for a number of transforma-
tions to see if they make the distribution appear more symmetrical.

Unpaired samples

A senior registrar in the rheumatology clinic of a district hospital 
has designed a clinical trial of a new drug for rheumatoid arthritis.

Twenty patients were randomized into two groups of 10 to 
receive either the standard therapy A or a new treatment B. The 
plasma globulin fractions after treatment are listed in Table 10.2.

We wish to test whether the new treatment has changed the plasma 
globulin, and we are worried about the assumption of Normality.

The first step is to plot the data (Figure 10.2).
The clinician was concerned about the lack of Normality of the 

underlying distribution of the data and so decided to use a non-
parametric test. The appropriate test is the Mann–Whitney U test 
and is computed as follows.

The observations in the two samples are combined into a sin-
gle series and ranked in order, but in the ranking the figures from 
one sample must be distinguished from those of the other. The 
data appear as set out in Table 10.3. To save space they have been 
set out in two columns, but a single ranking is done. The figures 
for sample B are set in bold type. Again the sum of the ranks is 
n(n � 1)/2.

Table 10.2 Plasma globulin fraction after randomization to treatment A or B.

Treatment A 38 26 29 41 36 31 32 30 35 33

Treatment B 45 28 27 38 40 42 39 39 34 45
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The ranks for the two samples are now added separately, and 
the smaller total is used. Let n1 � number of patients or objects 
in the smaller sample and T1 the total of the ranks for that sam-
ple. If there are only a few ties, that is if two or more values in 
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Figure 10.2 Plasma globulin fraction after treatments A or B with mean 
values.

Table 10.3 Combined results of Table 10.2 (Group B in bold).

Globulin fraction Rank Globulin fraction Rank

26 1 36 11

27 2 38 12.5

28 3 38 12.5

29 4 39 14.5

30 5 39 14.5

31 6 40 16

32 7 41 17

33 8 42 18

34 9 45 19.5

35 10 45 19.5
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the data are equal (say less than 10% of the data) then we can 
calculate:

z
T n n n

n n n n
�

� � �

� �

1 1 1 2

1 2 1 2

( 1)/

( 1)/12

2

⎡⎣ ⎤⎦

On the null hypothesis that the two samples come from the 
same population, z is approximately Normally distributed, mean 
zero, and standard deviation one, and can be referred to Table A 
(Appendix) to calculate the P-value.

From the data of Table 10.2 we obtain:
Totals of ranks: sample A, 81.5; sample B, 128.5.

z �
� �

� �
�

81.5 10 21/

(10 10 21/12)
1.78

2

and from Table A (Appendix) we find that P is about 0.075. Again 
for smaller sample sizes, tables are available at www.faculty.vasser.
edu/lowry/.

To calculate a meaningful confidence interval, we assume that if 
the two samples come from different populations the distribution of 
these populations differs only in that one appears shifted to the left 
or right of the other. This means, for example, that we do not expect 
one sample to be strongly right skewed and one to be strongly left 
skewed. If the assumption is reasonable, then a confidence interval 
for the median difference can be calculated.3,4 Note that the compu-
ter program does not calculate the difference in medians, but rather 
the median of all possible differences between the two samples. This 
is usually close to the median difference and has theoretical advan-
tages. From CIA we find that the difference in medians is �5.5 and 
the approximate 95% confidence interval is �10 to 1.0 and similar 
values are found using R (Table 14.14b). As might be expected from 
the significance test, this interval includes zero. Although this result 
is not significant, it would be unwise to conclude that there was no 
evidence that treatments A and B differed because the confidence 
interval is quite wide. This suggests that a larger study should be 
planned.

Non-Normally distributed data can sometimes be transformed 
by the use of logarithms or some other method to make them 
Normally distributed, and a t test performed. Consequently the 
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best procedure to adopt may require careful thought. The extent 
and nature of the difference between two samples is often brought 
out more clearly by standard deviations and t tests than by non-
parametric tests.

It is an interesting observation that the Mann–Whitney U test 
is unaffected by simple transformations, but the Wilcoxon signed 
rank test is affected. This is because the rank of a set of numbers 
and rank of (say) the log of these numbers are the same. However, 
the rank of the difference in a set of numbers and the rank of the 
difference in their logs are not necessarily the same.

Both the Wilcoxon and Mann–Whitney U test can be carried out 
using OpenStat (Chapter 14), but at the time of writing it does not 
give confidence intervals.

Common questions

Non-parametric tests are valid for both non-Normally 
distributed data and Normally distributed data, so why 
not use them all the time?
It would seem prudent to use non-parametric tests in all cases, 
which would save one the bother of testing for Normality. 
Parametric tests are preferred, however, for the following reasons:
1  As I have tried to emphasize in this book, we are rarely inter-

ested in a significance test alone; we would like to say something 
about the population from which the samples came, and this is 
best done with estimates of parameters and confidence intervals.

2  It is difficult to do flexible modeling with non-parametric tests, 
for example allowing for confounding factors using multiple 
regression (see Chapter 11).

Do non-parametric tests compare medians?
It is a commonly held belief that a Mann–Whitney U test is in 
fact a test for differences in medians. However, two groups could 
have the same median and yet have a significant Mann–Whitney 
U test. Consider the following data for two groups, each with 
100 observations. Group 1: 98 (0), 1, 2; Group 2: 51 (0), 1, 48 (2). 
The median in both cases is 0, but from the Mann–Whitney test 
P �0.0001.

Only if we are prepared to make the additional assumption 
that the difference in the two groups is simply a shift in location 
(i.e. the distribution of the data in one group is simply shifted by a 
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fixed amount from the other) can we say that the test is a test of 
the difference in medians. However, if the groups have the same 
distribution, then a shift in location will move medians and means 
by the same amount and so the difference in medians is the same 
as the difference in means. Thus the Mann–Whitney U test is also 
a test for the difference in means.

How is the Mann–Whitney U test related to the t test?
If one were to input the ranks of the data rather than the data 
themselves into a two sample t test program, the P-value obtained 
would be very close to that produced by a Mann–Whitney U test.

Reading and reporting rank score tests

When reading a result from a non-parametric test, one is often 
faced with a bald P-value. One should then ask what hypothesis 
is being tested? As shown above, one has to make further assump-
tion before statements concerning parameters such as means can 
be made.

A Mann–Whitney U test such as that described earlier should 
be reported as “Mann–Whitney P � 0.075, difference in medi-
ans �5.5, 95% CI �10 to 1.0”. Often, because of inappropriate 
software, confidence intervals for non-parametric tests are not 
reported, but there are now a number of packages which will cal-
culate them. For the two sample test, a confidence interval is only 
interpretable if the distribution of the outcome is similar in the two 
groups; if the distributions are markedly different, then the two 
groups differ in more than just a shift in location. Differences in 
spread can be as important as differences in medians.6

Exercises

10.1  A new treatment in the form of tablets for the prophylaxis 
of migraine has been introduced, to be taken before an imp-
ending attack. Twelve patients agree to try this remedy in 
addition to the usual general measures they take, subject to 
advice from their doctor on the taking of analgesics also. A 
crossover trial with identical placebo tablets is carried out 
over a period of 8 months. The numbers of attacks experi-
enced by each patient on, first, the new treatment and, 
secondly, the placebo were as follows: patient (1) 4 and 2; 
patient (2) 12 and 6; patient (3) 6 and 6; patient (4) 3 and 5; 
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patient (5) 15 and 9; patient (6) 10 and 11; patient (7) 2 and 
4; patient (8) 5 and 6; patient (9) 11 and 3; patient (10) 4 and 
7; patient (11) 6 and 0; patient (12) 2 and 5. In a Wilcoxon 
rank sum test, what is the smaller total of ranks? Is it signifi-
cant at the 5% level?

10.2  Another doctor carried out a similar pilot study with this 
preparation on 12 patients, giving the same placebo to 10 
other patients. The numbers of migraine attacks experienced 
by the patients over a period of 6 months were as follows.

Group receiving new preparation: patient (1) 8; (2) 6; (3) 0; 
(4) 3; (5) 14; (6) 5; (7) 11; (8) 2
Group receiving placebo: patient (9) 7; (10) 10; (11) 4; (12) 
11; (13) 2; (14) 8; (15) 8; (16) 6; (17) 1; (18) 5.

In a Mann–Whitney two sample test, what is the smaller 
total of ranks? Which sample of patients provides it? Is the 
difference significant at the 5% level?
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CHAPTER 11

Correlation and regression

The word correlation is used in everyday life to denote some form 
of association. We might say that we have noticed a correlation 
between foggy days and attacks of wheeziness. However, in statis-
tical terms, we use correlation to denote association between two 
quantitative variables. We also assume that the association is linear, 
that one variable increases or decreases a fixed amount for a unit 
increase or decrease in the other. The other technique that is often 
used in these circumstances is regression, which involves estimating 
the best straight line to summarize the association.

Correlation coefficient

The degree of association is measured by a correlation coefficient, 
denoted by r. It is sometimes called Pearson’s correlation coeffi-
cient after its originator and is a measure of linear association. If a 
curved line is needed to express the relationship, other and more 
complicated measures of the correlation must be used.

The correlation coefficient is measured on a scale that varies 
from �1 through 0 to �1. Complete correlation between two vari-
ables is expressed by either �1 or �1. When one variable increases 
as the other increases the correlation is positive; when one dec-
reases as the other increases it is negative. Complete absence of 
correlation is represented by 0. Figure 11.1 gives some graphical 
representations of correlation.

Looking at data: scatter diagrams

When an investigator has collected two series of observations and 
wishes to see whether there is a relationship between them, he 
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or she should first construct a scatter diagram. The vertical scale 
represents one set of measurements and the horizontal scale the 
other. If one set of observations consists of experimental results 
and the other consists of a time scale or observed classification of 
some kind, it is usual to put the experimental results on the verti-
cal axis. These represent what is called the “dependent variable”. 
The “independent variable”, such as time or height or some other 
observed classification, is measured along the horizontal axis, or 
baseline.

The words “independent” and “dependent” could puzzle the beg-
inner because it is sometimes not clear what is dependent on what. 
This confusion is a triumph of common sense over misleading ter-
minology, because often each variable is dependent on some third 
variable, which may or may not be mentioned. It is reasonable, for 
instance, to think of the height of children as dependent on age 
rather than the converse, but consider a positive correlation between 
mean tar yield and nicotine yield of certain brands of cigarette1. The 

Figure 11.1 Correlation illustrated.
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nicotine liberated is unlikely to have its origin in the tar: both vary in 
parallel with some other factor or factors in the composition of the 
cigarettes. The yield of the one does not seem to be “dependent” on 
the other in the sense that, on average, the height of a child depends 
on his age. In such cases, it often does not matter which scale is put 
on which axis of the scatter diagram. However, if the intention is 
to make inferences about one variable from the other, the observa-
tions from which the inferences are to be made are usually put on 
the baseline. As a further example, a plot of monthly deaths from 
heart disease against monthly sales of ice cream would show a neg-
ative association. However, it is hardly likely that eating ice cream 
protects from heart disease! It is simply that the mortality rate 
from heart disease is inversely related—and ice cream consump-
tion is positively related—to a third factor, namely environmental  
temperature.

Calculation of the correlation coefficient

A pediatric registrar has measured the pulmonary anatomical dead 
space (in ml) and height (in cm) of 15 children. The data are given 
in Table 11.1 and the scatter diagram is shown in Figure 11.2. Each 
dot represents one child, and it is placed at the point corresponding 
to the measurement of the height (horizontal axis) and the dead 
space (vertical axis). The registrar now inspects the pattern to see 
whether it seems likely that the area covered by the dots centers 
on a straight line or whether a curved line is needed. In this case, 
the pediatrician decides that a straight line can adequately describe 
the general trend of the dots. His next step will therefore be to cal-
culate the correlation coefficient.

When making the scatter diagram (Figure 11.2) to show the 
heights and pulmonary anatomical dead spaces in the 15 children, 
the pediatrician set out figures as in Columns (1), (2), and (3) of 
Table 11.1. It is helpful to arrange the observations in serial order 
of the independent variable when one of the two variables is 
clearly identifiable as independent. The corresponding figures for 
the dependent variable can then be examined in relation to the 
increasing series for the independent variable. In this way, we get 
the same picture, but in numerical form, as it appears in the scatter 
diagram.

The calculation of the correlation coefficient is as follows, with 
x representing the values of the independent variable (in this case 
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Table 11.1 Height and pulmonary anatomical dead space in 15 children.

Child number 

(1)

Height (cm)

(2)

Dead space (ml), y 

(3)

 1 110 44

 2 116 31

 3 124 43

 4 129 45

 5 131 56

 6 138 79

 7 142 57

 8 150 56

 9 153 58

10 155 92

11 156 78

12 159 64

13 164 88

14 168 112

15 174 101

Total 2169 1004

Mean 144.6 66.933
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Figure 11.2 Scatter diagram of relation in 15 children between height and 
pulmonary anatomical dead space.



Correlation and regression   123

height) and y representing the values of the dependent variable (in 
this case anatomical dead space). The formula to be used is:

 

r
x x y y

x x y y
�

� �

� �

Σ

Σ Σ

( )( )

) )2 2( (⎡
⎣⎢

⎤
⎦⎥

 (11.1)

Using OpenStat as shown in Chapter 14, we find that:

r � 0.846

If we wish to label the strength of the association, for absolute 
 values of r, 0–0.19 is regarded as very weak, 0.2–0.39 as weak, 
0.40–0.59 as moderate, 0.6–0.79 as strong, and 0.8–1 as very strong 
correlation, but these are rather arbitrary limits, and the context 
of the results should be considered. The correlation coefficient of 
0.846 indicates a very strong positive correlation between size of 
pulmonary anatomical dead space and height of child. But in inter-
preting correlation, it is important to remember that correlation is not 
causation. There may or may not be a causative connection between 
the two correlated variables. Moreover, if there is a connection it 
may be indirect.

A part of the variation in one of the variables (as measured by 
its variance) can be thought of as being due to its relationship 
with the other variable and another part as due to undetermined 
(often “random”) causes. The part due to the dependence of one 
variable on the other is measured by r2. For these data, r2 � 0.716 
so we can say that 72% of the variation between children in size 
of the anatomical dead space is accounted for by the height of the 
child.

Significance test

To test whether the association is merely apparent, and might have 
arisen by chance, use the t test in the following calculation:

 

t r
n

r
�

�

�
  

2

1 2  (11.2)

where t has n � 2 degrees of freedom.
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For example, the correlation coefficient for these data was 0.846.
The number of pairs of observations was 15. Applying equation 

(11.2), we have:

t �
�

�
�0.846

15 2

1 0.846
5.72.

2

Using OpenOffice Calc TDIST with 15 � 2 � 13 degrees of free-
dom, we find that P � 0.001 so the correlation coefficient may be 
regarded as highly significant. Thus (as could be seen immediately 
from the scatterplot), we have a very strong correlation between 
dead space and height which is most unlikely to have arisen by 
chance.

The assumptions governing this test are:
• that both variables are plausibly Normally distributed;
• that there is a linear relationship between them;
• the null hypothesis is that there is no association between them.
The test should not be used for comparing two methods of 
 measuring the same quantity, such as two methods of measuring 
peak expiratory flow rate. Its use in this way appears to be a com-
mon mistake, with a significant result being interpreted as mean-
ing that one method is equivalent to the other. The reasons have 
been extensively discussed,2 but it is worth recalling that a signifi-
cant result tells us little about the strength of a relationship.

Spearman rank correlation

A plot of the data may reveal outlying points well away from the 
main body of the data, which could unduly influence the calcu-
lation of the correlation coefficient. Alternatively, the variables 
may be quantitative discrete such as a mole count, or ordered cat-
egorical such as a pain score. A non-parametric procedure, due to 
Spearman, is to replace the observations by their ranks in the cal-
culation of the correlation coefficient.

This results in a simple formula for the Spearman rank correlation, rs.

r
d

n n
s � �

�
1

6

( 1)

2

2

Σ

where d is the difference in the ranks of the two variables for a 
given individual. Thus we can derive Table 11.2 from the data in 
Table 11.1.
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From this we get that:

rs � �
�

� �
�1

6 60.5

15 (225 1)
0.8920

In this case the value is very close to that of the Pearson corre-
lation coefficient. For n � 10, the Spearman rank correlation 
coefficient can be tested for significance using the t test given 
earlier.

The regression equation

Correlation describes the strength of an association between two 
variables, and is completely symmetrical, the correlation between 
A and B is the same as the correlation between B and A. However, 
if the two variables are related, it means that when one changes 
by a certain amount the other changes on an average by a cer-
tain amount. For instance, in the children described earlier greater 
height is associated, on average, with greater anatomical dead space. 
If y represents the dependent variable and x the independent vari-
able, this relationship is described as the regression of y on x.

Table 11.2 Derivation of Spearman’s rank correlation from data of 
Table 11.1.

Child number Rank height Rank dead space d d2

 1 1 3 2 4

 2 2 1 �1 1

 3 3 2 �1 1

 4 4 4 0 0

 5 5 5.5 0.5 0.25

 6 6 11 5 25

 7 7 7 0 0

 8 8 5.5 �2.5 6.25

 9 9 8 �1 1

10 10 13 3 9

11 11 10 �1 1

12 12 9 �3 9

13 13 12 �1 1

14 14 15 1 1

15 15 14 �1 1

Total 60.5
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The relationship can be represented by a simple equation called 
the regression equation. In this context “regression” (the term is a 
historical anomaly) simply means that the average value of y is a 
“function” of x, that is, it changes with x.

The regression equation representing how much y changes with 
any given change of x can be used to construct a regression line on 
a scatter diagram, and in the simplest case this is assumed to be 
a straight line. The direction in which the line slopes depends on 
whether the correlation is positive or negative. When the two 
sets of observations increase or decrease together (positive), the 
line slopes upwards from left to right; when one set decreases as 
the other increases, the line slopes downwards from left to right. 
As the line must be straight, it will probably pass through few, if 
any, of the dots. Given that the association is well described by a 
straight line, we have to define two features of the line if we are 
to place it correctly on the diagram. The first of these is its distance 
above the baseline; the second is its slope. They are expressed in 
the following regression equation:

y � α � βx

With this equation we can find a series of values of yfit, the vari-
able, that correspond to each of a series of values of x, the inde-
pendent variable. The parameters α and β have to be estimated 
from the data. The parameter α signifies the distance above the 
baseline at which the regression line cuts the vertical (y) axis; that 
is, when x � 0. The parameter β (the regression coefficient) signifies 
the amount by which change in x must be multiplied to give the 
corresponding average change in y, or the amount y changes for 
a unit increase in x. In this way, it represents the degree to which 
the line slopes upwards or downwards.

The regression equation is often more useful than the correla-
tion coefficient. It enables us to predict y from x and gives us a bet-
ter summary of the relationship between the two variables. If, for a 
particular value of x, xi, the regression equation predicts a value of 
yfit, the prediction error is yi � yfit. It can easily be shown that any 
straight line passing through the mean values x  and y  will give a 
total prediction error Σ(yi � yfit) of zero because the positive and 
negative terms exactly cancel. To remove the negative signs, we 
square the differences and the regression equation chosen to mini-
mize the sum of squares of the prediction errors, S2 � Σ(yi � yfit)

2 
We denote the sample estimates of α and β by a and b. It can be 
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shown that the one straight line that minimizes S2, the least squares 
estimate, is given by:

 

b
x x y y

x x
�

� �

�

Σ

Σ

(  )( )

( )2
 (11.3)

and

a y bx� �

Using OpenStat as shown in Chapter 14, we find b � 1.033 ml/cm 
and a � �82.4 ml.

Therefore, in this case, the equation for the regression of y on x 
becomes:

y � � 82.4 � 1.033x

This means that, on average, for every increase in height of 1 cm, 
the increase in anatomical dead space is 1.033 ml over the range of 
measurements made.

The line representing the equation is shown superimposed on 
the scatter diagram of the data in Figure 11.3.
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Figure 11.3 Regression line drawn on scatter diagram relating height and 
pulmonary anatomical dead space in 15 children (Table 11.2).
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The standard error of the slope SE(b) is given by:

 

SE( )
( )

res

2
b

S

x x
�

�Σ
 (11.4)

where Sres is the residual standard deviation, given by:

S
y y

nres
fit

2( )

2
�

�

�

Σ

We find SE(b) � 13.08445/72.4680 � 0.18055.
We can test whether the slope is significantly different from 

zero by:

t � b/SE(b) � 1.033/0.18055 � 5.72

Again, this has n � 2 � 15 � 2 � 13 degrees of freedom. The 
assumptions governing this test are:
•  That the prediction errors are approximately Normally distrib-

uted. Note this does not mean that the x or y variables have to 
be Normally distributed.

•  That the relationship between the two variables is linear.
•  That the scatter of points about the line is approximately 

 constant—we would not wish the variability of the dependent 
variable to be growing as the independent variable increases. If 
this is the case, try taking logarithms of both the x and y variables.

Note that the test of significance for the slope gives exactly the same 
value of P as the test of significance for the correlation coefficient. 
Although the two tests are derived differently, they are algebraically 
equivalent, which makes intuitive sense, since a test for a significant 
correlation should be the same as a test for a significant slope.

We can obtain a 95% confidence interval for b from

b � t0.05 � SE(b) to b � t0.05 � SE(b)

where the t statistic has 13 degrees of freedom, and from Open-
Office Calc TINV is found to be 2.160.

Thus the 95% confidence interval is:

l.033 � 2.160 � 0.18055 to l.033 � 2.160 � 0.18055

 � 0.643 to 1.422.
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Regression lines give us useful information about the data they are 
collected from. They show how one variable changes on average 
with another, and they can be used to find out what one varia-
ble is likely to be when we know the other—provided that we ask 
this question within the limits of the scatter diagram. To project 
the line at either end—to extrapolate—is always risky because the 
relationship between x and y may change or some kind of cut-off 
point may exist. For instance, a regression line might be drawn 
relating the chronological age of some children to their bone age, 
and it might be a straight line between, say, the ages of 5 and 
10 years, but to project it up to the age of 30 would clearly lead 
to error. Computer packages will often produce the intercept from 
a regression equation, with no warning that it may be totally 
meaningless. Consider a regression of blood pressure against age 
in middle aged men. The regression coefficient is often positive, 
indicating that blood pressure increases with age. The intercept is 
often close to zero, but it would be wrong to conclude that this 
is a reliable estimate of the blood pressure in newly born male 
infants!

More advanced methods

More than one independent variable is possible—in such a case the 
method is known as multiple regression. This is the most versatile of 
statistical methods and can be used in many situations. Examples 
include: to allow for more than one predictor, age as well as height 
in the above example; to allow for covariates—in a clinical trial 
the dependent variable may be outcome after treatment, the first 
independent variable can be binary, 0 for placebo, and 1 for active 
treatment, and the second independent variable may be a baseline 
variable, measured before treatment, but likely to affect outcome. 
Further details are given in Statistics at Square Two.

Common questions

If two variables are correlated are they causally 
related?
It is a common error to confuse correlation and causation. All that 
correlation shows is that the two variables are associated. There 
may be a third variable, a confounding variable that is related to 
both of them. For example, as stated earlier, monthly deaths by 
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drowning and monthly sales of ice cream are positively correlated, 
but no one would say the relationship was causal!

How do I test the assumptions underlying linear 
regression?
Firstly always look at the scatterplot and ask, is it linear? If the rela-
tionship is plausibly linear, fit the regression equation and calculate 
the residuals ei � yi � yfit. A histogram of ei will reveal departures 
from Normality. A plot of ei versus yfit will reveal whether the resid-
uals increase in size as yfit increases and if this is the case then the 
assumption about a constant variance is unlikely to be true.

When should I use correlation and when should I use 
regression?
If there is a clear causal pathway, then generally it is better to use 
regression, although quoting the correlation coefficient as a measure 
of the strength of the relationship is helpful. In epidemiological sur-
veys, where one is interested only in the strength of a relationship, 
then correlations are preferable. For example, in a survey com paring 
ovarian cancer rates by country, with the sales of oral contracep-
tives, it is the existence of a relationship that is of interest, and so a 
correlation coefficient would be a useful summary.

Which are the important assumptions for linear 
regression?
The most important assumption is that the relationship is lin-
ear. The slope can be vulnerable to “outliers” which are points 
well away from the main body of data. The next most important 
assumption is that the observations are independent and especial 
care is needed when the data for a time series.

What is the relationship between regression 
and the t test?
In the two sample t test example, suppose we entered the transit 
times as a single column, which we call y, with one group followed 
by the second, we also entered a second column with 1 � Treatment 
A and 2 � Treatment B, which we call x. Then the p-value associ-
ated with the regression of y on x is the same as that for the t test 
comparing Treatments A and B, and the regression coefficient is the 
contrast between A and B, (mean(B)–mean(A)) with a 95% confi-
dence interval.
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Formula appreciation

One can see that if one swaps x and y in equation (11.1) the outcome 
stays the same. Thus for a correlation coefficient it does not mat-
ter which variable is the dependent one and which the independ-
ent one. Also in equation (11.1), if we put y � x we get r � 1 and 
if we put y � �x we get r � �1. From the formula (11.2), it should 
be clear that even with a very weak relationship (say r � 0.1), we 
would get a significant result with a large enough sample (say n over 
1000). Formula (11.3) contrasts with formula (11.1) since now the 
result will change if one swaps x and y. Formula (11.4) shows that 
one can achieve a small standard error by having a wide range of x, 
so that the denominator is large. What this means in practice is that 
if one was investigating a relationship, for example the relationship 
between lung volume and height, it would be sensible to collect data 
on some very short people and some very tall people!

Reading and reporting correlation 
and regression

•  Make clear what type of correlation coefficient is being used (e.g. 
Pearson or Spearman).

•  Ask whether the relationship is really linear. Do the authors 
produce evidence that the model is reasonable? For example, do 
they discuss the distribution of the residuals?

•  Quote the correlation coefficient and its P-value, or the regres-
sion slope, 95% confidence interval for the slope, the t statistic, 
degrees of freedom, and P-value. Thus for the data from Table 
11.1, we would write, “regression slope of dead space against 
height is 1.033 ml/cm (95% CI 0.643 to 1.422), P � 0.001, 
r � 0.846.

Exercises

11.1  A study was carried out into the attendance rate at a hospi-
tal of people in 16 different geographical areas over a fixed 
period of time. The distance of the center from the hospital of 
each area was measured in miles. The results were as follows:

(1) 21%, 6.8; (2) 12%, 10.3; (3) 30%, 1.7; (4) 8%, 14.2; 
(5) 10%, 8.8; (6) 26%, 5.8; (7) 42%, 2.1; (8) 31%, 3.3; 
(9) 21%, 4.3; (10) 15%, 9.0; (11) 19%, 3.2; (12) 6%, 12.7; 
(13) 18%, 8.2; (14) 12%, 7.0; (15) 23%, 5.1; (16) 34%, 4.1.
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Plot the data. Is the relation plausibly linear? What is the correlation 
coefficient between the attendance rate and mean distance of the 
geographical area?
11.2  Find the Spearman rank correlation for the data given in 

Exercise 11.1.
11.3  In Exercise 11.1, let x represents mean distance of the area 

from the hospital and y represents attendance rates. What is 
the equation for the regression of y on x? What does it mean?

11.4  Find the standard error and 95% confidence interval for the 
slope of the data in Exercise 11.1.

11.5  Playing with the data. If the results for area 12 in question 
11.1 were 6%, 22.7, how does this change the correlation 
coefficient, the Spearman’s rank correlation, and the regres-
sion slope. If the results for area 6 were 10%, 5.8, how would 
that affect the results?
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CHAPTER 12

Survival analysis

Survival analysis is concerned with studying the time between 
entry to a study and a subsequent event. Originally the analysis was 
concerned with time from treatment until death, hence the name, 
but survival analysis is applicable to many areas as well as mortality. 
Recent examples include time to discontinuation of a contraceptive, 
maximum dose of bronchoconstrictor required to reduce a patient’s 
lung function to 80% of baseline, time taken to exercise to maxi-
mum tolerance, time that a transdermal patch can be left in place, 
time for a leg fracture to heal.

When the outcome of a study is the time between one event and 
another, a number of problems can occur.
• The times are most unlikely to be Normally distributed.
•  We cannot afford to wait until events have happened to all the 

subjects, for example until all are dead. Thus some patients will 
still be alive at the close of the study. Other patients might have 
left the study early—they are lost to follow up. Thus the only 
information we have about some patients is that they were 
still alive until some point in time. These are termed censored 
observations.

Kaplan–Meier survival curve

We look at the data using a Kaplan–Meier survival curve.1 Suppose 
that the survival times, including censored observations, after 
entry into the study (ordered by increasing duration) of a group of 
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n subjects are t1, t2,…tn. The proportion of subjects, S(t), surviving 
beyond any follow-up time (tp) is estimated by:

S t
r d

r

r d
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r d

r
p p
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where tp is the largest survival time less than or equal to t and ri is 
the number of subjects alive just before time ti (the ith ordered sur-
vival time), di denotes the number who died at time ti where i can 
be any value between 1 and p. For censored observations di � 0.

Method
Order the survival time by increasing duration starting with the 
shortest one. At each event (i) work out the number alive imme-
diately before the event (ri). Before the first event all the patients 
are alive and so S(t) � 1. If we denote the start of the study as to, 
where to � 0, then we have S(to) � 1. We can now calculate the 
survival times ti, for each value of i from 1 to n by means of the 
following recurrence formula.

Given the number of events (deaths), di, at time ti and the 
number alive, ri, just before ti calculate

S t
r d

r
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i i

i
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We do this only for the events and not for censored observations. 
The survival curve is unchanged at the time of a censored obser-
vation, but at the next event after the censored observation the 
number of people “at risk” is reduced by the number censored 
between the two events.

Example of calculation of survival curve

McIllmurray and Turkie2 describe a clinical trial of 49 patients for 
the treatment of Dukes’ C colorectal cancer. The data for the two 
treatments, γ linolenic acid or control are given in Table 12.1.2,3

The calculation of the Kaplan–Meier survival curve for the 
25 patients randomly assigned to receive γ linolenic acid is described 
in Table 12.2. The � sign indicates censored data. Until 6 months 
after treatment, there are no deaths, so S(t) � 1. The effect of the 
censoring is to remove from the alive group those that are censored. 
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Table 12.1 Survival in 49 patients with Dukes’ C colorectal cancer ran-
domly assigned to either γ linolenic acid or control treatment.

Treatment Survival time (months)

γ Linolenic acid (n � 25) 1�, 5�, 6, 6, 9�, 10, 10, 10�, 12, 12, 12, 12, 12�, 

13�, 15�, 16�, 20�, 24, 24�, 27�, 32, 34�, 36�, 

36�, 44�

Control (n � 24) 3�, 6, 6, 6, 6, 8, 8, 12, 12, 12�, 15�, 16�, 18�, 18�, 

20, 22�, 24, 28�, 28�, 28�, 30, 30�, 33�, 42

Table 12.2 Calculation of survival case for 25 patients randomly assigned 
to receive γ linolenic acid.

Case (i) Survival time 

(months) (ti)

Number 

alive (ri)

Deaths (di) Proportion 

surviving 

(ri � di)/ri

Cumulative 

proportion 

surviving S(t)

0 0 0 – 1

 1 1� 25 0 1 1

 2 5� 24 0 1 1

 3 6 23 2 0.9130 0.9130

 4 6

 5 9� 21 0 1 0.9130

 6 10 20 2 0.90 0.8217

 7 10

 8 10�

 9 12 17 4 0.7647 0.6284

10 12

11 12

12 12

13 12�

14 13� 12 0 1 0.6284

15 15� 11 0 1 0.6284

16 16� 10 0 1 0.6284

17 20� 9 0 1 0.6284

18 24 8 1 0.875 0.5498

19 24�

20 27� 6 0 1 0.5498

21 32 5 1 0.80 0.4399

22 34�

23 36�

24 36�

25 44�
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At time 6 months two subjects have been censored and so the 
number alive just before 6 months is 23. There are two deaths at 
6 months.

Thus,

S(6)
1 (23 2)

23
0.9130�

� �
�

We now reduce the number alive (“at risk”) by two. The censored 
event at 9 months reduces the “at risk” set to 20. At 10 months 
there are two deaths, so the proportion surviving is 18/20 � 0.90 
and the cumulative proportion surviving is 0.913 � 0.90 � 0.8217. 
As one can see, the effect of the censored observations is to reduce 
the number at risk without affecting the survival curve S(t). The 
survival curve is shown in Figure 12.1. The censored observations 
are shown as ticks on the line.

Finally we plot the survival curve, as shown in Figure 12.1. The 
censored observations are shown as ticks on the line.

Figure 12.1 Survival curve of 25 patients with Dukes’ C colorectal cancer 
treated with γ-linolenic acid.
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Log rank test

To compare two survival curves produced from two groups A and B, 
we use the rather curiously named log rank test,1 so called because 
it can be shown to be related to a test that uses the logarithms of 
the ranks of the data.

The assumptions used in this test are:
• That the survival times are ordinal or continuous.
•  That the risk of an event in one group relative to the other does 

not change with time. Thus if linolenic acid reduces the risk of 
death in patients with colorectal cancer, then this risk reduc-
tion does not change with time (the so-called proportional hazards 
assumption).

We first order the data for the two groups combined, as shown in 
Table 12.3. As for the Kaplan–Meier survival curve, we now con-
sider each event in turn, starting at time t � 0.

At each event (death) at time ti we consider the total number 
alive (ri) and the total number still alive in group A (rAi) up to that 
point. If we had a total of di events at time ti, then, under the null 

Table 12.3 Calculation of log rank statistics for 49 patients randomly 
assigned to receive γ linolenic acid (A) or control (B).

Survival time 

months (ti)

Group Total at 

risk (r)

Number of 

events (di)

Total at risk 

in group A 

(rAi)

Expected 

number of 

events in 

A (EAi)

0 49

1� A 49 0 25 0

3� B 48 0 24 0

5� A 47 0 24 0

6 A 46 6 23 3.0

6 A

6 B

6 B

6 B

6 B

8 B 40 2 21 1.05

8 B

9� A 38 0 21 0

Continued
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Table 12.3 Continued

Survival time 

months (ti)

Group Total at 

risk (r)

Number of 

events (di)

Total at risk 

in group A 

(rAi)

Expected 

number of 

events in 

A (EAi)

10 A 37 2 20 1.0811

10 A

10� A

12 A 34 6 17 3.0

12 A

12 A

12 A

12 B

12 B

12� A

12� B

13� A 26 0 12 0

15� A 25 0 11 0

15� B 24 0 10 0

16� A 23 0 10 0

16� B 22 0 9 0

18� B 21 0 9 0

18� B

20 B 19 1 9 0.4736

20� A

22� B 17 0 8 0

24 A 16 2 8 1.0

24 B

24� A

27� A 13 0 6 0

28� B 12 0 5 0

28� B

28� B

30 B 9 1 5 0.5555

30� B

32 A 7 1 5 0.7143

33� B 6 0 4 0

34� A 5 0 4 0

36� A 4 0 3 0

36� A

42 B 2 1 1 0.50

44� A
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hypothesis, we consider what proportion of these would have been 
expected in group A. Clearly the more people at risk in one group 
the more deaths (under the null hypothesis) we would expect.

Thus the number of events in group A is:

E
r

r
di

i

i
iA

A� �

The effect of the censored observations is to reduce the numbers at 
risk, but they do not contribute to the expected numbers.

Finally, we add the total number of expected events in group A,

EA � Σ EAi

If the total number of events in group B is EB, we can deduce 
EB from EB � n � EA, where n is the total number of events. We 
do not calculate the expected number beyond the last event, in 
this case at time 42 months. Also, we would stop calculating the 
expected values if any survival times greater than the point we 
were at were found in one group only.

Finally, to test the null hypothesis of equal risk in the two 
groups, we compute:
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where OA and OB are the total number of events in groups A and B. 
We compare X2 to a χ2 distribution with one degree of freedom 
(one, because we have two groups and one constraint, namely that 
the total expected events must equal the total observed).

The calculation for the colorectal data is given in Table 12.3. The 
first non-censored event occurs at 6 months, at which there are 
six events. By that time 46 patients are at risk, of whom 23 are 
in group A. Thus we would expect 6 � 23/46 � 3 to be in group 
A. At 8 months we have 46 � 6 � 40 patients at risk of whom 
23 � 2 � 21 are in group A. There are two events, of which we 
would expect 2 � 21/40 � 1.05 to occur in group A.

The total expected number of events in A is EA � 11.3745. The 
total number of events is 22, OA � 10, OB � 12. Thus EB � 10.6255.

Thus

X2 �
�

�
�

�
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.
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.
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11 37

12 10 63
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0 34
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We compare this with the χ2 table using OpenCalc CHIDIST with 
one degree of freedom to find P � 0.56.

The relative risk can be estimated by r � (OA/EA)/(OB/EB). The 
standard error of the log risk is given by:4

SE(log( )) (1/ 1/ )A Br E E� �

Thus we find r � 0.779 and so log(r) � �0.250, SE(log(r)) � 0.427, 
and so an approximate 95% confidence interval for log(r) is:

�1.087 to 0.587

and so a 95% confidence interval for r is e�1.087 to e0.587, which is:

0.34 to 1.80

This would imply that γ linolenic acid reduced mortality to about 
78% compared with the control group, but with a very wide confi-
dence interval. In view of the very small χ2 statistic, we have little 
evidence that this result would not have arisen by chance.

It is simple to obtain the Kaplan–Meier plot and carry out the 
log rank test using OpenStat as described in Chapter 14.

Further methods

In the same way that multiple regression is an extension of linear 
regression, an extension of the log rank test is called Cox regres-
sion. This models the instantaneous risk at any point in time, 
known as the hazard and is often known as proportional hazards 
regression. It was developed by DR Cox and can allow for prog-
nostic factors. It is beyond the scope of this book, but is described 
in Statistics at Square Two and elsewhere.4

Common questions

Do I need to test for a constant relative risk before 
doing the log rank test?
This is a similar problem to testing for Normality for a t test. The 
log rank test is quite “robust” against departures from proportional 
hazards, but care should be taken. If the Kaplan–Meier survival 
curves cross then this is clear departure from proportional haz-
ards, and the log rank test should not be used. This can happen, 
for example, in a two drug trial for cancer, if one drug is very toxic 
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initially but produces more long term cures. In this case there is no 
simple answer to the question “is one drug better than the other?”, 
because the answer depends on the time scale.

If I don’t have any censored observations, do I need to 
use survival analysis?
Not necessarily, you could use a rank test such as the Mann–
Whitney U test, but the survival method would yield an estimate 
of risk, which is often required, and lends itself to a useful way of 
displaying the data.

Reading and reporting survival analysis

•  Beware of reading too much into the right hand part of a 
Kaplan–Meier plot, unless one has data to show that there is still 
a reasonably sized sample there, since it may be based on very 
small numbers. As shown in Figure 12.1, one should print the 
numbers at risk at intervals along the survival time axis.

•  For survival curves with a high proportion of survivors, it is 
helpful to truncate the y-axis, and not plot acres of white space, 
or plot the cumulative mortality curve 1 � S(t) instead. (Further 
details of plotting survival data are given in Freeman et al.5)

•  Relative risks are difficult to interpret, and for communication it 
can be helpful to choose a time (say 2 years for the linolenic acid 
data) and give the estimated proportions surviving at that point.

•  The log rank test should be presented as “X2(log rank) � 0.34, 
d.f. � 1, P � 0.56. Estimated relative risk 0.427, 95% confidence 
interval 0.33 to 1.80”.

Exercises

12.1  Twenty patients, 10 of normal weight and 10 severely over-
weight underwent an exercise stress test, in which they had 
to lift a progressively increasing load for up to 12 min, but 
they were allowed to stop earlier if they could do no more. 
On two occasions the equipment failed before 12 min. The 
times (in min) achieved were:

Normal weight: 4, 10, 12*, 2, 8, 12*, 8†, 6, 9, 12*

Overweight: 7†, 5, 11, 6, 3, 9, 4, 1, 7, 12*

*Reached end of test; †equipment failure. (I am grateful to C 
Osmond for these data).
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(a) What are the observed and expected values?
(b)  What is the value of the log rank test to compare these 

groups?
(c)  Playing with the data: What is the effect of changing one 

of the 12* to 30*? 8† to 12†? 8 to 120?
12.2  What is the risk of stopping in the normal weight group 

 compared with the overweight group, and a 95% confidence 
interval?
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CHAPTER 13

Study design and choosing 
a statistical test

Design

In many ways the design of a study is more important than the 
analysis. A badly designed study can never be retrieved, whereas 
a poorly analyzed one can usually be reanalyzed. Consideration 
of design is also important because the design of a study will gov-
ern how the data are to be analyzed. This chapter can only briefly 
consider the issues and for more details the reader is referred to 
Machin and Campbell.1

Most medical studies consider an input, which may be a medical 
intervention or exposure to a potentially toxic compound, and an 
output, which is some measure of health that the intervention is 
supposed to affect. The simplest way to categorize studies is with 
reference to the time sequence in which the input and output are 
studied.

The most powerful studies are prospective studies, and the para-
digm for these is the randomized controlled trial. In this, subjects 
with a disease are randomized to one of two (or more) treat-
ments, one of which may be a control treatment. Methods of ran-
domization have been described in Chapter 4. The importance of 
randomization is that we know in the long run (i.e. with a large 
number of subjects), treatment groups will be balanced in known 
and unknown prognostic factors. However, with small studies, the 
chances of imbalance in some important prognostic factors are 
quite high. Another important feature of randomization is that one 
cannot predict in advance which treatment a patient will receive. 
This matters, because knowledge of likely treatment may affect 
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whether the subject gets recruited into the trial. It is  important 
that the treatments are concurrent—that the active and control 
 treatments occur in the same period of time.

To allow for the therapeutic effect of simply being given treat-
ment, the control may consist of a placebo, an inert substance that 
is physically identical to the active compound. If possible a study 
should be double blinded—neither the investigator nor the sub-
ject being aware of what treatment the subject is undergoing. 
Sometimes it is impossible to blind the subjects, for example when 
the treatment is some form of health education, but often it is pos-
sible to ensure that the people evaluating the outcome are una-
ware of the treatment and this is known as a single blind trial.

A parallel group design is one in which treatment and control are 
allocated to different individuals. Examples of a parallel group trial 
are given in Table 7.1, in which different bran preparations have 
been tested on different individuals, Table 8.5 comparing different 
vaccines, and Table 8.6 evaluating health promotion. A matched 
parallel design comes about when randomization is between 
matched pairs, such as in Exercise 8.8, in which randomization 
was between different parts of a patient’s body.

A crossover study is one in which two or more treatments are 
applied sequentially to the same subject. Clearly this type of study 
can only be considered for chronic conditions, where treatment is 
not expected to cure the patient and where withdrawal of treat-
ment leads to a return to a baseline level which is relatively stable. 
The advantages are that each subject then acts as their own control 
and so fewer subjects may be required. The main disadvantage is 
that there may be a carryover effect in that the action of the second 
treatment is affected by the first treatment. An example of a cross-
over trial is given in Table 7.2, in which different dosages of bran 
are compared within the same individual. Another type of trial is 
a sequential trial, when the outcome is evaluated after each patient 
or a group of patients, rather than after all the patients have been 
gathered into the study. It is useful if patient recruitment is slow 
and the outcome evaluated quickly, such as levels of nausea after 
an anesthetic. Cluster trials are trials where groups of patients, 
rather than individual patients, are randomized. They may occur 
in primary care, where general practitioners are randomized to 
different training packages, or public health where different areas 
receive different health promotion campaigns. Further details on 
clinical trials are available in a number of excellent books.2–5
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One of the major threats to validity of a clinical trial is  compliance 
(or the more politically correct adherence). Patients are likely to 
drop out of trials if the treatment is unpleasant, and often fail to 
take medication as prescribed. It is usual to adopt a pragmatic 
approach and analyze by intention to treat, that is analyze the data 
by the treatment that the subject was assigned to, not the one they 
actually took. Of course, if the patients have dropped out of a trial, 
it may be impossible to get measurements from them, unless they 
can be obtained by proxy, such as whether the subject is alive or 
dead. The alternative to an intention to treat analysis is to analyze 
per protocol or on study. The trouble with this type of analysis is that 
we no longer have a randomized comparison and so comparisons 
may be biased. Dropouts should be reported by treatment group. 
Checklists for writing reports on clinical trials are available.6,7

A quasi-experimental design is one in which treatment allocation 
is not random. An example of this is given in Exercise 8.8 com-
paring two locations for an outbreak of pediculosis capitis. These 
designs are useful for evaluating interventions which have been 
introduced without trial evidence. One can compare areas of the 
country where the intervention has been introduced with other 
areas where it has not. The difficulty lies in interpretation, in that 
one cannot be sure whether reasons why some areas have the 
intervention early are also related to the outcome.

A cohort study is one in which subjects, initially disease free, are 
followed up over a period of time. Some will be exposed to some 
risk factor, for example cigarette smoking. The outcome may be 
death and we may be interested in relating the risk factor to a par-
ticular cause of death. Clearly, these have to be large, long term 
studies and tend to be costly to carry out. If records have been kept 
routinely in the past, then a historical cohort study may be car-
ried out, an example of which is the appendicitis study discussed 
in Chapter 6. Here, the cohort is all cases of appendicitis admitted 
over a given period and a sample of the records could be inspected 
retrospectively. A typical example would be to look at birth weight 
records and relate birth weight to disease in later life.

These studies differ in essence from retrospective studies, which 
start with diseased subjects and then examine possible exposure. 
Such case–control studies are commonly undertaken as a preliminary 
investigation, because they are relatively quick and inexpensive. 
The comparison of the blood pressure in farmers and printers given 
in Chapter 4 is an example of a case–control study. It is retrospective 
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because we argued from the blood pressure to the occupation and did 
not start out with subjects assigned to occupation. There are many 
confounding factors in case–control studies. For example, does occu-
pational stress cause high blood pressure, or do people prone to high 
blood pressure choose stressful occupations? A particular problem is 
recall bias, in that the cases, with the disease, are more motivated to 
recall apparently trivial episodes in the past than controls, who are 
disease free.

Cross-sectional studies are common and include surveys, laboratory 
experiments, and studies to examine the prevalence of a disease. 
Studies validating instruments and questionnaires are also cross-sec-
tional studies. The study of urinary concentration of lead in children 
described in Chapter 1 and the study of the relationship between 
height and pulmonary anatomical dead space in Chapter 11 
are cross-sectional studies. The main problem of cross-sectional 
 studies is ensuring the sample is representative of the population 
from which it is taken. Different types of sample are described in 
Chapter 4.

In general, when one is evaluating interventions, randomized 
trials are considered the best and most reliable form of evidence. 
However there are important caveats about this. The subjects in 
randomized trials are volunteers, and so may not be typical of the 
sort of patient one meets in practice. They tend to be small and of 
short duration, so rare side effects may not be picked up. It may 
not be ethical to conduct a trial, if most clinicians believe in the 
efficacy of the treatment. However observational studies are them-
selves vulnerable; a classic example is the evaluation of hormone 
replacement therapy. This appeared to be beneficial for heart dis-
ease, but it was likely that women who were at lower risk of heart 
disease were more likely to ask for it.

Sample size

One of the most common questions asked of a statistician about 
design is the number of patients to include. It is an important ques-
tion, because if a study is too small it will not be able to answer 
the question posed, and would be a waste of time and money. It 
could also be deemed unethical because patients may be put at 
risk with no apparent benefit. However, studies should not be too 
large because resources would be wasted if fewer patients would 
have sufficed. The sample size for a continuous outcome depends 
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on four critical quantities: the type I and type II error rates α and β 
(discussed in Chapter 5), the variability of the data σ2, and the 
effect size d. In a trial the effect size is the amount by which we 
would expect the two treatments to differ, or is the minimum dif-
ference that would be clinically worthwhile. For a binary outcome 
we need to specify α and β, and proportions P1 and P2, where P1 is 
the expected outcome under the control intervention and P1–P2 is 
the minimum clinical difference which it is worthwhile detecting.

Usually α is fixed at 5% and β is fixed at 20% (or 10%). An 
intuitive way to think of sample size is to think of the distribu-
tion of a series of 95% confidence intervals calculated from ran-
dom samples of the same size, n, under the alternative hypothesis, 
as shown in Figure 13.1. As n gets larger the confidence intervals 
will get narrower. However, by definition, 95% of the (95%) con-
fidence intervals will include the mean of the alternative hypoth-
esis, d. A type II error of 20% means that we would expect 20% 
of the confidence intervals to include the null hypothesis of zero. 
Thus one way of thinking of power is the proportion of confidence 
intervals which would exclude the null hypothesis when the alter-
native hypothesis is true.

A simple formula for a two group parallel trial with a continuous 
outcome is that the required sample size per group is given by:

n � 16σ2/d2 for two-sided α of 5% and β of 20%

For example, in a trial to reduce blood pressure, if a clinically 
worthwhile effect for diastolic blood pressure is 5 mmHg and 
the between subjects standard deviation is 10 mmHg, we would 
require n � 16 � 100/25 � 64 patients per group in the study. For 
binary data this becomes 8 (P1(1 � P1) � P2(1 � P2))/(P1 � P2)

2. 
Thus suppose in the PHVD trial of Chapter 3, the standard therapy 
resulted in 45% of children requiring a shunt or dying. We wished 
to reduce this to 35%. In the formula we express the percentages 
as proportions. Then we would require

n  � 8 � (0.45 � 0.55 � 0.35 � 0.65)/0.12 
� 380 subjects per group

to have an 80% chance of detecting the specified difference at 5% 
significance. The sample size goes up as the square of the stand-
ard deviation of the data (the variance) and goes down inversely 
as the square of the effect size. Doubling the effect size reduces 
the sample size by four—it is much easier to detect large effects! 
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In practice, the sample size is often fixed by other criteria, such as 
finance or resources, and the formula is used to determine a real-
istic effect size. If this is too large, then the study will have to be 
abandoned or increased in size. Machin et al. give advice on a sam-
ple size calculations for a wide variety of study designs.8 OpenEpi 
gives sample size and power calculations for a variety of designs for 
proportions and means.

Choice of test

In terms of selecting a statistical test, the most important question 
is “what is the main study hypothesis?” In some cases there is no 
hypothesis; the investigator just wants to “see what is there”. For 
example, in a prevalence study, there is no hypothesis to test, and 
the size of the study is determined by how accurately the investi-
gator wants to determine the prevalence. If there is no hypothe-
sis, then there is no statistical test. It is important to decide a priori 
which hypotheses are confirmatory (i.e. are testing some presup-
posed relationship), and which are exploratory (are suggested by 
the data). No single study can support a whole series of hypotheses.

A sensible plan is to limit severely the number of confirmatory 
hypotheses. Although it is valid to use statistical tests on hypotheses 

Figure 13.1 Illustration of power using confidence intervals.
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suggested by the data, the P-values should be used only as 
 guidelines, and the results treated as very tentative until confirmed 
by subsequent studies. A useful guide is to use a Bonferroni cor-
rection, which states simply that if one is testing n independent 
hypotheses, one should use a significance level of 0.05/n. Thus if 
there were two independent hypotheses, a result would be declared 
significant only if P � 0.025. Note that, since tests are rarely inde-
pendent, this is a very conservative procedure—one unlikely to 
reject the null hypothesis.

The investigator should then ask “are the data independent?” 
This can be difficult to decide but as a rule of thumb results on 
the same individual, or from matched individuals, are not inde-
pendent. Thus results from a crossover trial, or from a case– control 
study in which the controls were matched to the cases by age, sex, 
and social class, are not independent. It is generally true that the 
analysis should reflect the design, and so a matched design should 
be followed by a matched analysis. Results measured over time 
require special care.9 One of the most common mistakes in statis-
tical analysis is to treat correlated variables as if they were inde-
pendent. For example, suppose we were looking at treatment of 
leg ulcers, in which some people had an ulcer on each leg. We 
might have 20 subjects with 30 ulcers, but the number of inde-
pendent pieces of information is 20 because the state of ulcers on 
each leg for one person may be influenced by the state of health of 
the person and an analysis that considered ulcers as independent 
observations would be incorrect. For a correct analysis of mixed 
paired and unpaired data, consult a statistician.

The next question is “what types of data are being measured?” 
The test used should be determined by the data. The choice of test 
for matched or paired data is described in Table 13.1 and for inde-
pendent data in Figure 13.2.

Table 13.1 Choice of statistical test from paired or matched observation.

Variable Test

Nominal McNemar’s test

Ordinal (ordered categories) Wilcoxon

Quantitative (discrete or non-Normal) Wilcoxon

Quantitative (Normal*) Paired t test

*It is the difference between the paired observations that should be plausibly Normal.
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It is helpful to decide the input variables and the outcome variables. 
In Figure 13.2 the input variable is binary. For example, in a 
clinical trial, the input variable is type of treatment—a nominal 
variable—and the outcome may be some clinical measure, per-
haps Normally distributed. The required test is then the t test as 
shown in Figure 13.2. As another example, suppose we have a 
cross-sectional study in which we ask a random sample of people 
whether they think their general practitioner is doing a good job, 
on a five point scale, and we wish to ascertain whether women 
have a higher opinion of general practitioners than men have. The 
input variable is gender, which is nominal. The outcome variable 
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Figure 13.2 Choice of statistical test for comparting two independent 
groups.
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is the five point ordinal scale. Each person’s opinion is independ-
ent of the others, so we have independent data. From Figure 13.1 
we should use a χ2 test for trend, or a Mann–Whitney U test (with 
correction for ties). Note, however, if some people share a general 
practitioner and others do not, then the data are not independent 
and a more sophisticated analysis is called for.

Note that these tables should be considered as guides only, and 
each case should be considered on its merits. Further help can be 
obtained from OpenEpi “Intro and Help/choosing a method”.

Reading and reporting on the design of a study

•  There should always be a succinct statement in the abstract of a 
report stating the type of study and its size, for example “a case–
control study of 50 cases and 60 controls”.

•  The sample size should be justified by a power-based statement 
in the methods section. Note that this should be written down 
before the study is carried out. Retrospective power calculations, 
saying what the power would have been, are not helpful; use a 
confidence interval instead.

•  For clinical trials, always report the trial in the manner described 
by the CONSORT statement7 (http://www.consort-statement.
org/). This includes factors such as how many people were 
approached to enter the study, how many actually entered, and 
how many were followed up?

Exercises

State the type of study described in each of the following.
13.1  To investigate the relationship between egg consumption and 

heart disease, a group of patients admitted to hospital with 
myocardial infarction were questioned about their egg con-
sumption. A group of age and sex matched patients admitted 
to a fracture clinic were also questioned about their egg con-
sumption using an identical protocol.

13.2  To investigate the relationship between certain solvents and 
cancer, all employees at a factory were questioned about 
their exposure to an industrial solvent, and the amount and 
length of exposure measured. These subjects were regularly 
monitored, and after 10 years a copy of the death certificate 
for all those who had died was obtained.
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13.3  A survey was conducted of all nurses employed at a particular 
hospital. Among other questions, the questionnaire asked 
about the grade of the nurse and whether she was satisfied 
with her career prospects.

13.4  To evaluate a new back school, patients with lower back 
pain were randomly allocated to either the new school or 
to conventional occupational therapy. After 3 months they 
were questioned about their back pain, and observed lifting a 
weight by independent monitors.

13.5  A new triage system has been set up at the local accident and 
emergency unit. To evaluate it the waiting times of patients 
were measured for 6 months and compared with the waiting 
times at a comparable nearby hospital.
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CHAPTER 14

Use of computer software

It is my firmly held view that one has to actually calculate a mean 
or a relative risk in order to be able to really understand what these 
concepts mean. Thus in teaching, I feel that students should be 
able to compute simple statistics using calculators. However, this 
only needs to be done once and the complexity of the calculations 
means that rapidly too much time would be taken up in repetitive 
number crunching. Computers are now ubiquitous and so should 
be used for more complex calculations. For serious analysis, a com-
mercial package should be used. Stata is the package of choice for 
the more complex statistics used in Statistics at Square Two. A proper 
commercial package will include a spreadsheet database which 
can handle missing values and category labels. Certain spread-
sheets such as Microsoft Excel can also do some statistical analy-
sis, and there are add-ons available to extend their capabilities. 
A free version of this spreadsheet is OpenOffice Calc. It can be used 
for entering data and performing elementary calculations. It is use-
ful for computing P-values and it enabled me to do away with tables 
of the chi-squared and t distributions. For example, in OpenOffice 
Calc, given a t-statistic t, and degrees of freedom d.f., and a toggle 
m � 1 for one-sided and m � 2 for two-sided tests, to obtain the 
P-value, all one has to enter in the command line is � TDIST(t;d.f.;m). 
Similarly given probability alpha (two sided), and d.f., to obtain 
the t-statistic, one has to enter � TINV(alpha;d.f.). Similar meth-
ods are available for the Normal distribution and the chi-squared 
distribution.

However, I would not recommend spreadsheets for general sta-
tistical analysis. The best and most comprehensive free statistical 
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Figure 14.1 OpenStat screen showing options for analyzing data from 
Table 1.2.

Figure 14.2 Screen dump for OpenEpi to analyze a 2�2 table.
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package is the R package. However, it is not suitable for elemen-
tary statistics. A useful, user friendly package that uses R programs 
is Xycoon. I have not found a single package that covers all the 
techniques in this book, but two complementary packages OpenStat 
and OpenEpi do cover almost everything. Two other packages, CHI, 
which is home grown, and SISA will also do many of the proce-
dures. It is important to appreciate that these are organic packages, 
and so they are continually being updated, and so the output may 
not be exactly as it is here. One failure of free software is a decent 
graphics package (except R) and I have used Stata to give better 
figures than I could get from free packages (although the failure 
might be mine!). Details of the websites are given at the end of 
the chapter. The packages OpenEpi, SISA, and CHI deal largely with 
count data, where one can enter the totals directly onto a table 
on the screen. OpenStat has a database and can read data from a 
large variety of databases or one can enter data directly. One can 
then cross-tabulate data and carry out analyses such as regression. 
OpenStat also caters for more advanced procedures such as logistic 
and Cox regression, which are discussed in Statistics at Square Two. 
Figure 14.1 shows a screen dump of OpenStat, illustrating proce-
dures for obtaining descriptive statistics for Table1.2. OpenStat starts 
with one variable and one can enter data directly into a column. It 
is good practice to click the “variables/define” buttons to name the 
variable and give it a type (floating, integer, string, date, or money) 
at the start. To add another variable, one clicks the “add variable” 
button on the bottom left of the screen. Statistical options are 
available under “analyses”, and Figure 14.1 shows what is avail-
able under the “descriptive” option.

Figure 14.2 shows a screen dump for OpenEpi, illustrating proce-
dures for analyzing a 2�2 table. The options are available on the 
left hand column.

Chapters 1 and 2: Basic statistics

The stem-and-leaf plot and the box plot are available under 
“analyses/descriptive” in OpenStat. Figure 14.3 shows the results 
of using the “analyses/descriptive/central tendency, variability” 
option to obtain the mean and median, the standard deviation, 
and the interquartile range. As an option, it gives eight other dif-
ferent methods of calculating the quartiles, most of which are the 
same with this data set. The method given in Chapter 1 which is 
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the default method for OpenStat is method 2 in Figure 14.3. Tukey’s 
hinges, described in Chapter 1, is method 5. TheOpenStat program 
displays the figures to more accuracy than can be supported by the 
data and so the results should not be quoted verbatim. Instead, the 
rules of Chapters 1 and 2 should be applied. The program also gives 
what are known as the third and fourth moments, namely skew-
ness and kurtosis. Skewness measures the amount of asymmetry 
in the distribution and kurtosis measures how flat or pointed the 
distribution is relative to a Normal distribution. Personally I find 
neither of much use in practical statistics. A simpler measure of 
skewness is to compare the mean and median, or simply view a 
histogram of the data.

DISTRIBUTION PARAMETER ESTIMATES 

VAR1 (N = 15)  Sum =         22.500
Mean =      1.500  Variance =      0.711  Std.Dev. =      0.843
Std.Error of Mean =      0.218
 0.950 Confidence Interval for mean :      1.033 to      1.967
Range =      3.100  Minimum =      0.100  Maximum =      3.200
Skewness =      0.220  Std. Error of Skew =      0.580
Kurtosis =     -0.207  Std. Error Kurtosis =      1.121 

Median =    1.500
Q1 =        0.800
Q3 =        2.000
Interquartile range =    1.200 

Alternative Methods for Obtaining Quartiles
    Method 1    2       3       4       5       6       7       8
Pcntile
Q1      0.750   0.800   0.800   0.800   0.950   0.800   0.800   0.800
Q2      1.400   1.500   1.500   1.500   1.500   1.500   1.500   1.500
Q3      1.925   2.000   2.000   2.000   1.950   1.900   1.900   2.000
NOTES:
Method 1 is the weighted average at X[np] where n is no. of cases, p
is percentile / 100
Method 2 is the weighted average at X[(n+1)p] This is used in this
program.
Method 3 is the empirical distribution function.
Method 4 is called the empirical distribution function - averaging.
Method 5 is called the empirical distribution function =
Interpolation.
Method 6 is the closest observation method. 
Method 7 is from the TrueBasic Statistics Graphics Toolkit. 
Method 8 was used in an older Microsoft Excel version. 
See the internet site http://www.xycoon.com/ for the above.

================================================================

================================================================

================================================================

Figure 14.3 Results of using “analyses/descriptives/central tendency” from 
OpenStat on data from Table 1.2.
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To calculate the mean and standard deviation of grouped data such 
as in Table 2.2, one needs to weight the outcome by the number 
of subjects. This can be done in OpenStat using the “variables/
create expanded file from frequency data”. This then creates a new 
data set with 140 observations. The frequency variable must have 
no zeros or decimal places.

Chapter 3

The data from Table 3.2 from a 2�2 table are analyzed in Figure 14.4 
using OpenEpi’s button “Counts/two by two table”. It is important to 
enter the data in the correct rows, to get the risk ratio in the right 
direction. The program is mainly intended for epidemiological stud-
ies and so for a clinical trial with an intervention and a control, the 
“exposed” row is the intervention, and the “unexposed” the control. 
In a clinical trial with two interventions, the “exposed” row would 
be the new intervention compared with the standard. Thus here 
“Exposure �” is the isoniazid row and “Exposure �” is the placebo. 
For “Disease �” we enter the number of deaths and “Disease �” is 
the number alive. The output corresponds to the results in Chapter 
3. The prevented fraction in exposed (pfe) is the same as the relative 
risk reduction (RRR). The Taylor series method of computing the 
confidence intervals is the same as that given in the chapter.

Chapter 5

The analysis of Table 5.1 to compare the proportions of males and 
females in the appendicitis and surgical groups using OpenEpi is given 
in Figure 14.5. The method given in the text corresponds to the 
Taylor series method. The other methods are discussed in Chapter 9.

Point estimates Confidence limits

Type

Risk in exposed
Risk in unexposed
Overall risk
Risk ratio
Risk difference
Prevented fraction
in exposed  (pfe)

Type

Taylor series
Taylor series
Taylor series
Taylor series
Taylor series 

Value

8.333%
16.03%
12.17%
0.5198

�7.697%

48.02%

Lower, Upper

4.578, 14.44
10.66, 23.34
8.715, 16.71

0.2612, 1.035
�15.55, 0.1575

�3.459, 73

Figure 14.4 Analysis of data from Table 3.2 using OpenEpi.
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Chapter 7

The first example in Chapter 7 compares an observed mean with a 
population mean. This is easily done in OpenStat using “analyses/com-
parisons/single sample tests”. The analysis of the data in Table 7.1, 
which compares two independent means, is given in Figure 14.6 
using OpenStat. The program has the option of either entering the 
means and standard deviations directly, or reading the data from the 
spreadsheet. In the latter case one must enter two variables, the first 
corresponding to the transit time for both groups and the second a 
variable indicating which group the observation belongs to. In this 
case, the standard deviations in the two groups are similar and so 
the equal and unequal variance tests give almost the same result. It 
is common for people to look at the test for equality of variance and 
depending on whether it is significant or not, to choose either the 
equal or unequal variance test. The reasoning against this approach 
is given in the common questions section of Chapter 7 and in gen-
eral the unequal variance approach is to be preferred.

Odds-based estimates and confidence limits
Point estimates Confidence limits

Type

CMLE odds ratio*

Odds ratio

Value

1.185

1.185

Lower, Upper

0.7965, 1.774¹
0.7822, 1.808¹
0.7957, 1.765¹

Type

Mid-P exact
Fishers exact
Taylor series

Figure 14.5 Analysis of data from Table 7.1 to find an odds ratio using 
OpenEpi.
* Conditional maximum likelihood estimates
1 95% confidence interval

COMPARISON OF TWO MEANS 

Variable       Mean    Variance  Std.Dev.  S.E.Mean  N
Group 1       68.40    271.40     16.47      4.25  15
Group 2       83.42    310.99     17.63      5.09  12
Assuming equal variances, t =   -2.281 with probability = 0.0313 and  25
degrees of freedom
Difference =   -15.02 and Standard Error of difference =     6.58
Confidence interval = (  -28.57,   -1.46)
Assuming unequal variances, t =   -2.264 with probability = 0.0321 and 22.94
degrees of freedom
Difference =   -15.02 and Standard Error of difference =     6.63
Confidence interval = (  -28.74,   -1.29)
F test for equal variances =    1.146, Probability = 0.3983

NOTE: t-tests are two-tailed tests.  

Figure 14.6 Analysis of data from Table 8.1 to compare two independent 
means using OpenStat.
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The analysis of the data in Table 7.2 to compare paired observa-
tions is shown in Figure 14.7. Here, one has to enter the transit 
times as two separate columns, with each row corresponding to 
one person. The test for equal variances is somewhat irrelevant to 
the analysis, since it is the variance of the differences between the 
observations that is used, and this is valid even with unequal vari-
ances for the two variables. However, if the variances were mark-
edly different, one would think about using a variance stabilizing 
transformation (Chapter 2).

Chapter 8

Figure 14.8 gives the results of the analysis by OpenEpi on the data 
from a 5 � 2 contingency table given in Table 8.1 using the “Counts/
R � C table” option. The results are the same as those given in 
the text.

Figure 14.9 gives the results of applying the “Counts/Two by 
Two” option in OpenEpi to the data in Table 8.3 for a 2�2 table. 
The results give the uncorrected and corrected chi-squared test. 
They give the one- and two-sided P-values, but almost always 
one should use the two-sided P-value. Note that for tables other 
than 2�2 the two-sided P-value is the only one given, since it is 
difficult to specify a one-sided alternative to the null hypothesis. 
Figure 14.9 also gives the results of a test known as Fisher’s exact 
test. The calculations of Fisher’s exact test are described in earlier 
editions of this book, but are now omitted because the results are 
easily available. In essence, Fisher’s exact test calculates the proba-
bility of the data in the two by two table, under the null hypothesis 
that the two proportions come from the same population assuming 

COMPARISON OF TWO MEANS 

Variable    Mean      Variance  Std.Dev.  S.E.Mean  N
A             70.17    174.33     13.20      3.81  12
B             76.67    200.79     14.17      4.09  12
Assuming dependent samples, t =   -1.487 with probability = 0.1652 and  11
degrees of freedom
Correlation between A and B =  0.390
Difference =    -6.50 and Standard Error of difference =     4.37
Confidence interval = (  -16.13,    3.13)
t for test of equal variances =   -0.243 with probability = 0.8131

NOTE: t-tests are two-tailed test 

Figure 14.7 Analysis of data in Table 8.2 to compare two dependent means 
using OpenStat.
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2 � 2 Table statistics 

Disease 
(�) (�)

(�) 36 14 50 
Exposure (�) 30 25 55 

66 39 105 

Chi-square and exact measures of association 

Value

3.418 
2.711 

P-value (1-tail)

0.03225
0.04984
0.04939
0.03454

All expected values (row total*column total/grand total) are �5
OK to use chi-square. 

0.06451
0.09969
0.09879 
0.06907 

P-value
(2-tail)

Test

Uncorrected chi-square 

Fisher’s exact 
Mid-P exact 

Yates corrected chi-square 

Figure 14.9 Analysis of data from Table 9.3 using a chi-squared test to 
compare two proportions with OpenEpi two by two option.

that the margins (totals around the edge of the table) are fixed. 
The P-value is the probability of the observed table and tables 
more “extreme” (having smaller probability) in either one direc-
tion (one tailed) or both directions (two tailed). The mid-P method 
is also described in earlier editions of this book, and halves the 

Chi-square for R by C table 

Chi square�

Degrees of freedom�

P-value�

7.146
4

0.1284 

Var 2 

17

39
42
32

155 

25
5

34 
49 
25 
134 

21 
22 

73 
91 
57 
289 

46 Var 1 

Figure 14.8 Analysis of data from Table 9.1 using a chi-squared test with 
OpenEpi R � C table option.
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Dose–response analysis 

Stratum 1 

Exposure level
100
175
42

78
173
59

178
348
101

1.28
1.01
0.71

Odds ratio
0
1
2

1
0.79 
0.56 

Total 317 310 627

Mantel–Haenszel summary odds ratios and crude OR for each exposure level
Exposure MH Summary OR Crude OR
Level 0 vs. Level 0:
Level 1 vs. Level 0: 
Level 2 vs. Level 0: 

1
0.789
0.555 

Includes continuity correction. Rosner B. Fundamentals of Biostatistics, 5th ed.
Duxbury, 2000:606. 

Extended Mantel–Haenszel chi�square for linear trend�
P-value (1 degree of freedom)�

5.68
0.01721

If MH and crude ORs are equal, confounding by the stratifying variable
was not present and stratification is unnecessary. 

1
0.789
0.555

Odds of exp.TotalControlsCases

Figure 14.10 Analysis of data from Table 9.7 to carry out a chi-squared test 
for trend using OpenEpi counts/dose–response option.

probability of the observed table in calculating the P-value. This 
is less conservative and has certain theoretical advantages and is 
the one we advocate. Note that in general (and for this table) the 
P-values for Fisher’s exact test and Yates’ corrected chi-squared test 
agrees and that the mid-P and the uncorrected chi-squared test are 
also similar.

Figure 14.10 gives the results of applying the “OpenEpi Counts/
Dose–response” to the ordinal outcome data in Table 8.6. The 
result is a chi-squared test with one degree of freedom.

To analyze a matched study, we use the OpenEpi “Counts/matched 
case–control”. Figure 14.11 gives the results of applying this to the 
data of Table 8.7 and the results correspond to those in Chapter 8.

Chapter 9

Figure 14.12 gives the results of the analysis of Table 9.2 on diag-
nostic tests. It conveniently gives the confidence interval for each 
measure. The “Wilson Score” method is a more sophisticated 
method of calculating a confidence interval for a proportion than 
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the methods described in this book, which is valid for proportions 
close to 0 or 1. The method is described in Newcombe (1998).1

Chapter 10

The Wilcoxon test and the Mann–Whitney U test are available 
in OpenStat under “analysis/non-parametric”. Note that for the 
Wilcoxon test, the paired variables are entered as two columns, 
whereas in the Mann–Whitney U test the outcome variable is in 

Single table analysis 

Controls
(�) (�)

(�) 16 10 26 
Cases (�) 23 5 28 

39 15 54 

Measures of association 

P-values
Test Value d.f. 1-tail 2-tail

McNemar:
McNemar with continuity
correction:
Fisher’s exact
Mid-P exact

5.121 1

4.364 1

There are 33 discordant pairs.
Because this number is � 20, the McNemar test can be used. 

Odds-based estimates 

95% confidence intervals
Lower,  UpperParameter Point estimate Type

Pair-matched odds ratio:
CMLE odds ratio* 

0.4348
0.4348 

Taylor series
Mid-P exact 

Fisher’s exact 

*Conditional maximum likelihood estimate of odds ratio.
(P) indicates a one-tail P-value for protective or negative association; otherwise one-
tailed exact P-values are for a positive association.
Martin D and Austin H. An efficient program for computing conditional
maximum likelihood estimates and exact confidence limits for a common odds ratio.
Epidemiology 1991; 2:359–62. 

0.02364

0.03671

0.207, 0.9134¹ 
0.1981, 0.9012¹ 
0.1847, 0.9497¹ 

0.01754 (P)
0.01215 (P)

0.03508
0.02431

Figure 14.11 Analysis of data from Table 9.10 to compared two matched 
proportions using a McNemar’s test in OpenEpi counts/matched case–control 
option.
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one column and a second column indicates which group the sub-
ject belongs to. The results of the analysis of the data from Tables 
10.1 and 10.2 are given in Figures 14.13a and 14.14a. The output 
is not very extensive. The P-values are one sided and rely on the 
Normal approximation, which is less accurate for small samples.

A confidence interval can be obtained using the R commands.
For the paired data:
� x1�- c(25,24,28,15,20,23,21,20,20,27)
� x2�-c(18,27,25,20,17,24,24,22,19,19)
�wilcox.test(x1,x2, paired�TRUE, conf.int�TRUE)
For the unpaired data:
� x1�-c(38,26,29,41,36,31,32,30,35,33)
�x2�-c(45,28,27,38,40,42,39,39,34,45)
�wilcox.test(x1,x2, conf.int�TRUE)
The output is given in Figures 14.13b and 14.14b.
Note that R gives the two-sided P-values, and the larger of the 

sum of the ranks for the Wilcoxon test, whereas OpenStat gives 
one-sided P-values and the smaller of the sum of the ranks.

Chapter 11: Regression and correlation

Figure 11.3 in Chapter 11 is easily reproduced (with the line of best 
fit) using OpenStat “analyses/descriptives x versus y plot”. To obtain 
the regression, we use the “Analyses/Multiple Regression/Block 
Entry Multiple Regression”. The output is given in Figure 14.15 
and is somewhat disappointing. The program does not give 

Positive
63
10
73

Negative
152
740
892

Total
215
750
965

Positive
Negative 

Parameter Estimate Lower – Upper 95% CIs Method

Sensitivity
Specificity
Positive predictive value
Negative predictive value
Diagnostic accuracy
Likelihood ratio of a positive test 
Likelihood ratio of a negative test

86.3%
82.96%
29.3%
98.67%
83.21%
5.065
0.1651

(76.59, 92.39¹ )
(80.35, 85.28¹ )
(23.62, 35.71¹ )
(97.56, 99.27¹ )
(80.72, 85.44¹)
(4.975–5.156)
(0.1357–0.201)

Wilson score
Wilson score
Wilson score
Wilson score
Wilson score 

Figure 14.12 Analysis of data from Table 10.2 using OpenEpi “diagnostic 
or screening test evaluation” option.
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The Wilcoxon Matched-Pairs Signed-Ranks Test
See pages 75-83 in S. Seigel's Nonparametric Statistics for the
Social Sciences 

Ordered cases with cases having 0 differences eliminated:
Number of cases with absolute differences greater than 0 = 10
CASE     before       after    Difference   Signed Rank
  6       23.00       24.00      -1.00        -1.50
  9       20.00       19.00       1.00         1.50
  8       20.00       22.00      -2.00        -3.00
  2       24.00       27.00      -3.00        -5.50
  7       21.00       24.00      -3.00        -5.50
  3       28.00       25.00       3.00         5.50
  5       20.00       17.00       3.00         5.50
  4       15.00       20.00      -5.00        -8.00
  1       25.00       18.00       7.00         9.00
 10       27.00       19.00       8.00        10.00 

Smaller sum of ranks (T) =    23.50
Approximately normal z for test statistic T =  0.408
Probability (1-tailed) of greater z =0.3417
NOTE: For N < 25 use tabled values for Wilcoxon Test 

Figure 14.13a Analysis of data from Table 11.1 using a Wilcoxon test in 
OpenStat.

Wilcoxon signed rank test with continuity correction

data:  x1 and x2

V � 31.5, P-value � 0.7193

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

 �2.999967  3.999929

sample estimates:

(pseudo)median 

     0.5000412 

Figure 14.13b Analysis of data from Table 11.1 using “Wilcoxon test” in R.

 confidence intervals for the estimates and one has to calculate 
them from the standard errors as shown in Chapter 11. A number 
of addition terms need explanation. The beta coefficient is found 
by first dividing the x variable by its standard deviation, and so 
the value of 0.846 means that Deadspace increases by 0.846 l for 
each unit standard deviation increase in height. The adjusted R2 
is given by R2(adj) � 1 � (1 � R2)*(n � 2)/(n � k � 1), where n 
is the number of pairs and k the number of independent variables 
(in this case 1). This allows for the fact that the more independent 
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 Wilcoxon rank sum test with continuity correction 

data:  x1 and x2
W � 26.5, P-value � 0.08175
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
 �10.000052   1.000023
sample estimates:
difference in location
             �5.415387

Figure 14.14b Analysis of data from Table 11.2 using “Wilcoxon test” in R.

Mann-Whitney U Test
See pages 116-127 in S. Siegel's Nonparametric Statistics for the
Behavioral Sciences 

     Score     Rank      Group
     26.00     1.00        1
     27.00     2.00        2
     28.00     3.00        2
     29.00     4.00        1
     30.00     5.00        1
     31.00     6.00        1
     32.00     7.00        1
     33.00     8.00        1
     34.00     9.00        2
     35.00    10.00        1
     36.00    11.00        1
     38.00    12.50        2
     38.00    12.50        1
     39.00    14.50        2
     39.00    14.50        2
     40.00    16.00        2
     41.00    17.00        1
     42.00    18.00        2
     45.00    19.50        2
     45.00    19.50        2

Sum of Ranks in each Group
Group

No. of tied rank groups = 3
Statistic U = 26.5000
z Statistic (corrected for ties) = 1.7764, Prob. > z = 0.0378
z test is approximate. Use tables of exact probabilities in
Siegel. 

1
2

81.50
128.50

10
10

Sum No. in Group

Figure 14.14a Analysis of data from Table 11.2 using a Mann–Whitney 
U test in OpenStat.
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variables are in the model, the better the fit (until with n inde-
pendent variables we can get a perfect fit), and so we need to trade 
off the goodness of fit with the number of independent variables. 
There is an option to save the residuals and the fitted values, and 
these can be used to check assumptions such as the Normality of 
the residuals (by eye) and constant variance. The use and inter-
pretation of multiple regression with more than one independent 
variable is described in Statistics at Square Two.

Chapter 12: Survival analysis

The Kaplan–Meier curves shown in Chapter 12 (Figure 12.1) can 
be obtained from OpenStat through “analyses/non-parametric/
Kaplan–Meier survival”. The events must be coded 1 for an event 
and 2 for a censored observation, and the survival times must be 
integers. The results are shown in Figure 14.16 and are the same 
as given in Chapter 12. There is also an option to plot the two sur-
vival curves.

Total Expected Events for Experimental Group =   11.375
Observed Events for Experimental Group =   10.000
Total Expected Events for Control Group =   10.625
Observed Events for Control Group =   12.000
Chisquare =    0.344 with probability = 0.442
Risk =    0.778, Log Risk =   -0.250, Std.Err. Log Risk =   0.427
95 Percent Confidence interval for Log Risk = (-1.087,0.586)
95 Percent Confidence interval for Risk = (0.337,1.796)

Figure 14.16 Analysis of survival data from Table 13.3 using OpenStat.

Linear Regression

Dependent variable: Deadspace 

R2 = 0.7162, F = 32.81, D.F. = 1 13, Prob>F = 0.0001
Adjusted R2 = 0.6944 

Standard Error of Estimate = 13.07
F = 32.814 with probability = 0.000
Block 1 met entry requirements 

Variable
Height

Intercept

SOURCE DF
1

13
14

5607.432 5607.432
2221.502 170.885

32.814 0.0001

7828.933

SS MS F Prob.>F
Regression
Residual
Total

Beta B Std.Err. Prob.>t VIF TOLt
0.846 1.033 0.180

26.301
5.728 0.000

0.008
1.000 1.000

-3.136-82.4850.000

Figure 14.15 Analysis of linear regression data from Table 12.2 using 
OpenStat.
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Answers to exercises

1.1  Median 0.71, range 0.10 to 1.24, first quartile 0.535, third 
quartile 0.84 µmol/24 h. The only values that change, in each 
case, are the range.

1.2  Continuous, ordinal, count, categorical.

2.1  Mean � 2.41, SD � 1.27. No, because the mean is less than 
2 SDs and data are positive.

2.2  Mean � 0.697 µmol/24 h, SD � 0.2410 µmol/24 h, approx. 
95% range 0.215 to 1.179 µmol/l. Points excluded are 0.10 and 
1.24. 2/40 or 5%. Mean changes to 0.722 and SD to 0.333.

2.3  (a) Data distribution is quite symmetric, so display summary 
as mean � SD. (b) The data distribution is skewed, so display 
summary as a box-whisker plot. (c) The data are categorical so 
use a bar chart.

3.1  (a) False, the statement says nothing about actual risks of 
benefits. (b) False, the statement says nothing about what is 
known as “power” (see Chapter 6). (c) False, this is the abso-
lute risk reduction. (d) True.

3.2  (a) True, (b) False, it is around 50, (c) True.
3.3 (a) True, (b) True.
3.4 20%.
3.5 5.
3.6 Relative risk 1.79, odds ratio 2.09.

4.1 SE (mean) � 0.074 µmol/24 h.
4.2  A uniform or flat distribution. Population mean 4.5, since 

symmetric about (0–9).
4.3  The distribution will be approximately Normal, mean 4.5, and 

SD 2 87 5 1 28. ./ � .

5.1  The reference range is 12.26–57.74, and so the observed value 
of 52 is included in it.

5.2 95% CI 32.73 to 37.27.
5.3  Difference in means, � 1.3 g/dl, SE 0.422, 95% CI 0.48 to 

2.12 g/dl.
5.4  SE (percentage) � 2.1%, SE (difference) � 3.7%, difference � 

3.4%. 95% CI 3.9% to 10.7%.
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5.5 Difference in proportions 0.193, 95% CI 0.033 to 0.348.
5.6 OR � 4.89, 95% CI 4.00 to 5.99.

6.1  (a) False (this is a common mistake!), (b) true, (c) false (this is 
the observed difference), (d) false, (e) false.

6.2  (a) True, (b) true, (c) false (see reference 3 in Chapter 5), 
(d) false (can’t say this is important without more data), (e) 
false.

6.3 z � 1.3/0.422 � 3.1, P � 0.0027. (Appendix A)

7.1 95% CI � 37.5 to 40.5 KA units.
7.2 t � 2.652, d.f. � 17, 2. P � 0.017.
7.3  0.56 g/dl, t � 1.243, d.f. � 20, P � 0.23, 95% CI �0.38 to 

1.50 g/dl.
7.4  15 days, t � 1.758, d.f. � 9, P � 0.11, 95% CI �4.30 to 34.30 

days.

8.1  Standard X2 � 3.295, d.f. � 4, P � 0.51. Trend X2 � 2.25, 
d.f. � 1, P � 0.13.

8.2  X2 � 3.916, d.f. � 1, P � 0.048, difference in rates 9%, 95% 
CI 0.3% to 17.9%.

8.3  X2 � 0.931, d.f. � 1, P � 0.33, difference in rates 15%, 95% 
CI �7.7% to 38%.

8.4  X2 � 8.949, d.f. � 3, P � 0.03. Yes, practice C; if this is omitted 
the remaining practices give X2 � 0.241, d.f. � 2, P � 0.89. 
(Both χ2 tests by quick method.)

8.5  X2 � 5.685, d.f. � 1, P � 0.017. This is statistically significant 
and the CI in Exercise 5.5 does not include zero.

8.6  X2 � 285.96, d.f. � 1, P � 0.001. Highly significant and CI in 
Exercise 5.6 is a long way from 1.

8.7  X2 5 0.6995, d.f. 5 1, P 5 0.40. The z value was 0.84 and from 
Table A (Appendix) we find 0.37 � P � 0.42. Note z2 � X2.

8.8  Using McNemar’s test X2 � (|28 � 13|�1)2/(28 � 13) � 4.78, 
P � 0.029.

9.1  Draw up 2 � 2 table

Disease

Present Absent Total

Test Positive 10 500 510

Negative 0 9490

Total 10 9990 10 000
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From the fact that the prevalence is 1 in 1000, we have 10 peo-
ple with the disease. Since sensitivity is 100% that means in those 
with the disease, all have a positive test. In those without the dis-
ease 0.95 � 9990 � 9490 will have a negative result. This means 
that 500 will be positive. This means that 10/510 � 2% will have 
disease given positive result.

 9.2  Odds of having disease is 0.03/0.97. Thus odds after disease are 
0.97 � 0.15 � 0.45. This probability � 0.45/(1 � 0.45) � 0.31.

 9.3  (a) False (sensitivity is a property of the test), (b) false (sensi-
tivity versus 1–specificity), (c) true.(d) true.

10.1 Smaller total � �24. Not significant.
10.2  Mann-Whitney statistic � 74. The group on the new remedy. No.

11.1 r � �0.848.
11.2 rs � �0.868.
11.3  y � 36.1 � 2.34x. This means that, on average, for every 1 mile 

increase in mean distance the attendance rate drops by 2.34%. 
This can be safely accepted only within the area measured here.

11.4  SE � 0.39, 95% CI �2.34 � 2.145 � 0.39 to �2.34 � 2.145 �
0.39 � �3.2% to �1.5%.

11.5  r � �0.772, rs � �0.870, y � 31.3 � 1.48x. Thus Spearman’s 
rank little changed but Pearson and slope affected. 
r � �0.800, rs � �0.820, y � 34.93 � 2.22x, less effect.

12.1  OA � 6, EA � 8.06, OB � 8, EB � 5.94. Log rank X2 � 1.31, 
d.f. � 1, P � 0.25. No Change results from changing the sur-
vival times, which shows that the main driver for the log 
rank test is the number of events.

12.2  Risk � 0.55, 95% CI 0.19 to 1.60.

13.1 Matched case–control study.
13.2 Cohort study.
13.3 Cross-sectional study.
13.4 Randomized controlled trial.
13.5 Quasi-experimental design.



Glossary of statistical terms

(An online glossary is given at www.stats.gla.ac.uk/steps/glossary/)
Alternative hypothesis In hypothesis testing, this hypothesis will 

be “accepted” when the null hypothesis is rejected. In a clinical 
trial, it may a difference in treatments that would make it worth 
changing treatments.

ARR – absolute risk reduction The difference in rates of an out-
come event between the control and experimental groups.

Bar chart A chart showing the frequencies of the values of a cat-
egorical variable. The bars are generally separated, and their 
lengths are proportional to the counts in the categories.

Baseline measure A measure of some characteristic that is 
recorded for subjects at the start of a study, before any treatment 
commences.

Bayesian methods Methods which allow parameters to have dis-
tributions. Initially the parameter θ is assigned a prior distri-
bution P(θ), and after data, X, have been collected a posterior 
distribution P(θ|X) is obtained using Bayes’ theorem, which links 
the two via the likelihood p(X|θ).

Bias A systematic error that leads to results which are consistently 
either too large or too small.

Binary A binary categorical variable can take one of two val-
ues (e.g. true/false or male/female). Sometimes referred to as a 
dichotomous variable.

Bonferroni correction A method of correcting for n multiple 
comparisons by only rejecting the null hypothesis if P is less 
than α/n where α is the significance level.

Box–whisker plot A chart that is often used to compare two or 
more samples of ordinal or continuous variables. A boxplot 
shows the median, lower and upper quartiles, the interquar-
tile range, the maximum and minimum values, and possible 
outliers.

Case–control study An observational study designed to find rela-
tionships between, for example, a risk factor and a disease. 
A group of cases (with the disease) are compared with a group 
of controls (without the disease) with regard to their exposure 
to the risk factor. The data are summarized by an odds ratio.

171



172   Glossary of statistical terms

Censored Censored data often occur in studies of survival data. 
The data are censored if the event (e.g. death or recurrence of 
disease) has not been observed during the duration of the study.

Census A survey of an entire population.
Central limit theorem A theorem which tells you about the distri-

bution of the sample mean of large samples. For large samples, 
the sample mean is Normally distributed.

Cohort A group of subjects who share some characteristic in com-
mon, which are followed up over time.

Confidence interval A range of values that are believed, with a 
particular probability, to contain the true parameter value. 
A 95% confidence interval, for example, implies that, were 
the estimation process repeated again and again, then 95% of 
the calculated intervals would be expected to contain the true 
parameter value. Note that the stated probability refers to prop-
erties of the interval and not to the parameter itself, which is not 
considered a random variable.

Confounding The effects of two variables are said to be con-
founded if they are inseparable. For example, in a clinical trial, if 
all men were on one treatment and all women on another then 
gender and treatment would be confounded.

Continuous A variable is continuous if it can take any value in a 
particular range (i.e. it can take decimal values), for example 
height, weight, and blood pressure.

Control group A group of subjects used in a study as a comparison 
with the group of primary interest.

Correlation The correlation coefficient is a measure of the degree 
of linear association between two continuous variables. A value 
of �1 indicates perfect positive association, a value of �1 indi-
cates perfect negative association, and a value of 0 indicates no 
linear association. The value is highly sensitive to a few abnor-
mal data values.

Cross-sectional study An observational study in which subjects 
are investigated as one point in time.

Crossover trial One in which subjects receive more than one treat-
ment in sequential order.

Data dredging The highly undesirable practice of searching 
through data in an attempt to find an interesting result. It is 
sometimes called data fishing.

Dependent variable A somewhat confusing term that is used in 
statistical modeling. When one variable is believed to influence 
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another variable, the latter is called the dependent variable. It is 
sometimes called a response or outcome variable, and is plotted 
on the vertical axis of a graph.

Dichotomous Taking two possible values (i.e. binary).
Discrete A variable is discrete if it can take only certain values. 

These are usually whole numbers (e.g. counts, such as the 
number of visits to the GP).

Distribution Distributions describe the histograms of whole popu-
lations. There are several distributions that are commonly used 
(e.g. the normal distribution).

Double-blind A trial is double-blind if neither the subject nor the 
person conducting the assessment of the subject knows to which 
treatment group the subject has been allocated. Uses of the 
term vary.

Equivalence study A study in which the objective is to show that 
two treatments are equivalent in outcome, as opposed to show-
ing that one is superior to the other. The two types of study need 
to be designed differently.

Estimate A value calculated from a sample when you are really 
interested in the value for the population. It is an informed guess.

Experiment A comparative study in which the researchers are able 
to control the factor of interest. A typical example is a clinical 
trial in which one treatment is given to one group of subjects 
and another treatment is given to a second group of subjects. 
The researchers determine who receives which treatment.

Factor A variable with (a few) discrete levels. The term is also used 
to describe a condition controlled by a researcher in an experi-
ment (e.g. different treatments).

Geometric mean A type of average, usually close to the median. 
It is related to the product of all the data values. It occurs when 
positively skewed data have been transformed by taking logs 
before analysis.

Hazard A form of risk used in survival analysis. It is the risk of an 
event at a point in time, conditional on the subject surviving to 
that point in time.

Histogram A chart that is used to represent continuous data. It 
consists of bars which are adjacent, and whose area is propor-
tional to the frequency for that range of values.

Incidence Proportion of people, initially clear of a disease, who 
develop it over a given time period. It is a rate and is often 
equated to a risk.
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Independence Two events are said to be independent if knowing 
about one tells you nothing about the other.

Independent variable In a regression model, the variable that pre-
dicts the dependent variable. Note that a model can have more 
than one independent variable and they need not be independ-
ent of each other.

Intention-to-treat analysis In clinical trials subjects may drop out 
of the study or change treatment groups. An intention-to-treat 
analysis retains data from all subjects in the group to which they 
were originally allocated. This is considered to be the correct way 
to deal with dropouts.

Interaction An interaction exists between two variables or factors 
if the effect of one depends on the value of the other.

Interquartile range The difference between the lower and upper 
quartiles, which includes the central 50% of the data, used to 
describe the variability in ordinal or skewed data.

Likert-type scale A scale on questionnaires where a subject is 
asked to what extent they agree with a statement. It usually 
contains five or seven categories.

Linear association A linear association exists between two 
 continuous variables if a reasonable amount of variability in 
one is explained by a straight-line equation with the other. The 
 scatterplot with show points scattered around a straight line.

Longitudinal study A study in which subjects are followed over 
time. Characteristics are measured at several points in time.

Mean An average value that is computed by adding together all of 
the values and dividing by the number of values.

Measure of dispersion Parameter describing the width or spread 
of a distribution for quantitative data (e.g. standard deviation or 
variance).

Measure of location Parameter describing the center of a distribu-
tion for quantitative data (e.g. mean and median).

Median The middle value in a set of data. It is most often used 
when describing skewed data.

Mode The most frequently occurring value, used to describe nomi-
nal or ordinal data.

Model An equation which relates two or more variables.
Multiple testing The rather dangerous practice of performing sev-

eral tests on the same set of data. This is particularly undesirable 
if the tests are thought of after the data have been collected.

Mutually exclusive Two events are mutually exclusive if both can-
not occur together.



Glossary of statistical terms   175

Negative predictive value In diagnostic testing, the probability 
that you do not have the disease when the test is negative. The 
value of the negative prediction rate can be affected by the prev-
alence rate.

Nominal A categorical variable is nominal if it can take a set of val-
ues that are not ordered (e.g. ethnic origin).

Non-parametric test A test which requires no distributional 
assumptions about the data. Note the test itself is non-paramet-
ric, not the data!

Normal distribution A symmetrical bell-shaped distribution that is 
often used to model data. For a Normal distribution the mean 
and the median will coincide. About 95% of the data from a 
Normal distribution will lie within plus or minus two standard 
deviations from the mean.

Null hypothesis The hypothesis that states that there is no effect 
or difference. We assume that this hypothesis is true, and it is 
only rejected if there is a weight of evidence against it.

Number needed to treat The inverse of the absolute risk reduc-
tion. The number of patients one would need to treat to get one 
extra event compared to the control treatment.

Observational study A non-experimental study in which sub-
jects are observed. Examples include cohort and case–control 
 studies.

Odds The ratio of the probability an event will happen to the prob-
ability of it not happening.

Odds ratio A ratio of odds in two groups, often used in case–
 control studies as an approximation to estimating the relative 
risk.

One-sided test A test in which the alternative hypothesis is that an 
effect or difference is in a particular direction (e.g. greater than 
zero). If one intends to use a one-sided test, one should state this 
at the design stage and have very good reason to do so.

Ordinal Categorical data in which the various values have a natu-
ral order.

Outlier A value in a data set which appears to be a long way from 
the rest of the data. It may be an error or an unusual or interest-
ing value.

Parameter A characteristic of a population such as a population 
mean or standard deviation. It is also used as the name of the 
coefficients in a regression model.

Parametric test A statistical test which relies on the data having a 
particular distribution (often the Normal distribution).
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Percentile The value below which a particular percentage of the 
data lie, for example 25% of observations will lie below the 25th 
percentile. Note that the median is also the 50th centile.

Pie chart A circle that is divided into sections so that the area of 
each slice is proportional to the number represented. It is used 
when all subdivisions of the subject are being studied, and you 
want to show how the relative sizes of the subdivisions differ. 
Three-dimensional pie charts can be very misleading.

Pilot study A small-scale study that is conducted in order to inves-
tigate the usefulness of some method or tool (e.g. a question-
naire) that you intend to use in the full-scale study.

Placebo An inert substance, indistinguishable from the active drug, 
which is given to the control group. This enables both subjects 
and researchers to remain blinded to the treatment allocation.

Population The entire set of subjects or items about which you 
want information.

Population parameter Characteristic of a population that you are 
trying to estimate.

Positive predictive value In diagnostic testing, the probability that 
you do have the disease when the test is positive. The value can 
be affected by the prevalence rate.

Power The probability that you will find a statistically significant 
difference using a statistical test when that size of difference 
actually exists. See type II error.

Predictor variable Sometimes called an explanatory variable or 
(rather confusingly) independent variable. The variable that is 
plotted on the horizontal axis, and that is used in modeling to 
predict the values of the response variable.

Prevalence The proportion of subjects with a characteristic at one 
point in time (contrast with incidence).

Probability A measure of how likely an event is. All probabilities 
range between 0 and 1; a value of �1 denotes an event is certain 
to happen and 0 denotes an event is never going to happen.

Prospective cohort study A study in which a group of subjects 
is followed forward in time. Usually the level of risk is meas-
ured first, and the subjects are monitored for development of a 
disease.

P-value The probability of observing a test statistic at least as extreme 
as that actually observed if the null hypothesis were true. A small 
P-value is interpreted as strong evidence against the null hypoth-
esis. Confidence intervals are more informative than P-values.
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Qualitative data Observations or information characterized by 
measurement on a categorical scale.

Quantitative data Data in numerical quantities, such as continu-
ous measurements or counts.

Quartiles Points which divide the data into four quarters. There 
are three quartiles, lower, median, and upper. Note that they are 
points not areas, so an observation can be above the upper quar-
tile, not in the upper quartile.

Random sample A sample chosen from the population by 
chance—each member has an equal chance of being selected.

Randomization The method of allocation of treatments to subjects 
using the principle of chance.

Randomized controlled trial (RCT) A study in which at least two 
treatment groups are studied, one of which is a control group. 
Randomization is used to allocate the subjects to the treatment 
groups.

Range The smallest and the largest values in the data. In statistics it is 
not common to give the range as the difference between the two.

Rate The proportion of subjects who develop a disease over a 
period of time. To avoid decimals it is usually expressed as a por-
tion of a large number, such as deaths per thousand per year.

Regression line A straight-line equation that is used to model the 
relationship between a response variable and one or more pre-
dictor variables.

Relative risk (RR) The ratio of the risk of some event in one group 
relative to that in another group.

Repeated-measures study A study of subjects where more than 
one measure is taken on the same subject, usually over a period 
of time. Measures on the same subject will be associated or cor-
related, so special measures of analysis are needed.

Response variable Sometimes called the outcome variable or the 
dependent variable. In plots it will be represented on the vertical 
axis. In modeling it is the variable being predicted by the model.

Retrospective study An observational study in which subjects are 
chosen by disease status and then followed back in time in order 
to ascertain their exposure to a risk. Typically it is a case–control 
study.

RRR – relative risk reduction The proportion of the original risk 
that was eliminated by a treatment. 1–RR.

Risk Probability of an event happening in a given period of time.
Sample A set of people or items chosen for study from a population.
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Sampling frame The list of the entire population of interest used 
to draw a sample.

Scatterplot A graph showing the relationship between two con-
tinuous variables. Each symbol on the graph is determined by 
the pair of values of the variables.

Sensitivity For a diagnostic test, the percentage of people with the 
disease who will test positive.

Significance level The probability of rejecting the null hypoth-
esis when it is in fact true. A level of 5% is usually chosen. 
Sometimes known as the type I error rate.

Single-blind A study in which the subjects are unaware of which 
treatment they are receiving. However, usage of the term is incon-
sistent. Some people use the term to refer to studies where the 
assessor, but not the subjects, are unaware of the treatment alloca-
tion.

Skewness Data are skewed if the histogram has a long tail on one 
side. A positive skew is a long tail to the right and a negative 
skew a long tail to the left.

SnNout If a test has a high sensitivity, a negative result rules a 
diagnosis out.

Specificity For a diagnostic test, the percentage of people without 
the disease who will test negative.

SpPin If a test has a high specificity, a positive result rules a diag-
nosis in.

Standard deviation A measure of spread or variability, mainly used 
for continuous symmetrical data in conjunction with the mean.

Standard error A measure of the uncertainty in an estimate from 
a sample. Strictly speaking it is the standard deviation of the sam-
pling distribution of a statistic (mean, mean difference, propor-
tion, difference in proportions).

Statistic A value calculated from a sample (e.g. the sample mean 
and sample proportion).

Survey An observational study that is used to find out the characteris-
tics of a population. The method of sampling is critically important.

Survival data Data that arise from studies where the outcome 
of interest is the time until a particular event (often death). 
Censored data are often obtained from such a study.

Test statistic A statistic that is calculated from a sample and used 
in a statistical test. A “large” or extreme value of a test statis-
tic will result in a low P-value and thus rejection of the null 
hypothesis.
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Transformation If data are not Normally distributed, they are 
sometimes transformed on to a different scale by a mathematical 
manipulation. Common transformations are the natural loga-
rithm, square root, and reciprocal.

Treatment group A group in a study that receives an active treat-
ment which is under investigation.

Two-sided test A test where the alternative hypothesis is that the 
effect of interest can be in either direction (e.g. where a drug can 
be worse or better than placebo).

Type I error Rejecting the null hypothesis when it is true 
(i.e. claiming to have found an effect that is not really there. The 
Type I error rate is usually denoted by the Greek letter alpha, α.

Type II error Failing to reject the null hypothesis when it is false 
(i.e. not finding an effect even though it is there). The Type II 
error rate is usually den oted by the Greek letter beta, β.

One minus the type II error, i.e. 1 � β is usually referred to as the 
power.

Variable A characteristic, subject to variability, that can be measured.
Variance The value of the standard deviation squared. The units of 

variance are the original units of measurement squared. The 
standard deviation is much easier to understand, since it is meas-
ured in the original units of the data.
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Table A Probabilities related to multiples of standard deviations for a 
normal distribution.

Number of standard deviations (z) Probability of getting an observation at least 

as far from the mean (two-sided P)

0 � 0 1 � 00
0 � 1 0 � 92
0 � 2 0 � 84
0 � 3 0 � 76
0 � 4 0 � 69
0 � 5 0 � 62
0 � 6 0 � 55
0 � 674 0 � 500

0 � 7 0 � 48
0 � 8 0 � 42
0 � 9 0 � 37
1 � 0 0 � 31
1 � 1 0 � 27
1 � 2 0 � 23
1 � 3 0 � 19
1 � 4 0 � 16
1 � 5 0 � 13
1 � 6 0 � 11
1 � 645 0 � 100
1 � 7 0 � 089
1 � 8 0 � 072
1 � 9 0 � 057
1 � 96 0 � 050

2 � 0 0 � 045
2 � 1 0 � 036
2 � 2 0 � 028
2 � 3 0 � 021
2 � 4 0 � 016
2 � 5 0 � 012
2 � 576 0 � 010

3 � 0 0 � 0027
3 � 291 0 � 0010

P/2

Z0�Z

P/2

180
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Table B Random numbers.

35368 65415 14425 97294 44734 54870 84495 39332 72708 52000 02219 86130 30264 56203 26518
93023 53965 19527 72819 42973 38037 37056 13200 09831 41367 40828 25938 05655 99010 88115
92226 65530 10966 29733 73902 19009 74733 68041 83166 92796 64846 79200 38776 09312 72234
15542 85361 44069 61445 82994 45169 79458 52221 37132 67125 62700 83475 99850 31670 50750
96424 65745 74877 48473 54281 67837 11167 74898 83136 10498 10660 65810 16373 80382 21874
17946 97751 54049 83077 03256 51947 88278 23891 53495 07101 95811 73035 83017 18532 59650
71495 36712 01513 30802 47228 52799 97961 82519 22756 69151 09052 38681 38858 38807 02422
16762 98574 78301 62647 29247 22936 62778 56694 70597 48880 33162 76138 97425 78283 42063
37969 66660 77823 54923 75832 99974 13868 94446 99521 44775 76649 00502 73424 21068 87880
25471 88920 39906 81436 70910 02631 93238 41952 87493 33559 64733 24688 78583 31506 24845
68507 79643 15204 84794 60093 29874 61851 05751 21960 70131 42137 73723 19252 23912 77751
67385 88293 46249 53036 47309 68803 15155 28222 06764 92367 25490 18494 42546 75268 05988
58948 40572 79817 40486 40494 20843 07388 74732 71655 17445 28489 84528 93922 67324 59120
70476 23299 17965 93629 28988 82399 81811 86373 91600 99962 28784 77326 24912 81992 66011
72887 41730 95940 54210 58480 96724 41954 91803 43078 85644 50014 93038 56037 79787 10707
70205 26256 91417 78629 16268 47156 32065 54588 74250 24739 04128 53966 74106 70159 80428
78883 36361 28182 51842 61426 27799 75951 58854 77236 04606 26949 56428 28495 41766 50059
89970 55101 66660 36953 02774 45020 54988 19226 44811 96941 70693 68847 07633 22289 94290
34382 04274 02116 37857 72075 90908 56584 67907 15075 63216 49006 24748 34289 55142 91206
16999 91140 64818 23018 09217 46068 32467 63844 72589 35456 44840 90800 50692 33298 74323
16329 39676 37510 35590 45888 77371 58301 79434 17500 48320 08953 18242 15133 24137 07323
31983 83436 93006 12640 00403 91457 62602 12245 27670 61492 89166 69421 79505 47104 50817
92780 80153 81458 82215 71536 03586 44007 85679 68186 85375 15373 57441 10034 74455 18466
70834 75678 78777 79731 06046 02386 18059 89623 65480 69345 49447 10358 74307 68861 87853
10100 85365 77687 36241 87563 06298 81828 40194 30647 36237 17793 50680 63701 39522 86006
84265 60501 17148 13657 40775 64773 62103 16356 99405 08598 81881 62732 36765 11895 63933
74041 62109 30831 62133 29462 30144 62081 79158 09737 72614 74806 25554 50911 43289 30344
02882 45141 58967 19688 48208 65679 18296 19080 03529 46017 33799 45518 31075 39740 93387
67647 56443 57816 49471 23525 76582 30085 90312 07397 42747 04242 58569 80087 45598 34374
99668 68326 47357 94812 65654 01097 55260 80990 46748 06416 93919 64520 54666 82278 59328
12013 30983 00370 40243 44457 18279 69740 39061 00548 21321 11249 48478 14917 26056 89506
55581 69068 66561 75671 07363 22939 93007 45319 48358 27534 60873 51076 20823 28185 49038
74957 53949 40414 15035 90232 28946 78073 75923 43081 16030 32935 30947 64395 03271 21345
65073 60950 92314 02037 82817 33518 49680 20095 51301 91889 78488 75298 29067 11355 69994
05110 83292 51335 64460 37648 72915 99688 62628 41297 36039 04436 82738 76614 55630 35803
54053 98104 12386 15646 89759 55889 14513 96192 19957 06186 40853 38011 97401 04047 66722
52351 72086 70257 83693 62924 79060 79683 03143 10627 45371 78404 50185 67515 65094 91111
10759 18901 07590 07727 37140 95782 41994 71688 72341 73665 66833 14138 20949 91852 42847
67322 87517 27043 12936 81043 27338 81679 88420 28220 65441 55517 96640 60178 84161 64239
37634 07842 34936 26836 48230 52786 01114 61335 39149 34268 70089 93491 91616 22522 06577
90556 62996 52252 42541 12781 40917 41661 96994 88818 93137 45130 34502 40479 65832 79294
07067 12854 23166 49012 56479 22674 69603 47846 91920 19188 94206 30370 50741 79932 88916
82945 28472 46267 45857 67101 39905 25753 75462 87523 01394 10135 26758 88652 34480 37901
33399 81517 64127 82407 23689 46598 23814 89327 87057 67715 30785 58496 38661 23259 19631
51428 25572 62696 33117 66242 11735 68466 90598 30201 25770 96006 48256 60967 49546 74989
45246 23347 48896 15828 69240 93948 27855 21999 19155 72859 78754 40094 39323 37570 73953
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A
absolute risk difference (ARD), 26
absolute risk reduction (ARR), 26
absolute risks, 28
accuracy, 42
alternative hypothesis, 65

B
bar charts, 8–9, 10

bar chart/histogram distinction, 9
Bayes factors, 69 
Bayes’ Theorem, 68
binary data, 24–35

common questions, 35–6
binary variable, 2
binary variables, summarizing 

relationship between
examples

hay fever and eczema, 30–1
post-hemorrhagic ventricular 

dilatation (PHVD), 28, 29
number needed to harm (NNH), 

26–7, 35
number needed to treat (NNT), 

26–7, 35
odds ratios see also odds ratios 

(OR)
and case–control studies, 31–3
paired alternatives, 33–5
relative risks versus, 29–31

one variable, 24–5
risks, 29–31 see also risks
two variables, 25–9

bin widths, 10
blocked randomization, 42
Bonferroni correction, 92, 149
bootstrap, 56
box-whisker plot, 7, 8, 10

C
case–control study, 31–3, 145–6
categorical variables, 9

binary, 1, 2 see also binary 
variables

nominal, 1, 2
ordinal, 1, 2

censored observation, 133, 134, 
136, 141

central limit theorem, 43–4
CHI, 155, 167
chi-squared (χ2) test, 86–99

common questions, 98
comparing proportions, 90–2
extensions, 98
formula appreciation, 98–9
fourfold tables, 89–90
McNemar’s test see McNemar’s 

test
observed/theoretical distribution 

comparision, 95–6
in OpenEpi, 159–61, 160, 161, 162
procedure, 87–9
reading/reporting, 99
splitting, 92–3
trends, 93–5
Yates’ correction, 90

Note: Page numbers in bold type refer to figures; those in italic refer to tables 
or boxed material.



184   Index

cluster study, 144
coeffi cient of variation (CV%), 21
cohort study, 145
computer software see software
confi dence interval (CI), 50–2, 56

for an odds ratio, 54–5
bootstrap, 56
common questions, 56–8
for a difference in proportions or 

percentages, 54
mean

large sample differences, 52–3
small sample, 73–4

percentages or proportions, 53–4
reading and reporting, 57
for a relative risk, 56

confi rmatory hypotheses, 148
continuous variable, 1, 1, 2
correlation, 119–25

causality, 123
coeffi cient, 119

calculation, 121–3
common questions, 129–30
formula appreciation, 131
reading/reporting, 131
scatter diagrams, 119–21
signifi cance test, 123–4
Spearman’s rank, 124–5

Cox regression, 140
cross-sectional study, 146

D
data

binary, 24–35
grouped, standard deviation 

from, 18, 18–19
paired, 13, 97–8, 149
transformation, 19, 19–20, 20

geometric mean, 20
types, 1–3

categorical variables, 1, 2
cut-off points, 2
quantitative variables, 1, 1–2

ungrouped, standard deviation 
from, 16–17, 17

data display
bar charts, 8–9, 10
box–whisker plot, 7, 8
common questions, 9–10

dynamite plunger plot, 9
histograms, 8, 8, 9

bar chart/histogram distinction, 9
in papers, 10–11
stem and leaf plots, 3–4, 4

data dredging, 70
data summary, 1–11

common questions, 9–10
data types, 1, 1–3
median, 4–5, 5
range, 4
variation measurement, 5–6
 see also data display

dependent variable, 120, 121, 123
design, 143–6

matched parallel, 144
parallel group, 144
quasi-experimental, 145
reading/reporting, 145
see also, study

diagnostic tests, 102–9
diagnosis/screening, 107–8
likelihood ratio, 106
in OpenEpi, 161, 162, 163
prevalence, 103, 105, 105, 106, 107
reading/reporting, 109
ROC curve, 107, 108
sensitivity, 103–4, 104, 105, 106, 

107, 108
specifi city, 104, 104, 105, 106, 

107, 108
standard table, 102

difference
ranked see rank score tests
t tests, 72–3

distribution
normal see normal distribution
skewed see skewed distribution

dot plots, 7, 20
double blinded study, 144
dynamite plunger plot, 9

E
empirical normal range, 50
equation, regression, 125–9
error

type I, 60–1
type II, 65–6

exploratory hypotheses, 148
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F
Fisher’s exact test, 90, 159

common questions, 98–9
mid P-value, 90, 98
reading and reporting, 99

fourfold tables, chi-squared (χ) test, 
89–90

G
Gaussian distribution see normal 

distribution
geometric mean, 20

H
histograms, 8

bar chart/histogram distinction, 9
bin widths, 10
group requirement in a, 10

hypothesis
alternative, 65
confi rmatory, 148
null, 53, 60–1
study, 65

I
incidence rate, 25
incidence rate ratio (IRR), 27
independent variable, 120, 121
inference, 68–9
interquartile range (IQR), 5

data display in papers, 10

K
Kaplan–Meier survival curve, 133–4

L
least squares estimate, 127
likelihood ratio of a diagnostic test, 

106
Liket scale, 2
logged data, 19, 20, 20, 79
log transform, 20
logistic regression, 98
log rank test, 137–40

M
Mann–Whitney U test, 113–16

comparing means/medians, 116–17
in OpenStat, 162, 163, 165
in R, 163, 165

and t test, 117
Mantel–Haenszel method, 94
matched parallel design, 144
McNemar’s test, 97–8

in OpenEpi, 162
mean

confi dence interval for, 72–4
defi nition, 13

standard error of, 52
and standard deviation, 13–15
standard error of, 43–5

measured variables, 1
measurement error, 21
measure of location see mean, median
median

comparison by non-parametric 
tests, 116–17

data summary, 4, 4–5
midpoint see median
mid P-value, 90, 98
mode, 21
multiple regression, 129

N
nominal variables, 2, 66
non-parametric test, 110, 116–17
non-random samples

common questions, 46–7
problems with, 45–6
reading and reporting 

populations and samples, 47
normal distribution, 14–15, 15, 180

curve, 14, 15
normal range, 50
null hypothesis

and alternative hypotheses, 66
and type I error, 60–1

number needed to harm (NNH), 
26–7, 35

number needed to treat (NNT), 
26–7, 35

O
odds, 25
odds ratio (OR), 28

and case–control studies, 31–3
confi dence interval for, 54–5
in OpenEpi, 157, 158
versus relative risks, 29–31, 35
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one-sided test, 67–8
one way analysis of variance, 83
OpenEpi, 27, 154, 155, 167

χ2 test, 159–61, 160, 161, 162
diagnostic tests in, 161, 162, 163
odds ratio in, 157, 158
risks analysis in, 157, 157

OpenOffi ce Calc, 153, 167
OpenStat, 154, 155, 167

comparison of two means, 158, 
158–9, 159

kurtosis, 156
Mann–Whitney U test, 162, 163, 

165
mean, 157
regression data analysis, 163, 

164, 166, 166
skewness, 156
survival analysis, 166, 166
Wilcoxon test, 162, 163, 164

ordinal variables, 1, 2
outliers, 5, 83

P
paired alternatives, 33–5
paired data, 13, 97–8, 149
paired samples, rank score tests, 

110–13
Wilcoxon test, 111–13

parallel group design, 144
Pearson’s correlation coeffi cient, 

119–23
percentages

confi dence interval for a 
difference in, 54

standard error of difference 
between, 45, 53–4

pie charts, 11
populations

common questions, 46–7
defi ned, 39
parameter, 39–40
reading and reporting, 47
samples, 40–1

positive predictive value (PPV), 105
power, of study, 65
PPV see positive predictive value (PPV)
precision, 42
prevalence, 24

diagnostic tests, 103, 105, 105, 
106, 107

probability
Fisher’s exact test, 90
P value, 63–5
statement of, 49–50

proportional hazards assumption, 
survival analysis, 137

proportions
χ2 comparisons, 90–2
confi dence interval for a 

difference in, 54
standard error of, 45
standard error of difference 

between, 53–4
prospective studies, 143
P-value, 63–5

common questions, 66–9
confi dence intervals, and 

 clinically important 
results, 64–5

mid P-value, 90, 98
one-sided P-value, 64, 69, 90
reading/reporting, 69–70

Q
quantitative variables

continuous, 1, 2
counted, 1, 1, 2
measured, 1, 1, 2

quartiles, 5
quasi-experimental design, 

145

R
randomization, 42–3, 143–4
random sampling, 40–1, 148

stratifi ed, 41
systematic, 41

rank score tests, 110
common questions, 116–17
paired samples, 110–13

Wilcoxon test, 111–13
reading/reporting, 117
unpaired samples, 113–16

Mann–Whitney U test, 
113–16

rate, 24
recall bias, 146
receiver operating characteristics 

(ROC) curve, 107, 108
reference ranges, 49–50

confi dence interval, 56–7
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regression
analysis in OpenStat, 163, 164, 

166, 166
assumption testing, 128
common questions, 129–30
equation, 125–9
least squares estimate, 127
line, 127–9
multiple, 129
reading/reporting, 131

relative risk reduction (RRR), 27
relative risks versus odds ratios, 29–31
risks

absolute risk difference (ARD), 26
absolute risk reduction (ARR), 26
analysis in OpenEpi, 157, 157
ratio or relative risk (RR), 27

ROC see receiver operating 
characteristics (ROC) curve

R program, software, 155
Wilcoxon test, 163, 164, 165

S
sample size, 146–8
samples, 40–6

accuracy, 42
central limit theorem, 43–4
convenience, 45
mean

confi dence interval, 52–3, 
72–4

differences see t test
standard error of, 43–5

non-random, problems, 45–6
paired, 110–13
population mean differences 

see t test
precision, 42
random, 40–1, 148
reading/reporting, 47
response rate, 46
stratifi ed random, 41
systematic random, 41
unbiased, 42
unpaired, 113–16
variation between, 43

scatter diagrams, 119–21, 122, 127
sensitivity, diagnostic tests, 103–4, 

104, 105, 106, 107, 108
sequential study, 144
signifi cance test

correlation, 123–4
difference in two proportions, 53–4
single blind study, 144

SISA, 155
skewed distribution, 19
software

CHI, 155
OpenEpi see OpenEpi
OpenOffi ce Calc, 153
OpenStat see OpenStat
R program, 155, 167
SISA, 155
Stata, 153
Websites, 167
Xycoon, 155

Spearman’s rank correlation, 
124–5

specifi city, diagnostic tests, 104, 104, 
105, 106, 107, 108

splitting, χ2 test, 92–3
standard deviation, 14

calculation of, 17
from count data, 18

from grouped data, 18–19
between subjects and within 

subjects, 21
from ungrouped data, 16–17

standard error (SE)
common questions, 66–9
of difference between means, 52
of difference between percentages 

or proportions, 53–4
of the mean, 43–5
of a proportion or a percentage, 45
reading and reporting P-values, 

69–70
Stata, 153, 167
stem and leaf plots, 3–4, 4
stratifi ed random sampling, 41
Student’s t test see t test
study

carryover effect, 144
case–control, 145–6
cluster, 144
cohort, 145
control, 143, 144
cross-sectional, 146
double blinded, 144
placebo effects, 144
prospective, 143
randomization, 143–4
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Study (contd)
randomized controlled trial, 143
reading/reporting, 151
recall bias, 146
sample size, 146–8
sequential, 144
statistical test selection, 148–51, 

149, 150
study hypothesis, 65
summary statistics see also interquar-

tile range (IQR); median
for binary data from a 

non-matched study
common questions, 35–6
reading and displaying 

summary statistics, 36
defi ned, 13
reading and displaying, 23

survival analysis
censored observation, 133, 134, 

136, 141
common questions, 141
Kaplan–Meier survival curve, 

133–4
long rank test, 137–40
in OpenStat, 166
proportional hazards 

assumption, 137
reading/reporting, 141
survival curve calculation, 134–6

systematic random sampling, 41

T
testing

for a difference in two 
proportions, 62–3

for differences of two means, 
61–2

test selection, 148–51, 149, 150
trends, χ2 test, 93–5
t test

common questions, 83–4
confi dence interval for the mean 

from a small sample, 73–4
difference between means of 

paired samples (paired t test), 
80–2

difference between means of two 
samples, 75–8

difference of sample mean from 
population mean, 74–5

formula appreciation, 84
and Mann-Whitney U test, 117
reading and reporting, 84
signifi cance test of correlation, 

123–4
unequal standard deviations, 79–80

Tukey’s hinges, 6
two sided tests, 67–8
type I error

and null hypothesis, 60–1
relation with type II error, 66

type II error, 65
relation with type I error, 66

U
unbiased samples, 42
unpaired samples

rank score tests, 113–16
Mann-Whitney U test, 113–16
t test, 75–78

V
variables

correlation/causality, 123
dependent, 120, 121, 123
independent, 120, 121
input, 150
outcome, 150–1
test selection, 149

variance, 16–17
variation, coeffi cient of (CV%), 21
variation measurement, 5–6

data summary, 5–6
interquartile range (IQR), 5
outliers, 5
quartiles, 5
samples, 43

W
Welch test, 79
Wilcoxon test, 111–13

in OpenStat, 162, 163, 164
in R, 163, 164, 165

X
Xycoon software, 155, 167

Y
Yates’ correction, χ2 test, 90
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