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Preface

Our research collaboration started when Per Winkel was struggling with
heavily autocorrelated laboratory quality control data. He contacted
Nien Fan Zhang and asked for his help to solve the problems. The
next time Per Winkel asked for Nien Fan Zhang’s help was when
planning to write an English textbook on statistical quality development
in medicine. At that time Per Winkel had already written a Danish
textbook on this topic [1]. Appendix A on basic statistics, and Chapters
1 and 2 on the theory of control charts and Shewhart charts have been
translated from this book and subsequently reviewed and revised by
Nien Fan Zhang to secure the statistical rigour. In addition to translating
these chapters Per Winkel has added additional clinical examples to
Chapters 1 and 2. But the English book needed to address the question
on autocorrelated data and risk adjustment, which were only briefly
mentioned in the Danish textbook. Since Nien Fan Zhang is doing active
research within the areas of time-weighted control charts and control
charts for autocorrelated data it was natural to ask Nien Fan Zhang to
write the two Chapters, 3 Time-weighted control charts and 4 Control
charts for autocorrelated data. In addition Nien Fan Zhang has written
Appendix B, which contains a derivation of the control limits for X charts
and S charts with unequal sample size, and Appendix C. Per Winkel has
written the remaining chapters more directly related to clinical research,
namely: the Introduction — on quality of health care in general, Chapter 1
Theory of statistical process control, Chapter 2 Shewhart control charts,
Chapter § Tools of risk adjustment, Chapter 6 Risk-adjusted control
charts, Chapter 7 Risk-adjusted comparison of healthcare providers,
Chapter 8 Learning curves, and Chapter 9 Assessing the quality of clinical
processes, as well as Appendix A. We have reviewed each other’s
chapters. During this process Nien Fan Zhang’s main role, of course,
has been to secure the statistical rigour and Per Winkel’s to construct
clinical examples when deemed necessary in order to ease understanding.



xii PREFACE

The purpose of this book is to present statistical techniques of major
relevance for quality development in medicine. It is furnished with a
collection of diverse examples of their application in clinical practice.
The target group consists of people who are directly or indirectly
involved in the quality assurance of clinical work, i.e., physicians, nurses,
administrators, and students of topics related to medicine like epidemiol-
ogy, bioengineering, etc. In terms of background statistical knowledge,
the target group may be divided into three subgroups.

p—

. People with high school mathematics only.

2. People with basic statistical knowledge, e.g., acquired during post-
graduate courses in applied statistics for nurses and physicians.

3. People with interest in quality assurance, epidemiology, etc. who

are engaged in a more advanced statistical education.

The gap between group 1 and 2 may disappear because Appendix A,
reviewing the basic statistical background of relevance for statistical
process control (SPC), is included in the book. By studying the appendix,
group 1 may reach the level of group 2. What is left then is to provide
these two groups with:

a) The necessary understanding and command of basic statistical
process control that enables them to identify practical quality
assurance problems, which may be solved by using the SPC tech-
niques, and subsequently to assess and apply relevant computer
software to actually solve these problems.

b) Sufficient knowledge on the statistical techniques used in the scien-
tific clinical literature on quality assurance. The target group then
will be able to use clinical studies and critically assess the quality
and limitation of the results.

For group 3, the book provide skills in using SPC in practice as well as
an introduction to relevant statistical methods including diverse exam-
ples of their application within the field of clinical quality assurance. The
book may then be used as an aid in conjunction with a more focused and
advanced course in applied statistics, for instance in regression analysis
and/or mixed model analysis.

It is always possible that errors may creep in while writing a book like
this. Also we may have overlooked things that would have been relevant
for inclusion. Therefore, we welcome any constructive criticism and
suggestions for improvements of this book.
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Introduction — on Quality of
Health Care in General

[.1 QUALITY OF HEALTH CARE

A concise, meaningful, and generally applicable definition of the quality
of health care is difficult to give [1]. Donabedian [2] suggested that
‘several formulations are both possible and legitimate, depending on
where we are located in the system of care and on what the nature and
extent of our responsibilities are’.

Healthcare professionals tend to define quality in terms of the care
provided and received, and emphasise the technical quality and the
interaction with the patient. The technical quality of care includes the
appropriateness of the services provided and the skill with which appro-
priate care is performed. The quality of the interaction between physician
and patient depends on the quality of their communication, the physi-
cian’s ability to maintain the patient’s trust, and treat the patient appro-
priately, i.e., showing concern, empathy, honesty, tact, and sensitivity
[2]. There is a growing recognition that care must be responsive to the
preferences and values of the consumers, in particular, individual
patients. Therefore, the ability of the healthcare providers to meet the
expectations of patients and other customers is an important quality
parameter.

Another perspective is that of healthcare plans, organisations, and
public agencies that purchase care for beneficiaries, e.g., a whole nation.

Statistical Development of Quality in Medicine P. Winkel and N. F. Zhang
© 2007 John Wiley & Sons, Ltd



2 INTRODUCTION - ON QUALITY OF HEALTH CARE IN GENERAL

The emphasis here is on the enrolled population and attributes of care
that reflect the functioning of the organisational systems, e.g., accessi-
bility. The population-based perspective combined with the fact that
resources are limited implies that the amount of care that some persons
receive may be limited so that all members of the group receive the
essential services.

A third perspective on quality is that of organised purchasers. Like the
healthcare plans and public agencies they tend to be concerned with
population-based measures of quality and organisational issues.
Whether the interest of purchasers will conflict with the interests of
patients is uncertain [1].

Three mechanisms have the potential to change the focus from the
end-user of the healthcare system, namely the sick patient, to other issues
and thus endanger the quality of care [3]:

1. If the risk of high, unanticipated costs for individual patients is not
shared by a large organisation, but passed along to small groups of
physicians or even individual physicians, the latter may find them-
selves in a situation where their financial interests and their loyal-
ties to the patients are at conflict.

2. If the employers determine the details and limitations of the benefit
package and their employees have no other choice, profit-maximi-
sation may become an overriding issue.

3. If the focus shifts from the treatment of sick patients to the treat-
ment of healthy individuals, the patient who needs the care may
suffer. This may happen if the emphasis of a healthcare plan is on
the health of the whole population of enrolees rather than the sick
patients. For instance the availability of fitness programs may
become a competition parameter.

[.2  MEASURES AND INDICATORS OF QUALITY
OF HEALTH CARE

The quality of care can be evaluated on the basis of structure, process,
and result. Structural data are the characteristics of physicians and
hospitals. They could include a physician’s specialty, the ownership
of a hospital, availability of equipment, staffing levels, etc. Process data
are the components of the encounter between a healthcare professional
and a patient, for instance, the medication administered. A clinical
process measure assesses performance based on adherence to estab-



INTRODUCTION - ON QUALITY OF HEALTH CARE IN GENERAL 3

lished clinical standards. Throughput process measures are based on
management data. They include such measures as waiting lists, ambu-
lance response times, delays in emergency departments, etc. Result data
include outcome data and costs incurred by producing a specified
healthcare output. Outcome data refer to the patient’s subsequent
health status (e.g., improvement in mobility) and include observed
outcomes, e.g., death, morbidity, and patient perceived outcomes
such as satisfaction and quality of life.

To a large extent the clinical performance observed is a function of the
clinical, organisational system in which individuals work rather than of a
particular individual. Safety, patient satisfaction, surgical outcomes,
infection rates, etc., are all linked to systems of information, architecture,
scheduling, resource allocation, etc. Therefore, organisational quality
measurement systems are more powerful in improving care than those
that are individually focused. For instance, differences in structural
factors (e.g., availability of equipment and staffing levels) are correlated
with outcome [4]. Several institutional management processes have been
found to be associated with improved outcomes in intensive care units
[see 7].

It is important to make a distinction between a measure of quality and
an indicator of quality. An example of a quality measure would be a
clinical process measure based on agreed criteria supported by evidence
or logic. For instance, avoiding delay in the use of antibiotics in pneu-
monia. A quality indicator would be, e.g., the death of a patient during a
surgical procedure because the outcome is not only influenced by the
quality of care but also by other factors, e.g., severity of disease, co-
morbidity, the patient’s socioeconomic status.

The focus of a quality measure or a quality indicator may be either on
improving the quality of care or on aiding consumers in the selection of
providers [5]. It is necessary not to confuse these two functions because
they require very different formats.

[.3 THE FUNCTIONS OF QUALITY MEASURES
AND INDICATORS

Any population evaluated, e.g., hospitals, healthcare groups, surgeons,
will have a distribution of performance levels. The purpose of measuring
this performance is to improve it. The goal may be accomplished in two
ways that may or may not work in synergy: improvement through
selection and improvement through changes in care [6].
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[.3.1 Improvement through Selection

To improve the distribution of performance levels by selection the
members of the population, i.e., the healthcare providers, must be
made accountable. Therefore, the function of the quality measures and
indicators in this case is to provide the users of healthcare providers with
the information necessary to make an informed choice based on an
assessment of the quality of the product they want to purchase. For a
given user the quality indicator or measure must fulfil four criteria in
order to be useful: (1) it must be relevant to the user’s needs; for instance,
a patient seeking the best preventive care may only be able to learn about
mammography rates. (2) The ranking of the providers according to
measurement value must correspond to a ranking according to the
quality that the measurement portrays. (3) The measurement distribu-
tion must be current; for instance, surgical mortality figures that are five
years old may very well be useless. (4) The data must be presented in a
format that the user is able to understand.

I.3.1.1 Barriers to improvement through selection

There are several barriers to improvement through selection. The above
requirements may not be fulfilled. The information available may not be
relevant to the user, and the information may be difficult to understand.
Furthermore, the users’ belief that the quality may actually vary between
healthcare providers may be weak; the performance benchmarks may be
local, only reflecting the relative performance within a group of health-
care providers; and the consumer may not have the necessary back-
ground to comprehend the information. If the decision maker is not
the primary user, the decision tends to be based on cost alone. For
instance, managed-care plans involve an inherent conflict of interest.
They pledge to take care of their enrolees, but their financial success
depends on doing as little for them as possible [3].

Investments are required to improve report content and formatting
and in particular to provide the users with the necessary skills and
attitude to make informed decisions [6].

[.3.2 Improvement through Change

Improvement through selection does not require the participation of the
healthcare providers. By contrast, improvement through change is only
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possible if they participate. In this context the quality measures and
indicators are for internal use. But they may also in some cases provide
useful information for the consumers. To be useful for the provider they
should allow the latter to identify specific areas for improvement and to
monitor the progress of quality improvement programs. This kind of
data may or may not be suitable for public consumption as well. They are
typically generated more often than data generated for consumption by
entities external to the provider. They are usually more detailed and they
may or may not contain information of relevance to the public. Data for
accountability are usually summary statistics so far removed in time and
so coarsely granulated that they contain little or no information useful
for caregivers interested in improvement.

It is necessary that quality indicators can be used to identify specific
areas that need improvement. Outcome measures like death rates or rates
of morbidity lack this quality. For instance, variation in death rates
depends on chance, which is quantifiable statistically, and it may depend
on the quality of care. However, death rate is neither a sensitive nor a
specific marker of quality of care with the possible exception of coronary
artery bypass graft surgery [7]. The death rate namely depends on
differences in the patient mixes in terms of severity of disease, co-
morbidities, age, etc., and differences in definitions of the terms used
to calculate the death rate as well as differences in the quality of the data.
Case-mix differences may be adjusted for. But one never has any assur-
ance that it works as intended [7, 8], and important risk factors may be
unmeasured or unknown. Therefore, it is difficult to know what to do
when outcome measures differ between healthcare institutions. Is it due
to the use of different definitions, unsuccessful case-mix adjustment,
structural factors such as differences in the ratio between physicians
and patients, institutional management factors affecting clinical pro-
cesses, clinical skill, or unknown clinical factors? Consequently, mea-
surements of outcome data like death rates should only be made for
research purposes or to detect extreme outliers [7]. By contrast, a strong
case can be made in support of clinical process measures that are direct
measures of performance based on adherence to established clinical
standards [7, 9].

Several approaches to change are possible. Juran [10] has classified
approaches to change into three categories: (1) methods that standardise
and stabilise processes by making them well controlled (quality control),
(2) changes that improve processes (reduce costs and/or increase perfor-
mance) (quality improvement), and (3) design of totally new processes
(quality design).
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To improve performance the organisations and providers should have
the ability to undertake systematic changes. This requires a reliable flow
of useful information, education, and training in the techniques of
process improvement; investment in time and change management to
alter core work processes; alignment of organisational incentives with
care improvement objectives; and leadership [6].

1.3.2.1 Barriers to improvement through change

A main barrier to improvement through change is a lack of organisa-
tional processes to support change [6]. Contradictory incentives and
failed integration is stalling progress. Most healthcare systems comprise
a loose confederation of institutions that barely communicate. This type
of organisation motivates each unit within the confederation to max-
imise its own return and often to work at cross-purposes with other
entities.

Another main barrier is lack of investment in information systems that
will collect data across settings, support efforts to understand patterns of
care, and improve them and contribute to externally-required reporting
[6]. The investment required may well be beyond the capacity of many
small and midsized health systems. Furthermore, the absence of industry-
wide standards is an important discouraging factor.
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Part 1

Control Charts






1

Theory of Statistical
Process Control

The most important tool in statistical process control is the control chart.
Shewhart developed the first type of chart during the 1920s [1]. One of
the most commonly used Shewhart charts is the X chart. In the following
for illustration, we will use this chart. However, the principles reviewed
may be broadened without much effort to include control charts in
general.

Originally control charts were developed in order to solve industrial
problems. We will start with pharmaceutical examples followed by
applications within the health care sector. The analogies and differences
between industrial and healthcare problems are also discussed.

1.1 STATISTICAL FOUNDATION
OF CONTROL CHARTS

To characterise a process, products produced by the process may be
sampled. A process variable is a random variable which value is obtained
by observing or measuring a specified property of each product, pro-
duced by the process and reflecting its quality. A sample variable is also a
random variable. However, its value is calculated as a function of the
process variable values, measured in the sample.

Statistical Development of Quality in Medicine P. Winkel and N. F. Zhang
© 2007 John Wiley & Sons, Ltd



12 THEORY OF STATISTICAL PROCESS CONTROL

Sample values are used to construct a control chart. They are subse-
quently plotted on the chart to monitor the process.

1.1.1 Statistical Control

Statistical control is a concept fundamental to the theory of control
charts. It is based on a distinction between two types of variation: one
resulting from unavoidable causes, which one cannot identify (random
variation), and one resulting from causes, which may be identified
(assignable causes of variation). A process which sample values vary
due to random causes alone is said to be in a state of statistical control.
Additional variation caused by assignable causes may occur. If this is the
case, the process is said to be out of statistical control. Since these causes
may be identified, it is often possible to regulate and control them so that
the process may be brought back into a state of statistical control.

Although the causes of variation of sample values from a process
in statistical control cannot be identified, the type and extent of the variation
may be described using large volumes of data. In other words, the values
may be described approximately by a probability distribution. The para-
meters of this distribution characterise the state of the process. Information
about this probability distribution may be obtained from random samples
selected from the process while it is in statistical control.

1.1.2 Samples and Control Charts

Assume we are examining the production process for a pharmaceutical
product (e.g., tablets) that is in statistical control. The machine produ-
cing the tablets has been adjusted to produce tablets with a weight that
follows a Gaussian distribution with a mean of 63.000 mg and a stan-
dard deviation of 0.010 mg. Samples, each comprising one tablet, are
selected from the production batch and their weights measured. We
assume the error of measurement is negligible and that the machine is
functioning as anticipated. Therefore, the results of the measurements
follow a Gaussian distribution with mean 63.000 mg and standard
deviation 0.010 mg. In the long run, we expect 99.73 % of the results
to fall within an interval with its upper limit equal to the mean plus three
standard deviations and the lower one equal to the mean minus three
standard deviations, i.e., an interval between 62.970 mg and 63.030 mg
(see Appendix A, Example A.11). The distribution with these limits
entered is depicted in Figure 1.1 a.
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(a) (b)

63.000 63.030

() (d)

)
63.000 63.030

Figure 1.1 The distribution of the sample mean of the weight of tablets before ((a) and
(c)) and after ((b) and (d)) the adjustment of a tablet-producing machine has been
changed by 0.030 mg. Figures (a) and (b) show the distributions for sample size = 1 and
figures (c) and (d) the distributions when the sample size = 2.

Had we selected samples comprising not one, but n (7> 1)
tablets, it would have been natural to calculate the mean of the »
measurement results if we wanted to follow the mean value of the
process. The distribution of the weight is Gaussian. The mean of the
results of # measurements generated by this distribution also follows
a Gaussian distribution with the same mean, but with a standard
deviation of ﬁ (see Appendix A, Equation (A.23)). We may, there-
fore, calculate an interval within which 99.73 % of the sample means
will fall in the long run. The lower limit of this interval is # — 3—\/%, and
its upper llpnt is ,u+\3/—‘%, i.e., 63.000 —% mg and 63.000+L\/%10
mg, respectively.

Figure 1.1 (a) depicts the distribution with these limits calculated
for n =1, and Figure 1.1 (c) depicts the distribution with the limits
calculated for # = 2. Both of the intervals include 99.73 % of all values.
However, the interval for the mean values (7 = 2) is slimmer than that
for the single values (7 = 1) because it has a smaller standard deviation.

Now, assume that the machine is adjusted so that the mean value of
the weight of tablets is increased by 0.030 mg. It will continue to pro-
duce tablets, the weights of which follow a Gaussian distribution with
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standard deviation 0.010 mg. However, the mean has increased to
63.030 mg. The distribution of single values (see Figure 1.1 (b)) as
well as the distribution of sample means (see Figure 1.1 (d)) will change.
In both cases the distribution will be horizontally shifted towards the
right so that the mean value now will be 63.030 mg instead of 63.000
mg. After the mean value of the process has changed, a large proportion
of the sample values (single values for 7 = 1 and mean values for n = 2)
will fall outside the upper limit in both cases. However, some of them
will still fall within the two limits (the control limits). The proportion
falling within the control limits will be larger when the sample size is 1
than when it is 2. This is so because the two distributions before and after
the shift of the mean value of the process are slimmer and therefore better
separated when the sample size is 2 than when it is 1.

We will now construct a control chart. To do so we rotate Figure 1.1
(¢) 90° counter clockwise and draw four horizontal lines passing through
zero, the lower control limit, the process mean, and the upper control
limit, respectively. The line passing through zero is used to indicate the
time or the order of the samples. The result is depicted in Figure 1.2.

The fraction of a Gaussian distribution, with mean p and standard
deviation o, that is delimited by the values u + 30, is 99.73 % and the
remaining fraction located outside the interval is 100 % - 99.73 % =
0.27 %. Therefore, the probability that a sample mean falls outside the
(u =+ \3/—%) limits of a control chart is 0.27 %, as long as the process remains
in statistical control. Each time we select a sample, we test the null
hypothesis that the mean value of the process has not changed by checking
if the sample mean falls within or outside the control limits given above.
The level of significance of this test is 100 % - 99.73 % =0.27 %. It
follows that the control chart may be used repeatedly to test the hypothesis
that the process is in statistical control. It is implicitly assumed that the
value of o never changes.

Example 1.1

A sample comprising five tablets is selected each day from a process
producing tablets, and the weight of each tablet is measured. The mean
value of the results of the measurements is calculated. The mean value and
standard deviation of the process are known to be 63.000 mg and 0.010
mg, respectively. We want to construct a control chart with control limits
equal to the mean +3 standard deviations of the sample mean. Because the
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Figure 1.2 The construction of a control chart based on the distribution shown in
Figure 1.1 (c). The distribution has been rotated 90 degrees counter clockwise. The line
corresponding to the mean value is the centreline, and the lines corresponding to the
limits of the 99.73 % confidence interval are the control limits of the chart.

sample size, n, is 5, the standard deviation of X¥ (the sample mean) is:
&;o = 0.0045 mg (see Appendix A, Equation (A.23)). The mean of the
distribution of sample means is the same as that of the process, i.e., 63.000
mg. The centreline of the chart, therefore, is at 63.000 mg. The upper and
lower control limits are 63.000+3-0.0045 =63.035mg and
63.000 — 3 - 0.0045 = 62.986 mg, respectively.
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In the above it has been assumed that the process has been so well
described that its parameters may be considered known. As a rule this is
not so, and we have to use estimates of the parameters when constructing
a control chart.

1.2 USE OF CONTROL CHARTS

Initially, when one constructs a control chart, it is usually not known if
the process is in statistical control. In the initial phase the goal is to
reduce the variation of the process until it reaches a state of statistical
control that is acceptable. To assess if a process is in statistical control,
one often uses 20 to 25 samples, each comprising 4 to 5 observations.
When the samples are collected, one should record those conditions that
might possibly create variation in addition to the random variation. This
could be, e.g., the temperature, the raw materials used, the identity of
operators, etc. The average of the individual sample means (1) is used as
an estimate of the mean of the process variable. It defines the location of
the centreline. An unbiased estimate of the process standard deviation ()
is calculated from the average of the standard deviations (s;) of the
individual samples (5) divided by a factor (c4), which depends of the
sample size and is found using Table 1.1.
We have

-

Il
—_

Xi
== (1.1)

where k is the number of samples and

k
s XS
. i=1
= = 1.2
“ C4 k- C4 ( )
The upper control limit (UCL) is calculated as
UCL = i +3-% (1.3)
= l/L \/% .
and the lower control limit (LCL) as
LCL = ji—3-2 (1.4)
= M \/E .
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Table 1.1 Factors used for X charts and/or S charts.

Sample
size Factors
n C4 B3 B4 B5 BG
2 0.7979 0.000 3.267 0.000 2.606
3 0.8862 0.000 2.568 0.000 2.276
4 0.9213 0.000 2.266 0.000 2.088
S 0.9400 0.000 2.089 0.000 1.964
6 0.9515 0.030 1.970 0.029 1.874
7 0.9594 0.118 1.882 0.113 1.806
8 0.9650 0.185 1.815 0.179 1.751
9 0.9693 0.239 1.761 0.232 1.707
10 0.9727 0.284 1.716 0.276 1.669
11 0.9754 0.321 1.679 0.313 1.637
12 0.9776 0.354 1.646 0.346 1.610
13 0.9794 0.382 1.618 0.374 1.585
14 0.9810 0.406 1.594 0.399 1.563
15 0.9823 0.428 1.572 0.421 1.544
16 0.9835 0.448 1.552 0.440 1.526
17 0.9845 0.466 1.534 0.458 1.511
18 0.9854 0.482 1.518 0.475 1.496
19 0.9862 0.497 1.503 0.490 1.483
20 0.9869 0.510 1.490 0.504 1.470
21 0.9876 0.523 1.477 0.516 1.459
22 0.9882 0.534 1.466 0.528 1.448
23 0.9887 0.545 1.455 0.539 1.438
24 0.9892 0.555 1.445 0.549 1.429
25 0.9896 0.565 1.435 0.559 1.420
4n—1)

F 25 ~—0
orn> 25, cy4 an 3

where 7 is the sample size. Finally, the individual sample mean values are
depicted on the chart. In the case where all points lie within the control
limits, the data are consistent with the hypothesis that the process is in
statistical control. If one or more points are located outside the limits, it
is an indication that the process is not in statistical control, and the
causes must be traced. In the cases where these causes are identified, the
corresponding values are eliminated from the calculations, and a revised
control chart is computed. It is now controlled if all of the remaining
points fall within the revised control limits. Since the revised control
limits are narrower than the original ones, data points that previously
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fell within the original limits may now fall outside the revised limits. The
cause, why a point fell outside the limits, may not necessarily be found.
If this is the case for only one or few points, one may choose not to
remove the values immediately, but wait and see how the control chart
functions and eventually remove them later on. If a large number of
points are falling outside the limits for unknown reasons, the pattern
formed by the points should be inspected. By doing so, one may often be
able to identify a cause common to all points. After a while, hopefully,
the chart indicates that a state consistent with the hypothesis of statis-
tical control has been reached. If the level of the process and the variation
relative to this level are both acceptable, the chart specifies the objective
of the process.

At this stage, it is vitally important that a protocol is written specifying
how one should go about looking for special causes if a value falls
outside the control limits, and how the report resulting from such a
search should be made. The specifics of the protocol depend on the
process. For a good clinical example see [2]. The chart may, then, be
used to monitor regularly selected samples, the mean values of which
are depicted on the chart. As long as these values are located within
the control limits, one may assume that the process is in statistical
control. The data cumulated in this way may be used to calculate
relatively precise estimates of the parameters of the process. When
reliable estimates are available, one may determine if the process actually
meets the quality requirements. If this is not the case, it is advisable to
revise the process, i.e., to improve it, until it meets the demands. In this
phase statistical design of exploratory experiments is an important tool.
A review of these techniques, however, is outside the scope of this book.
The interested reader is referred to [3].

Example 1.2

At an outpatient clinic the management decided to take random samples
comprising 30 ambulatory patients on each weekday for four weeks to
study the patient waiting times and assess if the quality requirement for
patient waiting times was met. The employees at the clinic were not
aware of this investigation. The waiting time of each patient was
recorded. A patient’s waiting time is the period starting when the patient
arrives at the clinic and ending when a technologist sees the patient.
Thus, 20 samples each comprising 30 randomly selected waiting times
were recorded.
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Table 1.2 The mean and standard deviation of waiting
times (minutes from patient’s arrival at outpatient clinic until
seen by a technologist) recorded on each of 20 weekdays.

Sample # n x s
1 30 16.75 5.509
2 30 15.60 4.558
3 30 16.14 5.465
4 30 15.96 4.582
5 30 18.86 4.594
6 30 14.33 4.920
7 30 15.44 6.357
8 30 14.67 3.791
9 30 16.53 6.885
10 30 19.89 5.583
11 30 14.37 3.714
12 30 14.13 3.477
13 30 14.99 4.627
14 30 13.33 3.922
15 30 19.96 4.717
16 30 15.87 5.481
17 30 14.41 5.877
18 30 15.16 4.901
19 30 13.82 5.434
20 30 18.46 3.716
a=1593 5=4.905

Table 1.2 shows the 20 sample mean values and standard deviations.
The mean of the mean values (& = 15.93 minute) estimating the process
mean and the average of the standard deviations (5 = 4.905 minute) are
also shown. An unbiased estimate of the process standard deviation (&) is
calculated by dividing s by c¢4. The latter quantity is calculated as
4391 _ 9.9915 (see Table 1.1). Therefore, 6 is 2595 = 4.95 minute.

120-3 < 0.9913
Using these data an X control chart may be constructed. The estimate of
the standard deviation of the sample mean values is 2> = 0.90 minute

since the sample size is 30. The centreline of the X chartis at 15.9 minute
(i), the UCL is 159+ 3.0.90 =18.6 minute, and the LCL is
15.9 — 3-0.90 = 13.2 minute.

Figure 1.3 (a) shows the X chart. The sample means are depicted on
the chart. Since three of the values (samples # 5, # 10, and # 15) are
located above the UCL, the process is not in statistical control.

Figure 1.3 (b) shows a revised control chart after these three values
have been eliminated from the calculations. Now the last value is outside
the UCL. Figure 1.3 (c) shows the control chart calculated without using
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Figure 1.3 (a) An X chart showing the mean waiting times (minute) on weekdays.
(b) The control chart shown in (a) after the results of samples # 5, # 10, and # 15 have
been removed and the chart calculated without using these values. The latter values are
depicted as crosses. (c) The control chart shown in (a), after the results of samples # 5, #
10, # 15, and # 20 have been removed and the chart calculated without using these
values. The latter values are depicted as crosses.

this value. The chart is consistent with a process in statistical control.
The management now had two jobs. First the special cause of the excess
variation had to be found and removed and the process brought into a
state of statistical control. Then the estimated process parameters had to
be compared with the quality requirements for waiting times to assess the
quality of the process.
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Inspecting the pattern of values (# 5, # 10, # 15, and # 20) outside the
UCL, one notes that all values were collected on a Friday. It turned out
that on Fridays the patient mix differed from that of the other weekdays
in that an unusually large number of patients from the cardiology
department were scheduled for ECG recordings in addition to blood
specimen collection. These patients required more time than those not
scheduled for ECG recordings. A retrospective analysis revealed that
overtime was much more common on Fridays than on any other week-
day. To prepare the organisation for quality assessment and control on a
routine basis, the management purchased a system for automatic record-
ing of waiting times. The IDs of technologists doing venipunctures and
recording ECGs were already automatically captured by the current
clinical data processing system. We will return to this example in
Chapter 9.

Table 1.3 shows the protocol they designed for the search for special
causes to be used when the process was brought into a state of statistical
control of a sufficiently high quality.

Table 1.3 Procedure for tracking special cause variation. Start at step 0 and pro-
ceed to the right.

Step Actions Questions and routing in table

Can error in data

0  Control data and data processing.

1 Compute ECG in number of
venipuncture equivalents.
Express production in number of
venipunctures.
Control staffing of ambulatory.
2 Define productivity as

venipuncture/technologist hour.

Compute
1) average productivity,
2) average productivity per 30
minute period,
3) average productivity per
technologist, and
4) average productivity per
technologist per 30 minute
period.
Identify significantly outlying
values.
3 Interview manager of ambulatory
and technologists.
4 Write report and stop.

If yes, go to step 4.
explain variation? If no, go to step 1.
Can increased
production or
decreased staffing If no go to step 2.
explain variation? If yes, go to step 4.

Go to step 3.

Go to step 4.
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1.3 DESIGN OF CONTROL CHARTS

When one constructs a control chart, it is necessary to decide which
control limits, sample size, and sampling frequency one wants to use.

1.3.1 Control Limits

Clearly, the position of the control limits has a bearing on the function of
a control chart. The further away from the centreline the limits are
located, the fewer sample means will fall outside the limits. This implies
that the probability that a type-1 error will be committed declines. A
type-1 error is committed when a sample mean value falls outside the
control limits even though the process is in statistical control. It is then
assumed that the process is out of statistical control, and a search for the
cause is initiated. The price of decreasing the expected number of type-1
errors, by widening the limits, is an increase in the expected number of
type-2 errors. A type-2 error is committed if a sample mean value falls
within the control limits and thereby prevents one from acknowledging
that the process is no longer in statistical control. If one narrows the
limits, the probability of committing a type-2 error declines, but at the
same time that of committing a type-1 error increases.

The choice of control limits depends on a weighing of the pros and
cons of the two types of errors. One approach is to decide initially how
large a fraction («) of the sample means one is willing to let fall outside
the limits, while the process is in statistical control. The position of
the control limits is then calculated so that this condition is fulfilled. If
the fraction of values falling outside the limits is «, the fraction of values
falling within the limits must be (1 — «). In the case of the X chart, the
problem may be stated as follows: We need to find a number, k, so that
the probability that a sample mean will fall inside the control limits is

P(M—%§X§u+%):1—a (1.5)
where 11 is the mean of the process, o its standard deviation, X the sample
mean, and # the sample size. It is not particularly difficult to find & in
Equation (1.5) when the distribution of X is Gaussian and p and o are
both known. When the value of k has been determined in this way, the
UCL is set equal to u + %, and the LCL is set equal to p — k—‘;. Usually
k = 3 is used. Inserting this value in Equation (1.5) the corresponding
value of @ may be calculated. One finds that @ = 0.0027. Therefore, in the

long run, (1 — 0.0027)100 % = 99.73 % of the sample mean values will
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fall within the limits, as long as the process remains in statistical control. In
the following we will use the factor 3, when calculating control limits. It is
assumed that the sample mean follows a Gaussian distribution and the
parameters are known. Due to the central limit theorem (see Appendix A,
Section A.3.4.1), the assumption of a Gaussian distribution is not neces-
sary when the sample size is large enough.

In addition to the control limits, two warning limits are sometimes
used, one on each side of the centreline usually at a distance of two
standard deviations from it. If a sample value falls between a warning
limit and the corresponding control limit, then it is a warning that the
process may be out of statistical control.

It is not always safe to assume that a sample variable follows a
Gaussian distribution, as we have done previously. However, the con-
sequences of erroneously making this assumption are limited. This
appears from an improvement on Tchebichev’s inequality [4], which
may be phrased as follows: If the statistical variable X follows a
unimodal distribution whose mode is equal to the mean, the probability
that its value deviates from the distribution’s mean value by more than k
times its standard deviation is equal to or less than 555-. A unimodal
distribution is defined as a probability distribution which density func-
tion decreases monotonously to the left, as well as the right of its mode
(see Appendix A, Section A.2.3). Based on the inequality above, for
k = 3 the probability that a sample mean falls outside the control limits
is ﬁ = 0.049, or less, as long as the distribution of the sample mean is
unimodal, and its mode and mean coincide.

1.3.2 Sample Size

If a process gets out of statistical control because its level is changing, the
probability that a sample mean assumes a value outside the limits
whereby the change will be acknowledged increases. The increase in
probability depends on the sample size, as illustrated in Figure 1.1 in
Section 1.1.2. The figure shows the distribution of the sample value
before and after the mean has changed for sample size equal to 1 (upper
frame) and for sample size equal to 2 (lower frame). When the sample
size is 1, a much smaller fraction of the horizontally shifted distribution
falls outside the control limits of the original distribution than in the case
when the sample size is 2. Therefore, the probability (the area outside the
control limits) that a specified change in the mean is acknowledged is
smaller with sample size of 1 than with 2.
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1.3.3 Sampling Frequency

The more frequently samples are selected, the sooner a change of the
level of the process will be acknowledged; but also, the more frequently a
sample mean value will fall outside the control limits while the process is
in statistical control.

1.4 RATIONAL SAMPLES

A key issue to the construction of control charts is the formation of
rational samples. Rational samples are composed so that assignable
causes of variation may influence the variation between samples, but
not the variation within samples. For instance, it will be inexpedient to
mix the blood smears from two different technologists in the same
sample because variation caused by differences between the two tech-
nologists will then not be acknowledged. The formation of rational
samples is crucial and often requires considerable knowledge about the
process in question.

If a process is in statistical control, all of the variation between the
sample mean values can be explained by the variation within the samples
because the process mean does not change. Therefore, the samples may
be pooled and all be used to calculate a single estimate of the standard
deviation. However, if the process is not in statistical control, the process
mean may change between samples. In this case the standard deviation
obtained by pooling the values will be larger than the standard deviation
that one would obtain by calculating the average of the within-samples
standard deviations. Since it is not known in advance whether a process
is in statistical control, the average of the sample standard deviations
should always be used. Otherwise the risk is that a lack of statistical
control may be masked.

1.5 ANALYSING THE PROPERTIES
OF A CONTROL CHART

Once a process is brought into a state of statistical control, a control
chart may be used to monitor it. The purpose is to recognise quickly
and in an objective way if the process gets out of statistical control. If
a sample value falls outside the control limits, it is a very strong
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indication that this has happened. However, the values may remain
within the control limits, while the process is out of control. A state of
statistical control is characterised by control values scattering at ran-
dom around the centreline. Therefore, if systematic sequences of values
begin to appear, it may be an indication that the process is out of
control, even though all values stay within the limits. A sequence of
values that all share the same quality is referred to as a run. Eight
consecutive sample mean values, each being larger than its predecessor,
or eight values all located on the same side of the centreline are
examples of runs.

To better characterise the values entered on the chart, it is customary
to enter two warning limits; a lower one and an upper one. As mentioned
previously, each of them is located at a distance of two standard devia-
tions from the centreline. The probability that a sample mean value falls
outside the warning limits is approximately 0.05 if the process is in
control. However, the probability that two mean values in a row fall
outside the upper warning limit is quite low. Therefore, this indicates
strongly that the mean value of the process has increased. The two
warning limits may be supplemented by an additional pair of warning
limits located on each side of the centreline, each at a distance of one
standard deviation from the line. In this way, the region defined by the
two control limits is divided into 6 zones. This makes it easier to
recognise interesting runs, e.g., a run characterised by values located
above the same inner warning limit.

1.5.1 Systematic Data Patterns

We may test statistically if it is improbable that a run is just a random
phenomenon. Then, it may be concluded that the process is out of
statistical control. However, if one applies several tests simultaneously,
i.e., pays attention to many different types of runs, the combined prob-
ability of committing a type-1 error may be quite high. Therefore, it is not
recommendable routinely to include tests based on various types of runs
when assessing whether a process is in statistical control or not. Small
changes of the mean level may certainly cause various types of runs to
appear while all data points are still falling within the control limits.
However, to identify small changes in the level, it is recommended instead
to apply a time-weighted control chart. These control charts are reviewed
in Chapter 3. This is not to say that one should not pay attention to
extreme patterns and utilise the information thus gained. When a value
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falls outside the control limits, statistically significant patterns of runs may
be valuable clues in the search for the cause of the loss of control.

1.5.2 In-Control Average Run Length (ARL)
and Out-of-Control ARL

In the following a process is considered to be in statistical control as long
as the sample mean value stays within the control limits and out of
control if a value falls outside the control limits. This usage of the chart
implies that one is currently testing the hypothesis that the process is in
control. Since the conclusions drawn on the basis of a statistical test
result are inherently uncertain, one will occasionally commit an error. It
is of practical interest to know how often one should expect a false alarm
and thereby be led to commit a type-1 error. It is furthermore of interest
to know the length of the period, from a loss of statistical control until
the loss is acknowledged. The last question cannot be answered unequi-
vocally unless it is specified how much out of control the process is in
terms of the magnitude of the change of its parameter values.

The probability distribution of the sample means after the mean value
of the process has changed is Gaussian with a mean equal to the new
process mean value and a standard deviation equal to that characterising
the distribution prior to the change. Using this information, one may
calculate the fraction of the distribution delimited by the control limits
(see Figure 1.1). This fraction is equal to the probability (8) that a sample
mean will fall within the control limits and thereby prevent the change
from being acknowledged. The probability that the mean value of the
first sample selected — subsequent to a specified change of the process
mean — falls outside the control limits is 1 — 8. This follows because B is
the probability that it falls within the limits. The probability that the
change will be acknowledged when the second sample is selected, is the
probability (B) that it will not be acknowledged when the first sample is
selected multiplied by the probability (1 — B) that it will be when the
second sample is selected, i.e., B(1 — B). It is assumed that the sample
values are statistically independent. The probability that the change will
be acknowledged when the fifth sample is selected is g*(1 — g), etc. In
general we have, that the probability that the change will be acknowl-
edged at the kth trial is 821 (1 — B). In the first example, it was necessary
to obtain 2 samples before the change was acknowledged, and in the
second example it was necessary to obtain § samples. To calculate the
average number of samples necessary to select before a specified change
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is acknowledged, each possible outcome should be weighted by its
probability of taking place and the resulting products added. In principle,
there are an infinite number of possible outcomes, and the sum, there-
fore, includes an infinite number of terms. It may be shown that the sum

o1
is 5 We have

1

T (1.6)

D k(1B =
k=1

In the special case when the process mean has not changed, (1 — ), the
probability that a value falls outside the control limits is equal to «, the
risk of committing a type-1 error. The average number of samples
collected (ARL, the average run length) between type-1 errors is called
the in-control ARL. According to Equation (1.6) it is calculated as

ARL, =+ (1.7)

o

Example 1.3

Using the conventional control limits equal to the process mean =+3
standard deviations implies that « = 0.0027. Therefore, the ARLg 927
between type-1 errors is 55637 = 370.37, according to Equation (1.7).

When 8 is known, Equation (1.6) may be used to calculate the average
number of samples selected subsequent to a specified change of the
process mean and before the first value falls outside the limits and the
change thereby is acknowledged. We have

1

(1.8)

1.6 CHECKLISTS AND PARETO CHARTS

Two helpful instruments may supplement a control chart: a checklist and
a Pareto chart. A checklist is used to list in a chronological order the
problems that one has come across so far while monitoring the process. It
should include information about how often the various flaws and
defects have been observed and who took care of them. A Pareto chart
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Figure 1.4 A Pareto chart showing the occurrence of postoperative medical compli-
cations in 102 surgical patients. BP stands for blood pressure, and Resp. stands for
respiratory.

is in many ways similar to a histogram. The ordinate of a Pareto chart
is the same, i.e., frequency. The abscissa, however, is qualitative
instead of quantitative. It shows the type of problems one has come
across. The chart gives a graphical representation of qualitative
data, with the frequencies sorted according to size. The checklist may
be used as input for the Pareto chart. The chart may be used to identify
frequently occurring problems. However, it does not acknowledge the
seriousness of the various problems. If some problems are serious and
other problems are trivial ones, one might weigh the frequencies of the
various problems according to their seriousness before drawing the
Pareto chart.

Example 1.4

In each of 102 surgical patients the complications arising during
the operation were noted. Figure 1.4 shows a Pareto chart of the fre-
quencies of the various types of medical complications. It appears that
heart failure and infection of the lungs are the predominant medical
complications.

1.7 CLINICAL APPLICATIONS OF CONTROL CHARTS

The clinical applications of control charts are often less straightforward
than the industrial ones. We will discuss the problems arising. Some of
the issues will be further elaborated in Chapter 6.
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1.7.1 Input/Output of Clinical Processes

In principle control charts may be used in clinical work in the same way
as they are used in industrial work. The values of quality measures or
quality indicators are measured as mentioned in the introduction and
used to construct control charts. The quality may then be assessed and
monitored using the charts.

The input to industrial processes may be controlled. However, this is
not always the case for medical processes. In clinical medicine the patients
vary considerably. Some patients may be so sick that they will not survive
even if the clinical process, i.e., treatment and care, is optimal, while other
patients whose diseases are less severe may survive even though the
treatment and care they receive is of a poor quality. An industrial concern
is able to standardise the input to its various processes. Therefore, one may
safely assume that variation of the output (the products) mirrors the
quality of the processes. By contrast, a hospital department or a practice
cannot control the input (the number and types of patients received).
Therefore, in this case, it is necessary to separate the variation of the
output into two components: one that is caused by variation of the input
(variation of severity of the patients’ diseases, their co-morbidities, etc.)
and one that is caused by the process (treatment and care). The problem
may be dealt with in various ways as will be explained in Chapters 3, 6,
and 7.

1.7.2 Samples

If possible, the samples formed should be rational. Therefore, assignable
causes of variation should not be allowed to influence the within sample
variation, and the selection of samples should be organised so that
rational hypotheses of interest may be tested. Assume, e.g., that there
are reasons to believe that the waiting-time between the arrival of a test
request to a laboratory and the reporting of the corresponding result is
not the same during working hours, as it is outside working hours. To
assess this hypothesis, it is necessary to select ‘waiting-time samples’ so
that a sample is either selected during working hours or outside working
hours and not just at random times round the clock.

Two principles may be applied to form rational samples. According to
one principle a sample should only include products that are produced at
the same time (or as close together in time as possible). This principle
is applied when the primary purpose is to be able to acknowledge a
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change in the process mean since the likelihood that such a change will
affect the within-sample variation is very small. According to the other
principle, the sampling period is extended. At the end of one sampling
period, the next one is initiated, etc. Each sample consists of products
representative of those produced since the last sample was selected. This
principle is usually applied when a decision has to be made as to whether
or not the products produced during the sampling period should be
accepted. Supporters of the last principle often emphasise that a shift
in the level, away from the control level and back again, in between
sampling will not be acknowledged if the first principle is applied.
However, if the process mean value fluctuates among different levels
during the sampling period, the variation within the sample might be
quite large. Therefore, it is possible to make any process look as if it were
in control simply by lengthening the sampling period. In medicine all
information about each patient is kept. Therefore, it makes sense to
inspect all of the production. This implies that the second principle
should be applied. Consequently, the samples should be as small as
possible so that the conditions during the sampling are reasonably uni-
form. This also allows the search for the reason why a process is out of
control to be conducted, while the trail is ‘still hot’. Furthermore, actions
necessary to remove the cause of a lack of statistical control will not be
unduly delayed. For example we would want to detect an increase in the
occurrence of Methicillin resistant Staphylococcus aureus infections as
soon as possible to take the necessary precautions. On the other hand,
the event one monitors (e.g., that a patient dies) may be a rare one. This
requires the sample of patients to be made sufficiently large so that at
least a few dead patients are included in each patient group. There are
several considerations that one has to balance relative to each other
before the sample size is decided.

Instead of using equally sized samples, it may be more practical to use
equally sized sampling periods, e.g., a week, a month, or a quarter of a year.
This implies that the sample size will vary. The above considerations then
have to be balanced when the length of the sampling period is decided.

1.8 INAPPROPRIATE CHANGES OF A PROCESS

If the quality of a clinical process is not good enough for its purpose it has
to be improved. To improve the quality of a process one has to change it.
However, it is important to know when it is appropriate to change a
process and when it is not. A process in statistical control may be
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changed if its quality is deemed insufficient for its purpose on the basis of
an assessment of its parameter values. However, it should not be changed
on the basis of an assessment of a sample obtained from it. If the system is
not in statistical control it should not be changed. The reason is that the
results of a change cannot usually be interpreted. Instead, the process
should be brought into a state of statistical control and then changed if
deemed necessary.

We will present an example illustrating the effect of using sample values
as a basis for changing a system that is in statistical control and examples
showing the effect of changing a system that is not in statistical control.

1.8.1 Changing a Process in Statistical Control
Guided by Samples

Example 1.5

Table 1.4 (column 2) shows a series of 15 numbers drawn at random from
a Gaussian distribution with mean 10.00 and standard deviation 1.00.

Table 1.4 Simulation of a treatment where the dose of a drug is adjusted when the
plasma concentration falls outside specified limits (8.50 to 11.50) even though the
concentration without active adjustment would have remained in statistical control
during the whole period.

Value with
dose adjustment
Value Random Y)=Yt-1)+
without dose change R(¢¥) + Effect of dose

Time adjustment R(t) = AD]J—effect(z) adjustment
(2) X(#) X(@)—-X(t-1) (t>1) AD]J-effect(z)

1 9.45 9.45

2 7.99 —1.46 7.99 0.00

3 9.29 1.30 9.80 0.51

4 11.66 2.37 12.68 0.51

S 12.16 0.50 12.00 —1.18

6 10.18 -1.98 8.84 -1.18

7 8.04 -2.14 5.52 -1.18

8 11.46 3.42 11.92 2.98

9 9.20 —2.26 9.24 —0.42
10 10.34 1.14 9.96 —0.42
11 9.03 —-1.31 8.23 —0.42
12 11.47 2.44 10.94 0.27
13 10.51 -0.96 10.25 0.27
14 9.40 -1.11 9.41 0.27

15 10.08 0.68 10.36 0.27
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Figure 1.5 X chart, calculated from 15 random numbers generated by a Gaussian
distribution with mean 10.00 and standard deviation 1.00, simulating the time course
of the drug concentration measured in a patient receiving constant daily doses.

Figure 1.5 shows an X chart for n = 1, (see Chapter 2) constructed from
these data and with the 15 values entered. As expected, the chart shows
the picture one would expect when monitoring a process in statistical
control the results of which follow a Gaussian distribution. The data
points are all within the control limits.

Assume that the numbers represent the results of weekly measurements
of the plasma concentration of a drug measured in the same patient who
is taking this drug daily, without changing the dose (the basic dose).
We want to calculate what would have happened if the dose, instead
of having been kept constant, had been controlled by two limits, 11.50
and 8.50, as follows: when the concentration exceeds the upper limit of
11.50, the basic dose is reduced. The aim is to reduce the concentration
by a quantity equal to the observed deviation from the 11.50 upper
limit. In the same way, the basic dose is increased when the lower limit
is exceeded.

When the dose is not adjusted, each new value is equal to the previous
value plus the random biological variation that takes place between the
measurements. When the dose is adjusted, the effect of the adjustment of the
dose has to be added to the random biological variation. The random
variation in the drug level, between measurements, is calculated as the
difference between the measurements obtained when no adjustment is
made. These random variations are shown in column 3 of Table 1.4. For
example, the random variation from the first to the second value is
7.99 — 9.45 = —1.46. Column 5 shows the change in the level, intended
by adjustment of the basic dose according to the strategy. The values
obtained when the strategy is applied and works as intended are shown
in column 4. The initial value is 9.45. This is within the limits (8.50 and
11.50). So the dose is not adjusted. The second value is equal to the previous
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value (9.45) plus the random variation that is —1.46 and the effect of adjust-
ment that is 0. Therefore, the second value is 7.99. This value is 0.51 below the
lower limit of 8.50. Consequently, the basic dose is adjusted to increase the
concentration by 0.51. So it is assumed that everything else being equal the dose
adjustment increases the concentration by 0.51 until the next time where the
dose is changed relative to the basic dose. The third value is equal to 7.99 plus
the random variation that is 1.30, plus the effect of the adjustment of the dose
that is 0.51. Therefore, the third value is 9.80. Since the value is within the
limits, the current dose is not changed. The fourth value becomes equal to
9.80 + 2.37 (the random change) + 0.51 = 12.68. Now the basic dose has to
be adjusted again to achieve a change of 11.50 — 12.68 = —1.18, etc.

Calculating the mean and standard deviation of the two series, we get
mean = 10.02 and standard deviation = 1.28 for the series without dose
adjustment and mean = 9.77 and standard deviation = 1.79 for the series
resulting from dose adjustment. Without adjustment, the mean is 0.2% away
from the intended value of 10 and the standard deviation is 28 % larger than
1. With active adjustment the values are 2.3% and 79 % respectively. In other
words, the quality of the treatment has declined considerably.

Clearly, the example is invented and rather simple-minded. However, it
illustrates a phenomenon that is well known within the field of statistical
process control, namely that the quality of a process that is in a state of
statistical control deteriorates if one tries to adjust it on the basis of sample
values. It is necessary to assess if the process is satisfactory or not, on the
basis of its parameter values. If not, it must be adjusted. One then has to wait
until a new state of statistical control has been reached. Then a decision has
to be made if the quality of the revised process is satisfactory, etc.

1.8.2 Changing a Process That is Not in Statistical Control

RG Carey [5] reports some very interesting examples. Using somewhat
modified data, but without changing the basic ideas, we present these
examples. They illustrate that the interpretation of the effect of an
adjustment of a process may be very difficult if the process is not in a
state of statistical control.

Example 1.6

The annual death rate of coronary artery bypass graft operations at a
hospital was 5 % in 1994. The protocol for the operation was changed in
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Figure 1.6 Percent of patients who died during coronary artery bypass graft opera-
tion as measured monthly during 1994 and 1995. The protocol for the operation was
changed on January first 1995.

January 1995, and in January 1996 the annual death rate of 1995
was calculated and found to be 4 %. A statistical analysis comparing
the annual death rates showed that this improvement was statistically
significant.

Figure 1.6 shows the monthly death rates recorded during 1994 and
199S. It is obvious that for some unknown reason (perhaps improvement
of the surgeons’ skill to operate) the death rate has been declining
throughout 1994, whereupon the trend has turned. In the beginning of
1995 the death rate dropped to 2 %, but at the end of the year it was as
high as 6 %. Without examining whether the process is stable or not one
may reach the conclusion that the change of protocol had a beneficial
effect on the death rate. However, by examining the process, one realises
that it is inappropriate to compare the annual rates because the process
examined is not in a state of statistical control. In fact, inspection of the
monthly rates leaves one with the impression that the change in protocol

had a harmful effect.

Example 1.7

At two departments, A and B, the protocol for open-heart surgery was
changed to reduce the transport time from the operating theatre to the
intensive care department. The transport time is finished when the
patient has stabilised and the monitoring of the patient begins. After
the change in protocol had been instituted, the annual mean value of
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Figure 1.7 (a) The average transport time from the operating theatre to the intensive
care unit as measured monthly during 1995 and 1996 in department A. The protocol
for open-heart surgery was changed on January 1 1996. Only the control limits of the
1996 data are shown in the figure. (b) Data from Department B corresponding to those
shown in Figure 1.7 (a) for Department A.

the transport times decreased from 39 minute to 26 minute in both
departments.

Figure 1.7 (a) depicts the monthly average transport times in depart-
ment A prior to and subsequent to the change in protocol. The transport
time is in statistical control before as well as after the change has been
introduced (only the control limits of the second period are shown in the
figure). Further, the mean transport time has been reduced significantly
as a result of the change. Looking at the corresponding figure for
Department B, Figure 1.7 (b), one notes that the picture is completely
different. Neither before nor after the introduction of the change is the
process in statistical control. Furthermore, it is doubtful if the change in
the protocol has had any appreciable effect on the steady decline of the
monthly average transport time that started in 1995 and continued
throughout 1996.
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2

Shewhart Control Charts

The X chart that was mentioned in Chapter 1 is a specific example of a
Shewhart chart. A formal definition of a Shewhart chart follows. Assume
that samples are selected from a production process to characterise and
monitor the quality of the products. Let W be a sample statistic calcu-
lated from the results obtained by measuring in each product a quantity
that reflects the quality of the product (a quality indicator or measure).
As long as the process is in statistical control, W follows a probability
distribution with mean u,, and standard deviation oy. A Shewhart
control chart depicting the values of W is defined by the following
equations

UCL = py, + ko, (2.1)
centreline =, (2.2)
LCL = uy, — koy (2.3)

where k is the distance between each control limit and the centreline
measured in standard deviation. Usually & = 3. It is assumed that the
process variables are statistically independent and that their values are
generated by the same probability distribution as long as the process is in
statistical control.

The sample statistics may be divided into two groups, comprising
discrete and continuous sample statistics, respectively. The former are
calculated by using discrete data and the latter by using continuous data.
In Section 2.1 we deal with the control charts for discrete sample
statistics and in Section 2.2 with control charts for continuous data.

Statistical Development of Quality in Medicine P. Winkel and N. F. Zhang
© 2007 John Wiley & Sons, Ltd



38 SHEWHART CONTROL CHARTS

In medical applications control charts for variable sample size may be
more practical to use than control charts for equal sample size. In Section
2.3, control charts that may be used in the presence of varying sample
size are expounded.

2.1 CONTROL CHARTS FOR DISCRETE DATA

Discrete data are based on a counting process. The latter may consist of
counting of defective (nonconforming) and nondefective (conforming)
elements in the sample. Another approach is to count the number of
defects (nonconformities) per product. In the latter case the sample is
viewed as a unit of products, and the result is reported as the number of
defects per unit. The p control chart is used to monitor the fraction (p) of
nonconforming products per sample. The ¢ control chart is used to
follow the number of nonconformities per unit of products.

2.1.1 Number of Nonconforming Products (The p Chart)
2.1.1.1 Applications

The p chart is used when products are classified as nonconforming or
conforming.

The result of the inspection of a random sample of products is
expressed as the number of nonconforming products found in the sam-
ple, divided by the sample size (7). An example is the inspection of
patients who have undergone some operation. A ‘nonconforming pro-
duct’ is a patient who died during the operation.

2.1.1.2 The distribution, mean value, and standard deviation of the
sample statistic

Each product in a sample may be viewed as the result of an experiment.
For example, a surgical procedure that has two possible outcomes: a
nonconforming product (the patient dies) or a conforming one (the
patient survives). We define a random variable X; (the process variable)
that may assume the values 0 or 1. X; = 1 if the product is nonconform-
ing and X; = 0 if it is not. The probability that X; =1 is p, and the
probability that X; = 0is 1 — p(0 < p < 1). D, the number of nonconform-
ing (or defective) elements resulting from 7 independent experiments of

this type, is a random variable defined as D = }_ X;. As explained in
i=1

appendix A, this implies that D follows a binomial distribution with
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parameters 7 and p, mean value 7p, and standard deviation y/np(1 — p).

With this assumption, it may be shown that 2 follows a distribution with

mean p and standard deviation , /(=)
n

2.1.1.3 Estimating the mean value and standard deviation of the

sample statistic

p, the estimator of the parameter p, is the sum of nonconforming
products found in the samples divided by the number of products
inspected. We have

k
N j=
- 2.4
P =" (2.4)
where D; is the observed number of nonconforming products in the jth
sample, 7 the number of products per sample, and k& the number of
samples selected. The mean value (1 /,) and standard deviation (o /,) of
p are estimated by inserting p in the equations of the mean and standard
deviation. We have

2.1.1.4 The control chart
If p is known, the p chart has

UCL:p+3\/@ (2.7)

centreline = p (2.8)

LCL = max{O;p -3 M} (2.9)

n

If p is unknown, ftp, and 6p, are used in the above equations.

Example 2.1

In a clinical laboratory (many years ago) two technologists, working
independently of each other, entered manually into a computer all test
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requests twice. Therefore, the number of errors not caught and corrected
was practically 0, as had also been documented. To save manpower, the
management considered purchasing an automated request form reader.
The request forms were filled using a pencil to mark the tests requested.
However, completing the request forms required a certain data discipline
by the users. The marks had to be placed exactly as indicated on the forms,
using a pencil. The laboratory borrowed the request form reader to test it
out and distributed the new request forms throughout the hospital, includ-
ing instructions explaining how to complete them. The testing of the
request form reader lasted 20 days. Each day, all request forms were
entered manually into the computer using the usual procedure, and in
addition the first 300 were entered using the request form reader.

Table 2.1 shows the number (column 1) as well as the fraction (column
2) of request forms incorrectly read by the request form reader on each
of the 20 days. Using Equation (2.4), p is calculated as the number
of incorrectly read forms divided by the number of forms read during

the trial period, i.e., % = 0.0197. Using Equation (2.6), ¢ is calculated
as |/ LU70007) — 0,00802. According to Equations (2.7), (2.8), and

Table 2.1 The daily frequency and relative frequency of
incorrectly read request forms per 300 forms read by an auto-
mated request form reader.

Number of incorrectly Fraction of incorrectly
read forms read forms

0.0200
0.0200
0.0267
0.0233
0.0100
0.0333
0.0267
0.0067
0.0133
0.0033
0.0167
0.0267
0.0067
0.0100
0.0167
0.0067
0.0200
0.0167
0.0400
0.0500

—_
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(2.9) the p chart of the fraction of incorrectly read request forms has:

UCL = 0.0197 + 3-0.00802 = 0.0438
centreline = 0.0197
LCL = max{0;0.0197 — 3-0.00802} = 0.

Here, we have used the normal approximation of the binomial distribu-
tion. If p < ;17 or p > -2; this approximation cannot be used. Instead,
the binomial distribution has to be used.

Figure 2.1 (a) shows the p chart. It appears that the process is not in
control because the last sample value lies above the UCL. By reviewing
the data, the management found that during the last two days of the trial
a newly employed physician, using a ball pen, had filled some of the
forms. In almost all of these cases the request form reader had incorrectly

read the corresponding forms. Figure 2.1 (b) shows the p chart calculated
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Figure 2.1 (a) p chart showing the fraction of incorrectly read request forms. (b) The
revised p chart of Figure 2.1 (a). The two values excluded from the calculation of the
chart are depicted as crosses.
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after the last two values had been excluded. Now, the process seems to be
in control with an average percentage of incorrectly read forms equal to
1.69 %. The management enjoined the clinical departments using a
pencil and decided to purchase the request form reader.

2.1.2 Number of Defects (The ¢ Chart)

Various variants of the same type of control chart may be used to
monitor the number of defects (nonconformities) per unit. One of
them may be used when the sample size varies (see Section 2.3.2).
Here only the simplest one will be mentioned, namely the ¢ chart.

2.1.2.1 Applications

In many instances, it is more expedient to note the number of the defects in
a product than just classify it as defective or nondefective. The latter
approach is simply too crude to acknowledge the variation in quality of
the products. Usually the quantity reported is the number of defects per
inspection unit of products. An inspection unit may consist of a single
product. However, it may also include more than one product, e.g., five
patients if the ‘product’ in question is a patient. The choice of the size of the
inspection unit depends on what is practical and convenient. In some cases,
the concept of a product may even be meaningless, e.g., if the defects
considered are breakdowns of a hospital information system. In this case,
the inspection unit is a period, e.g., a month.

2.1.2.2 The distribution, mean value, and standard deviation of the
sample statistic

A Poisson distribution is often convenient to use when one is character-
ising the distribution of the number of defects per inspection unit because
one is observing the occurrence of a random phenomenon per unit. When
the Poisson distribution is applied, it is assumed that (1) the number of
possible defects is infinitely large and (2) that the probability of occur-
rence of a defect is everywhere equally small. In practice, the mentioned
conditions may only be roughly approximated. As long as the deviations
from the theoretical assumptions are not significant, the Poisson distri-
bution usually works reasonably well. The number of defects per inspec-
tion unit (DF) is assumed to follow a Poisson distribution. The Poisson
distribution’s parameter (here denoted ¢) is the mean of the distribution,
and /c is its standard deviation.
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2.1.2.3 Estimating the mean value and standard deviation of the
sample statistic

c is estimated as the average number of defects per inspection unit. We have:

k
> DF;
e == i (2.10)

DF; is the number of defects in the ith inspection unit, and k is the
number of inspection units. The mean value of the sample statistic
(upp = c) is estimated as:

fipp = ¢ (2.11)
and its standard deviation (opg) is estimated as:

bpr = Ve (2.12)
2.1.2.4 The control chart

¢ is the mean value of the sample statistic, and /c is its standard
deviation. Therefore, if ¢ is known, the control chart has:

UCL = ¢ + 3v/¢ (2.13)
centreline = ¢ (2.14)
LCL = max{0;c — 3+/c} (2.15)

If ¢ is not known, the estimate of ¢ is substituted for ¢ in the above
equations. Since the Poisson distribution is skewed to the right, especially
if ¢ is small, it is sometimes preferred to use probability limits. They are
calculated by cutting off 0.135 % of the area of the distribution at each of
its ends [1].

Example 2.2

The Glasgow Royal Infirmary is a tertiary referral centre that provides
regional services for cardiac, burn, and bone marrow transplant patients.
Table 2.2, column 1 shows the monthly count of Methicillin resistant
Staphylococcus aureus (MRSA) cases from January 1997 through
May 1998. The data are historical and originate from a study by Curran
et al. [2]. We will calculate a ¢ control chart using these data. ¢ is
estimated as

gD A3 13 o720 59 3 MRSA/month.
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Table 2.2 The monthly total acquisition of Methicil-
lin resistant Staphylococcus aureus from January 1997
to May 1998 (column 1) and from June 1998 through
September 2000 (column 2 and 3) in a tertiary referral

centre.

January 1997 to June 1998 to
May 1998 September 2000
25 51 50
34 46 50
19 49 49
24 41 49
32 38 42
39 43 38
25 29 34
24 31 28
23 40 25
33 28 25
29 42 22
24 42

32 44

38 41

39 44

38 25

20 54

The ¢ chart is calculated as

UCL = ¢+ 3vVé =293+ 3-5.41 = 45.5 MRSA /month
centreline = ¢ = 29.3 MRSA /month

LCL = max{0;¢ — 3+/¢} = 13.1 MRSA /month.

Figure 2.2 (a) shows the chart with the 17 counts used to calculate it.
The count is assumed to be in statistical control because none of the points
are located outside the control limits. The counts recorded from June 1998
through September 2000 are shown in columns 2 and 3 in Table 2.2.
Figure 2.2 (b) shows these counts depicted on the chart calculated above.
From June 1998 until February 2000, eight values were higher than the
UCL, and all but three values were higher than the centreline. Therefore,
the rate of MRSA cases was significantly elevated during this period as
compared to the previous 17 months.

From December 1999 each of the 24 wards and units in the centre
received an annotated control chart based on the historical data generated
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Figure2.2 (a) cchartshowing number of Methicillin resistant Staphylococcus aureus
(MRSA) infections per month at a tertiary referral centre. (b) ¢ chart showing number
of Methicillin resistant Staphylococcus aureus (MRSA) infections per month at a
tertiary referral centre. The first 17 values were used to calculate the ¢ chart. In
December 1999 a feed back program was initiated.

by that ward/unit. Results were fed back on a regular monthly basis to
medical staff, ward managers, senior managers, and hotel services. If a
value fell outside the control limits or prolonged runs above or below the
centreline were seen the cause was investigated. If the rate had increased it
was determined whether it was due to inconsistently followed infection
control practices, changes in the case-mix severity or some other reason.
The overall effect of this program is apparent from an inspection of
Figure 2.2 (b). Two months after the feedback program had begun,
monthly reductions in the acquisition rate of MRSA occurred. After that
the rate remained stable at approximately 50 % of the rate before the
intervention and only one medical specialty area had an out-of-control
episode.
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2.2 CONTROL CHARTS FOR CONTINUOUS DATA

Continuous data include the measurements of one or more properties of
each element in a sample, e.g., a patient’s length of stay at a hospital. If a
process is in control, the values of the process variable follow a prob-
ability distribution. This may be characterised by its mean value and
standard deviation. If the type of distribution and its parameters are
known, the state of the process is completely described. Usually, it is
assumed that the type of distribution is Gaussian. Since the two para-
meters (mean and standard deviation) in a Gaussian distribution are
necessary and sufficient to characterise the distribution, it is recom-
mended [1] to use two control charts to characterise the process, one
chart that is used to monitor the stability of the mean and one chart that is
used to monitor the stability of the standard deviation. In some situations,
it is expedient to use samples comprising only one product. This creates
special problems. Therefore, this situation will be dealt with separately.

2.2.1 Sample Size Larger Than 1

If the sample size is larger than 1, an X chart is used to monitor the mean
of the process variable. An § chart is used to monitor the standard
deviation. It is common practice to combine an X chart with an § chart.
If the process standard deviation changes while the mean is stable, a
marked change may be identified using the X chart. However, the S
chart is much more sensitive to a change in the process standard deviation.

2.2.1.1 The S chart

The standard deviation of the measurements obtained from a sample is
calculated as

(2.16)

where 7 is the sample size, X; the ith measurement, and X the average of
the measurements. A control chart using this sample statistic is referred
to as an S chart.

Application The S chart is used to follow the standard deviation of the
process variable.
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The mean value and standard deviation of the sample statistic It may be
shown that the mean value ug of S is

s = C40 (217)

where o is the standard deviation of the process variable. The standard

deviation (o) of S is
os=o0y/1—c; (2.18)

The value of ¢4 depends on # and may be found in Table 1.1.

Estimating the mean value and standard deviation of the sample
statistic From Equation (2.17), the standard deviation (o) of the process
variable is estimated by the average of the sample standard deviations
divided by ¢4 that may be found in Table 1.1. ¢4 adjusts for bias
based on Equation (2.17). Therefore, an unbiased estimate is calculated
as

S
o =— 2.19
o= (2.19)
k
L
where § = 5 —, k is the number of samples, and §; the standard deviation

of the ith test sample. The estimates of the mean, ug, and standard
deviation, og, of S are obtained by inserting % for o in the Equations
(2.17) and (2.18). We obtain

fis =S (2.20)

and

5 E—Vl_c‘z‘ (2.21)

og =
c4

The control chart If o is known, the S chart is calculated using the
Equations (2.17) and (2.18). The control chart has

UCL = c40 4 304/1 — ¢ = Bso (2.22)

centreline = ¢c40 (2.23)

LCL = max{0;c40 — 304/1 — c3} = Bso (2.24)
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where Bg =c4+3y/1—c4, and Bs = max{0;cs —3,/1 —c3}. The
values of Bg and Bs depend on the sample size; they may be found in Table
1.1. If ug and og are not known, their estimates (Equations (2.20) and
(2.21)) are inserted in the above equations, and we get

_ 38/1-¢2 _
UCL=S+-—Y *_3B;3 (2.25)

C4
centreline = § (2.26)

3./1=¢c2|_ B
LCL = max{ 0; {1 - 74] sS4 —B;S (2.27)

C4

where By =142 4, and B3 = max{0;1 — 3\/ﬁ} Both quantities
depend on the sample size and may be found in Table 1.1. The Equations
(2.25), (2.26), and (2.27) should be used when the standard deviation of
the process variable is unknown.

Example 2.3

At a clinic receiving adult outpatients the management wanted to assess
the variability of the blood pressure (BP) measurements made. During 12
weekdays one patient per day was selected at random, and his/her blood
pressure measured three times. The result of the first measurement was
discarded because previous experiments had shown that the result of the
first measurement was systematically higher than those of the two sub-
sequent measurements.

Table 2.3 shows the results of the last two systolic and two diastolic
BP measurements of each patient. The corresponding standard devia-
tions have been calculated and are also shown in the table. We may
construct an S chart using the standard deviations of the systolic blood
pressure measurements. S is 4.24 mm Hg. Since o is not known, Equa-
tions (2.25), (2.26), and (2.27) are used when the S chart is calculated.
Because # =2, B; and B4 are equal to 0 and 3.267, respectively
(see Table 1.1). Therefore, the S chart has

UCL =3.267-4.24 = 13.9mm Hg
centreline = 4.2 mm Hg
LCL = 0.0 mm Hg.
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Table 2.3 Two measurements of the systolic and the diastolic blood pressure (BP)
made in each of 12 patients.

Second Third Standard Second Third Standard
systolic  systolic deviation diastolic diastolic deviation of
BP BP of systolic BP BP BP diastolic BP
132 132 0.000 90 92 1.414
128 130 1.414 92 88 2.828
120 122 1.414 72 62 7.071
104 108 2.828 86 82 2.828
100 98 1.414 70 60 7.071
102 120 12.728 84 76 5.657
106 102 2.828 64 58 4.243
132 124 5.657 84 84 0.000
142 144 1.414 78 86 5.657
130 142 8.485 94 100 4.243
130 112 12.728 82 82 0.000
112 112 0.000 78 76 1.414

S of the diastolic pressures is 3.54 mm Hg. Therefore, the corresponding
S chart has

UCL =3.267-3.54 = 11.6 mm Hg
centreline = 3.5 mm Hg
LCL = 0.0 mm Hg.

The two S charts are shown in Figures 2.3 (a) and 2.3 (b). On both charts
the standard deviation seems to be in statistical control because all
standard deviations lie below the UCL.

Subsequently, three systolic and three diastolic BPs were routinely
measured in each outpatient visiting the clinic. The standard deviation
of the last two measurements of each set of results was calculated and
each compared to the UCL of the corresponding control chart. If it was
below the UCL, the corresponding mean value was reported, and if
not, a search for the cause of the excessive variation was initiated,
according to a written protocol.

The data used in this example is an extract of those examined in the
paper by Nelson et al. [3] (see Table 1 in the paper).

2.2.1.2 The X chart

This chart was used for illustrative purposes in Chapter 1.
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Figure 2.3 (a) S chart of the standard deviation (s) of two repeated measurements of
the diastolic blood pressure (BP)/mm Hg made in the same patient. (b) S chart of the
standard deviation (s) of two repeated measurements of the systolic blood pressure
(BP)/mm Hg made in the same patient.

2.2.1.3 Interpretation of the X chart and the § chart

If a sample value falls outside the control limits, one may assume that the
process is not in control. Therefore, the cause should be tracked system-
atically. Inspection of the control chart may help the investigation.
Figure 2.4 shows how the distribution of the sample mean values
depicted on an X chart will change when the mean of the process variable
changes (Figure 2.4 (a)) and when its standard deviation changes
(Figure 2.4 (b)). A change of the process mean causes the values to be
distributed asymmetrically, relative to the centreline. When the mean
increases, the values accumulate above the centreline, and when it
decreases, they accumulate below this line. The probability that a value
may fall above the UCL, or below the LCL, increases. If only the
standard deviation increases, the sample values will still be distributed
symmetrically around the centreline. However, a larger fraction will fall
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(a)

N

Figure 2.4 The behaviour of the X chart in the presence of various types of lack of
statistical control. Frame (a) shows the pattern resulting from an increase of the process
mean value. Frame (b) shows the pattern resulting from an increase of the process
standard deviation.

outside the control limits. These facts may be useful to keep in mind
when tracking down why a value falls outside the control limits. If a
value falls outside the control limits of the X chart, one should first
inspect the corresponding S chart to make sure that the standard devia-
tion of the process variable is stable. If this is not so, the standard
deviation should first be brought under control. Then, the process should
be monitored using the X chart. If values still fall outside the control
limits, it implies that the process mean has also changed.

When a process gets out of statistical control, the arising systematic
patterns of sample values may provide valuable information about the
cause of the loss of control.

Figure 2.5 shows various types of data patterns. The pattern depicted
in Figure 2.5 (a) is cyclical. This type of pattern may be caused by
changes in the surroundings, e.g., operator shifts, etc. The pattern shown
in Figure 2.5 (b) is called ‘mixed pattern’. Alternately, the values accu-
mulate close to the UCL and close to the LCL, while few values are
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Figure 2.5 (a)—(e) Various characteristic control chart value patterns of diagnostic
significance. The abscissa is the sample number, and the ordinate is the sample mean
value. Since only the patterns are of interest, the x- and the y-axis are without legends
(a) A cyclical pattern. (b) A mixed pattern. (c)A trend. (d)A changing level. (e) Too
small a variation relative to the control limits.

located close to the centreline. This pattern may appear, e.g., when the
process is excessively controlled because the operator adjusts it as a
response to random variations (see Example 1.6). A trend, depicted in
Figure 2.5 (c), is a continuous change of the mean in the same direction.
For instance this may be seen if a problem gets increasingly serious as
time goes by. Figure 2.5 (d) shows the pattern resulting from a shift in the
mean of the process variable. Figure 2.5 (e) depicts a pattern of values
scattered around and close to the centreline, showing little natural
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variation. The reason may simply be that the control limits used are set
too far apart. It is also possible that for some reason the standard
deviation of the process variable has decreased since the control chart
was constructed.

Example 2.4

At an emergency department the management decided to monitor
patient satisfaction. On each weekday during the day shift, six patients
were selected at random. The physicians, treating the patients, were not
aware who were the patients selected. Each of the patients received a
questionnaire pertaining to his/her satisfaction with the treatment he/she
had just received. From the answers, a score was calculated that theore-
tically ranged from 0 to 100. Table 2.4 shows the daily mean and
standard deviation of the satisfaction score measured during three weeks.

The grand mean and the average of the standard deviations are also
shown. The process standard deviation is estimated by % =
o5t = 10.13 where ¢4 may be found in Table 1.1 for z = 6.

We will calculate an X chart and an S chart using these data. The

sample standard deviation is 1%13 = 4,14 because the sample size is 6.

Ve =

Table 2.4 Mean and standard deviation of satisfaction
scores given by six randomly selected patients on each of 15

days.

Day # Sample size Mean  Standard deviation
1 6 65.96 5.95
2 6 60.27 8.98
3 6 60.80 6.65
4 6 66.40 9.54
5 6 65.39 10.34
6 6 49.18 12.13
7 6 50.38 15.15
8 6 53.71 14.98
9 6 55.46 19.26

10 6 49.20 11.09

11 6 73.58 5.94

12 6 75.25 8.18

13 6 73.17 5.99

14 6 70.72 6.88

15 6 70.47 3.50

Average 62.7 9.64
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The centreline of the X chart is equal to the grand mean 62.7, and
the control limits are 62.7+3-4.14 = 50.3 to 75.1. The centreline
of the S chart is at § = 9.64, the upper control limit is 9.64 B4 =
9.64-1.97 =19.00, and the lower control limit is 9.64-B3 =
9.64-0.030 = 0.29, where B4 and B3 may be found in Table 1.1 forn = 6.

Figures 2.6 (a) and 2.6 (b) show the X chart and the S chart, respec-
tively. Neither the standard deviation nor the mean is in statistical
control. The X chart displays a clear cyclical pattern, with two values
being outside the control limits. The S of sample # 9 lies above the upper
control limit of the S chart. Usually, one should begin by examining why
the standard deviation is out of control. Once the standard deviation is
brought under control, one may proceed to see if the mean is still out of
control. But in this case, the cycles of the X chart give us a clue. The shifts
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Figure 2.6 (a) X chart depicting the mean value of the satisfaction score measured in
six patients randomly selected on each of 15 consecutive weekdays. (b) S chart
depicting the standard deviation (S) of the satisfaction score measured in six patients
randomly selected on each of 15 consecutive weekdays.
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Table 2.5 Schedule showing when each of six
physicians attended the emergency department during
three consecutive weeks.

Week # 1 2 3
Physicians #1 #3 #5
attending #2 #4 #6

between the cycles coincide in time with the shifts between weeks.
Therefore, we should look for anything that varied systematically from
week to week during the three-week period.

Table 2.5 shows the day shift calendar for the 15 days. It is noted that
physicians # 1 and # 2 shared the daily shift during the first week. Then
physician # 3 and # 4 took over, and during the last week physicians # §
and # 6 shared the daily shift. Therefore, a likely explanation of the
findings is that the physicians differ in terms of the satisfaction scores
they received.

Figure 2.7 shows a Boxplot of the satisfaction scores received by each
of the six physicians. A statistical test (a one way analysis of variance
comparing the six mean values) supported the impression given by this
figure, namely that the mean of the received satisfaction scores differed
significantly among the physicians. Physician specific control charts (not
shown) revealed that the satisfaction score of each physician was in
statistical control. Based on this analysis, physician specific control
charts were used from then on.

_.
[ ]
o
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Figure 2.7 Boxplot of the satisfaction scores received by each of six physicians. Each
box represents the values of one physician. Fifty percent of the scores have values
within the box that is delimited by the 25th and 75th percentiles. Inside the box the
mean (the cross) and the median (vertical line) are depicted. The lines are drawn from
the end of the box to the smallest observation (left line) and the largest observation
(right line) that is not an outlier. The small boxes at the same level as the large box
depict the remaining, outlying scores received by the physician.
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2.2.2 Individual Observations

Under certain circumstances, it may be more expedient to use a sample
comprising just one product. This may be required if the process is very slow
or the variation within a test sample is unrealistically small as compared to
the variation one wants to control. The standard deviation of the process
variable cannot be estimated based on a sample comprising only one
product. However, constructing a sample comprising two consecutively
sampled products when estimating the standard deviation may solve this
problem. The two samples are considered as one sample in this context.
Then, one uses the range of the sample when calculating an estimate of
the process standard deviation. Two consecutive ranges share one value (the
middle one). A range calculated in this way is called a moving range (MR;).

Example 2.5

The following data set consists of six sample values: {1,4,2, 7,2, 4}. The
corresponding five values of the MR; are calculated as follows:
MR;=4-1=3; MR,=4-2=2; MR;=7-2=5; MRy=7-2=S5;
MRs =4-2=2.

MR, the mean of the moving ranges is 3254542 — 3 4,

2.2.2.1 The X chart

The control chart for single observations is referred to as an X chart.

Application This chart is used to monitor the mean of the process
variable.

The distribution, the mean value, and the standard deviation of the
sample statistic Each sample consists of one product. X is assumed
to follow a Gaussian distribution with mean p and standard devia-
tion o.

Estimating the distribution, mean value, and standard deviation of the
sample statistic The mean value (u) of the sample statistic is estimated
as

X == (2.28)
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where X; is the random variable corresponding to the ith sample value
and k the number of samples. o can be estimated by

k
Xi— X1
;I i~ Xl m

OMR =T (k—1) 1128

(2.29)

where|X; — X;_1] is the (j —1)th MR, and d, is a constant equal to
1.128.

The control chart 1f i and o are known the X chart has

UCL = ;1 + 30 (2.30)
centreline = p (2.31)
LCL = 4 — 30 (2.32)

If 4 and o are not known, the X chart has

- MR
UCL =X +3 510 (2.33)
centreline = X (2.34)
- MR

where X is the mean of the random variables corresponding to the
samples examined. A chart corresponding to the S chart may be calcu-
lated (a MR chart). However, it is not particularly useful since it will
react to changes in the mean value as well as changes in the standard
deviation. Therefore, usually, only the X chart is used in the presence of
single observations.

Example 2.6

The risk of infection is usually estimated by the relative frequency of
infections, i.e., the number of patients who have acquired an infection
during a specified period divided by the number of patients who have
been exposed to the risk of getting an infection during that period. When
one is monitoring the relative frequency of infections, rather large patient
samples are usually required to ensure that each patient sample contains
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a few infected patients. This implies that the main significance of the
samples is only a matter of history since it will usually be too late to take
any action when a sufficiently large sample of patients has finally been
collected. Therefore, recording the period between consecutive infections
is often used instead. If the number of patients exposed to the risk of
being infected is constant over time, the period between infections
will decrease as the relative frequency of infections increases, and
vice versa.

The data used in the present example were read from a figure in a study
by Finison et al [4]. In this study, the relation between the number of days
elapsed between consecutively registered Clostridium difficile infections
and the sequence number of the infections was examined using an X
chart, depicting the former versus the latter and calculated using the first
six values. The authors found that the distribution of the periods is highly
skewed to the right. The data are better described using an exponential
probability distribution. Therefore, one approach is to construct a con-
trol chart, based on this type of distribution [5]. Alternatively, one may
transform the data and then depict the transformed values, using the
conventional X chart. To arrive at a Gaussian distribution from an
exponential one, it is recommended [6] to use the transformation
Y = X%2777 where X is the original variable and Y the transformed
one. We will use this approach.

Table 2.6 shows the sequential number of each infection (column 1)
and the number of days elapsed between this and the subsequent
infection (column 2). The corresponding value obtained using the above
transformation is also shown (column 3).

Figure 2.8 shows an X chart depicting the transformed value versus the
infection #, calculated using the first six transformed values; these and
the subsequent 18 values have been entered on the chart. The period
between the 11th and the 12th infection exceeds the UCL. The most
likely explanation is that the laboratory had some problems with the
Clostridium difficile assay so that the presence of Clostridium difficile
was sometimes overlooked. None of the values lie below the LCL.
However, one suspects that the process has changed since the last 11
values are located below the inner lower warning limit. The X chart may
profitably be combined with an exponentially weighted moving average
(EWMA) chart. Therefore, we will continue this example in Chapter 3
where we examine the EWMA chart. Usually one would use more than
six values to calculate the chart. However, to be able to start the
monitoring without too much delay it may be practical initially to use
fewer values than usual.
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Table 2.6 The number of days between registered Clostridium
difficile infections.

Number of days elapsed
between present and

subsequent infection 02777

Infection # (x) )
1 30 2.572
2 18 2.231
3 31 2.595
4 129 3.856
5 102 3.612
6 18 2.231
7 8 1.782
8 6 1.645
9 19 2.265
10 169 4.156
1 283 4.796
12 99 3.583
13 75 3.317
14 4 1.470
15 3 1.357
le 2 1.212
17 3 1.357
18 4 1.470
19 5 1.564
20 1 1.000
21 1 1.000
22 14 2.081
23 8 1.782
24 9 1.841
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Figure 2.8 X chart showing the transformed value of number of days in between
consecutive registered cases of Clostridium difficile infections. Control limits and
upper and lower warning limits, three, two, and one standard deviations removed

from the centreline, respectively, are depicted on the chart. The chart was constructed
using the first 6 values.
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Example 2.7

A patient suffering from asthma made daily measurements of her peak
expiratory flow rate (PEFR) in the morning, prior to bronchodilator
treatment. The results of the first 19 measurements (see Table 2.7)
were used to calculate an X chart. If the values of the X chart are all
within the control limits, the patient’s PEFR is stable. This is only a good
thing if the patient is stable at a level that is clinically acceptable. Special
causes may disturb a given balance, no matter whether the latter is
clinically satisfying or not, and cause additional variation. These causes
may be a sudden change in the patient’s exposure to allergens, a change
in unspecific irritation, or the appearance of infections.

Figure 2.9 (a) shows the X chart, calculated using the 19 values that
are also depicted on the chart. Value # 13 lies above the UCL, and 3 out
of 4 consecutive values (# 10, # 11, # 12, and # 13) lie above the outer
upper warning limit (294 1/min) not shown. Therefore, the patient’s state
is not stable. As it turned out, during the period when the four values had
been measured the patient had lived with her aunt. Here the patient was
no longer exposed to a dog, tobacco smoke, or mites. Therefore, the
values# 10, # 11, # 12, and # 13 were deleted, and a revised control chart

Table 2.7 Peak expiratory flow rate/l/minute (PEFR) measured daily in
the morning in the same patient suffering from asthma.

PEFR before change PEFR after change
Day # of treatment Day # of treatment
1 121 1 310
2 140 2 307
3 99 3 325
4 150 4 346
5 268 5 380
6 150 6 312
7 100 7 384
8 122 8 376
9 152 9 354
10 315 10 370
11 321 11 365
12 275 12 325
13 367 13 368
14 200 14 350
15 138
16 175
17 150
18 150

19 180
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Figure 2.9 (a) X chart showing the peak expiratory flow rate/l/minute (PEFR)
measured daily in the same patient suffering from asthma. (b) X chart showing peak
expiratory flow rate/l/minute (PEFR) measured daily in the same patient. The chart
was calculated using the values shown in Figure 2.9 (a), following exclusion of values #
10, # 11, # 12, and # 13, depicted as crosses. (c) X chart showing peak expiratory flow
rate/l/minute (PEFR) measured daily in the same patient. The X chart was calculated
using values measured in the same patient, prior to a change in therapy (see Figure 2.9
(b)). The 14 PEFR values depicted on the X chart were measured after the treatment
had been changed and starting two weeks after the change had been initiated. (d) X
chart calculated from the peak expiratory flow rate/l/minute (PEFR) values depicted in
Figure 2.9 (c). These values are shown on the X chart.

was calculated, using the remaining values. The purpose of this was to
see if the patient’s condition was stable when she was staying at her
home, and if so, to learn what the nature of her condition would then be.
The mean value of the remaining 15 values was 153.00 l/min, and MR
was 46.50 I/min. Using these results, the estimate of the process standard
deviation is calculated to be 6 =4¢30 = 41.22 /min. The X chart has
UCL = 153.00 + 3-41.22 = 276.66 1/min, centreline = 153.00 1/min,
and LCL = 153.00 — 3-41.22 = 29.34 l/min.

Figure 2.9 (b) shows the X chart with the values entered. Now, the
patient’s condition appears to be stable. However, it is clinically unsatis-
factory since a few negative external influences may cause the patient to
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develop an asthma attack. Therefore, the treatment schedule was altered,
taking advantage of the experiences gained from the patient’s stay at her
aunt’s house. Figure 2.9 (c) shows 14 daily values measured after the
patient had been subjected to the new treatment for some time. The values
have been entered on the original X chart shown in Figure 2.9 (b). Since
all values lie above the UCL, it is quite clear that the change of treatment
(changing the system) has brought the patient out of her previous stable,
but clinically unsatisfying, condition. The question, now, is if the patient’s
new condition is stable. Figure 2.9 (d) shows the X chart, calculated using
the last 14 values that are depicted on the chart. Since they all lie within
the control limits, it appears that the patient’s new and improved condi-
tion is stable. The data used in this example have been extracted from a
paper by Boggs et al. [7] and modified slightly.

2.3 CONTROL CHARTS FOR VARIABLE
SAMPLE SIZE

When control charts are used for clinical purposes, each sample often
includes all patients seen during a specified period, e.g., a month. This
implies that the sample size may vary. However, it is often more con-
venient and practical to use equally sized sampling periods instead of
equally sized samples when sampling the entire production. Among the
control charts presented so far, the p chart and the combination X chart
and S chart may be used when the sample size is varying.

2.3.1 The p Chart

The centreline of the p chart with varying sample size is the same as that
of the chart with equal sample size. However, the control limits are

different. We have
UCL; = p + 3, /w (2.36)

LCL; = maX{O;p -3 M} (2.37)

and

i
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where 7; is the size of the ith sample. If p is unknown, p is calculated as

D;

1

k
> ni
=1

k
=1

(2.38)

>

where k is the number of samples, D; the number of nonconforming
products in the ith test sample, and #; its size. When p is unknown, p is
replaced by p in Equations (2.36) and (2.37).

Example 2.8

Anaesthetic mortality and serious morbidity occur infrequently and,
therefore, have limited value as indicators of quality of the anaesthetic
process in a single institution. However, less serious intraoperative
adverse events may change the patient’s postoperative course and are
associated with the development of ‘critical’ events. Therefore, they
may be observed to monitor the safety and quality of the anaesthetic
process. At the Trondheim University Hospital [8], Fasting and Gisvold
examined the frequency of recorded adverse events in data retrieved
from the department database from 1997 to 2001. We present the
results of their analysis of the occurrence of difficult emergence from
general anaesthesia that may be associated with life threatening pro-
blems with the airways or circulation during awakening. The results
were reconstructed from a reading of their figures. Patients younger
than 16 years of age and/or having cardiac anaesthesia were excluded.
During the period 1997 to 2001, 1123 difficult emergences from gen-
eral anaesthesia occurred out of a total of 45 088 general anaesthesias,
giving an average (p) of 0.025.

Table 2.8 shows the number of difficult emergences, the number of
anaesthesias given, and the fraction of difficult emergence for each
bimonthly period for a total of 30 periods during the five-year period
from 1997 to 2001.

Figure 2.10 (a) shows the p chart calculated, using all data. The
process is not in control. Two values are outside the control limits,
and 14 out of the last 16 values lie below the centreline. It turned out
that during the first quarter of 1999 the occurrence of difficult emergence
had been deemed unacceptably high. It had been found out that, in all
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Table 2.8 The number of general anaesthesias given, the number of difficult emer-
gences from anaesthesia, and the rate of difficult emergence from anaesthesia during
each of 30 bimonthly periods. After period # 14 a preventive program (intervention)
was initiated.

Number of Number of
general difficult Rate of
anaesthesias emergences difficult emergence

Bimonthly period # from anaesthesia anaesthesia from
1 1489 45 0.030
2 1466 45 0.031
3 1527 47 0.031
4 1579 55 0.035
S 1451 43 0.030
6 1567 36 0.023
7 1446 44 0.030
8 1520 41 0.027
9 1526 49 0.032
10 1452 54 0.037
11 1454 33 0.023
12 1436 46 0.032
13 1457 47 0.032
14 1562 47 0.030
Intervention
15 1484 22 0.015
16 1458 31 0.021
17 1535 26 0.017
18 1547 28 0.018
19 1482 22 0.015
20 1579 38 0.024
21 1463 32 0.022
22 1529 29 0.019
23 1452 31 0.021
24 1480 38 0.026
25 1519 17 0.011
26 1458 36 0.025
27 1570 36 0.023
28 1534 29 0.019
29 1560 41 0.026
30 1506 35 0.023

likelihood, the problems were due to residual drug effect or misjudge-

ment of the patient’s respiratory status before extubation. Therefore, as

part of a preventive program initiated, long-acting muscular relaxants

had been replaced by intermediate-acting muscular relaxants. During the

first 14 bimonthly periods (1997, 1998 and the first two months of

1999), there were 632 difficult emergences out of 20 932 anaesthesias
632

given. This gives a p value of 58355 = 0.030. Figure 2.10 (b) shows the
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Figure 2.10 (a) p chart for variable sample size showing the fraction of difficult
emergence from anaesthesia recorded during each of 30 bimonthly periods. All data
depicted were used to calculate the chart. The process is not in statistical control. (b) p
chart for variable sample size showing fraction of difficult emergence from anaesthesia
recorded during each of the first 14 bimonthly periods depicted in Figure 2.10 (a). The
data from all 14 periods were used to calculate the chart. The process is in statistical
control. (c) A p chart for variable sample size showing fraction of difficult emergence
from anaesthesia recorded during each of the last 16 bimonthly periods depicted in
Figure 2.10 (a). The data from all 16 periods were used to calculate the chart. The
process is in statistical control.
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control chart obtained using this value as the centreline. The first 14
fraction values with corresponding control limits are also depicted in the
figure. It shows the picture of a process in control. During the last 16
bimonthly periods, there were 491 difficult emergences out of 24 156
anaesthesias given. This gives an average value of 537t = 0.020.
Figure 2.10 (c) shows the control chart based on this value. It depicts
the last 16 values and corresponding control limits. This also is the
picture of a process in control. However, now the process has stabilised
at a significantly lower mean fraction of difficult emergence (0.020 which
is significantly lower than 0.030). It appears that changing the system
improved the quality.

Example 2.9

In a study by Norberg et al [9] conducted at a children’s hospital emer-
gency department, it was hypothesised that the blood culture contamina-
tion rate would be less when blood culture specimens were obtained from
a remote site, rather than through a newly inserted intravenous catheter.
To test this hypothesis, blood specimens for culture were first obtained
simultaneously with intravenous catheter insertion during a baseline
phase (January 1, 1998 to November 19, 1998). These data served as
baseline data. During a six-week implementation phase (November 20,
1998 — December 31, 1998), the specimens were obtained by a separate,
dedicated procedure. This specimen collection procedure was then con-
tinued during the post intervention phase (January 1, 1999 — December
31, 1999). The infectious disease expert was without knowledge of the
intervention phase, and the nursing staff members were unaware of the
ongoing data collection and analysis.

Table 2.9 shows the data. During the baseline period of 10 months,
2113 culture specimens were collected; 191 were contaminated. p, the
mean fraction contaminated during this phase, was 535 = 0.090. Using
this level, the control limits of each of the 22 months may be calculated
by inserting p and the number of specimens collected during the
month in Equations (2.36) and (2.37). For example, for month # 1

we obtain the limits: 0.090 % 3/222009%0 _ 6,090 4 0.059 = 0.031

to 0.150. The observed fraction of this month (0.099) lies within the
control limits.

Figure 2.11 (a) shows the p chart constructed, using the mean rate
obtained from the data collected during the initial 10 months. The
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Table 2.9 Number of blood cultures obtained, number contaminated, and fraction
of contaminated blood cultures on each of 22 consecutive months. Results obtained
during the first 10 months served as baseline data. Subsequently blood culture speci-
mens were obtained from a remote site (intervention).

Number of Fraction of
Number of blood contaminated contaminated

Month # cultures obtained cultures cultures
1 212 21 0.099
2 212 22 0.104
3 211 14 0.066
4 211 12 0.057
5 214 26 0.122
6 212 15 0.071
7 208 20 0.096
8 214 17 0.079
9 208 16 0.077
10 211 28 0.133
Intervention

11 169 4 0.024
12 165 2 0.012
13 169 6 0.036
14 168 2 0.012
15 168 8 0.048
16 169 8 0.047
17 171 S 0.029
18 169 3 0.018
19 167 7 0.042
20 169 5 0.030
21 171 4 0.023
22 170 3 0.018

observed rates and corresponding control limits are also depicted on the
chart. During the first 10 months the process is in a state of statistical
control since all observed fractions lie within the control limits. The
fractions observed during the subsequent 12 months are also depicted on
the control chart. It appears that following the intervention, the process
gets out of control since all values lie below the centreline, and 6 of the 12
values lie below the lower control limit. During the last 12 months, 57 out
of 2025 specimens were contaminated, giving an average contamination
rate of 0.028.

Figure 2.11 (b) depicts the control chart calculated, using this p value
and the corresponding 12 observed contamination rates. All values are
within their control limits. These data support the contention that the
intervention was successful since subsequent to the intervention the
process has stabilised at a new and significantly lower level.
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Figure 2.11 (a) p chart for variable sample size depicting the fraction of blood
cultures that were contaminated as calculated for each of 22 months. The data of
the first 10 months were used to calculate the chart. During the following 12 months
the blood specimens for culture were obtained from a remote site. Previously it had
been collected through a newly inserted intravenous catheter. (b) p chart for variable
sample size depicting the fraction of blood cultures that were contaminated for each of
12 months following the introduction of a new procedure for collecting blood speci-
mens for culture. The data depicted were used to calculate the chart. The process is in
statistical control.

2.3.2 The u Chart

A u chart is used instead of the ¢ chart to monitor the number of defects
per inspection unit when the number of inspection units varies between
samples. As for the ¢ chart, we assume that the number of defects per
inspection unit follows a Poisson distribution. The quantity #; is the
average number of defects per inspection unit in the ith sample. It is
calculated as

2 i
up =" (2.39)

ni
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where ¢;j is the number of defects of the jth inspection unit in the ith
sample, and #; is the number of inspection units in the ith sample. 7 is the
weighted mean of ;. It is calculated as

k k ni
Z u;n; ; Zjl Cij
= ’:2 == k" (2.40)
> >
i=1 i=1

where k is the number of samples. The number of defects per
inspection unit follows a Poisson distribution. Based on this assumption,
it may be shown that the standard deviation of #; can be estimated by

Gy = nﬁ (2.41)
Therefore, the u# chart has
UCL, — 7 + 3 nz (2.42)
centreline = 7 l (2.43)
LCL; =7 — 3 nz (2.44)

where UCL, and LCL; are the control limits of the ith sample.

The following example is constructed from data read from figures in a
study by Greene et al. [10]. The data have been modified a little, but the
main idea of the study has been maintained.

Example 2.10

Using a clinical information system, all episodes of acute sinusitis initiated
between January 1, 1999 and October 31, 2000 within a community-
wide individual practice association were identified. An episode of sinu-
sitis was defined as the diagnosis, treatment, and care of a single patient,
suffering from acute sinusitis. Each episode was evaluated in relation to a
sinusitis care pathway based on the most important elements of evidence-
based care such as use of proper first-line and second-line antibiotics,
proper sequence of diagnostic and therapeutic procedures, etc. For each
episode the information system generated the number of deviations from
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the care pathway. A deviation is referred to as an exception to recom-
mended treatment and care in the following.

Table 2.10 shows for each month, the number of exceptions occurring,
the number of episodes initiated, and exceptions per episode. A u chart
may be constructed from the data. 7 is calculated as the total number of
exceptions for the first 22 months (7216, see Table 2.10) divided by the
total number of episodes (22 0435, see Table 2.10) to obtain # = 0.327
exception/month. Using this value and Equation (2.41), the standard
deviation of each month may be calculated. For March 1999, e.g., the

standard deviation is equal to /%337 = 0.018. Therefore, the control

limits for this month are # + 36,, = 0.327 £ 0.054 = 0.273 to 0.381.
The observed number of exceptions per episode for this month (0.343) is
within the control limits.

Figure 2.12 (a) shows the # chart. The observed exceptions per episode
are also depicted on the chart. It appears that the process is in statistical
control up to and including month # 22, i.e., October 2000.

At this time, a multifaceted intervention program was initiated, consist-
ing of physician education, a locally developed sinusitis care pathway (see
above), feedback through a physician profiling system, financial incen-
tives, and patient education. To assess the impact of this program, the
exceptions per episode was calculated for each month covering the period
January, 2001 to December 31, 2001. These results are also shown in
Table 2.10. The number of exception per month, during this period, has
been depicted in Figure 2.12 (a). It appears that following the initiation
of the intervention program and contrary to the prior stable state during
the previous 22 months, the process gets out of statistical control.
Figure 2.12 (b) shows a u chart calculated from the data recorded during
the last 12 months of the period, following the start of the intervention.
Now the process has stabilised at a significantly lower level.

2.3.3 The X Chart and the S Chart

When the sample size varies, i and S as estimators of x4 and o are
calculated using weighted sample values, as follows

n; X;

n

I
_

(2.45)

=
Il

M-
2

I
_
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Table 2.10 Number of exceptions from sinusitis pathway, number of
sinusitis episodes initiated, and exceptions per episode on each of 34 con-
secutive months. Following month # 22 a multifaceted intervention pro-
gram was initiated (intervention).

Number of Number of Exceptions per

Month/year exceptions episodes episode
1/99 363 1010 0.359
2/99 345 1005 0.343
3/99 353 1029 0.343
4/99 308 997 0.309
5199 280 980 0.286
6/99 300 1001 0.300
7199 315 1021 0.309
8/99 335 995 0.337
9199 295 998 0.296
10/99 337 977 0.345
11/99 365 988 0.369
12/99 345 1021 0.338
1/00 360 994 0.362
2/00 337 989 0.341
3/00 322 1021 0.315
4/00 312 1011 0.309
5/00 350 973 0.360
6/00 360 1027 0.351
7/00 320 998 0.321
8/00 322 1019 0.316
9/00 285 992 0.287
10/00 312 999 0.312
Intervention

11/00 325 998 0.326
12/00 300 994 0.302
1/01 263 995 0.264
2/01 245 997 0.246
3/01 285 1009 0.283
4/01 230 994 0.231
5/01 2158 1022 0.210
6/01 234 1018 0.230
7/01 220 1015 0.217
8/01 237 981 0.242
9/01 220 997 0.221
10/01 230 1000 0.230
11/01 272 996 0.273
12/01 270 1022 0.264

First 22 months: 22 045 episodes and 7216 exceptions.
Last 12 months: 12 046 episodes and 2921 exceptions.
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Figure 2.12 (a) u chart depicting the number of exceptions from a sinusitis care
pathway per sinusitis episode initiated per month for each of 36 consecutive months.
The u chart was calculated using the data of the first 22 months; at the end of this period
a multifaceted intervention program was initiated. (b) # chart depicting the number of
exceptions from a sinusitis care pathway per sinusitis episode initiated per month, for
each of the last 12 of the 36 months depicted in Figure 2.12 (a). Two months prior to the
start of the present series a multifaceted intervention program had been initiated (see
Figure 2.12 (a)). The u chart was calculated using the data depicted on the chart. It
appears that the process has stabilized at a new and improved level, relative to that of
the first 22 months.

where X; is the mean of the ith sample, #; its size, and k the number of
samples, and

(2.46)

where §; is the standard deviation of the ith sample.
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The control limits of the X chart are defined by

fL+3 W (2.47)

k
where h = > n; — k+ 1 and c4(h) = c4 is defined in Section 1.2 and its
=1

approximate value can be found in Table 1.1 under # = b.

The S chart does not have a centreline because the expected value of
the standard deviation depends on the sample size. Instead the expected
value (the centre point) is calculated as follows

Centre point = c4(;) (2.48)

ca(h)

when o is unknown. The upper control limit of the ith sample is given

by

< 1-— 2 n;
vl = Gatm)S (1 +3 #)()) (2.49)

The corresponding lower limit is given by

_ '64(721-)3 1- Cf(”i)
LCL = max{O, () (1 — 3Tﬂi) (2.50)

These equations are derived in appendix B.

Example 2.11

This example was inspired by the study by Nizard et al. [11]. We used the
distribution of their data (see Table 1 in their paper). However, the time
sequence we have used is different from theirs, and the splitting of the
data into weekly samples is our own invention.
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At an orthopaedic department a computer tomography-based naviga-
tion system for total knee replacement (TKR) was introduced. This
technique was applied in 78 consecutive patients who had TKR of one
or both knees due to osteoarthritis or rheumatoid arthritis. Several out-
come measures were recorded. Here, we will focus on the alignment (the
angle of the femuro-tibial axis). The target value was 180°, and the
specification interval was 180° £ 3°.

Table 2.11 shows, for each of 19 consecutive weeks, the number of
TKRs performed, the mean and standard deviation of the corresponding
alignments, the expected standard deviation (the centre point), and the
UCL and LCL of the mean as well as of the standard deviation. Using
Equations (2.45) and (2.46), the grand mean and the pooled standard
deviation were calculated as

3.178.33+5-178.60 + ... +4-180.75
A: :1 1
" 315+...14 80.15

Table 2.11 Sample size, mean, standard deviation, upper (UCL), and lower (LCL)
control limits for the X chart and S chart, and centre point for the S chart of each of
19 samples of alignment measurements made in patients following total knee repla-
cement operation.

Sample Centre UCL
Sample standard LCL for UCL for point for LCL for for
Sample # 7  mean deviation X chart X chart S chart S chart S chart

1 3 178.33 3.21 176.19 184.11 2.02 0 5.20
2 5 178.60 3.13 177.09 183.22  2.15 0 4.49
3 2 179.00  2.83 175.29 185.01 1.82 0 5.96
4 4 177.25 2.63 176.72  183.58 2.11 0 4.77
S 3 179.00  2.00 176.19 184.11 2.03 0 5.20
6 6 180.33 2.66 177.35 18295  2.18 0.07 4.28
7 5 181.60 0.89 177.09  183.22 2.15 0 4.49
8 S 179.40 1.52 177.09 183.22  2.15 0 4.49
9 4 180.00 1.83 176.72  183.58 2.11 0 4.77
10 § 180.88 2.17 177.73  182.58 2.21 0.41  4.00
11 5 181.40 1.52 177.09  183.22 2.15 0 4.49
12 3 181.33 2.89 176.19 184.11 2.03 0 5.20
13 4 180.00 2.16 176.72  183.58 2.10 0 4.77
14 4 180.75 2.87 176.72  183.58 2.10 0 4.77
15 3 178.33 0.58 176.19 184.11 2.03 0 5.20
16 5 181.40  2.19 177.09 183.22  2.15 0 4.49
17 3 181.33 2.08 176.19 184.11 2.03 0 5.20
18 2 181.50 212 175.30  185.00 1.82 0 5.96
19 4 180.75 2.63 176.72  183.58 2.11 0 4.77
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and

_ 2., 2., 2,
\/3.21 243132 44 .. £2633 0

5= G+S+...+4) 19

k
respectively, h = Y n; — k+ 1 = 60. From the approximation formula
in Table 1.1, /=1

ca(h) = c4(60) = 0.9958.

Using Equation (2.47), UCL and LCL of the X chart may be calculated
for each of the 19 samples. For sample # 4, e.g., the control limits of the
X chart are calculated as

3.2.28

180.15 4+ — ==
0.9958/4

=180.15£3.43

giving UCL = 183.58 and LCL = 176.72. The centre point of sample # 4
for the S chart is calculated using Table 1.1 and Equation (2.50) as

S ~2.28-0.9213

calh) 09958 211

C4<ﬂl')

where c4(4) = 0.9213 and ¢4(60) = 0.9958. Using Equation (2.49) the
UCL is calculated as

cm)S [, L=ci(m)\  0.9213-2.28 Y1021
c4(n;) 09958 0.9213 -

Using Equation (2.50) we find LCL = 0.

Figure 2.13 (a) shows the X chart and Figure 2.13 (b) shows the
corresponding S chart. Judging from these results, we may conclude
that the standard deviation, as well as the mean, is stable.

The reader may find additional examples of the practical application
of control charts in the book by RG Carey and RC Lloyd [12] and the
book by MK Hart and RF Hart [13].
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Figure 2.13 (a) X chart for unequal sample size depicting femuro-tibial axis/degree
(e-e-o). Legends for centreline, upper (UCL) and lower (LCL) control limit are shown
in Figure 2.13(b). (b) S chart for unequal sample size depicting observed sample
standard deviation (e-e-e) of femuro-tibial axis/degree.
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3

Time-Weighted Control Charts

3.1 SHORTCOMINGS OF SHEWHART CHARTS

In Chapters 1 and 2, Shewhart charts were introduced. Shewhart charts,
especially the X chart and the X chart, have been used widely for monitor-
ing the process mean in industry. However, these charts have shortcom-
ings. In Chapter 1, the average run length (ARL) was introduced as a
performance criterion for control charts. The run length is the number of
observations that must be plotted before an observation indicates an out-
of-control condition. For an ideal chart, when the mean of a process has
not changed, the ARL should be large, and when the mean changes, the
ARL should be small to quickly indicate this change. When the process
variable follows a Gaussian distribution, the in-control ARL for an X chart
with 3o limits is 370, and when the mean has changed by 0.5 standard
deviation, the out-of-control ARL is 155. So when the process is in
statistical control, the X chart will signal a false alarm after 370 observa-
tions, on average, and when the process mean has changed by 0.5 o, the X
chart will not give a warning until after 155 observations, on average.
Column 2 of Table 3.1 lists the ARL for an X chart corresponding to
various step changes of the mean, shown in the first column.

Each ARL was calculated based on the corresponding probability
distribution. Obviously, the X chart can quickly detect large (2 and
30) step changes of the mean, but it is not sensitive to small step changes.
Simulations were used to obtain the ARLs for the other two control
charts, by repeatedly generating independent observations, all following
the same Gaussian distribution. For details see the legend for Table 3.1.

Statistical Development of Quality in Medicine P. Winkel and N. F. Zhang
© 2007 John Wiley & Sons, Ltd
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Table 3.1 Average run length (ARL) for X, cumulative sum (CUSUM), and expo-
nentially weighted moving average (EWMA) charts in the presence of various changes
in the mean value of the process. For the X chart, the ARL was calculated, and for the
two other charts, it was determined using simulation experiments.

In each experiment, a time series of data was generated by simulation using a Gaus-
sian distribution with standard deviation of 1.0 and initial mean of 0.0, and a control
chart was constructed, using these data. Then the mean of the Gaussian distribution
was changed and the run length recorded. This experiment was repeated at least 2000
times for each change of the mean and each type of control chart, and the ARL was
computed. The parameters of the CUSUM and EWMA charts have been adjusted to
give in-control ARL values approximately equal to that of the X chart.

Change of mean X chart CUSUM chart EWMA chart
(the unit is 1 (parameter, (parameters, (parameters,
standard deviation) k=3) h=4.76,k=0.5) A=02,L=2.87)
0.0 370.37 374.66 370.01
0.5 155.21 35.48 36.05
1.0 43.89 9.91 9.59
2.0 6.30 3.84 3.53
3.0 2.00 2.49 2.27
x 3
2
1
0
-1
-2
-3 b n n n n ;
0 20 40 60 80 100
Sample #

Figure 3.1 One hundred values were generated from Gaussian distributions and then
depicted on a control chart with centreline = 0.00, upper control limit = 3.00, and
lower control limit = —3.00 The mean of the distribution generating the first 30 values
was 0.00, while the mean of that generating the remaining values was 0.50. In both
cases the standard deviation was 1.00.

Example 3.1

Figure 3.1 shows an X chart with 3o limits. The centreline is 0.0, and the
standard deviation is 1.0. One hundred values are depicted on the chart.
The values were generated by simulation using Gaussian distributions.
The distribution generating the first 30 values had a mean value of 0.0,
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while that generating the remaining values had a mean value of 0.5. In
both cases the standard deviation was 1.0. Visually, we note a change in
the location of the values following the increase in the mean of the
distribution generating the values. However, the last 70 values are all
within the control limits of the control chart. Therefore, the X chart
cannot detect a small mean shift such as 0.5¢ in this data set.

3.2 CUMULATIVE SUM CHARTS

To improve the detection capability relative to that of the Shewhart
control charts, several control charts have been developed. Among
them, the cumulative sum (CUSUM) and the exponentially weighted
moving average (EWMA) charts are popular. Given a sequence of values
{X;} generated from a process, a CUSUM statistic is formed by plotting
the quantity

Ci= > (X - o) (3.1)

or the quantity

i

C = ZM (3.2)

=

where pg is the process mean or a target value, o is the process standard
deviation. We assume that o is known. Equation (3.2) is often referred to
as the standardised CUSUM or scaled CUSUM. We will use Equation
(3.1) for CUSUM charts. As long as the process remains in statistical
control, the mean of C; is 0. It may be shown that the variance of C; in
Equation (3.1) is io>. The CUSUM statistic will show variation in a
random pattern centred at 0 (but with increasing variations). If the
process mean increases, the charted CUSUM points will eventually drift
upwards, and vice versa, if it decreases. Therefore, if a significant
trend develops, we should consider this as evidence that the process
mean has changed, and a search for some assignable cause should be
performed.

CUSUM charts were first proposed by Page (1954) [1] and have been
studied by many authors. Early medical applications include [2—4]. The
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tabular form of the CUSUM is based on Wald’s sequential test (see
Chapter 6 on risk adjusted control charts), that is used to choose between
two competing hypotheses. For a specified type of outcome measure, a
quantity (W) is repeatedly calculated and used to update a cumulated
sum S;. This quantity depends on two competing hypotheses and
the observed outcome. The initial value of the sum (Sy) is usually set
equal to 0.

We have

Si=>_ W, (3.3)

where W, is the value corresponding to the jth observation. It has been
shown that the optimal choice for W; to discriminate between the two
hypotheses is based on the log-likelihood ratio [5, 6]. We have

W; = log (%’) (3.4)
)

where Lo, and Ly are the likelihood functions based on the hypotheses
Hy and H;. For example, assume the null hypothesis is Hy : © = 1y and
the alternative hypothesis is Hy : i = uy. This corresponds to testing if
the process mean has changed from p to ;. When the process variable
X;j follows a Gaussian distribution, the log-likelihood ratio W; in Equa-
tion (3.4) is equal to 2X;(11y — po) + (1§ — 17), which is equivalent to

X; = o — L (3.5)

K =550 s called a reference value.

The CUSUM chart may be designed to detect a positive deviation or a
negative deviation from the process mean . It is assumed that the
standard deviation of the process does not change. Assume that we want
to detect a step change of the process mean to a value of uq (g > o).
To do so, we cumulate the deviation of each observation (X;) from the
mean p, i.e., (Xj — pg). The Expression (3.5) becomes positive if X is
closer to 11 than to 1. This follows because “5¢ is the median between
the two values. Therefore, positive deviations are in favour of
the hypothesis that the mean = u4. By contrast, negative deviations are
in favour of the hypothesis that the mean = . The slack value, k, is
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the median value in the unit of one standard deviation, i.e., k = % =
B0, Thus, Expression (3.5) can be written as X; — iy — ko. We define a
function of the sample number, i, as

S4+(f) = max{0;S:(i— 1) + X; — uy — ko} (3.6)

This quantity is depicted on a CUSUM chart designed to detect an
increase in the process mean value. The following quantity is depicted
on a CUSUM chart designed to detect a decrease in the process mean (a
change to a value that is < )

S_(1) = max{0;S_(i — 1) — X; + uy — ko} (3.7)

The two charts may be combined into a single chart by plotting S (7)
above the line Y = 0 and —S_ (i) below this line.

The initial values of these two functions are usually set to 0, i.e.,
S:(0) =S8_(0) = 0. Having defined the function that we want to moni-
tor, we need to define a control limit (H). This is defined as a multiple (b)
of the process standard deviation (o). We have

H=h-o (3.8)

The parameter H is often called the decision interval. If either S, (i) or
S_(7) is larger than H the process is assumed to be out of control. The
choice of the parameters » and k determines the performance of the
CUSUM chart. It has been recommended [7] that using » =4 to 5 and
k=0.5 (which corresponds to pu; — oy = o) will generally provide a
CUSUM chart that has good ARL properties, against a shift of about
1o in the process mean. In Table 3.1, the ARLs of the CUSUM chart with
h=4.76 and k= 0.5 are listed for step changes of the process mean of
0.0, 0.5, 1.0, 2.0, and 3.0 in the unit of process standard deviation, o.
Based on simulation, it is found that the in-control ARL of the CUSUM
chart is 374.66, which is comparable to 370.37, the in-control ARL of
the X chart. By contrast, the out-of-control ARLs of the CUSUM chart
are smaller than those of the X chart for changes in the process mean of
0.5, 1.0, and 2.00.

For illustration, we applied the tabular CUSUM chart to the data
shown in Figure 3.1. With » = 5 and k = 0.5, a CUSUM chart is designed
to detect a change in the process mean of 1o.

Figure 3.2 shows a CUSUM chart based on a process mean of 0.0 and a
process standard deviation of 1.0 with upper control limit= 5.0 and
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Figure 3.2 One hundred values, generated from a Gaussian distribution, were used as
input to a CUSUM chart, designed to detect a mean shift of 1.00 standard deviation,
while the in-control mean of the process variable is 0.00 and its standard deviation is
1.00.h = 5.00and k = 0.50. S, (/) and —S_ (i) are depicted on the chart (the bars). The
deviation of each observation from the target value 0.00 is also shown (the dots).

The mean of the distribution generating the first 30 values was 0.00, while the mean of
that generating the remaining values was 0.50. In both cases the standard deviation
was 1.00.

lower control limit = —5.0. S, (i) and —S_(i) are depicted on the chart.
Thirty values are outside the control limits, starting from observation
number 54. The process mean was increased after sample number 30.
Therefore, the run length is 54 — 30 = 24, as opposed to at least 70 with
the X chart (see Figure 3.1).

The major advantage of using CUSUM charts relative to the She-
whart charts is that the former are more effective in detecting small
shifts in the process mean as indicated in Table 3.1 and illustrated in the
above example. The CUSUM chart also has another advantage. From
the Central Limit Theorem it follows that the cumulative sum with a
large number of observations will follow an approximate Gaussian
distribution even if the distribution of the process variable deviates
considerably from a Gaussian one. A disadvantage of the CUSUM chart
is that it is not as effective as the X chart in detecting large transient
changes in the process mean. Therefore, it is recommended to use a
CUSUM chart together with a Shewhart chart. One may add that the
CUSUM chart is not a very effective procedure for analysing and
diagnosing past data because the cumulative sums are correlated.
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Thus, contrary to the case for the X chart, systematic patterns of data,
e.g., long sequences above the centreline, cannot be used to diagnose
why a process is out of control.

To construct a standardised CUSUM chart (see Equation (3.2)), we
first define

The standardised CUSUM charts are constructed by plotting
S' (i) = max{0; S, (i — 1) + Y; — k} (3.9)
and

S’ (i) = max{0;S' (i— 1) — Y; — k} (3.10)

The recommended values of the parameters » and k are the same as for
the nonstandardised charts.

Example 3.2

In Example 2.11 we examined the alignment (the angle of the femuro-
tibial axis) as a measure of the outcome of a total knee replacement
(TKR) using a computer tomography-based navigation system in 78
consecutive patients. The target value was 180°. The mean of the 78
values was 180.18°, and the standard deviation was 2.038°. Assume we
want to detect a change of 1 standard deviation, u; — uy = 1o. The slack
value k will be 0.5. The target value is set equal to 180°.

Table 3.2 shows X;, X; —180—0.50, S_(i), 180 — X; — 0.50, and
S+ (7) for the first 20 observations. For example, for X; we obtain the
following values, (X; — 180) —0.5¢ = (176 — 180) —1.019 = —5.019°,
S_(1)=max{0;-5.019+S_(0)} =max{0;—-5.019+0.000} =0°, (180—
X1)—0.50=(180—176)—1.019=2.981°, and S, (1) = max {0;2.981+
S:(0)} =max{0;2.981+0.000} =2.981°, etc. For the upper and lower
control limits, we choose h =S5.0. They are 5.0-2.038°=10.19° and
—5-2.038°=—-10.19° respectively. Figure 3.3 shows S, (i) and —S_(i)
of all 78 values.

For comparison X; — 180°, the observed deviations from the target,
are also shown.
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Table 3.2 S_(i) and S, (i) calculated for the first 20 values of X; = (angle of the
femuro-tibial axis)/degree as measured in patients following total knee replacement.
The target value is 180, and the standard deviation is 2.038.

S_(i) = S, (1) =
max {0;S_(i — 1)+ max {0; S, (i — 1)+
i X; 180—X;—ko 180—-X;—ko} X;—180—ko X;—180—ko}
1 176 +2.981 +2.981 -5.019 0.000
2177 +1.981 +4.962 —4.019 0.000
3 182 -3.019 +1.943 +0.981 +0.981
4 182 +3.019 0.000 +0.981 +1.962
5 176 +2.981 +2.981 -5.019 0.000
6 177 +1.981 +4.962 —4.019 0.000
7 182 -3.019 +1.943 +0.981 +0.981
8 176 +2.981 +4.924 -5.019 0.000
9 181 -2.019 +2.905 -0.019 0.000
10 177 +1.981 +4.886 —4.019 0.000
11 177 +1.981 +6.867 —4.019 0.000
12 181 -2.019 +4.849 —0.019 0.000
13 175 +3.981 +8.829 —6.019 0.000
14 176 +2.981 +11.810 —-5.019 0.000
15 179 —-0.019 +11.791 -2.019 0.000
16 177 +1.981 +13.772 —4.019 0.000
17 181 -2.019 +11.753 —-0.019 0.000
18 177 +1.981 +13.734 —4.019 0.000
19 177 +1.981 +15.715 —4.019 0.000
20 183 —4.019 +11.696 +1.981 +1.981
= "
>
3 6
o o
L
-9
-14
-19 b A . . .
0 20 40 60 80
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Figure 3.3 Seventy-eight values of (angle of the femuro-tibial axis)/degree, measured
in patients following total knee replacement, were input to a CUSUM chart. The target
value of the chart is 180.00, and the standard deviation is 2.04. The chart is designed to
detect a change in the mean of +1.00 standard deviation with » = 5.00 and & = 0.50.
S (i) and —S_(i) are depicted on the chart (the bars or stars when outside the control
limits). The deviation of each observation from the target value 180.00 is also shown
(the dots).
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Figure 3.4 Seventy-eight values of (angle of the femuro-tibial axis)/degree, measured
in patients following total knee replacement, are depicted on an X chart. The values
were used to calculate the X chart. k, the parameter of the X chart, is 3.00.

Figure 3.4 shows the corresponding X chart where the target is 180°
and the process standard deviation is 2.038°. Contrary to the X chart, the
CUSUM chart for individual values showed that initially the process was
not in control, probably due to a learning effect. If one discards the first
20 observations and depicts the remaining ones on a CUSUM chart (not
shown), the standard deviation drops to 1.758°, and all CUSUM values
are well within the control limits.

3.3 EXPONENTIALLY WEIGHTED MOVING
AVERAGE (EWMA) CHARTS

The EWMA chart was introduced by Roberts (1959) [8]. See also Hunter
(1986) [9] for a good discussion of the EWMA. For a sequence of
observations of X; with mean u and variance o2, the EWMA statistic
is defined as

Z; = (1 — )»)Zi,1 + A X; (3.11)

where i =1,2,..., A is a parameter (0 < A < 1), and the starting value
Zy = u, the process mean. It may be shown that

1

Zi= 2SS =AY Xo ] 4 (1— 2 (3.12)
—0

]

Therefore, Z; is a weighted average of the X; (j=1,...,7) and p with
the weights of X; decreasing exponentially. The weight of the current
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observation is A, that of the previous one is A(1 — 1), etc. The older the
observation is, the smaller the value will be A(1 — A) with which it is
weighted. It may be shown that the variance of Z; is

(325)1 - (-2 (3.13)

When i is large, an approximate variance is

(ﬁ) o* (3.14)

An EWMA chart can be established by plotting Z; with the centreline at u
or a target value. The control limits are based on Equation (3.13). We have

UCL, :M+L0\/ﬁ[1 — (1= 1) (3.15)
centreline = p (3.16)
LCL; = p — LJ\/Z)Lj 1-(1- )L)Zi] (3.17)

where L is a parameter. When 7 > 10, Equation (3.14) may be used to
obtain the control limits

y
UCL =+ Loy /=——— 3.18
ptLoy/5— (3.18)

and

A

For illustration, the EWMA chart is applied to the data depicted in
Figure 3.1 with A =0.2 and L = 3 assuming a process mean of 0.0
and standard deviation of 1.0. The UCL and LCL are based on the
approximation formulae in (3.18) and (3.19).

The result is shown in Figure 3.5. Eight points are outside the control
limits, starting from the observation number 55. The mean of the
distribution, generating the data depicted on the chart, changed from
0.0 to 0.5 after the first 30 values had been generated while its standard
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Figure 3.5 One hundred values, generated from Gaussian distributions, were used as
inputtoan EWMA chart with target value = 0.00, 2 = 0.20,and L = 3.00. The mean of
the distribution generating the first 30 values was 0.0, while the mean of that generating
the remaining values was 0.50. In both cases the standard deviation was 1.00.

deviation remained equal to 1.0. Therefore, the run length of the EWMA
is 55 — 30 = 25.

When the X chart is used, the out-of-control condition (a value
outside the control limits) depends only on the current value. By con-
trast, when the EWMA chart is used, the out-of-control condition
depends on Z;, which is an exponentially weighted average of the
current and all prior values. After a while the weight of a given
observation assumes a value that for all practical purposes is 0 (see
Equation (3.12)). Therefore, it is outdated in the sense that it no longer
impacts on the value of Z;. The time elapsed before this to happen
depends on the value of 1. A = 1 implies that only the current measure-
ment influences the EWMA. Therefore, in this case the EWMA chart
becomes an X chart. One may increase the sensitivity of the EWMA
chart by decreasing the value of A, and vice versa.

The properties of the distribution of the run lengths of the EWMA chart
have been studied. These studies provide tables of ARL for a range of
values of A and L. To design an EWMA chart one specifies the in-control
ARL, the out-of-control ARL, and the magnitude of the change of the
process mean important to detect. Then one selects the combination of A
and L that provide (approximately) the desired ARL performance given



EXPONENTIALLY WEIGHTED MOVING AVERAGE (EWMA) CHARTS 89

the change deemed important to detect. In general, it has been found that
values of A in the interval of 0.05 < A < 0.25 work well in practice, with
A = 0.1 and 0.2 being popular choices. It has also been found that L. = 3
(the usual 3 sigma limits) works well.

Table 3.1 shows the value of the ARL of an EWMA chart with
A =0.2 and L =2.87 as a function of various step changes of the mean
value of the process. For comparison, corresponding ARL values are
shown for the X chart and the CUSUM chart. Like the CUSUM chart,
the EWMA chart performs well against small to medium sized step
changes of the process mean value. However, it does not react to large
changes quite as quickly as the X chart. The EWMA chart is often
slightly superior to the CUSUM chart in the presence of large shifts in
the mean value when A > 0.01 (see [7, p 432]). In addition, the
EWMA chart has the advantage that the current EWMA value pro-
vides a forecast of the process mean value at the subsequent sample
time [10, p 124]. The combined use of an X chart and an EWMA
chart improves the sensitivity of the control procedure to large tran-
sient changes of the process mean without sacrificing its ability to
detect smaller shifts quickly. It is possible to plot both X; and Z; on
the same control chart [11].

Example 3.3

In Example 2.6, we examined the time between consecutive Clostridium
difficile infections as a measure of the rate of infection. The distribution
was definitely not Gaussian and we, therefore, transformed the values,
using Nelson’s transformation Y= X"~ [12], but other approaches are
also possible [13]. The distribution of the transformed data did not
deviate significantly from a Gaussian distribution. Therefore, we
depicted the values on an X chart, using the first six values to calculate
the chart (see Figure 2.8).

Figure 3.6 shows the data depicted on a combined X-EWMA chart. The
UCL and LCL are based on (3.18) and (3.19). It is noted that the EWMA
detects a small decrease in the mean value that was not picked up by the X
chart. Conversely, the large increase in the mean value was picked up by
the X chart, but missed by the EWMA chart. This illustrates how the two
charts complement each other. Large, but transient changes in the mean
value are missed by the EWMA chart, but picked up by the X chart. Small
but persistent changes in the mean value are picked up by the EWMA
chart, but may go unnoticed for a long period if the X chart is used alone.
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Figure 3.6 The time/day (X) between consecutive Clostridium difficile infections
transformed using the transformation Y = X%2777 and then depicted on an X chart.
The initial six transformed values were used to calculate the X chart k, the parameter of
the X chart is 3.00. Superimposed on this chart is the corresponding exponentially
weighted moving average (EWMA) chart with A = 0.20 and L = 3.00. UCL is upper
control limit and LCL is lower control limit.
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4

Control Charts for
Autocorrelated Data

In Chapters 1, 2, and 3, Shewhart charts and other control charts were
introduced for monitoring process mean and process variance. A basic
assumption for applying these statistical process control charts is the
independence of the process measurements. In this chapter, we focus on
continuous process variables, define more precisely what independency
actually means, and present various tests of the assumption of indepen-
dency. To do so, we need to introduce the concept of a time series of
observations generated by the process that we want to study. A time series
may be viewed as the values taken on by a series of random variables
observed at different times. We will refer to a random variable belonging
to such a series as X; where the index indicates the sequence number of the
variable. The first variable in the sequence is X1, the second one X etc. The
sequences of measurements dealt with so far in this book were assumed to
have been generated by a sequence of random variables that all follow the
same distribution and are independent of each other. Thus introducing the
more complex concept of a time series was not necessary until now.

A series of random variables may be categorised as stationary or nonsta-
tionary [1, p 23-6]. The latter type is characterised among other things by the
random variables not all having the same mean and/or variance. Further-
more, the dependencies among the variables may not be simple. This is an
indication that the underlying process is not in statistical control. The topic
here, however, is to identify dependency between observations generated by
processes that are in statistical control. Therefore, the focus is on stationary
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time series. In section 4.1 we will introduce the concept of a stationary time
series. In section 4.2 we will introduce various tests that may be used to assess
if the variables of a stationary sequence are independent of each other.
Dependency among observations impacts on the performance of the
classical control charts for continuous data. In Section 4.3 we deal with
this topic and introduce alternative control charts. In Section 4.4 we
show how the choice of process standard deviation estimator impacts on
the performance of the control charts in the presence of autocorrelation.

4.1 TIME SERIES ANALYSIS

A series of measurements obtained from a process during some period is
a time series. In the following, we will assume that the period between
consecutive measurements is approximately constant. The length of this
period we shall refer to as a time unit. A time series x1,X2,...,X,, ... can
be viewed as the values taken on by a sequence of random variables
X1, X2,y Xy or {Xp,t=1,...,n,...}. The sequence x1,x2,...,

Xy, ... is called a realization of X1,X>,...,X,,.... We use the term
time series to mean both the sequence of random variables X;, X3,
..y Xy, ... and its realization. The sequence is stationary if it is in a

state of ‘statistical equilibrium’. This implies that the basic behaviour of
the time series does not change in time. In particular, the time series {X,}
have identical means and identical variances. The process corresponding
to a stationary sequence of random variables is referred to as a stationary
process.

4.1.1 Autocovariance and Autocorrelation

To examine the dependency between two random variables in a sta-
tionary sequence of random variables, we introduce the concept of
covariance between two random variables that are a specified number
of time units (t) away from each other. It is defined as follows

v(7) = Cov(X;, X;) = E[(Xi — )(X; — )] (4.1)

where j = i + v and i is the mean of the stationary process. When X; and
Xj (i # j) are independent from each other, the covariance between them
is zero. Therefore, when the covariance is not zero, the two random
variables are dependent. Strictly speaking, two random variables with
zero covariance are not necessarily independent. However, when both of
them follow Gaussian distributions the statement is true.
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Equivalent to the covariance, the correlation coefficient between two
random variables is often used to measure their linear dependency. The
correlation coefficient is defined as

p() = Pij = bl (4.2)

where j =i+ 1, 0; and o; are the standard deviations of X; and Xj,
respectively.

In a stationary sequence of random variables all pairs in the sequence
that are separated by the same number of time units have identical cova-
riances. Equations (4.1) and (4.2) apply to all pairs of variables separated
by 7 time units, i.e., for any i and T =0,+1,4+2,... For a stationary
process, the covariance (correlation) between random variables one time
unit apart is called the autocovariance (autocorrelation) of lag 1. In
general the autocovariance (autocorrelation) between variables 7 time
units apart is called the autocovariance (autocorrelation) of lag .

For a stationary time series, X1, X, ..., X, ... if there exist nonzero
p(t) for any 7 # 0, then the sequence is called autocorrelated. For a
stationary process, the autocorrelation of lag t is

() = 212 (43)

where o2 is the process variance. For a sequence, X, Xs,...,X,, the
autocovariance at lag = can be estimated by

n—t

> (X = X)(Xipe = X)
. i=1
- 44
0 — (44)
fort=0,1,...,7n— 1. In particular, when 7 = 0, $(0) is an estimator of

the process variance. In practice, the traditional sample variance S, which
uses (7 — 1) in the denominator of Equation (4.4) instead of 7, is often
used in place of #(0). The corresponding estimator of the autocorrelation
is given by

p(z) = 10 (4.5)

Because it is assumed that the mean and the variance are stable, we
estimate the variance using all the measurements.
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Intuitively, it makes sense to use the autocovariance (or the autocor-
relation) as a measure of the dependency between variables which are a
specified number () of time units apart, as may be realised from the
following reasoning: We define high values as values that are higher than
the mean, and low ones as values lower than the mean. If X; and X; are
positively related, their values tend to be either both high or both low. In
either case the corresponding product in the sum of Equation (4.4) will
be positive. If they are negatively related, a high X; value tends to be
accompanied by a low X; value and vice versa. In either case, the
corresponding product in the above sum will be negative. If X; and X;
are unrelated, positive and negative products will appear at random.
Therefore, the above sum will be 0 or close to 0.

Example 4.1

We want to estimate the lag 1 and lag 2 autocovariance of the stationary
sequence of random variables {X1, X3, X3, X4, X5} based on its realiza-
tion {x1,x2,x3,x4,xs5}. The time series includes 5 consecutive values
measured one day apart; the corresponding time axis includes the values
1 through 5 corresponding to the 5 days. x4 is the value measured on day #
1, x, is the value measured on day # 2, . . ., x5 is the value measured on day
# 5. To estimate the lag 1 autocovariance, we calculate

(1 = %) (%2 = %) + (%2 = %) (%3 = %) + (%3 — %) (x4 = %) + (x4 = X) (x5 — %)

The lag 2 autocovariance may be calculated using the same principle. We
calculate

(1 —=%)(23 — %) + (x2 = X) (x4 — %) + (x3 — %) (x5 — X)
5-2

As the lag increases, the number of pairs of values available to estimate
the covariance declines (see Equation 4.4).

4.1.2 Stationary Time Series Models

We now introduce some simple stationary time series models for our
future use.
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4.1.2.1 White noise

The time series X1, X5, ..., X,,, ... is called white noise if

1. X; are identically distributed with zero mean and the same finite
variance.

2. Cov[X;,Xj] = 0 when i # .

The autocorrelation function (ACF) is the autocorrelation coefficient
depicted as a function of the lag. It follows from (2) above that the
nonzero lag autocorrelations are all 0.

4.1.2.2 First order autoregressive (AR(1)) processes

The time series X1, X2,..., X,,... is called a first order autoregressive
(AR(1)) process if

Xi—pn=¢Xi-1 — ) +a (4.6)

where ¢ is a constant and g; are random variables from white noise. In
(4.6), w is the process mean. Equation (4.6) indicates the relationship
between the term (X; 1 — i), the deviation of the previous measurement
from the mean and the deviation of the current measurement from the
mean (X; — ). This models the dependency between the measurements.
The magnitude of the dependency is determined by ¢. This creates a
positive dependency between the measurements when ¢ > 0. When
|¢| < 1, the process is stationary. It may be shown that p(t) = ¢*. There-
fore, the ACF depicts a series of autocorrelation coefficients that are
decaying exponentially as a function of the lag. When ¢ > 0, we refer to
this by saying that the process measurements are positively autocorre-
lated. Conversely, when ¢ < 0, we say the process measurements are
negatively autocorrelated. And, in particular, when ¢ = 0, X; = u + a;,
i.e., the process is a mean plus white noise.

4.2 TESTS OF INDEPENDENCE OF MEASUREMENTS

For given time series data, we need to test whether the data are generated
by statistically independent random variables or not. When the data
follow a Gaussian distribution, this is equivalent to testing whether the
autocorrelations of the random variables generating the data are 0 or not.
It may be shown that if the stationary time series is not autocorrelated,
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then the sample autocorrelation for any lag larger than 0 follows a
normal distribution with mean 0 and an approximate standard deviation
\/Lz [1, p 32-4], where 7 is the length of the time series and large. This
result is used to test whether a time series is autocorrelated or not.

Example 4.2

In clinical biochemistry, the quality of an assay, used to measure the
concentration of creatinine, is monitored once a day by using the assay to
measure the concentration of creatinine in the same stable quality-
control material. The initial results are used to construct an X control
chart. If the control chart values depict a process in statistical control, the
assay is assumed to be stable. Future values are depicted on the control
chart to verify that the analytical level remains stable.

Figure 4.1 shows 66 consecutive values, used for the quality control of
the assay. The cyclical nature of the pattern of values indicates that they
may be positively autocorrelated.

Figure 4.2 shows all pairs of consecutive values, i.e., x; versus x;1.

The estimated lag 1 autocorrelation calculated using these pairs of
consecutive values is 0.273. If the absolute value of the estimated auto-
correlation is > -2 = 0.246, the autocorrelation is statistically signifi-
cantly different from 0 at the 5 % level of significance. Therefore, the
series of creatinine values is significantly autocorrelated.

Figure 4.3 depicts the estimated autocorrelation function of the time
series. It shows a 95 % confidence band for the autocorrelation function
with limits of i\/%.l for each lag, assuming the time series is not

188 -
185 -
182 F
179 |
176 -
173 F

170 L, ‘ ‘ ‘ ‘
0 20 40 60 80

Creatinine[t)/mmol/l

Time

Figure4.1 Quality control measurement values of a creatinine assay. The same stable
quality-control material was used, and the results were depicted as a function of time
(number of days) elapsed since the last calibration of the assay.
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Figure 4.2 Scatter diagram of the results of the control measurements made of a
creatinine assay at time ¢ (y-axis) versus the result made at time # + 1 (one time unit
ahead of it (x-axis)). The line depicts the regression of the former quantity on the latter.

autocorrelated. Therefore, if all the autocorrelations are within the
dashed lines, we conclude that the sequence is not autocorrelated. In
the present case, the lags 1, 6, 14, and 15 autocorrelations are signifi-
cantly different from zero.

We need to point out that the sample autocorrelation function is based
on the assumption that the underlying process is stationary. Namely, we
assumed that the mean of the process is a constant. However, the ACF
plot may falsely show significant autocorrelations if the underlying
random process does not have a constant mean.

0.5

0.5+

-1 ! ) ) L ! ! ! )

0 2 4 6 8 10 12 14 16

Figure 4.3 The autocorrelation function® with 95 % confidence interval limits® of 66

consecutive quality control measurements of a creatinine assay.

2 The autocorrelation function is the autocorrelation coefficient as a function of its lag.

b The two dashed lines depict the upper, and the lower limit, respectively, of the 95%
confidence intervals of the autocorrelation coefficients.
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Example 4.3

Figure 4.4 shows 450 data points generated by three Gaussian distribu-
tions, each generating 150 consecutive values. All distributions had a
variance of 1.0, while the mean was 0.0, 2.0, and 1.0, respectively, and
all values were generated independent of each other. The time series
generated was not stationary because the mean of the process was not
kept constant.

1l II! ! J
’ ’1 v

Al
|

0 150 300 450
Figure 4.4 Four hundred and fifty statistically independent results generated by
Gaussian distributions using simulation®. The x-axis depicts the sequence number of
the values and the y-axis depicts the value generated.
#The mean value of the distribution generating the first 150 values was 0.0, that of the
distribution generating the next 150 values was 2.0, and that of the distribution

generating the last 150 values was 1.0. The standard deviation of all 3 distributions
was 1.0.

Figure 4.5 shows the corresponding ACF plot with a 95 % confidence
band for white noise.

This is the pattern that one would expect if the measurements were
strongly autocorrelated. Therefore, using the ACF to check whether the
process is autocorrelated may be misleading, unless the time series is
stationary [2].

We recommend a ‘runs test’ to supplement the ACF plot. The runs test
of randomness is a nonparametric test based on runs up and down. For a

time series generated by Xi, X3, ... we form a sequence of (7 — 1) plus
and minus signs by noting the signs of successive differences generated by
D;=X;;1 —X;fori=1,2,...,n— 1. A run is defined as a succession of

one or more identical signs that is preceded and followed by a different



100 CONTROL CHARTS FOR AUTOCORRELATED DATA

) M
oM

{72 W
4] WAL TAT T
-0.5
-1 . . . . . )
0 20 40 60 80 100 120

Figure 4.5 The autocorrelation function® with 95 % confidence interval limits®

of 450 statistically independent values generated by Gaussian distributions® using

simulation.

2 The autocorrelation function is the autocorrelation coefficient as a function of its lag.

b The two dashed lines depict the upper, and the lower limit, respectively, of the 95 %
confidence intervals of the autocorrelation coefficients.

¢ The mean value of the distribution generating the first 150 values was 0.0, that of the
distribution generating the next 150 values was 2.0, and that of the distribution
generating the last 150 values was 1.0. The standard deviation of all 3 distributions
was 1.0.

sign or no sign at all. A run comprising positive signs is referred to as a
‘run up’ and one comprising negative signs, a ‘run down’. For example,
the sequence {1,7,3,2,5,6} is transformed to the difference sequence
{6,—4,—1,3,1} by calculating 7 — 1 = 6,3 — 7 = —4, etc. This series in
turn is transformed to the sign sequence {+, —, —, 4+, +}. We denote the
random variables corresponding to the numbers of up-runs and down-
runs by R, and Ry, respectively. In this example, n =6, R, =2 (two
sequences of plusses), and R; = 1 (one sequence of minuses). The test
statistic is the total number of runs, V = R,, + R,. Here the value of V is
3. The null hypothesis is that the sequence {X;,i = 1,...,n} is random.
The distribution of V under the null hypothesis was derived and given in
a table in Gibbons (1986) [3]. For large samples, the standard normal
distribution can be used with

—2n—-1
z7-V=Gn-1 (4.7)
16n —29
90
where 221 is the approximate mean of V, and 1252 the approximate

variance. A continuity correction of £0.5 can be incorporated in the
numerator of Z. In the above example, the approximate mean and
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variance of V are 3.67 and 0.74, respectively. For illustrative purposes
we calculate the large sample test statistic with continuity correction. It is

3-367+05
V0.74

Had the sample been large, the hypothesis, that the series is random,
could not have been rejected at the o = 0.05 significance level since the
test statistic does not exceed (in absolute value) the cut off value of
o1 - ¢) = 1.96, obtained from the standard Gaussian distribution.
For the data plotted in Figure 4.4, the p-value = 0.36, indicating the data
are not autocorrelated.

—0.20.

4.3 CONTROL CHARTS FOR AUTOCORRELATED
DATA

In this section we first analyse the impact of autocorrelation on tradi-
tional control charts. Then we discuss two types of control charts that
may be used in the presence of autocorrelated data.

4.3.1 Performance of Traditional Control Charts

Many statisticians and statistical process control (SPC) practitioners
have found that autocorrelation in process data has impact on the
performance of the traditional SPC charts. Autocorrelation may be
caused by the measurement system, the dynamics of the process, or
both. In many process industries, the data may exhibit a drifting beha-
viour. In biology, random biological variation, e.g., the random burst in
the secretion of some substance that influences the blood pressure, may
have a sustained effect so that several consecutive measurements are all
influenced by the same random phenomenon. When the sampling inter-
val is short, autocorrelation, especially positive autocorrelation of the
data, is a concern. In the following example we study the impact of
positive autocorrelation on the performance of various traditional con-
trol charts. To produce autocorrelated data we use simulation of the
stationary first order autoregressive (AR(1)) process with 0 < ¢ < 1.

Example 4.4

The aim of the study was to assess the impact of various magnitudes of
autocorrelation on the type-1 error rate expressed as the in-control ARL
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and on the type-2 error rate expressed as the out-of-control ARL for
various changes in the process mean value. The magnitude of the auto-
correlation was varied, by changing the value of ¢ of the AR(1) process
(see Equation (4.6)). For each value of ¢, the ARL was measured when the
underlying process was in statistical control and when it was not. Simula-
tion was used to study the impact of each type of time series. In each case,
at least 2000 time series were generated. For a stable process (no change in
process mean), the run length was measured for each series and the
average value computed to obtain the in-control ARL. For an unstable
process the mean value was changed during the simulation of a series and
the run length then measured. The average of the 2000 series was calcu-
lated to obtain the out-of-control ARL. We studied the impact on the X
chart, the CUSUM chart, and the EWMA chart. For the X chart, 3o
control limits were used. For the EWMA chart, A was 0.2 and the control
limits were also the 3o limits. For the CUSUM chart we used the ARLs
reported by Lucas [4]. The parameters used were, » = 5.0 and k = 0.5, for
the tabular form of the chart. For reasons presented in Section 4.4, the
sample standard deviation (see Equation (4.11)) was used in place of the
estimate based on the moving range (see Equation (4.12)).

The results of the study are shown in Table 4.1. Column 1 shows the
magnitude of the autocorrelation, ranging from no autocorrelation
(¢ =0) to ¢ = 0.9. Column 2 shows, for each value of ¢, the magnitudes
of the mean value changes studied in the unit of process standard
deviation (0.0, 0.5, 1.0, 2.0, and 3.0 standard deviation). Column 3
shows the behaviour of the X chart. The in-control ARL is not adversely
affected by the presence of autocorrelation. When ¢ < 0.25, the auto-
correlation has small impact on the out-of-control ARL. When ¢ > 0.5,
however, the autocorrelation has a large impact on the ARL. The in-
control ARL and the out-of-control ARL both increase when ¢ increases.
The effects are especially clear when the mean shifts are small. In
summary, when the autocorrelation is medium to large, the X chart
will have difficulty in detecting small mean shifts. Columns 4 and §
show the behaviour of the CUSUM and EWMA chart, respectively.
When the process measurements are positively autocorrelated, even as
weakly as ¢ = 0.25, the in-control ARL is adversely affected. When
¢ = 0.25, the in-control ARL for the CUSUM and EWMA charts are
reduced to 119.35 and 139.55 from values of 465.00 and 547.71 when
¢ = 0. Even in the presence of a weak autocorrelation, the charts will give
frequent false alarms. On the other hand, the impact on the out-of-control
ARLs of CUSUM and EWMA charts is relatively small. Therefore, when a
process is positively autocorrelated, the in-control ARL of CUSUM and
EWMA charts will be greatly affected, and false alarms will occur.
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Table 4.1 Average run length (ARL) of X chart, cumulative sum (CUSUM)
chart, and exponentially weighted moving average (EWMA) chart as a function
of step changes of the process mean of increasing magnitudes (0.0 through 3.0
process standard deviation) and increasing positive autocorrelation of the
data.

ARL (each value calculated from
2000 time series generated by simulation)

Step change

of process X chart CUSUM chart EWMA chart
¢° mean value  (k"=3.0)  (h°=5.0,k=0.5) (A°=0.2,L=3.0)
0.00 0.0 370.40 465.00 547.71
0.5 155.21 38.00 44.60
1.0 43.89 10.40 10.75
2.0 6.30 4.01 3.73
3.0 2.00 2.57 2.38
0.25 0.0 381.60 119.35 139.50
0.5 160.53 30.02 32.81
1.0 46.61 10.58 10.72
2.0 7.25 4.16 3.85
3.0 2.21 2.64 2.41
0.50 0.0 400.74 49.23 56.00
0.5 181.15 25.76 26.96
1.0 56.42 11.43 10.79
2.0 9.16 4.34 4.00
3.0 2.60 2.64 2.50
0.75 0.0 496.04 30.98 31.45
0.5 235.98 22.74 21.82
1.0 74.33 12.67 11.30
2.0 14.42 4.73 4.56
3.0 3.59 2.83 2.58
0.90 0.0 833.59 29.02 26.24
0.5 413.03 24.40 21.09
1.0 157.72 15.38 13.19
2.0 27.09 5.84 5.08
3.0 6.24 2.85 2.72

@ ¢ is the parameter of the autoregressive function of first order (AR(1)) that generated the data
used. It was varied as shown in column 1. The larger ¢ is, the more autocorrelated the gen-
erated data are. For each combination of ¢ value and step change of the process mean (col-
umn 2), 2000 time series were generated using simulation. The white noise of the AR(1) was
simulated using a Gaussian distribution with variance 1.0 and mean equal to 0.0.

b The number of sample standard deviations that the control limits are removed from the
centreline.

¢ Control limit in the unit of process standard deviation.

dp= Bk, Therefore, k = 0.5 implies that u; is 1o larger than p, i.e., that the chart is
designed to detect a change in the process mean of 1o.

¢ The weight parameter of the EWMA statistic.
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We only report the results for positively autocorrelated series since
positive autocorrelation is by far the most predominant type within
biology. For a study of the impact of negative autocorrelation, the reader
is referred to Zhang (2000) [5]. We only considered a step mean change,
where the mean changes instantaneously and then remains stable at the
new level. However, other types of changes are possible, such as the
exponential shift (see the discussion in Harris and Ross (1991) [6]).

4.3.2 The Residual Chart

To accommodate autocorrelated data, various SPC methodologies have
been developed during recent years. One approach, proposed by Alwan
and Roberts (1988) [7], is to use a process residual chart. This procedure
requires one to model the process data. For example, an AR(1) model is
identified and the parameter ¢ is estimated from the data. Using this
estimate and the sample mean, the value predicted from the AR(1)
function is calculated and subtracted from the observed value to obtain
the process residual (see Chapter 5). Assuming the model is correct, the
residuals are statistically uncorrelated to each other. Therefore, tradi-
tional SPC charts such as the X chart, the CUSUM chart (e.g., Runger,
Willemain, and Prabhu (1995) [8]), and the EWMA chart (Lu and
Reynolds (1999) [9]) may be applied to the residuals. Once a change
of the mean or variance of the residual process is detected, it is concluded
that the mean or variance of the process itself has changed. It is assumed
that the in-control process is stationary.

The residual chart has the advantage that it can be applied to any
autocorrelated time series, in some cases even if the data are from a
nonstationary process. However, the X residual chart, which is an X
chart applied to the residuals, does not have the same properties as the
ordinary X chart, even though the residuals for a true model are statis-
tically uncorrelated. It has been shown that sometimes the detection
capability of an X residual chart is poor for a small mean shift [10].
The CUSUM residual and EWMA residual charts in general perform
much better than the X residual chart. However, all the residual charts
require time series modelling, which is a big disadvantage.

4.3.3 Traditional Control Charts with Adjusted Control Limits

Another more direct approach is to modify the existing SPC charts by
adjusting the control limits. For example, Vasilopoulos and Stamboulis
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[11] proposed the X chart with modified limits to monitor autocorrelated
data. Their studies, however, were limited to some specific time series
models, e.g., the AR(1).

Here we will introduce the EWMA stationary (EWMAST) chart pro-
posed by Zhang [12]. The chart is simple to implement, and no time series
modelling effort is required. It is constructed by charting the EWMA
statistic defined in Equation (3.11). However, instead of the variance given
in Equation (3.13), which applies for a stationary process without auto-
correlation, the variance for the EWMA statistic Z; is derived under the
assumption that the process is autocorrelated and stationary. At each point
in time, say 7 time units subsequent to the start of the time series, Zhang
[12] derived the variance of the EWMA from the process variance when
the process is stationary without autocorrelation (see Equation (3.13)) by
an adjustment using the following term

2 plk)(1 = )1 = (1= 2)*Y)] (4.8)

where i is the time unit number and & is the lag of the autocorrelation (the
term includes (i — 1) autocorrelations). Thus, the variance of the EWMA
is inflated if the process is positively autocorrelated, deflated if the
process is negatively autocorrelated, and unchanged if the process is
not autocorrelated. The following equation is used to calculate the
variance adjusted for autocorrelation

k=1

S (R ) Y (1— )% 2§ (R)(1 = A)F[1 = (1 — 2)20R
7= (725)0 1= (=2 + 23 o1 - 01 - (12 )
(4.9)

When i is large, the variance in the above can be approximated by

= (9)7

fori>M where M > 25. Thus, all autocorrelation coefficients of lag equal
to or larger than M are ignored. The ACF usually has to be estimated from
the data and 75 observations at least are required to estimate a coefficient.
It follows that at least 100 observations are needed before the above
equation may be used. The EWMAST chart is constructed in the same

1+ ZZ,O -1 - A)Z(Mk>]] (4.10)
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Figure 4.6 X chart calculated using 66 consecutive creatinine assay quality-control
measurement values. The values are depicted on the chart.

way as the EWMA chart except that the adjusted variance is used to obtain
the theoretically proper control limits.

Example 4.5

In Example 4.2 we examined a time series of creatinine values that was
positively autocorrelated, but weakly so.

Figure 4.6 shows an X chart constructed from these data and with the
values depicted on the chart. All values are within the control limits.
However, there are certain indications that the process is not in control
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Figure 4.7 The exponentially weighted moving average (EWMA) calculated using
the values of 66 consecutive creatinine assay quality-control measurement values.
A =0.2. Control limits that are 3 sample standard deviations removed from the
centreline are shown. The outer, but not the inner, control limits are adjusted for the
autocorrelation of the values. The UCL and LCL of the EWMA chart are based on
(3.18) and (3.19). The UCL and LCL of the EWMAST chart are based on (4.10).
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as evidenced by the starred data points signifying either a run of 8 or
more values on the same side of the mean or two out of three consecutive
values outside the 2 standard deviation warning limit or both.

Figure 4.7 depicts the EWMA with traditional control limits and the
EWMAST limits adjusted for autocorrelation. Two values are outside
the traditional control limits. These outliers are probably caused by
the positive autocorrelation. This is supported by the fact that all values
are within the EWMAST control limits.

4.4 EFFECT OF CHOICE OF PROCESS STANDARD
DEVIATION ESTIMATOR

In Sections 4.3.1 to 4.3.3, we have shown that autocorrelation impacts
on the performance of the traditional SPC charts and discussed the use of
alternative charts. To complicate matters it appears that the choice of
process standard deviation estimator affects the behaviour of the control
charts in the presence of autocorrelation.

When the data are from a stationary process, as in Example 4.4 and
the study in [5], the process sample standard deviation,

(4.11)

where k is the number of samples, was used to estimate the process
standard deviation as discussed in Section 4.1.1. For the residual chart in
Section 4.3.2, the process sample standard deviation or the estimators
based on the white noise standard deviation, which are based on time
series modelling, were used in the literature. For the EWMAST chart
proposed in [12], the process sample standard deviation was used. In the
study by Zhang [13], comparisons of the estimators of the process
variance were made using the minimum mean squared error (MSE)
criterion. In general the process sample variance was found to be a better
estimator than that based on the process modelling.

When the measurements are independent and follow a Gaussian
distribution,

EMR = Z' X”' (4.12)
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where k is the number of samples and the constant d, = 1.128 is an
unbiased estimator of o, i.e., E[oMr] = 0. Since this estimate is little
influenced by variation due to assignable causes [14], it was chosen in
favour of the estimate given in Equation (4.11) when estimating the
process standard deviation for the X chart. However, when the process
is autocorrelated, 6r may not be unbiased and thus may not be a good
estimator of the process standard deviation. In Appendix C, it is shown
that when the process is an AR(1) process with parameter ¢,

E[6mr] =0v/1—¢ (4.13)

Thus, in this case the process standard deviation estimator Gyr is a
biased estimator of the process standard deviation, and the bias is a
function of ¢. If o is used to estimate o and construct the control limits
for the X chart or EWMAST chart (see Equation (4.10)) when ¢ > 0,
both the in-control and the out-of-control ARL will be smaller than
when the sample standard deviation is used. Thus, when the process is
in control, more false alarms will be generated. Conversely, from Equa-
tion (4.13) when the process is negatively autocorrelated, i.e., ¢ < 0, on
average 6pr will be larger than the true process standard deviation. In
this case, when the process is out of control, the out-of-control alarms
will be delayed. Similar to [13], we performed a simulation to compare
the performance of 6pr and the sample standard deviation S given in
Equation (4.11) using the criterion of the minimum mean squared error.
From the simulation, we conclude that the sample standard deviation is a
much better estimator than the moving ranges. We propose the use of the
process sample standard deviation in Equation (4.11) to construct the
control limits for the X chart and EWMAST chart in the presence of
autocorrelation and stationarity.

However, one must be sure that the process is really stationary. If a
process is not autocorrelated, but does not have a constant mean, the test
given in Equation (4.7) may reveal the property of randomness. How-
ever, if a process is autocorrelated with an unstable mean we may miss
the fact that it is nonstationary if we use the EWMAST chart because this
chart is based on the assumption that the process is stationary. Thus,
there may be situations where it is relevant to test if a process is
stationary or nonstationary. Such tests are reviewed, e.g., in Box et al.
[1, p 207-11].
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Risk Adjustment






5

Tools for Risk Adjustment

When outcome measures are compared between healthcare units, it is
essential that the patients treated in the various units are comparable in
terms of severity of disease, co-morbidity, and other factors that may
influence the outcome. Otherwise, differences in case mix cannot be
distinguished from differences in quality of care. Full comparability
may be obtained experimentally, using random assignment of patients
to the healthcare units.

If this approach is not taken, the case mix may differ between health-
care units. One may then attempt to compensate for these differences by
using risk adjustment of the observational data [1]. Risk adjustment is
based on various statistical techniques. In this chapter, we will review the
techniques used. In subsequent chapters, we will explain how they may
be applied for risk adjustment. It seems prudent to stress at the start that
even if one uses all available statistical tools invented so far, full risk
adjustment may not be possible. We have no assurance that our attempt
to compensate for case-mix differences is going to work.

5.1 VARIABLES

The term variable is used to denote anything within a data set that varies.
The techniques used in risk-adjustment are mainly linear regression
techniques. Using these techniques a dependent variable is expressed as
a linear function of one or more independent variables (or predictors
or covariates) plus error. The independent variables are the risk factors
or indicators of ‘intervention’, e.g., patient assignment to a specified

Statistical Development of Quality in Medicine P. Winkel and N. F. Zhang
© 2007 John Wiley & Sons, Ltd
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healthcare provider. The dependent variables are the outcome measures.
An outcome measure is a variable, representing the outcomes of patient
treatment and care. Variables may also be classified mathematically
according to the type of data they represent (variable types). In the
following, we will first describe the major mathematical types of vari-
ables. Then, we will discuss a clinical category of variables, namely
outcome measures.

5.1.1 Mathematical Types of Variables

Variables may represent categorical or numerical data. Data used to
allocate a patient to a specified category, such as male sex, are categorical
data. Categorical data are binomial or binary if there are two possible
categories, and multinomial if there are more than two. A variable repre-
senting multinomial data, say k categories (k > 2), is usually transformed
into (k — 1) binary variables, each referring to a specified category where k
is the number of possible categories. The remaining category is the refer-
ence category. Each of the binary variables is usually set equal to 1 if the
patient belongs to the specified category and 0 otherwise. As an example,
let us take an outcome variable. Say patients are classified into three types
according to the result of an operation: (1) the patient died, (2) the patient
had a nonfatal cardiac incident, or (3) the patient neither died nor had a
nonfatal cardiac incident. We arbitrarily define one of the three categories
as the reference category. For instance, we may choose the category neither
death nor nonfatal cardiac incident as the reference category. The variable
death is 1 if the patient dies and 0 otherwise. The variable cardiac incident
is 1 if the patient has a nonfatal cardiac incident and 0 otherwise. If the
patient survives and does not have a nonfatal cardiac incident, both of
the above two variables are 0. Categories may be nominal (they cannot be
ordered meaningfully according to size) or ordinal (they can be ordered
according to size). An example of the first type is blood group, and an
example of the second type is cancer staging.

If the observations can only take numerical values, the resulting data
are numerical. If they can only take up to a finite or a countable, infinite
number of possible values, the data are discrete; otherwise they are
continuous. The corresponding variables are referred to as discrete and
continuous variables. Numerical data may meaningfully be subtracted
from each other and multiplied. This is not so for ordinal categorical data
(cancer stage 3 minus cancer stage 1 cannot meaningfully be equated
with cancer stage 2).
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5.1.2 Outcome Measures

An outcome measure may be continuous, like the length of stay in
hospital, a satisfaction score, etc. A continuous outcome measure may
be used directly as a dependent variable. Often the outcome of interest is
an event, e.g., the death following admission to a hospital of a patient
suffering from acute myocardial infarct (AMI). The event definition may
include a time constraint, e.g., death during the first 30 days following
admission, or it may not. In the former case, the outcome measure is a
binary categorical variable (death, yes or no?). In the latter case, the
outcome measure is continuous, i.e., the time until the event occurs.
However, when the study is terminated, the time until the event, for
instance death, is unknown for those patients who are still alive (their
‘survival times’ are censored), and this calls for a special type of analysis
(see, e.g., [2]-[6]) that is not presented in this book. Another possibility is
that the outcome is one of a number of distinct, mutually exclusive, and
exhaustive events. For example the events may be death, nonfatal cardiac
incident, or neither of these in diabetic patients during the first 30 days
after a major operation. In this case, the outcome measure is a multi-
nomial categorical variable. The outcome may also include multiple
events, like the number of complications occurring in a patient during
and/or following an operation, deaths per year, etc. In this case, the
outcome measure is a discrete variable since it can only take integer
values (in principle, an infinite number of integer values). However, they
are countable as opposed to real numbers that are not countable.

Here we will review the analysis of continuous outcome measures
(without censoring) and binary categorical outcome measures because
they are the most commonly used outcome measures in clinical quality
assurance and development.

5.2 STATISTICAL MODELS

Some kind of model is needed to transform the values of the independent
variables and the dependent variable, into a regression equation, relating
the former to the latter. Such a model describes the assumed relationship
in mathematical terms and is based on assumptions. Ideally, the assump-
tions should be fulfilled for the model to produce reliable results. There-
fore, these assumptions ought to be given some consideration. They
should, a priori, appear reasonably realistic. If possible, they should be
tested. In particular, if the model is known to be sensitive to deviations.
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It may be advantageous to reflect upon the general structure of the
system that one wants to analyse before a choice of model is made.
Ideally, a model should be rich enough to mirror a general structure. The
healthcare system may be viewed as a hierarchy of subsystems of units.
At the lowest level, we have the patients (not literally, of course). They
may be grouped into various clinical entities, for example patients
suffering from diabetes, patients suffering from arthritis, patients suffer-
ing from acute myocardial infarction (AMI), etc. The second level may,
for instance, be the physicians. Physicians may be grouped according to
specialty, experience, etc. The third level is physician practices and/or
hospital departments. They may be grouped according to volume, edu-
cational status, financial support, etc. A fourth level may be regions or
countries. However, in reality the structure may not be that simple. For
instance, the same physician may operate at more than one hospital, etc.
Usually the outcomes of patients from a specified clinical entity are
compared across the units of a higher level. For instance, the satisfaction
scores of diabetic patients may be compared between physicians within a
specified hospital. Or, in a slightly more complex version, the patient
scores may be compared across physicians as well as across hospitals. In
the latter example, the patients (the primary units) are sampled from
each physician, the physicians (the secondary units) are sampled from
each hospital, and the hospitals (the tertiary units) are sampled from say
a geographical region.

In Section 5.3, we present regression models that may be applied when
the outcome measure is continuous, and in Section 5.4 we present models
that may be applied when the outcome measure is a binary variable.
When the analysis is confined to a single group of patients, e.g., patients
treated by the same physician, single level regression analysis should be
applied. If several groups of patients are analysed, e.g., patients from
three different hospitals, hierarchical linear regression should be used.

5.3 REGRESSION ON CONTINUOUS
OUTCOME MEASURES

Here we review the linear regression models for continuous outcome
data. In Section 5.3.1 we present the single level linear regression. In this
model there is no hierarchical structure. Only one level is represented, the
patient level. In the subsequent two sections two important concepts are
explained, residual variation and interaction. As a rule, a regression
equation does not explain all the variation of the dependent variable.
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This residual variation should be measured. How this may be done is
explained in Section 5.3.2. The independent variables may influence each
other in the sense that the relationship between one independent variable
and the dependent outcome variable may depend on the value of a
second independent variable. This phenomenon is referred to as interac-
tion and is explained in Section 5.3.3. In Section 5.3.4 we address the
situation where the data structure is hierarchical and hierarchical models
usually should be applied.

5.3.1 Single Level Linear Regression

Regression may include one independent variable (simple regression) or
several independent variables (multiple regression). The following
invented example, relating duration of a surgical procedure to the oper-
ator’s experience, illustrates the principles of simple regression.

Example 5.1

Table 5.1 shows the operating times of the first five operations performed
by the same surgeon, using a new surgical procedure. We want to study

Table 5.1 Linear regression and power law regression of operation sequence # on
duration of the operation.

Square
Squared of linear Square
Sequence Operating  difference  Linear” regression Power law® of power
# time/hour from mean prediction  error prediction law error
(x) (y) (y—1.700*  (y) (y—y)? ») (y -9
1 5.000 10.890 3.700 1.690 4.696 0.092
2 1.500 0.040 2.700 1.440 1.679 0.032
3 1.000 0.490 1.700 0.490 0.920 0.006
4 0.500 1.440 0.700 0.040 0.600 0.010
5 0.500 1.440 0.300 0.640 0.431 0.005
Sum ND* TSS(adj)? ND* SSE¢ ND* 0.145
=14.300 =4.300

?Linear regression: operating time =4.7 — 1.0 - sequence #.
bPower law: operating time = 4.696 sequence # ~1484

¢ Not determined.

4Total sum of squares, adjusted (adj).

¢Sum of squares of errors.
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the relationship between the skills of the operator (the dependent vari-
able), expressed as the speed with which he/she finishes the procedure;
and his/her experience (the independent variable), expressed as the
sequence number of the procedure performed by him/her. To describe
the relationship, a linear function may be tried. This type of function is
characterised by two parameters: a, the intersection with the y-axis and
b, the slope. We have

operating time = a + b - sequence# (5.1)

The problem is to find appropriate values for a and b. Assume that we
have chosen a = 5.0 hour and b = —1.0 hour/sequence #. For each
observation, we may calculate the value, predicted from this linear
function. For example, for sequence # = 3.0, we have operating
time = 5.0 — 1.0 - 3.0 = 2.0 hour. To measure how good this prediction
is, we calculate the error (also called the residual), which is defined as the
difference between the observed and the predicted value. If it were zero,
we would have a perfect fit between model and observation. In the

example it is 1.0 — 2.0 = —1.0 hour. In geometrical terms, this is the
vertical distance from the observation to the chosen linear function (see
Figure 5.1).

The square of the error is (—=1)* = 1. To assess how well a given
function fits the observations, we calculate the square of each error
and add the results to obtain the sum of the squared errors (SSE). This
is a measure of the deviations of the observations from the regression
line. When a linear regression analysis is performed, the values of 2 and b
that minimise this sum are found. In the example, the resulting values are

Operation time/hour
w
T

2 .
[ ]
[ ) [ ]
0k L L L L L
0 1 2 3 4 5
Sequence #

Figure 5.1 Linear regression of sequence # of operation on operation time/hour.
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a = 4.7 hour and b = —1.0 hour/sequence #. The corresponding value of
SSE is 4.3.

The assumption of a linear regression is that the relationship between
the independent and the dependent variable is linear, except for random
variation. Therefore, before doing a linear regression, one needs to
assess the validity of this assumption. Figure 5.1 depicts the observed
values of Example 5.1 and the linear regression line that we have just
determined. The observations do not appear to be linearly related to the
sequence #. Sometimes, a problem like this may be solved, by using
some kind of transformation of the values of the independent variable or
the values of the dependent one, or both. If the relationship between
the variables after the transformation appears to be reasonably linear,
the regression is carried out, using the transformed values. The
result may be transformed back to the original metric, using the
reverse transformation. We will try this approach using the data of
Example 5.1.

Example 5.2

It turns out that a logarithmic transformation of both variables solves the
linearity problem. Therefore, we transform the data of Example 5.1, by
taking the logarithm of the values. We now need to find the values of a
and b that minimise the SSE of the following relationship

log(operating time/hour) = a + b - log(sequence #) (5.2)

Figure 5.2 shows the relationship found, using linear regression. We have
a = 1.547 and b = —1.484. This relationship seems to be linear except
for random variation because the observed values scatter at random
around the regression line.

Having transformed the problem into a linear problem and solved it,
we need to transform the solution back to the original metric. By defini-
tion, we have ¢/°¢®) = x. To go back from the logarithmic coordinate
system to the original one, we have to calculate the exponential function
of the result. Therefore, we calculate

elog(operating time/hour) __ e(a+h-log(sequence#

), implying

. —1.484
el 547( )

operating time/hour =
= 4.696(sequence #) 8,

sequence #



120 TOOLS FOR RISK ADJUSTMENT

5 17k
2
3 1.3+
£
= 09
5
g 05 N
\g‘, 0.1 .
& -03f
0.7k . . . o s

0 0.3 0.6 0.9 1.2 1.5 1.8
Log(sequence #)

Figure 5.2 Linear regression of the logarithm (log) of sequence # of operation on
log(operation time/hour).

This type of function (Y = bX¢) is called the power law. Using the power
law, the predicted values and SSE may be calculated. For example, for
sequence # = 3.0, we obtain the predicted value, 4.696 - 3.0714%% = 0.920,
the error 0.920 — 1.000 = —0.080, and the squared error 0.0064.

It is the rule, rather than the exception, in clinical work, that there is
more than one independent variable. In this situation multiple linear
regression should be used. The problem in multiple linear regressions is
to find a linear function of the following type

Yi=a+ b1 X1 +b,X0; + b3 X5+ -+ prp,‘ (53)

where Y; is the ith observation of the dependent variable, Xy;, X5;, etc are
the p independent variables as measured in patient # i, and a, by, by, etc
are the constant and the coefficients of the function, determined by using
the principle explained above, i.e., the constant and the coefficients are
determined so that the sum of squared errors SSE becomes as small as
possible. Statistically, it is assumed that the data may be described, using
the following model

Yi=a+ 51X+ 65X+ 33Xz + -+ BpXpi +€i (5.4)

where ¢; is a random deviation from the value of the unknown linear
function, the parameters of which we want to estimate. It is often
assumed to follow a Gaussian distribution with expected value 0 and
standard deviation o, €; and are assumed to be statistically independent.
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Because the parameters of the linear function and o are actually
unknown, they have to be estimated from the observations. It turns
out that the constant and coefficients (see Equation (5.3)) that we
determined by minimising the SSE are the best estimates. The same
reasoning, of course, applies to simple regression.

Once the best linear function is estimated, one may calculate for each
value of the dependent variable the corresponding (predicted) value,
using the estimated function and the values of the independent variables
(just as in the above example). The difference between observed and
predicted value is the error or residual. For each independent variable,
the linearity assumption may be examined, as shown in the above
examples. Various analyses of the residuals may be conducted. Ideally,
they should follow a Gaussian distribution and be independent of each
other. A careful study of the residuals of a model is important to
validate the linear model used and to detect unusual observations
(outliers). For details, the reader is referred to statistical textbooks

(see, e.g., [6]).

Example 5.3

Wetterslev et al. [7] studied the effect of optimising pulmonary
compliance with peroperative application of a positive end expiratory
pressure (PEEP) on postoperative complications and arterial oxygen
tension on day 2 (a-PO2-day-2), following upper abdominal surgery.
Forty patients were randomised to either PEEP or no PEEP. Arterial
oxygen tension during the operation (a-PO2), the duration of the
operation (op-time), the preoperative functional residual capacity
(FRC) reduction in 30° head tilt-down position (AFRC), and smoking
status, expressed as number of cigarette pack year (pack-year) were
measured in each patient as were other clinical and demographic
data.

Table 5.2 presents the data. There are two dependent variables, a
continuous one (a-PO2-day-2) and a binary one (Cpl, 1 if complication
is present, otherwise 0). Here, we will study the continuous one. The
independent variables include four continuous ones (a-PO2, AFRC, op-
time, and pack-year) and one binary (PEEP, 1 if PEEP was applied and 0
otherwise). The four continuous independent variables may be consi-
dered risk factors. The problem is to adjust for the influence of these risk
factors and then assess the impact of the intervention (PEEP) on the
dependent variable (a-PO2-day-2). This may be achieved, using multiple
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Table 5.2 Independent and dependent variables from study by Wetterslev et al. [7].

Independent Dependent
variables® variables’
pack- a-PO2- R .

i a-PO2;  AFRC; op-time; year; PEEP; day-2; Cpl;  Df b7

1 18.49 2.69 140 10 1 11.10 0 0.0031 0.000010
2 14.63 2.95 290 0 1 9.20 0 0.0034 0.000011
3 19.45 2.54 165 10 0 11.00 0 0.0059 0.000035
4 14.83 1.77 210 3 0 7.90 0 0.0281 0.000787
S 24.92 2.40 270 14 0 9.70 0 0.0374 0.001401
6 14.97 2.35 353 N 1 6.90 0 0.0428 0.001828
7 15.58 0.66 55 0 0 7.00 0 0.0481 0.002310
8 17.25 2.25 180 24 1 9.00 0 0.0521 0.002718
9 17.75 1.41 180 N 0 8.20 0 0.0550 0.003025
10 16.50 1.92 310 4 1 8.99 0 0.0637 0.004062
11 24.85 2.58 400 10 1 8.70 0 0.0676  0.004570
12 26.67 1.37 260 1 1 10.90 0 0.0951 0.009048
13 21.82 1.13 208 3 0 10.10 0 0.1106 0.012238
14 17.70 1.58 195 16 1 8.90 0 0.1216 0.014777
15 18.67 1.30 235 8 1 9.70 1 0.1568 0.024585
16 23.63 1.37 330 1 0 7.90 1 0.1857 0.034474
17 8.98 0.52 180 0 1 8.40 1 02177 0.047397
18 14.31 1.50 180 24 0 9.10 0 0.2382 0.056746
19 20.54 0.99 320 0 1 10.50 0 0.3059 0.093549
20 13.92 1.38 95 35 0 7.60 1 03251 0.105690
21 9.20 0.36 230 0 1 7.50 0 0.4121 0.169828
22 19.93 0.77 210 12 0 9.40 0 0.4175 0.174347
23 14.59 0.59 285 0 0 5.50 0 0.4305 0.185320
24 10.41 0.49 270 0 1 7.20 0 0.4467 0.199530
25 14.09 0.90 112 28 1 9.90 1 04684 0.219416
26 16.37 0.98 295 11 1 7.80 0 0.5053 0.255349
27 16.53 1.62 325 24 0 9.10 0 0.5407 0.292398
28 15.47 2.09 290 40 1 8.70 0 0.5692 0.324021
29 13.80 2.95 585 30 0 8.50 1 0.6351 0.403391
30 18.43 1.26 200 36 0 7.70 0 0.6918 0.478575
31 21.00 1.31 365 20 1 7.20 1  0.7163 0.513082
32 19.65 0.27 245 10 1 9.30 1 0.7338 0.538436
33 13.89 0.78 325 15 0 5.80 1 0.7711  0.594566
34 13.43 1.29 420 20 0 missing 1  0.8293  0.687785
35 18.55 1.18 225 40 0 8.50 1 0.8413 0.707867
36 11.07 1.35 470 25 1 7.10 1 09236 0.853033
37 22.04 0.36 450 10 0 7.50 1 09558 0.913478
38 14.05 0.50 343 27 1 6.90 1 0.9629 0.927153
39 11.15 0.84 285 52 1 7.70 1 09868 0.973754
40 7.61 0.06 350 45 0 5.70 1 09979 0.995719
Sum of squared probabilities 10.82800

“ The independent variables are, arterial oxygen tension during operation (a-PO2;), pre-operative
functional residual capacity reduction (AFRC;), operating time/minute (op-time;), cigarette
smoking in pack-year (pack-year;), and peroperative application of end expiratory pressure
(PEEP)).

b The dependent variables are, arterial oxygen tension on day 2 following operation (a-PO2-day-2;)
and presence of postoperative complication (Cpl;).

¢ Estimated probability of postoperative complication in patient # i based on regression of a-PO2;,
AFRC;, op-time;, pack-year;, and PEEP; on logit(p;) where p; is probability of postoperative
complication.
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Table 5.3 Output from regression of arterial oxygen tension during operation (a-
PO2,;), pre-operative functional residual capacity reduction (AFRC;), operating time/
minute (op-time), and peroperative application of end expiratory pressure (PEEP;)
on arterial oxygen tension on day 2 following operation (a-PO2-day-2,).

Standard error

Parameter”’ Estimate of estimate p

a 6.090 0.763 0.000
51 0.144 0.038 0.001
B2 0.620 0.217 0.007
Bs —0.005 0.002 0.003
Ba 0.699 0.322 0.037

@ Parameters of the regression: Y;=a+ (1 -a-PO2;+ B, - AFRC; + 33 - op-time; + (34
PEEP,‘ + &i.

regression of a-PO2, AFRC, op-time, pack-year, and PEEP on a-PO2-
day-2. Pack-year did not contribute significantly to the prediction and
was, therefore, excluded from further analyses.

Table 5.3 shows part of the output from a program that calculated the
regression of a-PO2, AFRC, op-time, and PEEP on a-PO2-day-2. The
estimates of the constant « and the coefficients (51, 52, 33, and (34) are
shown in column 2.

The coefficient of an independent variable X is equal to the change of
the dependent variable if all other independent variables are kept con-
stant and the value of X changes by one unit. Therefore, the effect of each
independent variable may be assessed when adjusted for that of the other
independent variables. The standard deviations of the estimates (stan-
dard errors) are shown in column 3. In column 4, the p-values calculated
by the program are shown. The coefficient of PEEP is significantly
different from zero (p<0.05). Therefore, we may conclude that PEEP
has an effect on a-PO2-day-2, in addition to the effect of the risk factors.
The regression equation is as follows

a-PO2-day-2 = 6.090 + 0.144 a-PO2 + 0.620AFRC
—0.005 op-time + 0.699 PEEP (5.5)

The estimated effect of a positive end expiratory pressure (PEEP = 1) on

a-PO2-day-2 is 0.7 kPa.

In clinical problems, there are often several independent variables (say
20 or even more) that are potentially related to the dependent variable. In
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this case, it may be desirable to remove variables that are redundant. A
redundant variable does not contribute significantly (either at the
p = 0.01 or p = 0.05 level of significance) to the prediction when the
essential variables have been included in the regression equation. There
are various techniques that may be used, and they do not always lead to
the same conclusion. Redundant variables may either be removed auto-
matically by a statistical program or semi automatically by the combined
use of statistical programs and clinical reasoning. The interested reader is
referred to [6, 8, 9, 10, 11, 12].

Example 5.4

In Table 5.2 the data of the 40 patients are shown. We will use
Equation (5.5) to predict the a-PO2-day-2 of the first patient who
received the PEEP intervention. Inserting his/her values in the equation,
we obtain

a-PO2-day-2 = 6.090 + 0.144 a-PO2 + 0.620 AFRC — 0.005 op-time
+ 0.699 PEEP = 6.090 4+ 0.144 - 18.49 4+ 0.620 - 2.69
—0.005 - 140+ 0.699 - 1 = 10.42 kPa.

The observed value was 11.10 kPa. Therefore, the error is 11.10 —
10.42 = 1.74 kPa.

In the above example, we modelled the risk factors and the treatment
using a fixed-effect model. When one is comparing the quality of treat-
ment between healthcare providers, e.g., two different hospitals, an
approach similar to that of the above example may be taken. One defines
a categorical variable, HOSPITAL-1 that is equal to 1 if the patient was
treated at hospital number one, and 0 otherwise. If there are more than
two hospitals, say k, one would define k — 1 binary variables and use
hospital # k as the reference hospital. It is then possible to conduct an
overall test to see if the effect of the hospital on outcome differs sig-
nificantly among the hospitals. If so, one may proceed and examine the
individual hospital coefficients.

When one is conducting a regression analysis or assessing the results of
one conducted by others, it is important to be familiar with two concepts;
unexplained variation and interaction.
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5.3.2 Unexplained Variation

The purpose of using linear regression is to predict the value of a
continuous outcome measure. To assess the usefulness of this prediction,
one needs to relate the observed outcome to the predicted one, for
instance by calculating the difference between the two. This difference
is called a prediction error. Alternatively, the ratio between the predicted
value and the observed outcome can be calculated. Analysis of
the prediction error allows one to assess how much of the observed
variation is actually explained by the regression equation. To

illustrate how this may be achieved, we return to Example 5.1 (see
also Table 5.1).

Example 5.5
In Example 5.1, we found the following linear regression function
operating time = 4.7 — 1.0 - sequence # (5.6)

We want to assess how well this regression function fits the observed
values. We do that by comparing the observed variation relative to the
regression line to the variation we would find if we were to disregard the
linear trend. In the latter case, the linear model reduces to

operation time = a + 0.0sequence # = a (5.7)

This model states that all values are constant, except for random vari-
ation. Therefore, the error of an observation is its difference from the
chosen constant, a. The value of a that minimises the sum of squares of
the errors is the mean value of the observed values, y = 1.700. Using this
model, the squared error of, e.g., observation # 4 (see Table 5.1) is
(0.500 — 1.700)* = 1.440. The sum of squares of these errors is referred
to as the adjusted sum of squares (TSS(adj)) [13, p 78-9]. Table 5.1
shows TSS(adj) and SSE. Because the former (14.300) is larger than the
latter (4.300), we conclude that the linear function explains more of the
variation of the data than a simple constant.

The ratio between SSE and TSS(adj) may theoretically vary between 0,
when there is no variation relative to the regression line, and 1 when the
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regression line is horizontal (see Equation (5.7)). In the first case, all of
the variation has been explained by the regression equation, and in the
last case, none of it has been. Therefore, TSSS(ad) may be viewed as that
part of the adjusted total Varlatlon (TSS(ad])) that is not explained by the
regression line. Consequently, R* = (1 — — ad7 =) [13, p 79 and 82] is that
part that is explained by the regression line. In multlple linear regression
analysis, SSE is calculated using the same principle as in simple linear
regression analysis. TSS(adj) may be calculated as explained above.
Therefore, R? = (1 — TSS( : d/)) may be calculated in multiple regression
analysis and used as a measure of the variation explained by the multiple
linear regression equation.

5.3.3 Interaction

The other important concept is interaction. We define this concept and
illustrate its meaning, using an invented example without random variation.

Assume that we observe two independent variables, X; and X;, and
one dependent one, Y. If the relationship between X; and Y depends on
the value of X, and vice versa, we say that X; and X, interact. To
examine if two continuous independent variables or one continuous
variable and one categorical one interact, we define a new variable
that is X3 = X - X,. If both variables are categorical, say binary, the
interaction is calculated as a variable with four levels, corresponding to
the four combinations (0,0), (1,0), (0,1), and (1,1). This new variable is a
categorical variable with 4 levels. Therefore, it has to be changed into
three binary variables. However, we will confine ourselves to an analysis
of one continuous and one categorical independent variable. We have the
following regression equation

Yi=a+ 51X+ BXo + 3:X5i + & (5.8)
For simplicity we omit the index 7 in the following. Whether X; and X,
interact or not may be tested. If 85 does not deviate significantly from
zero, it may be concluded that there is no interaction between X and X5.

Example 5.6

Figure 5.3 offers a graphical illustration of the concept of interaction.
Frame (a) illustrates the situation where the binary variable X; and the
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Y as a function of X; and X;

(a) (b)
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Figure 5.3 Interaction between X; and X;. Frame (a) illustrates lack of interaction
(the two lines are parallel). Frame (b) shows example of interaction (the two lines are
not parallel).

continuous variable X, do not interact. For both values of X; the slope of
Y as a function of X, is the same, i.e., the lines are parallel; and for all
values of X,, the difference between the Y value obtained when X; =1
and that obtained when X = 2 is the same. Therefore, Y as a function of
X is independent of the value of X3, and vice versa. Frame (b) illustrates
a case of interaction between X; and X;. The two lines are not parallel
signifying that the slope depends on the value of X4, and the distance
between the two lines is not the same everywhere signifying that Y as a
function of X; depends on the value of X,.

5.3.4 Hierarchical Linear Regression

To explain the basic principles of hierarchical models, we will use a
case story taken from the literature [14]. The aim of the study was
to compare physicians, treating type II diabetic patients within
a specified centre. The dependent variable was patient satisfaction. It
may be argued that it should not be risk adjusted [15]. But that is a minor
concern in this context. Each patient was asked to fill a questionnaire
pertaining to his/her satisfaction with his/her physician. The answers of
each patient were combined to obtain a satisfaction score, theoretically
ranging from 0 to 100. The objective of the study was to assess if there is
a difference across physicians in the mean outcome scores received,
adjusted for the relationship between appropriate independent variables
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Figure 5.4 Illustrates the hierarchical structure of the problem presented in the study
by Sullivan ez al. [14]. Level 1 is the patient level, and level 2 is the physician level.

and the satisfaction score. To simplify matters, we will focus on a single
patient-specific independent variable, namely the patient’s age.

Figure 5.4 depicts the hierarchical nature of this study. At the highest
level we have the physicians. They were sampled within the centre
examined. Within each physician, patients (the primary level units)
were sampled, their satisfaction scores measured, and their ages
recorded. If the patient age is related to the patient satisfaction, we
want to adjust for this relationship before we compare the mean satisfac-
tion scores between physicians. The size of the patient samples varied
considerably, ranging from 5 to 45 patients. Three types of models have
been used for this kind of problem. We review all three models, in
increasing order of refinement.

5.3.4.1 Single level model without provider effect

Until recently, this model has been the most commonly used in the
scientific medical literature. It states that

Yi=a+ 06X, +¢; (59)

where Y; is the score measured in patient # i, 7 runs from 1 to 7, and # is
the total number of patients; o and 3 are the parameters of the linear
relationship, X; the patient’s age, and &; a random deviation from the
linear relationship between patient age and satisfaction score.

Using this model, one pools all patient values and uses them to
estimate the relationship between patient age and satisfaction score.
The predicted outcome of each individual patient is calculated using
the resulting regression equation. Finally, the ratio between observed
and predicted outcome (or the difference) is calculated for each physi-
cian, and the results compared between physicians. This approach has
several shortcomings. In addition to the random variation, that is not
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incorporated in the model, there may be additional, unexplained varia-
tion that cannot be accounted for by the fixed parameters of the model.
This includes variability between physicians and variability between
patients, within physicians. In the above model this variation is pooled.
Thus, a distinction is not made between patients and physicians.

5.3.4.2 The single level model with fixed provider effect

If one is only interested in the k physicians included in the study and not
interested in making inferences about other physicians, one may use one
of them as a reference and define k — 1 fixed parameters, representing the
remaining k — 1 physicians. We, therefore, obtain the following model

k—1
Yi=a+BX;+ Y 6PH, + ¢ (5.10)

v=1

where Yj; is the score of the ith patient under physician # j, and Xj; is the
patient’s age; PH, is 1 if v = j and otherwise 0, and &, is the fixed effect of
physician # v.

One shortcoming of a single level model is that all observations are
assumed to be independent. However, studies often include clusters of
observations that have a natural tendency to be similar within clusters.

5.3.4.3 Hierarchical (or multilevel or mixed) linear regression

A hierarchical model of the above problem may be developed as follows:
We have k physicians. For each physician, e.g., the jth, we have
i=1,...,n; patients. Yj is the dependent variable that corresponds to
the ith patient for the jth physician. Xj; is the corresponding independent
variable. We have the following model

Y,',‘ =q;+ /BiX/'i + &ji (5.11)

where ¢j; is the random error. This model is referred to as a hierarchical
regression model. Sometimes it is also called a multilevel regression
model or a mixed model. It is often useful to centre the variable Xj; on
its grand mean X . Therefore, we express Equation (5.11) as

Yji = aj + 3;(Xji — X.) + ¢ji (5.12)

In a hierarchical model one operates with a number of levels combined in
a hierarchical structure. In the example there are two levels; the patient
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level and the physician level. Level 1 is the patient level. We will start
with the physician level model (the level 2 model). There are k physi-
cians. Each physician, e.g., the jth physician, is considered a unit sampled
from a population of physicians that we want to investigate (in the
example, the present and future physicians at the centre). The intercept
aj and the slope §; in the level 2 model have general random structures in
the paper by Sullivan ez al. [14]. By this we mean that they may both be
decomposed into a fixed component (fixed effect) that is common to all
physicians and a random component that varies at random from one
physician to the next one. Sullivan et al. found that the slope (/) had no
random component, i.e., that it is the same for all physicians. The
intercept, however, did have a significant general random structure.
Therefore, we have

a; =g+, (5.13)

where j goes from 1 to k and refers to the jth physician. Each physician’s
value consists of a fixed component (g, the grand mean of the population
of physicians) and a random deviation (v;) from this mean. In statistics, v;
is called a random effect. We assume that the random deviations follow a
Gaussian distribution with mean 0 and variance v?. For a specified
physician (physician # j), v; is an unknown constant, characterising
this particular physician.

The level 1 model models the satisfaction score, characterising each
patient. This score depends on the physician by whom the patient is being
treated and the independent variables characterising the patient, in this
case his/her age. Therefore, the level 1 model becomes

Yi=g+v+0(X;i—X.) +¢ji (5.14)

Y is the observed satisfaction score of the ith of those (7;) patients
belonging to physician number j; v; is the random effect due to the jth
physician; 3 the fixed slope effect; Xj; the age of the ith patient under
physician # j; and ¢j; is a random deviation from the expected value. It is
distributed with mean 0 and variance 2.

Main distinctive features of hierarchical models The hierarchical
model has three main distinctive features. It models differences between
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providers, it ‘shrinks’ the estimates of the providers’ average outcomes,
and it acknowledges the clustering of observations.

A Differences between providers The hierarchical model explicitly
recognises as many sources of variation in the data as there are levels in
the model. For instance, if we have two levels- patient and hospital- the model
includes two components of variation (1) within each hospital the variation
of the patients’ observed outcomes from the hospital’s true average outcome
and (2) the variation across hospitals in their true average outcomes.

At each level, the sources of variation may be random or systematic
(fixed effect). At the patient level, systematic effects include risk factors
such as age, co-morbidity, socioeconomic status, etc. At the hospital
level, they may include volume (number of patients received per time
unit), teaching status, etc.

B Shrinkage of estimates of provider outcomes When there are three
or more providers, the hierarchical model estimates their mean values
using a compromise between two extremes: (1) they all have the same
mean, namely the grand mean or (2) they each have a mean value
calculated from the values within the group (the traditional unbiased
estimate). The result is that the latter group means move towards the
grand mean. This movement is the ‘shrinkage’ caused by the hierarchical
model as compared to a non-hierarchical model. The smaller the sample
size of a group is, the more its mean ‘shrinks’.

C Clustering of observations Studies often include clusters of obser-
vations that have a natural tendency to be similar within clusters. For
instance, the patients treated by the same very skilled surgeon will all
benefit from that surgeon’s expertise. Similarly surgeons operating
within the same hospital tend to produce similar results. They all operate
under the same organisation and share the same facilities and resources.
This natural similarity means that the outcomes of the units within a
cluster are generally more correlated with each other than they are with
the outcomes of units from other clusters. The hierarchical model expli-
citly acknowledges and provides estimates of these intra-class correla-
tions. The larger the intra-class correlation is, the smaller is the effective
sample size. This has a bearing on the confidence intervals of the provider
effect that become wider.

For a review and discussion of various medical applications of multilevel
modelling the reader is referred to [16—18]. The chapter ‘Comparing
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outcomes across providers’ by AS Ash, M Schwartz, and EA Pekoz, in the
textbook by LI Iezzoni [1] provides an excellent and informal introduc-
tion to the topic.

Example 5.7

Table 5.4 shows a sample of the physicians examined in the study by
Sullivan et al. [14]. The mean patient score of each physician is estimated
as the unbiased group average (column 3) and again, using the hierarch-
ical model, as the physician mean plus the random effect (column 4). The
latter estimates are closer to the physician grand mean (68.0) than
the unbiased group averages. In the example study by Sullivan et al.
[14], the authors used the hierarchical model explained above (see
Equations (5.13) and (5.14)).

We present their results in Table 5.5. This table shows the estimates
of the parameters of the hierarchical model, the standard errors of the
parameters, and the corresponding p-values. The variance of the
population of physicians, v?, is significantly different from 0. This
means that the mean levels of the physicians differ significantly. There-
fore, it makes sense to estimate the random effects. In Table 5.5 the
estimated physician-specific random deviations from the grand mean
(g) are shown for three of the 81 physicians included in the study. In
each case, it has been tested if the random effect is significantly
different from 0. The results of these tests are also shown. The fixed

slope (), relating the deviation of a patient’s age from the average, to

Table 5.4 Estimates of mean patient satisfaction scores of individual physicians,
using individual sample means (X;) and a hierarchical model (&;).

Estimates based on

Individual hierarchical
Physician # Sample size sample means model
{7) (n;) (%) (G;)
S 28 71.4 70.5
1 21 69.6 68.9
Grand mean 68.0 68.0
6 45 67.9 67.8
8 11 66.6 67.2
7 16 65.1 66.8
81 23 56.8 62.1

3 25 54.0 60.3
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Table 5.5 Estimates, standard errors, and p-values of the para-
meters of the model: Y, = o + 3(Xji — X)) + ¢ji. For explanation
of parameters, see text.

Parameter Estimate Standard error P

g 68.000 0.859 0.0001
v? 24.780 8.387 0.0031
a1 —§ 0.910 3.554 0.7970
a3 — g —7.670 3.404 0.0245
g1 — & —5.870 3.476 0.0915
Ié] 0.153 0.051 0.0027
52 524.930 19.650 0.0001

the satisfaction score, was significantly different from zero. The phy-
sician-specific level is &;. It may be interpreted as the estimated score
of a patient who is treated by this physician and has an age equal to
the average.

One purpose of using a hierarchical model is to obtain the confidence
interval of oy, the individual physician level. Then, it may be determined
if the interval includes some benchmark value, say the national average
(see Chapter 7). If this is not the case, the physician is identified as an
outlier, and the reason for this should be investigated. Implied in this
approach is that k significance tests are performed, where k is the number
of physicians. If the tests are independent and the significance level is p,
the probability that at least one is erroneously classified as an outlier is
not p, but 1 minus the probability that none of them are erroneously
classified as an outlier, i.e., 1 — (1 — p)*. For example, if p = 0.05 and
k = 10, the probability is 1 — (1 — 0.05)10 = 0.401. This problem may
be remedied by choosing a lower value of p. However, the approach may
be problematic for two other reasons; (1) the assumption that the «;
follow a normal distribution is not particularly well founded, and (2) the
outlying physicians that we want to identify may inflate the variance of
the distribution and thereby hide all or some of the truly outlying
physicians. The resolution of these problems is the topic of ongoing
research [19].

In this section, we have dealt with continuous outcome measures.
More often than not the outcome of interest is binary. This problem
will be analysed in Section 5.4.
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5.4 LOGISTIC REGRESSION ON BINARY DATA

The task in logistic regression is to estimate the probability of a binary
outcome. This problem is approached by first translating it into a linear
problem, solving it, and then, by using the reverse transformation,
converting the result back to the original metric. We start with the single
level model and proceed to explain the hierarchical model.

5.4.1 Single Level Logistic Regression Model

In the present context, this model is used to predict a patient’s probability
of experiencing the event studied, e.g., death following an operation or
being assigned to a specified ‘intervention’ group. The variable of interest
is the probability, P(Y =1) =p, of the event. Various factors that
influence this probability are the risk factors or independent variables.
The probability p may be estimated as a proportion. If 30 patients out of
100 patients die, the probability (p) of death of future patients of this
type may be estimated as %5 = 0.3. The multiple linear regression model
is not applicable to describing the relationship between p and a number
of independent variables. One of the reasons is that the possible values of
p are confined to the interval [0,1]. To obtain a larger range of possible
values, the odds are used in place of the probability. The odds are the
probability (p) that a specified event takes place, divided by the prob-
ability (1 — p) that it does not. The calculation of the odds, given the
probability, and vice versa, may be done using the following equations

A
odds = 7 (5.15)
and
odds
=TT odds (5.16)

By taking the logarithm of the odds, we obtain a variable that may attain
values going from —oo to +o00. Therefore, we use this transformation and
relate log(:%5 ;) to the risk factors, using a linear regression technique. The
risk factors may be continuous, categorical, or a mixture of both
(see Section 5. 1) For a specific patient, patient # i, we have
log(odds;) = log(72- ) also referred to as logit(p;). We have:

logit(p;) = a + 01 X1 + 2 Xoi + B3 X3i + - - -+ BpXpi + € (5.17)
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where p; is the probability that patient # i experiences the event; «,
Bi,...,Bp are the parameters of the regression equation, and X, through
X,i are the p independent variables or risk factors, observed in patient # i.
g; is a random error. The latter quantity follows a binomial distribution.
Therefore, special programmes are required to estimate the regression
equation. We will analyse the data of Example 5.3 (see Table 5.2) using
such a program and study the output.

Example 5.8

The analysis of the data set of Example 5.3 revealed that the application
of PEEP was without influence on the odds of postoperative complication.

This is apparent from the results (see Table 5.6) of a logistic regression
of the risk factors smoking status (pack-year), change in functional
residual capacity (AFRC), duration of the operation (op-time), and the
treatment variable PEEP on the logit of the probability of the occurrence
of postoperative complication.

Table 5.6 depicts the estimated constant and the coefficients of pack-
year, AFRC, op-time, and PEEP. The standard errors and the corre-
sponding p-values are also shown. The coefficient of PEEP does not
differ significantly from 0, at the 5% level of significance. The coefficients
of the remaining independent variables all differ significantly from 0.
Therefore, the application of PEEP is not significantly related to the
occurrence of postoperative complications, given the values of the risk
factors. However, the latter are significantly related to the occurrence of

Table 5.6 Output from regression of cigarette smoking in pack-year
(pack-year,), pre-operative functional residual capacity reduction
(AFRC;), operating time/minute (op-time;), and peroperative applica-
tion of end expiratory pressure (PEEP;) on the logarithm of the odds
of occurrence of postoperative complication (logit(p;)).

Parameters” Estimate Standard error )4

a -2.158 1.489 0.147
B 0.100 0.040 0.013
B> -2.312 0.931 0.013
B3 0.011 0.005 0.023
Ba 0.121 0.915 0.895

7 Parameters of the regression: logit(p;) = o+ (1 - pack-year; + 3, - AFRC;
+ B3 op-time; + (34 PEEP;.
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complications. One may exclude PEEP from the model. Recalculating
the regression equation without PEEP, we obtain the following equation

logit(p;) = —2.065 + 0.099 pack-year,
—2.317 AFRC,; + 0.011 op-time;.

To calculate the odds corresponding to a given logit value, we calculate the
exponential function of the logit since by definition ¢'°8**) = x and, there-
fore, 85 = . Knowing the odds, one may calculate the correspond-
ing probability. Assume, e.g., that we want to estimate the probability that
patient # 1 (see Table 5.2) will develop postoperative complications. The
smoking status of this patient is 10 pack-year, his’her AFRC is 2.69, and

his/her op-time is 140 minutes. We have

log(ofiasl) =-2.065+0.099-10-2.317-2.69+0.011-140 = —5.768.

His/her estimated odds of developing postoperative complications are
e—3768 = (0.00313. Using Equation (5.16), we estimate the probability p;
as (298313 = 0.00312.

To appreciate the implications of a logistic regression, it is useful to
know how the coefficients ought to be interpreted. If the variable is con-
tinuous, < s the ratio between the odds (OR) of two patients. The
first patient has a value that is one unit higher than that of the second one. It
is assumed that the values of the other independent variables are the same in
both patients. For instance, for fixed values of the other variables, the OR of
two patients differing in smoking status by one pack-year is e*%° = 1.104.
If they differ by 10 pack-years, the OR is ¢%0%10 =2.691, etc. It is
assumed that the relationship between the continuous variable and logit(p;)
is linear.

When the dependent variable is categorical, ¢ js the ratio

between the odds of a patient, belonging to the category, and those of
a patient, belonging to the reference category, provided that the values of
the other independent variables are fixed. A binary variable is coded as 1
or 0 (as is an indicator variable resulting from the splitting of a catego-
rical variable into binary variables, see Section 5.1). Therefore, the
impact of a binary risk factor may be compared to that of another
one, by comparing the corresponding two coefficients. If the risk factor
is a continuous variable, the value of the coefficient depends on the unit
chosen (e.g., going from a unit of one mole per litre, to one of 100
moles per litre, the coefficient changes by a factor of 100). Clearly, the
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coefficients of different continuous risk factors, representing different
types of quantities, cannot be meaningfully compared.

Sometimes, the OR corresponding to a coefficient and the 95 % con-
fidence interval of the OR are presented in computer outputs. Since ¢ = 1,
it may be concluded (as a rule of thumb) that the coefficient differs sig-
nificantly from zero if 1 is not contained in the 95 % confidence interval of

the OR.

5.4.2 Unexplained Variation

When the outcome measure is continuous, the explained variation may
be assessed as R?, as explained in Example 5.5. Since R? of the logistic
model is always substantially less than 1, even with a perfect model, R? is
not appropriate to use. However, appropriate measures of explained
variation for binary dependent variables do exist [20] although
they are seldom calculated or reported. For example, a more useful
measure is

S pF — np?

where p; is the estimated probability from the logistic regression [20] that
>

patient number i experiences the event of interest, and p = =-— where y;

is the value of Y;, the binary outcome measure of patient # .

Example 5.9

This example is constructed using data from the study of surgical
patients, described in Example 5.8. Table 5.2 shows for each of the 40
patients the estimated probability of experiencing postoperative compli-
cation as calculated using the regression equation (see table 5.6)

logit(p;) = —2.158 + 0.100 pack-year, — 2.312 AFRC;
+0.011 op-time; + 0.121 PEEP;.

The table also shows the square of each of these probabilities and the
corresponding sum of squared probabilities. Since 16 of the 40 patients
developed postoperative complications, p = 16 = 0.4. From Table 5.2,
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40

we have that >~ p? = 10.828 and 2 = 40. When we insert these values in
i=1

Equation (5.18), we obtain

» 10.828 —40- 0.42

— =0.461.
©740.04-(1-04) 046

In this case, 100 — 46.1 = 53.9 % of the total variation is not explained.

5.4.3 Interaction

Interaction in logistic regression is defined and dealt with in the same
way as in regression on a continuous outcome measure.

5.4.4 Hierarchical Logistic Regression Model

Before we proceed to explain the hierarchical logistic regression model,
we first review the single level logistic regression models. Then,
we present an example where the hierarchical model has been applied.
For a review of the various types of models see the paper by DeLong
et al. [21].

5.4.4.1 Single level model without provider representation

Until recently, a single level model without provider representation was
often used in the literature. Under this approach, a logistic regression
equation is first developed from all the patient data. Using this equation,
the probability of an adverse event is estimated in each patient. The sum
of these probabilities, calculated for each provider, estimates the
expected number of patients experiencing the adverse event (E;, where
j is the provider number). O; is the corresponding observed number. %’ is
compared between the providers.

5.4.4.2 Single level model including fixed provider effect

This model includes the provider effect as a fixed effect. We have the
following model

k-1 m
lOgit(pﬂ') =oa-+ Z 6hPHh + Zﬁv(xy/,' — Xv) + Eji (519)
h=1 =

= v=1
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where pj; is the probability that patient # i, treated by provider
#7(j=1,...,k), where k is the total number of providers, experiences
an adverse event; X,; is the vth risk factor out of a total of m risk factors
observed in patient # 4, treated by provider # j; PH, is 1 for h = and
otherwise 0. X, is the mean of risk factor # v, and gji 1s a random
deviation. According to this model, the providers have different inter-
cepts. It is assumed that all observations are independent, and inferences
are made only about the providers actually studied.

5.4.4.3 Hierarchical models

It is also possible to use hierarchical logistic models. Their technical
implementation is different from that of models for continuous outcome
measures. However, conceptually they do not differ from the latter
models. We will present the results of a study of the 30-day mortality
of patients suffering from AMI.

Example 5.10

The study included 19 585 patients with AMI admitted to 163 hospitals
in Ontario [22]. The hospitals were classified into 4 peer groups: teaching
hospitals and three categories of non-teaching hospitals. The latter were
subdivided according to volume (patients treated per year) into 3 groups
receiving 1 to 50, 51 to 250, and more than 250 patients per year,
respectively. Adjustment for differences in case mix was done, using a
number of risk factors including age, sex, and various measures of
cardiac complications and co-morbid status (see legend to Table 5.7).
The model used was

logit(pji) = Boj + Z Bo(Xyi — Xy..) +€ji (5.20)
v=1

where pj; is the probability of 30-day mortality for patient # 7, treated in
hospital # j; and X,;; denotes risk factor # v measured in this patient
(v=1tom).

X,.. is the mean of risk factor # v and ¢;; is a random deviation. 3,; is
the effect of the hospital for a patient presenting with average risk factor
combinations. The level 2 model is

Boj = o + 101 + by + 363 + 7; (5.21)
Where «, is the mean value of teaching hospitals. 61 is 1 if the hospital is
a non-teaching large volume hospital, and otherwise 0, 8, is 1 if the
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Table 5.7 The estimates of the coefficients of hospital characteristics” from a hier-
archical regression analysisb of healthcare provider (hospital) (random effect), hos-
pital characteristics (fixed effect), and patient characteristics® on logit(p)? [22].

Parameter Estimate p

«, (mean intercept) —3.030 0.001
v*(variance of random intercept) 0.044 0.001
aq (large volume) 0.300 0.004
o, (medium volume) 0.460 0.001
a3 (small volume) 0.570 0.001

“ The hospitals were classified into four peer groups: Teaching hospitals (reference category)
and three categories of non-teaching hospitals, large volume (more than 250 patients treated
per year), medium volume (51 to 250 patients treated per year), and small volume hospitals
(1 to 50 patients treated per year).

% The hierarchical model included two levels, patients (level 1) and hospitals (level 2).

¢ Age, sex, congestive heart failure, cardiogenic shock, arrhythmia, pulmonary oedema, dia-
betes with complications, stroke, renal disease, and malignancy.
p-value.

hospital is a non-teaching medium volume hospital, and otherwise 0, and
63 is 1 if the hospital is a non-teaching small volume hospital, and
otherwise 0. The reference, against which the hospitals are compared,
is a teaching hospital. 7; is the hospital-specific random effect that is
assumed to follow a normal distribution, with mean 0 and variance 2. 7;
is the logarithm of the odds ratio of mortality at the given hospital
compared to an average-mortality hospital that shares the same hospital
characteristics. For instance for a large volumes hospital we have the
odds ratio e(;:? =e’. log (") =7;.

Table 5.7 shows the estimates of the above level 2 parameters and the
corresponding p-values. The random effects as well as all the fixed peer
group effects are highly significant. For a patient with average risk factor
values who is treated at an average teaching hospital, we have
logit(p) = —3.030. The estimated odds are ¢33 = 0.0483, and the
estimated probability of dying is 122483 — 0.0461. By contrast, for a

+0.0483
similar patient treated at an average small volume hospital, the estimated

odds are e(=3:03+057) = 0.0854 (see Table 5.7), and p is 0.0787. If the
patient is treated at a teaching hospital characterised by 7; being 0.5, the
estimated odds are e(=393+05) = 0.0797 and p = 0.0738.

Figure 5.5 from [22] shows the distributions of hospital-specific log
odds of death, stratified by peer group. The overlap between these
distributions is considerable. The conclusion from this study, given the
assumptions, is that peer group is a significant factor. However, for a
given peer group, the hospitals differ significantly. Adjusting for peer
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Figure 5.5 Reproduced from Austin PC, Alter DA, Anderson GM, Tu JV with
permission. Impact of choice of benchmark on the conclusions of hospital report

cards. Am Heart ] 2004; 148:1041-46.

group, the authors found one low outlying hospital. When they did not

adjust, they found 3 high outliers and 4 low ones.

5.5 ASSESSING THE QUALITY OF A REGRESSION

MODEL

Once a regression model is developed, it is necessary to assess its quality.
The principles applied for the multiple regression model and the logistic
regression model are similar. Since the latter is by far the most popular
model in medical literature, we will use this model to illustrate the
principles. We want to emphasise that it is not our intention with this
section to teach the reader how to develop and quality control a model.
However, to critically assess the literature, it is necessary to know what

to look for.

The quality may be related to events per predictor variable, con-
formity with linear gradient, test for interactions, collinearity, good-
ness-of-fit measures, validation, statistical significance, and proper

documentation [23].
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5.5.1 Events per Predictor Variable

If there are too few events per independent predictor variable included in
a model, the results may become unreliable. A useful rule of thumb
comes from simulation experiments [24]. It suggests that the number
of the less frequent of the two events divided by the number of predictor
variables included in the model should be at least 10. For instance, if a
study includes 200 patients, and 20 of the patients died, it must not
include more than 23 = 2 predictor variables.

5.5.2 Conformity with Linear Gradients
for Continuous Variables

Any given change in a continuous (or multinomial ranked) predictor
variable ought to have an effect on the logit that is of the same magni-
tude, regardless of the value of the predictor variable. This must be
checked because it is assumed in the model. One may add that converting
a continuous variable into a binary one is not recommended because it
represents a loss of information and there is the danger that the model
becomes incorrectly specified [25].

5.5.3 Tests for Interactions

In general, when the sample size is modest, the decision to consider inter-
actions should be governed by prior knowledge of the domain. In any
event, the significance of the interaction should be measured and reported.

5.5.4 Collinearity

If two predictor variables are highly correlated with each other, it
presents problems for a regression analysis [26]. Therefore, explicit tests
for collinearity ought to be undertaken.

5.5.5 Goodness-of-Fit Measures

These include calibration, discrimination, and various regression statistics.
The latter are used to reveal the effect of individual subjects on the estimated
model [10]. In the following, we will expand on the former two measures.
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5.5.5.1 Calibration

Calibration may be defined as the ability to assign appropriate risks
among patients whose experience the model simulates [27]. A model is
calibrated if the distribution of the estimated risks does not differ sig-
nificantly from that of the observed outcomes. Comparing the predicted
and observed outcomes assesses the calibration. The predicted outcome
for a given group of patients is calculated by using the model to calculate
the probability of experiencing the outcome in each of the patients and
adding these probabilities.

Example 5.11

Table 5.2 column 9 from Example 5.3 shows the predicted probability of
experiencing postoperative complications as calculated using the regres-
sion of AFRC;, op-time;, and pack-year; and PEEP; on logit(p;). The data
have been sorted in ascending order, according to the probability. To
illustrate the principle, we have grouped the data into 10 subgroups, each
comprising four consecutive patients (see Table 5.8).

The expected number of patients with complication in the first group
(see Table 5.2) is 0.003 + 0.003 + 0.006 + 0.028 = 0.040. Therefore,
the expected number without complication is 4.000 — 0.040 = 3.960.
The corresponding observed values are 0 and 4 (see Table 5.8). The
results of these calculations for all 10 subgroups are shown in Table 5.8.

Table 5.8 Predicted versus observed number of patients with postoperative
complication.

Observed Predicted Observed Predicted

number number number number

with with without without

Group complication complication complication complication

1 0 0.040 4 3.960
2 0 0.180 4 3.820
3 0 0.281 4 3.719
4 2 0.575 2 3.425
S 2 1.087 2 2.913
6 0 1.707 4 2.293
7 1 2.084 3 1.916
8 3 2.777 1 1.223
9 4 3.365 0 0.635
10 4 3.903 0 0.097
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It may be tested if the distribution of the observed numbers differs
significantly from that of the expected numbers. This is the Hosmer
Lemeshow test [10]. If the p-value of this test is reasonably large, it is
taken as evidence of acceptable calibration. In the actual case p = 0.214.

In the example, the (nonsignificant) trend is that the predicted number
of patients with complication is too high in the lower range and too low
in the upper range (see Table 5.8). This is not an unusual pattern, and, if
it is significant and pronounced, it may have unfortunate consequences.
For example, if one were to compare the observed number of deaths
following an operation to the predicted number of deaths and use a
model where the above pattern is significant, the predicted number of
deaths in high-risk patients would be underestimated, while the pre-
dicted number would be overestimated in low-risk patients. Therefore,
using this model one would treat healthcare providers with high-risk
patients unfairly because their mortality would exceed the predicted one.
This, in turn, may encourage rejection of high-risk patients. Conse-
quently, a model with this kind of lack of calibration is not acceptable.

A model initially well calibrated (and verified, see later) may be applied
to materials other than those used to develop the model, either from
another institution or from the same institution, at a much later date. If
there is now a significant discrepancy between predicted and observed
outcomes, showing poor calibration, several approaches are possible.
One may calibrate the model in various ways, or, alternatively, use one’s
own patient data to develop a new model, either based on the same
quantities as the original model or on a new combination of quantities
[21]. However, in doing so one loses the historic perspective.

5.5.5.2 Discrimination

The fact that a model is well calibrated does not necessarily imply that
the estimated probability is useful as a discriminating quantity. A dis-
criminating quantity D, may be used to classify patients into two groups:
those who are predicted to experience some event of interest (group # 1)
and those who are not (group # 2). The estimated probability of experi-
encing the event (p) is a discriminator. Prior to the classification a
discriminating value (d) must be chosen. Patients who have estimated
probabilities > d are classified into group # 1, and the rest into group # 2.
Usually d = 0.5 is chosen. To assess the usefulness of a classification rule,
we calculate its sensitivity and specificity. Assume the outcome is death
following an operation. The sensitivity is defined as the number of
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patients who were correctly predicted to die over the total number who
died. The specificity is defined as number of patients who were correctly
classified as survivors over the total number of survivors. Depending on
the expected consequences of misclassifications, values of d other than
0.5 may be chosen.

A complete discrimination may be obtained if the group of survivors is
completely separated from the group of dead, in terms of their values of
D (see Figure 5.6 frame (a)). If the ratio between surviving and dead
patients is the same for all values of D (see Figure 5.6, frame (b)), D is
useless as a discriminator.

In general, if the chosen discriminating value (d-low) is sufficiently
small, all patients will be classified as dead, and if it is sufficiently large
(d-high), all will be classified as survivors (see Figure 5.6). One may vary
the value of D from d-low to d-high, calculate the sensitivity and
specificity (or 1 — specificity) for each value, and plot the results in a
coordinate system, with sensitivity as the y-axis and 1 — specificity as the
x-axis. The resulting curve is the receiver operating characteristic (ROC)
curve [28, 29]. If the discrimination is optimal (case (a) in Figure 5.6), the
area under this curve (the ROC-area) is 1. If there is no discrimination

(a)
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0.5 D

(b)

OO0OO0OO0OO0O0O OOOOO O
00000 00000 O

|
0.5

\4

O Dead patient . Surviving patient

Figure 5.6 Complete discrimination (frame (a)) by the discriminator D (the predicted
probability that a patient dies) between patients who die and those who do not versus
no discrimination at all (frame (b)).
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(case (b) in Figure 5.6) the area is 0.5. Therefore, one may grade a
discriminator by calculating its ROC-area and judge its value on a scale
from 0.5 to 1.

5.5.6 Validity

Validity may be defined as ““the demonstration that the predictive accu-
racy of the model is similar when it is applied to a different group of
patients than those used in the construction of the model” [27]. To assess
the validity of a model, the following procedure is often followed: one
half of the patients are randomly assigned to a learning set and the rest to
a test set. The model is developed using the learning set and then applied
on the test set. This method is called cross validation. If the calibration
and discrimination of the test set are little degraded as compared to those
of the learning set, the model has been validated. This approach requires
a substantial number of cases. Other approaches are also possible [30].

5.5.7 Statistical Significance

The statistical significance of the null hypothesis that a coefficient is 0
may be tested for each coefficient in the model. It may also be tested if the
complete model is significantly better than a reduced model with some of
the coefficients set equal to 0. There are various types of tests, and the
specific test applied should be reported [23].

5.5.8 Documentation

It is important that it is documented how variables have been selected for
inclusion in the model. Were they selected based on earlier research or
based on the observed association with the outcome measure? Since the
coefficient of a predictor variable depends on how it was coded, appro-
priate description of the coding ought to be supplied. Finally, the pro-
cedure used to determine which variables were included in the model
ought to be explicitly stated, preferably with some motivation for the
appropriateness of the choice [23].

Techniques other than those described above are available, e.g., arti-
ficial intelligence (AI) [31]. Al has a number of theoretical advantages as
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compared to logistic regression. However, it requires large databases and
does not have convenient features like odds ratio and confidence inter-
vals. An analysis of 80 000 coronary artery bypass patients using Al
failed to improve upon the ROC curve of logistic regression in risk
prediction [32].

In the following two chapters, we illustrate how the above tools may
be applied to risk-adjust the results of a single healthcare provider over
time (Chapter 6) and the results of several providers who are being
compared simultaneously (Chapter 7).
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6

Risk-Adjusted Control Charts

In Chapter 5 we reviewed various techniques that may be used to adjust
for case-mix differences. We apply these techniques when constructing
risk-adjusted control charts. These charts may be used when outcome
measures, €.g., death and morbidity, are monitored over time. With few
exceptions [1, 2, 3] the research within this area has focused on the
occurrence of an adverse event (mainly death following some surgical
procedure), and consequently the outcome measure is either binary (e.g.,
patient dead or alive) or a count (e.g., the number of patients who died
during a specified period). Therefore, we will focus on binary and count
outcome measures in this chapter. For ease of terminology and without
any loss of generality, we will use the term ‘death’ instead of ‘occurrence
of an adverse event’. We first discuss various types of risk adjustment and
then present several risk-adjusted control charts.

6.1 RISK ADJUSTMENT

The most common approach to risk adjustment is to estimate the prob-
ability of death of each individual patient using a score (e.g., the Parson-
net score [4] for surgical patients) or the result obtained using a logistic
regression model relating probability of death to patient factors.

Table 6.1 shows the values of the Parsonnet risk score (V;;) measured
in 11 patients prior to cardiac surgery (the data are invented, but con-
sistent with data from the literature [5]). A risk model derived from a
logistic regression analysis of a number of potential risk factors including
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© 2007 John Wiley & Sons, Ltd
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the score and based on data from a centre for cardiac surgery [5] relates
the 30-day mortality to the Parsonnet score as follows

logit(p;;) = —3.67 + 0.077V;; (6.1)

where ij refers to the ith patient in the jth patient sample. Using this model,
logit (pjj), the odds, and risk of death (p;;) during the first 30 days following
cardiac surgery have been estimated for each patient and shown in Table
6.1. For example, for patient # 1 in sample # 1, we have logit(p11) =
—3.67+0.077 -7 = —=3.131. The corresponding odds are e 313!
=0.0437. Using Equation (5.16) we may calculate pq; as
128‘(‘3@7 = 0.0418. It is now hypothesised that P(Y1; = 1), the probability
that the patient dies, follows a discrete probability distribution with a
parameter p = pq1. If the patient actually died, the observed result would
be 1, and the difference between the observed and ‘expected’ result would
be 1-0.0418 = 0.9582, and if he/she survived, it would be
0 —0.0418 = —0.0418. If several patients are observed, the number
expected to die is calculated as the sum of these estimated probabilities.
This measure may be related to the observed number of deaths.

An alternative approach to risk adjustment is to calculate the mortality
rate in a reference group of patients who belong to the same category as
the patient in question. For instance, Grigg and Farewell [6] divided the
patients seen per year by a single general practitioner (GP) into 10 groups
according to age and sex. They used the annual mortality rate for all of
England and Wales (the death rate of all patients seen by GPs during the
year) in each of these categories to adjust for age- and sex-dependent risk
differences between the groups. Assume (as an invented example) that
the mortality rate for females between 65 and 75 during a given year was
0.04, and during this year the GP saw 150 patients of this type. The
expected number of death per year within the category would be
0.04 - 150 = 6 death/year. In this case, it is hypothesised that the number
of deaths per year for this type of patients follows a Poisson distribution
with parameter \o = 6 death/year. If, e.g., 8 patients of this category
actually died, the observed minus expected number of deaths would be
8 — 6 = 2 death/year.

6.2 RISK-ADJUSTED CONTROL CHARTS

We review one risk-adjusted Shewhart chart (the p chart), four risk-
adjusted time-weighted control charts (the variable life-adjusted display
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Table 6.2 The risk-adjusted sample statistic and control limits (when applicable) of
the p chart, the variable life adjusted display (VLAD), the sequential probability
ratio test (SPRT) chart, and the cumulative sum (CUSUM) chart.

Type of
control chart Sample statistic Control limits
. 1 U R

p chart %(7’17 > 1) ; |:E, +k Zp,,(l — [J,‘,’):|

VLAD S,’ = S/‘,1 + [O, — E,’] n]a =1

SPRT chart S;’ =581+ W¢ UCLY = log(l LA

LCL = log( =)

CUSUM chart S; = max{0;S;_1 + W;}or  Define in- ~control ARL and out-of-
S; = min{0; S;_1 + W} control ARL and find the control
or both limit(s)

# Oj is the number of deaths in sample # j, E; the expected number of deaths in sample # j, #;
the number of patients in sample # , and p;; the estimated probability that patient # i in sample
# 7 dies.

b usually So = 0.

W; = Y;log(OR) — log(1 — pjo + ORpjo) where OR = ?;(i Z"; , Djo is the estimated probabil-

1ty that patient # j dies under the null hypothesis Ho, and p;; the estimated probability that
patient # j dies under the alternative hypothesis Hj.

4 UCL = upper control limit.

¢ 3 =the error rate with which Hy is accepted in favour of Hj.

! o= the error rate with which Hy is accepted in favour of Hy.

8 LCL = lower control limit.

(VLAD), the sequential probability ratio test (SPRT) chart, the resetting
SPRT chart (RSPRT), and the cumulative sum (CUSUM) chart).
Table 6.2 presents an overview of four of these charts.

6.2.1 Risk-Adjusted p Chart

This chart has no centreline since the expected death rate varies from
sample to sample, and each sample has its own control limits [7]. The
idea behind this chart is that the sum of estimated probabilities of death
calculated for individuals belonging to a given sample of patients is used
to estimate the expected number of deaths (E;) among these patients. We
define the random variable Xj; to be 1 for death with probability p;; and 0
for survival with probability (1 — p;;) for the ith patient in the jth sample.

nj

X;
We deﬁne Y ==

E; = Z Dij. Estlmators of the expected value and the standard deviation

=1

where 7; is the number of patients in sample # ;.

of Y; are i:i, and , respectively (see Table 6.2). The
control hmlts for each sample may be calculated as shown in Table 6.2.
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Example 6.1

We will analyse the two patient samples presented in Table 6.1. First, we
calculate a conventional p chart without risk adjustment. The overall death
rate is 7+ = 0.3636 since 4 out of 11 patients died (XXy;; = 4). The death
rates in the two samples are 2 = 0.4 and Z = 0.33, respectively, and the

corresponding standard deviations are w: 0.2151 and

\/22E003636) — ().1964 (see Equations (2.36) and (2.37)). It is obvious

that if we were to use the usual p chart for variable sample size, neither
death rate would be outside its control limits.

For comparison we calculate the risk-adjusted expected death rate and
corresponding control limits of each of the two patient samples. For
sample # 1 we have £t By — ZPn = 0.0418+0.0450+0.0662+:0.0603+0.0803 — (), 0587,

The corresponding result for sample # 2 is 0. 3098 The standard devia-
Eptl(] le)

ni

tion of the death rate calculated for sample # 1 is

_ \/0.0401+0.0430+0.0618+0.0567+0.0739 __ 0. 5249
= 3 = 0.1050. The upper control

limit based on 2 standard deviations is 0.0587 +2- 0.1050 = 0.2687.
The observed death rate is 2 = 0.4000. Therefore, the observed death
rate is significantly (p < 0.05 ) elevated relative to the expected rate. The
upper control limit of sample # 2 is 0.3098 +2 - 0.1552 = 0.6208. The
observed death rate of 0.3333 is well within the control limits and pretty
close to the expected value of 0.3098. Assuming that the risk adjustment
is reliable, the conclusion is that the circumstances related to the two
deaths in sample 1 should be carefully scrutinised. In the paper [7] where
this method was originally published, the reader was cautioned not to use
the equation shown in Table 6.2 to calculate wider control limits. Only 2
standard deviation limits were considered safe as assessed from simulation
studies involving the author’s data. The proper calculation of control limits
wider than 2 standard deviations is quite complicated and beyond the scope

of this book.

6.2.2 Variable Life-Adjusted Display (VLAD)

The VLAD [8] or cumulative risk-adjusted mortality chart (CRAM)
[9] depicts the difference between the observed and expected cumula-
tive mortality versus patient sample. When the outcome measure is
binary, the sample size is one. For each patient the expected risk
of dying (E;) is calculated, using a risk-adjustment equation. The
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difference between the observed outcome (O;) and the expected risk of
dying (E;) is calculated, and the result is added to the previous sum.
We have

§j=Sj-1+(0; - Ej) (6.2)

Example 6.2

Table 6.3 shows the value of Y; for 15 consecutive patients subjected to
heart surgery where Y; = 1 if the patient dies within 30 days and 0 other-
wise. The estimated probability of dying (pj0), the difference between
observed outcome and expected probability of dying (y; — pjo), and the
cumulated sum of these differences X(y; — pjo) are also shown in the table.
The initial value of the sum (Sy) is usually set equal to 0. The estimated
probability that the first patient dies is 0.1900. Because he/she survives we
have S; = Syp+ O1 — E; = 0.0000 + 0.0000 — 0.1900 = —0.1900. The
estimated probability that the second patient dies is 0.2904. Because she
also survives we have S, =-0.1900 + (0.0000 —0.2904) = —0.4804.
S3=-0.4804 + (1.0000 — 0.4258) =0.0938 because the third patient
dies, etc. Without risk adjustment, the expected mortality would have
had a fixed value, e.g., the death rate (pg) previously observed during a
stable period. Assume po were 0.3333 in the actual example. Then we
would have $; =0.0000+ 0.0000 —0.3333 =-0.3333, S5, =-0.3333 +
0.0000 — 0.3333 = —0.6666, ctc.

The VLAD chart provides valuable visual aid showing how the
current performance compares to past performance. However, it is
difficult to interpret since it does not specify how much variation in
the plot is to be expected under acceptable performance. The charts
reviewed below address this problem, but they are less intuitively
appealing. Therefore, they may be used in conjunction with the

VLAD chart.

6.2.3 Risk-Adjusted Probability Ratio Charts and Cusum
Charts

These charts may be used to monitor binary as well as count outcome
measures. For each sample a weight (W)) is calculated and used to update
a cumulative sum (S;_1). This weight expresses the ratio of likelihood of
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two competing hypotheses given the observed outcome. The initial value
of the sum (Sp) is usually set equal to 0.

6.2.3.1 Review of the various types of charts

All the charts originate from the sequential probability ratio test (SPRT)
that was developed to choose between two hypotheses by sequential
testing [10]. The SPRT chart depicts this test quantity [11]. A resetting
SPRT chart is a SPRT chart that is used repeatedly to monitor a process.
The risk-adjusted CUSUM chart [12] may be considered a special case of
the resetting SPRT chart [13]. The calculation of the control limits of the
SPRT chart is relatively straightforward. However, the calculation of the
control limits of the other charts is quite complicated.

SPRT charts The SPRT chart is designed to monitor a process by
accumulating the evidence in favour of each of the two competing
hypotheses (H; and Hg) [11]. The monitoring stops when the evidence
in favour of one of them is sufficiently overwhelming and this hypothesis
is accepted. The cumulative sum (S;) for this chart is equal to the previous
sum plus the weight W;. We have for the SPRT chart

S,' = Sf;l + W,‘ (6.3)

The chart has two control limits, an upper one (b > 0) and a lower one
(a < 0). The limits of the SPRT chart may be expressed in terms of two
error rates; o and . « is the error rate with which Hy is accepted in
favour of Hy, and § is the error rate with which Hy is accepted in favour
of Hj. The limits are calculated as follows

a = log (%) (6.4)

and

b = log (%) (6.5)

The chart is designed for choosing between two alternative hypotheses
and not for monitoring the process beyond the time when this decision is
made.
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Resetting SPRT charts The resetting SPRT chart is a SPRT chart that is
designed for the continued monitoring of a process [13]. This is achieved
by resetting the sum to zero when the current sum crosses a control limit.
If the limit is a, the monitoring is continued. Thus, Hy is assumed to be
true until it is rejected in favour of Hy. This happens when the current
sum crosses the other limit, b. Then a search for a special cause is
initiated. When the SPRT chart is used in this way, the meaning of the
parameters 3 and « is lost. However, they are retained. By manipulating
the values of the parameters as well as the initial value of the sum (S,
which need not necessarily be equal to 0), charts optimised for specific
purposes may be constructed [13]. However, the parameters cannot be
used explicitly to calculate the control limits. Instead, a desired in-
control ARL is defined, and the parameters and thereby the control limits
are calculated, conditional on this ARL value. The computations
involved are complicated, and the result depends on the distribution of
the expected mortality risks in the data set [13].

Risk-adjusted CUSUM chart The risk-adjusted CUSUM chart [12] may
be used to detect an increase or a decrease in mortality or both. In the
latter case two charts are used simultaneously, one to detect an increase
and one to detect a decrease in mortality. If the chart is designed to detect

an increase in mortality, the sum is reset to 0 when it becomes negative.
We have

S; = max{0; Si—1+ W,‘} (6.6)

If it is designed to detect a decrease in mortality, the sum is reset to 0
when it becomes positive. The cumulative sum is calculated as

Si = min{O; Sf;1 — WI} (67)

It is noted that the notation of Equation (6.7) is different from that of
Equation (3.7) in that a minimum value is used here. But the equations
are equivalent. The calculation of control limits is complicated. There-
fore, it is recommended to involve a biostatistician when designing a risk-
adjusted CUSUM chart.

We now explain how the weight used to update the cumulative sum of
the above charts is actually calculated, and using an invented example we
show how a SPRT chart may be calculated. The latter example also
illustrates a problem, referred to as building of credit.
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6.2.3.2 Calculating the probability ratio (W))

The weight (W;), used to update the cumulative sum of the above charts,
is a measure of the evidence of the hypothesis Hy relative to that of the
null hypothesis Hy, as documented from the observed mortality of the
current patient sample. Hy usually corresponds to performance as
expected, and Hy corresponds to a level of performance deemed impor-
tantly divergent.

Since the risk, and thereby Hy, varies from sample to sample, the
alternative hypothesis cannot be expressed in terms of a fixed parameter
value. Instead, the alternative hypothesis is defined in relative terms: for
binary outcome measures as the ratio (OR) between the odds under H;
and the odds under Hy, and for count outcome measures as the ratio
(RR) between the expected count ();;) under H; and the expected count
(Njo) under Hy. The weight is calculated as the logarithm of the
ratio between the probability of the observed outcome under H; and
that under Hy. We review the calculations for each of the two outcome

types.

Binary outcome Y; is a random variable (the binary outcome measure).
The probability of death P(Y; = 1), under H; is p;1, and under Hy it is
pjo. The value of the outcome measure is either y; = 0 or 1. The like-
lihood function of p; = pjo, given y; is

Loj = P(Y; = yjlp; = pjo) = py(1 = pjo)' ™

Similarly, the likelihood function of p; = pj1, given y; is
Ly = P(Y; = yilp; = pp) = pjj(1 = pjn)' ™
Wi, the log likelihood ratio can be expressed as
A Yi(1 — pi )1V
W; = log <&) = log (M)
Lo, pjé(l —pjo)
le Yi
bjo 1—pp
= log g + log(1 _Pf0>
L —pjo
= yjlog(OR) —log(1 —pjo + ORpjo) (6.8)
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where

pir(1 = pj)
OR="~1"—""7 6.9
pjo(1 —pj1) (69)

The results can be found in [13]. To calculate W, we insert the y;, which
is the value of Y, the chosen value of OR, and the estimate of pjy in
Equation (6.8). To calculate pj, the chosen value of OR and the estimate
of pjo may be inserted in Equation (6.9) to obtain an equation in pj;.
Solving this, we obtain an estimate of pj;.

Example 6.3

Table 6.3 shows invented data. Each sample includes a single patient.
Column 1 shows the sample #, column 2 the observed outcome of an
operation (Y; =1 if the patient dies and O if the patient survives), and
column 3 shows the estimated probability of dying, calculated for each
patient based on his/her risk factor values. Using the latter two values W;
(column 6) may be calculated from Equation (6.8) when the odds ratio OR
is known. In the example OR has been set equal to 2. Patient # 1 survives.
In this case W7 = 0 -log(2) — log(1 — 0.1900 + 2 - 0.1900) = —0.1740.
Patient # 3 dies. We have W;=1"-log(2)—log(1l—0.4258+
2-0.4258) = 0.3384, etc. Column 7 shows the cumulative sum. The initial
sum (not shown) is 0. $; =0+ W; = —-0.1740, S, =—0.1740—
0.2550 = —0.4290, etc. Wjj is shown in column 8. To calculate W it is
assumed that the risk is constant and equal to that observed in the first six
patients (2= 0.33), while the process seemed reasonably stable. W,
therefore is calculated using Equations (6.8) with a fixed value of
pjo = 0.33. The corresponding cumulative sum is shown in column 9.
We calculate the control limits of a SPRT chart for a« = 3= 0.01. We
have a = log(%) = log(3:95) = —4.6000 and b = log(337) = 4.6000 (see
Equations (6.4) and (6.5)). From columns 7 and 9 in Table 6.3 it appears
that a decision as to which hypothesis should be preferred cannot be made
neither with nor without risk adjustment.

Had we started the monitoring at patient # 7, we would have obtained
the results shown in Table 6.4. This table shows the weights contributed
by patients # 7 to # 15 and the cumulative sum, calculated from these
weights. When we reach patient # 15, a decision can be made since the
cumulative sum is 4.6747 > 4.6000. Therefore, we decide in favour of
hypothesis 1. If we inspect the probability of dying of each of the first six
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Table 6.4 The calculation of the risk-adjusted sequential probability ratio test
(SPRT) using a sequence of 9 patients (patients # 7—15 from Table 6.3) and the cor-
responding calculation when the risk is assumed to be constant and equal to 0.33.

Patient # vi ﬁf L4 Sii1+ W w4 Si1+ Wi
7 1 0.0560 0.6387 0.6387 0.4080 0.4080
8 1 0.0700 0.6255 1.2642 0.4080 0.8160
9 1 0.0800 0.6162 1.8804 0.4080 1.2240

10 1 0.1937 0.5161 2.3965 0.4080 1.6320

11 1 0.2271 0.4885 2.8850 0.4080 2.0400

12 1 0.2367 0.4807 3.3657 0.4080 2.4480

13 1 0.2901 0.4384 3.8041 0.4080 2.8560

14 1 0.2904 0.4382 4.2423 0.4080 3.2640

15 1 0.2979 0.4324 4.6747 0.4080 3.6720

7y; is 1 if patient # j dies and 0 otherwise.

b by is the estimated probability that patient # j dies, under the assumption that the null
hypothesis is true. The estimate of odds) is first calculated using a logistic regression equation
and the values of the patient’s risk factors. Then the es}tir]na}te) of pjo is calculated.

¢ W; = y;log(OR) — log(1 — pjo + ORpjo) where OR = Z;;EFZ:?)’ pjo is the estimated
probability that patient # j dies under the null hypothesis Hy> and p;; the estimated
probability that patient # j dies under the alternative hypothesis H;-

4 W the weight is calculated as Wi is except that under Ho» the estimated probability that the
patient dies is assumed to be constant and equal to 0.33.

patients (see Table 6.3), we find the reason why the conclusion differed in
the two situations. Patients # 5 and # 6 both had a high probability of
dying. But they survived, indicating that the surgeon was very skilled or
very lucky. Therefore, the corresponding weights are both relatively low
(—0.5413 and —0.4734). Consequently, some credit is being accumu-
lated, and the cumulative sum attains a low value (—0.6192) for patient
# 6. From patient # 7 and on, the mortality clearly rises. However, the
credit of —0.6192 prevents the cumulative sum from crossing the upper
limit of 4.6000. The fact that the cumulative sum in Table 6.4 does not
cross the limit when the probability of Hy is fixed at 0.33 is explained by
the estimated probabilities of patients # 7 and # 8 (see Table 6.4). They
both have a rather low probability of dying. Loosing patients #7 and # 8,
therefore, is heavily penalised in the presence of risk adjustment, but far
less so without risk adjustment.

Count outcome When the outcome measure is a count, H states that the
expected count is equal to the count (\jy) predicted from the risk model,
and H; states that

A1 = RR - A (6.10)
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where RR is a constant, usually equal to 2, and \j; is the expected count
under Hy. Let y; be the observed count of adverse events, and Y; be the
corresponding random variable. Since it is assumed that Y; follows a
Poisson distribution, it follows that the likelihood function of X; = \jo,
given y; is

Yj

/\/0 e
Loj = P(Y; = yj|Ai = Xo) = y, " (6.11)
i

Similarly, the likelihood function of X\; = Aj1, given y; is

X
Lij=P(Y; =yj|\ = M1) = y,67 " (6.12)
;!

W;, the log likelihood ratio can be expresses as follows

L >\/1 Y —(M1—=No)
10g<L07> to (()\;0) ‘

)\.
= yjlog( 5] — (A1 — Ao)
)\,‘0
= y;jlog(RR) — X\jo(RR — 1) (6.13)

where RR = /\—’; See results in [13]. To obtain W, we insert the chosen

value of RR and the estimated value of Ajo in Equation (6.13).

6.3 COMMENTS

In this and previous chapters we have only reviewed the most commonly
used control charts. But there are other charts [14-17], e.g., the set chart.
The set chart is a generalisation of the type of chart that was used to
monitor the number of days (X) between two infections in Example 2.6.
The X chart used in Example 2.6 signals an alarm when X becomes
smaller than a specified limit (k). By contrast, the set chart allows this
limit to be crossed a preset number of times (1) before it signals an alarm.
The idea is that for specified in-control ARL, k and # may be chosen so
that the out-of-control ARL is minimised [16, 17]. In the risk-adjusted
version of the set chart, the number of patients surviving replaces the
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number of days. Furthermore, the difference between the patients in
terms of their risk of dying is taken into account. It is not quite clear
which of the two charts is better; the set chart or the CUSUM chart. For
further details of the risk-adjusted set chart see the paper by Grigg and
Farewell [18].

The reader should be aware that a number of problems related to risk-
adjusted control charts are still unresolved [19]. The ratio between
observed and expected number of outcomes does not necessarily follow
a Gaussian distribution, and the results are not necessarily independent.
Furthermore, the observed number of events within a heterogeneous
population (comprising patients with different risks) is not a simple
random variable. These issues require further research.
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Risk-Adjusted Comparison of
Healthcare Providers

Variability of outcome measure results among healthcare providers may
be due to random variation, lack of standardisation of the outcome
measure, data errors, differences in the case-mix, and differences in the
quality of care. The same is true for the results measured within the same
provider at different times. A healthcare provider may be a hospital, a
hospital department, a private practice, a physician, etc. Comparative
assessment of the results of treatment and care either requires that the
patient groups are comparable in terms of measured and unmeasured
risk factors, or if this cannot be accomplished, that the case-mix differ-
ences are adjusted for, by using statistical manipulation of the data. In
Section 7.1, we discuss how comparable patient groups may be produced
experimentally. In Section 7.2, we explain how one may attempt to
adjust observational data for case-mix differences, using the tools pre-
sented in Chapter 5. Interpretation of the results obtained using the latter
approach is fraught with problems. This is discussed in Section 7.3.
Because it has become mandatory in many countries to publicise out-
come comparisons across hospitals and practices, the pros and cons of
this approach are discussed in Section 7.4.

7.1 EXPERIMENTAL ADJUSTMENT

If patients are assigned at random to one of several healthcare providers
whose quality of care we want to compare, the case mix of the resulting
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patient groups will be balanced, except for differences that occur for
random reasons. Therefore, standard statistical techniques are valid, and
the interpretation of the results is straightforward. The benefit of rando-
misation may be improved if important risk factors for the outcome in
question are known and measured in the patients prior to the randomi-
sation. Sampling at random is then done from each stratum, a priori
defined by the risk factor(s). Therefore, the distribution of the strata
across the healthcare units to be compared may be perfectly balanced.
The actual randomisation and the conduct of the experiments require
careful planning if allocation bias is to be evaded. A review of the
planning and conduct of randomised controlled experiments is beyond
the scope of this book. The interested reader is referred to the book by
Pocock [1], which provides an excellent introduction to this topic.

There is no doubt that randomisation of patients to the healthcare
units to be compared is the proper scientific approach. The problem, of
course, is that in general it is quite complicated and expensive to conduct
a randomised clinical trial.

Example 7.1

An excellent solution to this problem is to organise the healthcare system
so that the infrastructure allows randomised clinical trials to be con-
ducted at a modest extra cost. This is the approach taken at the Metro-
Health Medical Center in Cleveland Ohio [2]. They organised ongoing
random assignment of patients and providers to three teams or ‘firms’.
Department faculty was randomised to the firms after stratifying by
subspecialty. The director of department of medicine is the head of the
three firms, but each firm has its own director and separate inpatient unit
and outpatient practice area staffed by nonrotating personnel.
Examples where this approach has been used include, e.g., a trial of
interdisciplinary rounds on the inpatient medical wards conducted at the
MetroHealth Center [3]. Prior to the trial, a task force examined the
existing process of care using flow charts. They found that the inter-
disciplinary interactions were minimal and episodic and nonemergent
orders were written throughout the day, making the nursing and phar-
macy workloads unpredictable. The traditional rounds included physi-
cians only, charts were left at the nursing station, and structured
multidisciplinary rounds were held only once a week. By contrast, the
interdisciplinary rounds included physicians, patient-care coordinator,
pharmacist, nutritionist, and social worker. Orders were written during
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these rounds, and the patient charts were taken to the rounds. There was
no weekly multidisciplinary round since it proved unnecessary. The
effects of introducing interdisciplinary rounds were a significant reduc-
tion of the average length of stay from 6.06 to 5.46 days and of the
average charges per patient from 8090 to 6681 dollars.

Example 7.2

In a study that lasted from January 2000 until July 2002, Ferguson et al.
randomised 359 academic and nonacademic hospitals, participating in
the Society of Thoracic Surgeons National Cardiac Database [4], to a
control arm or to one of two intervention groups that used continuous
quality improvement (CQI) (see Section 7.4 for a formal definition). The
hospitals treated 267 917 patients using coronary artery bypass graft
(CABG) surgery during the study period. The CQI was designed to
increase the use of two process of care measures, one in each intervention
group. They included preoperative 3-blockade and internal mammary
artery (IMA) grafting. The CQI comprised information about the
measure, including a call to action to a physician leader, educational
products, and periodic, nationally benchmarked, feedback. Preoperative
(3-blockade and IMA grafting both increased nationally during the study
period. For preoperative [(-blockade, the increase was significantly
higher in the intervention group (3.6 % increase in the control arm
versus 7.3 % increase in the intervention arm). A similar, but insignif-
icant trend was observed for the IMA grafting. Therefore, the effect of
introducing CQI increased the use of 3-blockade above a value that may
be explained by the national trend.

7.2 STATISTICAL RISK ADJUSTMENT
OF OBSERVATIONAL DATA

When data do not originate from a randomised experiment, adjustment
may be effected using statistical methods. They are all based on the belief
that either (1) all risk factors of major importance for the prediction of a
specified outcome are known and measurable or (2) some of them are,
and the distributions of the remaining ones are balanced across all
patient groups that are to be compared. The values of the known risk
factors are measured in each patient and used to risk-adjust the patient
groups. The two most widely used methods will be presented. One is
based on the identification of one or more groups of patients where the
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distributions of the risk factors are balanced between the subgroups
belonging to different healthcare providers. The other is based on a
modelling of the relation between the risk factor(s) and the outcome.

7.2.1 Identification of Risk Factor Balanced Groups

The least complicated method of identifying groups where the distribu-
tions of risk factors are balanced between the subgroups belonging to
different healthcare providers is to use stratification. However, as will be
explained below, it is usually necessary to apply a more complicated
method, namely the propensity score method.

7.2.1.1 Stratification

A simple method for risk adjustment is to divide the patients into groups
(strata) with the same risk characteristics. For instance, if sex and
diabetes are the risk factors, the patients are divided into four groups,
female nondiabetics, female diabetics, male nondiabetics, and male
diabetics. Comparisons between the healthcare providers are performed
within each of these strata. The overall difference between the healthcare
providers is calculated by computing a weighted average of the within
strata estimates of the differences [5]. This approach is best used when
the number of risk factors is quite limited, i.e., one or two. When the
number of risk factors is large, it becomes impractical or impossible to
use this method because the number of strata mushrooms.

7.2.1.2 Propensity score methodology

Propensity score methodology, introduced by Rosenbaum and Rubin [6],
addresses the above problem by reducing the entire collection of back-
ground variables to a single composite characteristic, the propensity
score. The propensity score is a patient’s probability of being assigned
to one of two alternative ‘interventions’, as determined by that patient’s
covariate values. In the present context, ‘intervention’ is the patient’s
assignment to one of two healthcare providers. It may be shown that for a
group of patients having the same propensity score the subgroups of
patients assigned to different providers will have the same joint distribu-
tion in all the covariates that were used to estimate the propensity score.
An informal proof of this is given in [7]. This theoretical result is exploited
as follows: a logistic regression equation is calculated using the risk
factors observed in the patients whose propensity scores we want to
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calculate. The dependent variable is the odds of being assigned to ‘inter-
vention 1’ and the independent variables are the risk factors (or covari-
ates) that we want to adjust for. Using this equation, the odds of being
assigned to the intervention group are estimated in each patient. The
patient’s propensity score is finally calculated from the odds, using Equa-
tion (5.16). After the propensity scores have been estimated, the following
three approaches are possible:

Method 1 All patient pairs, one from each intervention group, with
estimated propensity scores that are sufficiently alike are found and the
comparison between the two intervention groups is confined to these
patients. ‘Being sufficiently alike’ may be defined in various ways [8].
Patients for whom no match can be found are eliminated from the
analysis. To avoid bias, this matching of pairs ought to be done without
knowledge of the outcome in question.

Method 2 The patients are sorted in ascending order according to the
value of the estimated propensity score. The data set is then divided into
strata defined by the value of the score. For instance, five equally sized
groups may be formed. Comparisons are made within each stratum, and
the overall treatment effect is estimated as a weighted average of the
within-strata estimates of the intervention effect.

Method 3 A binary variable, the provider variable, is defined. It is equal
to 1 if the patient was assigned to provider # 1 and 0 otherwise. A
regression is then performed. The outcome (for continuous outcome
measures) or the odds of outcome (for binary outcome measures) is the
dependent variable. The estimated propensity score and the provider
variable are the independent variables. This model will estimate the
relationship between the estimated propensity score and the outcome
(or odds of outcome). Therefore, the effect of the propensity score and
thereby of the risk factors used to estimate the score are adjusted for
when the effect of the provider on the outcome measure is estimated.

The larger a data set is, the more successful the propensity score
method will be in adjusting for the risk factors [7].

Example 7.3
Oo et al. [9] used the abovementioned regression technique when they

compared the effect of training surgeons on the in-hospital coronary
artery bypass graft (CABG) surgery mortality and morbidity. The odds
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ratio of in-hospital CABG surgery mortality between trainee-led opera-
tions and consultant-led ones was 0.37 with a 95 % confidence interval
(CI) of 0.15-0.90. The trainee-led operations had a significantly better
outcome than the consultant-led ones since 1.00 was not included in the
95 % CI. However, the patients operated on by the consultants were
generally more difficult and high-risk patients. Therefore, Oo et al. used
the propensity-score technique. In this analysis ‘intervention 1’ corre-
sponds to a trainee-led operation and ‘intervention 2’ to a consultant-led
operation. The propensity score is the probability that a patient will be
subjected to an operation led by a trainee, as predicted using the risk
factors that we want to adjust for. The outcome measure is in-hospital
death following operation.

Using logistic regression, Qo et al. estimated the relationship between
independent risk factors and the propensity for a trainee-led CABG and
obtained the following equation

logit(propensity score) = — 1.5674 + 0.0190 (age)
— 0.1711(female sex)
—0.0359 (body mass index)
— 0.4906 (ejection fraction30%)
— 0.799 (three vessel disease)
+ 0.4260 (previous myocardial infarction)
— 1.8272 (prior cardiac surgery)
—0.1163 (Euro Score)

(7.1)

where age, body mass index (BMI), and the Euro Score [10] are con-
tinuous variables, and the rest are binary indicator variables that are
equal to 1 if the statement indicated by the indicator name is true.

We will estimate the propensity score of a 55-year-old female with
BMI of 25, ejection fraction 30 %, without three-vessel disease, without
previous acute myocardial infarction, without prior cardiac surgery, and
with a Euro score of 4. We have

logit(propensity score) = — 1.5674 + 0.0190 - 55 — 0.1711 - 1
—0.0359-25 —0.4906 - 1
—0.799-0+0.4260 -0
—1.8272-0—-0.1163 - 4 = —2.5468.
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The odds are e=23*¢% = 0.0783. Using Equation (5.16), the propensity
score may be estimated as {2078~ = 0.073. Therefore, the estimated prob-
ability that this patient will be subjected to a trainee-led operation is 0.073.
Due to the limited sample size, the authors preferred method 3
described above. To compare the odds of in-hospital mortality between
trainee-led and consultant-led operations they estimated a logistic regres-
sion equation of the type (the equation was not reported),
logit(p) = a + by propensity score + by ‘trainee’. ‘Trainee’ is a binary
variable that is equal to 1 if the operation is led by a trainee and 0 if led by
a consultant; p is the probability of in-hospital death. The authors found
an odds ratio for in-hospital mortality between trainee-led operations
and consultant-led ones of 0.65 with a 95 % CI of 0.26 to 1.64. Since the
95 % Cl included 1.00, the odds ratio did not differ significantly from 1.
Therefore, these results suggest that the quality of the trainee led opera-
tions do not differ significantly from that of the consultant-led ones.

We used an example of method 3 because in our opinion this is the
least intuitively obvious method and it is the most popular one.

However, the success of the application of a propensity score metho-
dology ought to be assessed by its ability to balance the distributions of
the covariates between the treatment groups to be compared. The dis-
tributions should be similar with insignificant differences between the
treatment groups. Method 3 mentioned above suffers from the disad-
vantage that this assessment cannot be done. Therefore, methods 1 and 2
may be preferred applications.

An important difference between the method used in Section 7.2.2 and
the propensity score method is that the requirements for a logistic
regression model [11] described in Section 5.5 in Chapter 5§ do not
necessarily apply when the regression model is used to estimate the
propensity scores. For instance, if the regression equation provides a
complete discrimination between the intervention groups, the method is
useless. The reason is that it is not possible to find pairs of patients with
matching propensity scores belonging to different intervention groups.
The test of a good propensity score model is whether it adequately
balances the risk factors. Therefore, the model need not necessarily be
parsimonious and easy to understand. So, it may include numerous
covariates (including those with statistically insignificant coefficients)
and interactions and nonlinear terms [12]. In fact, the role of the pre-
viously recommended criteria (see Section 5.5 in Chapter 5) for logistic
regression modelling in the estimation of useful propensity scores is
poorly understood [13].
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Often it is necessary to compare more than two healthcare providers.
However, the propensity score methodology may be modified to allow
adjustment when more than two healthcare providers are compared
(14, 7].

One may speculate that the propensity score methodology may be
preferable to a modelling of the relation between risk factors and out-
come (see Section 7.2.2). The reason is that it is possible to directly verify
whether a given application of the propensity score methodology has
been successful or not. Therefore, the risk adjustment is not done blindly,
so to speak. However, systematic reviews of the literature, where pro-
pensity score methods and regression models (see Section 7.2.2) have
both been used, showed that similar results were obtained using the two
methods [12, 15]. The authors noted that one explanation might be that
the propensity score method had not been well implemented in most
studies.

The propensity score method is not some magical method that is
guaranteed to remove all kinds of bias between the intervention groups
compared. For instance, propensity score methods cannot control for
unknown, unmeasured, or imperfectly measured variables that affect
outcome. Therefore, residual systematic bias cannot be excluded.

7.2.2 Modelling the Relation between Risk Factor(s) and
Outcome

When the relation between risk factors and outcome is modelled, we
examine if the type of relationship between measured risk factors and the
outcome (or some function of the outcome) is linear. If this is not the case,
we devise suitable transformations of the variables and/or include addi-
tional derived variables to adjust for important interactions and/or non-
linear relationships between the original variables, hoping that a linear
relationship emerges. The resulting linear regression model is used to
separate the variation of the results of the outcome measure between
patients within healthcare provider from the corresponding variation
between healthcare providers. In this way variation caused by case-mix
differences between the providers is separated from that caused by
differences in the quality of care and treatment between the providers.
The results of such an analysis may depend heavily on the statistical
model used and the risk factors selected [16-19]. In Chapter 5 we
reviewed various statistical models. It was recommended to include the
provider effect directly in the model either as a fixed effect (see Equation
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(5.19)) or preferably as a random effect (see Equations (5.20) and
(5.21)).

The results may either be reported using a direct standardisation or an
indirect standardisation [20]. Under direct standardisation [21], a stan-
dard population is used to estimate how many events a hospital may
experience if its case mix were similar to that of the standard population,
but its quality of care unchanged. It is assumed that the outcome measure
is binary. Under indirect standardisation, a standard population is used
to estimate the expected number of events at each hospital if its quality of
care were similar to that of the standard population, but its case mix was
unchanged. The latter approach is the one generally chosen, but it has
been criticised [22]. Since binary outcome measures are the most com-
monly used and hierarchical models seem to have certain advantages
over more conventional models, we will explain how the indirectly
standardised mortality rates are computed using a random intercept
hierarchical, generalised linear model [23].

The model is given by

logit(Y; = 1|Xj;, Boj, B1) = logit(p;;) = Boj + B1Xj; + € (7.2)

For simplicity there is only one risk factor. 3, is a fixed effect independent
of patient and hospital, and Xj; is the risk factor measured in patient #
who is treated at hospital # j. (o is a random hospital effect that is
assumed to follow a normal distribution with mean x and variance 2.
Thus, 1 is the mean of the population of hospitals and 72 is a measure of
the individual hospitals’ variation relative to this mean. Yj; is 1 if the
patient experiences the event (say death within 30 days following CABG
surgery) and 0 otherwise. Using a computer program the parameters of
Equation (7.2) are estimated. The estimated odds of patient # 7 in
hospital # j are e?+/1%i and the corresponding estimated probability is

. e@o,‘-‘r(% Xxjj
pij = (73)

1 + eé{)ﬁﬁlxi;
(see Equation (5.16)).

The smoothed, hospital specific mortality rate for hospital number # ,
adjusted for case mix is given by

1 " eBOH‘lei/
n; P 1+ ePoi+b1xi
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where #; is the number of patients treated at hospital # j. The expected
probability of death for patient # 7 (if treated at an average hospital in the
region examined) is
fi+Brxi
ef (7.5)
1 +e;l,+ﬂ1x,',
where the average intercept (1) for all providers is used. The correspond-
ing expected mortality rate is
1 i ehithixg

E =— _— 7.6
/ n; = 1+ ehtPixij ( )

The standardised mortality incidence rate (RAM,;) is

O;- MR
RAM; = ===
j

(7.7)

where MR is the unadjusted mortality rate for the whole region. The
RAM; with credible probability interval may be compared to the region
average mortality rate. If the latter is not included in the credible prob-
ability interval, the hospital is an outlying hospital and the reason for this
should be investigated. Reference to software and technical details may
be found in [23]. It is recommended that a professional statistician with
experience in mixed models analyses performs the calculations. In the
above model hospital characteristics such as teaching status, volume, etc.
were not incorporated. However, this is certainly possible [24] and may
provide additional valuable information. If this is done, the reference
population should still be the whole region. If comparisons are done
within each specific hospital category, the effect of significant hospital
characteristics such as teaching status and volume will be masked, and
the consumers may be misled.

7.3 PERILS OF RISK ADJUSTING OBSERVATIONAL
DATA

Statistical risk adjustment of observational data has the potential for
generating results that may be very misleading. Therefore, great care
should be taken when applying the results. We present the results of some
simulation experiments to illustrate one simple and intuitively obvious
mechanism whereby misleading results may be produced. However, first
we will explain the principles of the simulation experiments.
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Assume that we have two types of patients, type-1 and type-2. The
probability that a type-1 patient dies during a specified and properly
administered surgical procedure is 0.1, and the probability that a type-2
patient dies is 0.3. If these probabilities are constant over time, the
surgical procedure is in a state of statistical control. This means that
its quality is stable.

The behaviour of such a process over time may be simulated. Assume
we wanted to simulate the experience of 1000 consecutive type-1
patients who were subjected to the surgical procedure. To do so, we
perform 1000 independent experiments, each simulating the experience
of one patient. Each experiment consists of a random draw of one ball
from an urn containing 10 % red balls and 90 % white balls, simulating
the 10 % probability of death during operation. If we wanted to simulate
the experiences of a mixture of type-1 and type-2 patients, we would use
two urns, one for type-1 patients containing 10 % red balls and another
for type-2 patients, containing 30 % red balls. Instead of drawing balls
from urns the experiments may be done using a standard statistical
package on a computer.

Example 7.4

Imagine two hospitals both receiving patients belonging to the same well-
defined clinical entity and suffering from the same severe disease that
requires major surgery. Assume that the same surgical procedure is used
in both hospitals and that two patient factors influence these patients’
risk of dying during operation: the presence of a specific genetic trait (Ry:
1 if the factor is present, otherwise 0) and the presence of infection of the
organ to be operated on (R,: 1 if present, otherwise 0). Patients with
neither risk factor present have a 0.1 probability of dying during the
procedure, regardless of which hospital they are admitted to. For patients
with one factor present the probability is 0.3, and for those with both
factors present it is 0.6.

We now conduct a simulation experiment based on the above men-
tioned assumptions, simulating the experience of 2000 patients admitted
to the two hospitals. To study the effect of case mix we vary the patient
case mix between the hospitals. We examine the effect of risk adjustment
when both risk factors are known and when only risk factor 2 is known.

Table 7.1 shows for each of the above two hospitals the case mix of
1000 patients admitted to the hospital and the results of the simulation
experiments. These results have been analysed under the assumption that
both risk factors are known to the medical community (columns 5 and 6)
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Table 7.1 The results of a simulation study where the probability of death during a
surgical procedure as a function of two risk factors (Ry: presence of a genetic trait
and R,: presence of infection of the organ operated on) was simulated. The prob-
ability of death, for given risk factor combination, is the same in the two hospitals
but the case mix differs between the hospitals.

Result of Genetic trait assumed
Genetic Infected simulation® unknown’
trait’ organ® Simulated n (no. ~ n(no.
Hospital® Ry R, model’ Mortality® dead)” Mortality’  dead)’
1 No No p=0.1 0.060 100(6) 0.227  300(68)
Yes No p=20.3 0.310 200(62)
No Yes p=03 0.300 200(60) 0.496 700(347)
Yes Yes p=0.6 0.574 500(287)
2 No No p=0.1 0.096 700(67) 0.131 840(110)
Yes No p=0.3 0.307 140(43)
No Yes p=0.3 0.233 120(28) 0.381 160(61)
Yes Yes p=0.6 0.825 40(33)

@It is assumed that the quality of treatment and care is the same at the two hospitals.

b The presence of the genetic trait influences the probability of death (see parameters of simu-
lation model in column 4).

¢ The presence of infection of the organ operated on influences the probability of death (see
parameters of simulation model in column 4).

4 The parameter value of the simulation model generating the data. For instance when the
genetic trait is present and the organ is infected the probability of death is 0.6.

¢ Column § and 6 show the result of the simulation for each combination of risk factors in each
hospital.

! Column 7 and 8 show how the results would have been classified had the information of the
genetic trait been unknown to the medical community. For instance the results of the two first
sets of experiments would have been pooled and classified as data from patients without
organ infection, etc.

& The mortality observed in each of the 8 sets of simulation experiments. When compared to
the value in column 4 one may appreciate the effect of the random variation.

" 1 is the number of independent simulations done per experiment. 7 has been varied between
the hospitals to imitate differences between the case mixes of the two hospitals. No. dead is

~ the number of fatal outcomes occurring during the # simulations.

" Using the same data that were generated by the simulation. For given value of ‘infected organ’
and given hospital the data have been pooled imitating the situation where the risk factor
‘genetic trait’ is unknown to the medical community.

and under the assumption that only one is known (columns 7 and 8). For
example, row 1 of hospital # 1 shows the simulated probability of death
in column 4. It is 0.1 because the patients of this category do not have any
of the two risk factors present (see columns 2 and 3). The result of the
simulation of 100 patients’ experience is that six patients died (column
6). Row 2 of hospital # 1 shows the corresponding results for patients
with risk factor 1 present and risk factor 2 absent. Here the simulated
probability of death is 0.3 and the result of the simulation that 62 of the
200 patients died giving a simulated death rate of 0.310. Columns 7
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and 8 show how the results would have been interpreted had risk factor 1
been unknown to the medical community. Now, the two types of
patients cannot be distinguished and we calculate the mortality for
patients with risk factor 2 absent as £5= 0.227, etc.

The overall mortality rates (hospital # 1: 0.415 and hospital # 2: 0.171)
differ significantly between hospitals. However, we need to adjust for the
difference in case mix. To do so, we perform a regression of risk factors
and the hospital effect on logit(p;;) where pj; is the probability that patient
# i, treated at hospital # j, dies. There are only two hospitals; we are only
interested in these hospitals, and the experiments were independent of
each other. Therefore, we use a fixed-effect model. The independent
variables include Ry, R,, and H; (1 if the patient is treated at hospital #
1 and O if treated at hospital # 2). We have the model

logit(p;;) = a + iRy + BaRoi + 61Hy + €45

Table 7.2 shows the result of the logistic regression analysis. The coeffi-
cients of both risk factors are highly significantly different from 0 while
that of the hospital effect is not. This is no surprise to us because we

Table 7.2 The estimated coefficients of two loglstlc regressions of hospital (H;)?
and risk factors” (R; and R,) on loglt(p) where p is the probability of dying during
an operation. In the first regression analysis® both risk factors were known. In the
second analysis® it was assumed that only one of the risk factors (factor 2) was
known, imitating the situation where an important risk factor is unknown to the
medical community.

All risk factors known One risk factor assumed unknown
Estimated Estimated
Parameter Estimate SE° v odds ratio® Estimate SE P odds ratio
52 1.30 0.127  0.00005 3.67 1.29 0.123  0.00005 3.63
61 —0.139 0.144 0.34 0.871 0.57 0.125 0.00005 1.77
51 1.46 0.127  0.00005 4.32 Factor assumed unknown

% Hj is a binary variable that is 1 if the patient was operated on at hospital # 1 and 0 if the
patlent was operated on at hospital # 2.
b Risk factor 1 (R;), ‘presence of genetic trait’. Ry = 1 if trait is present, otherwise 0. Risk factor
2 (R,), ‘presence of infection in organ operated on’. R, = 1 if infection is present, otherwise 0.
¢ logit(p) = a+ SRy + Ry + 61Hy = —2.23 + 1.46 R + 1.30R; — 0.139 H; (For simplicity
indices referring to patient # and hospital # have been omitted).

4 logit(p) = a + Ry + &Hy = —1.86 +1.29 Ry + 0.57 Hy.

¢ SE = standard error of estimate.

! p-value.

8 gestimate Eor example, for the parameter 8, we have e'*° = 3.67.
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conducted the experiment so that the hospitals only differed in terms of
their case-mixes.

Table 7.1 (columns 7 and 8) shows how the data resulting from the
simulation would have been classified had the genetic trait been
unknown. Patients with both risk factors present would not be distin-
guishable from patients with only risk factor 2 present and patients with
only risk factor 1 present would be classified as low risk patients. The
logistic regression model, therefore, becomes

logit(pij) = a + SRy + 61Hi + €.

Table 7.2 shows that now the hospital coefficient is significantly different
from O (p-value = 0.00005) implying that the mortality rate of hospital
# 1 is higher than that of hospital # 2 even if we adjust for the observable
case-mix differences. Thus, the presence of an unknown or unmeasured
significant risk factor (here R;) may bias the comparisons between
healthcare providers.

Following a simulation of random assignment of the patients to
the two hospitals, 1009 patients, of whom 316 died, were assigned to
hospital # 1, while 991, of whom 300 died, were assigned to hospital # 2.
The two mortality rates were 0.313 and 0.303, i.e., almost
identical, showing unambiguously that the two hospitals do not differ
importantly.

Empirical studies [25] have demonstrated that statistical adjust-
ment of observational data may fail to remove the main part of
bias and occasionally increases systematic bias. This may result
from omitted or unknown risk factors (as illustrated in the above
example), misspecification of continuous variables (inappropriate
conversion to binary variables or failure to recognise nonlinear rela-
tionships), misclassification caused by the use of poor proxies for the
proper covariate, measurement errors, and within-patient instability
in covariate (e.g., because of circadian rhythms). We refer the reader
to a very thorough and interesting discussion in the paper by Deeks
et al. [25].

As a minimum we suggest that the following six points be considered
when statistical risk adjustment of observational data is attempted

1. Data are first presented without adjustment.

2. Continuous variables, e.g., age or weight are not transformed into
binary variables since this throws away information and increases
the likelihood of improper model specification.
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3. The assumptions of the model building such as linearity, etc. (see
Chapter 5 Section 5.5) are checked. Where the propensity score
methodology is used, the balance of risk factor distributions
between treatment groups must be verified.

4. When appropriate a hierarchical model is used.

5. The variation not accounted for by the risk adjustment model is
measured and reported.

6. As a rule of thumb, observational data are considered hypothesis-
generating material and treated accordingly, and very explicitly
presented as such. That is, the results should be presented as
needing experimental verification before any conclusions may be
drawn.

Considering the problematic nature of observational data, the publicis-
ing of such data may give rise to some concern. In the following section
we address this topic.

7.4 PUBLIC REPORT CARDS

There is an increasing demand for accountability. As a response to
this demand, it has become mandatory in many jurisdictions to
release public report cards, comparing outcomes across hospitals or
practice groups. This raises the questions: what are the potential
advantages and dangers related to the publicising of report cards
showing outcome data, and how should the medical community
react?

The proponents of the publicising of report cards argue that it
encourages quality improvement through market forces. The oppo-
nents recommend using the principles of continuous quality improve-
ment (CQI). The principles of CQI are based on confidentiality. It uses
benchmarking, determination of ‘best practice’, and collaborative edu-
cation among physicians. Shahian et al. published a thorough and
penetrating analysis of these problems in relation to cardiac surgery
report cards in an excellent paper from 2001 [26]. It offers a good
illustration of the problems and controversies that may be related to the
publicising of outcome data. They reviewed the literature on the release
of report cards in the New York State. Here the names and risk-
adjusted mortality rates of individual surgeons are publicised statewide.
Between 1989 and 1992, 27 surgeons with less than 50 cases a year and
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with risk-adjusted mortality rate 2.5 to 5 times the state average
stopped performing CABG surgery, either voluntarily or because of
restriction of hospital privileges [27, 28]. Shahian et al. admit that the
magnitude of improvement in the New York State CABG surgery
mortality may have exceeded the nationwide improvement. However,
they suggest that it may be a result of quality improvement initiatives
undertaken by individual hospitals. This contention is supported by a
study [29], showing that the northern New England area that had used
an aggressive, but completely confidential CQI approach, was the only
region that had a mortality reduction comparable to that of the New
York State (see also [30]).

Publicising performance data may have adverse effects. They include, for
example, avoidance of high-risk cases. The reason for this is that surgeons
are concerned that risk adjustment provides inadequate protection from the
higher mortality rates that they are experiencing when operating on high-
risk patients. Although there is conflicting objective evidence regarding
avoidance of high-risk CABG surgery patients, many surgeons perceive
that accepting such cases may jeopardise their reputations and careers (see,
e.g., [31]). Another concern has been that the existence of public report
cards may result in so-called gaming that may be responsible for apparent
improvements in risk-adjusted mortalities. Gaming includes excess report-
ing (up-coding) of preoperative co-morbidities, change of the operative
procedure of high-risk patients from a reported category to a nonreported
category, and transfer of critically ill patients to extended care facility
before their anticipated death because mortalities occurring in these facil-
ities are not reported. It seems likely that some degree of up-coding has
occurred as a result of public report cards. The frequency of change of
operative procedure is difficult to quantify. But the problem does exist and
has been described (see, e.g., [32]). The last problem (change of risk
adjusted mortality by transfer of critically ill postoperative patients) may
be avoided by collecting outcome data at a fixed time regardless of where
the patient has been transferred.

Several precautions may be taken to prevent some of the above
potential problems. During the planning and implementation of report
cards, there is a need for constructive, nonadversarial collaboration
between clinicians, statisticians, and regulators [33]. Preferably the
database to be used for the report card should be national or statewide
and supported by the relevant professional societies. Not the least,
education of the media is important to facilitate fair and dispassionate
press coverage.
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8

Learning Curves

When a new nonpharmacological clinical procedure is introduced, e.g., a
new surgical procedure, it is sometimes argued that it is unfair to
evaluate it because enough experience in using the technique has not
yet been gathered. When this has been accomplished, the technique may
be so well established that it is too late to evaluate it. It is then argued that
it would be unethical to have a control group of patients who will not
benefit from the procedure. However, the quality of a clinical procedure
(e.g., a minimally invasive surgical procedure) that is carried out repeat-
edly by the same person may be measured using an appropriate quantity.

The measured quality of a new clinical procedure usually improves
over time, but at a declining rate. Gradually it then reaches a stable value
of quality (the asymptote). The expected time course of the process
variable used to characterise the procedure is referred to as a learning
curve. In this chapter we present methods that may be used to monitor
the quality of a nonpharmacological procedure from the time when it is
introduced and until sufficient experience in using the procedure has
been gained. In this way the above dilemma may be resolved. When the
assessment of the procedure is initiated without delay, it will have two
advantages: (1) the minimum experience necessary to master the techni-
que may be assessed, and (2) the asymptote may be compared to the
quality of already established alternative procedures. In the latter com-
parison one must remember the risks of comparing apples with oranges
(i.e., comparing different case mixes, see Chapter 7).

Statistical Development of Quality in Medicine P. Winkel and N. F. Zhang
© 2007 John Wiley & Sons, Ltd
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8.1 ASSESSING A SINGLE LEARNING CURVE

Before a learning curve can be described, a measure of the quality of the
procedure should be selected. The value of this quantity is measured each
time the procedure is performed by the same person. The procedures
performed are numbered according to their chronological order, and the
number is referred to as the sequence number. Next, one checks if a trend
(a learning effect) can be detected. If this is the case, one proceeds to
characterise the learning curve. The measure of quality is usually either
continuous or binary. An example of a continuous one that is quite
popular is the time it takes to perform a surgical procedure (the operating
time). But other continuous measures, e.g., the length of stay at hospital
of a patient subsequent to having been subjected to a surgical procedure,
are also possible. An example of a binary one is the presence versus
absence of intra-operative complication. We show how to approach the
data analysis in each of these two cases.

8.1.1 Continuous Measure of Quality

To analyse learning curve data, a scatter diagram of the quality measure
versus sequence number is first drawn. To get a clearer picture, various
types of data treatment, such as the calculation of a moving average may
be used [1]. If a trend may be discerned visually, one proceeds and
examines if a statistically significant learning effect can be demonstrated.
Sorting the observations in ascending order, according to their sequence
numbers may achieve this. They are then divided into three or four
approximately equally sized groups, and a statistical test is used to test
if the group means differ significantly and if a time trend may be detected.
Once a significant trend is detected, the learning curve is established. In
Example 5.2 we demonstrated the principles that may be applied. The
following example is adapted from a study by Ramsay et al. [2].

Example 8.1

They measured the operating time of 190 consecutive laparoscopic
fundoplication procedures (an operation of the stomach) performed by
a single surgeon. We have read their data from the figure in their paper.

Figure 8.1 depicts the operating time as a function of the sequence
number of the operation. It seems that there is a slight trend, so that the
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Figure 8.1 The operating time of laparoscopic fundoplication operations (surgery of
the stomach) performed by the same surgeon depicted as a function of the sequence
number of the operation (filled circles). We have read the data from a figure in a
paper by Ramsay et al. [2]. The function: operating time/minute = 158.25 (sequence
#)7914¢_ that was fitted to the data, is also shown on the figure (open circles).

operating time declines with increasing sequence number. When a mov-
ing average algorithm is applied to the data (result not shown), this
impression gets clearer. Ramsay et al. proceeded to demonstrate the
presence of a trend as described above and then tried to fit various
functions to their data.

The three best types of functions are shown in Table 8.1. We applied
the power law to the data of Figure 8.1 (see Example 5.2). The estimated
parameters were a = 158.25 and b = —0.146. The function is depicted
in Figure 8.1.

Ramsay et al. found that the power law explained 20 %, i.e., the R? of
Y = aX’ was 20 %. This, of course, is much less than was the case in the
idealised Example 5.2.

Table 8.1 Three types of functions that have been used to
predict the quality of a nonpharmacological procedure (Y)
as a function of its sequence number (X); @ and b are the para-
meters of the functions (see paper by Ramsay et al. [2]).

Type of curve Equation
Power law Y=a Xt
Logarithmic Y=a-In(X)+b

Log-linear Y = elatXb)
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8.1.2 Binary Measure of Quality

From a statistical point of view, a continuous quality indicator is ideal
since it is relatively easy to analyse. However, from a clinical point of
view a binary indicator may often be more appropriate. The operating
time may not necessarily be a good proxy of quality. It may just be a
proxy of the experience gained in using the same type of quality.
The problem is that the event studied when using a binary measure
may be very rare. The cumulative sum (CUSUM) may be used as an
exploratory technique to discern a trend when the quality measure is
binary. Example 8.2 offers an illustration.

Example 8.2

Table 8.2 shows an invented data set. For each of 20 surgical procedures,
the occurrence of intra-operative complication (‘failure’) has been coded

Table 8.2 Cumulative sum (CUSUM) of deviations between observed outcome
and expected probability of failure measured in each of 20 consecutive surgical
procedures. The data are invented. Failure is defined as the occurrence of intra-
operative complication.

Observed Expected
outcome” probability Deviation
Procedure # (A) of failure (B) (A-B) CUSUM
1 1.0 0.3 0.7 0.7
2 0.0 0.3 -0.3 0.4
3 1.0 0.3 0.7 1.
4 1.0 0.3 0.7 1.8
S 0.0 0.3 -0.3 1.5
6 0.0 0.3 -0.3 1.2
7 1.0 0.3 0.7 1.9
8 0.0 0.3 -0.3 1.6
9 1.0 0.3 0.7 2.3
10 0.0 0.3 -0.3 2.0
11 0.0 0.3 -0.3 1.7
12 0.0 0.3 -0.3 1.4
13 1.0 0.3 0.7 2.1
14 0.0 0.3 -0.3 1.8
15 0.0 0.3 -0.3 1.5
16 0.0 0.3 -0.3 1.2
17 0.0 0.3 -0.3 0.9
18 0.0 0.3 -0.3 0.6
19 1.0 0.3 0.7 1.3
20 0.0 0.3 -0.3 1.0

“ Occurrence of complication is coded as 1 and lack of occurrence of complication is coded as 0.
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Figure 8.2 The cumulative sum (CUSUM) of the deviations between the observed
binary outcome and the expected (0.3) probability of failure of surgical procedures.
Failure is defined as the occurrence of intra-operative complication.

as 1 and lack of occurrence as 0. A proficiency level of 70 % is assumed
implying that complication should not occur in more than 30 % of the
operations. Therefore, the expected probability of “failure’ is 0.3 (column 3).
In column 4 the observed outcome minus the expected one is shown. The
CUSUM, shown in column 5, is the cumulative sum of these deviations.
Initially (observations 1 to 4) the failure rate (the average of the failure
codes) is larger than the target (0.3). Then it equals it (observation 5 to
14), and finally it goes below the target rate (observation 15 to 20).

Figure 8.2 depicts the CUSUM curve. As long as the failure rate is
larger than the target, the curve rises. While it is equal to the expected
value, it is flat (not as a pancake), and when the rate goes below the
target, it declines. This is a typical pattern when a learning effect is
present.

This technique has been used in the literature. The procedure number
reached when the CUSUM begins to decline is defined as the number of
procedures necessary to attain an acceptable performance.

Once a learning pattern is demonstrated, the data may be ordered in
ascending sequence number and divided into three to four equally sized
groups. It may then be tested if a significant learning effect is present. If
this is the case, logistic regression may be applied to estimate a learning
curve, as illustrated in the following example.

Example 8.3

From the figures in Ramsay et al. [2], we read the results of a binary
outcome variable, defining the appearance of one or more complications
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Figure 8.3 Probability of the occurrence of complication during a laparoscopic
fundoplication operation (surgery of the stomach) as a function of the operation’s
sequence number (bold line). The function was estimated using logistic regression
analysis. The 95 % confidence interval of the function is also depicted in the figure (thin
lines).

during the operation measured in each of the first 190 laparoscopic
fundoplication operations made by the same surgeon. Using these data,
we performed a logistic regression of sequence # of operation on logit(p),
where p is the probability of complication. The following equation was
derived as the result of the analysis

logit(p) = —1.162 — 0.012 sequence # (8.1)

Therefore, 1'%7) is equal to e~ (1:162+0.012 sequence #) \¥e may now estimate

the probability that intra-operative complication will occur during
operation # 191. The odds of complication is e~ (1:162+0.012:191) © 54
according to Equation (5.16) the estimated probability of complication is

e—(1.16240.012-191) 0.0316

1t+e (1162+0.012191) — 1 4+ 0.0316 0.0306.

Figure 8.3 depicts the estimated probability as a function of the proce-
dure sequence number computed by the Statgraphics program. The 95 %
confidence interval band, calculated by the program, is also depicted in
the figure.

8.1.3 Case-Mix Adjustment

The variation relative to the predicted line may include variation that
can be ascribed to differences between the patients who are operated
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on, in terms of sex, age, concomitant diseases, etc. As shown in
Chapter 5, one may attempt to compensate for this case-mix effect
by including the significant factors as covariates in the logistic regres-
sion. Ramsay et al. included a number of patient-related covariates in
the logistic function, but found that none of them were significantly
associated with the dependent variable. However, when they included
various covariates in the power law function relating log(operating
time/minute) to log(sequence #), the patient’s age did influence the
learning curve significantly. When age was included, 24 % of the
variation was explained as compared to 19 % when only the sequence
# was included. Still, this is far from 100 %. Case mix, sometimes,
complicates the assessment of learning curves [2]. As a physician gets
more experienced, he/she may get a relatively large proportion of the
severe cases. Therefore his/her quality may appear to decline over time
(see Example 7.3).

8.2 ASSESSING MULTIPLE LEARNING CURVES

If the learning curves of a specified procedure differ significantly
between physicians, the curve of each individual physician should be
estimated. If not, the data may be pooled to obtain a single curve, e.g.,
characterising a single institution. Ramsay et al. studied multiple opera-
tors [2] in a prospective study of laparoscopic cholecystectomy using
the power law model after logarithmic transformation, as explained in
Example 5.2. Using a mixed model (see Chapter 5), they demonstrated
that a model might describe the data where the 10 operators may be
described as a random sample from a population of operators, with
individual starting levels (@ in Equation (5.2)) and learning rates (b in
Equation (5.2)) deviating at random from the corresponding popula-
tion mean values. They found that starting levels and learning rates
differed significantly between operators and explained 15 % of the total
variability. Seven percent of the within operator variability was
explained by the operator’s learning curve as opposed to 20 % for the
laparoscopic fundoplication procedure. When they included sex, gall
bladder rupture, and presence of inflammation of the gallbladder in
their model, they found that these covariates contributed significantly
to the total variability.

The mixed model (see Chapter 5) used by them allows the disentan-
gling of the proportion of total variability that can be attributed to
true variation in rates of learning from surgeon to surgeon from that
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proportion, which can be attributed to random variation between
patients within surgeons. Similar techniques may be applied if the quality
measure is a binary variable [3]. However, as explained in Chapter 7, risk
adjustment of observational data is fraught with problems. Clearly, a
design where the patients are assigned at random to the operators is
preferable. However, in practice, it may be difficult, sometimes impos-
sible to carry out such an experiment.

From the study by Ramsay et al., we may learn that learning curves
may differ between technologies and between physicians, and not least
that variation due to case mix may play a role. We also learn that a large
proportion of the variability cannot be explained. This may be ascribed
to case-mix variation that has gone unrecognised. Of course, these results
cannot necessarily be generalised.

8.3 FACTORS AFFECTING LEARNING CURVES

There are reasons to believe that the institutions where the procedures
are performed may impact the learning curves [4]. Table 8.3 shows the
factors that may affect individual learning curves at various levels of
the hierarchy of a healthcare organisation. At the first level, we have
the patient. Here, individual patient characteristics and the clinical
characteristics of the population of patients undergoing the procedure
may influence the learning curve. At the second level, we have the
physician whose attitude, natural abilities, capacity for acquiring new
skills, and previous experience may have an influence. At the third
level is the institution. The institution can impact on the learning
curve through the organisation of facilities, financial means, and the
experience and type of people included in the team supporting the
physician.

Table 8.3 Factors that may influence a learning curve at
various levels of a healthcare hierarchy.

Level of hierarchy Factors
Institution Organization, finances,

quality of supporting team.
Physician Natural skills and experience.
Patient Individual patient characteristics,

type of clinical target population.
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8.4 LEARNING CURVES AND RANDOMISED
CLINICAL TRIALS

When the infrastructure of a healthcare organisation allows it, rando-
mised clinical trials may be economically and practically feasible to
conduct. In that case, one may compare the impact of a new procedure,
e.g., a surgical one, on the quality of treatment, by comparing it to the
quality of an older and well-established procedure. In a randomised trial,
variation over time in case mix and other factors that may impact the
results of the procedures compared are accounted for because the patients
are allocated at random to interventions within each of the participating
institutions. Therefore, the effect of these factors is balanced between the
intervention groups, in that any difference is only random. However, the
effect of the improvement in skill in performing the new procedure that
occurs over time will not be neutralised by the randomisation. Therefore,
this may obscure the results unless the effect is measured and taken into
account when the quality is compared between the procedures.

Figure 8.4 illustrates the problem. It depicts invented data showing the
monthly mortality rates of two patient groups, A and B as a function of
the duration of a randomised trial with two arms designed to compare
the mortality rate of a new surgical procedure (arm A) to that of an older
well-established surgical procedure (arm B). It is obvious from the figure
that the new procedure is better than the old one since the mortality rate
of arm A is below that of arm B once the two mortality rates are stable. It
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Mortality rate
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Figure 8.4 The mortality rate of two patient groups, A and B, depicted as a function
of the duration of a randomised clinical trial comparing two interventions, a new
surgical procedure (group A) and one currently used (group B). The data are invented.
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is also obvious that a learning effect is present for the new procedure. If
the trial were to be stopped after 13 months, a comparison between the
mortality rates of the two groups would imply that the old procedure is
superior to the new one. If it were to be stopped after 35 months, the
result would indicate the opposite to be the case.
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9

Assessing the Quality of
Clinical Processes

To assess the quality of clinical processes on a routine basis, an informa-
tion system, integrated in the existing clinical information system and
designed for the measurement of clinical quality, must be in place. The
lack of proper, well-functioning information technology systems has
been a major obstacle to the development of routine clinical quality
control and assessment. Once the data are available, they must be
subjected to a statistical analysis, the outcome of which is the assessment
of the quality.

In this chapter, we discuss the data processing aspect and describe
how to benchmark processes in statistical control. When several
healthcare providers are benchmarked, it is assumed that they are in
statistical control, in the same state. That is, the variation between
providers can be explained by the within-provider variation over time.
This latter assumption may be assessed, using a so-called funnel chart.
However, it is the exception rather than the rule that the assumption is
fulfilled. It is emphasised that the actions that are to be taken, when
lack of statistical control has been discovered, should be prespecified
and considered at the design stage of the monitoring system. Sometimes
an excessive number of providers are outside the control limits. This
phenomenon is referred to as overdispersion. In this situation various
approaches are possible.

Statistical Development of Quality in Medicine P. Winkel and N. F. Zhang
© 2007 John Wiley & Sons, Ltd



196 ASSESSING THE QUALITY OF CLINICAL PROCESSES
9.1 DATA PROCESSING REQUIREMENT

To monitor and assess the quality of clinical processes on a routine
basis, there are certain design considerations that must be addressed,
before it becomes cost effective. The data collection, storage, and
processing must be highly automated and well integrated in existing
clinical data-processing systems. When designing a system, its future
use must be anticipated. If the data are only used for the physician or to
select physicians whose practices should be the subject of a closer
review, some imprecision could be tolerated. However, if the purpose
is to make critical, professional decisions, e.g., recertification, the data
should be clinically meaningful and very reliable [1]. Therefore, a
statement of the purpose of a reporting system is necessary. To ensure
that the data will be meaningful, the database should be collected
specifically for the performance assessment [1]. Documentation of the
experience of physicians and institutions, e.g., number of procedures
performed, specialty, location, etc., may be important indicators of
quality. Therefore, these data should be available. Traceability of the
scientific evidence upon which the system is based is a key considera-
tion. Definitions and algorithms used when collecting and presenting
the data as well as reference to sources from which they originate must
be documented and supplemented with a logbook, specifying the per-
iods of their usage.

Recently a set of guiding principles and operational steps for the
development of functional information systems in health care has been
published [2]. The author of the guidelines envisioned an integrated
system where healthcare delivery groups generate data for internal
operations in a way that makes it possible to combine these data into
high-level reports on accountability. We review these principles and
operational steps.

9.1.1 Guiding Principles for the Development of an
Information System

A functional information system should include four key elements:
(1) single-point data collection at point of entry, (2) the prerequisite
for combining data for multiple purposes, (3) the prerequisite for
securing privacy and confidentiality of patient records, and (4) audit
standards.
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9.1.1.1 Single-Point data collection at point of entry

The aim of this is to eliminate redundancy. Furthermore, the data will
usually be more accurate and complete than data entered at secondary
time points. For instance, when the blood pressure is measured in a
patient, it is entered directly into the clinical information system.

9.1.1.2 Prerequisite for combining data for multiple purposes

Data may be used, not only for local purposes such as direction of patient
care, summary reports for an individual clinician or care delivery team,
but also for aggregate reporting across conditions (e.g., all surgical
procedures) or across groups of providers or geographical regions within
the same clinical measure. Aggregate reporting relies on four concepts:
classes of outcome, a common metric, an analytical method, and patient
registries (with master index systems to create accurate denominators).

Classes of outcome Classes of outcome may include (1) medical
(complications, result of therapy etc., from the clinician’s perspective),
(2) patient functional status (patient’s perspective on treatment effects),
(3) service (dimensions of the patient-clinician relationship, e.g., access
and convenience), (4) cost (expenditures associated with medical care
processes). They may be combined with three additional measures:
patient stratification (includes factors that cannot be controlled by the
provider, but influence outcomes, e.g., demographics), appropriateness
(includes factors used to determine if an intervention is appropriate, e.g.,
failure of maximal medical therapy to control angina), and key process
factors that determine outcome (e.g., timely administration of medicine).

Common metrics Appropriate common metrics for these major out-
come classes must be agreed on, to produce meaningful and consistent
aggregate reports across regions or nations. For example, the indications,
that determine the appropriateness of a surgical procedure for a parti-
cular patient, are tailored to a specific clinical scenario. All surgical
procedures might be combined using the common metric appropriate-
ness. The report would then contain the proportion of all surgical
procedures that were performed for clinically appropriate reasons.

As another example, consider the fingerprinting of a particular clinical
condition. A list of common defects should be prepared. However,
functional definitions should also be prepared to stage each defect. To
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allow diverse outcomes to be classified on a common metric, a staging
system must be developed, so that summary performance scores can be
reported. An example is the staging system, originally suggested by the
US Center for Disease Control and Prevention [2]. This includes four
stages: stage 1, event without risk of long-term harm occurred. No
intervention. Stage 2, event without risk of long-term harm occurred.
Intervention was undertaken to speed recovery. Stage 3, event occurred,
patient was at risk for long-term harm; but intervention prevented that
harm from occurring. Stage 4, the patient suffered a long-term injury
(minor, major, or death). Using this system defects could be summarised
across conditions and organisational units.

Agreement on analytical methods Data system design should include
agreement on analytical methods, used to combine data across care
delivery groupings and clinical conditions.

Patient registries Such registries are a means of maintaining the data
across a care delivery group or a geographical area. They deliver the
proper denominators, needed to generate rate of performances (e.g., all
diabetic patients in a practice within a defined time period).

9.1.1.3 Prerequisite for securing confidentiality of patient records

The third principle relates to the protection of the patients’ privacy and
the confidentiality of the clinical data pertaining to the patient. Ideally (in
our opinion) one should strike a proper balance between, on one side, the
need to consult the patient and conceal sensitive clinical information for
those not directly involved in the clinical decision making, and on the
other side the need to control the costs and secure the availability of
timely and important clinical information for those involved in the
clinical decision making. Clearly, the current and anticipated legislation
on patient confidentiality should be taken into consideration when an
information system is constructed.

9.1.1.4 Audit standards

The final principle is to secure an appropriate auditing of the system.
Data system audits should attempt to limit the role of the measurement
system as a major source of variation in reported results. This implies
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that the completeness and accuracy of data are controlled. The comple-
teness of data should be checked at the population level (are all patients
present and accounted for?) and on the individual case level (are all data
fields present and accounted for?). The audit of the accuracy of data
includes a content analysis to assess whether standard coding definitions
are consistently followed. To secure an impartial audit, each measure-
ment set developed should include explicit standards for concurrent data
audits, and the auditors must be completely independent of the care
delivery group they review.

9.1.2 Functional Steps in Designing a Data System

The functional steps in designing a data system on a regional or national
basis are based on the key concept that condition-specific sections are
added to the data base that grows in breadth and depth over time. To
generate individual modules within such a system, the following proce-
dure is recommended. One starts with the desired end result and works
backwards to the front-line data collection and data flow. The steps
include focusing on a high-priority clinical process, development of a
conceptual model, generation of a list of reports, determination of data
elements based on these reports, identification of already automated
data, and testing the system. Once the test is successful, the system is
implemented.

9.1.2.1 Focus on high-priority clinical processes

Clinical processes may be divided into: (1) clinical conditions (outpa-
tient/primary care and inpatient/specialty care); (2) clinical support
services (laboratory, etc.); (3) service quality; and (4) administrative
support processes. The first step is to assess these various clinical pro-
cesses to select those that will have the greatest effect and then invest in
them.

9.1.2.2 Development of a conceptual model

The next step is to develop a conceptual model of the selected process.
Such models provide a context for individual tasks and link them
together into a co-ordinated workflow. One approach would be to start
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Figure 9.1 Clinical logic for acute myocardial infarction. Reproduced with permis-
sion from McGlynn EA. Selecting common measures of quality and system perfor-
mance. Med Care 2003; 41(suppl):1-39-1-47.

with a conceptual flow diagram. Here one takes advantage of the natural
hierarchy found in real processes. One starts with a simple flow diagram
of the whole clinical process. Then those steps that hold the most
potential for improvement or most strongly control the outcome are
identified. These steps are expanded to form a second more detailed
layer. One continues in this way until a decision layer is reached. The
result is a traditional decision flowchart.

Figure 9.1 from the study by McGlynn [3] shows a conceptual clinical
flow diagram for acute myocardial infarction (AMI). Based on evidence
from the literature one may estimate the proportions of the deaths that
are preventable through improved care. Doing this, underscores the
importance of primary and secondary prevention of AMI. Therefore,
one continues to expand this part of the flow diagram.

9.1.2.3 Generation of list of reports

The third step is to generate a list of reports and test their utility. Each
box in the flow diagram above the decision level is examined, and it is
determined which report should routinely be generated to track perfor-
mance and outcomes. Model reports containing real data or simulated
data are circulated to those who are expected to use them, and the
questions are asked: (1) is the information useful? (2) Is it presented
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where it is needed for the decision maker? (3) How often should the
report be generated?

9.1.2.4 Determination of data elements based on report list

The fourth step is to use the report list to determine the data elements
required routinely to produce information for decision makers. A coding
manual is produced and developed into coding sheets where a coding
sheet is defined as a shorthand-coding manual for practical data entry
use. This scheme could be pilot tested.

9.1.2.5 Identification of already automated data

The fifth step is to identify those data that are already automated and
those that have to be obtained in the course of care delivery. Then the
data acquisition strategy is designed in collaboration with those on the
frontline where the data are generated.

9.1.2.6 Testing

The sixth step is to test the final reporting system, before full-scale
implementation is attempted. This is quite important. Experience in
real data systems has shown that shortcuts during the planning and testing
phases are likely to lead to increased costs and decreased functionality.

9.1.2.7 Implementation

When the system has been successfully tested, it is implemented.

9.2 BENCHMARKING OF PROCESSES
IN STATISTICAL CONTROL

When meaningful data are readily available, the clinical processes may
be characterised and their quality assessed, using various statistical
techniques. Assessment of clinical quality may be achieved using external
standards (benchmarking). If possible, a benchmark should be based on
professional judgement. However, often it is necessary to resort to an
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average, such as a national average. If this is done it will also be
important to assess how this national average compares with averages
of other nations.

A healthcare unit may be a surgeon, a practitioner, a hospital, etc.
Direct comparison between comparable healthcare units tends to focus
the attention on outlying healthcare units. The lack of a common stan-
dard, based on which the organisation as such could be evaluated, makes
it difficult to assess the results. If the general standard is high, outlying
units below the average quality may be quite acceptable. On the other
hand, if the general standard is very low, outlying units with above
average quality may be quite unacceptable [4].

A necessary prerequisite for a meaningful assessment of the quality is
statistical control of the processes examined. In Chapter 2, we charac-
terised an asthma patient, using a control chart of her peak expiratory
flow rate (PEFR). Initially the PEFR was in statistical control and, there-
fore, predictable. In fact, it could be predicted that the patient could
easily develop an asthma attack. Thus, her state was clinically unsatis-
factory. Therefore, the treatment was changed so that the PEFR stabi-
lised at a more normal level. The example illustrates that although
statistical control has nothing to do with quality, it is necessary to attain
statistical control to be able to assess the quality of the process; in the
example, the treatment of the patient. If a process is not in statistical
control, it is unpredictable, and consequently, in principle, its quality
cannot be assessed.

9.2.1 Benchmarking of a Single Healthcare Provider

To assess the quality of a process using external standards, the following
steps are necessary: (0) the quality requirements are specified; (1) the
process is brought in statistical control; (2) its quality is measured; and
(3) the quality is assessed by comparing the measured quality to the
requirements. If the quality does not meet the requirements, the process
is modified and steps 1 through 3 are repeated, etc. This is the classical
approach used in industrial quality control and development.

9.2.1.1 Defining the quality requirements

In industry, the quality requirements are often expressed as a nominal
value, characterising the products of the highest quality and an upper (USL)
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and lower (LSL) specification limit. The USL is the highest and the LSL is
the lowest value that the process variable may assume for the product to
be acceptable. An example is the production of nuts (to be used for a
screw). Let the process variable be the internal diameter of the nut. The
nominal value depends on what the nuts are to be used for. It seems
logical for this example to choose USL and LSL so that they are located
symmetrically around this value. Sometimes, industrial quality require-
ments are expressed by a single specification limit, i.e., a USL or an LSL,
that the values of the process variable should be far below or above,
respectively.

Example 9.1

In asthma patients the lowest acceptable value of the peak expiratory
flow rate may be calculated. For the patient presented in Example 2.7,
this value was 188 1/min. Therefore, in this case the quality requirement
is expressed as an LSL, i.e., 188 I/min.

In the scientific biomedical literature, recommended therapeutic pro-
cedures and corresponding clinical target populations, expected out-
comes, and frequencies of adverse effects, are published continuously.
Meta-analyses of these publications provide useful syntheses and sum-
maries that may be used as external standards in the assessment of the
measured quality of clinical processes. However, the use of published
performance data, e.g., expected mortality rates, as external standards
may not be that simple because it may be difficult to determine if the
patient population is comparable to patient datasets published. How-
ever, monitoring the frequency of the proper usage of treatments accord-
ing to published evidence is certainly possible.

9.2.1.2 Characterising the process

Before the quality of a process can be compared to quality requirements,
it has to be measured, i.e., the distribution of the process variable must be
characterised. The mean of the process variable is a measure of the
typical product produced by the process. The capability of a process
refers to its capability to produce uniform products, and the standard
deviation of the process variable is a measure of this capability. The
smaller the standard deviation is, the more uniform are the products.
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In industry, the process capability is often measured as six times the
standard deviation of the process variable. Therefore, it makes sense to
define the natural tolerance limits of a process as the mean, pu + 3
standard deviations (30) of the process variable. If the latter follows a
Gaussian distribution, 99.73 % of its values are expected to fall within
the natural tolerance limits. A more general definition of the natural
tolerance limits would be an interval that excludes 0.135 %, which is
100%=99.73% of the most extreme high values and the 0.135 % of the most
extreme low ones. In the following, the equations will be derived under
the assumption that the process variable is continuous and follows a
Gaussian distribution. It is also assumed that a USL is larger and an LSL
is smaller than the mean.

9.2.1.3 Relating process to quality requirements

Figure 9.2 shows the distribution of a process variable. The quality
requirement is defined as a USL. The fraction of unacceptable products
is depicted as the area (A) of the distribution that lies to the right of
the USL. ‘Upper’ is the upper natural tolerance limit, and ‘Lower’ is the
lower one. The area to the right of ‘Upper’ includes 0.135 % of the
distribution. In this example, the fraction of undesirable products
exceeds 0.135 % (A includes the 0.135 % area, lying to the right of
‘Upper’). If USL and ‘Upper’ were identical, the fraction of unacceptable
products would be 0.135 %. If USL were located to the right of ‘Upper’,
the fraction would be less than 0.135 %. For an LSL the same type of

Mean USL

Lower Upper

A

Process variable

Figure 9.2 Theoretical Gaussian distribution of a process variable. USL is the upper
specification limit. A is the area of the curve to the right of USL that is equal to the
probability of obtaining a value larger than USL. Lower is the mean minus 3 standard
deviations, and Upper is the mean plus 3 standard deviations.
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reasoning applies. The smaller the A, the better the quality of the process.
By convention, this area is not measured directly. Instead, the ratio
calculated as the specification limit’s distance from the mean divided
by three process standard deviations is used as a measure of the quality.
For a USL we have

USL — 1
Cou = 35 (9.1)
and for an LSL we have
_ pn—LSL
Coi =—_ (9.2)

where C,, and C, are called capability indices. It appears from
Equation (9.1) and the definition of natural tolerance limits that 30 =
(USL — ) if Cp, is 1, implying that (USL — u) = (‘Upper’ — u) or
‘Upper’ = USL, indicating 0.135 % of the values will be unacceptable.
If the ratio is larger than one, less than 0.135 % will be unacceptable, and
if it is less than one, more than 0.135 % will be unacceptable.

If a USL as well as an LSL are specified, the quality is assessed using
Cpk, the smaller of the two values, C,,, and C. Therefore, we have

Cpic = min{Cpy; Cpr} (9.3)

Example 9.2

After revision of the treatment of the asthma patient from Example 2.7,
the distribution of her PEFR values was stable, with a mean of 348.0
I/min and a standard deviation of 25.1 I/min. The LSL was 188.0 I/min.
Therefore, the C is W = 2.12. If one assumes that the distribu-
tion is Gaussian and its parameters are known and not estimated as
here, the standardised quantity (PEFR — 348.0)/25.1 follows a Gaus-
sian distribution with mean 0 and standard deviation 1. The standar-
dised value of LSL is 18893480 — _¢ 37 Therefore, the probability of
obtaining a value lower than 188.0 is P(Z < —6.37), which is zero for
all practical purposes. However, as indicated in Zhang et al. [5], the
uncertainties of the capability index such as C, are relatively large and
depend on the sample size. If possible, the capability indices should be
calculated based on sample sizes of at least 50.
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Example 9.3

In Example 3.2 the alignment of the femuro-tibial axis, following a total
knee replacement (TKR) operation using robotic equipment, was
followed in 78 patients. After a learning period, it appeared from the
cumulative sum (CUSUM) curve that the process had stabilised. A
CUSUM chart (not shown), using the remaining observations, demon-
strated that the process was now in control, and an analysis of the
distribution of the data showed that it did not deviate significantly
from a Gaussian distribution. The mean and standard deviation of the
data were 180.80° and 1.91°, respectively. If the specification limits are
defined as 180.00°+ 3.00° = [177.00°,183.00°], we may calculate

~ 183.00 — 180.80
b 3-1.91

=0.38
and

~ 180.80 — 177.00

Cpr = 3.1.91

=0.66

Then C, = min{0.38,0.66} = 0.38. From an industrial point of view
this is not a high quality process. However, in the healthcare sector one
can’t just delay the production until a suitable process has been devel-
oped, as long as the current treatment improves the patient’s condition.

Example 9.4

In Example 1.2 the mean waiting time at an outpatient clinic was outside
the control limits on Fridays. This problem was handled by reorganising
and increasing the staffing of the outpatient clinic on Fridays. After this
change had been made, the daily mean waiting times stabilised within the
control limits with a mean of 15.72 min. and a standard deviation of
4.85 min. The government subsequently dictated a USL of 30 min.
According to this standard, C,, = 3282272 = 0.98. This is a question-
able level of quality according to industrial standards. However, as
opposed to the above example, something can be done right away to
improve the quality.

If the process variable is binary, the nominal value and tolerance limits
may be related to p, the probability of the outcome, e.g., the death of the
patient, and as long as the normal approximation applies the above
equations may be used.
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Example 9.5

Of 600 patients who received a liver transplant at a centre for transplan-
tation, 90 died. We assume that the highest acceptable mortality rate is
0.20. This implies that USL = 0.20.p is 2% = 0.15.

The estimated standard deviation of p is

\/0.15-(1—0.15)_0015

600
Therefore,
0.20-0.15
Cm="3Tg015 M

According to industrial standards the quality is quite high, since the
sample size is as large as 600.

9.2.2 Benchmarking Several Providers

If one collects data from several, say k, healthcare providers within the
same organisation and measures the same process variable over time, one
ends up with & samples.

Example 9.6
Table 9.1 shows, for a given period, the number of patients treated for

AMI at each of 10 hospitals from the same health care organisation
(column 2), the number discharged on aspirin as a secondary preventive

Table 9.1 Ten hospitals ranked according to appropriateness of treatment.

Number of patients Number of Rate of Rank of
discharged on aspirin (X)  patients treated () appropriate treatment hospital
19 20 0.950 1
47 50 0.940 2
94 100 0.940 3
28 30 0.933 4
74 80 0.925 5
63 70 0.900 6
53 60 0.883 7
35 40 0.875 8
78 90 0.867 9

7 10 0.700 10

Sum (A): 498 Sum (B): 550 A/B: 0.906
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medication (column 1), and the fraction of patients receiving appropriate
secondary aspirin medication (column 3). In column 4 the rank, accord-
ing to rate of appropriate secondary preventive medication, is shown for
each hospital. The data are invented.

Table 9.1 is an example of a league table. In commerce and sports,
league tables have been used for many years to depict comparative
performance. Recently, their use has also been extended to rank services
provided by healthcare agencies. A league table may be defined as an
established technique for displaying the comparative ranking of organi-
sations in terms of their performance when standards against which to
judge performance have not been set [6]. When assessing a given ranking,
one should bear in mind that rank statistics have considerable inherent
variability and sophisticated statistical methods (that are rarely used in
practice) are needed to portray this variability [7, 8]. Therefore, rankings
without this information are useless and may be extremely misleading.
Adap et al. [6] pointed out that although the comparison of industrial
products, e.g., different brands of automobiles, makes a lot of sense, this
may not necessarily be true for healthcare products. The former are
produced by systems that are basically different. The opposite is actually
true for healthcare products. They argued that basically the systems used
to produce the same type of healthcare product, e.g., surgical interven-
tion in a specified type of patients, are (or should at least intend to be)
similar because they are based on the same scientific evidence.

Assume that a given organisation of k healthcare providers behaves
like a collection of k identical systems. Then, the principles described in
the previous section may be applied. All samples from the k providers are
first combined into one sample. Then the appropriate capability index is
calculated using this sample. The necessary and sufficient conditions
implied by the assumption are that the k processes corresponding to
the k providers are all (1) in statistical control, and (2) all in the same
state. The first condition may be tested, using a control chart for each
provider. If each of the control charts depicts a process in statistical
control, the first condition is fulfilled in all likelihood. Then, we need to
assess if they are all in the same state. To do so, Adap et al. [6] suggested
the use of control charts instead of the league tables. Continuing this line
of thought, Spiegelhalter introduced the funnel plot for comparing insti-
tutional performance [9]. In this plot the observed sample statistic is
plotted against a measure of its precision. Examples were given where
proportions and changes in rates were compared [9]. The plot consists of
a centreline equal to the overall average and 95 % and 99.8 % control
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limits relative to this centreline. They are calculated as a function of
sample size, volume of cases, or population size depending on the
application. It is assumed that all variation is random, i.e., only depen-
dent on the average and the size of the sample, volume, or population.
They form a funnel, demonstrating how the precision improves with
volume. The observed provider values are finally plotted on this graph to
produce the funnel plot. If all provider processes are in the same state of
statistical control, the values ought to cluster at random relative to the
centreline with approximately 5 % of the values being outside the 95 %
limits and 0.2 % outside the 99.8 % limits.

Example 9.7

To construct an approximate funnel plot for the data from Table 9.1 we
sorted them in ascending order according to sample size and depicted
them on a p chart for variable sample size, with 99.8 % and 95 % control
limits. The limits were calculated, using the normal approximation
presented in Chapter 2.

Figure 9.3 shows the chart. One value (70 % with a sample size of 10)
is below the lower 95 % limit, but within the 99.8 % limit. One out of 10
values between the 95 % and 99.8 % limits is not that unlikely if the
process is in statistical control. Besides, the normal approximation
does not hold in this example. The probability that X (the number
of patients discharged on aspirin) is 7 or less out of a total of 10

is 1—P(X>7)=1—(P(X=8)+P(X=29)+P(X =10)) = 0.0702.

92; [~ o~/

Patients discharged on aspirin (%)
~ (o]
N N
.

62t . . . . .
0 20 40 60 80 100
Sample size

Figure 9.3 Percentage of acute myocardial infarction patients discharged on aspirin,
depicted for each of 10 hospitals, on a p chart for variable sample size and 95 % (inner
limits) and 99.8 % (outer limits) control limits.
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So, in regard to secondary, preventive aspirin medication of AMI
patients, the 10 hospitals are so well standardised that the between-
hospital variation in outcome measure is purely random. Therefore,
we may combine all samples into one, to obtain p = 0.906 (see

Table 9.1) with a standard deviation = %60'906) = 0.0124. Then

the quality of the organisation of hospitals may be assessed.

Example 9.8

The benchmark, i.e., the lowest acceptable percentage of AMI patients
discharged on aspirin, was 85 % for the hospitals in the above example.
Using Equation (9.2) on the values calculated in Example 9.7, we obtain
Cp = 239650830 — 1.51. Considering that the sample size is 550 this is an

acceptable level of quality.

9.3 DEALING WITH PROCESSES THAT ARE NOT IN
STATISTICAL CONTROL IN THE SAME STATE

The above example is the exception, rather than the rule.

Example 9.9

Figure 9.4(a) shows the percentage of AMI patients discharged on aspirin
from each of 10 hospitals, depicted on a p chart for variable sample size.
The benchmark is 85 %. The average is below this value. However, the
hospitals are not in the same state of statistical control. If we remove
samples # 4 and # 9, the values of which are outside the 99.8 % limits,
and recalculate the control chart using the remaining data (chart not
shown), the value of sample # 7 falls below the lower 99.8 % limit.
Omitting sample # 7 and recalculating the control chart, we obtain the
chart shown in Figure 9.4(b). Now the process is in control, at an
acceptable high level. However, we need to find out why the three
hospitals crossed the 99.8 % threshold.

It is imperative that the actions to be taken in response to a threshold
being crossed are defined and written down as part of the design of a
monitoring system. Otherwise even a well-designed system is very
likely to be discredited through inappropriate use [10]. Prior to the
construction of the funnel plot, the individual control chart of each
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Figure 9.4 (a) Percentage of acute myocardial infarction patients discharged on
aspirin, depicted for each of 10 hospitals on a p chart for variable sample size and
95 % (inner limits) and 99.8 % (outer limits) control limits. (b) Percentage of acute
myocardial infarction patients discharged on aspirin, depicted for each of 7 hospitals
on a p chart for variable sample size and 95 % (inner limits) and 99.8 % (outer limits)
control limits. The crosses represent values that were outside the control limits of the
original control chart (see Figure 9.4(a)) or the chart (not shown) calculated after the
two outlying values of Figure 9.4(a) had been removed and the chart recalculated using
the remaining 8 values. The control chart here was calculated without using these 3
values, which are depicted as crosses in the figure.

provider should be inspected to make sure that the process is in statistical
control. If it is not, the cause of this should be investigated locally.
Assuming that the funnel plot only includes data from processes that
are in statistical control, a systematic search for special cause variation
should be initiated for each outlying provider, i.e., it should be investi-
gated why the process is in a state of statistical control that is different
from that of the remaining providers.
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In the example above we used a clinical process measure. This is a
quality measure. Therefore, to assess the quality and search for the cause
of outlying values is relatively straightforward. This is not so if a quality
indicator like death rate or morbidity rate is used. In this case, crossing a
threshold is not an indication of either high or low quality of care. No
conclusions can be drawn until the reasons for the apparent deviation
from the norm have been investigated. The first action to be taken, when
searching for a special cause of variation, should always be to check the
data carefully. Next, the case mix should be analysed. Then the structure
and resources should be checked. For instance, one may calculate the
number of physicians assigned per bed, etc. If a likely special cause has
not yet been found, the actual process of care should be analyzed, and if
this fails to give a result, it should be examined if individual healthcare
persons could be the cause of the special variation [11]. However, as
mentioned in the introduction, outcome measures like death rates and
morbidity rates are poor proxies of quality of care, and to identify the
cause of a deviating value may be difficult.

9.4 OVERDISPERSION

Figure 9.5, from a study by Spiegelhalter [12], shows the emergency
readmission (within 30 days) rates following discharge from 140
National Health Service trusts from 2002 to 2003. To the left is shown
a so-called forest plot showing 95 % confidence intervals, compared
with the target overall average. To the right is shown the corresponding
funnel plot, depicting percentage of readmitted versus number of dis-
charges. The majority of institutions are located outside the control
limits. The figure illustrates the phenomenon of overdispersion. The
observed variation cannot be ascribed to random variation and a few
outliers. This may typically be found when there is insufficient risk
adjustment. Spiegelhalter suggests various possible ways of handling
the situation [12]. An obvious solution is not to use the indicator. If this
is not an option, one may try to improve the risk stratification by
measuring risk factors that are contributing to the excess variation.
Rather than comparing all institutions simultaneously, one may sub-
divide them into more homogeneous groups and produce a funnel plot
for each group. This subdivision needs to be defined in advance in the
protocol for the study and not deduced from the observed data. One
might also define an interval of acceptable values and define outlying
values as values lying outside this interval. This seems arbitrary and
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Figure 9.5 Emergency (within 30 days) readmission rates following discharge from
140 National Health Service acute trusts, 2002-2003. Reproduced with permission
from Spiegelhalter DJ. Handling over-dispersion of performance indicators. Qual Saf
Health Care 2005; 14:347-51.

does not take the sample sizes into consideration as the funnel plot
does. The overdispersion may be estimated [13], so that the variation,
assumed to be due to chance alone, is inflated to reflect the inevitable
within-unit and between-units variation in outcome, due to unmea-
sured differences in case mix and other factors beyond the control of the
unit. Ideally this should be estimated from historical data obtained
from units, known to have had stable and acceptable performance
levels. Alternatively, a technique may be used, whereby the effect on
the estimate by outlying observations is somewhat dampened. The last
approach is to assume that the institutions have their own true under-
lying rates, which are distributed around the overall average. The
standard deviation of this distribution is estimated and used to adjust
the control limits. The distribution may be estimated in various ways.
One appealing approach might be to use a hierarchical model, as
explained in Chapter 5. Clearly, statistical estimation of overdispersion
is a temporary solution to be used when the causes of the excess
variation are still being investigated.
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9.5 MULTIPLE SIGNIFICANCE TESTING

In Chapter 1 and Chapter 3 we discussed the standard approach used to
set alarm thresholds to optimise the trade-off between the in control
average run length (ARL) and the ARL until a specified out-of-control
condition is detected. Other approaches are also possible (see Frisen for a
review [14]).

When several (k) units are monitored over time using a quality indi-
cator such as the mortality rate, it is necessary to describe the expected
rates of false alarms and successful detections among the %k units being
monitored. Marshall et al. [13] estimated the percentage of false alarms
(FDR %) occurring by a given time, #, for CUSUM charts, and the
percentage of out-of-control units that were successfully detected
(SDR %). The threshold (), the size of change (K) in terms of the
number of process standard deviations the charts were designed to
detect, and the percentage of units truly out of control (py) were all
given. Tables showing FDR % and SDR % as a function of b, K, and py
would seem to be useful planning tools when designing an efficient
monitoring system.
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Appendix A — Basic Statistical
Concepts

Test sampling is a central theme in statistical quality improvement. Test
samples are selected to provide information about the population from
which they are taken. A test sample may be used to characterise the
population and test a hypothesis about its characteristics. In the present
context, we are interested in the population of products produced by
some process. The process is considered a mechanism, which produces
products in a random way, meaning that each single product deviates
more or less from a product that is typical for the process and the
deviations appear at random and independent of each other.

Statements about a process based on a single test sample are encum-
bered with uncertainty. Therefore, it is necessary to employ statistical
methods to describe and quantify this uncertainty. The purpose of this
chapter is to familiarise the reader with these methods and enable him/
her to understand their application. We introduce the basic statistical
concepts using an example.

A.1 AN EXAMPLE OF RANDOM SAMPLING

Assume that we want to buy a shipment of 5000 disposable electrodes,
for the measurement of electrocardiograms (ECG). An electrode is
defective if it cannot transmit the voltage to the meter. Before we decide

Statistical Development of Quality in Medicine P. Winkel and N. F. Zhang
© 2007 John Wiley & Sons, Ltd



APPENDIX A — BASIC STATISTICAL CONCEPTS 217

whether or not to buy the shipment, we want to be reasonably sure that
the percentage of defective electrodes is sufficiently low. Once an elec-
trode is tested, it becomes destructed and cannot be used again. There-
fore, a complete inspection of the shipment implies that tested electrodes
are destructed. How do we get reliable information about the shipment,
without destroying all the electrodes?

A natural approach would be to select a test sample of electrodes and
calculate the percentage of defective electrodes in the sample. In order to
obtain a representative test sample, it has to be selected at random.
Selected at random means that all possible equally sized test samples
have the same probability of being selected. Based on the available
information, the percentage of defective electrodes found in the test
sample is our best guess of the unknown percentage of the shipment. It
is referred to as an estimate of the true, but unknown percentage.

How uncertain is this estimate? The uncertainty depends on the size of
the test sample. Intuitively this makes sense. The following simplistic
reasoning does not prove the contention, but it supports the intuition.
The larger the test sample is, the more possibilities are covered, and the
larger is the chance of getting close to the truth. If the test sample
comprises one electrode, the possibilities covered include 0 or 1 defective
electrode, or 0 % and 100 %, respectively. If it comprises 10 electrodes,
the possibilities include 0 %, 10 %, 20 %, etc. up to and including 100 %
defective electrodes in the test sample, etc.

Using statistical reasoning, one may calculate an interval around the
percentage found that covers the true percentage with an a priori speci-
fied high probability, e.g., 99 %. This interval is referred to as a con-
fidence interval. The larger the sample is, the narrower this interval will
be. Assume one is content if the percentage of defective electrodes is not
larger than 3 %. If a confidence interval is 0 % to 2 %, and the prob-
ability that the true value is included in the interval is 99.9 %, we will, of
course, accept the shipment.

Assume that we want to assess the hypothesis that the percentage of
defective electrodes in the above shipment is 3 %, and we have available
a test sample with five electrodes. There are six possible compositions of
a sample of five; it may comprise 0, 1, 2, 3, 4, or 5 defective electrodes.
Zero is the most likely result if the hypothesis is true; it is closest to 3 %.
Then follows 1 (20 % of the test sample), 2 (40 %), 3 (60 %), 4 (80 %),
and 5 (100 %). The probability that we will obtain a sample of a given
composition may be calculated under the assumption that our hypothesis
is true. Doing so for this example, we obtain a distribution of six
probabilities.
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When testing the hypothesis we apply this probability distribution.
We calculate the probability that we will obtain a sample of the
same composition as our sample or one that is more extreme (i.e.,
with more defectives). If this probability is very small, we reject the
hypothesis. For example, if the hypothesis is true, the probability of
getting a sample containing two or more defective electrodes is less
than 1 %. Therefore, in this case we reject the hypothesis. The weakness
of this approach is obvious. For example, the probability that we will
obtain a sample comprising two or more defective electrodes will still be
very small (8.15 %), even if the true percentage is as high as 10 %.
Conversely, the probability of accepting the hypothesis is about 92 %.
Therefore, in this example there is a high probability of erroneously
accepting the hypothesis, unless the actual percentage deviates consider-
ably from the hypothesised one. One says that the power of the test
is weak.

A.2 DATA

A sample of products may be characterised by classifying each one into
one of several possible categories, e.g., defective versus nondefective
products, or by measuring one or more significant properties. The result
is a set of data, comprising numerically coded properties and/or the values
of measurements. It may be expedient to inspect the data and calculate
various quantities, summarising important properties of the dataset.

A.2.1 Extreme Values (Outliers)

Prior to the description of a dataset, it may be appropriate to inspect it
for outliers. An outlier in a set of data is defined as an observation (or
subset of observations), which appears to be inconsistent with the
remainder of that set of data [1]. Outliers may be identified using a dot
diagram. A dot diagram consists of an abscissa on which the values are
depicted as dots.

Outliers may arise due to errors (analytical errors, clerical errors,
miscalculations, etc.) or because of the out-of-the-ordinary patterns of
the probability distributions.

In the first case, the error should be corrected if it is possible. Other-
wise the result should be discarded. For example, a relatively inexper-
ienced person may commit an error. In the second case, the outliers are
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related to the distribution that the observations are assumed to follow,
e.g., the normal distribution. When deciding whether an outlier should
be discarded or not, the sensible approach is to identify the reason why
the observation is an outlier. If this is not possible, one may test the
hypothesis that a value as extreme as the one observed belongs to the
same category of values as the remaining ones. Several tests of discor-
dance are available, e.g., Dixon’s test [1]. If a plausible explanation
cannot be found, one should be very cautious in discarding a measure-
ment. But of course, it may be obvious that the measurement is wrong. If
the weight of a 30-year-old man has been recorded as 0.65 kilo, e.g., one
may reject this outlier.

A.2.2 The Distribution of Data

When the dataset has been scanned for outliers and those (if any) found
have been dealt with one way or the other, the distribution of the data
should be examined. To illustrate how this may be done, we will use a
dataset lent to us by Steen Watt-Boolsen (Department of Surgery at
Nykebing Falster Central Hospital, Denmark). The data include the
results of various clinical observations made in 870 consecutive surgical
patients. The state of each patient prior to operation has been charac-
terised by a physiological score, which is a function of laboratory
measurements and clinical signs, and each operation has been charac-
terised, using a scoring system that quantifies its extent and severity [2].
Table A.1 shows how the distribution of the physiological scores has been
characterised. The measurements have been sorted according to size and
classified into a suitable number of intervals. The table shows the intervals
(upper and lower limits and centre values) and the number of observations
classified into each interval (frequencies), i.e., the frequency distribution.
Figure A.1 depicts a histogram showing the frequency distribution of
the physiological scores of the above-mentioned 870 patients. The hor-
izontal axis of real numbers is divided into a number of intervals. A
histogram depicts the number of observations (the frequency) included in
each of these intervals as vertical bars in a co-ordinate system. The x-axis
represents the values and the ordinate the frequencies. A histogram
captures the shape of the distribution of the data, its location, and its
spread. A simple rule to apply, when choosing the number of intervals, is
to use the integer closest to the square root of the number of observations.
It is also appropriate to use equally sized intervals and let the first one
begin slightly to the left to the smallest of the observations. If the number
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Table A.1 Tabular representation of the values of the physiological score measured
in 870 surgical patients.

Interval Distributions

Cumulative
Relative Cumulative relative
Number Lower Upper Middle Frequency frequency frequency frequency

[7] limit  limit  point [%] (4] [Zx;] (2%
1 10.0 12.0 11.0 47 0.0540 47 0.0540
2 12.0 14.0 13.0 150 0.1724 197 0.2264
3 14.0 16.0 15.0 134 0.1540 331 0.3805
4 16.0 18.0 17.0 98 0.1126 429 0.4931
S 18.0  20.0 19.0 61 0.0701 490 0.5632
6 20.0 22.0 21.0 63 0.0724 553 0.6356
7 22.0 240 23.0 58 0.0667 611 0.7023
8 24.0 26.0 25.0 64 0.0736 675 0.7759
9 26.0 28.0 27.0 49 0.0563 724 0.8322
10 28.0  30.0 29.0 35 0.0402 759 0.8724
11 30.0 32.0 31.0 33 0.0379 792 0.9103
12 32.0 34.0 33.0 24 0.0276 816 0.9379
13 340 36.0 35.0 14 0.0161 830 0.9540
14 36.0 38.0 37.0 9 0.0103 839 0.9644
15 38.0 40.0 39.0 7 0.0080 846 0.9724
16 40.0 42.0 41.0 5 0.0057 851 0.9782
17 42.0 440 43.0 7 0.0080 858 0.9862
18 44.0 46.0 45.0 6 0.0069 864 0.9931
19 46.0 48.0 47.0 3 0.0034 867 0.9966
20 48.0 50.0 49.0 0 0.0000 867 0.9966
21 50.0 52.0 51.0 1 0.0011 868 0.9977
22 52.0 54.0 53.0 0 0.0000 868 0.9977
23 540 56.0 55.0 1 0.0011 869 0.9989
24 56.0 58.0 57.0 0 0.0011 870 1.0000

x; is the number of observations, i.e., the frequency of the ith interval. # is the number of
observations. % is the relative frequency of the ith interval, ix,» is the ith cumulative
frequency, i.e., the number of observations smaller than or equél:llto the upper limit of the
ith interval, and ;% is the ith cumulative relative frequency.

of intervals is too small, one may lose information. On the other hand, if
it is too large, important features may be hidden by unimportant details.

Example A.1

The following dataset includes 9 values that have been ordered according
to size

{1,3,5,5,6,7,9,10,11}.
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Figure A.1 The frequency distribution of 870 physiological scores.

We want to calculate the frequency distribution, the relative frequency
distribution, the cumulative distribution, and the relative cumulative
distribution (see Table A.1 for definitions). We classify the observations
into three (v/9) equally sized intervals

0<x<4,4<x<8,and 8 <x < 12.

The first two values belong to the first interval, the following four to the
second interval, and the last three to the third interval. Therefore, the
three frequencies are:

2,4, and 3, and the corresponding relative frequencies are

The cumulative frequencies are calculated by counting the number of
values in each of the following intervals

0<x<4,0<x<8,and0 < x < 12.

Two values are less than 4, (2 4+ 4) are less than 8, and (2 + 4 + 3) less
than 12. Therefore, the three cumulative frequencies are: 2, 6, and 9. The
corresponding cumulative, relative frequencies are

24443

2+4
%, and 5

2
97
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A.2.3 The Location of the Data

Various quantities may be used to summarise the location of a set of
measurement values. The most commonly used ones are the mean, the
median, and the mode. The mean is the centre of gravity of the frequency
distribution. It is calculated as the arithmetic average (X) of the measure-
ments, using the equation

n

x=Y x; (A1)

i=1

where x; is the ith measurement and # the number of measurements. The
median is the middle value in the ordered sequence of the data if the
number of observations is an odd number and it is the arithmetic mean of
the two middle values if it is an even number. The mode is the most
frequently occurring value (or set of values) in the data material.

Example A.2
The mean value of the data set {1, 2, 3, 3, 3, 4,4, 5,6, 7} is

14+24+34+3+3+4+4+54+6+7
10 -

3.8.

The median is

344
2Tt _3s.
2

The mode is 3.

A.2.4 The Spread of Data

The spread of measurement values is often characterised using the range,
the variance, or the standard deviation. The range is defined as the
difference between the largest and the smallest value in the data set.
This quantity only depends on two of the measurement values. If there
are more than two measurement values in a set of data, information will
be lost if we only use two of them.

Another approach, utilising all data points, is to calculate the square of
the distance between the result of each measurement and the mean value,
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add the squares, and divide their sum by (7 — 1) where # is the number of
squares. The result is denoted by s? and called the variance. To obtain the
same unit as that of the measurements, the standard deviation (s) may be
calculated as

The standard deviation is a measure of the location of the values relative
to the mean value. Since it is more convenient to use a quantity having
the same unit as the results of the measurements, the standard deviation
is usually the quantity of choice.

The quantity (nz — 1) is sometimes referred to as the degrees of freedom
(df) when the distribution of the data is normal (see A.3.4.1). The df
expresses the amount of information available in the sample.

Example A.3

The set of data {1, 3, 4, 8} has a range equal to 8 — 1 = 7. To calculate
the variance, we first calculate the mean

1+3+4+8
— =
The sum of the squares is: (1 — 4)> + (3 —4)* + (4 —4)* + (8 — 4)* = 26.
Since 7 = 4, we have

, 26

s° = o 8.67ands = v8.67 = 2.94.

X = 4,

A.3 PROBABILITY DISTRIBUTIONS

As we saw in the introductory example, it may be of interest to calculate
the probability of obtaining specified values when a sample is selected at
random from a population and the value of some quantity is measured in
each item of the sample.

Example A.4

A municipality includes 50 000 inhabitants above the age of 16 years. It is
known that their body weights are distributed as follows (see Table A.2):
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Table A.2 Weight/kg of 50 000 municipality inhabitants above the age of 16 years.

Cumulative
probability
Probability Cumulative  (cumulative relative
Interval Frequency (relative frequency) frequency frequency)
50-70 5000 0.10 5.000 0.10
71 - 80 15 000 0.30 20.000 0.40
81 - 90 20 000 0.40 40.000 0.80
91 - 100 6000 0.12 46.000 0.92
101 - 130 4000 0.08 50.000 1.00

Mean value 83.2 kg. Standard deviation 11.5 kg.

5000 are between 50 kg and 70 kg, 15 000 between 71 and 80 kg, 20 000
between 81 and 90 kg, 6000 between 91 and 100 kg, and 4000 between
100 and 130kg. The identity of each person and the corresponding
weight has been stored in a database. Using this database, we select one
of the 50 000 persons so that each person has the same probability of
being selected. What is the probability that the person’s weight is between
71 and 80 kg?

All inhabitants have the same chance of being selected, and 15 000 out
of the 50 000 weigh between 71 and 80 kg. Therefore, the probability is
13008 = 0.3. Using the same type of reasoning, one may calculate the
probability that an inhabitant weighs between 50 and 70kg as:
0005 = 0.1, that he/she weighs between 81 and 90 kg as: £3-350 = 0.4, etc.

Table A.2 has been constructed using the above database and the same
principles as in Table A.1. The difference between the two tables is that
Table A.1 shows the distribution of a random sample, whereas Table A.2
shows the distribution of a whole population. Therefore, the latter is a
probability distribution. A probability in Table A.2 corresponds to the
relative frequency in Table A.1, and a cumulative probability corre-
sponds to the cumulative relative frequency. A cumulative probability
is defined as the probability of selecting an inhabitant whose weight is
equal to or less than the upper weight limit of the category (see column 1,
Table A.2). For instance, the probability of selecting an inhabitant
whose weight is equal to or less than 90 kg may be read from the table.
It is 0.8.

In the above, we defined a mathematical model comprising a dis-
tribution of probabilities and of cumulative probabilities that may be
used to calculate the probabilities of obtaining various outcomes when
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sampling from the population. The weight of each individual is stored
in the database. Therefore, we may want to better utilise the available
information.

If we use the rule of thumb for constructing a histogram, we need to
have v/50 000 equally sized intervals, i.e., about 224. The range of the
weights is 130 — 50 = 80kg. Therefore, the interval size should be
S0 = 0.36 kg for the intervals to cover the values of interest. The first

interval should begin slightly to the left of the smallest value, 50 kg.

Example A.S

An urn contains 3000 red and 5000 white balls, i.e., a total of 8000 balls.
A ball is selected from the urn so that all balls have the same probability
of being selected, and its colour is noted. What is the probability that it is
red? Since 3000 of the 8000 balls are red and all balls have the same
probability of being selected, the probability is: 3035 = 0.375. Imagine
that the ratio of red and white balls is not known and we want to obtain
an educated guess of the probability of selecting a red ball. To do so, we
use a mathematical model, stating that the probability of selecting a red
ballisp (0 <p < 1).

To get information about p, we conduct 50 independent experiments.
Each experiment consists of picking a ball at random from the urn,
noting its colour, replacing the ball, and mixing all balls thoroughly. It
turns out that 21 of the 50 balls are red. Therefore, we guess that p, the
fraction of red balls in the urn, is as demonstrated experimentally, i.e.,
2l — 0.420. The relative deviation between our estimate and the truth is:
04200375 — 12 %. Our estimate is encumbered by uncertainty.

A sample selected as described above is referred to as a random sample
with replacement. As shown in the above examples, a probability dis-
tribution is a mathematical model of the relation between the result of an
observation and the probability that we will obtain this value when a
random sample is selected from a specified population. This may be
expressed in a more formal way. We define a random variable, X. This
variable takes on a value each time we conduct our experiment. In
Example A.4, the value was equal to the weight of the subject selected,
and in Example A.5 it was equal to the number of red balls in the sample.
The probability distribution is used to calculate the probability that the

random variable will take on a specified value or some value within a
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P(x)

P(x) P(xa)

P(x;) P(xs)

X4 Xo X3 X4 X5
Discrete probability distribution
f(x)

a b
Continuous probability distribution

Figure A.2 A discrete (upper frame) and a continuous (lower frame) probability
distribution.

specified interval of values. If the number of possible values is either finite
or infinite but countable, the corresponding distribution is referred to as
a discrete probability distribution, and otherwise it is referred to as a
continuous probability distribution.

Figure A.2 depicts a discrete (upper frame) and a continuous (lower
frame) probability distribution. Each of the possible values in a discrete
distribution is associated with a probability (P(X = x;)), i.e., the prob-
ability that the random variable (X) will take on this particular value.
The sum of all the probabilities is 1, because it is certain that X will take
on one of the possible values. A continuous distribution is depicted as a
continuous curve in a co-ordinate system where the ordinate depicts the
probability density function f(x) and the abscissa, the values that X may
take on. The area under the curve is 1 (the probability that X will take on
one of the possible values). The probability that the random variable will
take on a value within a specified interval (e.g., the interval from a to b
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with a < b in Figure A.2) is calculated by measuring the corresponding
area under the curve, i.e., the probability
b
Pla< X <b)= Jf(x)dx (A3)
a
There are many different types of probability distributions. A random
sample provides information about the type that may best characterise
the population from which the sample was obtained. The shape of the
histogram of the data will resemble that of the proper probability dis-
tribution. The larger the sample, the better the resemblance tends to be.
This fact may be utilised in practice because inspection of the histogram

of the sample data may reveal which type of probability distribution
could be useful to apply.

Example A.6

A random variable may take on one of the values, 1, 2, 3, 4, and 5. The
corresponding probability distribution includes the probabilities

P(X=1)=0.1,P(X=2)=04,P(X=3)=03,P(X=4)=0.1,
and
P(X=35)=0.1.

What are the values of P(X = 7), P(X < 3),and P(2 < X < 4)?

Seven does not belong to the values that X may assume. Therefore,
P(X =7) = 0. The values smaller than 3, that X may assume, are 1 and
2. Hence, we have,

P(X<3)=P(X=1)+P(X=2)=0.1+0.4=0.5.
Using a similar line of reasoning, we find that

PRQ<X<4)=P(X=3)+P(X=4)=03+0.1=04.

A.3.1 The Mean Value and Standard Deviation of a
Probability Distribution

Just as we characterised the location of a data set by calculating its mean
value, we may characterise the location of a probability distribution by
calculating its mean value.
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The mean value of a probability distribution is defined as its centre of
gravity. If the distribution is discrete, the mean is defined by the equation

k
=" P(xi)x; (A.4)
=1

where k is the number of discrete probabilities of the distribution. If the
distribution is continuous, the mean is defined by

b
w= fo(x)dx (A.S)

a

where a and b are the lower and upper limits of the random variable X.
A measure of the spread of a distribution is its variance, o*. The
variance of a discrete distribution is defined by

k
o’ = Z P(x;)(xi — ) (A.6)

The variance of a continuous distribution is defined by

b
& = Jf(x)(x ~ u)Pdx (A7)

a

The standard deviation of a probability distribution is defined by

o=Vo? (A.8)

A.3.2 Parameters

A specified type of mathematical function, e.g., a linear one, may be
defined using a formula that includes one or more parameters. A linear
function which is graphically represented by a line, is defined by the
formula y = a + bx, where a and b are the parameters of the function. A
linear function is uniquely defined by specifying the values that the
parameters should assume. If we define a =2 and b = 3, we have
specified the linear function y = 2 + 3x. Therefore, we have a ‘family’
of functions where each member is uniquely defined by the values
assumed by the parameters. In the same way, a specified type of prob-
ability distribution may be defined as a family of probability distribu-
tions where each distribution is uniquely defined by the values assumed
by the parameters.
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Example A.7

A random variable (X) may assume the values 1 and 0. The correspond-
ing family of probability distributions is defined by the formulas

P(X=1)=pand P(X=0)= (1 —p) (for 0 < p < 1)

where p is the parameter of the distributions. For each value that p may
assume, a corresponding probability distribution exists. If p = 0.4, the
corresponding  discrete  distribution includes the probabilities

P(X=1)=0.4and P(X = 0) = 0.6.

In many situations, there are good reasons to believe that one’s data
are generated by a mechanism that may be approximated by a given type
of probability distribution, e.g., the Gaussian one (see Section A.3.4.1).
However, the parameter values, characterising the distribution, are not
known. Using a randomly selected sample from the population, one may
calculate an estimate of each parameter from the sample values so that
each estimate is the best guess of the true value of the parameter, given
the available information. The function used is referred to as an estima-
tor. It is crucial for the reliability of the conclusions, drawn on the basis
of a sample, that it is truly a random one (i.e., randomly selected).

A sample is a random sample if each value is produced independently of
all other values, and all values are generated by the same probability
distribution. This is true if the population, from which the sample is taken,
is infinite. If the population is finite (e.g., an urn of balls), each element in
the sample should be replaced before the next one is selected (see Example
A.S5). If a sample is taken without replacement, all possible samples of the
same size should have the same probability of being selected.

An estimator is in itself a random variable. Therefore, the possible values
that it may assume may be characterised by a probability distribution. An
unbiased estimator follows a probability distribution with a mean value
(see Section A.3.2) which is the true value of the parameter. Among all
possible unbiased estimators, the best one is the one with the probability
distribution that has the smallest standard deviation (see Section A.3.2).

We will present some important families of probability distributions
that are often applied in statistical quality improvement. In each case, we
explain when to apply the type of distribution and how its parameters
may be estimated using a random sample from the population.

A.3.3 Examples of Discrete Distributions

The most commonly used discrete distributions in quality control and
assurance are the binomial distribution and the Poisson distribution.
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A.3.3.1 The binomial distribution

Application Assume that a sample comprising 7 products is selected from
a product line. Each product is classified as defective or nondefective.
Here, it would be natural to use the binomial distribution when analys-
ing the data.

Probabilities, parameter, mean value, and standard deviation Consider an
experiment that has two possible outcomes. The probability of one outcome
isp (0 < p < 1) and that of the other outcome is (1 — p). The experiment
may include tossing of a coin and noting if the result is head or tail. Another
example could be a surgical procedure where it is noted if the patient
survives or not. To characterise the experiment, we define a random vari-
able Y that may assume one of two possible values, 0 or 1. Y follows a
discrete probability distribution where P(Y =1) is p and P(Y =0) is
1 — p. We now define a slightly more complicated experiment, comprising
a specified number () of independent repetitions of the above-mentioned
type of experiment. The same two-point discrete probability distribution
characterises each experiment.

To describe the possible outcomes of the sequence of 7 independent
experiments, we define a new random variable X. The value of X is equal
to the number of experiments that have the same specified outcome, e.g.,
that the patient died, or the result was head when we tossed a coin. The
possible values that X may assume include the values 0, 1, 2, etc., up to
and including 7n. The probability distribution of X is discrete, and it
includes 7+ 1 discrete probabilities. It is referred to as the binomial
distribution. The probability distribution in Section A.1 is an example of
a binomial distribution with parameters 7 = 5 and p = 0.03. To calcu-
late the probability that X attains some value x, we first calculate the
number of different combinations that may be obtained where x experi-
ments give the specified outcome and the remaining 7 — x experiments
do not. This may be calculated using the formula

where n! =1-2- .-+ - (n— 1)n. 0! = 1. The probability of each of these
combinations is calculated using the equation

pr(L—p)"" (A.9)
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Hence, the probability that X = x is the product between the number of
different combinations and the probability given in Expression (A.9).
We have

PX=x)= )!p"(l -p)" (A.10)

xl(n—x
It may be shown that the mean value of the binomial distribution is
w=np (A11)

and that the standard deviation is

o=+/np(l—p) (A12)

Example A.8

X is a random variable following a binomial distribution with p = 0.1
and n=35. We want to calculate the probability P(X < 1). We have
P(X <1)=P(X =0)+ P(X = 1) where each of these probabilities may
be computed, using Equation (A.10). Adding the results, we obtain the
probability requested
Px<1) =y 0.1%0.9°*
<1)= ———0. 97
(X<1) kz:%k!(S — k)!

_ S 040995 L S 10 o4
—ﬁo.l 0.9 —i—MO.l 0.9

= 0.59049 + 0.32805 = 0.91854.

Sometimes, it may be more meaningful to report the fraction of defective
products (%) in place of X, the number of defective products. If the
random variable X follows a binomial distribution with parameters p
and n, the distribution of % may be derived, and it may be shown that this
distribution has the mean value p and standard deviation equal to

p(1-p)

n .

Estimates The parameters of the binomial distribution are 7 and p. The
estimator of p

=
Il
Sk

(A.13)
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X is the number of experiments that had the specified outcome. Inserting
the value of this estimate in Equations (A.11) and (A.12), estimates of the
mean and the standard deviation may be obtained, respectively.

A.3.3.2 The Poisson distribution

Applications The Poisson distribution is often applicable in situations
where one examines the number of times a random phenomenon is
occurring per unit, e.g., the number of disintegrations of a radioactive
substance per time unit, the number of colonies of bacteria per unit of volume,
the number of patients admitted to a department per time unit, etc.

Probabilities, parameter, mean value, and standard deviation We define
a random variable (X) equal to the number of times the random phe-
nomenon is observed per unit. Assuming that X follows a Poisson
distribution, it may be shown that the probability that X attains a given
value, x, may be calculated using the equation

P(X = x) = 2 (A.14)

x!

where N (2 > 0) is the parameter of the Poisson distribution. The prob-
ability that X will assume a value equal to or less than a specified positive
integer k is calculated as

k ef)h)\’x

P(X < k) = .

x=0

(A.15)

It may be shown that the mean value of a Poisson distribution (1) is equal
to \ and the standard deviation (o) is equal to v/A. We have

nw=>x (A.16)
and

o=V (A.17)

Estimates The parameter \ is estimated using the equation

R '¢
) :;7 (A.18)
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where X is the number of times the random phenomenon was observed
in the ith unit, and #» is the number of units examined. The standard
deviation is estimated, by replacing X\ by A in Equation (A.17).

Example A.9

Assume we want to follow the number of medical complications that
occur during and immediately after a surgical procedure and we choose
15 consecutive surgical patients as our inspection unit.

The number of medical complications occurring per unit of patients is
assumed to follow a Poisson distribution. Table A.3 shows the number of
medical complications in each of 20 consecutive inspection units. Using
Equation (A.18) we may obtain an estimate of the mean of the Poisson
distribution, and inserting the result in Equation (A.17) we may obtain
an estimate of the standard deviation. The sum of complications
observed in the 20 inspection units is 129. Therefore, \ is estimated as
122 — 6.50 medical complication/unit. The standard deviation is
V6.5 = 2.55 medical complication/unit.

Table A.3 The number of medical complications occurring in
each of 20 patient groups.

Patient group # Number of medical complications
1 4
2 4
3 5
4 9
S 10
6 8
7 7
8 6
9 2

10 7
11 9
12 8
13 7
14 7
15 6
16 7
17 3
18 5
19 13
20 3

Sum 129
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A.3.4 Examples of Continuous Distributions

The Gaussian or normal distribution is by far the most widely used
distribution in quality control and assurance.

A.3.4.1 The Gaussian (normal) distribution

Applications The result of the measurement of a given quantity may be
expected to follow a Gaussian distribution if the measurement procedure
is jointly influenced by many independent factors, none of which domi-
neers the remaining ones.

Probabilities, parameters, mean value, and standard deviation A Gaus-
sian distribution is characterised by two parameters, i and o. It is defined
by the following equation

J peaae= [ e ax= (A19)

where f(x) is the probability density function. Graphically the distribu-
tion is depicted as a bell shaped, symmetrical curve (see Figure A.3).

\\\\\\\\“

(b) p( ///%//////%

a
1-P(Z<a)=P(Z>a)

Figure A.3 Graphical illustration of two rules used to calculate probabilities of a
random variable (Z) following a standardised Gaussian distribution with mean 0 and
standard deviation 1.
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It may be shown that the centre of gravity of the distribution, i.e., the
mean value, is © and that the standard deviation is o. It may also be
shown that 68.26 % of the area of the distribution is located within the
interval u =0, 95.46 % of the area within the interval u + 20, and
99.73 % within the interval u & 30.

To calculate the probability of obtaining a value within a specified
interval [a, b], one needs to calculate the corresponding area of the
distribution, i.e., to integrate f(x) from a to b. To do so, it is necessary
first to transform the original random variable X. The transformed
variable, Z is given by the equation

(A.20)

Because the original interval is [a, b], the density function of the trans-
formed variable Z, must be integrated from =% to b%“ to obtain the
desired probability. It may be shown that Z follows a Gaussian distribu-
tion with mean 0 and standard deviation 1 (the standardised Gaussian
distribution). The probability that Z assumes a value equal to or less than
a specified value (z) is calculated by integrating the distribution from —co
to z. This probability is shown in Table A.4 for various values of Z.

The probability distribution is symmetrical around zero. Therefore,
we have, p(Z < —a) =p(Z > a) (see Figure A.3 (a)). Furthermore:
p(Z>a)=1—-p(Z <a) (see Figure A.3 (b)). The correctness of these
rules is directly apparent from Figure A.3.

Example A.10

It is known that P(Z < 3) = 0.99865. We want to find the value of
P(Z < —3). According to Figure A.3 we have P(Z < -3) =P(Z > 3)
and according to the same figure, P(Z > 3) = 1 — P(Z < 3). The desired
probability is: 1 — 0.99865 = 0.00135. We have

P(Z >3) =p(Z < —3) = 0.00135

Example A.11

A random variable X follows a Gaussian distribution with mean 10 and
standard deviation 2. We want to calculate the probability that X
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Table A.4 The cumulative distribution (®(Z) = P(Z < z)) of the Gaussian distri-
bution with mean =0 and standard deviation =1.

k4

1009(Z)

0.00

0.01

0.02

0.03

0.04

0.05

0.06 0.07 0.08 0.09

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00
2.10
2.20
2.30
2.40
2.50
2.60
2.70
2.80
2.90
3.00
3.10
3.20
3.30
3.40
—3.40
-3.30
-3.20
-3.10
—-3.00
-2.90
-2.80
-2.70
—2.60
-2.50
—2.40
-2.30

50.00
53.98
57.93
61.79
65.54
69.15
72.57
75.80
78.81
81.59
84.13
86.43
88.49
90.32
91.92
93.32
94.52
95.54
96.41
97.13
97.73
98.21
98.61
98.93
99.18
99.38
99.53
99.65
99.74
99.81
99.87
99.90
99.93
99.95
99.97

0.03

0.05

0.07

0.10

0.14

0.19

0.26

0.35

0.47

0.62

0.82

1.08

50.40
54.38
58.32
62.17
65.91
69.50
72.91
76.11
79.10
81.86
84.38
86.65
88.69
90.49
92.07
93.45
94.63
95.64
96.49
97.19
97.78
98.26
98.65
98.96
99.20
99.40
99.55
99.66
99.75
99.82
99.87
99.91
99.93
99.95
99.97

0.03

0.05

0.07

0.09

0.13

0.18

0.25

0.34

0.45

0.60

0.80

1.04

50.80
54.78
58.71
62.55
66.28
69.85
73.24
76.42
79.39
82.12
84.61
86.86
88.88
90.66
92.22
93.57
94.74
95.73
96.56
97.26
97.83
98.30
98.68
98.98
99.22
99.41
99.56
99.67
99.76
99.83
99.87
99.91
99.94
99.95
99.97

0.03

0.05

0.06

0.09

0.13

0.18

0.24

0.33

0.44

0.59

0.78

1.02

51.20
55.17
59.10
62.93
66.64
70.19
73.57
76.73
79.67
82.38
84.85
87.08
89.07
90.82
92.36
93.70
94.85
95.82
96.64
97.32
97.88
98.34
98.71
99.01
99.25
99.43
99.57
99.68
99.77
99.83
99.88
99.91
99.94
99.96
99.97

0.03

0.04

0.06

0.09

0.12

0.17

0.23

0.32

0.43

0.57

0.75

0.99

51.60
55.57
59.48
63.31
67.00
70.54
73.89
77.03
79.95
82.64
85.08
87.29
8§9.25
90.99
92.51
93.82
94.95
95.91
96.71
97.38
97.93
98.38
98.75
99.04
99.27
99.45
99.59
99.69
99.77
99.84
99.88
99.92
99.94
99.96
99.97

0.03

0.04

0.06

0.08

0.12

0.16

0.23

0.31

0.41

0.55

0.73

0.96

51.99
55.96
59.87
63.68
67.36
70.88
74.22
77.34
80.23
82.89
85.31
87.49
89.44
91.15
92.65
93.94
95.05
95.99
96.78
97.44
97.98
98.42
98.78
99.06
99.29
99.46
99.60
99.70
99.78
99.84
99.89
99.92
99.94
99.96
99.97

0.03

0.04

0.06

0.08

0.11

0.16

0.22

0.30

0.40

0.54

0.71

0.94

52.39
56.36
60.26
64.06
67.72
71.23
74.54
77.64
80.51
83.15
85.54
87.70
89.62
91.31
92.79
94.06
95.15
96.08
96.86
97.50
98.03
98.46
98.81
99.09
99.31
99.48
99.61
99.71
99.79
99.85
99.89
99.92
99.94
99.96
99.97

0.03

0.04

0.06

0.08

0.11

0.15

0.21

0.29

0.39

0.52

0.69

0.91

52.79
56.75
60.64
64.43
68.08
71.57
74.86
77.94
80.78
83.40
85.77
87.90
89.80
91.47
92.92
94.18
95.25
96.16
96.93
97.56
98.08
98.50
98.84
99.11
99.32
99.49
99.62
99.72
99.79
99.85
99.89
99.92
99.95
99.96
99.97

0.03

0.04

0.05

0.08

0.11

0.15

0.21

0.28

0.38

0.51

0.68

0.89

53.19
57.14
61.03
64.80
68.44
71.90
75.17
78.23
81.06
83.65
85.99
88.10
89.97
91.62
93.06
94.30
95.35
96.25
97.00
97.62
98.12
98.54
98.87
99.13
99.34
99.51
99.63
99.73
99.80
99.86
99.90
99.93
99.95
99.96
99.97

0.03

0.04

0.05

0.07

0.10

0.14

0.20

0.27

0.37

0.49

0.66

0.87

53.59
57.53
61.41
65.17
68.79
72.24
75.49
78.52
81.33
83.89
86.21
88.30
90.15
91.77
93.19
94.41
95.45
96.33
97.06
97.67
98.17
98.57
98.90
99.16
99.36
99.52
99.64
99.74
99.81
99.86
99.90
99.93
99.95
99.97
99.98

0.02

0.03

0.05

0.07

0.10

0.14

0.19

0.26

0.36

0.48

0.64

0.84
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Table A.4 (Continued)

1000(Z)
¢ 000 001 0.02 003 004 005 006 007 008 0.09

-2.20| 1.39 136 1.32 129 126 122 119 116 1.13 1.10
-2.10( 179 174 170 1.66 1.62 1.58 1.54 150 1.46 1.43
-2.00| 2.28 222 217 212 2.07 202 197 192 1.88 1.83
-190| 2.87 281 274 268 262 25 250 244 239 233
—-1.80| 3.59 3.52 344 336 329 322 314 3.07 3.01 294
—-1.70 | 446 436 427 418 4.09 4.01 392 384 3.75 3.67
-1.60| 548 537 526 516 505 495 485 475 4.65 4.55
-1.50| 6.68 6.55 643 630 6.18 6.06 594 582 571 5.59
—-1.40| 8.08 793 7.78 7.64 749 735 722 7.08 694 6.81
-1.30| 9.68 9.51 934 9.18 9.01 885 8.69 853 838 8.23
—-1.20|11.51 11.31 11.12 10.93 10.75 10.56 10.38 10.20 10.03 9.85
—1.10 {13.57 13.35 13.14 12,92 12.71 12.51 12.30 12.10 11.90 11.70
—1.00 |15.87 15.62 15.39 15.15 14.92 14.69 14.46 14.23 14.01 13.79
—-0.90 (18.41 18.14 17.88 17.62 17.36 17.11 16.85 16.60 16.35 16.11
—0.80121.19 20.90 20.61 20.33 20.05 19.77 19.49 19.22 18.94 18.67
—0.70 {24.20 23.89 23.58 23.27 2297 22.66 2236 22.06 21.77 21.48
—0.60|27.43 27.09 26.76 26.43 26.11 25.78 25.46 25.14 24.83 24.51
—0.50 {30.85 30.50 30.15 29.81 29.46 29.12 28.77 28.43 28.10 27.76
—0.40 |34.46 34.09 33.72 33.36 33.00 32.64 32.28 31.92 31.56 31.21
—0.30 {38.21 37.83 37.45 37.07 36.69 36.32 3594 35.57 35.20 34.83
—0.20 |42.07 41.68 41.29 40.90 40.52 40.13 39.74 39.36 38.97 38.59
—0.10 {46.02 45.62 4522 44.83 44.43 44.04 43.64 43.25 42.86 42.47
—0.00 |50.00 49.60 49.20 48.80 48.40 48.01 47.61 47.21 46.81 46.41

assumes a value located within the interval defined by the mean value +3
standard deviations, i.e., within the interval [10 —3-2,10+3-2] =
[4,16]. Using the transformation Z = %512 we obtain a new random
variable that follows a standardised Gaussian distribution. The prob-
ability that X will assume a value within the interval [4,16] is equal to the
probability that Z will assume a value within the interval [#519,
162101 = [-3, 3]. This probability is equal to 1 minus the probability
that Z will assume a value outside the interval, i.e.,
1—(P(Z>3)+P(Z<—3))=1—(0.00135+0.00135) =0.9973 (sce the
previous example). Therefore, the probability that a random variable
that follows a Gaussian distribution will assume a value within the
interval, mean value 43 standard deviations, is equal to 0.9973. The
probability that it will assume a value outside this interval is:

0.00135+40.00135=0.0027.
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Estimates Based on a sample comprising 7 independent values of a
random variable that follows a Gaussian distribution, the mean value
of this distribution is estimated using the estimator

X = = (A21)

where x; is the ith observation in the sample. This estimator is
unbiased.

=0 (A.22)

is an estimator of the variance, o%. This estimator is also unbiased. By
contrast, S is a biased estimator of 0. However, when #, the sample size,
approaches infinity, the bias approaches 0. The bias of the estimated
standard deviation based on a small sample may be adjusted. A quantity
c4, the value of which depends on the sample size 7, is used. Its value
for various values of # may be found in Table 1.1. The adjusted estimate

of ois 3.
c4

Example A.12

A sample consists of 6 independent observations of a random variable
that follows a Gaussian distribution. The standard deviation of the
sample is 0.334. Therefore, the unbiased estimate of the standard devia-
tion of the Gaussian distribution (o) is & = %. The value of ¢4 is found
by entering Table 1.1 at n = 6. We find ¢4 = 0.9515. The estimate is

0.334 __
Q34— 0.351.

The central limit theorem The Gaussian distribution is very applicable in
practice due to the central limit theorem that may be phrased as follows:
if a sequence of # independent random variables is added, the distribu-
tion of their average (and also their sum) will converge towards a
Gaussian distribution when 7 converges towards infinity. In practice,
this implies that the average, or a sum of independent observations will
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follow a Gaussian distribution as long as the number of terms (n) is
sufficiently large. What a sufficiently large number is, depends on the
circumstances.

Example A.13

Figure A.1 shows the distribution of the physiological score of 870
surgical patients. Clearly, the distribution does not follow the Gaussian
distribution that is symmetrical and bell shaped. On the contrary, it is
markedly skewed to the right. We conduct three experiments. In the first
one, the material is divided into groups of consecutive patient values,
each comprising five values, and the mean value of the physiological
scores is calculated for each group. Each of the following two experi-
ments is a repetition of the first one, except that 10 patients are included
per group in the second experiment and 15 in the third one.

Figures A.4 (a) through (c) show the histograms of the mean values of
these experiments. In this experiment it was necessary to use a value of n
that is larger than 10 in order to obtain a distribution with a shape, which
approximates the symmetrical form of the Gaussian distribution.

Testing if a distribution is Gaussian The use of the Gaussian (normal)
distribution is very common, and many statistical methods are based on
the assumption that the data follow a Gaussian distribution. Therefore, it
is important to be able to assess the validity of this assumption in
practice. Most statistical software packages include several tools that
may be used. The normal probability plot is an example of a graphical
assessment. If the underlying population is normally distributed, the
graph will be a straight line. In addition to the graph, several statistical
tests for departures from normality exist. One test is called the Shapiro—
Wilks W test [3]. It uses a measure of the straightness of the normal
probability plot, and small values indicate departure from normality.
There are other tests including one for skewness that tests if the distribu-
tion is symmetrical, and one for kurtosis that tests if the distribution is
more, or less peaked than the Gaussian distribution [4].

Example A.14

Figure A.5 (a) depicts a normal probability plot of the cumulative relative
frequency of the physiological scores of the mentioned 870 surgical
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Figure A.4

n = 5. (b) The frequency distribution of the mean of the physiological score forn = 10.

Frequency

Frequency

Frequency
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13 17 21 25 29 33
(a) Mean of physiological score

15_t ?
125 %,
4 %

16 18 20 22 24 26 28
(c) Mean of physiological score

(a) The frequency distribution of the mean of the physiological score for

(c) The frequency distribution of the mean of the physiological score for z = 15.

patients. Figures A.5 (b) and (c) show the corresponding distributions
of the mean values of samples comprising 10 and 15 patient values,

respectively. In the first case (see Figure A.5 (a)), the accordance between
the data and the theoretical straight line is indeed very poor. When the
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99.9
99
95
80
50

Cummulative %
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(a) Mean of physiological score

99.9

Cumulative %

0.1 & L L L . .
15 18 21 24 27 30
(b) Mean of physiological score

99.9 -

Cumulative %

0.1 CL 1 1 1 1 1 1
15 18 20 22 24 26 28
(c) Mean of physiological score

Figure A.5 (a) The cumulative relative frequency distribution of the physiological
score, depicted in a Gaussian probability co-ordinate system. (b) The cumulative
relative frequency distribution of the mean of the physiological score for n = 10,
depicted in a Gaussian probability co-ordinate system. (c) The cumulative relative
frequency distribution of the mean of the physiological score for z = 15, depicted in a
Gaussian probability co-ordinate system.

sample size is 10 (Figure A.5 (b)), the accordance is considerably better,
but still not quite satisfying. However, when n = 13, it is quite satisfying
(Figure A.5 (c)). Since a graphical analysis is more or less subjective,
it should be supplemented by statistical tests of the Gaussian
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hypothesis, e.g., the Shapiro—Wilks W test and the tests for skewness and
kurtosis. The distribution of the original data as well as that of the
means for 7 = 10 did not pass the Shapiro—Wilks W test for normality.
However, the distribution of the means for 7 =15 passed all tests.
Therefore, in this example it is necessary to use a mean of 15 observations
or perhaps slightly less before the distribution of the mean becomes
Gaussian.

A.4 USING THE DATA

The data of a random sample obtained from a population may be used
to calculate estimates of the parameters characterising the probability
distribution generating the sample and to test various hypotheses about
them.

A.4.1 Estimates

If samples are selected repeatedly from a population, and each sample is
used to calculate an estimate, e.g., of the mean of the population, we
obtain a distribution of sample estimates. Each of these estimates may be
considered a sample from the unknown distribution of the population of
all possible sample estimates, i.e., the distribution of the estimator.

This idea is exemplified in Figure A.6. If each sample consists of a single
observation (nz = 1) selected from a continuous distribution, e.g., a Gaus-
sian one, the estimator of the mean of this distribution is the observation
itself (use Equation (A.21) for n = 1). Therefore, the theoretical distribu-
tion of the estimator is identical to the distribution from which the sample
was taken (see Figure A.6 first and second frame, respectively).

If the sample consists of # observations (7 > 1), the estimator of the
mean of the distribution is the mean of the sample values according to
Equation (A.21). It may be shown: (1) that the theoretical distribution of
the estimator of the mean is Gaussian if the original distribution, from
which the sample was taken, is Gaussian; (2) that the distribution of the
estimator has the same mean as the original distribution; and (3) has a
standard deviation which is equal to that of the original distribution (o)
divided by /7 (see Figure A.6 third and fourth frame, respectively). Even
if the original distribution is non-Gaussian, the distribution of the esti-
mator of the mean is still Gaussian, provided 7 is sufficiently large. This
follows from the central limit theorem [5].
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o X
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n
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i=1

olr,
1

u

Figure A.6 Gaussian distribution with mean u and standard deviation o (first and
third frames). Second and fourth frame show the distribution of the estimator of w when
the sample size (1) is 1 (second frame) and when 7 > 1 (fourth frame). The distributions
of the estimators are Gaussian with mean = u and standard deviation = %

The distribution of other estimators, e.g., the estimator of the standard
deviation of the original distribution, may be derived in an analogous
way, using various types of statistical reasoning that may be found in
most of the major statistical textbooks (see, e.g., [5]). The point is that
the estimator itself follows a probability distribution, the precise nature
of which depends on the original distribution from which the sample was
taken and the sample size. The probability distribution of an estimator
may often be characterised by a mean value and a standard deviation, as
most other probability distributions.
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A.4.2 Confidence Intervals

Using the standard deviation of the distribution of an estimator, also
called the standard error, one may calculate a confidence interval for the
parameter estimated. A confidence interval for a parameter is an interval
calculated from the values of the sample, so that one has a specified
certainty that the value of the parameter is contained within this interval.
For example, a 95 % confidence interval is an interval that contains the
parameter value with a 95 % certainty. The 95 % is referred to as the
confidence level of the confidence interval. Imagine, that one selects a
very large number of samples from some population and each time
calculates the 95 % confidence interval of a parameter, for instance the
mean value. We may then assume that the unknown parameter is con-
tained within 95 % of these intervals. Loosely stated, the probability that
an unknown parameter is contained within a specified 95 % confidence
interval is 95 %. For a given level of confidence, the larger the standard
deviation of the distribution of the estimator is, the wider the confidence
interval.

Figure A.7 Gaussian distribution with mean . Below the distribution are shown the
95 % confidence intervals of the mean () computed from 20 samples. All, except one,
contain the parameter /.
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Figure A.7 shows an invented example. At the top, a population of
possible measurement values is shown. Below this distribution, 20 con-
fidence intervals of the mean are shown. As expected, the mean value of
the distribution is contained within 19 (95 %) of these intervals. Only
one (5 %) of the samples, from which the intervals have been computed,
is so extreme that the mean of the distribution is not contained within the
95 % confidence interval.

A.4.2.1 Calculating a confidence interval

When calculating a confidence interval for the mean or some other
parameter, one usually needs the estimated value (E) of this parameter,
the estimated standard deviation, which is often referred as standard
error (Sg), and a quantity, such as #, given in Table A.5. The quantity
required depends on the probability distribution of the estimator. If the
random variable is normally distributed the value of the quantity typi-
cally depends on the degrees of freedom of s%, the level of confidence, and
whether one requires a one-sided or a two-sided interval.

Table A.5 Table of ¢ values used when calculating a confidence interval of the
mean. It is assumed that the sample data follow a Gaussian distribution.

Level of confidence

Degrees
of Two-sided 80.0 % 90.0 % 95.0 % 98.0 % 99.0 %
freedom One-sided 90.0 % 95.0 % 97.5 % 99.0 % 99.5 %
1 3.078 6.314 12.706 31.821 63.657
2 1.886 2.920 4.303 6.965 9.925
3 1.638 2.353 3.182 4.541 5.841
4 1.533 2.132 2.776 3.747 4.604
N 1.476 2.015 2.571 3.365 4.032
6 1.440 1.943 2.447 3.143 3.707
7 1.415 1.895 2.365 2.998 3.499
8 1.397 1.860 2.306 2.896 3.355
9 1.383 1.833 2.262 2.821 3.250
10 1.372 1.812 2.228 2.764 3.169
11 1.363 1.796 2.201 2.718 3.106
12 1.356 1.782 2.179 2.681 3.055
13 1.350 1.771 2.160 2.650 3.012
14 1.345 1.761 2.145 2.624 2.977
15 1.341 1.753 2.131 2.602 2.947
16 1.337 1.746 2.120 2.583 2.921
60 1.296 1.671 2.000 2.390 2.660
120 1.289 1.658 1.980 2.358 2.617

00 1.282 1.645 1.960 2.326 2.567
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Table A.5 may be used when one is calculating a confidence interval for
the mean value of a Gaussian distribution. For example, entering the table
at column 5, line 5 (5 degrees of freedom), one finds the number 3.365.
This value may be used to calculate the upper and lower limit of a 98 %
two-sided confidence interval or the lower or upper limit of a one-sided
99 % confidence interval. The probability, that the true mean value is
contained within the two-sided interval, is 98 %, implying that the prob-
ability that it is not contained within the interval is (100 — 98)% = 2 %.
This means that the probability that the parameter is larger than the cal-
culated upper limit is 1 % and that it is smaller than the lower limit is 1 %.

The confidence interval of the mean value The confidence interval of the
mean value of a Gaussian distribution may be calculated from a random
sample of 7 independent observations from the distribution as follows

1. X and s are computed using the data.
2. The standard error of the mean is estimated as:
= —— A23
<= (A.23)
3. t, corresponding to the desired confidence level and degrees of

freedom of s, is found in Table A.5.
4. The two-sided confidence interval is calculated as x &= ¢ - s5.

Example A.15

A sample comprising seven measurements has a mean of 8.00 and a
standard deviation of 4.08. We want to calculate the two-sided 95 %
confidence interval of the mean. s> has # — 1 =7 — 1 = 6 degrees of
freedom. For two-sided 95 % confidence intervals and 6 df, t = 2.447
(see Table A.5). The standard deviation of the mean is

s _ 408 s

Vi 7
(see Equation (A.23)). Therefore, the confidence interval is 8.00 + 2.447-
1.542 = [4.23,11.77).

Example A.16

In the previous example, had we wanted to calculate a one-sided 95 %
confidence interval with an upper limit, we should have looked for the
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entry in Table A.5, corresponding to a 95 % one-sided confidence inter-
val and 6 df. We find the value 1.943. The upper 95 % limit is
8.00 + 1.943 - 1.542 = 11.00. The limit of the corresponding one-sided
confidence interval with a lower limit is 8.00 — 1.943 - 1.542 = 5.00.

A.4.3 Testing a Hypothesis

We may have some preconceived notion about the parameters of a
population. For instance, assume that in previous investigations 50 years
ago it was found that the average height of Danish males was 1.77 metre.
We want to test the hypothesis that this is still the case. So we take a
random sample from the population of Danish males and measure the
heights of these males. To test a hypothesis based on a random sample,
one postulates that the observations obtained are generated by a prob-
ability distribution the specifics of which depend on the stated hypothesis.
In the example the hypothesis would be that the population of Danish
males has a mean value equal to 1.77 metre. If the sample belongs to a
category of extreme samples, which have a combined probability («) of
being selected that is very small if the hypothesis is true, the hypothesis is
rejected. In this example, it might be samples with a mean larger than 1.95
metre or smaller than 1.59 metre. How small the probability, « (the level
of significance of the test) should be, must be specified in advance. Usually
a is set to 0.05 or 0.01. In other words, prior to the test, a region of
acceptance is calculated. If the test result falls outside this region, the
hypothesis is rejected. In the invented example the region was 1.59 to
1.95 metre.

Example A.17

At a market place, a tombola is located inside one of the tents. On a
signboard the owner of the tent brags, ‘you can’t help winning a really
excellent bottle of red wine if you draw a ticket from the tombola at the
price of one dollar’. Immediately prior to the opening of the market place,
the owner has placed 500 prize tickets in the tombola on each of which is
written, ‘Congratulations, you have just won a bottle of vintage red wine.
Pursue your luck and buy another ticket’. The tent owner has asked his
assistant to add an additional 4500 losing tickets to the 500 prize tickets.
On each of them is written, ‘you have been extremely unlucky. Please try
once more’. The assistant, who had been testing a couple of bottles prior
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to his arrival at the market place, adds the additional 4500 tickets that he
has brought with him. After having shuffled the tickets, he begins to
doubt if the tickets he brought with him were losing tickets, a mixture of
losing tickets and prize tickets, or even worse only prize tickets. He tells
this to the tent owner who now has to decide if he should pack his things
and return home or continue the tombola.

He hypothesises that all tickets are losing tickets, i.e., that the result-
ing mixture of tickets includes % =10 % prize tickets which is
suitable since the red wine was bought at Kmart, at two dollars a bottle.
He wants to test this hypothesis, using a level of significance of 1 % or
less. The alternative to his hypothesis is that the percentage is larger
than 10 %. To test his hypothesis, he selects a random sample, compris-
ing five tickets, from the tombola and notes their types (prize or losing
tickets). If the hypothesis is true, the number of prize tickets in the
sample follows a binomial distribution with parameters 7 and p, where
p is the probability of selecting a prize ticket and 7 is the sample size.
According to his hypothesis, there are 10 % prize tickets in the tombola.
Hence p = 0.1 under the hypothesis. There are six possible outcomes of
the test sampling: 0, 1, 2, 3, 4, or 5 prize tickets in the sample.

He defines a random variable, X that assumes a value equal to the
number of prize tickets in the sample. He calculates the probability that
X assumes a specified value x, using the formula

S 017.0.96-%
m 0.1*-0.9
(see Equation (A.10)) to obtain P(X = 0) = 0.59049, P(X = 1) = 0.32805,
P(X =2)=0.0729, P(X=3)=0.0081, P(X= 4)=0.00045, and
P(X = 5) =0.00001.

The more prize tickets the sample contains, the more unlikely is
the result, according to his hypothesis. If the hypothesis is true,
the probability that the sample will contain three or more prize tickets
is0.0081 + 0.00045 + 0.00001 = 0.0086 or 0.86 %. Therefore, he deci-
des to reject the hypothesis if the sample contains three or more prize
tickets. His region of acceptance is 0, 1, or 2 prize tickets in the sample.

Assume 4 of the 5 tickets are prize tickets. Since this is more than two,
he rejects the hypothesis. The estimate of p is 2 = 80 %. That is, eight
times as many as he had anticipated under the hypothesis.

If he gets a test value outside the region of acceptance, his postulate,
that the hypothesis is wrong, is very well founded. By contrast, if the test
value falls within the region of acceptance, his decision to accept the
hypothesis may be less well founded. The cause of this is that the



APPENDIX A — BASIC STATISTICAL CONCEPTS 249

probability of obtaining a value within the region of acceptance may be
quite high even if the hypothesis is wrong. For instance, if the true
percentage of prize tickets is 20 % instead of 10 %, the probability of
detecting it is actually less than 10 %. That is, the probability that the
sample mean falls within the acceptance region is larger than 90 %. This
weakness may be remedied if the size of the sample is increased, so that
the number of possible outcomes increases.

A.4.4 Using a Confidence Interval to Test a Hypothesis

Testing a hypothesis using a specified level of significance and calculating
a confidence interval with a specified level of confidence are two sides of
the same matter. This is illustrated in the following example.

Example A.18

Following many disappointments, the regular customers of a middle-
sized pub on the outskirts of London have decided to sue Brewery X. The
plaintiffs claimed that the brewery was using misleading packaging for
its products. This brewery had just introduced a new brand of beer.
According to the label on the bottle it was supposed to contain half a
litre. Brewery X claimed that the average volume per bottle in the local
storage of beers of the mentioned brand was 500 ml. The regulars were
allowed to select a reasonably sized random sample of bottles from the
storage. Before the content of a bottle was drunk, the number of milli-
litres contained within the bottle was first measured. An impartial
person, jointly selected by Brewery X and the regulars of the pub,
made these measurements. Based on the measurements, a 95 % confi-
dence interval of the mean volume per bottle was calculated. This
interval was [420 ml, 467 ml].

On these grounds Brewery X was sentenced to pay the expenses of the
trial and in addition 10 cases of beer to each regular, ‘as compensation
for humiliation and pain’, as the judge expressed it. Here is an extract of
the judge’s charge to the jury before they were considering the verdict
and subsequently passing the sentence: ‘... if the mean volume is 500 ml,
a 95 % confidence interval will not include this value in 5 % of the cases.’
(Here the judge reviewed the definition of a confidence interval (see
Section A.4.2, Figure A.7)) ‘Therefore, if 500 ml is not contained in
the confidence interval, we have obtained a sample that we would only
obtain in § % of the cases if the hypothesis were true. Consequently it
must be rejected. . .
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To test the hypothesis that a parameter has a given value b, we select a
sample from the population and calculate a (1 — «) confidence interval
for the parameter, where o is the significance level chosen. If b is
contained within the interval, the hypothesis is accepted; if not, it is
rejected. If the level of significance is, e.g., 5 %, the confidence level
should be 95 %. A one-sided confidence interval is relevant if a single
alternative to the hypothesis can be specified (see Example A.17).
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Appendix B — X and S chart
with variable sample size

When the sample size varies, /i and S as estimators of u and o are
calculated using weighted sample values as given in Equations (2.45)

and (2.46)

ko __
1 X
1

=

A (B.1)

//:l/:

where X; is the mean of the ith sample, #; its size, and k the number of
samples, and

(B.2)

where S; is the standard deviation of the ith sample. The control limits of
the X chart for the ith sample are given by

(B.3)
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It can be shown that

§= K1 (B.4)
h—1

where x;, is a Chi statistic with degrees of freedom given by h = Zle ni—
k + 1 and o is the standard deviation of X. It can be shown that

T oE[x),_1] —
E[§] =1 c,(h) (B.5)
with
2 T(3)

C4< ) = mf(hz;l) (B6>

The factor c4(h) is the same as ¢4 as given in Equation (2.17). The index b
is used to emphasize that c4(h) is a function of b, which in the original
definition in Equation (2.17) is the sample size. Thus, S is a biased
estimator of o and from (2.19)

S
Cq (/J)

6‘:

(B.7)

is an unbiased estimator of o. From (B.3), control limits of the X chart
for the ith sample are given by Equation (2.47).
For the S chart, we plot the statistic S;. The control limits are given by

E[S] + 34/ Varl[S]] (B.8)

It is well known that
E[gl] = 64(711')0’ (B9)
and

Var[Sj] = (1 — &(n))o? (B.10)

Since E[S;] depends on #;, there is no central straight line for the S chart.

The central point for the ith sample is at E[S;], which from (B.9) and (B.7)
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is estimated by

“alm) )

as given in Equation (2.48). The upper and lower control limits at the ith
sample are given by Equations (2.49) and (2.50).



Appendix C — Moving Range
Estimator of the Standard
Deviation of an AR (1) Process

The random variables X; and X; { are Gaussian distributed with the
same mean and variance, o%. Let Y; = X; — X;_1, which is also Gaussian
distributed with zero mean. Since {Xj;j = 1,2,...} is an AR(1) process
with parameter ¢, from the properties of AR(1) processes in Section
4.1.2, p(1) = ¢. From Equation (4.3), the variance of Y;,j =1,2,...1is

Var[Y;] = 26* — 2Cov[X;, X;_1]
=2(1-¢)o”

From Patel and Read [1], |Yj| has a folded normal distribution with a
mean of

ENY;) = /2y VarlY]

20
-7 1—¢
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From (4.12),

since d; = % =1.128.
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