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Introduction

Data-handling means the interpreting and refining of experimental
results. This book is aimed at helping to improve confidence and skill in
data-handling. It is intended for undergraduate students, and for graduate
students who may still have a little to learn.
Although microbiology began with simple observations (the organisms

are small, they have various shapes, and some are motile) the subject has
become a quantitative, experimental science. As an example consider the
following statement:

Poly β hydroxybutyrate may make up 70% of the dry weight of
Azotobacter.

To reach this conclusion one must grow the organisms in a certain way,
make weighings, extract the polymer, do a chemical assay, and then put all
the information together in its proper order. None of these practical steps is
difficult, but to achieve the final result, clarity of thought, rather than great
mathematical ability, is definitely needed.
In recent times, the words ‘data-handling’ have taken on a second mean-

ing, that is, the manipulation of very large quantities of data (such as DNA
sequences) by using computer programs for analysis and comparison. This
new big area of database management is not covered here. Everything in this
book can be done with pencil and paper and a pocket calculator. That is by
no means to decry computers; the whole of this text was written on a word
processor, and all the figures have been drawn with Excel® or Corel Draw®.
How is data-handling to be learned? Best of all, by personal experience

in the laboratory. If you design an experiment yourself, then you will have
thought about the form of your results and the way in which they will need
to be manipulated. If you do an experiment that someone else has designed
(as in a practical class) it may be harder, but is still very instructive, to work
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out how to do the data-handling.When you are told how to do it, then make
sure that you really understand the steps; this is where many students fall
short.

The other way to learn is by solving written problems. Reading through
problems, without seriously attempting to attack them, is a waste of time.
Listening to someone explaining how a problem is done may be instructive,
but it can make things seem too easy (like seeing the solution to a crossword
puzzle) or it can make things appear too difficult (when really you could
have done it if you had tried).

How is data-handling to be taught? The answer is simple: by encourag-
ing practice, practice and practice with written problems and at the bench
with real situations. People who are not alarmed by simple mathematics or
who like puzzles might have an advantage in data-handling, yet practice will
improve anyone’s ability. Becoming familiar with types of calculation that
occur again and again builds confidence to tackle new situations. Building
this confidence is extremely important, and is best done by starting with
easier problems and moving gradually towards the harder.

This book starts with four chapters about simple mathematics and one
about graphs. All of this material can be skipped, but it has to be well
understood before attempting the later chapters. The next two chapters,
about logarithms and statistics, are more difficult. However, these should
not be skipped unless you are very assured in both topics.

After this come eight chapters in which data-handling in different areas
of microbiology and biochemistry are discussed and are illustrated by fully
worked-out problems. Finally, a miscellany of problems is given, with the
answers separated to a following chapter.

These problems were designed by various people; their names are given at
the starts of the problems; no name means by me. All the answers and any
errors are my sole responsibility. I hope the quotations may be seen to have
some relevance, and not to be just show-offs. Blame Edgar Allan Poe or
Colin Dexter.
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How important is maths
in data-handling?

The answer is vitally, but do not despair. There are few areas of microbiology
or biochemistry that require any kind of advanced mathematical ability.
What is necessary is to know how to crank out answers from standard
methods.Most students, andmost of their teachers too, have not been trained
to a high level in mathematics. In the author’s case this means trained only as
far as School Certificate, the forerunner of ‘O’ level. An expert is usually
consulted in those rare cases where advanced knowledge is needed.
Students are expected to be numerate, and modest skills are certainly

necessary. Appreciation of simple proportion, knowledge of some easy alge-
bra (such as solving simultaneous equations), an understanding of logarithms
and basic statistics, and the ability to draw and interpret graphs are all needed.
These topics are revised in the first chapters of this book. However, most
important of all is to develop a confidence that nearly all data-handling
problems can be tackled without having to be a talented mathematician.
Clear thinking and simple mathematics will solve most problems (at least

in this branch of science)!

The fact is that there are few more ‘popular’ subjects than mathematics.
Most people have some appreciation of mathematics, just as most people
can enjoy a pleasant tune, and there are probably more people really
interested in mathematics than in music. Appearances may suggest the
contrary, but there are easy explanations. Music can be used to stimulate
mass emotion, while mathematics cannot; and musical incapacity is recog
nized (no doubt rightly) as mildly discreditable, whereas most people are
so frightened of the name of mathematics that they are ready, quite
unaffectedly, to exaggerate their own mathematical stupidity.

G. H. Hardy (1940)
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Abbreviations and the Système
International

When the same word or phrase appears many times in a piece of writing,
common practice is to abbreviate. For instance, in this book adenosine
triphosphate is written as ATP; reduced nicotinamide adenine dinucleotide
is NADH. Some abbreviations are understood by every reader of English,
like Mr, USA, Prof., i.e. (= id est = that is). Other abbreviations, for example
µg, are only understood by specialists, and others may be too new, such as
cu (= see you), for everyone to understand.

In science there is a need for abbreviations that are intelligible to all
readers in any language. In order to express ten grams one abbreviates as
10 g; to write twenty seconds one puts 20 s (note that numerals are abbre-
viations too); and one hundred degrees Centigrade becomes 100 °C. There
may be times, of course, when you don’t want to use an abbreviation, and
then it might be appropriate to write (say) 100 millilitres rather than 100 ml.

The Système International (SI) is an agreement that in all science there
shall be certain basic units for measuring distance (the metre, m), time (the
second, s), weight (the kilogram, kg), temperature (degree Kelvin, K),
luminous intensity (the candela, cd), electric current (the ampere, A), and
quantity (the mole, mol). There are multiples or fractions of these units,
some of which have names of their own (e.g. 1 min = 60 s; 1 h = 3600 s).
Derived units are formed by combination of two or more of these basic
units; the joule (J) is m2 .kg. s–2 and the watt (W) is J.s–1 (= m2 .kg. s–3).

SI units are now used in all scientific writing. Their abbreviations are
fixed and are never pluralised and never have a full stop following (unless
at the end of a sentence or in place of a multiplication symbol [×]). Thus,
in an article for a journal you can write 50 g but cannot have 50 g. or 50 gs or
50 gm or 50 gms. Extensive lists of SI units are available in libraries and on
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the Internet with their definitions and proper abbreviations, and with quite
elaborate rules too. It is important to know the abbreviations for units that
you may frequently use.
The litre (1000 ml) is a special problem. The SI abbreviates litre as l

(hence ml, µl etc.) and trouble comes when you want to express a number of
whole litres, like 10 l, or 100 l, or to abbreviate ‘per litre’ (l–1). In these cases,
where l looks too like a 1 or an I, then I think it is better to write 10 L and
100 L, or L–1. This usage is common, and I follow it. In the USA ml and µl
will often be written asmL and µL, but I am not so thoroughly Americanised
(or consistent) as to do this.
Any abbreviation that may not be understood by one’s entire reader-

ship must be explained. If in any doubt then explain. The medical
profession coins abbreviations that all too often go without explanation.
What about MRSA? It is improbable that every reader knows that this
contraction means ‘methicillin-resistant Staphylococcus aureus’ and not
something like ‘most repulsive slimy animal’ that you meet in a hospital.

Abbreviations used in this book

SI units and abbreviations are used wherever possible. Note the litre anom-
aly (above).
The erg is the full name of a unit, not an abbreviation, and because it was

defined in terms of cm2.g. s–2, the erg is equal to 1 × 10–7 J.

Prefixes

M mega- (×106)
k kilo- (× 103)
m milli- (× 10–3)
µ micro- (× 10–6)
n nano- (× 10–9)

Other abbreviations

A adenine
ADP adenosine diphosphate
Ala alanine
ATP adenosine triphosphate

Abbreviations and the Système International xiii



C cytosine
cal calorie
CoA coenzyme A
CoQ coenzyme Q (ubiquinone)
Da dalton = unified atomic mass unit [= 1 / (Avogadro’s number)

gram]
Dap 2,6-diaminopimelic acid
DEAE- diethylaminoethyl-[cellulose]
DNA deoxyribonucleic acid
e.g. for example
F the Faraday; the total electrical charge on 1 mole of electrons
FAD flavin adenine dinucleotide (oxidised form)
FADH2 flavin adenine dinucleotide (reduced form)
G guanine
Glu glutamate
i.e. that is
Lys lysine
mol. wt molecular weight (= relative molecular mass, RMM)
M molar (note use of smaller typeface compared with the prefix

M=mega)
mur muramic acid
NAD+ nicotinamide adenine dinucleotide (oxidised form)
NADH nicotinamide adenine dinucleotide (reduced form)
NADP+ nicotinamide adenine dinucleotide phosphate (oxidised form)
NADPH nicotinamide adenine dinucleotide phosphate (reduced form)
OD optical density
Pi inorganic phosphate
PPi inorganic pyrophosphate
PQQ pyrroloquinoline quinone
R the universal gas constant (1.986 calories per degree Kelvin per

mole)
STP standard temperature (273 degrees Kelvin) and pressure

(1 atmosphere, 760mm mercury)
T thymine
T temperature in degrees Kelvin
UDP uridine diphosphate
td doubling time during exponential growth
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UV ultra violet
V volt
v. versus (= against)
v / v volume per volume
wt weight
w / v weight per volume

Some other abbreviations may be defined where they occur in the text.
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1 Numbers and indices

Most of this chapter should be familiar, but it is important that you really
understand all of the material, which is largely a series of definitions.

1.1 Numbers

Real numbers are numbers that can be fitted into a place on the number
scale (Fig. 1.1). The other kinds of numbers are complex (or imaginary)
numbers, which cannot be fitted onto this scale, but lie above or below the
line. They are of the general form a + ib, where a and b are real numbers but
i is the square root of –1.
Real numbers can be divided into:

Integers: these are whole numbers, positive or negative, such as 7,
341, –56.

Rational numbers: these can be expressed precisely as the ratio of two
integers. All integers are rational (they can be written as n / 1) and
many non-integers are also rational, such as 3 / 4, 2.5 (= 5 / 2), –7.36
(= –736 / 100).

Irrational numbers: these cannot be precisely expressed as the ratio of
two integers; examples are π ( which is not exactly 22 / 7 nor any other
ratio of integers) and the square roots of all prime numbers (except 1).
Note that a number that has to be written as a recurring decimal is not
irrational: 0.333 333… is exactly 1 / 3; and 0.142 857 142 857 142 857… is
1 / 7. Also, all approximations are rational: if we give π the approximate
value of 3.142 this is 3142 / 1000, a rational number.
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1.2 Indices

A number written as na is defined as the number n raised to the
power a. If a is a positive integer (the simplest case) then na means
that n is multiplied a times by itself (n). Thus, 25 means 2 × 2 × 2 ×
2 × 2 = 32. In the expression na the number n is called the base, and a
is called the index (or power, or exponent). Neither n nor a need to be
integers.

Expressions that include more than one base cannot always be simplified:
nothing for instance can be done with an expression such as na × zb.
However, if the power is the same, wemay be able to rewrite, as for example,
na × za = (nz)a. Simplifications are possible in some very important cases
where only one base is present, as follows.

Multiplication

na � nb ¼ nðaþbÞ

e:g: 52�53¼ ð5� 5Þ � ð5� 5� 5Þ ¼ 55¼ 25� 125 ¼ 3125

Note carefully that this only works when the base is constant. Expressions
such as na× zb cannot be treated in this way.

Division

na=nb ¼ nða bÞ

e:g: 24= 23 ¼ ð2� 2� 2� 2Þ=ð2� 2� 2Þ ¼ 21 ¼ 2

Again the base must be constant for this to work.
These two relationships are the foundation for the use of logarithms

(which are themselves indices of a chosen base number) as aids to multi-
plication and division.

0 1 2 3 4–1–2–3–4 ∞∞
Fig. 1.1 The scale of real numbers.
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Powers of indices

ðnaÞb ¼ na�b

e:g: ð32Þ3¼ 32� 32� 32¼ ð3� 3Þ � ð3� 3Þ � ð3� 3Þ ¼ 36¼ 729

Note carefully that expressions such as na + nb or na – nb cannot be
simplified (unless the actual numerical values of n, a and b are known).

e:g: 33 þ 31 ¼ ð3� 3� 3Þ þ 3 ¼ 27þ 3

¼ 30 and not 34 ðwhich equals 81Þ;
33 � 32 ¼ ð3� 3� 3Þ � ð3� 3Þ

¼ 27� 9 ¼ 18 and not 31 which equals 3ð Þ
Indices need not be only positive integers. They may also have zero value
(e.g. n0), or be negative (e.g. n–3) or fractional (e.g. n3/2). It is important to
understand what these different usages mean.
Any base raised to the power 0 has a value of 1:

n0 ¼ 1

ðna � na ¼ 1 ¼ nða aÞ ¼ n0Þ
Any base raised to the power 1 has a value equal to the base itself:

n1 ¼ n

A base raised to the power 0.5 has a value equal to the square root of the
base:

n0:5 � n0:5 ¼ n1

A base raised to a negative power represents the reciprocal of the base
raised to that same (but positive) power:

n a ¼ 1=na

The value of na/b is the bth root of na:

na=b ¼ bpna

So, for example, 25=4 ¼ 4p25 ¼ 21:25 and 3 3=2 ¼ 1= 2p33 ¼ 1=31:5. These
kinds of expression are most easily solved by using logarithms (or a pocket
calculator), as will be discussed later (see Chapter 5).

1.2 Indices 3



Standard form

In order to write big (or small) numbers in a compact way we express them
as powers of 10, for example:

234 700 000 ¼ 2:347� 108; 0:000 000 625 ¼ 6:25� 10 7

While these numbers could just as well be written as 23.47 × 107 and
0.625 × 10–6, the standard form is to show a single integer (other than 0) to
the left of the decimal point.

Two things to be careful about:

(1) Going from standard form to a written-out number can be treacherous
and so take great care. 2 × 10–3 does not equal 0.02: rather, 2 × 10–3

= 0.002. This seems obvious yet this kind of error is common.
(2) You can add or subtract numbers in standard form only when all the

numbers are rewritten each at the same power of 10. At the end you can
convert back to standard form if necessary.

ð3� 103Þ þ ð8þ 102Þ � ð5� 101Þ ¼ ð300� 101Þ þ ð80� 101Þ
�ð5� 101Þ

¼ 375� 101

¼ 3:75� 103

Getting this right looks easy but is really quite troublesome. An example
on the Internet that shows how to do this kind of calculation is worked
out to the wrong answer! The safest thing is to write out all the numbers
fully (i.e. as multiplied by 100):

3000þ 800� 50 ¼ 3750 ¼ 3:75� 103

Multiplying (or dividing) numbers in standard form is relatively easy:

ð3� 103Þ � ð8� 102Þ � ð5� 101Þ ¼ 3� 8� 5� 10ð3þ2þ1Þ

¼ 120� 106

¼ 1:20� 108

ð8� 102Þ � ð5� 101Þ ¼ ð8� 5Þ � 10ð2 1Þ ¼ 1:6� 101

4 Numbers and indices



2 A sense of proportion

If the Eiffel tower were now representing the world’s age, the skin of paint on the
pinnacle knob at its summit would represent man’s share of that age, and anybody
would perceive that the skin was what the tower was built for. I reckon they would,
I dunno.

Mark Twain

The object of this chapter is to encourage you to think whether or not your
answer to a problem looks reasonable or ridiculous. In general, a reasonable
answer is likely to be a right answer. An answer that looks ridiculous might
also be right, but you should then be alert to check your calculation very
carefully. Of course, there will be times when you do not knowwhat tomake
of an answer – is it reasonable or is it not? The better your background of
knowledge and experience, the less often will this uncertainty happen.

2.1 A ridiculous answer that is wrong

Here is the problem: calculate what dry weight of bacteria will be present in
10 litres of medium in a fermenter after 10 h when at time zero there are 10
organismsml–1 and there is a lag of 1 h before exponential growth (doubling
time 20 min) begins. One organism has a dry weight of 1 × 10–12 g.
This is the answer from a candidate in an examination (examiner’s com-

ments in [ ]):
There are 9 hours of exponential growth
In 1 hour there are 3 doublings (td = 20 min)
Therefore there are 27 doublings in total
So that 10 × 227 organisms will be present per ml after 10 hours [perfect

so far]
= 2 × 1027 organisms per ml [spectacularly wrong; needs to read about

indices]
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2 × 1027 × 1 × 10–12 × 104 g dry weight in 10 litres [right if line above
were right]

= 2 × 1019 g
Now the candidate starts to worry. [The sadistic examiner begins to be

amused]
= 2 × 1016 kg
[The examiner is laughing]
= 2 × 1013 metric tonnes
This would not fit in the fermenter, writes the candidate as the last line

of answer.
[The examiner is rolling on the floor; marking scripts has its

compensations]
This answer is plainly ridiculous, but it is not clear whether the candidate

has realised there is a mistake in the calculation, or (more probably) whether
the examiner is being implicitly criticised for setting a problem that has a
stupid answer. As this latter circumstance never happens (well, hardly ever),
then there must be a mistake, as is pointed out above:

10 × 227 does not equal 2 × 1027. Rather, 10 × 227 = 10 × 1.342 × 108

The correct dry weight after 10 hours is 1.342 × 109 × 1 × 10–12 g ml–1 =
1.342 × 10–3 g ml–1 or 1.342mg ml–1 and so 13.42 g in 10 L

This answer does not appear impossible, and looks plausible if one has
some knowledge of the levels of growth that bacterial cultures typically
reach (1 to 10mg dry weight ml–1).

Simple mistakes in calculation are the commonest reason for getting
wrong answers. Always think about the likely size of a result, and be sure to
get ratios the right way round. For example, if you are finding how much of
an anhydrous compound to use in a solution, when the recipe calls for a
hydrated salt, then the required amount will be smaller than the recipe says.
Remembering that where x is a positive real number:

multiplying x by a positive number less than 1 will lead to a number
smaller than x

multiplying x by a number bigger than 1will lead to a number bigger than x
dividing x by a positive number less than 1 will lead to a number bigger
than x

dividing x by a number bigger than 1 will lead to a number smaller than x

should help you to express proportions the correct way round.
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2.2 ‘Back of envelope’ calculations

One of the most useful things you may learn from this book is how to get an
approximate idea of the answer to a calculation by doing quite drastic round-
ing up and rounding down of the numbers in an expression. For example:

2875 × 7681 can be rounded to 3000 × 7500 which is 22 500 000
(If one number is rounded up, try to round down another.)
The precise answer is 22 082 875, and so the approximation is only off
by 1.9%.

Here is another: (3478 × 29 641) / (391 × 475) can be written as:

Rounding the numbers allows drastic cancelling, to give an answer only
5.4% away from the precise result, which is 555.1.
Even if you can do this more quickly with a calculator, you can also easily

make mistakes in pressing wrong keys, and for many people disbelieving
what the calculator says is difficult. The last example (below) is none too
simple with a calculator, and back-of-envelope work is highly desirable to
get an idea of what to expect as the answer.

3478 × 29 641

391 × 475 400 × 500

3500 × 30 000

525

11
400 × 500

175
700

3500 × 30 000

(7836 – 484) × 9741 (8000 – 500) × 10 000

(2743 × 37) + 960 (3000 × 40) + 1000

7500 × 10 0007500 × 10 000

120 000 + 1000 120 000

625

2500
7500 × 10 000

120 000
4
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The precise answer is 699.0, which means that this time the rough answer
is not so close; the error is 10.6%, but even so this still gives a good idea of
what to expect as the correct result after accurate calculation.

You probably think that all these examples were carefully devised, with
the roundings planned ahead to get a good answer. They were in fact done
with no forethought of that kind, and are genuine, honestly. Doing back-of-
envelope calculations without an envelope (i.e. in your head) is a talent that
can be shown off to the uninitiated (impress your friends!), but be very
careful not to lose track of powers of 10. The envelope is safer.

8 A sense of proportion



3 Graphs

‘and what is the use of a book,’ thought Alice, ‘without pictures or conversation?’
Lewis Carroll

Why draw a graph? There are many reasons, but the fundamental one is
that the human brain understands a picture much more easily than it does a
table of numbers.
Many data-handling questions require a graph to be drawn as part of the

solution. It is unlikely that under examination conditions a work of art will
be produced, nor would one be expected. However, some marks are given
for a graph that is correct (the points are plotted in the right places!) and
which obeys the conventional rules.
As well as making the drawing, you will probably have to use the graph to

read off some values, such as a gradient or an intercept or to measure test
samples from an assay. Doing these interpretations will be considered after
discussing how to produce a graph.

3.1 Drawing graphs

The graph shown in Fig. 3.1 illustrates a number of features.
There are several things to note. The horizontal scale (x axis, or abscissa)

is given to the variable that is the more directly under the control of the
investigator, and the variable that is measured for various values of x is
plotted on the vertical scale (y axis, or ordinate). In Fig. 3.1, the times at
which readings of the extinction are made are chosen by the experimenter,
and so go on the x axis, while the extinctions themselves are less under
control and follow from the selected times, and therefore go on the y axis.
Do not make the graph too small; aim to use as much of the area of the

sheet of graph paper as possible. The scales of the two axes must therefore be
chosen with care. Neither scale should extend far beyond the plotted points,
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and the points themselves must always lie within the scales. Straight-line
graphs are best plotted with scales devised in such a way that the line makes
an angle of about 45° with the x axis, so that x or y values can be plotted or
read from the graph with similar precision. (When several lines are plotted
on one graph it is unlikely that this rule can be obeyed for all the lines, but at
least one of the lines ought to be plotted to best advantage.)

The origin of a graph does not necessarily have to be shown. Frequently
a better graph can be made by using scales of limited ranges. Compare
Fig. 3.2a and b.

A problem sometimes occurs in the laboratory with real experimental
results: ‘Must a straight line be drawn to go through the origin even though
doing this gives a line of poorer fit with the data?’Unfortunately, the answer
is sometimes ‘Yes’ and sometimes ‘No’ depending on all kinds of things.
Fortunately the made-up results given in a data-handling question will not
be equivocal (unless you are specially warned!) and will not lead to points on
graphs that leave much doubt about where the curve ought to go, that is,
provided the points are plotted in the right places. Real-life problems may
not be so amenable!

Frequently points are not plotted correctly. People often miscount
squares on graph paper and hence make scales with irregular spacing of
the scale divisions. Another common error is to choose a logarithmic scale
when a linear one ought to have been used. If you have numbers spread
between 10 and 10 000 to plot (e.g. organisms per ml), and you label the

0 20 40 60 80
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Fig. 3.1 Reduction of NAD+ by lactate dehydrogenase. At time zero, enzyme,
substrate and cofactor were mixed and extinctions at 340 nm (due to
formation of NADH) were measured at 30 °C at intervals. Readings were
continued for 66 min from the time of mixing, and the measured extinctions
fell in the range 0 to 0.32.
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divisions of the y axis as 0, 10, 100, 1000, 10 000 organisms ml–1 (with equal
spacing between each) then you have created a logarithmic scale (with base
10). To use this scale properly a result of 200 must be plotted at 0.301 of the
interval between 100 and 1000, not at 0.2 of the interval. Likewise, 500
should be at 0.699 of the interval between 100 and 1000, not at 0.5 of the
interval. This kind of mistake can often be seen in published papers. A linear
scale for the same numbers (0 to 10 000) would be 0, 2000, 4000, 6000, 8000,
10 000 with equal spacing between each. Values less than 100 will look very
small, and even 5000 will be only halfway up the y axis.
Ordinary graph paper is marked out as 1-cm squares each divided

horizontally and vertically by lines 1mm apart. As a consequence, it is
easy to plot points correctly when each 1-cm square is made to represent
1 unit or 10 units or 0.1 unit, etc. Having each 1-cm square represent 2 or
5 units is manageable, but a bit more difficult. Choosing any other number
of units per 1-cm square is an excellent recipe for errors.
Each axis must bear an explanation of what numbers (and their units) are

plotted. In Fig. 3.1 it is obvious that the x axis should be labelled ‘Time
(min)’. The y axis (in this instance) is more difficult to get right, and it gives
an example of avoiding a very common kind of mistake. The numbers that
have to be plotted are extinctions of 0 to 0.32.Whenever possible, it is best to
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Fig. 3.2 Scales of graphs need not always include the origin. The same data
are here plotted on two different scales. The graph on the right (b) gives a more
accurate representation of the results. Note incidentally that the scales on both
graphs are linear (0, 1000, 2000, 3000 etc. and 5000, 6000, 7000) and not
logarithmic.
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use small whole numbers to indicate the scale, and so the actual measured
extinctions have beenmultiplied by 10+1 before being plotted as 1, 2, 3, etc.
and not by 10–1 (which would mean that the measured extinctions were 10,
20, 30, etc.). Many people find this hard to understand, and at first it may
seem the opposite of common sense, though in truth it is not. Here are some
examples to reinforce the argument. If units of 1000, 2000, 3000 are plotted
as 1, 2, 3 then the scale should be labelled ‘units × 10–3’ and not ‘units × 103’
(which would mean that the actual values were 0.001, 0.002, 0.003). If units
of 0.01, 0.02, 0.03 are plotted as 1, 2, 3 then the scale should be labelled as
‘units ×102’ and not as ‘units ×10–2’ (which would mean that the actual
values were 100, 200, 300).

The index marks on the x and y scales should extend into the area of the
graph, and not outwards towards the scale. Unfortunately many computer
programs draw these marks in the wrong direction. You can correct this
before printing, if you take the trouble.

Plotted points should normally be symbols (e. g.• ○ ▪ □) that are big
enough for the reader to see them easily. If only one curve is plotted on a
graph then all the points should be indicated by the same symbol. If more
than one curve is plotted then points for each separate curve must be
indicated with different symbols.

How best to connect the plotted points with a curve can be difficult to
judge. Most often it is preferable to draw a smooth curve of best fit rather
than to join points one by one with short straight lines. If a single straight
line fits reasonably through several successive points then draw it. Linear
regression is a method of calculating the straight line of best fit through a
series of experimental values that are believed to be in a linear relation to
one another. Many pocket calculators can do this useful analysis. However,
beware of curves like Fig. 3.1 that are linear over only a limited range of
values. This is a common shape for graphs showing the progress of a
reaction or microbial growth, or for standard curves in spectrophotometric
assays (see Fig. 3.3).

Few people can draw curved lines elegantly by freehand. Best results
come after considerable practice with a set of French curves, but this method
is slow and impractical (even if you are good at it) in an examination. Using
a stiff, bendable ruler (‘Flexicurve’™) is the most convenient expedient.

Do not extend curves beyond the plotted points unless this is done for
legitimate extrapolation.
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Avoid plotting more than three curves on one graph, because the result
usually then becomes too hard to understand readily. On the other hand, it
can be helpful to plot two or three separate measured properties of a system
(particularly plotted against time) on the same graph, as this may demon-
strate unexpected relations between the different properties.

3.2 Reading values from graphs

Intercepts and gradients

Often it is necessary to determine one or both of these features of a curve.
Finding the intercept (on x or y axis) is easy, though extrapolation is usually
needed (Fig. 3.4). Finding the gradient of a straight line is also simple (see
Fig. 3.5), but the gradient of a curved line changes along its length and so the
value of the gradient depends on where it is measured (see Fig. 3.6). (It is
very unlikely that you would be asked to find the gradient of a curved line in
an examination.)
If you know the equation that defines a curve (e.g. y= 2x + 5; y= x2 – 3)

then intercepts (the value of y when x= 0 or of x when y= 0) and gradients
can usually be foundmore easily by calculation than by drawing a graph (see
Chapter 4).
In Fig. 3.5 the gradient is positive, but if the line had sloped down from

left to right then the gradient would have been negative (y decreasing as
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Fig. 3.3 The course of an enzymic reaction. The solid curve shows the correct
relation between the points 1 to 8, i.e. a straight line of uniform gradient from
point 1 to point 6, and then a curve of decreasing gradient from point 6 to
point 8. The dotted line is the best fit line (calculated by linear regression)
when all the points 1 to 8 are regarded as being in a straight line relation. The
gradient of the dotted line gives a considerable underestimate of the true initial
rate of reaction.
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x increased). Notice that the gradient can be measured anywhere along
the line and that taking a large or a small increment of x will yield the same
value for the gradient (though the large increment will have greater
accuracy).

Reading off test samples from a standard curve

This is the simplest application of a graph. On the standard curve one plots
(as x values) known amounts of the authentic reference substance and the
responses, which may be extinction values, number of organisms growing,
etc. are plotted on the y axis. The response to a test sample is measured, and

0

y

x

dx

dx
dy

dy

Fig. 3.5 The gradient of a straight line is the change in y for a given increase of
x. The units of the gradient are the units of y divided by the units of x.

y

x0

Fig. 3.4 Extrapolation from the plotted points to find the intercepts of a
straight line on the y axis (a positive value in this example) and on the x axis
(a negative value here).
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from this y value a corresponding amount of reference substance present in the
assay system is read from the x axis (Fig. 3.7). Standard amounts of diamino-
pimelate established the x and y axes. The extinction (0.45 in this example) due
to the test sample is converted into an amount of diaminopimelate (58 μg).
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a

b

y

x

Fig. 3.6 The gradient of a curve. The gradient at point a is defined as the
gradient of the tangent to the curve at point a. At point b the gradient of the
tangent is obviously greater than at point a.
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Fig. 3.7 Spectrophotometric assay of authentic diaminopimelic acid and a
test sample (0.5 ml). (Incidentally, this assay is the most reproducible and easy
colorimetric method that the author has encountered. It was devised by
Dr Elizabeth Work.)
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This amount was present in the volume of test sample that was assayed, so that
the sample contained 116 μg diaminopimelate ml–1.

Finding doubling times of exponentially growing microbial
cultures and half lives of radioisotopes from plots of logarithms

These procedures are described in Chapter 5.

3.3 Solving equations graphically

Sometimes a difficulty in a calculation is most easily solved by drawing a
graph. Consider the following problem:

In an aerated liquid medium at 37 °C bacteria of strain A grow exponen-
tially (td = 45 min) after a lag phase of 3 h. Under the same conditions
bacteria of strain B grow exponentially (td = 30 min) after a lag phase of 2 h.
The medium is inoculated at the same time with 1000 organisms of strain A
and with 20 organisms of strain B and then incubated. Determine the time
(after inoculation) at which equal numbers of organisms of each strain are
present, and find what is the total number of bacteria present at this time.
Assume that neither strain affects the growth of the other, and that expo-
nential growth of both strains begins immediately after the lag phase.
Nutrients in the medium are sufficient to allow exponential growth to go
on after the time when the numbers of each strain were equal.

Solving this problem by calculation alone is possible, but it is not at once
obvious how to start, and it is a bit difficult to avoid mistakes, even when
following the right steps. In contrast, a graph leads to the answers without
much trouble. All that is necessary is to plot two straight lines representing
the exponential growth of each strain, and find where they intercept; this is
the time (x axis) at which the logarithms of the numbers of strains A and B
are equal (y axis).

To plot exponential growth of strain A we need ln n0 (that is ln 1000 at
180 min) and ln nt where t can be any time greater than 180 min. If we
arbitrarily make t= 580 min then there will be 400 min of exponential
growth of this strain and so:

ln n580 ¼ ln 1000þ μ:400 ðwhere μ ¼ 0:693=tdÞ
ðμ ¼ 0:693=45 ¼ 0:0154 min 1Þ
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(see Chapter 5 about logarithms and exponential growth ofmicroorganisms).
Thus,

ln n580 ¼ 6:9078þ ð0:0154� 400Þ ¼ 13:068

Now we can draw a line on a graph of ln n (y axis) against time (x axis) to
join 6.9078 (y axis) at 180 min (x axis) with 13.068 (y axis) at 580 min (x
axis). This line can be extended, if necessary, beyond 580min because we are
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Fig. 3.8 Growth of two strains of bacteria as a mixed culture:• strain A,
○ strain B; n is the number of organisms per ml.
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ln 2

ln 2

Fig. 3.9 An enlarged part of Fig. 3.8.
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told that exponential growth continues after the time when numbers of
strains A and B are equal.

In the same way, we can plot exponential growth of strain B. Here n0 is 20
at 120 min, and μ is 0.0231 min–1. If we consider 300 min of exponential
growth of strain B then we arrive at:

ln n420 ¼ 2:9957þ ð0:0231� 300Þ ¼ 9:926

Plotting the values for strain B leads to the result shown in Fig. 3.8.
We can read off that the required time is 510 min, and the natural

logarithm of the number of organisms of either strain at this time is 11.95,
and so the number is e11.95 = 1.55 × 105. Thus the total number of organisms
is 3.10 × 105. Themore precise answers given by calculation are 508min and
3.12 ×105 organisms. Can you do the calculation? It’s not very simple. A
solution is in Chapter 17 (Answers to problems).

Suppose the problem also asked you to establish the times between which
neither strain is in more than a twofold excess over the other. This again can
be calculated, but the answer can easily be read from the graph already
drawn. All that is needed is to find the region where the two lines are not
more than 0.693 (on the ln n scale) apart, since this distance represents a
factor of 2 (ln 2 = 0.693). An enlarged part of the graph is given in Fig. 3.9,
and it shows that the required period is between 420 min and 590 min.
Calculation gives the more precise 418 min and 598 min (see Answers to
problems).

A bit of geometry (in biology?) shows that the two triangles in Fig. 3.9 are
congruent (the vertical lines are parallel and equal in length), which can
prove that the period of time, before the point of equal numbers, when
strain A is in not more than twofold excess, must be numerically the same as
the period after the point of equal numbers when strain B is in not more
than twofold excess. I haven’t thought about how to prove this without the
graph.

See Chapter 4 (Algebra) for more examples of the use of graphs.
See Chapter 5 (Logarithms) if you don’t understand e and natural

logarithms (ln n).

18 Graphs



4 Algebra

I would advise you, Sir, to study algebra, if you are not already an adept in it: your
head would get less muddy.

Samuel Johnson

Biologists use simple algebra to devise and solve equations. All we shall
show in this chapter is how to do these things:

Devising equations
Substituting into equations
Solving equations: simultaneous and quadratic
Rearranging equations.

4.1 Devising equations

Let’s start with an easy example of devising an equation, treated at extrav-
agant length.
A common problem is to find what volume of a bacterial suspension of

known optical density (say 1.2) must be added to a tube containing a known
volume of sterile water (say 5 ml) to give a dilute suspension of a desired
lower optical density (say 0.1).
Answer:

Let x ¼ volume ðin mlÞ of suspension ðoptical density 1:2Þ
that is required:

In order to get the correct dilute suspension, the ratio of x to the final total
volume of diluted suspension (5 + x) must be 0.1 / 1.2. So now we can write
an equation:

x=ð5þ xÞ ¼ 0:1=1:2
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Now solve for x. Multiply both sides of the equation by 1.2, which gives

1:2x=ð5þ xÞ ¼ 0:1

Nowmultiply both sides of the equation by (5 + x), which gives 1.2 x = 0.1 ×
(5 + x) which is 0.5 + 0.1 x, and so (by subtracting 0.1 x from each sides of
the equation) 1.1 x = 0.5. Thus (by dividing both sides by 1.1):

x ¼ 0:5=1:1 ¼ 0:45ml

To check the answer, showwhether 0.45 / (5 + 0.45) does indeed equal 0.1 / 1.2:

0:45=ð5þ 0:45Þ ¼ 0:083

0:1=1:2 ¼ 0:083

Good, 0.45 ml is the right answer.
Note particularly the following points about these steps.

(1) When x (an unknown value) is created it is essential to define fully the
units of x (‘ml of a suspension of optical density 1.2’ in the above
instance). Failure to define units properly is a very common cause of
mistakes: you need to be quite clear from the start that x is not ml of
water, or ml of diluted suspension. In the same way, it is not enough (for
instance) to define t as time in hours, you must also say time in hours
from the start of incubation, or from the start of exponential growth, or
from whatever point is appropriate.

(2) Setting up the equation to solve for x is the hardest part of the process to
think out, and to explain as well. Trial and error and perhaps intuition
are always needed. In the above example it is relatively easy to produce
the equation. The ratio of x (volume of suspension wanted) to total
volume (x + 5) after adding to water must obviously be less than 1, and
also must be equal to the ratio of the final to the initial optical density,
which ratio is less than 1 too. As long as you remember that if one side
of an equation has a certainmagnitude then the other sidemust be of
the same magnitude (because it is an equation) then you will avoid the
mistake of writing x/(5 + x) = 1.2 / 0.1. I hope that this kind of error
seems ridiculous. It often happens though.

(3) Solving our equation ought to need no more explanation. Answers
don’t come out more easily than this one.
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4.2 Substituting into equations

The next example is a case where an equation does not have to be devised
(though one does have to be remembered), but numbers must be inserted
correctly into the equation to produce the right answer.
A problem that I had in the laboratory some time ago was to find the

internal diameter (bore) of a uniform capillary tube of circular cross-
section. A piece of the tube was first weighed empty. Then water (density
1.00 g ml 1) was drawn into the tube, the sides of which were dried. The
presence of the column of water (3.0 cm long) in the tube increased the
weight by 0.0020g. What was the bore of the tube?
Answer: The water weighed 2mg and so its volume was 2 μl (1 g of water

occupies 1 ml, which is the same as 1000mm3 and 1000 μl).
The volume of a circular column is given by:

volume ¼ πr2l

where r is the radius of the column and l is its length. Here it is vital that
volume, r and l are expressed in compatible units. As the unit of volume is
μl, r and l must be expressed in mm.

Thus; 2 ¼ πr2 � 30

Therefore r2 ¼ 2 = ð30πÞ ¼ 0:0212 mm2

and so r ¼ p
0:0212 ¼ 0:146 mm

The bore of the tube is 2r ¼ 0:29 mm

There are two slightly tricky points: one is to get the units right, and the
other is to remember at the end that it is 2r (the diameter) and not just r that
must be found.

4.3 Solving equations

The general procedure is to get the unknown (x) alone on one side of the
equation and to have what x equals on the other.
In this next example x is on one side only, but in an awkward form which

has to be simplified:
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1
x
þ 2
3x

¼ 5; multiply each side by x:

1þ 2
3
¼ 5x; rearrange

5x ¼ 5
3
; divide by 5

x ¼ 1
3

Graphs and equations

Equations of the form y = f(x), that is to say y is a function of x
(e.g. y = 3x − 2; y = 2x3; y = x2 + 2x + 3) can be represented as graphs.
One plots the values of y that are the result when values of x are put
into the equation.

For example, the equation y = 2x + 3 gives the data:

x y
−2 −1
−1 1
0 3
1 5
2 7

This information lets us draw a graph (Fig. 4.1). Any equation of the general
form y = mx + c (where m and c are real numbers) will produce a straight-
line graph of gradientm and intercept c on the y axis (i.e. the value of ywhen
x = 0). Intercepts on the y axis of other equations may be found by setting
x to zero, but gradients of curves must be calculated by the mathematical
process of differentiation, which is too big a subject for discussion here.

Quadratic equations

When one power of x alone is present in an equation there are no difficulties
in solving for x, e.g. x4 = 27.98, so that x = 4√27.98 = 2.3 or −2.3. (Remember
that if y = n√x and n is an even number then ywill have both a positive and a
negative value.) Things are less simple when there aremore powers of x than
just one. A quadratic equation is of the general form:
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y ¼ ax2 þ bx þ c

where a, b and c are real numbers (positive or negative) that are known but
which differ as one goes from one quadratic equation to another. (Equations
with mixtures of more than two powers of x (polynomial equations) are too
difficult for consideration here.)
Not all quadratic equations can be solved with real (as opposed to imag-

inary) numbers. Put the equation into the form ax2 + bx + c = 0 (i.e. make
y equal zero). To get the value(s) of x, substitute in the formula

x ¼ ½�b�pðb2 � 4acÞ�=2a
Then if (and only if) b2 − 4ac is positive or zero can the equation be solved for
x. Thus, the equation y =3x2 + 2x − 7= 0 is solvable because a = +3, b = +2
and c=−7,whichmeans that b2− 4ac=4− (4 ×3×−7)= 4+ 84= 88, a positive
value.However, y= 3x2 + 2x+ 7=0 is not solvable because b2− 4ac=4− (4 ×3
×7) = −80, a negative value, for which no real square root exists.

For the equation 3x2 þ 2x � 7 ¼ 0; x ¼ ð�2�p
88Þ = 6 ðsee aboveÞ

Hence; x ¼ ð�2þ 9:38Þ = 6 or x ¼ ð�2� 9:38Þ = 6

x ¼ 7:38 = 6 or x ¼ �11:38=6

x ¼ 1:23 or x ¼ �1:90
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Fig. 4.1 Graph of y = 2x + 3. The straight line graph has a gradient of 2,
and intercepts the y axis at 3.
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To check that these answers are correct, substitute back in the original
equation:

ð3� 1:232Þ þ ð2� 1:23Þ � 7 ¼ 4:54þ 2:46� 7 ¼ 7� 7 ¼ 0

ð3��1:902Þ þ ð2��1:90Þ � 7 ¼ 10:83� 3:80� 7 ¼ 0:03 � 0

Notice that two values for x are generally found from a solvable quadratic
equation, but when b2 − 4ac is zero then only one value for x will be
obtained. The curve of a non-solvable quadratic never cuts or touches the
x axis (Fig. 4.2b), whereas the curve for a solvable equation usually cuts
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Fig. 4.2 Graphs of (a) y = x2 + x −1; (b) y = x2 + x +1; (c) y = x2 + 2x + 1.
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the x axis twice (Fig. 4.2a) at the two values that are solutions of the
equation. Only one solution is found when the curve touches the x axis in
only one place (Fig. 4.2c). Find which of these equations are solvable for x by
determining whether or not b2 – 4ac is positive:

x2 ¼ x þ 1

x2 ¼ x � 1

x2 ¼ 1� x

x2 ¼ 2x � 1

3x2 = 4 ¼ x þ 1

8x ¼ 3x2 þ 5

4� x2 ¼ 5x

Now solve for x in each equation where this is possible.
(No answers are given for these little problems. You can check your

answers by substituting them for x and seeingwhether the equations balance.)

Simultaneous equations

A single equation that contains two unknowns (x and y) cannot be solved
for x or for y. However, solution becomes possible when a second equation
is available which relates the same numerical values of x and y (as in the first
equation) to each other in a way different from the first equation.
Thus 3x + 2y = 17 is not solvable alone, but if we also know that x − y = −6

then we can solve.
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Fig. 4.2 (cont.)
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There is more than one way of getting to the answer; two non-graphical
methods (a and b) are shown first, and then a graphical method (c).

(a) Make the multipliers of x (or of y) the same in each equation: thus,
x − y = −6, so that 3x −3y = −18. Now subtract one modified equation
from the other:

ð3x þ 2y ¼ 17Þ � ð3x � 3y ¼ �18Þ
This leads to 5y = 35, and so y = 7. To find xwe put the established value
of y into either of the two original equations:

3x þ 2� 7 ¼ 17 or x � 7 ¼ �6

and in each case we get x = 1.
(b) Express y in terms of x (or x in terms of y) by using one of the equations:

y = x + 6. Now substitute for y in the other equation:

3x þ 2ðx þ 6Þ ¼ 17

This leads to 5x + 12 = 17, and so 5x = 5 and x = 1. To find y we put the
established value of x into either of the two original equations:

3þ 2y ¼ 17 or 1� y ¼ �6

and we get y = 7 each time. In both procedures we use one equation to
allow us to eliminate an unknown from the second equation, to leave a
new equation with a single unknown.

(c) Put both equations into the form y = f(x), thus, y = (17 – 3x) / 2 and
y = x + 6. Now plot each of these equations as graphs (Fig. 4.3). The
coordinates of the point of intersection of the two curves are the values
of x and y that satisfy both equations.

Simultaneous equations cannot always be solved easily.
Consider this pair of equations

2x þ y ¼ 22

xy ¼ 36

Rearranging the first equation gives

y ¼ 22� 2x
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so that

xð22� 2xÞ ¼ 36 ¼ 22x � 2x2

Rearranging again gives 2x2 – 22x + 36 = 0, which we can divide by 2:

x2 � 11x þ 18 ¼ 0

Thus, we have a quadratic equation to solve in order to find x:

x ¼ ½11�pð121� 4� 1� 18Þ�=2
x ¼ ð11þ 7Þ=2 or x ¼ ð11� 7Þ=2
x ¼ 9 or x ¼ 2

If x equals 9 then y must equal 4, and if x equals 2 then y must equal 18.
Notice that a rather similar pair of equations is much easier to solve:

2x þ y ¼ 22

x=y ¼ 2:25

Therefore

x=ð22� 2xÞ ¼ 2:25

and so

x ¼ 2:25� ð22� 2xÞ
x ¼ 49:5� 4:5x

5:5x ¼ 49:5

x ¼ 9
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Fig. 4.3 Graph of y = (17 3x) / 2 (□) and y = x + 6 (Δ). At the intersection
x = 1 and y = 7.
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which means that y = 4.
Each of these pairs of equations could be solved graphically with similar

ease (or difficulty). Plot y = 22 − 2x against y = 36 / x and y = 22 − 2x against
y = x / 2.25.

(Simultaneous equations can also be solved by matrix algebra, but we
won’t go into that.)

Solving equations by successive approximations

Consider this equation:

x= log x ¼ 14:11

The value of x to two places of decimals is wanted.
Writing this as x = 14.11 × log x or as log x = x / 14.11 doesn’t lead any

further towards a solution, i.e. values for x that satisfy the equation.
However, drawing a graph of the equation y = x / log x and reading

off the values of x when y = 14 would give close approximations to the
solution.

To draw such a graph you might start by noticing that when x = 10 then
y = 10, when x = 100 then y = 50 and when x = 1000 then y = 333.3. Hence, to
satisfy the equation it seems that x must be >10 and <100.

To examine the first possibility try a guess of x = 30; y then evaluates as
20.31, so that x < 30. When x = 20, y is 15.37, which is still too big. When
x = 15, y is 12.75, which now is too small.

Thus, we know that

x is 415 and 520

More approximations will show that x > 17 and < 18. Still more approx-
imations will give x to the required accuracy.

It’s a slow process, but it does give the answer: x = 17.56.
Only if you have to make many calculations of this kind might it be

worthwhile to spend time (probably a lot of time) in writing a computer
program that can do the repeated iterations very quickly.

Unfortunately, the equation I have given to illustrate successive
approximations is not an ideal example because the equation is also
satisfied when x = 1.22. This would have been revealed if you had
drawn the graph of y = x / log x. The second solution can be reached,
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again by successive approximations, starting between the limits x = 1 and
x = 10.
The value of y (i.e. x / log x) has minimum at about +6.26 for all values of

x ≥ 1. If you can see what is the value of x at this minimum value of y then
you will see why the minimum is about (hint) 6.26. (Another hint: log x=
0.4342 ln x.)

4.4 Rearranging equations

Several instances have already been given. Usually the object is to define an
unknown (say a, which is part of an equation defining another unknown,
say z) in terms of the other quantities in that equation.
For example, z = 3a − b + 7; define a in terms of b and z:

z þ b� 7 ¼ 3a

a ¼ ðz þ b� 7Þ=3
and if you want b defined:

z þ b ¼ 3aþ 7

b ¼ 3aþ 7� z

To check the correctness of a rearrangement you may put arbitrary values
into the starting equation, and see whether the rearrangement gives the
right answers. Thus in the equation z = 3a − b + 7 let a = 1 and b= 2, which
means that z must be 8. Now put z and b into the equation for a, and see if
the right value for a comes out:

8þ 2� 7 ¼ 3; 3 = 3 ¼ 1 OK

Similarly, b = 3 + 7 – 8 = 2 again OK.
A more tricky rearrangement is needed for an equation such as

z ¼ ab
2
þ a

ðif a ¼ 1 and b ¼ 2 then z ¼ 2Þ

The danger here is in rewriting this as:

z ¼ aðbþ 1Þ
2
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which is wrong (try it: z would evaluate as 1.5, not 2, as it should). The
correct first move is to put

z ¼ ab
2
þ 2a

2
so that z ¼ aðbþ 2Þ

2

Now, 2z = a(b + 2), and so a = 2z / (b + 2) (Check 1 = 4 / (2 + 2) = 1, OK)
Similarly 2z / a = b + 2, and so b = 2z / a − 2 (Check 2 = 4 / 1 − 2 = 2, OK)

Rearrangements are not always so easy – in fact they may be difficult! For
instance, convert the equation D = µmax [s / (Ks + s)] (from continuous
culture) into a form that demonstrates that plotting 1 /D against 1 / s should
give a straight line of intercept 1/µmax on the 1 / D axis and intercept −1 / Ks

on the 1 / s axis.

D ¼ μmax:s
Ks þ s

so DðKs þ sÞ ¼ μmax:s

and ðKs þ sÞ ¼ μmax:s� 1 =D

All we have done so far is to take the reciprocal of the starting equation

1
D
¼ Ks þ s

μmax:s

We now write this as

1
D
¼ Ks þ s

μmax

� 1
s

which is the same as

1
s
� Ks

μmax

þ s
μmax

� �
� 1

s

Cancelling and rearranging gives

1
D
¼ Ks

μmax

� 1
s
þ 1
μmax

When 1 /D represents y and 1 / s represents x you see that this is the equation
of a straight-line graph with an intercept on the y (1 / D) axis of 1 / µmax.

To find the intercept on the x axis we set 1 / D to zero, in which case:

Ks

μmax

� 1
s
¼ �1

μmax

30 Algebra



Multiplying each side by µmax leads to Ks × 1 / s = −1 and dividing by Ks

finally gives

1 = s ¼ �1 = Ks ðonly when 1 = D ¼ 0Þ
Now try to rearrange the equation D = µmax [s / (Ks + s)] into these three
forms µmax = ? ;Ks = ?; s = ? so that µmax,Ks or s respectively do not appear on
the right-hand side of the equations. Not too hard, is it? See Chapter 9.
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5 Logarithms: exponential
and logarithmic functions

My lord, I have undertaken this long journey purposely to see your person, and to
know by what engine of wit or ingenuity you came first to think of this most excellent
help in astronomy, viz. the logarithms, but, my lord, being by you so found out, I
wonder nobody found it out before, when now known it is so easy.

Briggs to Napier

The aim of this chapter is to explain what logarithms are, and to discuss the
ways in which they are used. Some of the material is not very easy to grasp, but
you do need to have an understanding of this area. Even for people who already
are familiar with logarithms there is probably something new in this chapter.

Logarithms

A logarithm is a way of writing one number (x) expressed as a power
(index) of a second number (y) which is called the base, and which must
be a real number >1. Some examples should make clear what this means.
The number 8 is 23, and therefore if 2 is used as the base we can write:
log2 8 = 3; in words this is to say that the logarithm of 8 to the base 2 is 3.
Now, if 8 rather than 2 had been used as the base then log8 8 = 1 (8 = 81).
If 64 were the base, then 8 (=√64) would be expressed as log64 8 = 0.5. If
3 were the base, then 9 (32) could be expressed as log3 9 = 2, and 27 (33) as
log3 27 = 3.Citing the logarithm of a number is onlymeaningful when the
value of the base is also quoted or is clearly implied.

5.1 Things to realise about logarithms

A logarithm is a pure number

The number that a logarithm represents might be (for example) moles
per litre or cm per s, or almost anything else, but the logarithm itself has
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no units. What you can write is log10 (cm s 1) = 2, which would mean that
cm s 1 = 100

Zero and all real numbers less than zero have no logarithm

The logarithm of 1 (to any base) is zero; log10 (0.1) = –1; log10 (0.001) = –3;
log10 (1 × 10–n) = –n. Hence, while a logarithmmay have a negative value, it
always represents a number greater than 0, no matter how negative the
logarithm may be (nor what is the base of the logarithm). This means that
on a graph with a logarithmic scale a zero or negative number cannot be
plotted.

5.2 Bases used for logarithms

In principle, any positive real number greater than 1 could be used as the base
to make a table of numbers accompanied by their logarithms. In practice, the
only numbers that are used as bases for published tables are 10 (e.g. log10
5 = 0.6991; log10 1000= 3) and 2.71828… (this bizarre number is called e and
there are good reasons, as we shall see later, for its use as a base). Logarithms
(of a number, x) to base 10 are called common logarithms or just ‘logarithms’
and are written as log10 x or (more usually) just log x, while logarithms to base
e are called natural logarithms (or sometimes ‘Napierian logarithms’) and
are written as loge x or (more usually) ln x.
Many people find it much easier to think about their money gaining

interest in a bank than they do about numbers of microbes increasing in a
batch culture. Therefore, we will have a financial digression.
If you have £100 invested in shares that give a 10% dividend annually,

then every year you will receive £10 interest. This is called simple interest.
If you have £100 in a deposit account that adds 10% interest every year to

the sum deposited, after one year you will have £110. However, next year (if
you keep all the money in the bank) you will have 10% of £110 as interest,
which is £11, so that there is now £121 on deposit. Next year the interest will
be £12.1, and you will have £133.1 on deposit. Each year the amount of
interest and the total value of the deposit grow. This is called compound
interest. The rate of growth of your money (the interest gained in any one
year) is directly proportional to the total of the amount of your initial
deposit plus the already accumulated interest.
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Notice carefully: (1) Saying that a positive real number (n) is increased by
10% is the same as saying n × 1.1. Likewise, a 5% increase = n × 1.05, and so
on. (2) How much n increases when raised by 10% depends on the actual
size of n. A 10% increase of £10 is only £1, while a 10% increase of £10 000 is
£1000. If you get 10% compound interest annually for x years then your
initial deposit (n) will become n × 1.1x. So, after 10 years you would have n ×
1.110 = 2.593 n.

All this is familiar (I hope) but these concepts need to be very clearly
understood.

Now things get a bit harder to follow. What if instead of 10% once
annually you were given compound interest of 10 / 12% monthly? Again
note carefully that 10 / 12% monthly (an increase by a factor of 1.008 33
each month) is called an equivalent rate to 10% annually, but the outcome is
not the same because n × 1.008 3312 = 1.1047 n. If you got this monthly rate
for 10 years then you would finish with n × 1.008 33120 which is 2.707 n.
Again note that the amount of money you actually get depends on the
size of n.

Another equivalent (to 10% annually) rate is 10 / 365% given daily. This
yields after 10 years n × 1.000 2733650 = 2.718 n. We could go on calculating
interest given hourly, and then at every minute at rates ‘equivalent’ to 10%
annually. What we would be doing in effect is evaluating (1 + 1 / x)x as x
becomes a larger and larger number. The great mathematician Euler proved
that as x increases this expression leads towards the irrational number
2.718 28 … which is called e. If interest were given continuously at a rate
equivalent to 10% annually for 10 years then you would end with n × e.

No bank does give interest continuously (though they do charge interest
monthly for debts on credit cards!), but growth of a microbial batch culture
does come very close to being continuous. If you have 1 000 000 organisms
at various stages of their division cycle, and a doubling time of one hour
(3600 s) then in every second roughly 1 000 000/3600 = 278 organisms will
divide.

5.3 How Napier discovered logarithms, and why
logarithms to base e are natural

With the idea of finding how money accumulated as it earns compound
interest, John Napier (1550–1617) multiplied 1 by 1.0001 (equivalent to
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0.01% interest). He wrote the answer to this step 1 (= 1.0001) and then
multiplied the result by 1.0001. This gave the answer to step 2, which he
recorded. The step 2 answer in turn wasmultiplied by 1.0001 to give the step
3 answer. Napier went on in this way for many successive steps, each time
multiplying the answer by 1.0001 to produce a table of the results (illus-
trated in Table 5.1). (This isn’t quite what he really did, but my story is easier
to understand, I hope.)
The remarkable thing that Napier recognised was that if he took two of

his step numbers, for example 1000 and 2000, added them together (to give
3000 in this instance) and looked in his table for the value corresponding to
this sum of steps he found that the value (1.3499 here) was equal to (1.1052,
the step 1000 number) × (1.2214, the step 2000 number) = 1.3499. This way
of multiplying two numbers worked no matter which two step numbers
were added. Napier also found that subtracting step numbers was equivalent
to division. Thus, step 5000 minus step 3000 gives step 2000, which corre-
sponds to 1.2213, which is the answer to 1.6487 (step 5000) / 1.3499 (step
3000).
Napier coined the word logarithm to describe his step numbers, from two

Greek words, logos (reckoning) and arithmos (number). He first applied his
new idea as a primitive slide rule, which was called ‘Napier’s bones’. It was

Table 5.1 Examples of the successive results of
repeatedly multiplying by 1.0001, starting with 1 × 1.0001
(step 1 in the table), then 1.0001 × 1.0001 (step 2) etc.

Step Result

1 1.0001
2 1.0002
3 1.0003
5 1.0005
10 1.0010
100 1.0101
500 1.0513

1 000 1.1052
2 000 1.2214
3 000 1.3499
5 000 1.6487
10 000 2.7183
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obvious too that a table of Napier’s step numbers with their corresponding
values gave an easy way of turning multiplications and divisions into
additions and subtractions. Napier had no conception of e (‘the base of
natural logarithms’ = 2.718 18 …), nor of the idea of a base at all, but he
had found a wonderful way of simplifying arithmetic. Because they were
not determined from any preconceived base, his logarithms were ‘natural’.
We can see that Napier’s steps correspond (very nearly) to powers of e:
step 1 = e0.0001; step 100 = e0.01; step 1000 = e0.1 ; step 10 000 = e1 and so
on. Because the steps are indices then adding steps is equivalent to
multiplication.

For nearly 400 years people have used logarithms, mostly with no under-
standing of how they were derived or how they work. However, over this
long period of time mathematicians have increased our knowledge in this
area, and have produced the many rules and relationships that we are
considering in this chapter.

5.4 Calculation of natural logarithms and their conversion
to logarithms of other bases

You will probably never in your life need to calculate the logarithm of a
number. Pocket calculators and computers are preprogrammed to make the
calculation at the touch of a button. The following paragraph tells you how
it is done.

To find the natural logarithm of n (any positive real number) onemay use
the series:

ln n ¼ 2� ða1=1þ a3=3þ a5=5þ a7=7þ a9=9 . . .Þ

where a = (n − 1) / (n + 1). The terms in a series may continue indefinitely,
but may converge towards a limit if they become progressively smaller, as is
the case here. How many terms need to be evaluated to give a satisfactory
sum for the series will depend on the precision required in the answer, and
on the value of n: small values give a quicker answer. (Do you see a way of
starting the series with a small value of a (hint: a < 1.718 / 3.718) no matter
what the value of n?)

It is simple to convert the natural logarithm of a number into the
logarithm of that same number to any other desired base (see later).
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5.5 Antilogarithms and their calculation

We have seen how the natural logarithm of a number may be calculated,
that is, given a positive real number n, we can find the value of x that makes
ex = n. Very often we need to do the converse of this operation, that is, given
a value x (positive or negative) which is a natural logarithm (i.e. power of e)
we want to find the number n for which n = ex. This process is called finding
the antilogarithm, and n is said to be the antilog (to the base being used) of x.
Once again, we would use a pocket calculator to do the work for us, but the
following paragraph shows how it is done.
To convert ex into n, we use the series:

ex ð¼ nÞ ¼ 1þ x þ x2=2!þ x3=3!þ x4=4!þ x5=5!þ x6=6!þ . . .

Here 2!, 3!, 4!, 5! etc. mean factorial 2 (1 × 2), factorial 3 (1 × 2 × 3),
factorial 4 (1 × 2 × 3 × 4), factorial 5 (1 × 2 × 3 × 4 × 5), factorial 6 (1 ×2 × 3 ×
4 × 5 × 6) etc. To evaluate e–x we determine ex, and then find 1 / ex.

5.6 Conversions

If we know the value of the logarithm of a number x to one base (b) then it is
possible to find the logarithm of x to any other desired base (c) from the
relation:

logcx ¼ logbx=logbc

The particular usefulness of this equation is that it allows us to convert
natural logarithms (which are relatively easy to calculate) into logarithms of
any other required base. With the equation we can also convert common
logarithms (which are easy to tabulate) into logarithms of a different base.
Some examples follow:

log10 n ¼ ln n= ln 10 ¼ ln n=2:302585 . . . or ¼ 0:43429 ln n

(hence 2.302585 × log10 n = ln n which is a frequently used relationship).

log2 n ¼ ln n= ln 2 ¼ ln n=0:693147 . . .

or; log2 n ¼ log10 n= log10 2 ¼ log10 n=0:3010

e:g: log3 8 ¼ ln 8= ln 3 ¼ 2:079442=1:098612 ¼ 1:89279

To find the antilog when e was not the base of our logarithm, we can first
convert to a natural logarithm by multiplying with an appropriate factor. In
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practice, if we are not using natural logarithms, we shall almost certainly
have logarithms to base 10, and in that case we take the relation:

ln n ¼ 2:302 585� log10 n

to calculate ln n and hence determine the antilog.

Determining the value of e

Setting x to 1 in the equation for antilogs gives the value of e1 which is e
itself. With only 10 terms evaluated and summed we find that e = 2.718 282
and the 10th term is only 0.000 003. Higher terms quickly become smaller
and smaller, which means that to five places of decimals e does not get any
bigger no matter how many more terms are added. However, we could go
on and on putting figures to the extreme right of the decimal by computing
and adding higher terms. It should be obvious, therefore, why e is an
irrational number – we can never precisely express its value. To 15 decimal
places it is 2.718 281 828 459 046, but figures further to the right can be
added, without recurring, for ever! The immediate repetition of the digits
1828 is remarkable because the sequence of digits of e is entirely random.

From what has been said so far, it may seem that this weird number e is
used only because logarithms and antilogarithms to this special base are
easy to calculate. There are other, and more important reasons for using e
and natural logarithms, as will be seen later.

Logarithms to base 10

Our counting system is based on 10, and for this reason common logarithms
have a special place. Any positive real number can be written as n× 10x,
e.g. 3790 = 3.79 × 103; 0.0543 = 5.43 × 10–2and it is easy to make such con-
versions by inspection. In consequence, common logarithms needed to be
tabulated for only the numbers 1 to 10. The logarithm of any number then
can be found from the table by finding log10 of a number from 1 to 10 and
then adding to it the correct power of 10 (of our number). Thus,

log10 54 073 ¼ log10ð5:4073� 104Þ
¼ log10 5:4073þ log10 10

4

¼ 0:732 98þ 4 ¼ 4:732 98
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And log10 0:05 ¼ log10ð5� 10 2Þ
¼ log10 5þ�2 ¼ 0:699� 2 ¼ �1:301

Now that calculators have supplanted tables of logarithms, there are fewer
occasions when it is really necessary to use logarithms to any base other than e.
Wemay often choose still to use common logarithms because it is so easy to tell
(just by looking) roughly the size of the number that the logarithm represents.
Thus, if 3.4376 is the log10 of a number, we know at once that the number itself
is >1000 and <5000 (0.4376 is less than 0.699 which is the log10 of 5). On the
other hand it is not so easy to tell at a glance what is the rough size of the
number for which the ln is 11.5405: in this case the number is approximately
103 000. Would you have been able to make a close guess?
Logarithms to base 10 are helpful only because of our number system. You

should realise that the value of e is independent of a number system; e is
2.718 28… in binary, hexadecimal or any other system, in the same way that
π is always 3.141 59… In going from one number system to another, the way
that e is written will change, but the numerical value of e is unchanged.

5.7 Some uses of logarithms

Before the appearance of cheap calculators, common logarithms were very
much used tomakemultiplications and divisions easier to do. This was because:
The logarithm (to a given base) of the product of two (or more)

numbers is equal to the sum of the logarithms (to the same given base)
of the numbers.

logcða� bÞ ¼ logc aþ logc b

The logarithm of the quotient of two numbers is equal to the difference
of the logarithms of the numbers.

logcða=bÞ ¼ logca� logcb

(Both of these equations follow from the rules of indices, and logarithms are
indices.)
Everyone now has a pocket calculator that will do multiplications or

divisions and there is no need to use logarithms for these operations.
Nevertheless, logarithms retain their value in many other calculations.
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The logarithm of a number raised to a power is equal to the logarithm
of the number multiplied by the power.

logcðabÞ ¼ b� logca

This last relation is very important since it affords an easy way to evaluate
expressions like 74/3 or 23.507, or 5–1/4 thus:

ln 7 ¼ 1:945 910

∴ ln 74=3 ¼ ð4� 1:945 910Þ=3 ¼ 2:594 546

e2 594546 ¼ 13:3905 ¼ 74=3

ln 2 ¼ 0:693 15

∴ ln 23:507 ¼ 3:507� 0:693 15 ¼ 2:430 87

e2:430870 ¼ 11:3687 ¼ 23:507

5 1=4 ¼ 1=51=4: ln 5 ¼ 1:609 44:

1:609 44� 1=4 ¼ 0:402 36:

e0:402360 ¼ 1:495 35

∴ 5 1=4 ¼ 1=1:495 35 ¼ 0:668 74

Many calculators have a button labelled ‘xy’ which allows you to solve the
above kinds of expression very easily. You enter x, press xy, then enter y
(made negative if necessary), and the calculator produces the answer,
having used the method just described.

If your calculator can solve xy as well as doing multiplications and
divisions, you might think that you have no reason to concern yourself
with logarithms. As a scientist you would then be quite wrong.

Exponential growth of microorganisms

When bacteria are put into a flask of fresh medium there is a lag phase and
then a period of unrestricted growth. During this unrestricted period the
rate at which the number of organisms increases (expressed as, for example,
new organisms produced after incubation for 1 hour) depends on how
many bacteria were present at the start of the 1-hour period. Thus, if we
started with 100 organisms we might perhaps find 180 after 1 hour, whereas
if we had started with 5000 of the same organisms then we would expect
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many more than 80 new bacteria to be formed in 1 hour; instead we might
now find 4000 new organisms (that is, 9000 in total minus the 5000 present
initially). In a further 1 hour these 9000 might become about 16 000, which
is an increase of 7000 in 1 hour.
We can say that, during unrestricted growth, the rate of increase at any

moment will be proportional to the number of organisms present at that
moment. Mathematically this state of affairs is expressed as:

dn=dt ¼ kn

In general, dy / dx means the minute increase of a quantity y for an infinites-
imal increase of a related quantity x, that is the rate of increase of y relative to x.
Here dn / dtmeans the increase of n (i.e. dn) during an exceedingly short time
(that is dt). Hence, the equation is stating that the rate of increase of n at any
given moment is equal to the number of organisms then present (= n) multi-
plied by a constant, k. This is what exponential growth means – it does not
necessarily mean fast growth. The constant k is the same thing as percentage
increase of n at the same given moment.
Knowing the gradient of a graph (dn / dt) does not tell us what is the

equation that has led to the graph. We need such an equation so that we can
calculate nt, the number of organisms after an elapsed time t, when there
were n0 organisms at time 0.
To find the equation start by taking k to be 1.
In such circumstances, we get:

dn=dt ¼ n

In other words, the rate of change of n (number of organisms) with respect
to t (time) might be numerically equal to n itself. Should this appear a
strange idea, then realise that if you were so fortunate as to be given 100%
interest (once, at the end of a year) then after one year the increase in your
money would equal the amount you originally had deposited.
It follows from the equation dn / dt = n that a graph of n against t must

have a slope which at any point is equal to the value of n at that point. Is
there an equation of the kind y = f (x) (that is to say can y be defined as a
function of x; i.e. is there an equation to allow us to calculate y if we know x,
or if we know y then to calculate x) that will lead to a graph on which the
slope (dy / dx) at every point on the curve is equal to the value of y at that
same point?

5.7 Some uses of logarithms 41



Obviously any equation that gives a straight-line graph cannot be our
required f (x) because the slope of all such graphs is fixed and does not
alter as y changes. Likewise, any equations that yield curves with inflex-
ions (maxima or minima) cannot meet the requirement because there
must then inevitably be occasions when y is decreasing as x increases.
What is needed is an equation that plots as a curve like the one shown in
Fig. 5.1.

A shape of this kind is given by equations such as y = x2 or y = x3 (in
general y = xa and x >1), but the slope of any such graph is not equal to y all
the time. The slope of all these graphs is given at any point by a.x(a–1) and
this will almost never equal y.

Another kind of equation that will produce a graph of the desired shape is
y = cx, where c is defined as a positive (but not necessarily integral) constant
real number greater than 1. In Fig. 5.2 graphs are shown of y = cx for values
of c of 1, 2, 3 and 4, and values of x from 0 to 1. When c = 1 then y has an
unvarying value of 1 no matter what is the value of x, and dy / dx is always 0.
When c = 2 then y increases as the value of x rises, but at any point y is
always bigger than dy / dx. However, when c = 3 then y becomes always
smaller than dy / dx, and when c > 3 then y becomes considerably smaller
than dy / dx. Hence, it looks as though there may indeed be a value for c,
closer to 3 than to 2, for which y and dy / dx are equal for all values of y. By
now it should be easy to guess that this value of c is going to be e, that is
2.718 28 …

x

y

Fig. 5.1 The shape that a graph must have if y is to be equal to dy / dx at
all values of y.
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As a result of all this, we find that the equation:

y ¼ 2:718 28x ð¼ exÞ

does uniquely (mathematicians have proved) satisfy the requirement that
the rate of increase of y (dy / dx) is equal to y. This equation can be regarded
as a special case of a more general relation:

y ¼ a:eb:x

where a and b are constants (both equal to 1 in the equation y = ex). This is
the form of equation that we need to relate n (number of bacteria) to time of
growth.
Again, some examples may make this easier to follow.
How much would £100 be worth after 2 years if interest were given

continuously (not monthly or even daily) at a rate equivalent to 5% per
year? Here a = 100 and b = 0.05 while x = 2. So, y = 100 × e0.05 × 2 = £110.52.
How many organisms will be present after exponential growth for 3

hours of an initial population of 5000 bacteria, with a specific growth rate
of 0.011 per minute? Here a = 5000 and b = 0.011 per minute, while x = 180
(b and x must be expressed in the same units). Hence y (organisms after 3
hours) = 5000 × e0.011 × 180 = 36 214.

0 0.5 1.0

4

3

1

2y

x

y = cx

c = 4

c = 3

c = 2

c = 1

Fig. 5.2 Graphs of y = cx for some integer values of c.
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The number of organisms (nt) present after exponential growth for time t
( x) is:

nt ¼ n0 � eμt

where n0 ( a) is the number present initially, and μ ( b) is the specific
growth rate.

The doubling time (td) is the time needed during the exponential phase
for nt to become 2 × n0, and so (in this special case):

nt=n0 ¼ 2 ¼ eμtd ;

and consequently μ:td ¼ ln 2 ¼ 0:6931

This means that μ = 0.6931 / td or that td = 0.6931 / μ.
We can determine μ if we know td, or td if we know μ, but where should

we start? Either μ or td must be found by experiment, as discussed below.
From the equation nt = n0 × eμt, it follows that ln nt = ln n0 + μt. This can

be rearranged to ln nt = μt + ln n0, and this shows that a graph of ln nt (y
axis) against t (x axis) will yield a straight line during the exponential phase
of growth, of slope μ and intercept ln n0 on the y axis. Most frequently, one
would determine the number of organisms (per unit volume) or some other
property that is directly proportional to number (such as optical density)
and plot the ln of this against the time at which each measurement was
made. The slope of the straight line part of the graph (Δ ln n / Δ t) will be
equal to μ. Logarithms are pure numbers (not numbers of anything) and so
the units of μ are a pure number per unit time (e.g. 0.015 min–1 or 0.90 h–1).

We could find μ by algebra, without a graph, if we know the time interval
(t) between which two measurements had been made of numbers of organ-
isms (n1 and n2) per unit volume:

n2 ¼ n1e
μt

∴ ln n2 ¼ ln n1 þ μt

∴ ðln n2 � ln n1Þ=t ¼ μ

The drawback to this procedure is that it presupposes that both n1 and n2
were indeed measured during the exponential phase of growth. The only
simple way of establishing whether growth really is exponential is to plot
log (any base) n against time and see whether the points lie on a straight line
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(of positive gradient). We must have at least three values of n to do this
(since a straight line can always be drawn through two points).

Decay of radioisotopes

The rate of decay of a radioisotope cannot be altered by chemical or physical
means, and is dependent only on the composition of the nucleus. The
number of nuclei disintegrating in unit time will also be proportional to
the number of radioactive nuclei initially present. Mathematically, the rate
of decay is given by:

� dn=dt ¼ kn

where n is the number of radioactive nuclei, t is the time and k is the decay
constant, characteristic of the particular radioisotope that is being used.
This equation is clearly very similar to the one that represents exponential
growth of microorganisms; the difference is that now the number of atoms
decaying has to be subtracted from the number of atoms initially present
(whereas the number of new bacteria growing was added to those initially
present) and it leads to the next equation:

nt ¼ n0 e kt

by the same kind of reasoning as has already been discussed. Here n0 and nt
are the numbers of radioactive nuclei at times 0 and t respectively.
The half-life (th) of the radioisotope is the time needed for n0 to fall to

half of its initial value, and so:

nt=n0 ¼ 1=2 ¼ e kth ¼ 1=ek:th

∴ ek:th ¼ 2

∴ kth ¼ ln 2 ¼ 0:6931; and

th ¼ 0:6931=k or k ¼ 0:6931=th

The half-life can be found graphically by plotting the ln of the number of
nuclei disintegrating ( dpm) against time. This should give a straight line
(Fig. 5.3) from which the half-life can be read by finding the time interval
during which ln dpm decreases by 0.693 (= ln 2). The value of k, the decay
constant, can then be deduced, or it can be found directly from the gradient
of the line, which is equal to –k.
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The average lifetime of a radioactive atom can be shown mathematically
to be the reciprocal of k, and so for 32P is 20.2 days. Because k, the half-life
and the average life are so simply related it is sufficient to quote any one of
these numbers to define the stability of a radioisotope. The half-life is now
the value most often given, even though k is more directly useful in
calculations, and the average life is almost never mentioned.

5.8 The logarithmic function

We have seen that the exponential function is:

y ¼ ex

(which is the same as y = antiloge x). The logarithmic function is the reverse
of this, namely;

y ¼ loge x; or more generally

y ¼ lnðaxbÞ; which is to say that y ¼ b: ln x þ ln a

A graph of y against ln x will give a straight line of slope b and intercept ln a
on the y axis.
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Fig. 5.3 Radioactive decay of 32P. The radioactivity (n dpm) of Na2H
32PO4

was measured at daily intervals. The half life (14 days) is found from the
time during which ln n decreases by ln 2. The decay constant is therefore
0.6931/14 = 0.0495 day−1.
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The exponential function is recognised as being important by micro-
biologists. The logarithmic function is also important in biology, but its
applications may go almost unnoticed. It is often used to describe the
relation between the responses of organisms, y (= growth or inhibition for
instance), to a wide range of concentrations (x) of an administered sub-
stance, usually expressed as log10 x. In particular, and very importantly, we
use the logarithmic function in defining the pH scale of hydrogen-ion
concentrations. The pH value of a solution is the negative of the logarithm
(always to base 10) of the molar concentration of hydrogen ions.

pH value ¼ � log10½Hþconcentration ðmoles L 1Þ�

For instance, suppose [H+] = 2mM. This concentration is 2 × 10–3 M (0.002 M),
and so log10 [H

+] = –2.6990, and therefore the pH value is 2.699.
Caution! Be very careful about taking the average of numbers that are

from a logarithmic scale. For example, suppose that you determine the pH
values of two cultures (of the same organism in the same medium) when
growth has reached the stationary phase, and get values of 8.0 and 8.8. The
average is apparently 8.4, but this is incorrect. A pH value of 8.0 represents
1 × 10–8 M H+ and a value of 8.8 represents 0.16 × 10–8 M H+ so that the
average is 0.58 × 10–8 M H+ which means the correct average pH value will
be 8.2. This is just like showing that the average of 1 × 101(10), 1 × 102 (100)
and 1 × 103 (1000) is not 1 × 102 but is really 3.7 × 102.
Another application of the logarithmic function is in defining the extinc-

tion (E) (or absorbency) of a solution that absorbs light:

E ¼ log10 ðI0=IÞ

where I0 and I are the intensities of the incident and the transmitted light
respectively (at a specified wavelength). To show its relation to the general
form of the logarithmic function the equation can be written as E = ln (I0/I) ×
0.4343 (E y; I0 a; I x; –1 b; the factor 0.4343 converts the natural
logarithm to log10). Because E (though a logarithm) is directly proportional to
the concentration of a coloured solute you can validly determine the
average of several values of E. For example E = 0.4 might represent 0.1
µmol ml–1 and E = 0.8 will then represent 0.2 µmol ml–1 (see Chapter 9
about spectrophotometry). The average E of 0.6 will represent 0.15 µmolml–1,
which is correct.
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Many biologists use the words ‘exponential’ and ‘logarithmic’ (when
applied to a certain phase of growth of microorganisms in batch cultures)
as though they had the same meaning and were interchangeable. This is
wrong, because the words really have quite different meanings, and one
ought always to speak of the ‘exponential phase’ of growth. Also, when this
wrong term ‘logarithmic phase’ is abbreviated in speech to ‘log phase’ there
is a possibility of mishearing these words as ‘lag phase’.

No one ever seems to make the mistake of describing a logarithmic
function (such as the extinction of a coloured solution or pH value) as
being an exponential function.

Semi logarithmic graph paper

Do not use it! This kind of paper was introduced when looking up loga-
rithms in tables was laborious. The paper allows numbers to be plotted
in the positions of their logarithms (to base 10) on the graph without
you needing to find the logarithms. Now that it is easy to get logarithms
from a calculator most of the advantage has disappeared. The drawbacks
remain.

Finding the gradient, in the correct units, is not entirely simple, even with
a straight line.

Very often one does not have the best number of cycles on the paper, so
that sheets have to be joined (if there are too few cycles) or a small graph has
to be drawn (if there are too many cycles).

Many people do not understand what they are doing with this kind of
paper. Mistakes in labelling the axes, and in plotting logarithms rather than
numbers, are very common.

Semi-logarithmic paper costs more than ordinary graph paper!
Getting logarithms from your calculator and plotting them, as loga-

rithms, on ordinary graph paper is a better practice, and it is easier to
understand what you are doing.

An afterthought

An afterthought that seems to have no relevance at all to biology: one cannot
leave the subject of logarithms without mentioning the extraordinary rela-
tion proved by Euler:
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eiπ ¼ �1 ðwhere i is the square root of � 1; and π is 3:142 . . .Þ

The equation looks like a miracle of Nature (two irrational numbers
together with i resolving to an integer), but the proof is fairly simple,
because it is in fact no more than a special case of the general (but almost
equally surprising) relation of e to the trigonometric functions: eiθ = cosine
θ + i sine θ (where θ is an angle measured in radians rather than degrees).
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6 Simple statistics

If an experiment in microbiology has been well designed, no statistics are needed.
D. D. Woods

You don’t have to agree with all of my chosen quotations, and in this
instance I disagree with my former supervisor. At the least, statistical
treatment of data can help to convince yourself, and perhaps others too,
of the reliability of your conclusions. Statistics are also important in
cricket and bridge.

Often one repeats an estimation (notably of an enzymic activity) several
times, and then reports the average result (the mean) and its standard
deviation (that is, an indicator of how much the results scatter about the
average). This is a descriptive use of statistics. A predictive use occurs when
assessing the probability that two means (such as the activities of an enzyme
in organisms grown under two conditions) are really different. In this
chapter we shall see how to work out a standard deviation, and how to
compare means. Going beyond these procedures (which are not all that
simple) soon leads to a call for the services of a professional statistician, and
damn the expense! It’s like going to law.

Even determining the mean and its standard deviation is not straightfor-
ward because we have to take into account whether a mean is calculated
from a whole population or from a sample of a population, and also
whether the total number of individual values that contribute to a mean
are small (in practice less than 30) or large (≥30). There are other compli-
cations (discussed later) and the treatment in this chapter is very abbre-
viated, with little attempt to explain the mathematical theory which
underlies the methods. A detailed and very lucid exposition is given in an
excellent book: Statistics: A First Course, by J. E. Freund and G. A. Simon
(see Further reading).
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6.1 Simple statistical measurements

To begin, here are some definitions:

(a) Average ( arithmetic mean) Suppose we have n numbers, thus: x1, x2,
x3, …, xn. The mean of these numbers is their average:

ðx1 þ x2;þx3; . . . þ xnÞ=n

For example , consider these nine numbers: 5, 4, 5, 7, 6, 8, 9, 4, 7. Their
sum is 55. Hence their mean is 55 / 9 = 6.11.

The mean is denoted by the symbol x.
(b) Median The median is the middle number in a set of numbers, in the

sense that half the numbers are less than the median, and half are
greater. If we take the nine numbers from above and arrange them in
ascending order: 4, 4, 5, 5, 6, 7, 7, 8, 9 we find that 6 is the median.
(When the total of numbers in the set is even, then the median is the
average of the two middle numbers.)

(c) Standard deviation The above set of nine numbers has a mean of 6.11
and a median of 6. So too does this set: 5, 5, 5, 6, 6, 6, 7, 7, 8. However,
the numbers in the second set are obviously more closely grouped about
the mean. The standard deviation is a way of indicating the spread of a
set of numbers about the mean, in the form of a single number, without
having to show all the numbers (nine in this case) that contribute to the
mean. Finding the standard deviation is nowadays very easy with a pocket
calculator or with a spreadsheet program on a computer. However, you
should understand how the standard deviation is evaluated.

6.2 Calculating standard deviation

First, we find out how much each individual value differs from the mean,
i.e. x1 � x; x2 � x, etc. These differences are then each squared and the
squared values (which all will be positive) are added together. Finally, this
sum of the squares is divided by the total number of individual values that
contributed to the mean. The result of this calculation is called the
variance.
The variance is therefore:

½ðx1 � xÞ2 þ ðx2 � xÞ2 þ ðx3 � xÞ2 þ . . . ðxn � xÞ2�=n
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It can be shown (not by me) that this is equivalent to:
½ðx21 þ x22þ x23 þ . . . x2nÞ=n� � x2

This latter equation is easier to use, and it is a way that a pocket
calculator can determine variance without having to store numerous
separate value of x.

The standard deviation is the square root of the variance.
For the first set of numbers from above the variance is:

½ð42 þ 42 þ 52 þ 52 þ 62 þ 72 þ 72 þ 82 þ 92Þ=9� � 6:112

¼ ½ð16þ 16þ 25þ 25þ 36þ 49þ 49þ 64þ 81Þ=9Þ� � 37:35

¼ ð361=9Þ � 37:35

¼ 2:76

and the standard deviation is therefore √2.76 = 1.66.
In the same way we can find for the second set of nine numbers that the

variance is:

½ð52 þ 52 þ 52 þ 62 þ 62 þ 62 þ 72 þ 72 þ 82Þ=9� � 6:112 ¼ 0:983

and the standard deviation is therefore 0.991.
Notice particularly that the numerical value of the standard deviation

alone is not what matters. The important point is the size of the deviation in
relation to the mean. Thus, a deviation of 1.66 is 27% of a mean of 6.11
(while 0.991 is only 16% of the same mean value), whereas if the mean (of
another set of numbers) had been 106 then a standard deviation of 1.66
would be only 1.6% of the mean.

In these calculations of variances (and hence of standard deviations) we
used as a divisor n, the total (nine in these instances) of the numbers in the
set. This is correct only when we are establishing the variance of a whole
population, but not when finding the variance of a sample from a larger
population. If our nine numbers were for example the ages in years of all
the children in a very small school then the use of n would be right, but if
the nine numbers had been the ages of a sample of nine children from a
larger school then it would be wrong to use n. In this latter case, where we
examine a sample and not the whole population, the correct procedure is
to calculate the variance by using n – 1 as divisor rather than n. Hence we
have the equation:
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sample variance ¼ ½ðx1 � xÞ2 þ ðx2 � xÞ2 þ ðx3 � xÞ2
þ. . . ðxn � xÞ2�=ðn� 1Þ

The sample (n – 1) variance (and hence sample standard deviation too) will
therefore be greater than the population (n) variance and population stand-
ard deviation. To calculate sample variance it is easiest first to calculate the
variance of the numbers in our sample exactly as we did above, using n, as
though we were dealing with a population, and then convert with this
relationship:

sample variance ¼ population variance�n=ðn� 1Þ

The sample standard deviation is of course the square root of the sample
variance. As n becomes greater then the difference between the population
and sample variances will become less.
A calculator or spreadsheet will give you the choice of determining var-

iance and standard deviation with n (population) or n– 1 (sample) weighting.
Work out the sample variances and standard deviations of the two sets of

nine numbers from above. Now learn how to do this with a calculator. If you
have access to a spreadsheet, such as Microsoft Excel® , then learn to use
this as well.
In biology we seldom deal with all the individual numbers that make up a

whole population. As instances, we may estimate the viable organisms in a
culture by finding the average number of colonies that grow from perhaps
three separate very small samples taken out of the culture; we maymake five
measurements of the activity of an enzyme in an extract and determine the
average. In each case we have examined only a fraction of the huge number
of estimates that could be made if life were not so short. Consequently, an
enzymic activity will often be quoted in the form 30 [SD 4 (n= 3)] nmol
min–1 (mg protein)–1. This means that the average of three estimates was
30 nmol min–1 (mg protein)–1, with a sample standard deviation of 4 nmol
min–1 (mg protein)–1.
Suppose a mean of samples has been determined as above with n= 3.

It would not be at all surprising if three more samples (from the same
population, assayed by the same method) gave a somewhat different mean,
and a further batch of samples might produce yet another mean. On the
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other hand if a mean had been determined with n= 50 we would not expect
to find a very different mean for a further 50 samples. How sure can we be
that a sample mean is a good measure of the population mean? The answer
is that we can calculate, from one mean and its standard deviation together
with the number of values that contributed to the mean, the limits between
which the true mean will lie 19 times in 20 (95% probability), or, if we want,
99 times in 100 (99% probability). In finding the confidence limits, as
described below, some assumptions aremade about the way individual results
are distributed about the mean. These assumptions will be considered later.

6.3 Confidence limits

Rather than quoting the sample standard deviation of a mean, it used
to be common to give the confidence limits of the mean. For example, the
enzymic activity given above might be presented in the form 30 ± 11 nmoles
min–1 (mg protein)–1. This says that the mean found was 30 and that there
is a high probability (likely to be 95% if not stated explicitly) that the true
population mean (i.e. the average mean of very many estimates) does lie
between 19 and 41 nmoles min–1 (mg protein)–1. (It also implies a 5%
probability that the true mean is outside these limits.) Such confidence
limits are determined when n ≥ 30 from the equations:

x � ðz � sample standard deviationÞ=pn and

x þ ðz � sample standard deviationÞ=pn

where z is a number, found from statistical tables, that establishes the
level of probability for the limits: for 95% probability z is 1.96; for 97.5%
probability z is 2.24 and for 99% probability z is 2.58. Determining 95%
confidence limits is a two-tailed test (see later) and so z has the value 2.24
(2.5% applied twice).

When n < 30 a different equation must be used to find the limits:

x � ðt � sample standard deviationÞ=pn and

x þ ðt � sample standard deviationÞ=pn

Here the value of t (for a given probability) is not constant, but depends on
the value of n – 1, and so must be looked up in statistical tables. The smaller
is n, the larger is t; thus for n= 3, t (95% probability) = 4.30: t (97.5%
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probability) = 6.21; and t is 9.92 for 99% probability. When n= 10 then
t (95% probability) is 2.23 and is 3.17 (for 99% probability).
In quoting confidence limits their probability should also be given, but

often are not, and 95% must then be assumed. The confidence limits, given
alone, do not reveal the value of n, from which the mean and its limits were
found. For these reasons showing the mean and standard deviation, together
with the value of n, is preferable. Confidence limits then can be calculated if
they are wanted. Notice particularly that in working out confidence limits at
95% probability wemust use the z or t value that gives 97.5% probability. This
is because there is then only a 2.5% probability of the true mean being small
and similarly only a 2.5% probability that the true mean is large – these two
probabilities together being only 5%. This is a two-tailed test (see later).

6.4 Normal distribution

A limitation of these very standard methods is that they require the graph of
the distribution of results about the mean to be, at least approximately, a
bell-shaped curve (Fig. 6.1).
While this distribution is very commonly found, it is easy to think of cases

where the distribution is quite different, e.g. the scores of a good batsman
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Fig. 6.1 The normal, or Gaussian, distribution. If an estimate (e.g. organisms
in a suspension, radioactivity of a specimen) is repeated many times we can
plot the values of the different estimates (number in this figure) against the
number of times (frequency) that each particular value was recorded. The
outcome is very often a bell shaped curve as shown here.
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who is a poor starter: 0; 0; 1; 7; 9; 15; 30; 58; 95; 130; mean 34.50; median 12.
(A bit like Keith Miller, though he was a great bowler too, andmy favourite
cricketer.)

That the distribution is not normal must be suspected whenever the
mean and the median are widely different. Non-normal distributions are
said to be skewed, positively or negatively (Fig. 6.2)

Normal distributions can have differing bell shapes, broad or narrow, but
there is only one normal curve for a given mean (μ) and a given standard
deviation (s). The most commonly used normal curve has μ= 0 and s= 1.
This is called the standard normal curve. The equation for this curve is:

y ¼ 1

2π
p e

1=2x2

where x is the number of standard deviations and e=2.718 28 (see Chapter 5).
Integration of this equation allows calculation of the area beneath the stand-
ard normal curve between any desired limits (Fig. 6.3 and Fig. 6.4).

6.5 Comparison of two means

This is one of the most important topics in statistics, and is much more
complicated than a newcomer might expect. Two means must be different
from each other (with at least 95% probability) when their 95% confidence
limits do not overlap. For instance, two means of 15 ± 5 and 30 ± 6 are
different with ≥95% probability; because there is only a 2.5% probability
that the first mean is really greater than 20, and a similar probability that the
second is less than 24.
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Fig. 6.2 Positively and negatively skewed distributions. With a positive skew,
(solid curve) there is a tail towards the right (higher numbers), and with a
negative skew (dashed curve) there is a tail to the left (lower numbers).
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The rationale of tests to findwhether twomeans are significantly different
is first to suppose that the two means are not really different at all, and
that many estimates of the two means would together generate a normal
Gaussian curve centred on the assumed common mean. This is done by
making a pooled estimate of the variance of this assumed commonmean by
pooling the actual variances of the twomeans that are being tested. Then the
observed difference of the two means is expressed as a number of standard
deviations from the supposed common mean. The probability that such a
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Fig. 6.4 Area under standard normal curve. Statistical tables give the area
under the curve to the left (shaded) of a given positive standard deviation (s).
This area is expressed in the table as a decimal fraction of 1 (which is the total
area under the whole curve). When the size of error is + 1.96 × s then 95%
of the area is to the left.
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Fig. 6.3 Relation between standard deviation and areas under the normal
standard curve. Only 4.54% of all errors will be more than 2 standard
deviations (s) from the mean (0 in the figure), and only 0.26% will be more
than 3 standard deviations away.
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difference might have arisen by chance can finally be determined. All these
manoeuvres are done for you by the equations which follow.

When the absolute value of the difference of two means, jx1 � x2j, and
the standard deviations (s1 and s2 ) of each mean have been estimated from
values of n1 and n2 that are both ≥30 (though n1 need not equal n2) then the
equation:

z ¼ jx1 � x2j=p½ðs12=n1Þ þ ðs22=n2Þ�
may be used, to decide whether the means are probably different, provided
that s1 and s2 are close. The means are different, with ≥95% probability, if
the absolute value of z is ≥2.24 (i.e. less than 2.5% probability that n1 is not
really greater than n2 and less than 2.5% probability that n1 is not really
smaller than n2).

When n1 or n2 is less than 30 then a different equation must be used:

t ¼ jx1 � x2j=spp½ð1=n1Þ þ ð1=n2Þ�
where sp is the square root of this expression: ½ðn1 � 1Þs12 þ ðn2 � 1Þs22�=
ðn1 þ n2 � 2Þ. Again, n1 and n2 need not be equal. The lowest value for t
that is consistent with a 95% probability of the two means being different
must be looked up in statistical tables in relation to the value of n1 + n2 – 2.
For example, if n1 and n2 both were 3, then t would be 2.78 (for 95%
probability), 3.50 (for 97.5% probability) or 4.60 (for 99% probability). If
n1 and n2 both were 5, then t would be 2.31 (for 95% probability), 2.75 (for
97.5% probability) or 3.36 (for 99% probability). If the value of t (calculated
from the equation) is ≥ the appropriate value of t found from the table, then
the two means are probably different.

This t-test is one of the most commonly used statistical methods, and a
basic tool in research. However, a limitation of this test, and of the large
samples method, is that s1 and s2 must not be too different. The F-test can be
used to decide whether s1 and s2 have values that are acceptable, but
describing how to do the test goes beyond the scope of this chapter.

If you have only a small difference between means and only a small
number of samples then it may not be possible to show that the difference is
significant. However, if you had more samples (perhaps with smaller var-
iances too) then the same small difference of means might prove to be
significant.

Let’s now show how these standard methods can be applied.
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Suppose we grow a bacterial culture (in a minimal medium with no
added amino acids) into late exponential phase, then make an extract of
these organisms and assay it for the enzyme aspartokinase. We make four
more extracts from four further cultures of the same organisms, grown
and harvested in the same way, and we assay for aspartokinase in each
extract.
The five results are (nmoles min–1 (mg protein)–1): 29, 36, 31, 38, 30.
The mean is 32.8 nmoles min–1 (mg protein)–1 and the median is

31 nmoles min–1 (mg protein)–1.
These results (n= 5) are only a sample of very many similar estimates of

aspartokinase that could be made, hence the sample (n – 1) standard devia-
tion is 3.96 nmoles min–1 (mg protein)–1. To find the 95% confidence limits
of the mean we see from statistical tables that when n – 1 is 4 (as here) then
the required value of t is 3.50, thus the confidence limits are ± 3.50 × 3.96 /
√5 = ± 6.20.
Now we grow five cultures in minimal medium plus the amino acid

L-methionine (100mg L–1), and make extracts and assay for aspartokinase
as before.

The five results are (nmoles min–1 (mg protein)–1): 27, 21, 23, 30, 28
The mean is 25.8 nmoles min–1 (mg protein)–1 and the median is
27 nmoles min–1 (mg protein)–1

The standard deviation (n – 1) is 3.70 nmoles min–1 (mg protein)–1

The confidence limits are ± 3.50 × 3.70 / √5 = ± 5.79
In minimal medium the activity of aspartokinase was 32.8 ± 6.20 nmoles
min–1 (mg protein)–1

In medium plus methionine the activity was 25.8 ± 5.79 nmoles min–1

(mg protein)–1.

Are these two means likely to be really different? The first mean (32.8)
could possibly have a true value as low as 32.8 – 6.2 = 26.6, and the second
mean could be as high as 25.8 + 5.79 = 31.59. We need, therefore, to test the
probability that the mean in minimal medium is higher than the mean in
medium plus methionine. This is a one-tailed test. Because n1 and n2 are
each only 5 doing this leads to a slightly formidable calculation from the
equation given above:

t ¼ jx1 � x2j=½sppð1=n1 þ 1=n2Þ�
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where sp is the square root of ½ðn1 � 1Þs12 þ ðn2 � 1Þs22�=ðn1 þ n2 � 2Þ

Work out sp first: ¼ square root of

½ð4� 3:962Þ þ ð4� 3:702Þ�=ð5þ 5� 2Þ
¼ p½ð62:79þ 54:79Þ=8�
¼ p

14:70 ¼ 3:83

Next evaluate
p½ð1=n1Þ þ ð1=n2Þ� ¼ pð1=5þ 1=5Þ

¼ p
0:4 ¼ 0:632

Now; t ¼ ð32:8� 25:8Þ=ð3:83� 0:632Þ
¼ 7:0=2:42 ¼ 2:89

When n1 + n2 – 2 = 8 then the difference between means is real at 95%
probability if t ≥ 2.306, and at 99% probability if t ≥ 3.355. Since t= 2.89 we
can say that it is more than 95% (but less than 99%) probable that the mean
from minimal medium is higher. Growth in the presence of methionine has
very probably repressed aspartokinase in these bacteria.

Suppose that only three of the extracts grown without methionine, and
three of the extracts grown with methionine had been prepared and assayed
for aspartokinase, with these results:

No methionine: 29, 36, 31 nmoles min 1 (mg protein) 1

Plus methionine: 27, 21, 23 nmoles min 1 (mg protein) 1

Use the t-test to decide whether one of the means (32.00) is significantly
higher than the other (23.67). When n1 + n2 – 2= 4 the t value is 2.78 for 95%
probability of difference. (There is no need to find the confidence limits.)

6.6 One-tailed and two-tailed tests of probability

A one-tailed test is used to establish whether a larger mean 1 is signifi-
cantly greater than a smaller mean 2. The value of the error of the
difference of the means will fall by chance within the small area to the
right (that makes up only 5% of the total area under the bell-shaped curve)
in only ≤5% of all trials (Fig. 6.5). Hence, when the error of the difference
does lie in this small area we can say that there is a ≥95% probability that
mean 1 > mean 2.

There is also a ≤5% probability that mean 1 could be significantly smaller
than mean 2 because by chance the error of the difference of the means will
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fall within the area to the left that makes up 5% of the total area in ≤5% of
all trials. The sum of these two probabilities could be >5%, in which case the
probability of a true difference of the means would be <95%. A two-tailed
test is therefore used to determine whether the two means are significantly
different regardless of which appears the larger. When the error of the
difference of the means falls within an area to the right that makes up ≤2.5%
of the total area then the sum of the right and left probabilities must be ≤5%.
In a two-tailed test, therefore, the t-test result is compared with the 2.5%
value from statistical tables to try to establish that mean 1≠ mean 2 with
95% probability.
The values of s1 and s2 were very similar in the above worked-out example,

so that the use of the t-test was justified. What if the s1 and s2 values had not
been compatible? What if the distribution of results were not normal?

6.7 Non-parametric tests

These are statistical methods to compare means that do not require somany
assumptions about the underlying (population) distributions. The distribu-
tions of the two populations do not need to be normal in non-parametric
tests, but the distributions must be similar. The methods are often easier to
explain and the calculations are frequently simpler than the standard tests
that we have so far considered.
The Wilcoxon (or Mann–Whitney) test is a non-parametric alternative

to the small-sample t-test for differences of means, and can be used even
when s1 and s2 values are not compatible, although there is in fact no need
to know the s1 and s2 values before doing the Wilcoxon test.

Fig. 6.5 One and two tailed tests of the error of the difference of two means.
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To illustrate the procedure we will use the five extracts (as before) from
organisms grown without methionine, and the five extracts grown plus
methionine, and assayed for aspartokinase. Results were (nmoles min–1

(mg protein)–1):

Without methionine: 29, 36, 31, 38, 30, mean 32.80
Plus methionine: 27, 21, 23, 30, 28, mean 25.80

The first step is to pool all these ten results, as if they all came from one set of
samples, and put them in ascending order of magnitude.

Results 21 23 27 28 29 30 30 31 36 38
Rank 1 2 3 4 5 6.5 6.5 8 9 10
m/– m m m m – m – – – –

We assign the data in this order the ranks 1, 2, 3, … , 10 and indicate, for
each rank number, whether it came from the no methionine (–) or the plus
methionine (m) series. When two (or more) results are the same (as are 30
and 30 here) they are all given the same averaged rank number (here the
average of 6 and 7).

Next, add the rank numbers for the no methionine results:

5þ 6:5þ 8þ 9þ 10 ¼ 38:5 ¼ W1

Then add the rank numbers for the plus methionine results:

1þ 2þ 3þ 4þ 6:5 ¼ 16:5 ¼ W2

(W1 +W2must always equal the sum of all the integers from 1 to (n1 + n2)
inclusive; otherwise you have made a mistake.)

Now work out U1 =W1 – [n1(n1 + 1)] / 2 = 38.5 – (5 × 6) / 2
= 38.5–15 = 23.5

(n1 is the number of values (5) in the no methionine set)
and similarly evaluate U2 =W2 – [n2(n2 + 1)] / 2 = 16.5 – 15 = 1.5
(n2 is the number of values (5) in the plus methionine set)
(U1 + U2 must always equal n1 × n2; otherwise there is an error.)
Finally we take whichever is the smaller,U1 orU2, and call thisU. Thus, in

our case U= 1.5.
For the no methionine mean to be higher with 95% probability our U

valuemust be smaller than, or equal to,U′0.05, which is a number, dependent
on the values of n1 and n2, found from statistical tables. When n1 and n2
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both are 5 then U′0.05 is 2, while U′0.01 (99% probability) is 0. Hence the no
methionine mean is higher with more than 95% probability, but with less
than 99% probability, the same result as that given by the t-test.
ThisU-test is not applicable if either n1 or n2 is less than 4, andwhen n1 and

n2 are both greater than 10 a different ranking test is better to use. A small
problem is that when values of n1 and n2 each get up towards 20 the ranking
procedure becomes decidedly awkward to get right. In other respects the non-
parametric test is easier. However, before doing the calculation you do need to
know all the values that contributed to each mean, whereas in the t-test the
two means and their standard deviations are enough.

6.8 Analysis of variance (ANOVA)

Up to nowwe have considered tests to compare twomeans.What if you want
to test three or more means to find whether they are equal or not? You could
test the means in pairs: does mean 1=mean 2?; does mean 2=mean 3?; does
mean 1=mean 3? What if you found that mean 1=mean 2 and mean
2=mean 3 but mean 1 ≠ mean 3? No useful conclusion could be reached.
Testing such binary comparisons soon becomes excessively laborious as the
number of means rises.
What you need is a single procedure to decide whether or not all of

several means are equal. This procedure does exist, and is called ANOVA
(ANalysis Of VAriance). Describing how to do an ANOVA test and the
prerequisite conditions would make this chapter very long. Good explan-
ations are easy to find (see Further reading).

Statistics is a degree-level subject, and you must realise that this chapter
is no more than a very simple guide. More reading is essential if you want a
fuller understanding. Many elementary texts are available. Use whatever
you can get from your library (or the Internet).
Be very careful when you use a statistical method to test results of your

own. Using the right method (for your data) in the right way is not always a
simple matter. It is all too easy to get an answer that looks good but which
does not stand up to critical inspection.
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7 Preparing solutions and media

Round about the cauldron go;
In the poison’d entrails throw.

William Shakespeare

7.1 Amounts and concentrations

Many students have great difficulty in distinguishing clearly between
amounts of a substance, and the concentration of a substance in a solution,
or the proportion of a substance in a mixture.

An amount is a definite quantity of a solid, liquid or gas. Examples
are: 10mg anhydrous potassium nitrate; 1 g of 10M sulphuric acid;
25ml of 2M sulphuric acid; 10 L hydrogen (at STP); 3ml of 0.9% (w / v) sodium
chloride in water; 2 × 107 staphylococci; 5mmoles ammonium sulphate.

The relative molecular mass (abbreviated RMM or mol. wt) of a sub-
stance, expressed in grams, is one mole of that substance. A mole (abbre-
viated mol) is a definite quantity of a substance, even if the RMM of that
substance is not known, because the number of molecules in one mole of
any pure substance is always 6.02 × 1023 (Avogadro’s number). This is not
the same as the number of atoms in a molecule; for example oxygen or
hydrogen gases each have 2 atoms per molecule, methane has 5 atoms per
molecule while glucose has 24 atoms in its molecule.

A concentration is an expression of proportion, whether this is for
example the strength of a solution or the percentage of an organism that is
nitrogen. Knowing a concentration is very important, but the concentra-
tion, of itself, does not tell the amount of material. Concentrations of
solutions are quoted in a variety of ways. It is important to know what all
of these mean, and how tomake up solutions so described. Unless it is stated
otherwise, the solvent will always be water.
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Examples are: 5 g ammonium chloride per litre; 2 millimolar ATP;
1 μmol NADPH per 5ml of stock solution; 3% (v / v) acetonitrile in water.

7.2 Expressions of concentration

Weight per unit volume of solution

Examples of weight per unit volume of solution are: 12 g glucose L–1; 50 μg
penicillin ml–1.
The meaning is clear, but it is necessary to think about the total volume of

solution that is actually required. Perhaps only 50ml is needed of a solution
described as 12 g glucose L–1 so that only 0.6 g glucose (12 × 50 / 1000) is
actually weighed out. It is not always simple to decide how to prepare a small
volume (say 10 ml) of a dilute solution, such as 5 μg of biotin ml–1. In such a
case, it is not feasible to weigh 50 μg of biotin. What has to be done is to take
a quantity of biotin that can be accurately weighed, perhaps 10mg, and
dissolve this in (say) 10ml of water to give a solution that contains 1mg
(1000 μg) biotin ml–1; then make up 50 μl of this ( 50 μg biotin) to 10ml
with water (50 μg in 10ml 5 μg ml–1) to produce the required volume of
solution at the required concentration. The stronger solutionmay be kept as
a stock for future use, provided that it is stable under the conditions of
storage.
Remember that always weight per unit volume of solution, not of

solvent is to be understood. When making strong solutions (e.g. 200 g
sucrose L–1) it is essential not to use too much solvent initially. If 1 litre of
water had been used to dissolve 200 g sucrose the final volume of solution
would be considerably more than 1000 ml. The correct procedure in this
example is to take about 700ml of water, dissolve the sucrose and thenmake
up the volume to 1 litre with water.
Even when a concentration is given in weight per volume terms it might

be necessary to make a calculation from the RMM of the solute. For
instance, account may have to be taken of water of crystallisation. Thus, a
solution may be described as containing 12 g anhydrous sodium acetate L–1.
If only sodium acetate trihydrate were available in your laboratory then the
greater amount to be weighed to make a litre of solution containing the
correct amount of sodium acetate would have to be worked out:
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CH3COONa; mol: wt ¼ 82; CH3COONa:3H2O; mol: wt ¼ 136

Hence, instead of 12 g of anhydrous compound, the amount of the tri-
hydrate must be:

12� 136=82 ¼ 19:9 g sodium acetate trihydrate

If instead you had to make a solution described as containing 12 g sodium
acetate trihydrate L–1 and only the anhydrous material were available, then
the amount to be weighed would be:

12� 82=136 ¼ 7:2 g anhydrous sodium acetate

Always remember that in going from a less hydrated to a more hydrated
form, the amount needed will increase, while in going from amore hydrated
to a less hydrated form the amount needed will decrease.

Molarity

Examples of molarity are: 0.1 M KCl; 1 μmole NAD+ ml–1.
Amolar solution (1 M) contains 1 mole of solute per litre of solution. The

only accepted abbreviation of mole is mol, and the abbreviation for molar is
M. Much confusion arises from a failure to recognise that expressions such
as 0.2 M, 3mM or 5μM are all concentrations 0.2 mol L–1; 3mmol L–1;
5 μmol L–1) and not amounts. To write for instance ‘4mM per 100 ml’ is a
very common kind of error, and it comes from the mistaken idea that M can
be an abbreviation for mole. What should be written is 4mmol per 100ml
(or 40mM, which is the same concentration). A 1M solution is 1 M whether
you have 10ml, 500ml or 10 L of it. However, in 10ml (of 1 M solution) only
0.01 mole of solute is present, whereas in 10 L there are 10 moles.

The same concentration can be expressed in several ways: 0.1M NaCl is the
same as 100mMNaCl and this is the same as 0.1mmol ml–1 or 100 μmol ml–1.
Which of these is to be preferred will usually depend on the context, though the
most compact form (0.1M NaCl in these examples) should most often be the
choice.

To prepare a given volume of a solution of known molarity requires a
simple calculation to determine how much of the substance must be
weighed. For example, to make 500ml of 0.2 M Na2HPO4.12H2O (1 mole =
358 g) one would need 358 / 2 (500ml needed rather than 1 L) ÷ 5 (0.2 M

66 Preparing solutions and media



rather than 1M) = 35.8 g. This should be dissolved in about 400ml of water
and then made up to 500ml with more water.
Difficulties in making small volumes of weak solutions are handled as

described above – make a stronger solution and dilute it appropriately.

Normality

Examples of normality are: 2 N NaOH; 6 N HCl.
This term is obsolete. It comes from a time when titrations of acids and

bases were much more widely used than they are now. A normal solution of
an acid (1 N) contains 1 g of ionisable hydrogen per litre. Hence 1 N H2SO4

is 0.5 M; 1 N H3PO4 is 0.33 M; 1 N HCl is 1 M. A 1 N solution of a base will
neutralise an equal volume of 1 N acid. Hence 1 N NaOH is 1 M. The amount
of a substance needed to make 1 L of a 1 N solution is called a gram
equivalent of that substance. The gram equivalent can in many cases be
the same as the mole (e.g. HNO3; NH4OH). Solutions of oxidising and
reducing agents can also be described in terms of normality. A gram
equivalent is the weight that accepts one mole of electrons (oxidising
agent) or that donates one mole of electrons (reducing agent).

Percentage

Examples of concentrations given as percentages are: 0.9% (w / v) NaCl;
10% (v / v) ethanol.
Percentage weight / volume (w / v) means the weight (in grams) of a solute

present in 100ml of a solution. Hence 0.1% (w / v) sodium azide means 0.1 g
(100mg) of sodium azide dissolved in water and made up to 100 ml. The
molecular weight of the solute does not come into consideration while
making a solution that is defined by percentage.
Percentage volume / volume (v / v) means the volume (in ml) of a liquid

solute present in 100ml of solution. Hence 5% (v / v) methanol means 5ml
of methanol made up to 100ml with water.
Percentage weight / weight (w / w) means the weight (in grams) of a

substance present in 100 g of a material or solution. Using % (w /w) to
describe a solution is extremely uncommon. Generally, % (w /w) is used to
express the proportion that a compound or element represents of the total
weight of a material. We can say for instance that carbon makes up 40%
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(w / w) of glucose, or that DNA is about 1% (w / w) of a bacterium. Be very
careful not to get confused here. You might for instance be told that nitro-
genmakes up 15% (w /w) of the dry weight of an organism, and that protein
makes up 35% (w /w). These numbers, though both may be correct, do not
mean that 50% of the weight is accounted for! Remember that the protein
will itself contain much of the nitrogen (and will also contain carbon,
hydrogen, oxygen and sulphur).

7.3 Solutions containing a mixture of solutes

More often than not, the solutions used in biochemistry contain several
different substances dissolved together in water. Quite complicated solu-
tions are needed for enzymic and spectrophotometric assays, for electro-
phoresis, or for genetic manipulations. Some growth media are particularly
elaborate solutions.

The majority of these solutions are buffers, in which various reagents
and/or nutrients are dissolved. A buffer is a solution to which the addition of
a limited quantity of acid or alkali has a very small effect on the pH value of
the solution. Most often, a buffer is a solution containing a weak acid and its
anion (e.g.H2PO4 andHPO2

4 ; CH3COOH and CH3COO
–) at similar (but

not necessarily equal) concentrations, or else a weak base and its cation,
e.g. Tris, which is tris hydroxymethyl aminomethane [(CH2OH)3CNH2]
and [(CH2OH)3CNH

þ
3 ] again at similar concentrations. The higher the

molarity of the components of a buffer in a solution, the more acid or alkali
can be added before there is an appreciable change in the pH value of the
solution. Any given buffer combination is effective over only a limited range
of pH values, about 1 unit each side of the value for optimal buffering. This
optimal value is determined by the pKa value of a weak acid or the pKb value
of a weak base. Hence, acetate buffer is useful in the range pH 3 to 5,
phosphate at pH 6 to 8 and Tris at pH 7 to 9. Unfortunately, many of
the commonly used (and cheap) buffers are metabolites themselves
(acetate, phosphate, bicarbonate) or may be inhibitors of some enzymes
(Tris) or may change their pH value with change of temperature (Tris).
A buffer should ideally be freely soluble in water, non-metabolisable
and non-inhibitory. Such buffers are readily available (e.g. HEPES
(4-(2-hydroxymethyl)-1-piperazineethane sulphonic acid), pKa 7.55;
MOPS (4-morpholinepropane sulphonic acid), pKa 7.2; TES (N-(tris
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(hydroxymethyl)methyl)-2-aminoethane sulphonic acid), pKa 7.4), but they
are not cheap, so that less satisfactory buffers, especially phosphate and Tris,
are still very widely used.
It is perhaps unfortunate that in the microbiological literature the con-

ventional way of describing a growth medium is terse, being no more than a
list of the quantity of each component that is present in 1 L of medium
(when this medium is at the concentration that is actually used, rather than
at the higher concentration that might be stored). These descriptions are by
no means easy for a novice to convert into a working set of instructions, or
recipe, for producing the medium. In particular, the descriptions may not
always reveal that many of the components are added as concentrated
solutions, rather than as solids, or that the medium is normally made up
at double its final working strength (i.e. listed components for 1 L dissolved
to make only 500 ml) so that optional extra solutions can be added without
making the medium too dilute, and to save space during storage.

7.4 Solutions containing a mixture of solvents

Mixtures of two or more different liquids are often used, especially as solvents
for liquid chromatography. The best way of describing these is to state the
proportions in which the constituents were mixed, as for instance: methanol /
pyridine / water (40 + 10 + 10 by volume) because the total volume of the
mixture (and hence the final % (v / v) of each component) does not neces-
sarily equal exactly the sum of the separate volumes of the three liquids.
When solutes are described as being in (for example) 10% (v / v) aqueous

ethanol, the usual way of preparing the solution is first to make up a suitable
quantity of the 10% (v / v) ethanol (say 10ml ethanol + 90ml water) and
then to dissolve the solutes in this liquid.

7.5 Dilutions

The same degree of dilution of a solution (e.g. 10-fold) can be described as
1 / 10; 1 : 10 or 1ml + 9 ml. Only the last of these is unambiguous. The
meaning of 1 / 10 and of 1 : 10 ought to be 1 vol. made up to 10 vol. (which
is very nearly the same as 1 + 9) but unless you are sure about the author’s
usage there may be uncertainty whether or not 1 vol. plus 10 vol. is the
intended meaning. Both 1 / 10 and 1 : 10 indicate proportions, and, when
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used correctly could equally well mean that 10ml was made up to 100 ml, or
that 1ml was made up to 10 ml, or that 5ml was made up to 50 ml.
However, the 1 + 9 format does generally have units of volume attached,
as for example 100 μl + 9.9 ml. In a case such as this, the degree of dilution
(here 100-fold) may not be immediately obvious; it is necessary to find the
ratio of the total volume (10 ml) to the volume of the solution that is being
diluted (0.1 ml).

Sometimes one has to determine what dilutions are needed to produce a
solution of a desired concentration from another stronger solution. Some
examples follow to show how this is done.

(1) Given a solution containing 7mg X ml–1, make a solution (10ml is
sufficient) containing 2mg X ml–1. The dilution required is 2 / 7
(because 2ml of the stronger solution will contain 14mg X and so,
when made to 7 ml, the concentration will become 2mg X ml–1). Since
at least 10ml of the diluted solution is wanted, an appropriate proce-
dure is a 4 / 14 dilution, 4ml of the stronger solution + 10ml water.

(2) Given a solution containing 10mgNaClml–1, make a 0.1M solution (50ml
is sufficient). In this case it is first necessary to express the concentrations of
both solutions in the same units, either as mg ml–1 or as molarities. Here
we shall do both, to show that each method gives the same answer.
The mol. wt of NaCl is 58.5, and therefore 10mg ml–1 ( 10 g L–1) is

(10 / 58.5)M= 0.171M. The required dilution is thus 0.1 / 0.171 or 1 / 1.71
or 1 + 0.71.
A 0.1 M solution of NaCl contains 5.85 g L–1, or 5.85mg ml–1. The

required dilution is thus 5.85 / 10 or 1 / 1.71, as found before. This is the
same degree of dilution as 10 / 17.1, but 17.1ml of 0.1 M NaCl is not
enough, we need 50 ml. Consequently, 30 / 51.3 is appropriate: take
30ml of the stronger solution and add 21.3ml water.

(3) Given a 10% (w / v) solution of glucose, make at least 20ml of a solution
containing 1 μmole ml–1. Again the concentrations of both solutions
must first be expressed in the same units. The stronger solution
contains 10 g glucose in 100ml solution 100 g L–1. The mol. wt of
glucose is 180 and so the stronger solution is (100 / 180) M = 0.556 M.
This means 0.556 moles L–1, which is the same as 0.556mmoles ml–1 or
556 μmoles ml–1. The required dilution is therefore 1 / 556. As 556ml is
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much more than is needed, an appropriate procedure would be to take
0.1ml of the stronger solution and add 55.5ml water.

In calculating dilutions bear in mind the realities of working in a labora-
tory. It is not possible to dispense volumes that include fractions of a
microlitre, nor is it easy to find a container for >10 litres of a liquid, nor to
lift and mix such big volumes.

Serial dilution

Serial dilution is the preferable alternative to making single-step dilutions of
very small volumes of a strong solution or to taking very large volumes of the
diluent. The principle is simple; if a solution is diluted sequentially (e.g. dilute
solution A 1 / 100 to give solution B, then dilute solution B 1 / 100 to give
solution C, then dilute solution C 1 / 100 to give solutionD) the final degree of
dilution (of solution D in the example) is the product of the successive
dilutions (1 / 1 000 000 in the example). A dilution of 1 / 556 (example 3
above) could be made: 1ml 10% (w / v) glucose + 4.56ml water (1 / 5.56)
followed by 0.3ml (of the first dilution) + 29.7ml water (1 / 100 dilution) to
give 30ml of diluted solution of the required strength (1 μmole ml–1).

The precision of dilutions

When two chemically different but miscible liquids are put together, the
volume of the mixture does not necessarily equal precisely the sum of the
volumes of the two separate liquids. Combining exactly 50ml of ethanol and
exactly 50ml of water does not give exactly 100ml of mixture, though the
discrepancy is small. In the same way, the result of mixing together a strong
aqueous solution and pure water is not strictly additive. The dilutions made
in routine biochemical work are not therefore always scrupulously accurate,
even if the correct volumes of liquids being mixed are dispensed accurately.
In practice these volumes are not usually measured with great care, and the
degree of dilution only approximates to what was intended. The errors in
dilutions are, however, acceptably small (provided that no mistakes were
made in the calculation or the dispensing) for all but the most fastidious
experiments.
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In working out results of experiments, errors in calculation are much,
much more common than errors in dilution, though students are far
readier to attribute mistakes to ‘pipetting errors’ than to an inability to do
the sums properly.

7.6 Making solutions from impure solutes

Sometimes a solution has to be made from a material which is known to be
impure. In general, the procedure is to make a relatively strong solution of
the impure material, determine the concentration of the desired solute in
this solution, and then dilute it appropriately. Finding a suitable method to
determine the concentration is often the hard part!

For example, ATP of 100% purity cannot be bought. Nevertheless, one
may need to prepare a solution of ATP at a definite concentration, such as
1mM. To do this, take a weighed amount of the ATP and make a solution
(say 50ml ) that is very likely (from an estimate of the probable purity of the
ATP) to be stronger than what is finally wanted. Then dilute a sample of this
solution (by a known factor) into buffer of a known pH value, and measure
its absorption spectrum in the region 220 to 290 nm. Provided that the
spectrum matches that of ATP at the particular pH value chosen, then no
UV absorbing impurities are likely to be present, and so the concentration
of ATP in the diluted solution can be calculated from its maximum absorb-
ance and the extinction coefficient of ATP at that same wavelength and pH
value. Now the concentration of the undiluted solution becomes known
(suppose it happens to be 1.23mM) and this solution can now be diluted to
make it accurately 1mM (10ml + 2.3ml water). To establish the % (w /w)
purity of the ATP, the total amount of ATP found in the solution before
dilution (0.0615mmoles in 50 ml), expressed as a weight of ATP, can be
compared to the amount of impure ATP that was actually weighed.

As a check on the reliability of the solution of 1mM ATP one could
measure the concentration of total phosphorus in the solution, which should
be 3mM. An appreciably lower concentration of phosphorus would be very
worrying, but a slightly higher value would not, because some of the impur-
ities in the ATP might also contain phosphorus and contribute to the total.
Although the final solution may be accurately 1mM ATP, remember that
other unknown materials are also present, and these may, or may not (one
hopes), interfere with the intended function of the ATP.
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8 Enzymes

Was this the face that launch’d a thousand ships,
And burnt the topless towers of Ilium?

Christopher Marlowe

An enzyme is a catalyst produced by a biological process. Very nearly all
known enzymes are proteins, but only rarely can one detect an enzyme by
identifying the enzymic protein in a mixture. Usually the presence of an
enzyme is revealed by showing its catalytic effect on a reaction.
This is done by comparing the rate of the reaction with and without the

material that might contain the enzyme. An assay system has to be made
which, when complete, will contain: a buffer to give a pH value that is
optimal for the enzyme; the substrate of the reaction; any necessary cofac-
tors and activators; and the test material. The mixture without the substrate,
or without the test material, is brought to the desired temperature, and then
the reaction is started by adding the substrate or test material. There must
also be a method to assess the rate of the expected reaction. Such a method
could be, for instance, uptake of oxygen; reduction of a cofactor; appearance
of the product of the catalysed reaction; release of inorganic phosphate. An
observed catalytic effect can be shown to be enzymic by demonstrating that
the effect is lost when the presumed enzyme is denatured, as by heat.
The rate of reaction in the complete system must always be compared to

the rate in the assay system lacking the test material (no enzyme control),
and to the rate in the system lacking the substrate (no substrate control).
The purpose of the first of these controls is obvious – if the enzyme is
present in the test material then the reaction must be faster in the complete
system than in this control. The no substrate control is equally important,
but rather more difficult to understand. The test material might contain
other enzymes (and substrates if the material is impure) than the one which
is intended to be measured. Thus, for example, a detected uptake of oxygen
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could be attributed to the expected enzyme only if the rate of uptake in the
no substrate control were slower than in the complete system.

8.1 Kinetics of enzyme-catalysed reactions

The kinetics of enzyme-catalysed reactions is a large and complex subject.
Here a very simplified discussion is all that will be attempted.

The rate of an enzymic reaction is dependent on the concentration of the
substrate when other conditions (optimal pH value and temperature, amount
of enzyme) are constant. If the molecules of substrate are in great excess over
the molecules of enzyme then the reaction proceeds at the maximum rate
(Vmax) that is possible (with the amount of enzyme that is present).

When the substrate is in excess one can imagine a queue of substrate
molecules waiting for an unoccupied molecule of the enzyme to become
available. As the reaction continues the substrate becomes depleted, so that
a state is reached where the enzyme must wait for a molecule of substrate to
approach. Hence, a typical enzymic reaction has a constant rate for some
period after its start, but gradually the rate decreases, and will be zero when
all the substrate has been used or equilibrium is reached. The rate may
decrease for another reason too; that is, the enzyme may not be stable under
the conditions of assay.

Having done an experiment like that shown in Fig. 8.1, we can then plot the
initial rateof the enzymic reactionagainst the concentrationof substrate (Fig. 8.2).
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Fig. 8.1 The initial rate of the enzyme catalysed reaction A → B + C is
determined by measuring the concentration of B at various times after adding
the enzyme. Curve 1 shows the rate with a high concentration of substrate.
Halving the concentration of substrate (though using the same amount of
enzyme) leads to a lower initial rate of reaction (curve 2). The rate becomes
still lower when the concentration of A is decreased further (curves 3 and 4),
while the amount of enzyme used is unaltered.
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The Michaelis–Menten equation:

V ¼ Vmax � ½S�
½S� þ KM

shows the relation between V, [S], Vmax and KM.
It is not always easy, from the kind of plot shown in Fig. 8.2, to establish

accurately what is the value of Vmax, and hence of Vmax /2 and so KM.
Plotting the reciprocals of the initial velocities against the reciprocals of the
corresponding concentrations of substrate (the Lineweaver–Burk plot) very
often will give a straight line from which KM can readily be found (Fig. 8.3).
Rearranging the above equation shows why this works:
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Fig. 8.2 As the concentration of substrate increases the initial rate of an
enzymic reaction approaches a maximum (for the amount of enzyme used)
that is called Vmax and the concentration of substrate that gives half this
maximum rate is called the Michaelis constant (KM) of the enzyme.
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Fig. 8.3 The Lineweaver Burk plot.
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1=V ¼ ð½S� þ KMÞ=Vmax½S�
¼ ½S�=Vmax½S� þ KM=Vmax½S�
¼ 1=Vmax þ ðKM=VmaxÞ � 1=½S�

Thus, plotting 1 / V against 1 / [S] gives a straight line of intercept
1 / Vmax ( on the 1 / V axis).

Furthermore, when 1 /V= 0, then

KM=Vmaxð Þ � 1=½S� ¼ �1=Vmax and so

KM � 1=½S� ¼ �1

1=½S� ¼ �1=KM when 1=V ¼ 0

i.e. the intercept of the line on the 1 / [S] axis = –1 / KM.
The initial rate of an enzymic reaction is also proportional to the amount

of enzyme that is present. Doubling the concentration of the enzyme should
double the initial rate. This simple relation will no longer be true when so
much enzyme is present that the substrate is not in excess, even at the onset.
Neither will it apply if the initial rate becomes so fast that it cannot be
measured accurately.

In summary, a satisfactory assay of an enzyme will show a steady initial
rate, and the rates will be very much lower (or still better, zero) in the no
enzyme and no substrate controls. The initial rate will be proportional
(within limits) to the amount of enzyme used and to the concentration of
the substrate.

By whatever means it has been detected, the initial rate should finally be
expressed as µmoles of substrate used per minute (µmol min 1). This
number next can be related to the volume of enzyme solution that was
used in the assay so as to calculate µmol min 1 (ml of enzyme solution) 1.
Measuring total protein in the enzyme solution (x mg ml 1) then leads to
the specific activity of the enzyme: µmol min 1 (mg protein) 1. This is
numerically the same as ‘units of enzyme’.(mg protein) 1 because one unit
of an enzyme is defined as that quantity of enzyme which gives a rate of
reaction of one μmol min 1.

8.2 Turnover number

The turnover number (or catalytic constant) of an enzyme is the number of
substrate molecules transformed per second by onemolecule of the enzyme,
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at the optimal pHvalue andwith the substrate in excess, so thatVmax is achieved.
The turnover number is given by the relation: units of enzyme ×mol. wt of the
enzyme × 10 3 / (60 × n), where n is the number of catalytically active sites per
molecule of enzyme. To determine the turnover number the enzyme must be
pure, and its mol. wt must also be known.

8.3 Extracting enzymes from microorganisms

Microorganisms release some enzymes (exoenzymes) into the surrounding
medium. Other enzymes (endoenzymes) only occur inside the organisms
that havemade them. These latter enzymes are much the larger group, and a
very common difficulty in assaying them is that a substrate may not
penetrate the wall and membrane(s) of an intact organism, so that no
enzymic activity is seen although the enzyme may really be present inter-
nally. Many methods have been developed to overcome this problem.
Boiling in 2 M NaOH is an effective way of dissolving the wall and

membranes, and bringing all the cytoplasmic protein into solution, so that
the total amount can be measured. However, all enzymic activity will be lost
because the proteins are denatured. It is essential that an enzyme is extracted
(or else made accessible to its substrate) by a method that preserves its
catalytic action. Examples of such methods are:

(1) Grinding a thick suspension of the organisms with a finely powdered
abrasive material, such as alumina (aluminium oxide). This destroys the
structure of the organisms, and protein escapes into solution, but it is
very difficult to achieve a breakage of more than about 20% of the
organisms in the suspension.

(2) Adding a suspension of organisms to an excess of cold acetone (−18 °C)
ruptures the membranes, and this enables many substrates to enter,
though the internal proteins may be partly denatured by the solvent.

(3) Washing the organisms with a detergent (e.g. 0.3% (w / v) cetyl tri-
methylammonium bromide in water) also may damage membranes,
and is less likely to denature proteins.

(4) Ultrasonic vibration will break organisms and release proteins into
solution effectively. However, the released enzymes are not always
active, perhaps because of the generation of free radicals that occurs
during sonication.
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(5) Liquid shear forces, achieved by the sudden decrease of a very high
pressure, inside a robust steel apparatus (the French pressure cell or the
Hughes’ press) are very effective in breaking rod-shaped organisms with-
out causing denaturation of enzymes. These devices are less successful with
spherical organisms because these havemuch greater mechanical strength.

(6) Digestion of the wall with a lytic enzyme (e.g. lysozyme) followed by
osmotic bursting of the protoplasts is a very gentle method. The diffi-
culties lie in finding an effective lytic enzyme for a particular organism,
and establishing the conditions in which lysis is most efficient.

The method to use is the one that works for its intended purpose! If an
enzyme is to be purified, then it must be obtained in a soluble extract. The
method of choice in such a case might therefore be the French pressure cell
or lysis. If detection of an enzyme is the aim, then treatment with detergent
may be adequate.

8.4 Coupled assays

To measure the rate of an enzymic reaction one must have a way of
measuring either the disappearance of a substrate or the appearance of a
product. Suppose we have a reaction:

AþH2O ! Bþ C

and no simple method can measure A, B or C. This problem may be
overcome if we have available a purified enzyme that has no action on A
but produces a product from B or C that can be measured, thus for instance:

AþH2O ! Bþ C ! Bþ Xþ Y

The added (coupling ) enzyme has converted C to X and Y, where X or Y is
readily detectable. The appearance of X will be a true measure of the rate of
hydrolysis of A only if C is converted to X by the coupling enzyme very
rapidly and quantitatively. For this to happen, the coupling enzyme must be
added in large excess (enough to give at least a 100-fold greater rate of
reaction with C than the rate of breakdown of A by the first enzyme) and
must have a small KM for C. Of course, the coupling enzyme must also itself
have no reaction with A. An example of an assay with a coupling enzyme is
that for diaminopimelate epimerase, which catalyses:
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ll-diaminopimelate ! meso-diaminopimelate

This reaction could be followed by the decrease in optical rotation while
an optically active isomer (LL-) is converted into an inactive form (meso-),
but rather a high concentration of LL-diaminopimelate is needed to give a
measurable rotation, and a crude enzyme may contain other optically active
compounds. Much better is to add in excess purifiedmeso-diaminopimelate
dehydrogenase, which catalyses

meso-diaminopimelateþ NADPþ þH2O !
tetrahydrodipicolinateþ NH3 þ NADPHþHþ

and has no action on LL-diaminopimelate. The rate of increase in absorb-
ance (caused by the formation of NADPH) is a measure of the rate of
formation of meso-diaminopimelate from the LL-isomer.

8.5 Purifying enzymes

In order to study the properties and structure of an enzyme it must first be
purified. To start, one must find a source of the enzyme from which the
enzyme can be obtained as a soluble extract in good yield. Insoluble material
is removed from the extract by centrifuging, and low molecular weight mater-
ials eliminated by dialysis or gel-filtration. The chief problem is to separate the
desired enzyme from all other high molecular weight substances (principally
proteins) that remain in the extract, without inactivating the required enzymic
activity by inappropriate conditions. Over a period of almost 100 years many
methods have been devised to try to achieve this separation. Very rarely can
complete purification be reached by a single step. Choosing which methods to
use, and in what sequence, is almost an art, and usually success is gained only
aftermuch trial and error. Published procedures seldom reveal all the steps that
were tried and were unprofitable, and they may give a misleading impression
that purification was easier than really it was.

Methods of purification

Two of the most important are fractional precipitation and column
chromatography. Different proteins have different solubilities in aqueous
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solutions to which ammonium sulphate or an organic solvent such as
acetone are added. If acetone is added to an aqueous extract to make 10%
(v / v) acetone then some protein may precipitate. This is removed, and
more acetone is added to give 20% (v / v). Now there may be a further
precipitate, which is again removed. More additions of acetone should give
other precipitates of protein. The separate precipitates are redissolved in
aqueous buffer and each solution is assayed for the desired enzyme. The aim
is to discard the precipitates that do not show enzymic activity.
Fractionation with ammonium sulphate is done in the same way, by making
successive additions of this salt and collecting the separate precipitates.

There are two kinds of column chromatography – ion-exchange and
molecular exclusion. Proteins are charged molecules, and at an appropriate
pH value their negative charges will cause them to bind to an anion-
exchanger, such as DEAE-cellulose. Other cations (Na+ or K+) can displace
the proteins: low concentrations of NaCl will dislodge weakly bound pro-
teins, and different proteins will be removed as successively higher concen-
trations of NaCl are used (Fig. 8.4).

In molecular exclusion chromatography the sizes and shapes of different
protein molecules are exploited to effect their separation. The column is
packed with small beads of Sephadex (a modified carbohydrate) or poly-
acrylamide. The beads have minute pores of such a size that large proteins
cannot enter, but small ones can, and these can also escape through the
pores later. Consequently, the largest proteins travel most quickly down the
column since they are not retarded by the beads (Fig. 8.5).

1 2 3 4 5 6 7

Fig. 8.4 Elution of protein from DEAE cellulose with NaCl. (1) A mixture of
three proteins is loaded onto a column. (2) The column is eluted with 0.1 M

NaCl. (3) One of the proteins is eluted by this concentration of salt. (4) The
column is eluted with 0.2 M NaCl. (5) A second protein is eluted. (6) The
column is eluted with 0.3 M NaCl. (7) The third protein is now eluted.

80 Enzymes



Notice carefully that even when a protein begins to migrate as soon as
elution starts this protein will not emerge until the buffer (in which the solid
material of the column was at first suspended) has been displaced. This
quantity of buffer is called the void – or interstitial – volume of the column.
At every step in purification one should measure the specific enzymic

activity and the total volume of liquid in which the enzyme is present. From
the specific activities at each step the degree of purification can be found
(e.g. if the specific activity goes up fivefold as one step follows another, then
the purification is also fivefold). By comparison of the total amount of
enzyme present at each step the recovery of active enzyme is determined,
e.g. if the total amount of enzyme at step 1 is 400 units and at step 2 is 350
units then the percentage recovery at step 2 is (350 / 400) ×100, which is
approximately 88%. If after the next step 175 units remained, then this
individual step would have given a recovery of 50%, and an overall recovery
of 44%.
Ideally, purification should be continued until only a single protein (as

assessed by every available method) with enzymic activity is left. This is not
always possible owing to poor recoveries at some steps. Often less than 10%
of the initial amount of enzyme remains by the last step in a purification.
The final purification factor is not itself an indicator of the purity of the
enzyme: if an enzyme makes up only 0.1% of the total protein in an extract,
then a 100-fold purification will not be complete, whereas if an enzyme

1 2 3 4 5 6 7

Fig. 8.5 Elution of protein from a Sephadex column with buffer. (1) A
mixture of three proteins is loaded onto a column. (2) Elution with buffer
causes the largest protein to move most rapidly down the column, and the
smallest to move most slowly. (3) The largest protein emerges from the
column. (4) to (7) Further elution leads first to the emergence of the protein of
intermediate size (5) and then to the smallest protein (7).
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makes up 10% of the total cellular protein then a 10-fold purification should
be complete.

8.6 Enzymic activities and rates of growth

An enzyme that plays a vital role in metabolism is sometimes found with an
activity in an extract that seems surprisingly low. This may well be a
consequence of poor extraction or unsatisfactory assay, but before deciding
that there is such a problem one should calculate what is the lowest activity
of the enzyme that is consistent with the observed rate of growth. In these
calculations some estimates and assumptions (guesses) may be necessary,
yet a good approximate answer can generally be found, though perhaps not
with ease or simplicity!

Here is a rather elaborate example of such a calculation.
In a chemically defined medium with glucose as sole source of carbon the

organism Bacillus megaterium grows at 37 °C with a doubling time of 90
min. In an extract of these bacteria the enzyme pyruvate carboxylase has
an activity of only 30 nmol min 1 (mg protein) 1. This enzyme is the sole
means by which a net synthesis of oxaloacetate (and hence of products
derived from oxaloacetate) occurs in these organisms. Can the observed
enzymic activity account for the rate of growth?

First calculate what is the rate (per minute) at which new organisms are
made per mg of existing bacteria, that is, the specific rate of growth (μ):

μ ¼ 0:693=tdðsee Chapter 5; about logarithmsÞ
∴ μ ¼ 0:693=90ð Þmin 1 ¼ 0:0077min 1

So, 1mg of existing bacteria makes 0.0077mg new bacteria per minute.
Now, suppose that protein represents half of the total dry weight of the

bacteria. Hence, we can say that 0.5mg of existing protein makes 0.0077mg
new bacteria per minute.

Thus, 1mg existing protein makes 15.4 μg new bacteria min 1.
Next, estimate the quantity of oxaloacetate that must be made to allow

1mg of new bacteria to be assembled. This is where some approximations
and knowledge of metabolic pathways are needed, and we decide that a total
of about 250 μg oxaloacetate is needed. Or 250 / 132 μmoles oxaloacetate
(= 1.89 μmoles) are needed to make 1mg bacteria.
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Finally, put the calculations together:

If 1890 nmoles oxaloacetate are needed to make 1mg bacteria
Then 1.890 nmoles oxaloacetate are needed to make 1 µg bacteria
So 1.89 × 15.4 nmoles (= 29 nmoles) are needed to make 15.4 μg new
bacteria

From all this we conclude that oxaloacetate must be made by pyruvate
carboxylase at a rate ≥29 nmol min 1(mg protein) 1 to be consistent with a
doubling time of 90 min. Thus, the observed activity of this enzyme is
sufficient, though with not much to spare!
The activity of pyruvate carboxylase in the intact organisms cannot be

much lower than we have calculated (or else growth would have to be
slower), but the activity might be higher in the undamaged organisms
than in an extract. If the activity in the extract had been considerably higher
than appears (from the calculation) to be necessary for the rate of growth,
then one would have reason to wonder whether the intracellular enzyme
was really not so active as the extracted enzyme, perhaps because of an
unfavourable internal pH value, or a limited supply of the substrates,
pyruvate or CO2, within the organisms.
A variation of the calculation that we have just shown is to determine

the maximum rate of growth (td or μ) that could be achieved when some
vital enzyme has a given specific activity. The steps in the new calculation
are essentially those already considered, but done in reverse order. Here is
an example:
The enzymes glutamine synthetase (i) and glutamate synthase (ii)

together may allow a net assimilation of ammonia (as glutamate) by bacteria
growing in minimal medium with low concentrations of ammonia:

(i) Glutamate + NH3 + ATP → Glutamine + ADP + Pi
(ii) Glutamine + α-oxoglutarate + NADPH + H+ → 2 Glutamate +

NADP+

(1) Escherichia coli strain W was grown with limiting ammonia (td = 50 min)
and an extract was then made. In the assay for glutamine synthetase the
initial rate of glutamate-dependent release of inorganic phosphate was
370 nmoles min 1 with 0.1 ml of undiluted extract. In the assay for
glutamate synthase the initial rate of glutamine-dependent oxidation of
NADPH was 180 nmoles min 1 with 50 µl of the same extract. A sample
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(0.3 ml) of the extract after dilution (1 ml + 99 ml) contained 27 µg of
protein.
Could these two enzymes alone be responsible for assimilation of

ammonia by these organisms? Calculate what would need to be the
minimum specific activity of each enzyme (µmoles min 1 (mg pro-
tein) 1) to be consistent with the observed doubling time. Compare
these estimates with the measured specific activities of the enzymes.
Assume that 1 g (dry wt) of E. coli organisms contains 0.5 g of protein
and that 0.15 g of nitrogenmust be assimilated to synthesise 1 g (dry wt)
of new organisms. (The specific growth rate is given by 0.693 / td, and
the atomic wt of nitrogen is 14 Da.)

(2) Escherichia coli W was next grown with excess ammonia (td = 30min)
and other conditions unaltered, then an extract was made. In the assay
for glutamine synthetase the initial rate of glutamate-dependent release
of inorganic phosphate was 210 nmoles min 1 with 0.4 ml of this
undiluted extract, and in the assay for glutamate synthase the initial
rate of glutamine-dependent oxidation of NADPH was 260 nmoles
min 1 with 50 µl of the same extract. A sample (0.25 ml) of this extract
after dilution (1 ml + 99 ml) contained 30 µg of protein.
After making the same assumptions as before, what can you deduce

about assimilation of ammonia when it is available in excess? Suggest
further enzymic assays that might test your hypothesis.

Answer
(1) Growth with limiting ammonia

Glutamine synthetase activity = 370 nmoles min 1 with 0.1 ml extract

� 3700 nmoles min 1 ml 1

27 µg protein in 0.3 ml extract (dil. 1 + 99)

� ð27� 0:3Þ � 100 μg ml 1 ∴ 9 mg ml 1 undil:

∴ Specific activity = 3700 ÷ 9 = 411 nmoles min 1 (mg protein) 1

Glutamate synthase activity = 180 nmoles min 1 with 0.05 ml extract

� 3600 nmoles min 1 ml 1

∴ Specific activity = 3600 ÷ 9 = 400 nmoles min 1 (mg protein) 1
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td = 50 min ∴ specific growth rate = 0.693 ÷ 50 = 0.013 86 min 1

i.e. 0.013 86 g new organisms min 1 made by 1 g existing organisms
13.86 µg new organisms min 1 made by 1 mg existing organisms

(containing 0.5mg protein)
Hence, 27.72 µg new organisms min 1 can be made by 1mg protein
0.15 µg nitrogen needed to make 1 µg organisms
Hence, 27.72 × 0.15 µg nitrogenmust be assimilated in 1min by 1mg

protein

� ð27:72� 0:15Þ � 14 μg atoms of nitrogen ðor μmoles of ammoniaÞ
� 0:297 μmoles ammonia must be assimilated min 1 ðmg proteinÞ 1

Thus, both enzymes must have specific activities of approx. 300 nmoles
min 1 (mg protein) 1 to be consistent with the observed rate of growth.
Since both activities are higher than this, then the two enzymes alone
could be responsible for the assimilation of ammonia.

(2) Growth with excess ammonia
Glutamine synthetase activity = 210 nmoles min 1 with 0.4 ml
extract ∴ 525 nmoles min 1 ml 1

30 µg protein in 0.25 ml extract (dil. 1 + 99)
∴ 30 ÷ 0.25 × 100 µg ml 1 12mg ml 1 undil.
∴ Specific activity = 525 ÷ 12 = 44 nmoles min 1 (mg protein) 1

The doubling time is now 30 min and so the necessary rate of
assimilation of ammonia is 297 × 50 / 30 = 495 nmoles min 1 (mg
protein) 1. Because the two enzymes act sequentially, the overall rate
of assimilation by these two enzymes cannot be greater than that of
glutamine synthetase (above) which is far too low. Therefore, when
ammonia is present in excess it must be assimilated by some other
process.

(The specific activity of glutamate synthase in this extract is
433 nmoles min 1 (mg protein) 1, but it is not strictly necessary to
work this out.)

This other process may be the action of the enzyme glutamate
dehydrogenase:

α-oxoglutarateþ NH3 þ NADPHþHþ ! glutamateþH2O

þ NADPþ

8.6 Enzymic activities and rates of growth 85



which has a high KM value for ammonia, but which does not consume
ATP in synthesising glutamate. The two extracts should be assayed for
this enzyme, and it might be expected to be found with high activity
(>500 nmoles min 1 (mg protein) 1) in the extract of organisms
grown with excess ammonia. It may or may not be present in the
other extract.
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9 Spectrophotometry

And when we consider that other theory of the natural philosophers, that all other
earthly hues every stately or lovely emblazoning the sweet tinges of skies and
woods; yea, and the gilded velvets of butterflies, and the butterfly cheeks of young girls;
all these are but subtile deceits, not actually inherent in substances, but only laid on
from without; so that all deified Nature absolutely paints like the harlot, whose
allurements cover nothing but the charnel house within; and when we proceed
further, and consider that the mystical cosmetic which produces every one of her
hues, the great principle of light, for ever remains white or colorless in itself, and if
operating without medium upon matter, would touch all objects, even tulips and
roses, with its own blank tinge

Herman Melville

Three commonplace observations are the basis of this subject:

(1) A stronger solution of a coloured substance looks darker than does a
weaker solution of that substance.

(2) A thin layer of a coloured solution is paler than a thicker layer of the
same solution.

(3) Different substances can give solutions of different colours.

9.1 Use of the spectrophotometer

These observations are made quantitative by using a spectrophotometer. In
this machine a beam of light from an electric bulb (wavelengths about 350 to
800 nm) or from a source of UV (wavelengths about 220 to 350 nm) passes
through a solution. The wavelength of this light can be precisely defined
(any integer value in the range between about 220 and 800 nm may be
chosen) and the solution is held in a cuvette made of a material (silica for
UV wavelengths, glass or plastic for visible light) that is transparent to light
of the wavelength being used. The pathlength of the beam of light through

87



the solution is almost always 1 cm. The cuvette, depending on its size, may
hold maximally 1 ml or 3 ml of solution, or may contain slightly smaller
volumes of liquid than these, provided that the entire beam of light still can
pass through the solution below the liquid meniscus.

The simpler kind of apparatus measures the intensity of the beam of light
when it goes through a liquid (usually water or buffer) that absorbs very little
light at the wavelength employed. This blank is used to set the scale of the
spectrophotometer to zero extinction or 100% transmittance, both of which lie
at the same place on the scale (see below). Then the cuvette with the test
solution (in the same solvent as the blank) is moved into the beam, and the
intensity of the transmitted light is measured. The scale usually shows both:

the extinction ðEÞ of the test solution; that is: log10ðI0=IÞ;
and the % transmittance ðTÞ; 100 I=I0

where I0 and I are the intensities of the light transmitted by the blank and by
the test solutions respectively. (If E = 0 then it follows that I0 / I = 1. Hence
I / I0 = 1 and T = 100.)

E and T can be related to each other:

E ¼ 2� log10 T T ¼ 10ð2 EÞ

ðSee if you can do this fairly easy interconversion:Þ

Single-beam spectrophotometers are widely used for colorimetric and tur-
bidimetric assays.

A source of light, such as an electric light bulb, does not emit light with
equal intensity at all wavelengths, and the photoelectric cell, which in the
spectrophotometer measures the intensity of the transmitted light, is also
not equally responsive to light of all wavelengths. For these reasons, the I0
setting must be established for each separate wavelength that is used. As
well, a solution that is the blank in a colorimetric assay (see below) may
absorb some light and so give an I0 value that is lower than pure water would
give at the same wavelength.

By experiment one finds that the relation (at a given wavelength of light)
between the intensity of the light transmitted by a solution (I) and the
concentration of a coloured solute (C) is not linear (Fig. 9.1).

Increasing C has a progressively smaller effect in lowering the value of I,
or in other words, the smaller I becomes, the more slowly it decreases as C
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continues to increase. This parallels the relation between the disintegrations
per minute of a radioactive substance and the time at which counts are
measured (see Chapter 11), and it follows that we can write:

Beer’s law I ¼ I0e
ac

when the lightpath is 1 cm throughout; a is a constant.
I decreases in the same way as the pathlength (L cm) is increased, and so

we can also write:

Lambert’s law I ¼ I0e
αL

when the concentration is the same throughout; α is a constant.
Whydoes I decrease exponentially rather than linearly withC (andwith L)?

Although it is true that low values of I cannot be measured accurately this
is not the reason for the non-linearity. The correct interpretation is shown in
Fig. 9.2.
We saw that Beer’s law states that I= I0e

–ac and Lambert’s law states that
I= I0e

–αL. These two equations can be combined to give the Beer–Lambert law:

I ¼ I0e
acL

The Beer–Lambert law can be rearranged:

I=I0 ¼ 1=eacL; and so:

eacL ¼ I0=I

I

I0

C

Fig. 9.1 The relation between the intensity of the light transmitted by a
solution (I) and the concentration of a coloured solute (C); I0 is the intensity of
the transmitted light when C is zero.
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Fig. 9.2 Light absorbing molecules in a solution through which a circular
beam of light is passed. Two molecules will not absorb quite twice as much
light as one, because Brownian motion will cause one molecule occasionally to
move behind the other and be hidden. As more and more molecules are
present the addition of another will have less and less effect of increasing the
light absorbed. Only rarely will all the molecules absorb maximally.
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from which it follows that ln (I0 / I) = acL, and hence

log10 I0=Ið Þ ¼ acL=2:303 � a=2:303ð ÞcL
Here, a is a constant, and so a / 2.303 is also a constant.
When a / 2.303 is replaced by A and log10 (I0 / I) is replaced by E we have

E ¼ AcL ðthe form in which this law is usually learnedÞ
where:

E= extinction of the solution at a given wavelength of light (a logarithm
and so a pure number)

A=molar extinction coefficient of the solute at the given wavelength
(litres mole–1 cm–1)

L = thickness of the solution ( = lightpath of cuvette) (cm)

The equation for this law can be rearranged in several ways:

A ¼ E=cL(1)

which explains the rather strange dimensions of A. (The molar extinction
coefficient is numerically equal to the extinction of a 1 M solution with a
1-cm lightpath.)

E ¼ ALc(2)

which shows that the extinction rises as concentration and lightpath increase.

c ¼ E=AL(3)

If, as is virtually always the case, L =1 cm, then the Beer–Lambert law predicts
a linear relation between the extinction of a solution at a given wavelength
and the concentration of the solute that absorbs the light. The relationship
departs from linearity at high concentrations of solute, when too little light
emerges from the solution for I to be measured accurately, and the value of E
does not then increase as much as the equation predicts for a given rise in c.

9.2 Colorimetric assays

Many coloured substances can be measured in solution by determining E. If
A and L are known, then cmay be calculated at once. Often though, A is not
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known. Instead, wemeasure the E values given by known concentrations (or
amounts, see below) of the substance (S) being assayed. Plotting these
E values against concentrations (or amounts, see below) of S leads to a
standard curve. The E value(s) of the test solution of S can then be read from
the curve as a concentration or amount of S. The procedure is illustrated for
the Folin–Ciocalteau assay that is discussed below.

A colourless substance may also be assayed if it can be converted quanti-
tatively to a coloured derivative. This idea is the basis of very many
procedures. Amino acids give a colour after reaction with ninhydrin;
many sugars break down in hot, strong sulphuric acid to give a product
that yields a colour when a suitable coupler, such as phenol or anthrone, is
added; inorganic phosphate gives a blue colour in the presence of molybdate
and a reducing agent. Some of these methods are quite elaborate, and
difficult to do successfully without practice. Reagents have to be made up
carefully and the working instructions must be followed closely. Even so, the
standard curve may not be precisely reproducible, and it is best always to
measure some standards (known amounts of the test material) together
with the unknowns. Note that what is measured is a coloured derivative of
the substance being assayed. The chemical structure of such a derivative
may not be known, and so a molar extinction coefficient cannot always be
determined.

Concentrations versus amounts in quantitative
spectrophotometric assays

In these assays we generally set up a series of tubes, each one containing the
same volume of the assaymixture, and to these we add increasing amounts of
the authentic standard. Where necessary, water is also added, so that every
tube in the series finally contains the same volume of liquid. It follows,
therefore, that the concentration of the standard in any tube will be directly
proportional to the amount of the standard added. Hence, the extinction
developed in the assay will be directly proportional to the amount of
standard added. The samples of the test solution are also made up to the
same total volume in the assay. Hence, the extinctions of the test samples in
the assay will also be proportional to the amount of test substance present.

Many people are so wedded to the idea that extinction is a function of
concentration (which of course it is) that they find it difficult to understand

92 Spectrophotometry



that extinction can also be a function of amount (which it may) when the
volume remains constant. In plotting a standard curve for an assay it is
perfectly valid practice to label the x axis as amount of standard (e.g. protein
(μg); glucose (μmoles)) rather than as concentration of standard. Not only is
this valid, but it makes subsequent calculations very much easier. An
example will be considered at length to show the advantages.
In the Folin–Ciocalteau assay for protein one takes 0.5 ml of the stand-

ard or the test solutions (water is added when necessary to make up to this
fixed volume), then reagent A (2 ml) and reagent B (0.2 ml) are added, so
that the total volume of liquid is 2.7 ml in every tube. The extinctions of the
mixtures (which become blue when protein is present) are read at 750 nm in
a cuvette of 1-cm lightpath.

Tube no. 1 2 3 4 5 6 7

Standard (200 μg protein ml–1) (ml) 0 0.1 0.2 0.3 0.5 0 0
Water (ml) 0.5 0.4 0.3 0.2 0 0.4 0
Test solution (ml) 0 0 0 0 0 0.1 0.5
Amount of protein in tube (μg) 0 20 40 60 100 ? ?
Extinction at 750 nm 0.00 0.18 0.35 0.51 0.86 0.13 0.59

Plot amount of protein (μg) on the x axis, against extinctions, measured
against tube 1 as zero.
One then can read from the graph that:

14 μg of protein was present in tube 6. This protein must have been
present in 0.1 ml of test solution, so that the solution contained 140 μg
protein ml–1.

70 μg of protein was present in tube 7. This protein must have been
present in 0.5 ml of test solution, so that the solution contained 140 μg
protein ml–1.

Estimates of the protein content of the test solution may be averaged if all
are felt to be equally reliable. (Sometimes one or more of the extinctions given
by different volumes of the test solution falls outside the range covered by the
standards. In such cases these results ought not to be included in an average.)
One could reasonably plot volume of standard solution (ml) on the x axis

against extinction. This is still plotting amounts, but the subsequent

9.2 Colorimetric assays 93



calculations are a little more complicated and can lead to confusion. The
extinction of a test solution would be read off as the volume of standard that
gave the same extinction, and it would be necessary then to find how much
protein was present in this volume of standard. The test solution would have
contained that same amount of protein if the volume of test solution had
been assayed. It is all too easy to get mixed up between ml of standard and
ml of test solution.

If, in spite of everything, one still wishes correctly to plot concentration
against extinction, then the calculations really become intricate. Realise that
the actual concentrations of protein in the standards (when the extinctions are
measured) are 20 μg / 2.7 ml ( 7.4 μg ml–1); 40 μg / 2.7 ml ( 14.8 μg ml–1)
etc. These awkward numbers could be plotted, but they certainly do not make
life easy in subsequent calculations.

9.3 Optical density

Turbid suspensions: optical density and extinction

Some of the light is scattered when it passes through a turbid suspension, so
that the value of I0 will be greater than I. A spectrophotometer will measure
log10 (I0 / I). When this function is due to scattering of light, rather than
absorption, it is called optical density and not extinction. The optical density
does not precisely obey the Beer–Lambert law because scattering is due to
the size, shape and refractive index of the suspended particles rather than to
their molecular weight and absorbency. Since the particles are not in
solution, their concentration cannot be expressed in terms of molarity,
but only as weight or number per unit volume.

Measurement of optical density is a quick and convenient way of assess-
ing growth of many microorganisms, because, within limits, the optical
density is directly proportional to the number of organisms in a suspension.
Fewer than about 1 × 107 organisms ml–1 give no perceptible turbidity and
more than about 5 × 109 organisms ml–1 are too turbid for accurate
measurement, though a dense suspension can, of course, be diluted and
then measured.

Microorganisms of different species may have different sizes or shapes;
even the organisms from a pure culture may change in these respects when
grown under altered conditions. Hence, the relation between optical density
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and the concentration of a suspension of organisms can also be quite
variable, and needs to be found by experiment.
A dense suspension of the organisms is grown under appropriate con-

ditions, diluted and counted microscopically. As well, organisms from a
known volume of the suspension can be collected, washed and dried and
their weight determined. Various dilutions of the suspension are made, with
knownnumbers or knownweight of organismsml–1, and the optical densities
of these suspensions aremeasured. The resulting data allow calibration curves
to be drawn, which relate number of organisms ml–1 (x axis) or dry weight of
organisms ml–1 to optical density (y axis).

Optical density plotted against time: microbial growth curves

Growth of a culture is often followed by reading its optical density at
intervals. Mistakes in the interpretation of the results can occur by failing
to realise that:

(1) It is almost certain that the organisms will be in the exponential phase of
growth before turbidity becomes detectable (unless a very large inoc-
ulum had been used, so that turbidity could be seen immediately after
inoculation).

(2) Optical density is not an exponential function (it is logarithmic), and is
directly proportional to the number of organisms ml–1. This means that
the logarithm of the optical density must be plotted (even though the
optical density itself is defined as a logarithm) against time in order to
show the duration of the exponential phase of growth and to evaluate
the doubling time during this phase. Plotting the optical density itself is
equivalent to plotting number of organisms ml–1 rather than the loga-
rithm of the number of organisms ml–1.

9.4 Absorption spectra

Pure water is colourless because it is transparent to visible light. A solution
looks black when no light can pass through it. A coloured solution absorbs
light of some wavelengths but is transparent to light of other wavelengths.
For example, a blue solution appears so because it is absorbing light in the
red–yellow region of the visible spectrum, and is allowing the shorter
wavelength blue light to pass. Conversely, a solution may look orange
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because it is absorbing light in the blue region. Solutions which absorb only
UV light will appear colourless to the eye. Which wavelengths are absorbed,
and which are not, is displayed graphically by the absorption spectrum of a
coloured solution.

The absorption spectrummust be determined experimentally. Light of a
single wavelength is directed at the solution, so that the extinction can be
established at that wavelength. This process is repeated at a succession of
single wavelengths until a graph can be drawn (Fig. 9.3) of extinction versus
wavelength. As well as recording the wavelength at which E is at a maximum
it is valuable (particularly with purines and pyrimidines) to note the ratio of
E at 280 nm to E at 260 nm. In addition the pH value of the solution should
be known because the shape of the absorption spectrum is sensitive to
changes in acidity.

When we need to measure the absorbance of a coloured solution in order
to find its concentration, it is usually best to choose the wavelength at which
the absorbency is highest, so as to make the sensitivity greatest. The value of
A (the molar extinction coefficient) will be highest at the wavelength of
maximum absorption, and will be different (i.e. lower) at other wavelengths.
Sometimes a solution which has an extinction that is too high (at the
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Fig. 9.3 Absorption spectrum of the oxidised form of cytochrome c.
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absorption maximum) for accurate measurement can be assayed success-
fully by reading the extinction at a different wavelength, where the extinc-
tion is less. In such a case it will be necessary to know the molar extinction
coefficient (or to measure the standard curve) at this other wavelength.
The absorption spectrum is also sometimes helpful in identifying a sub-

stance. For instance, the spectra of solutions of the two purines and the two
pyrimidines from DNA differ from each other in the UV region, and each
spectrum alters characteristically as the pH value of the aqueous solvent is
changed. Nevertheless, absorption spectra are much less useful in identification
of chemical substances than are infrared or nuclearmagnetic resonance spectra.
Often one encounters a coloured solution that has an extinction too great

for accurate measurement. Remember that if the extinction is 2 then only
1% of the incident light is getting through the cuvette. Does diluting the
solution (until the extinction becomes a valve that can be read) allow the
concentration of the undiluted solution to be calculated reliably? The answer
is ‘yes sometimes’, but there are many pitfalls.
If the solution is of a single coloured solute in water, then dilution will be

safe. The same is true for a turbid suspension of organisms in water.
However, in many spectrophotometric assays we are dealing with a complex
solution, which may contain more of other liquids (e.g. ethanol, acetic acid,
sulphuric acid) than of water. The colour developed in the assay might only
be stable in the particular solution that was used. In such cases dilution with
water may lead to wrong results – the colour is likely to be decreased by
more than the extent of dilution would predict, or the solution may become
turbid. The only really safe procedure is to repeat the assay with a smaller
amount of the test material so that an extinction can be found which falls
within the range of the standard curve.

The shape of standard curves

A graph of extinction (y axis) against concentration (x axis) should be linear
if Beer’s law is obeyed. Virtually always, though, the curve becomes flattened
as E rises above some limit. There can be several reasons for this, for
instance: when I becomes small it cannot be measured accurately; the
yield of coloured product in an assay may not be proportional to c at higher
values of c. Readings from the non-linear part of the curve must be unre-
liable because a small change in E may represent a large change in c.
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9.5 Following the course of an enzymic reaction

In a double-beam spectrophotometer the contents of two cuvettes can be
examined simultaneously. One beam of light passes through the blank
cuvette and another beam (of the same intensity and wavelength) passes
through the test cuvette while the intensities of the two transmitted beams
are measured continuously. A recorder can then trace, for example, a
change in the extinction of the test solution, relative to the blank, over a
period of time. This kind of apparatus is particularly valuable for monitor-
ing the course of an enzymic reaction, especially as the holder of the cuvettes
can usually be kept at a suitable temperature, such as 30 °C.

For example, the progress of an oxidation reaction that leads to the
reduction of NAD+ to NADH can be followed by recording the increase
of E at 340 nm. This is possible because NADH has a much higher molar
extinction coefficient (6.22 × 103) at this wavelength than does NAD+ (see
Fig. 3.1).
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10 Energy metabolism

The First Law of Thermodynamics: The total amount of energy in Nature is constant.
The Second Law of Thermodynamics: The total amount of entropy in Nature is
increasing.

Living organisms, even the most simple, are extremely improbable struc-
tures. Their highly complex forms are not at all likely to appear by the
random associations of small molecules (spontaneous generation); and the
elaborate organic compounds that make up an organism are thermody-
namically unstable – they tend to break down with a release of energy and
an increase of disorder (entropy). Energy must be available to drive forward
the reactions of biosynthesis, that is to move from disorder to order, and to
maintain the state of order against a hostile Nature. Energy may be needed
for other purposes too, such as movement, uptake of nutrients, or main-
tenance of body temperature by some animals.

10.1 Sources of energy

Energy is gained by living organisms from two main sources:

(1) Light (i.e. by photosynthesis). Photosynthesis may be considered as the
fundamental process by which most living organisms gain energy.
However, it is easier to approach the complicated ideas within the
subject of energy metabolism by first considering oxidation reactions.

(2) Oxidation reactions (usually of an organic molecule, and usually with
oxygen as the final electron acceptor).

Many organic molecules can be broken down by microbes (and other
living organisms) in the presence of oxygen, to yield CO2 and water and to
release energy. This energy is trapped initially as ATP, which is used to drive
many cellular processes.
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The decomposition of an organic substrate takes place as a sequence of
reactions, in which molecules of a cofactor are reduced by various com-
pounds derived from the initial substrate. For example, consider the com-
plete oxidation of methanol (CH3OH) to CO2 and water by NAD+ and O2

with appropriate enzymes:

CH3OHþ NADþ ! H2CO ðformaldehydeÞ þ NADHþHþ

H2COþ NADþ þH2O ! HCOO ðformateÞ þHþ þ NADHþHþ

HCOO þHþ þ NADþ ! CO2 þ NADHþHþ

Overall; so far: CH3OHþ 3NADþ þH2O ! CO2 þ 3NADHþ 3Hþ

The molecules of reduced cofactor are re-oxidised by passage of electrons
and protons through a sequence of carrier molecules, the electron-transport
chain, to the final electron acceptor which (in most cases) is molecular
oxygen from the air. As a result of this transfer process ADP is phosphory-
lated to give ATP (2ATP formed per NADH + H+ oxidised):

3NADHþ 3Hþ þ 11=2O2 ! 3NADþ þ 3H2O

6ADPþ 6Pi ! 6ATPþ 6H2O

Putting the equations together we get overall:

CH3OHþ 6ADPþ 6Pi þ 11=2O2 ! CO2 þ 8H2Oþ 6ATP;

a correct summation which conceals the real complexity of the process.
Most non-photosynthetic forms of life can generate reduced cofactor

from only organic electron-donors. However, some kinds of bacteria can
use inorganic molecules to reduce cofactors. For example, H2 + NAD+ →

NADH + H+. These organisms are generally able to use the reducing power
(i.e. NADH) and the ATP derived from the oxidation of the inorganic
substrate to make all their cellular components from CO2 as sole source of
carbon, and are therefore called autotrophs, in particular named as
chemolithotrophs.

In principle, any non-toxic inorganic reducing agent of sufficient reduc-
ing potential (see later) might be used to form a reduced cofactor, from
which energy could be gained by its re-oxidation. In practice, only a few
inorganic materials that occur widely in Nature are used in this way by
microorganisms. The main substrates are:
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Hydrogen gas (H2) – oxidised to water
Thiosulphate (S2O3

2 ) and other reduced inorganic forms of sulphur (S0,
S2 etc.) – oxidised to sulphate

Ammonium ions (NH4
+) – oxidised to nitrate

Nitrite ions (NO2) – oxidised to nitrate
Ferrous ions (Fe2+) – oxidised to Fe3+

Carbon monoxide (CO) – oxidised to CO2

Usually, a given species cannot employ many of these electron-donors.
Thus, hydrogen bacteria do not oxidise thiosulphate, and oxidisers of
ammonium ions cannot use ferrous ions.
Some of these inorganic donors are not sufficiently powerful reducing

agents to be able to donate electrons to NAD+. They can only reduce
cofactors that are better oxidising agents (e.g. FAD or cytochromes) with
more positive electrode potentials than NAD+.

Electrode potentials

In an oxidation reaction the substance being oxidised loses electrons (i.e. is
itself an electron-donor or reducing agent), and the oxidising agent is the
electron-acceptor. Hence, an oxidation process may be split, formally, into
two steps, as for example:

(1) A donating half-reaction: H2 → 2H+ + 2e
(2) An accepting half-reaction: NAD+ + 2H+ + 2e → NADH + H+.

The strength of a half-reaction as a reducing agent is expressed as volts and
written as E0′ (at pH 7). The more negative is this potential, the more
powerful is the half-reaction as an electron-donor (reducing agent). The
more positive is the potential, the more powerful the half-reaction as an
electron-acceptor (oxidising agent).
Note that the sign and the numerical value of E0′ do not change even when

the half-reaction is written in the reverse direction:

H2O ! 1=2O2 þ 2Hþ þ 2e and 1=2O2 þ 2Hþ þ 2e ! H2O

both having the same E0′ value (+0.82V).
However, the actual value of a half-reaction (E′) is dependent on pH

value, and even at a given pH value is not constant, but depends on the
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molar concentration of the electron-donor and on the relative concentra-
tions of its oxidised (cox) and reduced (cred) components:

E0 ¼ E0
0 þ ð0:06=nÞ � log10ðcox=credÞ at 308C

where n is the number of electrons on one side of the half-reaction.
Consequently, the potential becomes more negative as the ratio cox / cred
diminishes, and is equal to E0′ only when cox / cred has a value of 1.

Electrons from a half-reaction that has the more negative potential will be
accepted by any half-reaction that is less negative, so that the acceptor
reaction is driven from right (as written in Table 10.1) to left. For example,
electrons from NADH will reduce molecular oxygen to water:

NADHþHþ ! NADþ þ 2Hþ þ 2e
1=2O2 þ 2Hþ þ 2e ! H2O

10.2 Determining the free energy change in an
oxidation–reduction reaction

To do this, subtract the signed potential of the electron-donating half-
reaction from the signed potential of the electron-accepting half-reaction
to give ΔE0′ and determine the number of electrons (n) transferred in the
overall reaction. Hence, for the reaction between NADH + H+ and ½O2 we
have ΔE0′ = +0.82V − −0.32V = +1.14V, and n = 2.

Table 10.1 Some electrode potentials at pH 7

E0′ (V)

Ferredoxin(red) → Ferredoxin(ox) + e− −0.43
NADH + H+ → NAD+ + 2H+ + 2e− −0.32
FADH2 → FAD + 2H+ + 2e− −0.03
Cytochrome c(red) → Cytochrome c(ox) + e− +0.22
Cytochrome a(red) → Cytochrome a(ox) + e− +0.50
H2O → ½O2 + 2H+ + 2e− +0.82
CO + H2O → CO2 + 2H+ + 2e− −0.53
H2 → 2H+ + 2e− −0.42
S2O3

2− + 5H2O → 2SO4
2− + 10H+ + 8e− −0.25

NH4
+ + 2H2O → NO2

− + 8H+ + 6e− +0.35
Fe2+ + (H+) → Fe3+ + e− + (H+) +0.77
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Substitute these numbers into the formula: ΔG0′ = −n.ΔE0′. F, where F is
the Faraday constant (23 061 calories per V).
Hence,ΔG0′ = −2 × 1.14 × 23 061 = −52 579 calories (−53 kcal) per mole of

NADH oxidised by oxygen.
Bacteria are supposed to generate 2 moles of ATP (which synthesis requires

about 20 kcal) from the oxidation of 1 mole of NADH. Thus, about 40% of the
total free energy released by the oxidation is conserved as ATP.

Reverse electron flow

In order to grow with CO2 as sole source of carbon, organisms need a
reducing agent of enough power to drive the synthesis of cell substances:

CO2 þ 4Hþ þ 4e ! CH2O ðcellular materialÞ þH2O

This requires an electrode potential similar to that of NADH (about −0.3V).
Most of the inorganic substrates used for energy generation by autotrophs
have potentials more positive than this. Electrons have to be driven, by
spending energy, from a more positive to a less positive half-reaction. This
process is called reverse electron flow. Much of the ATP produced by
oxidation of the substrate is used in this way.

Use of terminal oxidants other than oxygen

Some bacteria can use agents other than oxygen to re-oxidise reduced
cofactors. In such cases organic materials may be oxidised to CO2 and
water in the complete absence of air, and inorganic substrates can also be
attacked. The process is called anaerobic respiration. The principal cases
are shown in Table 10.2.

Table 10.2 Electrode potentials of terminal oxidants at pH 7

E0′ (V)

NO3
− + 2H+ + 2e− → NO2

− +H2O Nitrate reduction +0.51
NO2

− + 2H+ + e− → NO +H2O Denitrification +0.36
SO4

2− + 8H+ +8e− → S2− + 4H2O Sulphate reduction −0.25
CO2 + 8H+ + 8e− → CH4 + 2H2O Methane generation −0.24
(2H+ + 2e− → H2 Partial oxidation) −0.42
Fumarate + 2H+ + 2e− → Succinate Organic oxidant +0.03
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The potentials of these half-reactions are less positive than is the reduc-
tion of oxygen to water. Hence, less energy is available when NADH is
oxidised by NO3 (for instance 35 kcal per mole of NADH) than when O2 is
used (53 kcal per mole of NADH).

How is ATP formed during oxidation reactions?

Electrons from NADH do not pass directly to oxygen (or other final
acceptor); instead the electrons travel through a sequence of carrier cofac-
tors of increasingly positive E0′ values before reaching the final acceptor (see
Fig. 10.1). These cofactors and the enzymes that catalyse the successive
redox steps are located together in the cytoplasmic membrane of prokar-
yotes, and in the mitochondrial membrane of eukaryotes.

10.3 Proton motive force

The chemiosmotic theory proposes that the enzymes and cofactors of the
electron-transport chain are positioned in the membrane in such a way that
protons are expelled to the outside of the membrane by those reactions
which release protons (Fig. 10.1). Protons are withdrawn from the cyto-
plasm (i.e. from the inside) by those reactions that cause an uptake of
protons. In this way a gradient of concentration of protons and of electrical
charge (higher andmore positive on the outside) is established. The external
pH value is 1.4 units lower (i.e more acidic) than inside, and the potential
difference across the membrane is 0.14V, with the outside being more
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2H+ 2H+

2H+ 2H+
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QH

FMN

FMNH2

Outside

Inside

Fig. 10.1 An electron transport chain. In this example four protons from
the interior side of the membrane are consumed and four protons are
transferred to the exterior side. The cofactors and enzymes are situated in the
membrane.

104 Energy metabolism



positive. The proton motive force Δp (volts) is made up of this membrane
potential (Em) and the chemical gradient ΔpH:

Δp ¼ Em � ð2:3 RT=FÞ � ΔpH

¼ Em � 0:06� ΔpH

¼ 0:14� 0:06��1:4 ¼ 0:224 V

From the equation ΔG0′ = − n.ΔE0′. F (see earlier) the proton motive force
corresponds to a free energy change of 5.2 kcal per gram ion of protons
transported.
This energy can be used to generate ATP when the proton motive force is

dissipated by protons returning to the cytoplasm via a membrane-bound
ATP synthase. The synthase is made up of two units: F0, which spans the
membrane and is the channel by which protons re-enter; and F1, which is
the enzyme that catalyses the formation of ATP (see Fig. 10.2). At least two
protons must pass through the ATP synthase to generate one molecule of
ATP from ADP + Pi because this reaction requires an input of 8 to 10 kcal
per mole of ATP formed.

2H+ + 2e–

2e–

ADP + Pi

ATP + H2O

F1

+ x H+

Outside Membrane Inside

F0

ETC

NADH + H+

NAD+

1/2 O2 + 2H+

H2O
x H+

Fig. 10.2 Generation of ATP by the re entry of protons. The electron
transport chain (ETC) carries protons to the exterior of the membrane.
The return of these protons through the F0 + F1 complex drives the formation
of ATP.
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10.4 Fermentations

Verymanymicroorganisms can grow on an organic substrate in the absence
of oxygen or of any other electron-acceptors (such as inorganic materials or
fumarate). Some of the substrate is partly degraded to provide energy in the
form of ATP, and some is used to supply reduced carbon for biosynthesis, so
that reduction of CO2 is not a major process.

Because there is no terminal electron-acceptor, there is no generation of
ATP by electron-transport phosphorylation. Instead, breakdown of the
substrate leads to compounds that can phosphorylate ADP directly, a
process called substrate-level phosphorylation.

For example, in the fermentation of glucose by the Embden–Meyerhof–
Parnas pathway two molecules of 1,3-diphosphoglycerate and two
molecules of phospho-enol-pyruvate are generated, and from these ATP
is made:

2 1;3-diphosphoglycerateþ 2ADP ! 2 3-phosphoglycerateþ 2ATP

2 phospho-enol-pyruvateþ 2ADP ! 2 pyruvateþ 2ATP

(Although 4ATP molecules are generated by these reactions from one
molecule of glucose, the net gain of ATP is only two molecules because two
molecules of ATP have been consumed in producing fructose-1,6-bis-
phosphate from glucose.)

During a fermentation one or more enzymic steps will usually produce
NADH + H+, as for instance:

glyceraldehyde-3-phosphateþ Pi þ NADþ ! 1;3-diphosphoglycerate

þ NADHþHþ

The reduced cofactor must be re-oxidised by a compound that is an
intermediate at a later step in the pathway, such as:

pyruvateþ NADHþHþ ! lactateþ NADþ

In this way overall redox balance is achieved without an external
electron-acceptor. The average level of oxidation of the products of the
fermentation is the same as that of the substrate:

C6H12O6ðglucoseÞ þ 2ADPþ 2Pi ! 2C3H6O3ðlactic acidÞ
þ 2ATPþ 2H2O
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The substrate is only partly degraded in a fermentation, and so the
amount of energy gained as ATP (2 molecules) per molecule of glucose
used is much less than would be obtained if the substrate were completely
oxidised to CO2 and water (approximately 30 molecules of ATP per mol-
ecule of glucose).
Many organic compounds can be fermented by different microorgan-

isms, though carbohydrates are generally the most widely used substrates.
Investigations of the enzymic pathways and the chemistry of the products
of fermentations have been a major area of classical biochemistry. One of
the reasons for this interest is that some of the products of fermentations
(such as ethyl alcohol, glycerol, butyric acid) are not without commercial
importance.

10.5 Microbial photosynthesis

The basic feature of photosynthesis is the conversion of radiant energy
(light) into chemical energy (ATP):

ADPþ Pi þ light ¼ ATPþH2O

This trapped energy may (or may not) then be used to drive the reduction
of CO2 to the level of cellular components (C[H2O]).

CO2 þ 4Hþ þ 4e ðþATPþH2OÞn ¼ C½H2O� þH2OðþADPþ PiÞn
In this second reaction a reducing agent (source of 4H+ + 4e–) is obvi-

ously needed.
Green plants and cyanobacteria gain this reductant by the photolysis of

water:

H2Oþ light ¼ 1=2O2 þ 2Hþ þ 2e ðE0
0 ¼ þ0:82Þ

These organisms contain chlorophyll a (absorption maximum 660 nm)
as their main photosynthetic pigment. The primary event in photosynthesis
is the expulsion of an electron from photosystem II (PS II ):

PS IIþ light ¼ PS IIþ þ e ðE0
0 ¼ þ1:0 VÞ

Electrons released from PS II are raised by the energy of light to a negative
potential such that they can be accepted by a series of electron-carrier
molecules and passed to photosystem I (Fig. 10.3). A proton gradient is
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created by this electron transfer, and in consequence ATP can be generated.
Because of its strength as an oxidising agent, ions of PS II+ can replace their
lost electrons by removing electrons from water.

Photosystem I (PS I), in turn, when illuminated will expel electrons with
enough energy to reduce NAD+ to NADH+H+. These lost electrons may be
replaced from PS II (and hence from water) as described above, in which
case the NADH +H+ is available to reduce CO2. Alternatively, the electrons
may be returned to PS I through a series of carriers, with accompanying
generation of a proton gradient, and hence formation of ATP. This latter
process is called cyclic photophosphorylation, and does not lead to fixation
of CO2.

Other photosynthetic organisms

These are divided into four groups of bacteria: the purple sulphur, the
purple non-sulphur, the green sulphur, and the green non-sulphur bacteria.
None of these organisms contains chlorophyll a, and they all lack PS II so
that they are unable to photolyse water, and do not, therefore, evolve oxygen
during photosynthesis. The sulphur bacteriamake up the majority of these
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photosynthetic species and are obligate anaerobes that use H2S as reductant
during fixation of CO2:

CO2 þ 2H2S ¼ C½H2O� þH2Oþ 2S

The green sulphur bacteria contain bacteriochlorophyll c, with an
absorption maximum at 740 nm, and the purple sulphur bacteria have
bacteriochlorophylls a and b with maxima at 850 nm and 1020 nm respect-
ively. Cyclic photophosphorylation by purple and green sulphur bacteria is
illustrated in Fig. 10.4. In neither of these cases does the expulsion of an
electron from the reaction centre leave a charged ion that has an electrode
potential sufficiently positive to be able to remove electrons from water.
Electrons expelled by light are raised in the green sulphur bacteria to a

negative potential that is enough to reduce NADP+ to NADPH (Fig. 10.5).
The electrons thus lost from the reaction centre are replaced by the oxida-
tion of H2S. The purple sulphur bacteria can also use H2S to replace expelled
electrons, but these expelled electrons do not gain a sufficient negative
charge to reduce NADP+ (Fig. 10.4). To achieve this reduction it is necessary
for ATP to drive reversed electron flow.
The green and purple non-sulphur bacteria are usually photohetero-

trophs which can grow aerobically in the dark with organic or inorganic
sources of energy. Although they can use sulphur compounds as
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centres, with the formation of a proton gradient (cyclic photophosphoryl
ation).
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electron-donors for photosynthesis they are less dependent on these than
are the sulphur bacteria.

Fixation of CO2

Green plants and the cyanobacteria use the Calvin (or C3) pathway for
converting CO2 into biomass. The enzyme ribulose 1,5-bisphosphate carb-
oxylase has a key role. This pathway is also used by most other photo-
synthetic bacteria and by aerobic autotrophs.

The reductive citric acid cycle occurs in green sulphur and some purple
sulphur bacteria. This cycle requires an input of ATP and reduced ferredoxin
and produces one molecule of acetyl coenzyme A from twomolecules of CO2.

Most of the purple sulphur bacteria lack some key enzymes of the citric
acid cycle, and these organisms use the reductive acetyl coenzyme A path-
way to fix CO2. This is a linear route that reduces two molecules of CO2 to
acetyl coenzyme A by using H2 and the enzyme hydrogenase, with an
expenditure of ATP.

10.6 Photochemistry

Light is radiant energy of wavelengths between approximately 200 and
1000 nm. In some of its properties light behaves as a stream of particles
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Fig. 10.5 Light driven formation of NADPH by green sulphur bacteria.
Electrons expelled from the reaction centre (RC) by light achieve a potential
that is sufficiently negative to reduce NADP+. Electrons lost from RC are
replaced by oxidation of H2S.
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called photons, each of which carries a fixed amount of energy that is
directly related to the frequency (= speed of light in metres s 1 / wavelength
in metres) of the light:

energy of one photon ¼ hν

where h is Planck’s constant (6.624 × 10–27 erg.s) and ν is the frequency
(waves.s 1). To produce a chemical change the light must be of a wavelength
that is absorbed by the reacting substance.
The law of photochemical equivalence states that one photon causes a

change in one absorbing molecule. Hence to bring about a change in one
mole of absorbing molecules 6.023 × 1023 photons are needed. How much
energy does this represent?
Chlorophyll a absorbs light at 660 nm, i.e. 660 × 10–9 m. The velocity of

light is 2.9977 × 108 m s 1 so that at a wavelength of 6.60 × 10–7 m light has a
frequency of 2.9977 × 108 / 6.60 × 10–7 s 1.
6.023 × 1023 photons at 660 nm will therefore deliver:

6:023� 1023 � 6:624� 10 27 � 2:9977� 108=ð6:60� 10 7Þ ergs

To convert from ergs to joules we divide by 1 × 107 and then by 103

to get kJ and finally by 4.184 to convert kJ into kcal (overall divide by
4.184 × 1010) which means that we get a splendid equation:

6:023� 1023 � 6:624� 10 27 � 2:9977� 108

�ð6:60� 10 7 � 4:184� 1010Þ kcal

on which to do a ‘back of envelope’ simplification.
Get rid of the some of the powers of 10:

6:023� 6:624� 2:9977� 104=ð6:60� 4:184� 103Þ
Do some rounding up and cancelling:

approx: 6� 1� 3� 101=ð1� 4� 1Þ ¼ 180=4 which is approx: 45 kcal

So, we expect an answer about 40 when we use a calculator and avoid
rounding. The precise answer rolls out as = 43.3 kcal.
I hope that this looks straightforward. Really it isn’t so easy. Getting the

distance travelled by light (in 1 s) and the wavelength of the light to be in the
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same units (both in metres or both in centimetres) is vital, otherwise the
answer can come out ruinously wrong!

If all of this energy were used by PS II to expel electrons, to what negative
potential could the electrons be driven? The calculation is much simpler
than the last one – take the equation:

ΔG0
0 ¼ �n:ΔE0

0: F

that we have already used to solve forΔG0′when we knewΔE0′, and instead
solve for ΔE0′, knowing that ΔG0′ is + 43.3 kcal. Therefore:

43 300 ¼ �1� ΔE0
0 � 23 061; and ΔE0

0 ¼ 43 300 =� 23 061
¼ �1:88V

(Note that if F is expressed as 23 061 then ΔG0′ must be expressed in cal,
not kcal.)

Since ΔE0′ is +1.0 V for the reaction PS II = PS II+ + e it follows that the
electron expelled from PS II by a photon of light at 660 nm could be driven
to approx.−0.9 V (see Fig. 10.3). Is all the energy of a photon really trans-
ferred to the expelled electron? The answer is very probably no, because
some of the radiant energy is likely to be dissipated as heat.

In calculating the amount of energy delivered by light during a given
time, such as 1 s, we need to know the intensity of the light as well as its
frequency. The intensity is (in effect) the number of photons arriving per
unit time per unit area. Light of 1 candela falling on an area of 1 cm2 delivers
approximately 2 × 1014 photons per second, the energy of these photons
being dependent on the wavelength of the light. A dim source delivers
relatively few photons in a given time, whereas a bright source delivers
many more photons in the same time. Area is important too – the Sun
delivers an enormous number of photons over a huge area, but what we
need to know is how many photons arrive in the area occupied by the
photosynthetic system, such as a leaf or a culture of microorganisms.
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11 Radioactivity

Time is nature’s way to keep everything from happening at once.
John Wheeler

Every chemical element, except hydrogen (and then only isotope 1H), has a
nucleus made up of both protons and neutrons. The number of protons
determines the chemical nature of the atom (e.g. hydrogen has one proton,
helium two, carbon six, oxygen eight, and so on). The number of neutrons
must, for reasons of stability, always be close to the number of protons in the
nucleus, but is not necessarily the same. In the case of hydrogen, the one
proton may be alone in the nucleus (1H), or there may be one proton and one
neutron (2H, called deuterium), or one proton and two neutrons (3H, called
tritium). These different forms of hydrogen are called isotopes. Hydrogen
and deuterium are both stable, but the tritium nucleus is unstable, and breaks
down to helium by the emission of an electron, and so is radioactive:

3H ! 3 Heþ e

The 3He nucleus formed from the tritium contains two protons and one
neutron, and is stable.

11.1 Isotopes

Isotopes of many other elements exist naturally, or can be produced indus-
trially. Some are stable, some show a relatively slow radioactive decay, while
some are very unstable, and decay extremely quickly. The rate of decay of a
radioactive element may be expressed as its half-life (that is the time needed
for half of the initial number of radioactive atoms to decompose) or by its
decay constant (k; see Chapter 5), or by the average life of a radioactive atom
(1 / k), although this last usage has become very uncommon.
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The different isotopes of a given element (e.g. 11C, 12C and 13C) are
chemically indistinguishable, and so an organic compound containing any
one of these isotopes of carbon will react with an enzyme in the same way.
This is the basis for the use of radioactive isotopes as tracers. A radioactive
isotope can be incorporated into a molecule (e.g. generally labelled
14C-glucose, in which all the carbon atoms are 14C) which will be metabolised
in exactly the same way as non-radioactive (12C-) glucose. All the organic
products that are derived from the carbon of the 14C-glucose molecule
will be radioactive, and this is an enormous help in recognising them.

The principal radioisotopes that are used in biological studies are 3H, 14C,
32P and 35S (Table 11.1). All of these isotopes emit electrons, while some
other radioisotopes emit α-particles (protons) or γ- (gamma) rays. Oxygen
and nitrogen do not have radioactive isotopes, although their stable ‘heavy’
isotopes 18O and 15N are often used as labels, but they have to be measured
with a mass spectrometer, which is less convenient in most biological
laboratories. Radioisotopes of many other elements (e.g. 59Fe, 125I) are
frequently employed too.

Different radioisotopes emit electrons with different average amounts of
energy, and the electrons from an individual radioisotope such as 14C have
variable energies over a limited range of values. The more energetically are
the electrons emitted, the easier is the radioisotope to detect, but the more
damaging is the radiation to a living organism. The longer the half-life of a
radioisotope, the longer will it continue to emit a significant quantity of
radiation if it is absorbed into tissues. These considerations of safety for the
experimenter do not always have a large part in deciding which radioisotope
to use as a tracer. If you want to study the incorporation of carbon fromCO2

into organic molecules then you have to use 14C, and incorporation of
inorganic phosphorus must be followed with 32P. Cost is another factor;

Table 11.1 Some widely used
radioisotopes and their half-lives

3H 12.26 years
14C 5730 years
32P 14.3 days
35S 88 days
125I 60 days
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3H- or 32P-labelling is generally cheaper than 14C-labelling. The drawback
to using tritium is that its emission of electrons is so weak that these
electrons can only be measured quantitatively by scintillation counting at
low efficiency (see below).

11.2 Scintillation counting

In a scintillation counter the radioactive material is mixed with a scintilla-
tion fluid. This is an organic solvent in which are dissolved other organic
molecules, called scintillants. When one of these molecules is hit by an
electron the scintillant emits photons of light which are detected by a
photoelectric cell in the counter. An electron of high energy (as from 32P)
causes a relatively bright flash of light to be produced, while a low-energy
electron (as from 3H) produces a much less bright flash. Not all the electrons
emitted by a radioisotope have the same energy, and so, in the case of 3H,
many of the flashes of light from the scintillants are too faint to be detected
by the photocell, and only a proportion of the disintegrations that have
occurred are registered as counts. The ratio of measured counts per minute
(cpm) multiplied by 100, to disintegrations (of radioactive atoms) actually
taking place per minute (dpm) is the percentage efficiency of counting.
Efficiency of counting with tritium is only about 15% at best, while 32P can
be counted at 90% or higher efficiency, and 14C and 35S fall between these
limits at about 60% efficiency of counting. It is usual practice to correct
measured cpm to dpm once the percentage efficiency of counting is known:

dpm ¼ cpm�100=% efficiency

Unfortunately, the efficiency of counting a given isotope is not constant,
even with the same scintillation fluid in the same counter. This is because
the maximum attainable efficiency is very often diminished by the presence
in the scintillation fluid of quenching agents (such as water or oxygen)
which are in the sample that is to be counted. However, it is usually possible
to establish the efficiency at which an individual sample has been counted.
How is this done? A scintillation counter can discriminate between

flashes of light that have different intensities, over a scale range of 1 (lowest
detectable level) to 1000. The effect of quenching is to lower the brightness
of the flashes of light, and as quenching becomes greater the number of
counts recorded in the higher levels will progressively become a lower and
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lower proportion of the total measurable counts. The scintillation counter
may be set up to record counts over two limited ranges of levels, called
channel A and channel B. For instance channel B may be set to be the range
from level 1 to 600, and channel A from 450 to 600. Thus, channel B
accumulates all the detectable counts, while channel A only records the
most energetic disintegrations.

If now we take a standard sample (which can be bought) that is free of
quenching agents and has a known dpm, the channel B cpm will allow us to
determine the efficiency at which it can be counted, and we also note the
ratio of channel A to channel B. A small amount of a quenching agent (such
as CCl4) has been added to the next standard sample and it is now counted.
The A / B ratio will change and the total cpm (channel B) will be less because
efficiency has decreased. By progressively counting standards with more
quenching agent present we can establish the relation between efficiency
and the A / B ratio. This relation will only be valid for the particular radio-
isotope and scintillation fluid that have been used, and only between the
upper and lower values of the A / B ratio that are established. With these
limitations, the efficiency of counting any new sample can be found from
its A / B ratio, and the channel B count can be corrected to dpm. When the
A / B ratios for a whole series of samples are close together, it is usually
sufficient to determine the efficiency for just one sample and use the same
value for all the samples.

Tritium cannot be detected by a Geiger counter, and these instruments
are nowadays rarely employed for quantitative work. Radioactive emissions
will fog photographic film, and X-ray film is much used to reveal the
positions of radioisotopes on chromatograms or gels.

The half-lives of 3H (12.3 years) and of 14C (5730 years) are so long that
the decay of total radioactivity is negligible during experiments that last for
only a few weeks. However, with 32P and 35S it is usually necessary to correct
nt dpm (measured t days after the start of an experiment) to the value (n0)
that nt dpm would have represented at the start of the experiment. To do
this we use the equation

n0¼ nt e
kt

(see Chapter 5) where k is the decay constant (expressed in the same terms
as t, i.e. day–1 in this case) of the radioisotope.
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Units of radioactivity

The older unit, the curie (Ci), is the activity of 1 g of pure radium together
with the radon (also radioactive ) that is formed by the decay of the radium,
and is 2.2 ×1012 dpm. This arbitrary unit has now been replaced by the
becquerel (Bq), which is defined as 1 disintegration per second, which is the
same thing as 60 dpm.

Hence; 1 Ci ¼ 3:7� 1010 Bq

Specific activity

This is essentially dpm mole–1 of radioactive material. However, it is often
given as μCi mmole–1, which is numerically not the same, but which most
frequently is a reasonably small number (1 μCi mmole–1 is 2.2 × 106 dpm
mmole–1, which is equivalent to 2.2 ×109 dpm mole–1).
For a given radioisotope there is a maximum attainable specific activity.

Take the example of pure 14C16O2. One mole of this will contain initially
6.02 ×1023 atoms of 14C. The half-life is 5730 years, so that k = 0.693 ÷ 5730
year–1 = 1.209 × 10–4 year–1. Consequently, after 1 year, the number of 14C
atoms remaining will be 6.02 ×1023 ÷ e0.0001209 = 6.019 × 1023 atoms. This
means that in 1 year, 1 × 1020 atoms disintegrate, and the number
disintegrating in 1 minute will be approximately 1 × 1020 ÷ (365 × 24 ×
60) = 1.90 × 1014. Thus, the highest specific activity that is theoretically
possible in a molecule containing 1 atom of 14C is 86 Ci mole–1. As pure 14C
is not commonly produced, the specific activity will in practice be lower
than this. Of course, the more atoms of 14C that can be incorporated into a
molecule, the greater will be the specific activity of that molecule. For
instance the amino acid alanine could contain three atoms of 14C per
molecule.
Higher specific activities are possible with radioisotopes that have half-

lives much shorter than 14C. For instance, pure Na2
32PO4 could have a

maximum specific activity of 9.2 × 106 Ci mole–1.
The disadvantage of 3H-labelling (which is that the efficiency of counting

is low) is offset by the higher specific activities that are attainable (relative
to 14C) and by the fact that many organic molecules contain several atoms of
hydrogen, more than one of which may be replaceable by tritium.
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Double labelling

A single molecule can contain two different radioactive elements. For
example benzylpenicillin could be prepared with 3H- and 35S-labelling.
Such labelling may allow one to establish at what stage of metabolism a
molecule is broken into separate parts. The two radioelements must emit
electrons with sufficiently different energies (e.g. 3H and 14C, or 14C and 32P)
that allow each element to be counted in separate channels of a scintillation
counter. In principle, it is also possible to count two elements that emit
electrons with similar energies (e.g. 14C and 35S) if their two half-lives are
very different. This method is rarely used in practice.

Pulse labelling

One may wish to add a radioisotope to an experimental system for only a
short time – minutes or seconds rather than hours – for example to find
what are the first organic molecules that become labelled when 14CO2 is
fixed during photosynthesis. The brief exposure may be achieved by stop-
ping the reaction very soon after adding the radioactive substrate (by
heating or by adding an inhibitor), or by adding a large excess of the
unlabelled substrate, so that the incorporation of radioactivity is drastically
decreased.

Background counts

Any counting apparatus will record some small number of counts even
when no radioactive material is present in the sample being counted. Such
spurious counts are called background, and in a scintillation counter may
have several possible causes: cosmic radiation, hypersensitivity of the detec-
tor, luminescent material in the sample, spilled radioactive material inside
the counter. These last two causes are problems that can be avoided and
must be resolved before reliable counting can be done. The ‘unavoidable’
background in a scintillation counter is about 20 cpm, and the background
count has to be subtracted from every measured count to get a correct
estimate of the count that is really due to radioactivity in the sample. It is
very important to have a statistically reliable measure of the background
(see below).
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Self absorption

When a radioactive substance is in solid form, rather than in solution, some of
the emitted electrons may have insufficient energy to escape out of the solid, so
that they will not be counted. This happens particularly with tritium. Bacteria
that are labelled internally (e.g. with 3H-thymine in their DNA) will show a
lower countwhile they are intact thanwhen the organisms are disrupted and the
DNApasses into solution. The samephenomenon canoccurwithother isotopes
that emit more energetic electrons if the radioactive solid particles are bigger.

11.3 Statistics of counting radioisotopes

If you had just ten atoms of 14C you might well wait for more than 500 years
before observing the decay of one atom, though youmight possibly observe one
to decay in the first minute. All you can be fairly sure of is that about five of the
ten atoms of 14C will have decayed after 5730 years. On the other hand, if you
started with 6 × 1013 atoms of 14C you would be reasonably certain of seeing
close to 2×104 dpm. What this means is that low counts have low reliability,
and may show a large percentage error from the true count, whereas large
counts have small percentage errors. The probable error of a single estimate is
equal to the square root of the number of counts. A count of 100 dpmmay have
an error of 10%, while a count of 10 000 dpm may have an error of only 1%.
If you measured a background count for just 1 min, you might get any

value between 15 and 25 counts, when the true average value was 20 cpm, that
is, an error of at least 25%. A better procedure would be to count background
for 100 min, when about 2000 counts would be recorded, and the probable
error would be only about 2%. Better still is to count background for 10 min
and repeat the count ten times. The mean count and its standard deviation
then can be found. In general, if a sample has a low activity that needs to be
determined accurately (often it does not; see below), the sample should be
measured several times, until a reasonably large total number of counts have
been accumulated, from which the mean can then be calculated.

Very high rates of counting

In any radioactive decay, there is always a possibility that two disintegra-
tions may occur so closely together (in time) that the counting apparatus
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records the double event as only a single count. Such overlaps will obviously
take place more and more often when increasingly large numbers of dis-
integrations are going on during a short interval. Consequently, very high
cpm values are likely to be underestimates of the true activity. For greater
accuracy, a very high cpm should be repeated with a smaller amount of the
same radioactive material.

The reality

In spite of what has just been said above, there is, more often than not, no
need to repeat low or high counts. In many experiments, all that one wants
to know is which, out of several samples, contains a high level of radio-
activity. Suppose you want to find out which of five samples are radioactive,
and after counting each for 1 min you get values of: 55, 6505, 3464, 200, 51
counts. It is obvious that samples 2 and 3 contain nearly all the radioactivity,
and whether the values for samples 1, 4 and 5 are accurate (even ±20%) will
not matter. Likewise, it will frequently be unnecessary to determine the
counts of samples 2 and 3 more precisely.
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12 Growth in batch cultures

. . . did show that at that time there was 4000 persons derived from the very body of
the Chiefe Justice. It seems the number of daughters in the family having been very
great, and they too have most of them many children and grandchildren and great
grandchildren. This he tells me as a most known and certain truth.

Samuel Pepys

A batch culture is grown in a closed system. The medium may be solid or
liquid, contained in a Petri dish, test tube, flask or fermenter, and may or
may not be accessible to sterile air. Samples may be taken from the culture at
intervals. However, there is no continuous addition of fresh medium with a
corresponding continuous removal of an equal volume of spent medium
containing organisms. This latter procedure is continuous culture, and will
be considered in the next chapter.
Usually the inoculum will be a pure culture, that is, organisms believed to

be all of the same kind, such as Escherichia coli or Staphylococcus epiderm-
idis. The object will be to study some property of a particular strain.
Sometimes the inoculum may be an unknown mixture of organisms, like
soil or pus. In these cases, the object will be to find out what organisms were
present in the inoculum, and perhaps to go on to isolate some of these as
pure cultures.

12.1 Assessment of growth

Often all that is wanted is a ‘yes’ or a ‘no’ answer. Looking at a culture after
incubation is then enough. Colonies appear (or do not) on a solid medium,
or a liquid medium becomes turbid (or does not). Getting quantitative
results calls for more effort.

121



Viable counts

One inoculates a solid medium with a small volume taken from a culture
and records how many colonies are formed after incubation. There are
difficulties.

It is important to get a suitable number of colonies on a Petri dish – too
few (say fewer than 20) and the sampling error will be significant; too many
(say more than 200) and counting may be impossible because neighbouring
colonies fuse together. For this reason it is necessary to use several different
dilutions of the culture on separate dishes. Colonies appear only after some
hours of incubation, and the colonies then have to be counted. The whole
process is expensive in terms of materials and time. The medium and the
conditions of incubation must be suitable for the organisms that are being
counted. Non-appearance of colonies does not prove that the organisms in
the inoculum were dead – they might have grown under altered circum-
stances. A single colony does not always represent a single organism in the
inoculum: a yeast with several buds, or a cluster of staphylococci or a chain
of streptococci will yield only one colony.

The great advantage of viable counts is that they can measure very sparse
populations that would be unrecognisable by other methods.

Total counts

These are done with a counting chamber. This is a glass slide on which is
engraved a series of parallel lines, each 1 / 20mm from the next. A second set
of parallel lines, also 1 / 20mm apart, is also engraved at right angles to the
first series, to create a grid of squares, each of which has an area of
1 / 400mm2. A drop of the suspension of organisms is put on the grid and
covered with a special glass slip, which traps a film of the suspension,
1 / 5mm deep. The number of organisms seen (by phase-contrast micro-
scopy) inside one square is the number in a volume of 1 / 20 × 1 / 20 ×
1 / 5mm3. This is the same as 1 / 2 000 000 ml. Consequently, the count
per square must be multiplied by 2 × 106 to yield the number of organisms
ml 1. To get an accurate answer the average count per square should be
based on the counts of about 100 squares derived from several fillings of the
chamber because the thickness of the trapped film above the grid is variable.
The method is quicker than the viable count, but has the disadvantage that
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any suspension containing less than 2 × 106 organismsml–1 will give a count
of less than 1 organism per square – in other words sparse populations
cannot be counted. Clusters and chains of organisms are again a problem.
The viable and total counts are both called direct methods because their

result is the number of organisms (or clusters) per unit volume. Indirect
methods make use of some property of the culture that is proportional to
the number of organisms per unit volume.
Of these,measurement of turbidity (optical density) is the most widely

used. It has the advantages of being quick and easy, and is accurate within
limits. There is a lower limit below which no turbidity can be detected
(about 1 × 107 organisms ml–1) and an upper limit where the turbidity
becomes too great (about 5 × 109 organisms ml–1) and further increase
cannot be measured, though a dense suspension can, of course, be diluted
and then measured.
Microorganisms of different species may have different sizes or shapes;

even the organisms from a pure culture may change in these respects when
grown under altered conditions. Hence, the relation between optical density
and the concentration of a suspension of organisms can also be quite
variable, and needs to be found by experiment.
A dense suspension of the organisms is grown under appropriate con-

ditions, diluted and counted microscopically. Various other dilutions of the
suspension are made, with known numbers of organisms ml–1, and the
optical densities of these suspensions are measured. The resulting data allow
a calibration curve to be drawn, which relates number of organisms ml 1

(x axis) to optical density (y axis).

12.2 Phases of growth

Lag phase

For a period of time after inoculation there is no substantial increase in the
number of organisms ml–1. This lag is attributed to the need by the
organisms in the inoculum to adjust their metabolism (form new enzymes)
for biosynthesis in the new medium. How long is the lag phase? Even when
the organisms of the inoculum have been actively growing in a medium of
the same composition there is still a short lag, perhaps 1 or 2 hours. The lag
will be longer if the inoculum came from a stored refrigerated culture.
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Organisms taken from a rich medium may lag for 6 hours or more if they
are put into a minimal medium. If the inoculum is small, e.g. 1 × 103

organisms (ml of medium) 1, then the duration of the lag phase will be
greatly overestimated by any method that fails to detect sparse populations.
For example if optical density were used there would be no discernible
growth until a 10 000-fold increase in the number of organisms ml 1 had
really taken place. In general, growth will already be in the exponential
phase when turbidity is first seen.

Exponential phase

This is most easily recognised (and most easily defined) as the period during
which a graph of the logarithm of the number or weight of organisms per
unit volume (or the logarithm of a function directly related to this, such as
optical density), plotted against time, yields a straight line of positive
slope. This comes to the same thing as saying that it is the period during
which the rate of increase of the population at a given moment is directly
proportional to the size of the population at that moment. As Fig. 12.1
shows, most of the growth of a batch culture happens during the exponen-
tial phase. How long is the exponential phase? This will depend on the initial
number of organisms ml 1, their rate of growth and on the maximum
population that the medium can produce.

To understand calculations that relate to the exponential phase you need
a knowledge of logarithms. See Chapter 5 for a fuller description. Two

Time

Lag

Stationary

Ex
po

ne
nt

ia
l

lo
g 1

0 
(o

rg
an

is
m

s 
m

l–1
)

Fig. 12.1 Phases of growth in a batch culture.
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important numbers apply to the exponential phase: the doubling time (or
mean generation time) (td) which is constant during the exponential phase,
and may have units of minutes or hours; and the specific growth rate (μ)
which also is constant, and has units of a pure number per minute or per
hour. (When multiplied by 100, μ is equal to the percentage increase per
unit time.) The relation between μ and td is:

μ ¼ 0:6931=td

The derivations of td and μ are described in Chapter 5.

Stationary phase

Eventually some condition (depletion of a vital nutrient, change of pH value
in the medium, etc.) stops the exponential increase and the rate of growth
decreases until it becomes zero. The culture then is in the stationary phase.
The duration of this phase depends very much on the properties of the
organisms that have grown: some species can remain for several days with
little loss of numbers or viability, others enter a decline phase very soon after
growth stops, and their viability quickly falls. If the organisms lyse there will
be a decrease of turbidity.
Although growth has stopped, other metabolic activity may occur in the

stationary phase. In particular, it is at this stage that many fungi produce
secondary metabolites, notably antibiotics, and some bacteria (especially
auxotrophs when they have depleted the medium of an essential growth
factor) become excretors of amino acids. The bacteria (of the genera
Bacillus, Clostridium and Sporosarcina) that can make endospores do so
to a limited extent at all stages of batch culture, but it is during the stationary
phase that there can be massive sporulation in response to starvation, when
almost every organism may make a spore.

12.3 Microbiological assays

Growth in a batch culture will stop if an essential nutrient is used up before
other conditions become limiting. For example, Lactobacillus casei needs
folic acid, and will fail to grow if this vitamin is absent from amedium that is
adequate in other respects. There will be a range of suboptimal concen-
trations of folate over which the extent of growth (numbers of bacteria or
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turbidity) will be proportional to the concentration of folate in the medium.
There will also be a concentration of folate enough to support the heaviest
growth that the medium can sustain, and higher concentrations will then
cause no further increase in growth (Fig. 12.2).

A solution containing an unknown concentration of folic acid can be
assayed by taking a series of test tubes containing a medium for L. casei that
is without folate and adding various volumes of the test solution to different
tubes. After inoculation and incubation the growth in each tube is meas-
ured. If there is no folic acid (at a detectable concentration) in the test
solution there will be no growth in any tube of the assay. When the test
solution does contain folate then some tubes, which received excess folate,
will show maximum growth. The object is to find one or more tubes in
which growth is at an intermediate level, so that the concentration of folate
in the assay tube can be read from the standard curve. The concentration in
the test solution can then be calculated.

While the principle of microbiological assays is simple, the practice is not.
The method is so sensitive that all apparatus must be very clean, and
components of the medium must be free of the substance that is being
assayed. To avoid growth in the blank it is often necessary to grow the
inoculum in a suboptimal concentration of the growth factor, so that the
organisms carry none into the assay medium. Reproducibility is never very
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Fig. 12.2 Growth of Lactobacillus casei in a medium (5 ml) containing
increasing amounts of folic acid. Cultures were incubated anaerobically at 37 °
C for 24 h before turbidity was measured.
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good, repeated assays of the same material vary by 10% to 20%, and a series
of standards has to be part of every assay.

Inhibitors of growth

Sometimes growth is inhibited when you didn’t want it to be. Reasons
could be:

mistake(s) in preparing the medium (especially wrong pH value);
impurity in a reagent;
non-viable inoculum;
inoculum may be a contaminant that does not grow in your medium;
inhibitor (e.g. traces of detergent) on the inner surface of the culture
vessel (cotton wool or rubber plugs can exude inhibitors, especially
when the plugged vessel is sterilised with dry heat).

Carefully making fresh medium in really clean glassware, and checking
the inoculum microscopically will usually solve these problems. However,
much time can be lost in tracking down the cause of a failure. It’s fortunate
that Fleming took the trouble to find out why amould was inhibiting growth
of staphylococci in one of his Petri dishes.
More commonly, one is hoping to see inhibition, in order to recognise a

compound that is active against the growth of an organism, or else to
establish the lowest concentration of a known inhibitor that is effective
against a particular organism.
In a hospital laboratory it is important to find which antibiotic will inhibit

an infective organism that has been isolated from a patient (Fig. 12.3). A
greater number of potential inhibitors can be tested with a micro-titre plate,
where the different compounds are added to wells (up to 96) which all
contain the test organisms in a growthmedium. Similar procedures are used
in industry when searching for new antibiotics that are to be tested against
various pathogens.
The concentration of a solution of an inhibitor can be determined by

zone assay (Fig. 12.4). This method is valuable when purifying a new
compound of unknown structure, when no other means of assay may be
available.
Determining theminimum inhibitory concentration (MIC) of an anti-

bacterial compound against a specific organism is technically simple. One
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Fig. 12.4 A zone assay of an inhibitor. Molten medium containing agar is
seeded with an organism that is sensitive to the inhibitor. The medium is
poured into a dish, and when it has set holes are cut out. Usually, each of these
wells can hold 200 μl of a solution, and various amounts of the inhibitor (each
in 200 μl) are next pipetted into different wells. After incubation, clear zones
are seen, against the background of growth, round wells that contained
sufficient amounts of the inhibitor. The relation can then be found between
the diameters of the clear zones and the amounts of inhibitor in the wells. A
solution (200 μl) of the same inhibitor (but of unknown concentration) can be
assayed by finding the diameter of the clear zone that it produces and relating
this to the standards.
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Fig. 12.3 Determination of the susceptibility of a bacterial culture to
various inhibitors. A disk of filter paper has prongs, the ends of which
are impregnated each with a different microbial agent, 1 to 6. The disk is
put onto an agar medium that has been seeded with the organism: after
incubation, clear zones will appear where a successful inhibitor has
diffused into the agar. In this example, the organisms are most sensitive to
compound 4, while 1 and 2 are weaker inhibitors, and 3, 5 and 6 are
ineffective.
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can set up a series of test tubes containing medium with increasing concen-
trations of the compound. After inoculating with the test organisms and
then incubating the tubes one observes what is the lowest concentration of
the inhibitor that has prevented growth. Nevertheless, the MIC of a given
inhibitor to a given organism does not necessarily have a constant value.
Any of these factors may alter the MIC:

composition of the medium (minimal or complex);
conditions of incubation (aerobic, anaerobic, temperature);
length of time of incubation;
size of inoculum.

The minimum effective dose to protect an animal or plant from infection
has to be determined by further experiments, and may be considerably
different from the MIC.

12.4 Virus multiplication

The number of virus particles in a suspension can be found by electron
microscopy, though this is very laborious. More usually the suspension is
spread onto a lawn of a susceptible host (indicator) organism, which may be
a tissue culture (for animal or plant viruses) or agar medium seeded with a
bacterial culture (for bacteriophages). A virus infects its host and causes
necrosis or lysis, so releasing more viruses. These in turn cause further
cycles of infection and multiplication. The result is that after a suitable time
of incubation a hole (called a plaque) will appear against the background of
growth of the indicator. Each plaque, though it will contain many millions
of virus particles, will represent one virus that was present in the suspension
put onto the lawn.
From its definition as an intracellular parasite, it follows that a virus will

only multiply when a host is available. The single burst experiment illus-
trates the process (Fig. 12.5). Phage and host bacteria are mixed in 1 : 1
proportions. After 5 min unattached phages are inactivated by adding an
antiserum. The infected bacteria are at once plated at various dilutions onto
a lawn of the same bacteria as indicator. Each plaque that later appears from
these first platings will represent one infected bacterium (no matter how
many phages attacked it), and the height (a) in the figure is the total number
of infected bacteria. Sampling and plating of the infected culture are
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repeated frequently. For a time, the latent period (c), there is no change in
the number of plaques per unit volume. Then lysis of the bacteria occurs and
many phages are released in a brief time, and the number of plaques
increases markedly and quickly. When all the bacteria have lysed the
number of plaques becomes constant (b) because no hosts remain to
produce more phages.

The size of the burst of new phages is b − a, and the number of phages
released by one infected bacterium is (b− a) / a. For example, if a= 10 and
b= 210, then the individual burst size would be (210 − 10) / 10 = 20. The
burst size per organism is rather constant for a given organism and phage,
but differs considerably between other pairs of host and virus, in the range
between 10 and 50.

Lysogeny

The DNA of a phage may be incorporated into the chromosome of a host
bacterium without causing lysis. Every daughter cell of this lysogenised
organism will carry the DNA of the phage in its genome. In this way 2n

copies of the phage DNA will be formed after n generations of exponential
growth of the host. Certain agents (e.g. UV light) may induce a lytic
response in a lysogenised organism. The phage genome is excised from
the bacterial chromosome and infective phages are produced inside the
host, which then lyses to liberate several infective phages.
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Fig. 12.5 The single burst experiment.
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If one bacterium were lysogenised and then grew for 10 generations by
binary fission there would be 210 (1024) lysogenised bacteria. Should this
population then be induced to give the lytic response, and each bacterium
produced 10 phages, then 10 240 new viruses would have originated from
the initial infection by one phage.
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13 Growth in continuous culture

Dis moi ce que tu manges, je te dirai ce que tu es.
Brillat Savarin

Of all the topics covered in this book, continuous culture puts the greatest
strain on mathematical ability. There are here several equations that are not
easy to derive, but must be known because they may not be presented to you
in an examination question. These equations really have to be learned by
heart. Fortunately, it is not very difficult to put numerical values into the
equations to produce the answers.

There are two modes of continuous culture, the turbidostat and the
chemostat.

13.1 The turbidostat

The turbidostat is illustrated in Fig. 13.1. The culture vessel contains
medium that can be stirred, aerated and kept at constant temperature and
pH value (by adding acid or alkali) as needed. The medium is inoculated
and allowed to grow enough to become turbid. Pump 2 then circulates a
small part of the culture through a photometer which measures this turbid-
ity. The output from the photometer goes to a control unit which activates
pump 1 whenever the turbidity rises above some set value, so that fresh
sterile medium enters the culture vessel. The volume of the growing culture
remains constant owing to the overflow tube, and the turbidity settles to the
set value.

The turbidostat allows organisms to be grown at their maximum rate in
any particular medium. However, it is difficult to operate successfully,
chiefly because organisms tend to stick to the surfaces of the culture vessel
and sampling loop, and so cause false readings of the photometer.

132



13.2 The chemostat

The chemostat is more widely used, and all of what follows relates to this
form of continuous culture. This is a less elaborate system than the turbido-
stat (see Fig. 13.2), although the real apparatus looks very much more
complex than the simplified figure may suggest. When the culture has
grown to a discernable turbidity sterile medium is added at a constant
rate, typically as one-fifth of the culture volume per hour. The turbidity of

Pump 2

Photometer

Controller

Culture out

Pump 1
Stirrer

pH control
Temperature control
Aeration

Medium in

Fig. 13.1 The turbidostat.

Culture out

Stirrer

pH control
Temperature control
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Pump
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Fig. 13.2 The chemostat.
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the culture settles to a constant level, provided that the rate of addition (the
dilution rate) is not so high as to wash out the organisms from the culture
vessel in the flow of sterile medium. The rate of growth of the culture
precisely matches the dilution rate, and this steady state can often be
maintained for several weeks. This balance between dilution and growth
seems obvious, and can be demonstrated mathematically.

After a given interval of time (t hours) the number of organisms in the
culture at time zero (n0) will tend to be lowered by dilution with fresh
medium by a factor of n0 / e

Dt where D is the dilution rate (fresh medium
added per hour expressed as a fraction of the culture volume). At a steady
state this dilution must be exactly matched by the growth of new organisms
during time t, which will be n0e

µt where µ is the specific growth rate (see
Chapter 5: Logarithms) per hour. Hence we can write:

n0e
μt � n0=e

Dt ¼ 0

at a steady state.
Dividing by n0 we have

e μt � 1=eDt ¼ 0

and so e μt ¼ 1=eDt

Multiplying both sides by eDt we get

e μt � eDt ¼ 1 ¼ eðμtþDtÞ

Therefore μt + Dt must = 0 (see Chapter 5: Logarithms) and μt = –Dt and
(dividing both sides by t) μ = –D. The rate of dilution and the rate of growth
are numerically equal, but operating in opposite directions.

When organisms are grown in a complex medium it is not possible to be
sure what factors are limiting growth and leading to the establishment of a
steady state. However, in a simple chemically defined medium one can
supply an essential nutrient (e.g. carbon, nitrogen, phosphorus or sulphur)
at a low concentration which limits the population density.

The rate of growth of the culture is determined
by the dilution rate

Suppose we have a culture at a steady state which contains nc organisms in
the culture vessel. If the dilution rate is D h–1 then after t hours the total
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number of organisms in the vessel plus those in the outflow (nt) will be nc +
ncDt (the concentration of organisms in the outflow is the same as in the
vessel at steady state), i.e. nt = ncDt + nc. At a fixed dilution rate both nc and
D are constant, so that ncD is also a constant (C), and therefore nt = Ct + nc.
Hence, a graph of nt against t will be a straight line of slope (dnt/dt) equal to
ncD and intercept nc on the nt axis. This shows that at steady state the
organisms in the vessel are not growing exponentially. (Exponential
growth does not lead to a straight-line graph unless log nt is plotted against
time.) They should not to be likened to organisms in a batch culture that are
in the exponential phase; rather, they resemble organisms in the retardation
(post-exponential) phase of a batch culture. However, unlike a batch cul-
ture, all the organisms in the chemostat remain in this same stage for the
whole period during which steady-state conditions are maintained.
Relations between the various properties of a continuous culture of

bacteria in a chemostat are shown in Fig. 13.3. At zero dilution rate the
organisms grow to the highest concentration that is permitted by the limit-
ing substrate, which itself is depleted to a very low concentration. As the
dilution rate is increased the concentrations of organisms and of substrate
change little, though the yield of organisms per hour rises (because pro-
gressively greater volumes of outflow are being generated with little change
in the concentration of organisms therein). Only when the dilution rate
approaches the wash-out limit do the concentrations of organisms and of

Dilution rate (h–1)

Dm Dc

Fig. 13.3 Events during growth of bacteria in a chemostat. ○, dry weight of
organisms ml–1; *, concentration of growth limiting substrate in culture
vessel; Δ, yield of organisms in outflow (mg dry weight h–1). Dm is the dilution
rate that gives the maximum yield; Dc is the critical dilution rate above which
wash out occurs.
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substrate begin to alter quickly. The chemostat allows a choice of bacterial
density (by fixing the concentration at which the limiting nutrient is
supplied) and rate of growth (by regulating the dilution rate), and makes
available copious amounts of organisms that have all been produced under
the same conditions. These variable factors, and particularly altered
nutrient limitation (e.g. going from phosphate to magnesium limitation)
can lead to pronounced changes in the chemical composition of the
organisms.

The conditions in a chemostat are very strongly selective for organisms
that can grow more heavily or faster than the original population. A
contaminant, or a faster-growing variant, may take over the culture.
Recombinant plasmids tend to be lost because organisms without plasmids
grow more quickly.

13.3 Growth rate and concentration of the limiting substrate

The dilution rate and the concentration of the limiting nutrient in the
culture fluid within the vessel (not in the medium that is pumped in) are
related:

μ ¼ μmax½s=ðKs þ sÞ�

where μ is the growth rate (= absolute value of D), μmax is the maximum
growth rate (when the substrate is not limiting), s is the concentration
(moles or g L–1) of limiting substrate in the culture vessel, and Ks is the
saturation constant, numerically equal to the growth-limiting substrate
concentration (moles or g L–1) that allows growth at half of its maximum
rate. (Compare the Michaelis–Menten equation in Chapter 8: Enzymes.)
The equation can be arranged as:

Ks ¼ sðμmax � DÞ=D
The values of Ks and μmax can be calculated by measuring the two different
steady-state values of s that result from two different (known) dilution rates:

Ks ¼ s1ðμmax � D1Þ=D1 ¼ s2ðμmax � D2Þ=D2

Solving s1(μmax – D1) / D1 = s2(μmax – D2) /D2 for μmax then allows Ks to be
found.
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Another way of determining μmax and Ks is to plot 1 /D against 1 / s (see
Fig. 13.4) for several values of D and the corresponding values of s. (Again
compare with the Lineweaver–Burk plot, Chapter 8: Enzymes.)

Rate of uptake of nutrients

In steady-state conditions

μ ¼ Yq or q ¼ μ=Y

where q is the rate of uptake of the growth-limiting substrate (moles (or g)
per gram of organisms per hour), and Y is the yield value (grams of
organisms formed per mole (or g) of limiting substrate consumed). The
value of Y can be found from the relation:

x ¼ YðSr � sÞ or Y ¼ x=ðSr � sÞ

where x is the concentration of organisms in the culture vessel, Sr is the
concentration of the limiting substrate in the entering medium and s is its
concentration in the culture vessel. Knowing Y and µ (= D) we can deter-
mine q. In practice Y proves not usually to be constant (even for a given
organism in a given medium) but varies with the growth rate.
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Fig. 13.4 Graphical determination of Ks and μmax from plots of 1 / s and 1 /D
(= 1 / μ). The intercept on the 1 /D axis (here approx. 0.9) is equal to 1/µmax so
that µmax is 1.1 h

–1. The intercept on the 1 / s axis (here approx. 10) is equal
to 1/Ks so that Ks is 0.1 g L

–1.
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In carbon-limited cultures we may assume that a part of the substrate
must be oxidised to provide energy for maintenance functions, such as
solute gradients, motility and repair of macromolecules. If this maintenance
energy does not vary with growth rate then the rate of substrate uptake for
maintenance (qm) can be estimated by extrapolation to zero growth rate of
a plot of q against D (not illustrated), which should give a straight line with
an intercept equal to qm on the ordinate (vertical axis).

When qm is known one can determine qg (the substrate requirement
associated solely with growth) from the relation:

qg ¼ q� qm

Re-arranging and dividing through by μ gives q / μ = qg / μ+ qm / μ. Now,
q / μ = 1 /Y (see above), so that

1=Y ¼ 1=Yg þ qm � 1=μ

where Yg is the yield value attributed to growth alone. A graph of 1 /Y
against 1 /D (=1 / μ) should produce a straight line of gradient qm and
intercept on the ordinate of 1 /Yg (see Fig. 13.5).

Mathematical treatment of the chemostat can be taken to a much higher
level than it is here.

13.4 A sample problem

A culture of an unidentified bacterium was grown in a chemostat that had a
culture volume of 200 ml with glucose as the growth-limiting nutrient. The

1 / Y

1 / Yg

1 / D

Gradient = qm

0

Fig. 13.5 Graphical determination of Yg and qm.
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concentration of glucose in the medium supplied to the culture vessel was
1.0 g L–1 and the saturation constant (Ks) for glucose with these organisms
was known to be 0.1 g L–1.
The culture was supplied with medium at a constant flow rate of

60ml h–1 for several hours and after sampling for a further 2 h the rate
was changed to 120ml h–1. Further changes in flow rate were made after
7 h (from 120 to 182 ml h–1) and after 13 h (from 182 to 150ml h–1).
Samples of the effluent were assayed hourly for bacterial concentration
(x g dry wt bacteria L–1) and for glucose (s g glucose L–1). Results are
shown in Table 13.1.

(1) Plot the data and describe with brief explanations the changes which
accompany the alterations in flow rate.

(2) Define, with units, the term dilution rate, and calculate the dilution
rates operating at different times in this problem.

(3) Calculate from the steady-state data the average values for:
(a) the yield constant (Y) and give its units;
(b) the growth rate constant (µmax) and give its units.

(4) Calculate the output of bacteria (g h–1) for the final steady state.
(5) Predict the steady-state concentrations of bacteria and of glucose that

would be found at a flow rate of 90 ml h–1.

Table 13.1 Results of hourly assays of bacterial concentration (x) and
glucose concentration (s)

Time (h) x s Time (h) x s

0 0.48 0.04 10 0 27 0.46
1 0.48 0.04 11 0 262 0.476
2 0.48 0.04 12 0 26 0.48
3 0.46 0.08 13 0 26 0.48
4 0.45 0.10 14 0 33 0.34
5 0.445 0.114 15 0 36 0.28
6 0.44 0.12 16 0 38 0.24
7 0.44 0.12 17 0 387 0.226
8 0.35 0.30 18 0 39 0.22
9 0.30 0.40 19 0 39 0.22
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Answers
(1) See Fig. 13.6. The culture is in a steady state initially. When the dilution

rate is changed (up or down) the culture takes about 3 h to settle to a
new steady state. At the lowest dilution rate the concentration of
substrate is also at its lowest, while the concentration of organisms in
the culture is highest. At the highest dilution rate the concentration of
substrate is also at its highest, while the concentration of organisms in
the culture is lowest.

(2) Dilution rate is the ratio of the volume of medium entering the culture
vessel per unit time (usually per hour) to the fixed volume of culture in
the vessel.

Time (h) Dilution rate (h–1)

0 2 0.3
2 7 0.6
7 13 0.91
3 19 0.75

(3)(a) Y ¼ x=ðSr � sÞ and Sr¼ 1:0 g L 1

When x =0.48 g L–1 and s =0.04 g L–1 then Y =0.48 / (1.0 – 0.04)=0.48 /
0.96=0.5. The units are g bacteria per gram glucose. (The mol. wt of
glucose is180andsoYcanalsobestatedas90gbacteriapermoleofglucose.)

The other three steady states all give the same value (0.5 g bacteria
per g glucose).
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Fig. 13.6 △, s = glucose (g L–1); □, x = organisms (g dry wt L–1).
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(3)(b) µ= µmax [s / (Ks + s)] and Ks= 0.1 g L–1

Replacing µ by D we can write D / µmax = s / (Ks + s). Hence,
s× µmax =D(Ks + s) and µmax =D(Ks + s) / s

When D= 0.3 s = 0.04, so that µmax = 0.3 × (0.1 + 0.04) / 0.04
= 0.042 / 0.04 = 1.05 h–1

When D= 0.6 s = 0.12, so that µmax = 0.6 × (0.1 + 0.12) / 0.12
= 0.132 / 0.12 = 1.10 h–1

Similarly when D= 0.91 µmax = 1.10 h–1, and when D= 0.75
µmax = 1.09 h–1

Average µmax = 1.09 / h
(4) At the final steady state D= 150 ml h–1 (= 0.15 L h–1) and there are

0.39 g bacteria L–1. Hence the rate of production of bacteria = 0.15 ×
0.39 = 0.0585 g h–1.

(5) At a steady state ofD=90 / 200=0.45 h–1,Ks=0.1 g L
–1 and µmax=1.09 h

–1.
We need to find the values of s (g glucose L–1) and of x (g bacteria L–1).
By rearranging the equation µ=µmax [s / (Ks + s)] we can write

s ¼ D� Ks=ðμmax � DÞ
Thus, s = 0.45 × 0.1 / ( 1.09 – 0.45) = 0.045/0.64 = 0.070 g glucose L–1

x ¼ YðSr � sÞ
Y= 0.5 g g–1, Sr = 1.0 g L–1 and s= 0.07 g L–1,
so that x= 0.5 × 0.93 = 0.47 g L–1.
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14 Microbial genetics

Some day perhaps you will enlighten me about the earthshaking significance of the
double helix, etc. If it hadn’t been worked out on a Tuesday, it would have happened
in some other laboratory on Wednesday or Thursday.

C.M. MacLeod

Here computers do most of the data-handling. Highly sophisticated pro-
grams from the Internet can examine the nucleotide sequences of many genes,
and deduce the amino acid sequences of proteins. Learning to use these
programs needs hands-on practice in front of the screen. Microbiologists of
the old school may deplore (= envy ?) the limited amount of quantitative work
that the researcher now has to do. In this chapter we shall consider some topics
that still are feasible with pencil and paper and a bit of thought.

14.1 Composition of DNA

The discovery of DNA was reported by Friedrich Miescher in 1871.
Understanding the detailed structure of the DNA molecule became very
important after Avery and Macleod had shown that DNA was the material
of the gene. Each of the two strands in a molecule of DNA is a linear
polymer of units of 2-deoxyribose 5-phosphate. Every one of these deoxy-
pentose units is linked to a purine base (adenine (A) or guanine (G)) or to a
pyrimidine base (thymine (T) or cytosine (C)). The sequence in which these
bases occur (on the chain of deoxypentose phosphate units) is the genetic
code. By careful analyses Erwin Chargaff found that equimolar quantities of
A and T are present in double-stranded DNA; G and C are also equimolar,
but A (and T) will not usually be equimolar with G and C (Chargaff’s rules).
Like Colin Macleod, Chargaff had good reason for a lack of enthusiasm
about the attention given to Watson and Crick – ‘our mass-media substi-
tutes for saints’ – Chargaff had the sharpest tongue in biochemistry!
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There are various methods of determining the %GC in a given DNA. If
for example the %GC were 32 this tells that of all the four bases (A, C, G
and T) in the DNA, then 32% (in molar terms) are G and C. Hence 68% are
A and T, and from Chargaff ’s rules it follows that 16% are C, 16% are G,
34% are A and 34% are T. Comparison of the %GC in DNA from different
bacterial cultures can give an indication about their possible relatedness: if
the %GC values differ by more than about 10 then there cannot be long
identical sequences of deoxynucleotides (bases) in the two DNA samples,
and so the two strains cannot be closely related. Similarity of %GC values
from two cultures is consistent with their relatedness, but in no way does it
prove relatedness because many differently ordered sequences of bases
could lead to the same %GC value.

14.2 Parent strains and mutants

A wild-type strain is a pure culture isolated from its natural environment,
whatever thatmay be – soil, water, yourmouth, a septic wound. Such a culture
can be the parent strain from which mutants are derived in the laboratory. (If
you accept the ‘theory of evolution by natural selection’ then every contem-
porary parent strain must itself be a multiple mutant of ancestors that had
different features.) Mutants are produced by some method that causes a
change (mutation) in the genome of the parent which is inherited by sub-
sequent generations of the mutant. Some of the mutations lead to a recognis-
able alteration of a parental characteristic. Such changes can be ofmany kinds,
for example: drug resistance; temperature sensitivity; auxotrophism (requir-
ing a nutrient that the parent does not need for growth); sporulation defi-
ciency; loss of motility; inability to grow anaerobically or aerobically.

Crossing over between chromosomes

Two chromosomes become associated in a region where their DNA mole-
cules have homology, complete or partial (Fig. 14.1a). The chromosomes are
then pictured as intertwining and afterwards separating in such a way that
each chromosome acquires a part of the other. Notice that a single crossover
leads to changes in two double-stranded molecules of DNA. The process is
usually drawn as in Fig. 14.1b, but be aware that neither diagram represents
the actual molecular mechanism of the crossover; only the outcome is shown.
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(a)

(b)

Fig. 14.1 (a) Stages in crossing over between two chromosomes that
associate in homologous regions of their DNA. The two DNAs are double
stranded, but are shown here as single chains for clarity. (b) Another way of
visualising the process of crossing over. The two homologous regions of two
molecules of DNA (one shown as thicker in order to distinguish it from the
other) are pictured as opening and exchanging material. (c) Insertion of
circular DNA (a plasmid carrying a gene for resistance to chloramphenicol) by
a single crossover between homologous regions of the plasmid and host DNA.
The DNA of the plasmid with the gene for resistance becomes incorporated
into the chromosomal DNA of the host.
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Phage or plasmid DNA may also be integrated into bacterial DNA by a
single crossover (Fig. 14.1c). Additional genes thus become a part of the
bacterial genome.

14.3 Restriction endonucleases and mapping their sites
of action on a plasmid

Restriction endonucleases are enzymes produced by bacteria to degrade
foreign (i.e. not their own) DNA. Many such enzymes are known; each
recognises a short sequence of bases within a molecule of DNA and cuts the
DNA at, or close to, the recognition site. Opening a plasmid with a restric-
tion enzyme that has only one site of action (on that particular plasmid)
allows the insertion of DNA to create a cloning or expression vector, which
is the basis of recombinant DNA technology. A plasmid breaks into frag-
ments when degraded by a restriction endonuclease that has more than one
site of action (Fig. 14.2).
These fragments can be separated by gel electrophoresis, where their

mobilities are inversely related to their sizes (measured in kilobase pairs,
kbp). Analysis of the sizes of fragments allows the sites of action to be
mapped on the plasmid. The next paragraphs illustrate how to do this.
Restriction enzyme 1 yields three fragments from a plasmid: 1.0, 1.5, 2.5

(all kbp). We can use this information to draw Fig. 14.3a. Restriction
enzyme 2 yields two fragments: 2.0, 3.0 (both kbp) and so there must be
two sites of action (Fig. 14.3b).

Chloramp

Chloramp

Chloramp

(c)

Fig. 14.1 (cont.)
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To find how the enzyme 2 sites relate to the enzyme 1 sites we look at the
fragments produced when the two enzymes act together. Restriction
enzyme 1 + enzyme 2 yields five fragments: 0.3, 0.7, 1.0, 1.2, 1.8 (all kbp).

Deducing the map is now an exercise in solving a puzzle in logic. Notice
that enzyme 2 breaks up the 2.5 kbp fragment (that is formed by enzyme
1 alone), and also breaks up the 1.5 kbp fragment (from enzyme 1 alone).
The 1.8 kbp fragment (seen with both enzymes together) can only come
from the 2.5 kbp fragment (enzyme 1 alone) because the two other frag-
ments formed by enzyme 1 alone are already smaller than this. The other
enzyme 2 site must be within the 1.5 kbp fragment (enzyme 1 alone). Now
we can draw maps for the possible sites of both enzymes (Fig. 14.3c).

The line of argument used here cannot always be applied in exactly the
same way to deduce every restriction map. A bit of ingenuity is sometimes
required! Let’s go a bit further – suppose a third restriction endonuclease
(enzyme 3) cuts the above plasmid just once. Where is its site of action?
Enzyme 3 + enzyme 1 yields fragments of 0.4, 0.6, 1.5 and 2.5 kbp. Thus it is
clear that enzyme 3 cuts within the 1.0 kbp fragment that enzyme 1 alone
produces. Enzyme 3 + enzyme 2 yields fragments of 0.7, 1.3 and 3.0 kbp.
Now the enzyme 3 site can be located – do you see how – it’s easy?

Southern blotting

Genomic DNA can be split into many fragments by one or more restriction
endonucleases. Southern blotting allows one to isolate and recognise a single
fragment or fragments out of the many generated by the restriction enzymes

(a) (b) (c)

Fig. 14.2 A circular plasmid opened by a restriction endonuclease with (a)
one site of action; (b) two sites; (c) three sites. Note that the number of
fragments equals the number of sites of action.
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1.0 1.0
0.7

1.8
0.3

1.2
0.7

1.3

0.21.8

1

2

1

1

2

1

1

2

2

1(c)

(iii) (iv)

Fig. 14.3 (a) The plasmid is cut into three fragments by enzyme 1, and so
there are three sites, separated by the distances shown in kbp. Notice that the
two seeming possibilities are really the same (for mapping purposes); if the site
at 6 o’clock in (i) is rotated to 12 o’clock then (i) becomes the mirror image of
(ii). Drawing the 2.5 kbp fragment on the right (instead of on the left)
produces mirror images of (i) and (ii). Putting a site at 12 o’clock is
conventional and does not imply that the restriction site is at the origin of
replication. (b) Restriction map for endonuclease 2. The site at 12 o’clock is
not meant to be coincident with one of the enzyme 1 sites, but is put there by
convention. (c) There are two possible sites for enzyme 2 to cut the 2.5 kbp
(produced by enzyme 1 alone) fragment, and again there are two possible sites
for enzyme 2 to cut the 1.5 kbp (enzyme 1 alone) fragment into 0.3 kpb and
1.2 kbp fragments. Only possibility (ii) shows correctly the sizes of the five
fragments found when the two endonucleases act together. Hence, (iii) is the
restriction map.

1.5

1.5

1.0

1.0

2.5 2.5

(a)

(i) (ii)

2.03.0

(b)
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that contain specific sequences of bases present in the labelled probe. How
this is done is shown in Fig. 14.4. Note that the fragment which is identified
may contain many more bases than just those which hybridise with the
labelled probe, and that two or more fragments may be detected if the
probe sequence contains one or more targets for the restriction enzymes.

Transposons

These are mobile regions of DNA that encode genes needed for their
duplication and then the migration of the copy from one region of a
chromosome to another region. An insertion sequence is a relatively short

(a) (b) (c)

Fig. 14.4 (a) Fragments of DNA separated by electrophoresis on agarose gel.
(b) Fragments denatured (to single stranded DNA) and transferred to a
nitrocellulose sheet. (c) Autoradiogram (an X ray film exposed to the
nitrocellulose) after hybridising with a 35S labelled probe complementary to a
particular sequence in the DNA.
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transposon (700 to 1600 base pairs) and contains only the genes to enable
mobility, flanked by inverted repeat sequences that are 15 to 25 base pairs
long. Composite transposons are larger and encode additional genes; fre-
quently these convey resistance to antibiotics. Genes at the new insertion
site may be disrupted andmutated by the transposon and some transposons
contain transcription promoters or termination codons that may affect the
expression of genes near the new point of insertion.

14.4 Here now is a problem that calls for some knowledge
of the topics discussed above

The plasmid pAZ1 is an integrational vector for Bacillus subtilis. This vector
can replicate in Escherichia coli, but not in B. subtilis, and it carries an
antibiotic-resistance gene, conferring chloramphenicol resistance, which is
capable of being expressed effectively in both hosts. It can only be main-
tained in B. subtilis if it becomes integrated into the chromosome. The
plasmid DNA is circular, 3.3 kbp, and contains a single EcoRI site, but no
targets for HindIII or BamHI.
A 1 kbp EcoRI fragment of B. subtilis genomic DNA, carrying part of a

spore germination gene, has been cloned into the unique EcoRI site in vector
pAZ1, to yield plasmid pAZ2. This 1 kbp cloned fragment was purified from
the plasmid, labelled, and used to probe a Southern blot of chromosomal
DNA from wild-type B. subtilis, digested with a variety of enzymes. It
detected bands at 1.0 kbp in an EcoRI digest, 0.6 kbp and 2.0 kbp in a
HindIII digest, and 0.3 kbp and 0.7 kbp in an EcoRI +HindIII double digest.
Protoplasts ofB. subtiliswere transformedwith pAZ2, and chloramphenicol-

resistant transformants selected.
The 1.0 kbp cloned EcoRI fragment from pAZ2 was then used to probe

Southern blots of EcoRI, HindIII and EcoRI + HindIII double digests of DNA
from a chloramphenicol-resistant transformant, in order to determine whether
integration had occurred by the expected single crossover between the cloned
DNA in the plasmid and the homologous sequences in the chromosome.

(1) Draw out the restriction map of this region of the wild-type B. subtilis
chromosome.

(2) By reference to a restriction map, predict the sizes of hybridising frag-
ments in Southern blots of chromosomal DNA from the B. subtilis

14.4 A problem related to the topics above 149



transformant, if integration has happened as a result of a single cross-
over between the homologous regions on plasmid and chromosome.

(3) List the expected fragment sizes that would hybridise in Southern blots
of transformant DNA if vector plasmid pAZ1 were used as probe.

(4) The 1kbp cloned fragment contains the promoter and the first half of
the open reading frame of the spore germination gene. Would you
expect the B. subtilis transformants to have a wild-type or mutant
spore germination phenotype? Explain your answer.

Answers
(1) See Fig. 14.5.

(2) See Fig. 14.6.

EcoRI 1.0 kbp

HindIII 0.6, 2.0, 4.3 kbp

EcoRI + HindIII 0.3, 0.7 kbp

(3) EcoRI 3.3 kbp

HindIII 4.3 kbp

EcoRI + HindIII 3.3 kbp

(4) Wild-type. There is an intact promoter and part of the gene to the right
of the inserted plasmid. This connects directly to the remainder of the
gene on the bacterial chromosome.

H H

0.3 0.3 0.7

1.0

1.3.

HE E

Fig. 14.5 Wild type chromosome.

Ec

0.3 0.7 0.3 0.7

3.3

Hp Ep Ep Hc Ec

Fig. 14.6 Result of crossover.
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15 Problems

What song the Syrens sang, or what name Achilles assumed when he hid himself
among women, although puzzling questions, are not beyond all conjecture.

Sir Thomas Browne

Do not be put off by long questions. Often the problem is easier the more
information you are given at the start. Often too a long question helps to
show the way through an intricate calculation. Short questions can be the
hardest: ‘What is the formula of water?’ for a chemist; ‘Is this a question?’ for
a philosopher.
Several of the problems have been used as examination questions. A few

of these you may think entirely unreasonable to face under testing con-
ditions, but remember that candidates would have had previous experience
of these difficult topics in practical classes or tutorials.
The problems are more directed to number-crunching than to deduction.

Partly this is the author’s preference: you can’t make valid deductions if you
can’t do the sums properly. Another reason for the bias is that deduction
usually calls for some extra knowledge beyond the information that is given
in the question. Not all readers of this book will have such knowledge.
Marking numerical questions isn’t always as easy as you may imagine. If

the answer is right, then OK, it is easy. Tracing where a wrong answer went
wrong (which can take a lot of time) is necessary because the marker does
want to give as much credit as possible when the candidate has got nearly
everything right, but has made a slip near the end.
As opener, a short problem that takes you right back to the Introduction.

Problem 1

Granules of poly β-hydroxybutyrate are formed in the cytoplasm of many
bacteria. After it has been released from the organisms, the polymer can be
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dissolved in chloroform at 50 °C. In hot concentrated sulphuric acid the dry
polymer is quantitatively degraded to crotonic acid:

ðCH3�CH�CH2�CO�Þn ! nCH3�CH ¼ CH�COOH

�O
j

poly β-hydroxybutyrate crotonic acid

Calculate the % (w/w) of poly β-hydroxybutyrate in Bacillus megaterium
from the following information. The dry wt of the bacteria from 20ml of a
suspension of washed organisms in water was 24mg. The organisms from a
further 5 ml of the same suspension were broken quantitatively by ultra-
sonication and the debris (walls and granules) was sedimented by centrifug-
ing. This material was repeatedly extracted with hot chloroform and the
total volume of these extracts was made up with chloroform to 50 ml. A
sample (1 ml) of this solution was dried in a test tube and sulphuric acid
(10 ml) was added to the solid residue. After heating at 100 °C for 10 min
and then cooling, the optical density of the resulting solution of crotonic
acid in sulphuric acid was 0.438 at 235 nm (1-cm lightpath) measured
against a zero of sulphuric acid. Under these conditions, the extinction
coefficient of crotonic acid is 1.56 × 104 L mole 1 cm 1 at 235 nm.

Atomic weights are : C, 12; H, 1; O, 16.

Next, to brush up some maths and algebra, and to jump around con-
nected topics:

Problem 2

Calculations related to logarithms. (No calculator should be used or
needed until question 24.)

Simplify the following expressions:

(1) (x2)2 / x3

(2) 2x3 / x2 × y2

(3) (x4)3

(4) (3x3)3

(5) (3√x)6

(6) x2 × 4√x / x3.5

(7) x2 × x3/2 × x 3

(8) (x2 + y2) / y2
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Find the values of x in the following equations:

(9) log3 81 = x
(10) log25 x = 0.5
(11) logx 49 = 2
(12) log2 x

3 = 6

Given that logb 3 = 0.477 and logb 4 = 0.602, find:

(13) logb 9
(14) logb 12
(15) logb 0.75
(16) logb

3√12
(17) logb (4 ×

2√3)
(18) logb 6

Rearrange the following equations to express x in terms of c and y (i.e. as
x = f (c,y)):

(19) y = logc x
(20) y = logc x

2

(21) y = logx c
(22) y = logc

2√x
(23) Find, from the equation y = cx, two ways of expressing x in terms of

c and y, and hence derive the relation: logc y = ln y / ln c

(You need a calculator from now on.)
Find the logarithms to base 2 of the following numbers:

(24) 36
(25) 0.752

Evaluate:

(26) 3.2352.2

(27) 4.8 2/3

(28) 3.2√7
(29) 20.25

(30) 0.25√2
(31) 3e

(32) π√3
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(33) If you put £100 in the bank and left it to accumulate interest (5%
given once annually), how much would be in your account after
10 years? If you had a bacterial culture that contained 100 organisms
that were growing exponentially (specific growth rate 0.05 min 1),
how many organisms would be present after 10 min? When the
different units (£ and organisms) are disregarded, are the two
answers numerically the same? Explain your finding.

(34) Radioactive phosphorus (32P) has a half-life of approx. 14 days. If on
day 1 you had a sample of Na2H

32PO4 that gave 5000 dpm, what
would be its activity (dpm) on day 23? Evaluate the decay constant
of 32P.

(35) A bacterial culture was inoculated and samples were taken at inter-
vals during its incubation to measure the optical density (propor-
tional to organisms ml 1), as shown below:

Time of sampling
(min after start of incubation) Optical density

290 0.025
368 0.062
401 0.090
479 0.200
530 0.361
590 0.799
660 1.40
720 1.90
780 2.30
840 2.50
900 2.60

Determine graphically the doubling time of the bacteria (and
hence their specific growth rate) during the exponential phase of
growth and mark on the graph (as closely as possible) the end of this
phase. When do you think the exponential phase began?

(36) A suspension of bacteria was put into a water bath at 60 °C. At
intervals, samples were taken and their viable counts (at 30 °C)
were found on solid medium after suitable dilution:
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Time at 60 °C (min) Number of viable organisms ml−1

0 1.58 × 109

8 1.41 × 108

15 2.14 × 107

24 1.40 × 106

33 1.26 × 105

48 2.00 × 103

Plot log10 (number of organismsml 1) against time. From the graph
determine:
(a) The decimal reduction time (the time needed at 60 °C to kill 90%

of the organisms).
(b) The time needed at 60 °C to kill half the bacterial population.
(c) The percentage of the initial population that survives after 30 min

at 60 °C.
(37) What is the pH value of 2M-H2SO4?
(38) What is the pH value of 0.3M-NaOH? (The ionic product of water is

1 × 10–14 moles2 L 1.)
(39) What is the extinction of a solution that has percentage transmittance

value of 15%, with 1-cm lightpath? (% Transmittance (T) = 100 I / I0 ;
Extinction = log10 (I0 / I)).

(40) What is the percentage transmittance of a solution that has an extinc-
tion of 0.5 with 1-cm lightpath?

Problem 3

A wild-type strain of Escherichia coli was grown in a minimal medium with
glucose (5 g L 1) as source of carbon and energy. The organisms were
harvested, washed and suspended in buffer, then assayed for protein and
for β-galactosidase activity. The substrate used in this latter assay was ONPG
(o-nitrophenyl β-D-galactopyranoside), which, when freely accessible to the
enzyme, is hydrolysed by β-galactosidase at the same rate as lactose (4-O-β-
D-galactopyranosyl-D-glucopyranose). In all the enzymic assays (see below)
the relation between time of incubation (of enzyme and substrate) and
amount of product formed was linear. No product was formed in any of
the controls (ONPG without enzyme; enzyme without ONPG).
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The suspension of washed organisms (1ml) hydrolysed 1.2 μmol of ONPG
in 30 min and after dilution (1ml + 49 ml of water) a sample (0.5 ml)
contained 46 μg of protein. The bacteria in part of the undiluted suspension
were broken in a French pressure cell, and the assays were repeated with the
soluble extract. The extract (1 ml) hydrolysed 0.8 μmol of ONPG in 10 min
and after dilution (1ml + 99ml of water) a sample (0.5ml) contained 20 μg of
protein.

The same strain was grown in the minimal medium with lactose (5 g L 1)
replacing glucose. The washed organisms and an extract were assayed as
before.

This second suspension of washed organisms (1 ml) hydrolysed 1.8 μmol
of ONPG in 30 min and after dilution (1 ml + 99 ml of water) a sample
(1 ml) contained 30 μg of protein. The second extract (0.1 ml) hydrolysed
2.5 μmol of ONPG in 5 min and after dilution (1 ml + 99 ml of water) a
sample (0.5 ml) contained 10 μg of protein.

(1) Express the enzymic activity of each suspension and extract as μmol
ONPG hydrolysed min 1 (mg protein) 1.

(2) Interpret the results.

Problem 4

(1) A culture of Escherichia coli grew to a final population of 2 × 109

organisms ml 1. The organisms from 1 L of this culture were collected
and had a dry weight of 2 g. From a quantitative elementary analysis of
these dry bacteria one can estimate that the average weight of a single
atom in these organisms is approximately 10 Da.
Suppose that the average molecular weight of all the components of

these dried organisms is 1 × 10x Da. Hence calculate how many atoms
are present in one (dried) organism. (Avogadro’s number = 6 × 10 23

molecules per mole.)
(2) The internal dimensions of these bacteria are 2 µm × 0.5 µm (assume a

cylindrical shape, i.e. flat ends).
(a) Calculate the volume of one organism in m3.
(b) How many H+ ions are present inside one organism if the internal

pH value is 7?
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Problem 5

Staphylococci can grow as a biofilm anchored to glass. Calculate the mini-
mum average thickness of one such biofilm (in terms of the number, not
necessarily integral, of layers of organisms) from the following information.
A biofilm was grown on the upper surface of a rectangular glass slide

(7 × 25mm) with 3H-thymidine (40mg L 1 ; specific activity 2.75 × 106 dpm
per mg) in the chemically defined medium, though this nucleoside is not
required as a growth factor by staphylococci. The radioactivity of the
washed organisms collected from the biofilm was 2.0 × 103 dpm. The dry
wt of one staphylococcus is 5 × 10–13 g and thymidine (after incorporation
into DNA) makes up 0.3% of this weight. Determine the total number of
organisms on the slide and compare this value with the number of organ-
isms needed to cover the whole surface of the slide as a single close-packed
layer (see Fig. 15.1). Assume that each organism is spherical, with a diameter
of 1 μm.
What is the fraction (%) of the total organisms in the biofilm that

could be directly attached to the glass? Give as many reasons as you can
why this result is very likely to be greater than the true fraction that is
attached.
The number (n) of circles of radius r that can be close-packed inside a

rectangle of sidesA and B is given by the equation n = (A × B) ÷ (r2 × 2 × √3),
where A, B and r are all expressed in the same units, and A and B are much
larger than r.

Fig. 15.1 Close packing of circles into a given area.
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Problem 6 (Dr M.M. Attwood)

An aerobic organism is to be grown in mineral medium A.A stock solution
for this medium contains:

K2HPO4 34.8 g L 1

NaH2PO4.2H2O 31.2 g L 1

(NH4)2SO4 40.0 g L 1

MgSO4 4.0 g L 1

CaCl2 200mg L 1

FeSO4 100mg L 1

MnSO4 50mg L 1

50 ml of stock solution and 100ml of 0.2 M fructose (as source of carbon)
are mixed and then diluted to 1 L with distilled water to make the final
medium A.

(1) Aerobic microorganisms have a growth yield of 0.7 g per g of substrate
when grown on sugars, and the nitrogen content of the bacteria
accounts for 15% of the dry weight. Is this medium carbon or nitrogen
limiting for growth? Give your reasons.
The organism was grown in this medium and harvested when 10mM

fructose had been consumed.
(2) Crude extracts of the organism were prepared and assayed for the

enzyme fructose-l,6-bisphosphatase. The assay mixture (1 ml final
volume) contained: Tris buffer, pH 8.0, 50mM; MgCl2, 5mM; EDTA,
0.01mM; NADP, 0.4mM and linkage enzyme to NADP, 3 units.
The reaction was started by the addition of fructose-l,6-bisphosphate

to 2mM final concentration in the assay mixture.
To make each assay mixture, a stock solution (5 ml) of each reagent

was first prepared. Given that the linkage enzyme contained 1mg protein
ml 1 and contained 300 units mg 1 calculate the amount of each reagent
that you would use to make each stock reagent solution and the volume
of each such solution that you would add to an assay mixture.

(3) The crude cell-free extract was purified using an acid precipitation. The
supernatant liquid was then made 50% saturated with ammonium
sulphate and then centrifuged. The supernatant liquid contained the
enzymic activity. Complete the following purification table given that
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the protein concentration (mg ml 1) in the individual extracts were
as follows: crude extract 1.9; acid supernatant 1.1; and ammonium
sulphate supernatant 0.481. The extinction coefficient for NADPH is
6.22 × 103 L mole 1 cm 1 at 340 nm.

Treatment
of extract

Vol. in
assay
(ml)

Total
vol.
(ml)

Δ340nm

optical
density
min−1

Activity
(nmol
min−1

ml−1)

Total
activity
(nmol
min−1)

Specific
activity (nmol
min−1 (mg
protein)−1)

Crude
extract

0.01 25 0.209

Acid
supernate

0.01 27.5 0.121

(NH4)2SO4

supernate
0.02 30.5 0.151

Atomic weights
Hydrogen 1
Carbon 12
Nitrogen 14
Oxygen 16
Sodium 23
Magnesium 24
Phosphorus 31
Chlorine 35.5

Molecular formulae
Tris (hydroxymethyl) methylamine NH2.C(CH2OH)3
EDTA (ethylenediaminetetraacetic acid) [CH2N(CH2COOH)2]2
NADP Na4C21H26N7017P3
Fructose-l,6-bisphosphate trisodium salt C6H11012P2Na3.8H2O

Problem 7 (Professor D. J. Kelly)

An obligately anaerobic bacteriumwas isolated from soil. The organism had
the remarkable ability to grow anaerobically using carbon monoxide (CO)
as sole source of carbon and energy. A search was made for enzymes that
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possibly were responsible for the metabolism of carbon monoxide. It was
soon found that extracts of the bacterium could oxidise CO to CO2 provided
that a suitable (artificial) electron-acceptor were present. The best results
were obtained by using the dye methyl viologen (MV) as the electron-
acceptor; the dye is colourless in its oxidised form but has a deep blue
colour when reduced:

CO þH2O þ 2MV ! CO2 þ 2Hþ þ 2MV

This provided a convenient assay for the enzyme; the rate of formation
of the reduced MV could be followed spectrophotometrically at 600 nm
under anaerobic conditions. In a typical assay, 0.1 ml of extract was added
to 2.90 ml of a reaction mixture in a cuvette (1-cm lightpath); the mixture
contained 1mM MV dissolved in 100mM phosphate buffer (pH 7) satu-
rated with CO. The measured rate of change of absorbance at 600 nm was
0.18 min 1.

(1) Given that the extinction coefficient of reducedMV is 7.4 × 103 L mol 1

cm 1 at 600 nm, and that the extract contained 14.3mg protein ml 1,
calculate the specific activity of the enzyme in units of nmol min 1

(mg protein) 1.
(2) The enzyme responsible for the above reaction was purified to homo-

geneity (100-fold purification from the extract) and found to consist of
a single polypeptide chain of molecular mass 60 000 Da. It was also
green in colour owing to the presence of themetal ion nickel (as Ni2+) in
the protein. Chemical analysis showed that 1mg of the pure enzyme
contained 0.97 µg of nickel. How many moles of nickel are there per
mole of enzyme?
The atomic weight of nickel is 59 Da.

(3) Calculate the turnover number of the pure enzyme. Assume that the
number of active sites on the enzyme is the same as the number of
nickel atoms in one molecule of the enzyme.

(4) Determine ΔG0′ for the oxidation of CO by MV from these electrode
potentials:

COþH2O ! CO2 þ 2Hþ þ 2e E0
0 ¼ �0:53 V

MV ! MVþ e E0
0 ¼ �0:44 V
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Problem 8 (Dr M. Wainwright)

The concentrations of sulphur in the form of S2O3
2– ion (S2O3

2––S), and in
the form of SO4

2– ion (SO4
2––S) in a soil treated with 1% (w /w) S0 were

determined before studying of the effects of pesticides on S-oxidation.

(1) Given hydrated sodium sulphate (Na2SO4.10H2O) and hydrated sodium
thiosulphate (Na2S2O3.5H2O) show how you would prepare a series of
solutions (for a standard curve) in the range 20 to 100 µg sulphur as S2O3

2

or sulphur as SO4
2– ml 1 (relative atomic masses: Na, 22.9; S, 32; O, 16).

(2) The following data were obtained when 1 ml samples of such standard
solutions were assayed:

SO4
2– S (µg m1–1) OD in assay S2O3

2– S (µg ml−1) OD in assay

10 0.030 15 0.060
25 0.075 30 0.125
50 0.160 60 0.250
100 0.325 100 0.415

Four samples of a soil (each 1 g) were separately extracted by shaking
with 25ml of LiCl.2H2O for 15min. Each slurry was then filtered and 1ml
of filtrate was diluted to 5mlwithwater and analysed for SO4

2––S. The same
procedure was repeated in the analysis of S2O3

2––S except that four samples
(each 5 g) of soil were separately extracted with 20 ml of water and 1 ml of
each extract was diluted to 5mlwithwater. Determine the concentration of
SO4

2––S and S2O3
2––S in mg g 1 soil given that the following OD readings

were obtained when 1ml of each diluted sample was assayed:

SO4
2− S S2O3

2− S

0.275 0.375
0.325 0.350
0.310 0.350
0.290 0.325

Problem 9

Protein that has been bound to a column of ion-exchange material may be
eluted by a buffer that contains increasing concentrations of NaCl. These
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increases can be made in steps (e.g. 0.05 M, 0.1 M, 0.15 M, etc. sequentially) or
can be made continuously by using a gradient of salt concentration deliv-
ered from a mixing device.

A simple type of gradient-former is shown in Fig. 15.2. Two vessels are
connected by flexible tubing of narrow bore. (All joints and stoppers must
be water-tight!) The reservoir contains buffer with NaCl at a concentration
greater than is likely to be needed to elute the protein; the mixer when first
attached contains the same buffer but with NaCl at a lower concentration
(very often no NaCl). The volume of buffer put in the mixer must be known
(see the equation below); the volume in the reservoir is immaterial, provided
it is more than enough to complete elution.

If the bottom of the air-inlet tube (A) is higher than the drip-point (B)
then brief suction at B will establish a flow out of the mixer and a flow
into the mixer (from the reservoir) at exactly the same rate. This rate
depends on the pressure head, which is determined by the vertical dis-
tance between A and B, and can easily be adjusted by raising or lowering
the reservoir.

The concentration of NaCl in the buffer emerging from B at any stage
(assuming that the tube from the mixer to B has negligible internal volume)
may be calculated from the equation:

A

B

Reservoir

Pressure Head

Mixer
(with magnetic stirrer)

Fig. 15.2 A gradient forming device. For clarity, tubing is shownwith a wider
bore than would be used in practice.
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Cw ¼ CR � CDe
ðVW = VmÞ

where Cw is the concentration being withdrawn when a total volume VW

has emerged from the mixer. CR is the concentration of NaCl in the
reservoir; CD is the difference in concentrations of NaCl between that in
the reservoir and the initial concentration in the mixer; Vm is the volume
in the mixer.
A reservoir of 0.5 M NaCl in buffer was connected to a mixer containing

50 ml of the same buffer without NaCl. Calculate the concentrations of
NaCl emerging from the mixer when the following volumes (ml) have been
withdrawn: 10, 20, 30, 50, 75, 100, 150.
Plot emergent concentration of NaCl (vertical axis) against volume with-

drawn (horizontal axis). Is the gradient linear, concave or convex?
The above equation can be rearranged to find at what withdrawn volume

a given concentration of NaCl emerges:

Vw ¼ Vm � ln
CD

CR � Cw

� �

Use this second equation to find the withdrawn volume at which the
emergent concentration of NaCl (i.e. CW) is 0.25 M. Vm, CR and CD have the
same values as before. Does the answer agree with a read-off from your
graph?
Can you derive the second equation from the first? It’s a good little

exercise in algebra and logarithms.
A partly purified enzyme was loaded onto a column of DEAE-cellulose

(interstitial volume 10 ml). The column was first eluted with buffer con-
taining no NaCl, then gradient elution was started and at the same time
collection of fractions (each one 5 ml of column effluent) was begun. The
reservoir of the gradient-former contained 0.4 M NaCl in the buffer; the
mixer (contents 30 ml) initially contained 0.1 M NaCl in the buffer.
The desired enzyme was subsequently found only in fraction 7. What
does the experiment indicate as the highest concentration of NaCl that
did not elute the enzyme, and as the lowest concentration of NaCl that did
elute the enzyme?
(Think carefully – an oversight in this kind of situation often leads to a

mistake.)
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Problem 10 (Dr D. J. Gilmour)

(1) An investigation of the growth of Bacillus subtilis in continuous
(chemostat) culture was carried out under glucose-limited conditions
(Sr = 5mmol L 1). Measurements of the glucose concentration in the
culture vessel were made under steady-state conditions, but owing to
the closeness of the Christmas holidays only two steady states were
achieved. The data are given below.

Dilution rate, D (h−1) Glucose concentration, s (mmol L−1)

0.3 0.472
0.6 1.654

Calculate µmax and Ks using the following equation:

Ks ¼ s1ðμmax � D1Þ
D1

¼ s2ðμmax � D2Þ
D2

(2) After the holidays the researcher completed the experiment by measur-
ing s at a full range of steady states. Results are given below.

Dilution rate, D (h−1) Glucose concentration, s (mmol L−1)

0.1 0.122
0.2 0 276
0.4 0.734
0.5 1.106
0.7 2 560
0.8 4.405

Using these data, plot 1/D against 1/s and determine Ks and µmax by this
method.

Problem 11 (Professor D. Tempest)

When growing aerobically on glucose in a defined simple medium with
ammonia as the sole nitrogen source, Escherichia coli expresses a yield value
(Yglucose) of 100 g mol 1. Elemental analysis of these bacteria (after drying)
showed them to contain (by weight) 48% carbon, 32% oxygen, 14% nitrogen
and 6% hydrogen.
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(1) Write out an empirical formula for the (dried) E. coli.
(2) Write out a chemical equation for bacterial growth that shows the

stoichiometric relationship between the consumption of glucose,
ammonia and oxygen, and the production of biomass, carbon dioxide
and water.

(3) Calculate the yield value with respect to oxygen consumption.
(4) Calculate the YATP value associated with the growth of E. coli, given that

2 molecules of ATP are generated per atom of oxygen consumed in
respiration.

Problem 12

A solution (A) of 20mg of impure adenosine triphosphate (ATP) was made in
10ml of water. Solution A was diluted (1ml plus 99ml of buffer, pH7) to give
solution B. The optical density at 259 nm of solution B (1-cm lightpath) was
0.45. Calculate the molar concentration of ATP in solution A, given that the
extinction coefficient at pH7 of ATP is 15.4 × 103 L mole 1 cm 1 at 259 nm.
Assume that only ATP itself contributes to the optical density of solution B at
259 nm.
Calculate the purity of the solid ATP as % (w /w), i.e. (wt of pure ATP /wt

of impure solid) × 100. The mol. wt of ATP is 507 Da.
What volumes of solution A and of water would youmix tomake 50ml of

a solution that was 1mmolar in respect of ATP?
How would you dilute solution A (state howmany ml of solution A you

would add to how many ml of water) to prepare solution C, of which a
0.1-ml sample should contain a total weight of phosphorus that falls
within the accurate range (1 to 4 µg of phosphorus) of an assay for this
element? State the precise concentration of phosphorus (µg ml 1) that
you expect to be present in your solution C. Assume that all the phos-
phorus present in solution A is in the form of ATP. The atomic weight of
phosphorus is 31.

Problem 13 (Professor A. Moir)

The plasmid pLX100 carries a gene for ampicillin resistance. Linear DNA
fragments of the following sizes were obtained on cleavage of plasmid
pLX100 with restriction enzymes:
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EcoRI digest: 5.4 kbp
BamHI digest: 5.4 kbp
PstI digest: 3.3 kbp, 2.1 kbp
EcoRI + BamHI digest: 4.5 kbp, 0.9 kbp
EcoRI + PstI digest: 2.3 kbp, 2.1 kbp, 1.0 kbp
BamHI + PstI digest: 2.1 kbp, 1.9 kbp, 1.4 kbp

(1) Deduce the restriction map of the plasmid DNA.
(2) A sample (2 µl) of the plasmid pLX100 DNA (100 µg ml 1) was diluted

to a total volume of 1 ml with sterile buffer, and 2 µl of this dilution was
used to transform 100 µl of a suspension of competent cells of
Escherichia coli (ampicillin sensitive). After heat shock, 1ml of broth
was added to the organisms, which then were incubated for 1 h before
plating 0.1-ml aliquots on agar containing ampicillin. The average
number of colonies obtained per plate was 250; no colonies were
obtained on negative control plates.
How many transformants were obtained per 1 µg of pLX100 DNA?

(3) Given that the molecular weight of the average nucleotide in DNA is
330, and assuming that each transformant arose from a separate
transformational event, what proportion of the input pLX100 DNA
molecules were recovered in transformants? (Avogadro’s number is
6.02 × 1023 molecules mole 1.)

Problem 14

A polysaccharide present in walls of Bacillus megaterium has the structure:

ð�Glucose� Rhamnose� Rhamnose�Þn
j

Glucuronic acid

After walls have been extensively digested with lysozyme the polymer can be
isolated with a fragment of peptidoglycan covalently attached. From its
behaviour on gel-filtration the molecular weight of the polymer appears to
be >100 000 Da.

Walls were isolated from a mutant (dap lys ) of B. megaterium that
had been grown in a chemically defined medium containing [14C]diami-
nopimelate (400 kBq L 1) with an excess of unlabelled diaminopimelate
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(100mg L 1) and L-lysine (100mg L 1). The presence of the radioactive
material did not significantly alter the total concentration of diaminopi-
melate in the medium.
These walls were digested with lysozyme and the polysaccharide was iso-

lated in aqueous solution. A sample (0.5 ml) of this solution gave 1000 dpm.
Another sample (1 ml) of the solution was assayed for rhamnose and found to
contain 40 µmol of this deoxyhexose.
The molecular weights of components of the polysaccharide are:

Glucose repeat unit: 162 Da
Rhamnose (monosaccharide) repeat unit: 146 Da
Glucuronic acid repeat unit: 176 Da

One molecule of diaminopimelic acid (Dap; mol. wt 190 Da) is present in
each polymer unit of peptidoglycan: N-acetyl-glucosamine-N-acetyl-
muramyl-ala-glu-Dap-ala-ala.
Assume that one peptidoglycan unit is covalently linked to one polymer

unit of polysaccharide, and hence estimate the mol. wt of the polysaccharide
from the above data. Ignore the contribution of peptidoglycan to the weight
of the polysaccharide. (1 kBq � 6 × 104 dpm.)

Problem 15

A pure culture of a bacterial species was isolated from pasteurised soil.
These organisms were incubated at 30 °C in a liquid chemically defined
medium with a low concentration of glucose (0.5 g L 1) as sole source
of carbon. When growth reached the late exponential phase a sample
(0.1 ml) was taken from this culture and quickly mixed with 100 ml of
buffer (20mM; pH 7) that was at 80 °C and was maintained at this
temperature.
After 1 min the suspension at 80 °C was sampled by removing 0.1 ml

which was at once mixed with 9.9 ml of buffer at 30 °C. To find the number
of organisms that had survived at 80 °C this second suspension was plated
(0.1 ml and 0.5 ml samples) onto a rich medium and incubated overnight at
30 °C. At intervals a sample (always 0.1 ml) was taken from the suspension
at 80 °C and mixed with a separate 9.9 ml of buffer at 30 °C before plating
out as above (see the table below).
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Time (min) at
80 °C before
transfer to 30 °C

Colonies from 0.1 ml
sample of buffer suspen
sion at 30 °C

Colonies from 0.5 ml
sample of buffer suspen
sion at 30 °C

1 240 Too many for accurate
count

2 79 407
3 25 122
4 7 32
6 4 15
8 3 20
12 5 31
18 4 30
30 6 29

(1) Plot log10 (viable count per ml of the suspension kept at 80 °C) against
time at 80 °C.

(2) Interpret the graph as fully as you can.
(3) Estimate from the graph the viable count per ml of the culture at 30 °C

at the time when it was sampled.
(4) What percentage of the colony-formers that were in the culture at 30 °C

(at the time when it was sampled) survive for 30 min at 80 °C?

Problem 16 (Dr M. Wainwright)

For counts of thiobacilli, soil (1 g) was shaken for 15 min in 10 ml of ¼
strength Ringer’s solution and five 0.1 ml aliquots were spread (after
dilution 103-fold) on the surface of thiosulphate medium. The following
counts were obtained for two separate soils:

Soil A (colonies per plate) Soil B (colonies per plate)

10 8
9 8
6 3
9 3
8 8
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(1) Determine the average number of thiobacilli per gram of each soil.
(2) Find the median and mean of colonies per plate and the sample stand-

ard deviation for soil A and then for soil B. Use both the t-test and
Mann–Whitney test to determine whether the mean A is bigger than
mean B with ≥95% probability.

Problem 17 (Professor J. R. Quayle)

A portion of a culture of Escherichia coli growing on acetate (as sole source
of carbon) was harvested and assayed for the activity of isocitrate lyase by
measurement of the isocitrate-dependent formation of glyoxylate catalysed
by an extract of these organisms. The glyoxylate was trapped as glyoxylate
phenylhydrazone (E324 = 1.7 × 104 L mol 1 cm 1). One portion of the
extract (A) was diluted 10-fold and 0.05 ml of the diluted extract was
found to contain 62 µg of protein. A second portion of extract A was diluted
50-fold and used for the spectrophotometric estimation of isocitrate lyase
activity. In this determination diluted extract (75 µl) catalysed a linear rate
of change of absorbance at 324 nm of 0.863 in 5 min; the final volume in the
spectrophotometer cuvette was 3 ml.
The carbon substrate in the original culture was then changed from

acetate to succinate, and after a short lag phase the organisms grew expo-
nentially on the new substrate for 18.5 h. What would you expect the final
specific activity (nmol min 1 (mg protein) 1) of the isocitrate lyase to be if
the mean generation time of the organisms with succinate was 3.9 h?
During growth on acetate as sole carbon source the first step in the entry

of acetate into cellular metabolism is its activation to acetyl CoA via acetate
thiokinase. Half of the resulting acetyl CoA is totally oxidised to carbon
dioxide to provide energy, and the other half is made into cellular material.
Fixation of carbon dioxide is negligible. If the activity of acetate thiokinase
were the rate-limiting step for growth on acetate, what maximum rate of
exponential growth (expressed in terms of mean generation time) could this
enzyme support if its specific activity were 0.2 µmol acetate activated min 1

(mg protein) 1? Assume that 50% of the dry weight of an organism is carbon
and 50% is protein.
To answer this question you need to know that E. coli makes isocitrate

lyase (so that the glyoxylate cycle can operate) when growing on acetate, but
the formation of this enzyme stops when an intermediate of the citric acid
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cycle (such as succinate) is available.When the acetate-grown organisms are
shifted to a medium containing succinate the isocitrate lyase that had
already been formed is not destroyed, but the molecules of this enzyme
become distributed among an increasing number of bacteria as the culture
grows on succinate. Consequently the specific activity of isocitrate lyase
will fall.

Problem 18 (Professor J. R. Quayle)

A culture of photosynthetic bacteria was grown anaerobically in the light.
A sample was taken from the culture, and diluted (0.5 ml + 3.5 ml water)
before measuring its optical density, which was 0.31. At the same time of
sampling, a further 100ml was removed from the culture and the organisms
were centrifuged, then bacteriochlorophyll was extracted from them with
ether. The total volume of the ether extract was 250ml, and its absorbance at
740 nm was 0.50.

Calculate moles of chlorophyll per g bacteria, given that an optical density
of 1.0 was given by a suspension containing 1.134mg dry wt bacteria ml 1,
and that a 1% (w / v) solution of bacteriochlorophyll in ether has an
absorbance at 740 nm of 1.054 × 103. The mol. wt of bacteriochlorophyll
is 911.

The culture was switched to aerobic growth in the dark. Formation of
bacteriochlorophyll stopped at once, but exponential growth continued
with a doubling time of 5 h. If there is no destruction of bacteriochlorophyll,
what will be the content (moles of chlorophyll g 1 bacteria) after the first
12 h of exponential growth?

Problem 19 (Professor J. R. Guest)

The products of digestion of DNA with restriction endonucleases can be
separated by electrophoresis in agarose gel, and can be detected by their
fluorescence in UV light after treating with ethidium bromide. The relation-
ship between DNA size (in kbp) and electrophoretic mobility can be shown
by plotting log10 size against distance run (mm) by standards.
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Size of standard (kbp) Distance moved by standard (mm)

50 21
22 27
14 4
9.4 45
6.8 61
5.3 75
4.2 90
3.1 110
2.3 134
1.9 150
1.3 180

A segment of Escherichia coli DNA was cloned into a λ-vector phage
to produce a lysogenic transducing phage that could restore the Mic+

phenotype to micA mutants. Samples of DNA from the transducing
phage and from the vector phage were digested with two endonucleases:
HindIII and EcoRI. Mobilities of the fragments of digestion on agarose are
shown below.
Distances moved (mm) by fragments obtained with:

HindIII EcoRI HindIII + EcoRI

λ vector λ mic λ vector λ mic λ vector λ mic

26 26 27 27 27 27
32 32 40 36 47 47

78 59 59 59 59
106 150 99

150
185

(1) Plot the standard curve, and read off the sizes (in kbp) of the fragments
of digestion.

(2) Derive restriction maps for the vector and for the transducing phages,
assuming that the large HindIII fragment (mobility 26mm) corres-
ponds to the left end of the linear phage maps.

(3) State the overall sizes of the vector and transducing phages in kbp, and
the size of the bacterial fragment cloned.
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Problem 20

A bacterium excreted lysine after a batch culture (in minimal glucose + salts
medium) had reached the stationary phase. In an experiment, growth was
assessed from the turbidity of the culture, and lysine was measured in
samples (0.5 ml) of the medium, by a specific assay with ninhydrin, in
which the optical density at 420 nm was read.

Time (h) of
incubation

Turbidity of culture
(colorimeter reading)

Lysine assay (extinction at
420 nm)

9 0.05 0
11 0.1 0
13 0.3 0
15 0.5 0
17 1.0 0
20 2.3 0
21 2.8 0.04
23 2.7 0.28
25 2.7 0.52
27 2.8 0.73
29 2.8 0.96

The relation between turbidity and dry wt of bacteria was linear up to a
colorimeter reading of 3.0, and a reading of 1.0 corresponded to a dry wt of
0.35mg ml–1. The relation between optical density at 420 nm and the
amount of lysine present in the assay system was linear up to an optical
density of 1.5, which corresponded to 1.8 µmoles of lysine.

Plot log10 (turbidity of the culture × 100) against time of incubation, and
hence determine the doubling time of the organisms during the exponential
phase of growth.

On the same graph plot the concentration of lysine in themedium against
time of incubation, and hence determine the rate of lysine production.
Express this rate as nmoles min 1 (mg dry wt bacteria) 1.

A new assay for one of the enzymes of lysine biosynthesis (tetrahydrodi-
picolinate acetylase) was devised. In this assay, an extract of stationary phase
organisms (harvested after incubation for 25 h) showed an activity of only
10 nmoles (acetyl coenzyme A used) min 1 (mg protein) 1.
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(1) Is this rate sufficient to account for the observed rate of lysine excretion?
Assume that 50% of the bacterial dry wt is protein.

(2) Can the enzymic activity account for the necessary rate of lysine
formation (to make protein and cell wall) during exponential growth?
Assume that 5% of the bacterial dry wt is lysine, and that diaminopi-
melate is not used structurally. The specific growth rate (g of new
organisms formed per g of existing bacteria per unit time) is given by
(ln 2) ÷ (doubling time); and the mol. wt of lysine is 146.

Problem 21 (Professor A. Moir)

A 2.5 kbp EcoRI fragment of Bacillus subtilis DNA was cloned in the
plasmid vector pAB1 to yield hybrid plasmid pAB2. The vector, pAB1, is
a 4.2 kbp plasmid, with a multiple cloning site containing targets for three
enzymes, in the order BamHI – EcoRI – HindIII. These are the only target
sites for these enzymes in plasmid pAB1.
Restriction digests of the plasmid pAB2 gave fragments (kbp) as follows:

EcoRI 4.2, 2.5
HindIII 4.7, 1.3, 0.7
HindIII + EcoRI 4.2, 1.3, 0.7, 0.5
BamHI 5.9, 0.8
BamHI + HindIII 4.2, 1.3, 0.5, 0.4, 0.3

(1) Deduce the restriction map of the plasmid pAB2, explaining your
conclusion.

(2) A culture of cells containing the plasmid pAB2 was grown. Samples were
removed for viable count, serially diluted and 0.1ml of a 10 5 dilution was
plated, giving replicates of 210 and 190 colonies. PlasmidDNAwas isolated
from 100 ml of the culture, and yielded 20 μg. Assuming 100% recovery of
plasmid DNA during the isolation procedure, what is the approximate
copy number of the plasmid pAB2 per cell? (One nucleotide in DNA has
an average molecular weight of 300. Avogadro’s number is 6.02 × 1023.)

Problem 22

(1) Pure DNA was isolated from bacteria of strain X. The four heterocyclic
bases in this DNA were released quantitatively by hydrolysis with acid.

Problem 22 173



Paper chromatography was used to separate these bases, the positions
of which were located by examination of the dried chromatogram
under a UV lamp. An area of paper containing the thymine spot was
cut out and the base was eluted quantitatively into 5 ml of 0.1 M HCl.
Three more solutions of the other bases from the chromatogram were
similarly prepared. Use the data below to deduce the %GC of this DNA.

Absorbance (1 cm lightpath)
of the solution in 0.1 M HCl at
wavelength of maximum
absorbance

Millimolar extinction
coefficient of the base (in
0.1 M HCl) at wavelength
of maximum absorbance
(L mmol−1 cm−1)

Thymine 0.28 8.0
Cytosine 0.15 10.0
Adenine 0.44 12.6
Guanine 0.17 11.1

(2) What weight (mg) of thymine (mol. wt 126) is needed to synthesise 1 g
of this DNA? (The average mol. wt of a nucleotide from any DNA is
307.)

(3) In strain X, DNA represents 5% of the dry weight of the organisms.
What, therefore, is the minimum weight (mg) of thymine needed to
yield a crop of 1 g (dry wt) of these bacteria? Assume that thymine has
no other metabolic role than contributing to the structure of DNA.

(4) Pure radioactive DNA, of specific activity 1 × 106 cpmmg–1, was required
from strain X. To label the DNA, youmay grow the organisms with either
[3H]-thymine or [14C]-thymine in the medium. Efficiencies of counting
are: 3H, 20% and 14C, 80%. Unlabelled thymine (10 µg ml 1) is already
present, and 1ml of medium produces 1mg (dry wt) of bacteria. Addition
of radioactive material does not significantly alter the concentration of
thymine in the medium. Synthesis of thymine from its precursors by the
organisms is totally inhibited when this pyrimidine is present in the
medium.
Calculate how much [3H]-thymine (µCi) you would add per litre of

medium to get DNA of the required specific activity. How much [14C]-
thymine would be needed per litre if this material were used instead of
[3H]-thymine to produce DNA of the same specific activity? (1 μCi is
equivalent to 2.2 × 106 dpm.)
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(5) The smallest package of [3H]-thymine that can be bought costs £137* and
contains 1 mCi. The smallest package of [14C]-thymine costs £56* and
contains 50 µCi; a package containing 250 µCi costs £183*. The procedure
for isolating DNA yields only one-tenth of the total bacterial DNA in
pure form.What would you buy in order to prepare as cheaply as possible
10mg of pure labelled DNA of the desired specific activity? Assume that
unused labelled thymine or a surplus of radioactive DNA have no value.
(*Price includes VAT at 17.5% and delivery at £10 per package.)

(6) Is the %GC of the DNA relevant to the cost of isolating pure radioactive
DNA? What if the %GC had proved to be 25% or 75%?

Problem 23 (Dr M.M. Attwood)

To measure the extent of purification of an enzyme, its activity (µmoles
min 1 (mg protein) 1) was measured in the initial crude cell-free extract and
in the final enzymic preparation.
The initial crude cell-free extract was diluted (0.5 ml with 9.5 ml of

phosphate buffer pH 7.0) and 10 µl of this diluted extract was used to
measure the enzymic activity spectrophotometrically. The change in
absorption at 340 nm was measured before and after the addition of the
enzyme substrate. The assay volume was 3.0 ml, and 10 µ1 of the diluted
extract showed an initial linear change of absorption of 0.42 units over
7 min, then after the addition of the substrate a linear absorption change of
0.6 units over 3 min.
After a number of purification steps the final enzymic preparation was

used to measure the final activity. This final preparation (0.1 ml) was made
up to 1.0 ml by the addition of ice-cold phosphate buffer pH 7.0, then 30 µl
of this diluted preparation was used to measure the absorbance change at
340 nm. Before the substrate was added the linear rate of absorbance change
was 0.12 units over 6 min and after the addition of substrate it was 0.45 units
over 2 min. The initial diluted cell-free extract (10 µl) contained 20 µg of
protein and the diluted purified extract (10 µl) contained 1.5 µg of protein.
The extinction coefficient at 340 nm = 6.22 × 103 L mole 1cm 1.
Calculate the activity of the enzyme in:

(1) the initial crude cell-free extract
(2) the final purified preparation.
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(3) By comparing the two activities, report the factor (i.e. x-fold) by which
the enzyme had been purified.

Problem 24

(1) When Staphylococcus sp. is grown as a batch culture in a chemically
defined medium with limiting lysine the compound UDP-N-acetylmur-
amyl-L-alanyl-D-glutamate accumulates in the cytoplasm of the bacteria.
This dipeptide was extracted with trichloroacetic acid and then isolated
in aqueous solution.
Several tests were made to establish the authenticity of the dipeptide

and to determine its concentration in solution.

The solution was colourless, and after dilution (1 / 100, at pH 7) its
absorption spectrum in the range 230 300 nm showed a broad peak at
260 nm. At this wavelength the absorbency was 0.53 and at 280 nm it was
0.25. The extinction coefficient of uridinediphosphate at 262 nm is 1 × 104

Lmol−1 cm−1, and the ratio of the absorbencies at 280 nm and 260 nm is
0.39 for this compound at pH 7.

Total phosphorus was measured in a sample of the (undiluted) solu
tion: 10 µl contained 0.11µmol P.

A sample (0.2 ml) of the undiluted solution was hydrolysed (4 MHCl;
4 h at 100 °C) then neutralised and made up to 1 ml with water. A sample
(0.5 ml) of this hydrolysate contained 0.44 µmol hexosamine. Another
sample (0.2 ml) of the hydrolysate contained 0.21 µmol acetate.

After more drastic acid hydrolysis (6 M HCl; 18 h at 100 °C) thin
layer chromatography of the neutralised hydrolysate followed by nin
hydrin treatment showed only two spots, of similar intensity, in the
positions of alanine and glutamic acid.

Are these data consistent with the structure of the dipeptide? If so,
then what is the concentration of the dipeptide in the aqueous solution?

(2) The rate of the enzymic reaction:
UDP-N-acetylmuramyl-L-alanyl-D-glutamate +meso-diaminopimelate

+ ATP →

UDP-N-acetylmuramyl-L-alanyl-D-glutamate-meso-diaminopimelate
+ ADP + Pi

can be measured from the incorporation of [3H]-meso-diaminopimelate
into the tripeptide.
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The complete assay system contains (all volumes in µl):

5mM UDP-N-acetylmuramyl-L-alanine-D-glutamate
(dipeptide)

8

5mM [3H]-meso-diaminopimelate
([3H]-Dap; 1 × 106 dpm ml 1)

4

50mM ATP 4
0.5 M Tris / HCl buffer, pH 8.4 4
0.2 M MgCl2 2
Enzyme (crude extract; 5mg protein ml 1) 4
Water to 50

All components except the enzyme are brought to 37 °C; then at time 0
the enzyme (also at 37 °C) is added. The reaction is stopped after various
times of incubation (see below) and a sample (20 µl) from the assay system
is spotted onto the origin line of a paper chromatogram. This is developed
with a solvent that causes unbound diaminopimelate to migrate away from
the origin, whereas diaminopimelate that is bound as a tripeptide remains at
or very near the origin line. After drying the paper at the origin the area is
cut out and is counted.
Eight tubes are prepared:

Time (min)

dpm from
origin of
chromatogram

Complete system 0 45
Complete system 5 140
Complete system 10 243
Complete system 15 366
System minus dipeptide 15 36
System minus enzyme 15 28
System minus ATP 15 67
System minus [3H] Dap 15 14

Use these data to express the rate of the enzymic reaction as nmol Dap
incorporatedmin 1 (mg protein) 1 and then as units of Dap-adding enzyme
(mg protein) 1.
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Problem 25

A single staphylococcus (diameter 1 μm) is surrounded (see Fig. 15.3) by a
polysaccharide capsule (uniform thickness 0.5 μm). Assume that half the
volume of the capsule is occupied by interstitial molecules of water. Calculate
the weight of capsular polysaccharide (the relative density of which is 1.00
after drying) associated with one organism. (The volume of a sphere is given
by 4πr3 / 3, where π = 3.142 and r is the radius of the sphere.)

The chains of polysaccharide (average mol. wt 500 000 Da) project outwards
perpendicularly from the organism (see Fig. 15.3), and each chain has glucose at
its terminus (remote from the organism). Calculate howmany of these terminal
molecules of glucose are exposed to the medium at the outer surface of the
capsule of one organism. (Avogadro’s number is 6 × 1023 molecules mol–1.)

Calculate the outer surface area of the capsule of one organism and hence
determine the number of terminal glucose molecules per μm2 of capsular
surface. (The surface area of a sphere is given by 4πr2.)

Problem 26 (Professor A. Moir)

A mutant derivative of Staphylococcus aureus has been isolated that con-
tains a transposon (Tn200) (see Fig. 15.4) in a gene important for virulence
(virA). This mutant strain was called SA43.

1.0 µm

Organism

0.5 µm

Capsule

Polysaccharide chain
(not to scale)

Terminal glucose
(not to scale)

Fig. 15.3 Diagram of organism, capsular polysaccharide and terminal
glucose residues.
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Chromosomal DNA from this mutant has been isolated, and then
digested with restriction enzymes EcoRI and HindIII, singly and in combi-
nation. After agarose gel electrophoresis, the digests were probed in a
Southern blot.
The probe used consisted of labelled DNA derived from a plasmid

carrying the transposon, but carrying no S. aureus chromosomal DNA.
This probe did not detect any DNA fragments in digests of chromosomal
DNA of S. aureus that did not contain the transposon.
The results obtained by probing digests of SA43 DNA are tabulated

below.

Enzyme(s) used in digest
Size (kbp) of fragments
hybridising to probe

EcoRI 5.8, 2.3
HindIII 5.2, 2.5
EcoRI + HindIII 3.8, 2.0, 1.4

(1) Deduce the restriction map of the region of the chromosome of SA43
around and including the transposon insertion, pointing out those
fragments that hybridise with the probe in each digest. Outline the
stages of your deduction in your answer.

(2) Deduce the restriction map of the chromosome of the wild-type strain
in this region.

(3) How many hybridising bands might you have expected to see in a
Southern blot of similar digests if a strain were to contain two Tn200
insertions, located in different regions of the chromosome?

Problem 27

Autoclaving an aqueous suspension of bacterial endospores releases quan-
titatively their content of dipicolinic acid (DPA). The absorption at 440 nm

E H

0.5 3.8 1.0

Fig. 15.4 Transposon Tn 200 (5.3 kbp). E is an EcoRI site;H is aHindIII site.
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of the Fe2+ complex of dipicolinic acid provides a means of assaying this
acid in solution. Use the data below to draw a standard curve for this
colorimetric assay.

Every tube in the assay contained 4 ml of a buffered solution of ferrous
sulphate plus a reducing agent (ascorbic acid). Additions were made as
below to give in each tube a total volume of 5 ml before measuring the
extinctions against a zero of buffered ferrous sulphate plus ascorbate.

Tube number

1 2 3 4 5 6

Water 1.0 ml 0.9 ml 0.8 ml 0.7 ml 0.5 ml 0
Dipicolinic acid

(1mg ml−1)
0 0.1 ml 0.2 ml 0.3 ml 0.5 ml 1.0 ml

Extinction at 440 nm
(1 cm lightpath)

0.002 0.115 0.234 0.361 0.601 0.892

(1) A suspension of spores (50mg dry wt in 5ml water) was autoclaved,
cooled and the insoluble material removed by centrifuging. Under the
standard conditions for assay of dipicolinate a sample (1ml) of this extract
gave an extinction of 0.533. Express the content of calcium dipicolinate
in these spores as a percentage (w /w) of the dry wt of the spores. (The
mol. wt of dipicolinic acid is 167 Da, and the atomic wt of Ca2+ is 40 Da.)

(2) Determine the molar extinction coefficient of the Fe2+ complex of
dipicolinate at 440 nm.

(3) Dipicolinate in these same spores was assayed by a different method.
Dipicolinate was extracted from the spores (2mg) by heating with 95%
(v / v) aqueous ethanol + water + acetic acid (3 : 1 : 0.04 (v / v); 2 ml total
vol.) at 100 °C for 1 h in a sealed tube. After centrifuging and removing
the supernatant liquid to a clean tube, the solid residue was re-extracted
with 80% (v / v) aqueous ethanol (2 ml) then recentrifuged, and the
supernatant liquid added to the first extract. This combined extract was
evaporated to dryness then 4 ml of 5mM Ca(OH)2 was added and the
mixture again centrifuged. The optical density at 270 nm of the final
supernatant liquid (a measure of calcium dipicolinate) was too high to
read accurately. After dilution of this liquid (1.0 ml + 4.0 ml water) the
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optical density (1-cm lightpath) at 270 nm was 0.154. The extinction
coefficient of calcium dipicolinate is 5.4 × 103 Lmole 1 cm 1 at 270 nm.
Calculate the content of this compound in the spores as % (w / w). Do
the results of the two methods of assay agree?

Problem 28 (Dr D. J. Gilmour)

A thermophilic bacterium was grown in a chemostat culture at 55 °C in a
defined medium in which glucose was the limiting nutrient (Sr = 10mmoles
L 1). A range of steady states was achieved and at each steady state the
biomass, the extracellular concentration of glucose in the culture vessel and
the respiration rate (qoxygen) were determined. The results are shown below.

Dilution
rate
(D) (h−1)

Biomass
(g L−1)

Glucose
(µgml−1)

Respiration rate
(qoxygen) (mmoles O2

(g bacteria)−1 h−1)

0.1 2.54 1.7 3.3
0.2 2.46 2.3 4.9
0.3 2.32 3.8 6.5
0.4 2.04 5.5 8.1
0.5 1.74 7.4 9.8
0.6 1.42 10.2 11.0

(1) Plot qoxygen versus µ to determine the maintenance energy (qm, mmol
g 1 h 1) with respect to oxygen. Then calculate the yield value attributed
to growth alone (Yg g mol 1) for oxygen.

(2) Plot 1 / µ against 1 / s and hence calculate the maximum growth rate
(µmax, h

1) and the saturation constant (Ks, mmol L 1) with respect to
glucose.

(3) The experiment was repeated at 70 °C, but owing to problems with
maintaining this high temperature only two steady states were achieved
and no respiration rates were measured. The results are shown below.

Dilution rate (D) (h−1) Biomass (g L−1) Glucose (µg ml−1)

0.3 3.7 2.2
0.4 2.4 5.1
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Use the equation shown below to calculate the µmax (h
1) and Ks (mmol l 1)

values at 70 °C.

Ks ¼ s1ðμmax � D1Þ = D1 ¼ s2ðμmax � D2Þ = D2

(The molecular weight of glucose is 180.)

Problem 29

The enzyme transketolase catalyses the formation of erythrose 4-phosphate,
which is needed in the formation of aromatic amino acids: one molecule of
erythrose 4-phosphate is used in making one molecule of any aromatic
amino acid.

(1) Calculate the amount of erythrose 4-phosphate (nmoles) needed to
form 1mg (dry wt) of bacteria. Assume that aromatic amino acids
(average mol. wt 165) represent 15% (w /w) of bacterial protein, and
that protein makes up 50% of the dry wt of a bacterium.

(2) An extract was made from bacteria out of an aerobic culture that was
growing exponentially with a doubling time of 120 min in a medium
containing only glucose and inorganic salts. The specific activity of
transketolase in this extract was 10 nmol min 1 (mg protein) 1. Is the
rate of growth of these organisms likely to be limited by the activity of
transketolase if the action of this enzyme is the only way by which
erythrose 4-phosphate can be produced?

Problem 30 (Professor A. Moir)

Plasmid vector pX1, 3.5 kbp in size, can replicate in Escherichia coli, but not in
Staphylococcus aureus. If a fragment of S. aureus DNA is cloned into this
plasmid, it provides a region of homology that can recombine with the
equivalent region on the bacterial chromosome, so that a single crossover
results in addition of the hybrid plasmid into the staphylococcal chromosome.

In order to inactivate the purA gene, plasmid pX1 was linearised by
digestion with HindIII and EcoRI (these sites are adjacent within a cluster
of restriction enzyme sites in the multiple cloning site of the vector) and
ligated with a 0.4 kbp HindIII–EcoRI fragment of S. aureus chromosomal
DNA. This DNA had been derived from a clone carrying the purA gene.
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The resulting plasmid pX2 was introduced into S. aureus, and recombin-
ants were selected in which this plasmid had integrated into the chromo-
some. DNA was isolated from one such transformant, digested, and the
fragments separated by agarose gel electrophoresis.
A probe was prepared from the entire pX1 vector DNA. No bands were

seen when this probe was hybridised to blots of wild-type chromosomal
DNA. A probe was also prepared from the 0.4 kbp insert fragment of pX2.
The results of the Southern blots of digests of chromosomal DNA from

the transformant are shown below.

Enzyme(s) used
in digest Probe

Size (kbp) of hybridising
fragment

EcoRI pX1 3.9
HindIII pX1 3.9
EcoRI + HindIII pX1 3.5
EcoRI 0.4 kbp insert 3.9, 1.6
HindIII 0.4 kbp insert 7.5, 3.9

(1) Draw a diagram of the hybrid plasmid, and the expected integration
process.

(2) Draw a restriction map of the region around and including the inserted
plasmid, showing clearly how the hybridisation pattern shown above is
explained by your proposed map.

(3) For each of three digests of wild-type chromosomal DNA (EcoRI,
HindIII and a double EcoRI + HindIII digest), predict the size of
labelled bands detected if the 0.4 kbp insert were used as probe.

Problem 31

(1) Calculate the energy (in kcal) delivered by one mole of photons of
wavelength 740 nm. Determine the potential to which an electron
could be driven, by this energy, from the reaction centre (RC) of a
green sulphur bacterium, where:

RC ! RCþ þ e ; E 0
0 ¼ þ 0:6V
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(2) Do similar calculations for light of 850 nm wavelength received by the
RC of a purple sulphur bacterium, where the RC has an electrode
potential of E0′ = + 0.8V.

(3) One candela ofwhite light delivers approximately 2×1014 quanta s–1 / cm–2.
Assume that 10%of thesequanta are atwavelengths that are absorbedby the
photosynthetic apparatus and that 6.02×1023 of suchquantadeliver 40kcal.
How much energy is available for photosynthesis from an illumina-

tion of 500 candela of white light falling evenly on a culture of cyano-
bacteria (100 cm2 transparent surface area) for 1 h?

Problem 32 (Professor D. J. Kelly)

A sample of [35S]-methionine containing 0.1 µg of this amino acid was
counted at 82% efficiency in a liquid scintillation counter, giving a figure of
3570 cpm. The background count was 18 cpm.

(1) Calculate the specific activity of the sample as kBqmg–1.
(2) Another sample from the same batch of [35S]-methionine was used

10 days later to label a protein during an in vitro translation.What is the
specific activity of sample (expressed as kBqmg–1) at the time of doing
the experiment?

(3) In the labelling experiment, 1mg of the [35S]-methionine was added to
unlabelled methionine in the 1 m1 translation mix to give a total
concentration of 50mM methionine. The purified translated protein
(0.3mg) gave a count of 537 dps (corrected for background and count-
ing efficiency). Howmany µmoles of methionine were incorporated per
mg of translated protein?
Given that the molecular weight of the protein is 14 925, how many

methionine residues does it contain?
1 Bq = 1 dps (disintegration per second)
cpm = counts per minute
The half-life of 35S = 87.1 days

Problem 33

The enzyme diaminopimelate epimerase catalyses the reaction:

LL-diaminopimelate $ meso-diaminopimelate
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The epimerase gives a mixture of the two isomers, and the optimum pH
value is 8.0: there is no activity at pH 10.5. An activator (1mM 2,3-
dimercaptopropan-1-ol) is required. A unit of this enzyme isomerises
1 µmol of LL-diaminopimelate min 1 at pH 8 and at 30 °C, when the initial
concentration of LL-diaminopimelate is 10mM.
The enzyme meso-diaminopimelate dehydrogenase catalyses the

reaction:

meso-diaminopimelate þ NADPþ !
l-Δ1-tetrahydrodipicolinateþ NADPH þ Hþ þ NH3

The dehydrogenase is specific for the meso-isomer, and the optimum
pH value is 10.5, though activity is considerable at pH 8.0. One unit of this
enzyme catalyses the formation of 1 µmol of NADPH min 1 at 30 °C and
at pH 10.5, when the initial concentration of meso-diaminopimelate is
3mM.
In order to devise a spectrophotometric assay for the epimerase a series of

mixtures was prepared in quartz cuvettes of 1-cm lightpath:

Mixture number 1 2 3 4 5 6 7 8

meso diaminopimelate (30mM) 0.3 0.3
LL diaminopimelate (100mM) 0.3 0.3 0.3 0.3 0.3 0.3
Diaminopimelate
dehydrogenase (1 unit ml−1)

0.5 0.5 0.5 0.5 0.5 0.5

Diaminopimelate epimerase
((8mg protein) ml−1)

0.2 0.2 0.05 0.1 0.15 0.2

All quantities in this table are in ml. Every mixture also contained:
phosphate buffer, pH 8.0 (300 µmoles); 2,3-dimercaptopropan-1-ol
(3 µmoles); NADP (3 µmoles); and water (to 3 ml final volume in every
case).
Each mixture was prepared without diaminopimelate, and was equili-

brated at 30 °C in a recording spectrophotometer. The appropriate isomer
of diaminopimelate was then added, and the initial rate of change of
extinction was measured at 340 nm for each mixture in turn, against a
zero cuvette which contained all the reactants (as above) except the
enzymes. These rates (expressed as change of extinction per min) were:
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Mixture 1 0.35 Mixture 5 0.041
Mixture 2 0.00 Mixture 6 0.083
Mixture 3 0.00 Mixture 7 0.11
Mixture 4 0.00 Mixture 8 0.13

(1) What is the ratio of the activity of diaminopimelate dehydrogenase at
pH 8.0 to the activity of this enzyme at pH 10.5, with meso-
diaminopimelate as substrate?

(2) Plot the measured activity (units ml 1) of the epimerase with LL-
diaminopimelate against the volume of this enzyme used in the assay.
What is the best estimate of the activity of the epimerase (units (mg
protein) 1)?

(3) What is the smallest number of units of diaminopimelate dehydrogen-
ase that should be added to a cuvette at pH 8.0 (3 ml total volume as
before) to assay reliably 0.1 ml of a solution known to contain about
1 unit of diaminopimelate epimerase ml 1?

The millimolar extinction coefficient of NADPH at 340 nm is 6.22 L
mmol 1 cm 1, and may be assumed to be the same at pH 8.0 and at
pH 10.5.

Problem 34

One more for fun. If this is data-handling then where are the data? They
can be found. Think logically and mathematically. There is no catch, and
it can be done.

Two mathematicians (Smith and Jones), who had been friends as under-
graduates but had been out of touch for several years, were reunited at a
meeting. The following conversation took place.

Jones: Since last we met I have married, and I have three children.
Smith: How old are they?
Jones: Work it out. The product of their three ages in years equals your

own age.
Smith: I need more than that.
Jones: Right, the sum of their ages equals your room number in our

hotel.
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Smith: I still can’t be sure.
Jones: What if I tell you that the eldest bites his nails?
Smith: Now I think I know.

Smith then gave the three ages correctly.
What were the ages of the children?
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16 Advice and hints

Below are Michelin star ratings for the difficulties of the problems:

* Easy, even though might be long
** Average, you should be able to cope
*** Hard, not obvious what to do, but not necessarily long

These ratings are based on my own opinions and on the experiences of
students who have had to do battle with many of the problems. It’s fairly
certain that you will not find all the ‘Easy’ questions to be easy, but starting
with them is still a good idea.

Comments after the ratings are intended as helpful
hints

Problem 1 ** Note carefully the volumes of sulphuric acid and chloro-
form that are used.

Problem 2 * (some parts) ** (some parts) Read about logarithms.
Problem 3 **
Problem 4 * The x’s cancel out.
Problem 5 *(*) Not quite so easy.
Problem 6 ** Just bash through – no great difficulties.
Problem 7 ** Read about enzymes and energy metabolism.
Problem 8 * It’s tedious though.
Problem 9 *** The maths may be hard for some people. Read about

logarithms.
Problem 10 *
Problem 11 * Divide % (w /w) by atomic weights.
Problem 12 *
Problem 13 **
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Problem 14 **
Problem 15 *(*) Few get this right. Pick up clues in the introductory

material.
Problem 16 *
Problem 17 *** No student can do this. It is essentially the glutamate

synthase calculation (see Chapter 8: Enzymes) in reverse.
Problem 18 * Keep track of volumes: ml of what at all stages.
Problem 19 **(*)
Problem 20 **
Problem 21 *(*) Easy if you can do restriction mapping.
Problem 22 ** Long, but not hard if you follow the sequence of steps.
Problem 23 *(*)
Problem 24 *** Long, and a nasty one, but quite do-able.
Problem 25 ** Watch the units carefully.
Problem 26 **(*) A nice one.
Problem 27 *(*) Routine.
Problem 28 ** You need to know the formulae. Read Chapter 13 (Growth

in continuous culture).
Problem 29 *(*)
Problem 30 **(*) Not too hard if you can do the mapping.
Problem 31 * Unfamiliar but easy (see Chapter 10: Energy metabolism).
Problem 32 *(*)
Problem 33 * The graph is really superfluous.
Problem 34 * or *** Depends on seeing what to do. What isn’t Smith’s age?
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17 Answers to problems

‘I am afraid that I rather give myself away when I explain,’ said he. ‘Results without
causes are much more impressive.’

A. Conan Doyle

Calculation from graphs (Chapter 3)

The only real difficulty is in thinking how to make an equation that will
allow you to solve the problem. Once the idea has come, the calculation is
lengthy, but is just a lot of easy algebra.

The key is to say: let x minutes = number of minutes (after 180 min) at
which strains A and B are present in equal numbers per ml. Then x / 45 and
(x + 60 ) / 30 are the number of doublings of the two strains at x + 180min.

Now we can write 1000 × 2x/45 = 20 × 2(x+60)/30 and can solve for x,
provided that logarithms to base 2 are not too alarming.

Cancel the 20, so that 50 × 2x/45 = 1 × 2(x+60)/30

Now take logarithms to base 2:

log2 50þ x=45 ¼ ðx þ 60Þ=30
log2 50 ¼ ðx þ 60Þ=30� x=45 ¼ ð3x þ 180Þ=90� 2x=90

¼ ðx þ 180Þ=90
90� log2 50 ¼ x þ 180

x ¼ 90� log2 50� 180

ðlog2 50 ¼ log10 50= log10 2 ¼ 1:6989=0:3010 ¼ 5:644Þ
x ¼ 90� 5:644� 180 ¼ 328 min

Hence the time since inoculation when the two strains are equal is 328 +
180 = 508 minutes.

The number of organisms of strain A per ml will then be 1000 × 2328/45
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¼ 1000� 27:289

¼ 1� 103 � 1:56� 102 ¼ 1:56� 105

The number of organisms of strain B should then be the same, so that the
total organisms per ml at 508 minutes is 3.12 ×105

(Check: number of organisms of strain B per ml = 20 × 2388/30

¼ 20� 212:93 ¼ 20� 7:80� 103 ¼ 1:56� 105:Þ
Now we can find the time (after 508 minutes) when strain B is in twofold

excess of strain A. At this time (y min after 508 min) we shall have:

1� 2y=30 ¼ 2� 2y=45

Again taking logarithms to base 2 we get:

y=30 ¼ 1þ y=45

1 ¼ y=30� y=45 ¼ 3y=90� 2y=90 ¼ y=90

Hence y = 90 min

Strain B becomes twofold in excess of strain A at 508 + 90 = 598 min
Strain A is just twofold in excess of strain B at 508 – 90 = 418 min

The whole calculation can be done differently if you prefer to use the
equation nx= n0e

µx. Again x = minutes (after 180 min) at which the two
strains are present in equal numbers.
Then we must first evaluate µ for each strain:

μA ¼ 0:693=45 ¼ 0:0154 min 1;

μB ¼ 0:693=30 ¼ 0:0231 min 1

We can write ln nA + µAx = ln nB + µB(x + 60) (nA = initial number of
strain A ml–1; nB = initial number of strain B ml–1).
So ln 1000 – ln 20 = µB(x + 60) – µAx

6:9076� 2:9957 ¼ 0:0231ðx þ 60Þ � 0:0154x

3:9119 ¼ 0:0231x þ 1:386� 0:0154x

3:9119� 1:386 ¼ 0:0077x

2:5259=0:0077 ¼ x ¼ 328min

Strain A count at 328 min = nA328
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ln nA328 ¼ðln 1000þðμA � 328Þ¼ ð6:9076þð0:0154� 328Þ¼ 11:96

e11:96 ¼ 1:56� 105ml 1

You can work out the rest if you want!
The graphical approach is easier, don’t you think?

Problem 1

First, find out how much crotonic acid was present in the sulphuric acid.

A 1M solution of crotonic acid in sulphuric acid has an absorbance of
1.56 × 104

Hence a 1mM solution ( 1 µmol ml 1) has an absorbance of 1.56 × 101

Therefore an absorbance of 1.0 represents 1 / 15.6 µmol ml 1

And so an absorbance of 0.438 represents 0.438 / 15.6 µmol ml 1

Hence, in 10 ml of sulphuric acid there are 10 × 0.438 / 15.6 µmol
crotonic acid = 0.281 µmol crotonic acid.

1 molecule of crotonic acid is equivalent to 1 repeating unit of poly
β-hydroxybutyrate

This repeat unit has a relative molecular mass of (4 × 12) + (6 × 1) +
(2 × 16) = 86 Da

Consequently, 0.281 µmol crotonic acid represents 0.281 × 86 µg poly
β-hydroxybutyrate = 24.2 µg poly β-hydroxybutyrate.

The extract in chloroform therefore contained 24.2 µg poly
β-hydroxybutyrate in 1 ml

In 50 ml of chloroform there was 50 × 24.2 µg poly β-hydroxybutyrate=
1210 µg

This weight of poly β-hydroxybutyrate came from 5 ml of bacterial
suspension

20 ml of this suspension had a dry wt of 24mg
5 ml therefore had a dry wt of 6mg

Now we can say that 6mg dry wt of bacteria contained 1.21mg poly
β-hydroxybutyrate
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%ðw=wÞ poly β-hydroxybutyrate ¼ 1:21� 100=6 ¼ 20:2%

(This result is typical for Bacillus megaterium grown on glucose as sole
source of carbon. Not many species make as much poly β-hydroxybutyrate
as can Azotobacter spp.)

Problem 2

(1) x
(2) 2x / y2

(3) x12

(4) 27x9

(5) x2

(6) x–1.25

(7) 2√x
(8) (x2 / y2 ) + 1
(9) 4
(10) 5
(11) 7
(12) 4
(13) 0.954
(14) 1.079
(15) –0.125
(16) 0.3597
(17) 0.8405
(18) 0.778
(19) x = cy

(20) x = cy/2

(21) x = y√c (because xy = c)
(22) x = c2y (because 2y = logc x)
(23) x= logc y and x= ln y / ln c (because ln y=x ln c); hence log c y= ln y / ln c
(24) 5.1699
(25) –0.4112
(26) 13.235
(27) 0.3515
(28) 1.8369
(29) 1.1892
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(30) 16
(31) 19.8130
(32) 1.4186
(33) £162.89; 164 organisms (or 165; 164.87 is the precise answer). The two

answers differ because the interest is given in 10 discrete steps, while
the culture, though growing at the same percentage rate as the money,
increases continuously.

(34) 1683 dpm; decay constant = 0.0495 day 1

(35) Doubling time = 1 h
μ = 0.693 h 1

The exponential phase ends at approx. 630 min; the exponential phase
begins sometime before 290 min of incubation

(36) (a) 8.5 min; (b) 2.7 min; (c) 0.023%
(37) –0.602 (4 M H+)
(38) 13.48
(39) 0.824
(40) 31.

Problem 3

(1)

Glucose-grown organisms
Suspension

1 ml suspension (undiluted) hydrolysed 1.2 µmol ONPG in 30 min
So, 1 ml suspension (undiluted) hydrolyses 0.04 µmol ONPG min 1

0.5 ml suspension (diluted 1 : 50) contained 46 µg protein
∴ 0.5 ml suspension (undiluted) contained 2300 µg protein
∴ 1 ml suspension (undiluted) contains 4.6mg protein
0.04 µmol ONPG hydrolysed by 1 ml suspension ( 4.6mg protein)
min 1

∴With suspension, 0.0087 µmolONPGhydrolysedmin 1 (mgprotein) 1

Extract
1 ml extract (undiluted) hydrolysed 0.8 µmol ONPG in 10 min
So, 1 ml extract (undiluted) hydrolyses 0.08 µmol ONPG min 1
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0.5 ml extract (diluted 1 : 100) contained 20 µg protein
∴ 0.5 ml extract (undiluted) contained 2000 µg protein
∴ 1 ml extract (undiluted) contains 4mg protein
0.08 µmol ONPG hydrolysed by 1 ml extract ( 4.0mg protein) min 1

∴ With extract, 0.02 µmol ONPG hydrolysed min 1 (mg protein) 1

Lactose-grown organisms Similar reasoning to the above gives:

Suspension 0.02 µmol ONPG hydrolysed min 1 (mg protein) 1

Extract 2.5 µmol ONPG hydrolysed min 1 (mg protein) 1

(2) In the suspension of glucose-grown organisms the specific activity of
β-galactosidase (µmol ONPG hydrolysed min 1 (mg protein) 1) is low
(0.0087) while in the extract of these organisms the specific activity is
somewhat greater (0.02). This suggests that the substrate does not
readily enter the intact bacteria, so that the true specific activity is not
shown when the organisms are undamaged.

In the suspension of lactose-grown organisms the specific activity of
β-galactosidase is again low (0.02) though higher than in the suspension of
glucose-grown organisms (0.0087). The specific activity of β-galactosidase
in the extract of lactose-grown organisms (2.5) is 100 times more than
in the extract of glucose-grown bacteria. This indicates that the enzyme
is induced by lactose, which, in order to be metabolised, must first be
hydrolysed to glucose and galactose by β-galactosidase. Impermeability
to ONPG prevents the activity of β-galactosidase being fully revealed
when the organisms in suspension are unbroken.

Problem 4

(1) From 1 L of culture there are 2 × 109 × 103 organisms, which weigh 2 g
Hence 1 organism weighs 1 × 10–12 g
1 × 10x g organisms contain 6 × 1023 molecules
1 g organism contains 6 × 10(23–x) molecules
1 × 10–12 g organisms (one organism) contains 6 × 10(11–x) molecules
Each molecule contains 1 × 10(x–1) atoms
So 1 organism is made up of approx. 6 × 10(11–x) × 1 × 10(x–1)

atoms = 6 × 1010 atoms
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2 (a) Internal volume = 2 × π × 0.252 µm3 = 0.125 π µm3 = 0.4 µm3

1µm = 1 × 10–6 m
Hence internal volume = 0.4 ×10–18 m3 = 4 × 10–19 m3

(b) A 1M solution of H+ ions in water contains 6 × 1023 H+ ions L–1

At pH 7 (H+ = 1 × 10–7 M) there are 6 × 1016 H+ ions L–1

and 1 L = 1 × 10–3 m3

So, at pH 7 there are 6 × 1019 H+ ions per m3

Thus in 1 ×10–19 m3 there are 6 H+ ions at pH 7
In one organism there are 4 × 6 H+ ions = 24 H+ ions

Problem 5

2.75 × 103 dpm 1 μg 3H thymidine
∴ 2.0 × 103 dpm taken up 2.0/2.75 μg thymidine

Hence, weight of staphylococci in film = (2.0 × 100) / (2.75 × 0.3) µg = 242 µg
This is the same as 242 × 10–6 g
∴ Number of organisms in film = (242 × 10–6) / (5 × 10–13) = 48.4 × 107 =

4.84 × 108

7mm =7000 μm and 25mm =25000 μm, so area of slide =7 × 103 × 25 ×
103 = 175 × 106 μm2

Number of spheres (radius = 0.5 μm) that can pack this area is (1.75 × 108) /
(0.52 × 2 × √3)

= 2.02 × 108

∴ Number of layers formed by 4.84 × 108 organisms = (4.84 × 108) /
(2.02 × 108) = 2.4

Oneof these layers is bottom, attached to glass, so that%attached=1×100 /
2.4 =41 %

Reasons for overestimate of fraction (%) attached (in probable decreasing
order of importance):

(i) The attached organisms are very unlikely to achieve an even, close-
packed distribution over the slide.

(ii) If the organisms continue to synthesise (unlabelled) thymidine
from its precursors when 3H-thymidine is in the medium then
the incorporated dpm will be an underestimate of the total
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thymidine (labelled and unlabelled) in the biofilm, and so an
underestimate of the total number of bacteria in the film.

(iii) Incorporated 3H-thymidylic acid will be in DNA in the middle of
each organism, so that there may be some attenuation of the true
count (owing to self-absorption) which means that the amount of
3H-thymidylic acid inside the bacteria (and so the organisms
themselves) will once again be underestimated.

Problem 6

(i) Medium A contains 20mM fructose and 2.0 g (NH4)2SO4 L
–1

1mM fructose 180mg fructose L–1

20mM fructose 3.6 g fructose L–1

1 g fructose can yield 0.7 g bacteria
∴ 3.6 g fructose can yield 2.52 g bacteria

The fructose in 1 L of medium A can yield 2.52 g bacteria
The mol. wt of ammonium sulphate is (18 × 2) + 32 + (4 × 16)
= 132

132 g ammonium sulphate contain 28 g nitrogen
1 g ammonium sulphate contains 28 / 132 g nitrogen
2.0 g ammonium sulphate contain 28 × 2 / 132 g nitrogen = 0.42 g
nitrogen

15 g nitrogen can yield 100 g bacteria
1 g nitrogen can yield 100 / 15 g bacteria = 6.67 g bacteria
0.42 g nitrogen can yield 6.67 × 0.42 g bacteria = 2.8 g bacteria

The ammonium sulphate in 1 L of medium A can yield 2.8 g
bacteria
Thus, the medium is carbon-limited for growth.

(2) Tris mol. wt = 16 + 12 + (31 × 3) = 28 + 93 = 121
121 g L–1 = 1 M; 121 / 4 g L–1 = 250mM

121/4 ÷ 200 g in 5 ml = 250mM

0.2 ml of this stock solution made up to 1 ml will be 50mM Tris

MgCl2 mol. wt = 24 + 71 = 95
95mg L–1 = 1mM : 95 × 50mg L–1 = 50mM

95 × 50 ÷ 200mg (= 23.8mg) in 5ml = 50mM

0.1ml of this stock solution made up to 1ml will be 5mM MgCl2
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EDTA mol. wt = [14 + 14 + (14 + 28 + 16 + 1)2]2 = [28 + (59 × 2)]2
= (28 + 118) × 2 = 146 × 2 = 292

292mg L–1 = 1mM 29.2mg in 100ml
Take 0.5ml of this solution and make up to 5ml (= 0.1mM)
0.1ml of this stock solution made up to 1 ml will be 0.01mM

EDTA

NADP mol. wt = 92 + (12 × 21) + 26 + (7 × 14) + (17 × 16) + 93
= 92 + 252 + 26 + 98 + 272 + 93 = 833
833mg L–1 = 1mM; 4 × 833mg L–1 = 4mM

4 × 833 ÷ 200mg (= 16.7mg) in 5ml = 4mM

0.1 ml of this stock solution made up to 1ml will be 0.4 mM

NADP

Linkage enzyme solution is 300 units per ml
Take 0.5 ml and make up to 5 ml with appropriate buffer =
30 units ml 1

0.1 ml of this stock solution made up to 1 ml will give 3 units
Fructose-1,6-bisphosphate mol. wt = 72 + 11 + (12 × 16) + 62 + 69 +
(8 × 18) = 83 + 192 + 62 + 69 + 144 = 550

550mg L–1 = 1mM; 550 × 20mg L–1 = 20mM

550 × 20 ÷ 200mg (= 55mg) in 5 ml will be 20mM

0.1ml of this stock solution made up to 1ml will be 2mM fructose-
1,6-bisphosphate

(3) An extinction of 6.22 × 103 1 M NADPH 1mmol ml 1

∴ 6.22 1 μmol ml–1 and extinction of 1 1/6.22 μmol ml–1

so that extinction x x / 6.22 µmol ml 1

and 0.209 0.209 / 6.22 µmol ml 1 = 209 / 6.22 nmol ml 1 =
33.6 nmol ml 1

This amount is formed in 1 min by 0.01 ml extract
1 ml extract forms 3360 nmol / min
25 ml extract makes 84 000 nmol / min
Specific activity = 3360 / 1.9 = 1770 nmol min 1 (mg protein) 1

The activities of the two supernates can easily be found by proportion:

e:g: Δ340 nm of 0:121 � 33:6� 121=209 ¼ 19:5 nmol ml 1
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Problem 7

(1) 1 M MV- has an extinction of 7.4 × 103

∴ extinction of 1 ¼ 1=ð7:4� 103Þ mol L 1

� 1=ð7:4� 103Þ mmolml 1

1=7:4 μmol ml 1

A change of extinction of 0.18 min–1 0.18 / 7.4 µmol ml–1 min 1

∴ in 3 ml (cuvette contents) 0.54 / 7.4 µmol formed min–1 by 0.1 ml
extract

Hence, 1 ml extract forms 5.4 / 7.4 µmol min–1 = 730 nmol min–1

The extract contained 14.3mg protein ml–1

So, specific activity of the enzyme is 730 / 14.3 = 51 nmol min 1

(mg protein) 1

ð� 0:051 unit ðmg proteinÞ 1Þ
(2) 1mg of purified enzyme contains 0.97 µg nickel

1 g will contain 0.97mg Ni
1 kg will contain 0.97 g Ni
60 kg (one mole of this enzyme) will contain 60 × 0.97 g Ni = 58 g
This is very nearly = 1 g atom Ni
One molecule of the enzyme contains 1 atom of nickel

(3) Specific activity of pure enzyme is 100 × that of the extract
and so is 5.1 µmol (mg protein) 1 = 5.1 units / (mg protein) 1

Assume that there is one active site (one atom of nickel per molecule
of enzyme)

Treatment
of extract

Vol.
in
assay
(ml)

Total
vol.
(ml)

Δ340nm

optical
density
min−1

Activity
(nmol
min−1

ml−1)

Total
activity
(nmol
min−1)

Specific
activity (nmol
min−1 (mg
protein)−1)

Crude
extract

0.01 25 0.209 3360 84 000 1770

Acid
supernate

0.01 27.5 0.121 1950 53 600 1770

(NH4)2SO4

supernate
0.02 30.5 0.151 1215 37 100 2530
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∴Turnover number= 5.1 × 60 000 × 10–3 / 60 × 1 = 5.1molecules s 1

(4) We have two half-reactions:

COþH2O ! CO2 þ 2Hþ þ 2e

and

2MVþ 2Hþ þ 2e ! 2MV þ 2Hþ

Overall CO + H2O + 2MV → CO2 + 2H+ + 2MV–

ΔE0′ for this is + 0.09 V, and two electrons are transferred
∴ΔG0′ = –2 × 0.09 × 23 061 cal = 4159 cal = 4.2 kcal (mol CO)–1

Bear in mind the natural final electron-acceptor is likely to have a
more positive E0′ value than doesMV, so that the yield of energymay be
greater, per mole of CO oxidised, than is shown by the above
calculation.

Problem 8

(1) Na2SO4.10H2O mol. wt = (22.9 × 2) + 32 + (16 × 4) + (10 × 18) = 321.8
Therefore 321.8 g Na2SO4.10H2O contains 32 g S
And 321.8 / 32 g Na2SO4.10H2O contains 1 g S
Hence 10.06 gNa2SO4.10H2O in 1 Lwill have 1 g S L–1 = 1mg Sml–1 =

1000 µg S ml–1

1.006 g Na2SO4.10H2O in 1 L will give 100μg S ml–1. Call this
solution A. For standard curve prepare:
0.2 ml A + 0.8 ml water (20 μg S)
0.4 ml A + 0.6 ml water (40 μg S)
0.6 ml A + 0.4 ml water (60 μg S)
0.8 ml A + 0.2 ml water (80 μg S)
1.0 ml A (100 μg S)
Na2S2O3.5H2O mol. wt = 247.8, so that 247.8 g contains 64 g S
And 247.8/64 g contains 1 g S
3.872 g L–1 gives 1 g S L–1

387mg in 1 L will give 100 µg S ml–1. Call this solution B.
Use solution B as above (in place of A) to make a standard curve.

(2) Plotting the data for the standard curves (OD against µg S ml–1) gives
two straight-line graphs, from which one can read off values for µg S
ml–1 from the OD readings of the test samples:
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SO4
2– S (µg S ml–1) S2O3

2– S (µg S ml–1)

85 90
100 85
95 85
90 79

SO4
2––S in soil

1 g soil in 25 ml, 1 ml of this made up to 5 ml.

∴ 1ml assayed represents 1=125 g soil

∴ 93 μg S ðaverage of 4 estimatesÞ in 1=125 g soil

93� 125 μg S in 1 g soil ¼ 11 625 μg

11:6mg S as SO2
4 per gram of soil

S2O3
2– –S in soil

5 g soil in 20 ml, 1 ml of this made up to 5 ml.

∴ 1ml assayed represents 5=100 g soil

∴ 85 μg S ðaverage of 4 estimatesÞ in 1=20 g soil

85� 20 μg S in 1 g soil ¼ 1700 μg

1:7mg S as S2O
2
3 per gram of soil

Problem 9

When Vw = 10 ml then:

Cw ¼ 0:5� 0:5=eð10=50Þ ¼ 0:5� 0:5=1:221 ¼ 0:5� 0:409
¼ 0:091m

Similarly,

When Vw = 20 ml then Cw = 0.165 M

When Vw = 30 ml then Cw = 0.226 M

When Vw = 50 ml then Cw = 0.316 M

When Vw = 75 ml then Cw = 0.388 M

When Vw = 100 ml then Cw = 0.432 M

When Vw = 150 ml then Cw = 0.475 M
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Now a graph can be drawn (see Fig. 17.1).
When the concentration withdrawn is 0.25 M then

Vw ¼ 50� ln ½0:5=ð0:5� 0:25Þ� ¼ 50� ln ð0:5=0:25Þ ¼ 50� ln 2

¼ 50� 0:693 ¼ 34:7ml

The value of Vw read from the graph should be approximately the same.

Cw ¼ CR � CD e ðVw=VmÞ

Rearranging, CD=eðVw=VmÞ ¼ CR � Cw

Multiply both sides of this equation by eðVw=VmÞ

CD ¼ ðCR � CwÞ � eðVw=VmÞ

Divide both sides by (CR – Cw)

CD=ðCR � CWÞ ¼ eðVw=VmÞ

Hence ln [CD / (CR – Cw)] = Vw / Vm

And so

Vw ¼ Vm � ln ½CD=ðCR � CwÞ�
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Fig. 17.1 The gradient is convex.
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The deceptive part of this last calculation is that you need to realise that
fraction 3 (and not fraction 1 or 2) will contain the first 5 ml of the NaCl
gradient. This is a consequence of the void volume of the column, which is
10 ml (equal to two fractions of 5 ml).
Therefore, fractions 3 to 6 represent the first 20 ml of the gradient, which

did not elute the enzyme. When Vw is 20 ml, then Cw will be:

0:4� 0:3=eð20=30Þ ¼ 0:4� 0:3=1:948 ¼ 0:4� 0:154 ¼ 0:246 m

By a similar calculation when Vw is 25 ml (fraction 7) Cw will be 0.270 M

Hence, 0.246 M NaCl was the highest concentration that did not elute the
enzyme.
And 0.270 M NaCl was the lowest concentration that did elute the enzyme.

Problem 10

It’s all too easy to be worth showing the calculations

By solving the equation µmax = 1.00
Then we can find Ks = 1.1
From the graph (not shown) µmax = 1.0

Ks ¼ 1:10

Problem 11

(1) First divide the % (w /w) of each element by its atomic weight to find
the number of atoms in the empirical formula:
Carbon 48% / 12 = 4
Oxygen 32% / 16 = 2
Nitrogen 14% / 14 = 1
Hydrogen 6% / 1 = 6

The empirical formula is C4H6O2N
(2) We have glucose + ammonia + oxygen being converted to C4H6O2N +

CO2 + H2O

C6H12O6 þ NH3 þ xO2 ! C4H6O2Nþ 2CO2 þ 41=2H2O

¼ 2C6H12O6 þ 2NH3 þ xO2 ! 2C4H6O2Nþ 4CO2 þ 9H2O
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On the left we have 12O + x O2 and on the right 21O
Hence, x = 4½
To remove fractions we can now write:

4C6H12O6 þ 4NH3 þ 9O2 ! 4C4H6O2Nþ 8CO2 þ 18H2O

(3) 4C4H6O2N has a weight of 4 × (48 + 6 + 32 + 14) Da = 400 Da
So, 400 g biomass per 9 moles O2 consumed
Hence YO2

= 400 / 9 = 44.4 g (mole O2)
1

(4) 18 atoms of oxygen are consumed in producing 400 g biomass
So 400 g biomass per 36 moles ATP
Hence YATP = 400 / 36 = 11.1 g mole 1

Problem 12

1 M ATP has OD 1.54 × 104 at 259 nm and pH7
1mM ATP has OD 15.4 1 µmole ml 1

∴ OD 1.0 = 1 / 15.4 µmole ml 1

So, OD 0.45 = 0.45 / 15.4 µmole ml 1 = 0.0292 µmole ml 1

Solution B contains 0.0292 µmole ml 1

∴ Solution A contains 2.92 µmole ml 1

And 10 ml solution A contains 29.2 µmoles

29:2 μmoles � 507� 29:2 μg ATP ¼ 14 800 μg ¼ 14:8 mg

∴ % purity ¼ ð14:8=20Þ � 100 ¼ 74%ðw=wÞ

To make 50 ml of 1mM ATP we need 50 µmoles
50 / 2.92 ml A = 17.1 ml gives 50 µmoles
Take 17.1 ml A plus 32.9 ml water

Solution A contains 2.92 µmoles ATP ml 1 = 8.76 µmoles P

� 31� 8:76 μg P ¼ 272 μg P ml 1

0.1 ml solution A contains 27.2 µg P
Dilute solution A 1 ml + 9 ml water (1 : 10) to get solution C containing
27.2 µg P ml 1

There will be 2.72 µg P in 0.1 ml solution C
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Problem 13

(1) The number of fragments arising from a circular plasmid will equal the
number of sites at which restriction endonucleases have attacked
(Fig. 17.2). Thus, there must be one EcoRI site, one BamHI site and
two PstI sites on plasmid pLX100.

The EcoRI + BamHI digest shows that the sites of action of these two
enzymes are 0.9 kbp apart (Fig. 17.3). Note that either representation is
equally good, and so do not become fixed on just one of these at this
stage.

The PstI digest contains two fragments (3.3 kbp and 2.1 kbp), so that
this enzyme must have two sites of action. These two sites have now to
be located in their correct relationships to the EcoRI and BamHI sites.

When PstI is used with EcoRI the 3.3 kbp fragment disappears, and is
replaced by 2.3 kbp and 1.0 kbp fragments, while the 2.1 kbp fragment
remains. Since EcoRI has only one site of action, we can now deduce
that the EcoRI site is 1.0 kbp away from one of the PstI sites, and there
are two possible positions for the BamHI site (Fig. 17.4).

Fig. 17.2 Breakage of a circular plasmid at one site will produce one (linear)
fragment. Breakage at two sites will yield two fragments; three sites will yield
three fragments, and so on.

EcoRI EcoRI

BamHI

0.9 0.9

4.54.5

Fig. 17.3 Relation of EcoRI and BamHI sites on pLX100.
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If the BamHI site were to the right of the EcoRI (in Fig. 17.4) then the
BamHI + PstI digest would have contained fragments of sizes 0.1, 3.2
and 2.1 kbp, which is not what was found. A site to the left of EcoRI
yields fragments of sizes 1.9, 1.4 and 2.1 kbp, which is what was found.
The restriction map must therefore be as shown in Fig. 17.5.

(2) 2 µl of a suspension containing 100 µg ml 1 will contain 0.2 µg pLX100.
Next there are 0.2 µg in 1 ml, so that 2 µl of this suspension will contain
0.0004 µg 0.4 ng
0.1 ml of bacterial suspension taken from a total volume of 1.102 ml
gave 250 colonies

EcoRI
(0.9 kbp) (0.9 kbp)

BamHI?

PstI

PstI

2.3 kbp

1.0 kbp

2.1 kbp

BamHI?

Fig. 17.4 Possible positions of the BamHI site.

EcoRI

0.9 kbp

1.0 kbp

2.1 kbp

1.4 kbp

PstI

PstI

BamHI

Fig. 17.5 Restriction map of pLX100.
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Hence, total transformants = 250 × 11.02 = 2755
So, 0.4 ng plasmid transformed 2755 organisms 6888 transformed
per ng plasmid and 6.89 × 106 transformed per µg plasmid

(3) pLX100 contains 5.4 kbp 5.4 × 103 × 2 × 330 Da per plasmid = 3.56 ×
106 Da
6.02 × 1023 plasmids will therefore weigh 3.56 × 106 g
Therefore 1 g plasmid will contain (6.02 × 1023) / (3.56 × 106)
particles = 1.69 × 1017 plasmids

And 1 µg plasmid will contain 1.69 × 1011 plasmids
So we have 6.89 × 106 transformants from 1.69 × 1011 plasmids

� ð6:89� 106� 100Þ=ð1:69� 1011Þ% of plasmids recovered as

transformants ¼ 4:08� 10 3%

Problem 14

The mol. wt of one unit of polysaccharide polymer is 162 + 146 + 146 + 176 =
630 Da

400 kBq ¼ 2:4� 107 dpm

2.4 × 107 dpm represents 100mg diaminopimelate (= 100 / 190mmole)
Hence 1 × 107 dpm represents 0.219mmole diaminopimelate (= 219 µmole)
And 1 × 103 dpm represents 0.0219 µmole diaminopimelate
Therefore 1 ml of polysaccharide solution contains 0.0438 µmole
diaminopimelate

And 1 ml of polysaccharide solution also contains 40 µmole rhamnose
For 1 molecule of diaminopimelate there are 40 / 0.0438 = 914 molecules
of rhamnose

914 molecules of rhamnose mean 457 polymer units of polysaccharide

Hence the apparent mol. wt is 457 × 630 = 288 000 Da

Problem 15

First we need to find the numbers of survivors per ml of the suspension at
80 °C after various times of exposure to this temperature.
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After 1 min at 80 °C
240 colonies came from 0.1 ml of the buffer suspension at 30 °C
So 2.4 × 103 colonies came from 1 ml of this suspension
and 2.4 × 104 colonies came from 10 ml of this suspension.
This represents the survivors from 0.1 ml of the suspension at 80 °C
Hence there were 2.4 × 105 survivors per ml of the suspension at 80 °C

log10 (survivors per ml at 80 °C) = 5.38

After 2 min at 80 °C
407 colonies came from 0.5 ml of the buffer suspension at 30 °C
So 814 × 102 colonies came from 1 ml of this suspension
and 8.14 × 103 colonies came from 10 ml of this suspension.
This represents the survivors from 0.1 ml of the suspension at 80 °C
Hence there were 8.14 × 104 survivors per ml of the suspension at 80 °C

log10 (survivors per ml at 80 °C) = 4.91
Results for the other times can be worked out similarly:

After 3 min log10 (survivors per ml at 80 °C) = 4.39
After 4 min log10 (survivors per ml at 80 °C) = 3.81
After 6 min log10 (survivors per ml at 80 °C) = 3.48
After 8 min log10 (survivors per ml at 80 °C) = 3.60
After 12 min log10 (survivors per ml at 80 °C) = 3.79
After 18 min log10 (survivors per ml at 80 °C) = 3.78
After 30 min log10 (survivors per ml at 80 °C) = 3.76

(1) The required graph now can be plotted (Fig. 17.6).
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(2) The key to this question is the word ‘spore’. The culture was isolated
from pasteurised soil (which procedure strongly selects for spore-
formers); in the defined medium the organisms have limited carbon
(which promotes sporulation); the culture was sampled late in the
exponential phase of growth (which is when spores begin to be formed
by the majority of the organisms). In spite of these clues about 90% of
the students who attempt the problem have failed to think of spores at
all, and this makes it difficult to achieve a simple or plausible interpre-
tation of the results.

Interpretation The organisms are spore-formers. Sporulation is begin-
ning in the culture in the defined medium when the exponential phase
approaches its end because of starvation of carbon.
Exposure to 80 °C rapidly kills the vegetative bacteria that have not yet

formed spores. The decimal reduction time (the time needed to decrease
the number of viable organisms by a factor of 10) is approximately 2 min at
80 °C. The spores survive at 80 °C for at least 30 min.
The rise in the number of survivors (after the minimum at 6 min)

occurs because these spores require a short exposure to a high temper-
ature (about 10 min at 80 °C) in order to be able to germinate and hence
produce colonies. Heat activation is often seen as a property of bacterial
spores.

(3) To estimate the number of organisms in the culture at time 0 one may
most logically calculate from the number of survivors after 1min at 80 °C.
We do not know for certain that there is any killing during the first
minute. Almost equally reasonably one may assume that killing starts at
once, and so extrapolate the straight line (logarithmic death) upwards
until it intercepts the y axis, and then use this intercept value in the
calculation. Either method would give an acceptable answer to this
question.

Let’s just do the (very slightly) more complicated calculation from
the intercept.
The intercept is at approximately log10 (viable organisms per ml at
80 °C) = 5.9

Hence there are 7.9 × 105 organisms per ml at 80 °C
And so 7.9 × 107 organisms in 100 ml at 80 °C
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These organisms came from 0.1 ml of the culture at 30 °C
The culture contained 7.9 × 108 organisms per ml at time 0.

(4) After 30 min at 80 °C there were 5.8 ×103 colonies from 1 ml of the
suspension at 80 °C
At time 0 there were 7.9 × 105 colonies from 1ml of the suspension at

80 °C

Hence % surviving at 808C for 30 min ¼ ð102 � 5:8� 103Þ=
ð7:9� 105Þ ¼ 0:73%

(If we wanted to be exquisitely fussy we could say that the count
at time 0 might include only vegetative organisms because the
spores would perhaps not have germinated without exposure to
80 °C. The total count per ml of culture should then be 7.9 × 108 +
5.8 × 106 which is 7.9 × 108 + 0.058 × 108 = <8.0 × 108. Thus,
adding the spore count makes very little change in the total count at
time 0.)

Problem 16

(1) Average colonies per plate for soil A = 8.4
These were present in 0.1 ml of the suspension plated
So, 8.4 × 101 ml–1 of suspension plated
And hence 8.4 × 104 ml–1 of suspension in Ringer’s solution
10ml of Ringer’s solution used to suspend organisms from 1 g of soil A
Therefore 8.4 × 105 thiobacilli per g of soil A
Average colonies per plate for soil B = 6.0
By similar reasoning there are 6 × 105 thiobacilli per g of soil B

(2) For soil A median = 9; mean = 8.4

VarianceA ¼ ½ð102 þ 92 þ 92 þ 82 þ 62Þ=5� � 8:42

¼ ½ð100þ 81þ 81þ 64þ 36Þ=5� � 70:56

¼ ð362=5Þ � 70:56 ¼ 72:4� 70:56 ¼ 1:84

Sample variance = 1.84 × 5 / 4 = 2.30
Sample standard deviation (sA) = √ 2.30 = 1.52
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For soil B median = 8; mean = 6.0

VarianceB ¼ ½ð82 þ 82 þ 82 þ 32 þ 32Þ=5� � 62

¼ ½ð64þ 64þ 64þ 9þ 9Þ=5� � 36

¼ ð210=5Þ � 36 ¼ 42� 36 ¼ 6

Sample variance = 6 × 5 / 4 = 7.5
Sample standard deviation (sB) = √7.5 = 2.74

t-test

t ¼ jx1 � x2j=½sppð1=n1 þ 1=n2Þ�
where sp is the square root of [( n1 – 1)s1

2 + (n2 – 1)s2
2] / (n1 + n2 – 2)

For these two soils jx1 � x2j ¼ 8:4� 6:0 ¼ 2:4

sp ¼ pf½ð5� 1Þ � 2:30þ ð5� 1Þ � 7:5� = ð5þ 5� 2Þg
¼ pf½ð4� 2:30Þ þ ð4� 7:5Þ� = 8g
¼ p½ð9:2þ 30Þ=8� ¼ pð39:2=8Þ ¼ p

4:9 ¼ 2:21
pð1=5þ 1=5Þ ¼ p

0:4 ¼ 0:632

Now we can write t = 2.4 / (2.21 × 0.632) = 2.4 / 1.40 = 1.71

t ¼ 1:71

From statistical tables we see that when n1 and n2 both = 5 then t
must be ≽2.306 before mean A can be greater than mean B with 95%
probability.

The counts of the soil A are not significantly higher than those of
soil B.

Mann–Whitney test Rank the 10 counts in descending order and show
for each count whether it was for soil A or soil B, and then number from 10
to 1 downwards:

10 9 9 8 8 8 8 6 3 3
A A A A B B B A B B
10 8.5 8.5 5.5 5.5 5.5 5.5 3 1.5 1.5
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Add the A numbers: 10 + 8.5 + 8.5 + 5.5 + 3 = 35.5 = W1

Add the B numbers: 5.5 + 5.5 + 5.5 + 1.5 + 1.5 = 19.5 = W2

U1 ¼ W1 � n1ðn1 þ 1Þ = 2 ¼ 35:5� ð5� 6Þ = 2 ¼ 35:5� 15 ¼ 20:5

U2 ¼ W2 � n2ðn2 þ 1Þ = 2 ¼ 19:5� ð5� 6Þ = 2 ¼ 19:5� 15 ¼ 4:5

U ¼ the smaller of U1 and U2 ¼ 4:5

Since U is >2 (see Chapter 6) the counts of soil A are not significantly
higher than the counts of soil B.

Problem 17

To find this final specific activity, first work out the specific activity of
isocitrate lyase during growth on acetate.

Here we go:

An absorbance change of 0.863 in 5 min is caused by 75 µl of extract
(diluted 50-fold)

As this change had progressed linearly, this is equivalent to 0.1726 in 1min
An absorbance of 1.7 ×104 is given by a 1 M solution of glyoxylate
phenylhydrazone

Therefore, an absorbance of 1.7 ×10 will be given by a 1mM solution
And so an absorbance of 1.0 will represent a 1 / 17mM solution

ð� 1=17mmol L 1 � 1=17 μmol ml 1Þ
Hence, an absorbance of 0.1726 represents 0.1726 / 17 µmol ml 1

There was 3 ml in the cuvette, and so 3 × 0.1726 / 17 µmol glyoxylate was
produced in 1min by 75 µl of extract (diluted 50-fold), i.e. 0.030 46 µmol
glyoxylate min 1 formed by 75 µl of extract (diluted 50-fold)

� 0:030 46� 50� 1000= 75 μmol glyoxylate min 1 formed by

1ml undiluted extract

¼ 20:3 μmol glyoxylate min 1 formed by 1ml undiluted extract

62 µg protein in 0.05 ml of extract diluted 10-fold
Therefore, 62 × 10 × 1 / 0.05 µg protein in 1ml undiluted extract = 12 400 µg
protein

� 12:4 mg protein in 1 ml undiluted extract
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Now we can determine that the specific activity of isocitrate lyase in the
acetate-grown organisms = 20.3 / 12.4 µmol glyoxylate min 1 formed
by 1mg protein

Specific activity � 1:637 μmol glyoxylate min 1 ðmg proteinÞ 1

The organisms now grow for 18.5 h on succinate, with a doubling time of
3.9 h

This means 18.5 / 3.9 generations will grow = 4.74 generations in 18.5 h
The increase in organisms will be 24.74-fold in this time = 26.7-fold
Hence, the final specific activity of isocitrate lyase after growth on
succinate will be:

1:637=26:7 ¼ 0:0613 μmol glyoxylate min 1ðmg proteinÞ 1

This first part of the question is long but really quite straightforward.
The second part is hard (too hard for all the undergraduates that I’ve ever
taught, 1st Class or otherwise). The calculation is in effect the same type
as discussed in Chapter 8 (Enzymes) but is done in the opposite direction.

0.2 µmol acetate activated min 1 (mg protein) 1 but only half (0.1 µmol)
is used for biosynthesis

1 mol acetate (CH3COO
–) contains 24 g carbon, and so 0.1 µmol acetate

will contain 2.4 µg carbon
Carbon makes up 50% of the dry wt, so that 2.4 µg carbon will produce
4.8 µg organisms

Therefore the activity of acetate thiokinase is enough to make 4.8 µg
organisms min 1 (mg protein) 1

But 1mg protein represents 2mg organisms (because these contain 50%
of their weight as protein).

Thus 1mg organisms can make 2.4 µg new organisms min 1

� 0:0024 mg new organisms min 1 ðmg existing organismsÞ 1

The specific growth rate is therefore 0.0024 min 1

0:0024 ¼ ln 2=td ðtd is the mean generation timeÞ
Therefore td = 0.693 / 0.0024 = 289 min

The maximum rate of growth (as a doubling time) would be 289 min
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Problem 18

Bacteria in suspension
Absorbance of 1.0 1.134mg dry wt (ml suspension) 1

∴ Absorbance of α � 1:134 α mg ml 1

∴ Absorbance of 0:31 � 1:134� 0:31 mg ml 1 ¼ 0:3515 mg ml 1

Dilution is 5/40, so that undil. dry wt = 0.3515 × 40/5 = 2.812mg ml–1

Hence 100 ml of culture contains 281.2mg dry wt of organisms

Chlorophyll in 250 ml of extract
Absorbance of 1.054 × 103 10 g L–1 (1% w / v) 10mg ml 1

∴ Absorbance of 1 � 10� ð1:054� 103Þ mg ml 1

∴ Absorbance of 0:5 � 0:5� 10� ð1:054� 103Þ mg ðml extractÞ 1

¼ 4:74� 10 3 mg chlorophyll ðml extractÞ 1

∴ In 250 ml extract there are 4:74� 10 3 � 250 mg chlorophyll

¼ 1:185 mg chlorophyll

Moles of chlorophyll per g bacteria
250 ml of ether extract comes from the organisms in 100 ml of culture
Hence 281.2mg bacteria contains 1.185mg chlorophyll

∴ 1 g bacteria contains 1:185� 281:2 g chlorophyll ¼ 4:21� 10 3 g

� 4:21 mg � 4210 μg chlorophyll g 1

� 4210� 911 ¼ 4:62 μmoles ðg bacteriaÞ 1

Chlorophyll content after 12 h

12 h � 12=5 ¼ 2:4 generationsðtd ¼ 5 hÞ
∴ Increase in wt of bacteria ¼ 22:4-fold ¼ 5:28-fold

∴ Content of chlorophyll per unit wt of bacteria decreases 5:28-fold

� 4:62� 5:28 ¼ 0:875 μmoles ðg bacteriaÞ 1
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Problem 19

(1) The standard curve is shown in Fig. 17.7.

(2) The restriction map for the vector is shown in Fig. 17.8 and that for the
transducing phage in Fig. 17.9.

Sizes of fragments (kbp) Vector: EcoRI 22; 11; 7
HindIII 24; 16
EcoRI + HindIII 22; 9; 7; 2

Transducing phage: EcoRI 22; 13; 7; 3
HindIII 24; 16; 5
EcoRI + HindIII 22; 9; 7; 4; 2; 1

(3) Vector 40 kbp; transducing phage 45 kbp; bacterial segment 5 kbp.
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Problem 20

Note that by plotting log (turbidity × 100) one avoids having to plot negative
values (see Fig. 17.10). Fortuitously (well, not really), the scale used for the
logarithmic plot is also appropriate for the plot of concentrations of lysine as
an arithmetic scale.

From the straight-line region of the graph of log turbidity against time the
doubling time is 2 h. The fact that the plotted values are increased 100-fold
does not alter the time needed for the exponential increase to advance by
0.301 (= log 2).

(1) Excretion of lysine occurs at a constant (non-exponential) rate: 2.21 µmol
lysine ml 1 are excreted in the period between 21 h and 29 h

� 276 nmol ml 1h 1

� 4:6 nmol ml 1min 1

By plotting growth and lysine excretion on the same graph it is
obvious that lysine appears in the medium only when growth has
stopped and the bacterial population is constant.

While this excretion is occurring the bacterial dry wt is
2.8 × 0.35mg ml 1 = 0.98mg ml 1

Hence 4.6 / 0.98 = 4.7 nmol lysine excreted min 1 by 1mg bacteria
Therefore 9.4 nmol excreted min 1 by 1mg protein
The observed enzymic activity is just adequate to account for the
rate of excretion.
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(2) When doubling time is 120 min then µ = 0.693 / 120 = 0.005 775 min 1

i.e. 1mg existing bacteria makes 0.005 775mg new bacteria min 1

So that 0.5mg protein makes 0.005 775mg new bacteria min 1

1mg protein makes 2 × 0.005 775mg new bacteria min 1

� 11:55 μg new bacteria min 1 ðmg proteinÞ 1

5%of bacterial wt is lysine = 0.5775 µg lysinemademin 1 (mg protein) 1

577.5 ng lysine = 577.5 / 146 nmoles min 1 (mg protein) 1

¼ 3:96 nmoles min 1 ðmg proteinÞ 1

The observed enzymic activity is adequate for the rate of growth.

Problem 21

(1) EcoRI produces two fragments from the circular plasmid, and so there
must be two EcoRI sites, separated by 2.5 kbp. This 2.5 kbp fragment is
not attacked by EcoRI and must be the EcoRI fragment of B. subtilis
DNA that is inserted into plasmid pAB2. It has been inserted at the
EcoRI site at the cloning site. Consequently the HindIII site of the
cloning site will be separated by 2.5 kbp from its original position (see
Fig. 17.11).

HindIII produces three fragments, so that there must be three sites
for its action. One of these is immediately to the right of the EcoRI site
that is no longer in its original position at the cloning site. The other two

B
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EH H H
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4.2

2.5 (between E and E)

Fig. 17.11 Restriction map of plasmid pAB2.
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sites must be within the inserted 2.5 kbp because there is only one
HindIII site in the pAB1 plasmid.
BamHI produces two fragments, and so must have two sites of

action, one being in the cloning site immediately to the left of the
EcoRI site (in the cloning region). The second site must be to the
right of the EcoRI site (which is still in the original cloning site), within
the inserted DNA, also the combined action of BamHI and HindIII
could not otherwise yield a fragment as large as 4.2 kbp. BamHI cuts
the 0.7 kbp fragment (that HindIII acting alone produces) into 0.3 and
0.4 kbp fragments. Hence the position of the HindIII 0.7 kbp fragment
is defined.

(2) 6:02� 1023 plasmids weigh 300� 2� 6:7� 103 g

¼ 6� 6:7� 105 g ¼ 4:02� 106 g

ð6:02� 1023Þ=ð4:02� 106Þ plasmids weigh 1 g

That is, 1.5 × 1017 plasmids weigh 1 g

1:5� 1011 plasmids weigh 1 μg

3� 1012 plasmids weigh 20 μg

Therefore the organisms from 1ml of culture contain 3 × 1010 plasmids
200 colonies from 0.1 ml of a 1 × 10–5 dilution of the culture
∴ 2 × 108 colonies from 1ml of undiluted culture
3 × 1010 plasmids from 2 × 108 bacteria

¼ 3� 1010=2� 108 plasmids per bacterium

¼ 1:5� 102

¼ 150 plasmids per bacterium

Problem 22

(1) 1mM thymine in 0.1 M HCl has optical density = 8.0 1 µmol ml–1

Therefore OD 1 1 / 8 µmol m1–1

and OD x x / 8 µmol m1–1

Hence, OD 0.28 0.28 / 8 µmol m1–1

And so 5 ml 0.1 M HCl contain 5 × 0.28 / 8 µmol thymine
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The thymine spot on the chromatogram contained 0.175 µmol
By similar calculations we find that:
The adenine spot contained 0.175 µmol
The cytosine spot contained 0.075 µmol
The guanine spot contained 0.077 µmol
A + T + G + C = 0.502 µmol and G + C = 0.152 µmol

%GC ¼ 100� 0:152=0:502 ¼ 30%

(2) 1 mole thymine can produce 1 mole thymidylic acid (TMP)
1 mole TMP + 1 mole dAMP
= 1 mole AT base pairs = 614 g
Because %GC = 30, 7 moles AT base pairs occur in every 10 moles of
base pairs in DNA

Thus 7 moles of thymine can produce 10 × 614 g DNA
7 × 126 g thymine can make 6140 g DNA
882 / 6140 g thymine can make 1 g DNA
0.144 g thymine makes 1 g DNA

(3) 144mg thymine makes 1 g DNA
1 g bacteria contains 50mg DNA
Hence 144 / 20mg thymine is needed tomake the DNA in 1 g bacteria
7.2mg thymine is needed to grow 1 g bacteria.
(1 L ofmedium is needed to grow 1 g bacteria, and in 1 L there is 10mg

thymine)
(4) 0.144 g thymine makes 1 g DNA

so that 144 µg thymine makes 1mg DNA
Hence 144 µg thymine must be labelled with at least 1 × 106 cpm
If these counts come from 3H (20% efficiency of counting) then at least

5 × 106 dpm must be associated with 144 µg thymine
5 × 106 / 144 dpm must represent 1 μ g thymine
In 1 L of themedium there is 10 000 µg thymine, so that 104 × 5 × 106 /

144 dpm will be needed

5� 1010=144 ¼ 3:47� 108 dpm � 3:47� 108=2:2� 106 μCi

¼ 158μCi ½3H�-thymine L 1

14C is counted four times more efficiently than 3H, so that 158 / 4 µCi
would suffice:
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¼ 40ð39:5ÞμCi ½14C�-thymine L 1

(5) To isolate 10mg of purified labelled DNA it is necessary to start with
100mg DNA. This quantity will be present in 2 g bacteria, and so to get
this weight of organisms, 2 L of medium will be required.
Therefore, either 316 µCi [3H]-thymine or 80 µCi [14C]-thymine will

be needed.
The [3H]-thymine would cost £137, whereas 100 µCi [14C]-thymine

could be bought for £112.
The best buy is two packages each of 50 µCi [14C]-thymine.

(6) Yes, it doesmatter. If %GCwere 25, then%ATwould be 75. Slightlymore
thymine would be present per gram of DNA than has been calculated
above, and slightly less radiolabel would be needed to get the same
specific activity in the DNA. If the %GC were 75, then %AT would be
25. In this case there would be less thymine (70 / 25 times less) per gram
of DNA. Nearly three times as much labelled thymine would be needed
to achieve the desired specific activity in the DNA. The best buy would be
1mCi of [3H]-thymine (approx. 0.9mCi used) for £137. If [14C]-thymine
were still chosen, 250 µCi (approx. 240 µCi used) would cost £183.

Problem 23

(1) Crude extract
Minus substrate absorbance changed by 0.42 in 7 min 0.06 min–1 =
blank rate

With substrate absorbance changed by 0.60 in 3 min 0.20 min–1

Correcting for blank rate, enzymic rate is 0.14 min–1

Absorbance of 6.22 × 103 = 1 molar = 1 mol L–1 1mmol ml–1

Absorbance of 6.22 1 µmol ml–1

Absorbance of 1 1 / 6.22 µmol ml–1 = 3 / 6.22 µmol per 3 ml of
cuvette contents

Absorbance of x = 3x / 6.22 µmol per 3 ml of cuvette contents
Hence absorbance change of 0.14min–1 = 3 × 0.14 / 6.22 = 0.0675 µmol
min–1

This was catalysed by 10 µl of diluted extract, which contained 20 µg
protein

Therefore specific activity is 3.375 µmol min–1 (mg protein)–1
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(2) Purified enzyme
Minus substrate absorbance changed by 0.12 in 6 min 0.02 min–1 =
blank rate

With substrate absorbance changed by 0.45 in 2 min 0.225 min–1

Correcting for blank rate, enzymic rate is 0.205 min–1

Absorbance change of 0.205 min–1 = 3 × 0.205 / 6.22 = 0.0989 µmol
min–1

This was catalysed by 30 µl of diluted enzyme
And so 10 µl of diluted enzyme (1.5 µg protein) would catalyse
0.032 96 µmol min–1

Therefore specific activity is 22.0 µmol min–1 (mg protein)–1

(3) Purification factor is 22 / 3.38 = 6.5-fold

Problem 24

(1) We start by assuming that the UV spectrum of the dipeptide is similar
to that of uridine, though it is unlikely to be extremely similar owing to
the absorption at 280 nm that is due to the peptide bonds. The 280 : 260
ratio is 0.47 which is fairly close to that of uridine diphosphate.
With uridine, an absorption of 1 × 104 1 M

Hence absorption of 1 0.1mM

And 0.53 0.053mM

This absorption was given by a 1 / 100 dilution of the solution of
dipeptide, so that undiluted the solution of dipeptide is about 5mM

(based on the extinction coefficient of uridine diphosphate).
1 ml of the solution of peptide contained 11 µmol of phosphorus
11mM.

This is consistent with the above estimate, because two atoms of P
should be present for one molecule of uridine.
1 ml of hydrolysate contains 0.88 µmol hexosamine
This amount was originally present in 0.2 ml of the dipeptide solution
So that 1 ml of peptide solution contained 4.4 µmol hexosamine
4.4mM.

This is again consistent with the above results – there should be one
molecule of hexosamine accompanying one molecule of uridine
diphosphate. Some destruction of hexosamine is likely to occur during
acid hydrolysis of the dipeptide.
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1 ml of hydrolysate contains 1.05 µmol acetate.
This amount was originally present in 0.2 ml of the dipeptide solution
So that 1 ml of peptide solution contained 5.25 µmol acetate 5.3mM.

This is consistent with the earlier results – one molecule of muramic
acid in the dipeptide should be mono-acetylated.
Chromatography showed that alanine and glutamate (and no other

amino acids) were present in the presumed dipeptide. The lengthy
hydrolysis with strong acid would destroy most of the muramic acid
that would have been released from the dipeptide, so that no spot from
muramic acid would be expected on the chromatogram.
Thus, the analyses are consistent with the structure of the dipeptide.
The assays for phosphorus and for acetate are the least subject to

doubt, and so the concentration of the solution of dipeptide is

ð5:5þ 5:3Þ=2mm ¼ 5:4 mm

(2) Ideally there should be no more radioactivity at the origin in the ‘minus
dipeptide’ or in the ‘minus enzyme’ controls than in the ‘minus [3H]-
Dap’ control. The crude extract might contain some ATP, which could
explain why the ‘minus ATP’ control is relatively high. There are some
counts at the origin even when no radioactivity was added to the assay
mixture. These counts must represent background.
If this background is subtracted from the above controls then the

controls are very small (22, 14, 53 dpm) in relation to the counts from
the complete system (31, 126, 229, 352 dpm).
Take the average of the first two controls (18 dpm), then use this

value to correct the results from the complete system:

Time (min)
dpm from origin
of chromatogram

Complete system 0 13
Complete system 5 108
Complete system 10 211
Complete system 15 334

Now we need to relate dpm at the origin to amounts (nmoles) of
diaminopimelate.
5mM diaminopimelate 5mmol L 1 5 µmol ml 1 5 nmol µl 1
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Hence in 4 µl of 5mM diaminopimelate there are 20 nmoles
In 1 ml of [3H]-Dap there are 1 × 106 dpm 1 × 103 dpm µl 1

Hence in 4 µl of [3H]-Dap there are 4 × 103 dpm
This means that 4 × 103 dpm represent 20 nmol diaminopimelate, so
that 1 dpm represents 0.005 nmol diaminopimelate.

Counts at the origin can be expressed as amounts of diaminopimelate
bound:
0 min 13 × 0.005 nmol = 0.065 nmol
5 min 108 × 0.005 nmol = 0.54 nmol
10 min 211 × 0.005 nmol = 1.06 nmol
15 min 334 × 0.005 nmol = 1.67 nmol
These data show an obvious linear increase with time.
Therefore we can say that in 15 min approximately 1.6 nmol is bound.
This amount came from only 40% of the total assay system, so that in
the complete system (50 µl) 4 nmoles was bound in 15 min.

In 1 min 0.27 nmol was bound.
In the complete system (50 µl) there is 20 µg protein (work it out).

Consequently 0.27 nmol bound per min by 20 µg protein
270 nmol min 1 bound by 20mg protein
(13.5) 14 nmole diaminopimelate bound min 1 (mg protein) 1

0.014 units of Dap-adding enzyme (mg protein) 1

Problem 25

The volume of organisms plus capsule (r= 1 µm) is 4π× 13 / 3 µm3 = 4π / 3 µm3

Volume of organism alone (r = 0.5 µm) = 4π × 0.53 / 3 µm3 = 4π × 0.125 /
3 µm3

Hence; volume of capsule ¼ ð4π=3Þ � ð0:5π=3Þ ¼ 3:5π=3μm3

Half of this volume is water, so the volume of polysaccharide is 1.75π /
3 µm3

1 ml of polysaccharide weighs 1.00 g
1 ml = (1 × 10–2)3 m3 = 1 × 10–6 m3

1 µm3 = (1 × 10–6)3 m3 = 1 × 10–18 m3

∴ 1 µm3 = 1 × 10–12 ml

So that 1 µm3 of polysaccharide weighs 1 × 10–12 g
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∴ 1.75π / 3 µm3 of polysaccharide weighs (1.75π / 3) × 1 × 10–12 g
= 1.83 × 10–12 g

One capsule contains 1.83 × 10–12 g of polysaccharide

500 000 g polysaccharide represents 6 × 1023 molecules and so 6 × 1023

terminal units of glucose
∴ 1 g polysaccharide has 1.2 × 1018 terminal glucose units
And 1 × 10–12 g polysaccharide has 1.2 × 106 terminal glucose units
1.83 × 10–12 g polysaccharide has 1.83 × 1.2 × 106 terminal glucose units

¼ 2:20� 106 terminal glucose units on one capsule

The surface area of the capsule (r = 1 µm) is 4π × 12 µm2

Thus, 2.20 × 106 terminal glucose units are spread over an area of 4π µm2

(2.20 × 106) / (4π) terminal glucose units per µm2

¼ 1:75� 105 terminal glucose units per μm2 of capsular surface

Problem 26

(1) See Fig. 17.12. With EcoRI four fragments or fewer: there will be four
unless the two fragments (from the second insertion) happen to be of
equal size, or either is equal in size to one of the fragments from the first
insertion site. In these cases there would be three hybridising bands.
There will be only two bands if the two fragments from insertion 2 were
equal in size and equal to one of the bands from site 1, or if each one
fragment from insertion 2 is equal to one fragment from site 1. With
HindIII four or fewer: the same argument applies here.

(2) See Fig. 17.13.

E E EH H H

1.40.9 3.8 2.0 0.5

Fig. 17.12 Transposon insertion.

E EH H

0.9 1.9 0.5

Fig. 17.13 Wild type chromosome.
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(3) With both five or fewer: if every fragment that includes chromosomal
DNA is of different size, and none of these is of size 3.8 kbp there will be
five bands. At each insertion site the central region of the transposon
will yield a 3.8 kbp fragment.

Problem 27

(1) See Fig. 17.14. From this curve one can read off that 1 ml of the spore
extract contained 470 µg DPA

Hence 5 ml extract contained 2350 µg DPA
This means that 50mg spores contained 2.35mg DPA

DPA is a dibasic acid, and so will lose 2 H+ ions when one molecule of
DPA is converted to its Ca2+ salt. Themol. wt of Ca dipicolinate is 167 –
2 + 40 = 205Da
And 50mg spores contain 2.35 × 205 / 167mg calcium dipicolinate =
2.88mg

Therefore calcium dipicolinate is 2 × 2.88 g per 100 g spores

¼ 5:8%ðw=wÞ of these spores

(2) The extinction was 0.234 when 200 µg DPA was in 5 ml of the assay
mixture
That is, 200 / 167 µmol = 1.20 µmol in 5 ml
And so there will be 1.20 µmol DPA-Fe2+ complex in 5 ml 0.24 µmol
ml–1

Thus a 0.24mM solution of DPA-Fe2+ has an extinction of 0.234
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and a 0.24 M solution will have an extinction of 234
and a 1 M solution will have an extinction of 234 / 0.24 = 975
The extinction coefficient of DPA-Fe2+ complex is 9.75 × 102 L

mol–1 cm 1

(3) 1 M Ca DPA has an extinction of 5.4 × 103

∴ 1mM Ca DPA has an extinction of 5.4
and so extinction of 5.4 1µmol ml–1

and extinction of 1 1 / 5.4 µmol ml–1; extinction of 0.154 0.154 /
5.4 µmol ml–1

The undiluted supernatant liquid contains 5 × 0.154 / 5.4 µmol ml–1

So, 4 ml of undiluted supernatant liquid contains 4 × 5 × 0.154 / 5.4
µmol Ca DPA

� 205� 4� 5� 0:154=5:4 μg Ca DPA ¼ 117 μg

This amount came from 2mg spores
∴ 1000 µg spores contain 58.5 µg Ca DPA
Ca DPA is 5.9% (w /w) of the spore
The two methods give results in agreement.

Problem 28

(1) The plot (not shown) gives a straight line which intercepts the y axis
(µ [= D]) at the value of qm (for oxygen). This reads off as 1.7mmol
g 1 h 1.
To determine Yg for oxygen we use the relations:

1=Y ¼ 1=Yg þ qm=μ ¼ q=μ

To get Yg into the required units (g mol 1) we must express q and qm
in moles
So, taking µ as 0.1 we can write 1/Y = 0.0033 / 0.1 = 0.033
Thus 1/Yg + 0.0017 / 0.1 = 0.033
1/Yg = 0.033 – 0.017 = 0.016

Y g ¼ 62 g ðmol O2Þ 1

The value of Yg comes out close to this number no matter which
value of µ (and the corresponding value of q) is taken.
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(2) The plot (not shown) gives a straight line which intercepts the y axis (1 / µ
[= 1 /D]) at the value of 1 / µmax and intercepts the x axis (1 / s) at −1 /Ks.
So, 1 / µmax = 0.6 and therefore µmax = 1.6 h 1

And –1/Ks = –10 hence Ks = 0.1mmol L 1

(3) Concentrations of glucose (mmol L 1) are 2.2 / 180 and 5.1 / 180 so that
we can write

0:0122ðμmax�0:3Þ=0:3 ¼ 0:0283ðμmax�0:4Þ=0:4; and solve for μmax

Cross-multiply to get
0.004 88(µmax – 0.3) = 0.008 49(µmax – 0.4)
µmax – 0.3 = 0.008 49(µmax – 0.4) / 0.00488
µmax – 0.3 = 1.74(µmax – 0.4)
µmax – 0.3 = 1.74µmax – 0.696
µmax = 1.74µmax – 0.696 + 0.3
µmax = 1.74µmax – 0.396
Hence, 0.396 = 0.74µmax

µmax = 0.396 / 0.74 = 0.535 h 1

Now we can find Ks (twice to check that µmax seems to be correct)

K s ¼ 0:0122ð0:535� 0:3Þ=0:3
¼ 0:0122� 0:235=0:3 ¼ 9:56� 10 3 mmol L 1

Ks ¼ 0:0283ð0:535� 0:4Þ=0:4
¼ 0:0283� 0:135=0:4 ¼ 9:55� 10 3 mmol L 1

Problem 29

(1) Requirement for aromatic amino acids:
1mg bacteria 500 µg protein, containing 500 × 15 / 100 = 75 µg
aromatics
75 / 165 µmoles = 0.455 µmoles 0.455 × 10 3mmoles mg–1

(2) 10 nmoles of erythrose 4-phosphate made min–1 (mg protein)–1 ( 2mg
bacteria)
10 nmoles erythrose 4-phosphate makes 10 nmoles of aromatic
amino acids

� 10� 165 ng � 1:65 μg

1.65 µg aromatic amino acids can form 1.65 × 100 / 15 = 11 µg protein
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11 µg protein can yield 22 µg bacteria (protein is 50% w /w)
Thus, 2mg bacteria can make not more than 22 µg new organisms
min–1 (if transketolase is rate-limiting)

1mg existing bacteria can make 0.011mg new organisms min–1

Hence, maximum specific growth rate = 0.011 min–1

This is equivalent to a td of 0.693 / 0.011 = 63 min. The observed td
was 120 min which is a slower rate than that which transketolase is able
to maintain. Therefore, transketolase is not rate-limiting (unless the
activity inside the organisms is less than was measured with an extract
under optimal conditions of assay).

Problem 30

(1) Fig. 17.15.
(2) Fig. 17.16.
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Fig. 17.15 Crossover.

Hc Hp EcEp

0.40.4

3.5

Fig. 17.16 Inserted plasmid.
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(3) Fig. 17.17; region for insert (see Fig. 17.18):
EcoRI 1.6 kbp
HindIII 7.5 kbp
EcoRI + HindIII 0.4 kbp

Problem 31

(1) 38.6 kcal −1.68V + 0.6V = −1.08V
(2) 33.6 kcal −1.46V + 0.8V = −0.66V
(3) 500 candela deliver 1 × 1017 quanta s–1 cm 2, which is equivalent to

3.6 × 1020 h–1 cm 2

Hence, the whole culture receives 3.6 × 1022 quanta h–1

Only 10% of these are available for photosynthesis = 3.6 × 1021

quanta h–1

This represents 40 × 3.6 × 1021 / (6.02 × 1023) kcal h–1

¼ 0:239 kcal h 1

This is the maximum amount of energy that a very dense culture
might absorb. Less of the available energy will be taken up by a sparse
population.

Problem 32

(1) After correcting for background, 0.1 µg of labelled methionine gave
3552 cpm

E E EH H H

0.4 0.4

1.2 7.13.5

Fig. 17.17 Result of crossover.

1.2

0.4

7.1

HEHE

Fig. 17.18 Wild type chromosome.
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At 82% efficiency, this represents 3552 × 100 / 82 dpm = 4332 dpm
4332 dpm 4332 / 60 dps = 72.2 dps
Hence 722 dps represent 1 µg methionine
and 722 000 dps represent 1mg methionine 722 kBq

(2) After 10 days the activity will decrease by a factor of 1 / 2(10 / 87.1)

2ð10=87:1Þ ¼ 20:1148 ¼ 1:0828

The activity will be 722 / 1.0828 = 667 kBq (mg methionine)–1

(3) In the translation mix (1 ml) there are 50 µmol methionine
So that 667 kBq represent 50 µmol methionine
and 667 Bq (= 667 dps) represent 50 nmol methionine
Thus 1 dps represents 50 / 667 nmol methionine
537 dps represent 50 × 537 / 667 = 40.25 nmol methionine
So 0.3mg protein contains 40.25 nmol methionine

� 40:25 = 0:3 nmol mg 1 ¼ 134 nmol mg 1

¼ 0:134 μmol methionine ðmg proteinÞ 1

There is 134 µmol methionine (g protein)–1

14 925 g protein ð1 molÞ will contain 14 925� 134μmol

methionine ¼ 1 999 950 μmol

1 mol of protein contains 1 999 950 / 1 × 106 mol methionine = 2 mol
methionine
2 residues of methionine are present in one molecule of protein

Problem 33

(1) 1mM NADPH has extinction of 6.22 1mmol L–1 1 µmol ml–1

An extinction of 1 = 1 / 6.22 µmol ml–1

An extinction of x = x / 6.22 µmol ml–1

In 3 ml, an extinction of x = 3x / 6.22 µmol ml–1

At pH 8.0 the dehydrogenase (0.5 ml) gives an increase of extinction of
0.35 / min

3 × 0.35 / 6.22 µmol formed min–1 = 0.169 µmol min–1 at pH 8.0
At pH 10.5, 0.5 unit of dehydrogenase would form 0.5 µmol min–1

∴Ratio of activities at pH 8.0 and pH 10.5 is 0.169 : 0.5 = 0.34 : 1.00
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(2) Fig. 17.19. From the graph the best estimate of the epimerase activity is
0.4 units ml–1

¼ 0:05 units ðmg proteinÞ 1

(3) 0.5 unit of dehydrogenase is sufficient for up to 0.04 unit of epimerase
∴ To assay 0.1 unit of epimerase 1.25 units of dehydrogenase are

needed

Problem 34: One more for fun

(1) What can’t be Smith’s age?
It can’t be a prime number. Suppose that his age is n, a prime

number, then the only possible way for three ages to give this product
would be n.1.1. Even if this possibility were accepted – Smith would
have to be 0 when last he saw Jones – it would mean that Smith would
know the ages without needing more information.

It can’t be a number with only one set of three factors, otherwise
Smith would be sure of the ages without the second or last piece of
information (biting nails). For example, 25 can only be 5.5.1 (or 25.1.1);
34 can only be 17.2.1 or (34.1.1).

(2) It follows that Smith’s age must have more than one set of three factors,
in addition to n.1.1.

(3) It then becomes clear that two of the sets of the three factors of Smith’s
agemust add to the same sum (his room number) otherwise the last piece
of information would be unnecessary in finding the ages of the children.
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(4) Some work now has to be done in order to seek out what numbers
satisfy point 3.
If we start looking between 30 and 50 (as guesses at Smith’s age) we

find that:
36 can be 6.6.1 and 9.2.2, both of which add to 13;
40 can be 8.5.1 and 10.2.2, both of which add to 14.
There are no other possibilities between 30 and 50. (There are no

other possibilities between 0 and 120.)
(5) If Smith’s age were 40, then the last piece of information (biting nails)

would not help in deciding the ages of the children. However, this last
piece of information does make 9.2.2 more likely than 6.6.1. The choice
isn’t entirely conclusive (one of the 6’s could be older than the other;
they don’t have to be twins) but Smith’s final words suggest that he is
not entirely certain, though he does give the correct answer.
Consequently, Smith is 36, his room number is 13, and the ages are

9, 2, 2.
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Conclusion

As a teacher of some experience, the writer is well aware of the great value to be
attached to the solution of numerical problems as an aid to the understanding of the
principles of physical chemistry.

Samuel Glasstone

What’s the point of working through these diabolical questions? What’s the
point of making up these questions? Are they just ‘a madman’s fly trap’, as
the plots of a mystery writer (John Dickson Carr) that I much enjoy have
been described? Obviously, I think there are good points, otherwise I
wouldn’t be writing this book, and would not be keeping myself sequestered
nor neglecting important household tasks.
The first point is that to become a scientist one does need to develop

awareness of the ways in which experimental data are turned into conclusions.
How was Avogadro’s number evaluated? How did Millikan (of the oil-drop
experiment) determine the size of the charge on an electron? These were things
I had to write about as an undergraduate, and I had to do the calculations too.
Neither then nor now did I see the great relevance of this to biochemistry, but I
did begin to see how hard-won are scientific ‘facts’, and I certainly realised then
that I could manage handling the numbers, and using such horrors as five-
figure logarithmic tables, long before the arrival of calculators.
This leads to the next point – doing problems helps to improve one’s

mathematical skill, and gives the confidence to believe that one has such
skill. Miss Dollan taught me how to do long division of pounds, shillings
and pence, which at the time was for me just as hard as any of the maths in
this book. From her I gained the assurance that I could cope, and I don’t
forget Miss Dollan.
For an author, making up data-handling problems is an interesting

challenge. The writing must be unambiguous, the problem a bit different
every time, and the solution clear but not too easy nor too hard to reach.
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Real experiments do not, of course, always give rise to clear solutions. It may
be surprising, but all the problems given here are not mad fabrications, but
derive from actual experiences in the laboratory. Even the one about the
number of glucose residues on the staphylococcal surface, which looks very
contrived, came from a request for such a calculation by a colleague in
another university.

So far, data-handling has been viewed as a learning process, and so it
ought to be. Attendance at a university is also meant as a learning process,
but we do impose examinations at various stages. Data-handling ability gets
examined because it is a skill that a graduate should have acquired. It is
unsatisfactory to put a data-handling problem on an examination paper as
one question among several others that all require essays as answers,
especially when there is a choice, and the problem is not compulsory.
Many candidates will evade the problem, while those who do it (as I always
would in my days as an undergraduate) may get a very high mark (or a very
low one) outside the range of marks that are generally given for essays.

Having an examination which is made up entirely of data-handling
questions is best. It should be held at the end of the final year, when the
students have gained some knowledge. Thirty years ago, we began by setting
four long questions, any three of which a student was required to answer,
with four hours as a supposedly generous allowance of time. Our experience
from several years with this format was that no students scored outstand-
ingly highly over the whole paper, but a few did very badly – on a long
intricate question it is possible to get completely lost. More recently some
shorter problems have been included. These are not necessarily easier, but
they are meant to give the less talented students the chance to show that they
are not without ability in this area. Do you call this dumbing down? I’m not
sure what I think.

Computers cannot be used in a written examination, basically because they
can be preprogrammedwith toomuch helpful information. In any case, using
a computer is not very profitable when one has to do only a small number of
calculations that are of a novel kind. The effort of writing and debugging a
program is then disproportionate and not worthwhile. It’s a very different
story when there are large numbers of repetitive calculations to make. As one
who spent all of Coronation Day (1953, not 1937) laboriously working out
results from practical classes in which I was supposed to learn Warburg
manometry, I can thoroughly appreciate the value of a spreadsheet. Indeed
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I believe that every scientist ought to be able to construct a spreadsheet
program. It’s a lot harder to write programs in Pascal or C.

The last words are that data-handling gets easier the more
you do it. Practice, practice, practice. Get confident.

I flatter myself that from the long experience I have had, and the unceasing
assiduity with which I have pursued these studies in which you and I have
been engaged, I shall be acquitted of vanity in offering some hints to your
consideration. They are indeed in a great degree founded upon my own
mistakes in the same pursuit …

Sir Joshua Reynolds
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Further reading

There are few books that discuss how to tackle data-handling in this area of
science.

The best is Quantitative Problems in Biochemistry, by E. A. Dawes
(Edinburgh: Churchill Livingstone). This went through several editions
from the 1960s up to the 1980s, but has been long out of print. However,
many libraries will hold one or more copies.

Practical Skills in Biomolecular Sciences, by R. Reed, D. Holmes, J. Weyers
and A. Jones (3rd edn, 2007, Cambridge: Pearson Publishing), is so full of
excellent advice to undergraduates that it is indispensable. The section
about data-handling is brief, but good.

Maths from Scratch for Biologists, by A. J. Cann (Chichester: JohnWiley),
published in paperback (2003), is a very helpful book that is in print.

Textbooks of biochemistry or microbiology contain many short prob-
lems, though there is rarely much explanation of how to do them.
Elementary texts on statistics, with abundant problems and detailed solu-
tions, are very easy to find in shops or libraries. One of the best is Statistics:
A First Course, by J. E. Freund and G.A. Simon (5th edn, 1991, Englewood
Cliffs, NJ: Prentice Hall).
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