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PREFACE

The appearance of this third edition, fifteen years after the second, comes at a time
of great excitement in high-resolution electron microscopy (HREM). The structure
of the ribosome (the large biomolecule which makes proteins according to DNA
instructions—‘life itself’) has recently been determined for e-coli by single-particle
tomographic cryo-electron microscopy. The structure of tubulin, also, has now been
determined by the electron crystallographic methods pioneered earlier for purple
membrane and other proteins which are not easily crystallized. And tubulin has since
been fitted to the tubule structure (which carries proteins about the cell) by the same
single-particle cryomicroscopy methods, and the location and function of the anti-
cancer drug Taxol identified. In materials science, Iijima’s discovery of the nanotube
in 1991 has done much to establish the new field of nanoscience, described by Raul
Hoffman as ‘the next industrial revolution’, following Iijima’s earlier first observation
of the buckyball in 1980 (see Frontispiece). The atomic-scale study of interfaces by
HREM has finally succeeded in supplying three-dimensional interface structures as
the basis for electronic structure calculations, which, together with energy-loss spectra
now fulfil a thirty-year old idea that HREM may ultimately contribute to a complete
description of the ground state electronic structure of the defects in materials which
control their properties, and their excitations. More recently we have seen the first
convincing images of individual substitutional dopant atoms in crystals (by ADF-
STEM), and the first useful energy-loss spectra obtained from individual columns of
atoms. These last results were obtained by STEM, a sure sign that STEM, the method
first used to see atoms by electron microscopy in 1970, has emerged from being
a physicists plaything to a useful tool for materials characterization at the atomic
scale. The possibilities of direct-write inorganic lithography by STEM continue to
be explored, as does the ‘SCALPEL’ lithography program for certain applications.
The purchase, around the turn of the century, of 60 field-emission STEM instruments
by the semiconductor industry recognizes that, with 1.2 nm width gate oxides, you
cannot now see a transistor without one.

These recent spectacular achievements—the development of cryomicroscopy, the
buckytube and STEM, should not mask the enormous amount of new science that
has come from straightforward HREM in the last decade. From understanding the
role of interfaces in limiting current flow in superconductors, the magnetoresistance
manganates and the strength of composite materials, to measurements of the quantized
resistance of nanowires formed in-situ, to identification of the shape changes in the
proteins which pump protons through the cell membrane in photosynthesis, the range
and depth of this work has been remarkable. Ultra-high vacuum TEM has continued
to develop, and of the many recent papers entitled ‘Gabor’s dream realized’, one
did in fact achieve exactly that—improvement of resolution in electron microscopy
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by holography. In-situ and environmental HREM have produced remarkable atomic-
scale images of catalytic reactions at pressures up to 5 torr, the MOCVD process, and
even the liquid–solid interface. Inspired by the example of the nanotube, this may
initiate an era of materials discovery by atomic-scale search procedures combined
with in-situ combinatorial materials synthesis. By comparison with other particles
used as probes of matter, the electron, for which we have the brightest sources in all
of physics, the strongest interactions, and highly efficient parallel detectors, together
now with corrected lenses and monochromators, has continued to demonstrate its
worth as an imaging, spectroscopy and diffraction tool for science. And electron
scattering, in the CBED geometry, where experimental parameters can be accurately
quantified and extinction errors are absent, has proven to be more accurate (at the
0.025% level) for measurement of X-ray structure factors than X-ray crystallography
itself in many cases, allowing chemical bonds to be seen clearly in oxides for the
first time.

Over the past fifteen years at least two high voltage HREM machines have been
built with a resolution close to one Angstrom, while image processing techniques
and aberration correctors in both the TEM and STEM mode have brought the same
resolution (or better) to medium voltage machines. The point has been made that
aberration correction became possible when computer speeds made automated align-
ment possible in a time shorter than the stability time of the microscope, and this
autotuning capability will eventually lead to much more user-friendly machines with
remote-user capabilites. It seems unlikely that we will see much further improvements
in resolution, or that they will be needed. The important challenges in the field now
lie with atomic resolution tomography (recently achieved in both STEM and HREM),
in-situ studies, holography of fields at higher resolution, and further development of
ELS in STEM, which can give us the equivalent of soft X-ray absorption spectra from
regions of atomic dimensions.

Advances in instrumentation have generated as much excitement as I can remember
since the beginning of the field. Field emission sources, imaging energy-analysers,
monochromators and aberration correctors, CCD cameras and Image Plates, together
with far more powerful computers have transformed the field in the last decade. All this
has confirmed the crucial importance of the microscope environment, since aberration
correction to the Angstrom level is worthless without comparable stabilities. The most
successful atomic-resolution instruments of the future will certainly be those in the
quietest locations, the most favourable environments.

This new edition reflects the above developments. Three new chapters (on STEM,
on super-resolution methods and image processing, and on HREM in biology) have
been added, and entirely new sections added or replaced on field-emission guns,
detectors, aberration correction, three-fold astigmatism, radiation damage, organic
crystals, holography, autoalignment, environmental factors, energy-loss spectroscopy
and environmental cells. A thorough revision of the entire text has resulted in many
other changes throughout. The previous edition included a chapter reviewing applic-
ations of HREM in materials science—the literature on this is now so vast, and
web-search engines so efficient, that no attempt is made to systematically review
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applications in this edition. The new section on imaging of defects in crystals does,
however, provide recent case studies in crucial areas, and references are provided to
several excellent recent reviews of HREM.

Electron microscopy remains important because it is the only technique which
can provide real-space images at atomic resolution of the defects within materials
that largely control their properties. In addition, the STEM, with its fine probe and
multitude of detectors for spatially-resolved spectroscopy, is the ideal instrument for
the study of inorganic nanostructures. In the past it has been limited by the projec-
tion approximation, and the poor agreement of ELNES with theory. With the recent
appearance of tomographic images of crystals and defects at atomic resolution, the
achievement of accurate quantification of diffraction data in the CBED mode, and
the excellent agreement now possible in ELNES calculations for known structures
in many cases, the situation has drastically changed. The integration of these meth-
ods is now proceeding rapidly. All this, together with the need to understand the
host of useful new nanostructures being synthesized and the further development of
cryomicroscopy, guarantee an exciting future for the field.

‘Rosedale’, Orinda, CA J.C.H.S.
March 2002
(A.S.U. and L.B.L.)
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LIST OF SYMBOLS

� Chromatic damping parameter (see eqn (4.9))
�f Defocus. Negative for weakened lens

Special cases—Scherzer focus (eqns (6.16) and (4.12))
Stationary phase focus (eqn (5.76)), Gaussian focus

θc Beam divergence
Cs Spherical aberration constant. Positive
Ce Chromatic aberration constant. Positive
χ(u) Phase shift due to lens aberrations
� Complex wave amplitude
φ Magnitude of �

vg Fourier coefficients of crystal potential (in volts)
Ug Similar (in Å−2). Ug = σvg/πλ = 1/λξg = 2m|e|vg/h2

Sg Excitation error. Sg = −λg2/2 in axial orientation
ξg Extinction distance
Fg Structure factor
f (θ) Atomic scattering factor
θ Scattering angle. θ = 2θB
θB Bragg angle
λ Relativistic electron wavelength (see eqn (2.5))
m Relativistically corrected electron mass
m0 Rest mass of electron
V0 Accelerating voltage of electron microscope
φ(r) Crystal potential (in volts)
W Total relativistic energy of electron (W = mc2 = γm0c

2)
Vr Relativistically corrected accelerating voltage
γ Relativistic factor; γ = m/m0

γ (j) Eigenvalue of dispersion matrix. May be complex
ki, ke Three-dimensional vacuum electron wavevectors
k0 Three-dimensional electron wavevector inside crystal corrected

for mean potential
k(j) Labelling electron wavevector for Bloch wave j inside crystal
K Two-dimensional scattering vector

K = uî + vĵ, with (u2 + v2)1/2 = |K| = θ/λ

μ(j) Absorption coefficient for Bloch wave j .

The ‘crystallographic’ sign convention, which takes a plane wave to have the form
exp(−ik ·r) is used throughout this book, except in Section 5.7. This convention, and
its relationship to the ‘quantum-mechanical’ convention, is discussed in Section 5.12.
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1
PRELIMINARIES

The conventional transmission electron microscope bears a close resemblance to an
optical microscope in which image contrast (intensity variation) is produced by the
variation in optical absorption from point to point on the specimen. Most electron
microscopists interpret their images in a similar way, taking ‘absorption’ to mean
the scattering of electrons outside the objective aperture. Electrons are never actually
‘absorbed’ by a specimen; they can only be lost from the image either by large-angle
scattering outside the objective aperture or, as a result of energy loss and wavelength
change in the specimen, being brought to a focus on a plane far distant from the viewing
screen showing the elastic image. This out-of-focus ‘inelastic’ or energy-loss image
then contributes only a uniform background to the in-focus elastic image. Thus image
contrast is popularly understood to arise from the creation of an intensity deficit in
regions of large scattering or ‘mass thickness’ where these large-angle scattered rays
are intercepted by the objective aperture. The theory which describes this process is
the theory of incoherent imaging (see, e.g. Cosslett (1958)).

By comparison, the high-resolution transmission electron microscope is a close
analogue of the optical phase-contrast microscope (Bennett et al. 1951). These
optical instruments were developed to meet the needs of biological microscopists who
encountered difficulty in obtaining sufficient contrast from their thinnest specimens.
Nineteenth-century microscopists were dismayed to find the contrast of their biolo-
gical specimens falling with decreasing specimen thickness. More than a century later,
improvements in specimen preparation technique have allowed us to see exactly the
same behaviour in electron microscopy when observing specimens just a few atomic
layers thick. (Section 12.5 explains how this lack of contrast at exact focus can be
put to good use for electron microscope calibration.) Since the transmission image is
necessarily a projection of the specimen structure in the beam direction (the depth of
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focus being large—see Section 2.2) these low-contrast ultra-thin specimens must be
used if one wishes to resolve detail at the atomic level.

Broadly then, while low-resolution biological microscopy is mainly concerned with
the electron microscope used in a manner analogous to that for a light microscope, this
book is devoted to its use as a phase-contrast instrument for high-resolution studies.

1.1 Elementary principles of phase-contrast microscopy

Fresnel edge fringes, atomic lattice fringes, and images of small molecules are all
examples of phase contrast. None of these contrast effects can be explained using the
‘mass thickness’ model for imaging with which most microscopists are familiar. All
are interference effects. The distinction between interference or phase contrast and
conventional low-resolution contrast is discussed more fully in Section 6.1. In this
section, however, a simple optical bench experiment is described which will give
the microscopist some feel for phase contrast and anticipate the results of many
electron imaging experiments. An expensive optical bench is not needed to repeat this
experiment—good results will be obtained with a large-diameter lens (focal length,
f0, about 14 cm and diameter, d, about 5 cm) and an inexpensive 1.5 mW He–Ne
laser. The object-to-lens and lens-to-image distances U and V could then be about
17 and 80 cm, respectively as indicated in Fig. 1.1.

The very thin specimens used in high-resolution electron microscopy can be likened
to a piece of glass under an optical microscope. An amorphous carbon film behaves
rather like a ground-glass screen for optical wave-lengths. In a typical high-resolution
electron microscope experiment this ‘screen’ is used to support a sample of which
one wishes to form an image. Figure 1.2 shows the image of a glass microscope slide

L1

L2 L3 M FO
Y U V

P
f0

f0

Fig. 1.1 The optical bench arrangement used to record the images shown in Figs 1.2–1.4. Here L1 is
a ×40 microscope objective lens at the focus of which is placed a pin-hole aperture P. Lenses L2 and
L3 have a focal length of f0 = 14 cm. The object is shown at 0, and film plane at F and the distances
Y = 30 cm, U = 17 cm, and V = 80 cm. The pin-hole aperture is used as a spatial filter to provide more
uniform illumination. Back-focal plane masks may be inserted at M.
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(a)

(b)

(c)

Fig. 1.2 Optical through-focus series showing the effect of focus changes on the image of a small
indentation in a glass plate (phase object). The image at (a) was recorded under-focus, that is, with the
object too close to the lens L3. It shows a bright fringe surrounding the indentation similar to that seen on
electron micrographs of small holes; (b) is recorded at exact focus and shows only very faint contrast; (c) is
recorded at an over-focus setting (object too far from L3) and so shows a dark Fresnel fringe outlining
the indentation. The background fringes arise in the illuminating system. Compare these with the electron
micrographs in Fig. 6.7.

formed using a single lens and a laser. The laser beam has been expanded (and collim-
ated) using a ×40 optical microscope objective lens. The presence of a small molecule
or atom is difficult to simulate exactly. However, the glass slide shown contains a small
indentation produced by etching the glass with a small drop of hydrofluoric acid. This
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indentation will produce a similar contrast effect to that of an atom imaged by elec-
tron microscopy. Figure 1.2 shows a ‘through-focus series’ obtained by moving the
lens slightly between exposures. These through-focus series are commonly taken by
high-resolution microscopists to allow the best image to be selected (see Chapter 5).
In particular, we notice the lack of contrast in Fig. 1.2(b), the image recorded at exact
Gaussian focus when the object and image fall on conjugate planes. Exactly similar
effects are seen on the through-focus series of electron micrographs of single atoms
shown in Fig. 6.7.

Figure 1.3 shows the same object imaged using a conventional tungsten lamp-bulb
as the source of illumination to provide ‘incoherent’ illumination conditions. Despite
wide changes in focus, little contrast appears.

If this analogy between the indented glass slide and a high-resolution specimen in
electron microscopy holds, this simple experiment suggests that our high-resolution
specimens will be imaged with strong contrast only if a coherent source of illumination
is used and if images are recorded slightly out of focus. These conclusions are borne
out in practice, and the importance of high-intensity coherent electron sources for
high-resolution microscopy is emphasized throughout this book. Two chapters have
been devoted to the topic—Chapter 9 deals with experimental aspects while Chapter 4
describes the elementary coherence theory.

To return to our optical analogue. Given coherent illumination the question arises
to whether methods other than the introduction of a focusing error can be used to

Fig. 1.3 An image recorded under identical conditions to that shown in Fig. 1.2(a), with the laser source
replaced with a tungsten lamp focused onto the object (critical illumination). The faint contrast seen is
due to the preservation of some coherence in the illumination introduced by limiting the size of lens L2.
This contrast disappears completely if a large lens is used. Variations in the size of this lens (or an aperture
near it) are analogous to changes in the size of the second condenser aperture in an electron microscope.
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produce image contrast. During the last century many empirical methods were indeed
developed to enhance the contrast of images such as Fig. 1.2(b). These included:
(1) reducing the size of the objective aperture as in Fig. 1.4(a); (2) the introduction
of a focusing error as in Fig. 1.2(a); (3) simple interventions in the lens back-focal
plane as in Fig. 1.4(b), where Schlieren contrast is shown (The back-focal plane is

(a)

(b)

Fig. 1.4 Using a laser source, both these images were recorded at exact focus (exactly as in Fig. 1.2(b)).
Yet in both, the outline of the indentation can be seen. In (a), a small aperture has been placed on axis
at M, severely limiting the image resolution. On removing this aperture the image contrast disappears. The
use of a small aperture at M (the back-focal plane) is analogous to the normal low-resolution method of
obtaining contrast in biological electron microscopy. In (b) a razor blade has been placed across the beam
at M, thus preventing exactly half the diffraction pattern from contributing to the image. The resulting
image is approximately proportional to the derivative of the phase shift introduced by the object taken in a
direction normal to the razor-blade edge. Notice the fine fringes inside the edge of the indentation arising
from multiple reflection within the glass slide.
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approximately the plane of the objective aperture for an electron microscope.); and
(4) the use of back-focal plane phase plates.

All of these methods have their parallel in electron microscopy. The first is not
useful, since image resolution is necessarily limited. The second is the usual method
of high-resolution electron microscopy and is discussed in more detail in Chapters 3
and 12. Methods based on (3) have appeared from time to time (see, e.g. Spence
(1974)), while (4) has been investigated (e.g. see Unwin (1971); Downing and Siegel
(1973)). The phase-plate method developed by Zernike in the 1930s remains the
standard method of optical phase-contrast microscopy, but section 7.9 reviews newer
approaches.

In both electron and optical microscopy the reasons for the lack of contrast at exact
focus are the same—these thin specimens (‘phase objects’) affect only the phase of
the wave transmitted by the specimen and not its amplitude. That is, they behave
like a medium of variable refractive index (see Section 2.1). It is this variation in
refractive index from point to point across the specimen (proportional to the speci-
men’s atomic potential in volts for electron microscopy), which must be converted
into intensity variations in the image if we are to ‘see’, for example, atoms in the
electron microscope. Through the reciprocity theorem, discussed in Section 8.1, all
these considerations apply to the imaging of single atoms in the scanning transmission
microscope in the bright-field mode.

We can sharpen these ideas by comparing the simplest mathematical expressions
for imaging under coherent and incoherent illumination. For the piece of glass shown
in Fig. 1.2, the phase of the wave transmitted through the glass differs from that of an
unobstructed reference wave by 2π(n − 1)/λ times the thickness of the glass, where
n is the refractive index of the glass. If t (x) is the thickness of the glass at the object
point x, the amplitude of the optical wave leaving the glass is given from elementary
optics (see, e.g. Lipson and Lipson (1969)) by

f (x) = exp(−2πint (x)/λ) (1.1)

The corresponding expression for electrons is derived in Section 2.1. Optical ima-
ging theory (Goodman 1968) gives the image intensity, proportional to the darkening
on a photographic plate, as

I (x)c = |f (x) ∗ S(x)|2 (1.2)

for coherent illumination and

I (x)i = |f (x)|2 ∗ |S(x)|2 (1.3)

for incoherent illumination. In these equations the functionS(x) is known as the instru-
mental impulse response, and gives the image amplitude which would be observed
if one were to form an image of a point object much smaller than the resolution
limit of the microscope. Such an object does not exist for electron microscopy; how-
ever, the expected form of S(x) for one modern electron microscope can be seen in
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Fig. 3.6. This function specifies all the instrumental imperfections and parameters
such as objective aperture size (which determines the diffraction limit), the amount
of spherical aberration, and the magnitude of any focusing error. The asterisk above
indicates the mathematical operation of convolution (see Section 3.1), which results
in a smearing or broadening of the object function f (x). It is not possible to resolve
detail finer than the width of the function S(x). Using eqn (1.1) in eqns (1.2) and (1.3)
we see that under incoherent illumination the image intensity from such a phase object
does not vary with position in the object, since

| exp{−2πit (x)n/λ}|2 = 1 (1.4)

Only by using coherent illumination and an ‘imperfect’ microscope can we hope
to obtain contrast variations in the image of a specimen showing only variations
in refractive index. In high-resolution electron microscopy of thin specimens the
accurate control of illumination coherence and defect of focus are crucial for success.
The amount of fine detail in a high-resolution micrograph increases dramatically
with improved coherence of illumination, while completely misleading detail may be
observed in images recorded at the wrong focus setting. The correct choice of these
important experimental conditions is discussed in Chapters 5, 6, and 12.

(a) (b)

1 nm

Fig. 1.5 Two electron images of amorphous carbon films recorded at the same focus setting but using
different condenser apertures. In (a) a small second condenser aperture has been used, resulting in an image
showing high contrast and fine detail. This contrast is lost in (b), where a large aperture has been used.
This effect is seen even more clearly in optical diffractograms (see Chapter 4).
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To demonstrate the effect of coherence on image quality at high resolution, Fig. 1.5
shows the images of an amorphous carbon film using widely different illumination
coherence conditions but otherwise identical conditions. The loss of fine detail in the
‘incoherent’ image is clear. In practice, for a microscope fitted with a conventional
hair-pin filament, the illumination coherence is determined by the size of the second
condenser lens aperture, a small aperture producing high coherence. With a suffi-
ciently small electron source (such as a field-emission, pointed-filament, or LaB6
source) the illumination may be perfectly coherent and independent of the choice
of second condenser (illuminating) aperture. For these sources the demagnification
settings of both condenser lenses are also important in determining the degree of coher-
ence at the specimen (see Section 4.5). The recent development of higher-brightness
sources is of particular benefit to high-resolution transmission electron microscopy
since the required choice of a small second condenser aperture frequently provides
insufficient intensity on the viewing screen to allow accurate focusing at high mag-
nification. A pointed filament, LaB6 source or field-emission gun greatly facilitates
this procedure.

In most cases of practical interest the imaging is partially coherent. By this we
loosely mean that for object detail below a certain size Xc we can use the model of
coherent phase contrast imaging (see Fig. 1.2) while for detail much larger than Xc
the imaging is incoherent. The distance Xc is given approximately by the electron
wavelength divided by the semi-angle subtended by the second condenser aperture
at the specimen, when using a hair-pin filament. In Section 10.8 a fuller discussion
of methods for measuring Xc is given which includes the effect of the objective lens
pre-field. Since the width of Fresnel edge fringes commonly seen on micrographs
is approximately equal to Xc, we can adopt the rough rule of thumb that the more
complicated through-focus effects of phase contrast described in Section 6.2 will
become important whenever one is interested in image detail much finer than the
width of these fringes.

To summarize, the main changes in emphasis for microscopists accustomed to
conventional imaging and considering a high-resolution project are as follows: in
conventional imaging we deal with ‘thick’, possibly stained, specimens using a small
objective aperture and a large condenser aperture. Focusing presents no special prob-
lems. In high-resolution phase-contrast imaging we deal with the thinnest possible
specimens (unstained), using a larger objective aperture of optimum dimensions and a
small illuminating aperture. The choice of focus becomes crucial and must be guided
either by experience with computed images or by the presence of a small region
of specimen of known structure in the neighbourhood of the wanted structure. This
image simulation experience indicates that for the vast majority of large-unit-cell
crystals imaged at a resolution no higher than 0.20 nm the choice of focus which
gives a readily interpretable image containing no false detail is between 20 and 60 nm
under-focus (weakened lens) for microscopes with a spherical aberration constant
between 1 and 2 mm. A calibrated focus control is therefore needed to set this focus
condition. Methods for measuring the focus increments are given in Section 10.1.
The limits on specimen thickness are discussed in Chapter 5.
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1.2 Instrumental requirements and modifications for
high-resolution work

The major manufacturers of electron microscopes offer instruments closely matched
in performance. All are capable of giving point resolution better than 0.2 nm for bright-
field images. The recent trend toward side-entry eucentric goniometer stages, of the
kind used by biologists for many years, for high-resolution work greatly facilitates
the procedure of orienting a small crystal, since the lateral movement accompanying
tilting of the specimen is minimized by these stages. However, the drift rate due to
thermal effects using these stages has been considerably higher than that for top-entry
stages.

A laboratory which has recently purchased a transmission microscope and wishes
to use it for high-resolution studies should consider the following points. This list is
intended as a rough checklist to refer the reader to further discussion of these topics
in other chapters. Most of the instrumental modifications needed to adapt an existing
machine to high resolution work are also listed.

1. The microscope site must be acceptable. Mechanical vibration, stray magnetic
fields, and room temperature must all be within acceptable limits. These factors are
discussed in Chapter 11 and elsewhere (Alderson 1974; Agar et al. 1974).

2. A reliable, constant temperature and pressure supply of clean cooling water must
be assured (see Chapter 11). In installations where internal re-circulating water is not
available and the external supply is impure it is common to find both the specimen
drift rate and illumination stability deteriorating over a period of weeks as the water
filter clogs up, causing the cooling water pressure to fall and leading to fluctuations
in specimen stage and lens temperature. A separate closed-circuit water supply and
external heat exchanger is the best solution for high-resolution work, with the water
supplied only to the microscope. Vibration from the heat exchanger pumps must be
considered; these should be in a separate room from the microscope. Despite the use
of distilled water, algae are bound to form in the water supply. Some manufacturers
warn against the use of algae inhibitors as these may corrode the lens-cooling jacket,
repairs to which are very expensive. About all that can be done is to replace the
water periodically. Thermal stage drift is one of the most serious problems for high-
resolution work, particularly for long-exposure dark-field images. If external hard
water is used it is essential that the condition of the water filter is checked regularly
and replaced if dirty. If the microscope’s inbuilt thermoregulator is used it is equally
important to check every few days that it is operating within the temperature limits
for which it is designed.

3. In order to record an image at a specified focus defect it will be necessary to
measure the change in focus between focus control steps (‘clicks’) using the methods
of Section 10.1. In addition, the spherical aberration constant Cs must be known for
the optimum objective lens excitation (see below). This should be less than 2 mm at
100 kV if high-resolution results are expected. Methods for measuring Cs are given
in Section 10.2. Microscope calibration—the measurement of defocus increments,
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spherical abberation constant, and objective lens current—must therefore be one of
the first steps in the conversion of a conventional machine to high-resolution work.
A digital voltmeter will be required to read the objective lens current as described in
Section 10.4. Once the optimum specimen position in the lens gap has been found, the
objective lens current needed to focus the specimen at this position should be noted,
and the highest-quality images recorded near this lens current. This is not always
possible when using a tilting specimen holder if a non-axial object point is required,
since the specimen height (and hence the objective lens current needed for focus)
varies across the inclined specimen.

4. The resolution obtained in a transmission image depends amongst other things
on the specimen position in the objective lens. The optimum ‘specimen height’ must
be found by trial and error. In reducing the specimen height and so increasing the
objective lens current needed for focus, the lens focal length and spherical aberration
constant are reduced, leading to improved resolution. In Fig. 2.16 the dependence
of spherical aberration on lens excitation is shown. A second effect, however, res-
ults from the depth of the objective lens pre-field, which increases as the specimen is
immersed more deeply into the lens gap. This increases the overall demagnification of
the illumination system and increases its angular magnification (see Section 2.2). The
result is an increase in the size of the diffraction spots of a crystalline specimen which,
for a fixed illumination aperture, allows the unwanted effect of spherical aberration to
act over a larger range of angles (see Section 3.3). Finally, as shown in Fig. 2.17, for
many lens designs the chromatic aberration coefficient Cc passes through a minimum
as a function of lens excitation and this parameter affects both the contrast and resolu-
tion of fine image detail. The complicated interaction between all these factors which
depend on specimen position can best be understood using the ‘damping envelope’
concept described in Section 4.2 and Appendix 3. This ‘damping envelope’ controls
the information resolution limit (loosely referred to by manufacturers as the ‘line’
or ‘lattice’ resolution) of the instrument and depends chiefly on the size of the illu-
mination aperture and Cc. The point resolution, however, is determined by spherical
aberration. A method has been described which would allow both these important
resolution limits to be measured as a function of specimen position in the lens bore
through an analysis of optical diffractogram pairs (see Section 10.10). A systematic
analysis of this kind, however, represents a sizeable research project, involving many
practical difficulties. For example, in such an analysis, diffractograms are required
at similar focus defects for a range of specimen positions, yet the ‘reference focus’
used to establish a known focus defect (see Section 12.5) itself depends on Cs, which
varies with specimen position. In addition, both the focal increment corresponding to
a single step on the focus control and the chromatic aberration constant (which affects
the ‘size’ of diffractogram ring patterns) depend on the specimen position. For prelim-
inary work, then, a simpler procedure is to record images of a large-unit-cell crystal
at the Scherzer focus for a range of specimen heights and to select the highest-quality
image, judging this by eye. Experience in comparing computed and experimental
images of large-unit-cell crystals shows that a useful judgement of image quality (a
combination of contrast, point, and line resolution) can be made by eye. Once this
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near-optimum specimen position has been found, further refinements can be made
using the computer image-matching technique together with diffractogram analysis.
To obtain the required range of specimen heights on top-entry machines it is necessary
to fit small brass washers above or below the specimen. A shallow threaded cap to
fit over the specimen may also be needed to bring the tilted specimen closer to the
lower cold-finger. The measured objective lens current (see Section 10.4) needed to
bring the image into focus is then used as a measure of specimen height, and must be
recorded for each image. The specimen height and corresponding lens current which
give images of the highest quality can then be determined and permanently recorded
for the particular electron microscope. These large-unit-cell crystals have the useful
property that images of highest contrast are usually produced near the Scherzer focus,
so that this focus setting can be found routinely by experienced microscopists working
with these materials. (This may not be the case for metals and semiconductors, whose
lattice images of highest contrast appear at much larger under-focus settings—see,
Section 5.15.)

5. A vacuum of 0.5 × 10−7 torr or better is needed (measured in the rear pumping
line). The simplest way to trace vacuum leaks is to use a partial pressure gauge (see
Section 11.5). A microscope which is to be used for high-resolution work should
either be fitted permanently with such a gauge, or should be fitted with a blanked-off
T-connection on the rear pumping line to allow a gauge available on loan to be fitted at
short notice. Inexpensive gauges of the radiofrequency quadrupole type are useful for
conventional work. Photographic plates, a major source of water vapour in the micro-
scope, must be well out-gassed and the interior of the high-vacuum pumping lines must
be clean. These can be out-gassed using flexible heating tape wrapped around the metal
pipes and heated for several hours. A sizeable improvement in vacuum is usually pos-
sible using this method. In a clean, well-out-gassed microscope with no serious leaks
and a vacuum of 0.5 × 10−7 torr the major source of contamination is frequently the
specimen itself. Always compare the contamination rates for several different speci-
mens before concluding that the microscope itself is causing a contamination problem.

6. The microscope high voltage must be sufficiently stable to allow high-
resolution images to be obtained. Given a sufficiently stable high-voltage supply (see
Sections 11.2 and 2.8.2) this generally requires a scrupulously clean gun chamber
and Wehnelt cylinder. Methods for observing high-voltage instability are discussed
in Section 12.2.

7. The room containing the microscope must be easily darkened completely, and
a room-light dimmer control needs to be fitted within arm’s reach of the operator’s
chair. Specimen changes can then be made in dim lighting so that the user does not
lose the slow chemical dark adaptation of his eyes.

1.3 First experiments

This section outlines a procedure which will enable a microscopist new to high-
resolution work to become familiar with some of the techniques of high-resolution
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transmission microscopy and to practise the required skills of focusing, astigmatism
correction, and micrograph examination. The test specimen used consists of small
clusters of heavy atoms supported on a thin carbon film. The microscope is assumed to
satisfy the conditions of Section 1.2 and the focal increments and spherical aberration
constant are presumed known.

1. Specimens can be purchased or made up using an evaporator. With patience
a specimen can be made which will give higher contrast than most commercially
available specimens by selecting the thinnest possible support film. To prepare the
specimens, set up the evaporator as shown in Fig. 1.6, using a glass microscope slide
carefully cleaned with distilled water and detergent at G. A second slide is placed
above this to shield the lower slide from direct evaporation. The amount of gold wire
added to the tungsten coil must be judged by experiment—start with about 1 cm of
fine gold wire.

2. Pump down the evaporator bell-jar to 10−5 torr or better and evaporate the carbon
for a few seconds. Increase the current in the tungsten heater quickly to well above

C

C

D

B

G

F

A

Fig. 1.6 Arrangement of an evaporator unit for the preparation of indirectly evaporated gold atom clusters
on amorphous carbon. A and B are supports of material which does not out-gas under vacuum (e.g. clean
metal). G and F are clean glass microscope slides—freshly cleaved mica can also be used at G. The
tungsten heater loaded with a minute amount of fine gold wire is shown at D and the carbon rods used for
the amorphous carbon film are indicated at C. The distance between D and G should be as large as possible
and several trial evaporations will be needed to obtain a low density of gold clusters.
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the melting point of gold, then switch off and allow the specimen to cool. Break the
bell-jar vacuum.

3. Remove the lower glass slide, which should now contain two well-defined carbon
shadow edges. Fill a clean evaporating dish with distilled water and gently slide the
microscope slide into the still water at a low angle to the surface. The carbon should
detach from the glass and fragments will be seen floating freely on the water surface.
Keep track of a thin fragment from the shadow edge—this must be picked up by
drawing a 400-mesh microscope grid (held with tweezers) up from below the surface
of the water. If commercial holey-carbon films are used in place of the 400-mesh
grids even thinner films can be made.

4. Drying the specimen without damaging the carbon film is difficult. For rough
preliminary work with thicker films the water drop enclosing the grid can usually be
drawn off by touching a piece of filter paper against the side of the grid, or introducing
a sliver of filter paper between the tweezer prongs and running this up to the specimen.
For the thinnest films the tweezers should be clamped together using an electrician’s
crocodile clip and the specimen, held in the tweezers, left to dry alone.

5. Examine the specimen in the microscope. If too much gold has been used a
continuous or semi-continuous film of gold will be seen. The correct amount of gold
produces isolated islands of gold atoms, well separated and of varying size. The
carbon support should be as thin as possible and not torn within the grid square of
interest.

6. Once a suitable specimen area has been found, bright-field images can be
recorded at high magnification (400 000 or more) using a CCD camera. Chapter 12
gives details of all necessary precautions. A microscope which has been switched on
in the morning, with all cold-traps kept filled with liquid nitrogen, should be in thermal
equilibrium by early afternoon when serious work can commence. The morning is
profitably spent examining possible specimens. The cold-traps must not be allowed
to boil dry during a lunch break. The thermal stability and cleanliness of the three
components in the objective lens pole-piece gap (objective aperture, cold-finger, and
specimen) are of the utmost importance in high resolution work. The best arrange-
ment is to leave the microscope running through the week, fitted with an automatic
liquid-nitrogen pump for the cold-traps. Record images without an objective aperture
inserted (so that resolution is limited by incoherent instabilities—see Section 4.2),
and using an aperture whose size is given by eqn (6.16). The semi-angle θap subtended
by the objective aperture can be measured by taking a double exposure of the diffrac-
tion pattern of some continuous gold film with and without the aperture in place (see
Section 10.2). A check of the following must be made before taking pictures: (1) con-
denser astigmatism (for maximum image intensity); (2) gun tilt; (3) current or voltage
centre (see Section 12.2); (4) high-voltage stability (see Section 11.2); (5) absence of
thermal contact between specimen and cold-finger (see Section 12.2); (6) cleanliness
of objective aperture (7) specimen drift (see Section 11.4); and (8) contamination (see
Section 11.5).

Use the minimum-contrast condition (see Section 12.5) to correct astigmatism and
take several bright-field images in the neighbourhood of the focus value given by
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eqn (6.16). A through-focus series about the minimum contrast focus in steps of,
say 20 nm, will show the characteristic change from a dark over-focus Fresnel fringe
around an atom cluster to a bright fringe in the under-focus images.

7. Digital diffractograms of the images should be obtained as described in
Section 10.7. The measured diameter of the rings seen in these can be used with
the simple computer program given in Appendix 1 to find the focus setting for each
micrograph and the microscope’s spherical aberration constant. More immediately,
these optical diffraction patterns reveal at a glance the presence of astigmatism or
specimen movement during the exposure (drift—see Section 10.7). This immediate
‘feedback’ is essential for a microscopist learning the skills of astigmatism correc-
tion and focusing. With practice the microscopist will become adept at finding the
minimum-contrast condition, correcting astigmatism, and resetting the focus control
a fixed number of ‘clicks’ toward the under-focus side to obtain images of highest
contrast and resolution.
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2
ELECTRON OPTICS

An elementary knowledge of electron optics is important for the intelligent use of an
electron microscope, particularly at high resolution. This chapter is intended to give
the simplest account of electron optics that will expose the important physical proper-
ties of magnetic electron lenses, such as image rotation, aberrations, minimum focal
length, and the distinction between projector and objective modes. In high-resolution
work it is common practice to experiment with changes in specimen position, the
effects of which can be understood from the discussion of Section 2.7. It is also
sometimes convenient to increase the overall magnification available on an older
machine—the effect of the projector lens pole-piece dimensions on magnification is
also mentioned. Some calculations of lens characteristics used for lens design are
also given, showing the way in which lens aberrations, of prime importance at high
resolution, depend on the lens excitation and geometry. Since the emphasis is on the
practical aspects of the behaviour of real lenses, I do not discuss the elegant and con-
siderable contribution of early workers using simple algebraic approximations for the
lens field. These workers’ investigations, such as those of Lenz, Glaser, Grivet, and
Ramberg, can be traced through the electron optics texts included in the references for
this chapter. Useful introductory accounts of electron optics can be found in the books
by Hall (1966) and Hawkes (1972). Grivet (1965) is a useful general text on electron
optics for the solution of practical electron-optical problems. Modern lens designs are
guided by a great deal of experience, together with computed solutions of the Laplace
equation (Septier 1967) for a review of methods for doing this) and subsequent numer-
ical solution of the ray equation (see, e.g. Mulvey and Wallington (1972) or Kamminga
et al. (1968/9)). The accurate measurement of electron-optical parameters such as the
spherical aberration and chromatic aberration constants, which has become increas-
ingly important with developments in image analysis at high resolution, is discussed
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in Chapter 10. Developments in superconducting electron optics are described in
Dietrich (1977).

2.1 The electron wavelength and relativity

Rather than solve the Schrödinger equation for the electron microscope as a whole, it
is simpler to separate the three problems of beam—specimen interactions, magnetic
lens action, and fast electron sources. The first problem is a many-body problem
solved by optical-potential methods, while the second has traditionally been treated
classically. A wavelength is assigned to the fast electron as follows.

The principle of conservation of energy applied to an electron of charge −e

traversing a region in which the potential varies from 0 to V0 gives

eV0 = p2/2m = h2/2mλ2 (2.1)

where p is the electron momentum and h is Planck’s constant. Thus,

λ = h√
2meV0

(2.2)

where the de Broglie relation p = mv = h/λ has been used. An electron leaves
the filament with high potential energy and thermal kinetic energy, and arrives at the
anode with no potential energy and high kinetic energy. The zero of potential energy
is taken at ground potential. If λ is in nanometres and V0 in volts, then

λ = 1.22639/
√

V0 (2.3)

At higher energies the relativistic variation of electron mass must be considered.
Neglect of this leads to a 5 per cent error in λ at 100 kV. The relativistically corrected
mass is

m = m0/(1 − v2/c2)1/2

and the equation corresponding to (eqn 2.1) is

eV0 = (m − m0)c
2

with m0 the electron rest mass and c is the velocity of light. These equations may be
combined to give an expression for the electron momentum mv. Used in the de Broglie
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relation, this gives the corrected electron wavelength as

λ = h/(2m0eVr)
1/2 (2.4)

where

Vr = V0 +
(

e

2m0c2

)
V 2

0

is the ‘relativistic accelerating voltage’, introduced as a convenience. For computer
calculations discussed in later chapters the value of λ may be taken as

λ = 1.22639/(V0 + 0.97845 × 10−6V 2
0 )1/2 (2.5)

with V0 the microscope accelerating voltage in volts and λ in nanometres.
The relativistic correction is important for high-voltage electron microscopy

(HVEM). If V0 is expressed in MeV, a good approximation is Vr = V0 + V 2
0 , so that

Vr = 6 MeV for a 2 MeV microscope. The largest instruments currently available
operate at 3 MeV. The formal justification for these definitions of a relativistically
corrected electron mass and wavelength must be based on the Dirac equation, as first
pointed out by A. Howie and K. Fujiwara (see Section 5.7).

A method for measuring the relativistically corrected electron wavelength directly
from a diffraction pattern is discussed in Chapter 10. This method requires only a
knowledge of a crystal structure and does not require the microscope accelerating
voltage or camera length to be known.

The positive electrostatic potential φ0 inside the microscope specimen further accel-
erates the incident fast electron, resulting in a small reduction in wavelength inside
the specimen (Fig. 2.1). Ignoring the periodic variation of specimen potential, which
gives rise to diffraction and the dispersion surface construction, the mean value of
this inner potential is given by ν0, the zero-order Fourier coefficient of potential (see
Section 5.3.2). A typical value of ν0 is 10 V. The refractive index of a material for
electrons is then given by the ratio of wavelength λ in vacuum to that inside the
specimen λ′. Applying the principle of conservation of energy with careful regard to
sign gives

n = λ

λ′ =
(

1.23√
V0

)(√
V0 + φ0

1.23

)
≈ 1 + φ0

2V0

The phase shift of a fast electron passing through a specimen of thickness t with
respect to that of the vacuum wave is then

θ = 2π(n − 1)t/λ = πφ0t/λV0 = σφ0t

as suggested in Fig. 2.2. Here σ = π/λV0 = 2πmeλ/h. If the approximation is
then made that the exit face wavefunction can be found by computing its phase along
a single optical path such as AB in Fig. 2.2, the product φ0t can be replaced by
the specimen potential function projected in the direction of the incident beam (see
Section 3.4). The neglected contributions from paths such as CA can be included
using the Feynman path-integral method as discussed in Jap and Glaeser (1978).
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Fig. 2.1 Simplified potential energy diagram for an electron microscope. The length of the vertical arrow
is proportional to the kinetic energy of the fast electron, and inversely proportional to the square of its
wavelength. The sum of the electron’s potential energy (represented by the height of the graph) and its
kinetic energy is constant. Electrons leave the filament with low kinetic energy and high potential energy
(supplied by the high-voltage set) and exchange this for kinetic energy on their way to the anode, which
is at ground potential. As with a ball rolling down a hill, they are further accelerated as they ‘fall in’ to
the specimen. Approximate distance down the microscope column is represented on the abscissa and the
potential step at the specimen has been exaggerated.

2.2 Simple lens properties

Modern electron microscopes use four or five imaging lenses, of variable focal length,
below the specimen with the position of the object and final viewing screen fixed for
the purposes of focusing. At the high magnifications usually used for high-resolution
work, the lens currents (which determine the focal lengths) of lenses L2, L3, and L4
are used to control the magnification as shown in Fig. 2.3 and Table 2.1. For a fixed
magnification setting, focusing is achieved by adjusting the strength of the objective
lens L1 until the fixed plane P1 is conjugate to the exit face of the specimen. Some of
the properties of these lenses can be understood from the equations describing ideal
lens behaviour given below, which also provide results used in later chapters.

The study of electron optics seeks to determine the conditions under which the
electron wavefield passing through an electron lens satisfies the requirements for
perfect image formation. For comparison purposes, it is convenient to set up the model
of the ideal lens. The ideal lens is a mathematical abstraction which provides perfect
imaging given by a projective transformation between the object and image space.
The constants appearing in this transformation specify the positions of the cardinal
planes of the lens. The six important cardinal planes are the two focus planes, the
two principal planes, and the two nodal planes as shown in Fig. 2.4. For magnetic
lenses the nodal planes coincide with the principal planes. The points where the
axis crosses the nodal planes are called nodal points, N1 and N2. Principal planes
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Fig. 2.2 The electron wave illustrated in two cases passing through a specimen. The wave passing
through the centre of an atom (where the potential is high) has its wavelength reduced and so suffers
a phase advance relative to the wave passing between the atoms which experiences little change in its
wavelength. The assumption of this simplified model used in the phase grating approximation is that the
amplitude at A can be calculated along the optical path AB with no contribution at A from a point such
as C. For thick specimens this approximation is unsatisfactory.

are planes of unit lateral magnification, while nodal planes are planes of unit angular
magnification. For an axially symmetric lens, the projective transformation for perfect
imaging simplifies to

yi

y0
= fi

x0
= xi

f0
(2.6)

where the symbols are as defined in Fig. 2.4. The second of these equations is Newton’s
lens equation. Figure 2.4 provides a convenient graphical construction for eqn (2.6).
Here F1 and F2 are known as the object and image focus respectively with H1 and
H2 the object and image principal planes. The determination of the positions of these
planes is the key problem of electron optics—once they are known the rules for
graphical construction of figures satisfying eqn (2.6) can be used to find the image of
an arbitrary object. The rule for a construction which gives the conjugate image point
of a known object point P is:

1. Draw a ray through P and F1, intersecting H1 at Q. Through Q draw a ray YQ
parallel to the axis extending into both object and image spaces.

2. Draw a ray parallel to the axis through P to intersect H2. From this intersection
draw a ray through F2 to intersect the ray YQ at P′. P′ is the image of P.
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Fig. 2.3 Ray diagram for an electron microscope with two condenser lenses, C1 and C2 and four imaging
lenses, L1, L2, L3, and L4, operating at high magnification. A typical set of dimensions for D1 to D7 is
given in Table 2.1, together with the possible range of focal lengths. These values may be used for examples
throughout this book. Here OA is the objective aperture, P1 is a fixed plane, and SA is the selected area
aperture.

Table 2.1 Electron-optical data for a typical electron micro-
scope (see Fig. 2.3)

Distances between lens Focal length range (mm)
centres (approximate) (mm)

D1 = 143.6 1.65 < f (C1) < 19
D2 = 94.3 30 < f (C2) < 1060
D3 = 251.4 15.4 < f (L2) < 281
D4 = 215.5 3.1 < f (L3) < 99.5
D5 = 44.9 2.06 < f (L4) < 16.4
D6 = 73.6
D7 = 345.6

For magnifications greater than 100 000 the magnification is con-
trolled adjusting the focal length of L3 with f (L2) = 15.4 mm fixed
and f (L4) = 2.1 mm fixed. The focal length of L3 is set as fol-
lows: f (L3) = 9.8, 7.0, 5.0, 3.1 mm for M = 150, 200, 400, 750 K,
respectively.
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Fig. 2.4 The thick lens. The nodal planes (N1, N2), principal planes (H1, H2), and focal planes (F1, F2)
are shown together with the lens focal lengths (fi, f0) and the object focal distance zp. For a magnetic
electron lens the principal planes are crossed.
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Fig. 2.5 Ray diagram for the objective lens of a microscope operating at moderate magnification. The
image is virtual and the principal planes are crossed. Object and image focal lengths are equal for magnetic
lenses. A typical value for f2 is 2 mm, and the magnification M = V/U may be about 20.

As an example of this construction, Fig. 2.5 shows these rules applied to the
objective lens of a modern electron microscope operating at moderate magnifica-
tion (about 40 000). Note that the image formed by the objective lens is virtual, and
that the principal planes are crossed, as they are for all magnetic electron lenses. The
use of this mode on a four-lens instrument has advantages for biological specimens
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where radiation damage must be minimized. At this moderate magnification lens L3
is switched off. At high magnification all lenses are used. Modern lens designers use
the methods of matrix optics; an elementary introduction to these techniques can be
found in Nussbaum (1968).

The simple thin-lens formula can still be used if the object and image distances U

and V are measured from the lens principal planes H1 and H2.
Equation (2.6) becomes

fi

U
+ f0

V
= 1

If the refractive indices in the object and image space are equal, as they are for
magnetic electron lenses, then

fi = f0 = f (2.7)

and so

1

U
+ 1

V
= 1

f
(2.8)

A construction can also be given to enable the continuation of a ray segment in the
image space to be found if it is known in the object space. Note that a ray from P
arriving at N1 at an arbitrary angle leaves N2 at the same angle. For a thin lens the
principal planes coincide, so this is the ray through the lens origin. Equation (2.8)
is quite general if the following sign convention is obeyed: U is positive (negative)
when the object is to the left (right) of H1, V is positive (negative) when the image is
to the right (left) of H2. Both focal lengths are positive for a convergent lens, and all
magnetic lenses are convergent for electrons and positrons. From eqn (2.8) and the
definition of magnification (eqn 2.9) three cases emerge:

1. U < f . Image is virtual, erect, and magnified.
2. f < U < 2f . Image is real, inverted, and magnified.
3. U > 2f . Image is real, inverted, and reduced.

Some additional terms, commonly used in electron optics, are defined below.

1. The lateral magnification M is given by

M = yi

y0
= −V

U
(2.9)

Using eqn (2.8) we have

M − 1 = −V

f
(2.10)

so that if V is fixed and the magnification is large, as it is for the objective lens of
an electron microscope, the magnification is inversely proportional to the objective
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lens focal length. For high magnification, U must be slightly greater than f —both
are about a millimetre for a high-resolution objective lens.

2. The angular magnification m is, for small angles,

m = tan θi

tan θ0
≈ θi

θ0
=
∣∣∣∣ 1

M

∣∣∣∣ (2.11a)

as shown in Fig. 2.6.
3. The entrance and exit pupil of an optical system are important in limiting its

resolution and light-gathering power. These concepts also simplify the analysis of
complex optical systems. The entrance pupil is defined as the image of that aperture,
formed by the optical system which precedes it, which subtends the smallest angle
at the object. The image of the entrance pupil formed by the whole system is known
as the exit pupil. The ‘aperture stop’ is the physical aperture whose image forms the
entrance pupil, as shown in Fig. 2.7.

4. The Gaussian reference sphere for an image point P is defined as the sphere,
centred on P, which passes through the intersection of the optic axis with the exit
pupil (see Fig. 2.7). For an unaberrated optical system, the surface of constant phase
for a Huygens spherical wavelet converging toward P coincides with this reference
sphere. The deviation of the wavefront from the Gaussian reference sphere specifies
the aberrations of the system (see Section 3.3), while the diffraction limit is imposed
by the finite size of the exit pupil, or, equivalently, the entrance pupil. This is discussed
further in Chapter 3.

P P�

U V

H2H1

�0
�i

Fig. 2.6 Angular magnification. The image P′ of a point P is shown together with the angles which a ray
makes with these points.
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Entrance pupil Lens system Exit pupil

P

�i�0

Fig. 2.7 The entrance and exit pupils of an optic system. A complicated optical system consisting of
many lenses can be treated as a ‘black box’ and specified by its entrance and exit pupils and a complex
transfer function. A Huygens spherical wavefront is shown converging to an image point P.

5. The longitudinal magnification, Mz, can be used to relate depth of field to depth
of focus (see below). Differentiation of eqn (2.8) gives

�V

�U
= −M2 = Mz (2.11b)

Thus an object displacement �U causes a displacement �V of conjugate image
planes given by this equation. For example the image planes conjugate to the upper
and lower surfaces of an atom 0.3 nm ‘thick’ are separated by 3 m if the lateral
magnification M is 100 000.

6. Incoherent imaging theory gives the depth of field or range of focus values
(referred to the object plane) over which an object point can be considered ‘in focus’
as 2d/θ , where θ is the objective aperture semi-angle and d is the microscope resolu-
tion. This result cannot, however, be accurately applied to the coherent high-resolution
imaging of phase objects (see Section 3.4).

The methods used by lens designers to determine the position of the cardinal planes
of electron lenses are discussed in the next sections. From Fig. 2.4 it is seen that the
axis crossing of a ray entering (leaving) parallel to the axis defines the image (object)
focus. In electron optics the trajectory of an electron entering the lens field parallel to
the axis can similarly be used to find the lens focus once the equation of motion for
the electron can be solved for a particular magnetic field distribution. Real electron
trajectories follow smooth curves within the lens magnetic field. In order to use the
ideal lens model it may be necessary to use the virtual extensions of a ray from a point
well outside the influence of the field to define the lens focus.
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2.3 The paraxial ray equation

The focusing action of an axially symmetric magnetic field can be understood as
follows. Figure 2.8 shows a simplified diagram of an electron lens, including a typical
line of magnetic flux. The actual arrangement used for one instrument in the important
region of the lens pole-pieces is shown in Fig. 2.9. The dimensions of the pole-piece
are S, R1, and R2 as shown in Fig. 2.8. The magnetic field B is confined to the
pole-piece gap, where an electron of charge −e and velocity v experience a force

F = −ev × B = m
d2r

dt2
(2.12)

The direction of F is given by the left-hand rule (current flow opposite to electron
flow), which from Fig. 2.8 is seen to be into the page as the electron enters the field
on the left (assuming the upper pole-piece is a North pole). An electron entering on
the right side experiences a force out of the page. These forces result in a helical
rotation of the electron trajectory. The rotational velocity component rθ imparted
interacts with the z component of the field Bz(r) to produce a force towards the axis,
again given by the left-hand rule. This force is responsible for the focusing action of
the lens.

Windings

Iron

z

R2

S

R1

Bp

Fig. 2.8 Simplified diagram of a magnetic electron lens. The dimensions of the pole-piece are indicated
and the path taken for Ampère’s law is shown as a broken line. Also broken is shown a line of magnetic
flux which gives a qualitative indication of the focusing action of the lens (see text). The field strength
in the gap far from the optic axis is Bp. In practice the windings are water cooled and the pole-piece is
removable.
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Fig. 2.9 Detail of an actual high-resolution pole-piece. The upper pole-piece bore diameter 2R1 is 9 mm,
the lower bore diameter 2R2 is 3 mm, and the gap S is 5 mm in this commercial design. (See Fig. 2.8 for
the definitions of R1, R2, and S.)

Using certain approximations described in most optics texts, eqn (2.12) can be
simplified for meridional rays in a cylindrical coordinate system. These are rays
in a plane containing the axis before reaching the lens. The simplifications include
the neglect of terms which would lead to imperfect imaging (lens aberrations). The
paraxial ray equation which results contains only the z component of the magnetic
field evaluated on the optic axis Bz(z). This is

d2r

dz2
+ e

8mVr
B2

z (z)r = 0 (2.13)

where r is the radial distance of an electron from the optic axis and Vr is the relativ-
istically corrected accelerating voltage. Once the field Bz(z) on the axis is known,
computed solutions of eqn (2.13) can be used to trace the trajectory of an electron
entering the field. For a symmetrical lens, a ray entering parallel to the axis will define
all the electron lens parameters discussed in later sections. Note that the approximation
has been made that the z component of the field does not depend on r .

Equation (2.13) is a linear differential equation of second order with two linearly
independent solutions. It can be shown that these solutions describe rays which satisfy
the conditions for perfect lens action. Using a computer one can also solve eqn (2.12)
to find the electron trajectories for a particular magnetic field. By comparing these
true electron trajectories with the idealized trajectories satisfying eqn (2.13) (and
producing perfect imaging) it is possible to determine the aberrations of a magnetic
lens. Alternatively, it is possible to use simple expressions for the various aber-
ration coefficients which are given as functions of the solution to eqn (2.13) (see
Section 2.8.1).
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Similarly, the helical rotation of meridional rays can be found. The rotation of this
plane is given by

θ0 =
(

e

8mVr

)1/2 ∫ z2

z1

Bz(z) dz. (2.14)

Rays entering the lens in a given meridional plane remain in that plane which rotates
through θ0 as the rays traverse the lens field. Note that the total image rotation is
(180 + θ0) degrees on account of the image inversion (M is negative).

It can be seen that the lens shown in Fig. 2.8 is very inefficient since most of the
power dissipated supports a field in the z direction which produces no force on the
electron entering parallel to the axis. Aberration correctors use the far more efficient
hexapoles and Quadrupoles.

2.4 The constant-field approximation

A review of computing methods used in the solution of eqn (2.13) is given in Mulvey
and Wallington (1972). However, eqn (2.13) is easily solved if the z dependence of
the field can be neglected. It then resembles the differential equation for harmonic
motion. The accuracy of this ‘constant field’ approximation has been investigated by
Dugas et al. (1961), who found it to give good agreement with experiment for the
focal lengths of projector lenses at moderate and weak excitation. It is included here
for the physical insight it allows into magnetic lens action and to clarify the definition
of the lens focal length. Since the expression for Cs (eqn 2.32) involves derivatives
of the field, we cannot expect to understand the influence of aberrations using such a
crude model.

If the origin of coordinates is taken on a plane midway between the pole-piece gap
(length S), then a field constant in the z direction is given by

Bz(z) = Bp for − S/2 � z � S/2

= 0 elsewhere (2.15)

Equation (2.13) becomes

d2r

dz2
+ k2r = 0 (2.16)

with

k2 =
(

e

8m0Vr

)
B2

p (2.17)

that is,

k = 1.4827 × 105Bp/V
1/2
r
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with Bp in teslas and Vr in volts. The solution to eqn (2.16) is

r = A cos kz + B sin kz (2.18)

whereA andB are constants to be determined from the boundary conditions. Matching
the slope and ordinate r0 at z = S/2 for a ray which leaves the lens parallel to the
axis gives

r = r0 cos k(z − S/2) (2.19)

The ‘constant field’ strength Bp can be related to the number of turns N and the
lens current I using Ampère’s circuital law. If the bore of the lens D is sufficiently
small that it does not disturb the magnetic circuit and the reluctance of the iron is
considered negligible compared to that of the gap S, then we have, for the circuit
indicated in Fig. 2.8,

Bp = μ0NI

S
= 4π × 10−7

(
NI

S

)
(2.20)

with I in amperes and Bp in Tesla. Note that Bp gives the flux density in any lens gap
if measured sufficiently far from the optic axis.

2.5 Projector lenses

Lenses which use the image formed by a preceding lens as object, such as lenses L2,
L3, and L4 of Fig. 2.3, are known as projector lenses. ‘Intermediate’ lenses fall in this
category, to distinguish them from lenses which use a physical specimen as object.

It may happen that the image formed by, say, L2 falls within the lens field of L3.
The image formed by L3 can nevertheless be found by the constructions of Section 2.2
if a virtual object is used for L3. This virtual object is the image formed by L2 with L3
removed. A similar procedure applies if the L2 image falls beyond the centre of L3.

The behaviour of real electron trajectories within the lens is given on a simple
model by eqn (2.19). This equation is now used to give the focal length and principal
plane position of an equivalent ideal lens. The image formed by a system of lenses
can then be found by successive applications of the ideal lens construction.

The projector object focus fp may fall inside or outside the lens field. The two cases
are indicated in Figs 2.10(a) and (b). Notice that the extension of the asymptotic ray
direction has been used for z → −∞ to define the ‘virtual’ or asymptotic projector
focal length fp. The distance between the principal plane H1 and the object-focus in
Fig. 2.10(a) is

fp = r0/ tan θ = r0

/(
dr

dz

)
−∞

= r0

/(
dr

dz

)
−S/2
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Fig. 2.10 (a) Definition of the objective and projector focal lengths fobj and fp. The objective and
projector focal distances zobj and zp are also shown. The specimen for an objective lens is placed near
F1′. This diagram shows the lens used both as an objective (with focus at F1′) and as a projector (with
focus F1) if the focus lies inside the lens field. (b) Ray diagram for a projector lens if the focus lies outside
the lens field, which extends from −S/2 to S/2. The ordinate represents both the field strength and the
distance of a ray from the optic axis. The image focus occurs at F2.

Using eqn (2.19) gives

fp/S = [Sk sin(Sk)]−1 (2.21)

This function is plotted in Fig. 2.11, and shows the minimum focal length character-
istic of projector lenses. Lenses are generally operated in the region 0 < Sk < 2,
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Fig. 2.11 Relative focal lengths of objective and projector lenses (fobj and fp) as a function of lens
excitation (proportional to the lens current) for the constant-field model. The abscissa is defined in the text.
The projector minimum focal length occurs at fp = 0.56S, where S is the pole-piece gap size.

though the properties of ‘second zone’ lenses with Sk > 2 have been investig-
ated for high resolution (von Ardenne 1941). Equation (2.21) gives a minimum for
fp = 0.56S.

Using eqn (2.20) the abscissa for Fig. 2.11 is, under the constant-field
approximation,

Sk = 0.1862

(
NI√
Vr

)
(2.22)

The object focal distance zp is defined as the distance between the centre of the lens
and the object focus. From Fig. 2.10(a) it is seen that, together with fp this specifies
the position of the principal plane. From the figure,

zp = S/2 − r(−S/2)

/(
dr

dz

)
−S/2

Using eqn (2.19) gives

zp

S
=
[

1

2
− 1

kS tan kS

]
(2.23)

for a projector lens. The sign is reversed for Fig. 2.10(b).
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If the focal length is much larger than the lens gap (fp � S) the lens is a weak lens
such as C2 of Fig. 2.3. With kS < 2, eqn (2.21) gives

S/fP = (Sk)2 (2.24)

which is the formula for a ‘thin’ magnetic lens when the distance between principal
planes is neglected. A slightly more general form of this result was obtained by Busch
(1926) in one of the first papers on electron optics. His result is obtained by integration
of eqn (2.13) assuming r constant within the lens field. Then

1

fp
= e

8mVr

∫ ∞

−∞
H 2

z (z) dz (2.25)

which agrees with eqn (2.24) for a ‘top-hat’ field.
In an attempt to express the focal properties of all magnetic lenses on a single

universal curve, Liebman (1955a) found that lenses of finite bore D could be described
by a modified form of eqn (2.25). His result is

1

f
= A0(NI)2

Vr(S + D)
(2.26)

where A0 is approximately constant. This is a good approximation for weakly excited
lenses and can be extended to include asymmetrical lenses by taking

D = R1 + R2

Unfortunately, the properties of strong lenses become increasingly sensitive to the
details of pole-piece geometry, making eqn (2.26) unreliable for many modern lenses.
In particular, since the focal length of a modern objective lens is not large compared
with the pole-piece dimensions, these lenses cannot be treated as ‘thin’ lenses.

2.6 The objective lens

The objective lens, which immediately follows the specimen, is the heart of the micro-
scope. Since angular magnification is inversely proportional to lateral magnification
(eqn 2.11a), the magnification provided by this lens ensures that rays travel at very
small angles to the optic axis in all subsequent lenses. We shall see that lens aberra-
tions increase sharply with angle, so that it is the objective lens, in which rays make
the largest angle with the optic axis, which determines the final quality of the image.
Lens aberrations are specified by aberration constants Cc and Cs, which are very
approximately equal to the lens focal length (Liebman 1955a). For high-resolution
work, where the reduction of aberrations is important, the focal length and hence lens
aberrations can be reduced by introducing the specimen into the field of the objective
lens. This is known as an immersion lens. The field maintained on the illuminating
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side of the object is known as the pre-field (see Section 2.9) and plays no part in
image formation. The extent of the remaining field available for image formation
depends on the object position. Thus the position of the lens cardinal planes and aber-
ration coefficients depend on the object position zobj, which becomes an important
electron-optical parameter for these lenses. It is measured from the centre of the lens.
By convention, zobj and the objective lens focal length fobj are specified for a lens
producing an image at infinity (infinite magnification) so that the specimen is at the
exact object focus. Thus zobj is equal to the object focal distance.

For the simple lens described by eqn (2.17) it is easy to show from symmetry that
the image and object focal distances are equal. These are defined by rays entering
and leaving the lens parallel to the axis respectively. The object focal distance can
consequently be found from Fig. 2.10(a) as indicated on the figure. From the figure
and eqn (2.19), the ordinate is zero when the cosine argument is −π/2. That is

zobj

S
= −

(
π

2kS
− 1

2

)
(2.27)

The ‘real’ focal length fobj is given by

fobj = r0

/(
dr

dz

)
zobj

that is

fobj

S
= (Sk)−1 (2.28)

as shown in Fig. 2.11.
A comparison with eqn (2.21) shows that the focal length of a lens used as an

objective may be shorter than its focal length when used as a projector lens. In
practice a lower limit to the focal length is set by saturation of the lens pole-pieces.

Objective lens data such as those given in Section 2.7 include a plot of lens excitation
against zobj, both in suitable units. This is interpreted as follows. For a specified
excitation, the ordinate gives the object position required to produce an image at
infinity. This will be the approximate specimen position for a lens operating at high
magnification. The object is then separated from the object principal plane by the
focal length and is usually situated on the illuminating system side of the lens.

For an asymmetrical objective (R1 	= R2) operated at high excitation, the focal
length depends on which of R1 or R2 is in the image space. For weaker lenses
this is not so. Highly asymmetrical objectives are popular in modern microscopes
since, for a top-entry stage in which the specimen is introduced from above, the
specimen-change mechanism must be accommodated. A typical value of 2R1 is about
20 mm for a tilt stage, while 2R2 may be as small as 2 mm. The effect of pole-piece
asymmetry is to increase the maximum value of Bz(z) (R1 and S held constant)
and to shift the position of the maximum toward the smaller pole-piece (R2). For
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R2 → 0 this maximum coincides with the vanishing pole-piece face. For real lenses
Bz(z) is a smooth peaked function and the important refractive effect of the lens
occurs near the maximum of the field. Liebman (1955b) was able to show from
analogue computations that this maximum value for an asymmetrical lens agrees
within 1 per cent of the maximum for an equivalent symmetrical lens whose pole-
pieces have diameter D = R1 + R2. The focal properties of a highly asymmetrical
lens can be obtained by tracing two rays through the lens, one entering parallel to
the axis and one leaving parallel to the axis. In practice a single ray traced through
an equivalent symmetrical lens gives a good approximation to the lens focal length,
but the equivalent lens should not be used for calculation of the spherical aberration
constant Cs (see Section 2.8.1).

2.7 Practical lens design

Figure 2.12(a) shows the variation of measured aberration constants Cs and Cc for the
JEOL UHP pole piece (Cs ≈ 0.7 mm) as a function of specimen position. It can be
seen that there is an optimum specimen position to minimize Cc, but that Cs steadily
decreases with z0, the specimen height. Here b1 is the upper pole-piece diameter (the

2

1

C
s
C

c
(m

m
)

0 1 2
z0 (mm)

Cs
Cc

b1 = 5

b1 = 5

b1 = 7

b1 = 7

Fig. 2.12a The variation of Cc and Cs with specimen position for the JEOL UHP pole-piece
(Cs = 0.7 mm). Here z0, the specimen position, is measured from the top of the lower pole-piece. The
values of Cc and Cs are experimentally measured values, courtesy of Drs Shirota, Yonezawa, and Yanaka.
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Fig. 2.12b The measured lens field distribution, obtained by the image-rotation method. The position of
the specimen, where most of the refractive effect of the lens occurs, is shown. The ordinate indicates the
z component of the axial field strength in kilogauss.

lower diameter is 2 mm). Figure 2.12(b) shows the lens-field distribution, measured
by observing the shadow-image rotation as an edge is moved down the optic axis.

Some computed curves, accurate to about 1 per cent, on which the design of real
lenses has been based, are also shown in Figs 2.13–2.17. These are derived from both
analogue (Liebman 1950) and digital (Mulvey and Wallington 1969) computations
of the lens magnetic field. These figures give a useful impression of the way in which
focal lengths and aberration constants vary with excitation and specimen position.
A better approximation to the behaviour of real lenses can only be obtained if a more
realistic form of Bz(z) can be obtained, say from experimental measurements (see,
e.g. Engler and Parsons (1974)). These aberration coefficients were computed by a
recurrence method described by Liebman (1949) in a form well suited to a modern
computer program (equations 18(b) and 18(e) of Liebman’s paper are incorrect and
should be rederived from the earlier ones given).

The lens excitation NI in these curves is expressed in units of the excitation NIA
required for absolute minimum focal length. This minimum focal length determines
the maximum magnification possible in a microscope. The unit NIA is given in
Table 2.2 for particular values of S/D, the ratio of lens gap to average bore size. For
S/D < 2, the absolute minimum projector focal length is given by

fp(min) = 0.55(S2 + 0.56D2)1/2. (2.29)
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Fig. 2.13a Definition of the lens dimensions for the data shown in the following figures.
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Fig. 2.13b The object focal distance zobj as a function of lens excitation. The excitation is given in units
of the excitation needed for minimum projector focal length shown in Table 2.2. Here Bp is the saturation
flux density. The object focal distance gives the specimen position in the lens needed to form a high (strictly
infinite) magnification image.

The ordinate for the figures is given in terms of Bp, the actual flux density in the
lens gap. An upper limit to this is set by saturation of the pole-piece iron—a typical
saturation flux density is 2.4 T (24 000 G) for Permendur, a commonly used type
of iron.

From the curves we see that the spherical and chromatic aberration constants are of
the same order as the lens focal length, and vary with lens excitation in a similar way.
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Fig. 2.14 The variation of projector focal length with lens excitation for various pole-piece proportions.
The minimum projector focal length is seen to be almost independent of the ratio of the pole-piece gap to
bore diameter. The units for the abscissa and ordinate are the same as those in Fig. 2.13.

The best specimen position for minimum chromatic aberration is seen to be well to
the illumination side of the centre of the lens, while spherical aberration is minimized
by placing the specimen close to the centre of the lens. From eqns (2.29), (2.20),
and (2.26) we see that a reduction in the lens gap increases the flux in the gap and
reduces the lens focal length, unless it is otherwise limited. The overall instrumental
magnification of a microscope can be increased in this way by reducing the projector
lens pole-piece gap or by increasing the current in the lens if the additional heat dis-
sipated can be absorbed by the lens-cooling system, thus making the instrument more
suitable for high-resolution work. The very large depth of focus at high magnification
means that the overall magnification can be increased by reducing the projector focal
length without altering the strength of other lenses.

2.8 Aberrations

The consequences of including higher-order terms in the derivation of the ray equation
have been discussed by many workers (see, e.g. Zworykin et al. (1945)). The departure
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Fig. 2.15 Objective lens focal length as a function of lens excitation NI . Here I is the lens current in
amps and N is the number of turns on the lens winding. NIA is obtained from Table 2.2.

from perfect imaging which results from the inclusion of these terms has components
which are classified by analogy with the corresponding aberrations in light optics.
Retention of the term in r3 is analogous to the inclusion of the term in θ3 in the
expansion of sin θ used in Snell’s law applied to a glass lens. The result is that the
third-order aberrations are generated, one of which, spherical aberration, is most
important at high resolution.

Most high-resolution images are recorded at high magnification (M > 80 000). As
discussed in Chapter 6, the use of moderate magnification (15 000 < M < 80 000)
may have advantages for high-resolution experiments where radiation damage must
be minimized. The magnification dependence of the aberrations of a system of lenses
is not discussed here (Hawkes 1970) and we restrict ourselves to the case in which the
object is near the objective lens object focus. At high magnification, then, the quality
of the final image is determined by the aberrations of the first lens (objective lens),
since here the scattering angle (θ0 of Fig. 2.4) is largest and the spherical aberration
(ray aberration) depends on the cube of this angle. Since the images formed by
subsequent lenses are larger, their angular spectra (diffraction patterns) are smaller.

The distinction between ray and wave aberrations is discussed in Chapter 3; the
following sections deal only with the geometrical-optics treatment of aberrations.
The power of θ0 is increased by 1 for an aberration expressed as a wave aberration or
phase shift.
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Fig. 2.16 The variation of the spherical aberration coefficient Cs with lens excitation for various pole-
piece geometries. Once the excitation needed for minimum spherical aberration has been found from this
figure, Fig. 2.13 may be used to determine the specimen position in the pole-piece.

The only other image defect important for high resolution is due to both electronic
instabilities and beam–specimen interactions and is known as chromatic aberration. It
is only on the most recent generation of instruments that other instrumental instabilit-
ies and aberrations can be made negligible, allowing these two image imperfections to
limit resolution and contrast. The aberrations affecting the projector and intermediate
lenses (the distortions and chromatic aberration of magnification) are unimportant for
a small axial object at high resolution and are not discussed here.

An elegant treatment of aberrations makes use of Fermat’s principle applied to the
optical path W(P1, P2) between two points P1 and P2. This is, with n the refractive
index,

W(P1, P2) =
∫ P2

P1

n ds

which, according to Fermat’s principle, is a minimum or takes a stationary value.
The function W(P1, P2) is also known as Hamilton’s point characteristic function.
The expansion of this function as a power series allows terms to be identified which
describe perfect imaging. Deviations from perfect imaging are expressed by terms of
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Fig. 2.17 Chromatic aberration coefficient Cc of various objective lenses as a function of lens excitation.
The main source of chromatic aberration in high-resolution images of thin specimens (t < 10 nm) arises
from the thermal energy spread of electrons leaving the filament.

Table 2.2 The unit of excitation NIA used in Figs 2.13–2.17 for various ratios of lens gap to average
bore size S/D

S/D 0 0.5 1.0 1.5 2.0 3.0 4 5 10 100 ∞
NIAV

−1/2
r 11.2 10.85 10.55 10.30 10.00 9.63 9.40 9.25 8.9 8.44 8.44

higher order. This theory goes far beyond the interests of high-resolution imaging;
however, the following sections summarize the important results of aberration theory.
Fuller treatments in the English language can be found in Zworykin et al. (1945),
Cosslett (1946), Grivet (1965), and Septier (1967). A summary of the various methods
which have been proposed or tested for eliminating aberrations using multipole lenses
can be found in Reimer (1984). The use of one conventional lens and two sextupole
lenses has been proposed by Crewe and Salzman (1982) as a means of eliminating
spherical aberration (see also Rose (1990)). The performance of a STEM instrument
based on this design would then be limited only by the fifth-order aperture aberrations,
energy spread, diffraction, and tip vibration effects (Crewe 1984). The subject of
aberration correction is treated in Section 7.4.
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2.8.1 Spherical aberration

The effect of spherical aberration is indicated in Fig. 2.18. Rays leaving an axial object
point at a large angle θ0 are refracted too strongly by the outer zones of the lens and
brought to a focus (the marginal focus for a ray which just strikes the aperture) before
the Gaussian image plane. This is the plane satisfying eqn (2.8), where paraxial rays,
obtained as solutions of the paraxial ray equation (2.13), are focused. The trajectories
of aberrated rays can be obtained by computed solution of the full-ray equation. If all
rays from an axial object point are considered, the image disc of smallest diameter
is known as the circle of least confusion. The distance �ri , in the image plane at
high magnification is found to be proportional to θ3

0 , the constant of proportionality
being the third order spherical aberration constant Cs if �ri is referred to object space.
That is

�r0 = Csθ
3
0 and �ri = MCsθ

3
0 = M4θ3

i Cs (2.30)

The radius of the circle of least confusion is 1
4Csθ

3
0 . The value of Cs depends on lens

excitation and object position, but is usually quoted for an object close to the object
focal plane, corresponding to the case of high magnification. On modern instruments,
Cs ranges between about 0.5 and 2.5 mm and sets the limit to ‘interpretable’ resolving
power. A value for Cs can be obtained either from computed solutions of the full
(non-paraxial) ray equation or through the use of an expression given by Glaser
(1956). Simple recurrence relations have been given by Liebman (1949) for the first
method, expressing the deviation of the true trajectory from the paraxial trajectory at
increments along the ray path. If the deviation at the point where a paraxial ray, which
left the object parallel to the axis, crosses the axis is �, then the spherical aberration

Δr0

Δri

�0

L1

Gaussian
image

Fig. 2.18 The effect of spherical aberration. Rays passing through the outer zones of the lens (far from
the axis) are refracted more strongly than those paraxial rays passing close to the axis. These outer rays
meet the axis before the Gaussian image plane, and meet that plane a distance �ri from the axis. Spherical
aberration (or aperture defect) is the most important defect affecting the quality of high-resolution images.



Electron Optics 41

is given by

Cs = �/β3 (2.31)

where β is the slope of the paraxial ray at the image focus. Once the deviations for two
independent trajectories are known, all five Seidel aberrations are easily calculated.

The integral expression of Glaser (1956) is

Cs = e

16m0Vr

∫ z2

z1

[{
∂Bz(z)

∂z

}2

+ 3e

8mVr
B4

z (z) − B2
z (z)

{
h′(z)
h(z)

}2
]

h4(z) dz

(2.32)

Here h(z) is the paraxial trajectory of a ray which leaves an axial object point with
unit slope. The occurrence of derivatives in eqn (2.32) makes the evaluation of Cs
particularly sensitive to the shape of the field Bz(z). For high resolution, where
resolution is limited by Cs (see Chapter 3), eqn (2.32) shows that the detailed form of
Bz(z), and hence the shape of the pole-piece, sensitively determine the instrumental
resolution. It is for this reason that the utmost care must be taken when handling the
pole-piece. An expression similar to eqn (2.32) has been given by Scherzer (1936). The
fifth-order spherical aberration term C5 may, however, also be important for very high-
resolution work. For example, it has been found that at 100 kV, with Cs = 0.5 mm,
the effects of C5 cannot be neglected for spacings smaller than 0.1 nm (Uchida and
Fujimoto 1986).

Simple techniques for in situ experimental measurement of Cs for the objective lens
of an electron microscope are given in Chapter 10. Spherical aberration is discussed
from the point of view of wave optics in Chapter 3, and the correction of spherical
aberration is discussed in Section 7.4.

2.8.2 Chromatic aberration

Chromatic aberration arises from the dependence of the lens focal length on the
wavelength of the radiation used, and hence on the electron energy. With polychro-
matic illumination, in-focus images are formed on a set of planes, one for each
wavelength present in the illuminating radiation. There are three important sources
of wavelength fluctuation in modern instruments. These are, in decreasing order of
importance, for the thin specimens (t < 10 nm) used at high resolution:

1. The energy spread of electrons leaving the filament (see Chapter 9). At a high
gun-bias setting, �E/E0 = 10−5.

2. High-voltage instabilities. A typical fluctuation specification is �V0/V0 =
2 × 10−6/min with V0 the microscope high voltage.

3. Energy losses in the specimen.

It is convenient to include fluctuations both in the high-voltage supply and in
the objective lens current in the definition of the chromatic aberration constant Cc.
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Differentiation of eqn (2.26) gives

�f

f
= �V0

V0
− 2�B

B
= �V0

V0
− 2�I

I
(2.33)

To allow for deviations from the thin-lens law (eqn 2.8), a constant of proportionality
K is introduced. The chromatic aberration constant Cc is defined as Cc = Kf , so that

�f = Cc

(
�V0

V0
− 2�B

B

)
= Cc

(
�V0

V0
− 2�I

I

)
(2.34)

In practice the fluctuations in lens current and high voltage are unlikely to be
correlated, so that the random fluctuations in focal length should be obtained from the
rules given for manipulation of variance in statistical theory. Adding the fluctuations
in quadrature gives the variance

σ 2(f )

f 2
= σ 2(V0)

V 2
0

+ 4σ 2(I )

I 2
(2.35)

The fluctuation in focal length, expressed by the standard deviation σ(f ), is given by

σ(f )

f
=
[

σ 2(V0)

V 2
0

+ 4σ 2(I )

I 2

]1/2

= �/Cc (2.36)

The variances in I and V0 must be obtained by measurement, or their values may be
deduced either by treating � as a fitting parameter for the image matching experiments
described in Section 5.5, or from diffractogram analysis (see Section 10.10).

The effect on the image of a small change in focal length is now determined using
the methods of geometric optics as a first approximation. As shown in Fig. 2.19, a
ray at slightly higher energy, for which the lens has a longer focal length, is brought
to a focus distance �V from the Gaussian image plane where

�ri = �V θi

Differentiating the lens equation gives

dV

df
=
(

V

f

)2

≈ M2

so that

�V = M2�f (2.37)

thus

�ri = M2�f θi
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Fig. 2.19 The effect of chromatic aberration. The faster electrons which have been accelerated through a
potential V +�V are less strongly refracted than lower electrons accelerated through a potential V . These
higher energy electrons are thus brought to a focus beyond the Gaussian image plane, which they pass at
a distance ri from the axis.

Referred to the object space, the extended disc image of an axial object point has
radius

�r0 = M�f θi

Using eqn (2.11) this is

�r0 = θ0�f

From eqn (2.34) we have

�r0 = θ0Cc

(
�V0

V0
− 2�I

I

)
(2.38)

As an example, consider the image of a specimen which introduces a discrete
energy loss of 25 eV. Many biological specimens show a rather broad peak at this
energy. The loss image will be out of focus by an amount �U referred to the object
plane. At high magnification, the lens law gives

�U ≈ �f (2.39)

so that the focus defect for the loss image can be obtained from eqn (2.34) with
the fluctuation in lens current neglected. For Cc = 1.6 mm and �E = 25 eV, this
gives �U = 400 nm at 100 keV. Since the lens has a shorter focal length for the
loss electrons, with V fixed an objective lens focused on the elastic image will have
to be weakened to bring the inelastic image into focus. Thus inelastic loss images
appear on the under-focused side of an image where the first Fresnel fringe (see
Chapter 3) appears bright and the lens current is too weak. Unfortunately the optimum
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focus condition for high-resolution phase contrast is also on the under-focus side
(about 90 nm at 100 kV) so that any inelastic contribution appears as an out-of-focus
background blur in the elastic image. For many specimens the total inelastic image
contribution may exceed the elastic contribution (see Chapter 6).

In practice Cc can be evaluated once the field distribution is known (Glaser 1952)
using

Cc = e

8 mVr

∫ z2

z1

B2
z (z)h2(z) dz (2.40)

with h(z) the function in eqn (2.32). Chromatic aberration can be eliminated in prin-
ciple by combining a magnetic lens with an electrostatic mirror, whose chromatic
aberration is of the opposite sign.

The constant Cc can be measured experimentally from measurements of the focal
length change with high voltage or lens current. A method is described in Chapter 10.
A discussion of the effect of inelastic scattering on high-resolution images can be
found in Chapters 5 and 6. Chromatic aberration is absent from STEM instruments if
no lenses are used after the specimen. The representation of chromatic aberration in
terms of wave optics is discussed in Chapter 3, and it should be stressed that eqn (2.38)
is a geometrical approximation, accurate for the spatially incoherent imaging of point
objects at moderate defocus, that is, for �V not too small. For small �V or coherent
illumination (or both) the wave-optical methods of Chapter 3 must be used.

The effect of variations in Cc or � on high-resolution image detail is shown in
Fig. 4.3 (see also Appendix 3).

2.8.3 Astigmatism

Severe astigmatism is caused by an asymmetric magnetic field. A departure from
perfect symmetry in the lens field can be represented by superimposing a weak cylin-
drical lens on a perfectly symmetrical lens. Figure 2.20 shows the image of a point
formed by an astigmatic lens as two line foci at different points on the optic axis.
Astigmatism can be thought of as an azimuthally dependent focal length from the
form of eqn (3.22). In situ methods for measuring the astigmatism constant za are
discussed in Chapter 10. An experienced operator using a modern instrument fitted
with a stigmator for correcting astigmatism can reduce this aberration so that it does
not limit resolution; however, this requires considerable practice (see Chapter 12). A
stigmator is a weak quadruple lens whose excitation is controlled electronically to
allow correction of field asymmetry in any direction by introducing a compensating
weak cylindrical lens of the correct strength and orientation.

A machining tolerance of a few micrometres in the ovality of the objective lens
pole-piece is required to bring astigmatism within easily correctable limits. The main
bearing of the lathe used to cut the pole-piece is specially selected for this job. In
consequence, a pole-piece which has been dropped is completely useless for high-
resolution work. Generous compressible packing should be used when transporting
a pole-piece. The lower surface is equally important, since scratches on the soft iron
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will disturb the magnetic circuit and introduce stray fields. The homogeneity of the
iron used is also important. Since it is almost impossible to avoid scratching the lower
face of a pole-piece if it is removed frequently, multi-purpose instruments should be
avoided for high-resolution work. When removing a pole-piece, place it carefully on
its side (and prevent it from rolling) or upside-down on lint-free cloth on the bench.
Cover it with an inverted glass beaker so that it can be clearly seen.

Recent improvements in resolution to the sub-Angstrom level have exposed three-
fold astigmatism. An example of its measurement and removal can be found in
Overwijk et al. (1997). Two- and three-fold astigmatism are discussed from the point
of view of wave optics in Chapter 3.

2.9 The pre-field

A comparison of Figs 2.13 and 2.16 shows that for an objective lens of minimum
spherical aberration, the specimen will be placed well within the lens field. The field
on the illuminating side of the specimen is known as the pre-field and has the effect of
a weak lens placed before the specimen. Figure 2.21 shows a ray entering a ‘constant-
field’ objective parallel to the axis with the lens excitation to the right of the specimen
arranged to produce an image at infinity. These rays define both the pre-field focal
length and the objective focal length. Expressions for the pre-field focal length, focal
distance, and the demagnification of the incident beam by the pre-field have been given
by Mulvey and Wallington (1972) using an analysis similar to that of Section 2.6.
The significance of this for high resolution is that the incident-beam divergence, and
hence the coherence length, may be affected by the strength of the pre-field lens.
In practice, pre-field effects are included in a measurement of transverse coherence

f1
P

�f2Ca

Δf

L1

�

P�

z

Fig. 2.20 Astigmatism. The focal length of the lens depends on the azimuthal angle α of a ray leaving
the object. These rays are in a plane containing the optic axis. Planes at right angles for the maximum
and minimum focal length are shown, with a mean focus �f . The difference between the maximum and
minimum focus is the astigmatism constant Ca.
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Fig. 2.21 The effect of the objective lens pre-field. The specimen is immersed in the lens field and a ray
entering the field parallel to the axis is bent toward the axis, providing partially converged illumination.
Diffraction spots appear larger than they would in the absence of the pre-field to the left of the specimen.
The focal length of the pre-field fpre is shown, which depends on the specimen position. A large pre-field
is commonly used for high-resolution work since the shortest possible focal length is required to reduce
aberrations.

width if this is obtained from measurements of diffraction spot sizes as discussed in
Section 10.8. It follows that for an immersion lens the illumination conditions are
affected by specimen position and objective lens focusing. The modern trend has
been toward the use of increasingly symmetrical ‘condenser-objective’ lenses. These
allow convenient switching from the HREM to the probe-forming mode for CBED
work on the same specimen region (see Section 13.4). A ray diagram, showing in
highly simplified form the operation of the symmetrical lens, can be found in Spence
and Carpenter (1986).
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3
WAVE OPTICS

Improvements in instrumental stability and the development of brighter electron
sources have enabled high-resolution images to be formed under highly coherent
conditions. The microscope then becomes an interferometer and the out-of-focus
image must be interpreted as a coherent interference pattern. The particle model of
the fast electron, useful for the classical ray-tracing techniques described in the last
chapter to determine simple lens properties, must then be replaced by a wave-optical
theory taking account of the finite electron wavelength. A quantum-mechanical the-
ory is required to do this correctly; however, this shows (Komrska and Lenc 1972)
that the simple wave-optical methods give accurate results for electron interference
and imaging experiments with a suitable change of wavelength and allowance for
image rotation. Consequently, in this chapter, for the purposes of discussing inter-
ference effects the electron lens is simply replaced by an equivalent ideal thin lens
whose wave-optical properties are discussed. The squared modulus of the complex
wave amplitude ψ(x, y) is then interpreted as a probability density (with dimensions
Length to the power −3), rather than giving the time average of the amplitude of the
electric field vector as in optics. The image current density in an electron microscope,
formed from non-interacting fast electrons, is then proportional to ψ(x, y)ψ∗(x, y),
the electron ‘intensity’.

For complicated optical systems it is convenient to use the concepts of entrance and
exit pupil to account for the diffraction limit of the system. Aberrations are introduced
as a phase shift across the exit pupil added to the spherical wavefront which would
converge to an ideal image point. In electron microscopy the important aberrations
for high resolution are confined to the objective lens; consequently the following
sections treat a single lens only. Then the objective aperture forms the exit pupil and
the intensity distribution across the objective lens back-focal plane is the intensity



Wave Optics 49

recorded in an electron diffraction pattern. In this chapter we are interested in finding
both the back-focal plane amplitude and the image amplitude and to relate these to
the wave leaving the object. The relationship between this complex amplitude and the
specimen structure is a more difficult problem. Most of the work on image analysis has
concentrated on retrieving an improved version of the object exit-face wavefunction,
rather than relating this to the specimen structure. This second problem of structure
analysis is discussed in Chapter 5, and in this chapter we are mainly concerned with
understanding the way in which the microscope aberrations contribute to the image
complex amplitude. The emphasis in this chapter is on interference effects, so that
perfectly coherent illumination is assumed throughout.

The diffraction limit, an important ‘aberration’ for high-resolution images, is also
discussed. The simplified scalar theories of Kirchhoff together with Sommerfeld’s
work showed that the early physical models for diffraction phenomena due to Huygens
and Young are a useful basis for understanding diffraction. That is, that diffraction
can be thought of as arising from interference between the wave transmitted through
the aperture unobstructed and an ‘edge wave’ originating as a line source around
the aperture rim. A similar model is sometimes applied to Fresnel diffraction at
an edge. Huygens saw diffraction arising from the interference between an infinite
number of fictitious secondary spherical waves constructed along a wavefront. The
mathematical description of one of these spherical waves is the Green’s function for
the wave equation.

A more modern view of the diffraction limit is expressed by the Fourier optics
approach and based on the Abbe theory and concepts taken from communications
engineering in the early post-war years. In the jargon of electrical engineering, image
formation under coherent illumination is band-limited, that is, the image is synthes-
ized from a truncated Fourier series. A scattering angle θ is associated with each
object periodicity d through Bragg’s law and the image is synthesized from a Fourier
summation of those beams which are included within the objective aperture. Only for
the very thinnest specimens can these Fourier coefficients be used to represent a simple
object property such as its projected electric potential or charge density. On the Fourier
optics interpretation, the image formation consists of two stages—a Fourier transform
from the specimen exit-face wavefunction giving the back-focal plane amplitude, fol-
lowed by a second transform from this plane to reconstruct the image. An accessible
account of Fourier electron optics can be found in the book by Hawkes (1972).

The subject matter of this chapter has been treated from slightly different points of
view by many workers, including Lenz (1965), Hanszen (1971), and Misell (1973).
The properties and wider applications of Fourier transforms and convolutions are
also discussed in many books, including that by Bracewell (1965). A comprehensive
account of optical aberration theory can be found in Welford (1974).

3.1 Propagation and Fresnel diffraction

At high resolution the best images are not usually those obtained at exact Gaussian
focus. Figure 3.1 shows an out-of-focus plane conjugate to the viewing phosphor
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Fig. 3.1 The out-of-focus image ψi, of an object with transmission function T (X, Y ). The wave amplitude
conjugate to the image plane is ψ(x, y) and the incident wave ψ(X, Y ). For coherent imaging this is taken
to have unit amplitude with the phase origin at the object.

which is imaged by an electron lens. In order to interpret out-of-focus images it
is important to understand the propagation of the electron wave across the defocus
distance �f . The mathematical development of Huygen’s principle, due to Fresnel
and Kirchhoff gives a good approximation to the wave amplitude at P′ as

ψ(x, y) = i

λ�f

∫ ∞

−∞

∫
ψe(X, Y ) exp

(
−2πi|r|

λ

)
dX dY

≈ i exp(−2πi�f/λ)

λ�f

∫ ∞

−∞

∫
ψe(X, Y )

× exp

{
− iπ

λ�f
[(x − X)2 + (y − Y )2]

}
dX dY (3.1)

The essential features of this important expression can be understood from Fig. 3.2,
and a more detailed account of its derivation can be found in many optics texts (see,
e.g. Goodman (1996)). Equation (3.1) expresses the amplitude at P′ as the sum of the
amplitudes due to an infinite number of fictitious secondary sources along ψe(X, Y ),
each emitting a coherent spherical wave. The justification for using this expression
in electron microscopy and the approximations involved (e.g. use of a scalar theory,
neglect of backscattering) are discussed elsewhere (Cowley 1995). The scattering
angles are all much smaller for electrons than for light. In eqn (3.1) ψe(X, Y ) is the
two-dimensional complex amplitude across the exit face of the specimen. It is related
to the incident wave ψ(X, Y ) by a transmission function T (X, Y ), where

ψe(X, Y ) = T (X, Y ) · ψ(X, Y ) (3.2)

Equation (3.1) can be used to compute the out-of-focus image of a specimen if the
in-focus wave amplitude ψe(X, Y ) is known. For example, the Fresnel fringes seen
at the edge of a partially absorbing specimen with finite refractive index have been
calculated using this equation by Fukushima et al. (1974). The anomalous difference
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Fig. 3.2 A spherical wave (Huygens ‘secondary source’) emitted by a single point O′ in the plane of a
diffracting aperture E. The phase is constant along OB and the path difference AB = (z2 + (x −X)2)1/2 −
z ≈ (x − X)2/2z where x is the coordinate of A and X that of O′. The phase variation across Ox is thus
ψ(x) = exp(−2πiAB/λ) = exp(−iπ(x − X)2/λz) due to a single point source at O′. Equation (3.1)
expresses the total wavefunction across Ox as the sum of many such contributions from an object such as
a transparency in the plane O′X, each weighted by the wavefunction ψe(X, Y ) leaving the object.

in contrast between the over-focus and under-focus fringes, is investigated in this way.
For an edge, ψe(X, Y ) = ψe(X) and so, performing the Y integration,

ψ ′(x) = 1 + i√
2

exp(−2πi�f/λ)√
λ�f

∫ ∞

−∞
ψe(X) exp

{
− iπ

λ�f
(x − X)2

}
dX (3.3)

It is the real and imaginary parts of this integral, with the integration limits taken
from 0 to a, say, which are represented by the Cornu spiral. While eqn (3.3) has been
used to predict the form of Fresnel fringes in electron microscopy, recent work clearly
shows that at high resolution both the properties of the edge-scattering material and
the effect of spherial aberration must be considered. Dynamical calculations which
include all these effects can be found in Wilson et al. (1982). Similar problems arise
in the simulation of HREM ‘profile’ images, as described in Section 14.8, and in
the simulation of images of planar defects such as nitrogen platelets in diamond (see
Section 14.2).
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A convenient notation results if eqn (3.1) is written as a convolution. Then

ψ ′(x, y) = Aψe(x, y) ∗ Pz(x, y)

= A

∫ ∞

−∞
ψe(X, Y )Pz(x − X, y − Y ) dX dY (3.4)

where A is a complex constant and

Pz(x, y) = exp

(
− iπ(x2 + y2)

λ�f

)
(3.5)

is called the Fresnel propagator.
Thus the evolution of the electron wave amplitude in the near-field region, import-

ant for out-of-focus image, is described qualitatively by Huygens’ principle, and
quantitatively, within approximations accurate for electrons, by eqn (3.4). A list of
the properties of the propagation factor Pz(x) is given in Table 3.1. Note that two
successive applications of the propagator leaves the wavefield unchanged, in support
of Huygen’s original physical intuition.

The next section discusses the image of a point formed by a lens of finite aperture.
The aperture limitation results in a blurred image amplitude, known as the lens impulse
response. From eqn (3.4) the amplitude at the entrance surface of a lens distance U

from a point object is, in one dimension,

ψ ′(x) = Aδ(x) ∗ Pu(x) = A exp

(
− iπx2

λU

)
(3.6)

which is a quadratic approximation to the wavefield of a spherical wave diverging
from the object point. This is shown in Fig. 3.2, taking X = 0. For a converging
spherical wave, the sign in the exponential is reversed.

3.2 Lens action and the diffraction limit

The analogy between electron and light optics suggests that the action of a magnetic
lens is equivalent to the introduction of a ‘focusing’ phase shift [2π/λ](x2/2f ), where
f is the lens focal length and x the radial coordinate in the plane of the lens. The
varying thickness of an ideal thin glass lens of suitable refractive index introduces
such a phase shift. Thus, for a plane wave incident on such a lens (with the phase
origin taken at the entrance to the lens) the emerging wave would be proportional to

ψe = exp

(
πix2

λf

)
(3.7)

From Fig. 3.2 we see that this is a quadratic approximation to a spherical wave
converging to the optic axis at z = f . Thus a lens which introduces the phase shift
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Table 3.1 Properties of the Fresnel propagator Pz = (i/λz) exp(−iπ(x2 + y2)/λz)

1. Pz1 ∗ Pz2 = Pz0 where z0 = z1 + z2
2. 1 ∗ Pz1 = 1
3. δ(x, y) ∗ Pz1 = Pz1
4. Pz1Pz2 ∝ Pz3 where 1/z3 = 1/z1 + 1/z2
5. Pz1P∗

z2
∝ Pz4 where 1/z4 = 1/z1 − 1/z2

A

O

B

z1 z2

The wave amplitude a distance z from a plane on which it is known is obtained by convoluting the
wave across that plane with Pz . Notice that transmission through a thin lens is given by multiplication
with P−f = P∗

f . Property 1 shows that the effect of choosing an arbitrary intermediate plane A for
the construction of Huygens’ sources produces the same wave amplitude at B as would be obtained by
a single propagation from 0 to B. Property 2 shows the effect of Fresnel propagation on a plane wave,
while the third property expresses the spherical wave emitted by a point source. The final properties 4
and 5 can be used to show how the focal lengths of thin lenses in contact combine. These results are
all obtained using standard integrals (a scaling constant has been omitted in 4 and 5).

of eqn (3.7) produces a focusing action. For the diverging spherical wave given by
eqn (3.6), the wave immediately behind the lens will be, in one dimension, (for a lens
of infinite aperture),

ψe = A exp

(−iπx2

λU

)
exp

(
iπx2

λf

)
= A exp

(
iπx2

λ

[
1

f
− 1

U

])

Now from the lens law, 1/f − 1/U = 1/V , so that the wave emerging from this lens
is a spherical wave converging to the conjugate image point P ′ at z = V , that is,

ψe = A exp

(
iπx2

λV

)
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Fig. 3.3 The conjugate image P′ of a point P. The image is broadened by the effect of the diffraction limit
set by the aperture E. The amplitude at P′ is proportional to the Fourier transform of the pupil function
P(x) describing the aperture.

The effect of a limiting aperture on such a wave is now considered, as shown
in Fig. 3.3. This aperture may be due to the lens itself or, as in electron optics, to
the objective aperture situated near the back-focal plane. In electron microscopy the
objective aperture is rarely exactly in the back-focal plane since the aperture position
is fixed whereas the objective lens focal length is variable. Applying the Fresnel
propagator from the plane of the aperture to the image gives

ψ(X) = AP(x) exp

(
iπx2

λd

)
∗ exp

(
− iπx2

λd

)

= A′
∫ ∞

−∞
P(x) exp(2πiux) dx (3.8)

where A′ is a quadratic phase factor, u = X/λd , and P(x) is the exit pupil function,
equal to unity within the aperture and zero elsewhere. Thus, regardless of the position
of the aperture, the image of a point formed by an ideal lens is given by the Fourier
transform of the limiting aperture pupil function. Fourier transforms are also used to
describe far-field or Fraunhofer scattering. In this special case of an aperture illumin-
ated by a coherent converging spherical wave, the intensity of the Fresnel diffraction
pattern equals that of the Fraunhofer pattern. The image intensity for a point object
using a circular aperture is shown in most optics texts. The phase contrast impulse
response (point image) for an electron lens is further discussed in Section 3.4 and
shown in Fig. 3.6. In passing, it is interesting to note that, if a lens were not used,
the condition for Fraunhofer diffraction (z > d2/λ) with an object of size d would
require a viewing screen to be placed more than 27 m from a 10-μm objective aperture
in order to observe the Fraunhofer pattern using 100 kV electron illumination.
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The imaging properties of simple lenses can also be understood using the Fresnel
propagator to trace the progress of a wavefunction through the lens system. With unit
amplitude coherent illumination on an object with transmission function T (x, y), the
wavefunction incident on the lens becomes

ψ1(x1, y1) = i

λU
ψ0(x, y) ∗ PU(x, y) where ψ0(x, y) = T (x, y)

while the wavefunction immediately beyond the lens is

ψ2(x2, y2) = ψ1(x2, y2) exp

{
iπ(x2

2 + y2
2 )

λf

}

and the complex amplitude in the back-focal plane is given by

ψd(X, Y ) = i

λf
ψ2(x2, y2) ∗ Pf (x2, y2)

Evaluating these integrals and using eqn (3.5) gives

ψd(X, Y ) = i

λf
exp

(
− iπ(X2 + Y 2)

λ

{
1

f
− U

f 2

})

×
∫ ∞

−∞

∫
ψ0(x, y) exp

(
2πi

{(
X

f λ

)
x +

(
Y

f λ

)
y

})
dx dy (3.9)

The quadratic phase factor disappears if the object is placed at U = f , as is approx-
imately the case in electron microscopy. This important result shows that a function
proportional to the Fourier transform of the object exit-face wave amplitude (the wave
leaving the object) is found in the lens back-focal plane, in accordance with the Abbe
interpretation of coherent imaging. All parallel rays leaving the object are gathered
to a focus in the back-focal plane at a point distance X from the optic axis where
X = f θ , where θ is the angle at which rays leave the object. Figure 3.4 illustrates the
Abbe interpretation for a periodic specimen where the diffraction pattern consists of
a set of point amplitudes, if the illumination is coherent (small condenser aperture).
These points can be thought of as a set of secondary sources like the holes in Young’s
pin-hole experiment which produce waves which interfere in the image plane to form
fringes. The image is a Fourier synthesis of all these fringe systems. To confirm this
mathematically, the back-focal plane amplitude of eqn (3.9) is written

ψd(X, Y ) = Ai

λf
F(u, v)

where

F(u, v) =
∫ ∞

−∞

∫
ψ0(x, y) exp{2πi(ux + vy)} dx dy = F{ψ0(x, y)} (3.10)

In order to use published tables of Fourier transforms it is convenient to introduce the
variables u = X/λf = θ/λ and v = Y/λf = β/λ, where θ and β are angles made
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Fig. 3.4 The Abbe interpretation of imaging. An object with sinusoidal amplitude transmittance produces
two diffracted orders in directions given by the Bragg law, together with the unscattered beam. These are
focused to points in the back-focal plane. The image is formed from the interference between spherical
waves from each of the three ’sources’ in the back-focal plane.

with the optic axis. An imperfect lens with an aberration phase shift χ(u, v) can be
incorporated into this analysis by defining the modified back-focal plane amplitude

ψ ′
d(X, Y ) = Ai

λf
F(u, v)P (u, v) exp(iχ(u, v)) (3.11)

where P(u, v) is the objective aperture pupil function. Then the image amplitude is

ψi(x
′, y′) = i

λz0
ψ ′

d(X, Y ) ∗ Pz0(X, Y ) (3.12)

where z0 = V − f is the propagation distance between the back-focal plane and the
image. From the lens law for conjugate planes this is z0 = Mf , where M is the lateral
magnification. Evaluating eqn (3.12) gives the image amplitude as

ψi(x
′, y′) = − 1

M
exp

(
− iπ(x′2 + y′2)

λMf

)∫ ∞

−∞

∫
F(u, v)P (u, v) exp(iχ(u, v))

× exp

(
2πi

{
u

x′

M
+ v

y′

M

})
du dv (3.13)

It is convenient to assume unit magnification in most image calculations. Then the
image amplitude, aside from a quadratic phase factor, is seen to be given by the Fourier
transform of the product of the back-focal plane amplitude F(u, v) and the transfer
function P(u, v) exp(iχ(u, v)). The back-focal plane amplitude is proportional to
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the Fourier transform of the object exit-face wave amplitude. These two Fourier
transforms produce an inverted image, the sign of M being taken as positive.

Inserting the expression for F(u, v) in eqn (3.13) gives finally for the image
amplitude in an ideal lens with P(u, v) exp(iχ(u, v)) = 1

ψi(x
′, y′) = 1

M
exp

(
− iπ(x′2 + y′2)

λf M

)
ψ0

(
− x′

M
, − y′

M

)
(3.14)

where the properties of the Dirac delta function have been used.
Equation (3.13) can be written symbolically at unit magnification,

ψi(x
′, y′) = F{F(u, v)A(u, v)} (3.13)

where A(u, v) = P(u, v) exp(iχ(u, v)) is the microscope transfer function. Using
the fourier transform convolution theorem this is

ψi(x
′, y′) = F{F(u, v)} ∗ F{A(u, v)} = ψ0(−x′, −y′) ∗ F{A(u, v)} (3.15)

showing that each point of the ideal image is smeared or broadened by the impulse
response function F(A(u, v)). This result applies only in a small isoplanatic patch
near the optic axis where the form of F(A(u, v)) does not depend on image position.
The imaging is seen also to be linear in complex amplitude from the distributive
properties of convolution (convolution is also commutative and associative). More
generally ψ0(x

′, y′) can be taken as the image predicted by geometrical optics, taking
into account image inversions, magnification, and rotation.

3.3 Wave and ray aberrations

In this section the aberration phase shift χ(u, v) is investigated, commencing with
the term arising from a small error in focusing.

Aside from a constant term, the wavefield imaged in Fig. 3.1 is, using eqn (3.1),

ψ ′
�f (x, y) = ψe(x, y) ∗ P�f (x, y)

with P�f (x, y) given by eqn (3.5). Using the convolution theorem for Fourier
transforms the back-focal plane amplitude can be written

ψd(u, v) = F{ψe(x, y)} · F{P�f (x, y)}
A table of Fourier transforms then gives the transform of the Fresnel propagator as

F{P�f (u, v)} = i

λ�f

∫ ∫
exp

(
− iπx2

λ�f

)
exp

(
− iπy2

λ�f

)

× exp(2πi(ux + vy)) dx dy = exp(iπ�f λ(u2 + v2)) (3.16)
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which is a radially symmetric function of the scattering angle θ = (u2 + v2)1/2λ and
can be written exp(iχ1(θ)), where

χ1(θ) = 2π

λ
(�f θ2/2) (3.17)

Spherical aberration can also be incorporated into the complex transfer function as
follows. Figure 3.5 shows an aberrated ray whose deviation ri in the Gaussian image
plane has been obtained as a function of θ by, say, numerical solution of the full ray
equation (see Section 2.8). Only the case of high magnification is of interest and we
ignore any dependence of Cs on M . Then, from Section 2.8.1

ri = MCsθ
3 (3.18)

The rays drawn run normal to the surfaces of constant phase OA and OB. The surface
OA is spherical, corresponding to the spherical wave converging from the exit pupil
to an ideal image point P ′. We require an expression for

χ2(θ) = 2π

λ
γ

Now

ri =
(

V

f

)
Csθ

3 = V Csr
3

f 4

and

α = dγ

dr
with α = ri

V
(3.19)
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Fig. 3.5 Determination of the phase shift due to spherical aberration (see text). The curvature of the
wavefronts has been exaggerated. The rays AP′ and BC run normal to the surfaces OA and OB respectively.
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so that

γ = 1

V

∫
ri dr = Csθ

4/4

giving χ2(θ) = (2π/λ)(Csθ
4/4). Combining this result with that obtained for defocus

gives

A(θ) = P(θ) exp

(
2π

λ
(Csθ

4/4 + �f θ2/2)

)
(3.20)

where a positive value of �f implies an over-focused lens.
The focusing error �f due to image formation by radiation of energy V0 − �V0

must be considered with respect to the Gaussian image formed by radiation of energy
V0. The focusing action of a magnetic lens is greater for electrons of lower energy
and longer wavelength. At high magnification �U ≈ �f , so that eqns (2.34)
and (3.17) give

χ3(θ) = 2π

λ

[
Cc

(
�V0

V0

)
θ2/2

]
(3.21a)

where Cc is the chromatic aberration constant. To a good approximation the intensities
of the various chromatically aberrated images can be added to form the final image,
weighted by the normalized distribution function of incident electron energies (Misell
1973). Only for recording times less than �τ = h/�V0 should a coherent addition of
image amplitudes be considered. For completeness, we now anticipate some results
from later sections (4.2 and Appendix 3). A simple method of incorporating the
effect of chromatic aberration into the electron microscope transfer function has been
given by Fejes (1973). By assuming a Gaussian distribution for the spread in focus
given above (there will also be a contribution from instabilities in the lens excitation
current), he obtains a damping envelope applied to the transfer function of the form

exp(− 1
2π2�2θ4/λ2) (3.21b)

This approximation can only be made if the central ‘unscattered’ beam is much
stronger than any other. Here � is the standard deviation for the distribution of focus
values, defined in eqn (2.36). The general case in which the central beam is not strong
involves a convolution in reciprocal space. Typical values for � found to give good
agreement between computed and experimental images lie in the range of 2–5 nm
(see Section 7.1 and Appendix 3).

A similar damping envelope has been derived to describe the way in which the use
of a finite illumination angle θc attenuates the transmission of high-resolution detail
(Spence et al. 1977; Wade and Frank 1977). For a uniformly filled illumination disc,
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Anstis and O’Keefe (unpublished) have obtained a damping function of the form

2J1|2πθc(�f K + λ(λCs − iπ�2)K3)|
|2πθc(�f K + λ(λCs − iπ�2)K3| = 2J1(q)

q
(3.22a)

where J1(x) is a Bessel function of the first order and kind and K is a vector in
the back-focal plane. Again this function can only be used if the central beam is
stronger than any other. Note that there is an interaction between the effects of the
focus instability due to the incident electron energy spread and the illumination angle
θc. This effect is discussed in a simpler way in Section 5.2, and a fuller discussion of
damping envelopes can be found in Section 4.2 and in Appendix 3.

The azimuthally dependent focusing effect of astigmatism is similarly found to
contribute a term (Fig. 2.20)

χ4(θ) = 2π

λ

(
1

4
Caθ

2 sin 2φ

)
(3.22b)

where φ is the azimuthal scattering angle. Collecting all these terms together gives a
transfer function

A(θ) = P(θ) exp

(
2πi

λ

(
�f θ2/2 + Csθ

4/4 + 1

4
Caθ

2 sin 2φ

))

× exp

(
−1

2
π2�2θ4/λ2

)
2J1(q)

q
(3.23)

Thus the effects of aberrations and instabilities in the microscope can be understood
by imagining the scattering (diffraction pattern) observed in the object lens back-focal
plane to be multiplied by this function. The last two terms attenuate the high-angle
(large θ ) scattering, which corresponds to the fine detail in the image. Thus, even if no
objective aperture is used for lattice imaging, these terms impose a ‘virtual aperture’
as shown in Figs 4.11, 4.3, and A3.2.

In terms of the back-focal plane coordinates X and Y with u = X/λf and v = Y/λf

the transfer function including defocus and spherical aberration effects only becomes

A(u, v) = P(u, v) exp(2πi[�f λ(u2 + v2)/2 + Csλ
3(u2 + v2)2/4])

= P(u, v) exp(iχ(u, u)) (3.24a)

With recent improvements in resolution to the sub-Angstrom level, the three-fold
astigmatism aberration has been exposed. This introduces a phase-shift

χ5(θ) = 2π

3λ
|A2|θ3 cos(θ − θ2) (3.24b)

where A2 is the coefficient of three-fold astigmatism and cos 3(θ − θ2) represents the
120◦ azmithul periodicity. The recent installation of a corrector for this aberration
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(Overwijk et al. 1997) has reduced A2 from 2.46 to 0.05 μm or less (O’Keefe et al.
2001). This has allowed a resolution of 0.89 Å to be synthesized from through-focal
series on the 300 keV electron microscope at the Berkley National Center for Electron
Microscopy, as discussed in more detail in Section 7.1.

3.4 Strong-phase and weak-phase objects

A simplified theory based on the weak-phase object and useful for low- and medium-
weight molecules and ultra-thin unstained biological specimens (t < 10 nm, but
see comment at end of Section 6.9) has become popular owing to its convenience
for a posteriori image analysis. The neglect of Fresnel diffraction (focus variation)
within the specimen (but not of multiple scattering) allows the exit-face complex wave
amplitude to be written

ψe(x, y) = exp(−iσφp(x, y)) (3.25)

as suggested by Fig. 2.2. Here σ = 2πmeλr/h2 (a positive quantity, with relativ-
istically corrected values of λr and m) and φp = ∫ t/2

−t/2 φ(x, y, z) dz is the projected
specimen potential in volt-nanometres. At 100 kV, σ = 0.009244. This strong-phase
object takes the Ewald sphere to be a plane normal to the incident beam direction
defined by the z-axis. It represents the complete N -beam solution to the dynamical
scattering problem in the limit of infinite voltage (Moodie 1972).

The further approximation

ψe(x, y) ≈ 1 − iσφp(x, y) (3.26)

is known as the weak-phase object approximation and assumes kinematic scatter-
ing within the specimen. This requires that the central ‘unscattered’ beam be much
stronger than the diffracted intensity. Like the strong-phase object, this approximation
is a projection approximation—atoms could be moved vertically within the specimen
without affecting the computed image. The potential φp(x, y) may be made complex
with an imaginary component used to represent either depletion of the elastic wave-
field by inelastic scattering or the presence of an objective aperture, as described in
Appendix 3.

Leaving aside constants, the complex amplitude in the back-focal plane of the
objective lens is given by the Fourier transform of eqn (3.26), that is, with φp(x, y) a
real function,

ψd(u, v) = δ(u, v) − iσF{φp(x, y)} (3.27a)

Introducing the microscope transfer function for a bright-field image formed with a
central objective aperture then gives

ψ ′
d(u, v) = δ(u, v) − iσF{φp(x, y)}P(u, v) exp(iχ(u, v)) (3.27b)
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A further Fourier transform then gives the image complex amplitude as

ψi(x, y) = 1 − iσφp(−x, y) ∗ F{P(u, v) exp(iχ(u, v))} (3.28)

Using the fact that since the sine and cosine of χ(u, v) are even functions, their
transforms are both real and the image intensity can be found to first order as

I (x, y) = ψi(x, y)ψ∗
i (x, y) ≈ 1 + 2σφp(−x, −y) ∗ F{sin χ(u, v)P (u, v)}

(3.29)

The function F{sin χ(u, v)P (u, v)} is negative and sharply peaked as shown in
Fig. 3.6, so the bright-field image of a weak-phase object consists of dark detail
on a bright background at the optimum value of �f and correctly chosen P(u, v),
determine by the objective aperture size (see Section 6.2). On this simplest theory of
image contrast, the contrast is proportional to the projected specimen potential, con-
voluted with the impulse response of the instrument. Where this is radially symmetric
(no astigmatism), it can be written

σF{sin χ(u, v)P (u, v)} = 2π

λ2

∫ θap

0
sin χ(θ)J0

(
2πθr

λ

)
θ dθ (3.30)
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Fig. 3.6 The impulse response of an electron microscope for phase contrast. The parameters are
Cs = 0.7 mm, 100 kV, θap = 12.8 mrad, �f = −61 mm. This negative function, added to the constant
bright-field background, gives the image of an ideal point object under the optimum imaging conditions for
phase contrast. The full width at half maximum height of this function is 0.204 nm which gives an indica-
tion of the resolution. A more accurate estimate of resolution would be based on the coherent superposition
of two adjacent functions and take into account the scattering properties of the specimen and instrumental
instabilities.
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as shown in Fig. 3.6 for a modern high-resolution instrument. This function is laid
down at every point in the phase-contrast image, and so limits the instrumental resolu-
tion. The parameters used for Fig. 3.6 are the optimum values of θap and �f for phase
contrast on an instrument with Cs = 0.7 mm (Scherzer conditions—see Section 6.2).

Higher-order terms in the expansion of eqn (3.25) correspond to the multiple-
scattering terms of the Born series. Their importance has been investigated by
Erickson (1974) and detailed numerical calculations comparing these two approx-
imations with the correct N -beam dynamical solution have also been given by Lynch
et al. (1975). These workers found serious discrepancies for middle-weight atoms
between the amplitudes and phases of diffracted beams calculated using the kinematic
eqn (3.26) and those calculated from the complete N -beam solution for specimens as
thin as 1 nm. For a lighter element such as carbon, eqn (3.26) may hold for perhaps
6 mm. As has been pointed out, the validity of the weak-phase object approximation
depends on the specimen structure and orientation. For crystalline specimens seen in
projection with all atoms aligned in the beam direction, the phase change between
an image point below a column of heavy atoms (see Fig. 2.2) and a neighbouring
empty tunnel will increase rapidly with thickness. For a light amorphous specimen
such as an unstained biological specimen in ice, the local deviation of phase from
the mean phase shift will increase less rapidly with thickness. This important fact
explains much of the success of quantitative cryomicroscopy.

3.5 Optical and digital diffractograms

Coherent optical diffraction patterns of electron micrographs are sometimes used for
image processing and electron microscope testing, however these have been almost
entirely replaced by the use of the digital image transforms available from on-line
image acquisition software. Since there are some dangers in the interpretation of these
‘diffractograms’, the relationship between the electron microscope specimen and a
diffractogram of its electron image is outlined in this section.

We are concerned only with low-contrast specimens imaged in bright field. Then
the electron image optical density recorded is

D(x, y) = D0 + D0f (x, y) (3.31)

where D0 represents the density of the bright-field background, and f (x, y) is the
contrast term given either by

f (x, y) = 2σφp ∗ F {sin χ(u, v)P (u, v)} (3.32)

or

f (x, y) = �f λσ

2π
∇2φp(x, y) (3.33)

depending on the precise experimental conditions and provided the specimen is suffi-
ciently thin (see Chapter 5). The intensity of laser light transmitted by the micrograph
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in an optical bench is, from the definition of optical density,

Ie(x, y) = I0 exp(−D(x, y))

so that the amplitude immediately beyond the micrograph is

ψe(x, y) = √
I0 exp

(
− 1

2D(x, y)
)

= √
I0 exp(−D0/2) exp(−f (x, y)D0/2)

= C exp(−f (x, y)D0/2

where C is a constant.
For a dark-field micrograph D0 ≈ 2, and if the contrast is low, f (x) < 1 so that

ψe(x, y) ≈ C − 1
2D0Cf (x, y)

The complex amplitude in the optical lens back-focal plane is given, aside from phase
factors, by the Fourier transform of this,

ψd(u, v) = Cδ(u, v) − 1
2D0CF{f (x, y)} (3.34)

with

u = θ/λe, v = φ/λe

where λe is the laser light wavelength. The intensity recorded on film (the
diffractogram) is

I (u, v) = ψdψ
∗
d = Bδ(u, v) + 1

4D2
0C2|F{f (x, y)}|2 (3.35)

where B is a constant. For the weak-phase object (eqn 3.31)

|F{f (x, y)}|2 = 4σ 2|F{φp(x, y)}|2 sin2 χ(u, v)P (u, v) (3.36)

If |F{φp(x, y)}|2 is sufficiently slowly varying, the important structure seen will
be the term sin2 χ(u, v), that is, the square of the transfer function shown in Fig. 6.1.
This is the basis of the interpretation given to Thon’s diffractograms (Section 10.7).
The interpretation depends on two important conditions—low bright-field contrast
and a monotonic form for |F{φp(x, y)}|2. An example of a diffractogram is given in
Fig. 10.4.

Notice that the intensity of the electron diffraction pattern, given by the squared
modulus of eqn (3.27), does not reveal the transfer function sin χ(u, v). It does, how-
ever, reveal the form of |F{φp(x, y)}|2, which for thin carbon films shows appreciable
structure indicating the degree of order in these ‘amorphous’ specimens.

For thin, low-atomic-number periodic specimens (e.g. unstained catalase) we see
from eqn (3.35) that the optical diffraction spots will appear in the same places (though
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with incorrectly weighted intensities) as the corresponding electron diffraction spots.
This allows the possibility of optical filtering of electron micrographs under these
conditions. Masks are used to exclude particular diffraction orders or the diffuse scat-
tering between orders, thereby enhancing the contrast of the optically reconstructed
image. A bright-field micrograph can be used to form a high-contrast dark-field optical
image by excluding the central optical diffraction spot. The crucial requirement is that
the specimen is thin enough for the central electron diffraction spot to be much more
intense than any diffracted orders (kinematic conditions). In particular it is incorrect
to interpret the optical diffraction spot intensities as if they were proportional to the
corresponding electron diffraction pattern spot intensities. However, by carrying the
analysis through to the optical image plane it can be shown that this image intensity
is proportional to the electron micrograph density. Thus the image intensity recorded
with an optical mask in place will be similar to the micrograph apart from the effects
of the mask. The use of a mask corresponds to the introduction of a priori information,
and results should be treated accordingly. For example it should be borne in mind that
the optical image periodicity is determined by the positions of the holes in the mask.
For a particular mask, an image will be formed whose periodicity is completely inde-
pendent of the micrograph used, so long as it provides some scattering to illuminate
the mask.

If an optical image of an ‘almost periodic’ micrograph (such as a damaged biolo-
gical crystal) is formed using a back-focal plane mask which allows only the sharp
Bragg spots to contribute to the image, a ‘periodically averaged’ image of the micro-
graph will be formed. This periodically averaged image is perfectly periodic, and
each unit cell in this image is proportional to the sum of all the individual damaged
unit cell images in the original micrograph, placed in registry. A fuller discussion of
the use of optical diffractograms is given in Beeston et al. (1972).

For dark-field electron micrographs, a simple interpretation of the optical dif-
fraction pattern is not generally possible, since the density of the micrograph is
proportional to the square of the deviation of the potential from the mean potential
on a kinematic model (see Section 6.5).

The use of diffractograms for electron microscope testing is described in
Section 10.7. These are now provided on-line in digital form by the image acquisi-
tion software, which performs a Fourier Transform of HREM images. Their use for
auto-tuning is described in Section 12.5.
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4
COHERENCE AND FOURIER OPTICS

The coherence of a wavefield refers to its ability to produce interference effects. The
high-resolution detail in an electron micrograph arises from coherent interference.
In a bright-field image, for example, it is the interference between the central beam
and the various waves scattered by the specimen which forms the image. So long as
the resolution of the electron microscope was limited by electronic and mechanical
instabilities to distances much larger than that coherently illuminated, the question of
coherence remained unimportant. These incoherent instabilities no longer limit the
resolution of modern electron microscopes and wave-optical interference controls the
fine structure of a modern electron image.

Some of the important ideas of optical coherence theory are described below. This
theory was developed in optics, but much of it has been found useful in electron
optics and the validity of a fundamental optical coherence theorem (the van Cittert–
Zernike theorem) has now been tested experimentally for electrons (Burge et al.
1975). In optics, the waves emanating from different atomic oscillators in a light
source are treated as incoherent. The total intensity in the interference patterns due to
each atomic oscillator must be added together. Similarly, the wavefields of successive
fast electrons emitted from the filament in the electron microscope are incoherent.
In the words of Paul Dirac ‘each electron interferes only with itself’. Now the image
theory outlined in Chapter 3 was developed for a specimen illuminated by an idealized
infinite electron wavetrain. Where many electrons, arriving from slightly different
directions, are used to illuminate the specimen the image intensities due to each fast
electron must be added together.

Some further qualitative ideas, described in more mathematical detail in the sections
which follow, are set out below.
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1. An effective source can be defined for an electron microscope. It lies in the exit
pupil of the second condenser lens which is usually taken as coincident with the
illuminating aperture. The effective source is an imaginary electron emitter filling the
illuminating aperture. A mathematical definition is given in Hopkins (1957). Each
point within the aperture is supposed to represent a point source of electrons. The
emerging spherical wave is approximately plane at the specimen and this is focused
to a point in the lens back-focal plane (Fig. 4.1). At the specimen, each electron can
be specified by the direction of an incident plane wave. Increasing the size of the
illuminating aperture increases the size of the central diffraction spot accordingly.
The conditions under which the illuminating aperture may not be incoherently filled
are discussed in Section 4.5, in which case this model does not apply.

2. A second important concept is that of spatial coherence width, also known as
lateral or transverse coherence width. The term coherence length should be reserved
for temporal or longitudinal coherence. The coherence width is the distance at the
object over which the illuminating radiation may be treated as perfectly coherent.
Thus the scattered waves from a specimen consisting of two atoms separated by less
than this distance Xc will interfere and it is the complex amplitudes of these waves
which must be added, in this case to produce a cosine-modulated atomic scattering
factor. Atoms separated by distances much greater than Xc scatter incoherently and
the intensities of their scattered radiation must be added. The intermediate range is
described by the theory of partial coherence (see Fig. 4.2).

CAP

OL

BFP
D1 D0 D2

P�

�c

Fig. 4.1 Formation of the central ‘unscattered’ diffraction spot in an electron microscope. Each point P
in the illuminating aperture CA is focused to a point P′ in the central diffraction spot DO in the back-focal
plane BFP of the objective lens OL. Dl and D2 are two other Bragg reflections. The beam divergence θc
is also shown.
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Atoms(a) (b)

Interference
pattern

d < Xc d > Xc

Fig. 4.2 The intensity of scattering recorded at a large distance from two atoms separated by (a) less than
the coherence width Xc and (b) a distance much greater than Xc. There is no interference in the second
case. The unscattered beam is not shown.

Under normal operating conditions there is a simple relationship between the coher-
ence width Xc and the semi-angle θc subtended by the illuminating aperture at the
specimen (the beam divergence). This result is given in Section 4.3 as

Xc = λ/2πθc

The objective lens pre-field must also be considered (see Section 2.9).
3. The effect of coherence width or beam divergence on the contrast of phase-

contrast images is discussed in Section 4.2. This is an important question since it
enables the experimentalist to make the best choice of illuminating aperture size for a
particular experiment. A strong phase object (one which shows only refractive index
variation) produces little contrast unless coherent illumination is used. At the other
extreme, source coherence becomes unimportant for the contrast of thick ‘amorphous’
specimens (such as thick biological specimens) since the phase relationship between
scattered waves soon becomes indeterminate with increasing multiple scattering. An
approach to the difficult problem of determining the effect of an almost randomly
distributed set of atoms on the coherence of a plane wave is described in Sellar
(1976). In the intermediate region the contrast of specimens of moderate thickness
may be due to interference effects (phase contrast) at high resolution, but incoherent
for the coarser image detail. The division between these two ranges of image detail
is specified very approximately by the coherence width. Fresnel diffraction, lattice
fringes, and single-atom images are three examples of high-resolution phase-contrast
detail. To obtain this type of contrast a choice of θc must be made which keeps Xc
larger than the coarsest detail of interest. Only a range of specimen detail smaller
than Xc will produce phase contrast of the type described in Chapter 3 which can
be enhanced by the Scherzer optimum focus technique, since this relies on Fresnel
interference.

4.1 Independent electrons and computed images

The elastic scattering of a fast electron by a thin specimen is generally treated as
two-body problem in which the specimen is described by a suitable complex optical
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potential and a solution is obtained for the wavefunction ψ0(r0, ki) of the fast electron
(incident wavevector ki) on the specimen exit face. Successive fast electrons are
assumed independent and any interaction between them (such as the Boersch effect)
is neglected. We assign a separate wavevector and direction to each incident electron.
Two electrons with the same wavevector would arrive at the specimen at different
times. For an extended source, the intensity at a point in the final image I (ri) can be
obtained by summing the intensities of the images due to each fast electron. Thus

I (ri) =
∫ ∞

−∞

∫ ∞

−∞
|ψi(ri, �f, K0)|2F(K0)B(�f ) dK0 d�f (4.1)

where r and K0 are two-dimensional vectors (K0 = uî+vĵ) and F(K0) describes the
normalized distribution of electron wavevectors. Thus F(K0) dK0 is the probability
that the incident electron has a wavevector with î and ĵ components in the range K0
to K0 + dK0. Here ki = K0 + wk̂ and |ki| = 1/λr with î, ĵ, and k̂ orthogonal unit
vectors. B(�f ) describes the distribution of energy present in the electron beam, and
may also include effects due to fluctuations in the objective lens current. All these
effects can be represented as time-dependent variations in the focus setting �f .

It is shown in a later section (and can be demonstrated experimentally using an
electron biprism) that to a good approximation the filled final illuminating aperture
can be treated as a perfectly incoherent source of electrons. It is thus not necessary to
trace each electron back to its source at the filament in using eqn (4.1). For practical
computations, the illuminating cone of radiation under focused illumination may
be taken as uniformly filled, corresponding to the choice of a ‘top-hat’ function
for F(K0) with |K0|max = |ki| sin θc, where θc is the beam divergence. The exact
profile of F(K0) can be measured from a densitometer trace taken across the central
diffraction spot. A slow emulsion must be used to avoid film saturation.

There are now three possible approaches to the problem of understanding and
simulating partial coherence effects in HREM.

1. The images may be computed exactly, using eqn (4.1) and the result of a
multiple-scattering computer calculation for |ψi(ri, K)|2 (see Chapter 5). This
method makes no approximation but requires a separate dynamical calculation
for each component wavevector K0 in the incident cone of illumination. The
results of such calculations can be found in O’Keefe and Sanders (1975) (see
Fig. 4.9).

2. To avoid the need for many dynamical calculations, an approximation valid
for small beam divergence may be adopted. This requires a single dynamical
calculation for ψi(ri, K0), and is described in Section 5.8.

3. In addition to assuming small θc, we may make the further weak-phase object
approximation, in order to obtain a result in the form of a multiplicative transfer
function. This is done below.

Under rather unusual experimental conditions (see Section 4.5) it may happen that
the illuminating aperture is coherently filled. Then the complex image amplitudes for
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each incident direction must be summed, rather than their intensities. This occurs if
a field-emission electron source is used for HREM work. The appropriate transfer
function for this case has been derived by Humphreys and Spence (1981) and O’Keefe
and Saxton (1983), and compared with the incoherent illumination case.

4.2 Coherent and incoherent images and the damping envelopes

The labour of detailed image simulation can be avoided and a simple understanding
of the effect of coherence on contrast can be obtained for specimens sufficiently thin
that the approximation

ψ0(r0, K0) = ψ0(r0, 0) exp(2πiK0, r0) (4.2)

can be made. This approximation is satisfied for both the strong- and weak-phase
object. Here ψ0(r0, 0) is the specimen exit-face wave for normally incident illumin-
ation. The approximation neglects the orientation dependence of scattering within
the specimen, that is the rotation of the Ewald sphere with respect to the crystal
lattice. The neglect of excitation error effects is equivalent to the neglect of Fresnel
diffraction (describing Huygens wavelets) within the specimen if refractive index and
propagation effects are taken as separable (see Section 6.3).

For specimens sufficiently thin that eqn (4.2) applies (t < 5 nm for low atomic num-
ber amorphous specimens), we now consider the two extremes of spatially coherent
and incoherent illumination. For the present we ignore chromatic aberration effects
and take B(�f ) = δ(�f ). The transfer equation for imaging is (Section 3.2)

ψi(ri, K0) =
∫

ψ0(r0, K0)Ã(ri − r0) dr0 (4.3)

Using eqns (4.1), (4.2), and (4.3) gives

I (ri) =
∫ ∫

ψ0(r0, 0)ψ∗
0 (r′

0, 0)Ã(ri − r0)Ã
∗(ri − r′

0)γ (r′
0 + r0) dr0 dr′

0 (4.4)

where

γ (r0) =
∫

F(K0) exp(−πiK0 · r0) dk (4.5)

The function γ (r0), if normalized, is known as the complex degree of coherence as
will be discussed in Section 4.3.

For coherent illumination, F(K0) = δ(K0) and γ (r0) = 1, so that eqn (4.4)
becomes

I (ri) =
∣∣∣∣
∫

ψ0(r0, 0)Ã(ri − r0) dr0

∣∣∣∣
2

(4.6)

in agreement with the image intensity given by eqn (4.3) for normal plane-wave illu-
mination. For perfectly incoherent illumination, F(K0) is constant and γ (r0) = δ(r0)
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and we obtain

I (ri) =
∫

|ψ0(r0, 0)|2|Ã(ri − r0)|2 dr0 (4.7)

For a pure-phase object, as discussed in Section 1.1 and used as a model for ultra-thin
biological specimens, we have

ψ0(r0, 0) = exp(−iσφp(r0))

where φp(r) is real. Since the squared modulus of this function is unity, eqn (4.7)
indicates that no contrast is possible from such a specimen using perfectly incoherent
illumination (see also Section 1.2). In practice one is always dealing with partially
coherent illumination, since a perfectly incoherent imaging system would require an
illumination aperture of infinite diameter.

Loosely speaking then, using a very small condenser aperture in the electron micro-
scope is rather like using a laser source in optics, while a large aperture corresponds
to a tungsten lamp source.

For specimens satisfying eqn (4.2) the transfer of information in the electron micro-
scope is thus linear in complex amplitude under coherent illumination and linear in
intensity under incoherent illumination.

We now consider the important intermediate case of partial coherence with which
microscopists are chiefly concerned in practice. The incorporation of the effects of
partial spatial and temporal coherence into the transfer function described earlier
(eqn 3.24) has been described by many workers. Results for an incoherently filled
disc-shaped effective source have been briefly described in Section 3.3 (see also
Appendix 3). We will rely mainly on the works of Frank (1973) and Fejes (1977) which
gives a useful estimate of the effects of partial coherence on images for the simpler
case of a Gaussian distribution of intensity across the effective source. For small
effective source widths and a central zero-order diffracted beam much stronger than
any other, these workers have shown that the combined effects of partial coherence
and electronic instabilities lead to a transfer function of the form

A(K) = P(K) exp{iχ(K)} exp
{−π2�2λ2K4/2

}
γ (∇χ/2π)

= P(K) exp{iχ(K)} exp
{−π2�2λ2K4/2

}
exp

{−π2u2
0q
}

(4.8a)

in the absence of astigmatism. As discussed earlier in Sections 3.3 and 2.8.2, the
quantities χ(K) and � are defined by

χ(K) = π�f λK2 + πCsλ
3K4/2 (4.8b)

with K the vector uî + vĵ where (u2 + v2)1/2 = |K| = θ/λ, and

� = CcQ = Cc

[
σ 2(V0)

V 2
0

+ 4σ 2(I )

I 2
0

+ σ 2(E0)

E2
0

]1/2

(4.9)
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where σ 2(V0) and σ 2(I ) are the variances in the statistically independent fluctuations
of accelerating voltage V0 and objective lens current I0 respectively. (Evidence for
correlated fluctuations has recently appeared.) The root-mean-square value of the
high-voltage fluctuation is thus equal to the standard deviation σ(V0) = [σ 2(V0)]1/2.
A term has also been added to account for the energy distribution of electrons leaving
the filament. The full width at half the maximum height of the energy distribution of
electrons leaving the filament is

�E = 2.345σ(E0) = 2.345[σ 2(E0)]1/2

The normalized Gaussian distribution of intensity assumed for the incoherent effective
electron source has the form

F(K0) =
(

1

πu2
0

)
exp

(
−K2

0

u2
0

)

If the beam divergence is chosen as the angular half-width θc for which this distribution
falls to half its maximum value, then u0 is defined by

θc = λu0(ln 2)1/2

The quantity q in eqn (4.8a) is

q = (Csλ
3K3 + �f λK)2 + (π2λ4�4K6 − 2π4iλ3�2K3) (4.10)

A clear understanding of the properties of eqn (4.8) is essential for the microscopist
seriously interested in ultra-high-resolution work, since it expresses all the resolution-
limiting factors of practical importance (except specimen movement). The relative
importance of these factors is discussed in more detail in Appendix 3. For the present,
we note the following features of eqn (4.8).

1. A crucial approximation is the assumption of a strong zero-order diffracted
beam. This condition is satisfied both in very thin crystals and in thicker areas of
wedge-shaped crystals showing crystals showing strong Pendellösung, as described
in Section 5.6. Note that terms such as those containing �h�−h in eqn (5.9) which
lead to the appearance of ‘half-period fringes’ are neglected in this analysis. These
fringes have been used in the past to give a misleading impression of high-resolution
detail (see Section 10.10).

2. The last bracketed complex term in eqn (4.10) expresses a coupling between the
effects of using a finite incident beam divergence angle θc (partial spatial coherence)
and the consequences of using a non-monochromatic electron beam (partial temporal
coherence, � 	= 0). The magnitude of this coupling term has been investigated
in detail by Wade and Frank (1977), who find that, under high-resolution conditions
(e.g. θc < 0.001 rad, � < 20 nm at 100 kV—their paper should be consulted for other
conditions) this term can frequently be neglected. Then eqn (4.8) contains three
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multiplicative factors, each of which imposes a resolution limit by attenuating high-
order spatial frequencies. The first term P(K) expresses the diffraction limit imposed
by the objective aperture. The third term describes a damping envelope more severe
than Gaussian attenuation with a width

u0(�) = [2/(πλ�)]1/2 (4.11)

which will always be present even if the objective aperture is removed. This resolution
limit d ≈ 1/u0(�) is independent of the illumination conditions used and depends
on the existence of instabilities in the objective lens and high-voltage supplies and on
the thermal spread of electron energies. The last term in eqn (4.8) shows an appar-
ently complicated dependence on illumination semi-angle θc, focus �f , spherical
aberration constant Cs, and wavelength λ. Its behaviour can be given a simple inter-
pretation, however, since the function γ (∇χ/2π) is just the Fourier transform of the
source intensity distribution evaluated with the function’s argument equal to the local
slope of the aberration function χ(K). For a Gaussian source, γ (K) is also Gaussian
and has a width which is inversely proportional to the width of the source. Thus
γ (∇χ/2π) is small in regions where the slope of χ(K) is large, resulting in severe
attenuation of these spatial frequencies. Conversely, in the neighbourhood of regions
where the slope of χ(K) is small, all spatial frequencies are well transmitted by the
microscope with high contrast.

Extended regions over which the slope of χ(K) is small are called passbands or
contrast transfer intervals and these can be found for many focus settings, given by

�fn = [Csλ(8n + 3)/2]1/2 (4.12)

This result may be obtained as follows. By differentiation, it is easily shown
that the slope of χ(K) is zero at K1 for the corresponding ‘stationary phase’ focus
�f0 = −Csλ

2K2
1 (see Fig. A3.1). We require that K1, lie at the centre of the pass-

band, in order to minimize the damping effects of limited spatial coherence. As a
separate condition, however, we also require χ = nπ/2, with n = −1, −5 − 9, −13,
etc., for good phase contrast (see Section 3.4). Then both the scattering phase shift
exp(−iπ/2) = −i in eqn (3.26) and the lens phase shift exp(−iπ/2) (see eqn 3.27b)
have the same sign, as needed to obtain a high-contrast image which is darker in
regions of high potential. We might therefore impose the additional condition that

χ(�f0) = −π

2
(1, 5, 9, 13, . . . )

in order to select only negative maxima in sin χ for the centre of the passband.
However, the passband can be made broader if the value of sin χ(K1) is allowed to
decrease slightly as shown by the dip in the passband of Fig. 4.3(b). This is achieved
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by taking

χ(�f0) = −π

2

(
8n + 3

2

)
= −πCsλ

3K4/2

Solving this for K and using this value for K1 in the stationary phase focus expression
gives eqn (4.12). This procedure guarantees both that the slope of χ(K) is zero
(as sketched in Fig. A3.1) and that sin χ = −1 in the middle of the passband. The
zero-order passband (n = 0) is commonly known as the ‘Scherzer focus’ and is
the optimum choice of focus for images of defects or single molecules for which a
straightforward interpretation in terms of object structure is required (see Section 6.2).
Some examples of these passbands are shown in Fig. 4.3. They are seen to move out
toward higher spatial frequencies with increasing n and, as discussed in Appendix 3
in more detail, to become narrower with increasing n and Cs. Once the slope of
χ(K) exceeds a certain value beyond these passbands, all spatial frequencies are
severely attenuated. This attenuation is the major consequence of using a cone of
illumination to illuminate the specimen from an extended incoherent source. By
collecting several images at, say, the n = 0, 1, 2, 3 focus values specified by eqn (4.12)
and processing these by computer, a composite image can be built up using only
the well-transmitted spatial frequencies within the passband from each image, and
this idea is the basis of image-processing schemes discussed in Chapter 7. These
passbands cannot, however, be moved out beyond the resolution limit set by electronic
instabilities (eqn 4.11). Figure 4.3 shows the transfer function drawn out for a typical
instrument with Cs = 2.2 mm, � = 120 Å, θc = 0.9 mrad at an operating voltage
of 100 kV. To a good approximation the functions shown can be taken to be the last
two terms of eqn (4.8) multiplied by sin χ(|K|) with the second, bracketed term in
eqn (4.10) set equal to zero (see Appendix 3).

There are, therefore, two resolution limits which can be quoted for an electron
microscope. The first, generally called the point-resolution of the instrument, is set
by the first zero crossing of the transfer function at the Scherzer focus (n = 0 in
eqn 4.12). This is the useful resolution limit of the instrument for the analysis of
defects and other non-periodic specimens. On high-voltage machines, the stability-
resolution limit (eqn 4.11) may occur at a lower spatial frequency than the Scherzer
cut-off (see eqn 6.17), in which case eqn (4.11) would determine the point-resolution
of the machine (see Appendix 3).

The second resolution specification for an instrument might be called the
information-resolution limit. It is set by electronic instabilities and given by eqn (4.11).
For 100 kV machines this resolution limit generously exceeds the point-resolution,
which is chiefly limited by spherical aberration. The information-resolution limit
expresses the highest-resolution detail which could be extracted from a micrograph
by the methods of image processing (leaving aside problems of electron noise) and
can be measured by the Young’s fringe diffractogram technique of Frank (see Sec-
tion 10.7) or by finding the finest three-beam lattice fringes from a perfect crystal
which the instrument is capable of recording under axial, kinematic conditions (but
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Fig. 4.3 Transfer functions for a 100 kV electron microscope with Cs = 2.2 mm and beam divergence
θc = 0.9 mrad. The cases n = 0 (Scherzer focus, �f = −110.4 nm) and n = 3(�f = −331.5 nm)

of eqn (4.12) are shown in (a) and (b) respectively. In (a) the ‘passband’ extends from u = 0 out to the
point-resolution limit of the instrument, in (b) the passband has moved out to the position indicated. The
solid curves are drawn for maximum gun-bias setting (� = 5.4 nm) and the dotted curves show the effect
of using the minimum gun-bias setting (maximum beam current � = 12.0 nm) resulting in increased
attenuation of the higher spatial frequencies. Note that the value of n is equal to the number of minima
which precede the passband. The position of the (111) Bragg reflection is indicated and is seen to fall
beyond the point-resolution limit (see Section 5.8). The imaginary part of eqn (4.8) has been plotted.

see Section 5.8). If there is no diffuse scattering between the Bragg reflections, a focus
setting can then be found which places one of the passbands of eqn (4.11) across the
Bragg reflection of interest. Defects and non-periodic detail in such an image cannot
usually be simply interpreted (see Sections 5.8 and 10.10).

The availability of gun monochromators for HREM machines now allows a reduc-
tion of �E, at the cost of image intensity. If the other electronic instabilities in eqn (4.9)
allow it, this may improve the image quality, as described in den Dekker et al. (2001).
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4.3 The characterization of coherence

The extent to which the wavefield at neighbouring points on the object vibrates in
unison is expressed naturally by the correlation between wave amplitudes at points
r1 and r2 and is given by the cross-correlation function

�(|r1 − r2|, T ) = lim
τ→∞

∫ τ

−τ

ψ∗(r1, t)ψ(r2, t + T ) dt (4.13)

A spatially stationary field has been assumed. When normalized, this function
is called the complex degree of coherence γ (x1,2, T ). Here x1,2 = |r1 − r2|. The
function contains a spatial dependence expressing lateral or transverse coherence
and a time dependence expressing temporal or longitudinal coherence. In electron
microscopy, the temporal coherence is large and we are chiefly concerned with
γ (x1,2, 0) = γ (x1,2). In order to obtain strong interference effects such as Bragg
scattering from adjacent scattering centres we require the wavefield at these points to
be well correlated. That is, that γ (x1,2) is large for this value of x1,2.

The van Cittert–Zernike theorem relates γ (x1,2) through a Fourier transform to the
function F(k) used in Sections 4.1 and 4.2. Despite differences in the nature of the
particles (photons are bosons, electrons are fermions) and differing interpretations of
the wavefunction, the results of electron interference experiments suggest that this
important optical theorem may be taken over into electron optics. It will be seen
that the range of object spacings which can be considered coherently illuminated is
proportional to the width of γ (x1,2), so that a narrow source (for which γ (x1,2) is
a broad function) produces more coherent radiation than does a larger source. The
theorem only applies to perfectly incoherent sources.

While the effects of partial coherence are important for images, they are seen
most dramatically in interference experiments. A familiar example of a near-field
interference experiment is the observation of Fresnel fringes at an edge, as discussed
in Chapter 10. Note that questions of partial coherence only arise when more than
one idealized point source of radiation is used. An interference experiment which
may be used to measure γ (x1,2) is Young’s slit experiment. This experiment gives
an important physical interpretation to γ (x1,2)—it is the contrast of the interference
fringes (if the pin-holes are sufficiently small). Figure 4.4 shows the experimental
arrangement used in optics. The relationship between the fringe contrast and the
source size is described in most optics texts (e.g. Born and Wolf 1975). Sharp fringes
are obtained from a single point-source P1. Moving this source to P2 translates the
fringes in the opposite direction. The incoherent superposition of many sets of fringes,
slightly out of register and arising from a set of sources along P1P2 results in a fringe
pattern of reduced contrast. An important point is that a small increase in the width
of the source will have more effect on the contrast of fine fringes than on coarse
fringes. A similar result holds for the effect of source size (condenser aperture) on
high-resolution phase-contrast images.

Figure 4.5 shows the result of performing Young’s slit experiment with electrons.
If the pin-holes are sufficiently small in the optical case, the Michelson visibility
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Fig. 4.4 Young’s slit experiment in optics. Interference fringes are formed with a single point source P1
because of the path difference between each of the pin-holes I1 and I2 and an image point Q. The visibility
of these fringes when an extended source P1P2 is used is equal to the ordinate of |γ (x1,2)| evaluated at
the pin-hole I2. The ordinate has the value λ/2πθc at A and 0.61λ/θc at B.

(contrast) of these fringes is given by

V = Imax − Imin

Imax + Imin
= |γ (x1,2)| (4.14)

for a symmetrical source whose temporal coherence is large. The use of larger pin-
holes (as in the electron case) introduces an additional modulating envelope.

The function |γ (x1,2)| for a uniformly filled incoherent disc source is sketched
in Fig. 4.4, centred about the pin-hole I1. The contrast of the fringes formed in this
experiment is then equal to the value of the function evaluated at the second pin-hole I2.
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100 nm

Fig. 4.5 Young’s slit experiment performed with electron waves. The ‘pin-holes’ in this case are two small
holes in a thin carbon film. (Courtesy of E. Zeitler. Similar images have been obtained by A. Tonomura
using the Hitachi field-emission instrument.)

The form of γ (x1,2) is given by

γ (x1,2) = 2J1(u)

u
; u = 2πθcx1,2

λ
(4.15)

for a circular disc source. Here θc is the semi-angle subtended by the source at the
pin-holes. By convention, distances smaller than that for which the ordinate has fallen
by 12 per cent are said to by coherently illuminated. This occurs when u = 1 and so
allows the coherence width Xc to be defined for

x1,2 = λ/2πθc = Xc (4.16)

A reasonable criterion for incoherent illumination of two points is that u = 2π or
larger. Thus we may define an ‘incoherence’ width

Xi = λ/θc (4.17)

Points separated by distances greater than Xi are incoherently illuminated. The range
of spacings between Xc and Xi is described by the theory of partial coherence.

To summarize, coherence is characterized by the function γ (x1,2) (the Fourier
transform of the source intensity function) whose width gives a measure of the max-
imum separation between points which can be considered coherently illuminated. The
contrast of a pure-phase object decreases as this function become narrower. Physic-
ally, the function gives the contrast of fringes in a certain interference experiment.
A fuller discussion is given in Barnett (1974).
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4.4 Spatial coherence using hollow-cone illumination

As a further example of the application of the van Cittert–Zernike Theorem to elec-
tron microscopy, we consider the use of a condenser aperture containing an annular
gap. This is taken to be uniformly filled with quasimonochromatic illumination. The
resulting ‘conical’ or ‘hollow-cone’ illumination has been used in attempts to image
single atoms in transmission electron microscopy (Thon and Willasch 1972). Prac-
tical aspects of the use of these apertures are discussed at the end of this section. This
imaging mode also has an important parallel in scanning microscopy, through the
reciprocity theorem (see Chapter 8).

Take the outer radius of the annulus to be r0 and the inner radius βr0 as shown in
Fig. 4.6. If a function g(a, x) is defined such that

g(a, x) = 1 for x < a

= 0 elsewhere

then the intensity across an incoherently filled annular gap can be described by

f (x) = g(r0, x) − g(βr0, x)

where x is the radial coordinate in the condenser aperture plane. The normalized
Fourier transform of f (x) with argument u = sin α/λ gives the complex degree of
coherence whose behaviour can be studied as a function of β, the ratio of the inner

BFP

DF
OAOLCA

r0 �r0

� �c

L BF

(a) (b)

Fig. 4.6 (a) Ray diagram for illumination using an annular condenser aperture. The annular gap in the
second condenser aperture CA is filled with incoherent radiation and this is focused to a bright ring in the
objective back-focal plane (BFP). Figure 4.6(b) shows the shape of a practical aperture whose dimensions
must match a particular instrument.
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to outer aperture radii. The normalized transform of f (x) is

F(X) = 2

(1 − β2)

[
J1(X)

X
− β

J1(βX)

X

]
(4.18)

where J1(X) is a Bessel function of the first order and kind and

X = 2πr0u ≈ 2πr0α/λ = 2πx1,2θc/λ (4.19)

For β = 0 (the normal circular aperture) the transverse coherence width Xc is
defined as the specimen spacing x1,2 corresponding to the abscissa value for which
F(X) = 0.88. Two points in the specimen plane are considered ‘coherently’ illumin-
ated if their spacing is less than Xc. For F(X) = 0.88, X = 1 and the commonly
used coherence criterion is obtained. From eqn (4.19), for X = 1,

x1,2 = Xc = λ/2πθc

Note that x1,2 refers to spacings in the object so than any object point can be taken
as origin. As β increases, F(X) becomes narrower (the coherence deteriorates) but
retains a form somewhat similar to the Airy’s disc function until

lim
β→1

F(X) = J0(X)

corresponding to the case of a circular line source. Figure 4.7 shows that the coherence
under conical illumination is always less than that obtained using a conventional
circular aperture equal in size to the outer diameter of the annular aperture (β = 0).

0.0

0.5

1.0

x

�0.5 1.0

Fig. 4.7 The width of the modulus of the complex degree of coherence (for F(X) = 0.88) for an annular
illumination aperture as a function of β, the ratio of the inner to outer annular radii. For a particular value
of β the coherence width is Xc = λx/2πθc.
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The illuminating hollow cone of rays incident on the specimen when using an annu-
lar condenser aperture forms a bright ring of unscattered intensity in the objective lens
back-focal plane (Fig. 4.6). By using a matching objective aperture of optimum size
for phase contrast which either excludes or includes this ring, a dark- or bright-field
image may be formed. For matching apertures, θap = θc, so that Xc = λ/2πθap where
θap is the semi-angle subtended by the objective aperture. Thus for a 10 mrad objective
aperture, about the size commonly used for phase contrast, we find Xc = 0.05 nm.
This would appear to restrict the use of conical illumination to very high-resolution
detail for phase contrast. Non-uniform illumination of the condenser aperture and
the partially coherent image contribution may account for the limited success of this
method at high resolution.

To construct an annular aperature, a diagram similar to Fig. 4.6 must be drawn for
the particular instrument which will give the approximate dimensions of the annulus.
Depending on the strength of the objective lens (Section 2.9), some deviation from
this simple ray diagram must be expected and a certain amount of trial and error is
required to obtain matching apertures. Since it is reasonably large (r0 typically about
2.5 mm), the annular aperture can be made by the photoetching methods used for elec-
tronic circuit boards. Some manufacturers supply these apertures ready-made for their
instruments. Because L is much larger than the objective lens focal length, the scale
of a modified condenser aperture is much larger than that of an objective aperture,
making interventions in the illuminating system easier than in the objective back-focal
plane. This is an important advantage of the conical illumination technique over other
dark-field methods such as the use of a wire beam stop in the objective lens back-focal
plane, where the minute scale of the aperture and contamination of the beam stop are
important practical problems. Another advantage is that as for high-resolution tilted-
illumination bright-field imaging, the range of spatial frequencies included within the
aperture is about twice that obtained with untilted illumination and a central aper-
ture. The asymmetrical ‘Schlieren’ distortion (see Section 6.5) which accompanies
tilted-illumination dark-field images is also not present using conical illumination. A
wave-optical analysis of hollow-cone illumination has been given by Niehrs (1973)
and Rose (1977) and applications to amorphous materials are discussed in Saxton et
al. (1978), and Gibson and Howie (1978/9).

4.5 The effect of source size on coherence

The preceding discussion has been based on the assumption that the illuminating
system can be replaced by an effective source filling the final condenser aperture.
This makes the degree of coherence at the specimen dependent only on the size of
the condenser aperture used (eqn 4.16), and not on the excitation of the condenser
lenses or the source size. In this section the conditions under which source size may
be important are investigated.

Equation (4.16) applies only if the illuminating aperture is incoherently filled. This
will be so to a good approximation if the coherence width Xa in the plane of the
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Fig. 4.8 Formation of a focused spot of radius rs beyond a condenser aperture of radius Ra. The quantities
defined enable the degree of coherence in the illuminating aperture plane to be found. In high-resolution
scanning electron microscopy where a field-emission source is used the illuminating aperture may be
coherently filled.

illuminating aperture is small compared with the size of that aperture (2Ra). Using
the van Cittert–Zernike theorem an expression can be obtained for Xa to test this, as
described in Born and Wolf (1975). The result is

Xa = λ/2πθs

where θs is now the semi-angle subtended by the focused spot at the aperture (see
Fig. 4.8). This angle depends both on the excitation of the lenses and on the source size.

Consider first a hair-pin filament with a tip radius of 15 μm, using the illuminating
system shown in Fig. 9.1. For this microscope (JEM-100C), leaving aside the effect
of the objective pre-field, the total demagnification of the two lenses C1 and C2 varies
between 0.54 and 0.03 for the minimum and maximum settings of C1 (‘spot size’).
This would give maximum and minimum focused spot sizes of rs = 8.1 and 0.45 μm.
With D3 = 251 mm we then have Xa = 0.018 and 0.327 μm respectively, both of
which are small compared with a 100 μm condenser aperture. Thus we are justified
in treating the illuminating aperture as incoherently filled in this case.

For a pointed tungsten filament with tip radius 1 μm, a similar argument gives
Xa = 0.26 and 5.0 μm for the minimum and maximum C1 settings at 100 kV using
eqn (4.15). This second value is no longer small compared with, say, a 40 μm illu-
minating aperture of the kind used in some minimum-exposure techniques for which
eqn (4.16) would therefore underestimate the coherence width at the specimen. Note
that if the illuminating aperture is coherently filled (Xa > 2Ra) the focused spot at
the specimen is also perfectly coherent.

We can conclude that the effect of source size on image coherence will only become
important for sources smaller than about 1 μm, such as a field-emission source, the
finest pointed filament, or the smaller LaB6 sources (see Table 9.1). Further, a com-
parison of the coherence conditions in two different experiments can only be made
if both θs and θc are known. At higher voltages an even smaller source is required
to produce partially coherent illumination of the illuminating aperture. An ingenious



84 High-Resolution Electron Microscopy

experimental technique for measuring the degree of coherence across the illuminating
aperture is described by Dowell and Goodman (1973).

4.6 Coherence requirements in practice

Phase-contrast effects such as Fourier images, lattice images, and images of small
molecules all show increased contrast as the coherence of the illumination is increased.
The rapid change in image appearance with focus predicted by ‘coherent’ calculations
of the type discussed in Chapters 5 and 6 will also only be seen if highly coherent
illumination is used. In practice, this means a beam divergence of less than about
0.8 mrad. The fine structure of a high-resolution image, controlled by wave-optical
interference, can be washed-out either through the use of large beam divergence or
too large an energy spread in the incident beam (see Section 5.6). This attenuation of
high spatial frequencies can be represented as a damping envelope which multiplies
the coherent transfer function (see Sections 3.3 and 4.2 and Frank 1973). The result
may be that important structural information about the specimen is lost. For periodic
specimens, the safest procedure is to compute the image of interest and assess the
effect of increasing beam divergence using eqn (4.1). Figure 4.9 shows the effect

i

(a)

(b)

ii iii iv

Fig. 4.9 The effect of increasing beam divergence (illuminating semi-angle θc) on the quality of high-
resolution images. Here computer simulated images of Nb12O29 are shown for beam divergences of
(i) 0.0 mrad, (ii) 0.6 mrad, (iii) 1.0 mrad, and (iv) 1.4 mrad. The loss of fine detail with increasing con-
denser aperture size is evident. This effect can be understood physically by extending the analysis of
Section 5.2 to the three-beam case with near-axial illumination, or from Section 3.3. The simulated exper-
imental conditions are Cs = 1.8 mm, 79 beams included within the objective aperture, �f = −60 nm,
100 kV, crystal thickness t = 5 nm. These simulated images were provided by courtesy of M. O’Keefe
and J. Sanders (b) shows an experimental image of Nb12O29 taken by S. Iijima under the experimental
conditions given above. The two inserts show computed images for θc = 0.0 (left) and θc = 1.4 mrad
(right) as used experimentally. An excellent image match is obtained through the inclusion of the correct
illumination angle.
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of increasing beam divergence on the computed image of a large unit-cell crystal.
Much of this loss of fine detail is due to the phase shift introduced by spherical
aberration, which becomes appreciable across the angular width of each diffraction
spot, particularly those at large scattering angles where the transfer function oscillates
rapidly. This degradation in image quality with increasing beam divergence is borne
out by experiment (Fig. 4.9). The severity of the effect depends on the particular
specimen structure.

If the final image obtained at a beam divergence of, say 0.8 mrad and high magni-
fication (about 300 K) is insufficiently intense to allow accurate focusing, a reduced
specimen height (shorter objective lens focal length) should be tried which will
increase the objective pre-field focusing effect. This will increase the image cur-
rent density and produce a more intense final image. In doing so, the illuminating
spot size is decreased and the beam divergence is increased (the product of these is
constant—see Section 2.2). A trade-off between coherence width Xc and specimen
intensity j0 is expected since j0 = πβθ2 (eqn (9.1)) while Xc = λ/2πθc. However,
it appears that the reduction in spherical aberration accompanying this shorter focal
length (Fig. 2.16) more than compensates for the loss of coherence, since the highest-
quality images have generally been obtained at the shortest possible objective focal
length, subject to the limitations of lens current and space within the pole-piece. The
optimum choice of specimen position is further discussed in Appendix 3.

The relationship between coherence width and object current density has been
studied experimentally by Harada et al. (1974). Figure 4.10 shows their results for
a hair-pin filament and compares this with the result obtained with a field-emission
source. The ordinate in this figure is

Xc = λ

2θc

which differs by a factor of π from that used by Born and Wolf (1975). The theoretical
curves of this figure assume an incoherently filled illuminating aperture.

The range of focal settings over which sharp ‘Fourier images’ (Cowley and Moodie
1960) can be seen has been analysed by Fujiwara (1974), showing explicitly the
dependence of this range on the source coherence.

With non-periodic specimens, an impression of the coherence conditions can be
obtained from a glance at the diffraction pattern. Figure 4.11 is a sketch of the dif-
fraction pattern of an amorphous specimen formed with a large condenser aperture.
Incoherent instabilities such as vibration and electronic fluctuations may limit the
resolution to, say, 0.3 nm. This corresponds to the imposition of an ‘aperture’ (outer
circle) of angular radius θ1 = 0.82λ/0.3, from the resolution limit of eqn (4.11). In
the absence of a physical aperture, scattering outside this outer circle will contribute
to the diffuse image background, resulting in a loss of image contrast. At the other
extreme, eqn (4.17) gives the spacing of incoherently illuminated points as Xi = λ/θc.
Specimen spacings larger than this lie inside the inner continuous circle at θ2 = θc and
are imaged under incoherent conditions. Their contrast cannot therefore be enhanced
by the optimum-focus phase-contrast technique.
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Fig. 4.10 Theoretical and experimental (circles) values for coherence width as a function of illumination
current density at the specimen. The field-emission gun is compared with a hair-pin filament.
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�

Fig. 4.11 The appearance of the diffraction pattern of an amorphous specimen. The central disc represents
the ‘unscattered’ central beam, and the outer circle is drawn at the resolution limit of the microscope set
by incoherent instabilities. Specimen spacings corresponding to scattering angles within the central disc
cannot be enhanced by phase-contrast microscopy.

Notice that the coherence requirement becomes more severe as one attempts to
form phase-contrast images of larger spacings. For some biological crystals with
very large unit cells (e.g. catalase), a very large coherence width would be required
for coherent imaging. Most published images of these specimens are formed under
partially coherent imaging conditions.
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When using pointed filaments, an LaB6 source, or a field-emission source, the
degrading effect of finite-beam divergence on image quality can usually be made
negligible, since these sources generally provide adequate intensity for focusing with
a small beam divergence (about 0.6 mrad). It is the increased brightness of these
sources which makes them valuable, since this enables the image intensity obtainable
with a hair-pin filament to be attained using a smaller beam divergence and therefore
more coherent illumination (Hibi and Takahashi (1971)). Certainly one would expect
a change in experimental conditions which increases the number of Fresnel fringes
observed to provide enhanced image contrast. A count of the number of fringes seen
is probably the simplest qualitative guide to the coherence in the specimen plane (see
Section 10.8 and Fig. 10.7) and can be used to compare sources if other experimental
conditions are unchanged.

Since the only focus setting which allows a simple image interpretation not requir-
ing computer analysis is the Scherzer focus (eqns 6.16 and 4.12 with n = 0), a
check on coherence conditions can be made by obtaining diffractograms from thin
carbon-films, recorded at the Scherzer focus using several different condenser aper-
ture sizes but otherwise identical conditions. The largest condenser aperture size is
then selected for which the corresponding diffractogram shows good contrast across
the entire inner ring out to the point-resolution limit of the instrument (eqn 6.16). The
theoretical basis for this procedure is described in Section 4.2 and Appendix 3.
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5
HIGH-RESOLUTION IMAGES OF CRYSTALS

AND THEIR DEFECTS

A long-term aim of electron microscopy has been the direct imaging of atoms in
solids. To achieve this, a point-resolution of about 0.15 or better is required for most
crystalline materials. This can now be obtained on the latest instruments by the more
or less routine methods described in this chapter. More advanced techniques, which
take resolution below 0.1 nm, are described in Chapter 7. At a resolution limit of
0.20 nm the image of a single atom changes little over a range of focus of, say,
5 nm, so that for specimens of this thickness or less, containing atoms which are
well-separated laterally, we can at best hope to see a projection of the specimen
structure in the direction of the incident beam. Optical sectioning, of the kind used
with light microscopes, is not possible in transmission electron microscopy because
of the small-angle scattering involved in HREM. In practice there are many other
limitations on the interpretation of high-resolution lattice images and this chapter is
devoted to the simplest theories necessary to understand them.

The chapter commences with some notes on three common imaging methods for
simple lattice fringes. After a period of early optimism (for a review of the very
early pioneering work, see Menter (1958)) it became clear that only very limited
information is given by these images formed from the interference between two or
three beams. However, the ‘line’ resolution records achieved by early researchers (e.g.
0.088 nm by Yada and Hibi (1969), 0.062 nm by Matsudo et al. (1978)) are remarkable
and have yet to be improved upon. The most important use for these images now is
for demonstrating the stability of electron microscopes. However a sound grasp of
the theory of these few-beam lattice images is essential to an understanding of the
many-beam structure images described later. The observation of two-dimensional
many-beam images from large unit-cell crystals in 1972 (Cowley and lijima 1972),
building on earlier work by J. Sanders, L. Hewatt, K. Yada, H. Hashimoto, T. Komoda,
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and others marked an important turning point in the subject by showing that useful
structural information could be obtained by the HREM method.

Early reviews by Allpress and Sanders (1973) and Cowley (1976, 1985) com-
plement the material of this chapter.

5.1 The effect of lens aberrations on simple lattice fringes

In this section the effects of changes in lens parameters and illumination conditions
on simple lattice fringes, formed from two or three diffracted beams, are investigated.

The three common imaging methods used for two- and three-beam lattice images
are shown in Fig. 5.1. If the complex amplitudes of the Bragg beams are �hk0 =
φhk0eiε(φhk0 real), the image amplitude in general will be

ψi(ri, �f, K0) =
∑

g

�g exp(2πig · r) exp{iχ(ug)} (5.1a)

For the simple case of an orthorhombic crystal with the beam parallel to the c-axis
this becomes

ψ(x, y) =
∑

�hk0 exp{+2πi(hx/a + ky/b)} exp{iχ(uh,k)} (5.1b)

where the sum is taken over all beams within the objective aperture and a and b are the
orthogonal unit-cell dimensions normal to the electron beam direction. Here χ(uh,k)

is the phase shift introduced by instrumental aberrations described in Section 3.3 and
given, in the absence of astigmatism, by

χ(uh,k) = 2π/λ
{

1
2�f λ2u2

h,k + 1
4Csλ

4u4
h,k

}
(5.2)

where

u2
h,k = h2

a2
+ k2

b2
= g2

The diffracted amplitudes �hk0 are functions of the specimen orientation and thick-
ness. We now consider the one-dimensional cases shown in Figs 5.1 (a), (b), and (c),
and choose the Miller indices g of the reflection included within the aperture to be
(h, 0, 0). Then uh = h/a = θ0/λ where a is the lattice spacing and θ0 is twice the
Bragg angle. The image intensity in the kinematic case where the scattering phase
ε = −π/2 is then, for the two beams shown in Fig. 5.1(a),

I (x) = ψi(x)ψ∗
i (x) (5.3)

I (x) = φ2
0 + φ2

h + 2φ0φh sin(2πhx/a − χ(uh)) (5.4)

The form of this expression indicates that any change in χ(Uh) will produce a side-
ways movement of the fringe image. Fluctuations in objective lens current or high
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voltage cause �f to vary (see Section 3.3) and so result in a small fluctuating fringe
displacement during an exposure. The image resolution is therefore limited by these
fluctuations. Lattice fringes formed under these conditions will be seen to move side-
ways (normal to their length) as the focus control is altered, often well beyond the
edge of the specimen. Leaving aside the effect of spherical aberration, eqn (5.4) gives
the displacement of the fringes due to defocus as

I (x) = φ2
0 + φ2

h + 2φ0φh sin{2πh(x − �f θ0/2)/a} (5.5)

In Fig. 5.1(b) the illumination has been tilted with respect to the optic axis res-
ulting in an improvement in the incoherent resolution limit imposed by electronic
instabilities (Dowell 1963; Komoda 1964). The image amplitude is then

ψi(x) = �0 exp(iχ(−uh/2)) + �h exp(−2πihx/a + iχ(uh/2)) (5.6)

Since the function χ(uh) is even, the same instrumental phase shift now applies to
each beam. The image intensity is

I (x) = φ2
0 + φ2

h + 2φ0φh cos((2πhx/a) − ε) (5.7)

which is independent of the focus condition (for perfectly coherent illumination). It is
also therefore independent of fluctuations in the high voltage and lens currents within
the accuracy of the illumination alignment. Chromatic aberration arising from the
thermal energy spread of the incident electrons (Section 2.8.2) is similarly reduced by
this technique. The highest ‘resolution’ two-beam lattice fringes are invariably formed
using this imaging method, since it confers a limited immunity to these important
image defects; however, it is extremely difficult to extract crystal structure information
from these fringe images. This mode has a very important relationship through the
reciprocity relation, with ADF-STEM (Chapter 8).

Fig. 5.1 Three imaging methods for simple lattice fringes. The first figure in each row suggests the
directions of the incident and diffracted beams with respect to the crystal; the second shows the appearance
of the objective aperture and the positions of the diffracted beams (©) and the optic axis (×); the third gives
the corresponding Ewald sphere orientation (see Fig. 5.2), while the last figure shows the form of the lattice
fringes produced. The cases of untilted illumination (a), tilted illumination (b), and three-beam fringes
(c) are shown. In case (c) fringes are shown for two values of defocus �f , to illustrate the occurrence of
half-period fringes (Cs = 0). (d) Axial three-beam lattice imaging conditions summarized. Continuous
lines are the locus of full-period images which coincide with the lattice. Broken lines show images of
reversed contrast, while the dotted line shows one of the many half-period images. For an instrument with
1.4 < Cs < 2.6 mm, images are only seen within the heavy parallelogram. Thus, if a high-contrast lattice
image were recorded under these conditions the possible pairs of values of �f and Cs would be greatly
restricted. The depth of field �z, the periodicity in focus �ff and the period Cs(0) in spherical aberration
are all shown. The figure is drawn for a lattice period a = 0.313 nm (silicon (111)) with θc = 0.0014 rad
at 100 kV and ε = −π/2.
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Figure 5.1(c) shows three-beam fringes formed with axial illumination, the method
used to record the image shown in Fig. 10.3. The image amplitude is

ψi(x) = �0 + �h exp(2πihx/a + iχ(uh)) + φ−h exp(−2πihx/a + iχ(−uh))

(5.8)

and the image intensity becomes

I (x) = φ2
0 + φ2

h + φ2−h + 2φhφ−h cos(4πhx/a)

+ 4φ0φh cos(2πhx/a) cos(χ(uh) + ε) (5.9)

In the simplified case where φh = φ−h and ε = −π/2 the image is seen to
consist of constant terms plus cosine fringes with the lattice spacing, together with
weaker cosine fringes of half the lattice spacing. These ‘half-spacing’ fringes are
often seen on micrographs taken under these conditions. Frequently they cannot
be seen through the viewing binocular and are only seen on close examination of
the developed micrograph. The focus condition for observing the half-spacing if
ε = −π/2 is obtained by setting χ(uh) = nπ , giving

�f = nλ

θ2
0

− Csθ
2
0

2
, n = 0, ±1, ±2, . . . (5.10)

Some examples are sketched in Fig. 5.1(c). It has been suggested that since the
half-period fringes are insensitive to focus, while the lattice-period fringe contrast
may reverse with changes in focus, the effect of electronic instabilities (leading to a
variation in χ(uh)) should be to allow the half-period fringes to accumulate during
an exposure at the expense of the lattice-period fringes.

It is clear that any change of 2π in χ(uh) occurring in eqn (5.8) leaves these
axial three-beam fringes unaffected, while a change of π reverses their contrast. The
change in focus needed to alter χ(uh) by 2π is �ff = 2n/

(
λu2

h

)
. The change in Cs

needed to change χ(uh) by 2π is Cs(0) = 4n/
(
λ3u4

h

)
and the lattice fringes are thus

periodic in both �f and Cs. All these features of three-beam images are summarized
in Fig. 5.1(d). The equation to the straight lines shown on the figure is obtained by
setting χ(uh) = (2n − 1

2 )π and solving for Cs. From eqn (3.24) this gives

Cs = (4n − 1)

(λ3u4
h)

− 2�f

(λ2u2
h)

as the condition for identical three-beam axial images. The phase angles (2n − 1
2 )π

have been chosen since these result in an electron image which ‘coincides’ with the
lattice in the sense that atom positions appear dark. This can be shown by using the
kinematic amplitudes of eqn (5.15) in eqn (5.8) with Sg = 0. The 90◦ phase-shift
ε due to scattering, represented by the factor −i = exp(−iπ/2) in eqn (5.15), and
the 90◦ lens phase-shift χ(uh) (for n = 0, say) are then superimposed to give a
total phase-shift of −180◦. (This factor is responsible for the minus sign in eqn (6.6),
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giving dark atom images.) Diffracted beams whose phase differs from that of the
central beam by an amount not equal to 90◦ are common under dynamical scattering
conditions, and may result in severely distorted images.

In practice fringes are not seen for all focus settings, only those near the ‘stationary-
phase’ focus �f0 = −Csλ

2u2
h (see eqn (4.10)). This limited depth of field, resulting

from the use of an extended electron source, is discussed in the next section and
drawn in Fig. 5.1(d) as the envelope within which clear lattice fringes can be seen.
The periodicity in focus in this case is actually a special simplified example of Fourier
imaging discussed in Section 5.8. For a general one-dimensional many-beam image,
a focus change of �ff = 2a2/λ changes the phase of all beams by 2π , and so leaves
even many-beam images unaltered. For many crystals, this result can also be extended
to cover two-dimensional lattice images (see Section 5.8). Then a focus change of
�ff/2 results in an image shifted by half a unit cell along the cell diagonal (for cubic
projections), which cannot usually be distinguished from the ‘true’ image through the
viewing binocular. Half-period images can also be obtained at certain focus settings
in two-dimensional images. Similar half-period fringes occur at certain specimen
thicknesses (see Fig. 12.4(a)) and the spurious impression of high-resolution detail
which they may give when used as an instrumental resolution test is discussed in
Section 10.10.

In larger-unit-cell crystals, the Fourier image period �ff frequently becomes larger
than the depth of field �z, so that only a single lattice fringe image is seen. This may
also occur for a certain choice of illumination semi-angle θc for any lattice spacing a.
The general condition of restricting the depth of field to a single Fourier image period
is that a/θc < 2a2/λ, or θc > λ/2a. On combining this with the Bragg law, we see
that this is just the condition that adjacent diffraction discs overlap.

5.2 The effect of beam divergence on depth of field for simple fringes

It is possible to estimate the range of focus �z over which lattice fringes of a par-
ticular periodicity should be visible. A limit is set to this range by the finite angle θc
of the illuminating cone of electrons. The depth of field obtained applies to lattice
images formed with partially coherent illumination and should be distinguished from
the depth of field given in Section 2.2, which applies to the incoherent imaging of
amorphous specimens.

Taking each point within the effective source as an independent source of electrons
(neighbouring points assumed incoherent), the total intensity can be obtained by
summing the intensities of images formed by each source point. For the lattice fringes
of Fig. 5.1(a) the methods of Chapter 3 give the image intensity when the illumination
direction makes a small angle α with the optic axis as

I (x, α) = �2
0 + �2

h + 2�0�h cos{χ(−uh − u′) − χ(u′) + 2πuhχ}
= �2

0 + �2
h + 2�0�h cos{2πh(x + �f α)/a + π�f θ2

0 /λ} (5.11)

with u′ = α/λ.
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Physically, this means that fringes out of focus by an amount �f suffer a translation
normal to their length proportional both to the focus defect and to the illumination
tilt. Assuming a uniform illumination disc, the total image intensity is then

IT(x) = 1

θc

∫ θc

−θc

I (x, α) dα (5.12)

for an illuminating cone of semi-angle θc. Evaluating this shows that the fringe contrast
C′ = (Imax − Imin)/(Imax + Imin) is proportional to

C = sin(β)/β (5.13)

where β = 2π�f θc/a. The contrast falls to zero for β = π , so that the range of
focus �z over which fringes are expected is

�z = a/θc (5.14)

With θc = 1.5 mrad and a = 0.34 nm, we have �z = 227 nm. There would thus be
little point in seeking lattice fringes under these conditions on an instrument whose
smallest focal increment was much greater than about 200 nm.

It is instructive to derive a similar result using the damping envelope construction of
Section 4.2. We now consider axial three-beam lattice fringes as shown in Fig. 5.1(c).
It is shown in Section 5.15 (eqn 5.66) that if the central beam is stronger than the
diffracted beams, three-beam lattice fringes of highest contrast occur near the focus
setting �f0 = −Csλ

2u2
h which makes the slope of χ(uh) zero. (Neglecting the second

bracketed term in eqn (4.10), this condition can also be obtained by setting q = 0 in
eqn (4.10) and solving for �f .) If an arbitrary focus setting �f ′ is measured by its
deviation from �f0, then the focus defect �f measured from Gaussian focus is

�f = �f0 + �f ′

The damping envelope due to beam divergence alone is (eqn 4.8)

A(uh) = exp(−π2u2
cq)

where

q = (Csλ
3u3

h + �f λuh)
2 and θc = λuc(ln 2)1/2

Combining these expressions gives, for the focus dependence of the fringe contrast,

A(uh, �f ′) = exp(−B2�f ′2) where B = πucλuh

This is a Gaussian of width 1/B, so that the depth of field �z is

�z = 1

B
= (ln 2)1/2

π

a

θc

for a (100) type reflection (uh = 1/a). This differs only by a numerical factor
(ln 2)1/2/π = 0.26 from the result of eqn (5.14).
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The contrast of these axial three-beam fringes will also be affected by the term
exp(iχ(uh)) of eqn (4.8), which has been neglected in the above discussion. In general
then, these fringes will show a rapid variation of contrast with focus (due to the terms
in cos χ(uh) of eqn (5.9)) modulated by the more slowly varying Gaussian envelope
A(uh, �f ′) described above and centred about the focus setting �f0. Note, also, that
the term exp(iχ(uh)) has the same value for all the ‘Fourier image’ focus settings
(see Section 5.8) �fn which differ from the reference focus �f0 by integral multiples
of 2n/(λu2

h) (n an integer). Thus, if a strong image occurs at the reference focus �f0

(this will be so, if, from eqns (5.9) and (5.66), Cs = 2 m/(λ3u4
h) with m an integer)

then similar strong images will occur at focus settings

�f = �f0 ± 2n/(λu2
h)

The contrast of these images will fall off smoothly as the focus is increased
(or decreased) beyond �f0 due to the Gaussian damping of A(uh, �f ′). This beha-
viour is also seen in the calculated three-beam axial fringe contrast shown in Fig. 5.2
for silicon. This figure is the result of a dynamical calculation including both chromatic
and spatial coherence effects, with θc = 1.4 mrad, Cs = 2.2 mm, and � = 5 nm at
100 keV.

We may conclude that the finer the image detail, the smaller is the focal range over
which it may be observed, for a fixed illumination aperture.
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Fig. 5.2 Contrast of three-beam (111) lattice fringes in silicon as a function of focus. The depth of field
�z is limited by finite spatial coherence (beam divergence) and temporal coherence (chromatic effects).
Contrast is a maximum at the stationary-phase focus �fs and high-contrast images would be seen in a
through-focus series for a range �z � d/θc around �fs. (From Olsen and Spence (1981), reprinted by
permission.)
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5.3 Approximations for the diffracted amplitudes

It is important to understand how the amplitudes of a set of Bragg reflections depend
on the specimen structure, thickness, and orientation. In the previous section, we
saw how these amplitudes form the Fourier coefficients in a series whose sum gives
the image amplitude. The dimensionless diffracted amplitudes �g express the total
scattering by the crystal in a particular direction relative to a unit-amplitude incident
wave. For all but the thinnest specimens, the possible directions are confined to
a narrow range of angles around each reciprocal lattice point (see Fig. 5.3). This
scattering is focused to a small spot by the objective lens in the lens back-focal plane.
The intensities |�g|2 are therefore proportional to the intensities of the diffraction
spots seen when the microscope is focused for the specimen diffraction pattern.

1/�

0 Δ–g g

1/�

sg

Fig. 5.3 The Ewald sphere construction. A vector of Length 1/λ is drawn in the crystal reciprocal lattice
in the direction of the incident beam. In the zone-axis orientation as shown, this is normal to a plane of the
reciprocal lattice. The kinematic amplitude diffracted into the beam g is proportional to the amplitude of
the ‘shape transform’ t sin(πsgt)/(πsgt) at the point where the sphere crosses this function. The square of
the function is suggested in the figure. The width � between first minima of this function is 2/t , so that the
angular range of incident beam directions which will produce scattering into the beam g increases as the
specimen thickness decreases. A crystal of large transverse dimensions have been assumed. The excitation
error sg is drawn normal to the reciprocal lattice plane and is negative if the lattice point is outside the
sphere. At 100 kV, 1/λ = 270 nm−1 and with |g| = h/a ≈ 2.5 nm−1 the sphere is well approximated by
a plane in the neighbourhood of the origin (i.e. some limited ‘resolution’) for a particular crystal thickness
(which determines the width of the ‘shape transform’). At higher voltage, the sphere becomes larger and
the flat sphere approximation holds to larger crystal thickness—that is, with a narrower shape transform.
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In the following sections, the kinematic and two-beam expressions for the diffracted
amplitudes are given both for reference and for the information they supply about the
effect of changes in experimental conditions on simple lattice fringes. In particular, we
are interested in the best choice of specimen thickness and orientation for two-beam
fringes.

5.3.1 The kinematic theory

For those ultra-thin, low-atomic-weight specimens for which the central beam suffers
inappreciable scattering and is very much stronger than any diffracted beam, the kin-
ematic or single-scattering theory of image formation may be applied. This includes
the case of bent organic monolayers, as discussed in Section 7.5. The results of this
theory are easily understood and give a useful qualitative guide to the likely effects of
changes in experimental conditions. Measurable dynamical effects (multiple coherent
scattering) leading to failure of this theory, have been observed in graphite flakes just
4 nm thick (P. Goodman, personal communication). Nevertheless, the simplicity of
the kinematic model and the insight it gives into the physical scattering process have
ensured its popularity in discussions on electron imaging.

The weak-phase object approximation (Section 3.4) can be extended to include the
effect of Fresnel diffraction through the thickness of the specimen (and so take account
of the curvature of the Ewald sphere) by integrating the contribution to scattering
in a particular direction (Howie 1971). This gives the kinematic result for electron
diffraction from a crystal with Fourier coefficients of potential vg and thickness t as

�g = −iσvgt[sin πsgt/πsgt] exp(−iπsgt) (5.15)

with

�0 = 1

and the sign convention for phases of Chapter 3. The orientation of the crystal with
respect to the incident beam is specified by sg, the excitation error, shown in Fig. 5.3.
Practical examples of the way in which sg can be measured from a diffraction pat-
tern are given in Spence and Zuo (1992). Phase factors which depend on the lens
focal length and object distance have been omitted. The exponential phase factor in
eqn (5.15) depends on the choice of origin in the crystals—it can be eliminated by
choosing an origin midway though the thickness of the specimen. Whatever origin
is chosen, it is important that this same origin is used when reckoning the image
focus defect. Equation (5.15) assumes that any focus defect is measured from the
top surface of the specimen. Inserting this expression into eqn (5.6) gives the fringe
intensity for tilted illumination as

I (x) = 1 − 2σvgt[sin πsgt/πsgt] sin(−πsgt − 2πhx/a) (5.16)
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This expression suggests the following:

1. Sinusoidal fringes are expected which, for a parallel-sided crystal, have the
periodicity of the lattice. The positions of the fringe maxima will not in general
coincide with the projected position of atoms in the crystal, but will depend on the
specimen thickness and orientation.

2. For centrosymmetric crystal the vg are real if absorption is negligible. Otherwise
the vg are complex and contain a phase factor which appears in the argument of the
second sin function in eqn (5.16). The phases of the diffracted beams thus determine
the relative displacements of the various fringes which make up an image. In this
sense, image formation in the electron microscope ‘solves’ the phase problem of
X-ray diffraction.

3. For fringes running parallel to the edge of a wedge-shaped specimen, we have a
situation akin to phase modulation in electronic engineering. If the thickness varies
with x (taken normal to the wedge edge) then the fringe spacing for a particular value
of x will depend on the local variation of t with x. Only for a perfect wedge, with t

proportional to x, would the spacing be constant (see Section 5.4).
4. A similar variation in fringe spacing is expected for bent crystals, where sg varies

with x.
5. Fringes running perpendicular to the wedge edge are likely to be curved, since

a different value of t applies to each chosen value of x (taken parallel to the wedge
edge).

5.3.2 The two-beam dynamical theory

The highly restrictive assumption of an undepleted central beam in the kinematic
theory is improved upon in the two-beam dynamical theory which provides a practical
guide to the best specimen thickness for two-beam fringes. In this theory the real
crystal is replaced by a fictitious crystal supporting only two diffracted beams. The
accuracy of the theory can be judged from a glance at the diffraction pattern, which
will indicate how much energy is scattered into reflections other than the central
beam and the one other beam used for image formation. In this theory the sum of the
intensities of the two beams is constant, and the contrast of two-beam lattice fringes
at the exact Bragg angle is a maximum when the beams are of equal strength. This
occurs when the specimen thickness is

tg = ξg

4
= π

4σvg
(5.17)

where ξg is the extinction distance for the reflection g. Typical values at 100 kV are
t111 = 4 nm (gold), t111 = 14 nm (aluminium), and t111 = 15 nm (silicon). Values of
tg for other materials can be obtained from published scattering factors (e.g. Doyle
and Turner 1968). Scattering factor calculations are also discussed in Burge (1973),
and Fourier coefficients for many elements can be found in Radi (1970). The most
complete tabulation of high-energy electron scattering factors is that contained in the
International Tables for X-ray Crystallography (1986), volume four.
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If the scattering factors fj (θ) are calculated from the first Born approximation,
then

vg = 0.04787Fg/� (5.18)

where � is the unit-cell volume in cubic nanometres and Fg is the kinematic structure
factor obtained from the atomic scattering amplitudes according to

Fg = Fh,k,l =
∑
j

fi(θg) exp(2πi(hxj /a + kyj /b + lzj /c)) (5.19)

where (xj , yj , zj ) are the coordinates of the atom j in the unit cell, and θg is the
Bragg angle for the reflection with Miller indices h, k, l. Here vg is in volts and Fg in
Ångstroms, as usually tabulated (e.g. in the International Tables for Crystallography).

In practice the best specimen thickness for two-beam lattice fringes is generally
found by trial and error; however, an indication of thickness is given by Pendellösung
fringes. These broad dark and bright bands are seen parallel to the edge of wedge-
shaped specimens at the Bragg angle if a small aperture is placed around the central
beam. The thickness increment between successive fringe minima is approximately
equal to the extinction distance ξg, where g refers to the reflection satisfied. The
clearest lattice fringes are expected between the edge of the wedge and the first
bright-field Pendollösung minimum.

The two-beam theory can also be used to predict the variation of lattice fringe con-
trast with orientation changes of the specimen. For reference, the complex amplitudes
of the two diffracted beams are

�0 = {cos(πt (1 + w2)1/2/ξg)

− iw(1 + w2)−1/2 sin(πt (1 + w2)1/2/ξg)} exp(−iπsgt) (5.20)

and

�g = i(1 + w2)−1/2 sin(πt (1 + w2)1/2/ξg) exp(−πisgt)

where w = sgξg. These expressions can be used with eqns (5.6) and (5.3) to give com-
plicated expressions for the two-beam lattice fringe intensity. The resulting expression
gives a much better indication of the variation of lattice fringe contrast with specimen
orientation and thickness, the only important approximation being the neglect of other
diffracted beams. These neglected diffracted beams become increasingly important in
crystals such as minerals with large unit cells. Whereas the width in reciprocal space
of the central maximum of the kinematical ‘shape transform’ shown in Fig. 5.3 is
1/t , the width of the corresponding two-beam dynamical function tends to 1/ξg. The
kinematic theory does however remain accurate to larger thickness for weak beams
with large excitation errors or small values of vg.

The theory of lattice imaging in the two-beam approximation is given in Cowley
(1959). This and similar work (Hashimoto et al. 1961) using the two-beam expressions
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indicates that a reversal of fringe contrast is expected for every increase of half an
extinction distance in thickness. In addition, the two-beam lattice image spacing is
found to agree with the specimen lattice spacing only at the exact Bragg angle.

5.3.3 The thick-phase grating

We have seen that the commonly used phase object approximation (eqn 3.25), while
including multiple-scattering effects, is a projection approximation and does not take
account of the curvature of the Ewald sphere, which is approximated by a plane.
The development of the multi-slice theory of dynamical scattering suggests that this
curvature corresponds physically to the Fresnel diffraction within the specimen, to the
extent that refractive index and propagation effects can be separated. Thus eqn (6.20),
the condition for the neglect of Fresnel broadening of the electron wave, also rep-
resents the condition under which the Ewald sphere can be approximated by a plane
(all sg set to zero).

An approximation which takes account of multiple scattering and, in a limited way,
the Ewald sphere curvature has been proposed by Cowley and Moodie (1962). This
‘thick-phase grating’ gives the object exit-face wave-function as

ψ(x, y) = exp

⎡
⎣−iσ t

∑
h,k

vh,k,0(sin πsh,k,0t/πsh,k,0t) exp(2πi(hx/a + ky/b))

⎤
⎦

(5.21)

with a and b cubic unit-cell dimensions and the incident beam approximately in the
direction of the c-axis. The Fourier coefficients of ψ(x, y) then give the diffracted
amplitudes �g. We note that the first-order expansion of eqn (5.21) gives the kinematic
result (eqn 5.15) and that eqn (5.21) incorporates propagation effects if the sh,k,0 are
measured onto the Ewald sphere, as in Fig. 5.3. Since a plane in reciprocal space
represents a projection in real space, the summed expression in eqn (5.21) above would
represent simply a re-projection of the thin crystal potential if the sh,k,0 were measured
from the (h, k, 0) zone onto a plane through the origin and normal to the electron beam.
The resulting expression is then closely similar to the ‘high-energy approximation’
of Molière described in texts on the quantum theory of scattering. This expression,
unlike the Born approximation, satisfies the optical theorem. The phase-grating or
‘high-voltage limit’ approximation of eqn (3.25) can also be derived by the method
of partial wave analysis, or by a term-by-term comparison of the Born series (with
Kz = 0) with the Fourier transform of the series expansion of eqn (3.25). The validity
domain of eqn (5.21) has been investigated in unpublished work by A. F. Moodie.

5.3.4 The projected charge density approximation

Unlike the weak-phase object approximation, the projected charge density (PCD)
approximation incorporates the effects of multiple scattering in a limited way, and is
most useful for cases where the effects of spherical aberration are small.
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To expose the principle of the PCD approximation, consider an image formed with
no objective aperture and no spherical aberration. The exit-face wave amplitude for
a phase object (including some multiple-scattering effects) is, from eqn (3.25),

ψe(x, y) = exp(−iσφp(x, y)) (5.22)

with φp(x, y) the projected specimen potential in volt-nanometres. The back-focal
plane amplitude is obtained by Fourier transformation as

ψd(u, v) = F{exp(−iσφp(x, y))} exp(iπ�f λ(u2 + v2))

≈ �(u, v)[1 + iπ�f λ(u2 + v2)] (5.23)

if a small focusing error �f is allowed and �(u, v) is the Fourier transform of
exp(−iσφp(x, y)). The image amplitude at unit magnification and without rotation
is given by inverse transformation as

ψi(x, y) = exp(−iσφp(x, y)) + iπ�f λF−1{(u2 + v2)�(u, v)} (5.24)

A theorem from Fourier analysis can now be used (see, for e.g. Bracewell (1968))
which shows that if f (x, y) and �(u, v) are a Fourier transform pair according to
eqn (3.10), then

F−1((u2 + v2)�(u, v)) = − 1
4π2∇2f (x, y)

Using this result gives the image amplitude as

ψi(x, y) = exp(−iσφp(x, y)) − (i�f λ/4π)∇2{exp(−iσφp(x, y))}
= exp(−iσφp(x, y)) + (i�f λσ/4π) exp(−iσφp(x, y))

× {σ∇φp(x, y) + i∇2φp(x, y)} (5.25)

so that the image intensity, to first order, is

I (x, y) = 1 − (�f λσ/2π)∇2φp(x, y) (5.26)

Using Poisson’s equation, ∇2φp(x, y) = −ρp(x, y)/ε0ε we finally

I (x, y) ≈ 1 + (�f λσ/2πε0ε)ρp(x, y) (5.27)

A method for evaluating this by computer is given in eqn (5.61). Notice that a
first-order (kinematic) expansion of the phase object expression has not been made
so that, through the inclusion of multiple-scattering effects, this approximation can
be expected to hold to greater thickness than the kinematic approximation. The PCD
approximation does, however, assume a flat Ewald sphere. The quantity ρp(x, y)

is the projected total charge density including the nuclear contribution and not the
electron charge density as measured in X-ray diffraction.



High-Resolution Images of Crystals and their Defects 103

Using the sign convention for phases of Chapter 3, we see that the under-focused
electron image (�f negative) is deficient in regions of high specimen charge density.
Here the developed micrograph is more transparent and a photographic print of the
micrograph will appear dark in regions of high specimen charge density, such as
around groups of heavy atoms. Also, for small defocus, the contrast is proportional
to defocus. Experimental confirmation of eqn (5.27) is shown in Fig. 5.4.

�p

�p�

1 + �p�

1 – �p�

Δf – ve

Δf + ve
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A

B A B

A B

B

(a) (b)

(c) (e)

(d) (f)

A B BA

100 nm

Fig. 5.4 Experimental verification of the PCD interpretation of electron microscope images at low res-
olution where the effect of spherical aberration can be completely neglected. Magnesium oxide cubes are
shown imaged at slight under-focus (a) and over-focus (b). The diagrams suggest the form of the projected
specimen potential (c), its first derivative (d), and a constant plus its second derivative (e) along the line
AB; (e) then gives a rough indication of the contrast predicted by eqn (5.26). Part (f) shows the expected
image with the sign of the focus reversed (�f positive). That (e) and (f) correctly predict the contrast seen
at the cube edges can be seen by comparison with (a) and (b). Notice that the cubes do not lie flat on the
substrate and are balanced on a corner or edge. A clear plastic model cube or an ice block viewed in a
direction close to one of its body diagonals will clarify the form of the projected potential in (c). The cubes
appear as a cage of bright or dark wires.



104 High-Resolution Electron Microscopy

The extension of this theory to include the effects of spherical aberration and a
limiting objective aperture are discussed in the paper by Lynch et al. (1975). Their
work shows that within a certain range of focus, specimen thickness, and resolution,
eqn (5.26) can still be used as a basis for the interpretation of spherically aberrated
images of limited resolution. That is, within certain experimental conditions, the high-
resolution image obtained represents the specimen projected total charge density as if
seen through a spherically aberrated lens of limited resolution. Note that PCD images
are found in the neighbourhood of every Fourier image plane for periodic specimens
(see Section 5.8). The PCD approximation would seem to be ideally suited to the
interpretation of aberration—corrected HREM images, where Cs is small. The PCD
analysis bears a close similarity to the Transport of Intensity Method (Section 7.9).

5.4 Images of crystals with variable spacing—spinodal decomposition and
modulated structures

A number of important image artifacts may arise in crystals in which either the lattice
spacing or the chemical composition (or both) varies periodically. Before discussing
the three most important artifacts, it is important to emphasize that, since the point-
resolution of current HREM machines is about 0.15 nm, axial structure images of
thin crystals of many of these materials may now be obtained which are free of
electron optical ‘artifacts’. Whether these thin crystals used for HREM specimens
are representative of bulk material is another matter (see below). We first consider
artifacts due to the lens alone, when using inclined illumination in order to obtain the
highest ‘resolution’. Following eqn (5.15) we saw that in wedge-shaped crystals the
fringe spacing parallel to the edge will depend on the local variation of the phase ε

of �g with t . For the tilted illumination two-beam geometry of Fig. 5.1(b), the local
periodicity observed in the image will be 1/u′

h(x), where

u′
h(x) = uh + (1/2π) dε(x)/dx (5.28)

This result is obtained by analogy with the theory of phase modulation in electrical
engineering. Equation (5.7) gives the image intensity variation. However, it is clear
that any other spatially dependent contribution to the phase ε(x) in eqn (5.7) will
similarly influence the local image period. For crystals in which the lattice spacing
varies, the objective lens phase factor χ(u) will also provide such a contribution, as
follows.

Following Spence and Cowley (1979), we consider an idealized thin crystal
containing a single atomic species for which the modulated crystal potential is
proportional to

φ(x) = cos[2πu0x + A sin(2πuLx)]
= cos[2πu0x + φ′(x)]
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Here A is the amplitude of the modulation and 1/uL is its period. The true local period
of this potential is 1/u′

x where

u′
x = u0 + (1/2π) dφ′/dx

= u0 + uLA cos(2πuLx) (5.29)

We wish to compare this true period with that observed in the image. If uL � u0, the
image intensity for tilted illumination is

I (x) = |�0|2 + 2|�0| |�′
u| cos[2πu′

xx + x(ux) − x(u0/2) + ε]
= |�0|2 + 2|�0| |�′

u| cos[2πu′
xx + φ(x)] (5.30)

where

ux = u′
x − u0/2 (5.31)

We assume that the optic axis bisects the angle 2θB = u0λ between the direct ‘beam’
and that corresponding to the average period u0. Here we have implicitly adopted the
column approximation (which may fail unless uL � u0), and we further assume that
χ(u) varies slowly in the neighbourhood of u0 (see Cockayne and Gronsky (1981) for
a discussion of these points). The inverse local period observed in the image will be

u′′
x = u′

x + (1/2π) dχ/dx (5.32)

The distorting effect of the lens may now be characterized by defining F(x) =
(local image spatial frequency—local object spatial frequency)/(local object spatial
frequency). This gives a measure of the extent to which the lens ‘amplifies’ variations
in object periodicity. Thus we define

F(x) = (u′′
x − u′

x)/u
′
x = [dχ/dx]/2πu′

x

using eqn (5.32). Calculations of the maximum value of F(x) (maximized over x)
as a function of focus setting show that F is minimized at the stationary phase focus
�f = −Csλ

2u2
0/4. Under these conditions χ(u) varies least across the spectrum of

satellite reflections around u0 which result from the modulated structure.
This amplification effect may be as great as 400 per cent under readily obtainable

conditions, but may be only 90 per cent at the optimum condition. It may thus explain
observations of up to 33 per cent variation in the lattice spacing of Ni–23 per cent
Au alloy films showing spinodal decomposition. However, other more subtle effects
may be equally important. Cockayne and Gronsky (1981) have studied the effect
of periodic segregation of the atomic species on these images, using the artificial
superlattice method (see Section 5.11). They then find image spacings (again for
tilted beam illumination) differing from the object spacing by as much as 50 per cent.
In addition, they find that the number of lattice planes in the spinodal period 1/uL may
be represented incorrectly in the image. However, if differences in atomic number can
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be ignored, these workers find agreement between object and image spacings within
10 per cent for Cs < 1 mm at 100 kV (for u0/uL = 18 and small values of A).

The effects of elastic relaxation must also be considered in these very thin films.
Shear stresses have been shown (Gibson and Treacy 1984) to distort the local unit cell
dimensions appreciably. This effect is present for all imaging conditions, including
axial structure imaging at atomic resolution. In particular, the elastic response of a
thin modulated film will cause a bending of the lattice planes about the Y axis (normal
to the beam and x). Calculations for this important effect (Gibson and Treacy 1984)
show that it may lead to differences of up to 33 per cent between the bulk lattice
spacing and that present in very thin films. A comprehensive analysis of TEM images
of spinodally decomposed InxGa1−xAsyP1−y films may be found in Treacy et al.
(1985), who also discuss in detail the elastic relaxation expected in these very thin
films. For nanostructures such as quantum dots any elastic deformation forms an
intrinsic part of the structure.

We may conclude that the determination of local atomic composition from measure-
ments of lattice image spacings in conjunction with Vegard’s law is fraught with very
great difficulties if the tilted illumination geometry is used. Useful results have, how-
ever, been obtained in a few cases after extensive and careful analysis—for example
Hall et al. (1983) were able to relate lattice spacings to the carbon content of retained
austenite in a dual-phase steel. In the axial geometry structure, images may, how-
ever, be obtained, for which a straightforward interpretation is possible provided
that sufficiently thin samples are used and that the point-resolution exceeds the lat-
eral interatomic spacing. No information, however, is obtainable from these images
on composition variations on the beam direction. A method of mapping strains using
digital transforms of a portion of the diffraction pattern of an HREM image is described
in Hytch et al. (1998, 2001).

5.5 Are the atom images black or white? A simple symmetry argument

Since a change of focus of �ff/2 (see Sections 5.1 and eqn (5.53b)) reverses the
contrast of lattice images, the question arises as to how one can tell whether dark or
light regions in an image coincide with the atomic column positions. If a diffractogram
is obtainable, and the thickness is known, a determination can be made by image-
matching techniques (see Section 5.11). It is sometimes possible, however, to use the
point group symmetry of a defect of known structure to resolve this question (Olsen
and Spence 1981). As an example, Fig. 5.5 shows the structure of an intrinsic stacking
fault in silicon viewed along [11̄0]. At limited resolution, the image appears as shown
in Fig. 5.5(b). The stacking fault contains two twofold symmetry axes (in projection)
as shown at A and B. Since both are known a priori to fall on a layer of atoms (rather
than tunnels), they may be used to determine whether a given image shows white
tunnels or white atoms. (A ‘layer’ is a line of dots running across the figure.) This
is not possible in perfect crystal. Figure 5.6 shows a series of dynamical computed
images which demonstrate this idea. The contrast along a horizontal line across these
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Fig. 5.5 (a) The structure of an intrinsic stacking fault projected along [11̄0] in the diamond structure.
(b) The simplified projection seen at limited resolution. The open circles are tunnel sites, filled circles are
pairs of atomic columns. The screw axis at A falls on a filled circle, B is a two-fold axis. Arrows indicate
the layers which change position with focus. (From Olsen and Spence (1981), reprinted by permission.)

images will be found to be that of the atoms, not the tunnels. This powerful argument
holds for any thickness of sample and focus setting if the image is correctly aligned and
stigmated. A similar argument can be used to identify the position of a sub-nanometer
diameter electron probe in coherent microdiffraction (see Section 13.4).

5.6 The multislice method and the polynomial solution

The multislice theory of dynamical electron diffraction was developed before com-
puters became available commercially (Cowley and Moodie 1959). It was not,
therefore, originally intended as a numerical algorithm, but as an attempt to obtain
a closed-form expression for the dynamical Bragg beam amplitudes �g. The result
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Fig. 5.6 Computed images of an intrinsic stacking fault in silicon. The focus increment between images
is �ff/8. The stationary-phase image occurs near �fs � −305.9 nm. Images differing from this by �ff
have similar black/white contrast (e.g. �f = −252.8 nm) but different dot positions. Half-period images
are also seen (e.g. �f = −286.0 nm). Since the Fourier imaging is exact in the [111] direction only, image
dot displacements in the [1̄1̄2] directions can be used to estimate focus.

is (Moodie 1972)

�g =
∞∑

n=1

En(g)Zn(g) (5.33)

where the terms En depend only on structure factors, while the functions Zn(g)

involve polynomials which are functions of the geometric factors only (excitation
errors, wavelength, lattice constant). This polynomial result has subsequently been
obtained by other authors using different methods, and can be shown to reduce to
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the phase-grating approximation, to a power series in thickness, or to the two-beam
approximation under suitable approximations (see Cowley (1975) for references).
Equation (5.33) has been used to explain the occurrence of dynamically forbidden
reflections (see Section 5.10). With the advent of electronic computers, a form of the
multislice theory more convenient for computational work was applied in calculations
first by Goodman and others (Goodman and Moodie 1974). This recursion relation,
which has become the basis of all modern multislice computations, is

�g(n) =
∑

h

�h(n − 1)P�Z(h)Q(g − h) (5.34)

where P�Z(h) is given by eqn (3.16) and Q(g), the ‘phase grating amplitudes’ are
given by the Fourier coefficients of eqn (5.22). Here the crystal has been divided
into slices normal to the beam (not necessarily equal in thickness to the period of
the lattice in that direction) and �g(n) is the set of Bragg diffracted beams emer-
ging from slice n. Thus φp(x, y) is the specimen potential projected through a single
slice. Computational aspects of eqn (5.34) are discussed in Section 5.11. �g(1) are
taken to be the Fourier coefficients of the incident plane-wave. The derivation of the
time-independent Schrödinger equation from eqn (5.34) is outlined in Goodman and
Moodie (1974), where the relationship of this approach to other dynamical theories
is fully discussed (see also Section 5.11). Researcher wishing to write a computer
program based on the multislice algorithm are referred to Section 5.11, and, in par-
ticular, to the book by Kirkland (1998) (which contains source-code on a CD), and
articles by Self et al. (1983) and Ishizuka (1985). The propagation function P�Z(g)

can be written

P�Z(g) = exp(−2πiSg�Z) (5.35)

where Sg, the excitation error for beam g, is taken negative for reflections outside the
Ewald sphere (see Section 5.12). A review of ‘real space’ multislice methods may be
found in Van Dyck and Coene (1984).

The effects of steeply inclined boundary conditions on the multislice formulation
have been discussed by Ishizuka (1982a). Anstis (1977) has shown that a unity sum
of beam intensities is not a sufficient condition to ensure that the calculation includes
enough beams. The calculation will be normalized for any number of beams in the
limit of sufficiently small slice thickness. The method may be extended to include
three-dimensional diffraction effects by choosing the slice thickness to be much less
than the periodicity in the beam direction. An early example of such a calculation,
used to analyse the occurrence of ‘forbidden’ termination reflections can be found in
Lynch (1971).
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5.7 Bloch wave methods, bound states and ‘symmetry reduction’ of
the dispersion matrix

A solution to the N -beam dynamical problem of kilovolt electron diffraction was first
given by H. Bethe (1928) for both the Bragg and Laue geometries. Pedagogically
sound treatments of this theory can be found in several texts. Amongst the best
reviews and texts are: Howie (1971), Dederichs (1972), Metherall (1975), Hirsch
et al. (1977), Humphreys (1979), and Reimer (1984). We consider here only those
aspects of dynamical theory which are relevant to lattice imaging, such as symmetry
reduction of the dispersion matrix, the theory of dynamically forbidden reflections,
and the direct observation of separate Bloch waves in real space. It is important to
point out that the ‘quantum-mechanical’ sign convention used in this section is the
opposite of the ‘crystallographic convention’ adopted elsewhere throughout this book
(see Section 5.12). All the above reviews use the following quantum-mechanical sign
convention.

It is conventional to define quantities

Ug = σvg

πλ
= 1

λξg
= 2m|e|vg

�2
(5.36)

where vg are the Fourier coefficients of crystal potential (in volts) (see also eqn (5.18)).
Note that σ here involves the relativistically corrected electron mass m and wavelength
λ (see eqn (2.4) and following). It has been shown by K. Fujiwara and A. Howie (see
Gevers and David (1962); Humphreys (1979) for reviews) that electron spin effects
are negligible in transmission electron diffraction. Thus, rather than solve the Dirac
equation, we may derive a relativistically corrected Schrödinger-like equation as
follows. The relativistic energy–momentum conservation equation for an electron
accelerated to a potential e(V0 + φ) is

p2c2 + m2
0c

4 = [|e|(V0 + φ) + m0c
2]2 = W 2 (5.37a)

Here V0 is the accelerating voltage and φ = φ(r) is the crystal potential, whose
Fourier coefficients are given by eqn (5.18). The total relativistic energy is

W = mc2 = |e|(V0 + φ) + m0c
2 = γm0c

2

with γ given by eqn (6.18).
Neglecting a term |e|2φ2, these equations give;

p2c2 − 2mc2|e|φ = |e|V0(2m0c
2 + |e|V0)

Replacing p by the operator −i�∇, and operating on � gives the Shrödinger-like
equation:

(�2/2m0)∇2�(r) + |e|γφ(r)�(r) + |e|Vr�(r) = 0 (5.37b)

where γ = m/m0 and Vr, the relativistically corrected accelerating voltage, is given
following eqn (2.4).
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The solution to eqn (5.37a) for a free electron, with p = hki and φ = 0, gives the
vacuum electron wavevector as

|ki| = Wβ

hc
= 1

λ
= γβm0c

2

12.4

Here if m0c
2 = 511 kV then |ki| is given in Å−1. This result is consistent with

eqn (2.4).
The solution to eqn (5.37b) is taken to be a linear sum of Bloch waves of the form

�(r) =
∑
j

αj b(k(j), r) (5.37c)

where

b(k(j), r) =
∑

g

C
(j)
g exp((2πik(j) + g) · r) (5.37d)

which describes the total electron wavefunction inside the crystal. Inside the crystal
the beam electron wavevector corrected for the effect of the mean inner potential is

k2
0 = (1/λ)2 + U0 = k2

i + U0 (5.37e)

where Ug has dimensions l−2 and λ is given by eqn (2.5). One Bloch wave is associated
with each branch j of the dispersion surface (see above references), and values of
C

(j)
g and k(j), the Bloch wave coefficients and wavevectors, are obtained by numerical

solution of the eigenvalue equation (5.38a) which results from substituting eqn (5.37d)
into the Schrödinger equation (5.37b). The Fourier coefficients of φ(r) are vg. If
backscattered waves are neglected and the small-angle approximation

k2
0 − (k(j) + g)2 ≈ 2k0(Sg − γ (j)) (5.37f)

is made, where γ (j) = k
(j)
z − |k0|, and we define Ug−g = 2k0Sg, we then obtain

∑
h

Ug−hC
(j)

h = 2|k0|γ (j)C
(j)
g (5.38a)

which can be written

⎡
⎢⎢⎢⎢⎢⎢⎣

2|k0|Sh · · · Ug−h · · · Ul−h
...

...
...

Uh−g · · · 2|k0|Sg · · · Ul−g
...

...
...

Uh−l · · · Ug−l · · · 2|k0|Sl

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C
(j)

h
...

C
(j)
g
...

C
(j)

l

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= 2|k0|γ (j)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C
(j)

h
...

C
(j)
g
...

C
(j)

l

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5.38b)
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or

AC = 2|k0|γ (j)C (5.39)

Here the eigenvalues γ (j) measure the deviation of the dynamical dispersion surfaces
from spheres of radius |k0| centred on each reciprocal lattice point. We take A to be
an n × n matrix. The spheres correspond to the dispersion surfaces of plane waves in
the ‘empty lattice’ approximation, in which all Ug = 0. Here k(j)2 = k2

z + k2
t . The

excitation errors Sg (see Fig. 5.3) are related to the two-dimensional vector K = −k(j)
t

drawn from the origin of reciprocal space to the centre of the Laue circle by

2|k0|Sg = 2K · g − g2 (5.40)

For most HREM work in axial orientations K = 0 so that

Sg = −λg2/2 (5.41a)

in accordance with the sign convention of Fig. 5.3. In deriving eqn (5.38) the Laue
(transmission) geometry has been assumed for a parallel-sided slab of crystal; back-
scattering has been neglected, and the projection approximation assumed. Thus, only
reflections in the zero-order Laue zone are considered important.

The effects of steeply inclined boundary conditions on lattice images are discussed
in Ishizuka (1982) from the multislice viewpoint. A discussion of this problem in the
Bloch wave forumulation can be found in Metherall (1975) and Gjønnes and Gjønnes
(1985). For the three-dimensional case, where gz 	= 0, it is necessary to renormalize
the eigenvectors C (see Kambe and Moliere 1970; Buxton 1976; and Lewis et al.
1978), and eqn (5.38) cannot be used. For the most general case of a parallel-sided
slab of crystal traversed by an electron beam inclined to the surface normal n̂ the
renormalized equation to be solved is (Zuo et al. 1988; Spence and Zuo, 1992)

Bg(2k(j) · g + g2)

1 + gn/kn

−
∑
h

BhUg−h

(1 + gn/kn)1/2(1 + hn/kn)1/2
= −2knγBg (5.41b)

Here gn = g · n̂, kn = k0 · n̂ and the result includes the effects of multiple scattering
in the beam direction (three-dimensional dynamical diffraction).

In the absence of absorption effects, the dispersion or structure matrix A is
Hermitian (therefore γ (j) are real) and, for centrosymmetric crystals, it is real and
symmetric (Ug = U−g). It reflects the point symmetry about the centre of the Laue
circle in the Brillouin zone. The following relations can be also shown to hold amongst
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the eigenvectors and eigenvalues:

C
(j)
g (K + h) = C

(j)

g−h(K) (5.42)

γ (j)(K + h) = γ (j)(K) + Sh (5.43)

μ(j)(K + h) = μ(j)(K) (5.44)

γ (j)(K) = γ (j)(−K) (5.45)

C
(j)
g (K) = C

(j)∗
−g (−K) (5.46a)

∑
g

C(i)
g C

(j)∗
g = δij (5.46b)

∑
j

C
(j)
g C

(j)∗
h = δgh (5.46c)

Thus, the eigenvectors form a complete orthogonal and normalized set. The matrix C
whose columns are the complex eigenvectors C(j) is unitary. Here K, the vector to the
centre of the Laue circle, is assumed to be ‘reduced’, to lie within the first Brillioun
zone, and μ(j) is the absorption parameter for the j th Bloch wave. In the axial
orientation, the point group of the dispersion matrix is equal to that of the projected
crystal structure at the point of highest symmetry. The symmetries of the Bloch wave
coefficients can be found from group character tables. From eqns (5.42)–(5.44) we see
that it is only necessary to solve for C

(j)
g , γ (j), and μ(j) within the two-dimensional

reciprocal-space unit cell in order to obtain solutions for all incident beam directions.
Note that while the Bloch waves given by eqn (5.37d) are periodic in reciprocal
space, the total wavefunction given by eqn (5.37c) (which incorporates the effects of
boundary conditions) is not. Bloch waves are numbered in order of decreasing k

(j)
z ,

so that the wave with largest k(j)
z has index 1. All Bloch waves correspond to the same

total energy. Whereas the dispersion matrix expresses the point group symmetry of the
crystal, the translational symmetry is expressed by the total wave function (eqn 5.37c),
which depends on boundary conditions. The excitation amplitudes αj are obtained
by matching the incident wavefunction and its gradient to the crystal wavefunction at
the top surface of the crystal. We then find that α(j) = C

(j)∗
0 . The result for the total

HREM image wavefunction, including the effects of lens aberrations, is

I (r) =
∑
g,h

∑
i,j

C
(i)
0 C

(j)

0 C(i)
g C

(j)

(h) exp(−2π(γ
(i)
Im + γ

(j)
Im )t)

× exp{i[2π(γ
(i)
R − γ

(j)
R )t + 2π(g − h) · r − χ(g, �f ) + χ(h, �f )]}

(5.47)

= |ψi(r, �f, K0)|2 (5.48)
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The image is seen to contain, in general, all possible ‘false’ periodicities (g − h),
including the half-spacings with h = −g. Only under linear imaging conditions
(small t) is this intensity simply related to the crystal potential (Pirouz 1981). Here
χ(h, �f ) is defined by eqn (3.24) (�f positive for overfocus), and C(i)

g = C
(i)
g (K),

etc. The quantities γ
(i)
Im are the imaginary parts of the eigenvectors γ (i) = γ

(i)
R +

iγ
(i)
Im , introduced to account for absorption. This is described by the use of an optical

potential U(r) = UR(r)+iUIm(r) so that the Fourier coefficients vg are now replaced

by complex coefficients (vg + iv′
g). Values of γ

(i)
Im may be found (for given U ′

g) by
matrix diagonalization of the complex matrix A. A good approximation, however,
based on perturbation theory, expresses γ

(i)
Im in terms of U ′

g and C
(j)
g (see Humphreys

(1979) for a review). Some difficulties in accurately accounting for absorption effects
in HREM are further discussed in Section 5.9.

For thin crystals showing a centre of symmetry in projection, we may take U ′
g =

γ
(i)
Im = 0; eqn (5.47) then becomes the fundamental equation for lattice imaging in the

Bloch wave formulation. Partial coherence effects are discussed in the next section.
For real coefficients Ug the solution of the eigenvalue problem of eqns (5.38) may

be accomplished by standard computational methods. Programs are also available for
complex Ug, although slower. A perturbation expression for γ

(j)
Im has also been given

(Hirsch et al. 1977) which avoids the need to work with a complex dispersion matrix
in centrosymmetric projections.

Further treatments of lattice imaging from the Bloch wave point of view can be
found in the work of Desseaux et al. (1977), Fujimoto (1978), Pirouz (1981), Kambe
(1982) and Marks (1984). Pirouz (1981) has related the projected charge density
approximation (see Section 5.3.4) and the projected potential approximation (see
Section 3.4) to the Bloch wave formulation through a second-order expansion of the
term exp(iγ (j)t) (see eqn (5.47)). In the theory of electron channelling and channel-
ling radiation (see Sections 13.1 and 8.4), it is customary to use a modified Bloch wave
theory in which the total wavefunction is written as a product of a z-dependent plane
wave of very high kinetic energy (a ‘free’ state), and a transverse wavefunction. The
eigenvalue problem for the transverse states is solved, and these may be either free
or bound, depending on whether the corresponding transverse energy h2k0γ

(j)/m is
either larger or smaller than the maxima in the interatomic potential (see Kambe et al.
(1974) and Section 8.4 for more detail). This approach has been applied to the prob-
lem of lattice imaging by several authors (see Van Dyck and Op De Beeck (1996) and
Buxton et al. (1978)). Fujimoto (1978) has used it to analyse the apparent periodicity
in thickness of some lattice images (see Section 5.14), while Marks (1984) has com-
bined this approach with the ‘k.p’ method of band structure calculation to assess the
effects of small misalignments on lattice images (including instrumental aberration
effects). Kambe (1982) has shown that, for Ge [110] images, a similar three-Bloch-
wave analysis indicates that at certain thicknesses two of these interfere destructively,
so that one may obtain directly by HREM real-space images of individual Bloch
waves at certain thicknesses. (This analysis does not make the ‘independent Bloch
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wave’ approximation.) It is a feature of these transverse-wavefunction treatments that
the role of the excitation errors is disguised. They have the advantage, however, of
exposing the rather small number of bound states normally excited, even in cases
where the number of Bragg beams is very large (Vergasov and Chuklovskii 1985).

The computation of HREM images in axial orientations by direct application of
eqn (5.39) involves a large amount of redundant calculation if the crystal structure
possesses some symmetry. There have been two (related) approaches to the problem
of reducing the dimension of the dispersion matrix in axial orientations of high sym-
metry, and these are now discussed. In non-axial orientations some symmetry may
also be preserved if, for example, K lies on a symmetry element. These methods
have variously been known as ‘beam reduction’, ‘Niehrs reduction’, or ‘symmetry
reduction’.

General group-theoretical approaches to this problem have been given by Tinnappel
(1975) and Kogiso and Takahashi (1977). Here the known point group symmetry of
the crystal projection is used to find a matrix T which, by a similarity transformation,
gives A in block-diagonal form. Eigenvalues and eigenvectors can then be found
separately for each of these blocks which are of lower dimension than that of A. The
columns of T belong to the irreducible representation of the group of the incident
wavevector, and may be obtained from group character tables (Cracknell 1968).

A second approach relies on more physical arguments, and inspection of the pos-
sible symmetries of the Bloch waves which are consistent with the known symmetry
of the crystal projection. Simple worked examples can be found in Hirsch et al. (1977).
The most extensive applications of this method have been made by Fukahara (1966),
Howie (1971) and Taftø (1979). Other examples can be found in Serneels and Gevers
(1969) for the systematics case and Desseaux et al. (1977) for [011] projections of the
diamond structure. In this manner cases involving as many as twelve beams (related
by symmetry) can be reduced to a 2 × 2 matrix eigenvalue problem (Spence 1988).

When account is taken of the incident boundary conditions for a parallel-sided slab
of crystal, the complete solution may be written

�(g) = S�(0) (5.49)

with

S = C{D}C−1 = exp(2πiAt) (5.50)

Here �(g) is a column vector containing the complex amplitudes of the diffracted
beams, �(0) is a similar vector describing the incident beam and D is a diagonal matrix
whose diagonal elements are exp(2πiγ (i)t), with t the crystal thickness. Since C is
unitary, its inverse is equal to the transposed conjugate form of C.

The matrix S is known as the scattering matrix, and was first introduced by
Sturkey (1950). Matrix A is known as the structure matrix, or the dispersion mat-
rix if the quantities 2|k0|γ (j) are included on the diagonal. Since S is unitary, we
see that dynamical electron diffraction in the Laue geometry consists of a unitary
transformation (Sturkey 1962).
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It is clear that the development of a completely general computer program which
will reduce and diagonalize the dispersion matrix of any crystal of given symmetry
is a large undertaking, and this fact probably accounts in part for the popularity of
the multislice method for HREM computations. Symmetry reduction is also possible
in that method. An important advantage of the Bloch-wave method is that a single
diagonalisation gives results for all thicknesses.

5.8 Partial coherence effects in dynamical computations—beyond the
product representation. Fourier images

All partial temporal and spatial coherence effects may be included exactly using
eqns (4.1) and (5.47) (for the Bloch wave method) or, for the multislice method, using
eqn (4.1) and the results of the recursion relation (5.34) combined with eqn (5.1a).
The results of such a calculation are shown in Fig. 4.9. In this way, variations in
diffraction conditions (i.e. rotation of the Ewald sphere) within the angular range θc
of the beam divergence are correctly incorporated, and no approximations are made
to the aberration function χ(ug) (O’Keefe and Sanders 1975).

Even using modern computers, calculations of this type are extremely time-
consuming and, for the small values of θc and thin samples normally used for HREM
work, unnecessarily accurate. If variations in diffraction conditions over the angu-
lar range θc are neglected (a good approximation for thin crystals—see Fig. 5.3 and
Section 5.3.2) and a first-order Taylor expansion is made for χ(ug) about ug over
the angular range θc, then the expression for a single Fourier coefficient of the image
intensity becomes (Fejes 1977; O’Keefe and Saxton 1983),

Ig =
∑

h

�h exp(iχ(h))γ {(∇χ(h) − ∇χ(h − g))/2π}�∗
h−g

× exp{−iχ(h − g)}E{ 1
2 (h2 − |h − g|2)2} (5.51)

Here γ (r), the transform of the angular distribution of source intensity, has been
defined in eqn (4.5), while

E(q) = exp(−2π2�2λ2q2) (5.52)

is the Fourier transform of B(�f ), the distribution of focus settings (or, equivalently,
incident beam energies) given in eqn (4.1). The linear imaging approximation of
eqns (4.8) and (A3.1) involves the term E(K2/2). The quantity � = CcQ describes
the variances in the statistically independent fluctuations in accelerating voltage, lens
current, and source energy spread (see eqn (4.9)).

Equation (5.51) should be used for the computer simulation of dynamical
HREM images where θc is small under the ‘crystallographic’ sign convention (see
Section 5.12). It assumes that the effective illumination aperture is perfectly inco-
herently filled, and so is appropriate for LaB6 and tungsten hair-pin filaments under
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normal conditions (see Section 4.5 for discussion). For the other sign convention,
the sign in front of χ(g) should be reversed everywhere. Since the longitudinal (or
temporal) coherence time �τ = L/V = h/�E is much shorter than typical film
exposure times, eqn (5.51) performs an incoherent addition of intensities for electrons
of different energies. (Here L is the coherence length, V is the electron velocity, and
�E is the source energy spread.)

For field-emission sources, the illumination aperture may be coherently filled if
Xa > 2Ra (see Section 4.5). Transfer functions for linear imaging in this case are
derived in Humphreys and Spence (1981). The expression corresponding to eqn (5.51)
(not restricted to linear imaging) then becomes (O’Keefe and Saxton 1983)

Ig =
∑

h

�h exp(iχ(h))γ {(∇χ(h)/2π)}�h−g

× exp{−iχ(h − g)}γ {∇χ(h − g/2π}E{ 1
2 (h2 − |h − g|2)2} (5.53a)

Here again wavefunction components of different energies have been added inco-
herently. Equations (5.53a) and (5.51) predict identical images for a disc-shaped
source in the weak-phase object approximation (Humphreys and Spence 1981).

For θc = 0 and � = 0, the image intensities given by eqns (5.51) and (5.53a)
periodic functions of both focus setting �f and spherical aberration constant Cs, as
first pointed out by Cowley and Moodie (1960) (see also the discussion of particular
cases in Sections 5.1 and 5.15). Here we consider the general n-beam case for a pro-
jection which allows orthogonal unit-cell axes (possibly non-primitive) to be chosen
in directions normal to the electron beam. Let these cell dimensions be a and b. First
we consider the case a = b, so that g2 = (h2 + k2)/a2 where h and k are integers.
Then it is easily shown, from eqn (4.8b), that

χ(g, �f + 2na2/λ) = χ(g, �f ) + 2nπ(h2 + k2)

where n is an integer. For ideal monochromatic illumination γ (r0) = E(q) = 1 and
eqns (5.51) and (5.53a) involve only exp(iχ(G)), where G is any reciprocal lattice
vector. Then exp(iχ(G, �f ) = exp(iχ(G, �f + 2na2/λ)) for all G, since n, h,
and k are all integers. Hence, changes in focus by

�f ′
f = 2na2/λ (5.53b)

leave the two-dimensional image intensity distribution unchanged. This result holds
for any number of beams. In practice the effects of finite coherence mean that Fourier
images can be seen only over a limited range of focus. As pointed out in Section 5.1, the
general condition for restricting the depth of field to a single Fourier image half-period
is that

θc > λ/(2a)

This is just the condition that adjacent diffraction discs overlap.
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Equation (5.53b) also limits the number of dynamical images which need to be
computed in image simulations—these need only cover the range �ff . By a similar
argument it can be shown that images are periodic in Cs (see Section 5.1).

For a 	= b it will be found that the images are also periodic if a2/b2 = p, where
p is an integer. This condition holds for many projections of simple structures. For
non-orthogonal axes with angle γ , periodic images occur if a2/b2 = p and cos γ =
(b/a)m, where m is an integer. For smaller changes in focus, such as �ff/2, an image
of reversed contrast is formed. (See Fig. 5.2 for the three-beam case.) It is instructive to
plot out the transfer function sin χ(K) for two focus settings differing by �ff in order
to confirm that these functions differ everywhere except at reciprocal lattice points.

5.9 Absorption effects

‘Absorption’ of the elastic electron wavefunction in HREM may refer either to the
exclusion of elastic scattering from the image by the objective aperture, as discussed
in Section 6.1, or to the depletion of the elastic wavefield by inelastic scattering events
in the specimen. Only the second effect is considered here. For most medium voltage
HREM work with sample thicknesses of less than about 20 nm this effect is generally
negligible. However, there has been a striking failure amongst HREM research work-
ers to obtain agreement between computer-simulated images and experimental images
for the thicker crystals for which the effects of absorption are not negligible. This
problem therefore stands as an important challenge for the future. Magnesium oxide
smoke forms in perfect cubes of sub-micron dimensions, providing [110]-oriented
wedges of accurately known thickness, and there have been several measurements
of the electron absorption coefficients for this material. It would therefore appear to
provide an excellent opportunity for testing HREM theory in the presence of absorp-
tion (see Appendix 5). Equation (5.47) gives the lattice image in terms of γ

(j)
R and

γ
(j)
Im which can be determined if Ug + iU ′

g is known. In the multislice approach (using
the crystallographic sign convention), the Fourier coefficients vg are replaced by com-
plex coefficients vg − iv′

g (see eqn (5.36)). Here vg are the Fourier coefficients of the
‘real’ potential φR(x, y), while v′

g are the coefficients of the ‘imaginary’ potential
φi(x, y), given in eqn (6.2). Values of v′

g (or, equivalently, U ′
g) are spread throughout

the literature (see Reimer (1984) for a summary), and measurements exist for silicon,
magnesium oxide, and germanium and a few other materials. However, there are
some important difficulties with the direct use of these coefficients for HREM image
simulation, which we now discuss.

Microdiffraction patterns from regions of thicker crystal used to form high-
resolution images show a considerable amount of scattering in non-Bragg directions,
even from perfect crystals. In the absence of defects, this scattering arises from
inelastic scattering of the fast electrons by the various crystal elementary excita-
tions, chiefly plasmons, phonons, inner-shell excitations, and valence-band ‘single-
electron’ excitations (see Section 6.6). The question arises of what contribution, if any,
these scattered electrons make to a high-resolution image.
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The usual assumption has been that electrons that lose energy �E in traversing the
specimen will, if the objective lens is correctly focused for the elastic or ‘zero loss’
electrons, be out of focus by an amount Cc(�E/E0) due to the chromatic aberration
of the lens, and so contribute only a slowly varying blurred background to the HREM
image, as indicated by eqn (2.34). However, it is important to appreciate that there
are two independent effects which influence this background, namely the size of
the objective aperture used and the strength of the inelastic scattering. In addition
to contributing a low-resolution background to HREM images, a second important
effect of inelastic scattering is to deplete the elastic wavefield, and so modify the
amplitudes and phases of the beams used for image formation. A full account of this
process for high-resolution imaging has not been given, however, several historically
distinct bodies of literature have a bearing on the problem—these include the theory
of the Debye–Waller factor, the justification for the use of an ‘absorption’ or ‘optical’
potential in electron diffraction, and work on the effects of absorption on diffraction
contrast images.

The Debye–Waller factor expresses the attenuation of the elastic Bragg beams due
to the excitation of phonons in a crystal according to the kinematic theory. When used
in the dynamical theory, it does not affect the normalization of intensities or cause
‘absorption’. The use of a complex optical potential to describe depletion of the elastic
wavefield by inelastic processes in the dynamical theory (absorption) was justified by
Yoshioka (1957). It is not inconsistent to include both a Debye–Waller factor and a
contribution to V ′

g from phonon excitations in dynamical calculations for the elastic
wavefield (Ohtsuki 1967). In the quantum picture, the Debye–Waller factor describes
the modification to the real parts Vg due to virtual inelastic scattering which results
from the creation and annihilation of phonons in a single interaction (at the same time).
The imaginary part of the potential V ′

g however, describes the redistribution of elastic
scattering which results from ‘real’ inelastic phonon scattering through non-Bragg
angles. In the classical picture, the Debye–Waller factor describes the time-averaged
periodic crystal potential responsible for the purely elastic Bragg scattering in Bragg
directions. For a review of the electronic contribution to the absorption potential, see
Ritchie and Howie (1977).

For isotropic materials, the Debye–Waller factor is incorporated by replacing the
Fg of eqn (5.19) by

F ′
g = Fg exp(−2π2Bg2) (5.54)

where the constant B describes the temperature-dependent lattice vibration amp-
litude. Tabulated values of B can be found in the International Tables for X-ray
Crystallography.

In principle, the ‘classical’ method of treating phonon absorption effects in HREM
is straightforward. The interaction time of a fast electron traversing a thin crystal is
much shorter than that of any of the inelastic crystal excitations. Therefore a time-
average is required of the intensity of the dynamical, many-beam, aperture-limited
image for every instantaneous configuration of the crystal potential. This requires
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a complete description of all the atomic displacements due to the thermal motion of
the atoms. The time-averaging must be performed on the dynamical image, rather
than on diffracted beams or the crystal potential. A second aspect of such a calculation
is the estimation of the distribution of diffuse inelastic scattering due to electronic
excitations, from which the background due to those inelastic electrons which pass
through the objective aperture could be estimated. The contribution of these electronic
processes to the imaginary part of the optical potential must also be determined. The
result would give the high-resolution image observed without the use of an energy
filter, that is, the image due to both elastically and inelastically scattered electrons.
This is the approach described in Chapter 8 for STEM, and given in detail in Kirkland
(1998).

Since, due to the presence of chromatic aberration, only electrons within a small
range of energies around the accelerating potential will contribute to the in-focus
HREM image, we may think of lattice imaging as a kind of energy filtering for elast-
ically scattered electrons. Then two effects must be considered—the modification to
the amplitudes and phases of the elastic beams due to inelastic scattering, and the
contribution to the low-resolution background from inelastically scattered electrons
which pass through the objective aperture. The existence of virtual inelastic scatter-
ing and exchange effects between the fast electron and crystal electrons also makes a
small contribution to Vg (the elastic potential); however, Rez (1977) has shown that
these effects are small. We note in passing that these exchange effects between the fast
electron and crystal electrons are fundamentally different, from the exchange effects
included in band-structure calculations, which take account of exchange amongst
crystal electrons. Thus, the potential measured by electron diffraction, while sensit-
ive to bonding effects, is not the same as that used for band-structure calculations.
The bulk of the work in the literature on diffraction contrast imaging, however, is
concerned with estimating the effect of inelastic absorption on a particular elastic
Bragg beam, which may then be related to a diffraction contrast image formed from
this beam alone (using a small objective aperture) through the column approximation.
This approach is not directly applicable to HREM many-beam images, since, these
are formed using larger apertures at higher resolution.

In summary, it may be said that the few reliable values of V ′
g useful for HREM

calculations are those which have been measured experimentally by convergent-beam
or similar diffraction methods (see, Spence and Zuo (1992) for a summary). Empirical
relationships, such as

V ′
g = Vg(A|g| + Bg2) (5.55)

have also been used, where A and B are fitting parameters, and g is a reciprocal lattice
vector. Calculated values (for phonons) can be found in Bird and King (1990).

The second step in correcting HREM image calculations for the effects of inelastic
scattering is to estimate the low-resolution background contribution to the images
from inelastically scattered electrons which pass through the objective aperture. This
problem has received little attention, no doubt owing to the difficulty of determining
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the detailed angular redistribution of multiple inelastic scattering within the object-
ive aperture. In practice a simpler approach would be to include as background an
appropriate fraction of the energy lost from the elastic wavefield as a consequence of
the use of an absorption potential.

The situation is less clear for phonon scattering. Transmitted electrons which lose
energy owing to the creation of phonons in a crystalline sample give up very small
amounts of energy (less than 1 eV even for multiple losses) and so remain ‘in focus’,
and, in addition, the angular distribution of phonon-loss electrons shows a broad
maximum for 0.5 < (q) < 1 Å−1, in addition to peaks at the Bragg positions. Much
of this broad maximum falls within the resolution limit of modern HREM instruments.
The question therefore arises of what contribution this scattering makes to HREM
images. It has been shown (Cowley 1988) that phonon-loss electrons do make a
high-resolution contribution to the many-beam image, and that images with atomic
resolution may thus be obtained from inelastically scattered electrons. This needs to
be reconciled with the ‘Stobbs factor’ problem discussed in Section 7.1.

Lattice images formed from inner-shell excitations are discussed in Spence and
Lynch (1982); the important point is that elastic scattering of energy-loss electrons
cannot be suppressed. Theoretical calculations showing the strong effects of absorp-
tion on lattice images in ‘thick’ crystals have also been published by Pirouz (1979).

5.10 Dynamical forbidden reflections

The observation of intense Bragg reflections whose kinematic structure factors are
zero will be familiar to most electron microscopists. For example, in the diamond
structure the (200) reflection, for which F200 = 0 (see eqn (5.19)), is commonly
observed as a result of double scattering, involving the (111̄) and (11̄1) reflec-
tions. All these reflections lie in the [011] zone axis pattern, and we note that
(111̄) + (11̄1) = (200).

It has been shown, however, that for certain incident beam directions, certain reflec-
tions remain absent, despite the effects of multiple scattering, for all thicknesses and
accelerating voltages (Cowley and Moodie 1959; Gjønnes and Moodie 1965). The
reflections which remain absent are those whose absence results from the existence
of screw or glide translational symmetry elements, and are not ‘accidental’ absences
such as those due to atoms which lie on special positions in the lattice. The incident
beam directions which cause the continued absence of these space-group-forbidden
reflections are given below, and include the case, important for lattice imaging, in
which the beam runs normal to the screw axis or glide plane. This powerful theoretical
prediction was first confirmed experimentally by Goodman and Lehmpfuhl (1964)
and Fujime et al. (1964). It forms the basis of a general method of crystal space-group
determination by convergent-beam electron diffraction (see Section 13.4). In this brief
summary, we consider only the results in the projection approximation for which only
those reflections in the zero-order Laue zone (ZOLZ) are considered. For the general
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three-dimensional result, the reader is referred to the classic paper of Gjønnes and
Moodie (1965).

The importance of this result for HREM work lies in the fact that only if these space-
group-forbidden reflections do not contribute to the image will the projected potential
seen in the HREM image reveal the true crystal structure. Yet the angular range of
incident beam directions for which these reflections remain absent is rather small
(typically about a tenth of a degree, depending on crystal thickness and structure), so
that small errors of alignment may result in misleading images of the crystal structure.

In the projection approximation, the only plane groups corresponding to a two-fold
screw axis or glide plane normal to the beam are pg, pmg, or pgg in the rectangular
system or p4g in the square system. Screw axes other than twofold may be thought of
as giving rise to accidental forbidden reflections in projection. To expose the principle
of the effect, we consider the simple case of a crystal with projected symmetry pmg,
of which CdS forms an example if the electron beam is normal to the c-axis. CdS
is hexagonal, with a 63 screw axis along c. In projection, this screw axis becomes a
glide line. Because of this translational symmetry element, the structure factors have
the signs shown in Fig. 5.7(a), with

Fhk = (−1)kFh̄k (5.56)

and

F0k = 0 for k = 2n + 1 (5.57)

(see Stout and Jensen (1968)). Here the index k is parallel to c, and the beam direction
is normal to the page. When these conditions are imposed on eqn (5.33), it will be
found that the resulting series of terms can be arranged in pairs with products of
Fhk of equal magnitude and opposite sign. This occurs only if the excitation errors
also preserve certain symmetry, in particular we require that K (the projection of the
incident electron wavevector in the ZOLZ) lie on the bold cross shown in Fig. 5.7(a).
Here, either the (010) reflection is at the Bragg condition or the beam lies in the
plane containing the (0k0) systematics and the zone axis. Physically, the extinction
arises because of the exact cancellation (by destructive interference) of all pairs of
multiple-scattering paths (such as x and y in Fig. 5.7(a)) which are related by crystal
symmetry. Thus, near the axial orientation (and within the projection approximation)
the experimental convergent beam discs F0k appear as shown in Fig. 5.7(b), for a
two-fold screw axis normal to the beam (Goodman and Lehmpfuhl 1964).

For a glide plane normal to the beam, again in the projection approximation, the
period of the projected potential will be halved, leading to the extinction of alternate
reflections in the ZOLZ plane.

For a glide plane which contains the beam direction, the situation (after projection
of the crystal structure in the beam direction) is the same as that for the two-fold
screw axis.

The effects of dynamically forbidden reflections on lattice images have been stud-
ied by several workers. Nagakura and Nakamura (1983), for example, observed
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Fig. 5.7 The principle of dynamical extinction. For a screw axis along k normal to the beam the structure
factors have the signs indicated. Those containing O are forbidden. Unmarked discs have equal structure
factors. Double scattering along X into the (010) reflection is exactly cancelled by that along Y . The
bold cross indicates the locus of K along which extinction is expected in the projection approximation. (b)
Experimental CBED pattern from CdS showing dynamical extinctions. The beam is approximately normal
to the screw axis (which runs across the page) along which every second reflection remains absent, despite
multiple scattering.

image artifacts in cementite and studied their dependance on beam misalignment.
Figures 5.8(a) and (b) show the intensity of the first-order dynamically forbidden
reflection in this material as a function of incident beam misalignment in the direc-
tions Kx and Ky in Fig. 5.7(b). For this structure, the incident beam must be aligned
to within less than 1 mrad of the zone axis in order to produce a faithful representa-
tion of the projected crystal structure in the HREM image. A review of the effects of
dynamically forbidden reflections in several materials, including TiO2, SiC, Mo5O14,
CuAgSe, and SnO2 can be found in Smith et al. (1985). Figure 5.9 (from that work)
shows clearly the artifactual 4.6 Å fringes which appear in thicker regions of this
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Fig. 5.8 Computed Bragg beam intensities for two dynamically forbidden reflections due to a screw axis
along [0k0] in cementite at 200 kV as a function of αk (in mrad) at a thickness of 22.6 nm (Fig. 5.8(a)) and
as a function of αh (Fig. 5.8(b)). Here αk is the angular misalignment from the exact zone axis orientation
and describes a rotation about the k axis in Fig. 5.7(a) (similarly for αh). The angular width of the extinction
band decreases with increasing crystal thickness. (From Nagakura and Nakamura (1983).)
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Fig. 5.9 A lattice image of a wedge-shaped thin crystal of rutile recorded at 500 kV in the [001] projection.
Artifactual 4.6 Å fringes can be seen in thicker crystal, resulting from a slight error in alignment. The
contribution of these dynamically forbidden reflections has been eliminated in (b), following an alignment
correction of less than 0.12 mrad (from Smith et al. 1985).

sample unless the alignment is within about 0.2 mrad of the exact zone axis orienta-
tion. Note that it is important to distinguish the linear image fringes due to the (0, 2)
interaction (see Fig. 5.7(a), with (0, 1) dynamically forbidden) from the (0, 1) (0, 1̄)
interaction (producing fringes of the same period) in thicker crystals due to non-linear
imaging effects.

The more subtle effects of translational symmetry elements whose translational
component lies parallel to the beam direction are described in Ishizuka (1982b).
Many experimental examples, including three-dimensional effects, can be found in
the excellent compilation of CBED (convergent-beam electron diffraction) patterns
produced by Tanaka and Terauchi (1985). Figure 5.10 shows the experimental con-
firmation of the remarkable extinction which occurs only for a small disc in the case
of a glide plane normal to the beam with three-dimensional scattering (Tanaka 1987,
personal communication).

5.11 Computational algorithms and the relationship between them.
Supercells and image patching

Computational algorithms for solving the dynamical electron diffraction problem
have mainly been based on the Bloch wave method (see Section 5.7) or the multislice
method (Section 5.6). Other methods include the Feynman path-integral formulation
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Fig. 5.10 Convergent beam pattern of spinel, showing three-dimensional dynamical extinction at a single
point. (Courtesy of M. Tanaka.) The dynamic extinction is due to a glide plane which is set perpendicular
to the incident beam, and occurs at the exact Bragg position of a kinematically forbidden reflection.
The extinction occurs owing to the interference of two ‘Umweg-reflections via HOLZ’. These paths are
schematically shown in (a) and are symmetric with respect to the position of the projection of the Laue point
(L). The micrograph (b) was taken from a (001) spinel (MgAl2O4) at an accelerating voltage of 50.5 kV.
The (420) reflection shows the extinction (dark spot) due to a d-glide plane parallel to the (001) plane.

(Jap and Glaeser l978; Van Dyck 1978) and numerical evaluation of the polynomial
solution (eqn 5.33). The method of Sturkey (1962) is based on the expansion (from
eqn (5.50))

S = exp(2πiAt) = [exp(2πiAt/n)]n = [exp(2πiA�z)]n (5.58)
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Fig. 5.11 Algorithms and approximations in dynamical theory.

where n is chosen sufficiently large to ensure that the series expansion of
exp(iA�z) converges rapidly. The differential equation method of Howie and Whelan
(see Hirsch et al. (1977)) can be obtained by differentiating the fundamental equation
given above, while the multislice iterative technique is obtained from this equation
by writing

A = V + T (5.59)

where T is a diagonal matrix containing only the excitation errors. Since V and T
do not commute, a theorem due to Zassenhaus must be used to obtain the multislice
iterative formula from this expansion as described by Goodman and Moodie (1974)
in more detail. The formal relationship between all these algorithms is summarized
in Fig. 5.11.

It is often instructive to consider two limiting cases of the fundamental eqn (5.50)
when attempting to understand dynamical scattering effects. For T = 0 (all excita-
tion errors zero) a term-by-term comparison of the series expansion of S with that
of the Fourier transform of the phase-grating expression (eqn 3.25) shows that the
observed column of S contains just the Fourier coefficients of ψe(x, y). Thus, the
simple phase-grating approximation is recovered from the fundamental equation as
the accelerating voltage tends to infinity (Sg → 0), in which limit σ → 2π/(hc), the
Compton interaction parameter (c is the speed of light, h is Planck’s constant). A term-
by-term comparison of this same series with the Born series for electron scattering also
confirms that the phase-grating approximation (known elsewhere as the Moliere high-
energy approximation) provides an exact summation for the series in the limiting case
where the component of the scattering vector in the beam direction is zero. The phase-
grating approximation also gives an approximation for Pendellösung effects, since
the Fourier coefficients of ψe(x, y) are periodic in t , unlike the kinematic expression
(eqn 5.16), which predicts intensities proportional to t2 for Sg = 0. By varying the dir-
ection of projection in eqn (3.25) the phase-grating approximation can also be seen to
give an estimate of the angular dependence of diffracted beams (their ‘rocking curve’).
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The second limiting case of the fundamental equation is obtained when V → 0, in
which case, since A is diagonal, the observed column of S contains entries

φg = exp(2πiSgt) = exp(−2πiλu2
gt/2) (5.60)

since Sg = −λu2
g/2 in the zone axis orientation. Comparison with eqn (3.24) shows

that this phase shift corresponds to free-space Fresnel propagation over a distance
equal to the crystal thickness, as expected in the ‘empty lattice’ approximation of
zero crystal potential.

For perfect crystals, it should be noted that the images will be periodic functions
of the focus setting (see Section 5.8). Therefore, it is only necessary to compute
images through a single ‘Fourier image’ period in order to obtain all possible images
for a particular thickness. In addition it can be shown that dynamical solutions are
functions only of the product λt = X at non-relativistic energies (V0 < 100 kV).
All (non-relativistic) diffraction patterns for the same value of X are identical for a
given structure, so that halving the specimen thickness is equivalent to halving the
electron wavelength. Specimens thus ‘look’ thinner to the fast electron as its energy
is increased.

For periodic images obtained under the conditions for which the PCD approxim-
ation holds, the calculation of simulated images can be greatly speeded up by the
direct application of eqn (5.26). The projected charge density is obtained from

∇2φp(x, y) = −16π2t
∑
h,k

s2(h, k, 0)vh,k,0 exp(2πi(hx/a + ky/b)) (5.61)

where s = sin θ/h with θ the Bragg angle for the reflection (h, k, 0) and the sum is
extended over all reflections within the objective aperture.

The articles by Goodman and Moodie (1974) and Self et al. (1983), and the books
by Head et al. (1973), Cowley (1975), Hirsch et al. (1977), Stadelmann (1987),
Spence and Zuo (1992), Chen and Van Dyck (1997) and Kirkland (1998) contain
ample information to enable, workers with some programming experience to write
a dynamical program for image simulation. The text by Kirkland (1998) includes a
CD with multislice source code, the text by Spence and Zuo (1992) contains a listing,
while the EMS program described by Stadelman (1987) is very popular. Computing
methods based on the multislice technique are most efficient for the simulation of large
unit-cell crystals and thin specimens. Matrix methods, which depend on the diagonal-
ization of the structure matrix A, are most efficient for thick, perfect specimens of the
small-unit-cell crystals. All these numerical methods provide solutions to the same
fundamental equation, and have close similarities to the numerical techniques used in
solid-state electron band-structure calculations. Several workers have demonstrated
the equivalence of the various computing techniques. In the multislice technique,
most of the computing time is occupied performing a numerical convolution using
fast Fourier transforms.
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Fig. 5.12 The principle of periodic continuation. Each identical ‘supercell’ contains the defect of interest.
Because the wavefunction at A is almost independent of the potential at B, dynamical images can be
computed in ‘patches’.

For the multislice method the computing time per slice for n beams is proportional
to n log2 n, whereas for the Bloch-wave method, matrix diagonalization times are
proportional to n2. Thus, the multislice method is faster for n > 16 (Self et al. 1983).
Computing space increases roughly as n2 for the diagonalization method, and as n

for the multislice method.
An important question which arises in image simulations concerns the lateral spread

of the electron wavefunction. For the simulation of images of defects it is common to
use the method of periodic continuation (see Section 5.11), as shown in Fig. 5.12. We
wish to know how large a cell is needed for a given defect. Thus we wish to know the
extent to which the dynamical wavefunction at A in Fig. 5.12 (immediately below a
defect) depends on the crystal potential at B. Within the phase-object approximation
(eqn 3.26) there is clearly no spreading; however, in thicker crystals this may not be
so. This problem has been studied theoretically in two main ways. Firstly, dynamical
calculations for a STEM probe wavefunction incident at E have been made for various
thickness. If the width of this wave packet at E is small, then its width at A gives a
measure of the lateral spreading of the wavefunction. The results of these calculations
(Spence 1978; Humphreys and Spence 1979; Marks 1985) show that, in the axial
orientation for a specimen whose thickness is less than t = 50 nm, this broadening
is very small and given very approximately by �x = 2t tan θc. A more realistic
estimate for imaging calculations (based on the ‘Takagi triangle’ construction—see
Hirsch et al. (1977)) might be �x = 2t tan θ , where θ is twice the largest Bragg angle
which contributes to the dynamical diffraction process. Alternatively, we might argue
that the contribution at A from a spherical wave source at B will be negligible if the
lateral distance between A and B exceeds the width of the first Fresnel fringe formed at
‘defocus’ �z. (This gives an estimate of the effects of free-space propagation alone.)
From eqn (10.8) we have, approximately

�x = (λ�z)1/2 (5.62)
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for the propagation effect. In practice this equation is found to overestimate �x.
A more straightforward method of analysing the spreading of the wavefunction is to
perform dynamical image simulations for the same defect within ‘superlattices’ of
varying dimension CD. The dependence of the wavefunction at the point A can then
be studied as function of the super-cell size CD and the thickness t . The results of
extensive computational trials of this type (Spence et al. 1978; Matsuhata et al. 1984)
show that this broadening is typically less than 0.4 nm for thicknesses of less than
50 nm. However, it will depend, weakly, on the structure and atomic number of the
crystal, on the accelerating voltage, and on the order of the image Fourier coefficients
considered.

In summary, this important qualitative result indicates that the axial, dynamical
image wavefunction on the exit-face of a crystal is locally determined by the crystal
potential within a small cylinder whose axis forms the beam direction and whose
diameter is always less than a few Ångstroms for typical HREM conditions. This
is essentially a consequence of the forward-scattering nature of high-energy electron
diffraction. Thus, for the purposes of finding a few particular atomic column positions,
a rather small artificial super-cell can be used, with CD typically about 2.5 nm if
t < 20 nm. This argument only applies to the axial orientation.

The importance of this result is that for the purposes of the image simulation of
defects at interior points of a super-cell such as A, there is no need to obtain perfectly
smooth periodic continuation of the crystal potential at the boundaries C and D.
An abrupt discontinuity of the potential at C will only influence the dynamical image
within a few Ångstroms (laterally) of this point. It follows that images of large defects
can be simulated in ‘patches’ using separate computations. The image patches may
subsequently be joined together, if sufficient allowance has been made at the borders
for discontinuities in the potential. For example, Fig. 8 of Olsen and Spence (1981)
actually consists of three panels, resulting from separate computations, which have
been joined at overlapping regions.

It is important to emphasize that these techniques of patching and lack of
smooth periodic continuation cannot be used for computation of dynamical electron
diffraction patterns.

At large focus defects, the most important broadening effect will occur beyond the
exit-face of the crystal, between A and F in Fig. 5.12. It has therefore been suggested
(Matsuhata et al. 1984), that, since most of the computer time is devoted to the
multislice, it may be possible to use a small super-cell for the multislice calculation
within the crystal, followed by an image-synthesis calculation referred to a much
larger super-cell to account for propagation between A and F. A knowledge of the
crystal structure surrounding the defect is assumed.

5.12 Sign conventions

Since high-energy electron diffraction is described by the Dirac equation (or the
relativistically corrected Schrödinger equation), all the signs in the scattering and
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image formation process are fixed by this equation if the time dependence is included.
Most modern quantum mechanics texts write the time-dependent Schrödinger
equation as

(�2/2m)∇2ψ = −i�
dψ

dt
(5.63)

with the time-dependent solution

ψt(r) = A exp(+2πik · r − iωt) (5.64)

Note that ψ∗
t (r) is not a solution of eqn (5.63), since this would require an imaginary

wavevector. If the minus sign on the right-hand side of eqn (5.63) is replaced by
a plus sign, ψ∗

t (r) becomes a solution. This form is used in some texts. For the
time-independent Schrödinger equation, either

ψs(r) = A exp(2πik · r) (5.65)

or ψ∗
s (r) are suitable solutions. While most textbooks give the Dirac equation and

the Schrödinger equation in forms which require ψt(r) as the solution, others (e.g.
Jauch and Rohrlich (1955)) adopt forms for these equations which require ψ∗

t (r) for
the positive-energy, electron plane-wave states. In this book (with the exception of
Section 5.7 on Bloch wave methods), ψ∗

s is used throughout. Section 5.7 uses ψs(r),
for conformity with most texts on Quantum mechanics. The theory of inelastic elec-
tron scattering (for which a time-dependent Schrödinger equation may be used) is not
discussed in detail in this book (see Section 6.6).

The situation is complicated by the need for conformity with the established con-
ventions of X-ray crystallography, as codified in the International Tables for X-ray
crystallography. This is desirable since most modern HREM work involves crystallo-
graphic problems and one often wishes to compare the results of X-ray and electron
work, to use existing X-ray computer software, or to make use of the extensive
tabulations of structure factors given in the International Tables.

The X-ray tradition has been based like this book, on the use of ψ∗
s (r) (von Laue

(1960); International Tables for X-ray Crystallography, Vol. 1, p. 353), and indeed this
form appears to have been the most common in the early days of electron and X-ray
diffraction, out of which the new quantum mechanics grew. Either sign convention,
if used consistently will produce identical images. These sign conventions are sum-
marized in Table 5.1 (from Saxton et al. (1983), with corrections), and it is therefore
proposed that these be known as the ‘quantum-mechanical convention’ (for ψs(r))
and the ‘crystallographic convention’ (for ψ∗

s (r)). Note that in both conventions
in this book it is also assumed that a weakened lens (underfocus, first Fresnel fringe
bright, toward Scherzer focus) is represented by a negative value of �f . (The opposite
convention has been used in some papers.)

An instructive case concerns the comparison of stacking faults imaged by X-ray
topography and by electron microscopy. The various sign conventions used in both
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Table 5.1 Sign conventions used in HREM

Quantum-mechanical convention Crystallographic convention (used in
this book)

Free-space wave exp{+2πi(k · r − ωt)} exp{−2πi(k · r − ωt)}
Transmission function exp{+iφp(x) · �z} exp(−iσφp(x) · �z}
Phenomenological

absorption
φp(x) → φR(x) + iφi(x) φp(x) → φR(x) − iφi(x)

Propagation function exp{2πiSg(u) · �z} exp{−2πiSg(u) · �z}
Wave aberration

function
(modification of
diffracted wave by
objective lens)

ψ ′(u) = ψ(u) exp{−πλu2

× (�f + 1
2 λ2Csu

2)}
ψ ′(u) = ψ(u) exp{+iπλu2

× (�f + 1
2 λ2Csu

2)}

Object to diffraction
space

∫
ψ(r) exp{−2π(u · r)} dr

∫
ψ(r) exp{+2πi(u · r)} dr

Diffraction to object
space/reciprocal to
real

∫
ψ(u) exp{+2πi(u · r)} du

∫
ψ(u) exp{−2π(u · r)} du

Structure factors
∑

j fj exp{−2πi(u · rj )} ∑
j fj exp{+2πi(u · rj )}

σ Electron interaction constant = 2πmeλ/h2; m = (relativistic) electron mass, λ = electron wavelength, e =
(magnitude of) electron charge, h = Planck’s constant;

�p Crystal potential averaged along beam direction (positive);
�z Slice thickness;
φi Absorption potential (positive);
Sg Excitation error (negative for reflections lying outside the Ewald sphere);
�f Defocus (negative for underfocus);
Cs Spherical aberration coefficient;
fj Electron scattering factor for j th atom;
rj Position of j th atom.

fields have been reviewed by Lang (1983). Here the distinction between extrinsic and
intrinsic faults depends on the contrast of the first thickness fringe, which may be
reversed by a sign error in calculations.

5.13 Testing image-simulation programs. The accuracy of atom position
determinations

Most image-simulation software programs consist of three sections: a program to
compute the Fourier coefficients of crystal potential, a dynamical scattering program,
and an image-simulation program. The first of these (based on eqn (5.18)) may be
checked by hand (note the sign convention required in Table 5.1 and eqn (5.19)).
The second program must reproduce experimentally observed thickness fringes and
convergent beam patterns (see Section 13.3). An approximate check can be made
by running the program for a small-unit-cell crystal under ‘two-beam’ conditions
(Bragg condition satisfied for beam g). The approximately sinusoidal variation of the
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intensity of beam g with thickness should have a ‘period’ within about 15 per cent
of that given by ξg in eqn (5.17). If no resolution limits are imposed, the imaging
program should give images in very thin crystal (t < 20 Å) which agree exactly (apart
from a uniform background) with a map of the projected crystal potential as given
by the first program. It is worth checking that the phase change of 90◦ introduced
by the lens (for moderate spatial frequencies) at Scherzer focus has the same sign
(i.e. adds to) that which arises from scattering (the factor i in eqn (3.2b)). Thus a
total phase shift of 180◦ (not 0◦) is required for phase contrast. Finally, the images
at all thicknesses should have the same symmetry as the projected potential, unless a
resolution limit has been imposed, in which case the image symmetry may be higher.

The ultimate test of an image-simulation procedure is its ability to reproduce experi-
mental results. The most convincing image simulations are those in which computed
and experimental images are matched as a function of some parameter, usually thick-
ness or defocus. It is desirable to determine these parameters independently. The
focus setting may be determined by the methods described in Section 10.1. Speci-
men thickness may be determined by using the image width of an inclined planar
fault known to lie on a particular crystallographic plane, or from the external crystal
morphology. Perhaps the simplest case for testing a program is that of MgO smoke
crystals, which form in perfect cubes. Images taken with the beam parallel to [110]
therefore allow an exact thickness calibration, so that the ‘turning points’ (at which the
fringe contrast reverses) can be compared with the results of calculation over a range
of thickness (Hashimoto 1985; O’Keefe et al. 1985) (see Appendix 5). These may
depend sensitively on the absorption potential used in thicker crystal. Ionic scattering
factor for MgO have been measured by CBED (Zuo et al. 1997).

As shown in Fig. 5.18, the image blobs may not coincide with true atom positions.
An analysis of the silicon [110] case has been given by Krivanek and Rez (1980).
For sufficiently thin crystals, we have seen (eqns (5.27) and (3.29)) that peaks of
crystal potential must coincide with corresponding peaks in the image intensity if no
resolution limits are imposed. For dynamical images there is, in general, no one-to-one
correspondence between the crystal exit face wavefunction and the projected crystal
potential (see the discussion of resolution in Section 10.10). A detailed analysis of
this problem (Saxton and Smith 1985) shows that even under kinematic scattering
conditions, lateral shifts between the position of a maximum in the projected crystal
potential and that of the corresponding image ‘peak’ of about 0.03 nm are common
at some focus settings. These results are somewhat model-sensitive; however, it is
also found that the choice of focus which maximizes image contrast is not that which
minimizes the lateral image shift. Dynamical calculations for model structures give
broadly similar results, and we may summarize these by saying that image peak
separations may vary by up to 20 per cent as a function of thickness and focus. These
calculations were all performed for the case in which the instrumental point-resolution
(eqn 6.17) is comparable to the interatomic spacing. For spacings much larger than
the point-resolution in very thin crystals, these image shifts will become negligible.
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We note that the errors found in this study are a small fraction (about 10 per cent)
of the point-resolution of the instrument (about 0.2 nm). Just as the position of the
maximum in a sine wave can be located to within a small fraction of its wavelength,
so it is common in X-ray diffraction to locate atom positions to within an accuracy
far smaller than the d-spacing of the highest-order reflection used in the refinement.
Similarly, if it is known a priori that an image feature consists of a single atomic
column, then the centre of this image ‘peak’ may be located to within a small fraction
of the point-resolution. This is possible because of the interferometric nature of elec-
tron images, for which a difference in optical path length of one electron wavelength
between adjacent image points may cause a contrast reversal. The problem of dis-
tinguishing two adjacent or overlapping columns in a crystal of unknown structure
is discussed in Section 10.10. These ideas have been applied to a determination of
the structure of K8−xNb16−xW12+xO80 by Hovmoller et al. (1984). An accuracy in
atomic coordinate determination of 0.01 nm is claimed, due mainly to the noise reduc-
tion which results from averaging over many ‘identical’ unit cells. The assumption
of constant crystal thickness over the field used is critical to the success of this work,
and dynamical image simulation is essential. Super-resolution schemes are discussed
in Chapter 7.

5.14 Image interpretation in germanium—a case study

In this section a summary is given of the results of a detailed study of the imaging
conditions in crystalline germanium. Germanium and silicon are particularly con-
venient specimens for electron microscopy—they are not contaminated rapidly, they
are sufficiently good conductors to prevent accumulation of specimen charge, both
are brittle and so allow stable images of immobile defects to be obtained, and finally,
when viewed in the [110] direction the diamond structure which they share exposes
tunnels whose size lies within the resolution limit of most modern microscopes. For
silicon, the atomic column separations are 0.19 nm in projection down [001], 0.136
down [110] and 0.078 nm down [112]. (The point resolution, eqn (6.17) is 0.17 nm
for Cs = 0.6 mm at 300 kV.) Specimen preparation equipment for silicon and ger-
manium is available commercially, based on the successful early methods of Booker
and Stickler (1962) (see also Goodhew (1972)). A wedge-shaped region of specimen
is sought and this is oriented to give the diffraction pattern shown in Fig. 5.13. If a
through-focus series of images of such a specimen is recorded using the objective
aperture A shown at 100 kV, images similar to those shown in Figs 12.4(a) and (b)
will be obtained, with the following characteristics.

1. The images are approximately periodic with thickness. In particular, identical
images resembling the specimen structure are found at thickness increments of about
12 nm, the first occurring at 7.5 nm thickness. All these images are of ‘reversed’
contrast in which the atoms appear white in a positive print. Figure 5.14 shows the
diamond structure, while Fig. 5.15 shows three identical computed images expected
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Fig. 5.13 The diffraction pattern from a germanium crystal oriented with the [110] direction parallel to
the electron beam. An aperture placed at A, from which a 13-beam image can be formed, contains the
smallest number of beams necessary to resolve every atom in the structure.

at three different thicknesses, each resembling the crystal structure. In Fig. 5.15(d) is
shown a curious image obtainable at certain thicknesses, in which the atoms appear to
have a hole in their centre. These annular single-atom images have also been observed
by H. Hashimoto in crystals of gold, as shown in Fig. 5.16. The image appearance is
a consequence of multiple scattering and does not reveal the internal structure of the
atom! Images of conventional contrast from germanium crystals in which the atoms
appear dark in a positive print are only possible at thicknesses of less than 3 nm at
100 kV accelerating voltage.

The occurrence of images which repeat with increasing thickness has been observed
experimentally in other materials (Fejes et al. 1973) and is found to occur only in
certain structures illuminated by electrons of a particular wavelength. The effect
indicates that in these special cases all beams oscillate with the same periodicity in
depth through the crystal. The special ‘tuned’ accelerating voltages which produce
this effect are analysed in Glaisher and Spargo (1985). An explanation has also been
given using the methods of electron channelling theory (Fujimoto 1978). In the simple
two-beam case (and cases reducible to it), we see that all beams have the same
Pendellösung depth period. Thus, we can expect periodic imaging (in thickness)
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Fig. 5.14 A model of the diamond structure viewed approximately in the [110] direction. The white
‘atoms’ form a line in the [110] direction which runs down the exposed six-sided tunnels. The positions
of the columns of atoms seen in this projection coincide with those shown in the computed micrograph in
Fig. 5.15.

for the many simple crystal structures for which only two Bloch waves are strongly
excited, or bound within the potential well.

2. The images are periodic with focus. That is, as predicted by the theory of Fourier
images (Section 5.8), identical images are found at focus settings �f ±2nd2/λ, where
n is an integer, �f is an arbitrary focus setting, and d is the large unit-cell dimension
normal to the electron beam. For germanium, d = 0.5658 so that at 100 kV identical
images of perfect crystal recur at focus increments of 173 nm on either side of the
Scherzer (or any other) focus (see Section 6.2). This periodicity with focus greatly
reduces the labour of image calculation, since a computed series of images covering a
range of 173 nm therefore contains all possible images. A further simplification arises
since, over this range, only four distinct images of high contrast appear. These would
be likely to be selected by a microscopist in practice and are shown in Fig. 5.17.
Two of these resemble the crystal structure; one of them is displaced by a half a
unit cell from the true atom positions. These two images recur several times within
the Fourier image period—in all, there are seven different focus settings within the
range �f = +26.5 nm to �f = −146.5 nm which give useful images of the crystal
structure similar to either Fig. 5.17 (a) or (b).

The theory of Fourier images has been worked out in detail by Cowley and Moodie
(1960) and we can expect these useful image ‘artifacts’ to become increasingly import-
ant as more images are obtained from small-unit-cell crystals. Fourier images have
not often been observed in the complex oxides since, with d large, the Fourier image
defocus period exceeds the range of focus over which partial coherence effects allow
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(a) (b)

(c) (d)

Fig. 5.15 Similar images predicted for three different thicknesses of germanium. All are 13-beam images
computed for Cs = 0.7 mm and �f = −60 nm at 100 kV accelerating voltage. The thicknesses are
(a), t = 7.6 nm, (b) t = 18 nm, and (c) t = 30.8 nm; (d) shows the annular type of image found at
certain thicknesses (t = 3.6 nm in this case). The annular atom image shape is a consequence of multiple
scattering in the specimen. A similar effect is seen in the experimental image shown in Fig. 5.16.

sharp imaging (see Section 5.2). In practice, Fourier images are familiar to any micro-
scopist who has noticed that simple axial three-beam lattice fringes fade and recur
as the focus setting is adjusted—several focus settings appear to give equally sharp
fringes. It is important to emphasize that defects may not be imaged sharply in Fourier
images.

The general result for predicting the occurrence of Fourier images is that identical
images of a periodic object are formed at successive focal increments �f0 satisfying

�f0 = 2na2/λ and �f0 = 2mb2/λ

where a and b are the orthogonal two-dimensional unit cell dimensions and m and n

are integers. In many crystallographic projections with non-orthogonal primitive unit
cell vectors, a large orthogonal cell can be found satisfying a2/b2 = m and therefore
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0.2 nm

Fig. 5.16 Images of gold atoms (courtesy of Professor H. Hashimoto). The incident beam direction is
[100], the specimen thickness about 19 nm and an accelerating voltage of 100 kV was used. The annular
appearance of these atoms is an artifact resulting from multiple scattering.

giving periodic images. For the diamond structure viewed in the [110] direction,
these equations simplify, since a = b/

√
2, so that the first equation is automatically

satisfied if the second is satisfied.
A fuller discussion of imaging conditions in the diamond structure can be found

in Spence et al. (1977) and Nishida (1980) using multislice calculations and in
Desseaux et al. (1977) for the Bloch wave methods. Figure 5.18 shows an image of
crystalline silicon in which every atom appears to be resolved; however, this Fourier
image in fact shows a false structure. The image has been photo-processed to reduce
noise by superimposing photographic images displaced by one unit cell. This pro-
cessing method cannot be used for the more challenging problem of defect imaging.

The point-resolution of present-day machines is about equal to the primitive unit-
cell dimensions of the simple projections of silicon, germanium, and diamond.
Therefore, the special considerations of this section apply to these crystals, and the
lattice images of highest contrast will occur at rather large under-focus values given
by eqn (5.66) and not at the Scherzer focus, as for large unit-cell crystals. This is a
most important practical consideration. In particular, these high-contrast fine-lattice
images (such as that shown in Fig. 5.18) do not reveal simply the structure of any
defects present.
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(a) (b)

(c) (d)

Fig. 5.17 The four important image types seen in any through-focus series of crystalline germanium taken
under the following conditions: Cs = 0.7 mm, V0 = 100 kV, 13 beams included in the objective aperture.
The specimen thickness is close to any of the thicknesses shown in Figs. 5.15 (a), (b), and (c). Only (a)
and (b) are a good representation of the crystal structure. The focus values are (a) −60 nm, (b) +26.5 nm,
(c) −16.8 nm, and (d) −68.0 nm.

5.15 Images of defects in crystalline solids. HREM tomography

Most of the mechanical, electrical, chemical, and thermal properties of crystalline
solids depend on the presence of point, line and planar defects. Thus, resistance to
plastic deformation depends on dislocation core and kink structure, first-order phase
transformations depend on the atomic processes responsible for diffusion and inter-
face kink and ledge motion, and the resistance of composite materials to fracture
depends on the presence of intergranular phases. The nature of flux-pinning centres
in superconductors is not understood at the atomic level, and only recently have
the role of interfaces in ceramic superconductors and ionic conductors begun to be
understood. The fascinating role of charge, spin, and orbital ordering in the colossal
magnetoresistive (CMR) manganates has been traced to a complex microstructure
strongly dependant on doping and temperature, to the existence of stripes of charge
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0.56 nm

Fig. 5.18 Electron micrograph of silicon viewed in the [110] direction (courtesy of K. Izui, J. Electron
Microsc. 26, 129 (1977)). This image was recorded using a pole-piece with Cs = 0.7 mm fitted to the
JEOL 100C electron microscope. The objective aperture used included about 100 beams; however, many
of these do not contribute to the image owing to the effects of electronic instability (see Section 3.3). Since
the interatomic spacing (0.14 nm) is smaller than the point-resolution (0.28 nm), this is not a true structure
image, and gives slightly incorrect atom positions, as described in Section 5.13.

ordering and to mechanisms which have much in common with the high Tc mater-
ials. In this section we review recent attempts to understand materials properties in
terms of the atomic mechanisms and defects revealed by HREM, with emphasis
on the problems of image interpretation. For general reviews, see Buseck et al.
(1989), Smith (1997), Van Tenderloo (1998), Spence (1999), and Shindo and Hiraga
(1998), which contains a superb collection of HREM images of defects in a variety of
materials. Special issues of the journals Ultramicroscopy, the Journal of Microscopy,
Acta Crystallographica A, the Journal of Electron Microscopy, and Microscopy and
Microanalysis have been devoted to the electron microscopy of particular materials
systems and types of defects (interfaces, surfaces, environmental microscopy, etc.),
which may be traced through the journal’s subject index on the web.

There has been dramatic progress in this field since the previous edition of this
book. The first ab-initio electronic structure calculations based on HREM images
(Northrup et al. 1981) were limited by the single projection available along the core.
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In the more recent work on interfaces discussed below it has finally become possible
to use images obtained from more than one projection of the same region. The image
responsible for the discovery of the nanotube shown in the frontispiece demonstrated
that materials discovery by HREM is now possible. (Inset is shown an earlier image
corresponding to the first observation of the buckyball, taken well before the formal
discovery of this structure, and its even later synthesis in large quantity.) Also shown in
the frontispiece is an ADF-STEM image of the Si/SiO2 interface (‘the most important
interface in the industrial world’), which occurs in transistors, showing the power of
combined energy-loss spectroscopy and atomic resolution imaging. More examples
of non-crystalline structures of importance occur throughout this book.

The interpretation of defect images must be confirmed by detailed multislice
simulation—for these the method of periodic continuation is used, as described in
Section 5.11.The projection problem is being overcome in various ways. For disloca-
tion cores without kinks, straight dislocations in a plane-strain arrangement consist of
straight atomic columns, since the displacements are independent of the coordinate
along the beam direction, if this is parallel to the core. (Image forces near surfaces
and elastic relaxation will tend to rotate partial dislocations in soft materials as they
approach surfaces in order to minimize their self-energy.) In silicon, alternating seg-
ments of the shuffle and glide structure can be expected to complicate images (Louchet
and Thibault-Desseaux 1987). Cores at the intersection of stacking faults lying on
different planes can be expected to be straight, as for faulted dipoles and other locks.
A new imaging mode based on forbidden reflections has been developed to provide
view of dislocation cores and kinks from the side. For interfaces seen in projection
along a line in the plane of the interface, several images are therefore desirable in
projections rotated about a line normal to the interface. ADF-STEM imaging of inter-
faces has advantages in reducing projection artifacts. For point defects (now visible
by ADF-STEM), defects in all possible equivalent interstitial sites will be seen. The
mapping of strain-fields based on HREM images been analysed in great detail—the
state of the art is described in Hytch and Plamann (2001). (Strains may also be mapped
to the 10−4 level by QCBED, as described in Section 13.3.)

We first discuss some practical considerations of defect imaging. Figure 5.19 uses
a laser-light simulation to show how the image of a crystal defect can be masked (with
the damage ‘repaired’) if the wrong focus setting is used. In HREM, similarly, focus
settings differing by 2d2/λ (the Fourier image period) from the Scherzer focus, will
perform a kind of local periodic averaging, which preserves perfectly the image of
the undamaged lattice around the defect and masks the appearance of the defect. Only
in the true Scherzer image is the structure of the defect revealed correctly, resolution
permitting.

As beam divergence is increased, phase contrast is lost, however, this occurs
much more rapidly if Cs is large. Image simulations readily demonstrate this effect,
described by eqn 4.8(a). It follows that, for a given resolution, a much more intense
final image can be obtained, using a larger final illumination aperture, if Cs is
small. Typical values for state-of the art HREM machines are Cs = 0.65 mm and
θc = 0.25 mrad at 300 kV (λ = 0.00197 nm). Some experimentation with the sample
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(a)

(b) (c)

Fig. 5.19 Optical images of a wire gauze of period d illuminated with laser light, recorded at three
different focus settings. A crystal ‘defect’ has been simulated by damaging the gauze with a pin, as shown
in the in-focus image at (a). (b) shows the first-order Fourier (Talbot) self-image around the defect at
�f = 2d2/λ, while (b) shows the second-order Fourier image at twice this defocus (d = 0.19 mm, λ =
632.8 nm, �f = 114 mm). The defect is masked in the Fourier images, and the damage appears to be
repaired. Similar effects are seen in HREM images. At intermediate focus settings the defect alone is
maximized.

height may be needed to find the minimum Cs value, which can be done using dif-
fractogram analysis. The lowest position allowed by the maximum focussing lens
current will increase both magnification and the intensity of the final image, due to an
increase in the pre-field effect. For imaging at the point-resolution of the instrument,
the gun-bias setting need only ensure that the resolution limit imposed by chromatic
aberration (eqn. 4.11) exceed that due to spherical aberration (eqn 6.16). If the image
processing schemes of Chapter 7 are to be used, the highest possible information limit
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is needed, and hence a gun-bias setting is required which reduces the energy spread
of the source below the level of other instabilities (eqn 4.9).

Figure 5.20 demonstrates the value of reducing the electron wavelength for
HREM—the point resolution of these images of the same structure has increased
from 0.38 to 0.25 nm in going from 100 kV to 1 MeV. Curves B and C in the CTF
plots show the chromatic and spatial coherence damping envelopes, respectively,
while D shows the total effect. Note that the spatial coherence (beam divergence)
damping is negligible at 1 MeV. The multislice dynamical image simulations (inset)
agree well in both cases, indicating a correct choice of thickness. The improvement
in going from 0.24 resolution to 0.12 nm at 1.5 MeV is demonstrated in Fig. 5.24.

When imaging a crystal whose first-order reflection u0 lies beyond the point-
resolution of the instrument, there is a tendency for the operator to choose a certain
‘stationary phase’ focus �fs setting instead of the correct Scherzer focus. This import-
ant focus setting makes the slope of χ(u) zero around u = u0. Since the spatial
coherence damping is proportional to γ (∇χ/2π), where γ is the gaussian coherence
function (eqn (4.8a), following), this focus produces the brightest image of spatial
frequency u0, almost unaffected by spatial coherence limitations. From eqn (3.24)
we have

�fs = −Csλ
2u2

0 (5.66)

As a result, if diffractogram analysis is not used, most beginning operators will select
this focus setting, much larger than the Scherzer value, when focussing images of
elemental metals and semiconductors. By contrast, the Scherzer focus may show
rather weak contrast.

Some additional experimental considerations for defect imaging are discussed in
Chapter 12. We now turn to some examples of the method for line, point, and planar
defects.

The mystery of the structure of quasicrystals, which display ten, sharp, diffraction
spots around a zone-axis (‘sharp’, suggesting translational symmetry, ‘ten’ indicat-
ing five-fold symmetry, which is inconsistent with translational symmetry) can be
understood using the real-space representation afforded by HREM to directly reveal
the tilings. Figure 5.21 shows such an image, viewed along the five-fold axis (Hiraga
and Sun 1993).

HREM has become an indispensable tool for mineralogists, since the images dir-
ectly reveal the great variety of intergrown microphases which can occur in minerals.
These can provide useful information on the thermodynamic history and solid-state
reactions which take place. Figure 5.22 (Veblen 1985) shows the fascinating rela-
tionship, which can occur between chrysotile asbestos, talc, and lizardite. At higher
resolution, images of interfaces such as these can give clues to the transformation
mechanism.

The imaging of dislocation cores in semiconductors has a long history (Olsen and
Spence 1981; Northrup et al. 1981) and must be based on a solid understanding of
imaging conditions in the perfect crystal (Glaisher et al. 1989). The field is reviewed
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Fig. 5.20 Comparison of images of Nb12O29 recorded at 100 kV (a) (S. Iijima) and (b) at 1 MeV (S. Horiuchi), showing greatly increased detail at higher voltage
due to the reduced electron wavelength. Computer simulated images are shown inset. CTF plots shown below—A is the physical aperture used, B chromatic damping,
C Spatial coherence limit (modulus of eqn (3.22a) with θc = 1.4 mrad), D both damping envelopes. Point resolution 0.38 nm at 100 kV and 0.25 nm at 1 MeV. The
improvement in resolution to 1.2 Å is seen in Fig. 5.24.
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Fig. 5.21 HREM image of rapidly quenched Al74Mn20Si6 quasicrystal, viewed along the five-fold axis.
The diffraction pattern shows five-fold symmetry (see Hiraga and Sun (1993) and references therein).

Fig. 5.22 Rocks, caught in the act of transformation. Intergrowth of the serpentine structures (S), lizardite
(planar layers), and chrysotile (curved layers). Talc (T) can also be seen (Veblen 1985).
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by Alexander and Teichler (1991), George (1997) and Jones (2000). In a classic study,
the structure of a sigma 5 (130) tilt boundary in silicon and its dislocations has been
solved in three-dimensions by HREM (Bourret et al. 1988). Structural analysis of
screw dislocation cores in Mo is reported at the near-Angstrom level of resolution
in Sigle (1998), and of a 30◦ partial dislocation in GaAs at even higher resolution
in Xu et al. (2002). While the structure of dislocation kinks cannot be determined
by HREM, individual kinks can be seen in a projection where the beam is normal
to the glide plane, and in this way video images of kink motion in silicon have been
obtained, showing kinks pausing at obstacles. The images were also used to determine
kink formation (Fk = 0.727 eV for kinks on the ninety degree partial) and migration
energies (Wm = 1.24 eV) based on measurements of kink velocity under conditions
of known temperature and stress (Kolar et al. 1996). Non-equilibrium dissociated
dislocations were allowed to relax and move by heating in the microscope, and lattice
images recorded before and after partial dislocation motion. To avoid beam-induced
motion, motion occured with the beam switched off. Figure 5.23 shows a typical image

Fig. 5.23 A dissociated 60◦ dislocation in silicon after relaxation. Beam direction [111], normal to the
glide plane. The bright diagonal band of regular dots are six-membered rings in the ribbon of stacking
fault layer separating 30◦ and 90◦ partial dislocation lines. Black lines run along cores of the two partial
dislocations. Fine white line shows typical alternative boundary used to estimate error in counting kinks. The
lattice image was formed using only the inner six ‘forbidden’ [−211] reflections generated by the stacking
fault, so that fringes are only seen within the fault, whose boundaries delineate the partial dislocation cores
(Kolar et al. 1996).
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Spinel 1.6 nm

Aluminium ⊗ [110]

Fig. 5.24 Experimental image of the Al/MgAl2O4 interface in [110] projection recorded at 1.25 MeV;
underfocus 54 nm (Schweinfest et al. 2001). The inset shows the excellent match with a computer simulated
multislice image of the interface. Point resolution 0.12 nm.

formed from the three inner ‘forbidden’ [−211]/3 reflections which are generated by
the stacking fault. Since they are absent outside the fault, the lattice image delineates
the bounding partial dislocation cores.

HREM imaging of interfaces in semiconductors, ceramics, and metal–ceramic
interfaces have generated a large literature in the attempt to test theories of fracture,
of the segregation of dopants at ceramic and ferroelectric interfaces, and theoret-
ical calculations of interface structure. A semiconductor interface is shown in the
frontispiece—references to prior work can be found in Spence (1999). In ceramics, it
has been found, for example, that misfit dislocation cores, as predicted by elasticity
theory, lie somewhat displaced back into the softer material, rather than at the actual
interface on an atomic scale (Kuwabara et al. 1989). Figure 5.24 shows an image of
the Aluminium/Spinel (Al/MgAl2O4) interface down [110], recorded on the Stuttgart
MPI 1.25 MeV instrument, with a point resolution of 1.2 Å (Schweinfest et al. 2001).
The sample was prepared by molecular-beam epitaxy, forming a coherent, atomically
abrupt (100) interface. These two face-centred cubic structures have cell constants of
0.405 and 0.404 nm, respectively, leading to a very small mismatch of −0.0025 and a
coherent interface in which misfit dislocations are not seen. Consequently the number
of atoms needed in a supercell to represent the structure both in image simulations
and electronic structure calculations is small. Of particular interest is the lattice offset
or displacement between the two crystals, which can be measured from the HREM
images with picometer precision, and the atomic species occuring on the terminating
plane. Image analysis was based on the EMS software package (Stadelmann 1991).
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(a)

(b)

Fig. 5.25 Cross-section HREM images of an epitaxial (La0.67Ca0.33MnO3)1−x :(MgO)x
(LCMO : MgO) composite film on MgO(100) with different MgO concentration: (a) x = 0; (b)
x = 0.5. These straddle the metal-insulator transition. Domain boundary is indicated by a white arrow
(Lebedev et al. 2002).

An automated multi-parameter search was used to determine imaging parameters
(Chapter 7), using a cross-correlation function to indicate goodness-of-fit (Mobus
et al. 1998). Two projections were obtained down [100] and [110] after tilting 45◦
about an axis normal to the interface, however not all spacings were accessible in
both orientations. The Al atoms of the metal are found to lie above the oxygens of the
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spinel. Ab-initio electronic stucture calculations based on the local density approxim-
ation were completed using pseudopotentials for the atomic structure derived from the
images. From these, the work of separation between the interfaces could be obtained
as a function of separation for different lateral displacements. The structure observed
in the HREM images is found to have lowest energy. A map of charge density, and
the density of electronic states (DOS) at the interface are obtained. From this data,
ELS spectra can be predicted, and electrostatic theories of interface adhesion (such
as the image charge model) can be tested. A second example of this approach can be
found in the study of the Cu/MgO interface by ADF-STEM and ELS by Muller and
co-workers (Muller et al. 1998), where metal-induced gap states are detected.

The first convincing images of point-defects, in the form of substitutional dopant
atoms, have now been obtained using the ADF-STEM method, as shown in Fig. 8.8.
(Muller 2002). With the addition of aberration-correctors in STEM, it may be possible
to distinguish substitutional from interstitial atoms in these images, in correlation with
local energy-loss spectra.

The contribution of HREM to understanding the microstructure of collosal mag-
netoresistance (CMR) materials can be traced through references in Mori et al. (1998)
and Van Tenderloo et al. (2000), in which static charge stripes are directly observed by
HREM. The sensitivity of HREM images to ionicity is analysed in detail in Anstis et al.
(1973), and the sensitivity of structure factors to orbital ordering in Jiang et al. (2002).
Literature on HREM in the closely related area of oxide superconductors can be found
in work by Ourmazd et al. (1987), and the reviews of Horiuchi (1994) and Shindo
and Hiraga (1998). Figure 5.25 (Lebedev et al. 2002) shows cross-section HREM
images of an epitaxial (La0.67Ca0.33MnO3)1−x : (MgO)x (LCMO : MgO) composite
film on MgO(100) with two different MgO concentration: (a) x = 0; (b) x = 0.5,
which straddle the metal-insulator phase transition at x = 0.3. We note the absence
of any secondary phase at the boundary for x = 0 (a) and the heteroepitaxial growth
of MgO columns along the domain boundary in the direction normal to the interface
for the film with x = 0.5. The LCMO films for x = 0 were found from HREM and
TED patterns to be orthorhombic (Pnma), whereas for x > 0.3 the structure becomes
rhombohedral (R3c). The phase boundary at xc ≈ 0.3 coincides with the percola-
tion threshold in conductivity. The largest CMR effect (�R(5T )/R(5T ) ≈ 105) is
observed for a film with x ≈ xc, and is caused by a magnetic field-induced insulator
to metal transition. This is explained as a 3-D stress accommodation in thick films due
to a structural phase transition of La0.67Ca0.33MnO3 from the orthorhombic Pnma
structure to a rhombohedral R3c structure.

The problem of imaging the very light columns of oxygen atoms in crystals has
been a long-standing challenge for HREM. First indications came in the through-
focus series work of Coene et al. described in Chapter 7, and finally in direct images
from an aberration-corrected microscope using a new focus and negative spherical
aberration condition, which produces bright atom images in the bright-field TEM
mode (Jia et al. 2002/3). This opens the way to the study of oxygen ordering by direct
imaging, which is crucial to understanding the function of many electronic oxides,
strongly correlated materials and oxide superconductors.
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A long-term goal of HREM has been the reconstruction of three-dimensional
images of crystal structures. This has now been achieved, using lattice images recor-
ded in different orientations. Samples were cut from a single crystal in different
orientations. The results for Staurolite are reported in Wenk et al. (1992). Similar
tomographic imaging in STEM is described in Section 8.5.
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6
HREM IN BIOLOGY, ORGANIC CRYSTALS,

AND RADIATION DAMAGE

The unique advantages of high-resolution transmission electron microscopy (TEM)
are best utilized for the investigation of the atomic structure of non-periodic specimens
and specimens composed of microcrystals. Many interesting and important structures
do not form crystals large enough for analysis by X-ray diffraction methods; for these,
electron images can provide a great deal of useful information. This chapter describes
the simple phase-contrast theory, using which the images of non-periodic ultra-thin
specimens, small molecules, and single atoms may be interpreted.

This chapter also includes a discussion of the characteristics of images of single
atoms and the dependence of single-atom image contrast on wavelength, atomic
number, defocus, and objective aperture size. Most of the useful mathematical res-
ults for high-resolution single-atom imaging are included—the practical methods
of single-atom imaging are discussed in Section 6.2 and Chapter 12. The tech-
niques of minimum-exposure microscopy are outlined. This leads into a survey of
sub-nanometer electron microscopy in biology and of radiation damage processes.

6.1 Phase and amplitude contrast

At medium and low resolution, the contrast in electron microscope images is under-
stood to arise from the creation of an intensity deficit in regions of large scattering
where the scattered rays are intercepted by the objective aperture. A clear account of
this theory is given in Cosslett (1958). At high resolution where one seeks to examine
distances comparable with the coherence width (Section 4.3), this incoherent theory
is no longer adequate and phase contrast becomes the dominant contrast mechanism.
The theory of phase contrast becomes important whenever detail in a micrograph is
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of interest which is smaller than the coherence width. Fresnel fringes, lattice fringes,
and single-atom images are three examples of phase contrast. To discuss the transition
from amplitude to phase contrast in a simple way, it is necessary to use a highly sim-
plified theory, which unfortunately is accurate only for the very thinnest specimens
(t < 10 nm for light elements at 100 kV) or for rather thick specimens imaged at
low resolution. There is no simple theory for the interpretation of image detail in the
intermediate range—for example, high-resolution detail (<1 nm) in a non-periodic
specimen 20-nm thick imaged with coherent radiation (Xc � 1 nm). However, it is
possible, though time-consuming, to compute such an image (see Section 6.7).

Aperture contrast (also known as amplitude or absorption contrast) can be incorp-
orated into the transfer theory outlined in Chapter 3 in the following way. Since the
amount of scattering excluded by a small aperture is approximately equal to the total
atomic scattering, the transmitted intensity I for a specimen of thickness t and density
ρ is

I = I0 exp(−μt)

with

μ = σeρL/M (6.1)

where M is the local molecular weight, L is Avogadro’s number, and σe is the local
elastic scattering cross-section (see Fig. 6.6). Here the phase difference between
waves scattered by successive atoms has been ignored, so the specimen exit-face
wave amplitude becomes

ψe = √
I = ψ0 exp(−μt/2)

This expression can be used to describe the attentuation of the image wavefield in
eqn (3.24) (Grinton and Cowley 1971; see also Appendix 2):

ψe = exp(−iσφP(x, y)) = exp(−iσφR(x, y)) exp(−σφi(x, y)) (6.2)

where φP = φ′
R − iφi is the complex projected specimen potential with φ′

R now
averaged over the resolution distance (Cowley and Pogany 1968). Here, φi = μt/2σ .
This imaginary part of the potential may also be used to represent the depletion of the
elastic wavefield by inelastic processes (Yoshioka 1957). Working through the transfer
theory of Section 3.4 with this complex potential then gives for the bright-field image
intensity

I = 1 + 2σφR(x, y) ∗ F{A(u, v) sin χ(u, v)}
− 2σφi(x, y) ∗ F{A(u, v) cos χ(u, v)} (6.3)

where the ∗ again indicates the convolution or smearing of the specimen potential
(the ideal image) with the point spread function of the instrument, shown in Fig. 3.6.
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This equation contains three terms. The first represents the uniform bright-field
background, while the second represents the phase-contrast image. The third term
represents the ‘absorption’ image. The relative importance of these last terms can
be judged from Fig. 6.1, which shows the transfer functions at Scherzer focus
(see Section 6.2). Most biological microscopy is limited by radiation damage and
stain effects to a resolution far poorer than 1 nm. With an aperture cut-off at this
point, Fig. 6.1 shows that we have, very approximately,

cos χ ≈ 1 and sin χ ≈ 0

so that the image intensity is, from eqn (6.3),

I ≈ 1 − 2σφi(x, y) ∗ F{A(u, v)} (6.4)

which predicts an image which is dark in regions of large ‘mass-thickness’ (ρt).
This same image is obtained at Gaussian focus (�f = χ = 0) where there is
no phase-contrast contribution, the effect of spherical aberration being negligible at
this resolution. Thus, ultra-thin specimens imaged with no objective aperture, so
that φi = 0, appear transparent at exact focus. This phenomenon is used to obtain
a reference focus for high resolution, with some modification for the effects of the
transfer function, as discussed in Chapter 11. Note that this analysis assumes perfectly
coherent illumination. In practice with θap = 1 mrad, the ‘incoherence width’ is about
3.7 nm at 100 kV (eqn (4.17)) and so for resolution much poorer than 3.7 nm, the
imaging should be considered incoherent. In that case, as is the situation in most low-
resolution biological microscopy, the expression corresponding to eqn (6.3) would

–4 –3 –2 –1
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0

+1

1

2.0 1 5 0.3 0.25d (nm)

2

Aperture
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sin � (u)
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Fig. 6.1 The phase-contrast transfer function for bright field at the Scherzer focus �f = −1.2 (Csλ)1/2 =
−61.0 nm with Cs = 0.7 mm at 100 kV. This is about the lowest spherical aberration constant available
on current instruments using a fixed high-resolution stage. The limits of a suitable bright-field aperture
are indicated. The dotted line shows the transfer function required of an ideal phase-contrast microscope
such as might obtain for a good quality optical phase-contrast microscope. In electron microscopy, we
approximate this ideal function by a suitable choice of focus and thereby ‘convert’ a phase object into an
amplitude object. The abscissa is marked in units of |K| = θ/λ and resolution d. The effect of the damping
envelope is shown in Fig. A3.2(a).
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be (Section 4.2),

I = 1 − 2σφi(x, y) ∗ |F{A(u, v)}|2 ∗ |F{exp iχ(u, v)}|2 (6.5)

where A(u, v) describes the aperture used. For such an incoherent image, multiple-
scattering effects will be small for thicknesses much less than the elastic scattering
path length. For carbonaceous material at 100 kV this is about 130 nm. To assess the
importance of multiple scattering for coherent imaging, see Section 6.3.

At high resolution, concentrating on spacings comparable with the coherence length
between, say, 0.1 and 1 nm, we see from Fig. 6.1 that, very approximately,

sin χ ≈ −1 and cos χ ≈ 0

so the image is

I = 1 − 2σφR(x, y) ∗ F{A(u, v)} (6.6)

which is a pure phase-contrast image. This accurately reflects the specimen projected
potential at this focus setting for sufficiently thin specimens. Like the absorption
image, the image is dark in regions of high potential at this focus.

The above is a highly simplified theory and applies only to the very thinnest spe-
cimens for phase contrast (t < 10 nm for light elements). Nevertheless, eqn (6.3)
provides the basis for much of the computer image processing presently undertaken
(reviewed by Saxton (1978) and Frank (1973)). The relative simplicity of this equa-
tion has provided much of the stimulus for the preparation of ultra-thin specimens.
Carbon support films can now be made with thicknesses down to about 2 nm.

To summarize, images of thick specimens formed with small apertures should
be interpreted on the incoherent absorption-contrast model (eqn (6.5)), while
high-resolution images are formed from phase-contrast effects and require larger
(optimized) apertures and the thinnest possible specimens. Physically, absorption
contrast arises from the exclusion of electrons from the image by the aperture. Phase
contrast arises from the interference between waves within the aperture whose phase
must be controlled (by accurate focusing) to produce contrast. Absorption contrast
is increased at lower voltages and through the use of smaller apertures. The cut-
off angle for absorption contrast can be reduced by increasing the lens focal length
to provide more low-resolution contrast for stained biological specimens. On the
other hand, phase contrast may increase with accelerating voltage (see Fig. 6.8). The
maximum specimen thickness which allows a pure phase-contrast interpretation also
increases with accelerating voltage. At 100 kV for stained biological specimens about
10-nm thick, both phase and amplitude effects are important if a resolution of 1 nm
is expected. In practice, the Fresnel fringe is also commonly used to enhance image
contours. Since the width of these fringes is approximately equal to the transverse
coherence width (Section 10.8), the approximate rule of thumb can be adopted that the
more complicated phase-contrast theory is required to interpret detail smaller than the
total width of any Fresnel fringes observed on a micrograph. The contrast for detail
larger than this is proportional to the density of scattering matter in the object. The
choice of focus under these conditions is discussed in Agar et al. (1974).
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6.2 Single atoms in bright field

In Chapter 3, an expression was given for the two-dimensional complex amplitude
across the exit face of a phase object such as a single atom:

ψe(x, y) = exp(−iσφP(x, y)) (6.7)

where σ = 2πm0eλrγ /h2 and γ = m/m0 = (1 − v2/c2)−1/2 incorporate the
relativistic correction to the refractive index. A reasonable approximation for atoms
of medium and low atomic number is given by the first-order expansion

ψe(x, y) = 1 − iσφP(x, y) (6.8)

known as the weak-phase object approximation. An expression for the atomic poten-
tial can be obtained as follows. In the first Born approximation, the wave scattered
by an atom is given by

ψ = γ (exp(−ikir)/r)f (K)

where

f (K) = 2πm0e/h2
∫ ∞

−∞
φ(x, y, z) exp(2πiK · r)dx dy dz (6.9)

with K, the scattering vector (see Fig. 6.2). Traditionally, the function f (K) has
been tabulated according to eqn (6.9) so that, regardless of the accuracy of the first
Born approximation, this publishing convention allows the atomic potential to be

ki ke

K

�

�

Fig. 6.2 Definition of the incident wave vector ki, the scattered wave vector ke, and the scattering vector K
for elastic scattering. For elastic scattering, |ke| = |ki| = 1/λr and ke − ki = K. The Bragg angle φ and
the scattering angle θ are also shown.
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synthesized by inverse transform of this equation (Dawson et al. 1974). With the
approximation of a flat Ewald sphere, equivalent in this case to the neglect of Fresnel
diffraction or propagation within the atom, so that Kz = 0, we have, from eqns (6.8)
and (6.9),

ψe(x, y) = 1 − iλrγ

∫ ∫
f (K) exp(−2πiK · r)dKx dKy

The methods of Section 3.4 can be used to obtain the image complex amplitude as

ψi(x, y) = 1 − iλrγ

∫ ∫
f (K) exp(+iχ(K)) exp(−2πiK · r)dKx dKy (6.10)

where unimportant phase factors of unit modulus have been omitted for clarity.
A magnificaton of unity is assumed and the function

χ(K) = π�f λrK2 + πCsλ
3K4/2 = π [Csθ

4/2 + �f θ2]/λr (6.11)

For elastic scattering (Fig. 6.2), we also have

|K| = 2 sin θB/λr ≈ θ/λ = 1/d

with θ the angle between the incident beam and the scattered wave—this is twice the
X-ray ‘Bragg angle’ θB. Scattering factors are usually tabulated as a function of θB/λ.
For symmetric atoms,

f (K) = f (|K|)
and the image is radially symmetric. Equation (6.10) then becomes

ψi(r) = 1–2πiγ /λr

∫ θap

0
f (θ)J0(2πθr/λr) exp(+iχ(θ))θ dθ (6.12)

which can be written as

ψi(r) = 1 − iz

where z is a complex function of r.
The image intensity is then

I (r) = ψiψ
∗
i = 1 + 2 Im(z) + zz∗ ≈ 1 + 2 Im(z)

= 1 + 4πγ/λr

∫ θap

0
f (θ)J0(2πθr/λr)θ sin χ(θ) dθ (6.13)

for a bright-field image of a single unsupported atom formed with a central objective
aperture of semi-angle θap. To a good approximation, the integrated image intensity
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is proportional to the axial value

I (0) = 1 + 4πγ/λr

∫ θap

0
f (θ) sin χ(θ) θ dθ = 1 + A (6.14)

so that the image contrast becomes

C = |I (∞) − I (0)|/I (∞) = |A| (6.15)

The problem of maximizing single-atom contrast then becomes the problem of
maximizing the integral in eqn (6.14), for which the experimental variables �f, θap,
and χ(θ) are available. The integral is dominated by the behaviour of the transfer
function sin χ(θ), shown in Fig. 6.1 with its characteristic rapid oscillation at high
angles. Several workers have investigated the behaviour of eqn (6.14) and several
criteria for choosing �f and θap have been proposed. All these lead to the approximate
result that, for maximum contrast,

�f = −1.2(Csλ)1/2 (6.16a)

and

θap = 1.5(λ/Cs)
1/4 (6.16b)

a result first obtained by Scherzer (1949). This is the n = 0 case in eqn (4.12). The
diffraction limit set by this aperture size corresponds to a point resolution of

dp = 0.66C
1/4
s λ3/4 (6.17)

in an ideal phase-contrast microscope fitted with the objective aperture of eqn (6.16b).
Note, however, that since the imaging is coherent, the resolution cannot strictly be
defined in this simple way, since the ability to distinguish neighbouring point objects
depends on their scattering properties under coherent illumination (see Chapter 3). The
sign of �f indicates that a slightly under-focused lens is required for optimum contrast
(Scherzer focus). Here the lens is slightly weakened from the Gaussian focus condition
and is focused above the specimen, while the first Fresnel fringe would appear bright.
This value of �f gives the best approximation to an ideal lens for phase contrast,
shown dotted in Fig. 6.1 and giving χ(θ) = −π/2 for all θ except at the origin where
χ = 0. This would lead to a darkened image on an otherwise bright background.
Alternatively, χ(θ) = +π/2 would lead to a bright image. Notice that the low spatial
frequencies are severely attenuated so that a pure phase-contrast image would be
synthesized from the middle-range spatial frequencies only. In practice, there is a
maximum contribution from absorption contrast at low spatial frequencies which
may complement this lack of information from the real potential (Section 6.1). All
spatial frequencies beyond 1/d = θap/λ are excluded by the aperture, corresponding
to detail smaller than dc = λ/θap. Resolution for coherent images must be understood
in this sense of an allowed band of spatial frequencies with differing weights given
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Fig. 6.3 The intensity of a bright-field image of a single gold atom plotted as a function of radial distance
from the centre of the atom. The contrast is about 25 per cent, which well exceeds the threshold of
detectability (5 per cent). The experimental conditions simulated are Cs = 0.7 mm, �f = −61 nm,
accelerating voltage 100 kV. This theoretical calculation based on eqn (6.13) does not take account of
the image background due to a substrate supporting film. The two-dimensional intensity distribution is
obtained by rotating the figure about the vertical axis and the intensity distribution for two neighbouring
atoms consists of the sum of two displaced functions such as these. For such a pair of atoms the resulting
image depends both on the focus condition and the atomic separation—it is possible to obtain a single deep
intensity minimum at the point where subsidiary minima from adjacent atoms overlap. This could lead to
the false identification of a single atom where two actually exist. The complexities of image interpretation
are compounded in dark field where complex amplitudes must be added.

by the instrumental transfer function. Focusing the microscope can be thought of as
‘tuning’ the instrument to the spatial frequencies of interest.

Figure 6.3 shows this idealized bright-field image for a gold atom using the optimum
values of �f and θap. The image was computed from eqn (6.13) using the relativistic
Hartree–Fock scattering factors of Doyle and Turner (1968). The use of a complex
scattering factor has been investigated by Hall (1971) and found to have little effect
on contrast. A value of Cs = 0.7 mm has been used. An image of lower contrast
can be obtained with a small positive value of �f which produces a bright image
more intense than the uniform background. This transition from bright to dark image
can be observed experimentally with small clusters of evaporated gold atoms on thin
amorphous carbon films as described in Section 1.3, or using the resolution standards
referred to in Section 10.10.

Isolated single atoms have been imaged in bright-field transmission microscopy by
several workers (Formanek et al. 1971; Iijima l977) and it is important to establish
that these are indeed individual atoms. (Since that time, the development of cryo-
microscopy has provided a greatly improved method of supporting heavy atoms and
molecules in ice (Section 6.9).) Perhaps the most convincing evidence that one is
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seeing individual atoms comes from experiments in which images of the same sub-
strate area are recorded before and after the addition of a heavy atom. A method for
adding atoms inside the microscope (in situ) has been developed by Iijima (1977), who
installed a small evaporation furnace in the microscope. The most important practical
problem in all single-atom studies so far has been the preparation of an ‘invisible’
substrate to support the atoms of interest. Iijima has used thin graphite flakes which
are etched in the microscope to reduce their thickness still further by the action of the
electron beam on tungsten trioxide particles. The thickness of these ultra-thin spe-
cimen supports has been estimated from the chance observation of graphite crystals
whose edges curl up, giving a view down between the graphite crystal layers. Since
individual layers are resolved, the thickness of the substrate can be found by counting
the atomic layers. Crystals of about 2-nm thickness were frequently used as shown
in Figs 6.4–6.7. In these figures, taken at the optimum (Scherzer) focus given by
eqn (6.16), we note the following. (1) Owing to the use of an extremely thin graphite
substrate there is almost no discernible contrast change between the region outside
the graphite support film and the region inside the graphite flake. In addition, image
noise due to thickness variations of the support film is not seen. (2) The first Fresnel
fringe at the edge of the graphite flake appears bright, indicating that the image was
recorded slightly under-focus (weakened lens). (3) The atoms and clusters of atoms
appear dark, as expected from Fig. 6.3 at the focus setting used.

Fig. 6.4 Single atoms and clusters of atoms of tungsten on the surface of a few atomic layers of graphite.
The black areas are larger tungsten oxide crystals. Fresnel edge fringes can be seen surrounding the region
where a single atomic layer of graphite has been removed. Individual atoms are marked by arrows. The
experimental conditions are �f = −61 nm, Cs = 0.7 mm, λ = 0.0037 nm, illumination semi-angle
1.4 mrad, objective aperture semi-angle 16 mrad, electron optical magnification 500 000. The objective
aperture used excludes the Bragg beams diffracted by the graphite substrate from the image. No image
processing, background subtraction, or contrast enhancement techniques have been used in printing these
micrographs.
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(a) (b)

(c)

(e)

(d)

Fig. 6.5 These images, recorded under slightly different conditions from those of Fig. 6.4 (Cs = 1.8 mm,
Scherzer focus) show individual atoms (a, b, d), one of which (a) can be seen to move between exposures.
All the atoms cling to rough spots on the surface where the electrostatic potential ‘well’ is deepest. Atom c
is believed to be a pair of atoms which separate in the last image. A contrast scale is given below to allow
comparison with Fig. 6.3.

Three tests can be applied to confirm the interpretation of these images as showing
single atoms. (1) The size of an isolated atom image should agree with the width
of the function shown in Fig. 6.3(a) computed from eqn (6.13). This size depends
mainly on the objective aperture used, the value of Cs and the focus setting. If
no objective aperture is used, an effective aperture must be assumed whose size is
determined by the magnitude of the incoherent instabilities (see Sections 3.3 and 4.2
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2 nm

(a)

(b)

(c)

Fig. 6.6 Graphite flake shown (a) before and (b) after in situ evaporation of tungsten atoms. Again the
atoms stick to surface steps. (c) The same region after 5 min’ beam irradiation when the heavy atoms have
migrated together to form metallic tungsten.

and Appendix 3). The size of a single-atom image does not depend on the type of atom
to any appreciable extent, rather, it depends on the impulse response of the objective
lens (see Section 3.4). (2) The contrast of a single-atom image should also agree
with calculations. Figure 6.5 shows three optimum focus images of tungsten atoms
on a graphite substrate recorded at 2-min intervals. Atoms can be seen to have moved
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(a) (b)

(c) (d)

2 nm

Fig. 6.7 Through-focus series showing the phase-object nature of single-atom images. Focus settings
are (a) �f = +42.5 nm, (b) �f = −25.0 nm, (c) �f = −92.5 nm, (d) �f = −160.0 nm. Atoms are
arrowed. Same experimental conditions as Fig. 6.4. Note the changing appearance of the Fresnel fringes
around the clump of tungsten on the lower edge of the images and the absence of contrast in (b) taken under
conditions similar to those of Fig. 1.2(b). Owing to the presence of spherical aberration, the focus condition
for minimum contrast occurs at a small under-focus value rather than for �f = 0 (see Section 10.4). (c) The
optimum (Scherzer) focus image.

about between exposures, while the contrast of single-atom blobs is between 6 and
9 per cent, in agreement with calculations. (3) Images showing the same region before
and after the addition of a known number of atoms provide the best confirmation of
image interpretation.
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Figure 6.6(a) and (b) shows such a pair of images, while Fig. 6.6(c) shows the
effect of beam-induced atomic mobility. The atoms use some of the energy available
from the electron beam to hop about on the surface, finally collecting in the small
clusters shown.

It should be emphasized that an ultra-low spherical aberration objective lens is not
needed to image well-separated atoms. A low spherical aberration constant (resulting
in reduced width of the atom image) only becomes important when one wishes to
distinguish closely separated atoms, such as are found in the neighbourhood of defects
in solids.

Figure 6.7 beautifully illustrates the ‘phase object’ nature of single-atom images
(see Sections 1.1 and 3.4). In accordance with theoretical predictions, the image
recorded at ‘exact’ focus shown in Fig. 6.7(b) shows little or no contrast. As further
predicted by eqn (6.13), the over-focus image (Fig. 6.7(a)) shows bright fluctuations
against the bright-field background, changing to dark atom images of high contrast
at optimum focus (Fig. 6.7(c)). The reason why the image of minimum contrast
(Fig. 6.7(b)) occurs at a slight under-focus value rather than for �f = 0 is discussed
in Section 12.5. It can be seen from a comparison of Fig. 6.7(c) and (d) that for
single-atom work, a focusing accuracy of a few tens of nanometres is needed. Even
greater accuracy (perhaps ± 4 nm) is needed if the atoms are closely spaced so that
their images overlap (see Fig. 6.3(b)).

6.3 The use of higher accelerating voltage

Several review articles covering the use of high-voltage machines for biological
applications have appeared (Glauert 1974; Humphreys 1976; Porter 1986; Renken
et al. 1997).

The wavelength reduction resulting from an increase in accelerating voltage has
several generally beneficial effects on high-resolution phase-contrast images. Two
machines in particular, operating at about 1 MeV in Stuttgart and Tokyo have produced
striking images with resolutions close to 1 Å (Ichinose et al. 1999; Schweinfest et al.
2001).

The dependence of single-atom contrast in bright field on wavelength can be
obtained from eqns (6.15), (6.14), and (6.16) using the relativistic wavelength and
mass correction factor

γ = m/m0 = (1 − v2/c2)1/2 = (1 + eV0/m0c
2) (6.18)

The small additional effects of electron spin are discussed in Fujiwara (1962). The
result of such a calculation is shown in Fig. 6.8 for a gold atom using Turner–Doyle
scattering factors. The results of electron-optical calculations and experiment sug-
gest that the product of Cs and λ is approximately constant. The smooth numbered
curve in Fig. 6.8 is drawn for Csλ = 11.3 × 103 nm2, while the crosses represent the
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Fig. 6.8 Contrast of the bright-field image of a single gold atom as a function of accelerating voltage.
Unlike the normal aperture ‘absorption’ contrast, this phase contrast increases with voltage. The Scherzer
focus has been assumed and the spherical aberration constant used is an extrapolation from the value
applying to Dr Kobayashi’s instrument (Cs = 1.2 nm at 500 kV) assuming the product of Cs and λ to be
independent of wavelength. Note that the assumption that the product of Cs and λ is constant also suggests
that the Scherzer ‘optimum focus’ condition is also independent of accelerating voltage (eqn (6.16)).

performance of commercial instruments. With increasing voltage the atomic scat-
tering becomes more narrowly forward-peaked; however, the dependence of the
scattering factor on θ differs from that of the transfer function and both effects must
be considered. The main cause of the large increase in contrast with accelerating
potential is the increase in relativistic electron mass. This increase in phase contrast
with increasing accelerating voltage should be distinguished from the conventional
(incoherent) aperture absorption contrast of interest at low resolution. In fact, for
a fixed objective aperture size, the absorption contrast decreases with accelerating
voltage as the electron scattering becomes more strongly forward-peaked.

The resolution of electron images also improves at higher voltage, both in the-
ory and in practice, as shown in Fig. 5.30. Combining the empirical wavelength
dependence of spherical aberration with eqn (6.17) suggests that the resolution should
improve as the square-root of the wavelength. Experimental work suggests

d = 6.8λ1/2 (6.19)

with λ in nanometres. This would give a resolution of 0.1 nm at 4 MeV and 0.07 nm
at 10 MeV. At present it appears unlikely that any more machines which operate
at voltages above 1 MeV will be built, in view of their very high cost. In addition,
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problems of electronic and mechanical stability have yet to be resolved for instruments
operating much above 1 MeV and the use of aberration correctors provides a much
lower cost alternative. A more detailed analysis of the dependence of resolution on
electron wavelength can be found in Appendix 3.

The effects of chromatic aberration become less severe at high voltage. The
incoherent image blurring is (eqn 2.38)

�r = Ccθap�V0/V0

which decreases inversely as the accelerating voltage for a fixed energy loss �V0.
The focal plane separation is also correspondingly reduced.

We now consider the importance of multiple scattering as a function of wavelength.
Tivol et al. (1993) demonstrate the decline of multiple-scattering artefacts in diffrac-
tion patterns from organic crystals from 100 to 1200 KeV. In the incoherent imaging
theory used at low resolution, multiple-scattering effects can be neglected for spe-
cimens much thinner than the path length for elastic scattering (see Section 6.1).
However, when we consider high-resolution coherent imaging, there are two quite
distinct physical mechanisms which must be considered: the strength of the electron
scattering interaction and the effects of Fresnel propagation through the specimen.
The strength of the electron-scattering interaction is measured by σvg, where vg are
the crystal potential Fourier coefficients (see Section 5.3.2). Relativistic effects are
correctly incorporated if the relativistic mass m, accelerating voltage, and wavelength
λr (see eqn 2.5) are used in the definition of σ (see Section 2.1). The relativistic extinc-
tion distance is then given by equation (5.17). A rule of thumb which expresses the
spreading of a wave from a point source due to Fresnel propagation can be obtained
by setting the maximum phase shift allowed by Fresnel propagation equal to π (see
Section 3.1), or, equivalently, by restricting the resolution to those reflections for
which the Ewald sphere passes through the central maximum of the kinematic shape
transform shown in Fig. 5.2. Thus, the curvature of the Ewald sphere expresses phys-
ically the process of the propagation of the Huygen’s wavelets in the crystal. Setting
the phase of eqn (3.16) equal to π gives

u−1 = d = √
λt (6.20)

That is,

t < d2/λ

gives the approximate condition that Fresnel broadening of the diffracted waves may
be neglected in a specimen of thickness t if one is interested in detail of size d or larger.
Note that eqn (6.20) also gives the approximate width of the first Fresnel edge fringe
(see Section 10.8). One approximation which neglects the effect of Fresnel diffraction
(or Ewald sphere curvature) is the phase-grating approximation (eqn 6.7) and this
belongs to a class of approximations known generally as ‘projection approximations’.
Using them, it is not possible to distinguish differences in the height of atoms within
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the specimen. Resolution in the direction of the electron beam is only possible using a
theory which takes full account of Fresnel diffraction and the Ewald sphere curvature.

Thus, eqn (6.20) may be used to estimate the maximum thickness for which
eqn (6.7) can be used for non-periodic specimens. From eqn (6.20) we see that while
this expression accurately describes images of 0.35-nm resolution in specimens 30-nm
thick at 100 kV, for the same resolution, this thickness is increased to 400 nm at 4 MeV.
For crystalline specimens, the orientation is important and detailed calculations must
be used to assess the accuracy of the phase-grating approximation (see Section 5.5).

An important problem in high-voltage microscopy concerns the reduced sensitiv-
ity of photographic emulsions and viewing phosphors at high accelerating voltages.
Methods of minimizing these effects, using thicker viewing phosphors and fast med-
ical X-ray film have now been developed (Iwanaga et al. 1968; Cosslett 1974).
Electron source brightness increases with accelerating voltage (see eqn (9.2)).

To summarize, there seems to be little doubt that the trend in HREM will continue
towards machines operating at several hundred kilovolts (Cosslett 1974; Kobayashi
et al. 1974) if aberration correctors are not used. For reasons of cost and performance
these ‘medium energy’ machines have now become the most popular instruments
for HREM work, with a point-resolution of about 0.17 nm or better; as shown in
Fig. 5.24. Appendix 3 provides instructive comparisons in more detail on the effects of
accelerating voltage on HREM performance. For corrected machines, the wavelength
reduction at higher voltage is not needed, and radiation damage can be reduced by
using beam energies perhaps as low as 80 kV.

6.4 Contrast and atomic number

Experimental images of heavy atoms show more contrast than those of light atoms
(Whiting and Ottensmeyer 1972; Crewe et al. 1974). This is expected theoretically as
shown in Fig. 6.9 where the bright-field, single-atom contrast is plotted as a function
of atomic number. Equation (6.15) has been used with the optimum values of �f and
θap at 100 kV and 3 MeV. The steeper slope of the graph at higher voltage suggests
that the discrimination of atomic species may be easier at higher voltage. In practice,
the effect of the substrate must be allowed for; however, experimental single-atom
images have been obtained in bright field (Formanek et al. 1971; lijima 1977) and work
continues in an effort to find a substrate that produces lower noise than amorphous
carbon (see Section 12.6).

It is of interest to compare the expression for bright-field single-atom contrast with
the total elastic scattering cross-section to clarify the distinction between a scattering
experiment and a phase-contrast image. For an ideal phase-contrast image in bright
field (χ(θ) = π/2 in eqn (6.10)), with no objective aperture, the contrast would be

CBF = λγ

∫
f (K) dK (6.21)
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Fig. 6.9 The contrast of bright-field images of single atoms as a function of atomic number at two different
accelerating voltages. The contrast increases more rapidly with atomic number at higher accelerating
voltage. Here the Scherzer conditions are assumed with Cs = 0.5 mm at 100 kV and Cs = 4.7 mm at
3 MeV, again an extrapolation from Dr Kobayashi’s instrument.

For comparison the elastic-scattering cross-section is defined as

σe =
∫

|f (K)|2 d� (6.22)

which can be expressed as an integration over K.
Values of σe are indicated in Fig. 6.10, obtained from Turner–Doyle scattering

factors (Humphreys et al. 1974). On the same plot is shown the expression due to
Lenz (1954),

σe = λ2Z4/3

π(1 − v2/c2)
(Å2) (6.23)

which provides a very rough approximation.
The contrast in a dark-field atom image depends critically on the substrate used;

however, the intensity relative to unit incident intensity at the centre of a dark-field
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Fig. 6.10 The elastic scattering cross-section σe plotted as a function of atomic number. This shows how
strongly 100 kV electrons are scattered by atoms, and how the strength of the scattering increases with
atomic number. In transmission electron microscopy, only a small part of the total scattering shown here
is used to form the image. The straight line is a simple expression due to Lenz, the other curve is the result
of detailed calculations based on Doyle–Turner scattering factors. Both scales are logarithmic. (Courtesy
of C.J. Humphreys.)

image of a single atom formed in an ideal phase-contrast microscope (χ(θ) = 0 in
eqn (6.25)) would be

IDF = λ2γ 2σe (6.24)

if an unsupported central beam stop were used within a large objective aperture.
Accurate calculations must take account of the substrate, the geometry of the beam

stop, and the effects of defocus and spherical aberration as in eqn (6.25) (see also
Section 6.5).

Through the reciprocity theorem (Cowley 1969), the results given in Figs 6.9
and 6.10 also apply to the case of single atoms imaged in scanning transmission
electron microscopy (STEM) under reciprocal aperture conditions—that is, a small
central detector and optimum illuminating aperture and focus condition. The dark-
field mode has many advantages in STEM (Langmore and Wall 1973) for elemental
discrimination (see Section 8.3 on STEM imaging).

6.5 Dark-field methods

A large increase in contrast is obtained by eliminating the bright-field background
represented by the first term in eqn (6.13), the eye being sensitive to ratios of intensity
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rather than their absolute magnitude. The unscattered wave is focused to a small
spot in the objective lens back-focal plane and may be eliminated using a suitably
shaped aperture or tilted illumination. Against this important advantage must be set
the disadvantage that dark-field images are less easily interpreted than bright-field
images, since the effect of the aperture geometry on the image Fourier synthesis must
be considered.

First consider a single atom imaged using an unsupported central beam stop to
exclude the central diffraction maximum. Then, eqn (6.8) allows the image to be
calculated as

I (x, y) =
∣∣∣∣λγ

∫ ∞

−∞
f ′(K)eiχ(K) e2πiK·r dK

∣∣∣∣
2

(6.25)

where f ′(K) is the atomic scattering amplitude modified by the aperture. For an ideal
central beam stop, I (x, y) is a smooth peak, so that a bright spot will be seen as
the dark-field image of an isolated single atom. For more complicated apertures, the
function f ′(K) must be set to zero in the regions excluded by the beam stop. For
groups of atoms and more realistic apertures, the situation is complicated and false
image detail is possible in dark field. In practice, the diffraction conditions may not
be symmetric, so that a two-dimensional image simulation is required to predict the
image of a known structure. Computed images for a variety of dark-field modes (wire
beam stop, displaced aperture, tilted illumination) have been published (Chiu and
Glaeser 1974; Krakow 1976). Beam stops have been made using fine tungsten wire
across the diameter of the objective aperture or a gold-plated spider’s web in the same
position. Fine quartz fibres have also been used. The effect of electrostatically charged
contaminant forming on these wires is an important experimental problem. The effect
of the wire thickness on the appearance of the image of an atom is discussed in Chiu
and Glaeser’s paper. Fig. 6.11 shows the image distortion possible under various
dark-field conditions for a small molecule.

The optimum defocus and aperture size which must be used in dark field differ from
those used in bright field. Unlike the bright-field case, both the real and imaginary
parts of eqn (3.23) are equally influential for dark field, as can be seen by comparing
eqns (6.25) and (6.13). The optimum focus for dark field is one which makes χ(θ) ≈ 0
to the highest resolution possible. The condition sin χ(θap) = 0.3 has been suggested
(Cowley 1976), which gives an optimum focus for dark field of

�f = −0.44
√

Csλ (6.26)

With Cs = 0.7 mm, this gives �f = −22 nm (under-focus). sin χ(u) and cos χ(u)

are shown under these conditions at 100 kV in Fig. 6.12. Since the form of the image
is mainly determined by the cos χ(θ) function at small �f , the image change with
defocus is less rapid than for bright field, as is readily seen experimentally. We
emphasize that since the image in dark field is no longer linear in specimen potential,
the convenient product representation and envelope functions of the bright-field theory
cannot be used (Hanssen and Ade 1978). Thus, Fig. 6.12 should not be thought of as
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(a) (b) (c)

(d) (e) (f)

Fig. 6.11 Five computed dark-field electron micrographs of the mercury-thiophene molecule whose
atoms are arranged in the pattern shown in (f). The simulated conditions are �f = −75 nm (under-focus),
Cs = 1.35 mm, accelerating voltage 100 kV, objective aperture semi-angles: (a) 6.5 mrad, (b) 7 mrad,
(c) 7.5 mrad, (d) 8.0 mrad. The optic axis passes through the centre of the objective aperture as shown
in (f), while the central ‘unscattered’ beam falls at the position of the black dot. In practice, any fine
structure seen in these images would be lost if a large illuminating aperture were used and the contrast
would be further degraded by scattering from the necessary supporting film. Nevertheless, these images
would clearly lead to the identification of five atoms (see (e)) where only four actually exist. (Images
courtesy of Dr W. Krakow.)

representing a ‘transfer function’. Equation (6.26) also gives the minimum-contrast
bright-field reference focus (see Section 12.5).

In practice, the best dark-field high-resolution images have been obtained using
tilted illumination with the unscattered beam intercepted on the rim of an aperture
placed centrally about the optic axis, or using annular illumination (see Section 4.4).
The optimum defocus for this mode is the same as that required for the ideal beam
stop (BS) and the best aperture size to use can be found by drawing out the transfer
function once the electron wavelength and spherical aberration constant have been
found by the methods of Chapter 10. Notice that it is possible to include almost twice
the range of spatial frequencies that could be included using axial illumination and a
translated aperture (Fig. 6.12). Chapter 7 discusses super-resolution schemes based
on this mode. The semi-angle subtended by an aperture is easily measured by taking
a double exposure of the objective aperture and the diffraction pattern of a crystal of
known structure.

A clue to the kind of false contrast which may appear in dark-field images of
non-periodic specimens may be obtained from eqn (6.8) (Cowley 1973). The image
intensity formed with an ideal central beam stop is

I (x, y) = σ 2|φP(x, y) − φ̄|2 (6.27)
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Fig. 6.12 The sin and cosine of χ(u) at the optimum conditions for high-resolution dark-field imaging.
The phase shift due to aberrations has been kept close to zero to the highest resolution possible. Here
Cs = 0.7 mm and �f = −22 nm (under-focus). The position of the optic axis (×) and the ‘unscattered’
beam (©) are shown in relation to the objective aperture for three dark-field imaging modes below.
These are tilted-illumination dark-field (TIDF), displaced-aperture dark-field (DADF), and beam stop
(BS). The vertical arrow on the left suggests the position of the unscattered beam in the tilted-illumination
mode most commonly used for high-resolution work. This is not a ‘transfer functon’ (see text).

where φ̄ is the average value of the projected potential (equal to the excluded zero-
order Fourier component) with the average taken over a coherently illuminated region.
This equation suggests that both positive and negative deviations from the mean
potential could produce the same contrast in dark field. That is, both a void and a
heavy-atom inclusion would appear bright. It is also possible to show that a sinusoidal
object produces an image whose periodicity is half that of the object, if the dark-
field image is formed with a central beam stop. This is similar to the formation of
‘half-spacing’ fringes when three beams are used for lattice imaging (Section 5.1).
Physically, dark-field images are formed by interference between Fourier components
across the full width of the aperture. In bright field, the important contribution is from
interference between the central beam and a particular Fourier component or spatial
frequency. Thus, image detail may appear in dark-field images on a scale which is
finer than that seen in a bright-field image taken with the same aperture.

More realistic aperture arrangements, such as tilted illumination dark field, intro-
duce an additional distortion in the form of an elongation in the image in the direction
of a line between the unscattered beam and the optic axis. This ‘Schlieren’ dis-
tortion is similar to the effect of astigmatism and can be corrected accordingly.
Figure 6.13 shows the individual atoms of the thorium oxide lattice imaged using
this method (Hashimoto et al. 1973). Thus, in practice it does appear to be pos-
sible to make small molecules and atoms appear ‘round’ by careful adjustment of the
stigmator. Leaving the distortion aside, we may say that the intensity variation in a
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Fig. 6.13 Experimental image of the atoms in the thorium oxide lattice obtained by Dr Hashimoto
using the TIDF method. The Miller indices of two identified planes of atoms are shown. Also shown is
the diffraction pattern of the graphite substrate used to support the atoms, indicating the position of the
objective aperture between the substrate reflections which is therefore excluded from the image. Inelastic
scattering around the central beam is also excluded by this method. Note that the objective aperture size
must be matched to the substrate used and the objective lens focal length.

high-resolution dark-field image is proportional to the square of the deviation of the
specimen projected potential from the mean projected potential.

6.6 Inelastic scattering

Electrons which lose energy within the specimen suffer a wavelength change and
therefore contribute an out-of-focus background to molecular images, generally
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incoherent with the elastic wavefield. These image intensities can be summed in
an image calculation once the energy loss distribution for the specimen is known.
If the microscope is focused for electrons of energy V0, the focus defect for other
energies can be described by an additional term in the transfer function, as mentioned
in Section 2.8.2. The overall effect of this blurred, incoherent background is then to
reduce the elastic image contrast. Note that the expression for image broadening given
in Section 2.8.2 deals with the incoherent images of neighbouring point sources. For
most thin biological specimens, the only way the microscopist can control chromatic
aberration is by choosing a specimen position which minimizes Cc (see Fig. 2.17);
however, this can only be done by increasing Cs with a consequent degradation in
resolution.

Inelastic scattering makes the dominant contribution to the image background when
amorphous carbon or graphite are used to support small molecules. The experimental
work which has been done using energy-selecting microscopes to measure the ratio
of inelastic to elastic scattering for amorphous carbon suggests that the inelastic
scattering dominates by a factor of about 3 if all angles and energies are included
(see Fig. 6.14). The objective aperture will increase this ratio to perhaps 10, since
the important inelastic processes for amorphous carbon are confined to small angles
around the central beam. Practically all the inelastic scattering occurs within a milli-
radian of the central beam under single-scattering conditions. The mean free path for
inelastic scattering in amorphous carbon, which gives an indication of the average
distance between scattering events, is about 70 nm at 100 kV. With a substrate much
thinner than this, most of the inelastic scattering is therefore excluded in the TIDF
technique. A calculation of the inelastic and elastic scattering from amorphous mater-
ials, including coherence effects, is difficult, since the atomic coordinates must be
known (Howie et al. 1973). Incoherent calculations, accurate for large thickness, have
appeared (Misell 1973); however, it is the coherent Fresnel diffraction and possibly
any microcrystalline structure in ‘amorphous’ carbon when used as a substrate which
gives rise to the unwanted background ‘noise’. Experimentally it is a simple matter
to measure the image background intensity from a bare substrate under the proposed
diffraction conditions.

The partial ordering of atoms in amorphous carbon gives rise to broad ring maxima
in the diffraction pattern. When using this substrate to support small molecules or
strained biological specimens, some advantage can be gained by tilting the illumina-
tion so that the central aperture falls between these rings, thereby reducing the image
background and enhancing the image contrast. Some experimental measurements on
inelastic scattering in carbon can be found in Egerton (1975).

For crystalline substrates where the objective aperture is placed between the sharp
Bragg reflections of the substrate, scattering will occur into the aperture owing to
the inelastic processes of phonon excitation, plasmon excitation, and single-electron
excitations. The intensity of this scattering can be computed if the substrate thickness
is known but again an experimental measurement is simpler. An example of an attempt
to fit theoretical estimates of diffuse inelastic scattering in a crystal to experimental
measurements can be found in Howie and Gai (1975). There will also be an elastic
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Fig. 6.14 The ratio n of total inelastic to total elastic scattering as a function of atomic number for 80 kV
electrons. The open circles (with error bars) are experimental points and include scattering angles up to
0.13 rad. Less than 3 per cent scattering occurs outside this range. The experimental points were obtained
from amorphous materials similar to biological specimens. The points give the predictions of the theory due
to Lenz (1954), which neglects the small plasmon contribution. The figure is intended as an approximate
guide, based on the work of Egerton (1975).

contribution to the image background in these experiments from any non-periodic
crystal structure such as surface contamination or crystal defects.

For isolated atoms, the proportion of elastic and inelastic scattering depends on
atomic number. At low atomic number inelastic scattering dominates, while at high
atomic number the scattering is predominantly elastic. The important early work of
Lenz (1954) gives the ratio of inelastic to elastic scattering as inversely proportional
to atomic number with a value of unity for copper. Figure 6.14 shows this result com-
pared with experimental measurements (see also Burge (1973)). Again the inelastic
scattering is narrowly forward-peaked with a half-width of much less than a milli-
radian. Thus, for a single atom imaged in bright field all the inelastic scattering is
included within the aperture, while only a portion of the elastic scattering is included.
As an example, the bright-field image of a single aluminium atom is found to include
only 3 per cent of the elastic scattering but about 80 per cent of the inelastic scattering
(optimum aperture) at 100 kV (Whelan 1972).
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The precise form of an image formed only from inelastically scattered electrons
depends on the particular inelastic process. Images formed from plasmon-scattered
electrons are not expected to contain high-resolution detail, owing to the non-localized
plasmon interaction. However, images formed from electrons which have lost energy
owing to K-shell or core electron excitations should show high-resolution detail,
thereby allowing the possibility of image formation from a particular atomic species
using a selective energy filter ‘tuned’ to this loss peak (Fig. 6.15). There are, however,
two fundamental difficulties within any proposal to develop this technique. First,
as mentioned above, only large-energy-loss processes are expected to provide high
spatial resolution, for reasons based on the uncertainty principle (see Craven et al.
(1978) and Spence (1988b) for a fuller discussion). Using a scanning transmission
electron microscopy (STEM) instrument and energy filter it has been proved possible,
however, to detect a variation in the barium M edge intensity as a sub-nanometer
probe is moved within a single unit cell of a barium aluminate crystal (Spence and
Lynch 1982). On the other hand, smaller energy-loss processes (such as plasmon
excitation) preserve diffraction contrast effects (such as stacking fault fringes) but not
high-resolution detail. The loss of diffraction contrast as one forms images at higher
energy loss can be understood by considering the progressive overlap of the diffraction
discs laid down at each of the satellite reflections responsible for the fault fringes,
whose angular width is proportional to the energy loss. As with lattice imaging, one
does not expect to see fringes in TEM from overlapping diffraction orders (see end of

(a) (b)1000 nm

Fig. 6.15 Energy-filtered electron images. The image on the left (a) has been formed in the normal way
using all electrons. That on the right (b) was formed using only those electrons which are elastically
scattered in the specimen and lose no energy. Chromatic aberration due to specimen energy losses is
thereby eliminated. The specimen is visual cortex tissue (stained). The importance of these inelastic
electrons depends strongly on the specimen thickness. In this case appreciable inelastic scattering has
been removed leading to an improvement in image contrast. The inelastic image contribution produces
a low-resolution background which reduces the image contrast in unfiltered images. (Image courtesy of
R. Egerton.)
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section 5.1). A second important problem results from the fact that one normally has
a strong mixture of multiple inelastic and elastic scattering present in the specimen,
and it is rarely possible to devise experimental conditions which truly separate the
two. Thus, for example, if one were to form an image in the characteristic core loss
channel of a single uranium atom lying on an amorphous carbon substrate, it would
be impossible to exclude from this image the contribution of electrons elastically
scattered in the substrate in addition to their inelastic scattering at the uranium atom.
(This elastic substrate image contribution can, however, be greatly reduced in STEM
by suitable choice of detector geometry.) Thus, the attempts to form ‘inelastics only’
electron images should be clearly distinguished from lattice images formed from
inelastically scattered electrons which are also Bragg scattered. Dynamical inelastic
calculations (Spence and Lynch 1982) show, for example, that in images filtered for
a particular species, other species may also appear as a result of coupled elastic–
inelastic scattering. Using this filtering technique in STEM it is possible to form a
lattice image using electrons which are Bragg-scattered ‘following’ an inelastic event
(Craven and Colliex 1977).

The contrast improvement which results when the inelastic image contribution is
removed from the image by an energy-selecting electron microscope is shown in
Fig. 6.15. The image formed by elastically scattered electrons is compared with that
formed using all electrons scattered by the specimen. We can conclude that for high-
resolution imaging the inelastic background provides a slowly varying low-resolution
image which has the effect of reducing the high-resolution elastic image contrast.

It is this improvement in the quality of energy-filtered images and diffraction pat-
terns, which has motivated the construction of imaging energy-selecting microscopes
for transmission microscopy (Ottensmeyer and Henkelman 1974) based on the work
of Castaing and Henry (1962). For inorganic crystals, good agreement between calcu-
lated and experimental diffraction patterns can only be obtained if elastically filtered
data is used (Spence and Zuo 1992). A similar improvement in quantification of dif-
fraction and imaging data from biomolecules has been reported when using elastic
filtering (Zhu et al. 1997). A much simpler device can be used for scanning transmis-
sion microscopes, where information is processed serially and the filter need not act
as a lens. An important development has been the commercial availability of efficient
imaging magnetic-sector energy-loss analysers (Krivanek et al. 1987) and the trend
towards incorporation of in-column energy filters in electron microscopes.

6.7 Molecular image simulation

The image of a non-periodic specimen can be computed by the method of periodic
continuation. A new potential function is constructed, equal to the specimen potential
in some large cell and infinitely periodic, outside it. This new potential can then be
represented by a Fourier series and manipulated by a computer. For example, the
evaluation of eqn (6.10) by computer using integration steps kx = h/a, ky = l/a,
(h, l, integers) implies a two-dimensional periodic extension with one atom in each
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unit cell of a plane rectangular lattice of side a. Thus the methods of Chapter 5
can be used to calculate the image of a small organometallic molecule or positively-
stained biological specimens if the dimensions of the unit cell are made large enough.
To avoid artefacts in the diffraction pattern (Lanczos 1966), the potential must join
smoothly to its continuation in adjacent cells. Abrupt boundary discontinuities need
not introduce artefacts into the interior of the image cell, however, since the forward-
scattering nature of electron diffraction allows the method of image patching to be used
(see Section 5.11). For specimens sufficiently thin that their images are described by
eqn (6.7) the procedure is broadly as follows. Using either tabulated atomic potentials
or relation (5.18), the cell potential is synthesized and the complex exit-face wave
amplitude is evaluated over a grid of points in the unit cell using eqn (6.7). The
Fourier coefficients of this must then be obtained and these diffracted amplitudes,
which sample a plane in reciprocal space, must be multiplied by the complex transfer
function (eqn 3.23) and aperture function. Finally the image is synthesized by Fourier
summation, usually using the fast Fourier transform library routines. These may
require the number of points to be equal to 2n (n integer). Thicker specimens can be
handled by the dynamical calculations described in Chapter 5. The important effects
of partial coherence are included by an integration over incident beam directions
(Chapter 4) if the illuminating aperture is incoherently filled. In these dynamical
calculations the potential within each slice varies with depth in the specimen, allowing
the scattering from, say, a crystal substrate to be included in the calculation (Spence
1975; see also Section 5.11).

6.8 Noise, information and the Rose equation

The grainy appearance of electron micrographs is due not to the film grain but to
statistical fluctuations in the number of electrons contributing to each picture element.
Experiments with photomultipliers show that the statistical distribution of electron
arrivals at a small image area is Poisson. Fig. 6.16 shows an electron emulsion exposed
to a uniform intensity of electrons and this is compared with the same emulsion
exposed to approximately the same optical density under light. Whereas several grains
of emulsion are rendered developable by a single electron, the cooperative action of
many photons is required for each grain with correspondingly improved statistics
producing a smoother optical image. A measure of the noise in an electron image is
given by the standard deviation of the distribution of electrons contributing to each
image element. For Poisson statistics this is

√
N where N is the mean number of

electrons per picture element, so that the signal-to-noise ratio S is N/
√

N = √
N for

the rather unrealistic case of a dark-field image recorded with no background noise
contribution.

While electron noise is the dominant source of noise in an electron image, there is a
further contribution to image noise from the photographic emulsion itself. Detective
quantum efficiency (DQE) is defined as the ratio of the square of the signal-to-noise
ratio measured from the emulsion to the square of this ratio for the electron noise in
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(a) (b)

Fig. 6.16 The response of photographic emulsion to light (a) and electrons (b). The grainy appearance
in (b) is due to statistical fluctuations in the number of electrons contributing to each image element. This
graininess represents an irreducible minimum of background for high-resolution images.

the electron beam (Hamilton and Marchant 1967). It thus provides a measure of the
noise introduced by the recording medium. A DQE of 0.75 indicates that the signal-
to-noise ratio in the recorded image is 87 per cent of that in the electron beam. Most
modern emulsions have DQEs in the range 0.5–1.

An impression of the severity of electron noise can be obtained by analysing a
typical bright-field phase-contrast image. Taking the brightness of a hair-pin filament
to be about 3 × 105 A cm−2 s−1, the object current density becomes about 1 A cm−2

for an illuminating aperture semi-angle of 1 mrad (eqn 9.1). The total charge passing a
0.3 nm2 image element (referred to object space) after a two-second exposure is then
1.8×10−15 C, corresponding to about 11 250 electrons. With 10 per cent contrast we
would expect a reduction of �N = 1125 electrons in the vicinity of a heavy-atom
image (see Fig. 6.17). If a densitometer trace were taken of this image, the error
(standard deviation) in an estimate of the peak area would be given by the square root
of the variance (eqn 2.40)

σ 2(�N) = σ 2(Nb − Na) = σ 2(Nb) + σ 2(Na) ≈ 2Nb (6.28)

since σ 2(N) = N and Na ≈ Nb. Thus σ(�N) = √
2Nb and the electron signal-to-

noise ratio for a bright-field single-atom image is

S = �N/
√

2Nb. (6.29)
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Fig. 6.17 Simplified representation of an atom image. A total number N of electrons contribute to the
bright-field image within the image area. The background, for the same area, is made up from Nb electrons.

Applying this result to the given example gives S = 7.5; S = 5 is commonly accep-
ted minimum value. Notice that the signal-to-noise ratio is improved by increasing the
image element size, so that a trade-off between resolution and noise is expected. This
trade-off between dose and resolution d is expressed by a modified form of the Rose
equation (Rose 1948) originally developed for television tubes, as follows. We define
contrast C = �n/n, wheren = f no andno is the number of electrons incident per unit
area, f being the fraction contributing to background (e.g. f = 0.95 for bright-field,
f = 0.001 for dark-field, and f can also be used to represent detector inefficiencies
etc.). The idea is that the signal to noise ratio �N/N1/2 between adjacent resolution
elements for a given contrast should exceed about k = 5 (Rose’s condition), so that
intensity changes due to genuine scattering variations in the sample exceed those due
to statistical fluctuations of the number of electrons N in the beam per resolution
element. The contrast, a property of the sample, determines how many scattered elec-
trons are available to meet this condition. Then, with �N = NC = f nod

2C, we find
that the minimum dose needed for contrast C is

no > k2/(f C2d2) (6.30)

giving a lower limit on dose for given contrast and resolution. For example, in bright-
field with f = 1.0, C = 0.1, k = 5, and d = 1 nm, we have no = nc = 25 electrons
per square Angstrom as the critical dose. Making resolution, d the subject of this
equation and setting no equal to the critical dose nc which begins to destroy the
sample, we see that, for a given contrast, a minimum value of resolution d is fixed.
Resolution evidently goes inversely as the square root of dose, and fine detail is
destroyed first during an exposure. It is this equation which is used to justify the
claim that a single molecule cannot be imaged by HREM without periodic averaging.
(The Frontispiece shows an image of a single DNA molecule, which has been averaged
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five times along its length.) The critical dose is sometimes defined as the dose, which
causes a reduction of the first-order Bragg intensity to exp(-1) of its initial value.

The choice of magnification M for radiation-sensitive microscopy of isolated
objects can now be made by setting M = dp/d , where dp is the detector pixel size,
discussed for various detectors in Chapter 9. The application of the Rose equation to
imaging of crystals is discussed in Section 6.12.

The question of electron noise becomes important for radiation-sensitive mater-
ials for which the object current density must be limited. The relationship between
contrast, resolution, and noise for biological specimens is discussed in more detail in
Glaeser (1971).

We now consider the amount of information in electron images (Frank 1973; Saxton
1978). The approximation of Gaussian, additive noise is frequently made to simplify
the analysis of filtering operations. This approximation is justified for bright-field
images where Nb is large so that the variation of

√
Nb with Nb is slow. The Poisson

distribution becomes Gaussian when the mean is large. Electron noise is also station-
ary in the sense that its average value is independent of the choice of origin, so that
many of the techniques of stationary time series analysis are applicable to electron
images (Jenkins and Watts 1968).

Statistical fluctuations are responsible for the noise ‘contrast’ apparent in Fig. 6.16,
and this has an important consequence for image digitization. As with all analogue-
to-digital conversion, the number of discernible discrete levels (in this case the grey
levels on the micrograph) are limited by noise superimposed on the analogue signal.
A relationship can be obtained for the average number of electrons per image element
required for p grey levels at a signal to noise ratio S (Van Dorsten 1971):

N = p(p + 1)S2/2 (6.31)

An acceptable image has p = 5, S = 6. The assumption has been made that there
is no correlation between different image elements. The effect of correlations, which
always exist between different parts of the image in a partially coherent aberrated
optical system, on the information content of an image is discussed in Fellget and
Linfoot (1955).

The information contained in a microscope image is measured in bits and is given
by the logarithm to the base 2 of the total number of possible pictures. If the electron
noise limits the number of grey levels to p per image element with n image elements,
the maximum information content is

I = ln2(p
n) = n ln p (6.32)

For a micrograph of area A recorded by an instrument with a point spread function
of size a in the image space, n ≈ A/a. The value of p is seen from eqn (6.31) to
depend only on the electron exposure. At 0.35 nm resolution an 11×5 cm micrograph
recorded at 200 000 magnification is thus seen to contain about 1.8 × 1012 bits of
information.
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Equation (6.32) is obtained under the assumption that all images are equally prob-
able, which must be made in the absence of a priori information. The probability that
a particular image is recorded is then p−n. The information content of a message or
picture is an ‘inverse’ measure of its probability of occurrence—unlikely messages
are supposed to contain a lot of information, while those which are certain to occur
(probability of occurrence unity) contain no information or ‘surprise’. By taking the
negative logarithm of the probability of an event occurring, a suitable additive meas-
ure of information is obtained. The quantity so defined depends only on the likelihood
of the event (or image) occurring, obtained from past observations. It tells us nothing
about the image’s usefulness to the observer. The definition of information can, how-
ever, be extended to the case where a priori probabilities can be assigned to individual
image elements (Brillouin 1962).

The concepts of information theory are likely to become increasingly important in
high-resolution electron microscopy (HREM) of non-periodic biological specimens,
in which one wishes to extract the maximum amount of structural information from
the specimen while delivering the smallest possible radiation dose (Cowley and Jap
1976). The use of entropy and information concepts for the analysis of HREM images
of amorphous carbon is described in Fan and Cowley (1988).

6.9 Molecular imaging in three dimensions—electron tomography

In the search to understand the relationship between the structure and function of bio-
molecules, most of our structural knowledge has come from X-ray crystallography.
This highly successful technique is limited, however, to molecules which can be crys-
tallized. Many important biomolecules, such as the membrane proteins important for
drug delivery, are extremely difficult or impossible to crystallize in three-dimensions,
and for these electron microscopy has proven invaluable by providing near-atomic
resolution images of the molecular shape. The interaction and docking of molecules
can then be understood in terms of their shape, and so relate to their functions.
Second there is the large number of un-crystallizable ‘molecular machines’, consist-
ing of many component proteins (with structures known from X-ray crystallography)
whose shape might be determined by the single-particle cryomicroscopy tomographic
technique described in this section. A dramatic example of the fitting of the protein
structures of tubulin (in this case actually determined by the electron crystallography
method of the next section) into a model of the microtubule obtained by single-
particle cryomicroscopy has recently appeared (Nogales Wolf et al. 1998, 1999).
(The cells of eukaryotes contain a skeleton of fine microtubules, along which pro-
teins are transported, carrying out the various functions of the cell.) The location of
the anti-cancer drug molecule Taxol can be identified in this structure, and its function
elucidated.

The important question of whether a single biomolecule can be imaged at atomic
resolution without significant damage by electron microscopy has been analysed in
detail (Breedlove and Trammel 1970; Glaeser 1979; Spence et al. 1999). The general
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conclusion, based partly on eqn (6.30) and the considerations of Section 6.12, is that
this is not possible at high energy, on account of radiation damage. (The Frontispiece
shows an HREM image of a single unsupported, unstained DNA molecule. The image
has been averaged five times along its length, and shows about as close as we can ever
hope to come to this goal.) To improve on this, it is necessary to use some form of
averaging, either through the use of two-dimensional crystals, or by summing images
from many identical particles, each of which has received a dose small enough to avoid
damage, but insufficient to produce a statistically significant image of one particle at
high resolution. We discuss these two approaches in this and the next section. A major
advance has been made with the development of the technique of cryomicroscopy,
which has allowed proteins to be imaged in their frozen-hydrated state, free of the
artefacts of staining. (Although atomic resolution has not been obtained with frozen-
hydrated samples, sub-nanometer resolution is possible.) It has been suggested that
the term ‘electron crystallography’ be reserved for work on two-dimensional crystals
(discussed in Section 6.10), while the approach based on many copies of one particle
discussed here be referred to as ‘electron tomography’. We will see that they have
much in common. The electron tomography field has been reviewed by Baumeister
and Typke (1993), and Plitzko et al. (2002) and may be said to have started with the
pioneering work of DeRosier and Klug (1968) and Hoppe et al. (1968).

This HREM work should be seen in the context of techniques which provide related
information. At lower resolution, thin ultra-microtomed sections of whole cells, usu-
ally stained, may be imaged and tilted in the high voltage electron microscope, and the
sectional views reconstructed to provide a three-dimensional (tomographic) image at
a resolution of perhaps 2 nm (Renken et al. 1977; Porter 1986). No other technique
can match this capability for studying the ultrastructural organisation of large three-
dimensional macromolecular assemblies, however the method is slow and there are
always concerns about the effects of dehydration, radiation damage and staining.
It is generally accepted that below about 2 nm resolution, little significant struc-
tural information can be extracted from stained samples. TEM imaging of molecules
tagged with different sized nano-scale gold balls is also possible. A comparison of
X-rays, neutrons and electrons for imaging in biology can be found in Henderson
(1995). A comparison of the magnetic resonance techniques, X-ray crystallography
and electron microscopy is given in Chiu (1993) (membrane proteins are usually
too big to be studied by NMR, which is restricted to weights below about 30 kD).
Advances in atomic force microscopy for molecular imaging, mainly in aqueous envir-
onments (where real-time imaging in water has recently been achieved) is reviewed
in Lindsay (2000), and at low temperatures in Shao (1996). The new optical fluor-
escence microscopies can also provide motion pictures of identified molecules in
their native environment, however resolution is limited by the wavelength used. (By
using semiconductor nanodots which fluoresce with different colours as labels for
different proteins, the Rayleigh resolution limit may be exceeded in filtered images.)
Synchrotron X-ray diffraction from two-dimensional organic monolayer crystals has
recently been demonstrated, and there are plans to use pulsed X-ray sources to reduce
damage.
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The approximately 35 000 genes in the human genome code for a rather larger
number of the protein molecules which make up the bulk of all living organisms.
Human protein consists of certain folded sequences of any of 20 distinct amino acids,
selected according to the genetic code expressed by the nucleic acid sequence in the
genes of DNA. There are four nucleic acids, three of which (reading along one side of
the DNA chain) code for each amino acid. (This allows for specification of 43 = 64
(rather than 20) amino acids.) Nucleic acids are arranged in complementary pairs on
DNA. The proteins are synthesized by the ribosome molecule, a collection of proteins
and nucleic acids. In brief, messenger RNA (mRNA) reads off the sequence of three-
bit ‘words’ for one protein from one gene sequence along DNA and transfers this to
the ribosome. Transfer RNA (tRNA) acts as an adaptor to bring the required amino
acids to the ribosome—there is one tRNA for each amino acid, with connectors at one
end for the amino acid and at the other for the triplet code on the mRNA. The ribosome
runs along the mRNA chain as the amino acid is built in a series of repetitive steps,
in which the ribosome moves to a new triplet on the mRNA, connecting new amino
acids via tRNA to the growing chain (see Frontispiece). Partly because of its size,
the ribosome macromolecule has proven very difficult to crystallize. We now briefly
review one cryo-electron microscopy project aimed at determining its function from
its shape, and provide references to other similar projects. While the resolution in this
work is limited to about 1 nm, the atomic structure of some of the ribosome subunits
which can be crystallized is known from X-ray crystallography, so that a reasonably
detailed understanding of overall function can now be obtained almost at the atomic
level. The approach described, averaging over images of many identical unstained
particles lying in amorphous ice in different orientations, serves as a model for one
of the two most successful directions in high resolution imaging of biomolecules.

The dose is chosen so that each molecule receives a dose below that which initiates
significant damage, but which will be insufficient to provide a statistically significant
image of any one molecule at the desired resolution. The Rose equation (6.30) links
resolution, dose and contrast for one molecule. In order to sum images from different
molecules, so that a statistically significant image can be obtained at better resolution,
their orientations must be determined, and the images rotated into coincidence. The
accuracy of alignment depends on the size of the molecule, since it depends on the
number of features which can be used, and the minimum size has been estimated to be
about 50 kD, slightly greater than the maximum size which can be studied by NMR
(Henderson 1995). To determine the three-dimensional angular relationship between
molecules, the sample, containing many identical molecules lying in different ori-
entations, may be tilted by a known amount, and the new image compared with the
first. Orientation relationships can then be established between different particles on
the same grid imaged at different tilts. To reduce damage, low dose methods may
be used, or a new sample, containing a fresh selection from a random assortment
of identical particles, may be used for each tilt. Initially, molecules are assigned to
similarity classes. Projections differing by small tilts are similar, and it proves to be
sufficient to determine only the sequential relationship between particles along a tilt
path. Particles which share a common tilt axis may be rotated into coincidence and
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added together. Cross-correlation functions are used for this alignment process. The
entire process of reference-free alignment and hierarchical ascendant classification
using Ward’s merging criterion is described in detail in Frank (1990). The various
summed images, projected from known directions, must now be combined to form
a three-dimensional image. A considerable literature, outside the scope of this book,
exists on the problem of three-dimensional reconstruction from projections (tomo-
graphy), which arises in many fields. These methods include real space methods such
as algebraic reconstruction (ART), simultaneous iterative reconstruction (SIRT), iter-
ative least-squares methods (ILST) and filtered back-projections. Fourier methods
also exist, including methods for both equal and unequally space points (see Frank
(1996) for a review). An important result from this work is that the resolution d

depends on the number of projections N and the size of the object D as

d = πD/N (6.33)

Using one of these methods, a three-dimensional image of a single-molecule may
be built up from the summed projections with acceptable signal-to-noise ratio at the
1–2 nm resolution level or better. The limited tilting range results in a missing cone of
date, which results in an anisotropic point spread function. To avoid staining artefacts,
samples are preserved in their frozen-hydrated state in a thin (e.g. 50-nm thick) layer
of amorphous ice using the method of rapid freezing (Adrian et al. 1984). The image
analysis is based on all essentials in eqns (4.8a) and (6.3) and the determination of
instrumental parameters by automated refinement is a crucial step. Recently, however,
it has been shown that the entire three-dimensional reconstruction process and correc-
tion for contrast transfer function can be described by a single matrix representation
(Zhu et al. 1997), combined with linear regression. The weak-scattering linear bright-
field imaging approximation used is often taken to hold for thicknesses of up to about
30 nm at 200 keV for the light elements (H, C, N, O) important in biology—errors due
to multiple scattering have been estimated in several papers (e.g. Glaeser and Downing
1993). Images are recorded at several focus settings and the results combined after cor-
rection for the transfer function (see Chapter 7). Large focus defects are needed (e.g.
1–2 μm) in order to obtain sufficient phase contrast between the ice and the molecule.
The analysis of the images involves many steps, described in detail in Frank (1990,
1996) and, for details of the algorithm used to analyse the ribosome, see Frank et al.
(1996). Several other large computer algorithms have been described for this purpose
(e.g. SPIDER, IMAGIC, EM, MDDP and SEMPER) which may be found on the
web. Figure 6.18(a) shows the as-recorded image of 70 S Escherichia coli ribosomes
in vitreous ice (Zhu et al. 1997). The image was recorded below −170 ◦C using
an Oxford Instruments helium-cooled side-entry holder and an in-column, elastically
filtering TEM (LEO 912) using Kohler illumination. A dedicated helium-cooled side-
entry stage for biology is described in Fujiyoshi et al. (1991). The benefits of elastic
filtering for quantification of electron microscopy data have been clearly demon-
strated both for the thin samples used in biology and for the inorganic samples used
in materials science, where accurate quantification is impossible without filtering
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(a)

(b) (c)

Fig. 6.18 (a) (upper) Elastically energy-filtered, low dose, HREM images of ribosomes in random ori-
entations embedded in ice about 50-nm thick (scale bar 100 nm). Large defocus (about 2 μm) must be used
to distinguish macromolecule from ice. (b) (lower left). Orientations of the particles deduced shown on a
(θ, φ plot). (c) (lower right). Averages of cluster found by classification (Frank et al. 1995).

(see Section 13.3). Figure 6.18(b) shows the distribution of the Eulerian angles for
the particles from three data sets, one for each focus. Figure 6.18(c) shows the aver-
age of 49 classes found after classification from two data sets. Figure 6.19 show final
three-dimensional views of the unstained E. coli 70 S Ribosome molecule at 1.15 nm
resolution (Gabashvili et al. 2000). A particular choice of potential surface must be
made to define a suitable boundary for the visual representation of the molecule—
commercial software packages such as Noesys and Spyglass have been developed
for this purpose. Based on these images, the authors are able to identify possible
pathways for incoming messenger RNA (see Frontispiece) and exiting nascent poly-
peptides, in addition to suggesting the locations of the anticodon-binding region and
peptidyltransferase centre.

Electron tomography also compliments X-ray work. For example, it may be used
to confirm the positions of the heavy atoms used in the MAD method used for phase
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(a) (b)

(c) (d)

Fig. 6.19 Protein manufacture. Cryo-EM map of E-coli 70 S Ribosome at 1.15 nm resolution (Gabashvili
et al. 2000). (a) Subunit-subunit side view; (b) 30 S subunit-solvent side view; (c) Top view; (d) 50 S
subunit-solvent side view. For 30 S, b-body; h-head; pt-platform;sp-spur; sh-shoulder; St-stalk. Over
73 000 projections of this ribosome bound to tRNA were used to obtain this reconstruction, on which
can be identified RNA helices, peripheral proteins and interunit bridges. The frontispiece indicates the
mechanism of protein synthesis, in which each cycle adds one amino acid to the protein being formed by
the ribosome.

determination in X-ray crystallography. The knowledge of the external shape of a mac-
romolecule which TEM can provide assists in solving the X-ray phase problem also,
according to the principles of the solvent-flattening or density modification techniques
(see Section 7.9). Specifically, also, the three-dimensional cryo-electron microscopy
allows studies of the interaction of the ribosome–ligand interactions, which may not
be possible if crystallization is needed. (The constraints imposed by packing the
molecules into crystals may prevent the interactions with other molecules from being
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observed.) An assumption of the method, however, is that all molecules are identical—
if they exist in different conformations, the resolution of the final reconstruction will
be limited. A review of this field can be found in van Heel et al. (2000).

The experimental requirements for this work are described elsewhere in this book,
and include large-area CCD cameras (Faruqi et al. 1999; Zuo 2000) (or image
plates—see Section 9.8), imaging energy-filters (elastic filtering improves the quality
of diffraction patterns markedly), field-emission guns, spot-scanning (Downing and
Glaeser 1986), dynamic focusing to re-focus region in highly tilted samples (Downing
1992), and for the work described in Section 6.10, unbending algorithms to allow for
sample bending effects in the reconstruction (Downing 1992).

The quantification of cryomicroscopy images has been more successful than that
of inorganic crystals because images of proteins in ice are insensitive to the mean
inner potential of the ice, allowing it to be rather thick if the atomic structure of the
ice is not resolved. By comparison, aligned columns of atoms in inorganic HREM
images generate very large phase shift variations.

6.10 Electron crystallography of two-dimensional
membrane protein crystals

Section 6.9 described completely the general methods than can be used for any
biomolecule which cannot be crystallised, however resolution has been limited to
about 1 nm. For those molecules which can be formed into artificial two-dimensional
crystals (or exist naturally so), the method of protein electron crystallography has
been developed (see Kuhlbrandt (1992) for a review of methods for forming two-
dimensional crystals). The method is now capable of near-atomic (e.g. 0.26 nm)
resolution and was first developed by Henderson and Unwin in 1975 (Unwin and
Henderson 1975). Membrane proteins in lipid bilayers are ideal such samples, and the
greatest success has been achieved with Halobacterium salinarium (formerly Halobac-
terium halobium) where three-dimensional images have been obtained at a resolution
of about 0.3 nm. This work produced the first images to reveal the secondary structure
of a protein. This membrane protein acts as a light-driven proton pump in photosyn-
thesis for a bacteria found in salt marshes, and the molecular mechanism by which
the pump operates has now been elucidated in full, largely as a result of the elec-
tron crystallography work. Figure 6.20 shows a representation of the final structure
based on electron imaging and diffraction data which was obtainable to about 0.3 nm
resolution Mitsuoka et al. (1999). The photocycle depends on the isomerization of
the chromophore retinal (not resolved in the Fig. 6.20), which is surrounded by the
alpha helices shown. The retinal molecule absorbs a photon at 568 nm wavelength,
resulting in a series of conformational changes which is thought to pump protons
through the cell membrane. These changes in molecular shape result in changes of
about 10% in electron structure factors, which have been observed using Fourier dif-
ference methods by neutron, X-ray and electron diffraction. Rapid freezing during
the proton pump cycle has thus allowed study of the individual conformations of the
molecule during the cycle.
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Fig. 6.20 Photosynthesis. Representation of bacteriorhodopsin (bR) derived from electron imaging and
diffraction data (Mitsuoka et al. 1999). Red denotes the seven alpha-helices in a single unit cell of the
monolayer crystals used. Green and blue belong to adjacent bR molecules. Ball-and-spoke structures
are lipids. Retinal, responsible for light absorption in the photosynthesis process, lies at the centre of
the structure. The absorption of a photon allows the molecule to pump a single proton across the cell
membrane.

The original Unwin and Henderson work succeeded for several reasons: first gluc-
ose embedding was used to substitute for water, moderating the interaction with the
supporting carbon grid, second because of the development of the low-dose method
(Williams and Fisher 1970), and finally due to the use of the Fourier transform of
bright-field images to solve the phase problem (eqn 3.36). The subsequent develop-
ment of the spot-scanning method (Downing and Glaeser 1986), in which a small
beam is scanned over a larger area of sample while this entire area is exposed to the
film or CCD camera, further reduces beam-induced movement and charging. A typ-
ical acceptable dose is 10 e− Å−2. The samples are embedded in glucose, trehalose,
tannin, or rapid freezing in amorphous ice (Adrian et al. 1984). New preparation tech-
niques are under continuous development, including freeze drying (for high contrast),
sugar-embedding and quick freezing, and the use of cubic ice. However, although
vitrification preserves the aqueous environment, to date, no atomic resolution detail
has been extracted from these samples. The use of liquid helium temperatures has
been found advantageous for minimizing damage (Kimura et al. 1997). An important
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problem is lack of flatness of the films, this ‘cryo-crinkling’ may be due to differences
between the thermal expansion of the grids and the carbon support film (and their
roughness). Charging and damage to the ice can also be important problems—there
is an urgent need for doped, conductive ice. Both diffraction patterns and HREM
images are recorded over a wide range of orientations, involving tilts of up to 70◦
or more. (The tilt limit results in a ‘missing cone’ of data, making the real-space
resolution function anisotropic.) The phase problem is solved by taking phases from
the digital Fourier transform of the image, and assuming linear, weak phase-object
imaging conditions. However these phases are only obtainable out to the limited res-
olution of the electron microscope (in fact more severe limits may apply), whereas
diffracted intensities extend to higher resolution. Resolution-limiting factors in this
work are discussed in Glaeser (1992). Phase extension methods can be used to supply
the missing phases (Gilmore et al. 1992). Since the films are typically one-molecule
thick (perhaps 6 nm) and consist of light elements, errors due to multiple scatter-
ing are small (Glaeser and Downing 1993). (The handedness of alpha-helices may
therefore be difficult to determine until a three-dimensional high resolution recon-
struction has been obtained.) A large area (many square microns) of membrane may
be needed to provide a sufficient number of unit cells (molecules) for an acceptable
signal-to-noise ratio in the final composite image of one, periodically averaged, unit
cell. Since the crystals are highly imperfect, a series of corrections must be applied to
the images before analysis, these include ‘unbending’, background subtraction, local
rotations of molecules using cross-correlation functions, and lens transfer function
corrections. The sophisticated software developed for applying all these corrections
is described in Crowther et al. (1996). Field-emission TEMs operating above 200 kV
provide improved temporal and spatial coherence, and so have been found to allow
finer detail to be extracted from the transfer function correction process. The possib-
ility of extracting bonding and ionicity information from these diffraction patterns
has been investigated (Mitsuoka et al. 1999). This analysis must be based on the
Mott–Bethe relation between electron and X-ray scattering factors, as discussed in
detail in Section 13.4. (The quantity measured by electron diffraction and imaging is
the electrostatic potential, not the charge density as measured by X-ray diffraction.)
It is important to demonstrate that the effects of charge-redistribution between atoms
is larger than, for example, the effects of multiple scattering. Bonding effects influ-
ence predominantly the low order reflections accessible to imaging experiments, but
attenuated by the sin χ(u) lens transfer function at small scattering angles u. Bonding
effects may alter structure factor amplitudes and phases by a few per cent in these
very large unit cell crystals.

Apart from bacteriorhodopsin, many other structures have also been studied by
this method, providing maps of potential to a resolution of a few Angstroms.
These include: Light-harvesting complex II (to 0.34 nm resolution), Bacterial porins,
Aquaporin-1, Holorhodopsin, Rhodopsin, Gap junctions, the water-channel protein
in red blood cell membranes, the nicotinic acetyl choline receptor, Plasma mem-
branes from ATPase and Microsomal Glutathione S-Transferase. Reviews of the
method and references can be found in Walz and Grigorieff (1998). Recently, artificial
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periodic three-dimensional lipid structures (lipidic cubic phases, Landau and Rosen-
busch (1996)) have been created in which the membrane proteins are free to diffuse
about until they meet to form three-dimensional crystals, with obvious implications
for both X-ray and electron crystallography. The smallest crystallite of proteins which
can produce a high resolution three-dimensional reconstruction has been estimated
as 20 000 D (Glaeser 1999).

6.11 Organic crystals

Organic crystals were first studied by electron diffraction in the 1930s, and a large
body of literature describes the Russian work which followed (for a review in english,
see Vainshtein et al. (1992)). The first HREM images were obtained in 1970, following

Fig. 6.21 Seeing light atoms. Chlorinated copper phthalocyanine. This is the first image to demonstrate
that HREM is capable of imaging individual atoms in an organic molecule. No data averaging is used.
The molecular structure is shown inset (Uyeda et al. 1980).
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the development of epitaxial growth methods for phthalocyanines and aromatic hydro-
carbons, and of the low-dose method (see Uyeda et al. (1980) and references therein).
Figure 6.21 shows a spectacular example of an image of chlorinated copper phthalocy-
anine, the first to show that HREM can image individual atoms in an organic molecule
(Uyeda et al. 1980). This material (and its derivatives), which are remarkably radiation
resistant, has since become a standard test structure. Thus techniques similar to those
used by biologists have been used to study many organic thin films, such as Langmiur–
Blodgett films, waxes, and polymers. This field is reviewed in Fryer (1993) and Dorset
(1995). Some success has been obtained using the numerical Direct Methods tech-
niques of X-ray crystallography, applied to selected area electron diffraction patterns
in order to determine the phases of the reflections. Here, for lipid bilayers, for example,
the thickness may be accurately known in terms of the molecular length, and the atoms
are light and weakly scattered (Stevens et al. 2002). However the effect of the bending
of the films on diffraction (which can produce ‘secondary scattering’ (Cowley 1961)),
and the problem of obtaining structural information along the length of the molecules
(normally lying parallel to the beam) has serious difficulties. (For lipids, these long
molecules pack side-by-side in single and double layers. In some cases it is possible,
with difficulty, to grow crystals in which the long molecular axis lies in the plane of the
film.) Combinations of HREM imaging and diffraction methods have been successful
in some cases, and applications to paraffin, alkane derivatives, perchlorocoronene,
phthalocyanine, anthracene, and similar radiation sensitive crystals can be found in
these reviews. Lattice images have even been obtained from both monolayers of par-
affin (Zemlin et al. 1985) and lipids lying on ultra-thin amorphous carbon films at
low temperature, but this is extremely challenging work in view of the rapid radiation
damage—diffraction spots may only be visible for a few seconds. An example of this
work, combining imaging with direct methods to phase electron diffraction patterns,
can be found in Dorset and Zemlin (1990). The paraffin n-C36H74 was grown epi-
taxially on benzoic acid, and lattice images and diffraction patterns obtained at low
temperature. Phases for the diffraction pattern were obtained from the Fourier trans-
form of the HREM image, assuming linear imaging, and lens aberrations corrected.
Since few other methods exist for the structural analysis of these films (NMR may be
useful, and synchroton X-ray diffraction patterns are starting to appear from organic
monolayers), the combination of HREM imaging and diffraction at liquid helium
temperatures seems worth pursuing. This approach is discussed in detail in Chapter 7.

6.12 Radiation damage. Organics

Unlike X-rays, in which all the photon energy is given up to the creation of a photo-
electron in a first-order inelastic interaction, the electron in a TEM can loose any
amount of energy on scattering, and does so repeatedly as it moves through the
sample. However samples are so thin for HREM work that energy-loss spectra show
that most electrons are either ‘unscattered’ (remaining in the central beam), or scatter
elastically, thus providing useful imaging information. Inelastic scattering contributes
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at a different beam energy to the image, and so, because of chromatic aberration,
provides mostly a slowly varying out-of-focus background to the high resolution
image if it involves small-angle scattering. Phonon scattering may involve large angle
scattering but very small energy losses, and so may contribute high-resolution detail
to HREM images (Cowley 1988).

For the monolayer organic crystals discussed in Sections 6.10 and 6.11 use is
made of the redundancy of information in the crystal structure to allow a statistically
significant image of the periodically averaged structure to be built up, while applying
a sub-critical dose to any one cell. The Rose equation, relating resolution to dose,
may be adapted to this situation as follows: let m be the number of unit cells (each
containing one molecule) in the image which are added together to form a periodically
averaged image. Then eqn 6.30 becomes

no = k2/(mf C2d2) (6.34)

and we see that the dose no needed for contrast C in the averaged image is reduced
by the number of molecules, again going inversely as the square of resolution. If
assumptions can be made about molecular symmetry, a further reduction in dose is
possible by adding together images after application of these symmetry operations.

Damage has traditionally been measured by the time taken for diffraction spots to
fade. The angular dependence of these spots can be modelled using a Debye–Waller
factor (eqn 5.54) to give an average lattice displacement arising from the damage,
which may then be measured as a function of dose, temperature, and accelerating
voltage (Jeng and Chiu 1984). In this way the critical dose which starts to produce
damage may be defined. High order reflections, corresponding to fine detail, fade
first. Alternatively, the Patterson function may be studied as a function of dose. The
effects of increasing dose from 1 to 14 e−Å−2 on the periodically averaged elec-
trostatic potential of a paraffin layer, reconstructed from TED diffraction patterns,
can be found in Dorset and Zemlin (1985)—the projected hydrocarbon chains lose
fine detail and become more rounded. Other critical dose measurements are sum-
marised in Reimer (1989)—they vary at 100 kV from about 1 e− Å−2 for amino
acids, to 8 e− Å−2 for polymers and gelatin, to 30 e− Å−2 for coronene, 240 e− Å−2

for Cu-phthalocyanine, 360 e− Å−2 for the nucleic acid Guanine and 18 000 e− Å−2

for CuCl16-phthalocyanine. A dose of 1 e− Å−2 is about 105 times greater than that
needed to kill E-coli bacteria. Aromatics are found to be more resistant than aliphatics,
since the delocalized π bonds in the benzene rings of the aromatics dissipate energy
better. The effect is measured by the G-value, or number of chemical events which
occur for every 100 eV of energy absorbed. These are typically G = 3 (aliphatic)
but G = 0.2 for aromatic hydrocarbons. The Bethe theory has been compared with
measurements for the rate of energy deposition per unit mass-thickness. For a typical
organic of unit density (gm cm−3), a 100 kV beam loses about 4 eV for every 10 nm
travelled, so that with G = 0.2, 0.008 irreversible bond scissions will occur from
each beam electron in a 10 nm thick HREM crystalline sample. For a resolution of
0.1 nm, eqn (6.30) indicates that 104 e− nm−2 are needed, so that 80 chemical events
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occur. The area of a phthalocyanine molecule, for example, is about 6.25 nm2, and
there are 26 in a film 10-nm thick. Thus in one column of molecules there will be
19.2 chemical events per molecule during the HREM exposure. It has often been
noted that damage starts at corners, defects, and edges. Damage in the DNA bases
has been studied extensively by energy-loss spectroscopy (Isaacson et al. 1973), and
by optical absorption. Infrared absorption spectra provide information on the vibra-
tional changes of the molecules due to damage—a detailed study of damage to amino
acids due to TEM irradiation can be found in Baumeister et al. (1976). The laser
microprobe, electron-spin resonance and nuclear magnetic resonance and inelastic
tunnelling spectroscopy have also been used (Reimer 1989). For TEM at 100 keV, the
main damage mechanisms in hydrocarbons are ionization, leading possibly to bond-
breaking, or heating. Loss of hydrogen (4 eV bond energy) and C–H bond breaking
are common, and secondary processes such as cross-linking and the diffusion of
hydrogen must be considered. Mass loss may occur and has been measured, leading
finally to a carbon-rich deposit.

The choice of the correct figure of merit to characterize damage has been contro-
versial. Early workers used the ratio R of inelastic to elastic scattering cross-sections
(Breedlove and Trammel 1970) to indicate the ratio of useful image-forming elastic
scattering to damaging inelastic scattering. For centric crystals, R is related to the ratio
Vg

′/Vg of Section 5.9. (Note that detector efficiency also depends on just this inelastic
scattering.) The ideal probe for biological imaging would thus consist of particles with
a weak inelastic (but strong elastic) interaction at the sample (to minimize damage)
which can be ionized or otherwise modified for strong interaction at the detector. For
light atoms, R falls to about unity at 100 eV(λ = 0.12 nm, σi = 0.1 nm2); below this
energy resolution is limited by the de-Broglie wavelength. Since at least one scatter-
ing event is needed to form an image (see eqn 6.30) and not all the elastic scattering
is used to form the image, this suggests that single molecule imaging by electron
imaging is impossible, a finding consistent with the success of crystal imaging and
tomographic methods.

However, complications to this simple picture arise from many effects. These
include the effects of secondary electrons liberated by ionization, since their inelastic
cross-section increases as they slow down; the differing angular distributions and
cutoffs applied to elastic and inelastic scattering; from the fact that coherent bright-
field HREM imaging is linear in the scattering potential, so that cross-sections are
hardly relevant, and from the fact that not all ionization events result in irreversible
nuclear displacements (damage). The critical dose to be used in the Rose eqn (6.30)
is rarely known accurately, and depends on temperature, thickness, and other factors.
In practice, rather noisy lattice images have been formed from monolayers of several
organics (Dorset 1995). The crucial requirement is to make every elastic electron
count. Henderson (Henderson 1995) has used a figure of merit Q = R�E, the
amount of energy lost by inelastic processes per elastic scattering event, to compare
damage in electron, X-ray, and neutron microscopy. Here �E is the average energy
loss per inelastic event, often taken as 20 eV. With R = 3 for TEM, we have
Q = 60 eV for TEM, Q = 103 × 400 = 400 keV for soft X-ray imaging, and
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Q = 10 × 8 keV = 80 keV for hard X-rays. (The poorer values for X-rays result
from the larger R values associated with the photoelectric effect and the fact that �E

equals the beam energy.) These figures strongly favour TEM over X-ray imaging,
however soft X-ray imaging using zone-plate lenses at about 550 eV (wavelength
2.5 nm) has achieved a resolution of about 30 nm for samples in water, and cooling
is found to produce a much greater reduction in damage than for electrons.

The use of very low electron energies has also been investigated, since indica-
tions are (Isaacson 1976) that it is the carbon K inner-shell event at 285 eV which
is most damaging. This is less likely than valence excitation, but dumps much more
energy into the system. It was therefore expected (Howie et al. 1985) that spot-fading
times should show a threshold increase as beam energies were reduced below 285 eV,
and there is some experimental evidence for this in transmission electron diffrac-
tion patterns recorded at energies as low as 250 eV (Stevens et al. 2000). As energy
is decreased below 100 eV, inelastic scattering reaches a maximum (according to
the ‘universal curves’ used by surface scientists) before decreasing below about
20 eV. Elastic cross-sections continue to increase with decreasing energy (Cartier
et al. 1987), so that, despite resolution limitations imposed by the large electron
wavelength, the construction of very low voltage instruments for biology may have
advantages (Schwarzer 1981; Spence 1997). These may be based on the simple point-
projection geometry of in-line holography, using a nanotip field-emitter (Fink 1988).
Images of unstained tobacco mosaic virus have thus been obtained at 1 nm resolution
and 40 eV energy (Weierstall et al. 1999). The most important experimental problems
at low energy appear to be specimen charging, and holographic reconstruction with
a non-spherical reference wave.

Damage to organics may be reduced by several methods, including cooling, use
of higher voltages, embedding in a resin or ice, elemental substitution or use of
an environmental cell. The Bethe energy loss formula shows that energy deposited
per unit length is inversely proportional to the square of the beam velocity, so that
higher beam energy reduces ionization energy deposited. A gain of two in spot fading
times is found from 100 to 200 kV, and three at 1 MeV. However similar ionization
processes occur at the detector, so that detector sensitivity decreases with beam energy
(see Section 9.8). HREM instruments are under construction in which the electron
velocity is retarded prior to detection. Cooling to 4 K has been reported to increase
spot fading times by almost an order of magnitude (Kimura et al. 1997)—this is
assumed not to effect ionization, but to slow down subsequent diffusion processes.
Activation energies for the damage processes have been measured (Fryer et al. 1992).
A description of the design of a superfluid helium stage for biological HREM is given
in Fujiyoshi et al. (1991). New imaging schemes, based on pulsed X-ray sources,
are also under development. Using femtosecond pulsing, it has been suggested that
diffraction from the electron cloud by a statistically significant number of X-rays may
be possible before explosive damage occurs.

This subject is reviewed in more detail by Isaacson (1976) Glaeser (1979), and
Zeitler (1982).
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6.13 Radiation damage. Inorganics

Inorganic materials may be classified according to their bond types—metallic, cova-
lent, ionic, or Van der Waals. For metallic and covalently bonded materials, because
of screening and reversibility, ionization damage is normally not seen in TEM at ener-
gies below the beam-energy threshold for ballistic ‘knock-on’ damage, except perhaps
at point defects in semiconductors. (This threshold is about 150 kV for aluminium,
increasing with atomic number, with a weak temperature dependence.) The excit-
ations whose decay processes may produce damage are (i) plasmons; (ii) valence
excitations; (iii) inner shell excitations; (iv) excitons. Beam heating may also be
important, as discussed in detail in Reimer (1989). Two factors complicate this
simple picture—unless an ion trap is fitted, damage may occur due to ions gener-
ated in the electron gun. Application of a magnetic field will distinguish ion damage
from electron damage by separating the beams. Second, the displacement threshold
is reduced for atoms at surfaces and defects. General reviews of damage mechanisms
in inorganics in TEM can be found in Hobbs (1979a,b) and Urban (1980).

Ionic materials, such as the alkali halides are thus highly sensitive to damage
through the ionization process and subsequent atomic rearrangement, known as radio-
lysis, a process extensively studied in the X-ray and UV literature. The Bethe theory
(Section 6.6) for single-electron excitation gives a cross-section inversely propor-
tional to the square of the electron velocity, so that ionization damage decreases at
higher accelerating voltage. (This cross section is about 10−18 cm2 at 100 kV for a
carbon atom.) Electronic excitations can couple to the nuclear system if their lifetime
exceeds vibrational periods (the Debye frequency is about 1014 Hz), if they can trans-
fer sufficient energy to break bonds, and if they are localized. Plasmon excitations
are delocalized, but the decay processes may involve localized processes. Thus a
rough guide in ionic materials has been that for damage to occur, the electron–hole
recombination energy should exceed the lattice binding energy, a condition fulfiled,
for example in CaF2, but not in MgO, where radiolysis is not seen. Inner shell excit-
ation may also be important, since, although rarer, they transfer more energy to the
system which appears in the form of Auger electrons and X-rays, which may cause
damage. Valence excitations generate secondary electrons which can be damaging.
Radiolysis may have a threshold in dose, a highly non-linear temperature dependence,
and, in the alkali halides may lead to the formation of halogen bubbles and metallic
precipitates (Hobbs 1979a,b).

In the ballistic knock-on process, the energy transferred in an elastic collision
between the beam electron and the nucleus exceeds the displacement energy. This
energy varies from tenths of an electron volt for Van der Waals bonding, to tens of
electron volt for ionics. A Frenkel pair, consisting of an interstitial and a vacancy
is produced. The rate is proportional to the product of local electron intensity and
a cross section, and so, as in the Alchemi technique, it depends on local diffraction
(or channelling) conditions. Thus enhanced damage is seen (by TEM diffraction con-
trast) inside bend contours due to the concentration of electron flux along these lines
(Fujimoto and Fujita 1972). Some typical values of the knock-on threshold for bulk
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polycrystalline material at room temperature are: graphite 54 keV, silicon 145 keV,
copper 400 keV, molybdenum 810 keV, gold 1300 keV. In a crystal, in addition to
channelling effects, the threshold energy depends on the direction of transferred
momentum, being smallest for atoms knocked-on into close-packed directions. Typ-
ical displacement cross-sections are 5 × 10−23 cm2, much smaller than ionization
values. A considerable literature exists devoted to the study of this type of damage
in materials used in nuclear reactors, since, at very high intensity, the HVEM is very
efficient in generating Frenkel pairs, whose temperature-dependent interactions and
resulting clusters, dislocations and voids can then be studied in detail. For HREM
above the knock-on threshold, these events can sometimes be seen occuring directly,
with atomic resolution (Horiuchi 1982). Here changes in lattice images of refractory
oxides are studied as a function of dose. Then the HREM method becomes especially
powerful since it can reveal, in complex structures, the sites at which displacements
occur (in this case preferentially at oxygens in pentagonal tunnel sites). In this way,
displacement damage has been studied in quartz, silicon, intermetallic alloys, and
other materials (Spence 1988a). Dislocation motion has been observed in CdTe at
atomic resolution due to irradiation (Sinclair et al. 1882). Dramatic HREM images
of the radiation induced motion of atoms on the surfaces of small gold particles have
been recorded in real-time (Iijima and Ichihashi 1986)—in these and similar experi-
ments, fast video recording has revealed many new aspects of atomic processes (Kolar
et al. 1996). When a small probe is used, under clean non-contaminating conditions,
the STEM becomes an efficient hole-drilling apparatus with obvious applications
to direct-write inorganic lithography (Mochel et al. 1983). (Use of plasma-cleaning
apparatus to remove contamination produces sufficiently clean conditions.)

In summary, by a combination of judicious choice of accelerating voltage and
exposure conditions, HREM researchers have learnt to live with the problem of radi-
ation damage, which, for most inorganic materials other than the alkali halides, is
usually a minor inconvenience. By recording at video rates, any changes during expos-
ure can be observed directly, and conditions found which minimize damage in most
materials. In the future, aberration correctors will allow the use of low accelerating
voltages, below the knock-on threshold, without loss of resolution.
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7
IMAGE PROCESSING AND

SUPER-RESOLUTION SCHEMES

7.1 Through-focus series. Coherent detection.
Optimization. Error metrics

In this section, we review efforts to improve resolution beyond the point resolu-
tion dp = 0.66 C

1/4
s λ3/4 (eqn 6.17) out to the information limit di = (2/(πλ�))1/2

(eqn 4.11) set by electronic instabilities. This is possible, because, as shown in Figs 4.3
and A3.2, the passband of well-transmitted spatial frequencies moves to higher fre-
quencies with increasing defocus, so that by adding together members of a focal
series a wider total passband is obtained. In addition, the zero-crossings of the transfer
function move to a different position in each member of the series, facilitating decon-
volution. (Division by near-zero quantities in the Fourier domain otherwise amplifies
noise, preventing deconvolution.) The optimum choice of focus settings to be used
in a through-focus series has been widely discussed—an alternative to the discreet
passband settings of eqn (4.12) is the use of the stationary-phase or ‘alpha-null’ focus
of eqn (5.66) (O’Keefe et al. 2001). However, several problems arise, associated with
partial coherence effects, errors in the measurement of the optical parameters needed,
and unavoidable zero-crossings at the highest and lowest frequencies. Understanding
this method, which dates back to the earliest days of high-resolution electron micro-
scopy (HREM), thus involves many related topics, including coherent detection, the
twin image problem (since an out-of-focus HREM image is an in-line hologram),
the ‘parabola method’ and Wiener filters for noise reduction (Schiske 1968, 1973;
Hawkes 1974; Coene et al. 1992; Saxton 1994; O’Keefe et al. 2001 and references
therein).
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The essential idea of coherent detection, on which the through-focus method is
based, can be understood as follows. Equation (3.28) gives the image amplitude for
a weak phase object. We let

ψ(x, y, �fn) = −iσϕp(−x, −y) ∗ �{P(u, v) exp(iχ(u, v))}
= φ(x, y) ∗ �{P(u, v) exp(iχ(u, v, �fn))}

Then the image intensity is

Ii(x, y, �fn) = |1 + ψ(x, y, �fn)|2 = 1 + ψ(x, y, �fn) + ψ∗(x, y, �fn) + h

(7.1)

where h are the non-linear terms (but note that the single scattering approximation
(3.26) is still retained). We can now pick out the wanted second-term and discrim-
inate against both the third ‘twin image’ and forth non-linear terms, using a process
analogous to holographic reconstruction. (We will see in Section 7.6 that out-of-
focus bright-field HREM images are in-line holograms.) We multiply the transform
of this intensity I (u, v, �fn) by the conjugate of the transfer function (to effect
deconvolution), and sum over N images recorded at different defoci �fn. Thus
we form

S(u, v) =
∑
n

I (u, v, �fn) exp(−iχ(u, v, �fn)

= δ(u, v) + φ(u, v)
∑
n

1 + φ∗(−u, −v)
∑
n

exp(−2iχ(u, v, �fn)

+
∑
n

Hn(�fn) exp(−iχ(u, v, �fn) (7.2)

where φ(u, v) = −iσ�{ϕp(x, y)} is the image we seek, and Hn(�fn) is the transform
of the non-linear term. We now see the power of the coherent detection method, since
the second-term accumulates to N times the wanted image at gaussian focus, while
the third- and fourth-terms sum to approximately N1/2 times their initial value. The
last sum behaves as a two-dimensional random walk, while the third-term describes
images summed at minus twice their recorded focii, and can be shown to behave
similarly (Saxton 1994). The effects of spherical aberration appear to have been
eliminated, and the only resolution limiting effects remaining are the pupil function
P(u, v), or, in its absence, the damping effects on the transfer function of partial
spatial and temporal coherence. The general principle of this powerful method, integ-
ration against a kernal to provide a stationary phase condition for a wanted signal,
is used throughout physics, including applications to internal-source photo-electron
and X-ray holography, where a similar procedure, using multiple-wavelengths, min-
imizes both twin image and multiple scattering artifacts. By extension, parameters
other than defocus (such as tilt or wavelength) may be varied with similar effect. The
main problems, which arise in the implementation of this approach in HREM include
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the registration (alignment) of the images, the optimum choice of noise filter, errors in
the measurement of Cs (which must be independently measured—see Section 10.2),
and the correct incorporation of partial coherence effects. The removal of three-fold
astigmatism is found to be important (Krivanek and Stadelmann 1995).

A number of papers have extended this analysis to include effects of incomplete
coherence and noise. Most introduce a more general restoring filter rn(u, v) to control
noise amplification and deal with partial coherence. Then the experimental image
transforms are modified computationally to form

S(u, v) =
∑
n

I (u, v, �fn)rn(u, v, �fn) (7.3)

If a Wiener filter is used to control noise (Schiske 1973), the most general result,
which also incorporates the effects of limited space and time coherence is obtained
with (Saxton 1994)

rn(u, v) = [(W + v)w∗
n − (C∗Wn)]

[(W + v)2 − |C|2] (7.4)

As in Appendix 3 and eqn (4.8a) we use a function A(K) to describe the attenuating
effects of partial coherence. Then wn(K) = exp(iχ(K, �fn))A(K, �fn), W(K) =∑

n |wn(K)|2 and C(K) = ∑
n w2

n(K) (c.f. third-term in eqn (7.2)), where vector K
has components (u, v). The term v(K) is an estimate of the noise-to-object spectral
power ratio. Modern HREM image restoration software (e.g. Brite–Eurem project)
is based on eqn (7.3), taking a variety of forms for rn(u, v). Figure 7.1 shows an
image of diamond projected down [110] using this method. The point resolution of the
modified Philips CM300FEG used was 0.17 nm, whereas the composite reconstructed
image shows a resolution of 0.078 nm (O’Keefe et al. 2001). For this instrument,
� = 3.2 nm.

An alternative and enlightening view of this method has also been given (Coene
et al. 1992), denoted the parabola method (PAM). This group points out that it is
useful to consider the three-dimensional Fourier transform of a through focus series,
the third transformed variable Kz being conjugate to defocus �f . With Cs = 0, the
three-dimensional transform of the image intensity (eqn 7.1) then becomes

I (K, Kz) = δ(K, Kz) + φ(K)δ(Kz − 0.5λK2) + ϕ∗(−K)δ(Kz + 0.5λK2)

+
∫

H(K, Kz) exp(−2πiKz�f ) (7.5)

This formulation shows that the second-term, the linear image we seek, is localized
onto a parabolic shell (the Ewald sphere) in this three-dimensional space , and so can
be separated easily (except where K is small) from the unwanted third-term, which lies
on a reflected sphere. The non-linear final-term is smeared out throughout the recip-
rocal space, and is also readily minimized. Using this approach, experimental image
resolution has been improved from a point resolution of 0.24 nm to the information
limit of 0.14 nm (Op de Beeck et al. 1996).



210 High-Resolution Electron Microscopy

0.89 Å

Fig. 7.1 HREM image of diamond projected down [110]. This image is a composite of a through-focus
series of images, each ‘deconvoluted’ for the effects of the CTF. The point resolution of the modified
Philips CM300 FEG used was 0.17 nm, whereas the composite reconstructed image shows a resolution of
0.078 nm (O’Keefe et al. 2001) (Cs = 0.65 mm, 300 kV, � = 20 A, �c = 0.25 mrad).

For completeness, we should note that if partial coherence effects are allowed, the
transform of the image intensity (eqn 7.1) is

I (K, �fn) = δ(K) + φ(K)wn(K) + φ∗(−K)w∗
n(−K)

+
∑
K ′

φ(K′)φ∗(K′ − K)mn(K′, K′ − K) (7.6)

where mn(K) is the mutual transfer function, important in incoherent imaging theory
(Section 8.3).

Students may wish to try to develop an expression similar to eqn (7.2) for the cases
where the object potential is not centrosymmetric, where it is complex (taking account
of absorption as in eqn (6.2)), and where there is double-scattering (second-order
expansion in eqn (3.26)).

The most sophisticated application of these ideas is now encoded in the
Philips/Brite–Euram software package (Coene et al. 1996; Thust et al. 1996a,b),
which combines the PAM with a non-linear maximum-likelihood (MAL) algorithm
derived from Kirkland’s maximum a posteriori procedure (Kirkland 1984). The ini-
tial linear PAM estimate is improved on by iterative use of the non-linear MAL, based
on least-squares fitting and the method of steepest descent , to generate an improved
estimate of the exit-face wavefunction. This improved estimate is then used to gener-
ate a new simulated through-focus series, and so an improved estimate of the exit-face
wavefield. The process is continued to convergence. The success of the through-focus
method has been demonstrated in resolution tests where sub-Angstrom resolution has
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been achieved in composite experimental images of diamond (O’Keefe et al. 2001),
and of other light elements including the individual nitrogen atom columns in gallium
nitride and the oxygen columns in sapphire (Kisielowski et al. 2001). The displace-
ments of atoms near a twin boundary in Barium Titanate is analysed by this method
in Jia and Thust (1999).

For these crystals of known structure, excellent matches have been obtained
between computed and experimental HREM images, even for strongly non-linear
images with multiple scattering (Hytch and Stobbs 1994; King et al. 1998; Mobus
et al. 1998), since the beginnings of this effort in the early 1970s (Anstis et al. 1973).
The parameters to be varied included electron optical parameters (Cs, �f, �, �c),
alignment parameters (optic axis, beam direction, crystal axis) and thickness. As sug-
gested in Appendix 5, MgO smoke cubes viewed down [110] form the ideal test
sample, since then the sample thickness is accurately known at each point in the image
(O’Keefe et al. 1985). (Cleaved wedges of semiconductors may also be used, if the
cleavage angle is known.) The most troublesome variable is thereby eliminated from
the refinement. This work on known structures revealed, however, that most HREM
images show a contrast level about three times less than the computed images. In a
recent survey of the causes of systematic error in image matching (the ‘Stobbs factor’,
Boothroyd 1998), the influence of the following factors has been evaluated: scattering
factors, phonon-loss electrons, contaminating layers, fringing fields, beam damage,
errors in measurement of experimental parameters, backscattered X-rays generated
beyond the film, secondary electrons, and the detector response functions. None of
the above factors, acting alone, could account for the effect. The excellent agreement
between computed and elastically-filtered experimental CBED patterns (Zuo et al.
1997) suggests that the error does not lie in the diffraction computations or scattering
factors, but rather in the imaging process. There is an urgent need for more work on
this problem, perhaps using MgO cubes viewed along a face diagonal. Thermal scat-
tering seems a likely cause—at the zone axis orientation there is a strong maximum
in total phonon scattering, so that the background should decline with temperature.

Additional understanding comes from off-axis HREM holography, which acts as
an energy filter, so that losses exceeding �/T are excluded from the sideband images
(T is the recording time) (Van Dyck et al. 1999). Only the on-axis image is found to
suffer from Stobbs factor background, suggesting that this is due to phonon scattering
(Lehmann et al. 2002). Howie has suggested that flexure modes may be responsible.

The extension of this approach to unknown structures has proven difficult. With
atomic coordinates and imaging parameters included, the number of parameters
becomes very large, and a multi-parameter optimization problem results, in which
local minima will be encountered in the landscape (Press et al. 1986). The most
efficient parameter search method, and the choice of goodness-of-fit index become
important issues, which we now discuss. A figure-of-merit (FOM) is defined which
measures the difference between experimental and computed images for a given
structural model. The FOM is then minimized with respect to all parameters. These
should be constrained using all a priori information available, such as the crystal space
group (perhaps determined by CBED), any known bond-lengths, and independently
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measured electron-optical constants. In view of the large number of parameters, and
of the inevitable presence of systematic errors and errors in ‘given’ parameters, this
is a formidable undertaking, which has so far achieved only limited success. The
underlying theory, based on Baysian statistics, depends on a priori knowledge of
the noise statistics, and no agreement has so far been reached on the best FOM for
HREM. Unfortunately the structural models which result from the analysis depend on
the choice of FOM. Here we review the most straightforward approach and indicate
its limitations. Texts which give more background include Bevington (1969) on the
method of maximum likelihood; Prince (1982) on data analysis in crystallography;
and Press et al. (1986) on multiparameter optimization. The HREM analysis closely
parallels the Reitvelt method used in X-ray and neutron diffraction.

Consider a set of N independent experimental image intensities I e
i (each with

standard deviation σi) in the presence of gaussian, additive, uncorrelated noise. These
may be the intensities recorded at each pixel within the image of one projected unit
cell of a thin crystal, or some average of many cell images believed to occur at the
same crystal thickness. If the symmetry of the crystal is known, the images may be
further averaged after application of known plane-group symmetry operations. We
assume that these experimental data were generated from a certain theoretical model
with the addition of noise, so that I e

i = I t
i (ai)+ei , where ei is the normally distributed

noise and I t
i (ai) is the theoretically predicted intensity. This depends on the model

parameters ai (positions of atomic columns, thickness, electron optical coefficients,
etc.). The likelihood dP of observing the particular set of experimental intensities
(within a small range) that we did actually observe is then just the product of all the
gaussian distributions of noise, centred around each theoretically predicted intensity.
The probability distribution function is thus given by

P =
∏
i

1√
2πσi

exp{−s2/2} (7.7)

where

χ2 = s2

N − p
= 1

N − p

N∑
i=1

1

σ 2
i

[
I e
i − I t

i (ai)
]2 (7.8)

Here the number of degrees of freedom is N − p (there are p constraints). We then
assume that the values of the parameters ai which maximize P are a good estimate
of the true values of the parameters, so that the likelihood P = P(D|X) that the
given model X generated the observed data D is a maximum if χ2 is a minimum
(according to this ‘method of maximum likelihood’), so that P is a maximum. We
imagine a space in which there is one coordinate for each detector pixel, distance
along the coordinate representing the intensity at that pixel. Without constraints, one
vector in this space then defines the intensity of every pixel and hence an entire
image. Then χ2 may then be interpreted as a metric (Euclidian distance) in this
space, which measures the distance between members of two sets, one a member of
the set of possible trial-structure images, and the other the experimental image. This
makes connection with the theory of Projection onto Convex Sets, a powerful tool
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for image analysis and inversion problems (Spence et al. 1998). (This theory shows
how to avoid local minima and converge immediately to a global solution if ‘convex’
constraints can be found (Stark 1987). The search for such constraints would appear
to be a profitable approach to the HREM refinement problem.) Computer codes (such
as the simplex algorithm, and many others) adjust the model parameters ai (e.g. atom
positions, optical constants) until the minimum in χ2 is found. However, there may
be many local (false) minima, and the problem of finding the true global minimum
is fundamental, since, in general, apart from an exhaustive search there exists no
method for finding the minimum of a given function. Some algorithms address this
by starting again with a different set of starting parameters—a minimum found to be
independent of starting conditions is likely to be global. Others (such as simulated
annealing) allow for the possibility of jumping out of a shallow local minimum to find
a deeper one. Bayes’ theorem may be used to obtain the probability P(X|D)—the
posterior inference—that the model is correct, given the data, as

P(X|D) = P(D|X)P (X)/P (D) (7.9)

Here the ‘prior’ P(X) allows for the introduction of a priori information, which limits
the probabilities, and P(D) is a constant. The use of maximum entropy analysis
constitutes one possible form of prior P(X).

Although widely used, the ‘Chi-squared’ goodness-of-fit index in eqn (7.8) has
several disadvantages. Note that, for χ2 = 1, this equation reduces to the definition
of the variance. In particular, a good fit can be obtained (small χ2) either if the
noise is large (large σ 2) but the model poor, or if the model is good and the noise
small. Care is therefore needed in comparing χ2 between different experiments with
different noise levels. More importantly, the presence of systematic errors (e.g. wrong
value of thickness, absorption, Debye–Waller factors, point defects, bending of the
sample, incorrect values of coherence factors, presence of amorphous layers, thermal
diffuse scattering, etc.) can cause serious problems. In summary, the χ2 optimization
analysis works well only under the assumptions of gaussian, uncorrelated additive
noise in the absence of systematic errors. Often, however, the noise distribution is not
known, and a different variance may be required for each point. (For the simplest case
of normally distributed noise, the variance is equal to the mean.) Optimization will
always be subject in practice to the problem of stagnation in local minima, and even
the fastest computers can rarely handle minimization with more than half a dozen
parameters using HREM data. Independent measurement of thickness, defocus and
spherical aberration coefficients is therefore highly desirable. Saxton has pointed out
(Saxton 1998) that if differences are taken in eqn (7.8) between the Fourier transforms
of the image intensities, then the noise on this data is uncorrelated if the image contrast
is not too high—crosstalk between CCD pixels due to light-scattering in single-crystal
YAG scintillators is otherwise a serious problem.

A procedure is said to be ‘robust’ if it gives parameter estimates close to the min-
imum for a wide range of error distributions—for HREM the form of this distribution
may not be known. The preceding method is not robust in this sense. A method is
‘resitant’ if it is insensitive to ‘outlier’ data points, due, for example, to systematic
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error. A variety of shaping functions can be introduced into eqn (7.8) to make it
more robust and resistant. Six alternative definitions of goodness-of-fit indicies for
HREM are compared in Mobus et al. (1998). Different definitions of the Euclidian
distance, the cross-correlation function between computed and experimental images,
the weighted least squares, mean relative distance, and the traditional X-ray R factor
have all been tried. The situation may only improve when one can work with uncon-
taminated samples with atomically smooth surfaces containing defects consisting of
columns of atoms perfectly aligned with the beam.

7.2 Tilt series, aperture synthesis

From the earliest days of HREM (Dowell 1963), it was realized that resolution could be
approximately doubled, if the incident beam direction (and the sample) were inclined
to the optic axis by the Bragg angle �B. Then the optic axis bisects the angle � = 2�B
between the incident beam and a first-order Bragg beam. An instrument whose res-
olution limit di was equal to only half this Bragg spacing d = λ/� = λ/2�B would
then nevertheless be capable of imaging this spacing, since the two beams would fall
at opposites sides of the transfer function, as shown in Fig. 5.1(b). The two beams
then define the diameter of an achromatic circle, on which all even-order aberrations
cancel, since the aberration function and its conjugate are then multiplied together
in the final image intensity expression (eqn 5.7). Obviously only one side of the
diffraction pattern contributes to such an image, and so, for a non-periodic sample,
it becomes necessary to record at least four images, each with the incident beam
tilted into a different direction. Under the linear imaging approximation (eqn 3.29)
these images can be added together. This is the basis of superresolution schemes
based on aperture synthesis. The modern implementation depends on the computer
control of microscopes for beam tilting and image acquisition, and is described, for
example, in Kirkland et al. (1995). In that work, images of gold particles on amorph-
ous germanium were recorded in five orientations (symmetric, and four orthogonal
tilts surrounding). Tilt angles of about (λ/Cs)

1/4 are useful. By Fourier analysis and
deconvolution of the aberration function for the tilted images, these images could be
re-assembled into a composite image in which the resolution had improved from 0.23
to 0.14 nm. To align the images, a modified form of the cross-correlation method was
used, and a Wiener noise filter applied. The method is claimed to require much less
accurate specification of optical parameters than the through-focus method, and to
achieve higher resolution. It assumes, however, that the transmission function of the
sample is independent of tilt (unless the sample is also tilted with the beam), so that
very thin samples must be used, and the noise level is poor at high spatial frequencies.
Alignment of the images in the presence of noise is difficult. For a second application,
see Kirkland et al. (1997).

7.3 Off-axis electron holography for HREM

Holography was originally proposed by Gabor (Gabor 1949) in the in-line geo-
metry described in Section 7.6 as a means for overcoming the aberrations of electron
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microscopes. Early work using optical reconstruction and either collimated or diver-
ging illumination (to provide magnification) was hampered by limited coherence.
Gabor’s aim was finally achieved in 1995 (Ochowski et al. 1995), largely because
of the availability of the field-emission source, and through use of the latter off-axis
geometry to deal with the unsolved twin-image problem. The off-axis mode uses a
beam splitter to pass a coherent portion of the beam around the sample, so that it
can interfere at the detector with the beam which has passed through the sample.
The development of optical holography (Collier et al. 1971) in the commonly used
off-axis geometry came several years after Gabor’s original work, greatly facilitated
by the latter invention of the laser. In this section, we consider only off-axis electron
holography for the purposes of resolution improvement—superresolution schemes
based on in-line holography are discussed in Section 7.6.

For off-axis holography, the reference wave is normally obtained using an elec-
trostatic biprism (Mollenstedt and Wahl 1968), which crosses the wavefield passing
through the sample with a set of ‘carrier fringes’, described by the second-term on
the right of the first equation below. The reconstruction is then simple, and no twin-
image problem is encountered. In one-dimension, the intensity on a plane just below
the sample is

I (x) = |q(x) ⊗ t (x) + exp(−2πiu0x)|2
= 1 + |q(x) ⊗ t (x)|2 + exp(−2πiu0x)(q(x) ⊗ t (x))

+ exp(+2πiu0x)(q∗(x) ⊗ t (x)∗) (7.10)

where t (x) is the Fourier transform of exp(iχ(u)) (describing propagation of the image
over the defocus distance), ⊗ denotes convolution, and q(x) is the transmission func-
tion of the sample. This intensity is Fourier transformed for reconstruction, resulting
in distributions centred at u = 0 and u = ±u0. By isolating one of these satellite
spectra (say the last-term), multiplying it by exp(−iχ(u)), and inverse transform-
ing, the required transmission function (the unaberrated image) may be recovered.
Thus the holographic reconstruction method gives access to the complex wavefunc-
tion at the specimen exit face, and so allows correction of aberrations. The normal
method of implementing this in TEM is through a biprism placed below the sample,
so that the wavefield leaving the sample is magnified before it is crossed by the
reference wave. This greatly relaxes the stability requirements needed to record the
carrier fringes, which , referred to the object plane, are usually taken to be one-
third of the spacing of the resolution required. This produces adequate separation of
the satellite spectra. Lichte (1991) has analysed the optimum conditions for off-axis
HREM holography—he finds that the number of pixels needed in a hologram to allow
reconstruction at resolution dH is a minimum of

N = [dp/(0.3 dH)]4
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at the ‘Lichte focus’, which is three-quarters of the stationary phase focus (eqn 5.66),
and so given by

�fL = −0.75 Cs(λ/dH)2

Thus, for example, to improve resolution from a point resolution of dp = 0.17 nm to
dH = 0.1 nm by off-axis holography requires 1031 pixels (linear dimension), and a
biprism capable of generating 0.03 nm fringes referred to the object space. The final
magnification needed may be so large (e.g. 4 × 106) as to require instrumental modi-
fication; it is fixed by the need for, say, 4 CCD pixels per carrier fringe (see Section 9.9
for discussion of CCD pixel crosstalk). Using this method, the Tubingen group have
obtained reconstructed images of silicon crystals showing 0.104 nm resolution, using
an electron microscope whose point resolution was 0.198 nm (Ochowski et al. 1995).
More details can be found in Lichte (1988). An analysis of the energy-filtering effects
of off-axis holography can be found in Van Dyck et al. (1999). This problem is similar
to the decoherence problem of mesoscopic physics.

7.4 Aberration correction

If Cs could be reduced by electron-optical methods, a straightforward improvement in
point resolution dp could be obtained according to eqn (6.17). This long standing goal
of electron-optical design, aberration correction, was finally achieved experimentally
at the end of the twentieth century. Because the aberration coefficients of rotationally
symmetric electron lenses are always positive, there was thought to be little hope
of canceling out aberrations using round lenses. Scherzer, in 1947 was the first to
suggest the use of multipole lenses for this purpose (Scherzer 1947). Pioneering work
since then by Seeliger, Mollensted, Deltrap, Crewe, Rose, Koops and Hely described
various schemes for reducing both spherical and chromatic aberration (see, e.g. Rose
(1990)). But little could be achieved as long as the information limit to resolution due
to electronic instabilities (eqn 4.11) was more severe than the Scherzer aberration limit
(eqn 6.17). The situation changed dramatically in the 1990s, when useful improve-
ments in resolution for both STEM (Krivanek et al. 1999) and TEM (Haider et al.
1998a,b) were published using new aberration corrected instruments. (Earlier workers
were frequently able to improve the performance of sufficiently poor instruments using
correctors—the real challenge has been to exceed the performance of the very best
uncorrected instrument, or to improve on other super-resolution schemes, such as the
through-focus method.) One of the main difficulties has always been the determina-
tion of a systematic procedure for the alignment of the large number of electrostatic
and magnetic optical elements. Human alignment takes a prohibitively long time, so
that computer optimization techniques must be used. It has been said that aberration
correction could only become a reality when the speed of computers made the auto-
alignment time less than the stability time of the electron microscope. Examples of the
autoalignment procedures used are given in Section 12.5. For STEM, the ronchigrams
of Section 7.6 are more likely to be used for autoalignment of aberration correctors.
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For HREM, a hexapole corrector (Rose 1990) which corrects for third-order spher-
ical aberration Cs = C3 has been fitted to a 200 kV field-emission TEM (Haider
et al. 1998a,b). Resolution remains limited by the information resolution limit di,
and by chromatic aberration, which is not corrected (Cc = 1.3 mm). Improvements
in di would expose a resolution limit of 0.05 nm, due to fifth-order aberrations, with
C5 = 4 mm for this instrument. The corrector uses two hexapoles to introduce negat-
ive spherical aberration, which just cancels that of the round objective lens. The result
is an improvement in the point resolution from 0.24 to about 0.13 nm. Figure 7.2 shows
a corrected image of a thin SrTiO2 crystal obtained from this instrument, projected
in the [011] direction. The pairs of closely spaced atomic columns (Ti, Oxygen) are
clearly resolved. The researchers comment that the improvement in image sharpness
and contrast (due to the concentration of energy into a taller, narrower lens impulse
response) is more striking than the improvement in resolution. Images are recorded
by CCD camera, analysed to produce diffractograms for measurement of aberrations,
and the results fed back to the correctors for adjustment of their currents and voltages.
The inevitable errors in measurement mean that both Cs and �f are not exactly zero—
the best match with simulated images occurs for Cs = −10 μm, �f = 8 nm. (Recall
that for a phase object with Cs = �f = 0 (eqn 3.25), no contrast at all is expected.
Hence the contrast must arise either from additional multiple scattering or non-zero
values of �f and Cs.)

Fig. 7.2 HREM image of SrTiO2 down [110] obtained using the Haider/Rose spherical aberra-
tion corrector fitted to a Philips CM200 FEG ST electron microscope. Within error measurement,
Cs = −10 μm, �f = 8 nm. Every atomic column, including oxygens, are correctly resolved. The
oxygen-titanium distance of 0.133 nm is indicated (Jia et al. 2002).
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Aberration correction can be expected to bring new challenges and solutions to the
field of HREM. In addition to improved resolution, the size of the region, which can
be studied by selected area diffraction is usefully reduced, since Cs is reduced. The
much wider passbands and oscilllation-free transfer function elliminate the damping
effects of spatial coherence on the transfer function (eqn (4.8) with Cs ≈ 0). Tilting
the incident beam by up to 30 mrad was found to introduce negligible image shift,
defocus, astigmatism or coma, so that the use of hollow-cone illumination is greatly
facilitated, and, for the thinnest samples, a more intense lattice image may be obtained
by using a larger illumination angle. A larger pole-piece gap may be possible, allowing
greater access for X-ray detectors and other exotic sample holders for in-situ work.
For STEM, aberration collection means the possibility of collecting emission from
a source over a much larger angle, both for ‘point’ and larger sources, resulting in
much higher probe currents (Fig. 8.7).

The interpretation of phase-contrast images from Cs-corrected HREM instruments
requires renewed analysis, since the conventional method of balancing-off the spher-
ical aberration phase shift against the defocus phase shift to give the 90◦ shift
required for phase contrast imaging cannot be used. Since the information resol-
ution limit di (eqn 4.11) is known, one may re-introduce an optimum amount of
spherical aberration which makes the point resolution limit dp (eqn 6.17) equal to
di. (O’Keefe 2000). There is also no need to use the usual Scherzer optimum defo-
cus �f = 1.2

√
(1.5 Csλ), we can instead choose the defocus to be one Scherzer

unit of −√
(Csλ) and so avoid the ‘dip’ in the contrast transfer function (CTF, see

Fig. 4.3(a) and discussion following eqn (4.12)). Cs is optimized when the crossover
of the CTF falls at the information limit of the microscope. The optimum CTF can
be derived from the lens phase-shift χ (eqn 3.24), since, at crossover, χ = 0 and we
get u2 = −2�f/(Csλ

2). Thus at the Scherzer defocus condition of �f = −√
(Csλ),

CTF crossover occurs at uC = √
2 C

−1/4
s λ−3/4. On the other hand, the informa-

tion limit is determined by the temporal-coherence damping envelope (third-term in
eqn (4.8a)) and cuts off at d−1

i = u0(�) = [2/πλ�)]1/2. Equating uC with u0, the
optimum value of Cs is found as

Csopt = π2�2/λ (7.11)

where � is the root mean square (r.m.s.) value of the total spread of focus due
to electronic instabilities (eqn 4.9). The objective aperture should be matched to
uC. Figure 7.3 shows the CTF for this condition with � = 2.0 nm (Cs = 0.02 mm,

uC = 1/0.078 nm−1) at 300 kV (O’Keefe et al. 2001). The simulated image of dia-
mond projected down [110] (thickness 4 nm) under these conditions is shown with
reversed contrast in Fig. 7.3(c) for comparison with the experimental image obtained
by summing a through-focus series (Fig. 7.2). It appears at this time that both meth-
ods are capable of similar resolution, which depends in both cases on instabilities,
and, for the through-focus method, on the effects of spherical aberration on spatial
coherence (eqn 4.8a).



(a)

(b)

(c)

Cs = 0.02 mm

1.0 Å 0.8 Å

Fig. 7.3 CTF for an aberration-correctable 300 kV TEM, with � = 2.0 nm (Cs = 0.02 mm, uc =
1/0.078 nm−1) (O’Keefe et al. 2001). The white dots show the positions of Bragg beams. The simulated
image of diamond projected down [110] (thickness 4 nm) under these conditions is shown with reversed
contrast in (c) for comparison with the experimental image obtained by summing a through-focus series
(Fig. 7.1).



220 High-Resolution Electron Microscopy

An alternative interpretation of images with Cs = 0 is possible using the pro-
jected charge density (PCD) approximation (eqn 5.26) (Lynch et al. 1975). It
predicts an image from thin crystals whose contrast reveals directly the projected
charge-density ρp(x, y) (rather than the electrostatic potential) in the sample. The
images are symmetrical in focus, and depend on the total projected charge dens-
ity, including the nuclear contribution (unlike X-ray diffraction). Note also that the
derivation of eqn (5.26) does not require the first-order expansion of the exponen-
tial needed for the weak phase object approximation. All terms, describing higher
orders of multiple scattering, are retained, so that the PCD approximation takes bet-
ter account of multiple scattering than the weak-phase object approximation, limited
only by the approximation of a flat Ewald sphere. However, the very large angles
involved in aberration-corrected lenses eventually result in failure of this approx-
imation according to eqn (5.62), with the result that the depth of focus becomes
small. (At 200 kV and a resolution of 0.14 nm, eqn (5.62) allows a thickness of
about 8 nm for the validity of the PCD approximation with Cs = 0.) At sub-
Angstrom resolution, this will create interesting possibilities for ‘optical sectioning’
in both TEM and STEM. It is also found that the impulse response of the aberration-
corrected lens lacks the oscillating ‘feet’ of the Scherzer image, so that much cleaner
images of atoms are seen from glasses and interfaces, with less confusing Fresnel
noise.

In summary, aberration-corrected TEMs, operating at 200 keV, have now achieved
the level of resolution previously obtainable only from high-voltage machines oper-
ating at 1 MeV, with obvious advantages in cost and radiation damage reduction. The
information resolution-limit can be improved further by decreasing the energy spread
of electrons from the source to about 0.2 eV. This may require the fitting of an elec-
tron monochromator, similar to those already in used for energy-loss spectroscopy.
With a spread of 200 meV FWHH, an aberration-corrected 300 keV FEG-TEM would
have �(E)/E of 0.28 ppm, which combines with the presently-attainable �(V )/V

of 0.3 ppm to give � = 6.2 Å, leading to an information limit of 0.44 Å. A CTF drawn
out at optimum Csopt and � = 6.2 Å for such an instrument (O’Keefe 2000) shows
clear information transfer beyond 0.5 Å, while a CTF for the equivalent uncorrected
microscope shows that it does not reach the information limit at Scherzer focus (due
to the beam convergence of 0.1 mrad). The effect of beam convergence on the CTFs
of Cs-optimized microscopes is negligible. Thus HREM in corrected instruments at
resolution levels beyond 0.5 Å now appears feasible. Commercial development of
aberration correctors for SEM, TEM and STEM instruments has commenced. The
use of aberration correctors in STEM (Krivanek et al. 1999) is in many ways even
more exciting than those for TEM, in view of the benefits of correctors for ELS,
EDX and ADF imaging. Correctors can provide much greater current into probes,
due to the larger illumination angles possible (Fig. 8.7), given sufficient environ-
mental and electronic stability , as shown in Chapter 8. Similar correctors have also
been incorporated recently into the photo-electron emission microscopes built for
synchrotrons.
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7.5 Combining diffraction and image information

From the earliest days of electron diffraction there has been a continuous effort to
solve crystal structures using electron diffraction data alone (see Cowley (1967) for a
review of early work). With a few important exceptions , this effort has been largely
unsuccessful. At first, it was hoped that a kinematic analysis might serve, and a
certain number of layer structures which could be prepared as very thin films were
solved using methods modified from X-ray crystallography practice. (The books by
Pinsker (1949); Vainshtein (1964); and Zvyagin (1967) review this work—see also
Avilov in Cowley (1992a,b).) But low R factors (e.g. less than 5%) could only be
obtained if dynamical effects were included in calculations, since unrealistic sample
thicknesses of less than about 4 nm were needed to obtain kinematic conditions for
light elements at 100 kV, and contamination and thickness variation of the sample
under the illuminated area limited progress. These early results are in the process
of being re-discovered by current researchers, using better equipment. The validity
domain of the kinematic approximation was investigated in detail for oxide crys-
tals, for example, in 1975 (Lynch et al. 1975). The main difficulty is that X-ray
structure analysis does not contain crystal thickness as a parameter, whereas electron
diffraction results, because of multiple scattering, depend sensitively on thickness,
which cannot easily be measured, leading to irreproducible results. Exceptional cases
include organic monolayers of known thickness, cleaved inorganic wedges and oxide
smoke crystals of well defined habit. Cryomicroscopy succeeds because the images
are insensitive to the mean potential of the ice.

Just as HREM ‘imaging solves the phase problem’ (by directly revealing atomic
positions), by the 1960s it was understood that multiple scattering also solves the
phase problem. The intensity of multiply-scattered Bragg beams depends on structure
factor phases. (This effect was used, for example, to measured phases for an acentric
crystal of known structure with tenth-degree accuracy by electron diffraction (Zuo
et al. 1989), achieving far greater accuracy than is possible using many-beam X-ray
methods.) This raised the hope that inorganic structures could be solved by taking
advantage of dynamical effects and of the nanometer-sized probes available with
field-emission instruments. However, as described in Section 13.4, this has proven
possible in very few cases—there are usually too many adjustable parameters. But
the development of the CBED microdiffraction or nanoprobe method in the 1960s
and 1970s, together with the automated refinement of HOLZ line positions, has
meant that one can now usually determine both the space group (Eades 1988) and the
Bravais lattice (Zuo 1993) of an unknown crystal (Spence and Zuo 1992). This is a
most important first step for structure analysis, which heavily constrains the atom-
position determination. To benefit from the effects of multiple scattering, this analysis
must be performed on a region of crystal thicker than that used for HREM. Where
this is possible, these measured constraints can be included in the HREM image
matching process described in Section 7.1. Since the nanoprobe CBED mode solves
the problem of thickness variation and crystal quality, its use with very thin crystals
for kinematic analysis—‘CBED with blank disks’—also appears to be a promising
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approach (Wu and Spence 2002) when combined with elastic energy-filtering and
large dynamic-range detectors (Chapter 9). This information on kinematic structure
amplitudes might also be integrated into HREM image analysis.

In biology, an important breakthrough occurred in 1975 (Unwin and Henderson
1975), when the structure of purple membrane was solved by a combination of electron
diffraction and imaging, and this work has served as the model for much work since,
as described in Section 6.10. By comparison with inorganic structures, the membrane
protein crystals offer the advantage of uniform (single molecule) thickness over large
areas, but the disadvantages of film bending (Cowley 1961) and orientation changes,
severe radiation sensitivity and the need for a hydration medium. For a comprehensive
review of related methods for solving organic crystal structures by electron diffraction
and imaging, including the use of the numerical Direct Methods of X-ray crystallo-
graphy (Woolfson and Fan 1995) for solving the phase problem, see Dorset (1995)
and Chapter 6.

Several groups have now applied these combined methods, developed for organic
crystals, to inorganic crystals (see Dong et al. (1992); Li (1998); and Sinkler and
Marks (1999) for reviews). If HREM images and spot diffraction patterns can be
obtained from the same region of crystal, thin enough for kinematic conditions to
be assumed, then, using the Fourier transform of eqn (4.2) (corrected for transfer
function effects as described in Section 5.1), the amplitudes and phases of all the
structure factors, which lie within the information resolution limit of the microscope
may be found. The amplitudes of higher order reflections can be obtained from the spot
diffraction patterns, and direct methods, phase extension and/or maximum entropy
used to estimate the phases of these high orders, based on the known low order
amplitudes and phases. If the symmetry of the crystal is also known as a result of
diffraction pattern analysis, then these symmetry operations may be applied to the
HREM images to improve statistics. If regions of constant thickness can be found,
the images of many unit cells may be added together for the same purpose. A useful
test for kinematic scattering when a crystal is known to be acentric lies in the fact that
I (g) = I (−g) for such a crystal only if multiple scattering is negligible.

The differences between X-ray and electron diffraction must be understood before
software intended for X-ray crystallography can be used with kinematic electron dif-
fraction data. As noted above, for X-ray analysis, a small crystal is normally bathed
within the X-ray beam (Bragg geometry), so that the analysis does not depend on
thickness at all (except through extinction effects). The X-ray wavelength is much
larger, resulting in a much smaller Ewald sphere. X-ray rocking curves cover a
tiny fraction of the Bragg angle (unlike CBED patterns), so that X-ray data is usu-
ally ‘angle-integrated’ across the entire rocking curve. TED spot patterns, however,
provide the intensity at one point within the rocking curve. This difference affects the
thickness dependence of the intensities. In the two-beam theory at the Bragg condi-
tion, the electron diffraction intensity (not angle-integrated) varies sinusoidally with
thickness (as seen experimentally in Fig. 12.3)—for small thickness the thickness
variation is therefore quadratic in the kinematic limit. The X-ray situation for angle-
integrated data is quite different (Stout and Jensen 1968). The intensity of a reflected
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Bragg reflection may be equal to that of the incident beam (perfect crystal 2-beam
theory, no absorption, angle resolved) or, if angle integrated, proportional to some
power x (1 < x < 2) of the relevant structure factor amplitude, depending on the
degree of crystal perfection (mosaicity) and the extinction correction model used (see
eqn (7.12)). There is no analogy for polarization effects in electron diffraction. The
Direct Methods software used to solve crystal structures by X-ray crystallography
assumes that each reflection has been recorded at the Bragg condition, however, elec-
tron diffraction patterns recorded in the zone axis condition contain many beams
simultaneously excited with different excitation errors, which modify their phases.
(Given a model for scattering theory, allowance may be made for this effect, since
excitation errors are known.) For organic monolayers, the small thickness (producing
rods in reciprocal space) and film bending may justify the use of an angle-integrated
expression for diffracted intensity. With w = sgξg and Ug = 1/(ξgλ), this is given,
using the two-beam eqn (5.20), as (Blackman 1939).

Īg(t) =
∫ w=∞

w=−∞
|�g(t, w)|2 dw

= π |Ug|2t
2K2g

for t < 2ξg

= π |Ug|
2Kg

for t > 2ξg (7.12)

Note the different powers of the structure factor for different thickness ranges, and
the absence of any thickness dependence for large thickness (absorption has been
neglected). The later condition forms the basis of the precession camera developed
for electron diffraction by Vincent and Midgley (Vincent and Midgley 1994), which
provides angle-integrated TED intensities.

Direct methods require about five strong reflections per atom and atomic-resolution
diffraction data extending to at least 0.1 nm. Readers are referred to Dorset (1995)
for more detail. Finally, while Direct Methods are intended for application to Fourier
coefficients of charge density Fx, kinematic electron diffraction measures coefficients
of electrostatic potential Fg (eqn 5.19). These are related, through Poisson’s equa-
tion, by the Mott–Bethe formula (Spence and Zuo 1992), which strictly cannot be
inverted (to give Fx from Fg) for a polyatomic crystal without knowledge of the
atomic coordinates. The derivation of Direct Methods assumes a known sign for the
scattering charge density and sharp atom peaks (atomicity), which may also be reas-
onable assumptions for the potential, allowing the application of Direct Methods to
Fourier coefficients of the potential rather than charge density. The sign of the total
potential depends on knowledge of its mean value V0 (O’Keefe and Spence 1993),
however transmission diffraction is not sensitive to this. The potential for an isolated
ion may change sign (Vainshtein 1964). (Electron scattering factors for ions may also
change sign.) In general, the phases of electron structure factors are not formally
equal to those of X-ray structure factors, however, we find from simulations that,
both for centro and non-centro crystals, the phases are in fact equal for all but the
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weakest reflections. A comparison of various approximations (kinematic, two-beam,
eqn (7.12), inclusion of excitation error effects etc.) applied to elastic energy-filtered
electron diffraction spot patterns from thin organic films can be found in Wu and
Spence (2002) where data is scaled using a Wilson plot. The use of the Kohler mode
of selected area illumination in this work provides spot patterns from much smaller
areas than conventional selected area diffraction, which minimizes bending effects.
It is common in electron diffraction studies to find rather poor R-factors compared
with X-ray work.

Using combinations of diffraction and imaging data some spectacular successes
have recently been claimed. For example, atom positions in Ti11Se4 are claimed to
have been determined to within ±0.002 nm (Weirich et al. 1996). Using the maximum
entropy algorithm and the Sayre equation for phase extension (Dorset 1995), the pos-
itions of the oxygen atoms in a mixed potassium–niobium oxide were determined
(Hu et al. 1992). The HREM images showed only the metal atom columns in pro-
jection. A third group have extended the resolution of images of a radiation-sensitive
organic film from 0.32 to 0.10 nm by applying the maximum entropy algorithm to
diffraction pattern intensities (Dong et al. 1992). An impressive application of the
use of spot diffraction patterns combined with HREM images has been the solu-
tion of the structure of a crystalline magnesium–silicon particle in an aluminium
matrix (Zandbergen et al. 1997). This group has also used direct least-squares refine-
ment, combined with the multi-slice algorithm, to analyse spot patterns, so that
multiple scattering effects are included in the analysis (Zandenbergen and Jansen
1998). Applications of the electron diffraction precession method can be found in
Vincent and Midgley (1994) and Gjonnes et al. (1998). Ab-initio structure analysis of a
carbonitrile compound using maximum entropy methods is described in Voigt-Martin
et al. (1995), resulting in good agreement with X-ray results and with HREM images.
The application of direct methods to thickness-integrated electron diffraction data is
analysed in Sinkler and Marks (1999). The channeling interpretation of imaging (Sec-
tion 8.4) suggests that the exit-face wavefield will preserve peaks at atom positions
despite some multiple scattering, thus extending the thickness range of direct methods.
For partially ordered crystals such as oxides with variable stoichiometry, the diffuse
scattering in selected area patterns can greatly assist the interpretation of HREM
images (see Yagi and Roth (1978) for a fine example of this approach). A general
approach to combining image and diffraction is outlined in Huang et al. (1996).

While there are many difficulties to be resolved with these approaches, this com-
bination of microdiffraction and HREM is, in the opinion of the author, the most
promising approach to super-resolution for crystalline samples. Clearly the trend is
toward the incorporation of all the a priori knowledge we have about a structure,
such as its symmetry, Bravais lattice, and composition (from EDX and ELS ana-
lysis). Information on the statistical distribution of interatomic bond-lengths which
occur in nature has not been used in the past, and is available. But the most important
advice is this: until the experimental electron diffraction patterns produce reprodu-
cible intensities, the use of a data analysis method (such as X-ray crystallography
software) which does not depend on thickness is not justified.
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7.6 Ptychography, ronchigrams, shadow imaging,
and in-line holography

The super-resolution method of Ptychography uses a scanning transmission elec-
tron microscope (STEM) to allow coherent nanodiffraction patterns with overlapping
orders to be recorded for many probe positions. We consider here the simpler
case where the sample is periodic over a distance somewhat larger than the probe.
The phases of the structure factors can then be extracted from the interference
between overlapping orders. Ptychography is unique amongst resolution improve-
ment schemes in being the only method capable of improving resolution beyond the
information limit di—this apparent miracle is possible because it combines elements
of diffraction with imaging. (In X-ray crystallography it is common to determine
atomic coordinates with an accuracy much less than the wavelength of the radiation
used.) The idea originated in optics. The first experiments in electron microscopy
were due to Hoppe (Hoppe 1969), and an elegant formulation of the complete theory
has been given in a series of papers by Rodenberg, Bates and others. (See Rodenberg
et al. (1993) for references, and for the extension of this method to non-periodic
samples.) To simplify matters, we use results from Chapter 8 on STEM, eqn (8.1)
(Fig. 8.3a) for the case of a probe-forming lens of unit magnification, with Bragg
beams of equal amplitude at thickness t = ξg/2 diffracted by a centrosymmetric
crystal. With α the angular deviation from the mid-point of the disk overlap at D,
s the excitation error, x/a the fractional probe coordinate, �� the phase difference
between reflections and F(x) the source intensity distribution function, the intensity
near the mid-point of overlapping orders becomes

I (u, c, ��) = 1 +
∫

source
F(x − c) cos{2πx/a + �χ(α) + ��(s)} dx (7.13)

At the achromatic mid-point D, α = s = �χ = 0. (In two-dimensions, the
intensity is achromatic on a circle.) This important result therefore shows that there
are points in the coherent CBED pattern which are aberration-free (Spence and Cowley
1978). By positioning the probe on a centre of symmetry such that ID = IF, an origin
may be defined with c = 0. For the idealized case of a point source and point detector,
the phase difference ��g0 may thus be determined with respect to this origin. The
d-spacing, which has been phased is approximately equal to the source size in this
case. In the general dynamical case, one can never determine the phase difference
between beams which differ in scattering angle by an angle greater than the angular
coherence of the source (i.e. the optimum illumination aperture).

Within the approximation of a flat Ewald sphere and a multiplicative object trans-
mission function, however, all diffracted beams refer to the same axial incident beam
direction and the phase differences may therefore be linked. Then, for a probe on
a centre of symmetry the phases of all beams may be deduced if a phase of zero
is assigned to the central beam. The important point is that this procedure allows
d-spacings to be phased (for very high order beams) which are much smaller than the
effective source size. The geometrical image of the effective source need be no smaller
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than the first-order lattice spacing. Since, in amorphous materials, a continuous range
of spacings occurs, the coherence requirements are further greatly relaxed in this case.
The highest order reflection which can be phased is limited only by the Debye–Waller
factor and the flat Ewald sphere approximation, and phase determination becomes
possible for beams which lie beyond the information limit of the instrument as set by
the partial coherence envelope. Note that the function F(x) in eqn (7.13) must also
incorporate the effects of tip vibration. These experiments are reciprocally related to
the formation of dark-field TEM lattice images with the optic axis in the centre of the
objective aperture, however the STEM arrangement provides more information.

The remarkable thing about this geometry is that, although interference is needed
only between adjacent orders, this suffices (by an obvious ‘stepping out’ process) to
determine the phases of very high order reflections. Thus the resolution of the method
is not limited by the size of the electron source (or its image, the probe), which need
only be small enough to provide coherence over an angular range as large as twice
the Bragg angle. Unlike HREM imaging, the high order reflections at the resolution
limit never need interfere with the zero-order beam. Resolution in Ptychography is
ultimately limited by noise and by the Debye–Waller factor, and excitation error
effects, which attenuate high order Bragg beams, rather than by any electron-optical
parameters or diffraction limits. Once the phases (and amplitudes) of all the orders
have been determined (if single scattering conditions can be assumed), a map of
the crystal potential may be found by Fourier synthesis. By collecting the intensity at
many such mid-points simultaneously, Nellist and co-workers have been successful in
exceeding the information limit d−1

i using this method (Nellist et al. 1995). Intensities
were collected from a thin silicon crystal using a Vacuum Generators HB501 STEM
at 100 kV with a point resolution of 0.42 nm. The synthesized image clearly shows the
silicon ‘dumbells’ projected along [011] with a resolution of 0.136 nm. This is finer
that the information limit of di = 0.33 nm. The errors in this method due to multiple
scattering have been calculated as a function of sample thickness and accelerating
voltage (Spence 1978). The extension of the method for non-periodic samples and
further analysis is given in Konnert et al. (1989), McCallum and Rodenberg (1992),
Rodenberg et al. (1993), and Plamann and Rodenburg (1994). A simplified one-
dimensional analysis can be found in (Cowley 2001).

There is another important interpretation of this experimental geometry, which
relates it to Gabor’s in-line holography and shadow imaging. We show by a simple ray
diagram that the intensity distribution in the region of overlapping orders also consists
of a magnified shadow lattice-image of the grating or crystal. (If the illumination angle
is not limited, the effects of spherical aberration become dominant, and the pattern
is known as a Ronchigram. Rochigrams were recorded from field-emission STEM
instruments some years ago which clearly showed directly the crystal lattice planes
(Cowley 1986), and Fig. 8.3(c) provides an example. They may be used to measure
the aberration constants of STEM instruments (Cowley 1979).) This geometrical-
optics interpretation of a coherent CBED pattern with overlapping orders is illustrated
in Fig. 7.4 for the case where the probe is overfocused. The asymptotic extension
of diffracted CBED cones toward the source defines virtual sources S′, necessarily
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Fig. 7.4 Ray diagram showing the formation of virtual sources S′ when a STEM probe is overfocussed.
These sources produce interference fringes on the microdiffraction screen, which are a magnified shadow
image of the crystal. The magnification is L/�f .

coherent with S (since they are images of the same source). By geometric construction
it will be found that these virtual sources lie on one plane in the reciprocal lattice,
and so form a virtual point diffraction pattern. The underfocus case (not shown)
corresponds to the arrangement used to form ‘Tanaka’ large-angle CBED patterns
with the beam-selecting aperture removed. Taken alone, two of these sources S and
S′ will produce Young’s fringes on a distant screen with angular period �α = λ/ds,
where ds is the separation of the sources. Now ds ≈ 2�B�f , so the period of the
fringes is

�α = λ/(2�B�f ) (7.14)

where �α is the angle subtended at the sample by one fringe on the plane of the
CBED detector. The fringes thus become finer with increasing defocus, as observed.
This expression is a good approximation if Cs is small for low-order reflections and
large defocus. The fringes may thus be interpreted as a point-projection shadow lattice
image, with magnification M = L/�f . We can see this simply by noting that the
period of the fringes on the screen is approximately X = L�α = M(λ/2�B) = Ma,
with a the lattice spacing. This is in accordance with the theory of Fourier imaging,
which predicts images periodic in both L and �f (Cowley 1990), and such shadow
lattice images have now been observed experimentally by several groups using field-
emission STEM instruments (Cowley 1986; Tanaka 1988; Vincent et al. 1992). In
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the absence of spherical aberration, the magnification is infinite at zero defocus.
The formation of shadow lattice images also follows from eqn (7.13), if we take
Cs = c = �θ = 0 and solve for the period �α of I (α) in α, the angular coordinate
on the CBED screen.

If the illumination angle is made much larger than the Bragg angle, so that gross
overlap of orders occurs, we have just the geometry proposed by Gabor for in-line
holography. The patterns can be interpreted as holograms if the direct, central disc
is much more intense than the others, providing a reference beam. The theory of
this effect makes close connection with the theory of Fourier or Talbot self-imaging,
which uses the same geometry (Cowley 1981). Early experimental applications of
Gabor’s in-line proposal were unsuccessful (Haine and Mulvey 1952), partly because
of the twin image problem—it was found impossible to separate the real and virtual
images in the reconstruction—and partly for lack of coherent, bright, field-emission
sources. (See Collier et al. (1971) for an excellent review and history of both optical
and electron holography.) Several solutions to the twin image problem have since been
proposed—a summary can be found in the chapter by Spence in Voelkl (1998)—these
are generally variants of the coherent detection method outlined earlier, in which some
experimentally controllable parameter is varied as linear images are accumulated.
The most successful solutions include: (i) the Fraunhoffer (small object) method (see
Matsumoto et al. (1994) for an application to HREM), in which one image is so far
out of focus as to be undistracting. (ii) Summing images for different lateral source
positions, after repeatedly bringing one of them back onto the axis in the computer
(they have different dependencies on source location). (iii) Integration of images
over defocus or wavelength (this method is used extensively in photoemission holo-
graphy (Barton 1988)). (iv) The Transport of Intensity method (Paganin and Nugent
1998) circumvents the twin image problem, requiring only one image recording for
phase objects. In-line electron holography has been steadily developed using STEM
instruments, first in Chicago (Munch 1975), and more extensively at Arizona State
University (Cowley and Walker 1981; Cowley 1992a,b).

For a compact non-periodic object bathed in a coherent, diverging beam, it is a
remarkable fact that the scattering pattern in the far-field becomes an image of the
object. (If the source distance �f in Fig. 7.4 is taken to infinity, by contrast, so that
the illumination becomes planar, we know that the scattering pattern is a Fraunhoffer
diffraction pattern, bearing no obvious resemblance to the object.) The image formed
at infinity due to illumination by a point source distance �f from the object turns
out to be a conventional out-of-focus image, for which the focus defect is �f and
the magnification L/�f . This equivalence between HREM out-of-focus images and
point-projection images is explained in the language of Fourier optics in Spence
(1992). Both of these are in-line holograms.

If the source-to-object distance in Fig. 7.4 is made very large, so that the illumination
becomes collimated, and the source to detector distance L is made small, we have
just the arrangement used for conventional HREM, if lenses are then added below
the sample to magnify the image. Thus the through-focus methods of Section 7.1
may also be considered to be methods for reconstructing in-line electron holograms.
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A bright-field, out-of-focus HREM image is an electron hologram. The advantage
of using a diverging, coherent beam is that it provides magnification without the
need for lenses, which may introduce aberrations. The final resolution in the image
reconstructed from a coherent diverging beam is then given approximately by the
source size.

Ronchigrams are coherent CBED patterns from thin crystals with the objective
aperture removed. They provide the best and most sensitive way to align a STEM
for high resolution, and to measure the defocus and aberrations in STEM (Lin and
Cowley 1986), based on measurements of the radii of the ellipses which appear, as
shown in the experimental example shown in Fig. 7.5 (Hembree et al. 2002). For
more details, see Spence and Zuo (1992).

Many other geometries for electron holography in STEM are possible—one survey
listed twenty modes (Cowley 1992a,b). The effects of aberrations enter in different
ways in these geometries, allowing new possibilities for their removal.

Fig. 7.5 Ronchigram recorded on a 100 kV Vacuum Generators STEM using the 0.8 nm lattice planes of
Beryl in near two-beam conditions. The eyes of the two ellipses occur at stationary phase positions in the
transfer function. Interference occurs due to gross overlap of coherent orders. These patterns are essential
for accurate alignment and measurement of optical parameters in STEM (Spence and Zuo 1992; Hembree
et al. 2002).
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7.7 Direct inversion from diffraction patterns

Several schemes for direct inversion of dynamical diffraction pattern intensities to
complex structure factors have appeared (Spargo et al. 1994; Moodie et al. 1996;
Spence 1998; Allen et al. 1998, 1999; Spence et al. 1998). If successful, these meth-
ods could provide much higher resolution than imaging, while at the same time, by
analogy with X-ray crystallography, they may be capable of identifying the species
present in the unit cell from the height of the peaks in a potential map. Since they
are based on analysis of CBED patterns, they can be applied to nanoscale regions of
material, which must , however, be crystalline and thick enough to produce significant
multiple scattering. They cannot be used to analyse the atomic structure of defects.
The essential idea of these schemes is that multiple scattering solves the phase prob-
lem by allowing interference between different ‘structure factors’. Thus it is readily
shown that the intensity of multiply scattered Bragg beams is highly sensitive to the
phase of structure factors (and hence to atomic coordinates), unlike singly-scattered
beams. By collecting a series of CBED patterns near to a zone axis orientation it is
possible to find the amplitudes for all the entries in the scattering matrix S in equation
5.50 (Spence, 1998). It is also possible to find the structure matrix A directly from a
knowledge of all the complex entries in S, and the excitation errors (Allen et al. 1998,
1999). For one non-iterative approach to the direct determination of complex structure
factors from CBED patterns from crystals of unknown structure based on the poly-
nomial expansion 5.33 see Koch and Spence (2002). For known crystal structures,
optimization methods may be used to refine low-order bonding reflections in amp-
litude and phase. For a detailed analysis and measurement of structure-factor phases
with tenth-degree accuracy from three-beam CBED patterns in acentric crystals, see
Zuo et al. (1989a,b, 1993). (These phase measurements are much more accurate than
is possible using multiple scattering effects on X-ray diffraction.)

7.8 Atom lenses

The aberrations of electron lenses scale with their size. It follows that a lens of
sub-nanometer dimensions can be expected to have extremely small aberration coef-
ficients. The focusing properties of a column of heavy atoms have been calculated,
and found to have a focal length of about 2 nm, with a negative spherical aberration
coefficient of similar magnitude. Multiple electron scattering calculations confirm
that a 0.2 nm diameter STEM probe, focused over a column of atoms, is re-focused
beyond the column and demagnified to about 0.04 nm diameter (Cowley et al. 1997).

A more practical scheme, appropriate to a TEM instrument, can be based on the
Fourier images of atomic columns, formed beyond a thin focusing crystal at regular
intervals along the axis (see Section 5.8). These image peaks can be used as fine
probes, which are scanned over the surface of a sample mounted slightly downstream
of the focusing crystal, by tilting the incident beam. The focusing crystal consists of
widely spaced heavy-atom columns. The Fourier lattice images form narrow waists in
the electron stream, which repeat periodically with distance downstream. Calculations
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show that the array of Fourier ‘probes’ incident on the second crystal (or on a general
sample) may be much finer than 0.05 nm for favourable thicknesses of the focusing
crystal. The wavefield exiting the sample is then imaged by a conventional TEM lens,
whose resolution need only be sufficient to resolve the individual atomic columns
in the focusing crystal. The resulting TEM images are recorded for each incident
beam tilt, and this array of images then contains enough information to assemble
an image of the sample with 0.05 nm resolution. Multislice calculations show that
these schemes work well (Cowley et al. 1997), in addition to several others related
by reciprocity. The Fourier images may be focused onto the sample by variation of
electron wavelength, since their period Z0 along the axis is 2d2/λ, where d is the
lateral period of the focusing crystal. Since the function of the TEM lens is simply
to integrate over the response of the sample to the incident probe, the final image is
independent of the aberrations and instabilities of this lens, provided it can resolve
the atomic columns of the focusing crystal. Sample structures might be made to test
this method, using Focused Ion Beam (FIB) and ion-implant stop-etch methods. In
common with the ‘ALCHEMI’ method, this method relies on the very fine structure
of the dynamical wavefield inside a crystal to obtain improved spatial resolution. It
is essential that the separation of the heavy atom columns in the focusing xtal be
greater than the resolution of the TEM lens. Advantages of the method, in addition to
improved resolution, include the small depth of field (about 1 nm at 100 kV), which
would allow three-dimensional imaging by optical sectioning, and microanalysis
with higher spatial resolution. Since the wavefield beyond the focussing crystal is
periodic along the axis, a sample located distance nZ0 beyond the focuser grating
may be moved back against the focuser without altering the imaging conditions. The
arrangement thus produces a Moire image, and we see that the intensity in this image,
recorded as a function of incident beam tilt, is equivalent to the lateral intensity
distribution in a Moire image.

An experimental application of the STEM method to carbon nanotubes is given in
Cowley (2001), where one wall of a nanotube is used to image the other. Here use is
made of the fact that if a grating is placed beyond a periodic sample at distance nZ0,
then magnified images of the sample are formed at infinity (Cowley and Hudis 2000).

7.9 Internal source holography and lensless (diffractive) imaging

A variety of other novel schemes for super-resolution imaging have been proposed,
mostly based on lensless imaging and solution of the phase problem. These go bey-
ond the scope of this book, but may have future application in STEM or TEM.
For example: (1) Three-dimensional in-line holograms have been obtained and
reconstructed using the characteristic X-ray emission of atoms inside a crystal to
provide a point source. All atoms on equivalent sites contribute identical intensity
distributions to the hologram at infinity. A tunable synchrotron is used to excite
one species in the crystalline sample. The twin image problem is solved by integ-
ration over the diffracting wavelength. (In practice a time-reversed scheme is used
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to make this possible.) For a similar scheme based on photoemission holography,
multiple scattering effects are also minimized by integration over the diffracting elec-
tron energy, using a kind of coherent detection, stationary-phase process which may
have application in HREM. For a review, which also discusses the relationship of this
method to standing wave methods such as Alchemi, see Faigel and Tegze (1999). It
has recently been shown that two-dimensional Alchemi patterns (see Section 13.1)
consist of holograms of atomic strings in a thin crystal, by a related analysis (Spence
and Koch 2001). (2) The transport of intensity equations can be used to find the
phase of a near-field wavefield if its intensity distribution is known on two adjacent
planes. The approach is therefore similar to the through-focus method. If one of these
planes is taken as the exit face wavefunction for a phase object, then this intensity
distribution (unity everywhere) is known a priori, so that a single out-of-focus plane
is needed. Details and applications of the method are given in Paganin and Nugent
(1998). (3) Iterative methods have been developed which are capable of finding the
phases in Fraunhoffer diffraction patterns from non-periodic objects if the support of
the object is known, together with the sign of the transmission function. The algorithm
is derived from work in electron microscopy (Gerchberg and Saxton 1972), to which
a feedback feature has been added, which together produce the successful hybrid
input-output (HiO) algorithm (Fienup 1987). The support is the region in which the
object transmission function is non-zero. The method bears a conceptual similarity to
the methods of solvent flattening used in Direct Methods. This large and active field
of research with applications in many fields is reviewed in Spence (2008). Application
to image reconstruction from electron diffraction patterns can be found in Weierstall
et al (2002) and Zuo et al (2003), where an atomic-resolution image of a carbon
nanotube is reconstructed from a coherent electron microdiffraction pattern.
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8
SCANNING TRANSMISSION ELECTRON

MICROSCOPY AND Z -CONTRAST

8.1 Introduction. Lattice imaging in STEM

The Scanning Transmission Electron Microscope (STEM) is capable of sub-
Angstrom spatial resolution, and, in the annular dark-field mode (ADF) allows
convenient integration with electron energy loss spectroscopy (ELS), since the portion
of the beam which passes through the central hole in the detector may be passed to an
energy-loss spectrometer. As discussed in Section 13.2, this allows atomic-resolution
images to be obtained in registry with ELS spectra from individual columns of atoms.
The instrument, using a field-emission gun, was first developed by A. Crewe and
co-workers at the University of Chicago (Crewe 1980) who used it to obtain the first
electron microscope images of individual atoms in 1970 (Crewe et al. 1970). These
images of isolated heavy atoms on a thin carbon film were obtained at 30 kV. The
instrument operates, as for SEM, by scanning a fine probe over a sample, however
the sample is sufficiently thin that electrons transmitted through the sample may be
detected and displayed on a raster, synchronized with the probe scan. While the res-
olution of STEM is entirely competitive (or better) than that obtainable by HREM,
distortions in STEM images due to movements of the sample relative to the probe
during scanning make the measurement of local strain-fields more difficult.

We may distinguish three main imaging modes in STEM. (1) Bright-field, in which
a small axial detector is used. (2) Dark-field STEM, in which an annular detector is
used with a small inner cutoff (usually matched to the illumination aperture). Elastic
(e.g. Bragg) scattering is collected to form the image. These two modes are simply
related by reciprocity to the bright-field HREM and hollow-cone modes of TEM,
respectively. (3) High-angle annular dark-field (HAADF) Z-contrast mode, in which
larger inner and outer detector cutoffs are used to reduce the contribution of elastic
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Bragg scattering (and hence ‘diffraction contrast’ artifacts) and increase the contri-
bution of localized thermal diffuse scattering (TDS), sometimes called ‘quasi-elastic
scattering’. (The term ‘Z-contrast’ was first used to denote STEM images formed
from the ratio of high angle-elastic scattering to low-angle scattering, since these
images showed a strong dependence on atomic number.) The last two modes are
often not distinguished in the literature, and the generic term ‘ADF-STEM’ has now
come to be used for both.

Imaging with localized TDS favours a simple interpretation in terms of an inco-
herent imaging mode. The question of how much purely elastic scattering should be
allowed to contribute to Z-contrast images (by choice of inner cutoff) has generated
a large literature, complicated by the fact that the elastic scattering modulates the
production of TDS, and that the elastic scattering of TDS scattering cannot be sup-
pressed. For all three modes, resolution is mainly determined by the angular range
over which the illumination (objective) aperture is coherently filled, together with
the aberration coefficients. The detector geometry also plays a role, and a variety of
other detector shapes, such as a thin annulus, will be discussed. For all three modes,
in crystals, the lattice can only be resolved if the coherent diffracted orders overlap.

A considerable literature has developed around the ADF-STEM technique. It has
taken two decades at least to clarify the image contrast mechanisms, since both TDS
and Bragg scattering make important contributions to the ADF image. The lower-
angle elastic scattering is strongest, but, since the total elastic scattering is independent
of probe position, it produces no contrast at all, unless some is excluded by a central
hole in the detector, and the dependence of Bragg scattering on atomic number is
not simple. By the mid 1970s, however, the theory for this elastic STEM imaging in
bright and dark field (modes 1 and 2 above) was fairly fully worked out (Cowley 1976;
Ade 1977; Spence and Cowley 1978; Fertig and Rose 1981). Soon after, the first ELS
spectra were obtained by STEM from regions within a single unit cell (Spence and
Lynch 1982) and the first experimental ADF lattice images had appeared (Cowley
1984). However it proved impossible to separate sample-scattering from instrumental
effects in any simple ADF theory because of the entangling effects of the detector
hole. (A simple product representation of ADF-STEM imaging is only possible for
amplitude objects.) The optimum choice of experimental conditions (detector and
objective aperture sizes, choice of focus, etc.) for bright and dark-field imaging of
small molecules in STEM are discussed at length in Cowley (1976).

During work at the Cavendish in the late 1970s on imaging metal catalyst particles
on a crystalline substrate (Treacy et al. 1978), Howie proposed that a sufficiently
high-angle detector would minimize the unwanted Bragg scattering, giving a STEM
HAADF image with strong atomic number contrast (proportional to Z2) according to
the Rutherford formula for scattering from an unscreened nucleus (Treacy and Gibson
1993). An inner hole diameter of about 40 mrad was suggested (Howie 1979), corres-
ponding to the angle at which the corresponding d-spacing becomes comparable with
the thermal vibration amplitude. An important development was the first formation
of atomic-scale images using this combination of elastic and TDS high-angle scat-
tering (Pennycook and Boatner 1988). A full treatment of this problem requires the
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inclusion of both Bragg and thermal diffuse scattering (TDS), and, with the develop-
ment of sufficiently fast computers, these treatments began to appear in the 1990s,
notably from the Cornell group (Hillyard and Silcox 1995) and elsewhere. Thus it
was necessary to develop a full theory, which included both elastic scattering of the
probe and the TDS, which it generates. Sorting out all this—the relative importance
of both types of scattering, the optimum detector shape, and its role in controlling
coherence—has generated a considerable literature, from which the main points are
summarized below. We begin with bright-field STEM, some general principles based
on the theorem of reciprocity, and suggestions for aberration-free imaging in STEM.

The principles of STEM imaging in all modes are most easily understood through
the reciprocity theorem (Cowley 1969). Figure 8.1(a) shows a simplified diagram
of a single-lens conventional transmission electron microscope (CTEM or TEM)
instrument in which S represents a single point source within the final condenser
aperture, while P is an image point on the film. The reciprocity theorem of Helmhotz
states that if a particular intensity Ip is recorded at P due to a point source S at A,
then this same intensity Ip would be recorded at A in Fig. 8.1(a) if the source S were
transferred to the point P and the system were left otherwise unaltered. (In fact the
reciprocity theorem applies to complex amplitudes for elastic scattering, and may
be extended to small inelastic losses if the intensities are considered (Pogany and
Turner 1968).) The instrument has been redrawn in Fig. 8.1(b) with the source and

CTEM STEM
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(a) (b) (c)
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�

�
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Fig. 8.1 (a) The ray diagram for a simplified TEM instrument. One point within the illumination aperture
at S emits a spherical wave, which becomes a plane-wave at the distant sample. The lens L1 images the
lower face of the sample onto the detector, one point of which lies at P. (b) Interchange of S and P produces
the ray diagram for STEM. (c) Finite sources and detector pixels. On the left the condenser aperture (CA),
objective aperture (OA) and film (F) (with grain or pixel size d) are indicated for TEM. On the right, the
reciprocal STEM detector (DET) and electron emitter (IS) of finite size d are indicated.
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image points of Fig. 8.1(a) interchanged, and now corresponds to the ray diagram
for a STEM instrument. The spherical wave launched at A in Fig. 8.1(a) becomes
a plane-wave at the sample since A is at a large distance from the specimen, and
lens L1 faithfully images all points near the optic axis simultaneously onto the film
plane in the neighbourhood of P. This ‘parallel processing’ feature of CTEM imaging
makes the equivalent STEM arrangement seem very inefficient, since, according to
the reciprocity theorem, the intensity Ip of Fig. 8.1(b) gives the desired CTEM image
intensity for a single point only of that image. In order to obtain a two-dimensional
image from the STEM arrangement it is necessary to scan the focused probe at M
across the specimen—the reciprocity argument can then be applied to each scan
point in turn. Conceptually, it may be simpler to imagine an equivalent arrangement
in which the specimen is moved across over the probe in order to obtain the image
signal in serial form (like a television image signal) from the STEM detector at A. The
inefficiency in STEM arises from the fact that, in order to obtain an image equivalent
to the bright-field CTEM image, most of the electrons scattered by the specimen in
Fig. 8.1(b) must be rejected by the small detector at A. These scattered electrons carry
information on the specimen and can be used by forming a dark-field ADF image.
In addition, it should be noticed that, since there are no lenses ‘down-stream’ of the
specimen in Fig. 8.1(b), the resulting STEM image does not suffer from chromatic
aberration due to specimen-induced energy losses.

This reciprocity argument can be extended to cover the case of instruments, which
use extended sources and detectors. Thus, as shown in Fig 8.1(c), consider the image
formed by a CTEM instrument in which the illuminating aperture CA subtends a semi-
angle α, the objective aperture subtends a semi-angle θ , and the image is recorded
on a detector F with pixel size d. The illuminating aperture is taken to be perfectly
incoherently filled. The reciprocity theorem can be used to show that an identical
STEM image can be obtained from a STEM instrument fitted with a finite incoherent
source IS of size d in which the ‘illuminating aperture’ (called the STEM objective
aperture OA) subtends a semi-angle θ , and in which the STEM detector DET sub-
tends semi-angle α. (This is done by adding the effects of independent source points.)
The equivalence means that images simulated for HREM (Section 5.11) can be used
to assist in the interpretation of dark and bright-field STEM images (modes 1 and 2
above). A computer program, which calculates HREM images will accurately repres-
ent bright-field elastic STEM images of the same specimen so long as the incoherent
sum over CTEM illumination angles (see Section 4.1) is re-interpreted as an incoher-
ent sum over the STEM detector aperture. For HAAD STEM images formed from
a mixture of elastic and thermal scattering, a different method is used as described
below.

The STEM analogue for many-beam lattice imaging in the symmetrical zone axis
orientation can be understood using the three-beam case as a simple example. Then
the three rays emerging below the sample in Fig. 8.1(c) become Bragg beams. For
STEM (now reading up the page), we see that reciprocity requires that θ , the STEM
objective (illumination) angle, must be sufficiently large to ‘accept’ three imaginary
Bragg beams which would be diffracted from an imaginary point source placed at the
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STEM detector DET. For a STEM instrument in which the electron gun is above the
specimen, the objective is selected by imagining the specimen to be illuminated from a
point below the specimen. In summary, we choose the STEM objective (illumination)
aperture using the same criteria as used in HREM with regard to resolution (but see
Section 8.3).

Figure 8.1(c) is drawn out more fully in Fig. 8.2 for this case where the objective
aperture semi-angle exceeds twice the Bragg angle, as needed for axial bright-field
three-beam lattice imaging. The specimen is illuminated from below by a cone of
radiation (semi-angle 2θB), which for a point source at P, forms an aberrated spher-
ical wave converging to the focused electron probe M on the specimen. Thus, around
each scattered Bragg direction (for the illumination direction AM) we must draw a
cone of semi-angle 2θB. The result is a set of overlapping coherent ‘convergent beam’
diffraction discs as shown in Fig. 8.2(b). Three of these overlap at the detector D in the
three-beam case shown. As discussed below, it is the interference between these three
discs at D, which produces the lattice image as the probe is scanned across the speci-
men. Figure 8.3(a) shows the arrangement, which would be used to form the analogue
of tilted-illumination, two-beam fringes in CTEM (see Fig. 5.1(b)). Figure 8.3(b)
shows an experimental coherent CBED pattern taken under similar conditions, show-
ing the interference, which occurs between overlapping orders (Tanaka et al. 1988).

D
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(a)

2�B

(b)

Fig. 8.2 STEM ray diagram drawn in (a) with a cone of semi-angle 2θB around each Bragg direction,
assuming axial incidence along BD. In (b) the pattern is drawn out as it would appear in two-dimensions for
five-beam imaging; here the crosses indicate Bragg directions, while the hatched area indicates a possible
bright-field STEM detector where the intensity if sensitive to probe position. For thick crystals these disks
will show the intensity variations of the rocking curve.
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Fig. 8.3 (a) The STEM analogue of tilted-illumination, two-beam TEM lattice imaging shown in
Fig. 8.1(b). The TEM conditions of Fig. 5.1(b) are obtained by placing the electron source at D, so
that MA and MB become the two Bragg beams used for imaging. The illumination angle θR needed to
make the electron probe width approximately equal to the first-order lattice spacing a is shown. As drawn
the diffraction disks subtend a semi-angle slightly larger than the Bragg angle, and hence overlap.
(b) Experimental coherent CBED pattern from FeS2 down [100], showing interference fringes between
overlapping orders (Tanaka et al. 1988). Note the absence of fringes where discs do not overlap. Only the
overlap intensity changes when the probe moves, so this is where we put a STEM detector. Equation (8.1)
shows that these fringes are a magnified image of the lattice. The magnification is the camera length
divided by the probe defocus. At overlap midpoints on the achromatic circle, all even aberrations (including
spherical aberration) cancel.
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A detailed analysis for these arrangements (Spence and Cowley 1978) has established
the following general results, which take account of all multiple scattering effects.

1. For perfectly crystalline specimens, convergent-beam diffraction discs formed
using an objective aperture of semi-angle θ < θB (non-overlapping discs) show an
intensity distribution which is independent of the probe position, the aberrations of
the probe-forming lens, and its focus setting, provided the sample thickness does not
vary. In this case the ‘size’ of the electron probe is necessarily greater than that of the
crystal unit cell.

2. If θ > θB, the intensity within regions in which the discs do overlap depends
both on the probe position, lens aberrations and the focus setting of the probe-forming
lens. The intensity at D in Fig. 8.3(a) varies sinusoidally as the probe moves across
the specimen. We can see this by considering the interference along optical paths
BMD and AMD. But we must first also consider the resolution limit due to limited
spatial coherence. All spatial coherence effects are accounted for by summing the
intensities detected around D over each point on the electron emitter. Since the probe
is an image of this source, this corresponds to an integration over probe coordinate
c, which must therefore be included in the analysis. For the systematic arrangement
shown in Fig. 8.3(a), the intensity distribution near D for Bragg beams �0 and �g

(originating at A and B) within the region where the orders overlap is given by (Spence
1978)

I (u, c, �θ) = |�0(s)|2 + |�g(s)|2 + 2|�0(s)||�g(s)|
∫

source
F(x − c)

× cos{2πx/a − χ(uB + α/λ) + χ(uB − α/λ) + �θ(s)} dx (8.1a)

Here α is a coordinate on the detector giving the angular deviation of a point in the
CBED pattern from the mid-point Bragg condition D, s = α/2a is the excitation
error, the first-order lattice spacing is a, c is the probe coordinate (so that c/a is the
fractional probe coordinate), ��(s) is the phase difference between the Bragg beams
(not structure factors) and uB = �B/λ = 1/(2a). The same origin must be used
to determine c and ��(s). The incoherent source intensity distribution function is
F(x), and we assume an ideal point detector. Equation (8.1a) describes the two-beam
interference at D due to coherent sources at A and B along optical paths BMD (for �0),
and AMD (for �g). It gives the correct two-beam STEM lattice image using a point
detector at D as the probe is scanned, varying sinusiodally with probe coordinate c

(e.g. for F(x) = δ(x)) and agrees with the expression for the reciprocally related
TEM arrangement for two-beam lattice imaging (eqn 5.7) using inclined plane-wave
illumination from D. (In that case F(x) is interpreted as the detector (film) point
spread function.) Note also that for a finite defocus, one sees a magnified lattice
image within the region of overlap—this explains the appearance of the ronchigrams
discussed in Section 7.6. (For Cs = c = �θ = 0 and F(x) = δ(x) in eqn (8.1a), the
period �α of I (u, c, �θ) in α is λ/(4�f �B) = a/(2�f ), producing fringes with
infinite magnification at the in-focus condition �f = 0.) These fringes are shown
experimentally in Fig. 8.3(b) (Tanaka et al. 1988). In summary, within the region of
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overlap, the defocussed coherent CBED pattern various sinusoidally across the screen
(as shown experimentally in Fig. 8.3(b)), while any one point of it varies sinusoidally
with probe coordinate. Outside the regions of overlap, the diffracted intensity does
not depend on the probe position c or lens aberrations.

The effect of enlarging the STEM detector is exactly analogous to the effect of
enlarging the final condenser aperture in CTEM, resulting in a further integration
over the detector coordinate α. So the final intensity is

I (u, c, �θ) =
∫ +α0

−α0

∣∣�0(s)
∣∣2 + ∣∣�g(s)

∣∣2 + 2
∣∣�0(s)

∣∣∣∣�g(s)
∣∣ ∫

source
F(x − c)

× cos{2πx/a − χ(uB + α/λ) + χ(uB − α/λ) + �θ(s)} dx dα

(8.1b)

for a thin detector extending from −α0 to +α0.
3. The intensity at the midpoint between overlapping discs where α = 0 is a special

case. Here, on the ‘achromatic circle’, the intensity depends on the probe position,
but not those lens aberrations which are an even function of angle, such as focus
setting and spherical aberration, as we see in eqn (8.1) for α = 0. This suggests the
Ptychography schemes for aberration-free imaging, as discussed in Section 7.6.

For coherent bright and dark-field imaging, the intensity distribution of the STEM
probe is a complicated and not particularly useful function, since it is not detected.
(For HAADF ‘incoherent’ imaging, the probe shape becomes a useful guide to
resolution, as discussed in later sections.) Near the Scherzer focus setting for the
probe-forming lens, the probe does, however, form a well defined peak with rather
extensive ‘tails’. The width of this peak (the FWHM) is given very approximately
by d = 0.61λ/θR if we use the Rayleigh criterion and imagine the STEM lens to be
imaging an ideal point field-emission source with Cs = 0 (see Fig. 8.2). If we set this
probe ‘size’ equal to the unit cell dimension (strictly the first-order lattice spacing)
a, then the illumination angle (STEM objective aperture) needed to match the probe
size to the unit cell dimension is θR = 0.61λ/a. But the Bragg angle is θB = 0.5λ/a,
so this matching condition becomes just the condition that adjacent diffraction discs
just begin to overlap, since we then have θR > θB. In this rather loose sense, lattice
imaging become possible as the electron probe becomes ‘smaller’ than the crystal
unit-cell dimension, and this is only possible if the diffraction discs are allowed to
overlap. In fact, a necessary but not sufficient condition for lattice imaging in STEM
(in all modes) is that the exit pupil of the probe-forming lens be coherently filled over
an angular range equal to that covered by the Bragg beams (or spatial frequencies)
one wishes to image.

As the probe becomes very much smaller than the unit cell, information on the trans-
lational symmetry of the crystal is progressively lost. It becomes difficult to distinguish
the reciprocal lattice using the overlapping convergent-beam pattern, leaving only
information on the point-group symmetry of the unit cell contents, as reckoned about
the current probe position. The symmetry information contained in convergent-beam
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patterns is discussed in Section 13.4, which should be read in conjunction with this
section.

We can conclude that for bright-field STEM, using a small central detector, under
reciprocal aperture conditions, the STEM and TEM images will be identical if the
Scherzer focus is used in both cases.

8.2 Coherence functions in STEM

The application of transfer theory to STEM is useful for understanding contrast,
coherence and resolution in bright and dark field. Since these are partly determined
in dark-field STEM by the detector shape, this leads naturally to the question of the
optimum detector geometry for resolution enhancement in STEM. We now show
explicitly (rather than by the preceding reciprocity arguments) that the Fourier Trans-
form of the detector shape function F(K) in STEM plays the same role as the
coherence function γ (r) (eqn 4.5) in HREM. For an ideal point field-emitter, the
STEM probe wavefunction is just the impulse response A(r) of the probe-forming
lens (eqns (3.15) and (4.3), Fig. 3.6 for bright-field), and the probe formation pro-
cess (as opposed to overall image formation) is thus ideally coherent. The detector
shape, by controlling the degree to which scattering from different atoms can inter-
fere, determines the degree of coherence for scattering within the sample. For a probe
centred at rp and object transmission function T (r) (defined in eqn (3.2)), the exit
face wavefunction is A(r − rp)T (r), and the wavefunction at a distant detector is the
Fourier transform of this:

ψSTEM(rp, K) =
∫

Ā(r − rp)T (r) exp(2πiK · r) dr (8.2)

= A(K) exp(2πiK · rp) ∗ t (K)

=
∫

A(K′) exp(2πiK′ · rp)t (K − K′) dK′ (8.3)

= Ā(r) ∗ T (r) exp(2πiK · rp) (8.4)

where the asterisk denotes convolution, and t (K) is the transform of T (r). (All vectors
in this section are two-dimensional.) The intensity collected by a detector described
by a two-dimensional sensitivity function F(K) is then

I (rp) =
∫

Detector
F(K)

∣∣∣∣
∫

A(K′) exp(2πiK′ · rp)t (K − K′) dK′
∣∣∣∣
2

dK (8.5)

We can compare this with the corresponding expression for HREM using an instru-
ment with the same impulse response if we allow for inclined illumination, so that
the intensities of images may be added for each illumination direction. Equation (4.3)
describes the effects of plane-wave illumination inclined from direction K on a phase-
grating. Then, since T (r) = ψ0(r, 0), the HREM image is given by a convolution of
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the impulse response with the object transmission function for inclined illumination,

ψHREM(r, K) = Ā(r) ∗ T (r) exp(2πiK · r) (8.6)

This is identical to eqn (8.4) for STEM, which is written out in full as eqn (8.3).
(This equivalence between HREM and STEM could, in hindsight, have been under-
stood directly from eqn (8.2), which describes both, but with a differing physical
interpretation of the plane-wave factor, in one case describing illumination, and in
the other propagation to the STEM detector.) The integration of intensity over an
incoherently filled illumination aperture F(K) for HREM is therefore also described
by eqn (8.5). Equation (8.5) is also equal to eqn (4.4), derived in a different way, so
that the complex degree of coherence γ (r), the Fourier Transform of F(K), is given
by either the transform of the incoherently filled illumination aperture for HREM,
or the detector shape in STEM, both described by F(K). The key approximation
made (eqn 4.2) holds only for strong and weak phase objects. We therefore expect
that, for thin samples, the use of an annular detector in STEM will produce images
with the same coherence properties as those obtained under conical or hollow-cone
illumination.

For the case of a small STEM detector, F(K) = δ(K), γ (r) = 1, and we obtain,
from eqn (4.4),

ISTEM(r) = ∣∣Ā(r) ∗ T (r)
∣∣2 (8.7)

which is identical to the expression for bright-field HREM imaging. Resolution
in bright-field STEM many be improved by a factor of about 1.6 through the use
of a thin annular detector, whose average radius is equal to the objective aperture
image (Cowley 1993). This mode is equivalent to the hollow cone mode discussed in
Section 4.4.

Although the reciprocity arguments of Section 8.1 are quite general and include all
multiple scattering effects, multiple scattering does destroys any simple interpretation
in terms of coherence theory, since there is then no closed-form parameterization of
the dynamical wavefunction in terms of rp or K, which defines the centre of the Laue
Circle for a strongly diffracting thin crystal (eqn 5.40). Physically, this means that if
there are complicated dynamical ‘rocking curve’ effects within the region in which
the coherent CBED orders overlap, one cannot use the above theory.

The question of coherence along columns of atoms in ADF-STEM has been
analysed by several authors, using a kinematic analysis which now includes the
z coordinate of the atoms. In three-dimensions, inside a crystal, the coherence volume
(the three-dimensional analogue of γ (r)) becomes cigar-shaped, with axis along the
optic axis, and dimensions which depend on the detector shape, and become nar-
rower as the detector hole is enlarged. The longitudinal coherence is important, since
it determines whether the total scattering from a column of atoms is proportional
to the number of atoms in the column (with no interference along the column) or
to the square of the number of atoms (full interference along the column). In the
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approximation that the TDS can be treated as Rutherford scattering, with total intens-
ity proportional to Z2, these two possibilities predict image intensities proportional
to Z2t and Z2t2, respectively. One indication of coherence along the z-axis is the
occurrence of HOLZ rings in coherent nanodiffraction patterns—calculated patterns
for STEM-ADF images, including TDS, show these clearly (Spence and Koch 2001).
A detailed study (Treacy and Gibson 1993) shows that, for typical ADF detectors,
the interference between different atomic columns can be made negligible (when
γ (r) becomes narrower than the lateral distance between atomic columns), but that
to eliminate coherence along the atom strings requires extremely large inner cutoff
detector angles, perhaps 100 mrad at 100 kV, resulting in considerable loss of signal.
Figure 8.4 (Koch 2002) shows the intensity calculated at the centre of an atomic
column of silicon in an ADF image at 100 kV as a function of thickness, including all
TDS. The ‘frozen phonon’ method was used with several slices per atom-thickness.
The thickness dependence is seen to follow the linearity of the incoherent model only
at small thickness, and to depend on the inner cutoff, as expected. With a small inner
cutoff, more Bragg scattering is included, leading to oscillations in thickness (but
a strong signal); a larger cutoff improves linearity at the expense of image intensity.
In summary, transverse interference effects can readily be eliminated in ADF-STEM
by choice of detector shape (making the images much simpler to interpret than HREM
images in terms of atom positions), however, as Fig. 8.4 shows, interference along
the atom strings cannot easily be eliminated, making interpretation of the intensity of
atom images difficult in terms of atomic number and thickness. Thus, for the iden-
tification of substitutional atoms within an atomic column (see Fig. 8.9), detailed
simulations would be needed. Increasing the source energy spread reduces coherence
along the beam, but, through the chromatic aberration constant, also affects focusing.

8.3 Dark-field STEM. Incoherent imaging. Resolution limits

This section concerns resolution limits and the approach to incoherent imaging in
dark-field STEM (mode 2), in which we ignore the contribution of thermal diffuse
scattering. We consider only the contribution of elastic scattering, such as Bragg
scattering. Consider first a STEM detector which collects all the scattered intensity,
so that F(K) = 1 and γ (r) = δ(r). We then have, from eqn (4.7),

IBF
STEM(rp) = ∣∣Ā(r)

∣∣2 ∗ |T (r)|2

=
∫ ∣∣Ā(r)

∣∣2 ∣∣T (rp − r)
∣∣2 dr (8.8)

This is the ideally incoherent imaging mode, such as that used, for example, by
a 35 mm-slide projector, an SEM, or an optical microscope used to image ‘self-
luminous’ objects. The first term on the right is just the intensity distribution in the
probe, and the object function is convoluted with this. For a phase grating, with
T (r) = exp(−iσφp(r)), this mode would give no contrast whatsoever since the



248 High-Resolution Electron Microscopy

23 mrad

30 mrad

40 mrad

60 mrad

90 mrad

Laue ring
145 mrad

In
te

ns
ity

 (
ar

b.
un

its
)

0 10 20 30 40 50 60 70

Thickness in nm

80 90 100

Fig. 8.4 Thickness dependence of the ADF-STEM image at the centre of a [110] silicon
atom column for several inner detector cutoff angles at 100 kV, with a large outer cutoff.
(Cs = 0.05 mm, �f = −12.2 nm, Cc = 1.5 mm, �E = 0.26 eV FWHM, θap = 22 mrad, source size =
0.05 nm, temperature = 20 K, mean displacement = 0.0044 nm, Debye–Waller factor = 0.153 A2).
As the inner cutoff is made larger, excluding more Bragg beams, diffraction ripple decreases (100 kV,
Cs = 0.05 mm, �f = −12.2 nm, θap = 22 mrad) (C. Koch. Ph.D. Arizona State University, 2002).

last term is then independent of probe coordinate. Equation (8.8) was used by the
inventors of the STEM to interpret the first 30 kV STEM images of heavy atoms on
a thin carbon substrate (Crewe 1980), with T (r) taken to be the single-atom cross
section. We will see that this approximation works well for well separated atoms, but
fails if interference occurs between pairs of atoms or atom columns, or if the effects of
the hole in the detector are considered. Equation (8.8) is entirely correct for imaging
amplitude objects (eqn 6.2) and so could give a map of the absorption function φi(r).
Amplitude variation can also be obtained, for example, in energy filtered images
using characteristic inner shell-excitations, if the probe dimension is small enough to
resolve the variation in concentration of species imaged. This equation also describes
the generation of X-ray production in STEM or TEM (e.g. ALCHEMI, Section 13.1)
if T (r) is re-interpreted as a generation function, related to the cross section for
ionization, and again to the imaginary part φi(r) of the relevant optical absorption
potential (Heidenreich 1962; Cherns et al. 1973). This potential is assumed to be
localized on the atoms. For inelastic electron scattering (such as thermal diffuse
scattering or inner shell ionization), it is important to understand that localization
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can be imposed by collecting only the high-order scattering (corresponding to small
impact parameters) using, for example, a high-angle annular detector (HAAD).

The introduction of a hole in the detector produces contrast for strong, weak-phase
and multiple-scattering objects. This can be seen at once by noting that the total
elastic scattering is a constant, independent of probe position, so that the elastic
contribution to an annular detector must be the compliment of the bright-field STEM
image discussed in Section 8.1. Thus

IDF
STEM(rp) = 1 − IBF

STEM(rp) (8.9)

and IBF
STEM(r) = IBF

HREM(r), by reciprocity, if reciprocal apertureing conditions are
used. More directly, the use of an annular detector in STEM is equivalent to the
use of dark-field hollow-cone illumination in TEM, as discussed in Section 4.4.
(The reader should sketch out ray diagrams for the two cases, with complimentary
apertures. The objective aperture for dark-field hollow cone (conical) TEM illumin-
ation has an angular cutoff θH slightly less than the bright ring formed by the direct
beam, so that a dark-field image is formed, as shown in Fig. 4.6. The TEM illu-
mination, with distribution F(K), covers all angles except those smaller than θH.)
In order to optimize the choice of instrumental parameters for highest resolution,
we wish to separate instrumental and sample parameters. Just as this can only be
done for HREM in the weak-phase object approximation, for dark-field STEM a
full separation can only be achieved for amplitude objects. For phase objects and
thicker multiply-scattering objects, the central hole in the detector entangles these
parameters, and the best that can be done is to lump together the detector function
F(K) with the object transmission function T (r). We then isolate all other instru-

mental parameters in
∣∣Ā(r)

∣∣2 and its Fourier transform, H(K), known as the optical
transfer function (OTF). Before doing this, we note a crude approximation which
has been made, in which it is assumed that the scattered intensity outside the hole
is proportional to the total (and to that inside the hole), so that eqn (8.8) may be
used for weakly scattering objects. This is a reasonable approximation for isolated
atoms, but not if there are interference effects within the central disk, such as the
Young’s fringes which cross the diffraction pattern from a dimer. In this approx-
imation, isolated atoms in ADF-STEM appear similar to dark-field HREM images
of atoms (Section 6.5), so that, according to eqn (6.27), either a heavy atom on
a light substrate, or a small hole in a substrate would both give bright contrast.
(The more exact analogy is with dark-field hollow-cone illumination (Section 4.4),
which produces similar images.) The incoherent ‘generation function’ is σ 2φ2

p(r)/2
(Cowley 1976).

It is instructive to consider how the hole in the detector creates contrast from a
phase grating, by deriving an expression which shows how the coherence function
operates in real space. This will indicate the conditions under which interference can
occur in dark-field STEM between different columns of atoms. Equation (8.5) may
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be Fourier transformed to give the spectrum of the image intensity as

Ī (Kp) =
∫

A(K′)A(K′ + Kp)

∫
D(K)t (K − K′)t∗(K − K′ − Kp) dK dK′

=
∫

A(q − Kp/2)A∗(q + Kp/2)

∫
D(p + q)t (p + Kp/2)

t∗(p − Kp/2) dq dp

≈
∫

A(q − Kp)A(q + Kp) dq
∫

D(p)t (p + Kp/2)t∗(p − Kp/2) dp

= [
A(−Kp) ∗ A∗(Kp)

]
O(Kp) = H(Kp)O(Kp) (8.10)

where K′ = q − Kp/2 and K = p + q. O(Kp) is the object function and H(Kp)

the OTF (Loane et al. 1991). These approximations are applicable to thin samples,
and ignore any dependence of the scattering by the object on the incident illumina-
tion direction more complicated than that described by eqn (8.6). They preserve the
‘product representation’ and fail at thicknesses where a crystalline sample develops
an appreciable ‘rocking curve’ variation of intensity in CBED disks. They do, how-
ever, achieve the desired separation of instrument function A(K) and object function
O(K) in a similar way to the transform of eqn (8.8), but with the detector hole now
included in the object function. The Fourier transform of O(Kp) gives the real-space
representation

OADF(r) =
∫ (

∂(s) − J1(2πu1|s|)
2π |s|

)
t (r + s/2)t∗(r − s/2) ds (8.11)

Here the term in parenthesis is the transform of a detector of infinite outer diameter
F(K) = 1, minus that of a hole of diameter u1 = θH/λ, as for the treatment of hollow
cone illumination in Section 4.4. Enlarging the hole decreases the width x1,2 of the
coherence function (Fig. 4.7), which indicates the distance x1,2 between points in the
sample which can interfere. If the phase grating expression eqn (3.25) is now used
for t (r) in (8.11), we obtain (Nellist and Pennycook 2000)

OADF(r) = 1 −
∫

half-plane

J1(2πu1|s|)
2π |s| cos(σφ{r + s/2} − σφ{r − s/2}) ds

(8.12)

≈
∫

J1(2πu1|s|)
2π |s| [σφ{r + s/2} − σφ{r − s/2}]2 ds (8.13)

if the phase shift is small (Ade 1977; Jesson and Pennycook 1993).
For the peaked functions describing the crystal potential projected down atomic

columns, we see that the square of the difference between this function and a displaced
copy adds to the image intensity for displacements s less than an ‘incoherence width’
Xi = λ/θH (eqn 4.17). The Bessel function with this width is the coherence function



STEM and Z-contrast 251

produced by an incoherent source the same size as the hole in the detector (eqn 4.16).
Equation (8.12) correctly predicts the zero contrast in the absence of a hole—the
desirable condition of independent incoherent imaging of atomic columns can be
approached by enlarging the hole (with resulting loss of ADF image intensity) until
the ‘incoherence width’ Xi is about equal to the distance between atomic columns.
Then the integral in eqn (8.12) will contribute for values of s less than the width of
the atomic peaks. Hence we require θH greater than twice the Bragg angle for the
spacing d of interest, so that Xc < d . Alternatively, we might require that Xi be
less than the probe width dp, whose dimensions will be comparable with the atomic
spacing. For an unaberrated probe, dp = 0.61λ/θR (with θR the STEM objective
aperture semi-angle) and we therefore require �H > 1.64θR. In either case, a hole
significantly larger than the image of the STEM objective aperture in the detector
plane is indicated.

We note that the dark-field imaging mode gives an image proportional to the square
of the projected potential, and is therefore non-linear. (This leads, for example, to
the appearance of the forbidden (002) Fourier coefficient in the transform of images
of silicon in the 110 projection (Hillyard and Silcox 1995).) This non-linearity is the
basis of the sensitivity of the method to atomic-number (Z) contrast. It arises because,
whereas bright-field HREM produces linear imaging due to the interference between
the direct beam and Bragg beams, ADF-STEM excludes the direct beam, generating
contrast by interference between pairs of scattered beams, akin to dark-field HREM.

Within these approximations, eqn (8.10) indicates that the Fourier transform of
the ADF image intensity is given by the product of an object function O(Kp)

(which nevertheless involves the detector hole) and the transform of the probe
intensity |A(r)|2

H(Kp) = [
A(−Kp) ∗ A∗(Kp)

]
(8.14a)

This OTF is compared in Fig. 8.5 with the phase contrast transfer function for bright-
field HREM given by Im(A(K)). Both are shown for Cs = 0.65 mm (illumination
angle θc, = 0.25 mrad, Scherzer focus, for TEM) at 300 kV. The OTF is shown in (a) at
the ‘most compact probe’ condition for ADF-STEM, given by eqns (8.14b,c). (Note
the similarity to HREM dark-field focus, eqn (6.26).) We see that the OTF has the
desirable characteristics of a smooth fall-off at high spatial frequencies without con-
trast reversals, and extends to higher resolution than the Scherzer cutoff of eqn (6.17).
Because H(K) is the autocorrelation function of A(K), it extends to twice the radius of
the objective aperture, and in this sense, incoherent imaging has higher resolution than
coherent imaging. However, the HREM mode analogous to Fig. 5.34 (STEM, with
overlap of adjacent reflections) would be tilted-illumination (Fig. 5.1b), which is also
capable of ‘doubling’ resolution, and both these modes may introduce image artefacts.
The comparisons in Figs 8.5 and 8.6 are also somewhat unfair because the effects of
electronic instabilities, the energy spread in the beam and tip vibration are not included
in the STEM figures. In Chapter 7 we have discussed the relative difficulty of extract-
ing fine detail from images in each of these modes—the incoherent mode clearly has
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Fig. 8.5 OTF for STEM (dashed) at the ‘most compact probe’ ADF focus (�f = −0.75 (Csλ)1/2,
objective aperture θap = 1.27 (λ/Cs)

1/4 given by eqns (8.14b,c) (Mory et al. 1987)). These are compared
with the CTF (continuous line) for bright-field HREM at Scherzer focus for a 300 kV TEM-STEM instru-
ment. λ = 0.00197 nm, Cs = 0.65 mm, (θc = 0.25 mrad for HREM). An information limit corresponding
to � = 20 Å has been assumed (O’Keefe et al. 2001). The HREM point resolution is 0.17 nm (C. Koch.
Ph.D. Arizona State University, 2002).

the advantage of allowing simple deconvolution of intensities, once the probe func-
tion is known, so that resolution is ultimately then limited by noise and its treatment
under deconvolution. The ADF mode also has the advantage of less violent variations
of image intensity with focus, so that experimentally, it is not difficult to find a unique
focus setting, however the signal is weaker if a large hole is used in the detector to
exclude diffraction-contrast effects. For the mapping of strain-fields, distortions due
to probe drift during scanning or stray fields are disadvantages for STEM.

In Fig. 8.6(a) the real-space STEM probe intensity function |A(r)|2 is compared
with the HREM bright-field amplitude impulse response for a weak-phase object
under the Scherzer conditions (c.f. also Fig. 3.6). The STEM probe (at the conditions
of eqns (8.14b and c)) is seen to be narrower for the same objective aperture and
aberations. In general, bright-field coherent image resolution depends on the phase-
shifts introduced on scattering, and scattering phases may be chosen which reverse
this conclusion (Goodman 1968). The focus and aperture settings which minimize
the radius of the circular area containing 70 per cent of the probe intensity are

�f = −0.75 (Csλ)1/2 (8.14b)
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Fig. 8.6 The impulse response for bright-field HREM (upper curve, FWHM = 0.123 nm) compared
with the probe intensity distribution for a 300 kV TEM/STEM (FWHM = 0.11 nm). Same conditions
as Fig. 8.5. Cs = 0.65 mm. (�f = −26.8 nm, θap = 9.4 mrad for STEM). The STEM probe is
given for the ADF focus. The dashed curve shows the stem probe for an aberration-corrected instru-
ment (FWHM = 0.038 nm), scaled to unit height. (Cs = 0.01 mm, �f = −3.3 nm, θap = 26.8 mrad,
eqn (8.14)). The intensity in the corrected probe is actually 63 times greater than that in the uncorrected
probe. The comparisons in Figs 8.5 and 8.6 do not consider the effects of electronic instabilities, the energy
spread in the beam and tip vibration in the STEM figures.

with aperture semi-angle

θap = 1.27 (λ/Cs)
1/4 (8.14c)

(Mory et al. 1987), and are useful conditions for forming the most compact probe
(most similar to an Airy’s disk) for microanalysis and ADF imaging. This focus setting
differs from the optimum dark-field HREM focus (eqn 6.26) by a small numerical
factor. If strong low-order Bragg beams contribute to the ADF image, as in HREM,
there will however, be a tendency for the operator to choose the stationary phase
focus for the low order beams (eqn 5.66). Since, in the incoherent approximation,
the effect of the probe can be deconvoluted from the image (at the expense of noise
amplification), the possibility arises of using a large underfocus to preserve transfer
of high spatial frequencies out to 0.078 nm (Nellist and Pennycook 1998). Resolution
will clearly also be improved in STEM instruments fitted with aberration-correctors
(Krivanek et al. 1999), as shown in Fig. 8.10, so that similar arguments to those given
in Section 7.4 can be used to choose the optimum value of Cs. Equally important is
the additional current which a spherical aberration corrector can provide for ELS and
EDX in STEM, instabilities permitting. Figure 8.7 compares current with probe size
for corrected and uncorrected optimized probes at 200 keV (Muller 2002).
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Fig. 8.7 Current available in an optimized STEM probe plotted against its size, comparing the aberration
corrected and uncorrected (Cs = 1 mm) cases at 200 keV (Muller 2002).

8.4 Multiple elastic scattering in STEM. Channelling

Can an object function, which is independent of thickness, be usefully defined
for ADF-STEM in the case where only strong multiple elastic scattering occurs?
Strictly no, but some understanding of this problem can be obtained by writing
the dynamical wavefunction �(r) in a crystalline sample as a product of a plane-
wave term for the z-dependence (with wavevector k

(i)
z ), multiplied by a transverse

eigenstate B(i)(r), following the practice in the field of particle channeling (Howie
1966). Channelling is the tendency of charged particles to run along lines of low-
est potential energy in a crystal; these lines are the strings of atomic nuclei for
electrons. We may distinguish two types of channelling—that which occurs with
plane-wave illumination, as for Alchemi, and that which occurs with a fine probe,
as in STEM. In the first case the laterally periodic wavefield tends to pile up on
the atomic nuclei; in the second the probe tends to focus along the atomic strings
to a greater depth and intensity when it is situated over an atomic column, or to
split into two probes, as shown in Fig. 8.8, if it is not. The relativistic increase in
mass of the electron (and the increasing density of the bound states described below)
leads to increasingly classical behaviour with increasing electron energy—a clas-
sical approach is justified when the energy-broadened bound states start to overlap
(Spence 1988). The second form of channeling is relevant to STEM, since it is found
that the probe ‘channels’ to different depths along atomic strings of different atomic
number.



STEM and Z-contrast 255

Fig. 8.8 Shape of a 100 keV STEM probe 0.18 nm wide at a depth of 10 nm into a silicon crystal when
situated midway between two atom columns in the [110] projection. The channelling effect causes it to
split into two probes, one on each atomic column (Hillyard and Silcox 1995).

Associated with each eigenstate B(i)(r) is a transverse kinetic energy ε(i). The
wavefunction is written

�(r) =
∑
j

α(j) exp(2πik
(j)
z z)B(j)(r) (8.15)

The one-electron Schroedinger equation becomes

−h2

8π2m

[
∂2B(j)

∂x2
+ ∂2B(j)

∂y2

]
− |e|φp(x, y)B(j) = h2

2m

[
k2 − k(j)2

z

]
B(j) (8.16)

The transverse energies are related to the γ (i) of the TEM Bloch wave theory
(eqn 5.38a) by

ε(i) ≈ −h2k2
0γ (i)

m
− |e|V0

These transverse energies may be considered to be bound states (when ε is negative),
lying within the negative-going crystal projected potential-energy peaks φp(r) around
each atom. The corresponding eigenstates are then labelled by analogy with the states
of the hydrogen atom (Spence 1988). The lowest 1s bound state corresponds to the
highest dispersion curve of the TEM Bloch-wave theory. At 100 kV for silicon only
two states are bound, and the corresponding transverse eigenstates are highly localized
on the atom sites. (Coherent Brehmstralung (Section 13.1) results from transitions
between these states.) More extended ‘free’ states also exist, with positive values of
ε in the continuum.

In ADF-STEM using a detector with a large hole, we enhance the contribution
from the more localized Bloch-wave states, which scatter into larger angles. In
addition, these states are the least dispersive, and hence are not washed out by the
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large beam divergence used in STEM. In such a Bloch-wave model it may then be
argued that the image is formed predominantly from the most localized 1s trans-
verse eigenstates (Pennycook and Jesson 1991). These have the highest transverse
kinetic energy, occupying regions of the lowest potential energy. The Virial the-
orem can be used to relate this energy to the potential energy, suggesting a linear
dependence on atomic number, rather than the Z2 dependence of high-angle Ruther-
ford scattering from the nucleus. An expression for the ADF image may be derived
along similar lines to eqn (8.13) (Nellist and Pennycook 2000), and an approxim-
ation developed which includes the probe coordinate and the predominant 1s state.
The result may be interpreted similarly—now the coherence envelope (the transform
of the hole) determines the degree to which different Bloch waves can interfere.
Again, no image contrast is predicted without a hole in the detector, and a hole
larger than the objective aperture image is indicated. The images do depend on
thickness, however the analysis is more complicated than the thickness fringes of
eqn (5.47), and may best be understood by following the propagation of the probe
down atomic columns containing different species (Humphreys and Spence 1979;
Fertig and Rose 1981; Hillyard and Silcox 1995). For example, in InP, Hillyard and
Silcox find that when the probe is located over an Indium atomic column, a chan-
neling peak quickly appears, disappearing after a thickness of about 10 nm. Locating
the probe over a P column, however, generates a peak up to a thickness of 59 nm.
In these simulations, which include TDS, we might expect the thickness dependance
to be much less rapid than for elastic scattering images, since the TDS contribution
is generated continuously throughout the sample, and so must be summed from all
depths.

In addition to the Bloch-wave method, calculations of STEM lattice images may be
based on the multislice superlattice method (Spence 1979), which has been extensively
used for the computation of the corresponding coherent microdiffraction (CBED) pat-
terns (Spence 1978a,b). The text by Kirkland (1998) includes sourcecode in C++ and
Fortran for the computation of STEM ADF images using an average over multislice
calculations for statically displaced atoms to represent the effects of thermal vibration.
This ‘frozen phonon’ method has become the most popular method for simulating
ADF-STEM images.

8.5 STEM Z-contrast. TDS. 3-D STEM tomography

While treatments of TDS in electron microscopy date back to the 1950s, the STEM
problem requires the incorporation of the probe wavefunction at the outset, since
we are primarily interested in the variation of TDS as the probe moves from one
atomic column to the next. Only if the coherent diffraction disks overlap will both
the Bragg and the TDS scattering depend on probe position. In simplest terms, this
requires a probe of comparable dimensions to the lattice spacing d of interest—more
precisely, it requires illumination which is coherent over the corresponding angular
range θc = λ/d.
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The simplest approach to understanding the contribution of TDS to ADF images
may be based on the work by Heidenreich (Heidenreich 1962; Cherns et al. 1973;
Pennycook and Jesson 1991), who showed that the total inelastic scattering from
process i generated in volume element dτ is just equal to �(r)�(r)∗φi

i (r) dτ , where
φi

i (r) dτ is the contribution to the imaginary part of the optical potential from process
i for a centric crystal. Since TDS scattering is zero in the forward direction, rising
to a maximum at about 2 Å−1, then falling away at higher angles, the scattering not
collected in the central hole in the detector might be neglected. Then, assuming that
all the TDS is collected, the STEM image formed from this scattering alone becomes

IDF
STEM(rp) =

∫ ∣∣Ā(r)
∣∣2 ∣∣∣φi

i,p(rp − r)
∣∣∣2 dr (8.17)

where φi
i,p(r) is the contribution to the TDS absorption potential projected in the

beam direction (Radi 1968). For the localized TDS collected at high angles, φi
i,p(r)

is a narrow peak centred on the atom sites. Thus the ADF-STEM image is a map of
the phonon absorption potential in this approximation. A thickness integration might
also be included, by using the multislice superlattice method to calculate the probe
intensity |A(r)|2, and summing the scattered intensity at each slice. For delta-function
localization of the TDS, we see that a probe smaller than the spacing between these
peaks will be required, and, by arguments similar to those in Section 8.1, the form-
ation of such a probe is only possible if illumination coherence exists over the range
θc. This simplified approach does not include the detector hole size as a parameter,
nor does it include the Bragg scattering of TDS which gives rise to Kikuchi lines.

Initially, attempts were made to exclude Bragg scattering and so make the ADF
image ‘more incoherent’ and less sensitive to diffraction contrast effects by increasing
the size of the hole in the detector beyond the suggested figure of 40 mrad (Howie
1979). In this way, it was hoped to eliminate the thickness oscillations which are
known to accompany multiple Bragg scattering, but which are smoothed out by the
thickness integrations involved in the theory of TDS. Understanding this requires a
detailed theory of TDS in STEM, which goes well beyond the scope of this book (Wang
1995). The following provide essential reading for experts: Allen et al. (2002) provide
a comprehensive Bloch-wave treatment of probe elastic scattering and use their mixed
dynamic form factor to relate TDS in ADF-STEM to ELS and EDX; Amali and Rez
(1997) provide a comprehensive Bloch wave treatment; Wang and Cowley (1989)
provide a multislice treatment in which the TDS generation function is related to the
derivative of the potential, and atomic columns assumed to vibrate independently;
Jesson and Pennycook (1995) analyse the effects of replacing Rutherford scattering
with a multiphonon model; while Loane et al. (1991) describe the ‘frozen-phonon’
multislice supercell approach. (In the high-angle limit, multiphonon scattering using
an Einstein model is equivalent to Rutherford scattering from the nucleus, which is
proportional to the square of atomic number.) The general result from all this work
is that the simple incoherent imaging model (eqn 8.8) is a useful approximation for
locating atoms, but that detailed image simulations are needed for quantitative analysis
of intensities, and image artefacts may occur (Rez 2000). The thickness dependence
of the images is found to saturate (Hillyard and Silcox 1995), as shown in Fig. 8.4.
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For practicing microscopists, the important questions then are: (1) what is the most
efficient algorithm for simulating HAADF images which includes both elastic and
TDS scattering? (2) What general principles can guide the choice of instrumental
parameters, such as the detector hole size and choice of defocus and illumination
aperture? Because it is well documented in book form (with accompanying source
code), the multislice ‘frozen phonon’ method appears most suitable at present for
simulations (Kirkland 1998). Briefly, a superlattice of, say 6 × 6 unit cells is used
in a multislice calculation, in which the first slice contains the probe wavefunction
A(r) (Spence 1978a,b). A slice thickness of one atomic layer is typical. For each
probe position, a complete multislice calculation of the scattered intensity from the
entire crystal must be completed for several sets of atomic displacements, generated
from the appropriate thermal vibration factors, and the results added together (e.g.
for silicon at RT, the mean vibration amplitude is 0.0076 nm). An Einstein model
for vibrations is adequate, since the detector averages over any mode structure. The
results of these calculations (e.g. Hillyard and Silcox (1995)) show

1. Increasing the inner detector cutoff beyond the value θi = λ/〈U〉 at which
d-spacings become comparable with the thermal vibration amplitude 〈U〉 (about
40 mrad at 100 kV) has the effect of reducing the image intensity, but produces neg-
ligible change in the form of the image, and this finding holds for all illumination
angles (probe sizes). As a rough guide, the inner detector cutoff should be at least
three times the objective aperture size for incoherent imaging, and needs to be per-
haps five times as large to eliminate thickness oscillations in crystals. As expected,
the effect of varying the sample temperature is significant only if a large inner detector
cutoff is used. However a lower inner cutoff angle, including, for example, the lowest-
order CBED disk overlaps (see Fig. 5.34(b)), is found to introduce greater thickness
oscillations, as expected (Fig. 8.4). So it seems to be useful to exclude most of the
low-order Bragg disks. Those that are included are then more likely to be kinematic,
and have longer extinction distances. Although, for a typical ADF detector the TDS is
the largest contribution to the signal for all but the thinnest samples at room temperat-
ure, by comparing calculations with and without TDS, Hillyard and Silcox (Hillyard
and Silcox 1995) conclude that, ‘for almost all current observations, the influence
of TDS on the detailed structure of the scaled images is minor’. It is tempting to
think of the large TDS contribution as generated by the more probable elastic scat-
tering of the probe, so that the TDS acts as a kind of messenger, which carries the
information on the probe coordinate to the detector, this information being encoded
in the region of reciprocal space where the coherent CBED orders overlap. If the
orders do not overlap (so that the probe is wider than the first-order d-spacing in real
space), the amount of TDS generated is independent of probe position. In real space,
the absorption-potential model (eqn 8.17) provides a useful physical picture of this
process—a probe, which is wider than the spacing between the periodically arranged
peaks in φi

i,p(r) cannot be expected to produce an image showing these peaks. We see
therefore that ‘diffraction contrast’ is inextricably entangled with the generation of
TDS, since Bragg scattering of the probe wavefunction cannot in fact be suppressed,
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and is more probable than TDS. Its effects are reduced, however, in ADF-STEM by
the fact that TDS is generated continuously throughout the crystal, and its main effect
on TDS is to redistribute it over the large detector.

2. A probe of atomic dimensions penetrates to different depths along atomic
columns consisting of different species. The characteristic scattering angle depends
on the atomic number of the column, and so changes as the probe is moved. (In the
Wentzel model—see also eqn (6.34)—this angle is θw = λZ1/3/2πaH, with aH the
Bohr radius. This scattering angle is convoluted with the illumination cone.) It follows
that a smaller inner cutoff may be useful for imaging lighter atoms.

3. It is useful to think of the probe in real-space, in connection with channelling
effects. For a probe narrower than the intercolumn spacing, a strong channelling
effect (‘tendency to run along paths of low potential energy’) is observed, and the
interference effects between different atomic columns becomes negligible. Figure 8.8
shows what happens when a probe is large enough to span two atomic columns—it
splits into two focused ‘probes’ at a depth of 10 nm in silicon.

4. The effects of strain may be detected in ADF images, particularly at low tem-
peratures, where the TDS background can be minimized. These strain effects may
dominate those of atomic number. Forbidden lattice periodicities (e.g. the (200) in
the [110] projection of silicon) have also been observed in the power-spectrum of
ADF images (Liu and Cowley 1990). Under particular conditions, other artefacts
have also been simulated. For example, Wang and Cowley (Wang and Cowley 1989,
1990) have calculated the separate contributions of TDS and Bragg scattering to the
ADF image for various conditions, and show how the large vibrational amplitude
of light atoms may enhance their contribution to the ADF image beyond a simple
Z2 law, and how diffraction effects in the HOLZ rings may reverse the contrast of
the images (Spence et al. 1989). (The Holz rings indicate coherent scattering along
atomic columns, but may be a small contribution to total scattering unless the unit
cell is large and thickness small.)

In summary, these dynamical tests of the incoherent imaging model have gen-
erally shown that it works reasonably well. However, in view of the dependence
of ADF images on strain, on the inner detector cutoff, on temperature, and of the
observation of forbidden periodicities and stacking faults, we can conclude that the
interpretation of these images, although more straightforward than HREM images,
may still contain artefacts. While transverse interference effects can be eliminated
by choice of detector shape (simplifying atom location), interference along the atom
strings cannot, making interpretation of the intensity of atom images difficult in
terms of atomic number and thickness. Thus, for the identification of unknown
substitutional atoms within an atomic column, very detailed simulations would be
needed. That substitutional atoms can readily be distinguished from atomic-scale
roughness at surfaces is convincingly demonstrated for the first time in the work
of Muller (Muller 2002) shown in Fig. 8.9. Here a silicon multilayer was formed
in which alternate layers contain substitutional Sb atoms. The cross-section sample
shows the boundary of the implanted region, confirming that the bright dots in this
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Fig. 8.9 ADF-STEM image of individual substitutional Sb dopant atoms (the bright dots) in silicon,
projected down [110]. The boundary of the undoped region, running down the image slightly to the right
of centre, and the known concentration of dopants confirms the interpretation. The effects of surface
roughness on contrast can be seen on the undoped side at right. The silicon structure is resolved (Voyles
et al. 2002).

ADF-STEM image are individual Sb atoms. (Further confirmation comes from their
known concentration.)

Images obtained from thin samples, however, can be interpreted using the simple
incoherent imaging model (eqn 8.8) to provide a simple first estimate on which to
base multiple scattering calculations. The resolution expected in ADF-STEM can be
understood by plotting out figures similar to 8.5. The optimum focus setting will be
close to eqn (8.14b), and a coherently filled aperture whose size is given by eqn (8.14c)
should be used for non-periodic samples. The essential requirement for lattice imaging
in ADF-STEM is that the objective aperture be coherently filled over an angular
range greater than the Bragg angle, and that there is overlap at least of the first-order
diffraction disks, that is, that θc > θB. Figure 8.10 shows an ADF-STEM image
of a silicon–germanium alloy in the [110] orientation, obtained using an aberration-
corrected STEM with a resolution of less than 0.08 nm (Batson and Krivanek 2002).
Every atomic column is clearly resolved. Compare with Figs 7.1 and 7.2 for the results
of thro-focus series and aberration corrected HREM, showing similar resolution.
Applications of ADF-STEM to superconductor interfaces are reviewed in Browning
and Pennycook (1999).

In an earlier Section (5.15) the three-dimensional reconstruction of HREM images
of crystals at atomic resolution was discussed, and we have seen that at least two
views of the same interface have now been obtained in different projections at atomic
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Fig. 8.10 ADF-STEM image of Si70Ge30 in [110] orientation acquired at 120 kV. Vacuum generators
HB501 STEM with Nion Spherical Aberration Corrector #1 and IBM-developed high voltage circuitry
designed for a gun monochromator (512 × 512 pixels acquired in 0.5 s). The illumination aperture was
25 mrad half angle. Note the (551) diffraction spots, corresponding to a 0.076 nm spacing, seen in the
Fourier transform, shown inset (Batson and Krivanek 2002).

resolution. Similar results, at somewhat lower resolution, have also been obtained
by STEM. By obtaining ADF-STEM images of a Pd–Ru catalyst particle in many
orientations, it has been possible to reconstruct three-dimensional images of these
particles with sub-nanometer resolution (Midgely et al. 2001). The images were
spatially aligned using cross-correlation functions, and a weighted back-projection
algorithm used for reconstruction (Frank 1992). The further development of ADF-
STEM tomography of nanostructures is an exciting challenge for the future.
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9
ELECTRON SOURCES AND DETECTORS

The three common electron sources are tungsten hair-pin filaments, lanthanum hexa-
boride sources, and field-emission sources. A comparison of the properties of electron
field emitters with soft-X ray synchrotron sources can be found in Spence and
Howells (2002). This chapter gives brief notes on the suitability of each for high-
resolution transmission electron microscopy and summarizes their characteristics.
For this application the main requirements are as follows.

1. High brightness (current density per unit solid angle). This is important in high-
resolution phase-contrast experiments where a small illumination aperture is
required together with sufficient image current density to allow accurate focusing
at high magnification.

2. High current efficiency (ratio of brightness to total beam current). This is
achieved through a small source size. Reducing the area of specimen illumin-
ated reduces unnecessary specimen heating and thermal movement during the
exposure.

3. Long life under the available vacuum conditions.
4. Stable emission. Exposures of up to a minute are not uncommon for high-

resolution dark-field imaging and ADF-STEM.

An ideal illumination system for high-resolution CTEM would give the operator
independent control of the area of specimen illuminated, the intensity of the illumina-
tion, and the coherence conditions. Only the field-emission source approaches this
ideal; however, for many laboratories lanthanum hexaboride sources offer the best
compromise between cost and performance for high-resolution CTEM.

Before discussing particular electron sources, the properties of condenser lenses
and triode electron guns are briefly reviewed.
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9.1 The illumination system

The two condenser lenses of a TEM electron microscope illumination system are
shown in Fig. 9.1. The properties of simple lenses are discussed in Section 2.2, which
provides some background for this section. The microscopist usually has independent
control of the focal lengths of both these lenses (C1 and C2). The first condenser lens
excitation is sometimes called ‘spot size’. The instrument is normally used with these
excitations arranged so that planes S, S′ and the specimen plane are conjugate, that
is, with a focused image of the source formed at the specimen (focused illumination).

F W

S A

C1

C2

U1

U2

V1

V2

S�

S�

D1

D2

D3

CA2

Specimen

�i

�c

Fig. 9.1 The illumination system of a modern electron microscope. There are two condenser lenses
C1 (a strong lens) and C2 (a weak lens). F-filament electron source; W = Wehnelt cylinder; S = virtual
electron source, with images S′ and S′′; CA2 = second condenser aperture. The distances U1, U2, V1, V2
are electron optical parameters, while distances D1, D2, D3 are easily measured from the microscope
column. Values of these distances are given for a particular microscope in Table 2.1.



266 High-Resolution Electron Microscopy

For a hair-pin filament the source size is about 30 μm. To prevent unnecessary
specimen heating and radiation damage, a demagnified image of this is required at the
specimen. The working distance D3 must also be large enough to permit specimen-
change manoeuvers. These conflicting requirements (magnification M1 small, D3
large) would necessitate an impractically large distance D1 if a single condenser lens
were used. The usual solution is to use a strong first condenser lens C1 to demagnify
the source by between 5 and 100, followed by a weak second lens C2 providing
magnification of about 3 and a long working distance. Demagnification values for
the two lenses and the corresponding focal lengths are given in Table 2.1. Since
M1 = V1/U1 is small the image of S formed by C1 is situated close to the focal plane
of C1.

As discussed in Section 2.9, that portion of the objective lens field on the illumin-
ating side of the specimen (the pre-field) also acts as a weak condenser lens. The total
demagnification of the source at the specimen is

M = M1M2M3

=
(

V1

U1

)(
V2

U2

)
M3

≈ M3

(
f (C1)D3

D1D2

)

where M1, M2, M3 are the magnifications of C1, C2, and the objective pre-field
respectively. A typical value of M3 is 1

3 . The minimum value of f (C1) is the minimum
projector focal length discussed in Chapter 2, and may be about 2 mm. If the condition
of focused illumination is maintained, the size of the illumination spot on the specimen
can be reduced from a large value by moving the image S′ towards S, making V1
smaller and U2 larger.

A simple method of measuring the source size is to image S using lens C2 alone
with lens C1 switched off. The magnification M2 = D3/(D1 + D2) is then about
unity and can be obtained from measurements taken from the microscope column.
If the pre-field demagnification is not known, a shortened specimen holder should be
used on top-entry stages to bring the specimen out of the lens field.

If the aperture CA2 is incoherently filled (as it is when using a hair-pin filament),
the field of view or illuminated specimen region is limited by the size of source S and
the lens demagnification, while the coherence at the specimen is solely determined
by the semi-angle θc. This method of focused illumination is known in light optics
as critical illumination. Another method, where the image S′ is placed in the focal
plane of C2 (U2 = f (C2)) is also possible and known as Köhler illumination in
light optics. Here the coherence is limited by the source size, while the field of view
depends on the size of CA1. On many electron microscopes the pole-piece of C1
forms the aperture CA1.

Finally, the use of unfocused illumination must be considered. This is treated in
most of the electron optics texts mentioned in Chapter 2 (e.g. Grivet (1965)), where
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it is shown that the beam divergence θi (see Fig. 9.1) for unfocused illumination
is given by the semi-angle subtended by the source image at the specimen if this
angle is less than the angle subtended by the illumination aperture. Otherwise, the
beam divergence θc is given by the angle subtended by the illumination aperture (see
Fig. 9.1).

9.2 Brightness measurement

The electron current I passing through area A is proportional both to A and to the
solid angle subtended by any filled illuminating aperture at the source. The constant
of proportionality β is known as the beam brightness and is measured in amps per
square centimetre per steradian. The brightness is strictly defined for vanishingly
small areas and angles as

β = I/πAθ2 (9.1)

for an aperture of semi-angle θ . The effect of a lens is to reduce the current density
(proportional to M2) and increase the angular aperture (proportional to 1/M2) for a
magnification M , leaving the brightness constant at conjugate planes in the micro-
scope if aberrations are neglected. A full discussion of the signficance of brightness is
beyond the scope of this text and can be found in the electron-optics texts mentioned
in Chapter 2. Values of β for four modern sources are given in Table 9.1. For a hair-pin
filament with β = 5 × 105 A cm−2 sr−1, a 400 μm final condenser aperture in the
plane of CA2 (Fig. 9.1) gives a current density in the illumination spot focused on
the specimen of

j0 = πβ(r/D3)2 = 1 A cm−2

where r is the aperture radius. This is a typical value for high-resolution elec-
tron microscopy of radiation-insensitive materials. The corresponding image current
density on the viewing phosphor at a magnification of 500 K is

ji = j0/M
2 = 5 × 10−12 A cm−2

which is sufficient to expose the Ilford EM4 emulsion to an optical density of unity
after 6 s, assuming no specimen or pre-field effect. Corresponding figures for an LaB6
filament are j0 = 14 A cm−2 and ji = 5.6 × 10−11 A cm−2 with an exposure time of
0.5 seconds at the same magnification.

The theoretical upper limit to brightness is given in many texts as

βm = ρeVr/πkT

= 3694ρeVr/T A cm−2 sr−1 (9.2)

where ρ is the emission current density at the cathode (filament) in A cm−2, T (K)

is the filament temperature, and k is Boltzmann’s constant. For thermionic sources



Table 9.1 The properties of four modern electron sources. These figures are approximate. The effect of source size on coherence at the
specimen is discussed in Section 4.5. See Tuggle and Swanson (1985) for details

Source Virtual Measured Current density Energy Melting Vacuum Emission
source brightness at specimen FWHM point required current
diameter at 100 kV with 0.8 mrad (eV) (◦C) (T) (μA)

(A cm−2 sr−1) illuminating
aperture (A cm−2)

Heated field-emission, 100 nm 107–108 20 0.8 3370 10−8–10−9 50–100
ZrO/W

RT Field emission 2 nm 2 × 109 4000 0.28 3370 10−10 10
Hair-pin filament 30 μm 5 × 105 1 0.8 3370 10−5 100
LaB6 5–10 μm 7 × 106∗ 14 1.0 2200 10−6 50

∗Measured at 75 kV (Broers 1976).
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the brightness increases with temperature, since ρ increases exponentially with tem-
perature. Note that the brightness is proportional to accelerating voltage. Brightness
measurements at high voltage have been given by Shimoyama et al. (1972a), who
found β = 1.6 × 106 A cm−2 sr−1 at 500 kV. Note also that Vr is the relativistic high
voltage (Shimoyama et al. 1972b).

Since the early work of Haine and Einstein (1952), many workers have shown
that the maximum theoretical brightness could be achieved in practice for suitable
combinations of filament height (h), bias voltage (Vb), and filament temperature
(T ). For T = 2800 K, a temperature giving reasonable filament life, eqn (9.2) gives
β = 4.4 × 105 A cm−2 sr−1 at 100 kV, in rough agreement with measured values
(ρ = 3 A cm−2 at this temperature).

In designing a gun one aims for the highest current efficiency, that is the highest ratio
of brightness to total beam current, as well as for high absolute brightness. Current
efficiency is increased by making the Wehnelt hole small and h small. A typical
beam current for a tungsten hair-pin filament is 150 μA, while many excellent high-
resolution lattice images have been taken using pointed filaments with a beam current
as low as 1 μA (Hibi and Takahashi (1971)).

In order to compare electron sources or determine the optimum conditions for
operating a source, it is necessary to be able to measure the source brightness. This
may be done by the following method, which is useful for determining the best height
for a filament. A direct-reading image current electrometer is needed, connected
to a small electron collector in the plane of the viewing phosphor. The solid angle
� ≈ πθ2 subtended by the second condenser aperture at the specimen must be
measured from the microscope. The aperture size should be carefully measured using
either a calibrated optical microscope or the optical diffraction pattern of the aperture,
since these aperture sizes vary considerably within each nominal ‘size’. The electron-
optical magnification M must be known and the current I passing through a small
circular area of radius r at the centre of the focused illumination spot should be noted.
The brightness is then approximately

β = M2I/π2θ2r2

The following points are important.

1. The procedure should be repeated for successively smaller condenser apertures
until the value of β obtained does not change with aperture size. This ensures
that the aperture is filled with radiation for the measurement.

2. The current measuring area must be small compared with the focused spot size.
If the full spot size is used the result will be a small fraction of the true brightness.

3. A correction for electron backscattering from the collection screen must be
made, using published coefficients (Badde et al. 1971). Alternatively, a specially
shaped collector with low backscattering coefficient can be used.

4. A specimen such as a holey carbon film must be used to define the object
plane. Bear in mind that the screen intensity (not β) will depend on the strength
of the objective pre-field, that is, on the specimen height and objective focus
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(Section 2.9). To ensure that the condenser aperture actually limits the incident
beam divergence, it will be necessary to work with the specimen outside the
objective lens field and a correspondingly weakly excited objective. Alternat-
ively, with the object plane immersed within the lens field, the angle θc can be
found from the size of diffraction spots as described in Section 10.8.

An example of a theoretical calculation of the brightness of a triode electron gun
can be found in Kamminga (1972).

9.3 Biasing and high-voltage stability

A common problem in recording images at high resolution is high-voltage fluctuation
during the exposure. Tests for high-voltage stability are described in Section 11.2.
On modern instruments the high voltage is stabilized against fluctuations by the
negative feedback circuit shown in Fig. 9.2. The Wehnelt is biased a few hundred
volts negative with respect to the filament and to tends to reduce the electron beam
current. The circuit is most easily understood by analogy with the thermionic triode,
and can be redrawn as shown in Fig. 9.3. While the anode of an electron microscope

a.c.

h.v.

W

F

R1 R2
Rb

Vb

h

+ –

Fig. 9.2 The self-biasing gun. The alternating current filament heating supply is connected to a.c. (a d.c.
supply is sometimes used). Balancing resistors R1 and R2, which keep the filament tip at a constant
potential, are also shown. A bias resistor Rb is shown with bias voltage Vb. The anode is labelled A, the
Wehnelt W, and the filament F. The feedback circuit shown provides improved current and temperature
stability over a fixed-bias arrangement.
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h.v.+ –

A

Rb

RL

Fig. 9.3 Equivalent triode circuit for an electron gun. In the conventional cathode biased triode amplifier
point A, rather than the anode, would be approximately at earth potential. RL is an equivalent load resistor.
The similarity with Fig. 9.2 should be noted.

Ib

h2

h1

Vb 0–100–200–300–400

Fig. 9.4 Approximate total beam current Ib as a function of gun bias for two different filament heights
h1 and h2. Here h2 is greater than h1. The bias required for optimum conditions (high brightness) is less
for the h1 case than the h2 case.

is kept at ground potential for convenience, point A of the triode circuit is usually
grounded. Figure 9.4 shows the relationship between grid (Wehnelt) voltage and
plate (beam) current obtained by experiment. The presence of condensed oil vapour
of evaporated tungsten on the gun chamber walls will encourage micro-discharge in
the gun. If the discharge is small, the resulting increase in beam current will increase
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the bias voltage developed across Rb which in turn, from Fig. 9.4 will tend to oppose
the initial increase in beam current, the result being a stabilization in high voltage and
electron wavelength.

The three triode constants (Brophy 1972) can be defined and measured for an elec-
tron gun (Munakata and Watanabe 1962), and the stabilization analysed by applying
Maxwell’s loop equation to the small signal triode equivalent circuit for Fig. 9.3. This
treatment shows that the stabilization depends both on the amplification factor of the
equivalent triode and on the value of the bias resistor Rb.

In summary, the effects of an increase in Rb are as follows.

1. Reduced total beam current as shown in Fig. 9.4. The bias required for cut-off
depends on the filament height h, becoming larger as h is reduced.

2. Improved high voltage stability.
3. Reduced chromatic aberration. Figure 9.5 shows the measured energy distribu-

tions for three field emitters. For a tungsten filament the FWHM varies between
0.7 and 2.4 eV with gun bias setting.

4. By treating the gun as an electrostatic lens the size and position of the virtual
electron source can be found (Lauer 1968). This is shown in Fig. 9.6—its size
varies only slightly with gun bias, while its position moves toward the anode
with decreasing bias.

5. For a particular filament height and temperature there is a weakly defined
maximum in brightness as a function of bias for self-biased guns.

The bias resistor Rb (several tens of megaohms) can be adjusted by the operator. On
many microscopes a clockwise rotation of the bias control (turning it ‘up’) actually
decreases the bias, resulting in increased beam current.

An important feature of the self-biasing system is that the bias is controlled by the
filament temperature, since this limits the beam current. Electrons are emitted only
within the circular zero equipotential on the hair-pin cap, the size of this area grows
smaller with increasing bias, vanishing to a point at the filament tip at cut-off bias.
This explains the changing appearance of the focused illumination spot as the filament
current is increased, increasing both the filament temperature and gun-bias. The spot
contracts as electrons are drawn from a progressively smaller region of the filament
tip. A full treatment of the operating conditions for self-biased guns is contained in
the article by Haine et al. (1958).

The bias setting may have an important bearing on the quality of high-resolution
images of the thinnest specimens, where energy losses in the specimen are less
important than the energy spread of the beam leaving the filament. A fuller dis-
cussion of this question is given in Section 5.8, where techniques for minimizing the
thermal energy spread of electrons leaving the filament are outlined. In Section 4.2
and Appendix 3 the effect of gun-bias on image quality is also assessed (see, in
particular, Fig. 4.3).
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Fig. 9.5 Electron emission energy distribributions for a Zr/O/W(100) Schottky emission tip, an uncoated
thermal field emission tip (TF, W(100)) and a cold W(100) tip. Most commercial field-emission TEMS
use heated Schottky mode, with �V63 = 0.8 eV (Tuggle and Swanson, 1985).

9.4 Hair-pin filaments

Most manufacturers supply pre-centred, annealed filaments at a pre-set height with
replacement instructions. The tungsten wire thickness and length have been chosen
with care since these determine the load applied to the filament supply. The fila-
ment life is limited by the effects of gas attack (mainly water vapour) and thermal
evaporation. With a vacuum poorer than 10−5 torr the first failure mechanism is more
likely. On many modern instruments filament lives well in excess of 50 h are common.
An hour meter actuated by the high-voltage relay can be used to measure the filament
life and provides an inexpensive monitor of the microscope vacuum. As small leaks
develop in the microscope column, the filament life rapidly deteriorates. The two
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W

F
VS RS

A

Fig. 9.6 Formation of a virtual source (VS) in the region between the Wehnelt (W) and the anode (A).
A real crossover is formed at RS.

failure mechanisms can be distinguished as follows. Most filaments fail when a break
develops near the top of either arm where the temperature is greatest. If the wire
has retained its original thickness with a blunt rounded appearance in the region of
the break, the likely cause of failure is evaporation. Gas attack is characterized by a
narrower tapering toward the break.

The brightness and coherence properties of hair-pin filaments are indicated in
Table 9.1. Bear in mind that the intensity of the final image depends on a large
number of factors apart from the source brightness. Three of these, often overlooked,
are the age of the viewing phosphor (which should be replaced at least once a year for
high-resolution work), the correction of condenser lens astigmatism, and the extent
of objective lens pre-field used. A far more intense final image is obtained as the
specimen is immersed deeper into the objective-lens field (Section 2.9).

These filaments are marginally adequate for high-resolution lattice imaging of
radiation-insensitive materials; their chief disadvantage is the large specimen area
which must be illuminated leading to unnecessary heating and specimen movement;
and lack of brightness.

9.5 Lanthanum hexaboride sources

These sources offer an increase in brightness of about ten times over hair-pin filaments
(see Table 9.1). They have the great advantage of operating at moderate vacuum con-
ditions (better than 10−6 torr), which can be obtained in most microscopes without
modifications. A marginal gun vacuum can often be improved by attending to the gun
vacuum seal. Other leaks are easily traced with a partial pressure gauge or mass spec-
trometer (see Section 12.8). Details of one experimental system are given in Ahmed
and Broers (1972), in which a rod of LaB6 with a ground tip of about 10 μm radius is
heated indirectly with a tungsten coil. Another system, available commercially uses
a thin strip of carbon containing a slot to support and heat the highly reactive LaB6
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emitter. This carbon strip is supported on the pins of a conventional hair-pin base, so
that the filaments can be used as a plug-in replacement for hair-pin filaments. Their
heating requirements are similar to those of a hair-pin filament (about 5 W). These
sources are more expensive than hair-pin filaments but give longer life so that the cost
per hour may be comparable. To prevent oxidation of the tip, a minimum cooling time
of 10 s must be allowed before admitting air to the gun after turning down the heating
current. Since these filaments operate at a lower temperature than tungsten filaments,
electrons are emitted within a narrower range of energy (Batson et al. 1976). We can
expect that high-resolution images recorded using these sources will show reduced
chromatic aberration (see Sections 2.8.2 and 4.2). Because of their convenience and
performance LaB6 sources can be recommended as the most cost-effective sources
currently available for HREM work, provided that an adequate gun vacuum can be
obtained.

9.6 Field-emission sources. Degeneracy

The article by Crewe (1971), the inventor of the field-emission gun, provides a useful
introduction to the subject of field-emission sources. These are now available for
CTEM instruments, and are the basis of the STEM mode. The filament consists
either of a heated or an unheated single crystal of tungsten. The high electrostatic
field (about 4 × 107 V cm−1) in the region of the tip enables electrons to tunnel
through the lowered potential barrier at the tungsten surface. The (111) or (310) tip
orientations are often used. The theory of field emission has been reviewed by Dyke
and Dolan (1956). The high brightness of these sources (see Table 9.1), the small
illumination spot possible at the specimen, the small energy spread, and the high
spatial coherence of the radiation makes this source the best currently available for
high-resolution CTEM. Fresnel fringes obtained with such a source and demonstrating
this high degree of coherence are shown in Fig. 10.6 (see also Section 10.8). Since
the coherence length in the plane of the final condenser aperture may be comparable
with the size of this aperture, the coherence length at the specimen cannot be found
using the simple formula (4.11). The large coherence length (up to 100 nm) obtainable
allows the largest and smallest spatial periods to contribute to phase-contrast images
and so can be expected to improve their quality (see Chapter 4).

Resolution is improved when using a field-emission source for two reasons. First,
the final illumination aperture becomes coherently filled, so that the complex ampli-
tudes of the final images must be added for each illumination direction rather than their
intensities (Humphrey and Spence 1981; O’Keefe et al. 1983). The transfer theory of
Section 4.2 must then be modified accordingly, resulting in improved resolution for the
same beam divergence, as given by eqn (5.63a). Second, from eqn (4.11) we see that
the information limit goes inversely as the square root of the source energy spread
�, which is reduced in field-emission guns. For heated (Schottky) field emitters,
measurements give a FWHM of about 0.8–1 eV, and 0.3 eV for cold field emission.
More usefully, the value of � needed to match experimental diffractograms at 300 kV,
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including both the source energy spread from a heated field emitter and high-voltage
fluctuations, has been found to be 0.37 eV (O’Keefe et al. 2001). The virtual source-
size for a heated emitter is estimated to be 20 nm, or 5 nm for a cold field emitter.
The source size and brightness for nanotip cold field-emitters is given in Qian et al.
(1993), and the relationship between coherence, brightness, and beam degeneracy is
discussed in Spence et al. (1994). A comparison of the brightness, coherence and
degeneracy of synchrotrons, lasers and field-emitters is given in Spence and Howells
(2002). Unlike X-ray sources, the number of electrons which can occupy a single cell
in phase-space (the degeneracy) is limited to two by the Pauli exclusion principle;
this sets an upper quantum limit on brightness for electron sources. Current field
emitters provide several orders of magnitude less than this limit, due to the limitations
imposed by Coulomb interactions and the Boersch effect. Although the brightness of
field-emitters is currently greater than that of undulator synchrotron X-ray sources,
the degeneracy is less (about 10−5 for a field emitter, about 10 for an undulator and
about 1012 for an optical laser).

The possibility of illuminating only a very small area (about 20 nm) with a field-
emission source enables a modified focusing technique to be used with important
advantages for radiation-sensitive materials. A structurally unimportant area of speci-
men can be illuminated and used for focusing at high magnification, while an adjacent
area, unaffected by radiation damage during focusing and at the same height and focus
condition, may be subsequently illuminated and used for the final image recording.
The dose for the second area can be accurately controlled (independently of the coher-
ence condition) and no refocusing is necessary. These are important advantages for
high-resolution biological work.

The environmental requirements for a field-emission source are more severe than
for other sources. In particular, magnetic shielding in the region of the gun and speci-
men is important to reduce stray a.c. magnetic fields. This is discussed in Chapter 10.
The tips must be ‘flashed’ before use, that is, heated briefly to remove contaminants
and smooth the tip profile. For a field-emission gun the ‘Wehnelt’ is at positive poten-
tial with respect to the tip, but nevertheless can be used to stabilize the beam current
(Cleaver and Smith 1973). The tips can be fabricated by electrolytic etch using sodium
hydroxide in a similar way to that used for making thermionic pointed filaments.

The most important practical problem in producing commercial field-emission
sources has been the control of emission stability. Before purchasing a field-emission
microscope it is most important to examine the focused illumination spot at maximum
imaging magnification to check for a stable intensity distribution. Methods for making
field-emitter tips are given in Dyke et al. (1953) and Melmed (1991).

For STEM imaging at high resolution, a field emission gun is essential (Crewe
1971). Three main types have been developed—the ‘cold’ (room temperature) emitter
(FE), the heated thermal-field-emission type (TF), and the Schottky emitter (SE). The
FE and TF modes operate by tunneling through a potential barrier near the Fermi
energy, established by an extraction potential, while the SE type relies on a coating
to reduce the work function of thermal emission over the barrier established by the
vacuum level. Most commercially available systems now use a coated TF system.
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The energy spread and properties of these emitters are given in Table 9.1 and Fig. 9.5.
More details can be found in Tuggle and Swanson (1985) and references therein.
Electron monochromators have been in development since the 1930s; those currently
available for commercial HREM instruments can provide about 1 nA of current into
a bandwidth of 90 meV (M. Haider 2002, personal communication).

9.7 Detectors. The charged-coupled device (CCD) camera

A comparison of the strengths and weaknesses of film, CCD and Image Plate (IP)
detectors can be found in Zuo (2000), where the gain, linearity, resolution, dynamic
range and detective quantum efficiency (DQE) of these systems are compared. (The
paper by Fan and Ellisman (Fan and Ellisman 2000) also provides an excellent over-
view of digital imaging in TEM.) In summary, the IP system offers more pixels,
similar or better dynamic range, excellent linearity and better DQE at low dose than
the CCD camera, but lacks the capacity for on-line image analysis. IPs also avoid
the undesirable ‘blooming’ feature associated with the CCD, which must be removed
by image deconvolution. The CCD and IP have similar gain. Film offers the largest
number of the smallest pixels, and remains a valuable archival medium, immune to
rapidly changing digital hardware and software formats, but it has the least dynamic
range over its rather limited linear region.

An ideal detector would record the arrival of every beam electron (DQE = 1)
into independent pixels (no blooming or ‘cross-talk’). All real detectors add detector
noise to this intrinsic shot or quantum noise of the electron beam, thereby lowering
the DQE. DQE can then be improved by increasing gain (the number of output pulses
per beam electron), at the expense of dynamic range. DQE is proportional to the area
under the modulation transfer function.

The capacity for on-line image processing, real-time transfer-function display and
automated electron-optical alignment has made the CCD system which we discuss
first the most popular device for quantitative HREM of inorganic samples, whereas the
Image Plate has advantages for holography (more pixels), radiation sensitive materials
(better DQE, more pixels), CBED (more pixels, better linearity) and the recording
of diffuse scattering in diffraction patterns (less blooming near Bragg peaks). The
pixel-to-pixel registry between successive CCD images is a unique advantage of that
system, allowing simple image algebra, as is the ability to view images immediately at
the microscope, working until a desired result is obtained. Video systems, less useful
for quantitative analysis because of their limited dynamic range but essential for high-
speed recording, are discussed in Section 9.8. The use of CCD cameras for HREM
of organics is under rapid development. One of the earliest uses of the CCD camera
for direct electron imaging in TEM is described in Spence and Zuo (1988); detailed
analysis of its performance can be found in Daberkow et al. (1991), Krivanek et al.
(1991), de Ruijter and Weiss (1992), Ishizuka (1993), Zuo (1996). The cameras
often consist of a thin single-crystal Yttrium-Aluminum-Garnet (YAG) scintillator
(Autrata et al. 1978; Chapman et al. 1989) bonded to a fibre-optics vacuum window
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face-plate, with a Peltier and water-cooled optical CCD detector operating at about
−40 ◦C pressed against the window on the ambient-pressure side. The YAG may be
coated on the electron-beam entrance side, both to provide electrical conductivity,
and to reduce optical reflections inside the YAG.

The CCD signal contains many artifacts, including readout noise, dark current and
non-uniform gain variations across the image field. Most image processing software
will therefore treat CCD images initially as follows. A dark current image D is
recorded with the shutter closed for the same time as the exposure of interest I0.
A flat-field or gain image F is also recorded with the shutter open using uniform
illumination (no sample), and an exposure time which gives about the same average
count as that expected in the final image. This image records variations in gain across
the image field, due, for example, to ‘chicken-wire’ patterns in the fibre-optics, or
spatial variations in the doping levels in the YAG. A final image

I = (I0 − D)/(F − D)

is then formed, to be used for subsequent analysis, such as deconvolution and com-
parison with image simulations.

The quantitative analysis of electron intensities needed for comparisons of simu-
lated and experimental images requires firstly a careful characterization of the detector
system. This involves measurement of the gain g, resolution (modulation transfer
function or MTF) and detective quantum efficiency (DQE) of the CCD system. (Lin-
earity and uniformity may also be important). This analysis is most important; the
goodness-of-fit index obtained, for example, will depend sensitively on the way in
which the point-spread function of the CCD detector is ‘deconvoluted’. A typical
CCD camera might contain 1024 × 1024 square pixels, each 25 μm on edge, with
14 or 16 bit capacity. The CCD characteristics are most simply measured using the
noise method (Dainty and Shaw 1974; Zuo 1996), in which the shot-noise from the
electron beam is used to provide an equally weighted spectrum of spatial frequencies.

The gain, g, is defined as the ratio of the average number of CCD output counts I

to the electron dose per pixel Ne.

g = I

Ne

Its measurement therefore requires an absolute measurement of beam current, using,
for example, a Faraday cup or the known response of film or Image plates, which
must be converted to number of beam electrons per pixel to obtain Ne. I is given by
the output of the software used to control the CCD camera. A typical measured gain
value for a YAG/CCD combination is 1.55—much higher values may be obtained if
fine-grained phosphor such as P43 are used, however a high gain is not necessarily
advantageous, since it results in loss of dynamic range. The gain of a CCD camera has
been measured as a function of beam energy between 60 keV and 400 keV, where it
is found to vary between 0.4 and 0.27, with a maximum of 0.6 at about 100 keV. Gain
can be opitmized by choice of YAG thickness at the expense of spatial resolution.
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The resolution of the slow-scan CCD camera is described by its point spread func-
tion (PSF), defined as the image of an object which is much smaller than one detector
pixel. Unlike film and IP detectors, the YAG/CCD combination spreads the light
generated by a single beam electron over several CCD pixels, so that the PSF has
extended tails, and this effect must be removed by image processing. (This can be
done because this pixel ‘cross-talk’ affects mainly low, rather than high, spatial fre-
quencies.) The MTF function is defined as the modulus of the Fourier transform of the
PSF, and would be constant (equal to c below) for all spatial frequencies for an ideal
delta-function PSF. The MTF function can be modeled for the Gatan CCD cameras
by the function (Zuo 1996):

M(ω) = a

1 + αω2
+ b

1 + βω2
+ c

Here ω is spatial-frequency in units of 1/pixel (with a maximum value of
0.5/pixel), and the remaining quantities are fitting constants (e.g. a = 0.40, b =
0.46, c = 0.15, α = 3328, β = 13.51). The first two terms model the head and tails
(due to reflected photons in the YAG) of the PSF, while c represents an ideal response.
At medium and high dose the MTF is found to be independent of dose; at low dose,
readout noise and dark current may dominate. The MTF can be measured by taking
the Fourier Transform of an image of a uniformly-illuminated field, averaged over
many exposures. The papers (Zuo 1996, 2000) provide practical details. Figure 9.7
compares the MTF of a CCD with a YAG single-crystal scintillator with that of the
Fuji Image plate system.

The DQE is defined as the square of the ratio of output signal-to-noise ratio to
input signal-to-noise ratio. Three unwanted sources of noise are important—Poisson
distributed dark current noise and conversion noise, and Gaussian read-out noise,
in addition to the irreducible quantum noise of the electron beam itself (shot-noise).
A DQE of unity is only possible if every beam electron is detected, with no other noise
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Fig. 9.7 MTF of Gatan Model 679 SSC CCD camera with Yag scintillator (lower three curves) at different
beam energies, compared with Fuji Image Plate system (upper curves) (from J. Zuo, Micros. Res. Techn.
49, 245 (2000)).
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added to the shot noise, and if one has in addition an ideal PSF. Readout and dark-
current noise are independent of the beam intensity. DQE can be shown (Ishizuka
1993) to be given by

DQE(I ) = mgI

var(I )

where m is a mixing factor measuring cross-talk between pixels (obtainable from the
area under the MTF), g is the gain, I is the average number of CCD counts per pixel,
and var(I ) is the variance in that number. These quantities are obtained by recording
a uniformly illuminated field at different average intensity. By applying the rules for
the manipulation of variance to the processes of scintillation and subsequent electron-
hole pair production in the CCD (Fano noise), an expression can be obtained for the
DQE as a function of dose, including all sources of noise (Zuo 2000). Figure 9.8(a)
shows the measured DQE for a YAG/CCD system at several voltages, compared with
a simple theory which does not take account of linear noise. Figure 9.8(b) shows the
measured DQE for the Fuji Image Plate system.

The dynamic range of a CCD camera is usually defined as R = 20 log(Imax/σ)

in decibels, where σ is the detector readout noise. In practice, lower figures will
be obtained due to the effect of the PSF. The linearity (gain vs. dose) of a Gatan
Model 679 CCD YAG camera with anti-reflection (AR) coating has been measured
and found to be highly linear over its full 12 bit range (Zuo 2000).

The design and performance of an optimized CCD-based slow-scan cooled area
detector for 100 kV electrons with 16-bit dynamic range and 2K × 2K pixels, using
a P43 phosphor and bakeable fibre-optics coupling is described in Hembree et al.
(2001).

Having obtained an accurate measurement of the MTF, this must then be used to
remove the spreading effect of the PSF from HREM images recorded using a CCD
camera. A number of methods have been evaluated, including the simple Fourier
deconvolution routine provided with commercial CCD camera software. For the par-
ticular type of noise present in CCD images, best results have been obtained using the
Richardson-Lucy maximum-likelihood algorithm, as used for analysis of the Hubble
telescope images. Details are given in Zuo (2000).

For the future, the application-specific integrated circuit detector (ASIC) may
have advantages. This solid-state area detector, in which each pixel is an electron
counter, is directly exposed to the beam, operates at room temperature and is nearly
noise free. At present the unmanageably high output count rate for even a very low
incident beam intensity limits these to systems with few pixels (Fan and Ellisman
2000).

9.8 Image plates

Image plates are flexible, re-usable electronic film sheets which fit the standard TEM
film cassette. They consist of a photostimulable phosphor which stores a latent image
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Fig. 9.8 (a) DQE of Gatan 679 CCD camera with YAG at three beam energies. Dotted lines show theory
without linear noise. (b) DQE of Fuji Image Plate system for comparison (from J. Zuo, Micros. Res. Techn.
49, 245 (2000)).

in trapped F-centres (for a couple of days at room temperature) with large dynamic
range and at least 3000 × 3700 pixels per sheet. At 120 keV, each beam electron
creates about 2000 charged F-centres, which during later readout, generates about 650
detected photons. Unlike film they are highly linear, re-usable and may be exposed
to room light before electron exposure. The pixel size (about 19 μm) is determined
by the laser-scanning read-out device, such as the Fuji FDL5000. The sheets are
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relatively inexpensive; thus a single reader servicing several TEMs provides a system
for quantitative analysis at much lower cost than several CCD cameras. The dynamic
range (also limited by the partially destructive readout device) can be extended beyond
14 bits by reading out the film more than once. The plates are highly linear up to a
saturation of about 105 beam e−/pixel, with a gain of about 0.85 at 120 keV (Zuo et
al. 1996; Zuo 2000). The PSF is determined both by the plates and spot-size of the
laser reader—the MTF is shown in Fig. 9.7, and changes little at beam energies up
to 400 keV. Unlike CCD cameras, noise is dominated by quantum noise in the beam,
and the PSF lacks the undesirable tail due to light scattering in the YAG. It is therefore
ideal for the measurement of weak diffuse scattering beside a strong Bragg peak in
diffraction patterns. The reduced ‘blooming’ of the IP compared to the CCD means
that HREM images recorded on IPs have a granular appearance, due to fluctuations
in ionization along different electron paths and the large pixel size compared to film.
The DQE of the IP system is shown in Fig. 9.8(b)—this is seen to be much higher than
that of a CCD camera at low dose. CBED patterns and diffuse scattering recorded on
IPs lack the blooming effect of CCDs, showing greatly improved fine detail, resulting
in a better match with calculations (Zuo 2000). These properties mean that IP are
also well suited for image recording with radiation sensitive materials or where large
numbers of pixels are needed (e.g. electron holography).

9.9 Film

The response of film to light and high-energy electrons is quite different (Valentine
1966). While the cooperative action of many photons is needed to render the micron-
sized grains of film developable, an interaction with only a single kilovolt electron
is sufficient (Fig. 6.16). After development and fixing, readout in transmission trans-
mits a fraction T of the readout light intensity. The optical density is defined as
D = log10(1/T ), and this is related to the original electron dose E by

D = Ds(1 − exp(−αE)) + D0 ≈ βE + D0

where Ds is the saturation density (= 7.8), D0 (= 0.1) the background (fog), and
β = αDs is the speed of the film (0.41). (Figures in parenthesis are for Kodak SO-163).
Speed is partly determined by the development conditions—faster film has large grain
size. Thus film is linear up to an optical density of about Ds/4. The dynamic range
may be estimated as 30 dB for 6 μm pixels, or 45 dB for the 24 μm pixels used by
CCDs (Zuo 2000). The MTF of Kodak SO-163 film is shown in Fig. 9.9. We see that
film has much smaller pixels than either CCD or IP, resulting in a total number of
pixels several times greater than even the IP. The DQE of film is limited by granular
noise (Zeitler 1992), and rises from 0.4 to about 0.75 at a density of about unity
(Kodak SO-163) with a gradual falloff at higher density.

The advantages of film for archival storage of images should not be overlooked—it
is unlikely that any of the current hardware or software image formats, media or media
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readers, will survive the following decades, so that film alone offers a way to prevent
the current rapid loss of practically all digital data.

9.10 Video cameras and intensifiers

Real-time imaging is essential in certain applications, including observation of the
development of radiation damage, focussing, imaging with drift at high and low
temperatures, the recording of dynamic phenomena (such as dislocation or interface
motion at elevated temperatures or under applied stresses), and in teaching or demon-
stration situations where several people need to watch the same image. For these
real-time image recording, intensified vacuum tube video systems have always been
the system of choice. At the time of writing (2002) they are still superior in per-
formance to the competing video-rate CCD systems, however the later technology is
improving rapidly with the development of cooled, scientific grade, fast CCD chips.
(Conventional uncooled ‘surveillance’ type CCD video systems cannot be used, and
produce very poor quality, noisy images.) The essential problem is one of duty cycle—
the CCD chip cannot accumulate an image during readout, since the readout takes
place across the chip. Frame transfer systems, which include both a sensitive and a
storage area on the same chip, address this problem, offering 100 per cent duty cycle.
Systems are being developed which every second column of pixels is alternately used
for exposure and readout. A second issue concerns comparisons of both the fixed and
proportional noise introduced by each system—at present, if intensified, the television
tubes have better DQE. Video images, which have high contrast and limited dynamic
range, can be read from tape or disk and subsequently aligned by cross-correlation and
added together to reduce noise, however this is a tedious process. For the observation
of unpredictable events (such as radiation damage in inorganics), the use of ‘endless
loop’ recording, which is terminated after the observation of the event, is sometimes
useful.
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For focussing and auto-alignment purposes, the speed of a slow-scan cooled CCD
camera may be sufficient. This can be increased to about 4.5 frames per second using
X2 binning of a 1K×1K CCD, and will give much better performance than integrated
video frames.
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10
MEASUREMENT OF ELECTRON-OPTICAL

PARAMETERS AFFECTING
HIGH-RESOLUTION IMAGES

This chapter describes several simple techniques for measuring the important electron-
optical constants which affect the quality of high-resolution images. The methods
described here are chosen for their simplicity and convenience and include the
use of digital diffractograms for the measurement of defocus, spherical aberration
astigmatism, and ‘resolution’ as discussed in Sections 10.7 and 10.10.

10.1 Objective-lens focus increments

On a well-designed instrument the finest objective-lens focus step �f should be of
the same order as the variation in focal plane position due to electronic instabilities.
From eqn (2.39) an upper limit is

�f = Cc

(
�V0

V0
+ 2

�I

I

)
(10.1)

This gives 4.2 nm for a lens with Cc = 1.4 mm and �I/I = �V/V 10−6. There are
several methods for measuring these steps—three are given in this book, two below
and one in Section 10.7. The first method is an adaptation of the method of Hall
(1949) and uses the displacement with focus of diffraction images.

1. Prepare MgO crystals by passing either a continuous or holey carbon film
through the smoke of some burning magnesium ribbon. This can be ignited, with
some difficulty, using a Bunsen burner. Examine the crystals in the microscope.
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2. MgO has the sodium chloride structure of two displaced face-centred cube
lattices. Crystals in which the beam is in the direction of the [100] or [111] zone-
axis are common. Those of the first kind appear as square crystals. The presence of
Pendellösung fringes indicates that the beam runs in the [110] direction of a diagonal of
the cube face. The diffraction pattern for the [100] case is shown in Fig. 10.1. Crystals
in the [111] orientation appear hexagonal. Identify the reflections in the diffraction
pattern of a suitably thin crystal. For a crystal near the zone-axis orientation observed
with no objective aperture in place, a set of images of the crystal will be seen (one
‘diffraction image’ for each strong Bragg reflection) which merge near Gaussian focus
and separate laterally with increasing defocus. Using the objective aperture to isolate
the central beam and one other strong beam, identify the Miller indices of a particular
diffraction image. By measuring this lateral image displacement for a known number
of focal steps, eqn (3.17) can be used to obtain a value of �f .

3. Align the microscope as described in Chapter 12. Align the illuminating system,
obtain current centre, check cold-fingers for continuity and correct astigmatism on
the carbon background with no objective aperture.

4. Without touching the objective aperture holder, record a double exposure of the
selected crystal at two focus values close to Gaussian focus. The two focus values
chosen should fall within the span of a single focus control (say n steps apart) and the
magnification should be chosen such that some movement of the diffraction image is
observed with this focus change. The full range of the finest focus control may have
to be used.

5. The separation of diffraction images is next measured from the images. The
electron-optical magnification must be measured using the methods discussed in
Section 10.3. For the finest focal steps one is measuring distances of 1–2 nm.

022 002 022
–

020 000 020
–

022 002 022
–– – –

Fig. 10.1 The (100) reciprocal lattice plane for MgO. The lattice spacing is 0.21 nm for the 002 reflection.
Amongst MgO smoke crystals this pattern is easily recognized from the perfect squares formed in the
diffraction pattern.
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6. If the required focal plane separation in the object space for n steps is n �f ,
an expression for this follows from eqn (3.17) and an analysis similar to that
accompanying Fig. 3.5. This gives

�f = d/(nθM)

where d is the lateral translation of the diffraction image measured from the micro-
graph recorded at magnification M . Here θ is the angle between the central beam and
the reflection used, obtained from Bragg’s law. At 100 kV, θ = 17.55 mrad for the
(002) reflection of MgO.

The second method is simpler than the first, although some machine-shop work
may be required. Make up a specimen holder in which the specimen grid is held at
a fixed angle of, say, 45◦ to the incident beam. Place a thin carbon film in the holder
and examine it in the microscope. Select a region near the centre of the grid and
record an image at the minimum contrast focus (see Section 12.4). All points on a
line across the specimen at the same height will be imaged at this focus. Advance the
finest focus control by several clicks, and, without touching the translation controls,
record a second image. By measuring the distance between the lines of minimum
contrast in the image, it is a simple matter to find their difference in height, that is,
the focus change between image recordings. By experiment, you should choose a
focus change for which the line of minimum contrast does not move out of the field
of view. After developing and drying the plates, place one plate on top of the other
over an illuminated viewing screen. The alignment of the plates is not critical if the
line of minimum contrast moves by a large fraction of the plate’s length. Measure the
distance between the two lines of minimum contrast at right angles to the lines and
divide by the magnification (see Section 10.3). For a specimen at 45◦ to the incident
beam, the focus change is then equal to the resulting distance.

A third method for measuring focus increments is described in Section 10.7.

10.2 Spherical aberration constant

Figure 2.18 shows the effect of spherical aberration on a ray leaving the specimen
at a large angle. For an axial point on a crystalline specimen, a high-order Bragg
reflection is such a ray. The resulting displacement between bright- and dark-field
images at Gaussian focus can be used to measure Cs (Hall 1949). Alternatively, the
in-focus displacement of a bright-field image formed with no objective aperture as
the illumination is tilted can be used to give a value for Cs. Equation (2.35), referred
to the image plane, gives the image translation as

d = MCsθ
3 (10.2)

Two bright-field images are recorded successively at exact focus with the central
beam aligned with the optic axis and at a small known angle to it. The resulting image
translation gives d and hence Cs. The method in detail is as follows.
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1. Evaporate a thin layer, less than 20 nm thick, of any low-melting-point FCC
metal onto a holey carbon film to form a fine-grained polycrystalline film. With the
thinnest films grains will be roughly spherical. The film should be thin enough to leave
exposed areas of carbon for astigmatism correction and the grains should be small
enough to leave holes between some grains. More details of evaporation techniques
are given in Mathews (1975).

2. Examine the film and align the microscope with particular attention to current-
centring. Use an uncovered area of carbon to correct the astigmatism as discussed
in Chapter 12. Next, take a double exposure of a hole in the film with the central
beam successively on the optic axis and then tilted, so that an identified diffraction
ring falls on the optic axis. The position of the axis should be marked after current-
centring using the screen pointer. Two tilt conditions can usually be pre-set with the
microscope bright- and dark-field channels. Use no objective aperture and take both
images at exact focus, judging this from the sharpness of the image. A small error in
focusing is not important if a high-order diffraction ring is chosen, thus ensuring that
the phase-shift due to spherical aberration dominates that due to defocus.

3. To ensure that the central beam has been accurately aligned, repeat step 2 four
times with the beam tilted into four orthogonal directions. If the microscope has
been accurately aligned, and there is no astigmatism, the four image displacements
will be equal. Recordings of the tilted and untilted diffraction patterns (double-
exposed) are also required to measure θ . This makes a total of eight double exposures.
A magnification of 25 000 is adequate for the images.

4. For FCC metals the tilt angle is obtained from

θ = r

r0

λ

a0
(h2 + k2 + l2)1/2

where a0 is the cubic unit-cell constant (a0 = 0.408 nm for gold), r0 is the measured
distance between the central beam and the diffraction ring with indices (h, k, l),
and r is the exact measured distance between the two central beams appearing on
the doubly exposed diffraction pattern. A small condenser aperture should be used.
Equation (10.2) can then be used to obtain a value for Cs with d the image separation
under tilt θ .

An indexed ring pattern for FCC metals is given in Fig. 10.2. Magnification calib-
ration can be obtained from an optical ruled diffraction grating. At the magnification
suggested (25 000) it will be necessary to relate the size of a surface feature recorded
at this magnification to that of the same feature recorded at a lower magnification
where many lines of the grating can be seen.

Note that the spherical aberration constant Cs depends on the lens focal length
according to Figs 2.12 and 2.14. A shorter focal length reduces spherical aberration.
Thus the value of Cs obtained applies only for the particular objective-lens current
and specimen height used for the calibration. Make a note of the objective lens current
used during calibration—this should be close to the value found to give images of
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w

Fig. 10.2 The ring diffraction pattern from a polycrystalline face-centered cubic material used for deter-
mining the spherical aberration constant of a microscope. To assist in identifying the rings they are labelled
w (weak) and s (strong). Their radii have the ratio of the square roots of 3, 4, 8, 11, 12, 16, 19, 20, 24, . . .

The indices of the reflections shown, from the centre, are (000), (111), (200), (220), (311), (222), (400),
(313). A beam stop is useful when recording the diffraction pattern to prevent the central beam from
overexposing the emulsion.

highest resolution (see Sections 1.2 and 10.4). A second method of measuring Cs is
given in Section 10.7.

Where values of Cs are needed for computer-simulated images, it is important
to estimate the sensitivity of the images to Cs. For a simple three-beam image, a
black–white contrast reversal occurs for a change �Cs given by π�Csλ

3U4
h /2 = π

(see eqn (3.24)), that is, values of Cs are required to within an accuracy of �Cs =
2/(λ3U4

h ) for a spatial frequency Uh. At high resolution (Uh > 3.3 nm−1, �Cs <

0.3 mm at 100 kV) this accuracy is difficult to achieve; however, the method described
above will be found to be more accurate than the optical diffractogram technique
described in Section 10.7. Note that the error �Cs is independent of Cs so that the
allowable fractional error is increased by reducing Cs. The major source of error in
the above method (accurate to within perhaps 10 per cent) arises from the neglect of
focusing effects. An improved method which is independent of �f has been described
by Budinger and Glaeser (1976) (accurate to within perhaps 3 per cent), together with
a fuller discussion of sources of errors.

10.3 Magnification calibration

At high resolution, crystal lattice fringes form the most convenient length standard,
but an accuracy in magnification calibration of better than 5 per cent is very difficult
to achieve. The important sources of error are the accuracy with which the lens may
be reset to a particular value, and changes in specimen height between the specimen
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of interest and the calibration specimen. This is a particularly important problem for
molecular images. For many periodic specimens, a cell dimension will be known from
X-ray work (Wyckoff 1963). A tilted specimen may introduce large height changes
and consequent error. From eqn (2.9) the effect of a small change �f in specimen
height at large magnification is

�f

f0
= −�M

M
(10.3)

where �M is the magnification change and f0 the objective-lens focal length. Thus,
if a height change equal to the thickness of a grid is allowed on specimen change, the
result is a 6 per cent error in magnification for f0 = 1.6 mm.

Partially graphitized carbon is particularly convenient in that it can be dusted on to
fragile biological specimens (Heidenrich et al. 1968). Lattice fringes obtained from
this specimen in all directions are a sensitive assurance of accurate astigmatism cor-
rection, as shown in Fig. 10.3. The spacing is 0.34 nm. The asbestos fibres crocidolite
and chrysotile (Yada 1967) are also suitable standards. Using the finest tweezers,
these can be teased apart and onto a grid already containing a specimen. Crocidolite
has spacings of 0.903 nm along the fibre direction and 0.448 nm for fringes at 60◦
to the edge, while the spacings of chrysotile asbestos are 0.45, 0.46, and 0.73 nm

Fig. 10.3 Lattice fringes suitable for magnification calibration obtained from partially graphitized carbon.
The presence of clear fringes in all directions is an indication of accurate astigmatism correction. The
fringe spacing is 0.34 nm. A specimen of partially graphitized carbon can be kept permanently on hand as
a preliminary check on the microscope stability and resolution.
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for a specimen observed normal to the fibre axis. Chrysotile appears to be more
radiation-sensitive than crocidolite, which is available commercially.

All these specimens have the advantages that their orientation is simple to determine
and they may be added to a prepared specimen. Any of the specimens listed in
Chapter 5 can be used for routine magnification calibration. The important point
for accurate high-resolution length measurement is that the calibration specimen be
on the same grid and as near to the unknown specimen as possible, and that lens
currents are not altered between recordings of these specimens, apart from necessary
refocusing. The change in height between the calibration specimen and the unknown
specimen is easily measured from the calibrated focus change needed to bring each
into focus.

For routine work fringes obtained from any of the test specimens available com-
mercially will provide magnification calibration for a particular specimen holder,
stage, pole-piece, magnification setting, and high voltage within about 5 per cent.
Where a variable-height stage is used, a correction chart must be drawn up giving
the true magnification in terms of indicated magnification and measured objective-
lens current (Section 10.4) needed to focus the specimen at a particular height. From
Section 2.3, the magnification change due to variation in objective-lens focal length is
seen to be inversely proportional to the lens focal length or proportional to the square
of the objective-lens current. Owing to magnetic hysteresis, the lens field strength
(and hence the magnification) will depend on whether a particular set of lens cur-
rents are approached from a high or a lower lens current. Some instruments include
an automatic lens-current cycling device which improves the resetting accuracy of
magnification to about 3 per cent.

There is an increase in magnification between the viewing phosphor and the CCD
or film plane on most microscopes. The ratio of magnifications on the two planes is

M1

M2
= v1

v2

where M1 and M2 are the magnifications on the phosphor and film planes respectively
and v1 and v2 are distances between the projector lens pole-piece and the phosphor
and film plane. These distances can be measured approximately from the microscope.
A similar equation relates the magnification on the film plane to that on the plane of
an energy analyser, image intensifier, or other image sensor. At high magnification
Section 2.2 indicates that the depth of focus is sufficiently great for all these images
to be treated as ‘in focus’.

Measurements of fringe spacing should be taken over as large a number of fringes as
possible to reduce errors, using either a travelling optical microscope or a transmission
optical microscope with graticule. Counting a large number of fine fringes without
error is tedious and is greatly facilitated by the use of a photographic enlarger whose
magnification has been accurately calibrated. Measurements should be taken from
the enlarged image rather than a print, which is subject to shrinkage. A list of lattice
spacings useful for magnification calibration is given in Table 10.1.
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Table 10.1 List of useful larger lattice spacings for magnification calibration

Specimen Symbol Lattice (hkl) Spacing (nm) Method∗

Cu-phthalocyanine C32H16N8Cu 001 1.26 (a)
Cu-phthalocyanine C32H16N8Cu 201 0.98 (a)
Crocidolite — Along fibre 0.903 (c)
Potassium chloroplatinite K2PtCl4 100 0.694 (a)
Cu-phthalocyanine C32H16N8Cu 001 0.63 (c)
Potassium chloroplatinate K2PtCl6 111 0.563 (a)
Pyrophyllite Al2O3 · 4SiO2 · H2O 020 0.457 (a)
Potassium chloroplatinite K2PtCl4 001 0.412 (a)
Molybdenum tri-oxlate MoO3 110 0.381 (a)
Potassium chloroplatinite K2PtCl4 100 0.347 (c)
Gold Au 111 0.235 (b)

∗The last column shows the method, the letters referring to the imaging conditions shown in Fig. 5.1.

10.4 Objective-lens current measurement

In high-resolution work, where specimen height changes are frequently made,
an indication of objective-lens current is useful for magnification calibration (see
Section 10.3). This is provided on some instruments. If not, the voltage across a low
value (say, 1 �), high-stability resistor in series with the lens should be measured
using a digital voltmeter. From eqns (10.3) and (2.38) we see that for 5 per cent
accuracy in magnification calibration the voltmeter should have a dynamic range of
at least three decades. A more accurate instrument is required for the determination
of Cc (see Section 10.5). A three-digit voltmeter cannot be expected to show any vari-
ation for the three finest focus controls on most instruments. Objective-lens currents
commonly lie in the approximate range 0.5–1.5 A.

10.5 Chromatic aberration constant

A simple technique for the determination of Cc follows from eqn (2.39),

�f = Cc

(
�V0

V0
− 2

�I

I

)

If the high voltage V0 is kept constant and the method described in Section 10.1 is
used to measure the defocus �f for a measured change in objective-lens current (see
Section 10.4), the chromatic aberration constant can be found using

Cc = I�f

2�I

where I is the mean value of lens current used and �I is the change in lens current
for defocus �f . A measurement of Cc using the variation of focal length with high
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voltage is also possible but less convient. For most high-resolution work, however,
it is the quantity � defined in eqn (4.9) which is of interest, and this is most easily
measured using diffractogram analysis (see Section 10.7). The effect of changes in
Cc on image quality are indicated in Fig. 4.3.

10.6 Astigmatic difference. Three-fold astigmatism

A technique for correcting astigmatism is discussed in Chapter 12. Occasionally,
however, it may be necessary to measure the astigmatic difference Ca which appears
in eqn (3.23).

When astigmatism is severe, Ca can be obtained from measurements of Fresnel
fringe widths. The width of the first Fresnel fringe formed at the edge of, say, a small
circular hole in a thin carbon film is very approximately

y = (λ�f )1/2 (10.4)

for defocus �f . From a measurement of y, the focus defect can thus be obtained.
The effect of astigmatism is to separate longitudinally by an amount Ca the position
of exact focus for edges at right angles. This can be seen from eqn (3.23), which con-
tains in addition to the usual focus term an azimuthally dependent ‘focus’ describing
astigmatism. If the maximum and minimum fringe widths measured in perpendicular
directions are ymax and ymin referred to the object plane, then eqn (10.4) gives

Ca = y2
max − y2

min

λ

The following practical considerations are important.

1. The clearest fringes will be obtained using well-defocused illumination
(θc < 1 mrad), and a correspondingly extended exposure time. From Chapter 4
the coherence conditions for observation of fringes of width d is

θc <
λ

2πd

2. The micrograph should be taken close to Gaussian focus, where the fringe
asymmetry is most pronounced. Over-focused fringes (first fringe dark, lens
too strong) are more ‘contrasty’ than under-focused fringes (Fukushima et al.
1974).

A more sensitive measurement of Ca can be obtained from a diffractogram of a thin
carbon film (Section 10.7). Three-fold astigmatism can also be measured by fitting
eqn (3.24b) to diffractograms (O’Keefe et al. 2001).
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10.7 Diffractogram measurements

Diffractograms are undoubtedly the most useful and important tool at the disposal of
the microscopist for fault diagnosis and for the measurement of instrumental para-
meters. They were developed by Thon and co-workers (Thon 1971). A diffractogram
is the modulus of the Fourier Transform of the HREM image of a very thin film
of amorphous carbon, as described in Section 3.5. Then the quantity observed is
given by eqn (3.36). In high-resolution electron microscopy diffractograms have five
main uses:

1. To detect and measure astigmatism.
2. To detect specimen movement during an exposure.
3. To measure the focus defect at which a micrograph was recorded.
4. To measure the microscope’s spherical abberation constant.
5. To measure the damping envelope constant� and θc (see Sections 4.2 and 10.10).
6. For automated alignment and focus-setting of the microscope as described in

Section 12.5.

Diffractograms have also been used to provide information on the structure of
specimens, since they exposure the phase of the scattered electron wave. However,
the main use for on-line diffractograms in a laboratory turning to high-resolution work
will be in training microscopists to correct image astigmatism accurately. Astigmatism
may be difficult to detect in an image, but shows up readily in a diffractogram as
an elliptical distortion of the characteristic ring pattern. Equally important is the
sensitivity of diffractograms to image movement during an exposure (drift) which may
also be difficult to detect in the image. Figure 10.4 shows the effect of astigmatism on
a diffractogram, while the effect of drift is indicated in Fig. 10.5. These two effects
should be clearly distinguished. The diffractogram provides an excellent differential
diagnosis of these common image imperfections.

Diffractograms can also be used quantitatively. A simple FORTRAN program is
given in Appendix 1 to perform the necessary data analysis. Given the radii of the
rings appearing in a diffractogram pattern, this program calculates both the focus
setting �f and the spherical aberration constant Cs using the method of Krivanek
(1976). By measuring the ring radii in two orthogonal directions it is also possible to
find the coefficient of astigmatism Ca. In order to use the program given in Appendix
1 it is necessary to know the radii of the rings in the optical diffraction pattern at their
maximum (or minimum) intensity. These must be supplied in units of Sn = θn/λ,
where θn is the electron scattering angle which gives rise to a particular ring n. The
quantities Sn are simply related to the radii rn of the diffractogram rings.

A simple method of finding the Sn is to include some lattice fringes in the original
micrograph. These fringes produce sharp spots in the diffractogram which can be
used to calibrate the ring patterns. If the Bragg angle at the original specimen for
a spot observed on the optical diffractogram is θB, then the Sn for the rings are
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Fig. 10.4 The optical diffraction pattern of an electron micrograph of thin amorphous carbon film. The
electron image was recorded with an incorrectly adjusted stigmator and this produced the elliptical distortion
of the optical diffraction pattern seen above. Figure A1.1 gives an example of correct stigmator adjustment,
resulting in a circular ring pattern. The procedure for adjusting the stigmator is given in Section 12.1. The
bar across the pattern shown above is a beam stop used to exclude the central bright spot from the image.
Notice the difference between this diffraction pattern (which contains astigmatism but no drift) and that
shown in Fig. 10.5, which contains drift with little astigmatism.

given by

Sn = 2rnθB

rBλelectron
(10.5)

where rB is the distance measured on the optical diffractogram from the central spot to
the sharp spot arising from the Bragg reflection θB. If the diffractogram rings appear
elliptical, the coefficient of astigmatism is easily found by measuring two sets of ring
radii along the major and minor axes of the ellipse. The difference between the two
focus values obtained for these two sets of data is then equal to Ca (see Fig. 2.20).

The accuracy of the diffractogram technique for measuring Cs is, unfortunately,
rather poor. It increases with both the order and the total number of rings used. An
error analysis of the method shows that best results are obtained at a large under-
focus value where many high-order rings are seen. In small-unit-cell crystal imaging
(few beams) the determination of Cs is critical to image interpretation—for example
a change of 0.4 mm in Cs reverses the black–white contrast of silicon images (λ =
0.037, �f = −300 nm, Cs = 2.2 mm). At the point-resolution limit (eqn 6.17)
the change in Cs needed to reverse contrast is 38 per cent, independent of Cs and
λ. Since the diffractogram analysis may give values of Cs varying by more than a
millimetre within the same through-focus series, the Cs determination is then best
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Fig. 10.5 The optical diffraction pattern of a micrograph of an amorphous carbon film in which the
specimen has moved during the exposure. The specimen movement is in the direction AA′ at right angles
to the direction of maximum ring contrast and results in low contrast along this line.

done by the more accurate methods of Section 10.2 for a known specimen position
(focusing current). In large-unit-cell crystals of known structure, Cs can be refined
by quantitative image-matching, since, with many beams contributing to the image,
a unique image-match is readily obtained. (In small-unit-cell crystals there are many
pairs of values of Cs and �f which give the same image, as shown in Fig. 5.1(d).)

An ingenious method has also been developed by Krakow and co-workers for
obtaining the entire through-focus transfer function from a single diffractogram, using
an inclined amorphous carbon specimen. An application of this technique can be found
in Frank et al. (1978/9). One such diffractogram will frequently allow the resolution-
limiting effects of chromatic aberration and beam divergence to be distinguished as
a function of focus.

In general, then, to ensure that a high-resolution image can be calibrated with
approximate values of Cs, �f , and Ca it is only necessary to include in the image a
small region of thin amorphous carbon. A region of contaminant will also serve.

An interesting new very accurate method for measuring the observation coeffi-
cients using the phase correlation function between pairs of HREM images has been
described by Meyer et al. (2002).
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10.8 Lateral coherence

Spatial coherence in electron microscopy is characterized by γ (r, t), the complex
degree of coherence. As discussed in Chapter 4 the width Xc of this function is directly
related to the incident beam divergence θc if the illuminating aperture (C2 of Fig. 2.1)
is incoherently filled. For hair-pin filaments this is normally so (see Chapter 4). For
a field-emission gun it may be coherently filled. The semi-angle subtended by the
illuminating aperture can either be measured directly from the microscope or obtained
from the diameter of diffraction spots. In the first case, θc = r/L with r the radius
of the C2 aperture and L the distance between this and the specimen. The transverse
(spatial) coherence width for a hair-pin filament is then given by

Xc = λ

2πθc
(10.6)

If the second method is used, care must be taken to avoid exceeding the linear range
of the emulsion or CCD used when recording the diffraction pattern of a specimen of
known structure, by suitable choice of film speed and camera length. If the measured
diameter of a diffraction spot is d and the measured distance between the central spot
and a spot with scattering angle β is D, then

θc = β

(
d

2D

)

Here β is twice the Bragg angle. The diameter of weak high-order spots will be found
equal to that of the central beam and these are less likely to saturate the emulsion.
An advantage of this method over direct measurement is that full account is taken of
the objective-lens pre-field (see Section 2.9). This is important for an immersion lens
operated at short focal length, as used for high-resolution work.

A more direct impression of coherence effects can be obtained from recordings
of Fresnel fringes. Figure 10.6 shows Fresnel fringes obtained from an instrument
fitted with a field-emission source. The number of fringes observed is related to the
coherence width Xc as indicated in a simplified way below. This simplified model
of Fresnel diffraction allows the fringes to be thought of as arising physically from
interference between an extended line source along the specimen edge (the wave
scattered from the specimen edge) and the unobstructed wave. The correct detailed
form of Fresnel fringes must, however, be obtained from the analysis of Chapter 3
using the Fresnel propagator. A plane wave incident on an edge can be represented
by the radiation emitted by a point source in the plane of an illuminating aperture.
As shown in Fig. 10.7, a translation of this point source from A to B has the effect
of shifting the fringe system. Independent point sources separated by the diameter of
the aperture will establish fringe systems which are slightly out of register. The res-
ultant sum of intensities produces a set of fringes whose contrast is thereby degraded.
Sources separated by d introduce a fringe shift �zθ where �z is the focus defect. An
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Fig. 10.6 The very large number of Fresnel fringes which can be observed using a field-emission source
at 100 kV. More than 160 fringes can be counted at the edge of this molybdenum oxide crystal. The high
source brightness allows a very small illuminating aperture to be used (see also Section 4.5 for a discussion
of the effect of source size on coherence).
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Fig. 10.7 Fresnel fringes formed by two distant separated point sources. The intensity is not zero at the
specimen edge. The fringes formed by source B alone (shown dotted) would be displaced with respect
to those formed by source A alone (continuous line). The fringes become finer with increasing distance
from the edge, which is taken to be opaque. The more realistic case for electron microscopy of an edge
with complex transmission function is treated in Chapter 3. A line of independent point sources along AB
sets up many fringe systems slightly out of register and therefore blurred beyond a certain distance from
the edge.
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approximate expression for the positions of the fringe maxima with a single source
point is

xn = √
2�zλ(n − k)1/2 (10.7)

where k is a constant (k < 1) such that 2πk specifies the phase shift introduced on
scattering at the specimen edge. The ‘period’ of the nth fringe is (xn − xn−1). For
two sources with separation d, fringes will be more or less washed out beyond the
nth fringe where

(xn − xn−1)/2 = �zθ (10.8)

Equations (10.7) and (10.8) can be solved for n. Equation (10.7) then gives the
distance x0 over which fringes will be clearly seen. This is

x0 = A0λ/θc

where A0 is a constant of the order of unity involving k. An accurate value of this
constant can only be obtained from the full treatment for a continuous extended
source given in Chapter 3, which unfortunately does not give a simple result. Note
that through the constant k the fringe visibility depends on the scattering properties
of the specimen. A comparison of this result with eqn (10.6) suggests that within
the limits of this simple model, the transverse coherence width Xc is proportional
to the distance over which Fresnel fringes are observed, measured normal to the
specimen edge. A comprehensive analysis of Fresnel diffraction appears in the article
by Komrska (1973).

As shown in many texts the angle θc falls sharply as the illumination is defocused.
The secret of recording many clear Fresnel fringes is to use a well-defocused second
condenser, the smallest spot (maximum demagnification) on the first condenser, low
magnification (about 15 000), and long exposure. So long as the final illuminating
aperture remains incoherently filled (see Chapter 4 for methods of determining this),
the use of a smaller, brighter source does not increase the coherence in the specimen
plane, but simply produces a more intense image. The coherence depends only on the
illumination angle θc.

Three other techniques have been used to give an indication of coherence length.
The electron biprism gives a direct measurement of γ (x1,2) from the contrast of the
central fringe. This instrument developed by Mollenstadt and co-workers, is dis-
cussed in Gabor (1956), Hibi and Takahashi (1969), and Komrska (1971) and Merli
et al. (1974). Another technique uses the translation of lattice fringes with defocus to
estimate Xc (Harada et al. 1974). Interference fringes have also been observed within
the region of overlap of two diffraction spots (discs) using crossed crystals to obtain
sufficiently close orders (Dowell and Goodman 1973). These fringes arise from inter-
ference between waves emitted from separated points within the illuminating aperture
and thus indicate a degree of coherence across the illuminating aperture (see Sec-
tions 4.5 and 7.6). The determination of coherence width from optical diffractogram
measurements is discussed in Section 10.10.
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10.9 Electron wavelength and camera length

A method has been given which enables the electron wavelength and microscope
camera length to be obtained from two measurements of Kikuchi line spacings on the
diffraction pattern of a specimen of known structure. The camera length L is related
to the measured distance D between two identified reflections or Kikuchi lines by

Dd = Lλ (10.9)

where d is the crystal lattice spacing giving rise to the observed Bragg reflection.
Physically, the camera length corresponds to that distance between the specimen and
a film plane (without lenses) which would be needed to produce a diffraction pattern
of the same size as that observed in the microscope, where lenses are used to magnify
the diffraction pattern formed in the objective-lens image focal plane.

Normally eqn (10.9) is used to find d from a measurement of D with λ and L

known. However, if a diffraction pattern could be recorded in the correct orientation,
containing two identified zone-axes A and B measured at distance R apart, the camera
length L could be found from L = R/θ where θ is the angle between A and B
(assumed small). This angle is known if the crystal structure is known. Zone axes are
revealed by a characteristic pattern of Kikuchi lines. Thus, in principle L can be found
without knowing the electron wavelength. This value of L enables the wavelength λ

to be found subsequently from eqn (10.9).
In practice it is not necessary to record two zone-axes on one micrograph, since

the problem can be recast in the form of known angles and two measured distances
between Kikuchi lines by selecting a favourable orientation. Simple expressions for λ

and L in terms of these measurements are given together with a worked example in the
paper by Uyeda et al. (1965). This is probably the simplest wavelength determination
method available for electron microscopy. The error �λ/λ is typically only about
5 per cent of the error in the ratio of Kikuchi line separations. The overall accuracy
may be considerably less that 0.5 per cent. Somewhat simpler variations of this method
are described by Høier (1969) and Fitzgerald and Johnson (1984), together with a
worked example. The method allows the ratio d/λ to be determined to about 0.1 per
cent. Higher accuracy in wavelength measurement can be obtained by fitting HOLZ
lines in CBED patterns to dynamical simulations (Spence and Zuo 1992).

10.10 Resolution

There is no simple way to define, let alone measure, the resolution of an electron
microscope under the most general conditions. The essential difficulty arises from
the fact that, under coherent conditions, the ability of a microscope to distinguish
or resolve neighbouring object points depends on the scattering properties of those
object points. Thus, resolution depends on the choice of specimen (in particular, on
the magnitude of any phase-shift introduced on scattering) and it is strictly necessary,
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even for weakly scattering objects, to specify the nature of the specimen when spe-
cifying resolution. The ability to resolve the individual atoms of a particular molecule
is thus no guarantee that those of a different atomic species will be resolved, even
given similar inter-atomic spacings and instrumental conditions. Since the resolu-
tion of a microscope should be a property of the instrument alone (not the sample),
a simple definition of resolution cannot be given. Under the normal conditions of
strong multiple scattering in electron microscopy, even greater difficulties arise, as
briefly discussed below.

The Rayleigh criterion cannot be applied in high-resolution electron microscopy,
since it was devised for incoherent imaging conditions, where it is possible to define
point-resolution in a way which is independent of the object. The situation in high-
resolution electron microscopy is more akin to coherent optical imaging, in which
it is customary to give the transfer function of a lens rather than to specify a single
number for its resolution. Only by assuming a phase shift on scattering of exactly
−π/2 from an idealized weakly scattering point object it is possible to plot out an
idealized impulse response for the microscope, using the Fourier transform of the
transfer function, as has been done in Fig. 3.6. This ‘impulse response’ is the image
of an object chosen to be sufficiently small to make the image independent of small
changes in the size of the object. Since the ‘impulse response’ of a modern medium
voltage (300–400 kV) electron microscope is about 0.17 nm, a point test object much
smaller than this, that is of subatomic dimensions, would be required in practice to
observe the impulse response directly. Thus direct observation of the impulse response
is clearly impractical, quite apart from the problems of finding a suitable invisible
substrate (for the STEM mode discussed in Chapter 8, the impulse response is the
probe intensity in the incoherent imaging approximation, and this may be imaged
directly on modern TEM/STEM instruments). Several proposals for characterizing
the resolution performance of electron microscopes have, however, been put forward,
both for strongly and weakly scattering specimens, and these are briefly discussed
below.

For the strongly scattering majority of electron microscope specimens it is gener-
ally useful to think in terms of the specimen lower ‘exit’-face wavefunction as the
‘object’, and to consider the resolution-limiting effects of the electron lenses which
image this wavefunction. Both theory and experiment support the idea (essentially the
column approximation of diffraction contrast theory) that this exit-face wavefunction
is locally determined by the specimen potential within a narrow cylinder less than half
a nanometre in diameter for thin specimens. However, there is no guarantee that the
dynamical exit-face wavefunction will contain simple peaked functions in one-to-one
correspondence with object point scatterers. Unfortunately, this exit-face wavefunc-
tion is not observable, so that a comparison of this function with the final image is not
possible. All that is known a priori about the dynamical exit-face wavefunction is that
it is locally determined and preserves the point-group and any translational symmetry
of the specimen potential projected in the beam direction, under most common oper-
ating conditions (the image may not preserve symmetry, if astigmatism is present and
resolution limited). However, reliable methods do exist for computing the exit-face
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wavefunction (see Section 5.5) for specimens of known structure. The most general
methods, therefore, for specifying the resolution of an electron microscope would be
based on a comparison of computed and experimental images of a specimen of known
structure, thickness, and orientation. This comparison is based on a ‘goodness-of-fit’
index or R factor similar to that used in X-ray diffraction and allows the extraction of
structural detail out to (or beyond) the information-resolution limit of the microscope,
as described in Chapter 7. The limits to the accuracy with which atomic positions in
crystals of known structure can then be determined by this method are set ultimately
by noise (see Section 5.13). The variation of this R factor between the computed and
experimental images of a known structure with small changes in the atom positions
of the computed images would then give an impression of instrumental resolution. If
the specimen were crystalline, the choice of a large unit-cell ensures that the transfer
function is sampled at a large number of points.

The situation for weakly scattering objects is generally simpler and the definition
and measurement of resolution under these conditions has received a great deal of
attention in the literature. Before discussing these methods, it is worthwhile con-
sidering how the microscopist can be assured that his micrographs were recorded
from a specimen region satisfying the weak-phase object approximation. At least
four tests are possible. (1) In an instrument fitted with convergent-beam or STEM
facilities, the specimen thickness can be measured from the microdiffraction pattern
(see section 13.4). (2) If wedge-shaped specimens are used, the kinematic scattering
region can be selected at will (see Fig. 12.4(a)). (3) For crystals, one can be reasonably
sure that weak-scattering conditions obtain if the measured Bragg electron diffraction
intensities accurately predict the corresponding optical diffractogram intensities (see
eqn (3.36)). The damping envelope constants must also be known (see Section 4.2).
(4) For a crystal whose projection is known a priori to be non-centrosymmetric, the
observation of a centrosymmetric microdiffraction pattern is an assurance of single
scattering.

The damping envelope constants θc and � exercise the dominant influence on the
form of the microscope impulse response under weak-scattering conditions. Thus,
rather than citing a single number for the point- or information-resolution limit of an
instrument, microscopists will be chiefly concerned with determining the constants
Cs, �f, θc and � for each image recorded. All of these depend, through the specimen
position (‘height’), on the objective lens current (see Section 2.7, and Appendix 3). As
briefly mentioned in Section 1.2, an early task of the microscopist is to determine the
specimen position which gives the most favourable combination of these constants.
The measurement of Cs, �f , and Ca has already been discussed, and an ingenious
method of measuring � and θc using two micrographs recorded under identical con-
ditions has been described by Frank (1976) (see also Saxton 1977). This relies on
the fact that the Young’s fringes seen in the optical diffraction pattern from a similar
pair of superimposed, slightly displaced micrographs extend only to the band-limit of
information common to both micrographs. The fringe contrast thus falls to zero at the
onset of electron noise, which is in principle the only differing contribution to the two
micrographs. By plotting this band-limit of common information against defocus, it
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is possible to determine both � and θc. Since � = CcQ (eqn 4.9), where Q involves
the quadrative addition of instabilities due to high-voltage and lens-current fluctu-
ations, together with the effect of the thermal spread of electron energies, any one of
these quantities can also be determined if all the others are known. As discussed in
Appendix 3, the band-limit due to partial spatial coherence moves to higher spatial
frequencies with increasing defocus. A detailed example of the measurement of these
constants is given in O’Keefe et al. (2001).

The problem of measuring the point-resolution of an instrument without using
a priori information about either the object or the instrument has also been dis-
cussed by Frank (1974). His suggestion is that the half-width of the cross-correlation
function formed between two successive recordings of the same amorphous carbon
film be used to define the point-resolution of an electron microscope. The method
is limited to weak-phase objects or incoherent imaging, and requires image digitiza-
tion. Nevertheless, this appears to be the best practical proposal for a standardized
point-resolution measurement yet put forward, since all instrumental aberrations and
instabilities are included, while the effects of electron noise are minimized through
cross-correlation. An asymmetrical correlation function indicates astigmatism (Frank
1975). The formation of a cross-correlation function is greatly facilitated is STEM.

The method commonly used by manufacturers of seeking the smallest point-
separation in the image of a thin carbon film is unsatisfactory, owing to the effects
of electron and Fresnel ‘noise’. At high resolution the correlation found between
point-separations measured on successive plates is found to be poor (Dowell et al.
1966). For point-separations greater than 0.5 nm, atomic clusters formed by evapora-
tion of PtIr alloy are useful. These specimens are available commercially. A light
evaporation of gold on carbon is also easy to prepare (see Section 1.3) and forms sim-
ilar small atomic groups. Both these specimens are useful for practising alignment and
astigmatism correction and to enable the user to become familiar with through-focus
contrast effects on small particles, as discussed in Chapter 6. The most convincing
point-resolution test is a recording of a molecule containing heavy atoms in a known
arrangement.

Lattice images are also widely used as a resolution test (Heidenreich et al. 1968).
This subject is fully discussed in Chapters 5 and 12. It is also possible to estimate
instrumental resolution by comparing computer-simulated images with experimental
many-beam structure images recorded without an objective aperture. If the specimen
structure and thickness are known, together with the microscope focus setting, illu-
mination aperture, and spherical aberration constant, images can be computed for a
range of values of � until a good match is obtained. This will then determine the
resolution limit due to incoherent instabilities.

A cautionary comment must be added on the use of axial three-beam fringes and
tilted-illumination two-beam fringes for resolution measurement. Expressions for the
image intensity for both these cases have been given in Section 5.1. While in principle
they may offer a method for measuring the information-resolution limit, there are a
number of practical difficulties. First, for axial three-beam fringes and the focus
settings of eqn (5.10), half-period fringes may appear and give a spurious impression
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of very high-resolution detail, beyond the true band-limit set by incoherent instabilities
(see eqn (4.11)). Second, it is important to stress that the analysis of Section 4.2
(eqn (4.8) in particular) assumes either kinematic scattering or, more generally, a
strong zero-order diffracted beam (which may also occur as a result of Pendellösung
oscillations). Unless a wedge-shaped crystal is used, or microdiffraction facilities are
available, it is not usually possible to be certain that this condition has been satisfied
for a particular image region and therefore that the ‘damping envelope’ concept can
be applied. These very fine fringes are unlikely to be recorded at the Scherzer focus
since the microscopist can maximize their contrast by selecting a focus setting which
makes the slope of χ(u) zero in the neighbourhood of the important inner Bragg
reflections (see Section 5.8 for more details). By equating this condition (eqn 5.66)
to the focus condition for obtaining half-period fringes (eqn 5.10), we find

a4
0 = Csλ

3/n = u−4
0

as the crystal periodicity which will produce axial half-period fringes of highest
contrast in an instrument operating at particular values of Cs and λ. Fringes obtained
under these conditions allow the largest illumination aperture to be used (producing
the most intense final image) for the smallest contrast and ‘resolution’ penalty, and it
is likely that many of the sub-Ångstrom fringe spacings reported in the literature were
recorded under these conditions. Such fringes do not measure instrumental resolution
in any useful sense, and must be thought of as, at best, a technique for measuring the
instability limit due to mechanical vibration. Note that for half-period, axial three-
beam fringes of this type, the damping envelope concept described in Section 4.2
does not apply (despite the presence of a strong central beam), since it neglects terms
such as �h�−h of eqn (5.9).

The comments in Section 5.13 on the accuracy with which atomic positions can
be determined for crystals of known structure should be read in conjunction with
this section. Section 10.5 on Autotuning is also relevant. Finally, if an image peak
is known a priori to represent a single atomic column, D. Van Dyck has pointed out
that we can consider that every beam-electron measures its position. The error in our
measurement of the mean position (the peak width) is therefore divided by the square
root of the number of beam electrons contributing to the peak (Standard error).
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11
INSTABILITIES AND THE MICROSCOPE

ENVIRONMENT

The most successful HREM and STEM instruments of the future will be those which
are most favourably sited. (One famous recent installation has been made near Dresden
in a remote country field. Aberration correction is pointless if instabilities limit per-
formance). These instabilities produce an incoherent broadening of the microscope
point-spread function which limits the resolution and can be likened to the imposition
of a limiting objective aperture. The measurement of the instabilities described in this
chapter is an essential first step in setting up a high-resolution laboratory, and much
time will be saved if measurement facilities are installed at the outset so that when
a more subtle fault develops it becomes a simple matter to rule out the easily meas-
ured instabilities such as magnetic-field interference and vibration. The diffractogram
should also not be overlooked as a diagnostic aid for incoherent instabilities.

The book by Alderson (1975) contains useful information which complements the
material of this section. The paper by Muller and Grazul (2001) describes in detail
the environmental requirements for sub-Angstrom resolution in STEM, Turner et al.
(1997) discuss the HREM case.

11.1 Magnetic fields

An impression of the effect of a.c. magnetic fields on high-resolution images can be
obtained by applying a known field while observing lattice fringes. A small trans-
former is a suitable source of 50 Hz magnetic field which will produce image blurring
when held near the specimen chamber. A field applied near the illuminating sys-
tem results in a loss of intensity owing to the resulting oscillatory beam deflection.
Some manufacturers quote a sensitivity for their machines to a.c. fields; a figure of
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0.2 nm μT−1 (horizontal component at 50 Hz, 1 μT = 0.01 G) is typical for the effect
of a field on image resolution. A typical figure for the sensitivity of the illumination
spot to deflection is 1 μm μT−1. Note that the effect of the stray field is greatest where
the electron velocity is lowest—for example, near the filament. The microscope lenses
themselves have a shielding effect and leakage is most likely at the junction between
lens casings. A small homogeneous constant magnetic field such as that due to the
Earth is of no consequence in CTEM; however, an inhomogeneous constant field may
introduce astigmatism. Permanent magnets should consequently be kept well clear
of the microscope.

For high-resolution TEM an a.c. field of less than 0.03 μT r.m.s. (horizontal com-
ponent at 50 Hz) is required in the vicinity of the specimen chamber. This may be
difficult to achieve since the fields commonly found in laboratories are often greater
than 0.5 μT owing to mains electrical wiring. Stray fields can be reduced by ensuring
that only one ground return for the microscope exists, by moving ancillary equip-
ment, and, if necessary, by re-routing the mains wiring. The essential requirement
for avoiding stray fields is that the same current enters on the active line as returns
via neutral, and that no other path to ground exists. A common mistake is to place,
say, an electrically operated vacuum gauge on the microscope cabinet connected to
a different socket and ground return from that used by the microscope, which may
be a special high-quality ground. If the microscope and vacuum gauge chassis are in
contact a ground-loop can result producing a large a.c. field. Similarly, all additional
safety equipment, such as electrical water-valve solenoids (which will be grounded
through the water plumbing) should be checked for ground-loops by disconnecting
the ground and observing the effect on the focused illumination spot and measured
field strength near the specimen chamber. A complete analysis of ground-loops and
shielding techniques can be found in the text by Morrison (1967).

The simplest test for 50 Hz a.c. fields is as follows. Form a small focused illumina-
tion spot at a magnification of about 15 000 times. Run the spot quickly across the
viewing phosphor using the beam-translate controls. A zig-zag after-image on the
phosphor indicates stray field interference with the illumination system.

While the microscope itself used as an oscilloscope in this way is probably the most
sensitive indicator of stray fields, a field can easily be measured with a coil connected
to an oscilloscope. This will also indicate the important frequency components of the
interference. For maximum sensitivity, use the largest possible number of turns of
very fine wire—the windings of a mains transformer have been used. It is important
to use a long, twin-core shielded lead between the coil and oscilloscope to ensure
that the field set up by the transformer in the oscilloscope is not included in the
measurements. The oscilloscope should be used in the balanced input mode with
the braid and the user grounded. For calibration, the Biot–Savart law gives the field
directed concentrically around a long straight wire as

B = 20
I

D
μT
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where I is the current in amps passing through a wire distance D cm from the coil.
This gives the sensitivity of the coil in, say, millivolts per microtesla. This equation
also shows that a current of 0.5 A running 1 m from the microscope produces a field
of 0.1 μT, sufficient to prevent atomic resolution.

Severe a.c. field interference causes image distortion (see Fig. 11.1) and a unidirec-
tional blur on Fresnel fringes. If the interfering field is homogeneous and cannot be
eliminated at its source, a magnetic field compensator is available which applies a
field of opposite phase to the interfering field. A sensor coil is used to measure the
ambient field which is amplified and applied, with reverse phase, near the specimen
chamber.

A description of this equipment can be found in Gemperle et al. (1974). These
devices are most effective against interference by low frequency homogeneous fields
and can only compensate fields at one point.

The microscope itself should not contribute more than about 0.05 μT to the ambient
a.c. field. While ground loops are a common cause of a.c. field interference, other
causes include electric motors (in air conditioners, elevators, rotary pumps, etc.)
and transformers. These can often be rotated to a position of minimum interference.
The undesirability of siting a microscope near an elevator motor, autotransformer,

(a) (b)

1 nm

Fig. 11.1 The effect of 50 Hz magnetic field interference on the high-resolution image of an amorphous
carbon film. The field strength is 3 μT (30 mG) measured outside the specimen chamber in the direction
of maximum strength and would be considerably reduced at the specimen itself. This field is due to the
current in the goniometer motor drives, which must be switched off before recording images on some
electron microscope models. The field is off in (a) and on in (b).
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fluorescent light, electric welding unit, railway track, tram track, or NMR unit is
discussed further in Alderson (1975), which should be read with care before choosing
a site for a new instrument.

Since the amplitude of image blurring due to a.c. magnetic field interference
depends on the accelerating voltage, it is easily distinguished from mechanical
vibration using image recordings taken at, say, 50 and 100 kV. If the source of the
interference is mechanical, it will not change with voltage.

For STEM the environmental field requirements are more stringent. Slowly varying
fields produce image distortions, since much longer exposure times are involved in
ADF-STEM or ELS than HREM. Stray fields of less than 0.01 μT may be needed both
at the gun and the sample, and the viewing chamber glass in TEM/STEM instruments
is a common source of leakage. For aberration-corrected instruments, the require-
ments will be still more stringent, since correction to the 0.1 nm level is pointless
with 0.3 nm probe-broadening due to stray fields. It is always preferable to track
down the sources of strong fields (e.g. a chilled water pump motor) and eliminate
them, rather than to use active field compensators or attenuation by magnetic shield-
ing. Strong fields at ELS spectrometers are particularly important—many researchers
have reported the need to use wooden chairs, since the movement of steel furniture
visibly affects the spectrum. The modern trend towards liquid-crystal computer mon-
itors eliminates the large source of strong fields from vacuum tube video monitors.
Von Harrach (1995), James and Browning (1999) and Muller and Grazul (2001) give
more details of environmental requirements and problems for STEM.

11.2 High-voltage instability

The incoherent image broadening due to high-voltage fluctuations, resulting in vari-
ations in all the lens focal lengths, must be reduced to well below the spatial coherence
width for it to be possible to obtain a high-resolution phase-contrast image. A
high-voltage (h.v.) stability of a few parts in 106 is just sufficient, as discussed in
Section 2.6.2. The important sources of instability are:

1. noise in the reference voltage;
2. the stability of the high-voltage divider resistor chain;
3. dirt in the oil tank;
4. the cleanliness of the gun chamber;
5. the vacuum in the gun chamber.

Microdischarge reaches a local maximum at about 10−4 torr, so that a stable gun
must be operated well above or below this pressure. A vacuum of 5 × 10−7 torr
(measured in the rear pumping column) is generally adequate for high-resolution work
using a conventional filament, and this will only be obtained with the microscope in
excellent condition.

High-voltage instability is revealed by flickering on the beam current metre and
by fluctuations in the size of the caustic image (see Section 12.2). If either of these
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are encountered, dirt in the gun chamber is the most likely cause. Small amounts can
be removed by conditioning, that is, by operating the gun for a short period above
the voltage at which it is intended to be used. Major cleaning must be done using
fine metal polish and alcohol and finished with a burst of dry nitrogen gas under
pressure. The Wehnelt hole must be examined after cleaning every time it is replaced,
particularly if a small hole is used with a pointed filament. The Wehnelt should be
cleaned by ultrasonic agitation. Examine the main gun chamber O-ring for hair-line
cracks.

For instruments which do not use field-emission sources, much of the labour of
high-resolution electron microscopy consists of time spent cleaning the microscope
gun chamber. Instability which persists after cleaning the gun is likely to be due to
poor vacuum. This may be caused by leaks elsewhere in the column, or by outgassing
from photographic plates. Outgassing may also be due to an old specimen fragment
lodged in the column, or to the microscope interior itself. Instabilities orginating
in the microscope high-voltage supply can be isolated by disconnecting the high-
voltage cable from the oil tank, but this job is best left to an engineer. A method
for distinguishing high-voltage instabilities from those due to objective-lens current
fluctuations is described in Agar et al. (1974). This is based on the fact that, while a
change in objective-lens current tends to rotate the image, the image blurring due to
high-voltage fluctuations acts in a radial direction.

The most sensitive permanent monitor of high-voltage stability is an oscilloscope.
On most instruments a connection is available (usually on the oil tank) from which a
signal of a few hundred volts may be taken off through shielded leads to an oscillo-
scope. This voltage is proportional to the microscope accelerating voltage. The type
of connector and the magnitude of the voltage vary from microscope to microscope
and the installation of a permanent oscilloscope high-voltage stability monitor is best
discussed with the microscope company engineers. In choosing an oscilloscope for
this application, the input sensitivity is important; for most electron microscopes, an
oscilloscope with an input sensitivity of better than 10 mV per division will be needed.
A ground-loop is possible if the metal case of the oscilloscope is in contact with the
metal of the microscope cabinet and if the wall socket used for the oscilloscope has
a separate ground return from that used by the microscope.

11.3 Vibration

Mechanical vibration is rarely a problem on well-sited modern instruments, and spe-
cimen movement during an exposure is more likely to be due to thermal expansion of
the stage or specimen (see Section 11.4). Alderson (1975) contains a full discussion
of vibration effects and the choice of site for a microscope. Seismologists are the
experts in this field and usually have access to vibration-measuring equipment.

The microscope and its supports can be thought of as a mechanical oscillator.
The resonant frequency of a mechanical oscillator is inversely proportional to the
square root of the product of mass and compliance. The aim in minimizing electron
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microscope vibration is to keep the resonant frequency of the microscope system
lower than any likely exciting vibrations, say less than 20 Hz. This is done by making
the mass and compliance large and the microscope structure very rigid to minimize the
number of coupled oscillators. The mass can be made large by siting the microscope
in a basement on a massive concrete block set into the ground and insulated from the
building structure. Alternatively, the compliance may be increased by supporting the
microscope on air bags or car tyres.

Roughing pumps, water pumps for building heating and cooling, and turbulent
cooling water flow in the microscope are common causes of vibration. A change in
the water pressure can be used to diagnose this latter cause. The diffractogram of
a thin carbon film (see Section 10.7) will indicate the presence of drift or vibration
with the characteristic rings washed out in the direction of any vibration or drift.
This is a useful test if a double image exposure does not indicate the presence of
systematic drift, yet vibration is suspected. It enables the effects of astigmatism and
vibration to be distinguished, as shown in Fig. 10.5. A useful diagnostic technique is
to attempt to exaggerate the fault observed by applying known fields or vibrations. If
the microscope is fitted with an electron detector, a sensitive indication of vibration
effects or magnetic fields is obtained by feeding the output from this detector into
an oscilloscope or spectrum analyser. A small focused spot is formed across a fixed
specimen edge, so that movement of the spot appears as a fluctuation in the output of
the detector.

A laser light-beam reflected onto a wall from the surface of a dish of mercury can
be used to give a rough measure of vibration amplitudes, however only differences
between the displacement of the dish and that of the laser can be detected in this way.
The construction of an inexpensive vibration monitor using a crystal microphone is
described by Nicholson (1973). These vibration measurements frequently reveal an
appreciable difference between vibration levels during the day and those recorded at
night. The human hand is also a sensitive vibration detector.

For STEM, tip vibration plays a similar role to sample vibration in HREM,
suggesting that tip mounts should be designed in a similar way to HREM stages.

11.4 Specimen movement

Specimen movement during an exposure (drift) is the most common cause of spoiled
image recordings at high resolution. The amount of drift is referred to the object
plane and so depends only on the exposure time and not on the magnification. In
high-resolution STEM the effect of drift is to cause a distortion of the image. The
common causes of drift are discussed below.

1. The specimen grid must make good electrical contact with the specimen holder
and any retaining screw or clip must be tight. The specimen itself must either be
a conductor or coated with conducting material such as carbon to prevent it from
accumulating charge under the action of the beam. A charging specimen is easily
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identified by the erratic movement or jumping which occurs. A specimen picked up
from paper with the finest tweezers will occasionally include a paper fibre collected
by the tweezers. If dust particles are frequently found with the specimen a fan should
be installed in the microscope room, drawing air in through a dust filter and thereby
maintaining the microscope room at a slight positive pressure. Dust is carried out
under doors and cracks by the continuous draught established by the fan. Smoking
should not be allowed in the microscope room. Always examine a specimen first at
low magnification to check for the presence of charging dust particles or fibres which
may be out of the field of view at high magnification. These may introduce a variable
amount of antigmatism.

2. It is important on top-entry tilting holders that there is good electrical contact
between the portion of holder which is free to tilt and that which is not. Since jewelled
bearings are often used, a metal spring must be used to provide electrical contact and
this must be effective. Do not lubricate any parts of the specimen holder.

3. There must be no contact between the specimen holder and the anti-
contamination cold-finger. A cold-finger whose height is adjustable is an advantage
for high-resolution work since one may want to use the shortest possible focal length,
thereby crowding the specimen, cold-finger, and objective aperture into a very small
gap a few millimetres wide. An electrical continuity test is sometimes useful. There
should be an open circuit between the frame of the microscope (connected to the
specimen) and the external extension of the cold-finger into the nitrogen reservoir.
The continuity should be checked through the full range of specimen tilt positions.

4. A clogged lens cooling-water filter is a common cause of drift. The restricted
water flow causes the lenses to overheat, which in addition to causing drift may
also cause the illumination spot to wander as the lens winding impedance varies
with temperature. The external lens casing should not feel hot—if it does, a blocked
water filter is a likely cause. Microscopes using internal recirculated water supplies
generally do not have this problem. The duty cycle of the thermoregulator should
be checked every week as this will indicate any reduction in cooling-water pressure.
A refrigeration unit is avoided in some microscope designs by running the entire
system somewhat above room temperature.

5. The translation mechanism must be operating properly. The O-rings surrounding
the push rods to the specimen stage must contain the correct amount of vacuum grease.
Too little or too much can cause drift. Any pull-off springs must supply the correct
tension over their full range. The mechanism can be tested by operating one translation
control (say the X direction) several turns clockwise, then the same number of turns
anticlockwise to bring the specimen to its original position. If the Y control has not
been touched, there should be no movement in the Y direction.

For bright-field images, where exposure times are short (a few seconds) specimen
drift is not generally a problem. For high-resolution dark-field images and STEM
exposures of up to 30 s are common and for these, if the conditions mentioned above
are met, the main requirement is complete thermal equilibrium of the specimen and
stage. This may take several hours to achieve if the lenses have been turned off.
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The longer the microscope can be left running, with all liquid-nitrogen reservoirs full,
the better for long-exposure high-resolution work. Before taking such a recording,
examine the specimen at the highest magnification available for signs of drift using
an area of specimen adjacent to that of interest. Use the translate controls to ‘home in’
on the area of interest, using small oscillatory X and Y excursions of the translation
controls to relieve any strain in the mechanism. A modest jolt to the microscope bench
will be seen (at high magnification) to further settle the specimen.

For even longer exposures, a procedure which has been found successful is to allow
the microscope to stabilize, set up all the experimental conditions exactly, then turn
down the filament and leave the microscope for several hours with an adequate supply
of liquid nitrogen. On returning, it is only necessary to turn up the filament, focus,
and record the image without touching the specimen-translate controls. The thermal
expansion of the specimen holder rod used on side-entry stages generally makes these
less suitable for long-exposure dark-field high-resolution work.

Specimen movement is easily measured by taking a double exposure with several
seconds separation. It also appears in an optical diffractogram of a thin carbon film
as a fading of the ring pattern in one direction, thereby distinguishing the effect of
drift from that of astigmatism (see Section 10.7). A slow unidirectional drift in focus
is usually due to thermal gradients in the microscope column. These can be reduced
by eliminating draughts, by ensuring that the lens-cooling-water temperature is close
to room temperature and is supplied at the correct flow rate, and by leaving the
magnification setting near maximum when the microscope is not in use.

11.5 Contamination and the vacuum system

Contamination rates well below 0.1 nm min−1 are frequently quoted for modern
instruments. While this figure depends on a variety of experimental conditions
such as the specimen thickness and temperature, no serious difficulty should be
experienced with contamination on an instrument fitted with a modern design of
anti-contamination cold-finger held at liquid-nitrogen temperature. Contamination
refers to the build-up of decomposed carbon on a specimen. There is some evid-
ence (Knox 1974) that this forms in a crown or annular mound with a diameter
equal to that of the illumination spot if this is small, leaving the central illumin-
ated region relatively free from contaminant. In a clean instrument, the main sources
of contaminant are the specimen, the diffusion pump vapour, photographic plates,
and O-ring grease. Mass spectrometer analysis shows a marked increase in vacuum
components likely to cause contamination when a specimen holder which has been
touched is introduced into the microscope owing to finger grease. For this reason,
the specimen holder should always be handled with disposable or nylon gloves.
It can be cleaned using pure alcohol and ultrasonic agitation. Many O-rings will
not require any grease, on those that do (movable and frequently changed parts)
use a minimum and carefully check for dust particles trapped in the grease on
the O-ring. With side-entry holders the vacuum-seal O-ring should be examined
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for dust under an optical microscope every time before the holder is inserted into
the microscope. Once an O-ring has established a good seal it should not be
interfered with.

The contamination rate can be reduced by heating the specimen with a large illu-
mination spot, or by improving the overall microscope vacuum. The rate is often
measured by noting the reduction in the size of small holes in a carbon film after sev-
eral minutes. A great deal of research has been done on contamination, particularly in
scanning microscopy, and the article by Hart et al. (1970) contains references to much
earlier work. To obtain a sufficiently low contamination rate for convergent-beam or
STEM, it is usually necessary to pre-heat or ‘bake-out’ the specimen under vacuum.

Specimen etching is occasionally experienced if oxygen or water vapour are present
near the specimen. If this is observed, the most likely cause is a vacuum leak in the
specimen exchange mechanism. Some specimens themselves release oxygen under
the action of the beam. Water vapour is well condensed by the anti-contamination
device if this is at liquid-nitrogen temperature (where the water vapour pressure is
10−9 torr); however, it quickly vaporizes as the temperature is allowed to rise (water
vapour pressure is 1 torr at −20 ◦C).

A microscope vacuum of at least 10−7 torr is required for high-resolution work,
measured in the pumping column at the rear of the microscope. The vacuum affects
both the contamination rate and the high-voltage stability. The vacuum will be inferior
in the region of the photographic plates or film (unless they have been very well
dried) and may be greatly improved within the specimen anti-contaminator owing
to the cryopump action of these cold surfaces. A good vacuum in the gun chamber
is important, though this is difficult to measure directly. Apart from leaks, the main
limitation on the microscope vacuum is adsorbed molecules on the internal walls
of the instrument. On an instrument with a low leak rate, an order of magnitude
improvement in vacuum can generally be achieved by heating the rear pumping line
with electrically heated tapes for several hours. The pumping lines must not be heated
beyond a temperature which will damage any components. The lens casings cannot
be baked-out in this way, but by adjusting the thermoregulator they can safely be run
rather warm for some hours with a similar effect.

A useful simple test for the microscope leak rate can be made by timing the decline
in measured vacuum to a particular point after the instrument has been closed down—
that is after closing the main diffusion pump valve to the microscope and all roughing
lines. A weekly check will indicate the development of any new leaks which are
easily traced using a mass spectrometer or partial pressure gauge as a leak detector
(see Section 10.9). If one is not fitted, a large leak can sometimes be found by squirting
small quantities of acetone around the suspected area and watching for a change in
the vacuum gauge. A log book kept of the number of hours between filament changes
will also serve to indicate the quality of the vacuum. An hour meter, actuated by the
high-voltage relay, is probably the cheapest vacuum gauge, if used to supply readings
for a filament-life log book.

A major advance in contamination reduction has been the development of plasma-
cleaning devices, which are now essential for both HREM and STEM. This
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dramatically effective procedure must be applied to the entire vacuum portion of
the holder, and to the sample holder tip with sample. The process is so effective in
removing carbonaceous material that, in STEM, the problem of contamination has
now been replaced by that of hole-drilling, which is prevented by contamination. With
the very high currents possible using aberration correctors this problem will become
more severe. A probe left focussed on the same place for a long time eventually
either drills or contaminates. A plasma cleaner could be incorporated into the sample
exchange mechanism.

11.6 Pressure, temperature and drafts

Air-flow from air-conditioning systems can be a serious problem, and an air velocity
of less than 5 m min−1 is desirable. Strips of tissue paper have been used to detect
airflow-a 0.3 m × 0.6 cm strip should deflect by less than 2.5 cm. These tell-tales can
be placed around the room to monitor drafts. Drafts can be reduced while maintain-
ing constant temperature by siting the heat-producing electronics in another room,
by using radiative room cooling, or by surrounding the microscope with thick cur-
tains. Temperature variations in the microscope room should be less than 0.25 ◦C.
Many machines are wrapped in neoprene or ‘bubble-wrap’ to improve isolation.
Recently, ambient pressure changes due to doors opening, or even weather events,
have been found to produce large distortions in ADF-STEM images at 0.2 nm res-
olution. Pressure charges produce time-dependant forces across the vacuum/sample
holder interface. A sensitivity of 0.1 nm Pa−1 has been measured. A passing storm
can create pressure fluctuations of 30 Pa. In one case an hermetically sealed airlock
cover was found to eliminate this problem. Similarly, ordinary speech will be seen to
blurr HREM images during an exposure.
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12
EXPERIMENTAL METHODS

This chapter describes some of the practical problems found in recording high-
resolution images and the procedures necessary to overcome them. The best way
to learn to record and interpret good high resolution images is to record a lot of
micrographs of thin carbon films onto a CCD camera, and analyse these using dif-
fractograms as described in Section 10.7. Then proceed with the project described in
Appendix 5 (‘The challenge of HREM’).

To obtain point detail consistently on a scale less than 0.5 nm requires that the
microscope be kept in excellent condition, and a specialized instrument reserved
for high-resolution work is essential. Objective-lens pole-piece and specimen stage
changes must be kept to a minimum. The user must have confidence that there are
no old specimen particles lodged in the objective pole-piece, left there by previous
users. Apertures must be clean. The microscope site must be satisfactory with respect
to vibration, magnetic fields, humidity, temperature, and dust (see Chapter 11 and
Alderson 1975). The spherical aberration constant, measured under the proposed
experimental conditions, must be less than 2 mm (see Section 10.2). However, it is
the electronic stability and reliability of the microscope which are most important for
high-resolution work. High-voltage stability must be close to �V/V = 3 × 10−6

per minute or better, with a similar figure for the objective-lens current stability.
A full discussion of the influence of electronic instability can be found in Section 4.2,
Appendix 3, and Section 2.8.1. A contamination rate better than 0.1 nm min−1 is
required, and this is of particular importance for the high-resolution dark-field mode
and for STEM (see Section 11.5). Thermal drift of the specimen must be minimized
(see Section 11.4). A vacuum of at least 6 × 10−7 torr, measured at the top of the rear
pumping line, is required to minimize contamination and high-voltage instability. The
interior of the microscope, in particular the gun chamber, must be scrupulously clean.
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The lattice fringes seen in small particles of partially graphitized carbon form a useful
test specimen (see Section 10.3) and these specimens are available commercially. In
many laboratories such a specimen is kept permanently on hand, and, before starting
work each day on any high-resolution project, clear images of the 0.34 nm lattice
fringes in this specimen are obtained using a non-tilting specimen holder to confirm
that the microscope is operating correctly. This practice is strongly recommended.

A large investment of time and energy is required to keep an instrument in top con-
dition. A high-resolution image project should not be tackled unless the facilities are
available for this level of maintenance and, more important, unless the microscopist
is fairly certain that the results obtained from the project will justify the time and
effort involved.

Some machines now separate the electron microsope room from an electronic
control room. Then, if the microscope technician is responsible for loading samples
and users are only permitted to turn knobs in the control room, mechanical damage
to the microscope can be minimized during the training.

12.1 Astigmatism correction

The setting of the objective stigmator is critical at high resolution. Some machines
provide direction (azimuth) and strength controls for the stigmator, while others allow
the strength to be varied in orthogonal directions (see Section 2.8.3). The astigmat-
ism should be approximately corrected by adjusting the controls in a systematic way
for a symmetrical Fresnel fringe (Agar et al. 1974). The more accurate correction
needed at high resolution can then be obtained by observing the structure of a thin
amorphous carbon film at high magnification. An electron-optical magnification of at
least 400 000 is needed to correct astigmatism accurately in 0.3 nm image detail using
×10 viewing binoculars. Adjust both the focus controls and the stigmator for min-
imum contrast, which should occur at a sharply defined setting. Under-focusing the
objective by a few tens of nanometres should then show the grainy carbon film struc-
ture with no preferential direction evident in the pattern. This is a difficult procedure
requiring considerable practice. A diffractogram is the quickest check on astigmatism
correction (see Section 10.7) and is essential when learning to correct astigmatism
for ultimate performance. The following points are important.

1. The eyes must be fully dark-adapted. Allow at least 20 min in the darkened
microscope room.

2. Since both are well within the lens field, the objective aperture and lower cold-
finger position and state of cleanliness critically affect the required stigmator setting.
Never touch either after astigmatism correction and before recording an image. The
important thing about astigmatism is that it does not vary in time and that it is correct-
able. For this reason a small amount of contamination on the objective aperture may
not matter so long as the field set up by it can be corrected magnetically using the
stigmator. A dirty aperture which sets up a fluctuating field is more serious. Test for
the amount of contamination on the objective aperture by moving the aperture while
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viewing the image. There should not be a violent degradation in astigmatism with
small aperture movements. The hole in the cold-finger can be inspected for cleanli-
ness by finding a magnification range at which it limits the field of view. Test this for
cleanliness by moving the cold-finger slightly, if it is adjustable, while observing the
low-magnification image.

3. The astigmatism correction needed varies with the type of holder used, the
high voltage, and the objective lens strength. It appears to depend weakly on the
magnification, possibly owing to flux linkage between the lenses.

4. A common cause of serious astigmatism is a piece of dislodged or evaporated
specimen in the objective pole-piece. Examine the pole-piece regularly with a dentist’s
mirror, but do not remove it unnecessarily. The soft iron of the pole-piece is easily
scratched.

5. Unless the cold-finger reservoir is continuously topped-up with liquid nitrogen
by a pump, the image will rapidly become astigmatic when the reservoir boils empty,
which causes the cold-finger to move as it warms up. There is thus no point in
correcting the astigmatism until the cold-finger reaches liquid-nitrogen temperature.
This may take at least half an hour after first filling the reservoir.

6. Astigmatism can result if an intense Bragg reflection is caught on the objective
aperture edge. This situation should be avoided.

The sensitivity of high-resolution images to astigmatism can be judged by observing
the lattice fringes of graphitized carbon, in bright field with untilted illumination,
while adjusting the stigmator. To obtain fringes running in all directions (Fig. 10.3),
both stigmators must be set very accurately. One-dimensional fringes are more easily
obtained, but these do not ensure accurate astigmatism correction.

Finally, it is worth repeating that the astigmatism must be corrected each time the
objective aperture is moved.

12.2 Taking the picture

It has been said that the skill of high-resolution electron microscopy lies in knowing
when to take the picture. High-voltage instability and specimen drift are to some
extent unpredictable effects, so that a certain amount of luck is required for the
longer-exposure recordings. The following procedure should minimize the number
of spoiled image recordings—these precautions become increasingly important as
the exposure time is increased. A list of conditions which should be checked before
recording high-resolution images is given in Section 12.10.

1. At least 20 min in a darkened room is required for full dark-adaptation of the
eyes. There are two processes involved—the rapid dilation of the pupil and a slower
but important chemical process.

2. The binocular focusing is important. Focus each eyepiece separately (closing one
eye), then adjust one eyepiece with both eyes open until a sharp image of the phosphor
grain is seen. On medium- and high-voltage machines a video system will normally
be fitted (see Section 9.10). This should be carefully adjusted for high contrast.
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3. The anti-contamination liquid-nitrogen dewar should have been full for at
least half an hour. Astigmatism is introduced if the temperature of the lower anti-
contamination cold-finger is allowed to alter (owing to thermal expansion), so that
this must be allowed adequate time to reach thermal equilibrium. The specimen must
have been out of contact with the lower cold-finger for several minute—this is import-
ant if a tilting stage is used with an extended top-entry holder operating at short focal
length to reduce spherical aberration (see Sections 1.2 and 2.7). At the extremes of
tilt, the specimen may touch the lower cold-finger, resulting in specimen cooling
and drift. The thermal stability and cleanliness (to prevent charging effects) of the
three components immersed in the objective-lens field (cold-finger, objective aper-
ture, and specimen) are of the utmost importance (see Fig. 2.9). By switching to a
low-magnification range where the field of view is limited by the lower cold-finger,
the cleanliness of this aperture can be examined.

4. Check for high-voltage stability both by observing the electron beam current
meter, which should not flicker, and by examining the caustic image. On sitting down
at any microscope on which it is intended to do high-resolution work, the first thing
to do is to watch the beam current meter pointer closely for at least 20 s. Intermittent
flickering of the meter during this time indicates that the instrument is unsuitable for
high-resolution work. Using this test, most instruments in routine use will be found
to be unsuitable without some maintenance (usually gun cleaning and leak repair).
An occasional flicker (say, once every 20 s) may not be important, since these voltage
spikes are often very short compared to both the exposure time and the persistence
time of the human eye. The oscilloscope monitor (Section 11.2) can be used to
distinguish fast spikes from an increase in the continuous background fluctuation
which determines the resolution limiting factor � in eqn (4.9). The caustic image is
obtained by switching to diffraction mode without a specimen or imaging apertures in
place. Adjust the diffraction focus for a disc with a bright outer ring. This ring contracts
or expands with changing high voltage and can be examined through the binocular.

5. The microscope must be correctly aligned as described in the instruction manual.
Check the illuminating system, in particular gun tilt, condenser astigmatism, and con-
denser aperture centring. The gun tilt will need frequent readjustment during the first
hour of operation. This is important, since for the highest resolution one is generally
using a small illuminating aperture and so requires the maximum possible source
brightness. Check the gun-bias and make a note of the illumination conditions. These
will be needed if a comparison with computed images is intended. If the microscope
is not fitted with a high-voltage ‘wobbler’, obtain current centre for the objective
lens by adjusting the beam tilt until no image translation is observed at the centre of
the screen with change in focus (see Agar et al. (1974)). A difference at the object
plane of about 0.5 μm is common between current centre (the point about which
the image rotates with change in lens current) and voltage centre (the point about
which the image expands with change in high voltage). If a high-voltage wobbler
is fitted, alignment by voltage centre is preferred since, for an axial image point,
this confers some immunity to high-voltage instability due to micro-discharge dur-
ing long exposures. This, and the energy spread of electrons leaving the filament
are the main sources of chromatic aberration for thin high-resolution specimens
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where energy losses in the specimen itself are generally negligible. The use of
voltage-centre alignment minimizes chromatic aberration for axial image points due
to these effects at the expense of image distortion due to fluctuation in lens current
(which would be minimized by using current-centre alignment). Once aligned, mod-
ern instruments should not require any other major adjustments other than those
mentioned above. An excellent review of the practical procedures used to cor-
rect misalignment and geometric and chromatic field aberrations can be found in
Riecke (1975). A useful simple new method for coma-free alignment is described in
Kimoto et al. (2002).

6. The diffraction conditions required must be set up and recorded. For many-
beam lattice images of small crystals, a motor goniometer is required since top-entry
stages, particularly if operated at short focal length, are not eucentric. It is neces-
sary to operate both the translate and tilt controls simultaneously to keep the same
region of specimen in view while tilting. This is difficult for the smallest crystals,
which are usually also the thinnest, and therefore most suitable. The method for doing
this is described in Section 12.4. A zone-axis orientation is usually required and it is
important to ensure that the region of crystal which is ‘in focus’ is that from which the
recorded diffraction pattern is obtained, since this may form the basis of subsequent
image simulation. After obtaining the required tilt condition, make a final check for
the clearance between the specimen and the lower cold-finger using an electrical con-
tinuity device if this is fitted. The current centre obtained in (5) above ensures that the
illumination direction coincides with the optic axis, so that the central diffraction spot
can now be used to locate the objective aperture (if one is to be used) with respect to
the optic axis (see Fig. 5.1).

7. Check the specimen for drift by observing the image at the highest magnification
available for several seconds. Use a region of specimen near that to be subsequently
recorded.

8. Once a suitable region of specimen is found, ‘home in’ with the translation
controls (see Section 11.4) and give a modest jolt to the microscope bench to settle
the specimen. The final adjustments will be to the focus and stigmator controls (see
Section 12.5 and 12.1). To record the image, on film operate the plate advance mechan-
ism then wait for a few seconds to allow mechanical vibrations to decay. The final focus
adjustment, in which, a setting is established a certain number of ‘clicks’ from the
minimum contrast condition, must be made after operating the plate advance mech-
anism. Vibration from this mechanism may alter the specimen height by up to 10 nm.
Open the shutter carefully without otherwise touching the microscope. Do not talk or
move any metal objects during the exposure. Magnetic field variations of up to 0.4 μT
have been recorded as a result of the movement of a wristwatch. The effects of loud
speech on lattice images can easily be observed through the binocular. Finally, close
the shutter. The disturbance caused by the plate (or film) transport mechanism and the
time taken for this to decay can be seen by watching the lattice image after closing the
shutter. Fringes generally remain obscured for several seconds after the transport has
stopped, giving an indication of the sensitivity of the lattice fringe image to mechanical
vibration. CCD cameras eliminate the problem of plate advance mechanism vibration.
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12.3 Finding and recording lattice fringe—an example

The main requirement for finding lattice fringe images is patience. The following is
a step-by-step outline of the procedure used to find and record the image shown in
Fig. 12.4, which is used as an example of the many-beam lattice imaging method.
Alternatively, crystals of MgO may be examined, as suggested in Appendix 5. They
have the advantages of requiring very simple specimen preparation, while provid-
ing an internal thickness calibration. However small crystals are more difficult to
align than a large single crystal. The silicon image was obtained from a chemically-
thinned wedge-shaped specimen of silicon with the incident electron beam travelling
in the [110] crystal direction. Approximately seven Bragg reflections contribute to
the image; however, this number is not sufficient to allow the individual silicon atom
columns to be resolved. It is assumed that a suitably thin silicon wedge has been pre-
pared using either commercially available jet thinning equipment or laboratory-built
thinning equipment (see Section 5.14). We further assume that the optimum specimen
position in the objective-lens pole-piece has been found (see Sections 1.2 and 2.7).
This is specified by the objective-lens current needed to focus a specimen at the cor-
rect height, and shown on digital read-out current meter (see Section 10.4). When
using a top-entry stage with specimens surrounded by a thick rim such as chemically
thinned silicon and germanium, spacers or washers placed above the specimen may
be needed to obtain the correct focusing current. Consistent results between speci-
mens can be obtained by thinning these specimens most of the way from one side, as
shown in Fig. 12.1, so that only one special washer need then be kept for these speci-
mens. No such problems arise with side-entry stages in which the specimen height is
continuously adjustable. However side-entry specimen holders should be examined
under a low-power optical microscope to ensure that the specimen-retaining clip is
accurately positioned and making firm contact with the specimen. For both types
of holders the specimen must make firm mechanical and electrical contact with the
specimen holder.

1. The preliminary checks given in Section 12.10 should be conducted. These
procedures must be followed every day before commencing work if long fruitless

(a) (b)

L

Fig. 12.1 For chemically thinned specimens, the specimen height in the microscope (and therefore the lens
current needed to focus) may depend on which way up the specimen is when inserted into the instrument.
Inverting the specimen may alter the height by an amount L which is comparable with the lens focal length.
In order to work at small focal length, and so reduce aberrations, one usually wants the specimen very
close to the lower anti-contamination cold-finger. This can be achieved by thinning most of the way from
one side, and consistently inserting specimens in the holder in orientation (a) above.
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searches for lattice fringes are to be avoided. For example, high-voltage instability
which may be difficult to detect on the beam current meter may develop owing to
a small leak in the gun chamber. Such a fault may prevent fine lattice fringes from
being seen, and would only be revealed by a vacuum measurement (see Sections 11.2
and 11.5) or oscilloscope instability test (see Section 11.2).

2. Load the standard specimen (partially graphitized carbon—see Section 10.3)
into the microscope and confirm that the 0.34 nm fringes can be seen. A non-tilting
specimen holder can be used.

3. Fit the silicon specimen to the tilting specimen holder, being careful not to
damage it. Wear gloves at all times when handling the specimen holder. Check the
position of the retaining clip on side-entry holders. On top-entry holders in which the
specimen is retained by a threaded ring the tightening torque applied to this ring is
critical, and brittle specimens are easily broken. Treat silicon and germanium as you
would a small piece of glass.

4. Load the silicon specimen into the microscope and bring the specimen to a hori-
zontal position. Find the hole in the centre of the specimen. The illumination system
must now be adjusted. The filament image should be examined at a magnification of
about 50 000 and made symmetrical by adjusting the gun tilt controls. Figure 12.2(a)
shows an image of a correctly adjusted pointed filament. In Fig. 12.2(b) we see the
effect of introducing a stray a.c. magnetic field (see Section 11.1), in this case caused
by switching on the goniometer motor power supplies. The central tip of the filament
image provides a sensitive test of the presence of stray fields. (The images shown
in later figures were obtained with the goniometer power supply switched off.) Set-
ting up the pointed filament involves obtaining the correct combination of filament

(a) (b)

Fig. 12.2 (a) Focused pointed-filament image used to form the images shown in Fig. 12.4. The form of
this image depends on the gun-bias setting, the Wehnelt hole size, and the filament tip height. At the high
magnification used to form lattice images, only a small portion of the bright ring falls over the plate camera.
A great deal of time can be wasted looking for lattice fringes on an instrument in which the filament has
not been set up correctly. (b) The effect of 50 Hz stray a.c. magnetic field on the filament image shown
in (a). Note the alteration in the appearance of the filament tip. This field was due to a piece of ancillary
equipment and washed out all fine lattice fringes. A simple test for these fields, in which the spot is run
across the screen using the beam deflection coils, is described in Section 11.1.
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height, gun-bias, and filament-heating current (see Section 9.5). The gun-bias setting
corresponding to the lowest beam current should be used, to minimize chromatic
aberration (see Fig. 4.3 and Sections 5.16 and 2.8.2). A clean condenser aperture
must be selected (examine it by switching the microscope to lowest magnification)
and centred. The images shown in Fig. 12.4 were obtained with a condenser aperture
which subtends a semi-angle of 1.16 mrad at the specimen, as can be measured from a
recording of the diffraction pattern taken with focused illumination (see Fig. 12.7). A
diameter of 200 μm is a typical condenser aperture size. Factors affecting the choice
of condenser aperture size are discussed in Sections 5.16, 4.2, and 4.6. The con-
denser aperture is centred by swinging the condenser focus controls through the exact
focus position and adjusting the aperture position to obtain an image which expands
and contracts symmetrically. The condenser astigmatism controls must also be set
correctly, and the maximum strength for the first condenser lens must be selected
(sometimes called ‘spot size’) which will subsequently provide sufficient intensity
for focusing at high magnification (see Sections 4.5, 11.5, and 9.1 for other factors
affecting the choice of first condenser lens excitation). If the filament is being used
for the first time it will be necessary to check the gun-tilt controls every 15 min or so
for the first hour of operation.

5. The specimen must now be accurately tilted into the zone-axis or symmetrical
orientation. Figure 12.4 was obtained from a silicon crystal in the [110] zone-axis
orientation, that is, with the electron beam travelling in the [110] crystal direction.
A method for doing this is described in Section 12.4 for top-entry stages. Once the
specimen is approximately oriented, check that it is not touching the lower or upper
cold-fingers (see Section 12.9) and that the image is in focus at the correct (optimum)
objective-lens current (see Section 1.2). When using tilted specimens there may be an
appreciable difference between the lens current needed to bring regions at the edge
of the specimen into focus and that needed to focus the central specimen region.

6. A preliminary astigmatism, drift, and focusing check should now be made.
Examine a thin edge of the specimen at a magnification of about 600 000 and find the
minimum-contrast setting of the stigmator and focus controls without an objective
aperture, as described in Section 12.5. Once this has been found, weaken the objective
lens by about 90 nm (see Section 10.1) to increase the image contrast and watch the
image carefully for about 5 s. It should appear completely motionless, and the back-
ground graininess of the image should appear sharp. With experience the appearance
of this background becomes a useful rapid guide to image quality. If the image is not
sharp or is unstable check the following.

1. The anti-contaminator has reached thermal equilibrium.
2. The high voltage is stable (see Section 11.2).
3. The specimen is not touching either cold-finger.
4. A dirty objective aperture has not accidentally been left inserted into the

microscope.
5. Intermittent erratic jumping of the image commonly indicates that it is char-

ging up. Silicon and germanium are sufficently good conductors to prevent this
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from happening so long as an earth return-path exists for charge to leak away.
If charge appears to be accumulating on the specimen, check that it is making
good electrical contact with the specimen-holder ring, and that an electrical
connection exists between this ring and the specimen-holder body across the jew-
elled bearings. Special spring-metal washers are provided for this purpose (see
Section 11.4). It is a waste of time to look for lattice fringes unless a stable, sharp
image of the background in a very thin specimen region can be obtained. Check
that sufficient intensity is available to enable the stigmator and focus controls to
be set correctly (see Sections 12.1 and 12.5) at a magnification of about 600 000.

7. A search must now be made for a suitable area of specimen. A uniform wedge
is required if the change in image appearance with thickness is of interest. Only
by comparing computer-simulated images for various thicknesses with experimental
images of a wedge-shaped specimen can one be certain of the image interpretation and
so select regions of crystal thickness in which a simple image interpretation is pos-
sible. A convenient range of thickness would include two bright-field Pendellösung
thickness periods. The separation of these ‘equal thickness’ fringes in the image
depends both on the wedge angle and the electron-optical magnification. To obtain
these fringes, insert the smallest objective aperture to include only the central dif-
fracted beam (without altering the specimen orientation) and examine the image at
a magnification of about 500 000. Search the wedge edge for a region in which
approximately two dark Pendellösung bands fill the portion of the viewing screen
lying above the photographic plates. The bands should be even and the wedge edge
smooth. Figure 12.3 shows such a region from which the lattice image in Fig. 12.4 was
obtained. Note that the image extends slightly beyond the edge of the wedge. It is a
mistake initially to seek a wedge with the smallest possible angle (Pendellösung bands
widely separated), since specimens are invariably bent in these regions. Remove the
objective aperture after ‘homing in’ with the translation controls (see Section 11.4)
once a suitable region of specimen has been found. It may be necessary to examine
several specimens in order to find a suitable specimen area.

8. If a stable image can now be seen showing sharp background contrast, make small
adjustments to the stigmator orientation and fine-focus controls until a lattice image
is seen. For Fig. 12.4, final adjustments to these controls were made at an electron-
optical magnification of 640 000. Owing to the use of a non-standard objective-lens
current, a correction factor has been applied to the indicated magnification to obtain
this true magnifications—see Section 10.3. The viewing binoculars usually provide
an additional magnification of 10. Even without an objective aperture in place, a faint
image of the Pendellösung fringes should be seen, whose contrast depends on the
focus setting. Look for fringes initially along the thinner side of the first Pendellösung
fringe. Check that both binocular eyepieces are focused (see Section 12.5) and that
the image remains stable at least for the length of time needed for an exposure. If the
image is too dim, switch to lower magnification and check the form of the filament
image. Check also that the most intense part of the filament image is being used. Look
‘into’ the image rather than ‘at’ it. Knowing what you expect to see will soon lead
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10 nm

Fig. 12.3 Pendellösung fringes (the dark vertical bands) formed in silicon in the symmetrical [110] zone-
axis orientation (see Fig. 5.1(c)), formed using a small central objective aperture which excludes all but the
central beam. Calculations give the increment in thickness between these bands as 23 nm; they therefore
provide a useful method of calibrating the thickness scale for lattice images obtained from wedges. They
also indicate the shape of the wedge—the thickness is constant along lines of constant intensity. Kinematic
or single-scattering images are obtained on the thinner side of the first dark fringe, so that images of defects
in this thickness range may be interpreted by the theory of Sections 6.1 and 6.2 (see also Section 5.3.1). The
lattice image is obtained by removing the objective aperture, given the necessary instrumental stability,
and is shown in Fig. 12.4(a) for this same specimen region.

to more rapid identification of a fringe image—this can only come with experience.
Remember that the photographic emulsion or CCD will record far more detail than
you can see. If a stable image is seen showing lattice fringes of moderate contrast over
part of the viewing area you can be confident that the developed plates or film will
show fringes of strong contrast in most areas. The stigmator adjustment is critical. On
some machines where orientation and amplitude controls are used, the more sensitive
orientation control is a wire-wound potentiometer. On these microscopes, as you look
into the binocular at the electron image you should feel the wiper of the orientation
stigmator potentiometer move from one turn on the resistance winding to the next.
This is sufficient to convert a lattice image in silicon observed under these conditions
from one showing sharp ‘tunnels’ (i.e. showing several sets of crossed lattice fringes)
to a pattern of fringes all of which run in the same direction. Making the smallest
adjustments to the stigmator control, select the image showing sharp tunnels. Adjust
the fine-focus control for maximum contrast.

9. Operate the plate-advance mechanism (or prepare for CCD exposure) make final
focus adjustments, pause, and record the image (see Section 12.2). Write down the
objective-lens current and focus defect (see Section 10.5). A very dim desk lamp is
useful here.

For silicon images observed under the above conditions you will find several focus
settings which give sharp, apparently identical images of high contrast. These are
Fourier images (see Section 5.14). Between these focus settings the lattice image
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seems to disappear. The focus increment between ‘identical’ images (images which
appear identical through the viewing binocular) for silicon viewed in the [110] direc-
tion at 100 kV is �f0 = 86 nm. Apart from an unimportant half-unit-cell translation,
these Fourier images are in fact identical in regions of perfect crystal. Only one
image, however, will include a high-contrast image of any crystal defects which may
be present–this is the ‘optimum focus’ image (see Section 6.2).

As discussed in Section 5.19, for small-unit-cell crystals, the perfect crystal lattice
image may show very low contrast (or be absent entirely) at this optimum focus if,
as is common with older microscopes and metallurgical or semiconductor problems,
the fundamental lattice spacing exceeds the point-resolution of the instrument (see
Sections 4.2 and 5.19). The highest-contrast lattice images may then occur at very
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Fig. 12.4a Lattice image of silicon in the [110] symmetrical orientation taken at 100 kV accelerating
voltage. The edge of the specimen can be seen at top left, showing Fresnel edge fringes. Enlargements of
regions x2, x5, and x6 are shown at insets (b), (c), and (d). The image at x5 gives a false impression of
the structure (shown in Fig. 12.4(b)), while that at x2 and x6 faithfully represents this projection of the
diamond structure to the resolution available. The intensity of the four (111) type Bragg beams contributing
to the image, together with that of the central beam, is shown below in approximate registry with the image
using a horizontal thickness scale in Ångstroms. The interpretation of these images is discussed further
in Section 5.14 (see also Spence et al. (1977) and R. Glaisher and A. Spargo. Ultramicroscopy 18, 323
(1985)).
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0.54 nm

Fig. 12.4b Portion of the image shown in Fig. 12.4(a) around x5 at higher magnification. The change in
image appearance with thickness (which increases from left to right across the picture) is clearly shown.
Near the centre of the image at a thickness of approximately 11.5 nm the central beam has been extinguished
(see lower half of Fig. 12.4(a)) by Pendellösung, resulting in a ‘half-period’ image (see Section 5.1) which
does not reveal the crystal structure. This image results solely from interference between the four (111)
type reflections. The amplitudes and phases of all Bragg beams contributing to the image (see Fig. 12.8)
must be studied in order to understand the thickness dependence of these images (see Section 5.14).

large under-focus (∼300 nm). The focus increment between Fourier images can be
used to calibrate the focal steps of the microscope focus controls (see Section 10.1).

If a through-focus series is required it is important to bear three points in mind.

1. Vibration from the plate or film-advance mechanism following each image
recording may alter the height, and thus the focus condition, of the specimen by
an amount greater than the electronic focal increment selected. This problem is
avoided with a CCD camera.

2. Magnetic hysteresis may make it necessary to avoid reversing the direction of
the lens current change.

3. It may not be possible to return reproducibly to an earlier focus setting if this
would involve changing ranges between the various focus knobs. This problem
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is eliminated on the newer digital machines, which use a system of ‘continuous’
focus adjustment.

The exact crystal orientation used for the final image recording is difficult to
determine since the smallest selected area aperture will include a much larger region
of specimen than that included in the lattice image. Problems associated with the
design and construction of specimen-tilting devices which will allow specimens to be
tilted accurately and reproducibly to the same orientation provide an important limit to
the development of the methods of high-resolution electron microscopy. The need for
accurate orientation setting increases with specimen thickness. Having set the crystal
as close as possible to the zone-axis orientation using the method of Section 12.4,
the best practical guide to orientation is probably the symmetry of the image. Since
this depends on the stigmator setting, the possibility of inadvertently compensat-
ing for a small orientation error arises by using the stigmator. This ‘cylindrical lens’
(see Section 2.8.3) can be used to ‘defocus’ a strong pair of fringes and so reduce their
contrast relative to a weaker pair of fringes running at right angles to these. The result
may be a symmetrical two-dimensional image obtained from a specimen in which
the five Bragg reflections contributing to the image do not have equal strength owing
to an orientation error. A check on this unwanted effect is given by the diffractogram
method described in Section 10.7.

For the finer fringes it may be necessary to search specimens for several days before
a good image is obtained. It is difficult, however, to concentrate for more than about
two hours at a time. The anti-contaminator must not be allowed to warm up during
the day (see Section 11.5), as this would result in a lengthy delay while the specimen
area regains thermal equilibrium.

12.4 Adjusting the crystal orientation using
non-eucentric specimen holders

Much of the time spent on high-resolution work is devoted to specimen-orientation
corrections. The tedious alignment process (which becomes increasingly critical in
thicker crystals) is greatly facilitated on an instrument fitted with microdiffraction
facilities. Here the symmetry properties of the convergent-beam pattern from bent
specimens can be used to seek crystalline regions in the exact, required orientation.

A systematic method of bringing a small crystal into the zone-axis or symmetrical
‘cross grating’ orientation is outlined below for instruments not fitted with microdif-
fraction facilities. It applies to top-entry stages fitted with a motor-driven goniometer,
fitted with a pair of foot pedals to control the orientation and tilt of the specimen. The
general principle of the method can also be applied to double-tilt side-entry stages
if it is found that the specimen position which produces the highest-quality images
(see Section 1.2) does not coincide with the specimen height needed for eucentric
operation.
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Fig. 12.5 The Laue circle. The central beam is labelled (000). This circle, the bright ring of spots in (a), is
formed by reflections which occur near the intersection of the Ewald sphere (shown in (b)) with the plane
hk, whose normal is 0l. To bring the crystal into the orientation needed for lattice imaging, the sphere
(which always passes through the origin) must be rolled across to the right so that 0l forms a diameter and
the Laue circle opq contracts to a point. The pattern in (a) was obtained from a silicon crystal near [110]
orientation at 100 kV accelerating voltage.

1. Insert the specimen into the microscope and set the goniometer to the neutral
position so that the specimen disc is approximately horizontal. We shall assume that
the required zone-axis orientation is close to this position. Switch the microscope to
diffraction mode and observe the focused diffraction pattern of a small crystal or thin
region of specimen edge.

2. A pattern similar to that shown in Fig. 12.5 should be seen. The arc of intense
spots is a portion of the Laue circle which traces the intersection of the Ewald sphere
(see Fig. 12.5) with the reciprocal lattice plane of interest. We wish to alter the spe-
cimen orientation with respect to the incident beam so that this Laue circle contracts
to a point at the centre of the pattern. The incident beam is taken to be aligned with
the microscope optic axis using the method of voltage or current centring described
in Section 12.2. The difficulty is that any changes in specimen orientation will be
accommpanied by a translation of the specimen, thus bringing a new region of
specimen into the area which contributes to the diffraction pattern. This difficulty
is overcome by obtaining an image of the specimen within each diffraction spot.
Do this by adjusting the ‘diffraction focus’ control (taking the diffraction pattern out
of focus) until a poor-quality image of the specimen region of interest is seen within
the central diffraction disc, as shown in Fig. 12.6. The ‘rule of thumb’ mentioned in
(3) below requires that the diffraction lens is always weakened, not strengthened, to
take it out of focus.

3. Now adjust the specimen orientation using the foot controls while simultan-
eously adjusting the main specimen-translate controls in such a way that the same
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Fig. 12.6 Defocused central diffraction spot from a small triangular-shaped silicon crystal. The out-of-
focus diffraction pattern makes each diffraction spot into a low-magnification image of the specimen,
allowing simultaneous observation of the crystal orientation and position. As the specimen is tilted,
corrections can be made to the translation controls to keep the same region of specimen in view.

Fig. 12.7 Diffraction pattern from the silicon crystal used to form the images in Fig. 12.4. The condenser
lens is fully focused, showing the illumination conditions used when recording the images. The ‘beam
divergence’ can therefore be obtained from a picture such as this (see Section 4.6). The crystal is close to
the symmetrical [110] zone-axis orientation (see also Section 5.6).

region of specimen remains imaged within the central diffraction disc. This proced-
ure requires practice and patience. A useful rule of thumb is that in order to contract
the Laue circle, the tilt and orientation controls should be altered in such a way that
the specimen tends to move toward the centre of the Laue circle. Figure 12.5 shows
the diffraction pattern as it appears for a specimen close to the zone-axis orientation,
while Fig. 12.7 shows the focused zone-axis diffraction pattern. There is little point
in setting the orientation more accurately than this for ductile materials, since local
bending takes the specimen through a range of orientations.
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12.5 Focusing techniques and auto-tuning

Focusing techniques differ according to the diffraction conditions used and the image
interpretation required. The wobbler focusing aid cannot be used at high resolution,
nor does the disappearance of the Fresnel fringe coincide, either with Gaussian focus
or a useful reference focus. The complexity of these fringes for a phase edge, for
which fringes occur both inside and outside the specimen edge, makes them of little
use at high resolution (see Section 3.1).

1. For dark-field images recorded using tilted illumination and a central aperture
(Fig. 6.12), the optimum focus is best judged by eye, taking into account all the
precautions mentioned in Section 12.2. Only by close optical examination of a lot
of micrographs will the microscopist learn to recognize a ‘sharp’ image, free from
drift, astigmatism, and inaccurate focusing. At a magnification of 300 000 using a
×10 binocular, the eye can resolve detail at the resolution limit of the microscope,
but the contrast is generally too low to make this useful and one usually focuses on
detail about the size of a small molecule. This will ensure that the transfer function
is ‘flat’ to a resolution of, say, 0.6 nm (Section 6.5). Obtaining point-detail in dark-
field images on a conventional instrument showing structure much finer than this
is largely a matter of trial and error. Nevertheless, the change in image appearance
with defocus in dark field is far less dramatic than in bright field, so that focusing
may not be as critical. In practice it does appear possible to correct for the image
distortion introduced by the asymmetric diffraction conditions by using the stigmator
(see Fig. 6.8 and Section 6.5). A dark-field reference focus condition, based on the
appearance of small holes, has been mentioned in Section 6.5. Bear in mind that detail
smaller than the viewing phosphor grain size cannot be seen. A typical phosphor
grain size is 15 μm; however, this varies from instrument to instrument and is easily
measured using an optical microscope and a graticule. The resolution of a phosphor
screen is limited by multiple scattering of the incident beam, and lies in the range
40–100 μm.

2. For bright-field phase-contrast images of small molecules on ultra-thin carbon
supports (see Section 6.2) where the objective aperture has either been removed or
chosen according to eqn (6.16b), the optimum focus can be obtained by counting focus
steps in the under-focus direction (weaker lens) from a particular reference focus until
the value of eqn (6.16a) is obtained. Several images are recorded in the neighbourhood
of this focus. The focal steps are calibrated as described in Section 10.1. The reference
focus is the focus condition at which a thin amorphous carbon film shows a pronounced
contrast minimum when viewed at high magnification. This arises in the following
way. If the transfer function (eqn 6.11) is drawn out for increasing under-focus (�f

negative), it will be seen that the band of well-transmitted spatial frequencies (Fourier
components which suffer a 90◦ phase shift) becomes narrower and moves beyond the
range of object detail which can easily be seen through the binocular. Thus the contrast
decreases initially with increasing under-focus from the Gaussian focus (�f = 0).
At the minimum-contrast focus a second loop develops in the intermediate spatial
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frequency range (d = 0.6 nm for Cs = 1.4 mm), which increases the image contrast
as it grows into the form of Fig. 6.1. The minimum contrast occurs at about 30 nm
under-focus for Cs = 1.4 mm and can be found for other values of Cs by drawing out
a series of transfer functions. Alternatively, it can be taken approximately equal to
the optimum dark-field focus given by eqn (6.26), since this makes χ(u) ≈ 0 to the
highest resolution possible. (Note that the PCD approximation would give minimum
contrast for �f = 0 from eqn (5.27).)

Subject to the limit set by radiation damage, several images are usually recorded
close to the required focus, which can be chosen to suit either the projected charge
density approximation or the projected potential image interpretation, depending on
the specimen thickness and the resolution required (see Sections 3.4 and 5.3).

All these focusing techniques may result in severe radiation damage. For many
biological specimens one is focusing on the ‘ashes’ of the destroyed specimen. The
possibility of focusing on a region of specimen adjacent to that subsequently used for
recording the image and the development of the spot-scan method have addressed this
problem and allowed major advances in biological electron crystallogrophy (Downing
and Glaeser 1986). The first frames of a video recording may reveal undamaged
material, which can be summed digitally.

3. The focusing technique used when recording many-beam lattice images of large
unit-cell crystals (structure images) has been outlined in Section 12.3. In practice the
microscopist will adjust the focus control to produce the image of highest contrast.
The selection of the Scherzer (optimum) focus can then be confirmed using a dif-
fractogram (Section 10.7). Image calculations have, in most cases, confirmed that,
in thin regions of large unit-cell crystals (those whose unit-cell dimensions exceed
the point-resolution of the microscope), these high-contrast images are those which
may be interpreted straightforwardly in terms of the specimen’s structure. For metals
and semiconductors, however, where the unit-cell dimensions are frequently smaller
than the microscope point-resolution (eqn 6.17), the lattice images of highest con-
trast will occur at the focus setting given by eqn (5.66) which is much larger than
the Scherzer optimum setting (eqn 6.16). Optimum-focus images for the analysis of
defects in these crystals can be obtained by counting calibrated focus steps from the
minimum-contrast condition and confirming the choice of focus using a diffracto-
gram. Regions of perfect crystal in these images, however, may show rather poor
(or non-existent) contrast; nevertheless, any defects present will be imaged faithfully
to the point-resolution limit of the instrument.

In a well-designed microscope, all images of interest should fall within the span
of a single focus-control knob. The focal increments should be comparable with the
focusing stability limit set by high-voltage instabilities and lens-current instabilities
(see Section 10.1). The stability limit usually suggests a smallest focus increment of
about 4 nm. To cover a reasonable range of images one therefore requires perhaps 40
steps on the finest control. The range of focus settings over which images of good
contrast can be seen depends on the size of the illuminating aperture used (and so,
indirectly, on the brightness of the electron source) as discussed in Section 5.2.
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(a) (b)

Fig. 12.8 Beam tilt alignment automated at 200 kV. (a). Tableaux of diffractograms used during auto-
alignment. The outer diffractograms were recorded after intentionally introducing beam tilts of 6 mrad into
the directions shown. An analyis of the patterns then gives the magnitude of the misalignment. The mistilt
of 4 mrad measured by this method from the tableax was then reduced to less than 0.1 mrad in Fig. 12.8(b).
(M. Pan, P. Mooney, H. de Ruijter, Gatan Corp., 2002, with permission).

In the late 1980s it became possible for the first time for automated computer align-
ment to improve on human alignment of HREM instruments. At high resolution,
the alignment must be based on automated measurement of beam direction (with
respect to optic axis), defocus, astigmatism and astigmatism direction. The devel-
opment of the CCD camera (Section 9.7), which provides on-line diffractograms,
has made this automation possible. The algorithm used for coma-free autoalign-
ment is described in detail in Krivanek and Fan (1992) and Krivanek and Mooney
(1993). Figure 12.8 shows the tableau of diffractograms automatically acquired by
the computer. In principal, by fitting eqns (3.23) and (3.36) to a diffractogram and
solving for the parameters �f, Cs and φ, suitable correction currents can be fed back
to the stigmator and objective lens to bring these quantities to their desired values
(Scherzer focus, negligible astigmatism). Beam alignment (which takes no account
of sample alignment) is more difficult, and requires the introduction of three tilts, as
shown in Figs 12.8(a) (before) and (b) (after). After removing the tilt-induced beam
defocus, the tilt is estimated from the apparent astigmatism. The final astigmatism
reduction is demonstrated in Figs 12.9(a) and (b). Defocus is then set to the value
requested by the operator, shown at Scherzer defocus in Figs 12.9(c). It is claimed
that auto tuning involves a smaller radiation dose than human alignment. Autoalign-
ment software can provide feedback signals for aberration correction devices, for
which human alignment had proven impossibly time-consuming. As discussed in
Section 7.4, the development of aberration correctors was thus made possible when
computer speeds brought the time for autoalignment below the stability time of the
microscope.
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(a) (b)

(c)

Fig. 12.9 Astigmatism alignment automated. In (a) is shown a 200 kV diffractogram before astigmatism
correction, and in (b) after automated correction. The astigmatism has been reduced to less than 1 nm,
better than possible by human alignment. In (c) is shown the effect of then requesting the Scherzer focus
setting. The first minimum of the diffractogram (point resolution) occurs at about 0.18 nm. (M. Pan, Gatan).

12.6 Substrate films

In this section some of the methods which have been used to obtain an ‘invis-
ible’ specimen support are briefly reviewed. In biology these attempts have been
superseded by the development of cryomicroscopy, which uses molecules embedded
in amorphous ice.

For high-resolution imaging, the thinnest possible substrate is required. Ideally the
substrate used to support a molecule of interest should be invisible. No truly satis-
factory substrate has yet been found and all substrates introduce unwanted contrast
effects of some kind. In dark-field experiments it is the elastic and inelastic scattering
from the substrate which limits the image contrast (see Section 6.6), since it provides
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image background. Substrate thickness fluctuations on an atomic scale, and Fresnel
‘noise’ are an even more important problem when using a thin amorphous substrate.
Fresnel diffraction effects can be minimized by reducing the coherence of the illu-
mination, which unfortunately also reduces any pure phase contrast from the atomic
structure of interest.

Amorphous carbon films a few nanometres thick can be prepared by indirect evap-
oration. Pure carbon is evaporated onto freshly cleaved mica or clean glass with
a glass slide interposed between the carbon source and the mica as described in
Section 1.3. Films can be floated off onto the surface of distilled water with care.
Since a film of the correct thickness will be invisible in light, a minute drop of ink
can be added to the mica after evaporation which will enable the film to be seen on
the water surface. The films are picked up onto holey carbon films drawn up from
below the surface of the water and allowed to dry. On examination in the microscope,
the holes in the carbon film should be covered with an ultra-thin layer of amorphous
carbon.

The thickness of substrate films is difficult to measure, but a vibrating-crystal
film-thickness monitor will give an estimate of the thickness of evaporated films. The
important sources of error with this method are differences in temperature between the
reference crystal and the evaporation crystal, and the assumed density of amorphous
carbon. A figure of 1850 kg m−3 is commonly used, though this is likely to be in error
for the thinnest films. By evaporating a large enough area to weigh directly, an estimate
of the thickness can also be obtained. A third method of thickness determination uses
electron energy-loss spectra (Egerton 1976).

Thin flakes of graphite and magnesium oxide have also been used to support small
molecules (Hashimoto et al. 1973; Moodie and Warble 1976). The thinnest flakes of
graphite are obtained by crushing the flakes under alcohol in a small mortar, followed
by ultrasonic agitation. The flakes are picked up onto a holey carbon film which should
provide many single thin flakes lying across holes in the carbon. In this technique the
objective aperture is placed centrally about the optic axis and the illumination is tilted
so that the aperture excludes all substrate Bragg reflections (Fig. 6.8). The object-
ive aperture used must be matched in size to the diffraction pattern for a particular
objective-lens focal length. There is usually enough variation in the sizes of commer-
cial apertures to allow this. Scattering occurs into the aperture from any non-periodic
scattering such as surface heavy atoms or contaminant.

Magnesium oxide crystals are easily prepared by passing a holey carbon film
through the smoke of a burning magnesium ribbon. It has been suggested that foreign
molecules attach less easily to clean surfaces (Uyeda 1974) and the author’s experi-
ence with graphite substrates has been that heavy atoms and molecules added to these
adhere in rows along surface atomic steps on the graphite. This behaviour is also seen
in Iijima’s work (Fig. 6.4). Groups of heavy-atom molecules can be seen directly
through the binocular in this way at high magnification and their presence can be
verified by examining graphite flakes untreated with the heavy-atom compound (see
Section 6.2). Rhenium trichloride, which is soluble in the alcohol used for crushing
the graphite flakes, is a useful heavy-atom test specimen. Reproducible results from
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studies of adatoms on surfaces requires the techniques of ultra-high vacuum electron
microscopy.

Other substrates which have been tried with varying degrees of success include
BeO (Mihama and Tanaka 1976), Al2O3 (Formanek et al. 1971), beryllium (Komoda
et al. 1965), boron (Dorignac et al. 1979), and the silicon Pendellösung minimum
(Spence 1975). Attempts have also been made to image unsupported molecules across
small holes in carbon films (see Frontispiece for DNA, also Tanaka et al. 1975). So
far the thinnest and most successful substrates used have been those prepared by in
situ electron beam thinning (see Section 6.2).

Techniques for manufacturing holey carbon films are described in Dowell (1970).
The difficulty with all holey carbon film preparation techniques is reproducibility.
The Dowell technique, while more elaborate, appears to give more consistent results.
A micro-syringe is useful to measure the quantity of paraffin used which, together with
the vigor with which the weighing bottle is shaken, determines the size of the holes.
Holes about 20 nm in diameter are often obtained, but the results tend to vary from
batch to batch. Holey carbon films are also available commercially. For biologists an
important development has been the production of holey films by lithography. These
‘quantifoil’ supports provide a periodic array of identical holes, facilitating automated
data collection (Ermantrout et al. 1998).

Lattice images can be obtained from crystals supported by either continuous or
holey carbon films, though the contrast is higher in the latter case if a crystal is found
extending into a hole. For holography, silcon nitride membranes are useful. These
may be as thin as 30 nm covering up to 500 μm square, and are made in sizes which
fit TEM holders by FASTEK (UK).

12.7 Photographic techniques and micrograph examination

Only their high cost now prevents CCD cameras from being used for the electronic
recording of all HREM images. Nevertheless film remains useful on occassion, as dis-
cussed in Section 9.9, especially for archival purposes. Clear accounts of the response
of photographic emulsions to electrons are given in Valentine (1966) and Agar et al.
(1974). Briefly, the optical density D of an electron micrograph is proportional to
electron exposure E up to an optical density of between 1 and 2. This contrasts with
the situation in light photography where the response is more closely logarithmic. For
electrons, then,

D = kE

where the optical density D is defied as

D = log10(I0/I)

with I0/I the ratio of incident to transmitted light intensity for the developed micro-
graph. Thus a micrograph of density 2 transmits 1 per cent of the light incident on it
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and so appears dense black in transmission. It is the reflected light which is important
when viewing prints. The electron speed k is listed in Agar et al. (1974) for most
modern emulsions. With E in electrons per square micrometre, the speed k has units
electron−1μm2. The reciprocal of the speed is the emulsion sensitivity and gives the
number of electrons per square micrometre necessary to expose an emulsion to unit
density. The sensitivity is typically about unity.

For high-resolution dark-field images recorded at high magnification using an LaB6
source, a fast film with k = 0.5 at 100 kV is required with high detective quantum
efficiency (DQE). DQE has been discussed in Section 9.7. The resolution r in line
pairs per millimetre is approximately r = 1

2d , where d is the width of the emulsion
point-spread function. This width is approximately equal to the electron penetration
depth in the emulsion, and is typically between 5 and 10 μm for 100 kV electrons. It
is thus commonly supposed to be independent of the film grain size (which increases
with film speed) for all but the fastest speeds, and sets a limit to the maximum useful
optical enlargement of about 30 times. In practice, for short electron exposures,
statistical electron noise may set a lower limit.

At the magnifications commonly used for high-resolution images in CTEM
(300 000–700 000), the recorded image will require further optical enlargement of
between 15 and 30 times if 1 nm detail is to occupy approximately 1 cm on the final
print. A search for promising areas on the micrograph is most easily undertaken using
an optical microscope fitted with zoom magnification control.

Some special precautions are needed when searching for images of isolated small
molecules. It is difficult to avoid scratching the lower side of the plate when operating
the optical microscope specimen stage. These scratches on the lower face of the glass
will appear as out-of-focus detail which can be misleading. Always refocus on the
lower side of the micrograph once a promising area is found to check for false detail.
A calibrated eye-piece graticule is essential to ensure that one is concentrating on detail
in the correct size-range. A recording of lattice fringes at the same electron-optical
magnification will be required to calibrate the graticule. An optical magnification
must be chosen at which the film grain itself is not distracting and it is generally
better to err on the side of too low magnification initially, since a large field of view
is required to gain an overall impression of the average substrate noise, against which
the particular molecular shape is sought.

It is sometimes possible for light from the electron filament to reach the electron
emulsion. On very long exposures the result is a blurred over-exposed patch which
cannot easily be avoided but is rarely troublesome. Some practical considerations
when handling plates for high-resolution work are indicated below.

1. When loading plates into the microscope cassette, each plate should be tapped
on its edge against the bench to dislodge small glass particles. The perfection of the
emulsion is important it it is to be examined subsequently at an optical magnification
of thirty times or more.

2. Use a water rinse between developer and fixer and fix for twice the time taken
for the emulsion to clear. Wash for a full 30 min in running water. Drying marks
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can be a serious problem and are avoided by giving the plates a final rinse for about
10 min in a large distilled water bath containing a magnetic stirrer and a fewdrops of
photographic wetting agent. Dry the plates in a dust-free cabinet at about 35 ◦C. Do
not attempt to speed up the drying process in any way. The safest storage for plates
is their original boxes—molecular detail is easily lost if plates are stored in paper or
plastic bags. They should not be stored back to back.

3. Drying marks remaining on the back of a glass plate can be removed by polishing
the glass side of the plate lightly with television antistatic cream. The emulsion side
should not be touched, but a camel-hair brush may be used to remove dust.

4. A fine corrugation or reticulation pattern on a scale not much larger than the
film grain is sometimes seen. This is caused by too great a temperature difference
between the photographic solutions and the water used for washing. Tap water is
generally well below room temperature. Ideally the wash water should be at the same
temperature as the chemicals used.

5. Over-exposed films or plates can frequently be salvaged by using Farmer’s
reducer (available from photographic suppliers), which slowly and uniformly reduces
the optical density of a developed micrograph. This reduction in optical density results
in an unavoidable loss of information since, for electron exposures, the contrast and
signal-to-noise ratio both increase with exposure (Valentine 1966).

12.8 Ancillary instrumentation for HREM

In addition to the microscope itself, various pieces of ancillary equipment have been
referred to throughout this book. Considerations regarding these are collected together
in this section for reference.

1. A mass spectrometer or partial-pressure gauge is an extremely useful adjunct
to an electron microscope. The downtime spent tracing leaks which occur with
increasing frequency as the machine ages can be greatly reduced by using the mass
spectrometer as a leak detector, tuned to helium, argon, or a proprietry leak-detection
gas. In addition to also functioning as an accurate vacuum gauge, a mass spectrometer
gives a full analysis of contamination products in the microscope (Echlin 1975). An
inexpensive unit will soon repay its cost through rapid vacuum-fault diagnosis. Some
units contain magnets, others operate on the principle of the radiofrequency quadru-
pole. If magnets are present, these must be carefully positioned in order not to disturb
the electron image (see Section 11.1).

2. A supply of bottled dry nitrogen gas is useful for high-resolution work. The
microscope should be filled with dry-nitrogen gas whenever internal maintenance
is necessary, to reduce the amount of water vapour allowed into the column. Water
vapour (present in air) is usually the largest gas component in a vacuum system and
is an important source of specimen etching. The pump downtime for a microscope
filled with dry nitrogen is also less because water vapour is pumped rather slowly.
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3. For magnification calibration on an instrument used at various objective-lens
focal lengths, a digital objective-lens current meter is useful (see Section 10.4).

4. A direct-reading image current density electrometer is useful both as an accurate
exposure meter and for quantitative experiments. The dynamic range of these instru-
ments greatly exceeds that of film, which makes them useful for obtaining the ratio
of the intensity of a particular Bragg reflection to that of the incident beam. Similarly,
only by taking two accurately timed exposures (one of which must be very short) can
the ratio of the background intensity from a dark-field substrate to that of the incident
beam be measured photographically. This is easily done using an electrometer. These
instruments also simplify gun-tilt alignment (the focused spot is adjusted for max-
imum intensity) and are invaluable when setting up filaments or for making brightness
measurements. On many instruments an electrometer is fitted by the manufacturers;
a simple design is described by Hills and Garner (1973) for instruments not fitted
with an electrometer. For absolute measurements of electron flux a correction may
be needed for electron backscattering, particularly at lower voltages. On most instru-
ments the phosphor itself is used to collect electrons for current measurement, on
others a separate screen must be fitted, which should be removable and can be fitted,
for example, in place of the movable beam stop.

5. In view of the importance of thermal stability for long-exposure dark-field
recordings, it is an advantage to arrange for a liquid-nitrogen pump to keep the
anti-contamination reservoir continuously filled.

6. A rubber bulb fitted with a nozzle is always useful for blowing away dust from a
specimen, or the traces of cleaning agents after cleaning the microscope gun chamber.
Never blow into the internal parts of a microscope—the human breath contains a great
deal of water vapour. The low temperature and high pressure of Freon from aerosol
cans can easily fracture brittle samples.

7. The use of an oscilloscope for high-voltage stability testing has been mentioned
in Section 11.2. The microscope manufacturers can give details of the input sensitivity
required of such an instrument.

8. On some microscopes a simple electrical continuity check can be installed,
connected between the interior of the cold-finger liquid-nitrogen reservoir and the
microscope frame. Since the specimen is also electrically connected to the microscope
frame, an open circuit between frame and cold-finger reservoir indicates that the
specimen is not in contact with the anti-contamination cold-fingers above and below
the specimen.

12.9 A checklist for high-resolution work

The following checks are listed for rapid reference. They should be performed before
commencing any high-resolution work. This list may be displayed in the EM Room.

1. EXAMING THE O-RING ON A SIDE-ENTRY HOLDER UNDER AN
OPTICAL MICROSCOPE FOR DUST AND FIBRES, CAUSING LEAKS AND
CONTAMINATION. THIS IS IMPORTANT.
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2. LENS COOLING-WATER THERMOREGULATOR. DUTY CYCLE COR-
RECT?

3. NEW OR RECENTLY INSTALLED SOURCES OF VIBRATION?
4. METER CHECK-POINTS ON MICROSCOPE ELECTRONICS.
5. READ VACUUM
6. PLATES/FILM. OUTGASSED? LOADED?
7. HAVE SAMPLE AND HOLDER BEEN CLEANED IN PLASMA-CLEANER?
8. LIQUID NITROGEN. COLD-FINGER IN THERMAL EQUILIBRIUM?
9. OSCILLOSCOPE HIGH-VOLTAGE STABILITY CHECK. GUN CLEANING?

10. EXAMINE FILAMENT IMAGE—STRAY MAGNETIC FIELDS?
11. ALIGN ILLUMINATION SYSTEM
12. ALIGN IMAGING LENSES
13. SPECIMEN–COLD-FINGER CONTACT?
14. ALL COMPUTERS RUNNING AND COMMUNICATING WITH EACH

OTHER CORRECTLY?
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13
ASSOCIATED TECHNIQUES

For each new detector that is fitted to an electron microscope, a new subdiscipline of
electron microscopy is created. This chapter provides a very brief survey of some tech-
niques which are compatible with high-resolution electron microscopy (HREM), and
which provide complementary information. For while HREM is a powerful method
for the study of the defect structure of crystals, it is subject to several important
limitations. (1) The method provides little information on the atomic number of the
elements present; (2) HREM images reveal only a projection of the crystal struc-
ture, giving no indication of atomic displacements in the beam direction (but see
Goodman and Warble (1987)); (3) Although HREM provides little information on
point defects, it has recently been shown that substitutional dopants may be directly
imaged by ADF STEM (Chapter 8); (4) Electronic structure and bonding informa-
tion is desirable for the defects seen in HREM images; (5) Elastic relaxation effects
in the very thin specimens used for HREM may render the results unrepresentative
of bulk material, unless these strains form part of a nanostructure under study. This
chapter provides a brief bibliography of references to the various techniques which
address these problems, namely energy-dispersive X-ray spectroscopy (EDS), elec-
tron energy-loss spectroscopy (EELS), microdiffraction or convergent-beam electron
diffraction (CBED), and cathodoluminescence (CL) in STEM. The equally import-
ant diffraction-contrast imaging methods are covered in several other excellent texts
(Williams and Carter, 1996).

These new subdisciplines are closely related to certain existing well-established
fields. Thus, for example, the theory of cathodoluminescence closely parallels that of
photoluminescence (PL), while energy-dispersive X-ray spectroscopy has close sim-
ilarities with X-ray fluorescence spectroscopy. EELS has much in common with X-ray
absorption spectroscopy, both with X-ray absorption near-edge structure (XANES)
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and with the extended X-ray absorption fine structure (EXAFS), which, like ELS,
probe the density of empty states. Photoelectron spectroscopy, using either incident
X-rays (XPS, or X-ray photoelectron spectroscopy) or ultraviolet light (UPS, or ultra-
violet photoelectron spectroscopy) probes filled states. The books by Joy et al. (1986),
and Egerton (1996) contain much relevant background material for this chapter. In
summary, while ELS can give the density of empty states and QCBED the filled
states, HREM provides the atom positions. All of this may be compared with theory.

13.1 X-ray microanalysis and ‘ALCHEMI’

The modern energy-dispersive X-ray spectrometer, when fitted to a transmission elec-
tron microscope, is capable of detecting the characteristic X-rays of all the elements
present in the sample which are of greater atomic number than sodium. Lighter ele-
ments may be detected using special ‘windowless’ detectors. The energy resolution
of the X-ray spectrum produced is typically only about 150 eV; however, the overall
efficiency is high, owing to the large collection solid-angle and ‘parallel’ processing
method used. Incoming X-ray photons produce pulses in a lithium-doped silicon
detector, the heights of which are proportional to the X-ray energy. These pulses are
sorted in a multichannel analyser to form a histogram or X-ray spectrum. Unlike a
crystal spectrometer, which disregards photons whose energy falls outside the cur-
rent slit setting, every photon arriving at the EDS detector is counted, regardless of
its energy, so that this serial device has many of the advantages of a parallel detection
system. The performance is limited, however, by the dead-time of the detector and
by the maximum count rate which can be processed. This limit may be reached in
a channel other than that of interest, thereby limiting the count rate in the channel
of interest. Excitations in the silicon detector itself may also give rise to spurious
peaks. An electron-probe-forming lens is required for high spatial resolution. This
requirement, together with the side-entry stage needed for EDS (and possible mech-
anical instabilities produced by the X-ray detector and its liquid-nitrogen dewar) may
conflict with the requirements for HREM work. Through the use of the symmetrical
condenser–objective lens, together with a side-entry stage, however, some impressive
design compromises have been achieved.

The reduction of the X-ray background is a primary concern for quantitative EDS
work. Background X-rays may originate either in the illumination system, and so
appear in a ‘hole count’ spectrum (in which the electron beam is passed through a hole
in the sample), or from post-specimen interactions. These may be due to high-energy
backscattered electrons, to fluorescence of the general specimen surroundings, or
to transmitted high-energy electrons scattered through large angles. All the evidence
suggests that one must think of the pole-piece region as filled by a ‘plasma’ of kilovolt
electrons travelling in all directions.

The spatial resolution of the EDS technique has been the subject of a considerable
literature (see, e.g. Joy et al. (1986) for a review). Many authors have reported the res-
ults of detailed incoherent multiple-scattering calculations which follow the progress
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of inelastically scattered electrons through a thin foil using ‘Monte-Carlo’ computa-
tional techniques (Joy 1995). An exact solution to the transport equation describing
this process exists, however, for thin foils (Fathers and Rez 1979). A resolution
of a few nanometers is commonly achieved; however, under favourable conditions
in STEM instruments a monolayer of atoms (lying in the plane of the beam) may
be detected. For example, using beam-stabilization techniques and a subnanometer
probe size with many hours of recording, the segregation of arsenic atoms to a silicon
grain boundary has been observed on a nanometer scale (Grovenor et al. 1984). As
a rough rule of thumb, multiple-scattering calculations and experiment suggest that
the spatial resolution b in EDS is given very approximately for thin samples by

b = (1760/V )t3/2

where b and t , the specimen thickness, are expressed in Angstroms, and V is the
accelerating voltage in electron volts. In practice, however, it is usually the ability to
distinguish a certain species in a given matrix which is important in EDS, rather than
spatial resolution. A typical limit on the sensitivity of the method is about 0.05 atomic
per cent; however, this depends on many experimental parameters, including the shape
of the sample (whether particles or bulk material are used) and the atomic number of
other elements present.

Windowless detectors and ultra-thin window detectors have been developed for
the detection of elements as light as boron (see, e.g. Williams and Joy (1984) for a
review). The method invites comparison with EELS for the microanalysis of light
elements. The EELS spectrometer need not influence HREM performance, unlike
the EDS detector. The back-ground in an energy-loss spectrum is much greater than
that in an EDS spectrum owing to the unfavourable shape of the EELS edges and to
multiple scattering. Light-element lines in EDS may also be confused by the presence
of low-energy, high-order emission lines from heavy elements present in the matrix.
The strongly forward-scattering nature of ELS means that the angular collection
efficiency in ELS is high. (X-ray emission is isotropic.)

It is interesting to note that much of the background in EDS spectra from crystalline
samples may arise from coherent Bremsstrahlung (CB). In passing down along a string
of atoms of separation L, an electron travelling with velocity v emits monochromatic,
plane-polarized X-rays of frequency ω = 2πv/L (in the electron rest-frame), and
energy hω. In the laboratory frame, taking account of the relativistic Doppler effect,
the emission energy is

ε = hcβ

L(1 + β sin θ)
= 12.4β

L(1 + β sin θ)

where ε is in keV, L is in Angstroms, β = v/c, and θ is the take-off angle of the X-ray
detector measured from the horizontal plane. This effect has been studied in detail,
and a full Bloch-wave quantum-mechanical treatment has been given (Reese et al.
1984). The atom spacings L are further related to crystal reciprocal lattice vectors
g by L = (g · n)−1, where n is a unit vector in the beam direction. Thus the effect
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of crystallinity in a sample is to concentrate the otherwise continuous distribution of
Bremsstrahlung into a set of discrete peaks, one for each reciprocal lattice vector. The
important vectors are those lying approximately antiparallel to the beam direction.
Classically, the radiation results from the acceleration of the beam electron (‘braking
radiation’). The continuous background results from accelerations in all directions.
The sharp CB peaks result from accelerations in the beam direction alone, which
correspond quantum-mechanically to the umklapp process in which the crystal as
a whole takes up momentum in units of �g (Spence and Reese 1986). Coherent
Bremsstrahlung radiation may therefore be thought of loosely as dipole radiation
which emerges (non-relativistically) at 90◦ to the beam direction, since the axis of
the dipole lies parallel to the beam and g. Radiation in the forward direction due to
transverse acceleration (known as channelling radiation, CR) has also been observed
in electron microscopy (Fujimoto and Komaki 1986, personal communication). In
the absence of inelastic phonon scattering, these discrete CB and CR peaks (and
combinations thereof) would be the only background seen from crystalline samples.
It is likely therefore that in the past there have been mistaken identifications of lines
due to this mechanism (Vechio and Williams 1986). Figure 13.1 shows a typical
CB spectrum obtained by EDS on a TEM instrument from a diamond sample. Since
carbon X-rays are too soft to be detected by this system, no characteristic X-rays were
expected from this sample. The effect is a useful one, since accelerating voltages may
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Fig. 13.1 Coherent Bremsstrahlung emission from a thin diamond crystal recorded by EDS on the Philips
EM400 transmission electron microscope. Take-off angle θ = 20◦, accelerating voltage 80 and 120 kV as
shown. Each numbered peak n results from a layer n of reciprocal lattice points g normal to the beam such
that g · H = n, where H = [111] is the beam direction. Owing to the symmetry of the diamond lattice all
structure factors in the n = 2 and n = 6 HOLZ layers are zero. The corresponding CB peaks are therefore
absent.
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be chosen which position these peaks away from those sought in microanalysis, and
therefore minimize the background contribution.

In addition to supplying microanalytical information, the EDS method can be used
quantitatively to determine the fraction of substitutional impurity atoms which lie on
particular sites in a crystal lattice. If characteristic X-rays from the trace elements of
interest in crystalline regions of a TEM sample can be detected using the EDS system,
then in most cases it is possible to determine the crystallographic site of the impur-
ity. This method, known as atom location by channelling enhanced microanalysis
(or ALCHEMI), involves no adjustable parameters, the fractional occupancies of the
substitutional impurities of interest being given in terms of measured X-ray counts
alone. Since TEM or STEM is used, the method can be applied to areas as small as a
few hundred Angstroms in diameter, while the detection sensitivity is limited by that
of the EDS system to about 0.1 atomic per cent. Elements which are neighbours in the
periodic table can normally be readily distinguished. The method uses the dependence
on the orientation of the incident electron beam of characteristic X-ray emission, and
does not require either the specimen thickness or the precise beam orientation to be
known. In conventional microanalysis by EDS, a large illumination aperture is used.
To obtain an orientation-dependent effect, a beam divergence smaller than the Bragg
angle must be used. No dynamical electron diffraction calculations are required for
the interpretation of this quantitative method. The classical problems of cation order-
ing in spinels, feldspars, and olivine minerals have all been studied by this method
(for a review see Jones (2002)). The first applications of the method were described
by Taftø and Liliental (1982) and Tafto and Spence (1982), while a tutorial review
of the principles and applications of the technique can be found in Spence and Taftø
(1983), which also contains a brief historical summary of the related effects (such as
the Borrman effect in X-ray diffraction) on which it is based.

The technique depends on the fact that the characteristic X-ray emission from
crystals is in fact modulated by the transverse electron wavefield in the crystal, as
shown in Figure 13.2. This intensity distribution is given by

I (r, t0) =
∫ t0

0
I (r, t) dt (13.1)

where I (r) is given by eqn (5.47) with χ(g, �f ) = 0 and t0 is now the crystal
thickness. Equation (5.47) has been integrated throughout the depth of the crystal to
obtain a quantity proportional to the X-ray emission yield, in the approximation of
perfect localization (see Cherns et al. (1973) for a detailed discussion). Figure 13.3
shows the experimental variation of X-ray emission with incident beam direction
for GaAlAs (Christensen and Eades 1986). For ALCHEMI, the characteristic X-ray
emission intensities from both the impurity atom and the atoms of the host crystal
need be measured for only two or three crystallographic orientations of the collimated
incident electron beam. A specimen thickness of about 1000 Å is sought, but the
thickness is not critical and the illumination ‘beam divergence’ should be a fraction
of the Bragg angle for a first-order reflection. In many problems it is possible to
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Fig. 13.2 The principle of ‘ALCHEMI’. The period of the crystal stacking sequence along the systematics
direction [h00] is indicated. The wavefield is constant in the y direction, and varies with depth along z

as shown. The characteristic X-ray production is proportional to the shaded areas. Note that there is no
channelling effect for small thickness. The case of a spinel crystal containing iron impurities at X is shown.
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Fig. 13.3 Variation in characteristic X-ray emission as a function of angle for a low-divergence electron
beam rocked across the (200) planes of GaAlAs. For the three X-ray signals, equal changes in the height of
the curve represent equal percentage changes in the number of counts. The backscattered electron signal
is included for reference. (From Christensen and Eades (1986).)

limit the substitutional sites of the impurity atom to a few likely possibilities. The
crystalline specimen is then oriented in the ‘systematics’ or ‘planar channelling’
orientation, so that crystal planes with reciprocal lattice vector normal to the beam
contain alternating candidate sites for the impurity and alternating species of the host
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crystal. For example, in the zinc blende structure, the [00h] systematics orientation
would contain all the zinc atoms on the A planes of Fig. 13.2, while the B planes
would contain only sulphur atoms. By measuring the Zn, S, and impurity X-ray
emission for two incident beam directions (both approximately normal to [00h]) it
is then possible to determine the fractions of the impurity which lie on the A and B
planes respectively. By repeating this experiment for other sets of planes, the crystal
site can be determined.

For each of these two incident beam orientations, the fast electron sets up a stand-
ing wave in the crystal whose intensity variation has the period of the lattice (e.g.
from A to A′, as shown in Fig. 13.2). For ideally localized X-ray emission, the
characteristic X-ray emission intensity due to the ionization of the crystal atoms is
proportional to the height of this standing wave at the atom concerned. The total X-ray
emission from, say, the species on the A planes of Fig. 13.2 is then proportional to
the thickness-integrated electron intensity IA on the A planes, shown shaded in the
figure. This area changes with changes in the incident beam direction. Because a
systematics orientation has been chosen, the electron intensity is constant along the
A and B planes. We let CX be the concentration of impurities on the A planes, and
(1 − CX) be the concentration on the B planes. The X-ray emission from the host
atoms in known sites on the A and B planes will be used to provide an independent
monitor of the electron intensities IA and IB, which also excite X-rays from the impur-
ities. Thus the principle of ALCHEMI is to use the host atoms as reference atoms or
‘detectors’, to ‘measure’ the thickness-integrated dynamical electron intensity distri-
bution. We let N

(1,2)
A , N

(1,2)
B , and N

(1,2)
X be the six X-ray counts from elements A, B,

and X for a ‘channelling’ orientation (1) and a ‘non-channelling’ orientation (2) in
which the electron intensities on the A and B planes are equal. Then we have the six
relationships

N
(1,2)
B = KBI

(1,2)
B (13.2)

N
(1,2)
A = KAI

(1,2)
A (13.3)

N
(1,2)
X = KXCXI

(1,2)
B + KX(1 − CX)I

(1,2)
A (13.4)

where the superscripts refer to X-ray counts obtained in two successive orientations.
In addition, for the non-channelling orientation, I

(2)
A = I

(2)
B . Here KA, KB, and KX

are constants which take account of differences in fluorescent yield, and other scaling
factors. These equations can be solved for CX in a way which eliminates IA and IB.
If we define the ratio of counts for two orientations as

R(A/X) = N
(1)
A /N

(1)
X

N
(2)
A /N

(2)
X

(13.5)
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then

CX = R(A/X) − 1

R(A/X)(1 − β)

where

β = N
(1)
B N

(2)
A

N
(1)
A N

(2)
B

. (13.6)

Equation (13.6) can thus be used to find the concentration of species X on the A planes
(see Fig. 13.2) in terms of the measured X-ray counts N

(1,2)
A , N

(1,2)
B , and N

(1,2)
X alone.

In practice, orientation (1) is usually chosen as slightly greater than the Bragg angle,
and orientation (2) is one which avoids the excitation of Bragg beams.

This technique has been applied to a wide range of materials including miner-
als, ceramics, oxide superconductors, semiconductors and especially, intermetallic
turbine-blade alloys (see Jones (2002) for a review).

A crucial assumption of the method is that the X-ray emission process is highly
localized. (The meaning of localization is discussed in Section 13.2.) This assumption
has been tested by Bourdillon et al. (1981), Self and Buseck (1983), Pennycook (1987)
Rossouw and Maslen (1987), Spence et al. (1988).

The localization problem can be minimized and a great improvement in accuracy
obtained by collecting X-ray emission as a function of two angular dimensions of the
electron beam around a zone axis, and using multivariate analysis to interpret the data.
This 2-D statistical ALCHEMI approach (Rossouw et al. 1996) also allows a very
simple interpretation, as shown in Fig. 13.4. If the pattern from host atom A closely
resembles that from substitutional atom B, then B lies on the same (equivalent) site
as A. In the figure we see immediately that for this gamma—TiAl crystal, Ga lies
on the Al site, Hf lies on the Ti site, while Mn lies on both. (The linear expansion
coefficients which express the Mo map in terms of a sum of the Ti and Al maps give
quantitative occupancies.)

Since crystal planes can be found which contain interstitial sites, the method has
been extended to include interstitial site-occupancy determination (Rossouw and
Miller 1999). In addition, under the column approximation, any local change in
diffraction conditions due to crystal bending or thickness changes under the probe
will not affect the ALCHEMI results, since these affect both the impurity emission
and that from the reference host atoms in a similar way. A final important assump-
tion of the method, however, is that the impurities are uniformly distributed in depth
throughout the crystal. Thus, the method fails for a segregated sheet of impurities
lying normal to the beam at a particular depth in the crystal.

Channelling effects have also been observed to influence characteristic energy-
loss peaks (Spence et al. 1981; Taftø and Lehmfuhl 1982). Applications of this
effect can be found in Taftø et al. (1982), where it is used to distinguish normal
and inverse spinels, and in Taftø (1984). The additional complications introduced by
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Fig. 13.4 Two-dimensional ALCHEMI patterns from gamma TiAl. (a) Calculated (b) Experimental (c)
Experiment from dopants indicated. (From Rossouw et al. (1996).)

multiple scattering of the beam electron following the energy-loss event make this a
less generally useful technique.

13.2 Electron energy loss spectroscopy (EELS) in STEM

The extensive literature on this large subject has been reviewed by Egerton (1996),
Reimer (1995), Disko et al. (1992) and Brydson (2001). Here we briefly review
those aspects of EELS most relevant to high-resolution electron microscopy. Electron
energy-loss spectrometers record the number F(E) of transmitted electrons which, in
passing through the sample, give up an amount of energy in the range E to E+�E to
the various elementary excitation levels of the sample. F(E) is related to the dielectric
function of the sample, and contains discrete peaks at the energies of all the important
excitations, such as inner-shell atomic ionization edges and plasma excitations. The
spectra are similar to soft X-ray absorption spectra, and are related to the density of
empty states.
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Energy-loss spectrometers are well removed from the sensitive pole-piece region
of an electron microscope and therefore need not degrade the ultimate performance
of an atomic-resolution instrument, provided that stray fields and ground-loops are
avoided. Thus, it is now possible to obtain both atomic-resolution images and electron
energy-loss spectra from the same identifiable subnanometer region of specimen. The
size of the region from which spectra can be obtained will depend on the probe-
forming capabilities of the instrument, and, in particular on whether this region can
be identified while in the lattice-imaging mode. If mechanical adjustments to the
specimen height are required when switching to the probe-forming mode, it may not
be possible to locate the same region of specimen in both instrumental modes. These
difficulties are avoided in dedicated STEM instruments, in which energy-loss spectra
may be obtained from a subnanometer region at any identified image pixel at which
the electron probe has been stopped.

Electron energy-loss spectra have been used chiefly to provide microanalytical
information and information on the charge state of ions. We first briefly discuss
microanalysis by EELS. Since the primary electron (following energy loss) is detected
in EELS rather than a secondary emission product, as in EDS or cathodollumin-
esce (which may result from a de-excitation event some distance from the primary
excitation), this method has the great advantage of providing chemical information
at the highest possible spatial resolution.

The resolution is limited not only by the maximum size of the electron probe
within the sample, but also by the inelastic ‘localization’ (see below). Dynamical
calculations for coherent probe spreading can be found in Humphreys and Spence
(1979) and Fig. 8.8. The resolution in EELS does not depend on the range of secondary
electrons or X-rays as is the case for EDS, CL, and Auger spectroscopy. As examples
of ‘microanalysis’ by EELS in STEM at the very highest spatial resolution, we cite
the work of Berger and Pennycook (1982), who have detected nitrogen at a single
nitrogen platelet in a diamond crystal; the work of Bourret and Colliex (1982), who
have detected oxygen at the cores of dislocations in germanium; and the work of
Spence and Lynch (1982), who detected a variation in elemental concentration within
a single unit-cell of a barium aluminate crystal. The thickness-dependent contributions
of multiple inelastic scattering must be removed from the spectrum if quantitative
results are expected from any but the very thinnest samples. This may be done by the
convenient ‘logarithmic deconvolution’ method (Johnson and Spence 1974), which
solves the inversion problem of multiple inelastic scattering exactly. A computer
program listing for this method is given in Egerton (1996).

The theoretical basis of the EELS technique has its historical origins in the problem
of stopping power for charged particles, which arises in many fields of physics. The
most important early papers are those of Bethe (1930) and Kainuma (1955). The
second of these addresses the very important problem of combined multiple elastic and
multiple inelastic scattering, a topic which has since received much attention (see, e.g.
Howie (1963) and Craven and Colliex (1977) amongst many others). Since electrons
which have been inelastically scattered may also be elastically Bragg-scattered, it is
possible to form lattice images in energy-filtering instruments which select only those
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electrons which have lost a particular amount of energy in passing through the sample
(Craven and Colliex 1977). The energy-filtered images may appear almost identical
to the elastic lattice image. In images filtered for a particular inner-shell excitation,
the ‘wrong’ atomic species may therefore appear (Spence and Lynch 1982). Since
the probability of single inelastic scattering is proportional to (t/λ) for a process with
mean free path λ, while that for Bragg scattering (at the Bragg angle) is proportional to
t2/ξ2

g (see eqn (5.20)), either process may dominate, depending on the experimental
conditions and material.

Image-forming electron energy-loss spectrometers have been developed which may
be fitted to HREM instruments for the purposes of ‘chemical mapping’ at atomic resol-
ution. The interpretation of these images will be complicated both by the unavoidable
elastic scattering mentioned above, and by the effects of inelastic localization, which
sets a limit on the spatial resolution of energy-filtered images.

If the inelastic electron scattering is taken to be confined to a cone of semi-angle
θE = �E/2E0 (�E is the energy loss), then this radiation must originate from a
specimen volume whose transverse dimension is L = λ/θE, where L is known as
the inelastic localization, and can be taken as a measure of the size of the region in
which the inelastic scattering is coherently generated. It is therefore also the size of
the image element which would be formed if all this scattering were passed through
a perfect lens and focused. This simple result for L is consistent with the results of
more elaborate quantum-mechanical calculations (Craven et al. 1978) and with an
argument based on the time-and-energy uncertainty principle (Howie 1979).

This can also be understood by considering the classical impact parameter b.
A beam electron travelling at velocity v spends an amount of time �T = b/v in
the neighbourhood of the target atom. If we think of the pulse of electromagnetic
energy associated with the beam electron’s passage evaluated at this atom, then this
will contain Fourier components over a range �ω = 2π/�T , for which the range of
associated quantum-mechanical excitation energies (the beam electron energy loss)
is �E = h�ω = hv/b. Using v = hk/m and Ei = mv2/2 we then find that
L = λ/θE = 2πb, so that the localization L is approximately equal to the classical
impact parameter b. Alternatively, the inelastically scattered amplitude can be written
as the Fourier transform of an inelastic scattering potential in Born’s approximation.
The forces due to this potential affect the passing electron only when it is within a dis-
tance b of the atom, and for times of the order of �T . The theory of the photoelectric
effect, on which the analysis of X-ray absorption near-edge structure (XANES) and
much ELNES (electron energy loss near-edge spectroscopy) are also based assumes,
however, almost ‘instantaneous’ excitation of an atom. Here the abrupt ‘switching on’
of the core hole (within less than 10−17 s) is known as the ‘sudden approximation’.
No evidence for the failure of this approximation has yet been produced in inelastic
electron scattering.

Figure 13.5 shows the ELNES K-shell ionization edges for silicon, aluminium and
magnesium atoms in different crystal structures (Taftø and Zhu 1982). It is clear that
the shape of these spectra from the same atom in different crystals does depend on the
local coordination of the atom, and not on purely atomic properties. The type of atom
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Fig. 13.5 Electron-loss near-edge structures of Si, Al, and Mg atoms in different local crystallographic
environments. The K edges of magnesium in olivine (octahedral), aluminium in spinel (octahedral), mag-
nesium in spinel (tetrahedral), aluminium in orthoclase (tetrahedral), and silicon in olivine (tetrahedral)
are shown. (From Taftø and Zhu (1982).)

present can be determined by comparing the energy of ionization onset with tabulated
values. While some limited success can be expected in relating characteristic ELNES
spectral shapes to local atomic structure by these ‘fingerprinting’ methods, a full
understanding of this effect requires large numerical computations and a sophisticated
theory. (For a review of methods, see Spence (1987) and Rez et al. (1999).) The
sensitivity of ELNES to both local atomic structure (Spence 1985) and to ionicity or
charge-transfer effects is evident.
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0.2 nm

Fig. 13.6a ADF-STEM image of Mn doped SrTiO3〈100〉 tilt boundary. ELS spectra were obtained from
regions similar to those numbered.
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Fig. 13.6b Oxygen, K, and Mn L2,3 edges from numbered points in (a).

Several attempts have also been made to apply the methods of extended X-ray
absorption fine structure (EXAFS) to EELS spectra. While some success has been
obtained (see Egerton (1996) for a review), the limited energy range of EELS
spectrometers (0–2.5 kV) has frequently meant that in complex crystals one is dealing
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with many overlapping edges in a crowded spectrum. It is suggested that ELNES
(which deals with the first 40 eV or so beyond an edge) be distinguished from extended
energy-loss fine structure (EXELFS) (which deals with the remainder of the edge) at
that energy at which the ejected secondary electron’s wavelength is approximately
equal to the nearest-neighbour interatomic distance. Physically, these regimes are
distinguished by the importance of multiple scattering for the secondary electron in
the ELNES range, which makes ELNES sensitive to angular bond correlations.

Figure 13.6(a) shows an ADF-STEM image of a Mn-doped 36.7◦〈100〉 tilt grain
boundary in SrTiO3. (Duscher et al. 1998). Energy-loss spectra have been obtained,
using a 0.22 nm probe, from the numbered atomic columns, as shown in Fig. 13.6(b).
(In fact the images and spectra were obtained on different instruments—with the
bicrystal sample used it was evidently possible to find similar atomic groups.) The
ELS spectra shows the oxygen and Mn Edges, with reduced Mn concentration away
from the boundary at regions 5 and 6. Similar studies have been made combining nano-
scale ELNES spectra and ADF-STEM images at atomic resolution of dislocations in
GaN (Arslan and Browning 2002). These can in principle distinguish between deep
states at dislocation cores due to the intrinsic core structure, its reconstructions and
defects, and impurities.

More information on the oxidation state of atoms at defects can be obtained by
comparing these near-edge spectra with calculations for different states of ionicity.
(Section 13.4 shows how convergent-beam patterns can provide information on the
oxidation state of atoms from samples which are locally crystalline). Examples of the
ELS approach used in correlation with HREM images recorded at 0.12 nm resolution,
can be found in Scheu et al. (2000). Here a Cu/(1120) α–Al2O3 interface is studied,
prepared by molecular beam epitaxy. Oxygen 2p states are found to hybridized with
Cu-3d and/or Al 3p states at the interface. The interface structure was determined
with atomic precision by HREM. Examples of energy-loss spectroscopy obtained
with subnanometer spatial resolution can also be found in Batson (1993), for an
analysis of the silicon L2,3 edge as it passes into the oxide at a transistor gate oxide,
and also in the work of Muller et al. (1999) on the Oxygen K edge (more localized
than the Si L2,3 edge) across a similar interface (see Frontispiece). Nufer et al. (2001)
have combined HREM with ELS and electronic structure calculator in their analysis
of a rhombohedral twin boundary in alumina. It may now be said that the multiple
scattering aspect of the ELNES problem is completely solved as a result of modern
computer speeds. Thus excellent agreement between calculated and experimental
ELNES spectra has recently been obtained for the first time using, for example, the
FEF8 computer code (Ankudinor et al. 1998). Nevertheless, difficulties may still
arise due to excited state effects such as self-energy terms and core holes.

By correcting fifth-order aberrations in STEM and improving spectrometer
coupling optics, a 100-fold increase in signal intensity is possible. This has allowed
the Ti and Mn L-edge fine-structure to be mapped out in a transition-metal oxide
multilayer, thus providing a chemical map at the Angstrom scale of spatial resolution
(Muller et al. (2008)). Developments in STEM ELS are reviewed more fully in Spence
(2006).
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13.3 Electron microdiffraction and CBED

The information obtainable from microdiffraction patterns complements that
available from HREM images. Traditionally, convergent-beam patterns have been
used for the following purposes.

1. For the determination of the crystal periodicity in the beam direction. This is
given by

C0 = 2/(λU2
0 ) (13.7)

where λ is the electron wavelength and U0 is the radius of the first-order Laue zone
(FOLZ) ring seen in the microdiffraction pattern. A unit cell’s dimensions, and its
angle in the plane normal to the beam can also be obtainable from the zero-order Laue
zone pattern (Zuo 1993), and HOLZ lines in the central disc.

2. To align the crystal zone axis with the electron beam. The alignment of the region
of interest for HREM is possible if no mechanical alteration to the specimen height
is required in changing from the microdiffraction to the HREM mode.

3. In thicker specimens of small-unit-cell crystals, the two-beam CBED method of
specimen thickness determination may be applied (Blake et al. 1978).

4. In favourable cases, it may be possible to determine the space-group of the
crystal (Goodman (1975); Eades et al. (1983) Steeds and Vincent (1983)). However,
a thicker region of crystal will be required for the CBED pattern than for the HREM
image. A solution to this problem lies in the use of the Tanaka wide-angle CBED
method (Eades 1984), which allows convergent-beam patterns to be obtained over
an angular range larger than the Bragg angle, without overlap of orders. It may
therefore be used to reveal contrast at higher angles in CBED patterns from very
thin crystals, if sufficiently large areas of uniform thickness are available. The ability
of this technique to isolate orders without overlap is particularly valuable for thin
specimens of large-unit-cell crystals (with correspondingly small Bragg angles).

5. For the refinement of low order structure factors in crystals by comparison of
experimental and computed CBED rocking curves (Zuo et al. 1999). From these, a
charge-density map may be synthesised to reveal the bonding, as shown in Fig. 13.7.

6. HOLZ lines may be used to map out strains. Applications are described in Spence
and Zuo (1992) with worked examples.

In general, the HREM method is most useful for crystals with a short period in the
beam direction and large cell dimensions normal to the beam, since these give the
maximum information in this projection. Such crystals are the least favourable for
CBED (since orders are likely to overlap), for which the opposite relative dimensions
are preferable, unless a wide-angle technique can be used. The HREM method is
also preferable for the study of the defect structure of crystals and for the observation
of superlattices, which give rise to very weak reflections in a CBED pattern but to
intense points in an HREM image, particularly in thicker regions. The great power of
the CBED method lies in its ability to provide symmetry information on the specimen
structure which is independent of the HREM imaging parameters (e.g. astigmatism
correction) and, in high-angle patterns, to provide information on the crystal structure
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Copper

Oxygen

Fig. 13.7 The bond-charge in cuprite (Cu2O). This map shows the difference between the total charge
density measured by CBED, and a collection of spherical ions obtained by calculation (Zuo et al., Nature,
401, 49 (1999)). (See also Plate 6.)

in the electron beam direction from a single crystal setting. The limited tilting facilities
available on modern HREM machines makes this information difficult to obtain
otherwise. Thus, for example, the component of a dislocation Burgers vector in the
beam direction can be determined in favourable cases from CBED patterns (Carpenter
and Spence 1982). (See Morniroli (2002) for a review.)

We consider now the nanodiffraction patterns formed using field-emission STEM
instruments, since the information these contain is closely related to that of an HREM
image if an electron probe of near-atomic dimensions is used. The following material
should be read in conjunction with that of Chapter 8. The size of the microdiffraction
probe depends on the demagnification of the probe-forming lenses, on the electron
source size, and on the focus setting, aperture size, and spherical aberration constant
of the probe-forming lens. For field emission sources these last three factors are the
most important, with the probe-broadening effect of spherical aberration becoming
most important for large aperture sizes. In fact, it is a useful approximation to consider
that the electron source in field-emission instruments is an idealized point emitter, in
which case the focused probe is ‘diffraction-limited’ (i.e. it is the image of a point
source, as formed by an imperfect lens). Thus, in the absence of spherical , aberration,
the probe has a size given approximately by 2rs = dp where

dp = 1.22λ/θc (13.8)
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Fig. 13.8 Ray diagram for microdiffraction. Note that P′ is conjugate to P, and S is conjugate to the probe
at S′. Partial coherence effects are incorporated by integrating over the source at S. (From Spence and
Carpenter (1986).)

where θc is the semi-angle subtended by the STEM objective aperture and shown
in Fig. 13.8. In the presence of spherical aberration, there is no simple expression
for probe size. However, computer calculations have shown (Spence 1978; Mory
et al. 1987) that, except at the optimum focus setting, the probe intensity distribution
contains rather extended ‘tails’ and oscillations. In practice, the size of the STEM
probe can be roughly estimated from the resolution of a STEM lattice image, or by
forming a probe image directly. Calculations (Mory et al. 1987) have shown that
the optimum focus needed to form the most compact probe (e.g. for microanalysis)
is approximately �f = −0.75C

1/2
s λ1/2. The principle of reciprocity nevertheless

indicates that the Scherzer focus setting gives structure images under STEM lattice-
imaging conditions.

The assumption that the probe is diffraction-limited corresponds to the requirement
that the objective aperture (C2 in Fig. 13.8) be coherently filled. This is so if the
coherence width

Xa = λ/2πθs (13.9)
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in the plane of the aperture is larger than the aperture. Here θs is the semi-angle
subtended by the geometrical electron-source image (formed on the specimen) at
the aperture. Thus the requirement for a coherently filled aperture depends on the
electron source size, which is proportional to θs. Since P in Fig. 13.8 is conjugate to
the set of points P′, we do not expect that CBED patterns from perfect crystals should
differ in the two extreme cases where C2 is either coherently or incoherently filled.
However, these points are conjugate only at exact focus, so that the through-focus
behaviour of coherent and incoherent CBED patterns differ greatly. For defects, the
coherent and incoherent CBED pattern may be entirely different, since in the absence
of the Bragg condition each source point P gives rise to displaced pattern of diffuse
elastic scattering. For the coherent (incoherent) case the separate complex amplitudes
(intensities) of all these patterns must be added together. Partial coherence effects can
be accounted for by integrating over an extended source. Each different such source
point produces a probe at a slightly different position on the sample. However we
have seen in Chapter 8 that for perfectly crystalline samples the diffraction pattern
is independent of probe position (if the orders do not overlap), and therefore of
source size. For microdiffraction from defects (or the case of overlapping orders), the
diffraction pattern will depend strongly on source size and coherence conditions.

For a discussion of the close relationship between coherent microdiffraction
and lattice-imaging in STEM, the reader is referred to Chapter 8. In the coherent
case, a method for the computer-simulation of microdiffraction patterns has been
described (Spence 1978) in which the probe wavefunction is used as the boundary
condition within an artificial superlattice at the entrance surface of the specimen,
and the multislice multiple-Bragg-scattering algorithm used. In a series of papers,
experimental microdiffraction patterns from various materials have been compared
with the results of these calculations (see, e.g. Zhu and Cowley (1982)). For the
incoherent case, a method of microdiffraction pattern simulation for defects has also
been described, based on the use of the popular diffraction-contrast software under
the column approximation, by taking advantage of the reciprocity theorem (Carpenter
and Spence 1982). A fuller discussion can be found in Spence and Carpenter (1986),
which provides a review of electron microdiffraction and CBED.

The similarities between the problems involved in the interpretation of HREM
images and coherent CBED patterns become clear when we consider the case of
CBED patterns formed using a probe which is ‘smaller’ than the crystal unit cell.
Then, as shown in Chapter 8, the CBED orders will overlap, and interference effects
will be seen within the region of overlap which depend on the focus setting and
spherical aberration constant of the probe-forming lens (Cowley and Spence 1979).
Thus, the problem of determining atom positions by a comparison of computed and
experimental coherent microdiffraction patterns involves a similar set of adjustable
parameters (atom coordinates and instrumental parameters) to those involved in
HREM image-matching. This applies both for defects or, in the microdiffraction
case, for a particular identified group of atoms within a unit cell. These ‘Ronchigrams’
may be interpreted as point-projection shadow images of the crystal lattice (at large
defocus), or as electron holograms. Figure 13.9 (from Cowely (1981)) shows such a
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Fig. 13.9 Coherent convergent-beam microdiffraction patterns from a thin crystal of Ti2Nb10O29, formed
using a 0.3 nm diameter electron probe within the 2.8 nm periodicity of the crystal unit cell. The patterns
are seen to repeat from (a) to (d) as the probe is moved from one side of the unit cell to other. (From Cowley
(1981).)

pattern from Ti2Nb10O29 in which, since the probe size is ‘smaller’ than the unit
cell size, the symmetry of the pattern is not that of the crystal as a whole, but
rather possesses the local symmetry about the probe (Cowley and Spence 1979).
The patterns are seen to repeat as the probe is moved by a lattice translation vector
(28 Å in length).

Since the intensity within the region of overlapping orders is sensitive to probe
position, mechanical movement of the specimen or probe movement due to electronic
instabilities is as important for coherent microdiffraction as for HREM. However, it
can be shown that the loss of contrast in a coherent microdiffraction pattern due to
vibration is a function of the scattering angle and focus setting. In general, for patterns
with overlapping orders (or from defects) the finest detail which can be extracted is
expected to be about the same as that which would appear in the corresponding STEM
lattice image. High-angle scattering is most sensitive to instabilities.

For many problems in materials science, these interferometric effects and their
dependence on instrumental parameters which result from the use of the smallest
probes constitute an unnecessary complication. A more fruitful approach is then
to observe characteristic disturbances in certain non-overlapping orders diffracted
by interrupted or distorted planes of the crystal lattice. Then, in the spirit of ‘g.b’
analysis in TEM, by noting which of the microdiffraction spots are unaffected,
it may be possible to determine fault vectors or to classify defect types using a
probe only slightly ‘larger’ than the lattice period (Zhu and Cowley 1983). Several
examples of this powerful approach have now appeared in the literature. Earlier
dynamical calculations and experiments on coherent microdiffraction from metal
catalyst particles (Cowley and Spence 1981), had shown that the normal CBED discs
frequently appear as annular rings, possibly also broken up into segments of arc. These
may appear simply as small blobs of intensity around the geometrical perimeter of
the CBED disc. This effect is only observed when the probe lies near an edge or
discontinuity in the lattice. This is a coherent interference effect, and is not due to
dynamical scattering in the crystal. We now consider an example.

The patterns shown in Fig. 13.10 were obtained from samples of Cu3Au containing
antiphase domain boundaries of three possible types, depending on the near-neighbour
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(a) (b)

(c) (d)

Fig. 13.10 Microdiffraction patterns from antiphase domain boundaries in ordered Cu3Au, obtained
using a sub-nanometer probe: (A) from the crystal, probe ‘not’on boundary; (B) probe on ‘good’boundary;
(C) probe on ‘too good’ boundary; (D) probe on ‘bad’ boundary. (From Zhu and Cowley (1982).)

coordination of atoms in the boundary. The electron probe size is about 5 Å, smaller
than the average domain size. Since the domains represent a discontinuity in the
Cu3Au superlattice, the expected annular splitting is seen in the first-order superlattice
reflections only. These are the reflections for which g · R 	= 0, where R is the
translation vector between neighbouring domains. By analysing all the possible
boundary arrangements, these authors were able to draw up a classification scheme
relating spot splitting to boundary type (Zhu and Cowley 1983).

This work provides an example of a powerful general approach to a problem
which would be insoluble using the HREM technique, since lattice images of
Cu3Au antiphase boundaries have proven extremely difficult to interpret. A similar
approach has been applied to the case of stacking faults and twin boundaries in
FCC metals, where the determination of fault vectors from spot splittings observed
in coherent microdiffraction has also been demonstrated (Zhu and Cowiey 1983).
Other examples of this general approach include coherent microdiffraction studies
of diamond platelets (Cowley and Osman 1984), of GP Zones in Al–Cu alloys (Zhu
and Cowley 1985) and of metal–ceramic interfaces (Lodge and Cowley 1984). The
method has also been applied to the study of twinning and defects in the small metal
particles (Roy et al. 1981) used for catalysis.
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In all this work, the ability to record the weak microdiffraction fine structure
efficiently using an axial parallel detection system and image intensifier has proved
crucial. Microdiffraction detection systems are discussed in Cowley and Spence
(1979); Cowley and Ou (1989); Spence and Zuo (1992); and Hembree et al.
(2003).

The use of computed Fourier transforms of small regions of HREM images as a
microdiffraction technique is discussed in Tomita et al. (1985). This method is subject
to all the limitations outlined in Section 3.5 with regard to nonlinearities.

13.4 Cathodoluminescence in STEM

The analysis of the electronic and atomic structure of individual defects in crystals
requires the development of a technique which is (1) sensitive to the very low
concentrations of impurities which may be electrically important (usually present
in concentrations too low to be detected by EDS, ELS, or HREM); (2) capable
of sufficient spatial resolution to isolate individual defects; and (3) able to provide
sufficiently high spectral energy resolution to study the electronic states of interest. At
present the CL technique in STEM provides the most favourable combination of these
properties. Here the optical emission excited by the electron beam in passing through
a thin sample is collected by a small mirror and passed to a conventional optical
spectrometer for analysis, as shown in Fig. 13.11. By forming a small electron probe
and plotting the CL intensity within a small spectral range as a function of electron
probe position, a scanning monochromatic CL image may also be obtained, giving
a spatial map of the impurity or electronic state of interest. For example, Roberts
(1981) has used this method to relate structural inhomogeneities to luminescence in
ZnS phosphors.

The usefulness of the STEM–CL technique for the study of semiconductor defects
was first demonstrated by the pioneering work of Petroff and others on GaAs (Petroff
et al. 1980). A correlation between the electrical activity and type of dislocation was
obtained in this work. The use of a STEM rather than an SEM for CL can improve
spatial resolution.

The spatial resolution possible in STEM–CL depends on the specimen thickness
for thin samples. In general it might be expected to be given by

dr = (d2
p + d2

g + d2
D)1/2 (13.10)

where dp is the electron probe diameter, dg is the electron–hole pair generation
volume, and dD the carrier diffusion length (Pennycook 1981). For very thin
transmission samples, dg (the ‘beam spreading’ discussed in connection with EDS)
and dp are small compared with dD, which is dominated by surface recombination.
As a rough approximation one then obtains (Brown 1984).

dr = t/
√

6 (13.11)
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Fig. 13.11 Diagram of the experimental arrangement used to observe cathodoluminescence from samples
in a TEM instrument at low temperature. The optical path from the ellipsoidal mirror is shown stippled.
(From Yamamoto et al. (1984).)

for a thin specimen of thickness t . For such very thin specimens, the emission intensity
is very small, requiring efficient light-collection optics. The spatial resolution of a
monochromatic scanning CL image is not influenced by the optical resolution limit
of the light-collection mirror or lens; however this does affect the amount of stray
light which is collected, and hence the signal-to-noise ratio in the image. From
such a small volume (it may be as small as a few thousand cubic Angstroms) a
spectral resolution of perhaps 10 Å may be obtained from very low concentrations
of impurities, and this spectral information may be collected together with the
corresponding HREM image. In most applications, however, spectra are recorded
from a region of about one micrometre in diameter in combination with diffraction-
contrast images, and this ability to correlate CL spectra with high-resolution TEM
images is the most important advantage of the STEM–CLtechnique over conventional
scanning electron microscope (SEM)–CL work, and over the PL method. Much lower
temperatures, however, can be obtained in PL, with a corresponding gain in emission
intensity.
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In addition to the semiconductor work referred to above, there have been several
studies of MgO and diamond by this method. Using a tapered silver tube as a light-
collection element fitted to the Vacuum Generators HB5 STEM, Pennycook et al.
(1980) obtained CL images of individual dislocations in type IIb diamond in correla-
tion with their transmitted electron images. In this material, almost all the optical
luminescence arises from dislocations, but not all dislocations are luminescent. Both
60◦ and screw dislocations were found to be luminescent. By subtracting a spectrum
recorded from the defect of interest from one recorded nearby, the effects of stray
luminescence, filament light, and impurity luminescence may be eliminated. In a
development of this work, Yamamoto et al. (1984) have used a system based on
that developed by Roberts (1981) to obtain weak-beam images and spectra from
individual dislocations of known type in diamond. The apparatus (shown in Fig. 13.11)
has been fitted to a Philips EM 400 TEM–STEM instrument. This apparatus allows
spectra to be collected over a range of temperatures down to about 25 K. Example
results from this work are shown in Fig. 13.12, where the TEM image of a single
line defect and its associated optical emission spectrum are shown together with
the scanning monocromatic CL image used to identity the defect. The spectrum
was recorded at 89 K. In most materials, CL is found to increase in intensity at low
temperatures, and the resulting fine structure observed may be more readily correlated
with theoretical models. In this work, in addition, the polarization of the CL was
measured from individual dislocations of known type and degree of dissociation. The
dislocation emission (which occurs at a wavelength of 435 nm) is confirmed to be
polarized along the dislocation line (rather than along its Burgers vector) direction,
and to form a broad band whose width is 0.412 eV. No clear correlation between
CL activity and dislocation type or degree of dissociation was found, though a one-
dimensional ‘donor–acceptor’model for dislocation core CLis suggested as consistent
with all the experimental findings. A high kink density was found to reduce the CL
intensity.

The limited aim of most of the STEM–CL work undertaken so far has been
to correlate a spectral signature with a particular defect which can be imaged at
high resolution by TEM. More detailed quantitative interpretation of CL spectra
has yet to be attempted. This must follow closely along the lines of the theory
of photoluminescence. Only at liquid-helium temperatures and for very simple,
well-characterized systems would there appear to be any possibility of obtaining
quantitative agreement between the intensities of experimental CL spectral and
theoretical predictions. The identification of defect levels and phonon lines according
to their energy is, however, more straightforward. However, since it gives the
most sensitive spectral signature obtainable in correlation with HREM images, the
technique shows considerable promise in many areas of microscopy. These include
mineralogy, catalysis and semiconductor studies. For example, it is likely that
measurements of CL polarization could be related to the crystallographic site of
impurities, while the extension of CL detectors into the infrared region has opened
up the possibility of work on silicon and other small-bandgap semiconductors. As
final example, Fig. 13.13 shows the infrared CL emission spectrum obtained at 25 K
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Fig. 13.12 Scanning monochromatic CL images (lower panel) and corresponding dark field (220) images
(upper panel) of dislocations in type IIb diamond recorded at 89 K with the apparatus of Fig. 13.11. Inset
are the optical emission spectra taken from each of the individual dislocations shown. The dislocation
types are (1) screw, (2) edge, (3) screw, (4) edge, (5) screw. (From Yamamoto et al. (1984).)



368 High-Resolution Electron Microscopy

0.80 0.85 0.90
Energy (eV)

D1C
l I

nt
en

si
ty

 (
ar

b.
 u

ni
ts

)

D2

D5 NP # 2?
(D5)

D6

C
D5

D5 + TO (D3)
A

B

NP #7
(D4)

0.95 1.00

Fig. 13.13 Infrared CL spectrum recorded at 23 K from a group of straight dislocations in silicon using
a similar apparatus to that shown in Fig. 13.11, but with an intrinsic germanium detector. The transverse
optical (TO) and no-phonon (NP) lines are indicated. (From Graham et al. (1987).)

from a group of straight dislocations in silicon, using an apparatus similar to that
shown in Fig. 13.11. An intrinsic germanium detector was used, cooled to 77 K.
The interpretation of these CL lines, and their relationship to those observed from
similar samples by photoluminescence, are discussed in the literature (Graham et al.
1987).

13.5 Environmental HREM, HREM of surfaces, holography
of fields and in-situ manipulation

By constructing a controlled-atmosphere environmental cell within either the
objective lens pole-piece or the sample holder, it is possible to induce oxidation
and other reactions at elevated pressures and temperatures for study by HREM.
Beyond that, the instrument becomes a complete synthesis and characterization
laboratory, providing atomic-scale imaging and spectroscopy, if ELS and EDX
facilities are also fitted. (The discovery of the nanotube highlights the importance of
direct observation at the atomic scale of the products of novel synthesis.) The recent
literature includes studies of oxidation and reduction, of nitridation, intercalation
reactions, polymerization and hydroxylation reactions, and is well reviewed in the
text by Gai (1997). Differentially pumped apertures may be used in the pole-piece, or
thin carbon films across a cell in the holder, to accommodate the pressure difference.
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Fig. 13.14 Solid state chemical reactions in action. HREM image along [001] of in-situ oxidation product
of Nb4W13O47, oxidised in an environmental cell under 20 mbar of oxygen. Domains of different structure
appear as a result of the oxidation. Microdomains of WO3, tetragonal tungsten bronze and disordered
bronze structures can be identified. (Modified JEOL 4000EX.) (See Krumeich et al. (1999).)

Recent cell designs are described in Lee et al. (1991), Boyes and Gai (1997), and
Sharma (2001). The larger pole-piece gap available in high-voltage machines is
advantageous, but most recent work has used medium voltage machines to minimize
radiation damage. Video recordings of these dynamic processes may be obtained.
Near-atomic resolution images (e.g. 0.2 nm) are obtainable in such a cell at pressures
as high as 5 torr (1 torr = 133.3 Pa, 760 torr is atmospheric pressure) (Hansen et al.
2001), and the method has proven invaluable for the study of atomic mechanisms in
catalytic reactions (Boyes and Gai 1997). An hydrated atmosphere has been used for
biological samples (wet cells), however the cryomicroscopy method (Section 6.9) has
proven more powerful. Figure 13.14 shows the in-situ partial oxidation of a niobium
tungsten oxide thin crystal, in which the oxidation is seen to occur as a result of the
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formation of domains of different sizes, whose crystal structures may be identified
from the images (Sayagues and Hutchison 1999). Using the white-line ratios in ELS
spectra, it has been possible to monitor the local oxidation state of Cerium in CeO2
during reduction (Sharma and Crozier 1999). Similar cells have been used to directly
observe the process of chemical vapour deposition (Drucker et al. 1995). This ability
to directly observe controlled combinatorial synthesis at the atomic level, combined
with nanoscale analytic capabilities, is one of the most exciting areas of future HREM
development.

The study of phase-transitions by in-situ HREM has deepened our understanding
of these processes at the atomic level. Near-atomic resolution has been obtained at
temperatures well above 600 ◦C (Sinclair and Konno 1995), allowing the atomic
mechanisms involved in the motion of interfaces to be deduced. Comparative studies
have established that surface diffusion does not dominate these in-situ thin film
observations. For the highest temperatures, a heating holder consisting a single
current-carrying wire running across the grid has been used, with nanoparticles
attached to it. In this way it has been possible to obtain lattice images of silicon

Fig. 13.15 Direct imaging of surface atoms. Transmission image of a thin (111) silicon crystal obtained
in a UHV HREM instrument, showing the 7×7 surface reconstruction, with atomic structure inset. Unlike
STM images, this HREM image shows all the atoms in the top three layers in projection (Bengu et al.
1996).
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at 1400 ◦C, whose melting point is 1414 ◦C (Mori et al. 1994). Remarkably, it
is also possible to image at high resolution through liquids. A simple, easily
manufactured liquid cell has been described (Williamson et al. 2002), in which the
electrochemical deposition of Cu from a copper sulphate solution is studied by TEM.
Dynamic observations resolve the events occurring during the progressive nucleation
of clusters, allowing the growth of individual copper clusters to be followed. The
liquid cell geometry lends itself to the study of a wide variety of wet processes,
including anodization, corrosion, growth of crystals from solution, liquid crystal
switching and alignment, as well as biological objects and processes. By extension
of this work, the use of lithographically fabricated cells for in-situ TEM will be an
exciting growth area for HREM in the near future.

The solution of the atomic structure of the silicon (111) 7 × 7 surface by ultra-
high vacuum electron diffraction using a modified TEM (Takayanagi 1984) solved
a long-standing problem in the field of surface science just prior to the appearance
of the scanning tunnelling microscope (STM). This has provided much incentive for
further development. Figure 13.15 shows that images may now be formed from these
transmission diffraction patterns, projected through a thin crystal with reconstructed
surfaces. Unlike the STM images, which image the adatoms only, the UHV HREM
imaging shows all the atoms in the top three layers in projection, including the dimers
(Bengu et al. 1996). (The image has been translationally and rotationally averaged
to improve contrast.) For a review of UHV TEM, see Gibson and Lanzerotti (1989)
and Yagi (1993).

In addition to the atomic-resolution electron holography effort described in
Section 7.3, which followed Gabor’s original aim of using electron holography
to improve resolution, the method has been found invaluable for the mapping
of magnetic and electric fields (Matteucci et al. 1991). Dramatic images of
superconducting vortices and of magnetic domains in nanoparticles may be found
in Tonomura (1993), while the electric fields associated with ferroelectric materials
(Spence et al. 1993), and field-emission tips (Cumings et al. 2002) have also be studied
in this way. For holographic imaging of the multilayers used to produce the Giant
Magnetoresistance effect, see Mankos et al. (1994). Using this technique it is possible
to map out magnetic fields with nanometer spatial resolution, and a sensitivity of 1500
bohr magnetons ( about 500 cobalt atoms), which is more sensitive than a SQUID
magnetometer. At low temperatures, where flux in superconductors is quantized,
experiments may be arranged so that each holographic fringe corresponds to a single
quantum of flux (2 × 10−15 Wb). The field is reviewed in Voelkl (1998).

The in-situ manipulation of nanostructures during HREM observation presents
great challenges. Straining stages have been used for many years for dynamic
observation of strains during deformation using lower resolution diffraction contrast.
HREM imaging of the approach of an operating STM tip to a surface was achieved in
1992 (Lo and Spence 1993), leading to the development of improved UHV HREM
instruments with this capability. Fig. 13.16 shows an image of a gold nanowire
consisting of four strands of atoms (Kondo and Takayangi 1997). With further
stretching using a piezo motion, the wire is reduced to a single line of gold atoms, with
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Fig. 13.16 Nanowires. UHV HREM image of gold nanowire suspended in vacuum, formed between a
gold surface and a gold STM tip, oriented normal to the TEM beam. The wire is four atoms thick. In (b) is
shown the wire one atom thick which results from stretching the wire in (a). The quantization of the wire’s
electrical conductance has been correlated with its structure (Kondo and Takayangi 1997).

a variety of novel intermediate structures. In development of this work, the quantized
resistance of these wires can be correlated with their atomic structure, as seen in these
images. The conductance changes by 2e2/h with the loss of each atomic layer.
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The following FORTRAN program calculates values of the defocus �f , spherical
aberration constant Cs and astigmatism constants from optical diffractogram ring
radii Sn. It is based on the method of Krivanek (Optik, 45, 97) and was written by
M. A. O’Keefe. As written, it is restricted to the case of large underfocus settings,
but is easily modified for overfocus (�f positive) values, as described below.

The method depends on the fact that minima will occur in the diffractogram
intensity (given by eqn (3.36)) if

χ(u) = 2π [�f λu2/2 + Csλ
3u4/4] = Nπ (A1.1)

Here N is any integer (including zero). On dividing by u2, we find that a plot of
N/u2 against u2 forms a straight line with slope (Csλ

3/2) and intercept (�f λ). The
program uses linear regression to find the slope and intercept (and hence Cs and �f )
from the values of N and Sn supplied. The ring radii Sn must be specified in reciprocal
Angstroms, and are related to the measured ring radii by eqns (10.5) or (10.6). Input
data includes a title and the microscope accelerating voltage in kilovolts. Then follows
one line of input data for each maximum or minimum, containing, in column 2, the
number of the ring, in column 4 a zero (for a minimum) or a one (for a maximum), and,
in the next sixteen columns, the radius of this maximum or minimum (in reciprocal
Angstroms). The method of numbering the rings is indicated by the numbers across
the page in Fig. A1.1. These numbers correspond to −N in eqn (A1.1). (The program
actually works with a new n = 2N for convenience, evaluated after line 10, so that
the slope and intercept are twice the values given above.)

The correct numbering of the rings requires some care. All the worked examples in
Krivanek (1976) follow the system indicated in Fig. A1.1, which is correct only for
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2

1 2 2 3 3 4

3
4
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7

Fig. A1.1 Optical diffraction pattern of an electron image of a thin carbon foil suitable for use with the
FORTRAN program given. The pattern shows negligible astigmatism and drift (see Section 10.7). Numbers
running across the pattern are the numbers NRING needed as input to the program. The maximum of the
first (inner) ring has not been used since its position is difficult to determine. The numbers running down the
pattern are the quantities n = 2NRING − MAXMIN evaluated after line 10 of the program. The intensity
in this pattern is given by eqn (3.36), together with the damping effects of partial coherence and chromatic
aberration discussed in Chapter 4, Instrumental aberration constants are obtained by the program from
patterns such as these.

large underfocus (�f negative). Figure A1.2 shows χ(u)/π plotted for three defocus
values with Cs = 1.8 mm at 100 kV. The values of N from eqn (A1.1) are indicated
on the curves. It is seen that there are essentially three cases: (1) Positive focus, for
which N = 1, 2, 3, 4, . . . ; (2) Near Scherzer focus, for which the first value of N

must be 0 (N = 0, 1, 2, 3, . . . ); and (3) Larger negative focus, in which case (for the
example shown) N = −1, −2, −3, −3, −2, −1, 0, 1, 2, 3, 4, . . . . The turning point
occurs at the stationary phase condition (see eqn (5.66)).

U0 =
√

�f

Csλ2
(A1.2)

Here the declining values of N start to increase, and may or may not repeat at
the minimum value (e.g. −3 above). The stationary phase condition may sometimes
be identified on a diffractogram by a broad intense ring, however if this condition
coincides with χ(u) = −mπ , a broad absence of intensity will result. In practice,
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Fig. A1.2 The function χ(u) plotted in units of π for three focus settings �f = −980 (Scherzer focus),
−2100 and +800 Å as indicated. Values of N in eqn (A1.1) are indicated. Here Cs = 1.8 mm and the
accelerating voltage is 100 kV.

as shown in Fig. A3.1, the turning point may be driven beyond the resolution of the
microscope by choosing from eqn (A1.2)

|�f | ≥ Csλ
2u2

0 (A1.3)

where u0 is the highest spatial frequency in the diffractogram. Then the values of
N will increase monotonically by unit increments with negative sign. These are
the conditions for which the FORTRAN program is written. An additional internal
consistency test also exists, since the program returns values of the standard deviation
for slope and intercept. Because of the method of analysis, these values should not
be taken as the errors in Cs and �f . They may, however, be used to confirm that a
good straight-line fit has been obtained, and that the values of N have therefore been
correctly chosen.

The best way to use the program for the calibration of a new microscope is to
record several through-focus series at focus settings satisfying eqn (A1.3) (using
manufacturer’s data for Cs and U0), from which the smallest focal step increment
(and Cs) can be deduced. The Scherzer focus required for structure imaging can
then be obtained by counting ‘clicks’ from the minimum contrast position, given by
eqn (6.26) (see also Section 12.5).
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A FORTRAN program for finding defocus and spherical aberration constants
from measured optical diffractograms ring radii

C PROGRAM CSEPS
C TO DETERMINE CS(MM) AND DEFOCUS (ANGSTROMS) GIVEN RING DIAMETERS
C FROM DIFFRACTOGRAMS OF MICROGRAPHS OF THIN AMORPHOUS MATERIALS

DIMENSION NAME(13),X(20),Y(20)
C READ IN VOLTAGE IN KV
C READ (5,100) NAME,VOLTK
C CALCULATE WAVELENGTH

WAVL = 0.387818/SQRT(VOLTK ∗ (1.0 + 0.978459E − 3 ∗ VOLTK))
WAVCUB = (WAVL ∗ ∗ 3) ∗ 1.0E7

70 N = 0
20 CONTINUE

C READ IN NUMBER OF RING (1 FOR FIRST, 2 FOR SECOND . . . .),
C WHETHER RING IS MAXIMUM (MAXIMIN = 1) OR MINIMUM (MAXIMIN = 0)
C RADIUS OF RING IN RECIPROCAL ANGSTROMS

READ(5,110)NRING,MAXMIN,URAD
IF(NRING,NE.0) GO TO 10
IF(N.EQ.0) GO TO 80
GO TO 30

10 CONTINUE
IF(N.EQ.0) WRITE(6,200) NAME, VOLTK,WAVL
N = N + 1
USQ = URAD ∗ URAD
X(N) = USQ
Y(N) = −FLOAT(2 ∗ NRING-MAXMIN)/USQ

C CHECK WHETHER MAXIMUM OR MINIMUM
IF(MAXMIN.EQ.0) GO TO 25
IF(MAXMIN.EQ.1) GO TO 35
WRITE(6,260)
GO TO 80

25 WRITE(6,220) NRING, URAD,X(N), Y(N)
GO TO 20

35 WRITE(6,210) NRING,URAD,X(N), Y(N)
GO TO 20

30 CONTINUE
C IF N.GT.1 THEN FIT CURVE

IF(N.FT.1) GO TO 40
WRITE(6,230)
GO TO 70

40 CONTINUE
SUMX = 0.0
SUMY = 0.0
SUMX2 = 0.0
SUMXY = 0.0
SUM2 = 0.0
FN = FLOAT(N)

C SUM OVER N POINTS
DO 50 1 = 1,N
XI = X(I)
YI = Y(I)
SUMX = SUMX + XI
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SUMY = SUMY + YI
SUMX2 = SUMX2 + XI ∗ XI
SUMXY = SUMXY + XI ∗ YI
SUMY2 = SUMY2 + YI ∗ YI

C CALCULATE CURVE PARAMETERS
50 CONTINUE

DELTA = FN ∗ SUMX2 − SUMX ∗ SUMX
A = (SUMX2 ∗ SUMY − SUMX ∗ SUMXY)/DELTA
B = (SUMXY ∗ FN − SUMX ∗ SUMY)/DELTA
EPS = A/(2.0 ∗ WAVL)
CS = B/WAVCUB
C = FN − 2.

C IF NUMBER OF POINTS IS LESS THAN 3 THEN SKIP STD. DEV. CALCULATION
IF(C.LT.1.E − 3) GO TO 60
VNCE = (SUMY2 + A∗A∗FN + B ∗ B ∗ SUMX2 − 2.0 ∗ (A ∗ SUMY + B ∗ SUMXY

− A ∗ B ∗ SUMX))/C
SIGA=SQRT(VNCE ∗ SUMX2/DELTA)
SIGB = SQRT(VNCE ∗ FN/DELTA)
R = (FN ∗ SUMXY − SUMX ∗ SUMY)/(SQRT(DELTA ∗ (FN ∗ SUMY2 − SUMY ∗ SUMY)))
SIGEPS = SIGA/(2.0 ∗ WAVL)
SIGCS = SIGB/WAVCUB
WRITE(6,240) A,SIGA,B,SIGB,R,EPS,SIGEPS,CS,SIGCS
GO TO 70

60 CONTINUE
WRITE(6,250)A,B,EPS,CS
GO TO 70

80 CONTINUE
CALL EXIT

100 FORMAT(13AG/F10.5)
110 FORMAT(2I2,F12.6)
200 FORMAT(1H1,13AG, / ,15HOVOLTAGE (KV) = ,F8.2,10X,16HWAVELENGTH (A) = ,

$ F9.6,//)
210 FORMAT(1H0,10X,17HRADIUS OF MAXIMUM,12,2H = ,F7.4,17H (RECIP.ANGSTROM),

$ 20X,3HX = ,F7.5,5X,3HY = ,F8.2)
220 FORMAT(1HO,10X,17HRADIUS OF MINIMUM,12,2H = ,F7.4,17H (RECIP.ANGSTROM),

$ 20X,3HX = ,F7.5,5X,3HY = ,F8.2)
230 FORMAT(1HO,10X,41HONLY ONE POINT IN DATA SET–DATA IGNORED,/)
240 FORMAT(1HO,10X,11HINTERCEPT = ,F8.2,2,H(,F5.2,11X,7HSLOPE =

$ ,F8.2,2H (,F6.2,1H),11X,12HCORR.COEFF. = ,F6.4,///,1HO,50X,20HDEFOCUS
$ (STD.DEV.) = ,F9.2,2H (,F6.2,6H) ANG.,5X,15HCS (STD,DEV.) = ,F6.3,2H
$ (,F4,3.5H) MM.,//)

250 FORMAT(/,1H0,10X,
$ 11HINTERCEPT = ,F8.2.5X,7HSLOPE = ,F8.2,39X,9HDEFOCUS =
$ ,F9.2,5H ANG.,5X,4HCS = ,F6.3,4H MM.,//)

260 FORMAT(1HO,20X,′∗∗∗RING NOT LABELED AS MAXIMUM OR MINIMUM∗∗∗′)
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Sample data and output from program (100 KV)

TEST OF PROGRAM — O.L.’S DATA
VOLTAGE (KV) = 100.00 WAVELENGTH (A) = 0.037013

RADIUS OF MAXIMUM 1 = 0.0770 (RECIP.ANGSTROM) X = 0.00593 Y = −168.66
RADIUS OF MINIMUM 1 = 0.1120 (RECIP.ANGSTROM) X = 0.01254 Y = −159.44
RADIUS OF MAXIMUM 2 = 0.1400 (RECIP.ANGSTROM) X = 0.01960 Y = −153.06
RADIUS OF MINIMUM 2 = 0.1660 (RECIP.ANGSTROM) X = 0.02756 Y = −145.16
RADIUS OF MAXIMUM 3 = 0.1890 (RECIP.ANGSTROM) X = 0.03572 Y = −139.97
RADIUS OF MINIMUM 3 = 0.2150 (RECIP.ANGSTROM) X = 0.04622 Y = −129.80
RADIUS OF MAXIMUM 4 = 0.2420 (RECIP.ANGSTROM) X = 0.05856 Y = −119.53
RADIUS OF MINIMUM 4 = 0.2890 (RECIP.ANGSTROM) X = 0.08352 Y = −95.78
INTERCEPT = −171.83 (0.85) SLOPE = 908.90 (19.57) CORR.COEFF. = 0.9986

DEFOCUS (STD.DEV.) = −2321.26 (11.50) ANG. CS (STD.DEV.) = 1.792 (0.039)MM
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Use of an absorption function to represent the objective aperture effect

The justification for the use of an absorption function φi(x, y) = μ(x, y)t/2σ in
Section 6.1 to account for the exclusion of scattering outside the objective aperture
from the image can be seen as follows. The true image amplitude in the ‘flat Ewald
sphere’ approximation (see Section 3.4) is

ψi(x, y) = [exp(−iσφR(x, y))] ∗ I (x, y)

where the ∗ denotes convolution and I (x, y) is the microscope impulse response
(equal to the transform of A(u, v) in Section 3.2). Here φR(x, y) is the unsmoothed
specimen electrostatic potential. The use of an absorption function predicts an image
amplitude given by eqn (6.2) as

ψ ′
i (x, y) = exp(−iσφR(x, y) ∗ I (x, y)) exp(−σφi(x, y))

A comparison of the expansion to second order of these two expressions allows the
absorption potential to be defined as

σφi(x, y) =
(

σ 2

2

)
φ2

R(x, y) ∗ I (x, y) −
(

σ 2

2

)
[φR(x, y) ∗ I (x, y)]2

which gives the correct limiting behaviour for small and large apertures. I am grateful
to Professor J. M. Cowley for a discussion on this point. It is interesting to note that
the use of an absorption function common in biological microscopy for the imaging of
thick specimens at low resolution is based on a form of ‘column approximation’. The
image intensity deficit in the neighbourhood of a thin column of specimen is obtained
by calculating the scattering from an equivalent specimen whose structure (mass
thickness) is everywhere the same as that of the true specimen within this column.
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Resolution-limiting factors and their wavelength dependences

As mentioned in Section 4.2, it is necessary to distinguish two resolution limits in high-
resolution electron microscopy. The first, the ‘information-resolution limit’, gives the
ultimate band limit of the instrument and indicates the highest resolution detail which
could in principle be extracted by image-processing techniques, or by comparisons
with computed images. The second is the familiar ‘point-resolution’ limit at which
images can be simply interpreted. The theory on which these two concepts are based
is first reviewed, before discussing their differing wavelength dependences.

For specimen thicknesses at which the central beam is much stronger than any
other diffracted beam, the combined effects of electronic instabilities and the use
of an extended, incoherent effective disc source result in the imposition of a virtual
aperture or ‘damping envelope’ on the objective-lens transfer function of the form
(O’Keefe and Anstis, unpublished results; see also references for Section 4.2).

A(K) = exp{−π2λ2�2K4/2}2J1|2πθc[�f K + λ(λCs − iπ�2)K3]|
|2πθc[�f K + λ(λCs − iπ�2)K3]| (A3.1)

where the first two terms on the right of eqn. (4.8a) have been omitted. A similar
expression is given in Section 4.2 for a Gaussian source. Here λ is the electron
wavelength. Cs is the spherical aberration coefficient, �f is the defocus incre-
ment, K is the scattering vector (|K| = sin θ/λ = (u2 + v2)1/2 where θ is
the scattering angle), and θc is the illumination semi-angle. The quantity � is
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defined by

� = CcQ = Cc

[
σ 2(V0)

V 2
0

+ 4σ 2(I0)

I 2
0

+ σ 2(E0)

E2
0

]1/2

(A3.2)

where σ 2(V0) and σ 2(I0) are the variances in the statistically independent fluctuations
of accelerating voltage V0 and objective lens current I0 respectively. Thus the root-
mean-square value of the high-voltage fluctuation is equal to the standard deviation
σ(V0) = [σ 2(V0)]1/2. Cc is the lens chromatic aberration constant and the full width
at half maximum height of the energy distribution of electrons leaving the filament is

�E = 2.345σ(E0) = 2.345[σ 2(E0)]1/2

For high-resolution imaging in which no objective aperture is used, eqn (A3.1) sets the
limit to the highest resolution detail which can be extracted from an electron image.
This detail, however, may not be simply related to the specimen structure, since it is
obtained using an oscillating transfer function. An ‘information-resolution limit’ can
thus be defined as the K value(s) U0(i) for which A(K) = 2J1(2.6)/2.6 = exp(−1).
The solutions to the resulting cubic equation are, for � = 0,

U0(1) = S1 + S2

U0(2) = −U0(1)/2 + i
√

3(S1 − S2)/2

U0(3) = −U0(1)/2 − i
√

3(S1 − S2)/2 (A3.3)

where

S1,2 =
[{

b/θc ±
(

a/�f 3

λ2Cs
+ b

θc

)1/2}/
(λ2Cs)

]1/3

with

a = 1/27 and b = (2.6/4π)2

The outer cut-off U0(1) is preceded by one or two crossings of the line f (K) =
exp(−1) at U0(2) and U0(3) if Im(U0(2)) = 0 as indicated in Fig. A3.3(b). Phys-
ically, the effect of partial coherence is seen to attenuate contrast transfer in regions
where the slope of χ(K) (see eqn (3.24)) is large and to preserve good contrast in
regions where this slope is small, as shown in Fig. A3.1. The function χ(K) has a
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Fig. A3.1 The function χ(Ū) drawn for three focus values �f = diC
1/2
s λ1/2 where di are the numbers

indicated on each curve. The ordinate is the generalized spatial frequency Ū commonly used in the literature,
where |K| = θ/λ = (Csλ

3)−1/4Ū . The attenuation of spatial frequencies due to limited spatial coherence
is approximately proportional to the gradient of this curve (see eqn (4.8)). The curves explain how the
band limit moves to higher spatial frequencies Ū with increasing defocus. If the attenuation is considered
severe for all Ū beyond that for which χ(Ū) has the critical gradient shown by the three tangential line
segments indicated, we see that this cut-off gradient occurs at higher spatial frequencies as the defocus is
increased. (Frank 1976.)

minimum within the contrast transfer intervals which occur between U1 and U2 where

U1,2 =
[(

8n + 3

2

)1/2

± 1

]1/2

C
−1/4
s λ−3/4 = k

1/2
n C

−1/4
s λ−3/4 (A3.4)

for a focus setting

�fn =
(

8n + 3

2

)1/2

C
1/2
s λ1/2 (A3.5)

as shown in Fig. A3.3(a).
For n = 0, eqns (A3.4) and (A3.5) give the Scherzer conditions commonly used for

the structure imaging of defects, and this defines the instrumental point-resolution (see
eqn (6.17)). The cases n = 0 and n = 4 are shown for a typical modern instrument
in Fig. A3.2. The value of n is equal to the number of minima which precede the
passband. We note that the width of these ‘passbands’ �U(n) = U1 − U2 depends
on Cs, λ, and n as discussed below. Here the slight effect of α and � on �U(n) has
been neglected. Solutions similar to those given in eqn (A3.3) can also be obtained
for � 	= 0; however, the resulting expressions are cumbersome and of little practical
use since these resolution-limiting effects can readily be treated separately.
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Fig. A3.2 Transfer functions for a high-resolution 100 kV instrument with Cs = 0.7 mm, beam
divergence θc = 1 mrad and � = 5.4 nm. The functions shown here and in Fig. 4.3 are actually
Ai(K) cos χ(K)+AR(K) sin χ(K), whereAi(K) andAR(K) are the imaginary and real parts of eqn (A3.1),
since, for linear imaging, this can be shown to be the coherent transfer function following the method of
Section 3.4. In fact the term involving Ai(K) is very small, and the damping envelope can be taken to be the
real part of eqn (A3.1) to a good approximation. Curve (a) is drawn for the Scherzer focus �f = −62.3 nm
while (b) is drawn for �f = −212.8 nm (n = 4 in eqn (A3.5)). The second curve includes a passband
extending beyond 5 nm−1.

For θc = 0 and A(K) = exp(−2), eqn (A3.1) gives (Fejes 1977),

U0(�) =
(

2

πλ�

)1/2

(A3.6)

as the information-resolution limit due to electronic instabilities alone. We note that
it is the product λCcQ which one wishes to minimize for highest ‘information-
limit’ resolution. Assuming that images are recorded at the focus settings given by
eqn (A3.5) so that partial coherence effects can be neglected in the neighbourhood of
the passband �U(n), eqns (A3.4) and (A3.6) give

� =
(

2

knπ

)
C

1/2
s λ1/2 = CcQ (A3.7)
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as the electronic stability needed for inclusion of passband �U(n), where kn =
(8n + 3/2)1/2 + 1. For the commonly used Scherzer condition, this is

� = 0.286C
1/2
s λ1/2 = CcQ (A3.8)

These results indicate that, in the absence of an objective aperture, differing factors
will control the resolution of electron images at various accelerating voltages. For
example, at 100 kV with Cs = 0.7 mm and Cc = 1 mm, eqn (A3.8) gives Q =
1.5 × 10−5 as the stability needed to obtain the Scherzer resolution limit (n = 0
in eqns (A3.4) and (A3.5)). This stability is comfortably exceeded by most 100 kV
instruments, for which manufacturers typically claim σ(V0)/V0 = 2 × 10−6 =
σ(I0)/I0, and σ(E0)/E0 = 5 × 10−6 giving Q = 6 × 10−6. Electron energy-loss
measurements give 0.7 eV < �E < 2.4 eV as the electron gun-bias setting varies
between maximum and minimum for a thermonic filament (see Fig. 9.5). Note that
maximum gun bias here corresponds to minimum beam current. Thus, for such an
instrument we have from eqn (A3.2)

� = 10(4 + 16 + 9)1/2 = 5.4 nm (A3.9)

for maximum gun bias and

� = 10(4 + 16 + 100)1/2 = 10.1 nm

at minimum gun-bias setting. Since, for small illumination semi-angles the effect of
partial coherence is negligible in the region of the pass-bands given by eqn (A3.4), the
resolution of 100 kV images recorded at the favourable focus settings of eqn (A3.5) is
seen to be controlled by the gun-bias setting for small bias settings (high-beam current)
and by the objective-lens current stability for high bias settings (low-beam current).
This broad conclusion is independent of the objective-lens aberration coefficients.
At maximum gun bias we have, from eqn (A3.6), for such an instrument, U0(�) =
0.56 Å−1, which, by eqn (A3.4) would allow the fifth contrast transfer interval to
be included. At minimum gun bias, U0(�) = 0.395 Å−1. Thus, the use of very
small illuminating apertures on 100 kV machines would appear to be a less important
priority than the minimization of chromatic aberration. For structure images recorded
at the Scherzer focus (n = 0 in eqn (A3.5)), however, the use of smaller illumination
semi-angles will nevertheless introduce higher-resolution detail; however, the use of
several images for subsequent analysis recorded at the focus settings of eqn (A3.5)
allows the largest illumination aperture to be used (producing the most intense final
image) for the smallest resolution penalty. We note also from eqn (A3.5) that for
structure imaging under Scherzer conditions (n = 0 in eqns (A3.4) and (A3.5)) the
rather large illumination semi-angle of θc = 2.3 mrad can be used at 100 kV with
Cs = 0.7 mm if the resolution limit due to partial coherence is to be equal to the
Scherzer cut-off (U1 = 0.345 Å−1). Finally, as a matter of practical experience, it is
generally found that conscientious monitoring of the gun-chamber vacuum is needed
in order to maintain the manufacturer’s quoted high-voltage stability.
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At higher voltages the effects of chromatic aberration due to the electron source
rapidly become unimportant. The best current values for eqn (A3.2) at an accelerating
voltage of 1 MeV appear to be σ(V0)/V0 = σ(I0)/I0 = 5 × 10−6 with σ(E0)/E0 =
1×10−6 (Horiuchi, personal communication). With Cc = 4.4 mm such an instrument
has

� = 44(25 + 100 + 1)1/2 = 49.4 nm (A3.10)

giving, from eqn (A3.6), an information-resolution limit of 0.384 A−1, set chiefly by
objective-lens current instability. This λ� value of 4.3 Å2 is considerably poorer than
the value of 2.0 Å2 for the 100 kV instrument cited in eqn (A3.9) at maximum gun bias.
This shows that, if comparable high-voltage stability can be obtained, a field-emission
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Fig. A3.3 Transfer functions for a 300 kV electron microscope. The accelerating voltage chosen
(300 kV) is a compromise between the various practical disadvantages of 1 MeV machines and the
improvement in point-resolution accompanying a reduction in electron wavelength. Parameters used are;
V0 = 300 kV, Cs = 1.5 mm, � = 5.4 nm, θc = 1 mrad, defocus �f = −66.5 nm (Scherzer focus) in (a).
The electron wavelength is 0.001969 nm. Curve (b) is drawn for similar conditions with �f = −227.3 nm
(n = 4) and includes the damping envelope (shown dotted) given approximately by the real part of
eqn (A3.1). This dotted curve clearly illustrates the dip in the damping envelope which occurs for large
values of n where the gradient of χ(|K|) can be large for |K| values smaller than the passband. The hori-
zontal line in (b) is drawn for f (|K|) = exp(−1) and the points U0(1), U0(2), U0(3), of eqns (A3.3) are
indicated. In (a), the dotted lines indicate the method of defining the quantities U1 and U2 of eqn (A3.4)
which determine the width and position of the passbands.
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300 kV instrument with, if possible, improved objective-lens current stability should
give the highest information-resolution limit. The chief advantage of high-voltage
instruments is thus seen to lie in the extended range of simply interpretable image
detail which they can provide.

Practical considerations such as image-viewing convenience, photographic emul-
sion and viewing-phosphor sensitivity, room height for the microscope and overall
cost suggest that designs for a few hundred kilovolts achieve the best compromise.
For example, a design with V0 = 300 kV, Cs = 1.5 mm, and � = 5.4 mm gives
a Scherzer resolution limit (n = 0 in eqn (A3.4)) of 0.21 nm (point-to-point) or
an information-resolution limit of U0(�) = 0.79 Å−1 (eqn (A3.6)). The allowed
illumination semi-angle consistent with this Scherzer resolution is then 1.9 mrad,
producing a conveniently intense final image for observation at high magnification.
Transfer functions for this 300 kV design are shown in Fig. A3.3. The design stabil-
ities used are σ(V0)/V0 = σ(I0)/I0 = 2 × 10−6, as for 100 kV machines. Unlike
100 kV instruments, however, the quality of the images obtained on such an instru-
ment would be rather insensitive to changes in the electron gun-bias setting, since, at
300 kV, the last figure in the bracket of eqn (A3.9) changes insignificantly between
the maximum and minimum gun-bias settings.

Optimum conditions for aberration-corrected instruments are discussed in sec-
tion 7.4.
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What is a structure image?

The term ‘structure image’ has been proposed by J. M. Cowley to describe that
restricted set of electron lattice images which may be directly interpreted to some
limited resolution in terms of the specimen’s projected structure and which were
obtained using instrumental conditions which are independent of the structure, and
so require no a priori knowledge of the crystal structure. This last condition cur-
rently excludes all images obtained by ‘matching’ the microscope transfer function
to the crystal reciprocal lattice. At present only the weak-phase object, the projected
charge density approximation and the ADF-STEM incoherent imaging mode provide
a prescription for structure-independent instrumental conditions which therefore give
structure images.

The development of the current generation of ‘medium-voltage’ HREM machines
has now made structure imaging routinely possible in many materials. The measured
point-resolution of these instruments is about 0.165 nm. Aberration corrected instru-
ments, with a site-limited resolution of about one Angstrom will bring a much wider
range of materials and projections into the domain of structure imaging.
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The challenge of high-resolution electron microscopy

This book is intended to teach students and research workers how to record and
interpret atomic resolution transmission electron micrographs. However, a well-
defined aim is the greatest stimulus to progress. The following project therefore
provides a thorough test of all the experimental skills taught in this book, together with
a severe test of the underlying theory. Any student who completes it may reasonably
claim to be an authority on high-resolution electron microscopy.

Magnesium oxide crystals of sub-micron dimensions are easily made by burning
magnesium ribbon in air (see Section 10.1). A ‘holey carbon’ grid passed through the
smoke will collect particles for examination in the electron microscope. The particles
form in perfect cubes, and can be found in the (110) orientation with the electron
beam passing along the cube face diagonal. The thickness is therefore known exactly
at every point in a lattice image. It is possible to record a structure image of this
material on the newest electron microscopes, and to determine the focus setting from
diffractogram analysis (see Section 10.7). The image can then be matched as a function
of thickness against computed images by the methods described in Sections 5.6 or 5.7.
All the thickness-dependent contrast reversals in the lattice fringes due to multiple
scattering should be correctly reproduced in the computed images.

Challenging aspects of this project include (1) the variation of focus along the lower
face of the crystal; (2) the possible need for ‘absorption’ corrections in the calculations
for the thick regions (see Goodman, P. and Lehmpfuhl, G. (1967). Acta Cryst. 22,
14); (3) difficulties in matching the fresnel fringes along the crystal edge of varying
thickness, where a ‘profile image’ of the MgO surface will be seen; (4) refinement
of the atomic scattering factors for ionicity effects and (5) the need for very accurate
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alignment of the crystal. To the author’s knowledge, a thorough analysis of this
problem has yet to be published. Ultimately, the credibility of the dynamical imaging
theory given in this book depends on its ability to reproduce these experimental results.

This project represents a summation of practically all the useful knowledge in
this book.
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a.c. field interference 309
Abbe interpretation of imaging 56
aberration coefficients 34, 216, 388
aberration correction 216
aberration correction focus 218
aberrations 36, 38, 48
absorption 159
absorption contrast 157, 159
absorption function 248
absorption image 180
accelerating voltage 168, 171
accelerating voltage, benefits of higher 159,

168
achromatic circle 225
ADF-STEM 238
air bags 312
Al/MgAl2O4 interface 147
Alchemi 231, 254, 345
algorithms 125
align, images 214
alignment, automated 335
alpha-helix 194
alpha-null 208
amino acid 188
amorphous carbon 178, 297
amorphous materials 82, 179, 226
amplitude contrast 156
angular magnification 23
annular aperture 81, 82
aperture contrast 157

aperture stop 23
aperture synthesis 214
ASIC detector 280
astigmatic difference, measurement 294
astigmatism 44, 60, 319
astigmatism removal, automated, 336
asymmetrical objectives 32
asymptotic ray 28
atom, image 135
atom location by channelling enhanced

microanalysis 345
atom position determination 132, 221
atomic force microscope 187
atomic clusters 304
atomic column positions, bright or dark 106
atomic ionization 352
atoms used as lenses 230
automated focusing 333
autotuning 333

background 63
background in an energy-loss spectrum 346
background in EDS 346
backscattering 269
bacteriorhodopsin 193
barium titanate 211
Bayes theorem 213
beam divergence 69, 73, 76, 84, 94
beam reduction 115
beam stops 174
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bias resistor 272
bias, gun 272
biasing, Wehnelt 270
bicrystals 357
binocular focusing 320
biology, cryomicrsocopy 156
biprism 215, 300
Bloch wave methods 110, 131, 138
Bloch waves 111, 113
block-diagonal 115
Boersch effect 70, 276
bonding effects in CBED 359
Born approximation 160
Born series 63
bosons 77
bound states 110, 115, 255
boundary conditions 114
Bragg angle 128, 214
brightness, definition and measurement 267
brightness, upper limit 267
brightness of sources compared 268
Brite-Eurem 210

camera length, measurement 301
carbon films 8, 337
cardinal planes 18
cathodoluminescence 344, 364
caustic image 321
CBED, coherent 225, 227, 229, 241, 361
CBED structure factor measurement 230
CCD cameras 277
CdS 122
ceramics 146
ceramic–metal interface 147
channelling 254
channelling in STEM 255
channelling effects 351
channelling orientation 350
channelling radiation 347
charge coupled device 277
checklist 341
chemical mapping at atomic resolution 354
chicken-wire, CCD 278
chi-squared 212
chromatic aberration 35, 36, 38, 39, 41, 272
chromatic aberration constant,

measurement 293
chromatic aberration, dependence on

accelerating voltage 170
chromite spinel 350
chrysotile 143, 145, 291
CL images of individual dislocations 366

cleavage samples, for HREM 211
clusters 371
coherence 67
coherence effects in HREM 70, 84
coherence in STEM 245
coherence length 68
coherence width 68, 298
coherence width, in microdiffraction 360
coherence width, measurement 298
coherence, and current density 85
coherence, complex degree of 77
coherence, effect on image quality 8
coherence, Bloch wave, multislice

methods 116
coherence, partial 72
coherence, source size 83
coherence, spatial 73
coherence, temporal 73
coherent Bremsstrahlung 346
coherent detection 208
column approximation 105, 120
collosal magnetoresistance 148
computed images 69
computer program, multislice 109
computer-simulation, microdiffraction 361
condenser lenses 265
condenser-objective lenses 46
conical illumination 81, 82
conjugate image 19
constraints, in image processing 213
contamination 11, 314
contrast 184, 340
contrast and atomic number 171
contrast minimum 334
contrast transfer intervals 74, 386
contrast, dependence on accelerating

voltage 168
convergent beam diffraction discs 243
convergent-beam pattern 330, 357, 358
convex sets 213
convolution 57
convolution theorem 57
copper 371
copper phthalocyanine 195
correlation functions 304
critical dose 197
cross-correlation function 77, 214
cross-section, elastic 171
cryomicroscopy 186
crystal orientation, adjustment 330
crystal site, determination 350
crystallographic point groups 115
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current centre 321
current density, and coherence 85
current efficiency 269
current vs probe size 254
cylindrical lens 44

damping envelope 59, 71, 74, 95, 384
damping envelope constants 303
dark-adaptation 320
dark current image 278
dark-field atom image 172
dark-field image, contrast 176
dark-field HREM 173
dark-field STEM 247
de Broglie relation 16
dead-time 345
Debye–Waller factor 119
deconvolution of CCD MTF 278

Richardson–Lucy method 280
defects 138
degree of coherence 71, 245
depth of field 24, 92
detective quantum efficience 182
detectors (CCD, film, TV, Image plates) 277
detector geometry in STEM 247
developer 339
diagonalization 114
diamond 134, 136, 210, 366
diamond platelets 363
diamond structure, image 107, 210
differential equation method 126
diffraction limit 23, 49, 52, 183, 359, 360
diffraction, three dimensional 112
diffraction combined with HREM 221
diffractogram, contrast enhancement 298
diffractograms 63, 87, 335, 380
diffractogram tableaux for autotuning 335
direct methods 223
dislocation cores 138, 143, 146
dispersion matrix 110, 115
dispersion surface 111
displacement threshold 200
DNA Frontispiece, 184, 188, 338
dopant site location 352

imaging dopants in STEM 260
DQE 182, 277

of CCD 280
draughts 314
drift 9, 312
drying marks 340
dynamic range of detectors 280
dynamical electron diffraction 107, 115, 125

dynamical extinction 123
dynamical inelastic calculation 181
dynamical program 128
dynamically forbidden reflection 121

eigenvalues 112, 113, 115
Einstein model for vibration 258
elastic relaxation, in very thin

specimens 106, 344
electron backscattering 269
electron crystallography 186, 221
electron biprism 300
electron energy loss spectroscopy 352
electron energy-loss near-edge structure 354
electron source size 359, 361
electron optics 15
electron sources 264
electron spin 110
electron wavelength 16
electron wavelength, measurement 301
electron wavevector 122
electron, spin 121
electron-optical constants,

measurement 286
electronic instabilities 384
electrostatic potential, specimen 17
ELNES 354, 357
ELNES with HREM 148
emission stability 276
empty lattice approximation 122
emulsions for minimum exposure 338
energy filter, imaging 180
energy losses 41
energy spread 41, 220
energy-dispersive X-ray spectroscopy 344
energy-loss analysers 181
energy-selecting microscopes 181
environment needed for HREM 308

for STEM 310
environmental HREM 368
entrance pupil 23
entropy 186
etching 315
evaporator 12
Ewald sphere 61
EXAFS 345, 356
excitation error 98, 112
EXELFS 357
EELS, ELNES 352
exit pupil 23
extinction 122
extinction distance 99
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Fano noise, CCD 280
fault vectors, determination by CBED 362
feldspar 348
Fermat’s principle 38
Fermions 77
Feynman path-integral 17, 125
field-emission 71
field-emission sources 264, 275
field-emission sources, transfer function 117
filament height 271
filament life 269
filament temperature 272
film as an electron detector 282, 338
fivefold symmetry 145
flux density in lens gap 28
focus, aberration corrected optimum 218
focus increments, measurement 286
focus setting, from diffractogram 295
focus, dark field 174
focus, finding from diffractogram 378
focus, stationary phase 94
Focusing techniques 333
focusing, action of lens 26
forbidden reflections 121
FORTRAN program, for finding Cs 377
Fourier coefficients of crystal potential 110
Fourier electron optics 49
Fourier images 85, 95, 116, 117, 135, 136,

137
Fourier imaging 94
Fourier images, magnified, at infinity 231
Fourier transforms 54
Frank method, for resolution

measurement 303
Fraunhofer diffraction 54
Fraunhofer pattern 54
freezing, rapid 189
Frenkel pair 200
Fresnel diffraction 49
Fresnel fringe 3, 14
Fresnel propagator 52, 54
Fresnel propagator, Fourier Transform 57

G-value 197
gas attack 273, 274
gate oxide, Frontispiece
gain of detector 278
gain variations in detector pixels 278
Gallium nitride 211
gaussian focus 95, 158
gaussian image 59
gaussian image plane 40, 58

gaussian reference sphere 23
genes 188
genetic code 188
germanium 134
glucose 193
gold atom, image 163
gold atoms 137
gold-atom clusters 12
goodness-of-fit index 211, 303
graphite 337
grating spectrometer 345
ground-loops 308
gun bias 271
gun tilt 321
gun, cleaning 311
gun-bias setting 76, 141, 142, 388

hair-pin filaments 264
half-spacing fringes 176, 305
heavy atoms, clusters 12
helical rotation 25, 27
hexapole corrector 217
high-angle dark-field STEM detector 240
high-voltage instabilities 41, 310
HiO algorithm 231
hole count 345
hole drilling 201
hollow-cone illumination 80
holography, off axis electron 214
holography, in line 225
holography from internal sources 231
holographic Alchemi 231
holography of fields 368
Huygens’ principle 52
hysteresis 292, 329

ice-embedding 188, 199, 336
illumination system 264
image focus 20
image intensifiers 292, 364
image interpretation 134
image patches, computing 130
image plate detectors 281
image processing 63, 207
image reconstruction 149
image, recording technique 322
image-simulation programs 132, 181
images of defects 138
imaging theory 66
immersion lens 31, 46
impulse response 6, 52, 57
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impulse response of an electron
microscope 62

impurity X-ray emission 350
in-situ microscopy 370
inclined boundary conditions 109
incoherent illumination 71
incoherent image 159

in STEM 247
independent Bloch wave approximation 114
inelastic localization 354
inelastic scattering 118, 178, 181
inelastic scattering, radiation damage 198
information contained in a microscope

image 186
information-resolution limit 77, 207, 304,

384
infrared CL emission, from dislocations 366
instabilities 307, 311
interfaces 147
interference 67
interference effects, in CBED 361
interference experiments 77
intermediate lenses 28
intrinsic stacking fault 106
inversion problem, dynamical 230
ionicity, effect on HREM 149
irreducible representation 115

kinematic conditions, test for 303
kinematic theory 98
kinks 141, 146
knock-on damage 200
Kohler illumination 189, 266

Langmuir–Blodgett films 196
lanthanum hexaboride 264, 274
lattice fringes 90
lattice fringes, experimental procedure 323
lattice image, silicon 328
lattice imaging, with Bloch waves 114
lattice imaging in STEM 243
Laue circle 112, 331
Laue geometry 115
lens current measurement 293
lens equation 20
lens field distribution 34
lens magnetic field 34
Lichte focus 216
lithography 201
linear imaging 114, 116
localization 255, 349, 351, 354

logarithmic deconvolution 353
longitudinal magnification 24

magnesium oxide 103, 337, 392
magnetic fields, stray 307
magnification calibration 290
magnification, angular 23
magnification, lateral 23
magnification, longitudinal 24
many-beam lattice images 322, 334
marginal focus 40
mass spectrometer 314
mass-thickness 159
matrix optics 21
mean free path for inelastic scattering 178
membrane proteins 192
meridional rays 26
metal particles 363
metal–ceramic interfaces 147, 363
MgO 133, 148, 200, 211, 287, 323
Mica 12, 337
Michelson visibility 77
microanalysis 345
microanalysis by EELS 353
microcrystals 156
microdiffraction 358
microdiffraction, pattern simulation 361
microdischarge 310
mineralogy 143, 366
minimum-contrast 334
minimum-exposure microscopy 156
misfit dislocations 147
Mo 146, 351
modifications, instrumental 9
modulated structures 104
molecular-beam epitaxy 147, 357
Moliere high-energy approximation 101
molybdenum 201, 299
Monte-Carlo calculations 346
MTF 277

for CCD 279
multichannel analyzer 345
membrane proteins 186
multiple elastic 353
multiple inelastic scattering 121, 353
multiple scattering, dependence on

accelerating voltage 170
multiple-scattering 63
multislice method 125
multislice theory polynomial result,

dynamical theory 107
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nano-wire imaging 371
nanoscience 140
Niehrs reduction 115
niobium oxide 224
nitrogen gas 311, 340
nitrogen platelets 51
nodal planes 18
nodal points 18
noise 182

in CCD camera 279
noise in an electron image 182
noise reduction 207
non-linear imaging 173, 208
nucleic acid 188

objective aperture 20
objective lens 21, 31
objective-lens focus step, measurement 286
olivine 355
optical bench 2
optical density 64, 282
optical diffraction patterns 63
optical filtering 65
optical potential 16, 119
optical theorem 77
optimization 211
organic crystals 156, 195
oscilloscope 308
Optical Transfer Function in STEM 250,

252
over-exposed films 340
overlapping coherent diffraction disks 241
oxidation state 357, 370
oxide superconductors 351
oxygen images, HREM in crystals 149, 217

parabola method 208
parallel detection 345
paraxial ray 25
paraxial trajectory 40
partial coherence 72, 88, 116, 360, 361, 385
partial pressure gauge 11, 274, 315, 340
passbands 74, 386
Pendellosung fringes 100, 287
periodic continuation 129, 130
periodic imaging (in thickness) 135
periodicity in focus 92, 94
Permendur 35
perturbation theory 114
phase objects 6, 61
phase problem 99, 191, 193, 194, 221, 230

phase-contrast images 69, 354
phase-grating approximation 109, 127
phase-plate method 6
phonon absorption 119
phonon scattering 119, 121
phonons, frozen 256
phosphor grain size 333
photoelectron spectroscopy 345
photographic film, light, electrons,

compared 183
Photographic techniques 338
Photoluminescence 344, 366, 368
pixels 278
plasma excitations 352
plasma cleaners 315
plasmon-scattered electrons 180
point defects 141, 149, 213, 344
point group 106, 113
point resolution, definition 162
point-resolution 75, 208, 304, 384
point spread function 279
pointed filament 83, 87, 269, 276
pole-piece 25, 26
pole-piece gap 36
pole-piece, machining tolerance 45
polypeptide 190
potential energy diagram 18
precession camera 223
pressure, atmospheric 316
pre-field 45
principal planes 20
probe size 244, 254, 360, 362, 363

focus for smallest 252
current in probe vs size 254

probe spreading 353
projected charge density approximation 101

with aberration correction 220
projection, reconstruction from 189
projection onto convex sets 212
projector focal length 36
projector lenses 27, 28
proteins 186
ptychography 225, 243
purple membrane 193, 222

quantum-mechanics for electron lenses 48
quartz, damage in 201
quasi-crystals 145

R factor 303
radiation damage 156, 196, 200
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radiolysis 200
ray diagram 21
ray diagram, electron microscope 20
rayleigh criterion 244, 302
reciprocity theorem 173, 239, 361
refractive index 6
refractive index, for electrons 17
relativistic energy 110
relativity 16
resolution for coherent images 162
resolution-limiting factors 384
resolution limit 74, 75, 76, 247
resolution of the EDS technique 345
resolution, dependence on accelerating

voltage 169, 389
resolution, highest available 390
resolution, measurement 301
resolution, of film for electrons 339
ribosome Frontispiece, 191
Richardson-Lucy deconvolution 280
RNA 188
robust, statistical 213
ronchigrams 225, 229, 242, 361
Rose equation 182
Rutherford scattering in STEM 247
rutile 125

scattering angle 160
scattering focus 162
scattering matrix 115
scattering phase 74, 90
Scherzer cut-off 388
Scherzer focus 75, 158, 378, 388
Schlieren contrast 5
Schottky emission 273
Schrodinger equation 111
Second zone lenses 30
secondary scattering 196
seidel aberrations 41
selected area aperture 20
self-biased guns 272
semiconductors 146, 351
SEMPER 189
sensitivity, of EDS 346
serpentine 145
sextupole lenses 39
shadow images 225, 361
shape transform 97, 100
single-molecule imaging 186
single-scattering conditions 98 , 303
sign conventions 130
signal-to-noise ratio 185

single atoms, imaging 160
single-atom images 164, 165
Snell’s law 37
source, effective 68
space-group-forbidden reflections 121
space-group, determination 358
spatial coherence 68
spatial coherence, measurement 298
specimen height 10, 323
specimen movement 312
specimen position, optimum 10, 32
speech, effect on image 322
speed, of film for electrons 339
spherical aberration 36, 40
spherical aberration constant Cs, finding

from diffractogram 377
spherical aberration constant,

measurement 288
spherical aberration, fifth order 41
SPIDER 189
spin, electron 168
spinels 348
spinodal decomposition 104
spread of the electron wavefunction 129
SrTiO2 HREM image 217
stacking fault 106, 107, 146, 363
standing wave 350
stationary phase condition 208, 378
stationary-phase focus 75, 96, 105
statistical alchemi 352
STEM 237
Stobbs factor 211
stray fields 252, 308
stripes, charge-density 149
structure factor 100
structure image 104, 360, 391
structure matrix 112, 115
substrate, for single atoms 164
substrates 336
sudden approximation 354
supercells 125
superconductor, oxide 149, 351
superconductors 371
superesolution 207
surface steps 166
surfaces, imaging 368
synchrotron brightness, compared to

STEM 276
symmetry reduction 110, 115

talc 143, 145
Tanaka wide-angle CBED method 358
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Taxol 186
TDS 256
thermal diffuse scattering in STEM 256
thermal stability 321, 341
thick-phase grating 101
thin-lens formula 22
three-beam lattice images 90
three-dimensional imaging 147, 149
through-focus series 207
tilt-series, through 214
tomography 147, 149, 186, 190

in STEM 256
top-entry stages 266
transfer function 56, 57, 60, 72, 387
transfer function, Scherzer focus 157
transfer function, spherical wave

illumination 71
transistor, Frontispiece
translational symmetry 113, 302
translational symmetry elements 121, 125
transport equation 346
transverse states 114
tubule 186
tungsten oxide 369
twin image 208, 215
two-beam dynamical theory 99
two-beam lattice fringes 92, 100

umklapp 347
unitary transformation 115

vacuum system 11, 314
vacuum gauge 308
vacuum leak 11, 315
vacuum system 314
vacuum-seal 315
van Cittert–Zernike theorem 77, 80
Vegard’s law 106
vibration 9, 311
video recording 201, 283, 369

video recording, to minimize
damage 284, 334

virtual aperture 60, 384
virtual inelastic scattering 119
virtual object 28
virtual source 227
voltage center 321

water filter 313
water vapor 315, 340
water, cooling 9
wavelength, electron 16
wavevector 160
weak-phase object 61, 62
weather, effect on stability 316
Wehnelt hole 269
Weiner filter 207
Wentzel model 259
windowless detectors 346

X-ray absorption fine
structure 345, 356

X-ray absorption spectroscopy 344
X-ray background 345
X-ray emission, varies with beam

direction 348
X-ray fluorescence spectroscopy 345
X-ray spectrometer 345
X-ray topography 131

YAG single-crystal screen 278
Young’s slit experiment performed with

electron waves 79

Z-contrast in STEM 256
zero-order Laue zone 112, 121, 358
ZnS 364
zone-axis diffraction pattern 332
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