Gregory J. Chaitin

Lecture Notes on Algorithmic Information Theory from the 8th Estonian Winter School in Computer Science, EWSCS'03

FROM PHILOSOPHY TO PROGRAM SIZE Key Ideas and Methods

Lecture Notes on
Algorithmic Information Theory from the 8th Estonian Winter School in Computer Science, EWSCS'03

Gregory J. Chaitin, IBM Research

Gregory J. Chaitin
IBM Research
P. O. Box 218, Yorktown Heights, NY 10598, USA
http://www.cs.umaine.edu/~chaitin/
http://www.cs.auckland.ac.nz/CDMTCS/chaitin/

The 8th Estonian Winter School in Computer Science, EWSCS'03, was held at Palmse, Estonia, 2-7 March 2003, organized by the Institute of Cybernetics, Tallinn.

The organizers acknowledge the financial support from the Estonian Information Technology Foundation through the Tiigriülikool programme, the European Commission through the FP5 IST project eVikings II and the Ministry of Education and Research of Estonia through its Centers of Excellence in Research programme.

Photos by Vahur Kotkas, Marko Kääramees
Cover design by Kristiina Krabi
Typesetting by the author

Institute of Cybernetics at Tallinn Technical University
Akadeemia tee 21, EE-12618 Tallinn, Estonia
http://www.ioc.ee/

ISBN 9985-894-55-3
© Gregory J. Chaitin 2003
Printed and bound at Tallinna Raamatutrükikoda, Tallinn, Estonia.

Preface

This little book contains the course that I had the pleasure of giving at the 8th Estonian Winter School in Computer Science (EWSCS '03) held at the beautiful Palmse manor in Lahemaa National Park, Estonia, from March 2nd through 7th, 2003. There I gave four 90-minute lectures on algorithmic information theory (AIT), which is the theory of programsize complexity. Each of these lectures is one chapter of this book.

In these lectures I discuss philosophical applications of AIT, not practical applications. Indeed, I believe AIT has no practical applications.

The most interesting thing about AIT is that you can almost never determine the complexity of anything. This makes the theory useless for practical applications, but fascinating from a philosophical point of view, because it shows that there are limits to knowledge.

Most work on computational complexity is concerned with time. However this course will try to show that program-size complexity, which measures algorithmic information, is of much greater philosophical significance. I'll discuss how one can use this complexity measure to study what can and cannot be achieved by formal axiomatic mathematical theories.

In particular, I'll show (a) that there are natural informationtheoretic constraints on formal axiomatic theories, and that programsize complexity provides an alternative path to incompleteness from the one originally used by Kurt Gödel. Furthermore, I'll show (b) that in pure mathematics there are mathematical facts that are true for no reason, that are true by accident. These have to do with determining the successive binary digits of the precise numerical value of the halting probability Ω for a "self-delimiting" universal Turing machine.

I believe that these meta-theorems (\mathbf{a}, \mathbf{b}) showing (a) that the complexity of axiomatic theories can be characterized informationtheoretically and (b) that God plays dice in pure mathematics, both strongly suggest a quasi-empirical view of mathematics. I.e., math is different from physics, but perhaps not as different as people usually think.

I'll also discuss the convergence of theoretical computer science with theoretical physics, Leibniz's ideas on complexity, Stephen Wolfram's book A New Kind of Science, and how to attempt to use information theory to define what a living being is.

In this book I've tried to preserve the informal style of presentation in my lectures that stressed the key ideas and methods and avoided getting bogged down in technical details. There are no proofs here, but there are plenty of proof sketches. I hope that you enjoy reading this book just as much as I enjoyed presenting this material at EWSCS '03!

-Gregory Chaitin

http://wWW.cs.umaine.edu/~chaitin
http://www.cs.auckland.ac.nz/CDMTCS/chaitin

Contents

1 Day I—Philosophical Necessity of AIT 11
1.1 Is $\mathbf{P} \neq \mathbf{N P}$ a New Axiom? 11
1.2 Day I Summary 11
1.3 Summary of Leibniz, 1686 12
1.4 From Leibniz to AIT 12
1.5 Setup for Discussing the Limits of Mathematical Reasoning 13
1.6 You Need an N-Bit Theory to Prove that an N-Bit Pro- gram Is Elegant! 15
1.7 Complexity of the Universe of Mathematical Ideas 15
1.8 Why Do You Need an N-bit Theory to Prove that an N-Bit Program Is Elegant? 16
1.9 Is Mathematics Quasi-Empirical? 16
1.10 Complexity of the Physical World 17
1.11 Summary of Wolfram, 2002 18
1.12 Digital Philosophy 19
1.13 Three Interesting Books 20
1.14 Decomposing the World 20
2 Day II-Main Application of AIT: Incompleteness 23
2.1 Day II Summary 23
2.2 Hilbert-Style Formal Theories 23
2.3 Summary of Gödel, 1931 24
2.4 My Approach to Incompleteness 24
2.5 Borel's Unreal Number B, 1927 25
2.6 More-Real Turing Number T 26
2.7 Some Interesting Cases of the Halting Problem 26
2.8 Crucial Observation 27
2.9 The Halting Probability Ω 27
2.10 Why Is Ω Interesting? 28
2.11 In What Sense Is Ω Random? 29
2.12 The Self-Delimiting Universal Computer U 29
2.13 U Is Optimal and Defines Ω_{U} 29
$2.14 \mathrm{My} U$ Is Programmed in LISP 30
2.15 Programming U in LISP 30
2.16Ω and Hilbert's 10th Problem 31
3 Day III-Technical Survey of AIT: Definitions \& Theo- rems 33
3.1 Definition of a Self-Delimiting Computer C 33
3.2 What Do We Do with C ? Define U ! 34
3.3 Does the Fact that H Depends on U Destroy AIT?! 34
3.4 A More Abstract Definition of the Complexity H 35
3.5 Back to U-What Do We Do with U ? Definitions! 36
3.6 AIT Definitions (Continued) 37
3.7 Important Properties of These Complexity Measures 37
3.8 Complexity of Bit Strings. Examples 38
3.9 Maximum Complexity Infinite Binary Sequences 39
3.10 The Algorithmic Probability of $x, P(x)$ 40
3.11 What Is the Relationship between H and P ? 41
3.12 Occam's Razor! There Are Few Elegant Programs! 42
3.13 The Extended Kraft Inequality Condition for Construct- ing C 42
3.14 Three-Level Proofs: Program Size, Probabilities, Geometry 43
4 Day IV-LISP Implementation of AIT 45
4.1 Formal Definition of the Complexity of a Formal Theory 45
4.2 Formal Statement of the Incompleteness Theorem for Ω 46
4.3 Mutual Information Is Program Size? 47
4.4 How Do You Actually Make Things Self-Delimiting?! 48
4.5 What Is LISP? 49
4.6 LISP Program-Size Complexity 51
4.7 How Does TRY Work? 52
4.8 LISP Program for Our Standard Universal Computer U 53
4.9 Running U on Simple Examples 53
4.10 Subadditivity Revisited 54
4.11 Some Open Problems for Future Research 55
Additional Reading 57

Chapter 1

Day I-Philosophical Necessity of AIT

1.1 Is $\mathbf{P} \neq \mathrm{NP}$ a New Axiom?

Can we add $\mathbf{P} \neq \mathbf{N P}$ as a new axiom?!
This is a good example of the situation discussed in Gödel, What is Cantor's Continuum Problem?, 1947, where he argues that maybe math is a little like physics and that new axioms that are not selfevident might be justified because of their usefulness.

If so, there is ample pragmatic justification for adding $\mathbf{P} \neq \mathbf{N P}$ as a new axiom.
(In his 1947 article Gödel was concerned with set theory, not computer science.)

Let's see!!!

1.2 Day I Summary

- Our goal: To find the Limits of Mathematical Reasoning
- Tool we'll use: Program-Size Complexity
- It's also called: Algorithmic Information
- Idea starts with Leibniz! 1686!

Discourse on Metaphysics (in French!)

- AIT is needed to understand what is "law" and what is "understanding."

1.3 Summary of Leibniz, 1686

(Brought to my attention by Hermann Weyl, 1932. ${ }^{1}$)
What is a law of nature?
According to Leibniz, a theory must be simpler than the data it explains!

Because if a physical law can be as complicated as the experimental data that it explains, then there is always a law, and the notion of "law" becomes meaningless!

Understanding is compression! A theory as complicated as the data it explains is NO theory!

All of this is stated very clearly (in French) in 1686 by the mathematical genius and philosopher Leibniz! During his lifetime he only transmitted summaries of these ideas to friends and colleagues in letters! The complete text of his Discourse on Metaphysics was found among his voluminous personal papers after his death. ${ }^{2}$

1.4 From Leibniz to AIT

AIT goes beyond Leibniz by positing that a theory is a computer program, and that the size in bits of this computer program is the complexity of the theory. AIT makes Leibniz more precise! AIT emphasizes the common features in these four diagrams:

$$
\begin{gathered}
\text { scientific theory } \longrightarrow \text { Calculations } \longrightarrow \text { experimental data } \\
\text { program } \longrightarrow \text { Computer } \longrightarrow \text { output } \\
\text { axioms } \longrightarrow \text { Deduction } \longrightarrow \text { theorems } \\
\text { Ideas } \longrightarrow \text { Mind of God } \longrightarrow \text { The World }
\end{gathered}
$$

[^0]Following Leibniz, in each of these diagrams the input on the left must be much smaller than the output on the right.

Leibniz's key insight is not that this is "the best of all possible worlds". This was anti-Leibniz propaganda by Voltaire, who ridiculed Leibniz and did not understand how subtle and profound Leibniz was. (According to Borges, the word "optimism" was invented by Voltaire to mock Leibniz!)

Leibniz's key insight is that God has used few ideas to create all the diversity, richness and apparent complexity of the natural world. ${ }^{3}$ Leibniz is actually affirming his belief that the universe is rationally comprehensible. (This belief in a rational universal goes back at least to the ancient Greeks, particularly Pythagoras and Plato, but Leibniz's formulation is much sharper and profound because he analyzes in mathematical terms exactly what this belief means.) In modern language, Leibniz was stating his belief in the possibility of science.

Pythagoras and Plato believed that the universe can be comprehended using mathematics. Leibniz went beyond them by clarifying mathematically what exactly does it mean to assert that the universe can be comprehended using mathematics.

AIT continues this train of thought and goes beyond Leibniz by positing that explanations are computer programs and also by defining precisely what complexity is and what exactly does it mean to satisfy Leibniz's requirement that an explanation has to be simpler than the phenomena that it explains.

1.5 Setup for Discussing the Limits of Mathematical Reasoning

Now let's apply these ideas! Let's see what they have to say about the limits of mathematical reasoning. Let's see what mathematical theories can accomplish.

[^1]The setup is as follows.
The (static, formal) mathematical theories that we consider are thought of, somewhat abstractly, as a computer program for running through all possible proofs and generating all the theorems in the theory, which are precisely all the logical consequences of the axioms in the theory.

$$
\text { Theory }=\text { Program } \longrightarrow \text { Computer } \longrightarrow \text { Theorems }
$$

[This assumes that the theory uses a formal language, symbolic logic, requires complete proofs, and provides a proof-checking algorithm that always enables you to decide mechanically whether or not a proof is correct, whether or not it followed all the rules in deriving a logical consequence of the axioms.]

And we shall concentrate our attention on the size in bits of this computer program for generating all the theorems. That's our measure of the complexity of this theory, that's our measure of its information content.

So when we speak of an N-bit theory, we mean one with an N bit program for generating all the theorems. We don't care that this process is very slow and never terminates. AIT is a theoretical theory, not a practical theory!

Okay, that's half the setup! These are the theories we'll consider.

Here's the other half of the setup. Here are the theorems that we want these theories to be able to establish. We want to use these theories to prove that particular computer programs are elegant.

> "Elegant" Programs:
> No smaller program gives exactly the same output.

What is an elegant program? It's one with the property that no smaller program written in the same language produces exactly the same output. ${ }^{4}$

There are lots of elegant programs!

[^2]For any particular computational task, for any particular output that we desire to achieve, there has to be at least one elegant program, and there may even be several.

But what if we want to be able to prove that a particular program is elegant?

1.6 You Need an N-Bit Theory to Prove that an N-Bit Program Is Elegant!

[For the proof, see Section 1.8; for a corollary, see Section 1.7.]
These are Irreducible Mathematical Truths!!!
No rational justification is possible!
Such mathematical facts can have no rational explanation, because rational explanation consists of reducing something to simpler (maybe even self-evident) principles. A theory for something derives it from simpler hypotheses. If this kind of reduction is impossible, then we are confronted with irrational mathematical facts, mathematical facts that cannot be encompassed by any static theory!

Therefore (corollary)...

1.7 Complexity of the Universe of Mathematical Ideas

The world of mathematical ideas has INFINITE complexity!
Why?
Well, no N-bit theory for any finite N can enable you to prove all true assertions of the form

> "This particular program is elegant."
(What about the physical world? Does it have finite or infinite complexity? We'll look at that later. See Sections 1.10 through 1.12.)

1.8 Why Do You Need an N-bit Theory to Prove that an N-Bit Program Is Elegant?

Here is the proof! We'll assume the opposite and derive a contradiction. Consider this computer program:

the first provably elegant program whose size is greater than (complexity of theory + size of fixed-size routine)

Let c be the size in bits of the fixed-size routine that does all this: It is given the N-bit theory as data and then it runs through all possible proofs in the theory until it finds a provably elegant program that is sufficiently large ($>N+c$ bits), then it runs that program and returns that large elegant program's output as its own output.

So the $N+c$ bit program displayed above produces the same output as a provably elegant program that is larger than $N+c$ bits. But that is impossible!

So our precise result is that an N -bit theory cannot enable us to prove that any program that is larger than $N+c$ bits is elegant. Here c is the size in bits of the fixed-size routine that when added to the N-bit formal theory as above yields the paradox that proves our theorem.

Note: We are making the tacit assumption that if our theory proves that a program is elegant, then that program is actually elegant. I.e., we assume that only true theorems are provable in our formal theory. If this is NOT the case, then the theory is of absolutely no interest.

1.9 Is Mathematics Quasi-Empirical?

Now let's go back to the question of adding $\mathbf{P} \neq \mathbf{N P}$ as a new axiom, and to Gödel's thoughts that maybe physics and math are not so different, which, following Lakatos and Tymoczko (1998), is now referred to as a quasi-empirical view of mathematics.

Gödel, who had the conventional Platonist view of math, was only forced into backing new math axioms that are only justified pragmatically just as in physics because of his famous 1931 incompleteness theorem. And I believe that the ideas that I've just presented applying program-size complexity to incompleteness, in particular my result that it takes an N-bit theory to prove that an N-bit program is elegant, and the results on Ω that we'll see Day II, provide even more support for Gödel's heretical views on new axioms.

The way AIT measures the complexity (information content) of mathematical theories makes Gödel incompleteness seem much more natural, much more pervasive, much more inevitable, and much more dangerous. Adding new axioms - adding more mathematical informationseems to be the only way out, the only way to go forward!

We've discussed adding new axioms in math just as in physics, pragmatically. A related question is

"Is experimental mathematics okay?"

Even when there are NO proofs? For an extreme example of this, see Wolfram, A New Kind of Science, 2002, who provides a tremendous amount of computational evidence, but almost no proofs, in support of his theory. See also the journal Experimental Mathematics.

Obviously, AIT makes me sympathetic to experimental mathematics, even though I don't do experimental math myself. Experimental math is fueled by the power of the computer, not by Gödel's nor by my meta-theorems, but it fits nicely into a quasi-empirical view of mathematics. Practical necessity as well as philosophical analysis are both simultaneously pushing in the direction of experimental math!

1.10 Complexity of the Physical World

Now let's turn to the physical universe! Does it have finite or infinite complexity?

The conventional view on this held by high-energy physicists is that there is a TOE, a theory of everything, a finite set of laws of nature that we may someday know, which has only finite complexity.

So that part is optimistic!

But unfortunately in quantum mechanics there's randomness, God plays dice, and to know the results of all God's coin tosses, infinitely many coin tosses, necessitates a theory of infinite complexity, which simply records the result of each toss!

So the conventional view currently held by physicists is that because of randomness in quantum mechanics the world has infinite complexity.

Could the conventional view be wrong? Might it nevertheless be the case that the universe only has finite complexity? Some extremely interesting thoughts on this can be found in

Wolfram, A New Kind of Science, 2002.

According to Wolfram, there is no real randomness. There is only pseudo-randomness, like the randomness produced by randomnumber generators, which are actually deterministic sequences of numbers governed by mathematical laws, since computers use algorithms to generate pseudo-random numbers, they don't use quantum mechanics!

According to Wolfram, our universe is actually a deterministic universe that's governed by deterministic physical laws!

So the physical universe, the world, has finite complexity. According to Wolfram, everything happens for a reason, just as Leibniz thought!

These two supremely intelligent men are rationalists. They want to understand everything! They don't believe in ultimate mysteries! They don't think anything is incomprehensible! They believe in the power of the human mind to comprehend everything!

On the other hand, we have seen that because it has infinite complexity, the universe of mathematical ideas CANNOT be comprehended in its entirety.

1.11 Summary of Wolfram, 2002

In summary, according to Wolfram, 2002 the world is like $\pi=3.1415926 \ldots$
It looks complicated, ${ }^{5}$ but it is actually very simple!

[^3]According to Wolfram all the randomness we see in the physical world is actually pseudo-randomness. He believes that the physical world is actually deterministic, we just don't know the law.

He sees this as a philosophical possibility. Whether our physical universe is actually that way or not is another matter, to be decided by scientists, not philosophers!

1.12 Digital Philosophy

Wolfram's book as well as my own work on AIT are both examples of what Edward Fredkin refers to as digital philosophy, a viewpoint that Fredkin also helped to pioneer. ${ }^{6}$

In a nutshell, digital philosophy posits that the world is a giant computer, a giant digital information processor, and that, fundamentally, everything is discrete $0 / 1$ bits!

This algorithmic view of everything ${ }^{7}$ works much better if there are actually no real numbers, no continuous quantities, and the physical universe is really, at some bottom level, discrete.

Wolfram's work, AIT, and Fredkin's digital philosophy are all examples of the convergence of mathematics, theoretical physics, and theoretical computer science! This is an accelerating trend, of which the field of quantum computing is also an example.

Of course, traditional mathematical physics is based on continuous math, on ordinary and partial differential equations, and does not fit in too well with a digital philosophy. Maybe digital philosophy is a terrible mistake. Maybe we are taking the digital computer much too seriously! Maybe we shouldn't make it the basis of a new philosophy, of a new world view, of a new système du monde?

We will see!

[^4]
1.13 Three Interesting Books

I should mention that besides my own works, the book on the quasiempirical view of math is

Tymoczko,

New Directions in the Philosophy of Mathematics, Princeton University Press, 1998.

This is the second expanded edition of a valuable collection of essays by philosophers, mathematicians, and computer scientists (including two of my own essays) that its editor Tymoczko unfortunately did not live to see in print.

Highly recommended!
There are also two forthcoming books on experimental math,

> Borwein and Bailey, Mathematics by Experiment: Plausible Reasoning in the 21st Century, and Experimentation in Mathematics: Computational Paths to Discovery, A. K. Peters, 2003,
that should be extremely interesting.

1.14 Decomposing the World

Finally, here is a new and completely different philosophical application of AIT.

What is a living being?
How can we partition the world into parts? Can we do this in spite of Parmenides and mystics who insist that the world must be apprehended as a whole and is an organic unity, a single substance, and cannot be separated into independent parts?

I think the key is algorithmic independence.

X and Y are said to be algorithmically independent if the programsize complexity of X and $Y \approx$ the sum of the individual program-size complexities of X and Y.
I.e., if the number of bits in the simplest theory that explains both simultaneously is approximately equal to the sum of the number of bits in the simplest theories that explain each of them separately.

Independent parts of the world, of which living beings are the most interesting example, have the property that their program-size complexity decomposes additively.

Conversely, the parts of a living being are certainly not independent and have high mutual information. [Mutual information will be discussed in Sections 3.6 and 3.7, Day III, and Section 4.3, Day IV.]

This needs much more work!

Chapter 2

Day II-Main Application of AIT: Incompleteness

2.1 Day II Summary

Limits of Formal Mathematical Reasoning:
I. You can't prove a number is uninteresting/random.
II. You can't determine bits of Ω (accidental mathematical facts).

Both I and $I I$ are irreducible mathematical truths!

2.2 Hilbert-Style Formal Theories

- Meta-mathematics: Use mathematics to discover the limits of mathematics. Cannot be applied to intuitive, informal mathematics.
- What's a formal theory?
- axioms
- rules of inference
- symbolic logic
- formal grammar

There is a proof-checking algorithm!

- There is algorithm for generating all theorems in size order of proofs! So, following Emil Post, 1944, formal theory $=$ r.e. set of propositions:

$$
\text { theory } \longrightarrow \text { Computer } \longrightarrow \text { theorems }
$$

- This is a static view of mathematics! It is assumed that the axioms and rules of inference don't change. Mathematical methods can be used to discuss what such a formal system can achieve.

2.3 Summary of Gödel, 1931

- "This statement is false!"
- True iff false! Paradox!
- "This statement is unprovable ${ }_{F T}$!"
- True iff unprovable ${ }_{F T}$!

Therefore either a false statement is provable $F T$, and $F T$ is useless, or a true statement is unprovable ${ }_{F T}$, and $F T$ is incomplete!

- $F T=F$ ormal T heory .

2.4 My Approach to Incompleteness

- Let's assume we can divide all the positive integers into the interesting and the uninteresting ones, and that infinitely many of them are uninteresting.
- Consider the first uninteresting positive integer!
- It's ipso facto interesting! Paradox!
- Consider the first provably ${ }_{F T}$ uninteresting positive integer!
- It cannot exist because it would be an extremely interesting number! Therefore $F T$ is incomplete! $F T$ can never prove that a number is uninteresting! [Actually, it will turn out, almost never.]
- How do we actually define an uninteresting number? Uninteresting means algorithmically irreducible, incompressible, no theory for it smaller than it is. ${ }^{1}$
- Final Conclusion: Infinitely many integers are uninteresting. But using a fixed $F T$ you can almost never prove it! Only in finitely many cases! ${ }^{2}$

2.5 Borel's Unreal Number $B, 1927$

Let's start on the path to the halting probability Ω, which is a real number.

- Start with Borel's very unreal real number B.
- The original source is Émile Borel, 1927. ${ }^{3}$ B was brought to my attention by Vladimir Tasić, 2001. ${ }^{4}$
- $B=0 . d_{1} d_{2} d_{3} \ldots$
- The N th digit d_{N} of B answers the N th question in French!
- $d_{N}=$
$1 \longrightarrow$ answer Yes!
$2 \longrightarrow$ answer $\boldsymbol{N o !}$
$0 \longrightarrow \boldsymbol{N O}$ ANSWER
(N th text in French is not a valid yes/no question, or cannot be answered.)
- Most digits of Borel's number B are 0's. B is extremely redundant!

[^5]
2.6 More-Real Turing Number T

Here is the next step on our path to Ω :

- Real Number T Solving Turing's Halting Problem
- $T=0 . b_{1} b_{2} b_{3} \ldots$
- The N th bit b_{N} of T answers the N th case of the halting problem. b_{N} tells us whether the N th program p_{N} ever halts.
- $b_{N}=$
$0 \longrightarrow p_{N}$ doesn't halt,
$1 \longrightarrow p_{N}$ halts.

2.7 Some Interesting Cases of the Halting Problem

These are bits of T :

- Fermat's Last Theorem (Andrew Wiles) Does

$$
x^{N}+y^{N}=z^{N}
$$

have a solution in positive integers with $N \geq 3$?

- Riemann Hypothesis

About the location of the complex zeroes of the zeta function

$$
\zeta(s) \equiv \sum_{n} \frac{1}{n^{s}}=\prod_{p} \frac{1}{1-\frac{1}{p^{s}}}
$$

(Here n ranges over positive integers and p ranges over the primes.)
Tells us a lot about the distribution of prime numbers.

- Goldbach Conjecture

Is every even number the sum of two primes?
In each case there is a program that systematically searches for a counter-example and halts iff it finds it.

2.8 Crucial Observation

Suppose we are given N programs and want to know which ones halt and which ones don't.
N cases of the halting problem is only $\log _{2} N$ bits of information, not N bits!

They are never independent mathematical facts!
Why not?
Because we could answer all N cases of the halting problem if we knew exactly how many of the N programs halt. Just run them all in parallel until exactly the right number halt. The others will never halt.

Now we use this observation to compress all the redundancy out of the Turing number T and get an algorithmically irreducible number Ω.

2.9 The Halting Probability Ω

Finally $\Omega=$ Omega!
Halting Probability:

$$
\Omega \equiv \sum_{p \text { halts }} 2^{-|p|}
$$

$|p|$ is the size in bits of the program p.
I.e., each k-bit program that halts when run on our standard universal Turing machine U contributes $1 / 2^{k}$ to Ω.
[We need to make U self-delimiting (Section 2.12) to ensure that $\Omega \leq 1$. Otherwise the sum for Ω diverges to ∞. By using self-delimiting programs, we've constructed one number, Ω, that extends the trick of Section 2.8 's crucial observation so that it works for an infinite number of computer programs, all of them, in fact.]

Now there is absolutely NO redundancy!
The first N bits of Ω answers the halting problem for all programs up to N bits in size! (Can you see why? Hint: Ω can be computed in the limit from below. ${ }^{5}$)

[^6]
2.10 Why Is Ω Interesting?

The base-two bits of Ω are irreducible mathematical facts! They can't be derived from anything simpler!

The bits of Ω are algorithmically irreducible, algorithmically independent, and algorithmically random!
Ω is a real number with maximal information content. Each bit of Ω is a complete surprise! It's not at all a tame real number like $\pi=$ $3.1415926 \ldots$ which only has a finite amount of algorithmic information.
Ω is a dangerous, scary real number! Not good to meet in a dark alley! Ω is maximally unknowable! Maximum entropy, maximum disorder!
" Ω is a nightmare for the rational mind!", Karl Svozil.
This makes Ω sound bad, very bad!
On the other hand, Ω is distilled, crystalized mathematical information. If T is coal, then Ω is a diamond!

In fact, initial segments of Ω are ideal new mathematical axioms. Knowing a large initial segment of Ω would settle all halting problems for programs up to that size, which would, to use Charles Bennett's terminology, settle all finitely refutable math conjectures up to that complexity.
Ω is concentrated essence of mathematical creativity and mathematical inspiration! One could measure the progress of mathematics by how many bits of Ω we can currently determine! ${ }^{6}$ (Of course this has nothing to do with moral or scientific progress.)

So Ω can also be regarded as a good friend, instead of an enemy!

[^7]
2.11 In What Sense Is Ω Random?

The bits of Ω are mathematical facts that are true for No Reason, they're true by Accident!

Here mathematical truth isn't Black or White. It's Grey!
The best way to think about Ω is that each bit of Ω is 0 or 1 with probability $1 / 2$!

Here God plays dice with mathematical truth!
Knowing all the even bits of Ω wouldn't help us to get any of the odd bits of Ω ! Knowing the first million bits of Ω wouldn't help us to get the million and first bit of Ω ! The bits of Ω are just like independent tosses of a fair coin!

This is the case even though Ω is a specific real number! And even though each bit of Ω is fully determined mathematically. (Even though we can't compute it nor prove what its value is!)

2.12 The Self-Delimiting Universal Computer U

Actually, the value of Ω depends on the choice of universal computer U. There are many possible choices!

First of all, U must read one bit of its program p at a time and decide by itself when to stop reading p before encountering a blank at the end of p. In other words, each p for U must be self-delimiting.

Also, U must be universal. This means that for any special-purpose self-delimiting computer C there is a prefix π_{C} such that concatenating it in front of a program for C gives you a program for U that computes the same output:

$$
U\left(\pi_{C} p\right)=C(p)
$$

This prefix depends only on the choice of C and not on p. In other words, U can simulate each C.

2.13 U Is Optimal and Defines Ω_{U}

Then we define the complexity H with respect to C and U as follows:

$$
H_{C}(x) \equiv \min _{C(p)=x}|p|,
$$

$$
H_{U}(x) \equiv \min _{U(p)=x}|p| .
$$

$H(x)$ is the size in bits of the smallest program for computing x on each machine.

Then we have

$$
H_{U}(x) \leq H_{C}(x)+\left|\pi_{C}\right|
$$

In other words, programs for U are not too large. For U to simulate C adds only a fixed number of bits to each program for C.

Then Ω_{U} is defined as follows:

$$
\Omega_{U} \equiv \sum_{U(p) \text { halts }} 2^{-|p|}
$$

Any such universal U will do.

2.14 My U Is Programmed in LISP

The particular U that I picked to define Ω uses LISP as follows:

$$
U(p) \text { runs } U \text { on the binary program } p=\pi \beta
$$

Here $p=\pi \beta$ is a bit string consisting of a high-level algorithm π followed by data β. The self-delimiting prefix π is a LISP expression. The data β is raw binary data $01101 \ldots$. The value of the LISP prefix π is the output of $U(p)$.

I invented a special version of LISP for writing the prefix π.

2.15 Programming U in LISP

The LISP expression π is converted to binary, eight bits per character, and concatenated with the raw binary data β to produce the binary program for $U, p=\pi \beta$.

Access to the data β is strictly controlled. U reads one bit at a time of p and CANNOT run off the end of $p=\pi \beta$. The binary data β must be self-delimiting, just like the LISP prefix π, so that U knows when to stop reading it.
I.e., the alphabet for p is binary, not trinary! There is no blank at end of p ! That would be a wasted character, one that isn't being used nearly enough!

There are more details about the LISP implementation in the last lecture (Day IV).

2.16Ω and Hilbert's 10th Problem

We end today's lecture with a very important application: Hilbert's 10th problem.

Does the diophantine equation $D(\mathbf{x})=0$ have an unsigned integer solution?

- $\exists D$ such that $D(k, \mathbf{x})=0$ has a solution iff p_{k} halts! [Matijasevič]
- $\exists D$ such that $D(k, \mathbf{x})=0$ has infinitely many solutions iff the k th bit of Ω is a 1 !
[Chaitin]
- $\exists D$ such that $D(k, \mathbf{x})=0$ has an even/odd number of solutions iff the k th bit of Ω is $0 / 1$!
[Ord and Kieu]
For more details, see Ord and Kieu, On the existence of a new family of Diophantine equations for Ω, http://arxiv.org/abs/math.NT/0301274.

So we get randomness in arithmetic! Ω 's algorithmic randomness also infects elementary number theory! The disease is spreading!

Chapter 3

Day III-Technical Survey of AIT: Definitions \& Theorems

Ω is the jewel of AIT. But it isn't a diamond solitaire. It's in a beautiful setting, which we'll outline today. We'll review the key definitions, theorems, methods and ideas of AIT, but there will be NO proofs! Only proof sketches. For the proofs, see my book Exploring Randomness.

3.1 Definition of a Self-Delimiting Computer C

AIT starts with a

Self-delimiting computer C

- $C(p) \longrightarrow$ output
- The program p is a bit string.
- The output can be e.g. a LISP S-expression or a set of S-expressions.

Abstract version of self-delimiting feature:
No extension of a valid program is a valid program. If $C(p)$ is defined then C is not defined on any extension of p. I.e., the domain of the
function C is a so-called prefix-free set. That's a set of words in which no word is a prefix of another.

3.2 What Do We Do with C ? Define U !

First define the program-size complexity $H_{C}(x)$ to be the size in bits of the smallest program for C to compute x :

$$
H_{C}(x) \equiv \min _{C(p)=x}|p| .
$$

Next we construct a universal computer U, for example, as follows:

$$
U(0(\text { Gödel number for } C) 1 p)=C(p) .
$$

In other words, U can simulate C if to each program for C we add a prefix consisting of a long run of 0 's followed by a 1 . This prefix is self-delimiting, and the number of 0 's in it indicates which C is to be simulated.

Then we have

$$
H_{U} \leq H_{C}+\text { constant }
$$

where

$$
\text { constant }=1+(\text { Gödel number for } C) .
$$

I.e., U 's programs are, to within an additive constant, minimal in size.

We take this minimality property as our definition for a universal computer U.

Now somehow pick a particular natural U to use as the basis for AIT.

In the lecture for Day IV, I will indicate how to use LISP to implement the particular U that I've picked to use as the basis for my theory.

3.3 Does the Fact that H Depends on U Destroy AIT?!

- Some people are exceedingly unhappy that the value of H depends on the choice of U. But whatever U you pick, the theory goes through. And Day IV, I actually pick a very simple U.
- And since Ω is an infinite object, all the additive constants that reflect the choice of U wash out in the limit.
- Time complexity depends polynomially on the computational model. But in the case of program-size complexity the dependence on U is only an additive constant. So the unfashionable field of AIT depends less on the choice of computer than the fashionable field of time complexity does! So much for fashion!
- Remember, I do not think that AIT is a practical theory for practical applications. All theories are lies that help us to see the truth. ${ }^{1}$ All elegant theories are simplified models of the horrendous complexity of the chaotic real world. Nevertheless, they give us insight. You have a choice: elegance or usefulness. You cannot have both!
- If we knew all the laws of physics, and the world turned out to be a giant computer, then we could use that computer as U !

3.4 A More Abstract Definition of the Complexity H

I prefer a very down-to-earth concrete approach. But here is a more abstract "axiomatic" approach to defining H.

Define an abstract complexity measure H via these two properties:

- $H(x)$ is computable in the limit from above.
I.e., $\{\langle x, k\rangle: H(x) \leq k\}$ is r.e.
I.e., $H(x)=\lim _{t \rightarrow \infty} H^{t}(x)$.
- $\sum_{x} 2^{-H(x)} \leq 1$.

Then pick out an optimal minimal H, one with the property that for any other H^{\prime} there is a constant c such that

$$
H(x) \leq H^{\prime}(x)+c .
$$

[^8]This abstract approach works! However I prefer the more concrete approach in which you think of $H(x)$ as the size of the smallest program for x. This gives more insight into what is going on. Beware of premature axiomatization! And beware of excessive abstraction concealing meaning!

3.5 Back to U-What Do We Do with U ? Definitions!

- Individual complexity of an object. Information content of x :

$$
H(x) \equiv \min _{U(p)=x}|p| .
$$

- Joint complexity of a pair of objects $\langle x, y\rangle$:

$$
H(x, y) \equiv \min _{U(p)=\langle x, y\rangle}|p| .
$$

Size of the smallest program that computes both objects.

- Subadditivity:

$$
H(x, y) \leq H(x)+H(y)+c .
$$

This was the original reason that I made programs self-delimiting, so that information content would be additive! ${ }^{2}$ This means we can combine programs for x and y and add c bits and get a program for the pair $\langle x, y\rangle$. For a LISP program that does this and shows that $c=432$ is possible, see Section 4.10.

- Algorithmic independence of two objects:

$$
H(x, y) \approx H(x)+H(y)
$$

I.e., the joint complexity is approximately equal to the sum of the individual complexities. This means that the two objects have nothing in common.

[^9]
3.6 AIT Definitions (Continued)

- Mutual information content of two objects:

$$
H(x: y) \equiv H(x)+H(y)-H(x, y) .
$$

This is the extent to which it is better to compute them together rather than separately.

- An elegant program $y *$ for y is one that is as small as possible. I.e., $y *$ has the property that

$$
U(y *)=y, \quad H(y)=|y *|, \quad H(U(y *))=|y *| .
$$

- Relative information content $H(x \mid y)$ of x given an elegant program $y *$ for y, not y directly!

$$
H(x \mid y) \equiv \min _{U(p, y *)=x}|p| .
$$

This is the second main technical idea of AIT. First is to use self-delimiting programs. Second is to define relative complexity in this more subtle manner in which we are given $y *$ for free, not y, and we have to compute x.

3.7 Important Properties of These Complexity Measures

- Here is an immediate consequence of our definitions:

$$
H(x, y) \leq H(x)+H(y \mid x)+c .
$$

- And here is an important and subtle theorem that justifies our definitions!

$$
H(x, y)=H(x)+H(y \mid x)+O(1)
$$

This is an identity in Shannon information theory, with no $O(1)$ term. In these two different versions of information theory, the formulas look similar but of course the meaning of H is completely different.

- Let's apply this subtle theorem to the mutual information:

$$
H(x: y) \equiv H(x)+H(y)-H(x, y)
$$

We get these two corollaries:

$$
\begin{aligned}
& H(x: y)=H(x)-H(x \mid y)+O(1), \\
& H(x: y)=H(y)-H(y \mid x)+O(1)
\end{aligned}
$$

So the mutual information is also the extent to which knowing one of the two objects helps you to know the other. It was not at all obvious that this would be symmetric!
Again, these two corollaries are identities in Shannon information theory. They justify our whole approach. When I got these results I knew that the definitions I had picked for AIT were finally correct!

3.8 Complexity of Bit Strings. Examples

- High complexity:

$$
\begin{aligned}
H(\text { the most complex } N \text {-bit strings }) & =N+H(N)+O(1) \\
& \approx N+\log _{2} N .
\end{aligned}
$$

In other words, you have to know how many bits there are plus what each bit is. And most N-bit strings have H close to the maximum possible. These are the algorithmically random N bit strings.
This notion has many philosophical resonances. First, a random string is one for which there is no theory that obeys Leibniz's dictum that a theory must be smaller than what it explains. Leibniz clearly anticipated this definition of randomness.
Second, a random string is an unexplainable, irrational string, one that cannot be comprehended, except as "a thing in itself" (Ding an sich), to use Kantian terminology.

- Low complexity:

Consider the N-bit strings consisting of $N 0$'s or N 1's.

$$
\begin{aligned}
& H\left(0^{N}\right)=H(N)+O(1) \approx \log _{2} N, \\
& H\left(1^{N}\right)=H(N)+O(1) \approx \log _{2} N .
\end{aligned}
$$

For such bit strings, you only need to know how many bits there are, not what each bit is. These bit strings are not at all random.

- Intermediate complexity:

Consider an elegant program p. I.e., no smaller program makes U produce the same output.

$$
H(p)=|p|+O(1) \text { if } p \text { is an elegant program. }
$$

These bit strings are borderline random. Randomness is a matter of degree, and this is a good place to put the cut-off between random and non-random strings, if you have to pick a cut-off.

How about infinite bit strings?

3.9 Maximum Complexity Infinite Binary Sequences

- Maximum Complexity:

An infinite binary sequence x is defined to be algorithmically random iff

$$
\exists c \forall N\left[H\left(x_{N}\right)>N-c\right] .
$$

Here x_{N} is the first N bits of x.
If x is generated by independent tosses of a fair coin, then with probability one, x is algorithmically random. But how about specific examples?

- Two Examples of Maximum Complexity:

$$
\Omega \equiv \sum_{U(p) \text { halts }} 2^{-|p|}
$$

$$
\Omega^{\prime} \equiv \sum_{N} 2^{-H(N)}
$$

These are algorithmically random real numbers. The initial segments of their binary expansion always have high complexity.

From this it follows that Ω and Ω^{\prime} aren't contained in any constructively definable set of measure zero. In other words, they are statistically (Martin-Löf) random. Therefore Ω and Ω^{\prime} necessarily have any property held by infinite binary sequences x with probability one. E.g., Ω and Ω^{\prime} are both Borel normal, for sure, since in general this is the case with probability one. Borel normal means that in any base, in the limit all blocks of digits of the same size provably have equal relative frequency.

That Ω and Ω^{\prime} are both Borel normal real numbers can also be proved directly using a simple program-size argument. This can be done because, as Shannon information theory already shows, reals that are not Borel normal are highly redundant and compressible. And the main difference between Shannon information theory and AIT is that Shannon's theory is concerned with average compressions while I am concerned with compressing individual sequences.

- Why can't we demand the complexity of initial segments be even higher?
Because with probability one, infinitely often there have to be long runs of consecutive zeroes or ones, and this makes the complexity dip far below the maximum possible $[N+H(N)]$ infinitely often!

3.10 The Algorithmic Probability of $x, P(x)$

Straight-forward theorems in AIT use program-size arguments.
But the more subtle proofs have to descend one level and use probabilistic arguments. AIT is an iceberg! Above the water we see program size. But the bulk of the AIT iceberg is submerged and is the algorithmic probability $P(x)$!
$P_{C}(x)$ is defined to be the probability that a program generated by
coin-tossing makes C produce x :

$$
\begin{gathered}
P_{C}(x) \equiv \sum_{C(p)=x} 2^{-|p|} \\
P(x) \equiv P_{U}(x) \equiv \sum_{U(p)=x} 2^{-|p|} .
\end{gathered}
$$

This takes into account all the programs that calculate x, not just the smallest one.

3.11 What Is the Relationship between H and $P ?$

First of all, it's obvious that

$$
P(x) \geq 2^{-H(x)}
$$

because one way to compute x is using an elegant program for x. In fact, much, much more is true:

$$
H(x)=-\log _{2} P(x)+O(1) .
$$

This crucial result shows that AIT, at least in so far as the appearance of its formulas is concerned, is sort of just a version of probability theory in which we take logarithms and convert probabilities into complexities. In particular, the important and subtle theorem that

$$
H(x, y)=H(x)+H(y \mid x)+O(1)
$$

is seen from this perspective as merely an alternative version of the definition of relative probability:

$$
\operatorname{Pr}(x, y) \equiv \operatorname{Pr}(x) \times \operatorname{Pr}(y \mid x)
$$

How do we establish this crucial relationship between H and P ? By using an extended version of something called the Kraft inequality, which AIT inherited from Shannon information theory! [See Section 3.13.]

3.12 Occam's Razor! There Are Few Elegant Programs!

But first I want to discuss an important corollary of the crucial theorem

$$
H=-\log _{2} P
$$

connecting $H(x)$ and $P(x)$.
This shows that there cannot be too many small programs for x.
In particular, it follows that the number of elegant programs for x is bounded.

Also, the number of programs for x whose size is within c bits of $H(x)$ is bounded by a function that depends only on c and not on x.

This function of c is approximately 2^{c}.
In fact, any program for x whose size is close to $H(x)$ can easily be obtained from any other such program.

So, what I call Occam's razor, elegant or nearly elegant programs for x are essentially unique!

And this justifies our definition of relative complexity $H(x \mid y)$ and shows that it does not depend too much on the choice of the elegant program for y. There are at most $O(1)$ bits difference in $H(x \mid y)$ depending on the choice of the $y *$ that we are given for free.

3.13 The Extended Kraft Inequality Condition for Constructing C

The crucial tool used to show that

$$
H(x)=-\log _{2} P(x)+O(1) \quad \text { and } \quad H(x, y)=H(x)+H(y \mid x)+O(1)
$$

is an extended version of the Kraft inequality condition for the existence of a prefix-free set of words.

In AIT, the Kraft inequality gives us a necessary and sufficient condition not for the existence of a prefix-free set, as it did in Shannon information theory, but for the existence of a self-delimiting computer C. Once we have constructed a special-purpose computer C using the Kraft inequality, we can then make statements about U by using the fact that

$$
H_{U} \leq H_{C}+c .
$$

Here's how we construct C !
Imagine that we have an algorithm for generating an infinite list of requirements:
\langle size of program for C, output that we want from $C\rangle$
As we generate each requirement $\langle s, o\rangle$, we pick the first available s-bit program p and we assign the output o to $C(p)$. Available means not an extension or prefix of any previously assigned program for C. This process will work and will produce a self-delimiting computer C satisfying all the requirements iff

$$
\sum \quad 2^{-s} \leq 1
$$

over all requirements $\langle s, o\rangle$
Note that if there are duplicate requirements in the list, then several p will yield the same output o. I.e., we will have several p with the same value for $C(p)$.

This way of constructing C may be thought of as a first-fit storage allocation algorithm for one infinitely-divisible unit of storage.

3.14 Three-Level Proofs: Program Size, Probabilities, Geometry

The proof of this crucial version of the Kraft inequality involves simultaneously thinking of C as a computer, as an assignment of probabilities to outputs, and as an assignment of outputs to segments of the unit interval, segments which are halves, or halves of halves, or halves of halves of halves...

It is important to be able to simultaneously keep each of these three images in ones mind, and to translate from one image to the next depending on which gives the most insight at any given moment.

In other words, C may be thought of as a kind of constructive probability distribution, and probability one corresponds to the entire unit interval of programs, with longer and longer programs corresponding to smaller and smaller subintervals of the unit interval.

Then the crucial fact that no extension of a valid program is a valid program simply says that the intervals corresponding to valid programs do not overlap.

In the last lecture, Day IV, I'll drop this abstract viewpoint and make everything very, very concrete by indicating how to program U in LISP and actually run programs on $U \ldots$

Chapter 4

Day IV-LISP Implementation of AIT

The LISP interpreter for Day IV, which is a Java applet that will run
in your web browser, can be found at these two URL's:
http://www.cs.umaine.edu/~chaitin/unknowable/lisp.html
http://www.cs.auckland.ac.nz/CDMTCS/chaitin/unknowable/
lisp.html
Note that there is a concise LISP "reference manual" on these web pages, just below the windows for input to and output from the interpreter.

4.1 Formal Definition of the Complexity of a Formal Theory

Before starting with LISP, let me finish some things I started in the last lecture, and also answer some questions that were raised about that lecture.

First of all, I never stated the formal version of the incompleteness results about Ω that I explained informally in Day II.

How can we measure the complexity of a formal mathematical theory in bits of information?
H (formal math theory)
\equiv the size in bits $|p|$ of the smallest (self-delimiting!) program p
such that

$$
U(p)=\{\text { the infinite set of all the theorems in the theory }\} .
$$

Note that this is something new: U is now performing an unending computation and produces an infinite amount of output!

$$
\text { smallest } p \longrightarrow U \longrightarrow\{\text { theorems }\}
$$

The rather abstract point of view taken here is in the spirit of Emil Post's 1944 paper R.e. sets of positive integers and their decision problems. For our purposes the internal details of the formal theory are irrelevant. We are flying high in the sky looking down at the formal theory. We're so high up that we don't care about the axioms and rules of inference used in the theory. We can't see all of that detail. Nevertheless, using these very general methods we can make some rather strong statements about the power of the formal theory in question.

4.2 Formal Statement of the Incompleteness Theorem for Ω

A formal math theory T with complexity N cannot enable you to determine more than $N+c$ bits of the numerical value of Ω (base-two).

Here are some hints about the proof. We make the tacit hypothesis, of course, that all the theorems proved in theory T are true. Otherwise T is of no interest.

The proof is in two parts.

- First of all you show that

$$
H\left(\Omega_{K}\right)>K-\text { constant. }
$$

This follows from the fact that knowing Ω_{K}, the first K bits of Ω, enables you to answer the halting problem for all programs for U up to K bits in size.

- Now that you know that Ω_{K} has high complexity, in the second half of the proof you use this fact to derive a contradiction from
the assumption that the formal theory T enables you to determine much more than $H(T)$ bits of Ω. Actually, it makes no difference whether these are consecutive bits of Ω or are scattered about in the base-two expansion of Ω.

This, our major incompleteness result about Ω, actually requires very little of the machinery presented in Day III. In fact, the proof is a straight-forward program-size argument that makes no use of P nor of the the Kraft inequality. This is in fact the self-contained elementary proof that I give in my 1998 Springer volume The Limits of Mathematics, which is the reference volume for today's lecture.

4.3 Mutual Information Is Program Size?

I was asked a question about mutual information.
Day III we defined the following complexity measures:

- $H(x)$ (absolute, individual) information,
- $H(x, y)$ joint information,
- $H(x \mid y)$ relative information,
- $H(x: y)$ mutual information.

The fourth complexity measure in this list, mutual information, is actually rather different from the other three. It isn't the size of a computer program! Instead it's defined to be

$$
H(x)+H(y)-H(x, y) .
$$

Well, you could try to make mutual information into the size of a program. E.g., mutual information could be defined to be the size of the largest (not the smallest!) possible common subroutine shared by elegant programs for x and $y .{ }^{1}$

Unfortunately this alternative definition, which is much more intuitive than the one I actually use, doesn't seem to fit into AIT too well. Perhaps someone can find a way to make it work! Can you?

[^10]This is an interesting question to answer because of an important possible application: In Section 1.14, Day I, it was suggested that mutual information be used to try to partition the world into separate living organisms.

4.4 How Do You Actually Make Things SelfDelimiting?!

Is

$$
H(N \text {-bit string }) \leq N+\text { constant? }
$$

No, it can't be, because programs for U have to be self-delimiting. Programs have to indicate their size as well as their content.

Let's look at some examples of how this can be done. How can we make an N-bit string self-delimiting? Well, $2 N+2$ bits will certainly do. There's a special-purpose self-delimiting computer C that accomplishes this:

$$
H_{C}(N \text {-bit string }) \leq 2 N+2 .
$$

C reads two bits of its program at a time as long as they are the same, then stops reading its program and outputs one bit from each pair of identical twins that it read. So

$$
C(00001101) \longrightarrow 001 .
$$

Therefore
$H(N$-bit string $) \equiv H_{U}(N$-bit string $) \leq H_{C}(N$-bit string $)+c \leq 2 N+c^{\prime}$.
A more complicated C reads a program that starts with a doubled and therefore self-delimiting version of the base-two numeral for N followed by the N bits of the bit string. This shows that

$$
H(N \text {-bit string }) \leq 2 \log _{2} N+N+c .
$$

A more elaborate procedure is to have two "headers" at the beginning of the program. The first one uses the bit-doubling trick to indicate the size of the second header, and the second header gives N in binary directly, with no bits doubled. That gives an upper bound of

$$
H(N \text {-bit string }) \leq O(\log \log N)+\log _{2} N+N .
$$

You can go on like this using more and more headers and getting more and more complicated upper bounds. To short-circuit this process, just go back to using a single header, and make it an elegant program for N. That gives

$$
H(N \text {-bit string }) \leq H(N)+N+c,
$$

and this upper bound is, in general, best possible.
So we've just seen four different examples of how a self-delimiting program can tell us its size as well as its contents.

Another version of the principle that a program tells us its size as well as its contents is the fact that an elegant program tells us its size as well as its output, so

$$
H(x)=H(x, H(x))+O(1) .
$$

This is one formula in AIT that is totally unlike anything in Shannon information theory.

That's all the unfinished business from Day III! Now let's start Day IV proper by explaining LISP!

4.5 What Is LISP?

LISP $=$ LISt Processing. Lists are arbitrarily long nested tuples, and may have repeated elements.

LISP is like a computerized version of set theory!
The LISP S-expression

$$
((A \text { bc) } 39 x-y-z)
$$

denotes the following nested tuples:

$$
\langle\langle A, b c\rangle, 39, x-y-z\rangle
$$

Programs and data in LISP are always S-expressions. Everything is an S-expression! The S in S-expression stands for Symbolic.

S-expressions that are not lists are called atoms. A, bc, 39 and $\mathrm{x}-\mathrm{y}-\mathrm{z}$ are the atoms in the above S-expression. The empty list () $=\langle \rangle$ is also an atom, usually denoted by nil.

LISP is a functional programming language, not an imperative programming language.

LISP is an expression language. There is no notion of time, there are no GOTO's, and there are no assignment statements! ${ }^{2}$

LISP programs are expressions that you evaluate, not run, and they yield a value, with NO side-effect! (This is called "Pure" LISP!)

Functional Notation in LISP:

$$
f(x, y) \text { is written (} \mathrm{f} \mathrm{x} \mathrm{y} \text {) }
$$

So

$$
(1+2) \times 3
$$

becomes

$$
(*(+12) 3)
$$

in LISP. Prefix notation, not infix notation! Full parenthesization! Fixed number of arguments for each primitive function!

In my LISP most parentheses are understood, are implicit, and are then supplied by the LISP interpreter.

Complete LISP Example. Factorial programmed in my LISP:

```
define (f n)
if = n 0 1
    * n (f - n 1)
```

With all the parentheses supplied, factorial becomes:

```
(define (f n)
(if (= n 0) 1
    (* n (f (- n 1)))
))
```

In words, f is defined to be a function of one argument, n. And if n $=0$, then $f(n)$ is 1 . If not, $f(n)$ is $n \times f(n-1)$.

Then (f 4) yields value 24 , as expected, since $4 \times 3 \times 2 \times 1=24$.

Dissecting and Reassembling Lists:

Finally I should mention that car gives you the first element of a list, cdr gives you the rest of the list, and cons inverts car and cdr.

[^11]
4.6 LISP Program-Size Complexity

You can get a toy version of AIT by using LISP program size!
Define an elegant LISP expression to be one with the property that no smaller LISP expression yields the same value.

In order to measure size properly, LISP expressions are written in a canonical standard notation with no embedded comments and with exactly one blank separating successive elements of a list.

Then the LISP complexity of an S-expression is defined to be the size in characters of an elegant expression with that particular value.

Next represent a formal mathematical theory in LISP as a LISP Sexpression whose evaluation never terminates and which uses the primitive function display to output each theorem.
display is an identity function with the side-effect of displaying its operand and is normally used for debugging large LISP S-expressions that give the wrong value.

Theorem-

A formal mathematical theory with LISP complexity N cannot enable you to prove that a LISP expression is elegant if the elegant expression's size is greater than $N+410$ characters!

This is a very concrete, down-to-earth incompleteness theorem! In that direction, it's the best I can do!

The reductio ad absurdum proof consists of $N+410$ characters of LISP that define a function, and that apply this function to a quoted form of the N-character LISP expression that generates all the theorems of the formal theory. The first step is to measure the size N of the LISP expression that generates all the theorems. Then use TRY (Section 4.7) to run the theory for longer and longer, until a provably elegant expression is found whose size is greater than $N+410$. When this happens, evaluate the provably elegant expression and return its value as our value.

So we've described an $N+410$ character LISP expression whose value is the same as the value of an elegant expression that is larger than it is! Contradiction!

4.7 How Does TRY Work?

TRY plays the fundamental role in my LISP that eval plays in traditional, normal LISP. It enables you to try to evaluate a given expression for a limited or unlimited amount of time, and giving it raw binary data on the side, which it must access in a self-delimiting manner. Also, display's from within the expression are captured, thus giving a mechanism for an S-expression to produce an infinite amount of output, not just a final value.
try time-limit/no-time-limit expression binary-data

TRY has the three arguments shown above.

The first argument is either an integer or no-time-limit. The second argument is an arbitrary LISP S-expression. The third argument is a bit string represented in LISP as a list (...) of 0's and 1's separated by blanks.

TRY then yields this triple:

```
(success/failure
value-of-expression/out-of-time/out-of-data
(list of captured displays from within expression...))
```

Also, within the expression that is being tried, you can use read-bit or read-exp to get access to the binary data in a self-delimiting manner, either one bit or one LISP S-expression at a time.

TRY is like a large suitcase: I am using it to do several different things at the same time. In fact, TRY is all I really need to be able to program AIT in LISP. All of the other changes in my version of LISP were made just for the fun of it! (Actually, to simplify LISP as much as possible without ruining its power, so that I could prove theorems about it and at the same time enjoy programming in it!)

Example: If you're trying to run an unending computation that is a formal theory written in LISP as described in Section 4.6, then TRY always returns
(failure out-of-time (list of theorems...))

The size of the list of theorems depends on how much time the TRY was given to run the formal theory.

4.8 LISP Program for Our Standard Universal Computer U

```
define (U p)
cadr try no-time-limit
    'eval read-exp
    p
```

This function U of p returns the second element of the list returned by TRY, a TRY with no time limit that tries to evaluate a LISP expression at the beginning of p, while making the rest of p available as raw binary data.

Here the program p for U is a bit string that is represented in LISP as a list of 0 's and 1's separated by blanks. E.g., $p=\left(\begin{array}{lllll}0 & 1 & 1 & 0 & 1 . . .\end{array}\right)$

Let me explain this!
The binary program p consists of a LISP S-expression prefix (converted into a bit string), that is followed by a special delimiter character, the ASCII newline control character (also converted to bits), and that is then followed by raw binary data.

The newline character adds 8 bits to the program p, but guarantees that the prefix be self-delimiting. Each character in the LISP prefix is given in p as the corresponding 8 ASCII bits.

Within the prefix, read-bit and read-exp enable you to get access to the raw binary data, either one bit or one LISP S-expression at a time. But you must not run off the end of the binary data! That aborts everything! If so, U of p returns out-of-data.

So the program for the universal U consists of a high-level language algorithmic part followed by data, raw binary data. The algorithmic part indicates which special-purpose self-delimiting computer C should be simulated, and the raw binary data gives the binary program for C !

I believe that I've picked a very natural U.

4.9 Running U on Simple Examples

Here's our first example of a program for U. This program is all LISP prefix with no binary data. The prefix is ' ($\mathrm{a} \quad \mathrm{b} \quad \mathrm{c}$).

```
run-utm-on
```

bits , '(a b c)

This yields (a b c).
And here's a program with one bit of binary data. The prefix is read-bit and the data is 0 .

```
run-utm-on
append bits 'read-bit
    ,(0)
```

This yields 0 .
Let's change the data bit. Now the prefix is read-bit and the data is 1 .
run-utm-on
append bits 'read-bit
, (1)
This yields 1.
run-utm-on is a macro that expands to the definition of U, which is cadr try no-time-limit 'eval read-exp.

Also note that when bits converts a LISP S-expression into a bit string (a list of 0 's and 1 's) it automatically adds the newline character required by read-exp.

4.10 Subadditivity Revisited

```
cons eval read-exp
cons eval read-exp
    nil
```

This is a 432-bit prefix π for U with the property that

$$
U(\pi x * y *)=(x y)=\langle x, y\rangle .
$$

Here $x *$ is an elegant program for x and $y *$ is an elegant program for y.
Therefore

$$
H(x, y) \leq H(x)+H(y)+432!
$$

For years and years I used this inequality without having the faintest idea what the value of the constant might be! It's nice to know that there is a natural choice for U that can be easily programmed in LISP and for which $c=432$! That's a little bit like dreaming of a woman for years and then actually meeting her! That's also how I feel about now having a version of U that I can actually run code on!

My book The Limits of Mathematics programs in LISP all the proofs of my incompleteness results, in particular, all the key results about Ω. And my book Exploring Randomness programs in LISP all the proofs of the results presented Day III. That's a lot of LISP programming, but I enjoyed it a lot!

Some of these programs are fun to read, and it's educational to do so, but I probably went overboard! In general, I would say that you are better off programming something yourself, rather than reading someone else's code, if you really want to understand what's going on! There is no substitute for doing it yourself, your own way, if you really want to understand something. After all, that's how I came up with AIT and my alternative approach to Gödel incompleteness in the first place, because I was dissatisfied with the usual approach!

4.11 Some Open Problems for Future Research

- There is a cottage industry of highly-technical work on subtle properties of Ω and to what extent other numbers share these properties. [See Delahaye, "Les nombres oméga," Pour la Science, May 2002, pp. 98-103 and Calude, Information and Randomness, Springer, 2002.]
- Much work remains to be done on the complexity $H(X)$ for infinite sets X. This is important because of the case when

$$
X=\{\text { the set of theorems of a formal theory } T\} .
$$

For example, the relationship between the algorithmic complexity $H(X)$ and the algorithmic probability $P(X)$ is not completely known. When dealing with infinite computations in AIT, in some cases it is not even clear whether the definitions that were chosen are the right ones! [For more on this, see the last chapter of my Exploring Randomness.]

- As I stated above, meta-mathematics and the incompleteness results I've presented in this course are a static framework in which one studies the power of a fixed set of axioms and rules of inference. How about a dynamic theory that has something to say about the emergence of new mathematical concepts? Is such a meta-theory possible? ${ }^{3}$
- I would like to see an abstract mathematical theory defining "life" and predicting its emergence and evolution under very general circumstances.
- Is the physical universe discrete or continuous? Starting from black hole thermodynamics, a "holographic" principle has emerged which states that the information content of any physical system is only a finite number of bits and grows with the surface area of that system, not with its volume. [See Smolin, Three Roads to Quantum Gravity.] It will be interesting to see if and in what form these ideas survive.
- I think that AIT is largely sketched out and only highly technical questions remain. I personally am more interested in attempting new theories of life or intelligence. This however will not be easy to do.

I've greatly enjoyed this Winter School and my visit to Estonia! Thank you very much for inviting me!

[^12]
Additional Reading

The six papers listed here were the handouts that accompanied my lectures at EWSCS '03. The two books listed below provide the reference material for the course, including complete proofs for all the theorems that I stated here, and a detailed explanation of my version of LISP.

- Day I-Philosophical Necessity of AIT

- G. Chaitin, "Two philosophical applications of algorithmic information theory," in C. S. Calude, M. J. Dinneen, V. Vajnovszki, eds., Discrete Mathematics and Theoretical Computer Science: Proc. of DMTCS 2003, pp. 1-10. SpringerVerlag, Berlin, 2003.
http://arxiv.org/abs/math.HO/0302333
- G. Chaitin, "On the intelligibility of the universe and the notions of simplicity, complexity and irreducibility." Presented at the XIX. Deutscher Kongreß für Philosophie, Grenzen und Grenzüberschreitungen [German Philosophy Congress on Limits and Transcending Limits], 23-27 September 2002, in Bonn. http://arxiv.org/abs/math.HO/0210035
- Day II-Main Application of AIT: Incompleteness
- G. Chaitin, "Paradoxes of randomness," Complexity, vol. 7, no. 5, pp. 14-21, 2002.

- Day III-Technical Survey of AIT: Definitions \& Theorems

- G. Chaitin, "Meta-mathematics and the foundations of mathematics," Bulletin of EATCS, vol. 77, pp. 167-179, 2002.
- G. Chaitin, Exploring Randomness, Springer-Verlag, London, 2001.

- Day IV-LISP Implementation of AIT

- G. Chaitin, "Elegant LISP programs," in C. S. Calude, ed., People and Ideas in Theoretical Computer Science, pp. 32-52. Springer-Verlag, Singapore, 1999.
- G. Chaitin, "An invitation to algorithmic information theory," in D. S. Bridges, C. S. Calude, J. Gibbons, S. Reeves, I. H. Witten, eds., Combinatorics, Complexity \& Logic: Proc. of DMTCS '96, pp. 1-23. Springer-Verlag, Singapore, 1997.
- [The above two papers are both chapters in] G. Chaitin, The Limits of Mathematics, Springer-Verlag, Singapore, 1998.

The papers listed here are also available at the author's websites:

```
http://www.cs.umaine.edu/~ chaitin
http://www.cs.auckland.ac.nz/CDMTCS/chaitin
```

LISP code for my two books may be found at
http://www.cs.umaine.edu/~chaitin/ait
http://www.cs.auckland.ac.nz/CDMTCS/chaitin/ait
http://www.cs.umaine.edu/~chaitin/lm.html
http://www.cs.auckland.ac.nz/CDMTCS/chaitin/lm.html
The LISP interpreter is at

> http://www.cs.umaine.edu/~chaitin/unknowable/lisp.html
> http://www.cs.auckland.ac.nz/CDMTCS/chaitin/unknowable/

8th Estonian Winter School in Computer Science, EWSCS'03 Palmse, Estonia, 2-7 March 2003

EWSCS is a series of regional-scope international winter schools held annually in Estonia, organized by the Institute of Cybernetics, Tallinn. The first EWSCS took place in 1996 at Pühajärve. EWSCS'03, held at Palmse, 2-7 March 2003, was the 8th event in the series.

The objective of the schools is to expose Estonian, Baltic, and Nordic graduate students in computer science (but also interested active computer scientists and students from elsewhere) to frontline research topics in their field not covered within the regular curricula. The subject of the schools is general computer science, with a bias towards theory, this comprising both algorithms, complexity and models of computation, and semantics, logic and programming theory. The working language of the school is English.

The scientific programme of EWSCS'03 comprised five courses:

- Andris Ambainis (University of Latvia, Riga, Latvia): Quantum Algorithms and Quantum Cryptography
- Gregory Chaitin (IBM Research, USA): Algorithmic Information Theory
- Patrick Cousot (École Normal Supérieure, France): Introduction to Abstract Interpretation
- Ivan Damgård (Aarhus Universitet, Denmark): Theory and Practice of Multiparty Computation
- Johan Håstad (Kungl. Tekniska Högskolan, Stockholm, Sweden): Probabilistically Checkable Proofs and Inapproximability

In addition, there were 10 short talks and 10 posters by the students on their ongoing thesis projects.

The social programme featured an excursion to Viinistu and a dinner at Altja tavern.

The school was attended by 54 people. The audience of the 5 lecturers consisted of 49 students and local organizers from 9 countries, thereof $20+7$ from Estonia, 3 from Latvia, 2 from Lithuania, 2 from Russia, 7 from Finland, 3 from Denmark, 2 from Germany, 1 from Portugal and 2 from South Africa.

EWSCS'03 programme committee / organizing committee: Jaan Penjam (Inst. of Cybernetics), Monika Perkmann (Inst. of Cybernetics), Helger Lipmaa (Helsinki Univ. of Technology), Tarmo Uustalu (Inst. of Cybernetics), Jüri Vain (Tallinn Techn. Univ.), Heli Uibo (Univ. of Tartu), Varmo Vene (Univ. of Tartu), Jaak Vilo (EGeen Inc.).

The school received financial support from the Estonian Information Technology Foundation through the Tiigriülikool programme, the European Commission through the FP5 IST project eVikings II and the Ministry of Education and Research of Estonia through its Centers of Excellence in Research programme.

The organizers wish to thank all lecturers of EWSCS'03 for the good work they did at Palmse. Thanks for coming, thanks for sharing your knowledge and your passion for your subject!

Many thanks also to the people of Park Hotel Palmse and the Visitor Center of Lahemaa National Park.

Gregory J. Chaitin is at the IBM Thomas J. Watson Research Center in New York, and is the discoverer of the remarkable Ω number. In these four lectures from EWSCS'03, he presents an overview of his theory of algorithmic information, which develops an idea in Leibniz's Discours de métaphysique (1686) and focuses on randomness and on the limits of formal axiomatic reasoning.

EWSCS'03, held at Palmse, Estonia, 2-7 March 2003, was the 8th in a series of Estonian Winter Schools in Computer Science, organized by the Institute of Cybernetics, Tallinn.

[^0]: ${ }^{1}$ Hermann Weyl, The Open World, Yale University Press, 1932. Reprinted by Ox Bow Press, 1989. See also Weyl's Philosophy of Mathematics and Natural Science, Princeton University Press, 1949.
 ${ }^{2}$ For the original French text, see Leibniz, Discours de métaphysique, Gallimard, 1995. There is an English translation in G. W. Leibniz, Philosophical Essays, edited and translated by Roger Ariew and Daniel Garber, Hackett, 1989.

[^1]: ${ }^{3}$ Here is an argument in favor of diversity from Leibniz via Borges. Consider two libraries with exactly the same number of books. Recall that Borges was a librarian! One of the libraries only has copies of Virgil's Aeneid (presumably the perfect book), while the other library has one copy of the Aeneid and many other different (and presumably inferior!) books. Nevertheless, the second library is clearly a more interesting place to visit!

[^2]: ${ }^{4}$ Throughout this discussion we assume a fixed choice of programming language.

[^3]: ${ }^{5}$ Especially if you're given successive digits of π that come from far inside the decimal expansion without being told that they're digits of π - they look random.

[^4]: ${ }^{6}$ For more on Wolfram, Fredkin, Lloyd, Toffoli, Landauer, Zuse... see O. PostelVinay, "L'Univers est-il un calculateur?" [Is the universe a calculator?], La Recherche, no. 360, January 2003, pp. 33-44.
 ${ }^{7}$ Algorithms played a decisive role in Sumerian mathematics more than a millennium before Pythagoras, a tremendously long intellectual trajectory! The Sumerians used base 60 numerals, and divided the circle into 360 degrees. Recall too Zeno's refutation of continuous time and motion, which led Hume to insist that space and time are discrete.-Françoise Chaitin-Chatelin, private communication.

[^5]: ${ }^{1}$ I.e., using notation that we haven't introduced yet, the positive integer N is uninteresting iff $H(N) \equiv H_{U}(N) \geq|N| \equiv$ size in bits of N. For the definition of H_{U}, see Section 2.13.
 ${ }^{2}$ It turns out that if you work through all the details, you can't prove that a positive integer is uninteresting if its size in bits is greater than (the size of the program that generates all the theorems in the formal theory $F T$) plus a constant c.
 ${ }^{3}$ In English in Paolo Mancosu, From Brouwer to Hilbert, Oxford University Press, 1998.
 ${ }^{4}$ Vladimir Tasić, Mathematics and the Roots of Postmodern Thought, Oxford University Press, 2001.

[^6]: ${ }^{5}$ But very, very slowly, and you can never be sure how close you are.

[^7]: ${ }^{6}$ Somewhere Leibniz proposes measuring the intellectual progress of mankind via a function $\Phi(t)$ with the property that all interesting theorems with proofs of size $\leq \Phi(t)$ are known at time t. Yet another possible measure of human progress is a function $\Lambda(t)$ such that all halting problems for programs with $\leq \Lambda(t)$ bits have been settled by time t. Yet perhaps these measures of intellectual progress are all beside the point, the point being the emergence of new concepts?

 The progress measured by Φ is, in principle, merely hard work, and could be achieved mechanically, by employing vast amounts of computation, assuming that we are exploring a fixed, static formal theory. But I think that Λ-and counting provable bits in Ω-measures the emergence of new concepts indirectly via their effects, for surely new concepts would be needed to advance in these areas.

[^8]: ${ }^{1}$ "Art is a lie that helps us to see the truth," Pablo Picasso.

[^9]: ${ }^{2}$ Then I discovered Ω, which cannot be defined unless programs are self-delimiting.

[^10]: ${ }^{1}$ For other possibilites, see the section on common information in my 1979 paper Toward a mathematical definition of "life."

[^11]: ${ }^{2}$ Well, they're actually present, but only indirectly, only subliminally!

[^12]: ${ }^{3}$ In this connection, see footnote 6 on page 24 .

