

FROM PHILOSOPHY TO PROGRAM SIZE
Key Ideas and Methods

Lecture Notes on

Algorithmic Information Theory
from the 8th Estonian Winter School in

Computer Science, EWSCS’03

Gregory J. Chaitin, IBM Research

Institute of Cybernetics

Tallinn

Gregory J. Chaitin
IBM Research
P. O. Box 218, Yorktown Heights, NY 10598, USA
http://www.cs.umaine.edu/~chaitin/
http://www.cs.auckland.ac.nz/CDMTCS/chaitin/

The 8th Estonian Winter School in Computer Science, EWSCS’03, was held
at Palmse, Estonia, 2-7 March 2003, organized by the Institute of Cybernetics,
Tallinn.

The organizers acknowledge the financial support from the Estonian Informa-
tion Technology Foundation through the Tiigriülikool programme, the Euro-
pean Commission through the FP5 IST project eVikings II and the Ministry
of Education and Research of Estonia through its Centers of Excellence in
Research programme.

Photos by Vahur Kotkas, Marko Kääramees
Cover design by Kristiina Krabi
Typesetting by the author

Institute of Cybernetics at Tallinn Technical University
Akadeemia tee 21, EE-12618 Tallinn, Estonia
http://www.ioc.ee/

ISBN 9985-894-55-3

c© Gregory J. Chaitin 2003

Printed and bound at Tallinna Raamatutrükikoda, Tallinn, Estonia.

Preface

This little book contains the course that I had the pleasure of giving at
the 8th Estonian Winter School in Computer Science (EWSCS ’03) held
at the beautiful Palmse manor in Lahemaa National Park, Estonia, from
March 2nd through 7th, 2003. There I gave four 90-minute lectures on
algorithmic information theory (AIT), which is the theory of program-
size complexity. Each of these lectures is one chapter of this book.

In these lectures I discuss philosophical applications of AIT, not prac-
tical applications. Indeed, I believe AIT has no practical applications.

The most interesting thing about AIT is that you can almost never
determine the complexity of anything. This makes the theory useless
for practical applications, but fascinating from a philosophical point of
view, because it shows that there are limits to knowledge.

Most work on computational complexity is concerned with time.
However this course will try to show that program-size complexity, which
measures algorithmic information, is of much greater philosophical sig-
nificance. I’ll discuss how one can use this complexity measure to study
what can and cannot be achieved by formal axiomatic mathematical
theories.

In particular, I’ll show (a) that there are natural information-
theoretic constraints on formal axiomatic theories, and that program-
size complexity provides an alternative path to incompleteness from the
one originally used by Kurt Gödel. Furthermore, I’ll show (b) that
in pure mathematics there are mathematical facts that are true for no
reason, that are true by accident. These have to do with determining
the successive binary digits of the precise numerical value of the halting
probability Ω for a “self-delimiting” universal Turing machine.

5

6 CHAITIN, FROM PHILOSOPHY TO PROGRAM SIZE

I believe that these meta-theorems (a,b) showing (a) that the
complexity of axiomatic theories can be characterized information-
theoretically and (b) that God plays dice in pure mathematics, both
strongly suggest a quasi-empirical view of mathematics. I.e., math is
different from physics, but perhaps not as different as people usually
think.

I’ll also discuss the convergence of theoretical computer science with
theoretical physics, Leibniz’s ideas on complexity, Stephen Wolfram’s
book A New Kind of Science, and how to attempt to use information
theory to define what a living being is.

In this book I’ve tried to preserve the informal style of presentation
in my lectures that stressed the key ideas and methods and avoided
getting bogged down in technical details. There are no proofs here, but
there are plenty of proof sketches. I hope that you enjoy reading this
book just as much as I enjoyed presenting this material at EWSCS ’03!

—Gregory Chaitin

http://www.cs.umaine.edu/~chaitin
http://www.cs.auckland.ac.nz/CDMTCS/chaitin

Contents

1 Day I—Philosophical Necessity of AIT 11
1.1 Is P 6= NP a New Axiom? 11
1.2 Day I Summary . 11
1.3 Summary of Leibniz, 1686 12
1.4 From Leibniz to AIT . 12
1.5 Setup for Discussing the Limits of Mathematical Reasoning 13
1.6 You Need an N -Bit Theory to Prove that an N -Bit Pro-

gram Is Elegant! . 15
1.7 Complexity of the Universe of Mathematical Ideas 15
1.8 Why Do You Need an N -bit Theory to Prove that an

N -Bit Program Is Elegant? 16
1.9 Is Mathematics Quasi-Empirical? 16
1.10 Complexity of the Physical World 17
1.11 Summary of Wolfram, 2002 18
1.12 Digital Philosophy . 19
1.13 Three Interesting Books 20
1.14 Decomposing the World 20

2 Day II—Main Application of AIT: Incompleteness 23
2.1 Day II Summary . 23
2.2 Hilbert-Style Formal Theories 23
2.3 Summary of Gödel, 1931 24
2.4 My Approach to Incompleteness 24
2.5 Borel’s Unreal Number B, 1927 25
2.6 More-Real Turing Number T 26
2.7 Some Interesting Cases of the Halting Problem 26

7

8 CHAITIN, FROM PHILOSOPHY TO PROGRAM SIZE

2.8 Crucial Observation . 27
2.9 The Halting Probability Ω 27
2.10 Why Is Ω Interesting? . 28
2.11 In What Sense Is Ω Random? 29
2.12 The Self-Delimiting Universal Computer U 29
2.13 U Is Optimal and Defines ΩU 29
2.14 My U Is Programmed in LISP 30
2.15 Programming U in LISP 30
2.16 Ω and Hilbert’s 10th Problem 31

3 Day III—Technical Survey of AIT: Definitions & Theo-
rems 33
3.1 Definition of a Self-Delimiting Computer C 33
3.2 What Do We Do with C? Define U ! 34
3.3 Does the Fact that H Depends on U Destroy AIT?! . . . 34
3.4 A More Abstract Definition of the Complexity H 35
3.5 Back to U—What Do We Do with U? Definitions! 36
3.6 AIT Definitions (Continued) 37
3.7 Important Properties of These Complexity Measures . . . 37
3.8 Complexity of Bit Strings. Examples 38
3.9 Maximum Complexity Infinite Binary Sequences 39
3.10 The Algorithmic Probability of x, P (x) 40
3.11 What Is the Relationship between H and P? 41
3.12 Occam’s Razor! There Are Few Elegant Programs! 42
3.13 The Extended Kraft Inequality Condition for Construct-

ing C . 42
3.14 Three-Level Proofs: Program Size, Probabilities, Geometry 43

4 Day IV—LISP Implementation of AIT 45
4.1 Formal Definition of the Complexity of a Formal Theory . 45
4.2 Formal Statement of the Incompleteness Theorem for Ω . 46
4.3 Mutual Information Is Program Size? 47
4.4 How Do You Actually Make Things Self-Delimiting?! . . . 48
4.5 What Is LISP? . 49
4.6 LISP Program-Size Complexity 51

9

4.7 How Does TRY Work? . 52
4.8 LISP Program for Our Standard Universal Computer U . 53
4.9 Running U on Simple Examples 53
4.10 Subadditivity Revisited 54
4.11 Some Open Problems for Future Research 55

Additional Reading 57

10 CHAITIN, FROM PHILOSOPHY TO PROGRAM SIZE

Chapter 1

Day I—Philosophical
Necessity of AIT

1.1 Is P 6= NP a New Axiom?

Can we add P 6= NP as a new axiom?!
This is a good example of the situation discussed in Gödel, What

is Cantor’s Continuum Problem?, 1947, where he argues that maybe
math is a little like physics and that new axioms that are not self-
evident might be justified because of their usefulness.

If so, there is ample pragmatic justification for adding P 6= NP as a
new axiom.

(In his 1947 article Gödel was concerned with set theory, not com-
puter science.)

Let’s see!!!

1.2 Day I Summary

• Our goal: To find the Limits of Mathematical Reasoning

• Tool we’ll use: Program-Size Complexity

• It’s also called: Algorithmic Information

• Idea starts with Leibniz! 1686!
Discourse on Metaphysics (in French!)

11

12 CHAITIN, FROM PHILOSOPHY TO PROGRAM SIZE

• AIT is needed to understand what is “law” and
what is “understanding.”

1.3 Summary of Leibniz, 1686

(Brought to my attention by Hermann Weyl, 1932.1)
What is a law of nature?
According to Leibniz, a theory must be simpler than the data it

explains!
Because if a physical law can be as complicated as the exper-

imental data that it explains, then there is always a law, and
the notion of “law” becomes meaningless!

Understanding is compression! A theory as complicated as the
data it explains is NO theory!

All of this is stated very clearly (in French) in 1686 by the math-
ematical genius and philosopher Leibniz! During his lifetime he only
transmitted summaries of these ideas to friends and colleagues in let-
ters! The complete text of his Discourse on Metaphysics was found
among his voluminous personal papers after his death.2

1.4 From Leibniz to AIT

AIT goes beyond Leibniz by positing that a theory is a computer
program, and that the size in bits of this computer program is
the complexity of the theory. AIT makes Leibniz more precise! AIT
emphasizes the common features in these four diagrams:

scientific theory −→ Calculations −→ experimental data
program −→ Computer −→ output
axioms −→ Deduction −→ theorems

Ideas −→ Mind of God −→ The World
1Hermann Weyl, The Open World, Yale University Press, 1932. Reprinted by Ox

Bow Press, 1989. See also Weyl’s Philosophy of Mathematics and Natural Science,
Princeton University Press, 1949.

2For the original French text, see Leibniz, Discours de métaphysique, Gallimard,
1995. There is an English translation in G. W. Leibniz, Philosophical Essays, edited
and translated by Roger Ariew and Daniel Garber, Hackett, 1989.

DAY I—PHILOSOPHY 13

Following Leibniz, in each of these diagrams the input on
the left must be much smaller than the output on the right.

Leibniz’s key insight is not that this is “the best of all possible
worlds”. This was anti-Leibniz propaganda by Voltaire, who ridiculed
Leibniz and did not understand how subtle and profound Leibniz was.
(According to Borges, the word “optimism” was invented by Voltaire to
mock Leibniz!)

Leibniz’s key insight is that God has used few ideas to create all
the diversity, richness and apparent complexity of the natural world.3

Leibniz is actually affirming his belief that the universe is rationally
comprehensible. (This belief in a rational universal goes back at least
to the ancient Greeks, particularly Pythagoras and Plato, but Leibniz’s
formulation is much sharper and profound because he analyzes in math-
ematical terms exactly what this belief means.) In modern language,
Leibniz was stating his belief in the possibility of science.

Pythagoras and Plato believed that the universe can be compre-
hended using mathematics. Leibniz went beyond them by clarifying
mathematically what exactly does it mean to assert that the universe
can be comprehended using mathematics.

AIT continues this train of thought and goes beyond Leibniz by
positing that explanations are computer programs and also by defining
precisely what complexity is and what exactly does it mean to satisfy
Leibniz’s requirement that an explanation has to be simpler than
the phenomena that it explains.

1.5 Setup for Discussing the Limits of Mathe-
matical Reasoning

Now let’s apply these ideas! Let’s see what they have to say about the
limits of mathematical reasoning. Let’s see what mathematical theories
can accomplish.

3Here is an argument in favor of diversity from Leibniz via Borges. Consider
two libraries with exactly the same number of books. Recall that Borges was a
librarian! One of the libraries only has copies of Virgil’s Aeneid (presumably the
perfect book), while the other library has one copy of the Aeneid and many other
different (and presumably inferior!) books. Nevertheless, the second library is clearly
a more interesting place to visit!

14 CHAITIN, FROM PHILOSOPHY TO PROGRAM SIZE

The setup is as follows.
The (static, formal) mathematical theories that we consider are

thought of, somewhat abstractly, as a computer program for running
through all possible proofs and generating all the theorems in the the-
ory, which are precisely all the logical consequences of the axioms in the
theory.

Theory = Program −→ Computer −→ Theorems

[This assumes that the theory uses a formal language, symbolic logic,
requires complete proofs, and provides a proof-checking algorithm that
always enables you to decide mechanically whether or not a proof is
correct, whether or not it followed all the rules in deriving a logical
consequence of the axioms.]

And we shall concentrate our attention on the size in bits of this
computer program for generating all the theorems. That’s our measure
of the complexity of this theory, that’s our measure of its information
content.

So when we speak of an N -bit theory, we mean one with an N -
bit program for generating all the theorems. We don’t care that this
process is very slow and never terminates. AIT is a theoretical theory,
not a practical theory!

Okay, that’s half the setup! These are the theories we’ll consider.

Here’s the other half of the setup. Here are the theorems that we
want these theories to be able to establish. We want to use these theories
to prove that particular computer programs are elegant.

“Elegant” Programs:
No smaller program gives exactly the same output.

What is an elegant program? It’s one with the property that no
smaller program written in the same language produces exactly the same
output.4

There are lots of elegant programs!

4Throughout this discussion we assume a fixed choice of programming language.

DAY I—PHILOSOPHY 15

For any particular computational task, for any particular output that
we desire to achieve, there has to be at least one elegant program, and
there may even be several.

But what if we want to be able to prove that a particular program
is elegant?

1.6 You Need an N-Bit Theory to Prove that
an N-Bit Program Is Elegant!

[For the proof, see Section 1.8; for a corollary, see Section 1.7.]
These are Irreducible Mathematical Truths!!!
No rational justification is possible!
Such mathematical facts can have no rational explanation, because

rational explanation consists of reducing something to simpler (maybe
even self-evident) principles. A theory for something derives it from
simpler hypotheses. If this kind of reduction is impossible, then we are
confronted with irrational mathematical facts, mathematical facts that
cannot be encompassed by any static theory!

Therefore (corollary). . .

1.7 Complexity of the Universe of Mathemati-
cal Ideas

The world of mathematical ideas has INFINITE complexity!
Why?
Well, no N -bit theory for any finite N can enable you to prove all

true assertions of the form

“This particular program is elegant.”

(What about the physical world? Does it have finite or infinite
complexity? We’ll look at that later. See Sections 1.10 through 1.12.)

16 CHAITIN, FROM PHILOSOPHY TO PROGRAM SIZE

1.8 Why Do You Need an N-bit Theory to
Prove that an N-Bit Program Is Elegant?

Here is the proof! We’ll assume the opposite and derive a contradiction.
Consider this computer program:

N -bit theory + fixed-size routine
↓

Computer
↓

the output of
the first provably elegant program whose size is greater than

(complexity of theory + size of fixed-size routine)

Let c be the size in bits of the fixed-size routine that does all this: It
is given the N -bit theory as data and then it runs through all possible
proofs in the theory until it finds a provably elegant program that is
sufficiently large (> N + c bits), then it runs that program and returns
that large elegant program’s output as its own output.

So the N + c bit program displayed above produces the same output
as a provably elegant program that is larger than N + c bits. But that
is impossible!

So our precise result is that an N-bit theory cannot enable us to
prove that any program that is larger than N +c bits is elegant.
Here c is the size in bits of the fixed-size routine that when added to
the N -bit formal theory as above yields the paradox that proves our
theorem.

Note: We are making the tacit assumption that if our theory proves
that a program is elegant, then that program is actually elegant. I.e.,
we assume that only true theorems are provable in our formal theory. If
this is NOT the case, then the theory is of absolutely no interest.

1.9 Is Mathematics Quasi-Empirical?

Now let’s go back to the question of adding P 6= NP as a new axiom, and
to Gödel’s thoughts that maybe physics and math are not so different,
which, following Lakatos and Tymoczko (1998), is now referred to as a
quasi-empirical view of mathematics.

DAY I—PHILOSOPHY 17

Gödel, who had the conventional Platonist view of math, was only
forced into backing new math axioms that are only justified prag-
matically just as in physics because of his famous 1931 incompleteness
theorem. And I believe that the ideas that I’ve just presented applying
program-size complexity to incompleteness, in particular my result that
it takes an N -bit theory to prove that an N -bit program is elegant, and
the results on Ω that we’ll see Day II, provide even more support for
Gödel’s heretical views on new axioms.

The way AIT measures the complexity (information content) of math-
ematical theories makes Gödel incompleteness seem much more natural,
much more pervasive, much more inevitable, and much more danger-
ous. Adding new axioms—adding more mathematical information—
seems to be the only way out, the only way to go forward!

We’ve discussed adding new axioms in math just as in physics, prag-
matically. A related question is

“Is experimental mathematics okay?”

Even when there are NO proofs? For an extreme example of this,
see Wolfram, A New Kind of Science, 2002, who provides a tremendous
amount of computational evidence, but almost no proofs, in support of
his theory. See also the journal Experimental Mathematics.

Obviously, AIT makes me sympathetic to experimental mathemat-
ics, even though I don’t do experimental math myself. Experimental
math is fueled by the power of the computer, not by Gödel’s nor by my
meta-theorems, but it fits nicely into a quasi-empirical view of math-
ematics. Practical necessity as well as philosophical analysis are both
simultaneously pushing in the direction of experimental math!

1.10 Complexity of the Physical World

Now let’s turn to the physical universe! Does it have finite or infinite
complexity?

The conventional view on this held by high-energy physicists is that
there is a TOE, a theory of everything, a finite set of laws of nature that
we may someday know, which has only finite complexity.

So that part is optimistic!

18 CHAITIN, FROM PHILOSOPHY TO PROGRAM SIZE

But unfortunately in quantum mechanics there’s randomness, God
plays dice, and to know the results of all God’s coin tosses, infinitely
many coin tosses, necessitates a theory of infinite complexity, which
simply records the result of each toss!

So the conventional view currently held by physicists is that because
of randomness in quantum mechanics the world has infinite complexity.

Could the conventional view be wrong? Might it nevertheless be
the case that the universe only has finite complexity? Some extremely
interesting thoughts on this can be found in

Wolfram, A New Kind of Science, 2002.

According to Wolfram, there is no real randomness. There is
only pseudo-randomness, like the randomness produced by random-
number generators, which are actually deterministic sequences of num-
bers governed by mathematical laws, since computers use algorithms to
generate pseudo-random numbers, they don’t use quantum mechanics!

According to Wolfram, our universe is actually a deterministic uni-
verse that’s governed by deterministic physical laws!

So the physical universe, the world, has finite complexity. Accord-
ing to Wolfram, everything happens for a reason, just as Leibniz
thought!

These two supremely intelligent men are rationalists. They want
to understand everything! They don’t believe in ultimate mysteries!
They don’t think anything is incomprehensible! They believe in the
power of the human mind to comprehend everything!

On the other hand, we have seen that because it has infinite
complexity, the universe of mathematical ideas CANNOT be
comprehended in its entirety.

1.11 Summary of Wolfram, 2002

In summary, according to Wolfram, 2002 the world is like π = 3.1415926. . .
It looks complicated,5 but it is actually very simple!

5Especially if you’re given successive digits of π that come from far inside the
decimal expansion without being told that they’re digits of π—they look random.

DAY I—PHILOSOPHY 19

According to Wolfram all the randomness we see in the physical
world is actually pseudo-randomness. He believes that the physical
world is actually deterministic, we just don’t know the law.

He sees this as a philosophical possibility. Whether our physical
universe is actually that way or not is another matter, to be decided
by scientists, not philosophers!

1.12 Digital Philosophy

Wolfram’s book as well as my own work on AIT are both examples of
what Edward Fredkin refers to as digital philosophy, a viewpoint that
Fredkin also helped to pioneer.6

In a nutshell, digital philosophy posits that the world is a giant com-
puter, a giant digital information processor, and that, fundamentally,
everything is discrete 0/1 bits!

This algorithmic view of everything7 works much better if there are
actually no real numbers, no continuous quantities, and the physical
universe is really, at some bottom level, discrete.

Wolfram’s work, AIT, and Fredkin’s digital philosophy are all ex-
amples of the convergence of mathematics, theoretical physics,
and theoretical computer science! This is an accelerating trend, of
which the field of quantum computing is also an example.

Of course, traditional mathematical physics is based on continuous
math, on ordinary and partial differential equations, and does not fit in
too well with a digital philosophy. Maybe digital philosophy is a terrible
mistake. Maybe we are taking the digital computer much too seriously!
Maybe we shouldn’t make it the basis of a new philosophy, of a new
world view, of a new système du monde?

We will see!

6For more on Wolfram, Fredkin, Lloyd, Toffoli, Landauer, Zuse. . . see O. Postel-
Vinay, “L’Univers est-il un calculateur?” [Is the universe a calculator?], La Recherche,
no. 360, January 2003, pp. 33–44.

7Algorithms played a decisive role in Sumerian mathematics more than a millen-
nium before Pythagoras, a tremendously long intellectual trajectory! The Sumeri-
ans used base 60 numerals, and divided the circle into 360 degrees. Recall too Zeno’s
refutation of continuous time and motion, which led Hume to insist that space and
time are discrete.—Françoise Chaitin-Chatelin, private communication.

20 CHAITIN, FROM PHILOSOPHY TO PROGRAM SIZE

1.13 Three Interesting Books

I should mention that besides my own works, the book on the quasi-
empirical view of math is

Tymoczko,
New Directions in the Philosophy of Mathematics,

Princeton University Press, 1998.

This is the second expanded edition of a valuable collection of essays
by philosophers, mathematicians, and computer scientists (including two
of my own essays) that its editor Tymoczko unfortunately did not live
to see in print.

Highly recommended!
There are also two forthcoming books on experimental math,

Borwein and Bailey,
Mathematics by Experiment:

Plausible Reasoning in the 21st Century,
and

Experimentation in Mathematics:
Computational Paths to Discovery,

A. K. Peters, 2003,

that should be extremely interesting.

1.14 Decomposing the World

Finally, here is a new and completely different philosophical application
of AIT.

What is a living being?
How can we partition the world into parts? Can we do this in spite of

Parmenides and mystics who insist that the world must be apprehended
as a whole and is an organic unity, a single substance, and cannot be
separated into independent parts?

DAY I—PHILOSOPHY 21

I think the key is algorithmic independence.
X and Y are said to be algorithmically independent if the program-

size complexity of X and Y ≈ the sum of the individual program-size
complexities of X and Y .

I.e., if the number of bits in the simplest theory that explains both
simultaneously is approximately equal to the sum of the number of bits
in the simplest theories that explain each of them separately.

Independent parts of the world, of which living beings are the most
interesting example, have the property that their program-size complex-
ity decomposes additively.

Conversely, the parts of a living being are certainly not indepen-
dent and have high mutual information. [Mutual information will be
discussed in Sections 3.6 and 3.7, Day III, and Section 4.3, Day IV.]

This needs much more work!

22 CHAITIN, FROM PHILOSOPHY TO PROGRAM SIZE

Chapter 2

Day II—Main Application
of AIT: Incompleteness

2.1 Day II Summary

Limits of Formal Mathematical Reasoning:

I. You can’t prove a number is uninteresting/random.

II. You can’t determine bits of Ω (accidental mathematical facts).

Both I and II are irreducible mathematical truths!

2.2 Hilbert-Style Formal Theories

• Meta-mathematics: Use mathematics to discover the limits of
mathematics. Cannot be applied to intuitive, informal mathe-
matics.

• What’s a formal theory?

– axioms

– rules of inference

– symbolic logic

– formal grammar

23

24 CHAITIN, FROM PHILOSOPHY TO PROGRAM SIZE

There is a proof-checking algorithm!

• There is algorithm for generating all theorems in size order of
proofs! So, following Emil Post, 1944, formal theory = r.e. set of
propositions:

theory −→ Computer −→ theorems

• This is a static view of mathematics! It is assumed that the
axioms and rules of inference don’t change. Mathematical methods
can be used to discuss what such a formal system can achieve.

2.3 Summary of Gödel, 1931

• “This statement is false!”

• True iff false! Paradox!

• “This statement is unprovableFT !”

• True iff unprovableFT !
Therefore either a false statement is provableFT , and FT is useless,
or a true statement is unprovableFT , and FT is incomplete!

• FT = Formal Theory.

2.4 My Approach to Incompleteness

• Let’s assume we can divide all the positive integers into the in-
teresting and the uninteresting ones, and that infinitely many of
them are uninteresting.

• Consider the first uninteresting positive integer!

• It’s ipso facto interesting! Paradox!

• Consider the first provablyFT uninteresting positive integer!

• It cannot exist because it would be an extremely interesting num-
ber! Therefore FT is incomplete! FT can never prove that a
number is uninteresting! [Actually, it will turn out, almost never.]

DAY II—INCOMPLETENESS 25

• How do we actually define an uninteresting number? Uninteresting
means algorithmically irreducible, incompressible, no theory for it
smaller than it is.1

• Final Conclusion: Infinitely many integers are uninteresting.
But using a fixed FT you can almost never prove it! Only in
finitely many cases!2

2.5 Borel’s Unreal Number B, 1927

Let’s start on the path to the halting probability Ω, which is a real
number.

• Start with Borel’s very unreal real number B.

• The original source is Émile Borel, 1927.3

B was brought to my attention by Vladimir Tasić, 2001.4

• B = 0.d1d2d3 . . .

• The Nth digit dN of B answers the Nth question in French!

• dN =

1 −→ answer Yes!

2 −→ answer No!

0 −→ NO ANSWER
(Nth text in French is not a valid yes/no question,
or cannot be answered.)

• Most digits of Borel’s number B are 0’s. B is extremely redundant!
1I.e., using notation that we haven’t introduced yet, the positive integer N is

uninteresting iff H(N) ≡ HU (N) ≥ |N | ≡ size in bits of N . For the definition of HU ,
see Section 2.13.

2It turns out that if you work through all the details, you can’t prove that a
positive integer is uninteresting if its size in bits is greater than (the size of the
program that generates all the theorems in the formal theory FT) plus a constant c.

3In English in Paolo Mancosu, From Brouwer to Hilbert, Oxford University Press,
1998.

4Vladimir Tasić, Mathematics and the Roots of Postmodern Thought, Oxford Uni-
versity Press, 2001.

26 CHAITIN, FROM PHILOSOPHY TO PROGRAM SIZE

2.6 More-Real Turing Number T

Here is the next step on our path to Ω:

• Real Number T Solving Turing’s Halting Problem

• T = 0.b1b2b3 . . .

• The Nth bit bN of T answers the Nth case of the halting problem.
bN tells us whether the Nth program pN ever halts.

• bN =

0 −→ pN doesn’t halt,

1 −→ pN halts.

2.7 Some Interesting Cases of the Halting
Problem

These are bits of T :

• Fermat’s Last Theorem (Andrew Wiles)
Does

xN + yN = zN

have a solution in positive integers with N ≥ 3?

• Riemann Hypothesis
About the location of the complex zeroes of the zeta function

ζ(s) ≡
∑
n

1
ns

=
∏
p

1
1− 1

ps

(Here n ranges over positive integers and p ranges over the primes.)
Tells us a lot about the distribution of prime numbers.

• Goldbach Conjecture
Is every even number the sum of two primes?

In each case there is a program that systematically searches
for a counter-example and halts iff it finds it.

DAY II—INCOMPLETENESS 27

2.8 Crucial Observation

Suppose we are given N programs and want to know which ones halt
and which ones don’t.

N cases of the halting problem is only log2 N bits of infor-
mation, not N bits!

They are never independent mathematical facts!
Why not?
Because we could answer all N cases of the halting problem if we

knew exactly how many of the N programs halt. Just run them all
in parallel until exactly the right number halt. The others will never
halt.

Now we use this observation to compress all the redundancy out of
the Turing number T and get an algorithmically irreducible number Ω.

2.9 The Halting Probability Ω

Finally Ω = Omega!
Halting Probability:

Ω ≡
∑

p halts
2−|p|

|p| is the size in bits of the program p.
I.e., each k-bit program that halts when run on our standard univer-

sal Turing machine U contributes 1/2k to Ω.
[We need to make U self-delimiting (Section 2.12) to ensure that

Ω ≤ 1. Otherwise the sum for Ω diverges to ∞. By using self-delimiting
programs, we’ve constructed one number, Ω, that extends the trick of
Section 2.8’s crucial observation so that it works for an infinite number
of computer programs, all of them, in fact.]

Now there is absolutely NO redundancy!
The first N bits of Ω answers the halting problem for all programs

up to N bits in size! (Can you see why? Hint: Ω can be computed in
the limit from below.5)

5But very, very slowly, and you can never be sure how close you are.

28 CHAITIN, FROM PHILOSOPHY TO PROGRAM SIZE

2.10 Why Is Ω Interesting?

The base-two bits of Ω are irreducible mathematical facts! They
can’t be derived from anything simpler!

The bits of Ω are algorithmically irreducible, algorithmically inde-
pendent, and algorithmically random!

Ω is a real number with maximal information content. Each bit of
Ω is a complete surprise! It’s not at all a tame real number like π =
3.1415926. . . which only has a finite amount of algorithmic information.

Ω is a dangerous, scary real number! Not good to meet in a
dark alley! Ω is maximally unknowable! Maximum entropy, maximum
disorder!

“Ω is a nightmare for the rational mind!”, Karl Svozil.

This makes Ω sound bad, very bad!
On the other hand, Ω is distilled, crystalized mathematical informa-

tion. If T is coal, then Ω is a diamond!
In fact, initial segments of Ω are ideal new mathematical axioms.

Knowing a large initial segment of Ω would settle all halting problems
for programs up to that size, which would, to use Charles Bennett’s
terminology, settle all finitely refutable math conjectures up to that
complexity.

Ω is concentrated essence of mathematical creativity and math-
ematical inspiration! One could measure the progress of mathematics
by how many bits of Ω we can currently determine!6 (Of course this has
nothing to do with moral or scientific progress.)

So Ω can also be regarded as a good friend, instead of an enemy!

6Somewhere Leibniz proposes measuring the intellectual progress of mankind via
a function Φ(t) with the property that all interesting theorems with proofs of size
≤ Φ(t) are known at time t. Yet another possible measure of human progress is a
function Λ(t) such that all halting problems for programs with ≤ Λ(t) bits have been
settled by time t. Yet perhaps these measures of intellectual progress are all beside
the point, the point being the emergence of new concepts?

The progress measured by Φ is, in principle, merely hard work, and could be
achieved mechanically, by employing vast amounts of computation, assuming that we
are exploring a fixed, static formal theory. But I think that Λ—and counting provable
bits in Ω—measures the emergence of new concepts indirectly via their effects, for
surely new concepts would be needed to advance in these areas.

DAY II—INCOMPLETENESS 29

2.11 In What Sense Is Ω Random?

The bits of Ω are mathematical facts that are true for No Rea-
son, they’re true by Accident!

Here mathematical truth isn’t Black or White. It’s Grey!
The best way to think about Ω is that each bit of Ω is 0 or 1 with

probability 1/2!
Here God plays dice with mathematical truth!
Knowing all the even bits of Ω wouldn’t help us to get any of the odd

bits of Ω! Knowing the first million bits of Ω wouldn’t help us to get
the million and first bit of Ω! The bits of Ω are just like independent
tosses of a fair coin!

This is the case even though Ω is a specific real number! And even
though each bit of Ω is fully determined mathematically. (Even though
we can’t compute it nor prove what its value is!)

2.12 The Self-Delimiting Universal Computer
U

Actually, the value of Ω depends on the choice of universal computer U .
There are many possible choices!

First of all, U must read one bit of its program p at a time and
decide by itself when to stop reading p before encountering a blank
at the end of p. In other words, each p for U must be self-delimiting.

Also, U must be universal. This means that for any special-purpose
self-delimiting computer C there is a prefix πC such that concatenating
it in front of a program for C gives you a program for U that computes
the same output:

U(πC p) = C(p).

This prefix depends only on the choice of C and not on p. In other
words, U can simulate each C.

2.13 U Is Optimal and Defines ΩU

Then we define the complexity H with respect to C and U as follows:

HC(x) ≡ min
C(p)=x

|p|,

30 CHAITIN, FROM PHILOSOPHY TO PROGRAM SIZE

HU (x) ≡ min
U(p)=x

|p|.

H(x) is the size in bits of the smallest program for computing x on each
machine.

Then we have
HU (x) ≤ HC(x) + |πC |.

In other words, programs for U are not too large. For U to simulate
C adds only a fixed number of bits to each program for C.

Then ΩU is defined as follows:

ΩU ≡
∑

U(p) halts
2−|p|.

Any such universal U will do.

2.14 My U Is Programmed in LISP

The particular U that I picked to define Ω uses LISP as follows:

U(p) runs U on the binary program p = πβ.

Here p = πβ is a bit string consisting of a high-level algorithm π followed
by data β. The self-delimiting prefix π is a LISP expression. The data β
is raw binary data 01101. . . The value of the LISP prefix π is the output
of U(p).

I invented a special version of LISP for writing the prefix π.

2.15 Programming U in LISP

The LISP expression π is converted to binary, eight bits per character,
and concatenated with the raw binary data β to produce the binary
program for U , p = πβ.

Access to the data β is strictly controlled. U reads one bit at a time
of p and CANNOT run off the end of p = πβ. The binary data β must
be self-delimiting, just like the LISP prefix π, so that U knows when to
stop reading it.

DAY II—INCOMPLETENESS 31

I.e., the alphabet for p is binary, not trinary! There is no blank at
end of p! That would be a wasted character, one that isn’t being used
nearly enough!

There are more details about the LISP implementation in the last
lecture (Day IV).

2.16 Ω and Hilbert’s 10th Problem

We end today’s lecture with a very important application: Hilbert’s
10th problem.

Does the diophantine equation D(x) = 0 have an unsigned integer
solution?

• ∃D such that D(k,x) = 0 has a solution iff pk halts!
[Matijasevič]

• ∃D such that D(k,x) = 0 has infinitely many solutions
iff the kth bit of Ω is a 1!
[Chaitin]

• ∃D such that D(k,x) = 0 has an even/odd number of solutions
iff the kth bit of Ω is 0/1!
[Ord and Kieu]

For more details, see Ord and Kieu, On the existence of a new family of
Diophantine equations for Ω,
http://arxiv.org/abs/math.NT/0301274.

So we get randomness in arithmetic! Ω’s algorithmic ran-
domness also infects elementary number theory! The disease
is spreading!

32 CHAITIN, FROM PHILOSOPHY TO PROGRAM SIZE

Chapter 3

Day III—Technical Survey
of AIT: Definitions &
Theorems

Ω is the jewel of AIT. But it isn’t a diamond solitaire. It’s in a beautiful
setting, which we’ll outline today. We’ll review the key definitions, the-
orems, methods and ideas of AIT, but there will be NO proofs! Only
proof sketches. For the proofs, see my book Exploring Randomness.

3.1 Definition of a Self-Delimiting Computer C

AIT starts with a

Self-delimiting computer C

• C(p) −→ output

• The program p is a bit string.

• The output can be e.g. a LISP S-expression
or a set of S-expressions.

Abstract version of self-delimiting feature:
No extension of a valid program is a valid program. If C(p) is defined
then C is not defined on any extension of p. I.e., the domain of the

33

34 CHAITIN, FROM PHILOSOPHY TO PROGRAM SIZE

function C is a so-called prefix-free set. That’s a set of words in
which no word is a prefix of another.

3.2 What Do We Do with C? Define U !

First define the program-size complexity HC(x) to be the size in bits
of the smallest program for C to compute x:

HC(x) ≡ min
C(p)=x

|p|.

Next we construct a universal computer U , for example, as fol-
lows:

U(0(Gödel number for C)1p) = C(p).

In other words, U can simulate C if to each program for C we add a
prefix consisting of a long run of 0’s followed by a 1. This prefix is
self-delimiting, and the number of 0’s in it indicates which C is to be
simulated.

Then we have
HU ≤ HC + constant

where
constant = 1 + (Gödel number for C).

I.e., U ’s programs are, to within an additive constant, minimal in size.
We take this minimality property as our definition for a universal

computer U .
Now somehow pick a particular natural U to use as the basis

for AIT.
In the lecture for Day IV, I will indicate how to use LISP to im-

plement the particular U that I’ve picked to use as the basis for my
theory.

3.3 Does the Fact that H Depends on U Destroy
AIT?!

• Some people are exceedingly unhappy that the value of H de-
pends on the choice of U . But whatever U you pick, the theory
goes through. And Day IV, I actually pick a very simple U .

DAY III—DEFINITIONS & THEOREMS 35

• And since Ω is an infinite object, all the additive constants that
reflect the choice of U wash out in the limit.

• Time complexity depends polynomially on the computational
model. But in the case of program-size complexity the dependence
on U is only an additive constant. So the unfashionable field of
AIT depends less on the choice of computer than the fashionable
field of time complexity does! So much for fashion!

• Remember, I do not think that AIT is a practical theory for prac-
tical applications. All theories are lies that help us to see
the truth.1 All elegant theories are simplified models of
the horrendous complexity of the chaotic real world. Nev-
ertheless, they give us insight. You have a choice: elegance or
usefulness. You cannot have both!

• If we knew all the laws of physics, and the world turned out to be
a giant computer, then we could use that computer as U !

3.4 A More Abstract Definition of the
Complexity H

I prefer a very down-to-earth concrete approach. But here is a more
abstract “axiomatic” approach to defining H.

Define an abstract complexity measure H via these two properties:

• H(x) is computable in the limit from above.

I.e., {〈x, k〉 : H(x) ≤ k} is r.e.

I.e., H(x) = limt→∞ Ht(x).

•
∑

x 2−H(x) ≤ 1.

Then pick out an optimal minimal H, one with the property that for
any other H ′ there is a constant c such that

H(x) ≤ H ′(x) + c.

1“Art is a lie that helps us to see the truth,” Pablo Picasso.

36 CHAITIN, FROM PHILOSOPHY TO PROGRAM SIZE

This abstract approach works! However I prefer the more con-
crete approach in which you think of H(x) as the size of the smallest
program for x. This gives more insight into what is going on. Beware of
premature axiomatization! And beware of excessive abstraction
concealing meaning!

3.5 Back to U—What Do We Do with U?
Definitions!

• Individual complexity of an object. Information content of x:

H(x) ≡ min
U(p)=x

|p|.

• Joint complexity of a pair of objects 〈x, y〉:

H(x, y) ≡ min
U(p)=〈x,y〉

|p|.

Size of the smallest program that computes both objects.

• Subadditivity:

H(x, y) ≤ H(x) + H(y) + c.

This was the original reason that I made programs self-delimiting,
so that information content would be additive!2 This means we
can combine programs for x and y and add c bits and get a
program for the pair 〈x, y〉. For a LISP program that does this
and shows that c = 432 is possible, see Section 4.10.

• Algorithmic independence of two objects:

H(x, y) ≈ H(x) + H(y).

I.e., the joint complexity is approximately equal to the sum of the
individual complexities. This means that the two objects have
nothing in common.

2Then I discovered Ω, which cannot be defined unless programs are self-delimiting.

DAY III—DEFINITIONS & THEOREMS 37

3.6 AIT Definitions (Continued)

• Mutual information content of two objects:

H(x : y) ≡ H(x) + H(y)−H(x, y).

This is the extent to which it is better to compute them to-
gether rather than separately.

• An elegant program y∗ for y is one that is as small as possible.
I.e., y∗ has the property that

U(y∗) = y, H(y) = |y∗|, H(U(y∗)) = |y∗|.

• Relative information content H(x|y) of x given an elegant pro-
gram y∗ for y, not y directly!

H(x|y) ≡ min
U(p,y∗)=x

|p|.

This is the second main technical idea of AIT. First is to use
self-delimiting programs. Second is to define relative complexity
in this more subtle manner in which we are given y∗ for free,
not y, and we have to compute x.

3.7 Important Properties of These Complexity
Measures

• Here is an immediate consequence of our definitions:

H(x, y) ≤ H(x) + H(y|x) + c.

• And here is an important and subtle theorem that justifies
our definitions!

H(x, y) = H(x) + H(y|x) + O(1).

This is an identity in Shannon information theory, with no O(1)
term. In these two different versions of information theory, the
formulas look similar but of course the meaning of H is completely
different.

38 CHAITIN, FROM PHILOSOPHY TO PROGRAM SIZE

• Let’s apply this subtle theorem to the mutual information:

H(x : y) ≡ H(x) + H(y)−H(x, y).

We get these two corollaries:

H(x : y) = H(x)−H(x|y) + O(1),

H(x : y) = H(y)−H(y|x) + O(1).

So the mutual information is also the extent to which know-
ing one of the two objects helps you to know the other . It
was not at all obvious that this would be symmetric!

Again, these two corollaries are identities in Shannon information
theory. They justify our whole approach. When I got these results
I knew that the definitions I had picked for AIT were
finally correct!

3.8 Complexity of Bit Strings. Examples

• High complexity:

H(the most complex N-bit strings) = N + H(N) + O(1)
≈ N + log2 N.

In other words, you have to know how many bits there are plus
what each bit is. And most N -bit strings have H close to the
maximum possible. These are the algorithmically random N -
bit strings.

This notion has many philosophical resonances. First, a ran-
dom string is one for which there is no theory that obeys Leibniz’s
dictum that a theory must be smaller than what it explains. Leib-
niz clearly anticipated this definition of randomness.

Second, a random string is an unexplainable, irrational string, one
that cannot be comprehended, except as “a thing in itself” (Ding
an sich), to use Kantian terminology.

DAY III—DEFINITIONS & THEOREMS 39

• Low complexity:
Consider the N -bit strings consisting of N 0’s or N 1’s.

H(0N) = H(N) + O(1) ≈ log2 N,

H(1N) = H(N) + O(1) ≈ log2 N.

For such bit strings, you only need to know how many bits there
are, not what each bit is. These bit strings are not at all random.

• Intermediate complexity:
Consider an elegant program p. I.e., no smaller program makes U
produce the same output.

H(p) = |p|+ O(1) if p is an elegant program.

These bit strings are borderline random. Randomness is a matter
of degree, and this is a good place to put the cut-off between
random and non-random strings, if you have to pick a cut-off.

How about infinite bit strings?

3.9 Maximum Complexity Infinite Binary
Sequences

• Maximum Complexity:
An infinite binary sequence x is defined to be algorithmically ran-
dom iff

∃c ∀N [H(xN) > N − c].

Here xN is the first N bits of x.

If x is generated by independent tosses of a fair coin, then with
probability one, x is algorithmically random. But how about spe-
cific examples?

• Two Examples of Maximum Complexity:

Ω ≡
∑

U(p) halts
2−|p|

40 CHAITIN, FROM PHILOSOPHY TO PROGRAM SIZE

Ω′ ≡
∑
N

2−H(N)

These are algorithmically random real numbers. The initial seg-
ments of their binary expansion always have high complexity.

From this it follows that Ω and Ω′ aren’t contained in any con-
structively definable set of measure zero. In other words, they
are statistically (Martin-Löf) random. Therefore Ω and Ω′ nec-
essarily have any property held by infinite binary sequences x
with probability one. E.g., Ω and Ω′ are both Borel normal, for
sure , since in general this is the case with probability one. Borel
normal means that in any base, in the limit all blocks of digits of
the same size provably have equal relative frequency.

That Ω and Ω′ are both Borel normal real numbers can also be
proved directly using a simple program-size argument. This can be
done because, as Shannon information theory already shows, reals
that are not Borel normal are highly redundant and compress-
ible. And the main difference between Shannon information the-
ory and AIT is that Shannon’s theory is concerned with average
compressions while I am concerned with compressing individual
sequences.

• Why can’t we demand the complexity of initial segments
be even higher?
Because with probability one, infinitely often there have to be long
runs of consecutive zeroes or ones, and this makes the complexity
dip far below the maximum possible [N + H(N)] infinitely often!

3.10 The Algorithmic Probability of x, P (x)

Straight-forward theorems in AIT use program-size arguments.
But the more subtle proofs have to descend one level and use proba-

bilistic arguments. AIT is an iceberg! Above the water we see program
size. But the bulk of the AIT iceberg is submerged and is the algorithmic
probability P (x)!

PC(x) is defined to be the probability that a program generated by

DAY III—DEFINITIONS & THEOREMS 41

coin-tossing makes C produce x:

PC(x) ≡
∑

C(p)=x

2−|p|,

P (x) ≡ PU (x) ≡
∑

U(p)=x

2−|p|.

This takes into account all the programs that calculate x, not just the
smallest one.

3.11 What Is the Relationship between H and
P?

First of all, it’s obvious that

P (x) ≥ 2−H(x)

because one way to compute x is using an elegant program for x. In
fact, much, much more is true:

H(x) = − log2 P (x) + O(1).

This crucial result shows that AIT, at least in so far as the appearance of
its formulas is concerned, is sort of just a version of probability theory
in which we take logarithms and convert probabilities into complexities.
In particular, the important and subtle theorem that

H(x, y) = H(x) + H(y|x) + O(1)

is seen from this perspective as merely an alternative version of the
definition of relative probability:

Pr(x, y) ≡ Pr(x)× Pr(y|x).

How do we establish this crucial relationship between H and P? By
using an extended version of something called the Kraft inequality, which
AIT inherited from Shannon information theory! [See Section 3.13.]

42 CHAITIN, FROM PHILOSOPHY TO PROGRAM SIZE

3.12 Occam’s Razor! There Are Few Elegant
Programs!

But first I want to discuss an important corollary of the crucial theorem

H = − log2 P

connecting H(x) and P (x).
This shows that there cannot be too many small programs for x.
In particular, it follows that the number of elegant programs for x is

bounded.
Also, the number of programs for x whose size is within c bits of

H(x) is bounded by a function that depends only on c and not on x.
This function of c is approximately 2c.
In fact, any program for x whose size is close to H(x) can easily be

obtained from any other such program.
So, what I call Occam’s razor, elegant or nearly elegant programs for

x are essentially unique!
And this justifies our definition of relative complexity H(x|y) and

shows that it does not depend too much on the choice of the elegant
program for y. There are at most O(1) bits difference in H(x|y) de-
pending on the choice of the y∗ that we are given for free.

3.13 The Extended Kraft Inequality Condition
for Constructing C

The crucial tool used to show that

H(x) = − log2 P (x) + O(1) and H(x, y) = H(x) + H(y|x) + O(1)

is an extended version of the Kraft inequality condition for the existence
of a prefix-free set of words.

In AIT, the Kraft inequality gives us a necessary and sufficient con-
dition not for the existence of a prefix-free set, as it did in Shannon
information theory, but for the existence of a self-delimiting computer
C. Once we have constructed a special-purpose computer C using the
Kraft inequality, we can then make statements about U by using the
fact that

HU ≤ HC + c.

DAY III—DEFINITIONS & THEOREMS 43

Here’s how we construct C!
Imagine that we have an algorithm for generating an infinite list of

requirements:

〈size of program for C, output that we want from C〉

As we generate each requirement 〈s, o〉, we pick the first available
s-bit program p and we assign the output o to C(p). Available means
not an extension or prefix of any previously assigned program for C.
This process will work and will produce a self-delimiting computer C
satisfying all the requirements iff∑

over all requirements 〈s, o〉
2−s ≤ 1.

Note that if there are duplicate requirements in the list, then several p
will yield the same output o. I.e., we will have several p with the same
value for C(p).

This way of constructing C may be thought of as a first-fit storage
allocation algorithm for one infinitely-divisible unit of storage.

3.14 Three-Level Proofs: Program Size,
Probabilities, Geometry

The proof of this crucial version of the Kraft inequality involves simul-
taneously thinking of C as a computer, as an assignment of probabilities
to outputs, and as an assignment of outputs to segments of the unit in-
terval, segments which are halves, or halves of halves, or halves of halves
of halves. . .

It is important to be able to simultaneously keep each of these three
images in ones mind, and to translate from one image to the next de-
pending on which gives the most insight at any given moment.

In other words, C may be thought of as a kind of constructive prob-
ability distribution, and probability one corresponds to the entire unit
interval of programs, with longer and longer programs corresponding to
smaller and smaller subintervals of the unit interval.

Then the crucial fact that no extension of a valid program is a valid
program simply says that the intervals corresponding to valid programs
do not overlap.

44 CHAITIN, FROM PHILOSOPHY TO PROGRAM SIZE

In the last lecture, Day IV, I’ll drop this abstract viewpoint and
make everything very, very concrete by indicating how to program U in
LISP and actually run programs on U . . .

Chapter 4

Day IV—LISP
Implementation of AIT

The LISP interpreter for Day IV, which is a Java applet that will run
in your web browser, can be found at these two URL’s:

http://www.cs.umaine.edu/~chaitin/unknowable/lisp.html
http://www.cs.auckland.ac.nz/CDMTCS/chaitin/unknowable/

lisp.html

Note that there is a concise LISP “reference manual” on these web pages,
just below the windows for input to and output from the interpreter.

4.1 Formal Definition of the Complexity of a
Formal Theory

Before starting with LISP, let me finish some things I started in the
last lecture, and also answer some questions that were raised about that
lecture.

First of all, I never stated the formal version of the incompleteness
results about Ω that I explained informally in Day II.

How can we measure the complexity of a formal mathemat-
ical theory in bits of information?

H(formal math theory)
≡ the size in bits |p| of the smallest (self-delimiting!) program p

45

46 CHAITIN, FROM PHILOSOPHY TO PROGRAM SIZE

such that

U(p) = {the infinite set of all the theorems in the theory}.

Note that this is something new: U is now performing an unending
computation and produces an infinite amount of output!

smallest p −→ U −→ {theorems}

The rather abstract point of view taken here is in the spirit of Emil
Post’s 1944 paper R.e. sets of positive integers and their decision prob-
lems. For our purposes the internal details of the formal theory are
irrelevant. We are flying high in the sky looking down at the formal
theory. We’re so high up that we don’t care about the axioms and rules
of inference used in the theory. We can’t see all of that detail. Neverthe-
less, using these very general methods we can make some rather strong
statements about the power of the formal theory in question.

4.2 Formal Statement of the Incompleteness
Theorem for Ω

A formal math theory T with complexity N cannot enable you
to determine more than N + c bits of the numerical value of Ω
(base-two).

Here are some hints about the proof. We make the tacit hypothesis,
of course, that all the theorems proved in theory T are true. Otherwise
T is of no interest.

The proof is in two parts.

• First of all you show that

H(ΩK) > K − constant.

This follows from the fact that knowing ΩK , the first K bits of Ω,
enables you to answer the halting problem for all programs for U
up to K bits in size.

• Now that you know that ΩK has high complexity, in the second
half of the proof you use this fact to derive a contradiction from

DAY IV—LISP IMPLEMENTATION 47

the assumption that the formal theory T enables you to determine
much more than H(T) bits of Ω. Actually, it makes no difference
whether these are consecutive bits of Ω or are scattered about in
the base-two expansion of Ω.

This, our major incompleteness result about Ω, actually requires
very little of the machinery presented in Day III. In fact, the proof is a
straight-forward program-size argument that makes no use of P nor of
the the Kraft inequality. This is in fact the self-contained elementary
proof that I give in my 1998 Springer volume The Limits of Mathematics,
which is the reference volume for today’s lecture.

4.3 Mutual Information Is Program Size?

I was asked a question about mutual information.
Day III we defined the following complexity measures:

• H(x) (absolute, individual) information,

• H(x, y) joint information,

• H(x|y) relative information,

• H(x : y) mutual information.

The fourth complexity measure in this list, mutual information, is ac-
tually rather different from the other three. It isn’t the size of a
computer program! Instead it’s defined to be

H(x) + H(y)−H(x, y).

Well, you could try to make mutual information into the size of a
program. E.g., mutual information could be defined to be the size of
the largest (not the smallest!) possible common subroutine shared by
elegant programs for x and y.1

Unfortunately this alternative definition, which is much more intu-
itive than the one I actually use, doesn’t seem to fit into AIT too well.
Perhaps someone can find a way to make it work! Can you?

1For other possibilites, see the section on common information in my 1979
paper Toward a mathematical definition of “life.”

48 CHAITIN, FROM PHILOSOPHY TO PROGRAM SIZE

This is an interesting question to answer because of an important
possible application: In Section 1.14, Day I, it was suggested that mutual
information be used to try to partition the world into separate living
organisms.

4.4 How Do You Actually Make Things Self-
Delimiting?!

Is
H(N -bit string) ≤ N + constant?

No, it can’t be, because programs for U have to be self-delimiting. Pro-
grams have to indicate their size as well as their content.

Let’s look at some examples of how this can be done. How can we
make an N -bit string self-delimiting? Well, 2N +2 bits will certainly do.
There’s a special-purpose self-delimiting computer C that accomplishes
this:

HC(N -bit string) ≤ 2N + 2.

C reads two bits of its program at a time as long as they are the same,
then stops reading its program and outputs one bit from each pair of
identical twins that it read. So

C(00 00 11 01) −→ 001.

Therefore

H(N -bit string) ≡ HU (N -bit string) ≤ HC(N -bit string) + c ≤ 2N + c′.

A more complicated C reads a program that starts with a doubled and
therefore self-delimiting version of the base-two numeral for N followed
by the N bits of the bit string. This shows that

H(N -bit string) ≤ 2 log2 N + N + c.

A more elaborate procedure is to have two “headers” at the beginning
of the program. The first one uses the bit-doubling trick to indicate
the size of the second header, and the second header gives N in binary
directly, with no bits doubled. That gives an upper bound of

H(N -bit string) ≤ O(loglog N) + log2 N + N.

DAY IV—LISP IMPLEMENTATION 49

You can go on like this using more and more headers and getting more
and more complicated upper bounds. To short-circuit this process, just
go back to using a single header, and make it an elegant program for
N . That gives

H(N -bit string) ≤ H(N) + N + c,

and this upper bound is, in general, best possible.
So we’ve just seen four different examples of how a self-delimiting

program can tell us its size as well as its contents.
Another version of the principle that a program tells us its size as

well as its contents is the fact that an elegant program tells us its size
as well as its output, so

H(x) = H(x,H(x)) + O(1).

This is one formula in AIT that is totally unlike anything in Shannon
information theory.

That’s all the unfinished business from Day III! Now let’s
start Day IV proper by explaining LISP!

4.5 What Is LISP?

LISP = LISt Processing. Lists are arbitrarily long nested tuples, and
may have repeated elements.

LISP is like a computerized version of set theory!
The LISP S-expression

((A bc) 39 x-y-z)

denotes the following nested tuples:

〈〈A, bc〉, 39, x-y-z〉

Programs and data in LISP are always S-expressions. Everything is an
S-expression! The S in S-expression stands for Symbolic.

S-expressions that are not lists are called atoms. A, bc, 39 and
x-y-z are the atoms in the above S-expression. The empty list () = 〈〉
is also an atom, usually denoted by nil.

50 CHAITIN, FROM PHILOSOPHY TO PROGRAM SIZE

LISP is a functional programming language, not an imperative pro-
gramming language.

LISP is an expression language. There is no notion of time, there
are no GOTO’s, and there are no assignment statements!2

LISP programs are expressions that you evaluate, not run, and they
yield a value, with NO side-effect! (This is called “Pure” LISP!)

Functional Notation in LISP:

f(x, y) is written (f x y)

So

(1 + 2)× 3

becomes

(* (+ 1 2) 3)

in LISP. Prefix notation, not infix notation! Full parenthesization! Fixed
number of arguments for each primitive function!

In my LISP most parentheses are understood, are implicit, and are
then supplied by the LISP interpreter.

Complete LISP Example. Factorial programmed in my LISP:

define (f n)

if = n 0 1

* n (f - n 1)

With all the parentheses supplied, factorial becomes:

(define (f n)

(if (= n 0) 1

(* n (f (- n 1)))

))

In words, f is defined to be a function of one argument, n. And if n
= 0, then f(n) is 1. If not, f(n) is n× f(n− 1).

Then (f 4) yields value 24, as expected, since 4× 3× 2× 1 = 24.
Dissecting and Reassembling Lists:

Finally I should mention that car gives you the first element of a list,
cdr gives you the rest of the list, and cons inverts car and cdr.

2Well, they’re actually present, but only indirectly, only subliminally!

DAY IV—LISP IMPLEMENTATION 51

4.6 LISP Program-Size Complexity

You can get a toy version of AIT by using LISP program size!

Define an elegant LISP expression to be one with the property that
no smaller LISP expression yields the same value.

In order to measure size properly, LISP expressions are written in
a canonical standard notation with no embedded comments and with
exactly one blank separating successive elements of a list.

Then the LISP complexity of an S-expression is defined to be the
size in characters of an elegant expression with that particular value.

Next represent a formal mathematical theory in LISP as a LISP S-
expression whose evaluation never terminates and which uses the prim-
itive function display to output each theorem.

display is an identity function with the side-effect of displaying its
operand and is normally used for debugging large LISP S-expressions
that give the wrong value.

Theorem—
A formal mathematical theory with LISP complexity N cannot
enable you to prove that a LISP expression is elegant if the
elegant expression’s size is greater than N + 410 characters!

This is a very concrete, down-to-earth incompleteness theorem! In
that direction, it’s the best I can do!

The reductio ad absurdum proof consists of N + 410 characters of
LISP that define a function, and that apply this function to a quoted
form of the N -character LISP expression that generates all the theorems
of the formal theory. The first step is to measure the size N of the LISP
expression that generates all the theorems. Then use TRY (Section
4.7) to run the theory for longer and longer, until a provably elegant
expression is found whose size is greater than N + 410. When this
happens, evaluate the provably elegant expression and return its value
as our value.

So we’ve described an N+410 character LISP expression whose value
is the same as the value of an elegant expression that is larger than it
is! Contradiction!

52 CHAITIN, FROM PHILOSOPHY TO PROGRAM SIZE

4.7 How Does TRY Work?

TRY plays the fundamental role in my LISP that eval plays in tradi-
tional, normal LISP. It enables you to try to evaluate a given expression
for a limited or unlimited amount of time, and giving it raw binary data
on the side, which it must access in a self-delimiting manner. Also,
display’s from within the expression are captured, thus giving a mech-
anism for an S-expression to produce an infinite amount of output, not
just a final value.

try time-limit/no-time-limit expression binary-data

TRY has the three arguments shown above.
The first argument is either an integer or no-time-limit. The sec-

ond argument is an arbitrary LISP S-expression. The third argument is
a bit string represented in LISP as a list (...) of 0’s and 1’s separated
by blanks.

TRY then yields this triple:

(success/failure
value-of-expression/out-of-time/out-of-data
(list of captured displays from within expression...))

Also, within the expression that is being tried, you can use read-bit
or read-exp to get access to the binary data in a self-delimiting manner,
either one bit or one LISP S-expression at a time.

TRY is like a large suitcase: I am using it to do several different
things at the same time. In fact, TRY is all I really need to be able to
program AIT in LISP. All of the other changes in my version of LISP
were made just for the fun of it! (Actually, to simplify LISP as much
as possible without ruining its power, so that I could prove theorems
about it and at the same time enjoy programming in it!)

Example: If you’re trying to run an unending computation that is
a formal theory written in LISP as described in Section 4.6, then TRY
always returns

(failure out-of-time (list of theorems...))

The size of the list of theorems depends on how much time the TRY was
given to run the formal theory.

DAY IV—LISP IMPLEMENTATION 53

4.8 LISP Program for Our Standard Universal
Computer U

define (U p)

cadr try no-time-limit

’eval read-exp

p

This function U of p returns the second element of the list returned by
TRY, a TRY with no time limit that tries to evaluate a LISP expression
at the beginning of p, while making the rest of p available as raw binary
data.

Here the program p for U is a bit string that is represented in LISP
as a list of 0’s and 1’s separated by blanks. E.g., p = (0 1 1 0 1...)

Let me explain this!
The binary program p consists of a LISP S-expression prefix (con-

verted into a bit string), that is followed by a special delimiter character,
the ASCII newline control character (also converted to bits), and that
is then followed by raw binary data.

The newline character adds 8 bits to the program p, but guarantees
that the prefix be self-delimiting. Each character in the LISP prefix is
given in p as the corresponding 8 ASCII bits.

Within the prefix, read-bit and read-exp enable you to get access
to the raw binary data, either one bit or one LISP S-expression at a
time. But you must not run off the end of the binary data! That aborts
everything! If so, U of p returns out-of-data.

So the program for the universal U consists of a high-level language
algorithmic part followed by data, raw binary data. The algorithmic
part indicates which special-purpose self-delimiting computer C should
be simulated, and the raw binary data gives the binary program for C!

I believe that I’ve picked a very natural U .

4.9 Running U on Simple Examples

Here’s our first example of a program for U . This program is all LISP
prefix with no binary data. The prefix is ’(a b c).

54 CHAITIN, FROM PHILOSOPHY TO PROGRAM SIZE

run-utm-on
bits ’ ’(a b c)

This yields (a b c).
And here’s a program with one bit of binary data. The prefix is

read-bit and the data is 0.

run-utm-on
append bits ’read-bit

’(0)

This yields 0.
Let’s change the data bit. Now the prefix is read-bit and the data

is 1.

run-utm-on
append bits ’read-bit

’(1)

This yields 1.
run-utm-on is a macro that expands to the definition of U , which is

cadr try no-time-limit ’eval read-exp.
Also note that when bits converts a LISP S-expression into a bit

string (a list of 0’s and 1’s) it automatically adds the newline character
required by read-exp.

4.10 Subadditivity Revisited

cons eval read-exp

cons eval read-exp

nil

This is a 432-bit prefix π for U with the property that

U(π x∗ y∗) = (x y) = 〈x, y〉.

Here x∗ is an elegant program for x and y∗ is an elegant program for y.
Therefore

H(x, y) ≤ H(x) + H(y) + 432!

DAY IV—LISP IMPLEMENTATION 55

For years and years I used this inequality without having the faintest
idea what the value of the constant might be! It’s nice to know that there
is a natural choice for U that can be easily programmed in LISP and for
which c = 432! That’s a little bit like dreaming of a woman for years
and then actually meeting her! That’s also how I feel about now having
a version of U that I can actually run code on!

My book The Limits of Mathematics programs in LISP all the proofs
of my incompleteness results, in particular, all the key results about Ω.
And my book Exploring Randomness programs in LISP all the proofs
of the results presented Day III. That’s a lot of LISP programming, but
I enjoyed it a lot!

Some of these programs are fun to read, and it’s educational to do
so, but I probably went overboard! In general, I would say that you are
better off programming something yourself, rather than reading someone
else’s code, if you really want to understand what’s going on! There is
no substitute for doing it yourself, your own way, if you really want to
understand something. After all, that’s how I came up with AIT and my
alternative approach to Gödel incompleteness in the first place, because
I was dissatisfied with the usual approach!

4.11 Some Open Problems for Future Research

• There is a cottage industry of highly-technical work on subtle
properties of Ω and to what extent other numbers share these
properties. [See Delahaye, “Les nombres oméga,” Pour la Science,
May 2002, pp. 98–103 and Calude, Information and Randomness,
Springer, 2002.]

• Much work remains to be done on the complexity H(X) for infi-
nite sets X. This is important because of the case when

X = {the set of theorems of a formal theory T}.

For example, the relationship between the algorithmic complex-
ity H(X) and the algorithmic probability P (X) is not completely
known. When dealing with infinite computations in AIT, in some
cases it is not even clear whether the definitions that were chosen
are the right ones! [For more on this, see the last chapter of my
Exploring Randomness.]

56 CHAITIN, FROM PHILOSOPHY TO PROGRAM SIZE

• As I stated above, meta-mathematics and the incompleteness re-
sults I’ve presented in this course are a static framework in
which one studies the power of a fixed set of axioms and rules of
inference. How about a dynamic theory that has something to
say about the emergence of new mathematical concepts? Is
such a meta-theory possible?3

• I would like to see an abstract mathematical theory defining “life”
and predicting its emergence and evolution under very general
circumstances.

• Is the physical universe discrete or continuous? Starting from
black hole thermodynamics, a “holographic” principle has emerged
which states that the information content of any physical system
is only a finite number of bits and grows with the surface area
of that system, not with its volume. [See Smolin, Three Roads to
Quantum Gravity.] It will be interesting to see if and in what form
these ideas survive.

• I think that AIT is largely sketched out and only highly technical
questions remain. I personally am more interested in attempting
new theories of life or intelligence. This however will not be easy
to do.

I’ve greatly enjoyed this Winter School and my visit to Estonia!
Thank you very much for inviting me!

3In this connection, see footnote 6 on page 24.

Additional Reading

The six papers listed here were the handouts that accompanied my lec-
tures at EWSCS ’03. The two books listed below provide the reference
material for the course, including complete proofs for all the theorems
that I stated here, and a detailed explanation of my version of LISP.

• Day I—Philosophical Necessity of AIT

– G. Chaitin, “Two philosophical applications of algorithmic
information theory,” in C. S. Calude, M. J. Dinneen, V. Vaj-
novszki, eds., Discrete Mathematics and Theoretical Com-
puter Science: Proc. of DMTCS 2003, pp. 1–10. Springer-
Verlag, Berlin, 2003.
http://arxiv.org/abs/math.HO/0302333

– G. Chaitin, “On the intelligibility of the universe and the no-
tions of simplicity, complexity and irreducibility.”
Presented at the XIX. Deutscher Kongreß für Philosophie,
Grenzen und Grenzüberschreitungen [German Philosophy
Congress on Limits and Transcending Limits], 23–27 Septem-
ber 2002, in Bonn.
http://arxiv.org/abs/math.HO/0210035

• Day II—Main Application of AIT: Incompleteness

– G. Chaitin, “Paradoxes of randomness,” Complexity, vol. 7,
no. 5, pp. 14–21, 2002.

57

58 CHAITIN, FROM PHILOSOPHY TO PROGRAM SIZE

• Day III—Technical Survey of AIT: Definitions & Theo-
rems

– G. Chaitin, “Meta-mathematics and the foundations of math-
ematics,” Bulletin of EATCS, vol. 77, pp. 167–179, 2002.

– G. Chaitin, Exploring Randomness, Springer-Verlag, London,
2001.

• Day IV—LISP Implementation of AIT

– G. Chaitin, “Elegant LISP programs,” in C. S. Calude, ed.,
People and Ideas in Theoretical Computer Science, pp. 32–52.
Springer-Verlag, Singapore, 1999.

– G. Chaitin, “An invitation to algorithmic information the-
ory,” in D. S. Bridges, C. S. Calude, J. Gibbons, S. Reeves,
I. H. Witten, eds., Combinatorics, Complexity & Logic: Proc.
of DMTCS ’96, pp. 1–23. Springer-Verlag, Singapore, 1997.

– [The above two papers are both chapters in]
G. Chaitin, The Limits of Mathematics, Springer-Verlag, Sin-
gapore, 1998.

The papers listed here are also available at the author’s websites:

http://www.cs.umaine.edu/~chaitin
http://www.cs.auckland.ac.nz/CDMTCS/chaitin

LISP code for my two books may be found at

http://www.cs.umaine.edu/~chaitin/ait
http://www.cs.auckland.ac.nz/CDMTCS/chaitin/ait

http://www.cs.umaine.edu/~chaitin/lm.html
http://www.cs.auckland.ac.nz/CDMTCS/chaitin/lm.html

The LISP interpreter is at

http://www.cs.umaine.edu/~chaitin/unknowable/lisp.html
http://www.cs.auckland.ac.nz/CDMTCS/chaitin/unknowable/

lisp.html

8th Estonian Winter School in Computer Science, EWSCS’03
Palmse, Estonia, 2–7 March 2003

EWSCS is a series of regional-scope international winter schools held
annually in Estonia, organized by the Institute of Cybernetics, Tallinn.
The first EWSCS took place in 1996 at Pühajärve. EWSCS’03, held at
Palmse, 2–7 March 2003, was the 8th event in the series.

The objective of the schools is to expose Estonian, Baltic, and Nordic
graduate students in computer science (but also interested active com-
puter scientists and students from elsewhere) to frontline research topics
in their field not covered within the regular curricula. The subject of
the schools is general computer science, with a bias towards theory, this
comprising both algorithms, complexity and models of computation, and
semantics, logic and programming theory. The working language of the
school is English.

The scientific programme of EWSCS’03 comprised five courses:

• Andris Ambainis (University of Latvia, Riga, Latvia): Quantum
Algorithms and Quantum Cryptography

• Gregory Chaitin (IBM Research, USA): Algorithmic Information
Theory

• Patrick Cousot (École Normal Supérieure, France): Introduction
to Abstract Interpretation

• Ivan Damg̊ard (Aarhus Universitet, Denmark): Theory and Prac-
tice of Multiparty Computation

• Johan H̊astad (Kungl. Tekniska Högskolan, Stockholm, Sweden):
Probabilistically Checkable Proofs and Inapproximability

In addition, there were 10 short talks and 10 posters by the students on
their ongoing thesis projects.

The social programme featured an excursion to Viinistu and a dinner at
Altja tavern.

The school was attended by 54 people. The audience of the 5 lecturers
consisted of 49 students and local organizers from 9 countries, thereof
20+7 from Estonia, 3 from Latvia, 2 from Lithuania, 2 from Russia, 7
from Finland, 3 from Denmark, 2 from Germany, 1 from Portugal and
2 from South Africa.

EWSCS’03 programme committee / organizing committee: Jaan Pen-
jam (Inst. of Cybernetics), Monika Perkmann (Inst. of Cybernetics),
Helger Lipmaa (Helsinki Univ. of Technology), Tarmo Uustalu (Inst.
of Cybernetics), Jüri Vain (Tallinn Techn. Univ.), Heli Uibo (Univ. of
Tartu), Varmo Vene (Univ. of Tartu), Jaak Vilo (EGeen Inc.).

The school received financial support from the Estonian Information
Technology Foundation through the Tiigriülikool programme, the Eu-
ropean Commission through the FP5 IST project eVikings II and the
Ministry of Education and Research of Estonia through its Centers of
Excellence in Research programme.

The organizers wish to thank all lecturers of EWSCS’03 for the good
work they did at Palmse. Thanks for coming, thanks for sharing your
knowledge and your passion for your subject!

Many thanks also to the people of Park Hotel Palmse and the Visitor
Center of Lahemaa National Park.

	Acr3A.tmp
	Acr2A.tmp

