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Advance Praise for
Genetic Programming IV: Routine Human-Competitive Machine Intelligence

“In 1992, John Koza published his first book on genetic programming and forever
changed the world of computation. At the time, many researchers, myself included,
were skeptical about whether the idea of using genetic algorithms directly to evolve
programs would ever amount to much. But scores of conquered problems and three
additional books makes the case utterly persuasive. The latest contribution, Genetic
Programming IV: Routine Human-Competitive Machine Intelligence, demonstrates
the everyday solution of such ‘holy grail’ problems as the automatic synthesis of ana-
log circuits, the design of automatic controllers, and the automated programming of
computers. This would be impressive enough, but the book also shows how to evolve
whole families of solutions to entire classes of problems in a single run. Such
parametric GP is a significant achievement, and I believe it foreshadows generalized
evolution of complex contingencies as an everyday matter. To artificial evolutionaries
of all stripes, I recommend that you read this book and breath in its thoughtful mech-
anism and careful empirical method. To specialists in any of the fields covered by this
book’s sample problem areas, I say read this book and discover the computer-
augmented inventions that are your destiny. To remaining skeptics who doubt the
inventive competence of genetics and evolution, I say read this book and change your
mind or risk the strong possibility that your doubts will soon cause you significant
intellectual embarrassment.”
—David E. Goldberg, University of Illinois

“The research reported in this book is a tour de force. For the first time since the idea
was bandied about in the 1940s and the early 1950s, we have a set of examples of
human-competitive automatic programming.”
—John H. Holland, University of Michigan

“The adaptive filters and neural networks that I have worked with over many years are
self-optimizing systems where the relationship between performance (usually mean-
square-error) and parameter settings (weights) is continuous. Optimization by gradi-
ent methods works well for these systems. Now, this book describes a wider class of
optimization problems where the relationship between performance (fitness) and
parameters is highly disjoint, and self-optimization is achieved by nature-inspired
genetic algorithms involving random search (mutation) and crossover (sexual repro-
duction). John Koza and his colleagues have done remarkable work in advancing the
development of genetic programming and applying this to practical problems such as
electric circuit design and control system design. What is ingenious about their work
is that they have found ways to approach design problems by parameterizing both
physical and topological variables into a common code that can be subjected to
genetic programming for optimization. It is amazing how this approach finds opti-
mized solutions that are not obvious to the best human experts. This fine book gives
an accounting of the latest work in genetic programming, and it is ‘must reading’ for



those interested in adaptive and learning systems, neural networks, fuzzy systems,
artificial intelligence, and neurobiology. I strongly recommend it. 
—Bernard Widrow, Electrical Engineering Department, Stanford University

“John Koza’s genetic programming approach to machine discovery can invent solu-
tions to more complex specifications than any other I have seen.”
—John McCarthy, Computer Science Department, Stanford University
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1

Introduction

1

The goal of getting computers to automatically solve problems is central to artificial
intelligence, machine learning, and the broad area encompassed by what Turing called
“machine intelligence” (Turing 1948, 1950).

Genetic programming is a systematic method for getting computers to automati-
cally solve a problem. Genetic programming starts from a high-level statement of
what needs to be done and automatically creates a computer program to solve the
problem.

The most important point of this book is: Genetic programming now routinely
delivers high-return human-competitive machine intelligence.

There are now 36 instances where genetic programming has produced a human-
competitive result. In section 1.1, we define “routine,” “high-return,” “human-com-
petitive,” and “machine intelligence” and outline the evidence supporting each
claimed human-competitive result.

The second of this book’s four main points is: Genetic programming is an auto-
mated invention machine.

There are now 23 instances where genetic programming has duplicated the func-
tionality of a previously patented invention, infringed a previously issued patent, or cre-
ated a patentable new invention. Specifically, there are 15 instances where genetic
programming has created an entity that either infringes or duplicates the functionality of

Table 1.1 Four main points of this book

Main point

1 ● Genetic programming now routinely delivers high-return human-competitive machine intelligence.
2 ● Genetic programming is an automated invention machine.
3 ● Genetic programming can automatically create a general solution to a problem in the form of

a parameterized topology.
4 ● Genetic programming has delivered a progression of qualitatively more substantial results in

synchrony with five approximately order-of-magnitude increases in the expenditure of computer time.



a previously patented 20th-century invention, six instances where genetic programming
has done the same with respect to an invention patented after January 1, 2000, and two
instances where genetic programming has created a patentable new invention. The two
new inventions are general-purpose controllers that outperform controllers employing
tuning rules that have been in widespread use in industry for most of the 20th century.

Novelty and creativity are prerequisites for patentability. A new idea that can be
logically deduced from facts that are known in a field, using transformations that are
known in a field, is not considered to be patentable by the Patent Office. A new idea
is patentable only if there is an “illogical step” (that is, a logically unjustified step) that
distinguishes the proposed invention from that which is readily deducible from what
is already known. As we discuss in section 1.2, genetic programming often unearths
novel solutions to problems because it does not travel along the well-trod paths of pre-
vious human thinking. The inventions generated by genetic programming exhibit the
kind of illogical discontinuity from previous human work that is required to obtain a
patent.

The third main point of this book is: Genetic programming can automatically cre-
ate a general solution to a problem in the form of a parameterized topology.

Eleven problems in this book demonstrate that genetic programming can auto-
matically create, in a single run, a general (parameterized) solution to a problem in the
form of a graphical structure whose nodes or edges represent components and where
the parameter values of the components are specified by mathematical expressions
containing free variables. Section 1.3 previews the automatic creation of such para-
meterized topologies.

This book’s fourth main point is: Genetic programming has delivered a progres-
sion of qualitatively more substantial results in synchrony with five approximately
order-of-magnitude increases in the expenditure of computer time.

Section 1.4 discusses the progression of results produced by genetic programming
over the 15-year period from 1987 to 2002, including

● solving toy problems,
● producing human-competitive results not involving previously patented inventions,
● duplicating 20th-century patented inventions,
● duplicating 21st-century patented inventions, and
● creating patentable new inventions.

Table 1.1 shows the four main points of this book.
In addition to solving numerous problems involving analog electrical circuits

(chapters 4, 5, 10, 11, 14, and 15) and controllers (chapters 3, 9, 12, and 13), the book
presents results involving the automatic synthesis of networks of chemical reactions
(chapter 8), antennas (chapter 6), and genetic networks (chapter 7).

Chapter 2 provides general background on genetic programming. Chapters 9, 10,
11, and 13 discuss parameterized topologies. Chapter 16 discusses the characteristics
that may make certain problems better suited for genetic algorithms or genetic pro-
gramming. Chapter 17 discusses issues of parallelization and computer time. Chapter
18 provides a historical perspective on computer speed and the succession of qualita-
tively more substantial results produced by genetic programming.
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As far as we know, genetic programming is, at the present time, unique among
methods of artificial intelligence and machine learning in terms of its duplication of
numerous previously patented results, unique in its generation of patentable new
results, unique in the breadth and depth of problems solved, unique in its demon-
strated ability to produce parameterized topologies, and unique in its delivery of rou-
tine high-return, human-competitive machine intelligence.

1.1 Genetic Programming Now Routinely Delivers High-Return 
Human-Competitive Machine Intelligence

Focusing on this book’s first main point (i.e., that genetic programming now routinely
delivers high-return human-competitive machine intelligence), the next four sub-
sections explain what we mean by the terms

● human-competitive (section 1.1.1),
● high-return (section 1.1.2),
● routine (section 1.1.3), and
● machine intelligence (section 1.1.4).

Then, four additional sub-sections outline the evidence that supports the claim that
genetic programming now delivers results with these four characteristics.

1.1.1 What We Mean by “Human-Competitive”

In attempting to evaluate an automated problem-solving method, the question arises
as to whether there is any real substance to the demonstrative problems that are pub-
lished in connection with the method. Demonstrative problems in the fields of artifi-
cial intelligence and machine learning are often contrived toy problems that circulate
exclusively inside academic groups that study a particular methodology. These prob-
lems typically have little relevance to any issues pursued by any scientist or engineer
outside the fields of artificial intelligence and machine learning.

In his 1983 talk entitled “AI: Where It Has Been and Where It Is Going,” machine
learning pioneer Arthur Samuel said:

“[T]he aim [is]…to get machines to exhibit behavior, which if done by humans,
would be assumed to involve the use of intelligence.”

Samuel’s statement reflects the common goal articulated by the pioneers of the
1950s in the fields of artificial intelligence and machine learning. Indeed, getting
machines to produce human-like results is the reason for the existence of the fields of
artificial intelligence and machine learning.

To make this goal more concrete, we say that a result is “human-competitive” if it
satisfies one or more of the eight criteria in table 1.2.

The eight criteria in table 1.2 have the desirable attribute of being at arms-length
from the fields of artificial intelligence, machine learning, and genetic programming.
That is, a result cannot acquire the rating of “human-competitive” merely because it
is endorsed by researchers inside the specialized fields that are attempting to create
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machine intelligence. Instead, a result produced by an automated method must earn
the rating of “human-competitive” independent of the fact that it was generated by an
automated method.

These eight criteria are the same as those presented in Genetic Programming III:
Darwinian Invention and Problem Solving (Koza, Bennett, Andre, and Keane 1999a).

1.1.2 What We Mean by “High-Return”

What is delivered by the actual automated operation of an artificial method in com-
parison to the amount of knowledge, information, analysis, and intelligence that is
pre-supplied by the human employing the method?

We define the AI ratio (the “artificial-to-intelligence” ratio) of a problem-solving
method as the ratio of that which is delivered by the automated operation of the arti-
ficial method to the amount of intelligence that is supplied by the human applying the
method to a particular problem.

The AI ratio is especially pertinent to methods for getting computers to automati-
cally solve problems because it measures the value added by the artificial problem-
solving method. Manifestly, the aim of the fields of artificial intelligence and machine
learning is to generate human-competitive results with a high AI ratio.

Deep Blue: An Artificial Intelligence Milestone (Newborn 2002) describes the
1997 defeat of the human world chess champion Garry Kasparov by the Deep Blue
computer system. This outstanding example of machine intelligence is clearly a
human-competitive result (by virtue of satisfying criterion H of table 1.2). Feng-
Hsiung Hsu (the system architect and chip designer for the Deep Blue project)
recounts the intensive work on the Deep Blue project at IBM’s T. J. Watson Research
Center between 1989 and 1997 (Hsu 2002). The team of scientists and engineers 
spent years developing the software and the specialized computer chips to efficiently
evaluate large numbers of alternative moves as part of a massive parallel state-space
search. In short, the human developers invested an enormous amount of “I” in the

4 Genetic Programming IV

Table 1.2 Eight criteria for saying that an automatically created result is human-competitive

Criterion

A The result was patented as an invention in the past, is an improvement over a patented invention,
or would qualify today as a patentable new invention.

B The result is equal to or better than a result that was accepted as a new scientific result at the time
when it was published in a peer-reviewed scientific journal.

C The result is equal to or better than a result that was placed into a database or archive of results
maintained by an internationally recognized panel of scientific experts.

D The result is publishable in its own right as a new scientific result—independent of the fact that
the result was mechanically created.

E The result is equal to or better than the most recent human-created solution to a long-standing
problem for which there has been a succession of increasingly better human-created solutions.

F The result is equal to or better than a result that was considered an achievement in its field at the
time it was first discovered.

G The result solves a problem of indisputable difficulty in its field.

H The result holds its own or wins a regulated competition involving human contestants (in the form
of either live human players or human-written computer programs).



project. In spite of the fact that Deep Blue delivered a high (human-competitive)
amount of “A,” the project has a low return when measured in terms of the A-to-I ratio.
The builders of Deep Blue convincingly demonstrated the high level of intelligence of
the humans involved in the project, but very little in the way of machine intelligence.

The Chinook checker-playing computer program is another impressive human-
competitive result. Jonathan Schaeffer recounts the development of Chinook by his
eight-member team at the University of Alberta between 1989 and 1996 in his book One
Jump Ahead: Challenging Human Supremacy in Checkers (Schaeffer 1997). Schaeffer’s
team began with analysis. They recognized that the problem could be profitably decom-
posed into three distinct subproblems. First, an opening book controls the play at the
beginning of each game. Second, an evaluation function controls the play during the
middle of the game. Finally, when only a small number of pieces are left on the board,
an endgame database takes over and dictates the best line of play. Perfecting the open-
ing book entailed an iterative process of identifying “positions where Chinook had 
problems finding the right move” and looking for “the elusive cooks” (Schaeffer 1997,
page 237). By the time the project ended, the opening book had over 40,000 entries. In
a chapter entitled “A Wake-Up Call,” Schaeffer refers to the repeated difficulties sur-
rounding the evaluation function by saying “the thought of rewriting the evaluation 
routine…and tuning it seemed like my worst nightmare come true.” Meanwhile, the
endgame database was painstakingly extended from five, to six, to seven, and eventually
eight pieces using a variety of clever techniques. As Schaeffer (page 453) observes,

“The significant improvements to Chinook came from the knowledge added to the
program: endgame databases (computer generated), opening book (human gener-
ated but computer refined), and the evaluation function (human generated and
tuned). We, too, painfully suffered from the knowledge-acquisition bottleneck of
artificial intelligence. Regrettably, our project offered no new insights into this dif-
ficult problem, other than to reemphasize how serious a problem it really is.”

Chinook defeated world champion Marion Tinsley. However, because of the 
enormous amount of human “I” invested in the project, Chinook (like Deep Blue) has
a low return when measured in terms of the A-to-I ratio.

The aim of the fields of artificial intelligence and machine learning is to get 
computers to automatically generate human-competitive results with a high AI ratio—
not to have humans generate human-competitive results themselves.

1.1.3 What We Mean by “Routine”

Generality is a precondition to what we mean when we say that an automated 
problem-solving method is “routine.” Once the generality of a method is established,
“routineness” means that relatively little human effort is required to get the method 
to successfully handle new problems within a particular domain and to successfully
handle new problems from a different domain. The ease of making the transition to
new problems lies at the heart of what we mean by “routine.”

What fraction of Deep Blue’s and Chinook’s highly specialized software,
hardware, databases, and evaluation techniques can be brought to bear on different
games? For example, can Deep Blue’s massive parallel state-space search or
Chinook’s three-way decomposition be gainfully applied to a game, such as Go, with
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a significantly larger number of possible alternative moves at each point in the game?
What fraction of these systems can be applied to a game of incomplete information,
such as bridge? What more broadly applicable principles are embodied in these two
systems? For example, what fraction of these methodologies can be applied to the
problem of getting a robot to mop the floor of an obstacle-laden room? Correctly rec-
ognizing images or patterns? Devising an algorithm to solve a mathematical problem?
Automatically synthesizing a complex structure?

A problem-solving method cannot be considered routine if its executional steps
must be substantially augmented, deleted, rearranged, reworked, or customized by the
human user for each new problem.

1.1.4 What We Mean by “Machine Intelligence”

We use the term “machine intelligence” to refer to the broad vision articulated in Alan
Turing’s 1948 paper entitled “Intelligent Machinery” and his 1950 paper entitled
“Computing Machinery and Intelligence.”

In the 1950s, the terms “machine intelligence,” “artificial intelligence,” and
“machine learning” all referred to the goal of getting “machines to exhibit behavior,
which if done by humans, would be assumed to involve the use of intelligence” (to
again quote Arthur Samuel).

However, in the intervening five decades, the terms “artificial intelligence” and
“machine learning” progressively diverged from their original goal-oriented meaning.
These terms are now primarily associated with particular methodologies for attempting
to achieve the goal of getting computers to automatically solve problems. Thus, the
term “artificial intelligence” is today primarily associated with attempts to get com-
puters to solve problems using methods that rely on knowledge, logic, and various ana-
lytical and mathematical methods. The term “machine learning” is today primarily
associated with attempts to get computers to solve problems that use a particular small
and somewhat arbitrarily chosen set of methodologies (many of which are statistical in
nature). The narrowing of these terms is in marked contrast to the broad field envi-
sioned by Samuel at the time when he coined the term “machine learning” in the 1950s,
the charter of the original founders of the field of artificial intelligence, and the broad
vision encompassed by Turing’s term “machine intelligence.”

Of course, the shift in focus from broad goals to narrow methodologies is an all-
too-common sociological phenomenon in academic research.

Turing’s term “machine intelligence” did not undergo this arteriosclerosis
because, by accident of history, it was never appropriated or monopolized by any
group of academic researchers whose primary dedication is to a particular method-
ological approach. Thus, Turing’s term remains catholic today. We prefer to use
Turing’s term because it still communicates the broad goal of getting computers to
automatically solve problems in a human-like way.

In his 1948 paper, Turing identified three broad approaches by which human-
competitive machine intelligence might be achieved.

The first approach was a logic-driven search. Turing’s interest in this approach is
not surprising in light of Turing’s own pioneering work in the 1930s on the logical
foundations of computing.
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The second approach for achieving machine intelligence was what he called a
“cultural search” in which previously acquired knowledge is accumulated, stored in
libraries, and brought to bear in solving a problem—the approach taken by modern
knowledge-based expert systems.

Turing’s first two approaches have been pursued over the past 50 years by the vast
majority of researchers using the methodologies that are today primarily associated
with the term “artificial intelligence.”

However, most pertinently for this book, Turing also identified a third approach to
machine intelligence in his 1948 paper entitled “Intelligent Machinery” (Turing 1948,
page 12; Ince 1992, page 127; Meltzer and Michie 1969, page 23), saying:

“There is the genetical or evolutionary search by which a combination of genes is
looked for, the criterion being the survival value.”

Turing did not specify in 1948 how to conduct the “genetical or evolutionary
search” for solutions to problems and, in particular, did not mention the concept of a
population or recombination. However, he did point out in his 1950 paper “Computing
Machinery and Intelligence” (Turing 1950, page 456; Ince 1992, page 156):

“We cannot expect to find a good child-machine at the first attempt. One must
experiment with teaching one such machine and see how well it learns. One can
then try another and see if it is better or worse. There is an obvious connection
between this process and evolution, by the identifications

“Structure of the child machine�Hereditary material
“Changes of the child machine�Mutations
“Natural selection�Judgment of the experimenter”

Thus, Turing correctly perceived in 1948 and 1950 that machine intelligence might
be achieved by an evolutionary process in which a description of a computer program
(the hereditary material) undergoes progressive modification (mutation) under the
guidance of natural selection (i.e., selective pressure in the form of what is now usually
called “fitness” by practitioners of genetic and evolutionary computation).

Of course, the measurement of fitness in modern genetic and evolutionary com-
putation is usually performed by automated means (as opposed to a human passing
judgment on each candidate individual, as suggested by Turing). In addition, modern
work generally employs a population (i.e., not just a point-to-point evolutionary pro-
gression) and sexual recombination—two key aspects of John Holland’s seminal work
on genetic algorithms, Adaptation in Natural and Artificial Systems (Holland 1975).

1.1.5 Human-Competitiveness of Results Produced by Genetic Programming

The previous four sub-sections defined the terms “human-competitive,” “high-return,”
“routine,” and “machine intelligence.” In this sub-section (and the next three sub-
sections), we evaluate the results produced by genetic programming in light of these
four definitions.

Starting with human-competitiveness, table 1.3 lists the 36 human-competitive
instances (of which we are aware) where genetic programming has produced 
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Table 1.3 Thirty-six human-competitive results produced by genetic programming

Basis for claim
of human-

Claimed instance competitiveness Reference

1 Creation of a better-than-classical quantum B, F Spector, Barnum, and Bernstein
algorithm for the Deutsch-Jozsa 1998
“early promise” problem

2 Creation of a better-than-classical quantum B, F Spector, Barnum, and Bernstein
algorithm for Grover’s database search problem 1999

3 Creation of a quantum algorithm for the depth- D Spector, Barnum, Bernstein, and
two AND/OR query problem that is better than Swamy 1999; Barnum,
any previously published result Bernstein, and Spector 2000

4 Creation of a quantum algorithm for the D Barnum, Bernstein, and Spector
depth-one OR query problem that is better 2000
than any previously published result

5 Creation of a protocol for communicating D Spector and Bernstein 2003
information through a quantum gate that was
previously thought not to permit such
communication

6 Creation of a novel variant of quantum dense D Spector and Bernstein 2003
coding

7 Creation of a soccer-playing program that won H Luke 1998
its first two games in the Robo Cup 1997 
competition

8 Creation of a soccer-playing program that ranked H Andre and Teller 1999
in the middle of the field of 34 human-written
programs in the Robo Cup 1998 competition

9 Creation of four different algorithms for the B, E Sections 18.8 and 18.10 of
transmembrane segment identification problem Genetic Programming II and
for proteins sections 16.5 and 17.2 of

Genetic Programming III

10 Creation of a sorting network for seven items A, D Sections 21.4.4, 23.6, and 57.8.1
using only 16 steps of Genetic Programming III

11 Rediscovery of the Campbell ladder topology for A, F Section 25.15.1 of Genetic
lowpass and highpass filters Programming III and

section 5.2 of this book

12 Rediscovery of the Zobel “M-derived half section” A, F Section 25.15.2 of Genetic
and “constant K” filter sections Programming III

13 Rediscovery of the Cauer (elliptic) topology for A, F Section 27.3.7 of Genetic
filters Programming III

14 Automatic decomposition of the problem of A, F Section 32.3 of Genetic
synthesizing a crossover filter Programming III

15 Rediscovery of a recognizable voltage gain stage A, F Section 42.3 of Genetic
and a Darlington emitter-follower section of an Programming III
amplifier and other circuits

16 Synthesis of 60 and 96 decibel amplifiers A, F Section 45.3 of Genetic
Programming III

(Continued)
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Table 1.3 (Continued)

Basis for claim
of human-

Claimed instance competitiveness Reference

17 Synthesis of analog computational circuits A, D, G Section 47.5.3 of Genetic
for squaring, cubing, square root, cube root, Programming III
logarithm, and Gaussian functions

18 Synthesis of a real-time analog circuit for G Section 48.3 of Genetic
time-optimal control of a robot Programming III

19 Synthesis of an electronic thermometer A, G Section 49.3 of Genetic
Programming III

20 Synthesis of a voltage reference circuit A, G Section 50.3 of Genetic
Programming III

21 Creation of a cellular automata rule for the D, E Andre, Bennett, and Koza 1996
majority classification problem that is better and section 58.4 of Genetic
than the Gacs-Kurdyumov-Levin (GKL) rule Programming III
and all other known rules written by humans

22 Creation of motifs that detect the D–E–A–D box C Section 59.8 of Genetic
family of proteins and the manganese superoxide Programming III
dismutase family

23 Synthesis of topology for a PID-D2 A, F Section 3.7 of this book
(proportional, integrative, derivative, and
second derivative) controller

24 Synthesis of an analog circuit equivalent A, F Section 4.3 of this book
to Philbrick circuit

25 Synthesis of a NAND circuit A, F Section 4.4 of this book

26 Simultaneous synthesis of topology, sizing, A, F, G Chapter 5 of this book
placement, and routing of analog electrical 
circuits

27 Synthesis of topology for a PID (proportional, A, F Section 9.2 of this book
integrative, and derivative) controller

28 Rediscovery of negative feedback A, E, F, G Chapter 14 of this book

29 Synthesis of a low-voltage balun circuit A Section 15.4.1 of this book

30 Synthesis of a mixed analog-digital variable A Section 15.4.2 of this book
capacitor circuit

31 Synthesis of a high-current load circuit A Section 15.4.3 of this book

32 Synthesis of a voltage-current conversion circuit A Section 15.4.4 of this book

33 Synthesis of a Cubic function generator A Section 15.4.5 of this book

34 Synthesis of a tunable integrated active filter A Section 15.4.6 of this book

35 Creation of PID tuning rules that outperform A, B, D, Chapter 12 of this book
the Ziegler-Nichols and Åström-Hägglund E, F, G
tuning rules

36 Creation of three non-PID controllers that A, B, D, Chapter 13 of this book
outperform a PID controller that uses the E, F, G
Ziegler-Nichols or Åström-Hägglund tuning 
rules
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human-competitive results. Each entry in the table is accompanied by the criteria
(from table 1.2) that establish the basis for the claim of human-competitiveness.

This book reports in detail on the last 14 of the human-competitive results in table
1.3. The rating of “human-competitive” is justified for each such result (sections 3.7.3,
4.3.3, 4.4.3, 5.2.3, 9.2.3, 12.4, 13.3, 14.3, and 15.6).

Twenty-three of the instances in table 1.3 involve patents (as indicated by an “A”
in column 3). Eleven of the automatically created results infringe previously issued
patents and 10 duplicate the functionality of previously patented inventions in a non-
infringing way. The 29th through 34th entries in table 1.3 relate to patents for analog
circuits that were issued after January 1, 2000. The last two entries are patentable new
inventions. Tables C.1 and C.2 in appendix C provides additional details on the 23
patent-related results produced by genetic programming.

1.1.6 High-Return of the Results Produced by Genetic Programming

Ascertaining the return of a problem-solving method requires measuring the amount
of “A” that is delivered by the method in relation to the amount of “I” that is supplied
by the human user.

Because each of the 36 results in table 1.3 is a human-competitive result, it is 
reasonable to say that genetic programming delivered a high amount of “A” for each
of them.

The question thus arises as to how much “I” was supplied by the human user in order
to produce these 36 results. Answering this question requires the discipline of carefully
identifying the amount of analysis, intelligence, information, and knowledge that was
supplied by the intelligent human user prior to launching a run of genetic programming.

In this book (and our previous books and papers on genetic programming), we
make a clear distinction between the problem-specific preparatory steps and the prob-
lem-independent executional steps of a run of genetic programming.

The preparatory steps are the problem-specific and domain-specific steps that are
performed by the human user prior to launching a run of the problem-solving method.
The preparatory steps establish the “I” component of the AI ratio (i.e., the denominator).

The executional steps are the problem-independent and domain-independent steps
that are automatically executed during a run of the problem-solving method. The 
executional steps of genetic programming are defined by the flowchart in figure 2.1 of
this book. The results produced by the executional steps provide the “A” component
of the AI ratio (i.e., the numerator).

The five major preparatory steps for the basic version of genetic programming
require the human user to specify

(1) the set of terminals (e.g., the independent variables of the problem, zero-argument
functions, and random constants) for each branch of the to-be-evolved computer
program,

(2) the set of primitive functions for each branch of the to-be-evolved computer program,
(3) the fitness measure (for explicitly or implicitly measuring the fitness of candidate

individuals in the population),
(4) certain parameters for controlling the run, and
(5) a termination criterion and method for designating the result of the run.



Figure 1.1 shows the five major preparatory steps for the basic version of genetic
programming. The preparatory steps (shown at the top of the figure) are the input to
the genetic programming system. A computer program (shown at the bottom) is the
output of the genetic programming system. The program that is automatically created
by genetic programming may solve, or approximately solve, the user’s problem.

Genetic programming requires a set of primitive ingredients to get started. 
The first two preparatory steps specify the primitive ingredients that are to be used to
create the to-be-evolved programs. The universe of allowable compositions of these
ingredients defines the search space for a run of genetic programming.

The identification of the function set and terminal set for a particular problem 
(or category of problems) is often a mundane and straightforward process that requires
only de minimus knowledge and platitudinous information about the problem domain.

For example, if the goal is to get genetic programming to automatically program
a robot to mop the entire floor of an obstacle-laden room, the human user must tell
genetic programming that the robot is capable of executing functions such as moving,
turning, and swishing the mop. The human user must supply this information prior to
a run because the genetic programming system does not have any built-in knowledge
telling it that the robot can perform these particular functions. Of course, the neces-
sity of specifying a problem’s primitive ingredients is not a unique requirement of
genetic programming. It would be necessary to impart this same basic information to
a neural network learning algorithm, a reinforcement learning algorithm, a decision
tree, a classifier system, an automated logic algorithm, or virtually any other auto-
mated technique that is likely to be used to solve this problem.

Similarly, if genetic programming is to automatically synthesize an analog 
electrical circuit, the human user must supply basic information about the ingredients
that are appropriate for solving a problem in the domain of analog circuit synthesis. 
In particular, the human user must inform genetic programming that the components of
the to-be-created circuit may include transistors, capacitors, and resistors (as opposed
to, say, neon bulbs, relays, and doorbells). Although this information may be second
nature to anyone working with electrical circuits, genetic programming does not have
any built-in knowledge concerning the fact that transistors, capacitors, and resistors 
are the workhorse components for nearly all present-day electrical circuits. Once the
human user has identified the primitive ingredients, the same function set can be used
to automatically synthesize amplifiers, computational circuits, active filters, voltage
reference circuits, and any other circuit composed of these basic ingredients.
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Figure 1.1 Five major preparatory steps for the basic version of genetic programming.



Likewise, genetic programming does not know that the inputs to a controller
include the reference signal and plant output and that controllers are composed of inte-
grators, differentiators, leads, lags, gains, adders, subtractors, and the like. Thus, if
genetic programming is to automatically synthesize a controller, the human user must
give genetic programming this basic information about the field of control.

The third preparatory step concerns the fitness measure for the problem. The fit-
ness measure specifies what needs to be done. The result that is produced by genetic
programming specifies “how to do it.” The fitness measure is the primary mechanism
for communicating the high-level statement of the problem’s requirements to the
genetic programming system. If one views the first two preparatory steps as defining
the search space for the problem, one can then view the third preparatory step (the fit-
ness measure) as specifying the search’s desired direction.

The fitness measure is the means of ascertaining that one candidate individual is
better than another. That is, the fitness measure is used to establish a partial order
among candidate individuals. The partial order is used during the executional steps of
genetic programming to select individuals to participate in the various genetic opera-
tions (i.e., crossover, reproduction, mutation, and the architecture-altering operations).

The fitness measure is derived from the high-level statement of the problem.
Indeed, for many problems, the fitness measure may be almost identical to the high-
level statement of the problem. The fitness measure typically assigns a single numeric
value reflecting the extent to which a candidate individual satisfies the problem’s
high-level requirements. For example:

● If an electrical engineer needs a circuit that amplifies an incoming signal by a fac-
tor of 1,000, the fitness measure might assign fitness to a candidate circuit based on
how closely the circuit’s output comes to a target signal whose amplitude is 1,000
times that of the incoming signal. In comparing two candidate circuits, amplifica-
tion of 990-to-1 would be considered better than 980-to-1.

● If a control engineer wants to design a controller for the cruise control device in a
car, the fitness measure might be based on the time required to bring the car’s speed
up from 55 to 65 miles per hour. When candidate controllers are compared, a rise
time of 10.1 seconds would be considered better than 10.2 seconds.

● If a robot is expected to mop a room, the fitness measure might be based on the per-
centage of the area of the floor that is cleaned within a reasonable amount of time.

● If a classifier is needed for protein sequences (or any other objects), the fitness
measure might be based on the correlation between the category to which the clas-
sifier assigns each protein sequence and the correct category.

● If a biochemist wants to find a network of chemical reactions or a metabolic path-
way that matches observed data, the fitness measure might assign fitness to a can-
didate network based on how closely the network’s output matches the data.

The fitness measure for a real-world problem is typically multiobjective. That is,
there may be more than one element that is considered in ascertaining fitness. 
For example, the engineer may want an amplifier with 1,000-to-1 gain, but may also
want low distortion, low bias, and a low parts count. In practice, the elements of a mul-
tiobjective fitness measure usually conflict with one another. Thus, a multiobjective
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fitness measure must prioritize the different elements so as to reflect the tradeoffs that
the engineer is willing to accept. For example, the engineer may be willing to tolerate
an additional 1% of distortion in exchange for the elimination of one part from the 
circuit. One approach is to blend the distinct elements of a fitness measure into a 
single numerical value (often merely by weighting them and adding them together).

The fourth and fifth preparatory steps are administrative.
The fourth preparatory step entails specifying the control parameters for the run.

The major control parameters are the population size and the number of generations
to be run. Some analytic methods are available for suggesting optimal population sizes
for runs of the genetic algorithm on particular problems. However, the practical real-
ity is that we generally do not use any such analytic method to choose the population
size. Instead, we determine the population size such that genetic programming can
execute a reasonably large number of generations within the amount of computer time
we are willing to devote to the problem. As for other control parameters, we have,
broadly speaking, used the same (undoubtedly non-optimal) set of minor control
parameters from problem to problem over a period of years. Although particular prob-
lems in this book could possibly be solved more efficiently by means of a different
choice of control parameters, we believe that our policy of substantial consistency in
the choice of control parameters helps the reader eliminate superficial concerns that
the demonstrated success of genetic programming depends on shrewd or fortuitous
choices of the control parameters. As can be seen in this book (and our previous
books), we frequently make only one run (or, at most, only a few runs) of each major
new problem.

The fifth preparatory step consists of specifying the termination criterion and the
method of designating the result of the run.

We have now identified that which is supplied by the human user of genetic pro-
gramming. For the problems in this book, we believe that it is generally fair to say that
only a de minimus amount of “I” is contained in the problem’s primitive ingredients
(the first and second preparatory steps), the problem’s fitness measure (the third
preparatory step containing the high-level statement of what needs to be done), and
the run’s control parameters and termination procedures (the administrative fourth and
fifth preparatory steps).

In any event, the amount of “I” required by genetic programming is certainly not
greater than that required by any other method of artificial intelligence and machine
learning of which we are aware. Indeed, we know of no other problem-solving method
(automated or human) that does not start with primitive elements of some kind, does
not incorporate some method for specifying what needs to be done to guide the
method’s operation, does not employ administrative parameters of some kind, and
does not contain a termination criterion of some kind.

In view of the numerous human-competitive results produced by genetic 
programming (table 1.3), it can be seen that genetic programming is capable of 
delivering a large amount of “A.” That is, its AI ratio is high.

Throughout this book, there are numerous sections where the AI ratio is qualita-
tively evaluated for particular problems (sections 3.7.4, 3.8.4, 3.9.4, 3.10.4, 4.2.4,
4.3.5, 4.4.5, 4.5.4, 4.6.4, 4.7.4, 5.2.5, 5.3.4, 6.7, 7.4.2, 8.6.2, 8.7.2, 9.1.4, 9.2.5, 10.2.4,
10.3.4, 10.4.4, 10.5.4, 11.1.4, 11.2.4, 12.6, 13.5, 14.5, and 15.8).
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1.1.7 Routineness of the Results Produced by Genetic Programming

This book demonstrates the generality of genetic programming by solving illustrative
problems from several fields, including problems involving

● control,
● analog electrical circuits (including six post-2000 patented circuits),
● placement and routing of circuits,
● antennas,
● genetic networks, and
● metabolic pathways.

Our previous publications (and previous publications by others) additionally
demonstrate that genetic programming is capable of solving problems in numerous
other areas.

The bright line distinction between that which is delivered by genetic program-
ming and that which is supplied by the intelligent human user (in section 1.1.6) addi-
tionally helps make it clear that genetic programming is a systematic general
problem-solving method.

As will be seen in this book, relatively little effort is required to make the transi-
tion to new problems within a particular domain or to new problems from an entirely
different domain.

For example, after discussing the first problem of automatically synthesizing both
the topology and tuning of a controller in chapter 3, the transition to each subsequent
problem of controller synthesis in that chapter mainly involves providing genetic pro-
gramming with a different specification of what needs to be done—that is, a different
fitness measure. Because virtually all controllers are built from the same primitive
ingredients (e.g., integrators, differentiators, gains, adders, subtractors, and signals
representing the plant output and the reference signal), additional problems of con-
troller synthesis can be handled merely by changing the statement of what needs to be
done.

Similarly, after discussing the first problem of automatically synthesizing both the
topology and sizing of an analog electrical circuit in chapter 4, the transition to each
subsequent problem of circuit design in that chapter mainly involves providing genetic
programming with a different specification of what needs to be done.

The routineness of the transition from problem to problem is especially clear in
chapter 15 involving six circuits that were patented after January 1, 2000. All six prob-
lems were run consecutively over a period of about two months intentionally using the
very same computer, the very same software, and the very same settings of the minor
control parameters. All six circuits were composed of the workhorse ingredients of
present-day electronics (i.e., resistors, capacitors, and transistors). As we move from
one problem to the next in chapter 15, the only substantial change is the specification
of what needs to be done. This specification is based on each inventor’s statement of
performance of each patented circuit. As stated in Genetic Programming: On the
Programming of Computers by Means of Natural Selection (Koza 1992a), “Structure
arises from fitness.”
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The transition from one problem domain to another becomes especially clear by
comparing the work concerning the automatic synthesis of controllers, analog electrical
circuits, antennas, genetic networks, and networks of chemical reactions.

In making the transition from problems of automatic synthesis of controllers to
problems of automatic synthesis of circuits, the primitive ingredients change from
integrators, differentiators, gains, adders, subtractors, and the like to transistors, resis-
tors, capacitors, and the like. The fitness measure changes from one that minimizes a
controller’s integral of time-weighted absolute error, minimizes overshoot, and 
maximizes disturbance rejection to one that is based on the circuit’s amplification,
suppression or passage of a signal, elimination of distortion, and the like.

In making the transition from problems of automatic synthesis of circuits to problems
of automatic synthesis of networks of chemical reactions (metabolic pathways), the
primitive ingredients change to functions that represent chemical reactions that 
consume chemical substrates (inputs to chemical reactions) and produce reaction
products (outputs), at certain rates, in the presence of certain catalysts (enzymes). 
The fitness measure compares the quantity of product that is produced by a candidate
network to the observed data.

Of course, although the preparatory steps change from one problem to another and
from one domain to another, the main executional steps (i.e., the flowchart) of genetic
programming remain unchanged.

In numerous places throughout this book, we demonstrate

● the routineness of the transition from one problem to another problem in the same
domain (sections 3.8.3, 3.9.3, 3.10.3, 4.3.4. 4.4.4, 4.5.3, 4.6.3, 4.7.3, 5.3.3, 8.7.1,
9.2.4, 10.3.3. 10.4.3. 10.5.3, 11.2.3, 13.4. 14.4. and 15.7),

● the routineness of the transition from one domain to the next (sections 4.2.3, 5.2.4,
6.6, 7.4.1, 8.6.1, and 12.5),

● the routineness of the transition from a non-parameterized version of a problem to
a parameterized version (sections 9.1.3 and 10.2.3), and

● the routineness of the transition from a problem involving parameterized topologies
without conditional developmental operators to a problem involving parameterized
topologies with them (section 11.1.3).

1.1.8 Machine Intelligence

As will be seen throughout this book, genetic programming does indeed succeed in
getting computers to automatically solve problems from a high-level statement of
what needs to be done.

1.2 Genetic Programming Is an Automated Invention Machine

In a commencement address at Worcester Polytechnic Institute in 2000, C. Michael
Armstrong, CEO of American Telephone & Telegraph, recounted:

“On a sweltering summer morning in August 1927, a young man was seated on 
a passenger ferry as it churned across Upper New York Bay toward Manhattan. 
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He was gazing idly at the Statue of Liberty when suddenly he jumped from his seat
and began frantically searching his pockets for a scrap of paper.

“Coming up empty, he raced to the newsboy on deck and bought a copy of The
New York Times. The man tore through the pages until he found one that was nearly
free of type. He uncapped his fountain pen, sketched a couple of crude diagrams,
and surrounded them with mathematical equations.”

Holding up the now-famous page from The New York Times (figure 1.2),
C. Michael Armstrong continued:

“When the ferryboat docked at Manhattan, he raced to his office at Bell
Laboratories. He showed his diagrams and equations to one of his coworkers who

Figure 1.2 Notes written by Harold S. Black on a page of The New York Times while
commuting on the Lackawanna Ferry. Reproduced here by kind permission of Lucent
Technologies.



read them carefully. Then his friend let out a big whoop and they both scrawled
their initials on the newspaper page.

“The young man on the ferryboat was Harold Black, Worcester Polytechnic
Institute Class of 1921. And the scribblings on his newspaper were the blueprint for
the negative-feedback amplifier, a device that played a vital role in 20th century
electronics.”

Referring to the scribblings on this newspaper page, Mervin Kelly, then president
of Bell Labs, said in 1957 (Black 1977):

“Although many of Harold’s inventions have made great impact, that of the nega-
tive feedback amplifier is indeed the most outstanding. It easily ranks coordinate
with De Forest’s invention of the audion as one of the two inventions of broadest
scope and significance in electronics and communications of the past 50 years…It
is no exaggeration to say that without Black’s invention, the present long-distance
telephone and television networks which cover our entire country and the
transoceanic telephone cables would not exist. The application of Black’s principle
of negative feedback has not been limited to telecommunications.…[T]he entire
explosive extension of the area of control, both electrical and mechanical, grew out
of an understanding of the feedback principle.”

Lee (1998) recounts the history that predated Black’s 1927 invention of negative
feedback. Earlier work on feedback included rocket pioneer Robert Goddard’s 1915
patent for a vacuum tube oscillator using positive feedback (Goddard 1915) and
Edwin Howard Armstrong’s 1914 patent on amplifiers again using positive feedback
(Armstrong 1914). As Lee observes,

“[P]rogress in electronics in those early years was largely made possible by
Armstrong’s regenerative [positive feedback] amplifier, since there was no other
economical way to obtain large amounts of gain from the primitive (and expensive)
vacuum tubes of the day.”…

“Armstrong was able to get gain from a single stage that others could obtain only
by cascading several. This achievement allowed the construction of relatively 
inexpensive, high-gain receivers and therefore also enabled dramatic reductions in
transmitter power because of the enhanced sensitivity provided by this increased
gain. In short order, the positive feedback (regenerative) amplifier became a nearly
universal idiom, and Westinghouse (to whom Armstrong had assigned patent
rights) kept its legal staff quite busy trying to make sure that only licensees were
using this revolutionary technology.” (Emphasis added.)

However, Westinghouse’s “nearly universal idiom” did not solve a major problem
facing American Telephone & Telegraph at the time, namely distortion in amplifiers.
As Lee (1998, page 387) further points out:

“Although Armstrong’s regenerative amplifier pretty much solved the problem of
obtaining large amounts of gain from vacuum tube amplifiers, a different problem
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preoccupied the telephone industry. In trying to extend communications distances,
amplifiers were needed to compensate for transmission-line attenuation. Using
amplifiers available in those early days, distances of a few hundred miles were rou-
tinely achievable and, with great care, perhaps 1,000–2,000 miles was possible, but
the quality was poor. After a tremendous amount of work, a crude transcontinental
telephone service was inaugurated in 1915, with a 68-year-old Alexander Graham
Bell making the first call to his former assistant, Thomas Watson, but this feat was
more of a stunt than a practical achievement.

“The problem wasn’t one of insufficient amplification; it was trivial to make the
signal at the end of the line quite loud. Rather the problem was distortion. Each
amplifier contributed some small (say, 1%) distortion. Cascading a hundred of these
things guaranteed that what came out didn’t very much resemble what went in.

“The main ‘solution’ at the time was to (try to) guarantee ‘small signal’ opera-
tion of the amplifiers. That is, by restricting the dynamic range of the signals to a
tiny fraction of the amplifier’s overall capability, more linear operation could be
achieved. Unfortunately, this strategy is quite inefficient since it requires the con-
struction of, say, 100-W amplifiers to process milliwatt signals. Because of the
arbitrary distance between a signal source and an amplifier (or possibly between
amplifiers), though, it was difficult to guarantee that the input signals were always
sufficiently small to satisfy linearity.”

Such was the state of affairs when Harold S. Black started working in 1921 at
AT&T on the problem of reducing amplifier distortion. After considerable work,
Black reached the conclusion in 1923 (Black 1977):

“There was just no way to meet our ambitious goal.”

As Black recounts:

“This might have been the end of it, except that, on March 16, 1923, I was fortu-
nate enough to attend a lecture by the famous scientist and engineer, Charles
Proteus Steinmetz.”…

“I no longer remember the subject, but I do remember the clarity and logic of his
presentation.”…

“I was so impressed by how Steinmetz got down to the fundamentals that when I
returned home at 2 A.M., I restated my own problems as follows: Remove all distor-
tion products from the amplifier output. In doing this, I was accepting an imperfect
amplifier and regarding its output as composed of what was wanted plus what was
not wanted. I considered what was not wanted to be distortion (regardless of whether
it was due to nonlinearity, variation in the tube gain, or whatever), and I asked myself
how to isolate and then eliminate this distortion. I immediately observed that by
reducing the output to the same amplitude as the input, and subtracting one from the
other, only the distortion would remain. This distortion could then be amplified in a
separate amplifier and used to cancel out the distortion in the original amplifier.…

“The next day, March 17, I sketched two such embodiments and thereby
invented the feed-forward amplifier.…

“Later that day, I set up each embodiment in the laboratory. Both worked as
expected.”
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Black applied for a patent on his 1923 invention of the feed-forward amplifier and
the patent was issued in 1928 (Black 1928). Unfortunately, his 1923 invention did not
turn out to be practical. As Black (1977) laments,

“[T]he invention required precise balances and subtractions that were hard to
achieve and maintain with the amplifiers available at that time.…

“Over the next four years, I struggled with the problem of turning my intention
into an amplifier that was practical.…

“[F]or my purpose the gain had to be absolutely perfect.”
“For example, every hour on the hour—24 hours a day—somebody had to adjust

the filament current to its correct value.…
“In addition, every six hours it became necessary to adjust the B battery voltage,

because the amplifier gain would get out of hand.
“There were other complications too, but these were enough!”

The bottom line concerning the feed-forward amplifier that Black invented in
1923 was:

“Nothing came of my efforts, however, because every circuit I devised turned out
to be far too complex to be practical.”

In spite of this false start, Black continued to work on the problem.

After working on the problem for a total of six years:

“Then came the morning of Tuesday, August 2, 1927, when the concept of the neg-
ative feedback amplifier came to me in a flash while I was crossing the Hudson
River on the Lackawanna Ferry, on my way to work. For more than 50 years, I have
pondered how and why the idea came, and I can’t say any more today than I could
that morning. All I know is that after several years of hard work on the problem, I
suddenly realized that if I fed the amplifier output back to the input, in reverse
phase, and kept the device from oscillating (singing, as we called it then), I would
have exactly what I wanted: a means of canceling out the distortion of the output.
I opened my morning newspaper and on a page of The New York Times I sketched
a simple canonical diagram of a negative feedback amplifier plus the equations for
the amplification with feedback. I signed the sketch, and 20 minutes later, when 
I reached the laboratory at 463 West Street, it was witnessed, understood, and
signed by the late Earl C. Blessing.”

Numerous other inventors have reported similar singular moments when their 
previous thinking about a vexatious problem crystallized into an invention.

1.2.1 The Illogical Nature of Invention and Evolution

Most computer scientists unquestioningly assume that any effective problem-solving
process must be logically sound and deterministic.

The consequence of this unproven assumption is that virtually all conventional
approaches to artificial intelligence and machine learning possess these characteris-
tics. Yet the reality is that logic does not govern two of the most important processes
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for solving complex problems—namely the invention process (performed by creative
humans) and the evolutionary process (occurring in nature).

Moreover, neither the invention process nor the evolutionary process is deterministic.
A new idea that can be logically deduced from facts that are known in a field,

using transformations that are known in a field, is not considered to be inventive by
the Patent Office. A new idea is patentable only if there is what the courts have called
an “illogical step” (i.e., a logically unjustified step). The required illogic distinguishes
the proposed invention from that which is readily deducible from what is already
known. The required illogical step is also sometimes referred to as a “flash of genius.”
In other words, logical thinking is not the key ingredient for one of the most signifi-
cant human problem-solving activities, namely the invention process. Interestingly,
everyday usage parallels the law concerning the point that a lack of logic is a precon-
dition for inventiveness: People who mechanically apply existing facts in well-known
ways are summarily dismissed as being uncreative.

Of course, when we say that the invention process is inherently illogical, we do
not mean that logical thinking is not helpful to inventors or that inventors are oblivi-
ous to logic. Logical thinking often plays the important role of setting the stage for an
invention. “[S]everal years of hard work on the problem” brought Black’s thinking
into the proximity of a solution (Black 1977). Then, at the critical moment, Black
made the illogical leap during his now-famous ferryboat ride. Although logical think-
ing may play a role in invention and creativity, at the end of the day, the critical 
element is a logical discontinuity from established ideas.

The design of complex entities by the evolutionary process in nature is another
important type of problem-solving that is not governed by logic. In nature, solutions
to design problems are discovered by means of evolution and natural selection. 
The evolutionary process is probabilistic, rather than deterministic. Moreover, it is
certainly not guided by mathematical logic. Indeed, one of the most important 
characteristics of the evolutionary process is that it intentionally creates and actively
maintains inconsistent and contradictory alternatives. Logically sound systems do not
do that. The active maintenance of inconsistent and contradictory alternatives (called
genetic diversity) is a precondition for the success of the evolutionary process.

1.2.2 Overcoming Established Beliefs

As previously mentioned, Edwin Howard Armstrong’s approach to amplification
using positive feedback was “a nearly universal idiom” during the early part of the 
20th century.

In spite of the elegance and manifest effectiveness of negative feedback,
Armstrong’s approach was so entrenched in the thinking of electrical engineers that
there was widespread resistance to Black’s concept of negative feedback for many
years after its invention. As Black (1977) recalls:

“Although the invention had been submitted to the U.S. Patent Office on August 8,
1928, more than nine years would elapse before the patent was issued on December
21, 1937.…One reason for the delay was that the concept was so contrary to
established beliefs.” (Emphasis added.)
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The British Patent Office was even more resistant. As Black (1977) recounted:

“…our patent application was treated in the same manner as one for a perpetual
motion machine.”

The British Patent Office continued to maintain that negative feedback would not
work in spite of the fact that AT&T had “70 amplifiers working successfully in the
telephone building at Morristown” for a number of years.

We believe that one reason why it took an inordinate amount of time for negative
feedback to gain acceptance was that human thinking often becomes channeled along
the well-traveled paths of “established beliefs.”

One of the virtues of genetic programming is that it is not aware, much less 
concerned, about whether a solution is “contrary to established beliefs.” Genetic
programming approaches a problem in an open-ended way that is not encumbered by
previous human thinking. For this reason, genetic programming often unearths solu-
tions that might have never occurred to human scientists and engineers who are
steeped in the thinking of the day.

In the section entitled “Genetic Programming Takes a Ride on the Lackawanna
Ferry” (section 14.1), genetic programming is used to reinvent negative feedback. 
As will be seen, if one begins with a high-level statement of the problem that Black
was trying to solve, Black’s solution flows almost effortlessly from a run of genetic
programming. It does so because Black’s solution is a correct solution to the problem
and, as they say, necessity is the mother of invention.

For the 20 other instances in table 1.3 where genetic programming created an
entity that infringes a previously issued patent or duplicates the functionality of a 
previously patented invention in a non-infringing or novel way, the solution similarly
flowed directly from a high-level statement of the problem.

The 23 instances where genetic programming has duplicated the functionality of
a previously patented invention, infringed a previously issued patent, or created a
patentable new invention are shown in tables C.1 and C.2 in appendix C.

1.2.3 Automating the Invention Process

For over 200 years, the U.S. Patent Office has been in the business of receiving 
written descriptions of human-designed inventions and judging whether the purported
inventions are

● “new,”
● “improved,”
● “useful,” and
● “[un]obvious…to a person having ordinary skill in the art to which said subject

matter pertains.” (35 United States Code 103a)

When the Patent Office passes judgment on a patent application, it generally
works from written documents and operates at arms length from the inventor. When
an automated method duplicates the detailed structure of a previously patented
human-created invention, the fact that the human-designed version originally satisfied
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the Patent Office’s criteria for patent-worthiness means that an automatically created
duplicate would also have satisfied the Patent Office’s criteria for patent-worthiness
had it arrived at the Patent Office prior to the human inventor’s submission.

When genetic programming is applied to a problem whose solution is a previously
patented invention, there are three possible outcomes:

● failure of the run to solve the problem,
● creation of a solution that infringes a previously issued patent, or
● creation of a non-infringing solution that duplicates the functionality of a previously

patented invention.

There are two sub-cases associated with the third case.
First, a non-infringing solution may be a previously known solution (i.e., prior art).

The previously known solution may or may not have been patented in the past.
Second, a non-infringing solution may be a new solution to the problem.
In this second sub-case, a new, genetically evolved, non-infringing solution may

be patentable if it satisfies the additional requirements of being “useful,” “improved,”
and “unobvious.”

A genetically evolved solution would generally be deemed to be “useful” for the
same reasons that the originally patented invention was deemed to be “useful.”

Almost every alternative solution to a particular problem usually has some attribute
that can be reasonably viewed (from some standpoint) as being “improved” in some
respect or to some degree.

Because genetically evolved solutions often contain features that would never
occur to human scientists or engineers, a genetically evolved alternative solution will
often be “unobvious” to someone “having ordinary skill in the art.”

U.S. law suggests that inventions created by automated means are patentable by
saying:

“Patentability shall not be negatived by the manner in which the invention was
made.” (35 United States Code 103a)

1.2.4 Patentable New Inventions Produced by Genetic Programming

Given that genetic programming has solved problems whose solutions were previ-
ously patented, it is a natural extension to try to use genetic programming to generate
patentable new inventions.

Chapters 12 and 13 of this book describe a patent application filed on July 12,
2002, for improved PID (proportional, integrative, and derivative) tuning rules and
non-PID controllers that were automatically created by means of genetic program-
ming (Keane, Koza, and Streeter 2002a). The genetically evolved tuning rules and
controllers outperform controllers tuned using the widely used Ziegler-Nichols tuning
rules (1942) and the recently developed Åström-Hägglund tuning rules (1995). The
applicants believe that the new tuning rules and controllers satisfy the statutory
requirement of being “improved” and “useful.” They are certainly “new.” Because
they contain features that would never occur to an experienced control engineer,
they are certainly “unobvious” to someone “having ordinary skill in the art.”
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If (as expected) a patent is granted, it will (we believe) be the first patent granted for
an invention created by genetic programming. For further discussion of the potential
of genetic programming as an invention machine, see Koza, Keane, and Streeter 2003.

1.3 Genetic Programming Can Automatically Create Parameterized
Topologies

Eleven problems in this book illustrate this book’s third main point, namely that
genetic programming can automatically create what we call parameterized topologies.
That is, genetic programming can automatically create, in a single run, a general
(parameterized) solution to a problem in the form of a graphical structure whose nodes
or edges represent components and where the parameter values of the components are
specified by mathematical expressions containing free variables.

In a parameterized topology, the genetically evolved graphical structure represents
a complex structure (e.g., electrical circuit, controller, network of chemical reactions,
antenna, genetic network). In the automated process, genetic programming determines
the graph’s size (its number of nodes) as well as the graph’s connectivity (specifying
which nodes are connected to each other). Genetic programming also assigns, in the
automated process, component types to the graph’s edges nodes or edges. In a circuit,
the component types are usually transistors, resistors, and capacitors. In a controller,
the components are integrators, differentiators, gain blocks, adders, subtractors,
and the like. In the automated process, genetic programming also creates mathematical
expressions that establish the parameter values of the components (e.g., the capaci-
tance of a capacitor in a circuit, the amplification factor of a gain block in a 
controller). Some of these genetically created mathematical expressions contain free
variables. The free variables confer generality on the genetically evolved solution 
by enabling a single genetically evolved graphical structure to represent a general
(parameterized) solution to an entire category of problems. The important point about
parameterized topologies is that genetic programming can do all the above in an 
automated way in a single run.

As an example, suppose the goal is to design a circuit to feed the woofer speaker
of a hi-fi system. That is, the desired circuit is intended to pass signals below a certain
frequency at full power into the woofer, but to suppress all higher frequencies.
Moreover, suppose that you want a general solution to this design problem. That is,
suppose you want a solution that works for any cutoff frequency f—not just a solution
that works for, say, 1,000 Hertz. A genetically evolved general solution to this prob-
lem is shown later in this book (in figure 10.9). The general solution produced 
by genetic programming includes the circuit’s topology. The genetically evolved
parameterized circuit has nine components. The general solution includes the type of
each of the nine components. There are five capacitors and four inductors in figure
10.9. The connections between the nine components are automatically created during
the run of genetic programming. The problem’s free variable, f, is an input to the
genetically evolved solution. The genetically evolved solution is general because 
the capacitance of the five capacitors and the inductance of the four inductors are not
constant, but instead, are functions of the free variable f. That is, the general solution
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produced by genetic programming includes nine different mathematical expres-
sions—each containing the free variable f. For example, one of the nine mathematical
expressions is

C2�
1.6786�105

f

When all nine mathematical expressions are instantiated with a particular value of the
free variable, f, the resulting circuit is a lowpass filter whose passband boundary is f.
The numerical values of certain components could be constant (although none of the
values happen to be constant in this particular case). The advantage of a parameter-
ized topology is it is a general solution to the problem—not just a solution to a single
instance of the problem.

If the genetically evolved program additionally contains conditional developmen-
tal operators, different graphical structures will, in general, be produced for different
instantiations of the free variable. That is, the genetically evolved program will 
operate as a genetic switch. Depending on the values of the free variable, different
graphical structures will result from the execution of the best-of-run program. The
numerical values for all parameterized components in the graphical structure will also
be established by the execution of the program.

The capability of genetic programming to automatically create parameterized
topologies is demonstrated in this book by the automatic synthesis of

● a parameterized controller for controlling a three-lag plant whose time constant is
specified by a free variable (section 9.1),

● a parameterized controller for controlling plants belonging to two different families
(section 9.2),

● three parameterized controllers for controlling industrially representative plants
(chapter 13),

● a parameterized circuit-constructing program tree containing two free variables that
yields a Zobel network (section 10.2),

● a parameterized circuit-constructing program tree that yields a passive third-order
elliptic lowpass filter whose modular angle is specified by a free variable (section
10.3),

● a parameterized circuit-constructing program tree that yields an active lowpass fil-
ter whose passband boundary is specified by a free variable (section 10.5),

● a parameterized circuit-constructing program tree that yields a passive lowpass fil-
ter whose passband boundary is specified by a free variable (section 10.4),

● a parameterized circuit-constructing program tree containing conditional develop-
mental operators and free variables that yields either a lowpass or highpass passive
filter (section 11.1),

● a parameterized circuit-constructing program tree containing conditional develop-
mental operators and free variables that yields either a lowpass passive filter with a
variable passband boundary or a highpass passive filter with a variable passband
boundary (section 11.2),

● a parameterized circuit-constructing program tree containing conditional develop-
mental operators and free variables that yields either a quadratic or cubic computa-
tional circuit (section 11.3), and
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● a parameterized circuit-constructing program tree containing conditional develop-
mental operators and free variables that yields either a 40 dB or 60 dB amplifier
(section 11.4).

These 11 examples establish this book’s third main point.

1.4 Historical Progression of Qualitatively More Substantial Results 
Produced by Genetic Programming in Synchrony with Increasing 
Computer Power

Numerous questions naturally arise in connection with any proposed approach to
machine intelligence.

● Is the method formulated with sufficient precision to enable it to be implemented
(or is it vagueware)?

● Has the method been successfully demonstrated on a specific single problem (or is
it promiseware)?
● Was the method applied to a difficult demonstrative problem (or is it toyware)?
● Did the method top out after succeeding on a single demonstrative problem?

● Has the method solved multiple problems (or is it soloware)?
● Are the multiple problems difficult?
● Did the method top out at this stage?

● Has the method solved problems from multiple domains (or is it nicheware)?
● Are the domains difficult?
● Did the method top out at this stage?

● Were the results human-competitive?
● Can the method profitably take advantage of the increased computational power

available by means of parallel processing (or is it serialware)?
● Or, is the method Mooreware—able to take advantage of the exponentially increas-

ing computational power made available by the relentless iteration of Moore’s law?

Genetic Programming: On the Programming of Computers by Means of Natural
Selection (Koza 1992a) demonstrated that genetic programming is not vagueware,
promiseware, soloware, or nicheware.

The numerous human-competitive results discussed in this book establish that it is
not toyware.

This book’s fourth main point is based on a historical perspective on the progres-
sion of results produced by genetic programming over the 15-year period between
1987 and 2002.

Table 1.4 (described in greater detail in section 18.1) lists the five computer 
systems used to produce our group’s reported work on genetic programming in the 
15-year period between 1987 and 2002. Column 7 shows the number of human-
competitive results (as defined in table 1.2 and itemized in table 1.3) generated by
each computer system.

The first entry in the table is a serial computer. The four subsequent entries are
parallel computer systems. The presence of four increasingly powerful parallel com-
puter systems in the table reflects the fact that genetic programming has successfully
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taken advantage of the increased computational power available by means of parallel
processing. That is, genetic programming is not serialware.

Table 1.4 shows the following:

● There is an order -of-magnitude  speed-up (column 4) between each successive 
computer system in the table.  Note  that, according  to Moore’s  law (Moore
1996), exponential increases in computer power correspond approximately to con-
stant periods of time.

● There is a 13,900-to-1 speed-up (column 5) between the fastest and most recent
machine (the 1,000-node parallel computer system used for most of the work in this
book) and the slowest and earliest computer system in the table (the serial LISP
machine).

● The slower early machines generated few or no human-competitive results, whereas
the faster more recent machines have generated numerous human-competitive results.

Four successive order-of-magnitude increases in computer power are explicitly
shown in table 1.4. An additional order-of-magnitude increase was achieved by the
expedient of making extraordinarily long runs on the largest machine in the table 
(the 1,000-node Pentium® II parallel machine). The length of the run that produced
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Table 1.4 Number of human-competitive results produced by genetic programming with five
computer systems between 1987 and 2002

Petacycles Speed-up Speed-up
(1015 cycles) over over first Human-

Period of per day for previous system in Used for work in competitive
System usage entire system system this table book results

Serial Texas 1987– 0.00216 1 (base) 1 (base) Genetic 0
Instruments 1994 Programming I
LISP machine and Genetic

Programming II

64-node 1994– 0.02 9 9 A few problems in 2
Transtech 1997 Genetic
transputer Programming III
parallel
machine

64-node 1995– 0.44 22 204 Most problems in 12
Parsytec 2000 Genetic
parallel Programming III
machine

70-node Alpha 1999– 3.2 7.3 1,481 A minority (8) of 2
parallel 2001 problems in this
machine book

1,000-node 2000– 30.0 9.4 13,900 A majority (28) of 12
Pentium II 2002 the problems in
parallel this book
machine



the genetically evolved controller described in section 13.2.3 was 28.8 days—almost
an order-of-magnitude increase (9.3 times) over the 3.4-day average for other prob-
lems described in this book (table 17.1). A patent application was filed for the con-
troller produced by this four-week run (Keane, Koza, and Streeter 2002a). This
genetically evolved controller outperforms controllers employing the widely used
Ziegler-Nichols tuning rules and the recently developed Åström-Hägglund tuning
rules. If the final 9.3-to-1 increase in table 1.5 is counted as an additional speed-up,
the overall speed-up between the first and last entries in the table is 130,660-to-1.

Table 1.5 (described in greater detail in sections 18.2 and 18.3) is organized
around the five just-explained order-of-magnitude increases in the expenditure of
computing power. Column 4 of table 1.5 characterizes the qualitative nature of the
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Table 1.5 Progression of qualitatively more substantial results produced by genetic
programming in relation to five order-of-magnitude increases in computational power

Speed-up
over
previous

Period of row in Qualitative nature of the results produced by genetic
System usage this table programming

Serial Texas 1987–1994 1 (base) ● Toy problems of the 1980s and early 1990s from the fields
Instruments of artificial intelligence and machine learning
LISP machine

64-node 1994–1997 9 ● Two human-competitive results involving one-dimensional
Transtech discrete data (not patent-related)
transputer
parallel
machine

64-node 1995–2000 22 ● One human-competitive result involving two-dimensional
Parsytec discrete data
parallel ● Numerous human-competitive results involving continuous
machine signals analyzed in the frequency domain

● Numerous human-competitive results involving 20th-century
patented inventions

70-node Alpha 1999–2001 7.3 ● One human-competitive result involving continuous signals
parallel analyzed in the time domain
machine ● Circuit synthesis extended from topology and sizing to

include routing and placement (layout)

1,000-node 2000–2002 9.4 ● Numerous human-competitive results involving continuous
Pentium II signals analyzed in the time domain
parallel ● Numerous general solutions to problems in the form of
machine parameterized topologies

● Six human-competitive results duplicating the functionality
of 21st-century patented inventions 

Long (4-week) 2002 9.3 ● Generation of two patentable new inventions
runs of 1,000-
node Pentium
II parallel
machine
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results produced by genetic programming. The table shows the progression of quali-
tatively more substantial results produced by genetic programming in terms of five
order-of-magnitude increases in the expenditure of computational resources.

The order-of-magnitude increases in computer power shown in table 1.5 corre-
spond closely (albeit not perfectly) with the following progression of qualitatively
more substantial results produced by genetic programming:

● toy problems,
● human-competitive results not related to patented inventions,
● 20th-century patented inventions,
● 21st-century patented inventions, and
● patentable new inventions.

In other words, genetic programming is able to take advantage of the exponen-
tially increasing computational power made available by iterations of Moore’s law—
that is, it is Mooreware.

These results (explained in greater detail in chapter 18) establish this book’s fourth
main point: Genetic programming has delivered a progression of qualitatively more
substantial results in synchrony with five approximately order-of-magnitude increases
in the expenditure of computer time.



2

Background on Genetic Programming

This chapter provides basic background information on genetic programming.
Genetic programming is a domain-independent method that genetically breeds a

population of computer programs to solve a problem. Specifically, genetic program-
ming iteratively transforms a population of computer programs into a new generation
of programs by applying analogs of naturally occurring genetic operations. The genetic
operations include crossover (sexual recombination), mutation, reproduction, gene
duplication, and gene deletion. Analogs of developmental processes that transform an
embryo into a fully developed entity are also employed. Genetic programming is an
extension of the genetic algorithm (Holland 1975) into the arena of computer programs.

This chapter describes

● the preparatory steps of genetic programming (section 2.1),
● the executional steps (flowchart) of genetic programming (section 2.2),

● the main points of our previous books on genetic programming (section 2. ), and
● sources of additional information about genetic programming (section 2.

4
).

2.1 Preparatory Steps of Genetic Programming

Genetic programming starts from a high-level statement of the requirements of a problem
and attempts to produce a computer program that solves the problem.

The human user communicates the high-level statement of the problem to the
genetic programming system by performing certain well-defined preparatory steps.

The five major preparatory steps for the basic version of genetic programming are
described in Genetic Programming: On the Programming of Computers by Means of
Natural Selection (Koza 1992a). They require the human user to specify

functions, and random constants) for each branch of the to-be-evolved program,
(2) the set of primitive functions for each branch of the to-be-evolved program,

● ),3

5

(1) the set of terminals (e.g., the independent variables of the problem, zero-argument
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(3) the fitness measure (for explicitly or implicitly measuring the fitness of individu-
als in the population),

(4) certain parameters for controlling the run, and
(5) the termination criterion and method for designating the result of the run.

Figure 1.1 shows the five major preparatory steps for the basic version of genetic
programming. The preparatory steps (shown at the top of the figure) are the human-
supplied input to the genetic programming system. The computer program (shown at
the bottom) is the output of the genetic programming system.

The first two preparatory steps specify the ingredients that are available to create
the computer programs. A run of genetic programming is a competitive search among
a diverse population of programs composed of the available functions and terminals.

The identification of the function set and terminal set for a particular problem (or
category of problems) is usually a straightforward process. For some problems, the
function set may consist of merely the arithmetic functions of addition, subtraction,
multiplication, and division as well as a conditional branching operator. The terminal
set may consist of the program’s external inputs (independent variables) and numeri-
cal constants.

For many other problems, the ingredients include specialized functions and termi-
nals. For example, if the goal is to get genetic programming to automatically program
a robot to mop the entire floor of an obstacle-laden room, the human user must tell
genetic programming what the robot is capable of doing. For example, the robot may
be capable of executing functions such as moving, turning, and swishing the mop.

If the goal is the automatic creation of a controller, the function set may consist of
integrators, differentiators, leads, lags, gains, adders, subtractors, and the like. The
terminal set may consist of signals such as the reference signal and plant output.

If the goal is the automatic synthesis of an analog electrical circuit, the function
set may enable genetic programming to construct circuits from components such as
transistors, capacitors, and resistors. Once the human user has identified the primitive
ingredients for a problem of circuit synthesis, the same function set can be used to
automatically synthesize an amplifier, computational circuit, active filter, voltage ref-
erence circuit, or any other circuit composed of these ingredients.

The third preparatory step concerns the fitness measure for the problem. The fit-
ness measure specifies what needs to be done. The fitness measure is the primary
mechanism for communicating the high-level statement of the problem’s requirements
to the genetic programming system. For example, if the goal is to get genetic pro-
gramming to automatically synthesize an amplifier, the fitness function is the mecha-
nism for telling genetic programming to synthesize a circuit that amplifies an
incoming signal (as opposed to, say, a circuit that suppresses the low frequencies of
an incoming signal or that computes the square root of the incoming signal). The first
two preparatory steps define the search space whereas the fitness measure implicitly
specifies the search’s desired goal.

The fourth and fifth preparatory steps are administrative. The fourth preparatory
step entails specifying the control parameters for the run. The most important control
parameter is the population size. In this book, we normally choose a population size
that will produce a reasonably large number of generations in the amount of computer
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time we are willing to devote to a problem (as opposed to analytically choosing the
population size by somehow analyzing a problem’s fitness landscape). Other control
parameters include the probabilities of performing the genetic operations, the maxi-
mum size for programs, and other details of the run.

The fifth preparatory step consists of specifying the termination criterion and the
method of designating the result of the run. The termination criterion may include a
maximum number of generations to be run as well as a problem-specific success pred-
icate. Our practice for all problems in this book is to manually monitor and manually
terminate the run when the values of fitness for numerous successive best-of-genera-
tion individuals appear to have reached a plateau. The single best-so-far individual is
then harvested and designated as the result of the run.

2.2 Executional Steps of Genetic Programming

After the user has performed the preparatory steps for a problem, the run of genetic
programming can be launched. Once the run is launched, a series of well-defined,
problem-independent steps is executed.

Genetic programming typically starts with a population of randomly generated
computer programs composed of the available programmatic ingredients (as provided
by the human user in the first and second preparatory steps).

Genetic programming iteratively transforms a population of computer programs
into a new generation of the population by applying analogs of naturally occurring
genetic operations. These operations are applied to individual(s) selected from the
population. The individuals are probabilistically selected to participate in the genetic
operations based on their fitness (as measured by the fitness measure provided by the
human user in the third preparatory step). The iterative transformation of the popula-
tion is executed inside the main generational loop of the run of genetic programming.

The executional steps of genetic programming are as follows:

(1) Randomly create an initial population (generation 0) of individual computer pro-
grams composed of the available functions and terminals.

(2) Iteratively perform the following sub-steps (called a generation) on the population
until the termination criterion is satisfied:
(a) Execute each program in the population and ascertain its fitness (explicitly or

implicitly) using the problem’s fitness measure.
(b) Select one or two individual program(s) from the population with a probabil-

ity based on fitness (with reselection allowed) to participate in the genetic
operations in (c).

(c) Create new individual program(s) for the population by applying the follow-
ing genetic operations with specified probabilities:
ii(i) Reproduction: Copy the selected individual program to the new population.
i(ii) Crossover: Create new offspring program(s) for the new population by

recombining randomly chosen parts from two selected programs.
(iii) Mutation: Create one new offspring program for the new population by

randomly mutating a randomly chosen part of one selected program.
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(iv) Architecture-altering operations: Choose an architecture-altering opera-
tion from the available repertoire of such operations and create one new
offspring program for the new population by applying the chosen archi-
tecture-altering operation to one selected program.

(3) After the termination criterion is satisfied, the single best program in the popula-
tion produced during the run (the best-so-far individual) is harvested and desig-
nated as the result of the run. If the run is successful, the result may be a solution
(or approximate solution) to the problem.

Figure 2.1 is a flowchart of genetic programming showing the genetic operations
of crossover, reproduction, and mutation as well as the architecture-altering opera-
tions. This flowchart shows a two-offspring version of the crossover operation (used
in the example run in section 2.2.1). One-offspring crossover is used for all the other
problems this book.
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The preparatory steps specify what the user must provide in advance to the genetic
programming system. Once the run is launched, the executional steps as shown in the
flowchart (figure 2.1) are executed. Genetic programming is problem-independent in
the sense that the flowchart specifying the basic sequence of executional steps is not
modified for each new run or each new problem.

There is usually no discretionary human intervention or interaction during a run of
genetic programming (although a human user may exercise judgment as to whether to
terminate a run).

Genetic programming starts with an initial population of computer programs com-
posed of functions and terminals appropriate to the problem. The individual programs
in the initial population are typically generated by recursively generating a rooted
point-labeled program tree composed of random choices of the primitive functions
and terminals (provided by the user as part of the first and second preparatory steps).
The initial individuals are usually generated subject to a pre-established maximum
size (specified by the user as a minor parameter as part of the fourth preparatory step).
In general, the programs in the population are of different size (number of functions
and terminals) and of different shape (the particular graphical arrangement of func-
tions and terminals in the program tree).

Each individual program in the population is executed. Then, each individual 
program in the population is either measured or compared in terms of how well it per-
forms the task at hand (using the fitness measure provided in the third preparatory step).
For many problems (including all problems in this book), this measurement yields a sin-
gle explicit numerical value, called fitness. The fitness of a program may be measured
in many different ways, including, for example, in terms of the amount of error between
its output and the desired output, the amount of time (fuel, money, etc.) required to bring
a system to a desired target state, the accuracy of the program in recognizing patterns or
classifying objects into classes, the payoff that a game-playing program produces, or the
compliance of a complex structure (such as an antenna, circuit, or controller) with user-
specified design criteria. The execution of the program sometimes returns one or more
explicit values. Alternatively, the execution of a program may consist only of side effects
on the state of a world (e.g., a robot’s actions). Alternatively, the execution of a program
may produce both return values and side effects.

The fitness measure is, for many practical problems, multiobjective in the sense
that it combines two or more different elements. The different elements of the fitness
measure are often in competition with one another to some degree.

For many problems, each program in the population is executed over a represen-
tative sample of different fitness cases. These fitness cases may represent different 
values of the program’s input(s), different initial conditions of a system, or different
environments. Sometimes the fitness cases are constructed probabilistically.

The creation of the initial random population is, in effect, a blind random search
of the search space of the problem. It provides a baseline for judging future search
efforts. Typically, the individual programs in generation 0 all have exceedingly poor
fitness. Nonetheless, some individuals in the population are (usually) more fit than
others. The differences in fitness are then exploited by genetic programming. Genetic
programming applies Darwinian selection and the genetic operations to create a new
population of offspring programs from the current population.
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The genetic operations include crossover (sexual recombination), mutation, repro-
duction, and the architecture-altering operations. These genetic operations are applied
to individual(s) that are probabilistically selected from the population based on fitness.
In this probabilistic selection process, better individuals are favored over inferior indi-
viduals. However, the best individual in the population is not necessarily selected and
the worst individual in the population is not necessarily passed over.

After the genetic operations are performed on the current population, the population
of offspring (i.e., the new generation) replaces the current population (i.e., the now-
old generation). This iterative process of measuring fitness and performing the genetic
operations is repeated over many generations.

The run of genetic programming terminates when the termination criterion 
(as provided by the fifth preparatory step) is satisfied. The outcome of the run is spec-
ified by the method of result designation. The best individual ever encountered during
the run (i.e., the best-so-far individual) is typically designated as the result of the run.

All programs in the initial random population (generation 0) of a run of genetic
programming are syntactically valid, executable programs. The genetic operations
that are performed during the run (i.e., crossover, mutation, reproduction, and the
architecture-altering operations) are designed to produce offspring that are syntacti-
cally valid, executable programs. Thus, every individual created during a run of
genetic programming (including, in particular, the best-of-run individual) is a syntac-
tically valid, executable program.

There are numerous alternative implementations of genetic programming that vary
from the preceding brief description.

2.2.1 Example of a Run of Genetic Programming

To provide concreteness, this section contains an illustrative run of genetic programming
in which the goal is to automatically create a computer program whose output is equal
to the values of the quadratic polynomial x2�x�1 in the range from �1 to �1. That
is, the goal is to automatically create a computer program that matches certain numeri-
cal data. This process is sometimes called system identification or symbolic regression.

We begin with the five preparatory steps.
The purpose of the first two preparatory steps is to specify the ingredients of the

to-be-evolved program.
Because the problem is to find a mathematical function of one independent variable,

the terminal set (inputs to the to-be-evolved program) includes the independent variable,
x. The terminal set also includes numerical constants. That is, the terminal set, T, is

T�{X, �},

where � denotes constant numerical terminals in some reasonable range (say from
�5.0 to �5.0).

The preceding statement of the problem is somewhat flexible in that it does not
specify what functions may be employed in the to-be-evolved program. One possible
choice for the function set consists of the four ordinary arithmetic functions of addi-
tion, subtraction, multiplication, and protected division. This choice is reasonable
because mathematical expressions typically include these functions. Thus, the func-
tion set, F, for this problem is

F�{+, -, *, %}.
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The two-argument �, �, *, and % functions add, subtract, multiply, and divide,
respectively. The protected division function % returns a value of 1 when division by
0 is attempted (including 0 divided by 0), but otherwise returns the quotient of its two
arguments.

Each individual in the population is a composition of functions from the specified
function set and terminals from the specified terminal set.

The third preparatory step involves constructing the fitness measure. The purpose of
the fitness measure is to specify what the human wants. The high-level goal of this prob-
lem is to find a program whose output is equal to the values of the quadratic polynomial
x2�x�1. Therefore, the fitness assigned to a particular individual in the population for
this problem must reflect how closely the output of an individual program comes to the
target polynomial x2�x�1. The fitness measure could be defined as the value of 
the integral (taken over values of the independent variable x between �1.0 and �1.0)
of the absolute value of the differences (errors) between the value of the individual
mathematical expression and the target quadratic polynomial x2�x�1. A smaller value
of fitness (error) is better. A fitness (error) of zero would indicate a perfect fit.

For most problems of symbolic regression or system identification, it is not prac-
tical or possible to analytically compute the value of the integral of the absolute error.
Thus, in practice, the integral is numerically approximated using dozens or hundreds
of different values of the independent variable x in the range between �1.0 and �1.0.

The population size in this small illustrative example will be just four. In actual
practice, the population size for a run of genetic programming consists of thousands
or millions of individuals. In actual practice, the crossover operation is commonly per-
formed on about 90% of the individuals in the population; the reproduction operation
is performed on about 8% of the population; the mutation operation is performed on
about 1% of the population; and the architecture-altering operations are performed on
perhaps 1% of the population. Because this illustrative example involves an abnor-
mally small population of only four individuals, the crossover operation will be per-
formed on two individuals and the mutation and reproduction operations will each be
performed on one individual. For simplicity, the architecture-altering operations are
not used for this problem.

A reasonable termination criterion for this problem is that the run will continue from
generation to generation until the fitness of some individual gets below 0.01. In this con-
trived example, the run will (atypically) yield an algebraically perfect solution (for
which the fitness measure attains the ideal value of zero) after merely one generation.

Now that we have performed the five preparatory steps, the run of genetic pro-
gramming can be launched. That is, the executional steps shown in the flowchart of
figure 2.1 are now performed.

Genetic programming starts by randomly creating a population of four individual
computer programs. The four programs are shown in figure 2.2 in the form of trees.

The first randomly constructed program tree (figure 2.2a) is equivalent to the
mathematical expression x�1. A program tree is executed in a depth-first way, from
left to right, in the style of the LISP programming language. Specifically, the addition
function (�) is executed with the variable x and the constant value 1 as its two argu-
ments. Then, the two-argument subtraction function (�) is executed. Its first argument
is the value returned by the just-executed addition function. Its second argument is the
constant value 0. The overall result of executing the entire program tree is thus x�1.
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The first program (figure 2.2a) was constructed by first choosing the subtraction
function for the root (top point) of the program tree. The random construction process
continued in a depth-first fashion (from left to right) and chose the addition function
to be the first argument of the subtraction function. The random construction process
then chose the terminal x to be the first argument of the addition function (thereby ter-
minating the growth of this path in the program tree). The random construction
process then chose the constant terminal 1 as the second argument of the addition
function (thereby terminating the growth along this path). Finally, the random 
construction process chose the constant terminal 0 as the second argument of the 
subtraction function (thereby terminating the entire construction process).

The second program (figure 2.2b) adds the constant terminal 1 to the result of 
multiplying x by x and is equivalent to x2 �1. The third program (figure 2.2c) adds the
constant terminal 2 to the constant terminal 0 and is equivalent to the constant value
2. The fourth program (figure 2.2d) is equivalent to x.
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Randomly created computer programs will, of course, typically be very poor at
solving the problem at hand. However, even in a population of randomly created 
programs, some programs are better than others. The four random individuals from
generation 0 in figure 2.2 produce outputs that deviate from the output produced by
the target quadratic function x2 �x�1 by different amounts. In this particular prob-
lem, fitness can be graphically illustrated as the area between two curves. That is, fit-
ness is equal to the area between the parabola x2 �x�1 and the curve representing the
candidate individual. Figure 2.3 shows (as shaded areas) the integral of the absolute
value of the errors between each of the four individuals in figure 2.2 and the target
quadratic function x2 �x�1. The integral of absolute error for the straight line x�1
(the first individual) is 0.67 (figure 2.3a). The integral of absolute error for the
parabola x2 �1 (the second individual) is 1.0 (figure 2.3b). The integral of the absolute
errors for the remaining two individuals are 1.67 (figure 2.3c) and 2.67 (figure 2.3d),
respectively.

As can be seen in figure 2.3, the straight line x�1 (figure 2.3a) is closer to the
parabola x2 �x�1 in the range from �1 to �1 than any of its three cohorts in the
population. This straight line is, of course, not equivalent to the parabola x2 �x�1.
This best-of-generation individual from generation 0 is not even a quadratic function.
It is merely the best candidate that happened to emerge from the blind random search
of generation 0. In the valley of the blind, the one-eyed man is king.

After the fitness of each individual in the population is ascertained, genetic pro-
gramming then probabilistically selects relatively more fit programs from the popula-
tion. The genetic operations are applied to the selected individuals to create offspring
programs. The most commonly employed methods for selecting individuals to partic-
ipate in the genetic operations are tournament selection (used throughout this book)
and fitness-proportionate selection. In both methods (described in Koza 1992a), the
emphasis is on selecting relatively fit individuals. An important feature common to
both methods is that the selection is not greedy. Individuals that are known to be infe-
rior will be selected to a certain degree. The best individual in the population is not
guaranteed to be selected. Moreover, the worst individual in the population will not
necessarily be excluded. Anything can happen and nothing is guaranteed.

We first perform the reproduction operation. Because the first individual 
(figure 2.2a) is the most fit individual in the population, it is very likely to be selected
to participate in a genetic operation. Let’s suppose that this particular individual is, in
fact, selected for reproduction. If so, it is copied, without alteration, into the next 
generation (generation 1). It is shown in figure 2.4a as part of the population of the
new generation.

We next perform the mutation operation. Because selection is probabilistic, it is
possible that the third best individual in the population (figure 2.2c) is selected. One
of the three points of this individual is then randomly picked as the site for the muta-
tion. In this example, the constant terminal 2 is picked as the mutation site. This 
program is then randomly mutated by deleting the entire subtree rooted at the picked
point (in this case, just the constant terminal 2) and inserting a subtree that is 
randomly grown in the same way that the individuals of the initial random population
were originally created. In this particular instance, the randomly grown subtree
(shown in figure 2.4b) computes the quotient of x and x using the protected division
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operation %. This particular mutation changes the original individual from one hav-
ing a constant value of 2 into one having a constant value of 1. This particular muta-
tion improves fitness from 1.67 to 1.00.

Finally, we perform the crossover operation. Because the first and second individ-
uals in generation 0 are both relatively fit, they are likely to be selected to participate
in crossover. In fact, because of its high fitness, the first individual ends up being
selected twice to participate in a genetic operation. In contrast, the unfit fourth indi-
vidual is not be selected at all. The reselection of relatively more fit individuals and
the exclusion and extinction of unfit individuals is a characteristic feature of
Darwinian selection. The first and second programs are mated sexually to produce two
offspring (using the two-offspring version of the crossover operation). One point of
the first parent (figure 2.2a), namely the � function, is randomly picked as the
crossover point for the first parent. One point of the second parent (figure 2.2b),
namely its leftmost terminal x, is randomly picked as the crossover point for the sec-
ond parent. The crossover operation is then performed on the two parents. The two
offspring are shown in figures 2.4c and 2.4d. One of the offspring (figure 2.4c) is
equivalent to x and is not noteworthy. However, the other offspring (figure 2.4d) is
equivalent to x2 �x�1 and has a fitness (integral of absolute errors) of zero. Because
the fitness of this individual is below 0.01, the termination criterion for the run is sat-
isfied and the run is automatically terminated. This best-so-far individual (figure 2.4d)
is designated as the result of the run. This individual is an algebraically correct 
solution to the problem.

Note that the best-of-run individual (figure 2.4d) incorporates a good trait 
(the quadratic term x2) from the second parent (figure 2.2b) with two other good traits
(the linear term x and constant term of 1) from the first parent (figure 2.2a). The
crossover operation produced a solution to this problem by recombining good traits
from these two relatively fit parents into a superior (indeed, perfect) offspring.

In summary, genetic programming has, in this example, automatically created 
a computer program whose output is equal to the values of the quadratic polynomial
x2 �x�1 in the range from �1 to �1.

Additional details of the operation of basic genetic programming are found in
Genetic Programming: On the Programming of Computers by Means of Natural
Selection (Koza 1992a).

2.3 Advanced Features of Genetic Programming

Various advanced features of genetic programming are not covered by the foregoing
illustrative problem and the foregoing discussion of the preparatory and executional
steps of genetic programming.

2.3.1 Constrained Syntactic Structures

For certain simple problems (such as the illustrative problem in section 2.2.1), the
search space for a run of genetic programming consists of the unrestricted set of pos-
sible compositions of the problem’s functions and terminals.
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However, for many problems (including every problem in this book), a con-
strained syntactic structure imposes restrictions on how the functions and terminals
may be combined.

Consider, for example, a function that instructs a robot to turn by a certain angle.
In a typical implementation of this hypothetical function, the function’s first argument
may be required to return a numerical value (representing the desired turning angle)
and its second argument may be required to be a follow-up command (e.g., move,
turn, stop). In other words, the functions and terminals permitted in the two argument
subtrees for this particular function are restricted. These restrictions are implemented
by means of syntactic rules of construction.

A constrained syntactic structure (sometimes called strong typing) is a grammar
that specifies the functions or terminals that are permitted to appear as a specified
argument of a specified function in the program tree.

When a constrained syntactic structure is used, there are typically multiple func-
tion sets and multiple terminal sets. The rules of construction specify where the dif-
ferent function sets or terminal sets may be used.

When a constrained syntactic structure is used, all the individuals in the initial ran-
dom population (generation 0) are created so as to comply with the constrained syn-
tactic structure. All genetic operations (i.e., crossover, mutation, reproduction, and the
architecture-altering operations) that are performed during the run are designed to
produce offspring that comply with the requirements of the constrained syntactic
structure. Thus, all individuals (including, in particular, the best-of-run individual)
that are produced during the run of genetic programming will necessarily comply with
the requirements of the constrained syntactic structure.

2.3.2 Automatically Defined Functions

Human computer programmers organize sequences of reusable steps into subroutines.
They then repeatedly invoke the subroutines—typically with different instantiations of
the subroutine’s dummy variables (formal parameters). Reuse eliminates the need to
“reinvent the wheel” on each occasion when a particular sequence of steps may be
needed. Reuse makes it possible to exploit a problem’s modularities, symmetries, and
regularities (and thereby potentially accelerate the problem-solving process).

Programmers commonly organize their subroutines into hierarchies.
The automatically defined function (ADF) is one of the mechanisms by which

genetic programming implements the parameterized reuse and hierarchical invocation
of evolved code. Each automatically defined function resides in a separate function-
defining branch within the overall multi-part computer program. When automatically
defined functions are being used, a program consists of one (or more) function-defin-
ing branches (i.e., automatically defined functions) as well as one or more main result-
producing branches. An automatically defined function may possess zero, one, or
more dummy variables (formal parameters). The body of an automatically defined
function contains its work-performing steps. Each automatically defined function
belongs to a particular program in the population. An automatically defined function
may be called by the program’s main result-producing branch, another automatically
defined function, or another type of branch (such as those described in section 2.3.3).
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Recursion may be allowed. Typically, the automatically defined functions are invoked
with different instantiations of their dummy variables.

The work-performing steps of the program’s main result-producing branch and the
work-performing steps of each automatically defined function are automatically and
simultaneously created during the run of genetic programming.

The program’s main result-producing branch and its automatically defined func-
tions typically have different function and terminal sets. A constrained syntactic struc-
ture (section 2.3.1) is used to implement automatically defined functions.

Automatically defined functions are the focus of Genetic Programming II:
Automatic Discovery of Reusable Programs (Koza 1994a) and the videotape Genetic
Programming II Videotape: The Next Generation (Koza 1994b). See also Koza 1990a,
1992a, 1992c; Koza and Rice 1991, 1992b, 1994a; and Koza, Bennett, Andre, and
Keane 1999a.

2.3.3 Automatically Defined Iterations, Automatically Defined Loops,
Automatically Defined Recursions, and Automatically Defined Stores

Automatically defined iterations (ADIs), automatically defined loops (ADLs), and
automatically defined recursions (ADRs) provide means (in addition to automatically
defined functions) to reuse code.

Automatically defined stores (ADSs) provide means to reuse the result of execut-
ing code.

Automatically defined iterations, automatically defined loops, automatically
defined recursions, and automatically defined stores are described in Genetic
Programming III: Darwinian Invention and Problem Solving (Koza, Bennett, Andre,
and Keane 1999a).

2.3.4 Program Architecture and Architecture-Altering Operations

The architecture of a program consists of

● the total number of branches,
● the type of each branch (e.g., result-producing branch, automatically defined function,

automatically defined iteration, automatically defined loop, automatically defined
recursion, or automatically defined store),

● the number of arguments (if any) possessed by each branch, and
● if there is more than one branch, the nature of the hierarchical references (if any)

allowed among the branches.

There are three ways by which genetic programming can arrive at the architecture
of the to-be-evolved computer program:

● The human user may prespecify the architecture of the overall program (i.e., perform
an additional architecture-defining preparatory step). That is, the number of
preparatory steps is increased from the five itemized in section 2.1 to six.

● The run may employ evolutionary selection of the architecture (as described in
Genetic Programming II), thereby enabling the architecture of the overall program
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to emerge from a competitive process during the run of genetic programming. When
this approach is used, the number of preparatory steps remains at the five itemized
in section 2.1.

● The run may employ the architecture-altering operations (Koza 1994c, 1995a,
1995b, 1995c; Koza, Andre, and Tackett 1994, 1998; Koza, Bennett, Andre, and
Keane 1999a), thereby enabling genetic programming to automatically create the
architecture of the overall program dynamically during the run. When this approach
is used, the number of preparatory steps remains at the five itemized in section 2.1.

2.3.5 Genetic Programming Problem Solver (GPPS)

The Genetic Programming Problem Solver (GPPS) is described in part 4 of the 1999
book Genetic Programming III: Darwinian Invention and Problem Solving (Koza,
Bennett, Andre, and Keane 1999a, 2003).

If GPPS is being used, the user is relieved of performing the first and second
preparatory steps (concerning the choice of the terminal set and the function set). The
function set for GPPS consists of the four basic arithmetic functions (addition, sub-
traction, multiplication, and division) and a conditional operator (i.e., functions found
in virtually every general-purpose digital computer that has ever been built). The 
terminal set for GPPS consists of numerical constants and a set of input terminals that
are presented in the form of a vector.

By employing this generic function set and terminal set, GPPS reduces the 
number of preparatory steps from five to three.

GPPS relies on the architecture-altering operations to dynamically create, dupli-
cate, and delete subroutines and loops during the run of genetic programming.
Additionally, in version 2.0 of GPPS, the architecture-altering operations are used to
dynamically create, duplicate, and delete recursions and internal storage. Because the
architecture of the evolving program is automatically determined during the run,
GPPS eliminates the need for the user to specify in advance whether to employ sub-
routines, loops, recursions, and internal storage in solving a given problem. It simi-
larly eliminates the need for the user to specify the number of arguments possessed by
each subroutine. And, GPPS eliminates the need for the user to specify the hierarchi-
cal arrangement of the invocations of the subroutines, loops, and recursions. That is,
the use of GPPS relieves the user of performing the preparatory step of specifying the
program’s architecture. The results produced by GPPS include one human-competi-
tive result (section 23.6 of Genetic Programming III). However, most of the problems
solved using GPPS have, as of this writing, been toy problems comparable in diffi-
culty to those found in the 1992 book Genetic Programming (Koza 1992a). See also
Koza, Bennett, Andre, and Keane 1999c.

2.3.6 Developmental Genetic Programming

Developmental genetic programming is used for problems of synthesizing analog
electrical circuits, as described in chapters 4, 5, 10, 11, 14, and 15 of this book and in
part 5 of Genetic Programming III. When developmental genetic programming is
used, a complex structure (such as an electrical circuit) is created from a simple initial
structure (the embryo). If the user desires to specify the embryo, the number of
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preparatory steps is increased from five to six. On the other hand, the user can be
relieved of specifying a particular embryo for a problem by using a generic floating
embryo (section 4.7.1.1). Early work on development includes Kitano’s (1990) use of
genetic algorithms to evolve neural networks, Gruau’s work on cellular encoding
(developmental genetic programming) to evolve neural networks (1992a, 1992b),
work by Spector and Stoffel on ontogenetic programming (1996a, 1996b), and work
involving the evolution of Lindenmayer rules for creating structures (Koza 1993).

2.3.7 Computer Code for Implementing Genetic Programming

Genetic programming has been implemented in numerous programming languages.
Most present-day versions of genetic programming are written in C, C��, or Java.
LISP code for implementing genetic programming is available in Genetic Programming
(Koza 1992a). Web sites such as www.genetic-programming.org contain links
to computer code in various other programming languages.

2.4 Main Points of Four Books on Genetic Programming

Table 2.1 shows the main points of our four books on genetic programming. The two
main points of the first book and the eight main points of the second book have been
paraphrased for purposes of this table (but are quoted in full later in this section). As
can be seen, the main points of this book fit into a progression of results starting with
the 1992 book.
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Table 2.1 Main points of our four books on genetic programming

Book Main points

1992 ● Virtually all problems in artificial intelligence, machine learning, adaptive systems, and
automated learning can be recast as a search for a computer program.

● Genetic programming provides a way to successfully conduct the search for a computer
program in the space of computer programs.

1994 ● Scalability is essential for solving non-trivial problems in artificial intelligence, machine
learning, adaptive systems, and automated learning.

● Scalability can be achieved by reuse.
● Genetic programming provides a way to automatically discover and reuse subprograms in the

course of automatically creating computer programs to solve problems.

1999 ● Genetic programming possesses the attributes that can reasonably be expected of a system for
automatically creating computer programs.

2003 ● Genetic programming now routinely delivers high-return human-competitive machine
intelligence.

● Genetic programming is an automated invention machine.
● Genetic programming can automatically create a general solution to a problem in the form of

a parameterized topology.
● Genetic programming has delivered a progression of qualitatively more substantial results in

synchrony with five approximately order-of-magnitude increases in the expenditure of
computer time.



The 1992 book Genetic Programming: On the Programming of Computers by
Means of Natural Selection (Koza 1992a) and its accompanying videotape Genetic
Programming: The Movie (Koza and Rice 1992a) established the principle that
genetic programming is capable of automatically creating a computer program that
solves a problem. The two main points of this book are:

● A wide variety of seemingly different problems from many different fields can be
recast as requiring the discovery of a computer program that produces some desired
output when presented with particular inputs. That is, many seemingly different
problems can be reformulated as problems of program induction.

● The recently developed genetic programming paradigm described in this book pro-
vides a way to do program induction. That is, genetic programming can search the
space of possible computer programs for an individual computer program that is
highly fit in solving (or approximately solving) the problem at hand. The computer
program (i.e., structure) that emerges from the genetic programming paradigm is a
consequence of fitness. That is, fitness begets the needed program structure.

These points were demonstrated on a wide range of “toy” (proof of principle)
problems. Most of these problems were benchmark problems taken from the literature
of the 1980s and early 1990s from the fields of artificial intelligence, machine learn-
ing, neural networks, decision trees, and reinforcement learning. The 1992 book made
the fundamental point that these seemingly different problems could all be recast as a
search for a computer program. Of course, virtually all practitioners of artificial intel-
ligence and machine learning subscribe to the Church-Turing thesis (and therefore
believe that the solutions to such problems can be represented as computer programs).
So, in one sense, our first book’s first main point (about recasting problems as a search
for a computer program) was platitudinous. Yet, in a practical sense, this point was
radical. Indeed, as far as we know, genetic programming was (at the time of its inven-
tion) unique among techniques of artificial intelligence, machine learning, adaptive
systems, and automated learning in that it searches a space of ordinary computer 
programs. Since then, work on automatic program synthesis has included Olsson’s
ADATE system (Olsson 1994a, 1994b).

In any event, once the toy problems from various fields of artificial intelligence
and machine learning were recast as a search for a computer program, the book Genetic
Programming demonstrated that they could all be solved with a single uniform
method, namely genetic programming. The problems solved in Genetic Programming
include problems of symbolic regression (system identification, empirical discovery,
modeling, forecasting, data mining), classification, control, optimization, equation
solving, game playing, induction, problems exhibiting emergent behavior, problems
involving co-evolution, cellular automata programming, randomizer construction,
image compression, symbolic integration and differentiation, inverse problems,
decision tree induction, and many others.

The 1994 book Genetic Programming II: Automatic Discovery of Reusable Programs
(Koza 1994a) and its accompanying videotape Genetic Programming II Videotape:
The Next Generation (Koza 1994b) made the key point that the reuse of code is a
critical ingredient to scalable automatic programming. The book discusses scalability
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in terms of the rate (e.g., linearly, exponentially) at which the computational effort
required to yield a solution to differently sized instances of a particular problem 
(e.g., nth-order parity problem, lawnmower problem for an n�m lawn) changes as a
function of problem size. The book demonstrated that one way of achieving scalabil-
ity is by reusing code by means of subroutines (automatically defined functions) and
iterations (automatically defined iterations). The book’s eight main points are:

● Automatically defined functions enable genetic programming to solve a variety of
problems in a way that can be interpreted as a decomposition of a problem into 
subproblems, a solving of the subproblems, and an assembly of the solutions to the
subproblems into a solution to the overall problem (or that can alternatively be 
interpreted as a search for regularities in the problem environment, a change in
representation, and a solving of a higher-level problem).

● Automatically defined functions discover and exploit the regularities, symmetries,
homogeneities, similarities, patterns, and modularities of the problem environment
in ways that are very different from the style employed by human programmers.

● For a variety of problems, genetic programming requires less computational effort
(fewer fitness evaluations to yield a solution with a satisfactorily high probability)
with automatically defined functions than without them, provided the difficulty of
the problem is above a certain relatively low break-even point.

● For a variety of problems, genetic programming usually yields solutions with
smaller overall size (lower average structural complexity) with automatically
defined functions than without them, provided the difficulty of the problem is above
a certain break-even point.

● For the three problems in Genetic Programming II for which a progression of 
several scaled-up versions is studied, the average size of the solutions produced by
genetic programming increases as a function of problem size at a lower rate with
automatically defined functions than without them.

● For the three problems in Genetic Programming II for which a progression of 
several scaled-up versions is studied, the number of fitness evaluations required by
genetic programming to yield a solution (with a specified high probability)
increases as a function of problem size at a lower rate with automatically defined
functions than without them.

● For the three problems in Genetic Programming II for which a progression of 
several scaled-up versions is studied, the improvement in computational effort and
average structural complexity conferred by automatically defined functions
increases as the problem size is scaled up.

● Genetic programming is capable of simultaneously solving a problem and selecting
the architecture of the overall program (consisting of the number of automatically
defined functions and the number of their arguments).

In addition, Genetic Programming II demonstrated that it is possible to

● automatically create multibranch programs containing an iteration-performing
branch as well as a main program and subroutines (e.g., the transmembrane identi-
fication problem and the omega loop problem),
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● automatically create multibranch programs containing multiple iteration-performing
branches and iteration-terminating branches (e.g., the look-ahead version of the
transmembrane problem), and

● automatically determine the architecture for a multibranch program in an architec-
turally diverse population by means of evolutionary selection.

Genetic Programming II contains solutions to problems from the fields of symbolic
regression, control, pattern recognition, classification, computational molecular biology,
and discovery of the impulse response function for an electrical circuit.

The 1999 book Genetic Programming III: Darwinian Invention and Problem
Solving (Koza, Bennett, Andre, and Keane 1999a) and its accompanying videotape
Genetic Programming III Videotape: Human-Competitive Machine Intelligence
(Koza, Bennett, Andre, Keane, and Brave 1999) identified 16 attributes (table 2.2 of
this book) that can reasonably be expected of a system for automatically creating com-
puter programs. Genetic Programming III contains solutions to problems from the
fields of system identification, time-optimal control, classification, synthesis of cellu-
lar automata rules, synthesis of minimal sorting networks, multi-agent programming,
and synthesis of both the topology and sizing for analog electrical circuits. Genetic
Programming III made the point that genetic programming unconditionally possesses
the first 13 of these 16 attributes and that genetic programming also possesses 
the remaining three attributes (namely wide applicability, scalability, and human-
competitiveness) to a substantial degree.

Genetic Programming III presented 14 specific instances where genetic program-
ming automatically created a computer program that is competitive with a human-
produced result. The 14 instances include two classification problems from the field
of computational molecular biology, a long-standing problem involving cellular
automata, a problem of synthesizing the design of a minimal sorting network, and 10
problems of synthesizing the design of both the topology and sizing of analog electri-
cal circuits. Ten of the 14 human-competitive results in Genetic Programming III
involve previously patented inventions.

2.5 Sources of Additional Information about Genetic Programming

Sources of information about genetic programming include

● Genetic Programming: On the Programming of Computers by Means of Natural
Selection (Koza 1992a) and the accompanying videotape Genetic Programming:
The Movie (Koza and Rice 1992a);

● Genetic Programming II: Automatic Discovery of Reusable Programs (Koza 1994a)
and the accompanying videotape Genetic Programming II Videotape: The Next
Generation (Koza 1994b);

● Genetic Programming III: Darwinian Invention and Problem Solving (Koza,
Bennett, Andre, and Keane 1999a) and the accompanying videotape Genetic
Programming III Videotape: Human-Competitive Machine Intelligence (Koza,
Bennett, Andre, Keane, and Brave 1999);
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Table 2.2 Sixteen attributes of a system for automatically creating computer programs

1 Starts with “What needs to be done” It starts from a high-level statement specifying the
requirements of the problem.

2 Tells us “How to do it” It produces a result in the form of a sequence of steps that
satisfactorily solves the problem.

3 Produces a computer program It produces an entity that can run on a computer.

4 Automatic determination of It has the ability to automatically determine the number of
program size steps that must be performed and thus does not require the

user to prespecify the exact size of the solution.

5 Code reuse It has the ability to automatically organize useful groups of
steps so that they can be reused.

6 Parameterized reuse It has the ability to reuse groups of steps with different
instantiations of values (formal parameters or dummy
variables).

7 Internal storage It has the ability to use internal storage in the form of single
variables, vectors, matrices, arrays, stacks, queues, lists,
relational memory, and other data structures.

8 Iterations, loops, and recursions It has the ability to implement iterations, loops, and
recursions.

9 Self-organization of hierarchies It has the ability to automatically organize groups of steps
into a hierarchy.

10 Automatic determination of program It has the ability to automatically determine whether to
architecture employ subroutines, iterations, loops, recursions, and

internal storage, and to automatically determine the number
of arguments possessed by each subroutine, iteration, loop,
and recursion.

11 Wide range of programming It has the ability to implement analogs of the programming
constructs constructs that human computer programmers find useful,

including macros, libraries, typing, pointers, conditional
operations, logical functions, integer functions, floating-
point functions, complex-valued functions, multiple inputs,
multiple outputs, and machine code instructions.

12 Well-defined It operates in a well-defined way. It unmistakably
distinguishes between what the user must provide and what
the system delivers

13 Problem-independent It is problem-independent in the sense that the user does not
have to modify the system’s executable steps for each new
problem.

14 Wide applicability It produces a satisfactory solution to a wide variety of
problems from many different fields.

15 Scalability It scales well to larger versions of the same problem.

16 Competitive with human- It produces results that are competitive with those produced
produced results by human programmers, engineers, mathematicians, and

designers.



● Genetic Programming—An Introduction (Banzhaf, Nordin, Keller, and Francone
1998);

● Genetic Programming and Data Structures: Genetic Programming � Data
Structures�Automatic Programming! (Langdon 1998) in the series on genetic pro-
gramming from Kluwer Academic Publishers;

● Automatic Re-engineering of Software Using Genetic Programming (Ryan 1999) in
the series on genetic programming from Kluwer Academic Publishers;

● Data Mining Using Grammar Based Genetic Programming and Applications
(Wong and Leung 2000) in the series on genetic programming from Kluwer
Academic Publishers;

● Grammatical Evoluation: Evolutionary Automatic Programming in an Arbitrary
Language (O’Neill and Ryan 2003) in the series on genetic programming from
Kluwer Academic Publishers;

● Principia Evolvica: Simulierte Evolution mit Mathematica (Jacob 1997, in German)
and Illustrating Evolutionary Computation with Mathematica (Jacob 2001);

● Genetic Programming (Iba 1996, in Japanese);
● Evolutionary Program Induction of Binary Machine Code and Its Application

(Nordin 1997);
● Foundations of Genetic Programming (Langdon and Poli 2002);
● Emergence, Evolution, Intelligence: Hydroinformatics (Babovic 1996);
● Theory of Evolutionary Algorithms and Application to System Synthesis (Blickle

1997);
● edited collections of papers such as the three Advances in Genetic Programming

books from the MIT Press (Kinnear 1994; Angeline and Kinnear 1996; Spector,
Langdon, O’Reilly, and Angeline 1999);

● the proceedings of the Genetic Programming Conferences held between 1996 and
1998 (Koza, Goldberg, Fogel, and Riolo 1996; Koza, Deb, Dorigo, Fogel, Garzon,
Iba, and Riolo 1997; Koza, Banzhaf, Chellapilla, Deb, Dorigo, Fogel, Garzon,
Goldberg, Iba, and Riolo 1998);

● the proceedings of the annual Genetic and Evolutionary Computation Conference
(GECCO) (combining the formerly annual Genetic Programming Conference and
the formerly biannual International Conference on Genetic Algorithms) operated by
the International Society for Genetic and Evolutionary Computation (ISGEC) and
held starting in 1999 (Banzhaf, Daida, Eiben, Garzon, Honavar, Jakiela, and Smith
1999; Whitley, Goldberg, Cantu-Paz, Spector, Parmee, and Beyer 2000; Spector
Goodman, Wu, Langdon, Voigt, Gen, Sen, Dorigo, Pezeshk, Garzon, and Burke
2001; Langdon, Cantu-Paz, Mathias, Roy, Davis, Poli, Balakrishnan, Honavar,
Rudolph, Wegener, Bull, Potter, Schultz, Miller, Burke, and Jonoska 2002);

● the proceedings of the annual Euro-GP conferences held starting in 1998 (Banzhaf,
Poli, Schoenauer, and Fogarty 1998; Poli, Nordin, Langdon, and Fogarty 1999; Poli,
Banzhaf, Langdon, Miller, Nordin, and Fogarty 2000; Miller, Tomassini, Lanzi, Ryan,
Tettamanzi, and Langdon 2001; Foster, Lutton, Miller, Ryan, and Tettamanzi 2002);

● the proceedings of the Workshop of Genetic Programming Theory and Practice
organized by the Center for Study of Complex Systems of the University of
Michigan (Riolo and Worzel 2003),

● the Genetic Programming and Evolvable Machines journal (from Kluwer Academic
Publishers) started in April 2000;
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● web sites such as www.genetic-programming.org and www.genetic-
programming.com;

● early papers on genetic programming, such as the Stanford University Computer
Science Department technical report Genetic Programming: A Paradigm for
Genetically Breeding Populations of Computer Programs to Solve Problems (Koza
1990a), the paper “Hierarchical Genetic Algorithms Operating on Populations of
Computer Programs,” presented at the 11th International Joint Conference on
Artificial Intelligence in Detroit (Koza 1989), and Koza 1988;

● an annotated bibliography of the first 100 papers on genetic programming (other
than those of which John Koza was the author or co-author) in appendix F of
Genetic Programming II: Automatic Discovery of Reusable Programs (Koza
1994a); and

● William Langdon’s bibliography on genetic programming at http://www.cs.
bham.ac.uk/~wbl/biblio/ or http://liinwww.ira.uka.de/
bibliography/Ai/genetic.programming.html. This bibliography is
the most extensive in the field and contains over 3,034 papers (as of January 2003)
by over 880 authors. It provides on-line access to many of the papers.
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Automatic Synthesis of Controllers

49

Engineers are often called upon to design complex structures (e.g., controllers,
circuits, antennas, networks of chemical reactions) that satisfy certain prespecified
high-level design goals. In fact, design is a major activity of practicing engineers.

The design of a complex structure typically involves tradeoffs between competing
considerations. The end product of the design process is usually a satisfactory, as
opposed to a perfect, design. The design process is usually viewed as requiring human
intelligence. Consequently, the field of design is a source of challenging problems for
methods that purport to be able to automatically solve problems.

Design problems are an especially appropriate area for the application of auto-
mated problem-solving methods (such as genetic programming) because design prob-
lems are usually couched in terms of measurable behaviors or characteristics of the
to-be-designed entity. Moreover, the tradeoffs that the engineer is willing to accept
concerning a problem’s (usually competing) considerations are typically explicitly
addressed as part of the statement of a design problem.

Section 3.1 provides basic background information on controllers.
Section 3.2 discusses design considerations for controllers.
Section 3.3 describes the representation of a controller by means of a block diagram.
Section 3.4 discusses various possible techniques for designing controllers (with

emphasis on search techniques).
Section 3.5 describes our approach to the automatic creation of both the topology

and tuning of controllers by means of genetic programming.
Section 3.6 describes the representation of a controller by means of a transfer func-

tion, a LISP symbolic expression, a program tree, an expression in the Mathematica®

programming language, a connection list, and a SPICE netlist.
The remaining sections of this chapter (sections 3.7 through 3.10) demonstrate the

automatic synthesis of both the topology and tuning of controllers by means of genetic
programming. Specifically, genetic programming is used to automatically synthesize
the design of controllers for

● a two-lag plant (section 3.7),
● a three-lag plant (section 3.8),



● a three-lag plant with a five-second delay (section 3.9), and
● a non-minimal-phase plant (section 3.10).

Later, chapter 12 demonstrates the capability of genetic programming to auto-
matically create tuning rules for a PID (proportional, integrative, and derivative) controller
for controlling plants belonging to four families of industrially representative plants.

Chapter 9 demonstrates the capability of genetic programming to automatically
create, in a single run, a general controller in the form of a graphical structure whose
nodes represent signal-processing blocks and where the values of the parameters of
the blocks are specified by mathematical expressions containing free variables. The
capacity of genetic programming to create such parameterized topologies is demon-
strated by the automatic synthesis of

● a parameterized controller for controlling a three-lag plant whose time constant is
specified by a free variable (section 9.1),

● a parameterized controller for controlling plants belonging to two different families
of plants (section 9.2), and

● parameterized controllers for controlling plants belonging to four families of indus-
trially representative plants (chapter 13).

3.1 Background on Controllers

The purpose of a controller is to force, in a meritorious way, the response of a system
(conventionally called the plant) to match a specified response (called the reference
signal, command signal, or setpoint).

Controllers are ubiquitous. They are found in almost every electronic product and
every mechanical, thermodynamic, hydraulic, pneumatic, hydrodynamic, electrical,
or aeronautical system (Åström and Hägglund 1995; Dorf and Bishop 1998; Bryson
and Ho 1975; Boyd and Barratt 1991; Ogata 1997).

The discovery of meritorious controllers is important because a small percentage
improvement in the operation of plants may translate into large economic savings or
other (e.g., environmental) benefits.

The cruise control device in an automobile is an example of a controller. The
driver may want an automobile to travel at 65 miles per hour. The controller causes
fuel to flow into the automobile’s engine (the plant) so as to reduce the difference
between the car’s current speed (the plant response) and the desired speed (the refer-
ence signal). The car’s speed does not, of course, jump instantaneously to 65 miles per
hour. Instead, the controller monitors the continuously changing difference between
the car’s actual speed and the reference signal and continuously adjusts the flow of
fuel to the plant based on this difference. If the automobile were traveling slower than
65 when the reference signal is set to 65, the controller would initially increase the
flow of fuel to the engine. On the other hand, if the car’s speed starts off (or ever
becomes) greater than 65, the controller decreases the flow of fuel. Because the 
controller monitors the plant output (and continuously compares it to the reference
signal), we say that there is feedback from the plant to the controller. When the plant
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output is subtracted from the reference signal (to obtain the error), we say that there
is negative feedback.

Figure 3.1 shows elements of a system composed of a plant 140, closed-loop feed-
back 160, and controller 120. The plant 140 has one output 150 (the plant response).
The controller 120 has output 130 (sometimes called the control variable). The con-
troller’s output 130 is the input to the plant 140. The controller 120 has two inputs,
namely the externally supplied reference signal 110 and the plant response 150. The
controller receives the plant response 150 by means of the feedback loop 160.

The overall system in the figure is called a closed-loop system because there is
feedback 160 of the plant’s output 150 into the controller 120. The feedback loop 160
is referred to as an external feedback because the feedback loop is external to the con-
troller. Systems without such external feedback of the plant’s output into the controller
are called open loop systems. Open loop controllers are considerably simpler 
(and generally less useful in real-world applications) than closed-loop controllers. All
the genetically evolved solutions to control problems in this book will turn out to be
closed-loop controllers.

The plant response 150 is typically compared to the externally supplied reference
signal 110. This comparison is typically implemented by subtracting these two 
time-domain signals. The purpose of a closed-loop controller is to produce, given the
reference signal 110 and the feedback signal 160, a value for the controller output 130
that causes the plant response to approach (and ideally match) the reference signal 110
in a meritorious way.

Many controllers in the real world are manual. However, this book emphasizes
automatic controllers—that is, controllers that automatically process information in
order to generate a signal to control the plant. The information that is processed 
typically includes reference signal(s) and plant response(s) and may also include 
additional information such as the plant’s internal state(s).

Controllers usually incorporate devices from several different engineering
domains, making the field of control interdisciplinary. For example, the variable of
interest for a home heating system is the room’s current temperature—a thermody-
namic variable. The setting of the thermostat is usually mechanical. In a home heating
system, this mechanical variable is typically converted into an electrical signal. 
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The electrical signals are usually processed by an electrical controller (analog or 
digital). The controller’s electrical output is typically then converted into yet another
mechanical variable in order to adjust the valve that controls the flow of fuel to the
furnace. The furnace itself is a thermodynamic system (involving combustion).

The underlying principles of controllers are broadly the same whether the system
is mechanical, electrical, thermodynamic, hydraulic, pneumatic, hydrodynamic, aero-
nautical, biological, or economic and whether the variable of interest is temperature,
pressure, velocity, voltage, interest rates, heart rate, or humidity (Dorf and Bishop
1998).

It is often convenient to analyze controllers in purely electrical terms. One reason
is that electrical terminology provides a common language for modeling most plants
and controllers (regardless of whether they are actually electrical). A second reason is
that many present-day sensors and controllers are, in fact, entirely electrical. Another
reason is that there are sophisticated electrical circuit simulators that can be used to
simulate controllers and plants.

3.2 Design Considerations for Controllers

Numerous (usually conflicting) considerations bear on the design of a satisfactory
controller.

One of the most common considerations in designing a controller is the 
minimization of the time required to produce the desired plant response. Sometimes,
this goal is couched in terms of the rise time or the settling time. The rise time is the
time required for the plant output to first reach a specified percentage (e.g., 90%) of
the reference signal (assuming that the reference signal is greater than the starting
value of the plant response). The settling time is the first time at which the plant
response reaches and thereafter stays within a specified percentage (e.g., 2%) of the
reference signal. Control engineers frequently use the integral of the time-weighted
absolute error (ITAE) to measure a controller’s performance. This measure favors the
rapid reduction of the discrepancy (error) between the reference signal and the plant
response because the weighting by time imposes ever-greater penalties on discrepan-
cies that occur later.

In addition to wanting to minimize the time required to produce the desired plant
response, it is common to simultaneously want to avoid significantly overshooting the
desired plant response. In the case where the reference signal is initially greater than
the plant response, the overshoot is the maximum percentage by which the plant
response exceeds the reference signal. Returning to the example of the cruise control
device in an automobile, it is desirable for the automobile to quickly reach the desired
speed of 65 miles per hour. However, the driver certainly does not want to achieve this
goal by providing so much fuel that the car first surges to 150 miles per hour. Such 
a strategy would undoubtedly reduce the time required to reach 65; however, this 
strategy would drastically overshoot the reference signal. Overshoot is generally 
undesirable. The driver may get arrested. In many practical situations, the plant 
may be destroyed by excessive overshoot (e.g., a boiler exceeds its safe operating 
temperature).
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Aside from catastrophic outcomes, overshoot is typically costly in terms of
energy. In fact, the cost of the energy required to bring about the desired plant
response is frequently an independent additional consideration in measuring a 
controller’s merit.

Plants in the real world can only handle inputs that lie within certain limits. 
For example, a furnace has a maximum rate of heat production and a motor has a 
maximum armature current. The limitation can be easily implemented by placing a
limiter between the controller’s output and the plant’s input. Note that a limiter alone
usually introduces significant nonlinearity into a system (thus complicating the task of
controller design). A plant’s internal state variables are often similarly constrained
(thus introducing additional nonlinearity). Controller design in the real world must
take such limitations into account.

In the real world, disturbances are felt at a variety of places throughout the 
overall system. A practical controller must operate robustly in the face of such distur-
bances. Such disturbances are typically modeled by adding a disturbance signal to the
controller’s output. Disturbance rejection is usually an important requirement of an
effective real-world controller.

All sensors in the real world are imperfect. The controller may not receive an accu-
rate reading of the plant’s output because of sensor noise. The deviation in the plant’s
output from its correct value is often modeled by means of an additive noise signal. It
is desirable that a controller operates robustly in the face of sensor noise.

In addition, the plant’s characteristics are usually not known with certainty. They
may be difficult to measure and they may not be measured accurately. The plant’s
characteristics may fluctuate at random over the short term and may drift systemati-
cally over the long term as the plant ages. Thus, a practical controller must operate
robustly in the face of (often significant) variation in the plant’s characteristics from
their nominal values.

A good controller should operate in a consistent manner in the face of variations
in the step size of the reference signal.

Stability is another very important consideration in measuring the merit of a con-
troller. A system whose performance varies radically in response to small changes in
the plant (e.g., an engine that doubles the car’s speed in response to a miniscule change
in temperature) would, at the minimum, be useless and, at worst, be dangerous.

3.3 Representation of a Controller by a Block Diagram

Automatic controllers are constructed from a variety of signal-processing functions
(called blocks) that process time-domain signals. A signal-processing block may have
one or more inputs; however, a block always has a single output. Examples of signal-pro-
cessing functions that are commonly found in controllers include, but are not limited to,

● gain (i.e., multiplication of a signal by a scalar value),
● integrator,
● differentiator,
● adder,
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● subtractor (i.e., an adder in which one input is negated),
● lead,
● lag,
● second-order lag,
● delay,
● inverter (i.e., negation of the input),
● absolute value,
● limiter,
● multiplier (i.e., multiplication of two time-domain signals),
● divider, and
● conditional operators (switches).

One or more parameter values are required to completely specify many of these sig-
nal-processing blocks. For example, the complete specification of a gain block requires
specification of its amplification factor. The setting of the (typically numerical) param-
eter values for a signal-processing block is sometimes called the tuning of the block.

Figure 3.2 is a block diagram of a system composed of a plant 592, an external feed-
back loop 596, and a PID controller 500 composed of a proportional (P) block, an inte-
grative (I) block, and a derivative (D) block. The output 590 from the controller is the
input to the plant 592. The plant has one output (plant response) 594. The plant response
is fed back (externally as signal 596) and becomes one of the controller’s two inputs.
The controller’s other input is the externally supplied reference signal 508. The fed-
back plant response 596 and the reference signal 508 are compared (by subtractor 510).

The input to a controller typically consists of reference signal(s) and plant
response(s). A controller typically computes the difference (error) between each 
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reference signal and the corresponding plant response. The input to a controller some-
times also includes additional information such as the plant’s internal state variable(s).
The input to a controller sometimes also includes output(s) of the controller itself. The
output of one of a controller’s own blocks is sometimes fed back as an input to the
controller. The providing of such outputs to the controller is called internal feedback.

The output(s) of a controller are passed from the controller to the plant.
The individual signal-processing blocks of a controller are coupled to one another

in a particular topological arrangement. The topology of a controller entails the spec-
ification of

● the total number of processing blocks in the controller,
● the type of each block (e.g., gain, integrator, differentiator, lead, lag, adder, subtractor),
● the connections (directed lines) that may exist between the output of each block in

the controller and the inputs of other blocks in the controller, and
● the connections (directed lines) that may exist between the blocks in the controller

and
● the controller’s external input point(s) (e.g., reference signal and plant output),

and
● the controller’s external output point(s).

Block diagrams are useful for representing the flow of information in controllers
and systems containing controllers. Block diagrams contain signal-processing func-
tion blocks, external input and output points, and directed lines carrying signals.

Lines in a block diagram represent time-domain signals. Lines are directional in
that they represent the flow of information. The line(s) pointing toward a block repre-
sent signal(s) coming into the block. The single line pointing away from a block rep-
resents the block’s single output.

Note that a line in a block diagram differs from a wire in an electrical circuit in
that a line in a block diagram is directional. Also, note that a function block in a block
diagram differs from an electrical component in a circuit in that there is exactly one
designated output from a function block.

In a block diagram, an external input is represented by an external point with a
directed line pointing away from that point. Similarly, an external output point is rep-
resented by an external point with a line pointing toward that point.

Adders are conventionally represented by circles in block diagrams. Each input to
an adder is labeled with a positive or negative sign.

In figure 3.2, adder block 510 performs the function of subtracting the plant output
596 (which has a minus sign) from the externally supplied reference signal 508 (which
has a plus sign). This particular subtraction block implements negative feedback.

Takeoff points (conventionally represented in block diagrams by a large dot) pro-
vide a way to disseminate a signal to more than one other function block in a block
diagram. Takeoff point 520 in figure 3.2 receives signal 512 and disseminates signal
512 to function blocks 530, 540, and 550.

In figure 3.2, the subtractor’s output 512 is passed (through takeoff point 520) into
a GAIN block 530. A GAIN block (shown in this figure as a triangle) multiplies
(amplifies) its input by a specified constant amplification factor (i.e., the numerical
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constant 214.0). The amplified result 538 becomes the first of the three inputs to addi-
tion block 580. This portion of the figure implements proportional (P) control.
Proportional control is the simplest type of control. P-type control is responsive to the
difference (error) between the reference signal and the plant output and generates a
time-domain signal that is proportional to the error. However, for all but the simplest
situations, proportional control leads to overshoot, instability, and inefficiency. These
known deficiencies of P-type control are, in turn, addressed by integrative (I-type)
control and derivative (D-type) control.

The subtractor’s output 512 is also passed (through takeoff point 520) into GAIN
block 540 (with a gain of 1,000.0). The amplified result 548 is passed into 
INTEGRATOR block 560. The integrator is shown in figure 3.2 by a rectangle con-
taining the expression 1/s, where s is the Laplace transform variable. The result 568 of
this integration (with respect to time) becomes the second input to three-argument addi-
tion block 580. This portion of the figure implements integral (I) control based on the
integral, over time, of the difference between the plant output and reference signal.

The subtractor’s output 512 is also passed (through takeoff point 520) into GAIN
block 550 (with a gain of 15.5). The amplified result 558 is passed into DIFFEREN-
TIATOR block 570 (shown in the figure by a rectangle containing the expression s)
and becomes the third input to three-argument addition block 580. This portion of the
figure implements derivative (D) control based on the derivative, over time, of the dif-
ference between the plant output and reference signal.

The output 590 of the controller in figure 3.2 is the sum of a proportional (P) term,
an integrative (I) term, and a differentiating (D) term. This type of controller is called
a PID controller.

Each of the three parts of a PID controller contributes to its overall performance.
The proportional part of the controller provides direct feedback of the error

between the plant output and the externally supplied reference signal.
The integral part of the controller enables the controller to make the plant output

agree with the reference signal in the steady state. Even a small positive (or negative)
error will, when integrated over time, result in a noticeable non-zero contribution to
the controller’s output.

A proportional controller is almost always late in compensating for an error
between the plant output and the reference signal. The derivative part of the controller
enables the controller to make a prediction of future error (based on extrapolating the
slope of the tangent to the error curve).

The PID controller was patented in 1939 by Albert Callender and Allan Stevenson
of Imperial Chemical Limited of Northwich, England. The PID controller was a sig-
nificant improvement over earlier and simpler control techniques (which often were
merely proportional).

In discussing the problems of “hunting and instability,” Callender and Stevenson
(1939) state (in their patent),

“If the compensating effect V is applied in direct proportion to the magnitude of the
deviation �, over-compensation will result. To eliminate the consequent hunting
and instability of the system, the compensating effect is additionally regulated in
accordance with other characteristics of the deviation in order to bring the system
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back to the desired balanced condition as rapidly as possible. These characteristics
include in particular the rate of deviation (which may be indicated mathematically
by the time-derivative of the deviation) and also the summation or quantitative total
change of the deviation over a given time (which may be indicated mathematically
by the time-integral of the deviation).”

Callender and Stevenson (1939) also say,

“A specific object of the invention is to provide a system which will produce a
compensating effect governed by factors proportional to the total extent of the
deviation, the rate of the deviation, and the summation of the deviation during a
given period…”

Claim 1 of Callender and Stevenson (1939) covers what is now called a “PI”
(proportional-integrative) controller:

“A system for the automatic control of a variable characteristic comprising means
proportionally responsive to deviations of the characteristic from a desired value,
compensating means for adjusting the value of the characteristic, and electrical
means associated with and actuated by responsive variations in said responsive
means, for operating the compensating means to correct such deviations in conform-
ity with the sum of the extent of the deviation and the summation of the deviation.”

Claim 3 of Callender and Stevenson (1939) covers the PID (proportional-integra-
tive-derivative) controller:

“A system as set forth in claim 1 in which said operation is additionally controlled
in conformity with the rate of such deviation.”

The PID controller was an enormous improvement over previous methods for con-
trol. Consequently, PID controllers are in widespread use in industry today. As Åström
and Hägglund (1995, pages 1 and 2) noted,

“PID controllers are found in large numbers in all industries. The controllers come
in many different forms. There are stand-alone systems in boxes for one or a few
loops, which are manufactured by the hundred thousands yearly…”

“In process control, more than 95% of the control loops are of PID types.”

As Åström and Hägglund (1995, page 4) observe,

“Several studies…indicate the state of the art of industrial practice of control. 
The Japan Electric Measuring Instrument Manufacturing Association conducted a
survey of the state of process control systems in 1989…According to the survey,
more than 90% of the control loops were of the PID type.”

Although PID controllers are in widespread use in industry today, the need for 
better controllers is widely recognized. As Åström and Hägglund (1995, page 4) 
further observe,
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“…audits of paper mills in Canada [show] that a typical mill has more than 2,000
control loops and that 97% use PI control. Only 20% of the control loops were
found to work well.”

As Åström and Hägglund (1995, page 2) also observe,

“A large cadre of instrument and process engineers are familiar with PID control.
There is a well-established practice of installing, tuning, and using the controllers.
In spite of this there are substantial potentials for improving PID control.”

Boyd and Barratt state in Linear Controller Design: Limits of Performance (Boyd
and Barratt 1991),

“The challenge for controller design is to productively use the enormous comput-
ing power available. Many current methods of computer-aided controller design
simply automate procedures developed in the 1930’s through the 1950’s, for exam-
ple, plotting root loci or Bode plots. Even the ‘modern’ state-space and frequency-
domain methods (which require the solution of algebraic Riccati equations) greatly
underutilize available computing power.”

3.4 Possible Techniques for Designing Controllers

The design (synthesis) of a controller requires specification of both the topology (i.e.,
the block diagram) and the parameter values (tuning) such that the controller satisfies
certain user-specified high-level design requirements.

The design process for controllers today is generally channeled along lines estab-
lished by analytical techniques. These mathematical techniques almost always presume a
choice for the controller’s overall topology (often the conventional PID-type controller).

It would be desirable to have an automatic system for synthesizing the design of a
controller that is open-ended in the sense that it does not require the human user to
prespecify the controller’s topology. Such a system would start only with a high-level
statement of requirements and automatically produce both the appropriate controller
topology and tuning.

In controller design, high-level statements of the requirements are typically
couched in terms of multiple conflicting considerations such as

● optimization requirements (e.g., minimizing the integral of the time-weighted
absolute error),

● time-domain constraints (e.g., minimizing overshoot, maximizing disturbance
rejection),

● frequency domain constraints (e.g., attenuation of sensor noise, system bandwidth),
● robustness requirements,
● stability requirements, and
● limits on the values of various signals.

It is often difficult or impossible to use conventional analytical techniques to design
a controller that satisfies arbitrary combinations of these conflicting considerations.
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Indeed, there is no preexisting general-purpose analytic method for starting with a
high-level statement of requirements and automatically creating both the topology and
tuning of a controller for an arbitrary plant.

Search techniques offer a potential alternative to analytical methods for designing
a controller. Search techniques do not find solutions by analysis, logic, or proof.
Instead, they simply search a space for ever-better points.

There are numerous techniques for searching a space of candidate entities for an
optimal or near-optimal entity, including, but not limited to,

● hill climbing (section 3.4.1),
● gradient methods (section 3.4.2),
● simulated annealing (section 3.4.3), and
● evolutionary methods, such as the genetic algorithm and genetic programming 

(section 3.4.4).

A search is an iterative process that generally involves

● starting with one or more entities (points) from the search space of the problem at hand,
● ascertaining the merit of each of the initial entity(ies),
● creating new candidate entity(ies) by modifying existing entity(ies),
● ascertaining the merit of the new candidate entity(ies),
● using the measure of merit to select among entity(ies), and
● repeating the previous three steps.

All search methods are driven by a measure of merit. The measure of merit is 
frequently called the “objective function” or “payoff” by practitioners of hill climbing
or gradient methods, the “energy level” by practitioners of simulated annealing, and
the “fitness measure” by practitioners of genetic algorithms or genetic programming.
For consistency herein, we use the term “fitness” to refer to the measure of merit.

The individual steps of the iterative search process are called “cycles” or “time-
steps” by practitioners of hill climbing, gradient methods, or simulated annealing.
Typically, one new entity (point) in the search space is produced from one preexisting
entity on each cycle.

Because both the genetic algorithm and genetic programming manipulate a popu-
lation of entities, practitioners of genetic algorithms or genetic programming typically
use the biologically oriented term “generations.” In the most commonly used imple-
mentations of the genetic algorithm and genetic programming, a large number of new
entities (usually equal to the full population size) are produced for each generation;
however, in the “steady state” version of the genetic algorithm and genetic program-
ming, only one new entity is produced in each generation.

Because search techniques do not rely on analysis, logic, or proof, they usually
require large amounts of computational resources.

3.4.1 Search by Hill Climbing

Hill climbing is a search technique that starts with a single initial entity (point) in the
search space, ascertains the fitness of the entity, creates a new candidate entity, ascertains
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the fitness of the new candidate entity, and uses the fitness measure to select between
the preexisting entity and the new candidate entity. The new candidate entity is created
by a problem-specific modification operation (often a probabilistic operation) that
modifies the current entity (point) in the search space in order to obtain a new (often
nearby) candidate entity in the search space. In some variations of hill climbing, more
than one new candidate point may be created by the modification operation. Hill
climbing is a point-to-point search technique in the sense that the search proceeds from
a single point in the search space of the problem to another single point. Hill climbing
is a greedy search in that, at each cycle, it unconditionally rejects any non-improving
new candidate and unconditionally selects the best available new candidate. If the
problem-specific modification operation is deterministic, the search necessarily ends
on the first occasion when the best new candidate is no better than the preexisting point
in the search. If the problem-specific modification operation is probabilistic, a subse-
quent new candidate may be an improvement (and therefore be accepted).

When hill climbing is applied to nontrivial problems, it often becomes trapped on
a local optimum point (thus never finding the global optimum point of the search
space). If the problem-specific modification operation is probabilistic or different
starting points are used, different runs can produce different outcomes. In hill climb-
ing (and many other probabilistic search techniques), it is often necessary to make
multiple runs in order to solve a problem.

The starting point of a search by hill climbing (as well as gradient methods, sim-
ulated annealing, the genetic algorithm, or genetic programming) is often random.
However, knowledge about the search space may be used to choose promising start-
ing point(s) in any of these methods.

It should be noted that there are parallel versions of hill climbing (as well as par-
allel versions of gradient search and simulated annealing). However, there is usually
no transfer of information among the different threads of such parallel searches. That
is, each thread of the parallel search stands alone.

There are also versions of hill climbing (and gradient search and parallel simulated
annealing) where the search is iteratively restarted after the search becomes trapped
on a local optimum point. However, when the search is restarted, there is usually no
forward transfer of information gained from the earlier searches. That is, each
restarted run stands alone.

3.4.2 Search by Gradient Methods

If all dimensions of a search space are numerically valued, it may be possible to
employ gradient methods. In gradient search, the new candidate entity is computed
using the observed gradient of the fitness measure.

Like hill climbing, gradient search is usually implemented as a point-to-point
search. Gradient search often becomes trapped on a local optimum point (thus never
finding the global optimum for nontrivial problems). If different starting points are
used or if the modification operation probabilistically chooses different step sizes for
computing the gradient, different runs can produce different outcomes. When gradi-
ent search is applied to nontrivial problems, it (like hill climbing) often becomes
trapped on a local optimum point.
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3.4.3 Search by Simulated Annealing

Simulated annealing (Kirkpatrick, Gelatt, and Vecchi 1983; Aarts and Korst 1989;
Salamon, Sibani, and Frost 2002) resembles hill climbing and gradient search in that
it is usually implemented as a point-to-point search. Simulated annealing employs a
problem-specific probabilistic modification operation (usually called a “mutation”)
for modifying the current entity in the search space in order to obtain a new candidate
entity.

Like hill climbing and gradient search, simulated annealing starts with a single 
initial entity (point) in the search space, ascertains the entity’s fitness, creates a new
candidate entity, and ascertains the fitness of the new candidate entity.

Simulated annealing unconditionally selects the new candidate entity if it is better
than the preexisting entity. That is, it operates in the same way as hill climbing in this
particular case. However, simulated annealing is not entirely greedy. It differs from
hill climbing in the way it handles the case when the new candidate entity is worse
than the preexisting entity. In this case, the Metropolis algorithm and the Boltzmann
equation are applied to determine whether to accept a non-improving candidate entity.
Simulated annealing avoids the obvious weakness of hill climbing and gradient search
(namely, the tendency to become trapped on a local optimum point) by making a
mathematically principled choice between the preexisting entity and the new candi-
date entity.

A run of simulated annealing is governed by an annealing schedule in which a
temperature T changes as the run proceeds. Typically, the temperature changes in an
exponentially monotonically decreasing way. A run of simulated annealing behaves
differently as the temperature changes. The effect of the Metropolis algorithm and the
Boltzmann equation are that the probability of acceptance of a non-improving modi-
fication is greater if the fitness difference is small or if the temperature T is high. Thus,
large non-improving modifications are likely to be accepted early in the run (when the
temperature is high). As a result, simulated annealing resembles blind random search
in early stages of the run (when the system is “hot”) in that it usually accepts what-
ever the modification operation happens to produce. However, later in the run (when
the system has “cooled”), only small non-improving modifications are likely to be
accepted. Thus, simulated annealing resembles hill climbing in later stages of the run.
However, even as the system cools, there is always some probability that a non-
improving modification will be accepted. If a modification is not accepted at any step
of the run of simulated annealing, the modification operation (assuming it is proba-
bilistic) is re-invoked to generate another candidate for consideration.

It should be noted that the modification operation for simulated annealing and hill
climbing is usually shrewdly chosen in light of the specific nature of the problem at
hand. For example, if the problem is a traveling salesman problem (where the goal is
to minimize total distance while visiting N cities exactly one time each), the modifi-
cation operation may exchange sub-tours.

3.4.4 Search by the Genetic Algorithm and Genetic Programming

The genetic algorithm and genetic programming differ from hill climbing and gradi-
ent search in that they are not greedy. In addition, the recombination operation works
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in conjunction with the population in a way that makes genetic search (as opposed to
hill climbing, gradient search, or simulated annealing) particularly advantageous in
solving the problems of interest in this book. These two points are discussed in detail
in section 16.3.

3.4.5 Previous Work on Controller Synthesis by Means of Genetic and
Evolutionary Computation

There has been extensive previous work on the problem of automating the design of
controllers using genetic and evolutionary computation.

The genetic algorithm has been used for synthesizing controllers composed of
continuous-time signal-processing blocks. The books Genetic Algorithms for Control
and Signal-Processing (Man, Tang, Kwong, and Halang 1997) and Genetic
Algorithms: Concepts and Designs (Man, Tang, Kwong, and Halang 1999) are 
particularly noteworthy. See also Jamshidi, Coelho, Krohling, and Fleming 2003.

Genetic programming has been used for synthesizing controllers that have 
mutually interacting continuous-time variables and continuous-time signal-processing
blocks (Crawford, Cheng, and Menon 1999; Dewell and Menon 1999; Menon,
Yousefpor, Lam, and Steinberg 1995; and Sweriduk, Menon, and Steinberg 1998,
1999). Neural programming and PADO (Teller 1996a, 1996b, 1998, 1999; Teller and
Veloso 1995a, 1995b, 1995c, 1995d, 1995e, 1996, 1997) provide a method for graph-
ical representation of programs involving mutually interacting independent processes.
In 1996, Marenbach, Bettenhausen, and Freyer (1996) used automatically defined
functions and genetic programming to represent internal feedback in a system used for
system identification where the overall multi-branch program represented a continu-
ous-time system with continuously interacting processes. The essential feature of this
work was aptly named “multiple interacting programs” in later work (Angeline 1997,
1998a, 1998b; Angeline and Fogel 1997).

In addition, genetic programming has been previously applied to many other spe-
cific types of control problems, including, but not limited to, discrete-time problems
where the evolved program receives the system’s current state as input, performs an
arithmetic or conditional calculation on the inputs, and computes a value for the con-
troller’s output. These discrete-time problems include cart centering (Koza and Keane
1990a), broom balancing (Koza and Keane 1990b), wall following, box moving, back-
ing a tractor-trailer truck to a loading dock (Koza 1992d), controlling the food forag-
ing strategy of a lizard (Koza 1992a; Koza, Rice, and Roughgarden 1992), navigating
a robot with a nonzero turning radius to a destination point (Koza, Bennett, Keane,
and Andre 1997), using linear genomes for robotic control (Andersson, Svensson,
Nordin, and Nordin, and Mats 1999; Banzhaf, Nordin, Keller, and Olmer 1997), and
using developmental genetic programming (cellular encoding) for a pole-balancing
problem involving two poles (Whitley, Gruau, and Preatt 1995).

3.4.6 Possible Approaches to Automatic Controller Synthesis Using 
Genetic Programming

Program trees (consisting of both result-producing branches and automatically defined
functions) evolved by genetic programming may be employed in several different ways.
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In the approach where genetic programming is being used to automatically create
a computer program to solve a problem, the program tree is simply executed. The
result of the execution is a set of returned values, a set of side effects on some other
entity (e.g., an external entity such as a robot or an internal entity such as computer
memory), or a combination of returned values and side effects. In this approach, the
functions in the program are individually executed, in time, in accordance with a spec-
ified order of evaluation such that the result of the execution of one function is avail-
able at the time when the next function is going to be executed. The functions in a
subroutine are executed at the distinct time when the subroutine is invoked by the call-
ing program. The subroutine produces a result that is available at the time when the
next function in the calling program is executed.

The second approach is a developmental approach. In this approach, a program
tree is interpreted as a set of instructions for constructing a complex structure. The
developmental approach has been successfully used to automatically synthesize 
neural networks (Kitano 1990; Gruau 1992a, 1992b), to automatically synthesize
electrical circuits (Koza, Bennett, Andre, and Keane 1996a, 1996b, 1996c, 1996d,
1996e, 1996f, 1999a; Bennett, Koza, Andre, and Keane 1996; Koza, Bennett Andre,
Keane, and Dunlap 1997), to automatically synthesize patterns and structures by
means of Lindenmayer rewrite rules (Koza 1993), and to solve other problems
(Spector and Stoffel 1996a, 1996b) by means of ontogenetic programming. The devel-
opmental approach is implemented by progressively applying the functions in the 
program tree to an embryonic structure (e.g., an embryonic circuit, an embryonic 
neural network, an embryonic pattern) so as to develop the embryo into a fully devel-
oped structure. As in the first approach, the functions in the program are executed 
separately, in time, in accordance with a specified order of evaluation.

Program trees are used in a third way in this chapter. In this third approach, the
program trees are converted directly to a block diagram (without any intervening
developmental processes). The block diagram consists of signal-processing functions
linked by directed lines representing the flow of information. All the controller’s
signal-processing blocks and the to-be-controlled plant interact with one another as
part of a closed system. There is no order of evaluation among the signal-processing
blocks constituting the controller.

As will be seen in this book, genetic programming can be successfully used to
automatically synthesize both the topology and tuning for a controller using this third
approach. The automatically created controllers can potentially accommodate

● one or more externally supplied reference signals,
● one or more controller outputs,
● one or more plant outputs,
● external feedback of one or more plant outputs to the controller,
● comparisons (of many types) between reference signal(s) and the corresponding

plant output(s),
● internal state variable(s) of the plant,
● direct feedback of the controller’s output(s) back into the controller, and
● internal feedback of signals from one part of the controller to another part of the

controller.
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3.5 Our Approach to the Automatic Synthesis of the 
Topology and Tuning of Controllers

Our approach to the problem of automatically creating both the topology and tuning
of a controller involves

(1) establishing a representation for controllers involving program trees that can be
progressively bred by means of genetic programming, and

(2) defining a fitness measure that measures how well the behavior and characteris-
tics of a candidate controller satisfy the problem’s high-level design requirements.

The representation and fitness measure are then used during the run of genetic 
programming. During the run, the evaluation of the fitness of each individual in the
population involves

(1) converting each individual program tree in the population into an analog electrical
circuit representing the controller,

(2) converting each analog electrical circuit into a netlist of the type accepted by the
circuit simulator,

(3) obtaining the behavior and characteristics of the individual controller by simulating
the corresponding analog electrical circuit, and

(4) using the controller’s behavior and characteristics to calculate its fitness.

There are seven representations for a controller that are used to some degree in the
work described in this book.

● Block Diagram: Control engineers ordinarily represent a controller by means of a
block diagram. In this representation, the individual blocks in the diagram represent
signal-processing functions and the directed lines represent time-domain signals
flowing between the blocks. This representation is discussed in section 3.3 and an
example of a block diagram is shown in figure 3.2.

● Transfer Function: A linear controller can also be represented as a transfer function
involving the Laplace transform variable s (section 3.6.1).

● Symbolic Expression: A controller can also be represented as a symbolic expression
(S-expression) in the style of the LISP programming language (section 3.6.2). This
representation is used internally by genetic programming.

● Program Tree: A controller can also be represented as a program tree whose internal
points (nodes) are functions and whose external points (leaves) are terminals (section
3.6.3). This representation enables genetic programming to breed a population of
programs in a search for a controller that satisfies pre-specified design objectives.

● Mathematica: A controller can also be represented in the style of the Mathematica
programming language (section 3.6.4). Mathematica was used in analyzing and
simplifying the results of certain runs in this book.

● Connection List: A controller can also be represented as a connection list (section
3.6.5). This representation is sometimes useful for explanatory purposes and is
closely related to the SPICE netlist (mentioned next).
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● SPICE Netlist: In a run of genetic programming on a computer, the entire system
(consisting of the controller and the plant) is typically simulated using a simulator.
The SPICE (Simulation Program with Integrated Circuit Emphasis) simulator
(Quarles, Newton, Pederson, and Sangiovanni-Vincentelli 1994) is used throughout
this book for simulating controllers, circuits, and networks of chemical reactions. In
order to invoke the SPICE simulator, the controller and the plant are represented in
the form of a netlist (described in section 3.6.6).

3.5.1 Repertoire of Functions

The repertoire of functions includes the following time-domain functions.
The two-argument GAIN function multiplies the time-domain signal represented

by its first argument by a scalar numerical value represented by its second argument.
The numerical parameter value for this function (and other functions described later
that possess one or more numerical parameters) may be represented using one of three
different approaches (described in sections 3.5.5.1, 3.5.5.2, and 3.5.5.3).

The one-argument INTEGRATOR function integrates the time-domain signal 
represented by its one argument. That is, this function applies the transfer function 
1/s, where s is the Laplace transform variable.

The one-argument DIFFERENTIATOR function differentiates the time-domain
signal represented by its argument. The transfer function for a differentiator is s.
Because differentiation can produce an unbounded output for a bounded input, we
implement the DIFFERENTIATOR function in this book with a transfer function that
is substantially equivalent to s for frequencies of interest in this book, but that never
produces an unbounded output. In particular, we implement differentiation with
s/(1��s), where ��2 microseconds. For simplicity, we use only s as the transfer
function for the DIFFERENTIATOR function when presenting figures and transfer
functions for genetically evolved results in this book.

The two-argument ADD_SIGNAL, SUB_SIGNAL, and MULT_SIGNAL functions
perform addition, subtraction, and multiplication, respectively, on the two time-domain
signals represented by their two arguments. Note that the ADD_SIGNAL, SUB_
SIGNAL, and MULT_SIGNAL functions differ from the ordinary arithmetic �, �,
and * functions in that both arguments of the former three functions are time-domain 
signals whereas both arguments of the latter three functions are scalar numerical 
values.

Note also that the MULT_SIGNAL function differs from the GAIN function
(described earlier) in that both arguments of the MULT_SIGNAL function are time-
domain signals whereas one argument of the GAIN function is a time-domain signal
and its other argument is a scalar numerical value.

The three-argument ADD_3_SIGNAL function adds the time-domain signals 
represented by its three arguments.

The two-argument DIFFERENTIAL_INPUT_INTEGRATOR function integrates
the time-domain signal representing the difference between its two arguments.

The one-argument INVERTER function negates the time-domain signal 
represented by its argument.
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The two-argument LEAD function applies the transfer function 1��s, where � is
a real-valued numerical parameter. The first argument is the time-domain input signal.
The second argument, �, is a numerical parameter representing the time constant (usu-
ally expressed in seconds).

The two-argument LAG function applies the transfer function 1/(1��s), where �
is a numerical parameter. This function’s first argument is the time-domain input sig-
nal. The second argument, �, is the time constant.

The three-argument LAG2 (second-order lag) function applies the transfer function

�
s2 �2�

�

�
0
2

0s��0
2�,

where � is the damping ratio, and �0 is the corner frequency.
The one-argument ABS_SIGNAL function performs the absolute value function

on the time-domain signal represented by its argument.
The three-argument LIMITER function limits a signal by constraining it between

an upper and lower bound. This function returns the value of its first argument (the
incoming signal) when its first argument lies between its second and third arguments
(the two bounds). If the first argument is greater than its third argument (the upper
bound), the function returns its third argument. If its first argument is less than its sec-
ond argument (the lower bound), the function returns its second argument. Note that,
in many systems, the output of the controller is often passed through a LIMITER
function before it is passed on to the plant.

The four-argument DIV_SIGNAL function divides the time-domain signals 
represented by its two arguments and constrains the resulting output by passing the
quotient through a built-in LIMITER function with a specified upper and lower
bound.

The one-argument DELAY function has one numerical parameter, its time delay,
and applies the transfer function

e�sT,

where T is the time delay.
The three-argument IF_POSITIVE function is a switching function that operates

on three time-domain signals and produces a particular time-domain signal depending
on whether its first argument is positive. If, at a given time, the value of the time-
domain function in the first argument of the IF_POSITIVE function is positive, the
value of the IF_POSITIVE function is the value of the time-domain function in 
the second argument of the IF_POSITIVE function. Otherwise, the value of the
IF_POSITIVE function is the value of the time-domain function in the third argu-
ment of the IF_POSITIVE function.

Automatically defined functions (e.g., ADF0, ADF1) possessing one or more argu-
ments may also be included in the function set (as described in sections 2.3.2 and 3.5.4).

The two-argument �, �, *, and � functions perform addition, subtraction, mul-
tiplication, and division, respectively. These functions are typically used herein to
establish numerical parameter values for signal-processing functions that possess
numerical parameters.
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3.5.2 Repertoire of Terminals

The repertoire of terminals includes the following:
The REFERENCE_SIGNAL terminal is the time-domain signal representing the

desired plant response. If there are multiple reference signals, they are named REF-
ERENCE_SIGNAL_0, REFERENCE_SIGNAL_1, and so forth. The reference signal
is sometimes also called the setpoint or command signal.

The PLANT_OUTPUT terminal is the time-domain signal representing the plant
output. If the plant has multiple outputs, the plant outputs are named PLANT_
OUTPUT_0, PLANT_OUTPUT_1, and so forth. Notice that the inclusion of
PLANT_OUTPUT in the terminal set merely makes the plant output available to
genetic programming. There is no human-imposed requirement that genetic program-
ming actually use the plant output in synthesizing a controller. In particular, the exis-
tence of a terminal in the repertoire of available terminals does not mandate that
genetic programming incorporate feedback into the genetically evolved controller. If
the genetically evolved controller ultimately does not use PLANT_OUTPUT, the result
is an open loop controller. If the genetically evolved controller uses PLANT_OUTPUT,
the result is a closed-loop controller. Feedback of the plant’s output to the controller
is useful—indeed essential—for constructing most practical controllers. However, this
domain knowledge about the field of control is not provided to genetic programming
in advance. Instead, genetic programming must discover the usefulness of feedback
(well known to control engineers) on its own during the run.

The CONTROLLER_OUTPUT terminal is the time-domain signal representing 
the output of the controller (sometimes called the control variable). If the controller
has multiple outputs, the outputs are named CONTROLLER_OUTPUT_0,
CONTROLLER_OUTPUT_1, and so forth. Inclusion of the terminal CONTROLLER_
OUTPUT in the problem’s terminal set provides the potential means to implement
direct feedback of the controller’s own output back into the controller. There is, how-
ever, no human-imposed requirement that genetic programming actually use the con-
troller’s own output in synthesizing the controller.

If the plant has internal state(s) that are available to the controller, then the terminals
STATE_0, STATE_1, etc. are the plant’s internal state(s).

The CONSTANT_0 terminal is the constant time-domain signal whose value is
always 0. Similar terminals may be defined, if desired, for other particular constant-
valued time-domain signals.

Constant numerical terminals (called �) are included in the terminal set.
Zero-argument automatically defined functions may also be included in the terminal

set of a particular problem (as described in section 3.5.4).
In problems involving parameterized topologies (chapters 9 and 13), there are

additional terminals representing the problem’s free variables.

3.5.3 Representing the Plant

Use of genetic programming to automatically synthesize controllers requires ascer-
taining the behavior of the overall system (composed of both the controller and plant).
Thus, the plant’s behavior must be available to the genetic programming system in
some way.
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If a model of the plant is available, the controller’s behavior and characteristics
can be obtained by simulating the controller and plant together. In practice, the plant
can usually be modeled with the same repertoire of functions and terminals listed in
sections 3.5.1 and 3.5.2.

If a model of the plant is not initially available, genetic programming can be used
to create a model (block diagram) for the plant. This can be accomplishing by mak-
ing a run of genetic programming to perform system identification on data represent-
ing the plant outputs corresponding to particular plant inputs. This type of run of
genetic programming could employ the same repertoire of functions and terminals
listed in sections 3.5.1 and 3.5.2. See also Witczak 2003.

3.5.4 Automatically Defined Functions

Automatically defined functions resemble subroutines (section 2.3.2). An automati-
cally defined function (ADF) is a function whose body is dynamically evolved during
the run and which may be invoked by the main result-producing branch(es), by other
automatically defined function(s), and, in some cases, other types of branches (section
2.3.2). When automatically defined functions are being used, an individual program
tree consists of one or more reusable automatically defined functions (function-defin-
ing branches) as well as the main result-producing branch(es). Automatically defined
functions may possess zero, one, or more dummy arguments (formal parameters) and
may be reused with different instantiations of their dummy arguments.

Automatically defined functions are typically used in genetic programming to 
provide a means for dynamically evolving subroutines that reuse code. However,
reuse is not the major reason for using automatically defined functions in the context
of control problems.

In control problems, automatically defined functions provide a convenient 
mechanism for representing takeoff points. Once an automatically defined function is
defined, it may be referenced repeatedly by other parts of the overall program tree 
representing the controller. Thus, an automatically defined function may be used to
disseminate the output of a particular processing block to one or more points in the
block diagram. A variation in the just-described method for handling takeoff points is
described in section 13.1.1.

In addition, automatically defined functions provide a convenient mechanism for
implementing internal feedback within a controller. In control problems, the function
set for each automatically defined function and each result-producing branch includes
each existing automatically defined function (including itself). Specifically, each 
automatically defined function is a composition of the functions and terminals listed
in sections 3.5.1 and 3.5.2, all existing automatically defined functions, and (possibly)
dummy variables (formal parameters) that parameterize the automatically defined
functions. Note that in the style of ordinary computer programming, a reference to
ADF0 from inside the function definition for ADF0 would be considered to be a recur-
sive reference. However, in the context of control problems, an automatically defined
function that references itself represents a loop in the block diagram (i.e., internal
feedback within the controller).

The program trees in the initial random generation (generation 0) may consist only
of result-producing branches. Automatically defined functions are then introduced
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sparingly on subsequent generations of the run by means of the architecture-altering
operations. Alternatively, a certain predetermined number of automatically defined
functions may be present in all the individuals of generation 0.

The to-be-evolved controller can accommodate one or more externally supplied
reference signals, external feedback of one or more plant outputs to the controller,
computations of error between the reference signals and the corresponding external
plant outputs, one or more internal state variables of the plant, and one or more 
outputs passed from the controller to the plant. These automatically created con-
trollers can also accommodate internal feedback of one or more signals from one part
of the controller to another part of the controller. The amount of internal feedback is
automatically determined during the run.

For additional information on automatically defined functions, see Koza 1990a,
1992a, 1992c, 1994a, 1994b; Koza and Rice 1991, 1992b, 1994a; and Koza, Bennett,
Andre, and Keane 1999a.

3.5.5 Three Approaches for Establishing Numerical Parameter Values

All the problems in this book (including those involving controllers, electrical circuits,
antennas, metabolic pathways, and genetic networks) entail the automatic creation of
both the topological features and the numerical aspects of a structure.

For example, many of the signal-processing blocks appearing in controllers 
(e.g., gain, lead, lag, delay) possess a numerical parameter value. In addition, some
signal-processing blocks (e.g., the limiter, second-order lag) possess more than one
numerical parameter value. The value of each numerical parameter for these signal-
processing functions is established by one of the function’s arguments. Similarly,
many components (e.g., capacitors, resistors, inductors) used in electrical circuits
elsewhere in this book possess a numerical parameter value. Wire segments in anten-
nas (chapter 6) possess numerical parameter values (e.g., length, thickness). Chemical
reaction functions (chapter 8) are parameterized by rate constants. Genetic switches
(chapter 7) have thresholds.

The following three approaches are used in this book to establish the numerical
parameter values:

(1) an arithmetic-performing subtree consisting of one or more arithmetic functions
and one or more constant numerical terminals;

(2) a subtree consisting of a single perturbable numerical value; and
(3) an arithmetic-performing subtree consisting of one or more arithmetic functions,

one or more perturbable numerical values, and (optionally) one or more free vari-
ables and conditional operators.

In all three approaches, a constrained syntactic structure (section 2.3.1) maintains
the distinction between the subtrees that are used to establish numerical values and all
other parts of the program tree.

It is often advantageous to use a nonlinear mapping (NLM) to interpret the value
returned by the arithmetic-performing subtree (or perturbable numerical value). A 
logarithmic nonlinear mapping enables constants that differ by several orders of 
magnitude to be evolved efficiently. Unless otherwise stated, the nonlinear mapping
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used throughout this book converts numbers ranging between �5.0 and �5.0 into
numbers ranging over 10 orders of magnitude. Specifically, the nonlinear mapping
transforms its argument x to the final parameter value as follows:

100 if x � –100
10–�

1

1

0

9

0
� – �1

1

9� x if –100 	 x � –5
NLM(x)�� 10x if –5 	 x 	 5

10 �
1

1

0

9

0
� – �1

1

9� x if 5 � x 	 100
100 if x 
100

3.5.5.1 Arithmetic-Performing Subtrees In the first approach, the numerical
parameter is established by an arithmetic-performing subtree. The value returned by the
entire arithmetic-performing subtree is interpreted as the desired numerical parameter.
The subtree consists of one or more arithmetic functions (such as addition, subtraction,
multiplication, and division) and one or more constant numerical terminals. In the
initial random generation (generation 0), each constant numerical terminal 
(called �) is set, individually and separately, to a random value in a chosen range 
(e.g., between �5.0 and �5.0). This constant numerical terminal is (usually)
subsequently interpreted as a component value lying in a range of positive values
between 10�5 and 105 using a nonlinear mapping (as just described in section 3.5.5).
Each such constant numerical terminal remains unchanged during all subsequent
generations of the run of genetic programming. This first approach was extensively
employed in connection with our early work on the automatic synthesis of analog
electrical circuits (Koza, Bennett, Andre, and Keane 1999a). A constrained syntactic
structure maintains one function and terminal set for the arithmetic-performing subtrees
and a different function and terminal set for all other parts of the program tree.

Figure 3.3 shows a value-setting subtree consisting of two arithmetic functions
(addition and multiplication) and three constant numerical terminals (2.963, 1.234,
and 3.292).

This approach is used in sections 3.7.1.2, 3.10.1.2, 4.2.1.4, 4.3.1.3, 4.4.1.3, and
5.2.1.4 of this book.

This first approach is now recognized to be relatively inefficient because when the
crossover operation exchanges sub-subtrees of arithmetic-performing subtrees, it
comes perilously close to a random mutation operation.

3.5.5.2 Perturbable Numerical Value In the second approach, the numerical
parameter value is established by a single perturbable numerical value. Unlike the
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constant numerical terminals of the just-described first approach (section 3.5.5.1), the
perturbable numerical values are changed during the run. In generation 0, each
perturbable numerical value (called �p) is set, individually and separately, to a
random value in a chosen range (e.g., between �5.0 and �5.0). After generation 0,
the perturbable numerical value may be perturbed. The perturbation is usually
relatively small. The to-be-perturbed value is considered to be the mean of a Gaussian
distribution. A relatively small preset parameter establishes the standard deviation of
the Gaussian distribution. For example, the standard deviation of the Gaussian
perturbation might be 1.0 (corresponding to one order of magnitude, if the number
between �5.0 and �5.0 is later interpreted using the nonlinear mapping described in
section 3.5.5). The to-be-perturbed value is then perturbed by an amount determined
by the Gaussian distribution. These perturbations are implemented by a special
genetic operation for mutating the perturbable numerical values. A constrained
syntactic structure maintains one function and terminal set for the arithmetic-
performing subtrees and a different function and terminal set for all other parts of the
program tree.

Figure 3.4 shows a value-setting subtree consisting of a single perturbable numer-
ical value.

This second approach is patterned after the Gaussian mutation operation used in
evolution strategies (Rechenberg 1965, 1973). This second approach has the advan-
tage (over the first approach described in section 3.5.5.1) of changing numerical
parameter values by a relatively small amount. Therefore, the search for a numerical
value in the space of possible parameter values is conducted most thoroughly in the
immediate neighborhood of the existing value (which is, by virtue of Darwinian selec-
tion, necessarily part of a relatively fit individual). This approach retains the usual
advantage of the genetic algorithm with crossover, namely the ability to exploit co-
adapted sets of functions and numerical values. It is also possible to perform an ordi-
nary crossover operation in which a perturbable numerical value is inserted in lieu of
a chosen other perturbable numerical value.

Our experience is that the perturbable numerical values work considerably better
than the first approach. Thus, we use perturbable numerical values (either in the form
of this second approach or the third approach described below) for the vast majority
of the problems in this book.

3.5.5.3 Arithmetic-Performing Subtree Containing Perturbable Numerical Values
The third approach is more general than the second approach and employs arithmetic-
performing subtrees in conjunction with perturbable numerical values. This approach
differs from the second approach in that a full subtree is used (instead of just the single
perturbable numerical value).

A constrained syntactic structure maintains one function and terminal set for the
arithmetic-performing subtrees and a different function and terminal set for all other
parts of the program tree.
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This third approach is especially advantageous when externally supplied free 
variables are being used to establish numerical parameter values for components
within the to-be-evolved structure. This approach is also useful when a dummy vari-
able (formal parameter) of an automatically defined function is used to establish the
numerical parameter values for components that are defined in the body of the auto-
matically defined function (or perhaps in some other branch that is called hierarchi-
cally from the automatically defined function). In both cases, the free variables confer
generality on the structure that they parameterize.

Figure 3.5 shows a value-setting subtree consisting of two functions (addition and
multiplication), two perturbable numerical values (1.234 and 3.292), and one free
variable, F.

An arithmetic-performing subtree may (optionally) include conditional operators.
The percentages of genetic operations (as well as the maximum sizes of the vari-

ous branches, minor control parameters, and the various default parameters) are
shown for each problem in appendix B.

When the first approach (section 3.5.5.1) is used, the genetic operations (described
in section 2.2.1) are typically performed at rates such as

● 89% one-offspring crossover,
● 10% reproduction, and
● 1% ordinary mutation (i.e., replacement of a subtree with a randomly grown subtree).

When architecture-altering operations and the first approach are used, the alloca-
tion of percentages are altered slightly to reflect the presence of the architecture-alter-
ing operations. The genetic operations are typically performed at rates such as

● 86.5% one-offspring crossover,
● 10% reproduction,
● 1% ordinary mutation,
● 1% subroutine duplication,
● 1% subroutine creation, and
● 0.5% subroutine deletion.

When the second approach (section 3.5.5.2) is used, these percentages must be
adjusted to reflect the presence of the perturbable numerical values. In this event, the
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genetic operations are typically performed at rates such as

● 20% Gaussian mutation on perturbable numerical values,
● 1% ordinary mutation,
● 48.5% one-offspring crossover on internal points of the program tree other than per-

turbable numerical values,
● 9% one-offspring crossover on terminals other than perturbable numerical values,
● 9% one-offspring crossover on perturbable numerical values,
● 10% reproduction,
● 1% subroutine creation,
● 1% subroutine duplication, and
● 0.5% subroutine deletion.

Note that ordinary mutation remains at 1%.

3.5.6 Constrained Syntactic Structure for Program Trees

The program trees in the initial generation 0 as well as any trees created in later gen-
erations of the run by the mutation, crossover, and architecture-altering operations are
created in compliance with a constrained syntactic structure (section 2.3.1) that limits
the particular functions and terminals that may appear at particular points in each
branch of the overall program tree.

An individual tree consists of main result-producing branch(es) and zero, one, or
more automatically defined functions (function-defining branches). Each of these
branches is composed of various functions and terminals.

The functions and terminals in the trees are divided into four categories:

(1) signal-processing block functions,
(2) automatically defined functions that appear in the function-defining branches and

that enable both internal feedback within a controller and the dissemination of the
output from a particular signal-processing block within a controller to other points
in the block diagram,

(3) terminals and functions that may appear in arithmetic-performing subtrees for the
purpose of establishing the numerical parameter value for signal-processing
blocks possessing numerical parameters, and

(4) terminal representing time-domain signals (e.g., the reference signal).

3.6 Additional Representations of Controllers

3.6.1 Representation of a Controller by a Transfer Function

The controller of figure 3.2 can also be represented as a transfer function, Gc(S), as
follows.

.Gc(s) � 214.0�
1000.0

s
� 15.5s �

214.0s � 1000.0 � 15.5s2

s

Automatic Synthesis of Controllers 73



In this representation, the 214.0 is the proportional (P) element of the controller.
The 1,000.0/s is the integrative (I) term, where s is the Laplace transform variable. 
The 15.5s is the differentiating (D) term.

The entire transfer function is conventionally expressed as a quotient of two 
polynomials in the Laplace transform variable s (as is done on the right).

3.6.2 Representation of a Controller as a LISP Symbolic Expression

A controller (such as the PID controller of figure 3.2) may be represented by a 
composition of functions and terminals in the LISP programming language in the
form of S-expressions (symbolic expressions). LISP S-expressions are not to be con-
fused, of course, with the expressions (such as those in section 3.6.1) containing the
Laplace transform variable s. The block diagram for the PID controller of figure 3.2
can be represented as the following LISP S-expression:

1 (PROGN
2  (DEFUN ADF0 ()
3    (VALUES
4     (� REFERENCE_SIGNAL PLANT_OUTPUT)))
5   (VALUES
6     (+
7      (GAIN 214.0 ADF0)
8      (DERIVATIVE

(GAIN 1000.0 ADF0))9      (INTEGRATOR
(GAIN 15.5 ADF0))))

10 )

Notice that the automatically defined function ADF0 provides the mechanism for dis-
seminating a particular signal (the difference taken on line 4) to three places (lines 7,
8, and 9) and corresponds to the takeoff point 520 in figure 3.2. An alternative
approach to takeoff points is discussed in section 13.1.1.

Although the work described in this book was done using software written in C or
Java, we often present the results in the form of LISP S-expressions.

3.6.3 Representation of a Controller as a Program Tree

A controller may also be represented as a point-labeled tree with ordered branches
(i.e., a program tree) that corresponds directly with the LISP S-expression representa-
tion (as just shown in section 3.6.2). The terminals (leaves) of such a program 
tree may represent inputs to the controller, constant numerical values, perturbable
numerical values, or externally supplied free variables. The functions in such program
trees correspond to the signal-processing blocks in a block diagram representing the
controller. The value returned by an entire result-producing branch of the program tree
corresponds to the controller output that is to be passed on to the plant. If the 
controller has more than one output, the program tree has one result-producing branch
for each such output. Figure 3.6 presents the block diagram for the PID controller of
figure 3.2 as a program tree. All block diagrams for controllers may be represented in
this manner.
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3.6.4 Representation of a Controller in Mathematica

The LISP S-expression for the PID controller of figure 3.2 may be converted to the
following two equations in Mathematica:

RPB0 == ((214.0*ADF0)+(( 1000.0*ADF0)*S)+((15.5 *ADF0)/S))
ADF0 == (REFERENCE-PLANT_OUTPUT)

The SOLVE command of the symbolic algebra package in Mathematica can be used
to solve this system of two equations for RPB0 and ADF0. It yields the following:

RPB0 = (214.0+ 15.5/S+1000.0 *S)(REFERENCE-PLANT_OUTPUT)
ADF0 = REFERENCE-PLANT_OUTPUT

This solution represents the transfer functions at the points labeled RPB0 and
ADF0.

The transfer function of the controller is

(214.0+ 15.5/S+1000.0 *S)(REFERENCE-PLANT_OUTPUT)

3.6.5 Representation of a Controller and Plant as a Connection List

A controller (such as the PID controller of figure 3.2) may be represented by a con-
nection list.

A connection list for a block diagram is a data structure that defines both the topol-
ogy and the parameter values of each element of a block diagram. Each line of a con-
nection list for a block diagram corresponds to one signal-processing block of the
block diagram. Each line of a connection list of a block diagram contains the name of
a processing block, the points to which each input and output of that processing block
is connected, and the parameter(s), if any, of that signal-processing block.

The connection list includes both the controller and the plant. Figure 3.7 shows a
two-lag plant consisting of a series composition of a LIMITER block (with a range
�40.0 Volts to �40.0 Volts) and two LAG blocks (each with a lag of �1.0). In the 
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figure, the input to the plant 600 is the output of some controller not shown in the 
figure. This signal is first passed into LIMITER function block 620 whose upper limit
is established by the numerical parameter �40.0 (at 622 of the figure) and whose
lower limit is established by the numerical parameter �40.0 (at 624). The output of
LIMITER function block 620 is signal 626. This signal then passes into first 
LAG block 630. The time constant of this first lag is established by the numerical
parameter �1.0 (at 632). The output of first LAG block 630 is signal 636. This signal
then passes into second LAG block 640. The time constant of this second lag is estab-
lished by the numerical parameter �1.0 (at 642). The output of this second LAG block
640 is plant output 680.

The connection list for the block diagram of the PID controller of figure 3.2 and
the two-lag plant of figure 3.7 is as follows:

1 508 596 512 SUBTRACT
2 512 538 GAIN 214.0
3 512 548 GAIN 1000.0
4 548 568 INTEGRATOR
5 512 558 GAIN 15.5
6 558 578 DERIVATIVE
7 538 568 578 590 ADDITION
8 590 626 LIMITER �40.0 40.0
9 626 636 LAG 1.0
10 636 596 LAG 1.0

Each line of a connection list begins with a group of two or more numbers, each
number representing an input or output signal of one signal-processing block in the
block diagram. The connection list for a block diagram reflects the directionality of
all connections between signal-processing blocks. In this regard, the last number of
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each group represents the single output signal of the signal-processing block. 
The other numbers of each group represent the input(s) to the signal-processing block.
If the signal-processing function possesses parameter values, then the parameter
value(s) follow the name of the function.

Lines 1 through 7 of this connection list represent the block diagram of the 
controller of figure 3.2. Lines 8 through 10 represent the block diagram of the two-lag
plant of figure 3.7.

Line 1 of this connection list for a block diagram indicates that the two-argument
SUBTRACT function (corresponding to 510 in figure 3.2), has inputs 508 and 596, and
has output signal 512. In this example, the inputs to this function are ordered. The first
input 508 represents the positive input to the SUBTRACT function and the second
input 596 represents the negative input.

Line 2 indicates that the one-argument GAIN function (corresponding to 530 in
figure 3.2) has input signal 512 and output signal 538. In addition, line 2 indicates that
the function has a parameter value (amplification factor) for this signal-processing
block of �214.0 (corresponding to 532 in figure 3.2). Output 512 of the SUBTRACT
function of line 1 is the input to this GAIN function of line 2, and the input to the
GAIN functions in lines 3 and 5. Line 2 corresponds to the proportional part of the
PID controller of figure 3.2.

Line 3 indicates that the GAIN function (corresponding to 540 of figure 3.2) has
input signal 512 and output signal 548. In addition, line 3 indicates that the parame-
ter value (amplification factor) for this signal-processing block is �1,000.0 (corre-
sponding to 542 in figure 3.2). Line 4 indicates that the INTEGRATOR function
(corresponding to 560 in figure 3.2) has input signal 548 and output signal 568. Lines
3 and 4 together correspond to the integrative part of the PID controller of figure 3.2.

Line 5 indicates that the GAIN function (corresponding to 550 in figure 3.2) 
has input signal 512 and output signal 558. In addition, line 5 indicates that the 
parameter value (amplification factor) for this signal-processing block is �15.5
(corresponding to 552 in figure 3.2). Line 6 indicates that the DERIVATIVE
function (corresponding to 570 in figure 3.2) has input signal 558 and output signal
578. Lines 5 and 6 together correspond to the derivative part of the PID controller of
figure 3.2.

Line 7 indicates that the three-argument ADDITION function (corresponding 
to 580 in figure 3.2) has positive inputs 538, 568, and 578 and that this ADDITION
function has output signal 590, corresponding to the output of the PID controller 
(590 of figure 3.2).

Line 8 indicates that the three-argument LIMITER function (corresponding to 620
in figure 3.7) has input 590, has output signal 626, and that the two parameter values
(upper and lower limits) for this LIMITER block are �40.0 and �40.0 (correspon-
ding to 624 and 622, respectively, in figure 3.7).

Line 9 indicates that the two-argument LAG function (corresponding to 630 in 
figure 3.7) has input 626, has output signal 636, and that the parameter value for this
LAG function is �1.0 (corresponding to 632 of figure 3.7).

Line 10 indicates that the two-argument LAG function (corresponding to 640 in
figure 3.7) has input 636, has output signal 596 (i.e., the plant output), and that the
parameter value for this LAG function is �1.0 (corresponding to 642 in figure 3.7).
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3.6.6 Representation of a Controller and Plant as a SPICE Netlist

SPICE (Simulation Program with Integrated Circuit Emphasis) is a large family of
programs written over several decades at the University of California at Berkeley for
the simulation of analog, digital, and mixed analog/digital electrical circuits. SPICE3
is a version of Berkeley SPICE that consists of about 217,000 lines of C source code
residing in 878 separate files (Quarles, Newton, Pederson, and Sangiovanni-
Vincentelli 1994). Our work in this book on controllers, circuits, and networks of
chemical reactions is based on the SPICE3 version of Berkeley SPICE.

In order to simulate a circuit with the SPICE simulator, it is necessary to provide
SPICE with a netlist describing the circuit to be analyzed. It is also necessary to 
supply SPICE with commands specifying the type of analysis to be performed and the
nature of the output to be produced.

Specifically, the input to the SPICE simulator consists of

(1) a command line that names the circuit to be simulated (always first),
(2) the netlist of the circuit to be simulated,
(3) commands that instruct SPICE about the type of analysis to be performed and the

nature of the output to be produced,
(4) (optionally) subcircuit definitions, and
(5) an END command (always last).

Although the SPICE simulator was originally designed primarily for simulating
electrical circuits, it can be adapted for simulating controllers and plants. In fact,
SPICE may also be used to simulate a wide variety of other types of systems, includ-
ing mechanical systems and networks of chemical reactions (chapter 8).

One of the issues that must be addressed when SPICE is being used to simulate
controllers and plants is the absence of many signal-processing blocks that are com-
monly found in controllers and plants (e.g., lead, lag) from the basic version of SPICE.
This deficiency can be easily remedied using SPICE’s facility to create subcircuit 
definitions and SPICE’s facility to implement user-defined continuous-time mathe-
matical calculations. Of course, basic signal-processing blocks, such as integrators
and differentiators, can be represented by capacitors and inductors in conjunction with
appropriate voltage-to-current or current-to-voltage converters.

Table 3.1 shows a SPICE input file for simulating a system consisting of a PID
controller (figure 3.2), a two-lag plant (figure 3.7), and additional built-in circuitry to
calculate the integral of the time-weighted absolute error (ITAE). The lines beginning
with an asterisk are comments that are ignored by SPICE.

The input file of table 3.1 contains seven major types of items.
First, the group of lines labeled X1, B2, B3, X4, B5, X6, and X7 in table 3.1 define

the PID controller 500 of figure 3.2.
Second, the group of lines labeled X8, X9, X10, V11, V12, V13, and V14 define

the two-lag plant 600 of figure 3.7.
Third, the line labeled X15 invokes a calculation of the integral of time-weighted

absolute error.
Fourth, the line labeled VP16 provides the pulse reference signal 508 (figure 3.2).
Fifth, the line starting with “.TRAN” is a SPICE command that instructs SPICE

to perform a transient analysis in the time domain.
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Table 3.1 SPICE input file for PID controller, a two-lag plant, and an in-line calculation of
ITAE

.PID CONTROLLER, TWO-LAG PLANT, AND ITAE CALCULATOR
*
* THE PID CONTROLLER
* THE OUTPUT OF CONTROLLER (CONTROL VARIABLE) IS AT 590
* THE REFERENCE SIGNAL IS AT 508
* THE PLANT OUTPUT (FEEDBACK TO CONTROLLER) IS AT 596
X1 508 596 512 SUBV_SUBCKT
B2 538 0 V=V(512)*214.0
B3 548 0 V=V(512)*1000.0
X4 548 0 568 DII_SUBCKT
B5 558 0 V=V(512)*15.5
X6 558 578 DIFFB_SUBCKT
X7 538 568 578 590 ADD3_SUBCKT
*

* THE TWO-LAG PLANT
* THE PLANT INPUT IS AT 590
* THE PLANT OUTPUT (FEEDBACK TO CONTROLLER) IS AT 594
X8 590 626 622 624 LIMIT_SUBCKT
X9 626 632 636 LAG_SUBCKT
X10 636 642 594    LAG_SUBCKT
V11 622 0 DC 40
V12 624 0 DC �40
V13 632 0 DC 1.0
V14 642 0 DC 1.0
*

* CALCULATION OF INTEGRAL OF TIME-WEIGHTED ABSOLUTE ERROR (ITAE)
X15 508 594 508 7 ITAE_SUBCKT
*

* REFERENCE SIGNAL 508
VP16 508 0 PULSE(0.0 1 0.1 0.001 0.001 10 15)
*

* COMMANDS TO SPICE FOR TRANSIENT ANALYSIS AND PLOT
.TRAN 0.08 9.6 0.0 0.04 UIC
.PLOT TRAN V(7)
*

* SUBCIRCUIT DEFINITION FOR SUBV
.SUBCKT SUBV 1 2 3
B1 3 0 V=V(1)–V(2)
.ENDS SUBV
*

* SUBCIRCUIT DEFINITION FOR TWO-ARGUMENT ADDV
.SUBCKT ADDV 1 2 3
B1 3 0 V=V(1)+V(2)
.ENDS ADDV
*

* SUBCIRCUIT DEFINITION FOR THREE-ARGUMENT ADD3
.SUBCKT ADD3 1 2 3 4
B1 4 0 V=V(1)+V(2)+V(3)
.ENDS ADD3
*

(Continued)
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Table 3.1 (Continued)

* SUBCIRCUIT DEFINITION FOR INVERTER
.SUBCKT INVERTER_SUBCKT 1 2
B1 2 0 V=�V(1)
.ENDS INVERTER_SUBCKT
*

* SUBCIRCUIT DEFINITION FOR MULV
.SUBCKT MULV 1 2 3
B1 3 0 V=V(1)*V(2)
.ENDS MULV
*

* SUBCIRCUIT DEFINITION FOR DIVV
.SUBCKT DIVV 1 2 3
B1 3 0 V=V(1)/V(2)
.ENDS DIVV
*

* SUBCIRCUIT DEFINITION FOR ABSV
.SUBCKT ABSV 1 2
B1 2 0 V=ABS(V(1))
.ENDS ABSV
*

* SUBCIRCUIT DEFINITION FOR DIFFB (DERIVATIVE)
.SUBCKT DIFFB_SUBCKT 1 2
G1 4 0 1 0 1.0
L1 4 0 1.0
B1 2 0 V=�V(4)
.ENDS DIFFB_SUBCKT
*

* SUBCIRCUIT DEFINITION FOR DII
.SUBCKT DII_SUBCKT 1 2 3
G1 4 0 1 2        1.0
R1 4 0 1000MEG
C1 4 0 1.0 IC=0V
X1 4 3 INVERTER_SUBCKT
.ENDS DII_SUBCKT
*

* SUBCIRCUIT DEFINITION FOR LAG
.SUBCKT LAG_SUBCKT 1 2 3
X1 1 3 4 DII_SUBCKT
X2 4 5 3 MULV
X3 6 2 5 DIVV
V1 6 0 DC 1.0
.ENDS LAG_SUBCKT
*

* SUBCIRCUIT DEFINITION FOR LEAD
.SUBCKT LEAD_SUBCKT 1 2 3
X1 1 4 DIFFB_SUBCKT
X2 2 4 5 MULV
X3 1 5 3 ADDV
.ENDS LEAD_SUBCKT
*

(Continued)
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Table 3.1 (Continued)

* SUBCIRCUIT DEFINITION FOR LAG2
.SUBCKT LAG2_SUBCKT 1 2 3 4
X1 1 4 5 DII_SUBCKT
B2 6 0
+ V=0.5*V(5)*V(2)/V(3)
X3 6 7 4 LAG_SUBCKT
B1 7 0 V=1/(2*V(2)*V(5))
.ENDS LAG2_SUBCKT
*

* SUBCIRCUIT DEFINITION FOR LIMIT
.SUBCKT LIMIT_SUBCKT 1 2 3 4
B1 2 0
+ V=URAMP(V(1)–V(4))+V(4)-URAMP(V(1)–V(3))
.ENDS LIMIT_SUBCKT
*

* MODEL FOR SSW
.MODEL SSW SW()
*

* SUBCIRCUIT DEFINITION FOR ITAE
.SUBCKT ITAE_SUBCKT 31 32 34 33
VOSPCT 3 0 DC 0.02V
VOSPEN 11 0 DC 10V
X1 6 34 4 DIVV
V2 10 0 DC 1.0
X3 9 12 7 MULV
S4 11 9 4 3 SSW
S5 14 13 31 0 SSW
V6 14 0 DC 1.0
X7 15 34 33 DIVV
X8 7 18 17 MULV
X9 6 12 ABSV
X10 32 31 6 SUBV
X11 13 0 18 DII_SUBCKT
X12 17 0 15 DII_SUBCKT
R13 9 10 1K
R14 0 13 1K
R15 0 33 1K
.ENDS ITAE_SUBCKT
*

* END COMMAND FOR SPICE INPUT FILE
.END

Sixth, the line starting “.PLOT” is a SPICE command that instructs SPICE to pro-
duce a tabular sequence of values for a particular signal (probe point).

Seventh, this file contains 13 subcircuit definitions (many of which are not neces-
sary for the illustrative system at hand, but are used elsewhere in this book), including

● subtraction (SUBV),
● two-argument addition (ADDV),



● three-argument addition (ADD3),
● inversion (INVERTER),
● multiplication (MULV),
● division (DIVV),
● absolute value (ABSV),
● differentiation (DIFF),
● differential input integrator (DII),
● lag (LAG),
● lead (LEAD),
● the second-order LAG function (LAG2),
● limiter (LIMIT), and
● integral of the time-weighted absolute error (ITAE).

In explaining table 3.1, we start with the overall inputs and outputs of the overall
system, then discuss the subcircuit definitions, and finally discuss the controller and
plant.

The line beginning VP16 defines the reference signal.

VP16 508 0 PULSE(0.0  1 0.1 0.001 0.001 10 15)

The reference signal here is created by the seven-argument PULSE function. In
particular, the reference signal is a step function that starts at 0 Volts, rises to 1 Volt at
0.1 seconds, has a rise time of 0.001 seconds, has a fall time of 0.001 seconds, has a
pulse width of 10 seconds, and a period of 15 seconds.

The TRAN command instructs SPICE to perform a transient analysis in the time
domain. Specifically, the line

.TRAN 0.08 9.6 0.000 0.04 UIC

instructs SPICE to perform a transient analysis in the time domain in step sizes of 0.08
seconds between an ending time of 9.6 seconds and a starting time of 0.000 seconds.
The fourth parameter (0.04 seconds) is a limit on the step size used by the SPICE sim-
ulator. The “UIC” instructs SPICE to “use initial conditions” (in this case, for the dif-
ferential input integrator subcircuit described below).

The PLOT command causes SPICE to provide output in the form of a tabular
sequence of values for a specified signal (probe point). Specifically, the line

.PLOT V(7)

instructs SPICE to capture the circuit’s behavior in terms of the voltage V(7) at node
7. The signal at node 7 is the integral of time-weighted absolute error that is calculated
by the ITAE subcircuit (invoked by the line beginning with X15). That is, the output
of the SPICE simulation is a tabular sequence of values of ITAE between 0 and 9.6
seconds. The value of ITAE for the final time (after 9.6 seconds) may then be used as
part of the calculation of the fitness of the individual controller.

It should be noted that the actual time steps that SPICE uses internally in 
performing its simulation of a system are not the same as the set of tabular values that
SPICE provides as external output in response to the user’s TRAN and PLOT com-
mands. The actual time steps that SPICE uses internally in performing its simulation
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are dynamically determined during the simulation by algorithms within SPICE. They
are often much finer than the reporting intervals requested by the user.

SPICE permits the mixing of mathematical functions and electrical components.
Electrical components may be used to perform mathematical functions in SPICE. For
example, differentiation may be performed with an inductor. It is also possible to write
a formula in SPICE that implements a mathematical function that does not correspond
to any single electrical component. This facility is useful, for example, to implement
multiplication. Although it is possible to perform multiplication with a computational
circuit, the required circuit contains numerous electrical components and would con-
sume a considerable amount of computer time to simulate. It is much simpler (and
more efficient) to use SPICE’s ability to define multiplication by writing a simple
formula.

The SUBCKT command enables a particular topological combination of compo-
nents (each with associated component values) to be defined once and be invoked
thereafter in the netlist as if it were a single primitive component. Each SUBCKT def-
inition in SPICE consists of the name of the subcircuit, one or more formal parame-
ters that identify its leads, a netlist that defines the subcircuit, and the ENDS command
(which must include the name of the subcircuit if nested subcircuit definitions are
being used).

A subcircuit definition in SPICE resembles a definition for a subroutine in several
ways. First, a subcircuit may be invoked multiple times. Second, a subcircuit may be
invoked with different instantiations of their dummy arguments (formal parameters).
Third, the numbering of nodes in a subcircuit definition is entirely local to the subcir-
cuit definition (thus permitting numbers such as 1, 2, and 3 to be used in other sub-
circuit definitions).

An “X” at the beginning of a line of a SPICE input file indicates that a subcircuit
definition is being invoked.

As an example of a subcircuit definition, consider the two-argument subtraction
function SUBV.

.SUBCKT SUBV 1 2 3
B1 3 0 V=V(1)–V(2)
.ENDS SUBV

The first line of the subcircuit definition for SUBV indicates that this subcircuit is
connected into the invoking circuit by means of three nodes (1, 2, and 3).

The second line of the subcircuit definition for SUBV contains the body of a 
subcircuit definition. The body is only one line here, but may, in general, be many
lines. Nodes 1, 2, and 3 are the dummy variables (formal parameters) of this subcir-
cuit. Node 2 represents the voltage that is to be subtracted. Node 1 represents the volt-
age from which node 2 is to be subtracted. Node 3 represents the voltage that is the
output of the subtraction. The “B” at the beginning of the second line indicates that
the component B1 is an ideal current or voltage source whose value is specified by an
arbitrary mathematical equation. Because the left side of this equation is the letter “V,”
the component B1 is a voltage source (as opposed to a current source). Specifically,
the value of time-varying voltage source B1 is equal to the difference between the
voltage at node 1 and the voltage at node 2, as represented by the equation 
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V�V(1)�V(2). The voltage source B1 has its positive end at node 3 and its negative
end at 0 (ground). The voltage at ground (node 0) is defined to be zero at all times 
during the simulation. Thus, the voltage at node 3 is simply equal to V(1)�V(2) at all
times during the simulation. That is, the voltage at node 3 represents the result of the
subtraction of the voltage at node 2 from that at node 1.

The third line of the subcircuit definition contains the ENDS command that ends
the subcircuit definition.

The subcircuit definitions for two-argument addition (ADDV), three-argument
addition (ADD3), inversion (INVERTER), multiplication (MULV), division (DIVV),
and absolute value (ABSV) follow the same principles as the subcircuit definition for
SUBV.

As another example of a subcircuit definition, consider the definition of differen-
tiation DIFFB. This subcircuit definition employs an electrical component (an induc-
tor) to simulate the mathematical function of differentiation. The voltage across an
inductor is equal to its inductance times the derivative of current with respect to time.

.SUBCKT DIFFB_SUBCKT 1 2
G1 4 0 1 0 1
L1 4 0 1
B1 2 0 V=–V(4)
.ENDS DIFFB_SUBCKT

The first line of the subcircuit definition for DIFFB indicates that this subcircuit
is connected into the invoking circuit by means of two nodes (1 and 2). The overall
effect of this subcircuit definition will be that the subcircuit differentiates the incom-
ing voltage at dummy node 1 and places the output voltage at dummy node 2.

The second line of the subcircuit definition for DIFFB begins with “G.” The “G”
defines a voltage-controlled current source (VCCS) that converts the voltage between
local nodes 1 and 0 (ground) to a current flowing from local nodes 4 to 0.

The third line of the subcircuit definition for DIFFB begins with L and defines an
inductor (with component value of 1 Henry) that is positioned between local node 4
and ground (node 0).

The fourth line of the subcircuit definition for DIFFB begins with B. The “B” at
the beginning of this line indicates that this line contains a source (a voltage source,
in this case) whose value is specified by a mathematical formula. This fourth line
specifies that the voltage at node 2 (the subcircuit’s output) is to be equal to the nega-
tion of the voltage at node 4.

As yet another example of a subcircuit definition, consider the definition of a 
differential input integrator. It employs a capacitor. Integration is simulated with a com-
bination of a 1 farad capacitor (C), a 1-giga-Ohm resistor (R), and a voltage-controlled
current source. The capacitor has an initial charge (voltage difference) of 0 Volts. The
voltage across a capacitor is proportional to the integral of current with respect to time.

Refer now to the group of seven lines (beginning X1, B2, B3, X4, B5, X6, and X7)
in table 3.1. These seven lines implement the PID controller 500 of figure 3.2.

X1 508 596 512 SUBV_SUBCKT
B2 538 0 V=V(512)*214.0
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B3 548 0 V=V(512)*1000.0
X4 548 0 568 DII_SUBCKT
B5 558 0 V=V(512)*15.5
X6 558 578 DIFFB_SUBCKT
X7 538 568 578 590 ADD3_SUBCKT

The first line (beginning X1) computes the difference between the reference 
signal and the plant output. It accomplishes this by invoking the subcircuit definition
for subtraction (SUBV). The voltage produced at node 512 is equal to the difference
between the voltage at node 508 (the reference signal of the PID controller of figure 3.2)
and the voltage at node 596 (the plant output).

The second line (beginning B2) simulates the proportional (P) part of the PID 
controller of figure 3.2 and corresponds to the GAIN function block 530 of figure 3.2.
This line performs the mathematical function of multiplying the constant �214.0 and
the voltage at node 512 (the just-computed difference between the reference signal
and the plant output). The output (i.e., the voltage at node 538) is equal to the product
between node 538 and ground (node 0).

The third and fourth lines (beginning B3 and X4) simulate the integrative (I) part of
the PID controller (corresponding to the GAIN function block 540 and the integrative
function block 560 of figure 3.2).

The third line (beginning B3) corresponds to the GAIN function block 540 of 
figure 3.2. This line performs the mathematical function of multiplying the voltage at
node 512 (the difference between the reference signal and the plant output) by the
numerical constant �1,000.0 and puts out a voltage equal to the product (the voltage
at node 548).

The fourth line (beginning X4) corresponds to the integrative function block 
560 of figure 3.2. This line invokes the subcircuit definition for the differential input
integrator (DII) found in table 3.1.

The fifth and sixth lines (beginning B5 and X6) simulate the derivative (D) part of
the PID controller (corresponding to the GAIN function block 550 and the derivative
function block 570 of figure 3.2).

The fifth line (beginning B5) corresponds to the GAIN function block 550 of 
figure 3.2. The line performs the mathematical function of multiplying the voltage 
at node 512 (the difference between the reference signal and the plant output) by the
numerical constant �15.5 and produces as output a voltage (at node 538) equal to the
product.

The sixth line (beginning X6) corresponds to the derivative function block 570 of
figure 3.2. This line invokes the subcircuit definition for the derivative (DIFFB).

The seventh line (beginning X7) of this group of seven lines invokes the three-
argument addition subcircuit (ADD3). This line simulates the three-argument addition
block 580 of figure 3.2. This line sums the proportional (P) part 538, the integrative
(I) part 568, and the derivative (D) part 578 of the PID controller. The signal coming
out of the ADD3 signal-processing block is the output 590 of the controller.

Refer now to the group of seven lines (beginning X8, X9, X10, V11, V12, V13,
and V14) in table 3.1. This group of lines simulates the two-lag plant (labeled 600 in
figure 3.7).
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X8 590 626 622 624 LIMIT_SUBCKT
X9 626 632 636 LAG_SUBCKT
X10 636 642 594 LAG_SUBCKT
V11 622 0 DC 40
V12 624 0 DC �40
V13 632 0 DC 1.0
V14 642 0 DC 1.0

The first line (beginning X8) simulates the limiter block 620 of the plant in figure 3.7.
This line invokes the three-argument LIMIT subcircuit (defined in table 3.1). The
input to the limiter is the output signal 590 of the controller of figure 3.2. The output
of the limiter is signal 626 of figure 3.7. The limiter function possesses two arguments
that specify its lower and upper limits.

The fourth line (beginning V11) references node 622. The limiter’s upper limit of
�40 Volts is specified on the line beginning with V11.

The fifth line (beginning V12) references node 624. The limiter’s lower limit of
�40 Volts is specified on the line labeled V12.

The second line (beginning X9) of this group of seven lines corresponds to the
plant’s first lag block (namely block 630 of figure 3.7). This line invokes the LAG sub-
circuit (defined in table 3.1). The input to the plant’s first LAG is signal 626 (coming
from the limiter). The output is signal 636. The plant’s first LAG possesses one numer-
ical argument (i.e., 1.0) as established for node 632 on the sixth line (beginning V13)
of this group of seven lines.

Similarly, the third line (beginning X10) of this group of seven lines corresponds
to the plant’s second lag block (namely block 640 of figure 3.7). This line invokes the
LAG subcircuit. The input to the plant’s second LAG is signal 636 (coming from 
the first LAG). Its output is the plant output (labeled 594 in figures 3.2 and 3.7). The
plant’s second LAG possesses one numerical argument (i.e., 1.0) as established for
node 632 on the seventh line (beginning V14) of this group of seven lines.

The fitness of a controller may be evaluated in numerous ways. Various signals
(including the plant output) may be captured and used internally or externally to eval-
uate the controller’s fitness.

The integral of the time-weighted absolute error is frequently a part of the 
evaluation of the fitness of a controller. It may be advantageous to evaluate ITAE inter-
nally as part of an overall circuit that also includes the controller and the plant. The
group of 15 lines (X1, V2, X3, S4, S5, V6, X7, X8, X9, X10, X11, X12, R13, R14,
R15) in table 3.1 calculates the integral of time-weighted absolute error between the
reference signal 508 and the plant output 594 and makes the resulting integrated value
available at node 7. This node may then be probed in order to compute the fitness 
of the individual controller. Of course, the calculation of ITAE can alternatively be
performed using external software operating on the data produced by the SPICE 
simulation.

There are many additional SPICE commands that can be used to specify other
types of analyses to be performed on the signals at the probe points. SPICE may also
be instructed to perform more than one type of analysis or to plot more than one
probed value.
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3.7 Two-Lag Plant

We illustrate how genetic programming can automatically synthesize both the topology
and tuning of a controller with a problem calling for the design of a robust controller
for a two-lag plant.

The transfer function of a two-lag plant is

where K is the plant’s internal gain and � is the plant’s time constant.
As with most practical problems of controller design, there are multiple (conflicting)

objectives that must be satisfied.
The high-level requirements of this problem are:

● The plant output is to reach the level of the reference signal while minimizing the
integral of the time-weighted absolute error.

● The overshoot in response to a step input (reference signal) is to be less than 2%.
● The controller is to be robust in the face of significant variation in the plant’s

internal gain and the plant’s time constant. In this problem, the nominal value of 
the plant’s internal gain, K, is 1.0 and the nominal value of the plant’s time constant,
�, is 1.0.

● The input to the plant is limited. This constraint is implemented by inserting a 
LIMITER block between the controller’s output and the plant in order to limit the
input to the plant to the range between �40 and �40 Volts.

● The effect, on the plant output, of high frequency noise in the reference signal is to be
limited. This element of the fitness measure reflects an often-unspoken constraint that
is typically imposed in the real world in order to prevent potential damage to the plant.

Dorf and Bishop (1998, page 707) developed a PID compensator preceded by a
lowpass pre-filter that delivers credible performance on this problem. Dorf and Bishop
say that this design has “the optimum ITAE transfer function.”

Of course, when Dorf and Bishop say that they achieved the “optimum,” they
mean that they achieved it given that they had already decided to employ the PID
topology. When we applied genetic programming to this problem, we did not pre-
specify that the controller must be in the form of a PID compensator preceded by a
lowpass pre-filter. Instead, we started with the high-level design requirements of the
problem and gave genetic programming a free hand to create any topology that satis-
fies the problem’s requirements.

As will be seen (section 3.7.2), the controller created by genetic programming
does not employ the conventional PID topology. The genetically evolved controller
employs a second derivative block. The genetically evolved controller is 2.42 times
better than the Dorf and Bishop controller as measured by the criterion used by Dorf
and Bishop (namely, the integral of the time-weighted absolute error). The genetically
evolved controller has only 56% of the rise time and only 32% of the settling time of
the Dorf and Bishop controller and is 8.97 times better in terms of suppressing the
effects of a step disturbance at the plant input.

G(s) �
K

(1 � �s)2,
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Certain constraints are often taken for granted in books written by engineers 
working in specialized areas. As a result, the above statement of the problem differs
from the problem found in Dorf and Bishop 1998 in two respects. First, the last two
elements in our statement of the problem are not found in Dorf and Bishop 1998. 
They reflect our interpretation of the implicit constraints appropriate for this problem.
Second, our 2% overshoot requirement is more stringent than the 4% overshoot
requirement used by Dorf and Bishop. Note that the Dorf and Bishop controller satis-
fies our statement of the problem.

3.7.1 Preparatory Steps for the Two-Lag Plant

The preparatory steps are the means of communicating what needs to be done to the
genetic programming system. Six major preparatory steps are required before applying
genetic programming to a problem involving the automatic synthesis of the topology
and tuning for a controller:

(1) determine the architecture of the program trees,
(2) identify the terminals,
(3) identify the functions,
(4) define the fitness measure,
(5) choose control parameters for the run, and
(6) choose the termination criterion and method of result designation.

3.7.1.1 Program Architecture Because the problem involves a controller with one
output, each program tree in the population necessarily has one result-producing
branch.

All program trees in the initial random population (generation 0) consist of one
result-producing branch and no automatically defined functions. In subsequent genera-
tions, the architecture-altering operations may add automatically defined function(s) to
individual program trees (selected probabilistically based on fitness). Also, in subse-
quent generations, the architecture-altering operations may delete automatically defined
functions from individual program trees (selected probabilistically based on fitness).
The result is that, after generation 0, the population becomes architecturally diverse.

We established a generous maximum of five automatically defined functions for
this problem. Similarly, we established a generous maximum of 150 for the number
of points (i.e., functions or terminals) in the result-producing branch and a generous
maximum of 100 points for each automatically defined function. We do not list minor
parameters such as these in the body of this book for subsequent problems. Instead,
they are listed in appendix B.

3.7.1.2 Terminal Set Taken together, the terminal set and function set (section
3.7.1.3) provide genetic programming with the set of primitive ingredients from which
to try to construct a solution to the problem at hand.

There are two types of terminals (external points) in the program trees for problems
involving controllers, namely

● terminals representing numerical values, and
● terminals representing time-domain signals.
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In this problem, the numerical parameter value for each signal-processing block
possessing a parameter is established by an arithmetic-performing subtree. 
These arithmetic-performing subtrees consist of one or more arithmetic functions and
one or more constant numerical terminals. This approach for establishing numerical
parameter values is described in section 3.5.5.1.

A constrained syntactic structure enforces the use of one terminal set for the 
arithmetic-performing subtrees and another for all other parts of the program tree.

The terminal set, Taps, for the arithmetic-performing subtrees is

Taps �{�},

where � denotes constant numerical terminals in the range from �1.0 to �1.0.
The terminal set, T, for all other parts of the result-producing branch and auto-

matically defined functions (if any) contains time-domain signals.

T�{REFERENCE_SIGNAL, CONTROLLER_OUTPUT, PLANT_OUTPUT,
CONSTANT_0}.

3.7.1.3 Function Set There are two types of functions in the program trees, namely

● functions used in the arithmetic-performing subtrees for establishing the numerical
values (tuning) of the signal-processing blocks possessing numerical parameters, and

● functions used in all other parts of the result-producing branch and automatically
defined functions (if any).

A constrained syntactic structure enforces the use of one function set for the arith-
metic-performing subtrees and another for all other parts of the program tree.

The function set, Faps, for the arithmetic-performing subtrees is

Faps �{+, �}.

The function set, F, for all other parts of the result-producing branch and auto-
matically defined functions (if any) is

F�{GAIN, INVERTER, LEAD, LAG, LAG2, DIFFERENTIAL_INPUT_
INTEGRATOR, DIFFERENTIATOR, ADD_SIGNAL, SUB_SIGNAL,
ADD_3_SIGNAL, ADF0, ADF1, ADF2, ADF3, ADF4}.

Here ADF0, ADF1, ADF2, ADF3, and ADF4 denote automatically defined 
functions. Automatically defined functions are added by the architecture-altering
operations.

The function set, Fadf, for each automatically defined function consists of Frpb plus
whatever automatically defined functions may be called.

3.7.1.4 Fitness Measure Genetic programming is a probabilistic algorithm that
searches the space of compositions of the available functions and terminals. The
search is guided by a fitness measure. The fitness measure is a mathematical
implementation of the high-level requirements of the problem. The fitness measure is
couched in terms of what needs to be done—not how to do it. The fitness measure is
the main way for communicating the problem’s high-level requirements to the genetic
programming system.
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The fitness measure may incorporate any measurable behavior or characteristic or
combination of behaviors or characteristics. Construction of a fitness measure requires
translating the problem’s high-level requirements into an explicit computation.

All the fitness measures in this book assign a single numerical value to a candi-
date individual in the population.

The fitness measure for the two-lag plant problem (and, indeed, virtually every
control problem) is multiobjective in the sense that it incorporates more than one con-
sideration.

The process of constructing the fitness measure is especially straightforward for
many of the design problems that practicing engineers encounter in their daily activity.
The reasons are that design problems are usually couched in terms of measurable
behaviors or characteristics of the to-be-designed entity and that design problems 
usually explicitly address the tradeoffs that the engineer is willing to accept between
the problem’s (often competing) considerations.

The high-level requirements for the two-lag plant problem are stated in terms of
several different considerations, including

● minimizing the integral of the time-weighted absolute error while the plant output
rises to the level of the reference signal,

● keeping overshoot below 2%,
● ensuring that the controller is robust in the face of significant variation in the plant’s

internal gain and the plant’s time constant,
● limiting the plant’s input to non-extreme values, and
● limiting the system bandwidth of the overall system (i.e., the controller and the

plant).

The process of evaluating the fitness of each individual in the population of indi-
viduals at each generation of the run of genetic programming begins by executing the
program tree (i.e., the result-producing branch and any existing automatically defined
functions). This execution yields an interconnected sequence of signal-processing
blocks—that is, the block diagram for the individual controller.

The plant’s input is then connected to the time-domain output signal produced by
the controller.

Note that no other connection is automatically made in our approach to the synthe-
sis of controllers. In particular, the reference signal is not automatically connected to the
controller even though the controller indeed must be connected to, and use, the refer-
ence signal in order to achieve any reasonable value of fitness for the problem at hand.
Likewise, the plant output is not automatically connected to the controller. Terminals
representing the reference signal and plant output are available in the terminal set. The
evolutionary process is required to discover the utility of these available terminals on its
own. Similarly, we do not build in any explicit comparison of the reference signal and
the plant output. Subtraction is available in the function set. Other means for comparing
two signals (such as division) are also available. The evolutionary process is required to
discover the usefulness of comparing these two signals on its own.

A netlist for the resulting system (i.e., the to-be-evolved controller in combination
with the to-be-controlled plant) is then generated.
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The netlist is then wrapped inside an appropriate set of SPICE commands instruct-
ing SPICE to carry out various types of analyses.

SPICE is also provided with subcircuit definitions to implement all the signal-
processing functions that are contained in the function set or the plant.

The netlist, the SPICE commands, and the subcircuit definitions together constitute
the input to the SPICE simulator (as shown in table 3.1).

The system composed of the controller and the plant is then simulated using our
modified version of the SPICE simulator. For details on our modifications to SPICE, see
section 25.18.4 of Genetic Programming III (Koza, Bennett, Andre, and Keane 1999a).

SPICE is instructed to provide the results of the requested analyses in the form of
tabular output. An interface communicates this information to code that parses the 
tabular output and computes the individual’s fitness.

For the two-lag plant problem, the fitness of a controller is measured using 10 
elements, including

● eight time-domain-based elements measuring the integral of time-weighted
absolute error, robustness, and overshoot, and

● one time-domain-based element measuring the controller’s response when it is
faced with a spiked reference signal, and

● one frequency-domain-based element measuring the reasonableness of the fre-
quency response (bandwidth) of the entire system (i.e., the controller and plant).

The fitness of an individual controller is the sum of the detrimental contributions
of these 10 elements. The smaller the sum, the better.

Note that the genetic programming system receives a single numerical value as a
result of the computation of fitness. It does not receive the 10 separate elements of the
fitness measure.

The first eight elements of the fitness measure together evaluate (i) how quickly
the controller causes the plant to reach the reference signal, (ii) the robustness of the
controller in the face of significant variations in the plant’s internal gain and the
plant’s time constant, and (iii) the success of the controller in avoiding overshoot.

These first eight elements of the fitness measure together represent

● two choices of values of the height of the reference signal, in conjunction with
● two choices of values of the plant’s internal gain, K, in conjunction with
● two choices of values of the plant’s time constant �.

The first reference signal is a step function that rises from 0 to 1 Volt at t�100
milliseconds. The second reference signal is a step function that rises from 0 to 1
microvolt at t�100 milliseconds.

The nominal value of the plant’s internal gain, K, is 1.0. Two values of K (1.0 and
2.0) are considered.

The nominal value of the plant’s time constant, �, is 1.0. Two values of � (0.5 and 1.0)
are considered.

Exposing candidate controllers to different combinations of values of K and �
helps to produce a robust controller.
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It is sometimes possible to construct an open loop controller that exactly cancels
out the effect of the plant for a particular combination of values of K and �. This
process is called pole cancellation or pole elimination. Such a controller is not what
is desired in practice. Multiple combinations of values of K and � help prevent the evo-
lution of a controller that engages in such pole cancellation.

The differing heights of the two step-functions are used to address the nonlinear-
ity caused by the limiter.

For each of these eight fitness cases, SPICE is instructed to perform a transient
analysis in the time domain. The contribution to fitness for each of the eight elements
of the fitness measure is based on the integral of time-weighted absolute error

Here e(t) is the difference (error) at time t between the plant output and the reference
signal. Integration from t�0 to t�9.6 seconds is sufficient to capture all interesting
behavior of any reasonable controller for this problem. B is a factor that is used to nor-
malize the contributions associated with the two step-functions. The multiplication of
each value of e(t) by B makes both reference signals equally influential. Specifically,
B multiplies the difference e(t) associated with the 1-Volt step function by 1 and mul-
tiplies the difference e(t) associated with the 1-microvolt step function by 106. The
integral also contains an additional weighting function, A, that heavily penalizes non-
compliant amounts of overshoot. Specifically, the function A depends on e(t) and
weights all variations up to 2% above the reference signal by a factor of 1.0. The func-
tion A weights overshoots above 2% by a factor of 10.0.

Fitness may be computed in two ways. It may be computed in software after the con-
troller and plant are simulated by SPICE. Alternatively, fitness may be computed by
SPICE at the same time that the controller and plant are simulated. That is, a SPICE sub-
circuit can be constructed for computing ITAE and overshoot. For example, a SPICE
subcircuit can calculate ITAE by employing the IF_POSITIVE function (to detect over-
shoot) along with appropriate other signal processing functions (e.g., integrators, sub-
tractors, adders, multipliers) from the same repertoire used for the controller and plant.

The ninth element of the fitness measure evaluates the response of the controller
when it is faced with a spiked reference signal. The spiked reference signal rises to 
10�9 Volts at time t�0 and persists for 10 nanoseconds. The reference signal is 0 for
all other times. A transient analysis is performed using the SPICE simulator for 121
time values representing times t�0 to t�120 microseconds. If the plant output never
exceeds a fixed limit of 10�8 Volts (i.e., an order of magnitude greater than the pulse’s
magnitude) for any of these 121 time values, then this element of the fitness measure
is zero. However, if the absolute value of plant output goes above 10�8 Volts for any
time t, then the contribution to fitness is 500(0.000120� t), where t is the first time (in
seconds) at which the absolute value of plant output goes above 10�8 Volts. This
penalty is a ramp starting at the point (0, 0.06) and ending at the point (1.2, 0) so 0.06
seconds is the maximum penalty and 0 is the minimum penalty.

The 10th element of the fitness measure is designed to constrain the effect, on the
plant output, of high frequency noise in the reference signal. The constraint imposed

�
9.6

t � 0

t|e(t)|A(e(t))Bdt.
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here is that the closed-loop frequency response of the entire system must lie below a
40 decibel (dB) per decade lowpass curve whose corner is at 100 Hz. A decibel is a
unitless measure of relative voltage that is defined as 20 times the common (base 10)
logarithm of the ratio between two voltages. Thus, for example, 40 decibels corre-
sponds to a ratio of 100-to-1 and 60 decibels corresponds to a ratio of 1,000-to-1. In
other words, the entire system (i.e., the controller plus the plant) must (ideally) be
fully responsive to all low-frequency inputs below 100 Hz and (ideally) progressively
less responsive to inputs above 100 Hz. Specifically, the response at 1,000 Hz should
be no more than 1/100th of that at 100 Hz; the response at 10,000 Hz should be no
more than 1/10,000 of that at 100 Hz; and so forth. If the closed-loop frequency
response is acceptable, this element of the fitness measure will be zero.

This element of the fitness measure is based on 121 frequencies. Specifically,
SPICE is instructed to perform an AC sweep of the reference signal over 20 sampled
frequencies (equally spaced on a logarithmic scale) in each of six decades of fre-
quency between 0.01 Hz and 10,000 Hz. A gain of 0 dB is ideal for the 80 frequency
values in the first four decades of frequency between 0.01 Hz and 100 Hz; however, a
gain of up to �3 dB is acceptable. The contribution to fitness for each of these 80 fre-
quency values is zero if the gain is ideal or acceptable, but 18/121 per fitness case oth-
erwise. The maximum acceptable gain for the 41 frequency values in the two decades
between 100 Hz and 10,000 Hz is given by the straight line connecting (100 Hz,
�3 dB) and (10,000 Hz, �83 dB) on a graph with a logarithmic horizontal axis for
the frequency and a linear vertical axis for the gain (measured in decibels). The con-
tribution to fitness for each of these frequency values is zero if the gain is on or below
this straight line, but otherwise 18/121 per frequency.

Note that many real-world considerations in designing controllers (notably stabil-
ity) are not explicitly incorporated into the fitness measure for this first illustrative
problem. However, later problems in this book will incorporate such considerations.

For this problem, the 10 elements of the fitness measure are combined into a sin-
gle numerical value by simply adding them together. This approach is the simplest
way to create a multiobjective fitness measure. Another relatively simple approach is
to use a lexical fitness measure in which a secondary consideration comes into play
only after the problem’s primary consideration is satisfied.

Numerous alternative approaches are available for multiobjective optimization in
the field of genetic and evolutionary computation (Osyczka 1984; Bagchi 1999; Deb
2001; Coello Coello, Van Veldhuizen, and Lamont 2002). There are two informative
tutorials and extensive bibliographies in the proceedings of the First International
Conference on Evolutionary Multi-Criterion Optimization (Zitzler, Deb, Thiele,
Coello Coello, and Corne 2001). Of course, the issues surrounding multiobjective
optimization are not unique to genetic and evolutionary computation. They are,
for example, extensively addressed in the literature of various other fields (e.g.,
operations research) and in connection with other search methods (e.g., simulated
annealing, gradient methods).

The SPICE simulator is remarkably robust; however, it cannot simulate every 
conceivable controller. In particular, many controllers that are randomly created for
the initial random generation of a run of genetic programming as well as many con-
trollers that are created in later generations by the crossover and mutation operations
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are so pathological that SPICE cannot simulate them. A controller that cannot be sim-
ulated by SPICE is assigned a high penalty value of fitness (108). Such controllers
become worst-of-generation individuals for their generation. The practice of assign-
ing a high penalty value to unsimulatable entities (controllers, circuits, antennas, and
networks of chemical reactions) is used throughout this book.

Past experience with many different types of problems indicates that a small per-
centage of individuals in the population often consume an inordinate percentage of the
computer time during a run of genetic programming. We set a maximum time of 
20 seconds for each SPICE simulation. This same time limit is used for all other prob-
lems in this book involving SPICE. If a simulation takes more than a specified maxi-
mum amount of time, the simulation is terminated and the individual is assigned a
high penalty value of fitness (again, 108). Preliminary testing indicated that the aver-
age time for evaluating the fitness of an individual in this problem is about 5 seconds.

This time limit was originally implemented in order to efficiently allocate available
computer time. However, it should be noted that the simulation of an individual with a
complex structure often consumes an inordinately large amount of computer time.
Thus, the time limit indirectly and imperfectly exerts a certain amount of pressure in
favor of parsimony. Of course, if parsimony is an important objective in a particular
problem, it should simply be included explicitly as an element of the fitness measure.

The reader may feel that the fitness measure for the problem of synthesizing a con-
troller for a two-lag plant is complex. This perceived complexity is especially stark
when this fitness measure is compared to the relatively simple fitness measure for the
tutorial problem (section 2.2.1) involving discovery of a computer program whose
output is equal to the values of the quadratic polynomial x2 �x�1. In that tutorial
problem, fitness was simply the sum of the deviations between a particular program’s
output and the target values.

The reason for the perceived complexity of the fitness measure for the present prob-
lem is that the specifications of a controller are complex. Controller specifications are
inherently complex because they almost always entail multiple considerations, each of
which is inherently technical and many of which directly conflict with one another.

Moreover, it is simply not possible to avoid addressing this multiplicity of con-
flicting technical considerations in designing a practical controller. In particular, one
cannot simplify the problem of designing controllers by separately considering each
element of the fitness measure.

It is easy, for example, to construct a controller that forces the plant’s output up to
a desired target value quickly (i.e., with a very low ITAE) if there is no limit on the
magnitude of the stimulus to the plant and if overshoot is not a consideration.
However, no one is interested in such a controller. In any practical situation, there are
almost always significant constraints on the magnitude of the stimulus and on over-
shoot.

Similarly, it is relatively easy to construct a controller that operates only under
ideal conditions (i.e., a non-robust controller). However, no one is interested in a con-
troller that, like a sphere balanced on the apex of a pyramid, performs correctly only
for an isolated set of ideal conditions, but whose performance degrades catastrophi-
cally under slightly different conditions. Thus, robustness is almost always an impor-
tant consideration in the design of controllers.
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Having said this, it is important to recognize what is, and is not, the origin of the
complexity of the fitness measure. The fitness measure for controller problems are not
complex because of any burden imposed by genetic programming. Fitness measures
for controllers are complex because of the multiplicity of the highly technical and con-
flicting considerations involved in controller design. If a general automated method
other than genetic programming were used to synthesize a controller’s topology and
sizing, the same highly technical and conflicting considerations would have to be
taken into account.

In passing, note that many alternative approaches could have been used in 
constructing the fitness measure for this problem (and other problems of controller
synthesis in this book). Different optimization metrics might have been used. 
For example, the rise time and settling time might have been used in lieu of the inte-
gral of the time-weighted absolute error. There are numerous alternative time-domain
and frequency-domain constraints that might have been incorporated into the fitness
measure. The fitness measure might have additionally considered robustness with
respect to any aspect of the system that may potentially deviate from its ideal value.
Also, the fitness measure might have been constructed so as to impose constraints on
the plant’s internal states by, for example, penalizing extreme values. In addition, the
fitness measure may be constructed to include elements measuring the plant’s behav-
ior in the face of sensor noise added to the plant output (or, if applicable, the plant’s
internal states). The fitness measure might also have been be constructed to include
elements measuring the robustness of the plant’s behavior with respect to changes of
some external variable that affects the plant’s operation (e.g., temperature, the plant’s
production rate, line speed, or flow rate).

3.7.1.5 Control Parameters The population size is 66,000.
The minor control parameters (e.g., the percentages of genetic operations) are

detailed in appendix B for this problem (and all other problems in this book).
All the runs in this book (except for the genetic network problem in chapter 7)

were run on one of two home-built Beowulf-style parallel cluster computer systems.
This particular problem was run on a system consisting of 66 533-MHz DEC Alpha®

units arranged in a two-dimensional 6�11 toroidal mesh. Chapter 17 and appendix B
contain information about the computer system, the migration rates, and other details
of each problem in this book.

3.7.1.6 Termination Criterion and Results Designation For this problem (and all
the other problems in this book), we have no way of knowing, in advance, whether
genetic programming can produce a satisfactory solution. Also, if genetic
programming can produce a satisfactory solution, we do not know, in advance, the
quality of the best solution. Thus, our practice for all problems in this book is to
manually monitor and manually terminate the run. This is accomplished by setting a
very large maximum for the number of generations that are to be run and then
monitoring the progress of the run from generation to generation. Each run is typically
terminated when the values of fitness for numerous successive best-of-generation
individuals appear to have reached a plateau. The single best-so-far individual is then
harvested and designated as the result of the run. There is, of course, no guarantee that
the best-so-far individual will be a satisfactory solution to the problem. And, there is
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no guarantee that a run that appears to have reached a plateau will not produce a
significantly improved result if it were allowed to continue. We do not further
explicitly mention this preparatory step in the remainder of this book.

3.7.1.7 Knowledge Incorporated into the Preparatory Steps Our pursuit of
automated problem-solving proceeds with two distinct (and, to some extent,
conflicting) orientations.

The first orientation is concerned with solving problems while minimizing the
amount of knowledge, information, analysis, and intelligence that is prespecified by
the human user in the form of the preparatory steps prior to launching the run of
genetic programming (sections 3.7.1.1 through 3.7.1.6). (Note that we use the terms
“knowledge” and “domain knowledge” in this book in the same sense that these terms
are ordinarily used in the fields of artificial intelligence, expert systems, and other
knowledge-based methods.) In this first orientation, we are generally interested in
evaluating the ratio of that which is delivered by the automated operation of the 
artificial method to the amount of intelligence that is supplied by the human applying
the method to a particular problem (i.e., the AI ratio discussed in section 1.1.2).

The second orientation is that of a practicing engineer. The engineer generally
wants to solve the problem at hand as quickly and efficiently as possible. Practicing
engineers have little or no interest in minimizing the amount of human input that goes
into solving a problem. Indeed, the reason that they have jobs is to supply knowledge,
analysis, intuition, and creativity.

The first orientation is the dominant consideration in this particular section of this
book. This section analyzes the amount and nature of the knowledge, information,
analysis, and intelligence that is, and is not, supplied to the genetic programming 
system by the human user in connection with the two-lag plant problem.

First, notice that the terminal set (established in section 3.7.1.2) does not reflect
any deep knowledge about the field of control. Genetic programming is a problem-
independent algorithm. Moreover, genetic programming is not a knowledge-based
algorithm. As a result, the genetic programming system does not contain any built-in
knowledge that the reference signal and the plant output are useful inputs to a con-
troller, but that, say, the price of gold and the time of day are not. Thus, the human
user is obligated to include the reference signal and the plant output in the terminal set
in order to provide genetic programming with a sufficient set of ingredients from
which to construct a solution to the problem at hand. Notice that the inclusion of the
reference signal and plant output in the terminal set does not mandate that genetic 
programming actually use either of these terminals in solving a problem of controller
synthesis. These terminals are merely made available to the genetic programming sys-
tem for possible use in solving the problem. Additional extraneous terminals (such as
the price of gold or the time of day) could be made available to genetic programming
provided the terminal set is still sufficient to solve the problem.

In a similar vein, the genetic programming system does not contain any built-in
information about the syntax of the various ingredients of controllers. For example,
the genetic programming system does not have built-in syntactic knowledge that, say,
a gain block in a controller possesses a numerical parameter. Thus, the human user
must inform genetic programming about this syntactic requirement and must include
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numerical terminals in the terminal set for the signal-processing blocks that require
them.

The foregoing information about the reference signal, the plant output, and the
numerical terminals does not constitute deep knowledge about the field of control.
Quite the contrary. This information is entirely platitudinous. Indeed, it is difficult to
imagine how any automated problem-solving method could solve a problem in the
field of control without starting with information (in some form) about the problem’s
primitive elements.

Having said all this, notice that the terminal set used in the two-lag plant problem
is quite general. Once the terminal set is created for the two-lag plant problem, it can
be used (and, indeed, is used) on numerous additional problems of controller synthe-
sis throughout this book. The policy (in this book) of substantial consistency in the 
terminal set for control problems allows the reader to eliminate superficial concerns
that the success of genetic programming depends on a shrewd or fortuitous problem-
specific choice for the terminal set.

Second, note that the function set for the two-lag plant problem (established in
section 3.7.1.3) does not reflect any deep knowledge about the field of control. 
The function set informs the genetic programming system that the to-be-created con-
troller may contain integrators, differentiators, gains, adders, subtractors, leads, lags,
second-order lags, and differential input integrators. Because genetic programming is
a problem-independent algorithm, this elementary domain-specific knowledge about
the field of control is not built into the genetic programming system. Instead, this plat-
itudinous information about controllers must be supplied by the human user. Note that
when the human user puts functions such as integrators and differentiators and the like
into the function set, it is only the symbolic name of the function that is being put into
the function set. No knowledge about the appropriate way to use an integrator or a dif-
ferentiator is supplied to the genetic programming system. Notice that the inclusion of
a function in the function set does not mandate that genetic programming actually use
the function in solving the problem. Also, notice that, once the function set is created
for the present problem, it can be used (and, indeed, is used) on numerous additional
problems of controller synthesis throughout this book.

Third, genetic programming does not have access to a description of the plant for
the present problem (or, indeed, for any subsequent problem in this book). In particu-
lar, the genetic programming system does not have access to a structural description of
the plant in the form of, say, a block diagram. Genetic programming does not have
access to the plant’s transfer function (or the poles or zeroes of the transfer function).
Having said that, the plant is not, of course, absent from the overall process. The plant’s
behavior plays a role in the measurement of the fitness of a particular candidate con-
troller. It does so in the following way: First, the controller (in response to the available
reference signal and available plant output) generates a signal that becomes the plant’s
input. The plant responds to this signal from the controller by producing a plant output.
The overall behavior of the entire system (composed of the controller and plant) is
measured by the problem’s fitness measure (described in section 3.7.1.4). Finally, the
genetic programming system receives a single numerical value (the controller’s fitness).

Fourth, note that the preparatory steps do not mandate that genetic programming
employ feedback. No domain knowledge about the usefulness of feedback is provided
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to genetic programming. The inclusion of PLANT_OUTPUT in the terminal set makes
the plant output available to genetic programming; however, there is no human-
imposed requirement that genetic programming actually use it in synthesizing a 
controller. If the genetically evolved controller happens to use PLANT_OUTPUT, the
result is a closed-loop controller. If the genetically evolved controller does not use
PLANT_OUTPUT, the result is an open loop controller. The reality is that an open
loop controller is unlikely to do a good job in satisfying the problem’s requirements
(notably the robustness requirement). However, genetic programming is left to 
discover the usefulness of feedback (well known to control engineers) on its own
during the run.

Fifth, notice that there is no human-imposed requirement that genetic programming
employ negative feedback (i.e., subtraction of the plant’s output from the reference
signal) in order to synthesize a controller to satisfy the problem’s requirements.
Instead, genetic programming must discover the usefulness of negative feedback on
its own during the run. Negative feedback is indeed very useful for constructing most
practical controllers and for satisfying the high-level requirements of the present prob-
lem. However, no domain knowledge about the usefulness of negative feedback or any
information about the way to implement negative feedback is provided a priori to
genetic programming.

Sixth, notice that the CONSTANT_0 terminal in the terminal set for this problem
is useless. The terminal sets in this book often include extraneous terminals. Such
extraneous terminals make the point that genetic programming can solve a problem
even in the face of inefficient or inept choices by the user concerning the preparatory
steps. If, for example, the radio signal from AM station 740 in San Francisco were
included in the terminal set for this problem, genetic programming would still be able
to solve the problem. However, the efficiency of the run would be reduced because
genetic programming would have to learn to prevent this irrelevantly fluctuating 
signal from influencing the controller’s output.

Seventh, note that the function set contains numerous signal-processing functions
(e.g., LEAD, LAG, LAG2) that will prove to be extraneous to the solution of the 
problem involving the two-lag plant. In addition, many of the other functions in the
function set are duplicative in the sense that they can be realized by another function
or a combination of other functions (e.g., ADD_3_SIGNAL, INVERTER). Moreover,
far more automatically defined functions are available than are needed to solve the
present problem. Most of the function sets in this book include extraneous functions.

The inclusion of extraneous and duplicative functions makes the point that genetic
programming can usually solve a problem (albeit with reduced efficiency) even in the
face of inefficient or inept choices by the human user. The fact that genetic program-
ming can overcome ill-advised choices by the human user concerning the preparatory
steps was observed in our 1992 book (Koza 1992a, section 24.3) and has been subse-
quently noted by numerous other researchers in the field of genetic programming.

Another reason for including extraneous functions is that our choice of an overly
large function set for this introductory problem enables us to use the same function set
for numerous different problems throughout this book. This policy of substantial 
consistency in the function set helps the reader eliminate superficial concerns that the
success of the run depends on a shrewd or fortuitous choice of the function set.
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However, the most important reason for including extraneous functions is that
many potential inventions are never discovered (or their discovery is greatly delayed)
because the thought processes of scientists and engineers are channeled along well-
traveled paths. Sometimes a seemingly extraneous function may enable genetic pro-
gramming to solve a problem in a novel way. One of the virtues of an open-ended
evolutionary method such as genetic programming is that it often unearths solutions
that that might never have occurred to a human scientist or engineer. Thus, for many
problems (particularly if the user is interested in novelty), it may be “too clever by
half” to exclude seemingly extraneous functions in the illusory pursuit of efficiency.

Having said all that, from a practical point of view, if a practicing engineer has
good reason to believe that the inclusion of a particular function in the function set
will only hinder the efficiency of the run of genetic programming, there is no reason
not to exclude that function and take advantage of the resulting increased efficiency.

Eighth, it is important to notice what knowledge is, and is not, associated with the
fitness measure. The fitness measure specifies what the human user desires. The fit-
ness measure translates the human user’s desires into a partial order among candidate
individuals (i.e., an indication that one candidate is better than another). The human
user necessarily employs knowledge about the field of control in order to translate 
the desired behavior into a well-defined calculation. However, it is important to dis-
tinguish between domain knowledge employed by the human user in constructing 
a fitness measure and domain knowledge that is actually available to the genetic 
programming system during the run.

Knowledge about the field of control is assuredly required to translate each part of
this problem’s 10-element fitness measure into a mathematically precise calculation.
In constructing the fitness measure for the two-lag plant problem, the human user first
has to draw on knowledge about the field of control in order to translate the English
imperative phrase, “Get the plant output to match the reference signal quickly,” into a
calculation involving the integral of time-weighted absolute error. Similarly, the
human user has to employ additional knowledge about the field of control in order to
translate the English words “overshoot” and “robustness” into mathematically precise
calculations. However, the genetic programming system does not have access to any
of the domain knowledge used to perform this translation. The only thing that is com-
municated to the genetic programming system concerning each candidate controller is
a single numerical value representing the candidate’s fitness. Distilling a candidate
controller’s behavior during 10 separate time-domain and frequency-domain experi-
ments into a single number does not transfer any usable domain knowledge about the
field of control to the genetic programming system.

Ninth, notice that our use of the SPICE simulator does not confer any domain
knowledge about the field of control on the genetic programming system. In this con-
nection, it is important to distinguish among knowledge possessed by the authors of the
SPICE simulator, knowledge embedded inside the SPICE simulator, and knowledge that
is actually available to the genetic programming system during the run as a consequence
of use of the SPICE simulator. No usable domain knowledge about the field of control
is transferred from SPICE to the genetic programming system for the following reasons.

One reason why SPICE does not confer any domain knowledge about the field of
control on the genetic programming system is that the SPICE simulator simply does
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not contain any built-in knowledge about the field of control in the first place. 
This point becomes obvious when one realizes that SPICE was designed with electrical
circuits, and not controllers, in mind.

A second reason is that SPICE does not do synthesis. The SPICE simulator only
does analysis of the behavior of the already existing entity that is presented to it in the
form of a netlist. SPICE does not synthesize either the topology or the numerical
parameter values of the entity. Instead, SPICE simply ascertains the behavior of the
entity it is instructed to analyze. In fact, SPICE does not even attempt to optimize the
numerical parameter values or topology of the entity that it is given.

Yet another reason becomes clear when one examines what kind of knowledge
SPICE actually does contain. Assuredly, writing the SPICE simulator required con-
siderable human knowledge and expertise. However, the human knowledge embodied
in SPICE concerns how to automatically and efficiently converge on the solution to a
system of equations (with particular emphasis on the nonlinear equations and the inte-
gro-differential equations that represent electrical circuits containing transistors).

A final reason why genetic programming does not acquire any domain knowledge
about the field of control from the SPICE simulator is made clear by realizing that no
simulator of any kind is required in order to make a run of genetic programming in
the first place. As an alternative to simulation, we could interrupt the run of genetic
programming at each moment during each generation when the fitness of a candidate
controller is required. We could then go to a lab bench and construct a physical
embodiment of the to-be-evaluated controller. We could then measure the actual oper-
ational behavior of this physical controller as it attempts to control the given plant. We
could then ascertain the numerical value of fitness for each physical controller. We
could then communicate the controller’s fitness to the run of genetic programming by
going to the keyboard and entering this single numerical value into the computer. This
single numerical value is the only information that the genetic programming system
ever receives about a candidate controller. We would then restart the run of genetic
programming on the computer. In practice, the difference between building thousands
of physical controllers on a lab bench and using a software simulator is a matter of
accuracy, precision, elapsed time, and cost (in terms of effort, time, and money).

No one would argue that merely observing, measuring, and recording the position
and velocity of a falling apple is equivalent to acquiring knowledge (in the sense that
this term is used in the field of artificial intelligence) of Newton’s laws. There is sim-
ply no knowledge contained in such measurements. Similarly, observing, measuring,
and recording the behavior and characteristics of a controller (whether physically
building it or by simulating it with software) does not convey any knowledge about
the field of control engineering to the observer or genetic programming.

Tenth, notice that no domain knowledge about the field of control is incorporated
into the choice of control parameters for the two-lag plant problem. This book contin-
ues the policy of Genetic Programming (Koza 1992a), Genetic Programming II (Koza
1994a), and Genetic Programming III (Koza, Bennett, Andre, and Keane 1999a) of
using a substantially fixed set of default values for most of the minor control parame-
ters on all problems. Appendix B provides details on the control parameters for each
problem in this book. The most common reason for the occasional minor differences in
control parameters is that the probability of performing each of the genetic operations
must be slightly adjusted to reflect the presence or absence of the architecture-altering
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operations. Although we do make occasional other changes in control parameters, these
changes are made on a time scale measured in years and are, in any case, not related to
the exigencies of any particular problem. Although certain particular problems in this
book could possibly be solved more efficiently with different choices of the control
parameters, the current published literature on the topic of optimizing control parame-
ters is, alas, replete with conflicting advice on how to choose control parameters. We
believe that our policy of substantial consistency in the choice of control parameters
helps the reader eliminate superficial concerns that the demonstrated success of genetic
programming depends on shrewd or fortuitous choices of the control parameters.

In summary, the information contained in the preparatory steps in this book
required to launch runs of genetic programming is usually elementary, platitudinous,
and de minimus information about the field involved. In fact, the information con-
tained in the preparatory steps hardly warrants being called “knowledge” or “domain
knowledge” in the sense that those terms are ordinarily used in the fields of artificial
intelligence, expert systems, and other knowledge-based methods.

Of course, a small amount of knowledge is not the same as none. Neither the
authors of this book (nor any other researchers in the field of genetic programming of
whom we are aware) have ever suggested that genetic programming operates without
any domain knowledge whatsoever. What we have said is that the amount of human-
supplied information contained in the preparatory steps for a run of genetic program-
ming is very small. We have also made the point that the amount of domain knowledge
required by the preparatory steps for a run of genetic programming is usually consid-
erably less (and, in any case, certainly not greater) than that required by any other
method of artificial intelligence and machine learning of which we are aware.

We have also said that we know of no automated problem-solving method that
does not start with human-specified primitive elements of some kind, does not incor-
porate some method for specifying what needs to be done to guide the method’s oper-
ation, does not require administrative parameters, and does not contain a termination
criterion of some kind.

Moreover, when we assert that the amount of human-supplied domain knowledge
required by the preparatory steps prior to launching a run of genetic programming is
small, we are not implying that there would be anything wrong if it were large. There
is nothing wrong with a problem-solving method that employs substantial amounts of
domain knowledge.

What we have said is that it is important to soberly evaluate the value added by
an automated problem-solving method. This is accomplished by carefully comparing
that which is supplied by the human employing the method and that which is actually
delivered by the automated operation of the method. High added value can be realized
in many different ways. An automated method may start with a small amount of infor-
mation and deliver a significant result. Or, an automated method may start with a sub-
stantial amount of domain knowledge and produce a correspondingly greater result.

Given our dual orientation (mentioned at the beginning of this section), the prac-
ticing engineer who is primarily interested in solving problems should bear with us
while we belabor seemingly hair-splitting questions such as the amount of domain
knowledge contained in a particular function and terminal set; whether negative feed-
back is, or is not, handed to genetic programming on a silver platter; whether the
receipt by genetic programming of a single numerical value (fitness) is somehow
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equivalent to transferring domain knowledge about the field of control engineering to
the genetic programming system; whether use of simulation software constitutes a
transfer of domain knowledge to the genetic programming system; or whether some
minor change in the choice of control parameters or minor change in technique indi-
rectly provides useful knowledge to a run of genetic programming. These issues
(largely irrelevant to the practicing engineer interested in solving a particular problem)
are important in sharpening the boundary between that which is delivered by genetic
programming and that which is supplied by the human user.

3.7.2 Results for the Two-Lag Plant

A run of genetic programming starts with the creation of an initial population of indi-
vidual program trees. Each program tree in the population is composed of the func-
tions and terminals established by the preparatory steps. Each program tree has the
architecture established by the preparatory steps. In addition, each program tree (in
this book) is constructed in accordance with a constrained syntactic structure.

The initial random population of a run of genetic programming is a blind random
parallel search of the space of computer programs defined by the preparatory steps.
For non-trivial problems, the individuals in the population at generation 0 are invari-
ably poor in terms of satisfying the problem’s requirements.

Some of the randomly created controllers in the initial population pay no attention
to what is happening (i.e., the plant output) or what is desired (i.e., the reference sig-
nal). For example, the only time-domain signal processed by the following individual
is the useless CONSTANT_0 time-domain signal (in bold).

(LEAD (LAG (LAG2 (CONSTANT_0) 0.991705 0.333394)
(+ 0.403004 �0.438887)) (+ (+ 0.720283 0.273918)
(+ 0.482394 �0.075069)))

The controller below considers the plant output, but not the reference signal.

(INVERTER PLANT_OUTPUT)

The controller below considers the reference signal, but not the plant output.

(DIFFERENTIATOR (DIFFERENTIATOR REFERENCE_SIGNAL))

The controller below contains an internal feedback loop in which the controller’s
own output (in bold) is an input to the controller itself. However, this controller
ignores both the plant output and reference signal.

(LAG2 (DIFFERENTIATOR (DIFFERENTIATOR CONTROLLER_
OUTPUT))(� (+ 0.335119 0.720933)(� 0.724019 0.773270))
�0.194707)

Other controllers from generation 0 consider the plant output and the fed-back
controller output (but not the reference signal) or the reference signal and the fed-back
controller output (but not the plant output).

Some of the program trees contain hundreds of points whereas others are small.
Although the results of blind random search are invariably poor for non-trivial

problems, some individuals are better than others.
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The best individual from generation 0 of our one run of this problem has a fitness
of 8.26. The LISP S-expression for this individual is shown below. For brevity, the
(equivalent) value 62.8637 replaces the 29-point arithmetic-performing subtree that
establishes the amplification factor for the GAIN function.

(GAIN
(DIFFERENTIATOR
(DIFFERENTIAL_INPUT_INTEGRATOR
(LAG REFERENCE_SIGNAL 0.708707)

PLANT_OUTPUT
)

)
62.8637)

One of the noteworthy features of the best-of-generation individual from genera-
tion 0 is that it (unlike many of its cohorts in generation 0) considers both what is 
happening (i.e., the plant output) and what is desired (i.e., the reference signal).

Because the differentiation offsets the differential input integration, the net effect
is that the plant output is subtracted from a lagged reference signal and then multiplied
by 62.8637.

Although this controller does not employ conventional negative feedback, it bears
some resemblance to negative feedback. If the LAG function were not present, this
individual would be equivalent to the most rudimentary part of a PID controller,
namely the proportionate (P) part.

In spite of its shortcomings, this rudimentary and flawed controller outperforms
the 65,999 other individuals in generation 0 on the problem at hand.

This individual (along with other individuals from generation 0) provides the starting
point for the evolutionary process that will unfold during subsequent generations of the
run. In particular, the subtraction of the plant’s output from the lagged reference signal
provides a small toehold from which true negative feedback may later evolve. Moreover,
rudimentary P-type control provides a foundation on which more sophisticated types of
control (e.g., D-type control, I-type control) may be added later during the run.

Generation 1 (and each subsequent generation of a run of genetic programming)
is created from the population of the preceding generation by performing the repro-
duction, crossover, mutation, and architecture-altering operations on individuals
selected probabilistically from the population on the basis of fitness.

The evolutionary process exploits the small differential advantages possessed 
by the more fit individuals in the population. Over successive generations, both the
average fitness of all individuals in the population and the fitness of the best individ-
ual in the population tend to improve.

Sixty percent of the controllers in generation 0 cannot be simulated by SPICE.
These unsimulatable controllers receive a high penalty value of fitness (108) and
thereby immediately become the worst-of-generation controllers for their generation.
Significantly, the percentage of unsimulatable controllers drops to 14% by generation
1 and 8% by generation 10. That is, the vast majority of the offspring created by genetic
programming are simulatable after just a few generations. This phenomenon (reflective
of the cumulative effect of the pressure exerted by the selection of individuals based on
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fitness) is typical of all other runs of problems of controller synthesis in this book. In
fact, this same phenomenon (of increased simulatability) has been repeatedly
observed in connection with problems of automatic synthesis of electrical circuits
(Koza, Bennett, Andre, and Keane 1999a and chapter 4 of this book).

The level of fitness for the best and average individuals of generation 0 provides
a useful baseline for comparing the progress that occurs in subsequent generations.

The best-of-run individual emerges in generation 32. It has a near-zero fitness of
0.1639.

Table 3.2 shows the contribution of each of the 10 elements of the fitness measure
to the total fitness (0.1639) of the best-of-run controller from generation 32 for the
two-lag plant problem. The step size is in Volts. The time constant, �, is in seconds.

Figure 3.8 shows the best-of-run controller in the form of a block diagram. In this
figure, R(s) is the reference signal; Y(s) is the plant output; and U(s) is the controller’s
output.

Figure 3.9 compares the time-domain response of the best-of-run controller 
(triangles in the figure) to a 1-Volt unit step with the time-domain response (circles)
of the Dorf and Bishop controller. This comparison is made with K�1 and ��1. The
best-of-run controller causes the plant output to reach a maximum value of 1.0106 at
369 milliseconds (1.06% overshoot). The Dorf and Bishop controller causes the plant
to reach a maximum value of 1.020054 at 577 milliseconds (2% overshoot).
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Table 3.2 Contributions of the 10 elements of the fitness measure for
the best-of-run controller for the two-lag plant problem

Internal Time 
Step size gain, K constant, � Fitness

1 1 1 1.0 0.0220
2 1 1 0.5 0.0205
3 1 2 1.0 0.0201
4 1 2 0.5 0.0206
5 10�6 1 1.0 0.0196
6 10�6 1 0.5 0.0204
7 10�6 2 1.0 0.0210
8 10�6 2 0.5 0.0206
9 Spiked reference 

signal 0.0
10 AC sweep 0.0

Total fitness 0.1639

1+ 0.168s

1

1

R(s)

Y(s)

8.15

U(s)

1 + 0.156s
1 + 0.0385s

1 + 0.0515s 1 + 0.0837s

1
s

918.8

–1

–1–1

Figure 3.8 Best-of-run controller for the two-lag plant problem.



The curves for all other combinations of values of K and � are similar to figure 3.9
in that they favor the genetically evolved controller.

A practical controller must have certain behaviors and characteristics above and
beyond those explicitly incorporated into the fitness measure for this particular prob-
lem involving a two-lag plant. For example, a controller should be reasonably oblivi-
ous to disturbances that may be added to the controller output. That is, the system
should reject disturbance.

Figure 3.10 compares the effect of disturbance on the best-of-run controller (tri-
angles) and the controller (circles) presented in Dorf and Bishop. This comparison is
made with K�1 and ��1. The upper curve in the figure is the time-domain response
to a 1-Volt disturbance signal for the Dorf and Bishop controller. The upper curve has
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Figure 3.9 Comparison of the time-domain response to a 1-Volt step input for the best-of-run
controller (triangles) and the Dorf and Bishop controller (circles) for the two-lag plant problem.
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Figure 3.10 Comparison of the time-domain response to a 1-Volt disturbance signal of the
genetically evolved controller (triangles) and the Dorf and Bishop controller (circles) for 
the two-lag plant.



a peak value of response to a 1-Volt disturbance signal of 5,775 microvolts. The lower
curve (whose peak is only 644 microvolts) applies to the best-of-run controller from
generation 32. That is, the genetically evolved controller rejects disturbance more
effectively than the Dorf and Bishop controller.

Table 3.3 compares the performance (averaged over the eight combinations of val-
ues for K, �, and the step size of the reference signal) of the best-of-run controller and
the Dorf and Bishop controller.

As can be seen in table 3.3, the best-of-run controller is 2.42 times better than the
Dorf and Bishop controller as measured by the integral of the time-weighted absolute
error (the criterion used by Dorf and Bishop) and is 8.97 times better in terms of sup-
pressing the effects of disturbance at the plant input.

The rise time for the best-of-run controller is 296 milliseconds. This is 64% of the
rise time for the Dorf and Bishop controller (465 milliseconds).

The settling time for the best-of-run controller is 304 milliseconds. The Dorf and
Bishop controller first reaches the 98% level at 477 milliseconds; however, it rings and
subsequently falls below the 98% level. In fact, it does not settle until 944 millisec-
onds. The settling time for the genetically evolved controller is 32% of that for the
Dorf and Bishop controller.

The system bandwidth is the frequency of the reference signal above which the
plant output is attenuated by at least a specified degree (3 dB here) in comparison to
a specified low frequency (e.g., DC or a very low frequency). The bandwidth of both
controllers (approximately 1 Hz) is well below the acceptable level.

All the program trees in generation 0 consist of one result-producing branch (but
no automatically defined functions). During the run, the architecture-altering opera-
tions may add automatically defined functions into particular program trees in the
population.

The best-of-run individual from generation 32 has one result-producing branch
and three automatically defined functions. The result-producing branch has 145 points
(i.e., functions and terminals). The result-producing branch contains one occurrence
of the REFERENCE_SIGNAL. In fact, this occurrence of REFERENCE_SIGNAL is
the sole means of making the reference signal available to the genetically evolved con-
troller. Although the result-producing branch contains two occurrences of
PLANT_OUTPUT (in bold), these two occurrences of the plant’s output are semanti-
cally irrelevant because they are subtracted from each other. The result-producing
branch calls on automatically defined function ADF0 once (underlined).
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Table 3.3 Comparison of performance of the best-of-run controller and the Dorf
and Bishop controller for the two-lag plant problem

Genetically Dorf and Bishop
Units evolved controller controller

ITAE millivolt sec2 19 46
Disturbance sensitivity microvolts/Volt 644 5,775
Rise time milliseconds 296 465
Settling time milliseconds 304 944
System bandwidth (3 dB) Hertz 1.5 1



(GAIN (SUB_SIGNAL (ADD_SIGNAL (INVERTER (ADD_SIGNAL
(INVERTER (LAG REFERENCE_SIGNAL �0.774818)) (ADF0))) (LEAD
(DIFFERENTIATOR (LEAD (DIFFERENTIAL_INPUT_INTEGRATOR
PLANT_OUTPUT PLANT_OUTPUT) (� 0.553103 (� �0.979905
0.159026)))) (� (� (� 0.338199 0.958669) (� �0.719664
�0.357372)) (� 0.068355 0.059952)))) (INVERTER (LAG (GAIN
(LAG2 (LAG2 (CONSTANT_0) �0.743520 0.480632) (� �0.130435
0.628778) (� �0.627210 �0.206744)) (� (� 0.359068 (� (�
0.127450 0.661750) (� 0.799922 0.546706))) (� 0.136226
0.841644))) (� (� (� �0.047550 �0.930215) (� �0.381294
�0.218464)) (� (� 0.185214 0.661750) (� (� �0.376335
(� �0.695582 �0.774818)) 0.287808)))))) (� (� (� (� (�
(� 0.338199 0.958669) (� �0.719664 �0.357372)) (� (� (�
�0.047550 (� �0.078200 (� (� (� 0.356728 �0.569439)
0.223178) (� 0.287808 (� �0.545314 �0.357372)))))
0.099732) (� (� �0.271322 0.197696) �0.774818))) (� (�
(� 0.579470 0.727545) (� �0.058393 �0.058393)) (� (�
0.059952 0.139516) (� 0.127450 0.672953)))) (� (� (�
(� 0.002680 0.779938) (� 0.808460 0.786740)) (� (� 0.836821
0.036504) (� �0.039999 �0.381294))) 0.127450)) 0.287106))

Automatically defined function ADF0 consists of only one point. It is merely a call
to ADF2.

(ADF2)

Automatically defined function ADF2 has 41 points. It contains a reference to the
PLANT_OUTPUT (in bold). ADF2 is, in fact, the sole means of making the plant out-
put available to the genetically evolved controller.

(LEAD (ADD_SIGNAL (GAIN (DIFFERENTIAL_INPUT_INTEGRATOR (LEAD
(LEAD PLANT_OUTPUT (+ (+ 0.331753 �0.813045) (� �0.448149
0.359068))) (+ �0.719664 �0.357372)) (ADF1)) (� (�0.773578
0.059952) �0.197462)) (CONSTANT_0)) (+ �0.961429 (� (+
�0.629573 0.801392) (+ �0.495284 (� �0.130435 (� (+
�0.310777 �0.988344) (+ 0.601379 �0.649952)))))))

Automatically defined function ADF1 has 13 points. However, ADF1 (below) is
not called by any other branch and therefore contributes nothing to the genetically
evolved controller.

(LAG REFERENCE_SIGNAL (+ (+ �0.390529 (+ (� �0.382748
�0.853353) (� �0.558397 �0.021241))) �0.349639))

As previously mentioned, the LISP S-expression for each individual in the popu-
lation at each generation of the run is converted into a netlist that is submitted to the
SPICE simulator.

The input to the SPICE simulator is a text file. Table 3.4 shows the SPICE input
file (containing the netlist and certain commands) for the best-of-run individual for the
two-lag plant problem. This table does not include the subcircuit definitions previ-
ously shown in table 3.1.

Automatic Synthesis of Controllers 107



108 Genetic Programming IV

Table 3.4 SPICE input file for the best-of-run controller for the 
two-lag plant problem

X1 6 2000 16 LAG_SUBCKT
V2 2000 0 0.167951V
B3 17 0 V=�V(16)
B4 18 0 V=V(17)+V(11)
B5 19 0 V=�V(18)
X6 2 2 20 DII_SUBCKT
X7 20 2001 21 LEAD_SUBCKT
V8 2001 0 49.2078V
X9 21 22 DIFFB
X10 22 2002 23 LEAD_SUBCKT
V11 2002 0 232.007V
B12 24 0 V=V(19)+V(23)
X13 0 2003 2004 25 LAG2_SUBCKT
V14 2003 0 0.180501V
V15 2004 0 3.02435V
X16 25 2005 2006 26 LAG2_SUBCKT
V17 2005 0 3.15024V
V18 2006 0 0.14657V
B19 27 0 V=V(26)*18.2863
X20 27 2007 28 LAG_SUBCKT
V21 2007 0 0.0128456V
B22 29 0 V=�V(28)
B23 30 0 V=V(24)�V(29)
B24 1 0 V=V(30)*918.803
X25 6 2008 12 LAG_SUBCKT
V26 2008 0 0.156057V
X27 2 2009 33 LEAD_SUBCKT
V28 2009 0 0.0514625V
X29 33 2010 34 LEAD_SUBCKT
V30 2010 0 0.0837459V
X31 34 12 35 DII_SUBCKT
B32 36 0 V=V(35)*8.14868
B33 37 0 V=V(36)+V(0)
X34 37 2011 11 LEAD_SUBCKT
V35 2011 0 0.0385089V
X36 1 2012 2013 2014 LIMIT_SUBCKT
B37 2015 0 V=V(2012)* 1
X38 2015 2016 3 LAG_SUBCKT
X39 3 2016 2 LAG_SUBCKT
V40 2016 0 DC 1
V41 2013 0 DC 40
V42 2014 0 DC �40
X43 6 2 6 7 ITAE_SUBCKT
VP44 6 0 PULSE(0.0 1

+ 0.1 0.001 0.001 10 15)
.TRAN 0.08 9.6 0.0 0.04 UIC
.PLOT TRAN V(7)
.END



The genetically evolved solution to this problem was evolved on the first and only
run of the problem (after debugging runs).

As in most problems in this book, most of the computer time was consumed by
the evaluation of fitness of candidate individuals in the population—not the genetic
operations or other executional steps of genetic programming. The fitness evaluation
(involving 10 separate SPICE simulations) averaged 2.57�109 computer cycles 
(4.8 seconds) per individual (on a 533-MHz computer).

In summary, we have demonstrated that genetic programming can be used to auto-
matically create both the parameter values (tuning) and the topology for a controller
for the two-lag plant problem.

The genetically evolved controller can be most directly compared to the controller
developed by Dorf and Bishop by viewing the controller as a pre-filter and a com-
pensator. Figure 3.11 presents a model for the entire system that is helpful in making
this comparison. In this figure, the reference signal, R(s), is fed through pre-filter
Gp(s). The plant has one output, namely Y(s). The plant output, Y(s), is passed through
H(s) and then subtracted, in continuous time, from the pre-filtered reference signal
emanating from Gp(s). The difference (error) is fed into the compensator Gc(s). Gc(s)
has one input (the difference) and one output U(s). Disturbance, D(s), is added to the
output, U(s), of compensator Gc(s). The resulting sum is subjected to a limiter (in the
range between �40 and �40 Volts) prior to entering the plant.

For the Dorf and Bishop controller, H(s)�1 and the transfer function for the pre-
filter, Gp � dorf(s), is

The transfer function for the PID compensator, Gc � dorf(s), of the Dorf and Bishop
controller is

.

After applying standard block diagram manipulations, the transfer function for the
genetically evolved best-of-run controller from generation 32 can also be expressed as
a transfer function for a pre-filter and a transfer function for a compensator. The trans-
fer function for the pre-filter, Gp32(s), for the best-of-run controller is

.Gp32(s) �
1(1� 0.1262s)(1� 0.2029s)

(1 � .03851s)(1 � .05146s)(1 � .08375)(1 � .1561s)(1 � .1680s)

Gc-dorf(s) �
12(42.67 � 11.38s � s2)

s

Gp-dorf(s) �
42.67

42.67 � 11.38s � s2
.
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For the best-of-run controller, H(s)�1 and the transfer function for the compen-
sator, Gc32(s), is

.

The s3 term (in conjunction with the s in the denominator) indicates a second
derivative. In fact, the evolved compensator is a PID-D2 (proportional, integrative,
derivative, and second derivative) controller.

Although derivatives are not helpful in controlling certain plants (because they
may amplify high frequency effects such as noise), their use is appropriate here
because there are no such possibly disadvantageous effects in this particular problem.

For additional information on this problem, see Koza, Keane, Yu, Bennett,
Mydlowec 2000 and Koza, Keane, Bennett, Yu, Mydlowec, and Stiffelman 1999.

Dorf and Bishop solved this problem by seeking the parameter values (tuning) for
a PID-type controller. A PID controller is a good type of controller for a two-lag plant
(and, indeed, many other plants).

In contrast, the run of genetic programming was not limited to considering only
PID-type controllers. The consequence of this more open-ended approach was that
genetic programming produced a PID-D2 controller.

Genetic programming is a search that is guided by the necessities articulated by
the problem’s fitness measure. When performing the preparatory steps for the run of
genetic programming of this problem, the human user did not preordain that the first
derivative, much less a second derivative, should be incorporated into the to-be-
created controller. The evolutionary process discovered that a second derivative was
helpful in achieving a better value of fitness.

Similarly, the human user did not preordain any particular topological arrange-
ment of proportional, integrative, derivative, second derivative, or other functions
within the to-be-created controller. Instead, genetic programming automatically cre-
ated a controller for the problem without the benefit of any user-supplied information
concerning the total number of processing blocks to be employed in the controller, the
type of each processing block, the topological interconnections between the blocks,
the values of the numerical parameters for the blocks, or the existence of internal feed-
back (none in this instance) within the controller.

Genetic programming starts each run as a new adventure and is free to innovate in
any manner that may satisfy the problem’s high-level requirements. Genetic pro-
gramming is not encumbered by the preconceptions that often channel human think-
ing along well-trodden paths. Human engineers tend to look at problems in particular
ways—often based on ideal mathematical models (e.g., the PID controller topology).
In contrast, genetic programming doesn’t know anything about the problem’s under-
lying mathematics. It simply tries to produce a sequence of incrementally improved
results. Thus, we frequently see creative things come out of the evolutionary process.
In this particular run, genetic programming rediscovered the PID-D2 controller. As
will be seen in numerous later places in this book, genetic programming often dis-
covers solutions that might never occur to human designers.

�
7487.05 � 1300.63s � 71.2511s2 � 1.2426s3

s

Gc32(s) �
7487(1 � .03851s)(1 � .05146s)(1 � .08375s)

s
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3.7.3 Human-Competitiveness of the Result for the Two-Lag Plant Problem

Harry Jones of The Brown Instrument Company of Philadelphia patented the PID-D2
controller topology in 1942. The PID-D2 controller was an improvement over the PID
controller patented by Callender and Stevenson in 1939 (discussed in section 3.3).

As Jones (1942) states,

“A…specific object of the invention is to provide electrical control apparatus…
wherein the rate of application of the controlling medium may be effected in accor-
dance with or in response to the first, second, and high derivatives of the magni-
tude of the condition with respect to time, as desired.”

Claim 38 of the Jones 1942 patent states,

“In a control system, an electrical network, means to adjust said network in
response to changes in a variable condition to be controlled, control means respon-
sive to network adjustments to control said condition, reset means including a reac-
tance in said network adapted following an adjustment of said network by said first
means to initiate an additional network adjustment in the same sense, and rate con-
trol means included in said network adapted to control the effect of the first men-
tioned adjustment in accordance with the second or higher derivative of the
magnitude of the condition with respect to time.”

Because the best-of-run controller from generation 32 has proportional, integra-
tive, derivative, and second derivative blocks, it infringes the 1942 Jones patent. That
is, the genetically evolved controller reads on all elements of claim 38.

The legal criteria for obtaining a U.S. patent are that the proposed invention be
“new,” “useful,” “improved,” and that

“…the differences between the subject matter sought to be patented and the prior
art are such that the subject matter as a whole would [not] have been obvious at the
time the invention was made to a person having ordinary skill in the art to which
said subject matter pertains.” (35 United States Code 103a)

Referring to the eight criteria in table 1.2 for establishing that an automatically 
created result is competitive with a human-produced result, the rediscovery by genetic
programming of the PID-D2 controller satisfies the following two of the eight criteria:

(A) The result was patented as an invention in the past, is an improvement over a
patented invention, or would qualify today as a patentable new invention.

(F) The result is equal to or better than a result that was considered an achievement
in its field at the time it was first discovered.

The rediscovery by genetic programming of the PID-D2 controller came about six
decades after Jones received a patent for his invention. Nonetheless, the fact that the
original human-designed version satisfied the Patent Office’s criteria for patent-wor-
thiness means that the genetically evolved duplicate would also have satisfied the
Patent Office’s criteria for patent-worthiness (if only it had arrived earlier than Jones’
patent application).
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The fact that genetic programming rediscovered both the topology and sizing of a
controller that was unobvious “to a person having ordinary skill in the art” establishes
that this evolved result satisfies Arthur Samuel’s criterion (1983) for artificial intelli-
gence and machine learning:

“[T]he aim [is]…to get machines to exhibit behavior, which if done by humans,
would be assumed to involve the use of intelligence.”

Note that a PID-D2 controller is also evolved in section 9.1.2.

3.7.4 AI Ratio for the Two-Lag Plant Problem

In section 1.1.2, we mentioned that an automated problem-solving method may be
measured by the ratio of that which is delivered by the automated operation of the arti-
ficial method to the amount of intelligence that is supplied by the human applying the
method to a particular problem.

What is the AI ratio for the solution produced by genetic programming to the two-
lag plant problem?

Ascertaining the AI ratio for this problem requires measuring the amount of 
“A” that is delivered by the automated problem-solving method (i.e., genetic 
programming) in relation to the amount of “I” that is supplied by the human user (i.e.,
in the form of the preparatory steps prior to the launch of the run of genetic program-
ming). In this section (and other similar sections throughout this book), “A” and “I”
are evaluated in a qualitative way.

Regarding the amount of “A,” the result produced by genetic programming is 
considered to be human-competitive for the two reasons mentioned in the previous
section (section 3.7.3). Because the result is human-competitive, there is a high
amount of “A” in the numerator of the AI ratio.

Measuring the amount of “I” requires the discipline of drawing a bright line
between that which is delivered by the artificial system and that which is supplied by
the intelligent human user. We imposed this discipline in section 3.7.1 where we
detailed the preparatory steps for this problem.

As discussed in section 3.7.1.7, we did not employ any deep knowledge about
controllers in selecting the terminals and functions to be used by genetic programming
in synthesizing the design of the required controller.

The terminal set (established in section 3.7.1.2) permits the construction of any
controller whose input consists of a reference signal, the plant output, and the con-
troller’s own output.

The function set (established in section 3.7.1.3) permits the construction of any
controller composed of the signal-processing blocks ordinarily found in controllers
(e.g., integrators, differentiators, gains, adders, subtractors, leads, lags, and differen-
tial input integrators).

Certainly no knowledge of 1939 Callender and Stevenson patent on the PID con-
troller, the 1942 Jones patent on the PID-D2 controller, or any other significant
domain knowledge from the field of control was employed in these two preparatory
steps. In fact, the terminal set and the function set incorporate only platitudinous infor-
mation about controllers.
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The fitness measure (section 3.7.1.4) is constructed directly from the high-level
statement of the problem’s requirements. The statement of the problem calls for min-
imizing the integral of the time-weighted absolute error, keeping overshoot small,
achieving robustness in the face of significant variation in the plant’s internal gain and
time constant, limiting the plant’s input to non-extreme values, and limiting the sys-
tem bandwidth.

The remaining preparatory steps (concerning control parameters, the termination
criterion, and the method of result designation) were unremarkable administrative
steps.

In summary, the preparatory steps were straightforward and uncomplicated trans-
lations of a high-level statement of the problem. That is, the human user supplied only
de minimus knowledge about controllers. Hence, there is only a small amount of “I”
in the denominator of the AI ratio.

The high amount of “A” in the numerator of the AI ratio in conjunction with the
small amount of “I” in the denominator means that the AI ratio for the genetically
evolved solution to the two-lag plant problem is high.

3.8 Three-Lag Plant

A three-lag plant is similar to the plant of figure 3.7, except that there is one additional
lag block. The transfer function of the three-lag plant is

,

where K is the plant’s internal gain and�is the plant’s time constant.
The problem in this section is to create both the topology and tuning for a robust

controller for a three-lag plant that satisfies the following high-level requirements:

● The plant output is to reach the level of the reference signal while minimizing the
integral of the time-weighted absolute error.

● The overshoot in response to a step input is to be less than 2%.
● The controller is to be robust in the face of significant variation in the plant’s internal

gain and the plant’s time constant. In this problem, the nominal value of the plant’s
internal gain, K, is 1.0 and the nominal value of the plant’s time constant, �, is 1.0.

● The input to the plant is limited to the range between �10 and �10 Volts.

The reader may recall that the fitness measure for the two-lag plant problem 
(section 3.7.1.4) did not explicitly include measuring disturbance rejection. Nonetheless,
the genetically evolved controller had a good value of disturbance rejection (section
3.7.2). In order to demonstrate the ease of combining optimization requirements, time-
domain constraints, frequency-domain constraints, and robustness requirements into a
fitness measure, the fitness measure for this problem is slightly different from that used
on the two-lag plant in that it explicitly includes disturbance rejection.

Åström and Hägglund (1995, page 225) developed a PID compensator preceded
by a lowpass pre-filter that delivers credible performance on this problem.

G(s) �
K

(1 � �s)3
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As will be seen (section 3.8.2), the controller produced by genetic programming
is better than 7.2 times as effective as the Åström and Hägglund controller for this
problem as measured by the integral of the time-weighted absolute error. Relative to
the Åström and Hägglund controller, the genetically evolved controller has only 50%
of the rise time, has only 35% of the settling time, and is 92.7 dB better in terms of
suppressing the effects of a step disturbance at the plant input.

3.8.1 Preparatory Steps for the Three-Lag Plant

3.8.1.1 Program Architecture The architecture of the to-be-evolved program is
automatically determined during the run of genetic programming using the
architecture-altering operations in the manner described in section 3.7.1.1 for the two-
lag plant problem.

3.8.1.2 Terminal Set Except for the value-setting subtrees, the terminal set for
every part of the result-producing branch and the automatically defined functions is
the same as that used in the two-lag plant described in section 3.7.1.2.

The numerical parameter value for each signal-processing function possessing a
parameter is established by a value-setting subtree containing a single perturbable
numerical value. This approach for establishing numerical parameter values is described
in section 3.5.5.2. That is, the terminal set, Tvss, for the value-setting subtrees is

Tvss �{�p},

where �p denotes a perturbable numerical value.
Our use of this approach (which differs from the approach used for the two-lag

plant problem in section 3.7.1.2) reflects the chronology of our work and the evolu-
tion of our thinking about the efficiency of establishing numerical parameter values
(as opposed to any special requirement or exigency of the present problem).

3.8.1.3 Function Set The function set for every part of the result-producing branch
and the automatically defined functions for this problem is the same as that used in
the two-lag plant problem (section 3.7.1.3), except that the function set for the value-
setting subtrees is empty (because each value-setting subtree contains only a single
perturbable numerical value).

3.8.1.4 Fitness Measure Fitness is measured using 10 elements, including

(1) eight time-domain-based elements based on the integral of time-weighted
absolute error, robustness, and overshoot,

(2) one time-domain-based element measuring the controller’s response when it is
faced with a spiked reference signal, and

(3) one time-domain-based element measuring disturbance rejection.

The fitness of an individual controller is the sum of the (detrimental) contributions
of these 10 elements. The smaller the sum, the better.

The first nine elements are the same as for the two-lag plant problem (section 3.7.1.4).
The 10th element of the fitness measure for the present problem is based on 

disturbance rejection. This element is computed based on a time-domain analysis that
runs for 9.6 seconds. With the reference signal being held at a value of 0, a disturbance
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signal is added to the controller’s output at time t�0. The disturbance signal is a unit
step function. The resulting disturbed signal then becomes the input to the plant. The
detrimental contribution to fitness is the absolute value of the largest single difference
between the plant output and the reference signal (which is invariant at 0 throughout).

The number of hits is defined as the number of elements (0 to 6) for which the
individual controller has a smaller (better) contribution to fitness than the controller
designed using the techniques of Åström and Hägglund (1995). Note that Åström
and Hägglund start by taking measurements of the plant in the field (as opposed to
mathematically analyzing the plant’s transfer function).

3.8.1.5 Control Parameters The population size is 66,000.
As shown in appendix B, the use of perturbable numerical values in the value-

setting subtrees (section 3.8.1.2) slightly changes the percentages of the various
genetic operations.

3.8.2 Results for the Three-Lag Plant

The best individual from generation 0 of our one (and only) run of this problem has a
fitness of 14.35.

The best-of-run controller emerges in generation 31 and has a near-zero fitness of
1.14.

Figure 3.12 shows the best-of-run controller from generation 31 in the form of a
block diagram. R(s) is the reference signal, Y(s) is the plant output, and U(s) is the
controller’s output.

Table 3.5 shows, for each of the eight combinations of step size, internal gain, K,
and the time constant, �, the values of disturbance rejection (in microvolts output from
the plant per disturbance Volt), the integral of time-weighted error (in Volt-second2),
the closed-loop system bandwidth (in Hertz), the rise time (in seconds) required to
reach 90% of the reference signal, and the settling time in seconds (2%) for the best-
of-run controller from generation 31 for the three-lag plant.

Table 3.6 shows (for each of the eight combinations of step size, internal gain, K,
and time constant, �) the corresponding values for the PID solution designed using the
techniques of Åström and Hägglund (1995) for the three-lag plant.
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Figure 3.12 Best-of-run controller for the three-lag plant.
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Table 3.5 Characteristics of the best-of-run controller for the three-lag plant problem

Step size K � Disturbance ITAE Bandwidth Rise time Settling time

1 1 1.0 4.3 0.360 0.72 1.25 1.87
1 1 0.5 4.3 0.190 0.72 0.97 1.50
1 2 1.0 4.3 0.240 0.72 0.98 1.39
1 2 0.5 4.3 0.160 0.72 0.90 1.44
10�6 1 1.0 4.3 0.069 0.72 0.64 1.15
10�6 1 0.5 4.3 0.046 0.72 0.53 0.97
10�6 2 1.0 4.3 0.024 0.72 0.34 0.52
10�6 2 0.5 4.3 0.046 0.72 0.52 0.98
Average 4.3 0.142 0.72 0.77 1.23

Table 3.6 Characteristics of the Åström and Hägglund PID solution to the three-lag plant
problem

Step size K � Disturbance ITAE Bandwidth Rise time Settling time

1 1 1 1.0 186,000 2.6 0.248 2.49 6.46
2 1 1 0.5 156,000 2.3 0.112 3.46 5.36
3 1 2 1.0 217,000 2.0 0.341 2.06 5.64
4 1 2 0.5 164,000 1.9 0.123 3.17 4.53
5 10�6 1 1.0 186,000 2.6 0.248 2.49 6.46
6 10�6 1 0.5 156,000 2.3 0.112 3.46 5.36
7 10�6 2 1.0 217,000 2.0 0.341 2.06 5.64
8 10�6 2 0.5 164,000 1.9 0.123 3.17 4.53
Average 180,750 2.2 0.21 2.8 5.5

Table 3.7 compares the average values of five metrics of the best-of-run controller
from generation 31 for the three-lag plant and the PID controller designed using the
techniques of Åström and Hägglund (1995). This average is taken over the eight com-
binations of values for K, �, and the step size of the reference signal. As can be seen,
the best-of-run controller has superior average values for ITAE, disturbance sensitiv-
ity, rise time, and settling time (and has an acceptable value for system bandwidth).

Åström and Hägglund (Åström and Hägglund 1995) did not consider seven of the
eight combinations of values for K, �, and the step size used in computing the 
averages, whereas we used all eight combinations of values in our run. Accordingly,

Table 3.7 Comparison of average performance of the best-of-run controller and the
Åström and Hägglund controller for the three-lag plant problem

Genetically evolved
Units controller PID controller

Disturbance sensitivity �Volts/Volts 4.3 180,750
ITAE millivolt seconds2 0.142 2.2
System bandwidth (3 dB) Hertz 0.72 0.21
Rise time milliseconds 0.77 2.8
Settling time milliseconds 1.23 5.5



table 3.8 compares the performance of the best-of-run controller for the three-lag plant
and the Åström and Hägglund PID controller using the values of the plant’s internal
gain, the plant’s time constant, and the step size of the reference signal specified by
Åström and Hägglund. Specifically, the plant’s internal gain, K, is 1.0; the plant’s time 
constant, �, is 1.0; and the step size of the reference signal is 1 Volt.

As can be seen in table 3.8, the best-of-run controller is 7.2 times better than the
textbook controller as measured by the integral of the time-weighted absolute error. 
It has only 50% of the rise time and only 35% of the settling time. It is 92.7 dB bet-
ter in terms of suppressing the effects of disturbance at the plant input. The genetically
evolved controller has 2.9 times the system bandwidth of the PID controller.

For all eight combinations of values for K, �, and the step size of the reference 
signal, the genetically evolved controller has superior values for ITAE, disturbance
sensitivity, rise time, and settling time.

Figure 3.13 compares the time-domain response of the best-of-run controller
(squares) to a 1-Volt unit step with the response of the Åström-Hägglund controller
(diamonds). This comparison is made with K�1 and ��1. The faster rising curve is
the response of the genetically evolved controller.

As can be seen in figure 3.13, the rise time for the best-of-run controller is 1.25
seconds. This is 50% of the 2.49-second rise time for the Åström and Hägglund
(Åström and Hägglund 1995) controller.

The settling time for the best-of-run controller is 1.87 seconds. That is, the 
best-of-run controller settles in 35% of the 6.46-second settling time for the Åström
and Hägglund controller.

The maximum value of the plant output produced by the best-of-run controller is
1.023 (achieved at 1.48 seconds). That is, its overshoot is 2.3%. The maximum value
of the plant output produced by the Åström and Hägglund controller is 1.074
(achieved at 3.47 seconds). That is, its overshoot is 7.4%.

After applying standard block diagram manipulations, the transfer function for the
best-of-run controller from generation 31 can be expressed as a transfer function 
for a pre-filter and a transfer function for a compensator. The transfer function for the
pre-filter, Gp31(s), for the best-of-run controller for the three-lag plant is

Gp31(s) �
(1 � 0.2083s) (1 � 0.0002677s)

(1 � 0.000345s)
.
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Table 3.8 Comparison of performance of the best-of-run controller and the Åström
and Hägglund controller for the three-lag plant problem for K�1.0, ��1.0, and step
size of 1.0

Genetically evolved
Units controller PID controller

Disturbance sensitivity �Volts/Volts 4.3 186,000
ITAE Volt seconds2 0.360 2.6
System bandwidth (3 dB) Hertz 0.72 0.248
Rise time seconds 1.25 2.49
Settling time seconds 1.87 6.46



The transfer function for the compensator, Gc31(s), for the best-of-run controller
for the three-lag plant is

Gc31(s)�300,000.

The feedback transfer function, H31(s), for the best-of-run controller for the three-
lag plant is

H31(s)�1�0.42666s�0.046703s2.

The best-of-run controller from generation 31 consists of a three-point result-
producing branch, a 43-point automatically defined function ADF0, an 18-point auto-
matically defined function ADF1, a 73-point automatically defined function ADF2, and
an 18-point automatically defined function ADF3. Only ADF2 is actually called by the
result-producing branch. The three-point result-producing branch applies a lead func-
tion to the signal produced by ADF2. Automatically defined function ADF2 contains
occurrences of the plant’s output, the reference signal, and the controller’s output.

For additional information, see Koza, Keane, Yu, Bennett, Mydlowec 2000; Koza,
Keane,Yu, Bennett, Mydlowec, and Stiffelman 1999; and Koza, Keane,Yu, Mydlowec,
and Bennett 2000a.

In summary, we have demonstrated that genetic programming can be used to auto-
matically create both the parameter values (tuning) and the topology for controllers
for a three-lag plant. The genetically evolved controller is better than the controller
designed and published by experts in the field of control.
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Figure 3.13 Comparison of the time-domain response of the best-of-run controller (squares)
and the Åström and Hägglund controller (diamonds) for a 1-Volt unit step for the three-lag plant
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3.8.3 Routineness for the Three-Lag Plant Problem

Section 1.1.3 mentions that a problem-solving method may be measured by its 
routineness. As also mentioned there, a problem-solving method is “routine” if it is
general and if relatively little human effort is required to get the method to success-
fully handle new problems within a particular domain and to successfully handle new
problems from a different domain.

The three-lag plant problem in this section and the two-lag plant problem 
(section 3.7) are, of course, in the same domain—controller synthesis. So, how much
effort was required to make the transition from one problem to the other?

The preparatory steps for the three-lag plant problem are, with two exceptions, the
same as the preparatory steps for the two-lag plant problem.

First, the fitness measure for the three-lag plant problem implements Åström and
Hägglund’s statement of the three-lag plant problem whereas the fitness measure 
for the two-lag plant problem implements Dorf and Bishop’s statement of the two-lag
plant problem. The change in fitness measures from problem to problem is an inher-
ent and necessary part of making the transition from one problem to another. It does
not entail an enormous amount of effort.

Second, we used a different approach for establishing the numerical parameter
values for the three-lag plant problem than we did for the two-lag plant problem. This
change has a minor effect on the percentages of genetic operations (shown in appen-
dix B). As already mentioned in section 3.8.1.2, this change was entirely optional.
This change reflects the chronology of our work and the evolution of our thinking on
how to maximize the efficiency of runs of genetic programming (as opposed to any
special requirement or exigency of the three-lag plant problem).

Once the preparatory steps are performed, the executional steps of genetic program-
ming for the two-lag plant problem are the same as for the three-lag plant problem.

Thus, relatively little effort is required to make the (intra-domain) transition from
the two-lag plant problem to the three-lag plant problem and it is reasonable to say
that the transition is routine.

3.8.4 AI Ratio for the Three-Lag Plant Problem

What is the AI ratio for the solution to the three-lag plant problem produced by genetic
programming?

Genetic programming produced a controller that was better than the controller
designed by Åström and Hägglund (1995).

Although the solution produced by genetic programming for this problem is, in
fact, better than a human-produced solution, that fact alone does not qualify the result
as “human-competitive” under the intentionally stringent criteria for human-competi-
tiveness enumerated in table 1.2. The fact that a problem appears in a college textbook
is not alone sufficient to establish the problem’s difficulty or importance. A textbook
problem may occasionally be “a problem of indisputable difficulty in its field”
(criterion G). It may, or may not, satisfy one or more of the other criteria in table 1.2.
However, the three-lag plant problem does not satisfy any of the eight criteria in 
table 1.2. On the other hand, because the problem is moderately difficult, we assign a
moderately high amount of “A” to the solution produced by genetic programming.
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The preparatory steps for the three-lag plant problem are (except for the two 
differences noted in the previous section) the same as the preparatory steps for the
two-lag plant problem. Thus, for the same reasons stated in section 3.7.4, there is only
a small amount of “I” in the denominator of the AI ratio.

The moderately high amount of “A” represented by the result in conjunction with
the small amount of “I” provided by the human user means that the AI ratio for the
solution produced by genetic programming is moderately high.

3.9 Three-Lag Plant with a Five-Second Delay

In this section, genetic programming is used to discover both the topology and param-
eter values for a controller for a three-lag plant with a significant (five-second) time
delay in the external feedback from the plant output to the controller.

The transfer function of the plant is

,

where K is the plant’s internal gain and � is the plant’s time constant.
The five-second delay adds to the difficulty of designing an effective controller.
The requirements of the problem are that

● the plant output reaches the level of the reference signal in minimal time (as meas-
ured by the integral of the time-weighted absolute error),

● the overshoot in response to a step input is less than 2%,
● the controller is robust in the face of significant variation in the plant’s internal gain

and the plant’s time constant,
● the controller is robust in the face of disturbance (added into the controller’s

output), and
● the input to the plant is limited to the range between �40 and �40 Volts.

A controller is presented in Åström and Hägglund 1995 (page 225) that delivers
credible performance on this problem for a value of the plant’s internal gain, K, of 1.0
and a value of plant’s time constant, �, of 1.0.

The above statement of the problem differs from that presented by Åström and
Hägglund in that the plant here is more general. The plant here operates over several
different combinations of values for K and �.

3.9.1 Preparatory Steps for the Three-Lag Plant with a Five-Second Delay

3.9.1.1 Program Architecture The architecture of the to-be-evolved program is
automatically determined during the run of genetic programming using the
architecture-altering operations in the manner described in section 3.7.1.1 for the two-
lag plant problem.

3.9.1.2 Terminal Set The terminal sets are the same as that used in the three-lag
plant described in section 3.8.1.2.

G(s) �
Ke�5s

(1 � �s)3
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3.9.1.3 Function Set The function set for every part of the result-producing branch
and automatically defined functions for this problem is the same as that used in the
two-lag plant (section 3.7.1.3), except that the DELAY function is included in the
function set for this problem.

3.9.1.4 Fitness Measure Fitness is measured using 13 elements, including

(1) 12 time-domain-based elements based on the integral of time-weighted absolute
error, overshoot, and robustness, and

(2) one time-domain-based element measuring disturbance rejection.

The fitness of an individual controller is the sum of the (detrimental) contributions
of these 13 elements. The smaller the sum, the better.

The first 12 elements of the fitness measure together evaluate (i) how quickly the
controller causes the plant to reach the reference signal, (ii) the robustness of the con-
troller in the face of significant variations in the plant’s internal gain and the plant’s
time constant, and (iii) the success of the controller in avoiding overshoot.

These first 12 elements of the fitness measure together represent

● three choices of values of the plant’s internal gain, K, in conjunction with
● two choices of values of the height of the reference signal, in conjunction with
● two choices of values of the plant’s time constant �.

The three values of K are 0.9, 1.0, and 1.1.
The first reference signal is a step function that rises from 0 to 1 Volt at t�100

milliseconds. The second reference signal is a step function that rises from 0 to 1
microvolts at t�100 milliseconds.

The two values of � are 0.5 and 1.0.
For each of these 12 fitness cases, a transient analysis is performed in the time

domain using the SPICE simulator.
The contribution to fitness for each of these 12 elements of the fitness measure is

based on the integral of time-weighted absolute error

.

Because of the built-in five-second time delay, the integration runs from time t�5
seconds to t�36 seconds. Here e(t) is the difference (error) at time t between the
delayed plant output and the reference signal. In implementing the integral of time-
weighted absolute error, a discrete approximation to the integral was used employing
120 300-millisecond time steps between t�5 to t�36 seconds.

In addition, the penalty associated with each fitness case is multiplied by the recip-
rocal of the amplitude of the reference signal associated with that fitness case so both
reference signals (1 microvolt and 1 Volt) are equally influential. Specifically, B is a
factor that is used to normalize the contributions associated with the two step-functions.

�
36

t � 5

(t -5) | e(t) | A(e(t))BCdt
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B multiplies the difference e(t) associated with the 1-Volt step function by 1 and mul-
tiplies the difference e(t) associated with the 1-microvolt step function by 106.

Also, the integral contains an additional weight, A, that varies with e(t). The func-
tion A weights all variation up to 102% of the reference signal by a factor of 1.0, and
heavily penalizes overshoots over 2% by a factor of 10.0.

Finally, the integral contains a special weight, C, which is 5.0 for the two fitness
cases for which K�1 and ��1, and 1.0 otherwise.

The 13th element of the fitness measure is based on disturbance rejection. The
penalty is computed based on a time-domain analysis for 36.0 seconds. In this analy-
sis, the reference signal is held at a value of 0. A disturbance signal consisting of a unit
step is added to the CONTROLLER_OUTPUT at time t�0 and the resulting disturbed
signal is provided as input to the plant. The detrimental contribution to fitness is
500/36 times the time required to bring the plant output to within 20 millivolts of the
0-Volt reference signal (i.e., to reduce the effect to within 2% of the 1-Volt disturbance
signal) assuming that the plant settles to within this range within 36 seconds. If the
plant does not settle to within this range within 36 seconds, the detrimental contribu-
tion to fitness is 500 plus 500 times the absolute value of the plant’s output in Volts.
For example, if the effect of the disturbance is never reduced below 1 Volt, the detri-
mental contribution to fitness would be 1,000.

3.9.1.5 Control Parameters The population size is 500,000.

3.9.2 Results for the Three-Lag Plant with a Five-Second Delay

The best individual in generation 0 has a fitness of 1926.498.
The best-of-run controller emerged in generation 129. This best-of-run controller

has a fitness of 522.605. The result-producing branch of this best-of-run individual has
119 points. There are 95, 93, and 70 points, respectively, in the three automatically
defined functions.

Figure 3.14 shows the best-of-run controller from generation 129. Note that this
best-of-run controller employs a 4.8-second delay (as reflected by e�4.80531s in the
transfer function of the evolved pre-filter). This delay is reasonable in light of the
problem’s five-second plant delay.

When compared to a controller designed with the techniques in Åström and
Hägglund 1995, the best-of-run controller has a better value of fitness for a 1-Volt step
size, an internal gain, K, of 1.0; and a time-constant, �, of 1.0 (the specific case con-
sidered by Åström and Hägglund 1995).

Figure 3.15 compares the time-domain response to step input of 1 Volt of the best-
of-run controller (triangles) with the response of the Åström and Hägglund controller
(squares).
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Figure 3.16 compares the disturbance rejection of the best-of-run controller 
(triangles) with that of the Åström and Hägglund controller (squares). The disturbance
signal has a step size of 1 Volt. The reference signal is held constant at 0 Volts. The
comparison is made with an internal gain, K, of 1.0 and a time-constant, �, of 1.0.

Table 3.9 compares the fitness of the best-of-run controller with the fitness of the
Åström and Hägglund controller (1995) for this problem. The 13 elements of the fit-
ness measure are shown in its left-most four columns. Two of the entries are divided
by the special weight C�5.0. All 13 entries are better for the genetically evolved con-
troller than for the Åström and Hägglund 1995 controller.

For additional details, see Koza, Keane, Yu, Mydlowec, and Bennett 2000a.

3.9.3 Routineness for the Three-Lag Plant with a Five-Second Delay

The preparatory steps for the problem of the three-lag plant with a five-second delay
are substantially the same as the preparatory steps for the three-lag plant problem in
section 3.8 with two exceptions. First, this problem has a different goal (and hence a
different fitness measure). Second, this problem has the DELAY function in the func-
tion set. Therefore, very little effort was required to make the transition from the two
previously described problems of controller synthesis to the present problem (i.e., the
transition was routine).

3.9.4 AI Ratio for the Three-Lag Plant with a Five-Second Delay

The solution produced by genetic programming to this problem has a moderately high
amount of “A.” The preparatory steps for this problem are substantially the same as
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those for the two previously described problems of controller synthesis. For the same
reasons as stated before, there is only a small amount of “I” in the denominator of the
AI ratio. Therefore, the AI ratio for the solution produced by genetic programming is
moderately high.
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Figure 3.16 Comparison for disturbance rejection for the best-of-run controller for the 
three-lag plant with a five-second delay.

Table 3.9 Comparison of fitness of the best-of-run controller and the Åström and Hägglund
controller for the three-lag plant with a five-second delay

Plant
Step size internal Time Fitness of the Fitness of Åström-

Element (Volts) gain, K constant, � best-of-run controller Hägglund controller

0 1 0.9 1.0 13.7 27.4
1 1 0.9 0.5 25.6 38.2
2 1 1.0 1.0 34.0/5�6.8 22.9
3 1 1.0 0.5 18.6 29.3
4 1 1.1 1.0 4.4 25.4
5 1 1.1 0.5 16.3 22.7
6 10�6 0.9 1.0 13.2 27.4
7 10�6 0.9 0.5 25.5 38.2
8 10�6 1.0 1.0 30.7/5�6.1 22.9
9 10�6 1.0 0.5 18.5 29.3
10 10�6 1.1 1.0 4.3 25.4
11 10�6 1.1 0.5 16.2 22.7
Disturbance 1 1 1 302 373



3.10 Non-Minimal-Phase Plant

In this section, genetic programming is used to discover both the topology and param-
eter values for a controller for a non-minimal-phase plant.

The transfer function of the non-minimal-phase plant is

,

where K is the plant’s internal gain and � is the plant’s time constant.
The five requirements at the beginning of section 3.9 apply to this problem.
A controller is presented in Villagran and Sbarbaro (1998) that delivers credible

performance on this problem for a value of the plant’s internal gain, K, of 1.0 and a
value of plant’s time constant, �, of 1.0.

The statement of the problem above differs from that presented in Villagran and
Sbarbaro 1998 in that the plant here is more general. The plant here operates over sev-
eral different combinations of values for K and �.

3.10.1 Preparatory Steps for the Non-Minimal-Phase Plant

3.10.1.1 Program Architecture The architecture of the to-be-evolved program is
automatically determined during the run of genetic programming using the
architecture-altering operations in the manner described in section 3.7.1.1 for the two-
lag plant problem.

3.10.1.2 Terminal Set The terminal set (including the method of establishing the
numerical parameter value for each signal-processing block) is the same as that used
in the two-lag plant described in section 3.7.1.2.

3.10.1.3 Function Set The function set is the same as that used in the two-lag plant
described in section 3.7.1.3, except that the LAG2 function is not used for this
problem.

3.10.1.4 Fitness Measure The fitness measure for the non-minimal phase plant
problem consists of 11 elements.

The first ten elements are identical to those in section 3.7.1.4 for the two-lag plant
problem.

The eleventh element of the fitness measure is concerned with disturbance rejection
and is identical to that of section 3.8.1.4 for the three-lag plant problem, except that
the test is performed for 2.4 seconds.

3.10.1.5 Control Parameters The population size is 66,000.

3.10.2 Results for the Non-Minimal Phase Plant

The best individual from the initial random generation (generation 0) for the non-
minimal phase plant problem has a fitness of 94.99.

The best-of-run controller from generation 38 has a fitness of 21.72.
Table 3.10 shows the contribution of each of the 11 elements of the fitness measure

to the fitness of the best-of-run controller.

G(s) �
K(1�0.5s)

(1 � �s)2
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Figure 3.17 compares the plant response in the time domain for the best-of-run
individual from generation 38 (dashed curve) and the controller presented by
Villagran and Sbarbaro (solid curve).

The transfer functions for the best-of-run individual from generation 38 (figure
3.18) are

H(s) �
1.13(1.67 � 1.78s � s2)

s(2.51 � s)
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Table 3.10 Contribution of the 11 elements of the fitness measure to
the fitness of the best-of-run controller for the non-minimal-phase
plant problem

Internal Time
Step size gain constant Fitness

1 1 1 1.0 3.00
2 1 1 0.5 3.94
3 1 2 1.0 1.54
4 1 2 0.5 2.12
5 10�6 1 1.0 3.00
6 10�6 1 0.5 3.94
7 10�6 2 1.0 1.54
8 10�6 2 0.5 2.14
9 Spiked reference 0.00

signal
10 AC sweep 0.00
11 Disturbance 0.49

sensitivity

Total 21.72
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Figure 3.17 Comparison of the best-of-run individual (dashed curve) and Villagran and
Sbarbaro result for the non-minimal-phase plant (solid curve).



and

.

The evolved controller performs robustly. A Bode plot for the entire system con-
firms that the evolved controller conforms to the desired 40 dB per decade roll-off at
frequencies higher than 100 Hz.

For additional details, see Koza, Keane, Yu, Bennett, Mydlowec, and Stiffelman
1999.

3.10.3 Routineness for the Non-Minimal Phase Plant Problem

The preparatory steps for this problem are substantially the same as the preparatory
steps for the three previous problems of controller synthesis in this chapter except that
the present problem has a different goal and hence a different fitness measure.
Therefore, very little effort was required to make the transition from the three previ-
ously described problems of controller synthesis to the present problem (i.e., the tran-
sition was routine).

3.10.4 AI Ratio for the Non-Minimal Phase Plant Problem

The solution produced by genetic programming to this problem has a moderately high
amount of “A.” The preparatory steps for this problem are substantially the same as
those for the three previously described problems of controller synthesis. For the same
reasons as stated before, there is only a small amount of “I” in the denominator of the
AI ratio. Therefore, the AI ratio for the solution produced by genetic programming is
moderately high.

F(s) �
0.221(6.13 � s) (1.23 � 2.16s � s2)

(1.67 � 1.78s � s2)
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The design process for electrical circuits begins with a high-level description of the
circuit’s desired behavior and characteristics. The process entails creation of both the
topology and the sizing of a satisfactory circuit.

The topology of a circuit comprises

● the total number of components in the circuit,
● the type of each component (e.g., resistor, capacitor, transistor) at each location in

the circuit,
● a list of all the connections that may exist between the leads of the circuit’s compo-

nents, input ports, output ports, power sources (if any), and ground.

The sizing of a circuit consists of the component value(s), if any, associated with
each component. The sizing of a component is usually a numerical value (e.g., the
capacitance of a capacitor).

Considerable progress has been made in recent years in automating the design of
purely digital circuits; however, the design of analog circuits and mixed analog-digi-
tal circuits has not proved as amenable to automation. As Getreu (2002) noted,

“[A]nalog designers—and tools to enhance their productivity—are in very short
supply. Development of the analog segments of sophisticated designs may take
longer than the digital portion, even though the analog portion is often smaller.
Meanwhile, digital designers have synthesis, formal verification, and test pattern-
generation tools, among others, at their disposal. They also can create large circuits
from high-level languages.”

As Moretti (2002) observed,

“Analog design is more difficult and time-consuming than digital design. There are
far fewer analog designers than digital designers, so as the number of mixed-signal
designs increases, a productivity bottleneck forms. Engineers design analog 



circuits by entering the schematic diagram and sizing and biasing the various ele-
ments using the properties and notational capabilities of the schematic editor. To
simulate the design to observe its operational characteristics, engineers must
develop testbenches, set operational goals, run simulations, modify the circuit if
necessary, and repeat the process until they meet their design goals. Because ana-
log simulation is computationally intensive, this process takes longer than does
digital simulation.”

As Aaserud and Nielsen (1995) noted:

“[M]ost … analog circuits are still handcrafted by the experts or so-called ‘zahs’ of
analog design. The design process is characterized by a combination of experience
and intuition and requires a thorough knowledge of the process characteristics and
the detailed specifications of the actual product.

“Analog circuit design is known to be a knowledge-intensive, multiphase, itera-
tive task, which usually stretches over a significant period of time and is performed
by designers with a large portfolio of skills. It is therefore considered by many to
be a form of art rather than a science.”

Genetic programming was first used to automatically create (synthesize) both 
the topology and sizing of analog electrical circuits in 1995 (Koza, Bennett, Andre,
Keane 1996a, 1996b, 1996c, 1996d, 1996e, 1996f, 1999b; Bennett, Koza, Andre, and
Keane 1996; Koza, Bennett Andre, Keane, and Dunlap 1997). Numerous examples of
the automatic synthesis of analog electrical circuits composed of transistors, capaci-
tors, resistors, inductors, and other components are presented in the 1999 book
Genetic Programming III: Darwinian Invention and Problem Solving (Koza, Bennett,
Andre, and Keane 1999a) and the accompanying videotape Genetic Programming III
Videotape: Human-Competitive Machine Intelligence (Koza, Bennett, Andre, Keane,
and Brave 1999).

Section 4.1 describes our approach to the automatic creation of both the topology
and sizing of electrical circuits by means of genetic programming.

Later sections of this chapter demonstrate:

● the use of genetic programming to search for the solution to a seemingly impossi-
ble problem (section 4.2),

● the reinvention of the Philbrick circuit that was patented in 1956 (section 4.3),
● the automatic synthesis of a NAND circuit (section 4.4),
● the automatic synthesis of an arithmetic logic unit (ALU) circuit (section 4.5),
● the automatic synthesis of a square root computational circuit (section 4.6), and
● the ability to automatically create, during a run of genetic programming, surrogates

for the source and load resistors that are normally hard-wired into the problem’s test
fixture, as illustrated by a problem involving the automatic synthesis of a lowpass
filter (section 4.7).

Later, chapter 5 demonstrates the simultaneous synthesis of the topology, sizing,
placement, and routing of both a lowpass filter and an amplifier.
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Chapter 10 demonstrates the automatic synthesis of parameterized topologies 
representing electrical circuits.

Chapter 11 demonstrates the automatic synthesis of parameterized topologies with
conditional developmental operators for circuits.

Chapter 14 describes the reinvention of negative feedback.
Chapter 15 discusses the automatic creation of circuits that duplicate the 

functionality of six post-2000 patented inventions.

4.1 Our Approach to the Automatic Synthesis of the Topology and 
Sizing of Circuits

Our approach to the problem of automatically creating both the topology and sizing
of an electrical circuit involves

(1) establishing a representation for electrical circuits involving LISP symbolic
expressions (S-expressions) and program trees, and

(2) defining a fitness measure that measures how well the behavior and characteris-
tics of a candidate circuit satisfy the problem’s high-level design requirements.

The representation and fitness measure are then used during the run of genetic 
programming. During the run, the evaluation of the fitness of each individual in the
population involves

(1) converting each individual program tree in the population into a netlist of the type
accepted by a circuit simulator,

(2) obtaining the behavior of the individual circuit by simulating it, and
(3) using the circuit’s behavior and characteristics to calculate its fitness.

The implementation of our approach entails working with four different represen-
tations of an electrical circuit (each described in detail later):

● Circuit Diagram: Electrical engineers ordinarily represent a circuit by means of 
a diagram (a labeled ic graph ).

● Program Tree: A circuit can also be represented as a program tree whose internal
points (nodes) represent circuit-constructing functions and whose external points
(leaves) represent terminals. This representation enables genetic programming to
breed a population of programs in a search for a circuit that satisfies the pre-
specified design objectives.

● Symbolic Expression: A circuit can also be represented as a symbolic expression 
(S-expression) in the style of the LISP programming language. This representation
is used internally by genetic programming.

● SPICE Netlist: The fully developed circuit (embedded in a test fixture) is simulated
using a simulator. The SPICE (Simulation Program with Integrated Circuit
Emphasis) simulator is used throughout this book for simulating circuits, controllers,
and networks of chemical reactions. In order to invoke the SPICE simulator, the 
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fully developed circuit and test fixture are presented to SPICE in the form of 
a netlist.

Electrical circuits are ordinarily represented as labeled cyclic
diagrams). When genetic programming is used to automatically create 

computer programs, the programs are usually represented as program trees—that is,
acyclic graphs. Thus, there is a representational obstacle that must be overcome before
genetic programming can be applied to the problem of automatic circuit synthesis.

Our approach to the automatic synthesis of circuits using genetic programming
employs a developmental process to overcome this representational obstacle. This
approach is inspired by the principles of developmental biology, the innovative 
work of Kitano (1990) on using developmental genetic algorithms to evolve neural
networks, and the creative work of Gruau (1992a, 1992b) on using developmental
genetic programming (cellular encoding) to evolve neural networks. The reader is also
referred to early work on ontogenetic programming by Spector and Stoffel (1996a,
1996b) and on evolving Lindenmayer rules for creating structures (Koza 1993).

The developmental process transforms a program tree (an acyclic graph) into a fully
developed electrical circuit (a ). The  developmental

 process entails the execution of functions in a circuit-constructing program tree. The
 circuit-constructing program tree may contain component-creating  functions,
topology-modifying functions, development-controlling functions, arithmetic-performing

 functions, and automatically defined functions.
The starting point for our developmental process consists of a simple initial 

circuit. The initial circuit consists of

● an embryo, and
● a test fixture.

The embryo contains at least one modifiable wire. All development originates
from the embryo’s modifiable wire(s). If the original modifiable wire(s) are not 
modified by the developmental process, the circuit produces only trivial output.

An electrical circuit is developed by progressively applying the functions in a cir-
cuit-constructing program tree (in the population being bred by genetic programming)
to the modifiable wires of the original embryo and, as the circuit grows, to the modi-
fiable wires and modifiable components that sprout from it. The execution of the func-
tions in the program tree transforms the initial circuit into a fully developed circuit.
That is, the functions in the circuit-constructing program tree progressively side-effect
the embryo and its successors until a fully developed circuit eventually emerges.

Test fixtures are commonly used in electrical engineering to measure the behavior
of a circuit. When genetic programming is being used to automatically synthesize an
electrical circuit, the test fixture is the entity (external to the entity that is being auto-
matically created) that facilitates measurement of the fully developed circuit. The test
fixture feeds external input(s) into the circuit of interest. It also enables the circuit’s
output(s) to be probed. The test fixture supplies the measurements that enable the 
fitness measure to assign a single numerical value of fitness to the behavior and 
characteristics of the fully developed circuit. The test fixture is a hard-wired structure
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composed of nonmodifiable wires and nonmodifiable electrical components. The test
fixture has one or more ports that enable the embryo (and, later, the fully developed
circuit) to be embedded into it. In turn, the embryo (and, later, the fully developed cir-
cuit) has one or more ports that enable it to communicate with the test fixture in which
it is embedded. The hard-wired components of the test fixture often include a source
resistor and a load resistor. Occasionally, a test fixture contains a voltage-to-current
converter or a current-to-voltage converter that enables a signal to be provided or
measured in a certain preferred way (e.g., voltage or current). After completion of the
run of genetic programming, the test fixture plays no further role. At that time, the
genetically evolved circuit is attached to whatever input(s) it is intended to receive and
to whatever points its output(s) are intended to go.

The functions in the circuit-constructing program trees are divided into five 
categories:

● topology-modifying functions (e.g., series division, parallel division, cut, via) that
modify the topology of the developing circuit,

● component-creating functions that insert components (e.g., resistors, capacitors,
transistors) into the developing circuit,

● development-controlling functions that control the developmental process by which
the embryo and its successor circuits are converted into a fully developed circuit
(e.g., the no-operation function),

● arithmetic-performing functions (e.g., addition, subtraction) that may appear in a
value-setting subtree that is an argument to a component-creating function and that
specifies the numerical value of the component, and

● automatically defined functions that enable certain substructures to be reused
(including parameterized reuse).

The component-creating functions generally have value-setting subtree(s),
whereas topology-modifying functions and development-controlling functions do not.

Many of the functions possess one or more construction-continuing subtrees.
The terminals in the circuit-constructing program trees may include

● constant numerical values,
● perturbable numerical values,
● externally supplied free variables,
● symbolic values (e.g., discrete alternative types for certain components), and
● zero-argument functions (e.g., the development-ending function).

In a run of genetic programming, all the individual program trees created in gen-
eration 0 of the population are syntactically valid executable programs. All the genetic
operations of genetic programming (i.e., crossover, mutation, reproduction, and the
architecture-altering operations) operate so as to create syntactically valid executable
programs. Thus, all the individuals encountered during the run (including, in particu-
lar, the best-of-run individual) are syntactically valid executable programs.

Each circuit-constructing program tree is created in accordance with a constrained
syntactic structure that imposes limits on how the available functions and terminals
may be combined (section 2.3.1). All the individuals in the initial random population
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(generation 0) of a run of genetic programming for automatic circuit synthesis 
comply with the constrained syntactic structure. All the genetic operations that are
performed during the run (i.e., crossover, mutation, reproduction, and the architecture-
altering operations) are designed to preserve the constrained syntactic structure. 
In particular, the crossover operation uses point typing to ensure preservation of the
constrained syntactic structure.

Part 5 of Genetic Programming III: Darwinian Invention and Problem Solving
(Koza, Bennett, Andre, and Keane 1999a) contains additional detailed information
about automatic circuit synthesis using genetic programming. In particular, section
25.11 of that book contains the grammar governing the construction of circuit-
constructing program trees in problems of automatic circuit synthesis.

Our developmental approach is more than just a mechanism for mapping an
acyclic graph (the circuit-constructing program tree) into a

 (the fully developed circuit).
For one thing, the developmental approach has the specific advantage of preserv-

ing locality. Because most of the component-creating, topology-modifying, and devel-
opment-controlling functions operate on a small local area of the circuit, the subtrees
that are transplanted by the crossover operation generally operate locally. The devel-
opmental process works in conjunction with the crossover operation in preserving
locality. When a crossover replaces a subtree in one individual with a subtree from
another individual, it (usually) replaces a local structure in the circuit created by the
first individual with a local structure in the circuit created by the second individual.
The developmental process similarly works in conjunction with the mutation opera-
tion in preserving locality.

The developmental process has the additional advantage of preserving electrical
connectivity. There are no unconnected leads in the initial circuit. Each component-
creating, topology-modifying, and development-controlling function preserves con-
nectivity at each stage of the developmental process. The result is that there are no
unconnected leads in the fully developed circuit.

Also, the developmental approach enables useful parts of a circuit-constructing
program tree to be reused (as explained in section 16.2.2). Reuse eliminates the need
to “reinvent the wheel” on each occasion when a particular sequence of steps may be
useful. Reuse makes it possible to exploit a problem’s modularities, symmetries, and
regularities (and thereby potentially accelerate the problem-solving process).

The preservation of syntactic validity and executablity of the circuit-constructing
program trees, the preservation of the constrained syntactic structure, the preservation
of electrical connectivity, the preservation of locality during crossover, and the facili-
tation of reuse together contribute to the efficiency by which developmental genetic
programming is able to automatically synthesize circuits.

More detailed information about the developmental process and our approach to
automatic circuit synthesis may be found in Genetic Programming III: Darwinian
Invention and Problem Solving (Koza, Bennett, Andre, and Keane 1999a).

4.1.1 Evolvable Hardware

Work in the field of automatic synthesis of analog electrical circuits is part of 
a growing field called evolvable hardware. The growing literature on in this field
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includes

● the proceedings of the International Conference on Evolvable Systems (Higuchi,
Iwata, and Lui 1997; Sipper, Mange, and Perez-Uribe 1998; Miller, Thompson,
Thomson, and Fogarty 2000; Liu, Tanaka, Iwata, Higuchi, and Yasunaga 2001),

● the proceedings of the NASA/DoD Conference on Evolvable Hardware (Stoica,
Keymeulen, and Lohn 1999; Lohn, Stoica, Keymeulen, and Colombano 2000;
Keymeulen, Stoica, Lohn, and Zebulum 2001; Stoica, Lohn, Katz, Keymeulen, and
Zebulum 2002),

● edited collections of papers (Sanchez and Tomassini 1996; Mazumder and Rudnick
1999), and

● books (Kruiskamp 1996; Thompson 1998; Drechsler 1998; Zebulum, Pacheco, and
Vellasco 2002).

Early papers in the field include those by Higuchi, Niwa, Tanaka, Iba, de Garis,
and Furuya (1993a, 1993b); Kruiskamp and Leenaerts (1995); Grimbleby (1995);
Thompson (1996); and Koza, Bennett, Andre, and Keane (1996a, 1996b, 1996c,
1996d, 1996e, 1996f; Bennett, Koza, Andre, and Keane 1996; Koza, Bennett Andre,
Keane, and Dunlap 1997).

4.2 Searching for the Impossible

One of the themes of this book is that many potential inventions are never discovered
(or their discovery is long delayed) because the thought processes of scientists and
engineers are channeled along well-traveled paths. It is thus appropriate that this
book’s first illustrative example of automatic circuit synthesis by means of genetic
programming be a circuit that is seemingly impossible to create.

In his regular column in Electronic Design, Robert Pease, the legendary analog-
design engineer and chief scientist at National Semiconductor, posed the question of
whether it is possible to design an electrical circuit composed only of resistors and
capacitors that delivers a gain that is greater than one (Pease 1996).

Pease (1996) observed that most electrical engineers would instinctively react 
by saying that it is “absurd” to try to build such a circuit using only resistors and
capacitors. As Pease said,

“Resistors are passive. How can you take a network of Rs and Cs and generate 
a gain of greater than one? That’s impossible!”

Indeed, when we posed Pease’s challenge informally to a number of electrical
engineers, they all initially reacted by saying that the design of such a circuit was
impossible. Interestingly, once these engineers were told of the existence of such a 
circuit (but before being told how the circuit is constructed), all were quickly able 
to come up with a reasonable and correct explanation of how such a circuit would
work. Why is this? Years of thinking along traditional lines often prevents scientists
and engineers from seeing certain things. In this case, the engineers were initially
unable to see something that they were readily able to explain. That is, they had the
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knowledge needed to explain how an RC circuit can generate a gain that is greater
than one. However, until they were given the information that such a circuit was
indeed possible, they could not bring their knowledge to bear on the challenge.

Pease’s explanation was based on a circuit that was patented in 1956 by George
Philbrick, one of the early pioneers of analog circuit design. The Philbrick circuit,
consisting of only three resistors and three capacitors, was used to preprocess the
input to cathode-ray oscilloscopes (Philbrick 1956). Philbrick’s RC circuit has a sur-
prising characteristic unrelated to the circuit’s intended purpose. As Pease observed in
his 1996 column in Electronic Design, if the output of the Philbrick circuit is attached
to a unity-gain follower (such as an op amp with a gain of 1) and the output of the fol-
lower is, in turn, fed back to the input of the Philbrick circuit, the resulting circuit is
a phase-shift oscillator. According to the Nyquist criterion, a circuit can only oscillate
if the gain around the loop is greater than 1. However, because the unity-gain op amp
has a gain of only 1, then, by inference, Philbrick’s RC circuit must have a gain that
is greater than 1. In fact, it does.

Figure 4.1 shows the circuit composed of only resistors and capacitors that
Philbrick patented in 1956. In the figure, an incoming signal VSRC passes into the
network of resistors and capacitors. The voltage is probed at probe point V.

Figure 4.2 shows the output voltage measured at point V of the circuit of figure 4.1
for a sine wave input signal with 1-Volt amplitude. The horizontal axis represents six
decades of frequencies between 1 millihertz and 1,000 Hertz (Hz) on a logarithmic
scale. As can be seen, Philbrick’s RC circuit delivers a gain that is greater than 1.0 for
frequencies between approximately 2.0 Hz and 20.0 Hz. Specifically, the voltage
peaks at 1.19 Volts at 4.64 Hz for Philbrick’s circuit.
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The question arises as to whether it is possible to automate the process of explor-
ing challenges, such as the one posed by Pease, concerning the existence of seemingly
impossible constructions. This challenge lies at the heart of the invention process.

This section demonstrates how genetic programming can be used to automate the
process of exploring queries, conjectures, and challenges concerning the existence or
design of seemingly impossible entities.

The evolutionary process opportunistically solves problems without considering
whether its solution comports with human preconceptions about whether the goal is
impossible. Because evolution is a probabilistic process that is not encumbered by the
preconceptions that often channel human thinking down familiar paths, it often cre-
ates novel designs.

The observed counter-intuitive voltage multiplication of the Philbrick circuit
comes about as a result of a phase shift. In particular, the output of the Philbrick 
circuit is the difference of a 1-Volt (peak amplitude) input signal of the form sin 2�ft
and another signal of the form sin (2�ft��), where � represents a phase shift. As 
previously mentioned, the particular circuit in Philbrick’s 1956 patent delivers a gain
of 1.19.

Each of the electrical engineers to whom we posed Pease’s query mentioned that
this line of reasoning indicated that it would clearly be possible to construct an RC cir-
cuit that delivers a gain approaching two in a similar way.

Of course, this observation immediately raises yet another query. Is it possible to
construct an RC circuit that can deliver a gain that is greater than two? Again, several
electrical engineers (and the authors here) thought that such a circuit would be impos-
sible to construct.

The counter-intuitive result is that an electrical circuit composed only of resistors
and capacitors can deliver a gain that is greater than two.
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4.2.1 Preparatory Steps for the RC Circuit with Gain Greater than Two

Seven major preparatory steps are required to apply genetic programming to a 
problem of circuit synthesis:

(1) identify the initial circuit (i.e., the test fixture and embryo),
(2) determine the architecture of the circuit-constructing program trees,
(3) identify the primitive functions of the program trees,
(4) identify the terminals of the program trees,
(5) create the fitness measure,
(6) choose control parameters, and
(7) determine the termination criterion and method of result designation.

4.2.1.1 Initial Circuit Figure 4.3 shows a one-input, one-output initial circuit
consisting of an embryo embedded in a test fixture.

The embryo (highlighted in figure 4.3 by an outline box) consists of two modifi-
able wires (called Z0 and Z1).

The test fixture in figure 4.3 has an incoming signal source VSOURCE, a source
resistor RSOURCE, a nonmodifiable wire ZOUT, a voltage probe point VOUT (the
output of the overall circuit), a variable output load (called LOAD), and a nonmodifi-
able wire ZGND providing a connection to ground. The test fixture has three ports
(nodes 2, 3, and 4) that are connected to the embryo (and, after completion of the
developmental process, to the fully developed circuit). One port (node 2) makes the
input signal VSOURCE available to the embryo. A second port (node 4) provides
access to ground. A third port (node 3) is connected to the voltage probe point VOUT.
The initial circuit shown in figure 4.3 produces only trivial (i.e., always 0) output at
its probe point.

It is important to establish the amount of knowledge that is, or is not, be incorpo-
rated into the specification of the test fixture. The test fixture is the means to imple-
ment the problem’s fitness measure. Specifically, the test fixture provides the means
to feed incoming signals (voltage of current) into the genetically evolved circuit and
to probe output signals (voltage or current) in order to compute fitness.

138 Genetic Programming IV

Figure 4.3 One-input, one-output initial circuit with two modifiable wires.



In this book, we always specifically identify the test fixture. However, test fixtures
are often not explicitly mentioned in the literature of machine learning and artificial
intelligence because they are simply taken for granted. Test fixtures are widely used
for evaluating the performance of entities that are created by other automated 
problem-solving methods (including neural networks, decision trees, reinforcement
learning, genetic classifier systems, and pattern recognizers). The “input interface”
and “output interface” often mentioned in the literature of machine learning and 
artificial intelligence corresponds to a test fixture.

For example, consider the intertwined spiral problem. This problem was solved
using a neural network in the 1980s and was subsequently solved by genetic pro-
gramming (as described in section 17.3 of Koza 1992a). The goal in the intertwined
spiral problem is to classify a point, represented by its Cartesian x-y coordinate, as
belonging to the red or blue spiral. When a neural network is applied to this problem,
the fitness of the neural network is computed by a fixed hard-wired entity that is exter-
nal to the neural network. This fixed hard-wired external entity does several things.
First, it presents the neural network with a sequence of Cartesian x-y coordinates
of points that lie on either the red or blue spiral. These pairs of points are called 
“training cases” in the field of neural networks (and “fitness cases” in the field of
genetic programming). The presentation of training cases to the neural network is
accomplished by connecting the signals representing the values of x or y to the input
points of each neuron in the input layer of the neural network. Second, the fixed hard-
wired external entity captures the numerical value emitted by the network’s final out-
put neuron. This capture of the neural network’s output is accomplished by making a
connection to the signal(s) emanating from the neural network’s output neuron(s).
Third, the fixed hard-wired external entity converts the numerical output signal(s) into
one of two discrete symbolic values (red or blue). Fourth, the fixed hard-wired exter-
nal entity compares the resulting symbolic value (red or blue) with the correct color
for the fitness case (stored in some database) to see if they match. Fifth, the fixed hard-
wired external entity computes the fitness of the neural network (measured in terms
of, say, correlation, sum of squared errors, accuracy, error rate).

Notice that the process (chapter 3) of attaching the plant to a candidate controller
for the purpose of simulating the overall system and calculating the controller’s fitness
can be viewed as embedding the controller into a test fixture.

4.2.1.2 Program Architecture There is one result-producing branch in the program
tree for each modifiable wire in the embryo. Because there are two modifiable wires
in the embryo in figure 4.3, the architecture of each individual circuit-constructing
program tree in the population necessarily has two result-producing branches.
Automatically defined functions and the architecture-altering operations are not used
on this problem.

4.2.1.3 Function Set There are two types of internal points in the circuit-
constructing program trees for this problem, namely

● arithmetic-performing functions for establishing the numerical values (sizing) of
components, and

● circuit-constructing functions.
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A constrained syntactic structure enforces the use of one function set for the 
arithmetic-performing subtrees and another function set for all other parts of the 
program tree.

In this problem, the numerical value for each electrical component possessing a
parameter (i.e., resistors and capacitors) is established by an arithmetic-performing
subtree. Each arithmetic-performing subtree consists of one or more arithmetic func-
tions and one or more constant numerical terminals. This approach for establishing
numerical parameter values is described in section 3.5.5.1. The function set, Faps, for
each arithmetic-performing subtree is

Faps�{�, �}.

The circuit-constructing functions include component-inserting functions, topology-
modifying functions, and development-controlling functions.

Because the specific challenge of this problem involves constructing a circuit
using only resistors and capacitors, only resistor-creating and capacitor-creating func-
tions are included in the function set.

The function set, Fccs, for each construction-continuing subtree is

Fccs�{R, C, SERIES, PARALLEL0, PARALLEL1, FLIP, NOP,
PAIR_CONNECT_0, PAIR_CONNECT_1}.

Briefly, the component-creating R function inserts a resistor into a developing 
circuit and establishes the numerical value of the resistor. Likewise, the C function
inserts a capacitor and establishes the numerical value of the capacitor.

The topology-modifying SERIES function divides a modifiable wire or modifi-
able component into a series composition of modifiable wires or components.
Likewise, the two versions of the PARALLEL function perform a parallel division.

The topology-modifying FLIP function reverses the polarity of a modifiable 
component or wire.

The NOP (“no operation”) function is a development-controlling function.
The two versions of the topology-modifying PAIR_CONNECT function provide 

a way to connect two (usually distant) points in the developing circuit.
For a more detailed explanation of each of these functions, see Koza, Bennett,

Andre, and Keane 1999a.

4.2.1.4 Terminal Set There are two types of terminals (external points) in the
circuit-constructing program trees for this problem, namely

● terminals representing numerical values (which appear in arithmetic-performing
subtrees), and

● terminals pertaining to circuit construction (which appear in construction-
continuing subtrees).

A constrained syntactic structure enforces the use of one terminal set for the 
arithmetic-performing subtrees and another terminal set for all other parts of the 
program tree.

The terminal set, Taps, for each arithmetic-performing subtree is

Taps�{�},
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where R represents the set of floating-point constants from �1.0 to �1.0.
The terminal set pertaining to circuit construction for this problem contains a zero-

argument development-controlling function and a zero-argument topology-modifying
function. Specifically, the terminal set, Tccs, for each construction-continuing subtree is

Tccs�{END, SAFE_CUT}.

Briefly, the zero-argument END function is a development-controlling function
that makes the modifiable wire or modifiable component with which it is associated
into a nonmodifiable wire or component (thereby ending a particular developmental
path).

The zero-argument SAFE_CUT function is a topology-modifying function that
deletes a modifiable wire or component from the developing circuit while preserving
circuit validity.

For a more detailed explanation of each of these terminals, see Koza, Bennett,
Andre, and Keane 1999a.

4.2.1.5 Fitness Measure The evaluation of each individual circuit-constructing
program tree in the population begins with its execution. The execution progressively
applies the functions in the program tree to the embryo (and its successor circuits),
thereby creating a fully developed circuit.

A netlist is then created that identifies each component of the fully developed 
circuit, the nodes to which each component is connected, and the numerical values
associated with each component. The netlist includes the test fixture’s components
and connections (which, for this problem, include the source resistor and the variable
load resistor as well as the connections to the input port, the output port, and ground).

The netlist becomes the input to our modified version of the SPICE simulator.
SPICE then determines the circuit’s behavior.

Because this problem concerns the circuit’s frequency-domain behavior, the out-
put voltage VOUT is measured in the frequency domain. Specifically, SPICE is
instructed to perform two AC analyses on each circuit using different output loads.

In the first simulation, LOAD has infinite resistance (i.e., represents an open 
circuit).

In the second simulation, LOAD consists of a 10 mega-Ohm resistor in parallel
with a 6-pico-farad capacitor (i.e., a load resembling that of an oscilloscope probe).

In each case, only the voltage associated with 1,000 Hz is used in computing 
fitness.

The fitness of a circuit is the sum of two numbers:

1/(1�vout-infinite) �1/(1�vout-oscilloscope),

where vout-infinite is the voltage at 1,000 Hz for the open circuit and vout-oscilloscope is the
voltage at 1,000 Hz for the load resembling that of an oscilloscope probe.

The SPICE simulator is remarkably robust; however, it cannot simulate every con-
ceivable circuit. In particular, many circuits that are randomly created for the initial
population of a run of genetic programming and many circuits that are created by the
crossover and mutation operations in later generations are so pathological that SPICE
cannot simulate them. These circuits receive a high penalty value of fitness (108) and
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become the worst-of-generation programs for each generation. The technique of
assigning a high penalty value to unsimulatable circuits is used throughout this book.

As an aside, we should mention that there is an automated equivalent to a bread-
board. A field-programmable analog array (FPAA) (Ohr 2002; Macbeth 2002) or a
field-programmable transistor array (FPTA) (Stoica, Zebulum, and Keymeulen 2001)
may be used to rapidly create a physical embodiment of an analog circuit. A rapidly
reconfigurable field-programmable gate array (FPGA) may be used to rapidly create
a physical embodiment of a digital circuit. For example, a FPGA was used to auto-
matically synthesize a mathematical algorithm for a sorting network (Koza, Bennett,
Hutchings, Bade, Keane, and Andre 1997, 1998). Instead of analyzing or simulating
each sorting network that was encountered during the run of genetic programming,
each network was embodied electronically, for a tiny fraction of a second, in the form
of a digital circuit on the FPGA. The behavior and characteristics of this ephemeral
physical embodiment of the sorting network were then observed, measured, and
recorded (by a different part of the same FPGA chip). Thompson (1996) used an
FPGA as a programmable analog device. It is similarly possible to embody a con-
troller (chapter 3) for a fraction of a second (using a field-programmable transistor
array) while observing, measuring, and recording its behavior and characteristics.

4.2.1.6 Control Parameters The population size is 660,000.

4.2.2 Results for the RC Circuit with Gain Greater than Two

The best circuit-constructing program of the 660,000 programs of generation 0 has 
a fitness of 0.956.

In generation 15, a circuit (figure 4.4) consisting of three resistors and three capac-
itors emerged with a fitness of 0.913. It produces a gain of 1.19. This circuit is topo-
logically different from the circuit in Philbrick’s 1956 patent (figure 4.1); however, it
delivers approximately the same gain (figure 4.2).

Figure 4.5 shows the behavior in the frequency domain of the best circuit from
generation 15.
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In generation 927, a circuit (figure 4.6) consisting of 38 resistors and 35 capaci-
tors emerged. This best-of-run circuit has a fitness of 0.622. It produces a maximum
gain of 2.24.

Figure 4.7 shows the behavior in the frequency domain of this best-of-run circuit
from generation 927.

For additional information, see Koza, Bennett, Keane, Yu, Mydlowec, and
Stiffelman 1999.

In summary, narrowly, we demonstrated the automatic synthesis, using genetic
programming, of both the topology and sizing of a circuit composed of only resistors
and capacitors that delivers a gain that is greater than two. More broadly, we demon-
strated that genetic programming can be used to automate the process of exploring
queries, conjectures, and challenges concerning the existence of seemingly impossi-
ble entities. This, in turn, suggests that genetic programming can be used to automate
the invention process.

4.2.3 Routineness of the Transition from a Problem of 
Controller Synthesis to a Problem of Circuit Synthesis

Section 1.1.3 mentions that a problem-solving method may be measured by its rou-
tineness. As mentioned there, a problem-solving method is “routine” if it is general
and if relatively little human effort is required to get the method to successfully han-
dle new problems within a particular domain and to successfully handle new problems
from a different domain.

In three places in chapter 3 (sections 3.8.3, 3.9.3, and 3.10.3), we discussed the
effort required to make the transition from one problem of controller synthesis to
another. That is, we discussed the intra-domain aspect of routineness. In this section,
we consider the effort required to make the transition from a problem of controller
synthesis (from chapter 3) to a problem of circuit synthesis—that is, the inter-domain
aspect of routineness.
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First, there are, of course, differences in the function and terminal sets. These dif-
ferences reflect the fact that controllers and circuits are composed of different ingre-
dients. For problems involving the synthesis of controllers, the function and terminal
sets permit the construction of entities composed of ingredients such as integrators,
differentiators, gains, adders, subtractors, reference signals, and plant outputs. For a
problem of circuit synthesis, the function and terminal sets permit the construction of
entities composed of ingredients such as resistors, capacitors, input points, and output
points. The required change in the function and terminal sets does not entail an enor-
mous amount of effort. The transition entails exchanging a set of platitudes about con-
trollers with a set of platitudes about circuits.
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Second, there is a difference in fitness measures. The fitness measure for 
a problem of controller synthesis is necessarily couched in terms of characteristics and
performance relevant to the field of control (e.g., the integral of the time-weighted
absolute error, overshoot, and robustness). On the other hand, the fitness measure for
a problem of circuit synthesis is couched in terms of characteristics and performance
relevant to circuits (e.g., the circuit’s frequency-domain and time-domain response).
The change in fitness measures is an inherent and necessary part of making the tran-
sition from one problem to another. It does not entail an enormous amount of effort.

As always, once the preparatory steps are performed, the executional steps of
genetic programming are the same, so no effort at all is required to make the transi-
tion from one domain to another in this regard.

Thus, relatively little effort is required to make the transition from the domain of
controllers to the domain of automatic synthesis of circuits and it is therefore reason-
able to say that the transition is routine.

As will be seen later in this book, the transition from problems involving circuits
to problems in yet other domains (such as antennae and networks of chemical reac-
tions) will be similarly routine.

4.2.4 AI Ratio for the RC Circuit with Gain Greater than Two

In section 1.1.2, we mentioned that a method for solving problems may be measured
by the ratio (i.e., the AI ratio) of that which is delivered by the automated operation of
the artificial method to the amount of intelligence that is supplied by the human
applying the method to a particular problem.

What is the AI ratio for the solution produced by genetic programming to the 
challenge of designing an RC circuit with a gain that is greater than two?

Because many (if not most) electrical engineers would initially opine that con-
struction of the desired RC circuit is impossible, the surprising outcome produced by
the automated approach to Pease’s challenge has a moderately high amount of “A.”
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Ascertaining the amount of “I” requires the discipline of drawing a bright line
between that which is delivered by the artificial system and that which is supplied by
the intelligent human user. We imposed this discipline when we clearly identified the
preparatory steps performed by the human user prior to the launch of the run of
genetic programming.

The function and terminal sets (established in the preparatory steps) do not employ
any deep knowledge about the design of electrical circuits. They merely reflect the
statement of the problem and provide the ingredients from which to construct candi-
date circuits.

The component-creating functions in the function set reflect the fact that the 
circuit must, according to the statement of the problem, be composed only of resistors
and capacitors. The topology-modifying functions in the function set reflect the well-
known fact that one way to construct electrical circuits is to build them from a
sequence of series divisions, parallel divisions, connections to distant points, and cuts.

The numerical constants in the terminal set reflect the fact that resistors and capac-
itors possess numerical parameters. The development-controlling terminals provide a
way to end the developmental process. The former is essentially syntactic information
and the latter is essentially a mechanical necessity of the developmental process.

The knowledge needed to create the function set and the terminal set is either 
intuitively obvious or platitudinous.

The function and the terminal sets are general and could be used for the automatic
synthesis of any RC circuit. Moreover, by simply adding the transistor-creating func-
tion to the function set, the function set can also be used for the automatic synthesis
of any circuit containing transistors, resistors, and capacitors (which, as a practical
matter, includes the vast majority of present-day circuits).

The distinguishing feature of the problem at hand is its fitness measure. The fit-
ness measure reflects the statement of the problem. We are seeking an RC circuit
whose gain is greater than two.

The remaining preparatory steps (concerning control parameters, the termination
criterion, and the method of result designation) are not noteworthy.

Before concluding, we should mention the role of the SPICE simulator. The fit-
ness measure is based on the circuit’s desired behavior. Each candidate circuit encoun-
tered during the run is analyzed and simulated using the SPICE simulator. The use of
the SPICE simulator does not supply any knowledge to the run of genetic program-
ming for the following reasons.

First, the SPICE simulator only does analysis for a circuit that it is given. The
SPICE simulator does not have any capability to synthesize a circuit.

Second, although writing the SPICE simulator assuredly required considerable
human expertise and knowledge, the human knowledge embodied in the simulator is
not knowledge about the synthesis of electrical circuits, but instead, knowledge about
how to automatically and efficiently converge on the solution to a system of equations
(with particular emphasis on the integro-differential equations representing electrical
components and the nonlinear equations representing transistors).

Third, when genetic programming calls on a simulator to ascertain the behavior
and characteristics of a candidate individual in the population, genetic programming
does not acquire any domain knowledge about the field involved. This important point
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is made clear by recognizing that no simulator is required in order to make a run of
genetic programming in the first place. Instead, we could construct a breadboard for
each circuit that is generated by genetic programming during the run. We could then
observe and measure the behavior and characteristics of each breadboard. We could
then calculate the fitness of each breadboard and communicate that single numerical
value to the run of genetic programming. This single numerical value is the only
information that the genetic programming system receives about the individual. The
difference between building thousands of breadboards and using a simulator is a mat-
ter of accuracy, precision, elapsed time, and cost (in terms of effort, time, and money).
Alternatively, we could use a field-programmable analog array (FPAA) (Ohr 2002;
Macbeth 2002) or a field-programmable transistor array (FPTA) (Stoica, Zebulum,
and Keymeulen 2001) in lieu of the breadboard.

No one would argue that merely observing, measuring, and recording the position
and velocity of a falling apple is equivalent to acquiring knowledge (in the sense that
this term is used in the field of artificial intelligence) of Newton’s laws. There is sim-
ply no knowledge contained in such measurements. Similarly, observing, measuring,
and recording the behavior and characteristics of a circuit (whether by simulating it or
physically building it) does not convey any domain knowledge about the field of 
electrical engineering to either genetic programming or the observer because there is
no knowledge contained in the measurements in the first place.

In summary, the moderately high amount of “A” represented by the result in 
conjunction with the small amount of “I” provided by the human user means that the
AI ratio for the solution produced by genetic programming is moderately high.

4.3 Reinvention of the Philbrick Circuit

In this section, we evolve the Philbrick circuit (cited by Robert Pease in section 4.2).
The circuit patented by George Philbrick was intended to preprocess an analog signal
that was to be fed into an oscilloscope. As Philbrick (1956) stated,

“This invention relates to an electric filter network, and more particularly to a
delayed-recovery, high-pass filter network, which transmits the early portion of 
a transient voltage signal substantially without distortion but the output of which
thereafter relatively rapidly recovers to a quiescent value of zero voltage when the
impressed signal becomes quiescent at any voltage.

“Filter networks of this type frequently are required in electronic equipment for
A. C. coupling, pulse forming and shaping, differentiating, etc. For example, in
cathode-ray oscilloscopes it often is desirable to display high-frequency transients
without distortion and thereafter to return the horizontal trace relatively rapidly to
zero value when the input signal returns to a steady state value. This necessitates a
special input circuit.

“Prior to the present invention no simple filter was available to accomplish 
this result. In the past it has been customary to use a simple series-capacitor,
shunt-resistor, high-pass filter network for this purpose. When this conventional
type of filter network is used in such circuits, it is subject to certain disadvantages.
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If high-frequency transients are to be transmitted with negligible distortion its
recovery time usually is entirely too long for practical purposes or, if made to have
a recovery time of practical length, considerable distortion is introduced into the
transient being transmitted.

“Accordingly, it is an object of the present invention to provide a filter network
having a transmission characteristic such that initial high-frequency transients of
the input signal are transmitted substantially without distortion followed after a
predetermined time-delay by a relatively rapid return of the output voltage to zero
irrespective of the actual magnitude of the quiescent value of the input signal.”

4.3.1 Preparatory Steps for the Philbrick Circuit

4.3.1.1 Initial Circuit Figure 4.8 shows the one-input, one-output initial circuit for
this problem. The embryo consists of one modifiable wire Z0. The test fixture consists
of an incoming signal source VSOURCE, a 1,000-Ohm source resistor, a
nonmodifiable wire ZOUT, a voltage probe point VOUT, a 100 mega-Ohm load
resistor, and a nonmodifiable wire ZGND connecting to ground. The test fixture has
two ports to which the embryo is connected and one port to which the developing
circuit may connect. The two ports to which the embryo is connected are those 
at nodes 2 (that makes the input signal VSOURCE available to the circuit) and node 3
(that provides access to the voltage probe point VOUT). A third port provides optional
access to ground.

Note that our use of an embryo with one modifiable wire for this problem (in con-
trast to the two modifiable wires used in section 4.2) is not motivated by any special
requirement or exigency of the present problem. Problems are presented in this book
in an order that seems appropriate to the overall organization and theme of this book
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(and not in terms of the chronology of the work). Our use of an embryo with one mod-
ifiable wire for this problem reflects the chronology of our work and the evolution of
our thinking (in particular, a recently adopted preference in favor of using the simplest
possible embryo).

4.3.1.2 Program Architecture Because there must necessarily be one result-
producing branch in the program tree for each modifiable wire in the embryo and there
is one modifiable wire in the embryo in figure 4.8, the architecture of each circuit-
constructing program tree has one result-producing branch. Neither automatically
defined functions nor architecture-altering operations are used.

4.3.1.3 Terminal Set The terminal set is the same as that used in section 4.2.1.4.

4.3.1.4 Function Set A constrained syntactic structure enforces the use of one
function set for the arithmetic-performing subtrees and another function set for all
other parts of the program tree.

The function set, Faps, for each arithmetic-performing subtree is

Faps�{�, �}.

As in section 4.2, the challenge of this particular problem involves constructing a
circuit using only resistors and capacitors. Thus, only resistor-creating and capacitor-
creating functions are used for this particular problem. The function set, Fccs, for each
construction-continuing subtree is

Fccs�{R, C, SERIES, PARALLEL0, PARALLEL1, FLIP, NOP,
PAIR_CONNECT_0, PAIR_CONNECT_1, RETAINING_
THREE_GROUND0, RETAINING_THREE_GROUND1}.

Briefly, the two versions of the RETAINING_THREE_GROUND functions pro-
vide a way to connect a point in the developing circuit to ground. For additional
details, see Koza, Bennett, Andre, and Keane 1999a.

4.3.1.5 Fitness Measure The fitness measure is based on the closeness of the
behavior of a candidate circuit to the behavior of the circuit in Philbrick’s patent. 
The defining characteristics of the Philbrick circuit are expressed in terms of its time-
domain behavior and its frequency-domain behavior.

Fitness is the sum of two elements. The first element of the fitness measure is a
weighted sum of the discrepancies between the behavior of the circuit in Philbrick’s
patent and the candidate circuit’s behavior in the frequency domain (determined using
an AC analysis in SPICE). The candidate circuit is simulated at 121 frequency values
in an interval of six decades between 1 millihertz and 1,000 Hz. This element of 
the fitness measure is the sum, over the 121frequencies, of the absolute weighted
deviation between the actual value of the voltage that is produced by the circuit at the
probe point VOUT and the target value for voltage. For the 61 points between 1 Hz and
1,000 Hz, the absolute difference between the desired voltage and the actual output
voltage is weighted by 1.0 if the voltage is above 970 millivolts, but otherwise
weighted by 10. For the single point at 1 millihertz, the absolute difference between
the desired voltage and the actual output voltage is weighted by 60.0. Discrepancies
for the remaining 59 points are ignored.
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The second element of the fitness measure is a weighted sum of the discrepancies
between the behavior of the circuit in Philbrick’s patent and the candidate circuit’s
behavior in the time domain (determined using a transient analysis in SPICE). The cir-
cuit is simulated over 121 values in an interval between 0 and 120 milliseconds. This
element of the fitness measure is the sum, over the 121time values, of the absolute
weighted deviation between the actual value of the voltage that is produced by the cir-
cuit at the probe point VOUT and the target value for voltage. The absolute difference
between 1 Volt (the desired voltage between 0 and 10 milliseconds) and the actual 
output voltage for the 11 points between 0 and 10 milliseconds is weighted by 60 
if the absolute difference is 30 millivolts or less, but otherwise weighted by 600. 
The absolute differences between 0 Volts (the desired voltage between 60 and 120 mil-
liseconds) and the actual output voltage for the 61 points are weighted by 1 if the
absolute difference is 300 millivolts or less, but otherwise weighted by 10. The 
discrepancies for the remaining 49 points are ignored.

4.3.1.6 Control Parameters The population size is 660,000.

4.3.2 Results for the Philbrick Circuit

The best-of-generation circuit from generation 39 (figure 4.9) consists of six resistors
and six capacitors (not counting the components in the test fixture). This circuit has a
fitness of 665.55. The element of the fitness measure pertaining to the frequency
domain is 49.93 and the element pertaining to the time domain is 615.62.
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This run was continued beyond generation 39. A somewhat better circuit appeared
in generation 214. This circuit is considerably larger than the best-of-generation cir-
cuit from generation 39. The circuit from generation 214 consists of 12 resistors and
15 capacitors. The fitness of this circuit is 663.03 (47.64 for the frequency domain and
615.39 for the time domain). Because the fitness of the considerably larger circuit
from generation 214 is only 0.4% better than that of the best-of-generation circuit
from generation 39, we focus now on the circuit from generation 39.

Figure 4.10 shows the behavior in the frequency domain of the best-of-generation
circuit from generation 39.

The requirement that Philbrick (1956) established for (and that is satisfied by) his
patented circuit was to transmit “the early portion of a transient voltage signal sub-
stantially without distortion” for approximately 10 milliseconds and to recover “to a
quiescent value of zero voltage” after 100 milliseconds. Figure 4.11 compares the
time-domain behavior of the Philbrick circuit (top curve with diamonds) and the best-
of-generation circuit from generation 39 (bottom curve with squares). As can be seen
in the figure, the first 10 milliseconds of the transient voltage signal of the evolved
best circuit from generation 39 (bottom curve with boxes) is virtually the same as that
for Philbrick’s circuit (top curve with diamonds). After 100 milliseconds, the transient
voltage signal of the evolved best circuit from generation 39 (with squares) is sup-
pressed to a greater degree than that of Philbrick’s circuit (without boxes). In other
words, the genetically evolved circuit from generation 39 satisfies Philbrick’s own
requirement to a greater degree than Philbrick’s patented circuit.

For additional information, see Koza, Bennett, Keane, Yu, Mydlowec, and
Stiffelman 1999.

4.3.3 Human-Competitiveness of the Result for the Philbrick Circuit Problem

As just mentioned, the genetically evolved circuit from generation 39 satisfies the
requirements stated in Philbrick’s patent.
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Referring to the eight criteria in table 1.2 for establishing that an automatically
created result is competitive with a human-produced result, the rediscovery by genetic
programming of the Philbrick circuit satisfies the following two of the eight criteria:

(A) The result was patented as an invention in the past, is an improvement over 
a patented invention, or would qualify today as a patentable new invention.

(F) The result is equal to or better than a result that was considered an achievement
in its field at the time it was first discovered.

The rediscovery by genetic programming of the Philbrick circuit came over 
40 years after Philbrick received a patent for his invention. Nonetheless, the fact that
the original human-designed version satisfied the Patent Office’s criteria for patent-
worthiness means that the genetically evolved duplicate would also have satisfied the
Patent Office’s criteria for patent-worthiness (if only it had arrived earlier than
Philbrick’s patent application).

The fact that genetic programming rediscovered both the topology and sizing of
an electrical circuit that was unobvious “to a person having ordinary skill in the art”
(35 United States Code 103a) establishes that this evolved result satisfies Arthur
Samuel’s criterion (1983) for artificial intelligence and machine learning:

“The aim [is] … to get machines to exhibit behavior, which if done by humans,
would be assumed to involve the use of intelligence.”

4.3.4 Routineness for the Philbrick Circuit Problem

As mentioned in section 1.1.3, an automated problem-solving method (such as genetic
programming) may be measured by its routineness. As mentioned there, a problem-
solving method is “routine” if it is general and if relatively little human effort is
required to get the method to successfully handle new problems within a particular
domain and to successfully handle new problems from a different domain.
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In section 4.2.3, we discussed the effort required to make the transition from a 
synthesis problem from the domain of controllers to a synthesis problem from the
domain of electrical circuits. That is, we discussed the inter-domain aspect of rou-
tineness. The Philbrick circuit problem in this section and the problem (in section 4.2)
of evolving an RC circuit with a gain that is greater than two are, of course, in the
same domain—circuit synthesis. Thus, in this section, we consider the effort required
to make the transition from one problem of circuit synthesis to another—that is, the
intra-domain aspect of routineness.

The preparatory steps for the Philbrick circuit problem are substantially the same
as the preparatory steps for the problem of evolving an RC circuit with a gain greater
than two except that the problem involving the Philbrick circuit necessarily uses 
a different fitness measure. The new fitness measure reflects the requirements of the
Philbrick circuit (as opposed to the requirements of the earlier problem). The change
in fitness measures from problem to problem is an inherent and necessary part of mak-
ing the transition from one problem to another. It does not entail an enormous amount
of effort.

Once the preparatory steps are performed, the executional steps of genetic pro-
gramming for the Philbrick problem are the same as for the problem of evolving an
RC circuit with a gain that is greater than two (section 4.2).

Thus, relatively little effort is required to make the transition from the problem of
evolving an RC circuit with a gain that is greater than two to the Philbrick problem.
That is, the transition is routine.

4.3.5 AI Ratio for the Philbrick Circuit Problem

What is the AI ratio for the solution produced by genetic programming to the Philbrick
problem?

As previously mentioned (section 4.3.3), the result produced by genetic program-
ming on this problem is human-competitive because the result was a previously
patented invention. Thus, there is a high amount of “A” in the numerator of the 
AI ratio.

The preparatory steps for the Philbrick circuit problem are (except for the fitness
measure) substantially the same as the preparatory steps for the problem of evolving
an RC circuit with a gain greater than two. Thus, for the same reasons that we stated
in section 4.2.4, the solution produced by genetic programming for the Philbrick 
problem incorporates a small amount of “I.”

The high amount of “A” represented by the human-competitive result in conjunc-
tion with the small amount of “I” provided by the human user means that the AI ratio
for the solution produced by genetic programming is high.

4.4 Circuit for the NAND Function

Our early work on circuit synthesis using genetic programming neglected several cat-
egories of analog circuits, including analog circuits that perform digital functions and
mixed analog-digital circuits.
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The practical reason for this initial neglect is that the evaluation of the behavior of
many purely analog circuits can be performed in the frequency domain. As a general
rule, frequency-domain simulations usually consume considerably less computer time
than time-domain simulations. When we were doing our early work on circuit syn-
thesis, we did not have computational resources capable of performing a large num-
ber of computationally expensive time-domain simulations (within any reasonable
amount of time).

The evaluation of the behavior of digital circuits and mixed analog-digital circuits
typically requires simulations in the time domain. Moreover, for many problems, the
evaluation of the behavior of digital circuits and mixed analog-digital circuits requires
simulation of each candidate circuit over an enormous number of fitness cases. The
required number of fitness cases is potentially c2k, where k is the number of input bits
and c is some constant.

A NAND circuit performs the elementary two-input Boolean NAND (“Not AND”)
function. NAND circuits are useful because any Boolean function can be constructed
from a composition of NAND functions and because NAND functions can be efficiently
manufactured using present-day silicon chip technology.

The problem in this section is to create an analog circuit composed of transistors,
capacitors, and resistors that performs the NAND digital function with a response time
of less than 100 nanoseconds.

4.4.1 Preparatory Steps for the NAND Circuit

4.4.1.1 Initial Circuit Figure 4.12 shows the two-input, one-output initial circuit
consisting of an embryo embedded in a test fixture for this problem. The embryo in
this initial circuit consists of three modifiable wires Z1, Z2, and Z3. The test fixture
receives two incoming signals VSOURCE1 and VSOURCE2, each with a 1-Ohm
source resistor (RSOURCE1 and RSOURCE2, respectively). The test fixture also has
a nonmodifiable wire ZOUT1 between nodes 3 and 5, an output probe point VOUT1 at
node 5, and a 1,000-Ohm load resistor RLOAD1 situated between nodes 5 and 0. The
test fixture has three ports to which the embryo is connected. Two ports make the input
signals (VSOURCE1 and VSOURCE2) available to the developing circuit. A third port
is connected to the voltage probe point VOUT1.

4.4.1.2 Program Architecture Because there must be one result-producing branch
in the program tree for each modifiable wire in the embryo and there are three
modifiable wires in the embryo of figure 4.12, the program tree in the population has
three result-producing branches. Neither automatically defined functions nor
architecture-altering operations are used.

4.4.1.3 Terminal Set The terminal set is the same as that used in section 4.2.1.4.

4.4.1.4 Function Set A constrained syntactic structure enforces the use of one
function set for the arithmetic-performing subtrees and another function set for all
other parts of the program tree.

The function set, Faps, for each arithmetic-performing subtree is

Faps � {�, �}.
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The function set, Fccs, for each construction-continuing subtree is

Fccs�{R, SERIES, PARALLEL0, PARALLEL1, FLIP, NOP, RETAINING_
THREE_GROUND_0, RETAINING_THREE_GROUND_1, RETAINING_
THREE_ POS5V_0, RETAINING_THREE_POS5V_1, PAIR_CONNECT_0,
PAIR_CONNECT_1, Q_DIODE_NPN, Q_DIODE_PNP, Q_THREE_NPN0,…,
Q_THREE_ NPN11, Q_THREE_PNP0,…, Q_THREE_PNP11,
Q_POS5V_COLL_NPN, Q_POS5V_EMIT_PNP, Q_GND_EMIT_NPN,
Q_GND_EMIT_PNP}.

Briefly, the 12 versions of the transistor-creating Q_THREE_NPN function each
act by inserting an NPN transistor into a developing circuit. Likewise, the 12 versions
of the Q_THREE_PNP function each act by inserting a PNP transistor. We use the
commercially common 2N3904 (npn) and 2N3906 (pnp) transistor models for all
problems throughout this book (unless otherwise indicated).

The two versions of the component-creating Q_DIODE_NPN function insert a
diode into a developing circuit.

The two versions of the transistor-creating Q_POS5V function each insert a tran-
sistor whose designated lead (emitter or collector) makes a connection to the �5-Volt
power supply.

The two versions of the transistor-creating Q_GND_EMIT function each insert 
a transistor whose emitter makes a connection to ground.

The two versions of the RETAINING_THREE_GROUND function each make 
a connection to ground.

The two versions of the RETAINING_THREE_POS5V function each make 
a connection to the �5-Volt power supply.
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For additional details about these functions, see Koza, Bennett, Andre, and Keane
1999a.

Note the following implementation detail: Whenever a connection is made to a
power source, a uniquely numbered, separate power source is placed in the netlist.
That is, if two points in the circuit are connected to the �5-Volt power supply, two
different power supplies are used. This approach avoids certain errors that sometimes
arise in the simulator.

4.4.1.5 Fitness Measure In this problem, the output voltage VOUT is measured in
the time domain. Hence, the SPICE simulator is instructed to perform a transient (time
domain) analysis.

A binary zero is represented by a 0-Volt signal and a binary 1 is represented by 
a 5-Volt signal.

Both of the input ports (called V0 and V1 in figure 4.13) are exposed to 
18 100-nanosecond signals over a 1.8-microsecond period. Each 100-nanosecond sig-
nal is sampled every 20 nanoseconds (i.e., five sample points per 100 nanoseconds).
Thus, there are 91 fitness cases over the full 1.8-microsecond period. Both inputs are
zero during the first 100 nanoseconds. The next 17 100-nanosecond periods represent
the 16 possible transitions between each of the four possible combinations of the two
input signals.

The fitness of a circuit is the sum, over the 91 fitness cases, of the weighted
absolute value of the difference between the actual output voltage at the probe point
VOUT and the desired output voltage.

The weighting used in the fitness measure is designed not to penalize ideal volt-
age values, to slightly penalize every acceptable voltage, and to heavily penalize every
unacceptable voltage.

Concerning the two ideal outcomes, if the desired digital signal is 1 and the actual
voltage is 5.0 Volts or the desired digital signal is 0 and the actual voltage is 0, the
deviation is 0.
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Figure 4.13 The input signals in the time domain for the NAND circuit.



Concerning the acceptable outcomes, if the desired digital signal is 1 and the actual
voltage is within 0.3 Volts of 5.0 Volts or the desired digital signal is 0 and the actual
voltage is within 0.4 Volts of 0.0 Volts, the absolute value of the deviation from the
desired output voltage (5 Volts or 0 Volts, respectively) is weighted by a factor of 1.0.

If the actual voltage is outside this range, the absolute value of the deviation is
weighted by a factor of 10.0.

The smaller the overall value of fitness, the better.
The number of hits is defined as the number of fitness cases for which the voltage

is acceptable.

4.4.1.6 Control Parameters The population size is 132,000.

4.4.1.7 Termination Criterion Because the goal in this particular problem is to
generate a variety of 100%-compliant circuits for examination, the run was not
automatically terminated upon creation of the first 100%-compliant individual.
Instead, the maximum number of generations, G, is set to an arbitrary large number
(e.g., 501); numerous 100%-compliant circuits are harvested; and the run is manually
monitored and manually terminated.

4.4.2 Results for the NAND Circuit

The best-of-run circuit (figure 4.14) from generation 17 has five transistors and five resis-
tors. This 100%-compliant circuit scores 91 (out of 91) hits and has a fitness of 7.85.

Figure 4.15 shows the behavior of the best-of-run circuit from generation 17 in the
time domain for the 91 fitness cases (as shown in figure 4.13).

Figure 4.16 shows a textbook TTL (Transistor-Transistor Logic) NAND circuit
(Wakerly 1990) consisting of five transistors, four resistors, and three diodes.

Notice that the two inputs to the genetically evolved circuit (figure 4.14) are 
tied together (after the two source resistors) and the circuit thus resembles RTL
(“Resistor-Transistor Logic”), a predecessor of TTL logic.

There have been numerous patents issued for NAND circuits, including the 1971
patent to David H. Chung and Bill H. Terrell of Texas Instruments Inc. (Chung and
Terrell 1971).

For additional information, see Bennett, Koza, Keane, Yu, and Mydlowec 1999.
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Figure 4.16 Textbook TTL NAND circuit.

Figure 4.15 Behavior of the best-of-run NAND circuit.

4.4.3 Human-Competitiveness of the Result for the NAND Circuit Problem

The evolved NAND circuit is another example of a human-competitive result produced
by genetic programming.



Referring to the eight criteria in table 1.2 for establishing that an automatically
created result is competitive with a human-produced result, the automatic synthesis of
a NAND circuit satisfies the following two criteria:

(A) The result was patented as an invention in the past, is an improvement over 
a patented invention, or would qualify today as a patentable new invention.

(F) The result is equal to or better than a result that was considered an achievement
in its field at the time it was first discovered.

This evolved result satisfies Arthur Samuel’s criterion (1983) for artificial intelli-
gence and machine learning:

“The aim [is] … to get machines to exhibit behavior, which if done by humans,
would be assumed to involve the use of intelligence.”

4.4.4 Routineness for the NAND Circuit Problem

The preparatory steps for the NAND circuit problem are substantially the same as the
preparatory steps for the RC circuit with a gain that is greater than two (section 4.2)
and the Philbrick circuit (section 4.3) with two exceptions.

First, the NAND circuit problem has a different goal (and hence a different fitness
measure).

Second, the function set for the NAND circuit problem includes the transistor-
creating function. This minor change in the function set does not entail an enormous
amount of effort. The vast majority of present-day electrical circuits are composed of
resistors, capacitors, and transistors. Having once expanded the repertoire of functions
to include transistors, the expanded function set can hereafter be used for any prob-
lem involving the automatic synthesis of any circuit composed of resistors, capacitors,
and transistors.

In summary, relatively little effort is required to make the transition from the pre-
vious two problems of analog circuit synthesis to the present problem. That is, the
transition is routine.

4.4.5 AI Ratio for the NAND Circuit Problem

The solution produced by genetic programming to this problem is human-competitive
and therefore has a high amount of “A.” The preparatory steps for this problem 
are substantially the same as the preparatory steps for earlier problems of circuit 
synthesis (except that this problem has a different goal and hence a different fitness
measure). Thus, the solution produced by genetic programming to this problem incor-
porates a small amount of “I.” Thus, the AI ratio is high for the solution produced by
genetic programming.

4.5 Evolution of a Computer

This section presents the automatic synthesis of a two-instruction arithmetic logic unit
(ALU) circuit that has two one-bit data inputs and one one-bit instruction input. The
possible instructions are NAND (represented by an input of 1) and NOR (represented
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by an input of 0). The circuit executes one of these instructions on the two input bits
and produces one bit as its output.

4.5.1 Preparatory Steps for the Arithmetic Logic Unit

The preparatory steps for the ALU problem are the same as those for the NAND cir-
cuit (section 4.4), except as mentioned below.

4.5.1.1 Initial Circuit Figure 4.17 shows the three-input, one-output initial circuit
for the arithmetic logic unit problem. The embryo consists of three modifiable wires
Z0, Z1, and Z2. The test fixture receives three incoming signals (VSOURCE0,
VSOURCE1, and VSOURCE2). There is a 1-Ohm source resistor associated with each
of these three incoming signals. The circuit also has a voltage probe point VOUT and
a 1,000-Ohm load resistor RLOAD. The test fixture has four ports to which the embryo
is connected. Three ports make the input signals available to the developing circuit.
The fourth port is connected to the voltage probe point VOUT.

4.5.1.2 Fitness Measure In this problem, the output voltage V(1) is measured in the
time domain. Hence, the SPICE simulator is instructed to perform a transient (time
domain) analysis.

A total of 64 combinations of the three digital input signals are presented to the 
circuit. The 64 input triples represent all possible transitions between each of the 
eight possible combinations of the three input signals. Each combination of inputs 
persists for a total of 10 microseconds. Each combination of inputs is sampled every 
2 microseconds (i.e., five sample points per 10 microseconds). Thus, there are a total
of 321 fitness cases. SPICE is instructed to perform a transient (time domain) analysis.

In figure 4.18, the signals labeled V(3), V(4), and V(5) together represent various
combinations of inputs. In particular, V(4) and V(5) are the two input bits and V(3) is
the bit that specifies the instruction (NAND or NOR) that the ALU circuit is to execute
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Figure 4.17 Initial circuit for the arithmetic logic unit problem.



on the two input bits. Signal V(1) shows the correct output for the ALU circuit. 
A binary zero is represented by a 0-Volt signal and a binary 1 is represented by a 
5-Volt signal.

The fitness of a circuit is the sum, over the 321 fitness cases, of the weighted
absolute value of the difference between the actual output voltage at the probe point
VOUT and the desired output voltage.

If the voltage is exactly equal to the desired voltage, the deviation is 0. If the volt-
age is within 0.40 Volts of the desired voltage, the absolute value of the deviation from
the desired output voltage is weighted by a factor of 1.0. If the voltage is outside this
range, the absolute value of the deviation is weighted by a factor of 10.0.

The number of hits is defined as the number of fitness cases for which the voltage
is acceptable.

4.5.1.3 Control Parameters The population size is 1,320,000.

4.5.2 Results for the Arithmetic Logic Unit

The 100%-compliant best-of-run circuit (figure 4.19) from generation 33 scores 321
(out of 321) hits and has a fitness of 215.6.

Figure 4.20 shows (in the time domain) the 100%-correct output V(1) of the 
best-of-run circuit from generation 33 for the 321 fitness cases.

For additional information, see Koza, Bennett, Keane, Yu, Mydlowec, and
Stiffelman 1999.

4.5.3 Routineness for the Arithmetic Logic Unit Circuit Problem

The preparatory steps for this problem are substantially the same as the preparatory
steps for previous problems of analog circuit synthesis, except that the present prob-
lem has a different goal (and hence a different fitness measure). The transition from
the previous problems of analog circuit synthesis to the present problem is routine.
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4.5.4 AI Ratio for the Arithmetic Logic Unit Circuit Problem

The solution produced by genetic programming to this problem has a moderately high
amount of “A.” The preparatory steps for this problem incorporate a small amount of
“I.” Thus, the AI ratio for the solution produced by genetic programming is moder-
ately high.

4.6 Square Root Circuit

An analog electrical circuit whose output is a mathematical function (e.g., square,
square root) is called a computational circuit.

Genetic programming has been previously used to automatically synthesize 
analog computational circuits, including squaring, cubing, square root, cube root,
logarithm, and Gaussian circuits (Koza, Bennett, Andre, and Keane 1999a). However,
these previous results have limited applicability because they were created using DC
sweeps. DC sweeps are considerably less computationally expensive than time-
domain simulations. However, this type of computationally inexpensive simulation
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Figure 4.19 Best-of-run circuit for the arithmetic logic unit problem.

Figure 4.20 Behavior of the best-of-run circuit for the arithmetic logic unit problem.



may not yield a robust circuit that performs the desired mathematical computation
correctly over time. This section addresses this shortcoming by using multiple time-
domain simulations to automatically synthesize a one-input computational circuit for
the square root function.

4.6.1 Preparatory Steps for Square Root Circuit

4.6.1.1 Initial Circuit A one-input, one-output initial circuit with one modifiable
wire (figure 4.8) is used. The initial circuit has an incoming signal source, a 1,000-
Ohm source resistor, a voltage probe point VOUT, and a 1-Ohm load resistor.

4.6.1.2 Program Architecture The circuit-constructing program tree has one
result-producing branch for each modifiable wire in the embryo of the initial circuit.
Thus, each program tree has one result-producing branch. Automatically defined
functions and architecture-altering operations are not used.

4.6.1.3 Terminal Set A constrained syntactic structure enforces the use of one
terminal set for the arithmetic-performing subtrees and another terminal set for all
other parts of the program tree.

The numerical parameter value for each electrical component possessing a 
parameter in this problem is established by a value-setting subtree containing a single
perturbable numerical value. That is, the argument to each component-creating func-
tion possessing a component value consists of a single terminal representing a per-
turbable numerical value. This approach for establishing numerical parameter values
is described in section 3.5.5.2.

The terminal set, Tvss, for the value-setting subtrees is

Tvss � {�p},

where �p denotes a perturbable numerical value.
The terminal set for each construction-continuing subtree is

Trpb � {END, SAFE_CUT}.

4.6.1.4 Function Set The function set for this problem is identical to that used for
the NAND circuit in section 4.4, except for the inclusion of the capacitor-inserting C
function and the inductor-inserting L function in function set, Fccs, for each
construction-continuing subtree.

The L function inserts an inductor and establishes the numerical value of the
inductor. Note that the inductor-inserting and capacitor-inserting functions are unnec-
essary for this problem (and, in fact, do not appear in the best-of-run individual). For
a more detailed explanation of the L function, see Koza, Bennett, Andre, and Keane
1999a.

4.6.1.5 Fitness Measure For the square root problem, each individual circuit is
exposed to four time-domain signals. Each of these four signals lasts for a duration of
one second each, as shown in figures 4.21, 4.22, 4.23, and 4.24. These input signals
are structured to provide a representative mixture of input values (all of whose correct
outputs are well within the operating range of the transistors that we use).

Automatic Synthesis of Circuits 163



164 Genetic Programming IV

0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0
Time

V
ol

ta
ge

Figure 4.23 Rising step for the square root problem.
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Figure 4.24 Pulse for the square root problem.
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Figure 4.21 Rising ramp for the square root problem.
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Figure 4.22 Triangle for the square root problem.



We first considered running this problem using the “obvious” fitness measure con-
sisting of the sum, over a certain number of time steps for each of the four fitness
cases, of the absolute value of the difference between the actual output voltage at
probe point VOUT and the desired output voltage. However, initial tests on a single
Pentium workstation indicated that this fitness measure often yielded circuits having
noticeable spikes in the output. These spikes were reminiscent of the glitches that we
encountered in our work involving the digital-to-analog (DAC) converter circuit
(Bennett, Koza, Keane, Yu, Mydlowec, and Stiffelman 1999). Therefore, we adopted
the same fitness measure that we previously used for the DAC problem. Specifically,
we considered the difference only at times that correspond to SPICE’s internally-
created turn-defining points. Thus, the fitness measure for the square root computa-
tional circuit is the sum, for each of SPICE’s turns, of the absolute value of the 
difference between the actual output voltage at the probe point VOUT and the desired
output voltage.

4.6.1.6 Control Parameters The population size is 10,000,000.

4.6.2 Results for Square Root Circuit

The fitness of the best individual from generation 0 is 212.0.
The best-of-run individual appeared in generation 66. This best-of-run circuit 

has 39 components and a fitness of 6.26989 (figure 4.25). The circuit-constructing
program tree has 284 points.

Figure 4.26 shows the output voltage produced by the best-of-run individual from
generation 66 for the rising ramp input superimposed on the (virtually indistinguish-
able) correct output voltage for the square root function. As can be seen from this fig-
ure (and the three following figures), the output voltage produced by the best-of-run
circuit from generation 66 closely matches the desired output for a square root circuit.
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Figure 4.27 Output of the best-of-run square root circuit for the triangle input.
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Figure 4.26 Output of the best-of-run square root circuit for the rising ramp input.

Figure 4.27 shows the output for the triangle input superimposed on the (virtually
indistinguishable) correct output voltage for the square root function.

Figure 4.28 shows the output for the rising step input superimposed on the (virtu-
ally indistinguishable) correct output voltage for the square root function.
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Figure 4.29 shows the output for the pulse input superimposed on the (virtually
indistinguishable) correct output voltage for the square root function.

SPICE employs 299 points in simulating the best-of-run circuit from generation
66 for the four input signals. The average absolute error over these 299 points is 
0.020 Volts.

For additional information, see Mydlowec and Koza 2000.
The authors are aware that the circuits that are genetically created in this book do

not possess all the characteristics that one might reasonably require for a commercial
version of the type of circuit under discussion. Commercial circuits have requirements
that go considerably beyond those incorporated into the fitness measures in this book.
Moreover, all the circuits described in this book were validated in simulation, but 
not in silicon. Also, the SPICE simulator operates on circuits composed of discrete
components. In addition, when an integrated circuit is manufactured (particularly for
high-frequency operation), it is necessary to consider the parasitic and timing effects
of the actual physical (geographic) placement of the components on the silicon chip
and the actual routing of wires on the chip. It is also necessary to consider manu-
facturing variations in designing practical circuits. Moreover, the available device
models used in SPICE (although good in general) are generally crafted on the assump-
tion that the components will operate in everyday regimes. These models do not 
necessarily accurately represent every conceivable operating regime—particularly
those that an evolutionary process may devise. It is therefore possible that some of the
components in some of the genetically evolved circuits in this book are operating in
regimes in which their models are not representative of their actual behavior.
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Figure 4.28 Output of the best-of-run square root circuit for the rising step input.



4.6.3 Routineness for the Square Root Circuit Problem

The preparatory steps for this problem are substantially the same as the preparatory
steps for previous problems of analog circuit synthesis, except that the present prob-
lem has a different goal (and hence a different fitness measure). The transition from
the previous problems of analog circuit synthesis to the present problem is routine.

4.6.4 AI Ratio for the Square Root Circuit Problem

The solution produced by genetic programming to this problem has a moderately high
amount of “A.” The preparatory steps for this problem incorporate a small amount 
of “I.” Thus, the AI ratio for the solution produced by genetic programming is 
moderately high.

4.7 Automatic Circuit Synthesis Without an Explicit Test Fixture

This section pursues the question of the extent to which genetic programming can
solve problems using a minimal amount of human-supplied information.

In this section, we demonstrate that it is possible for a run of genetic programming
to solve a problem of circuit synthesis without the benefit of a built-in source resistor
and built-in load resistor in the test fixture. This is accomplished at an increased cost
in terms of computer time.

The demonstration involves a problem of synthesizing a lowpass filter.
A filter is a one-input, one-output circuit that passes the frequency components 

of the incoming signal that lie in a specified range (called the passband) while 
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Figure 4.29 Output of the best-of-run square root circuit for the pulse input.



suppressing the frequency components that lie in all other frequency ranges (the 
stopband).

A lowpass filter passes all frequencies below a certain specified frequency, but
stops all higher frequencies.

A highpass filter stops all frequencies below a certain specified frequency, but
passes all higher frequencies.

An ideal filter would deliver full voltage in the passband (1 Volt in this problem)
and a voltage of 0 in the stopband.

The attenuation of a filter is the ratio between the voltage at a circuit’s output
probe point and a reference voltage. Attenuation is often measured in terms of deci-
bels (section 3.7.1.4).

The problem in this section is to automatically synthesize a lowpass filter circuit
composed of passive components (i.e., inductors and capacitors) with a passband
boundary of 1,000 Hz, a stopband boundary of 2,000 Hz, and with 1,000-to-1 (or 
better) attenuation of the stopband voltage relative to the passband voltage.

In practice, the ideal voltage (1 Volt) is not achieved throughout the passband. 
The (preferably small) variation within the passband is called the allowable passband
ripple. A voltage in the passband that is between 970 millivolts and 1,030 millivolts
(i.e., a passband ripple of 30 millivolts or less) is regarded as acceptable for purposes
of this problem. Conversely, other voltages are regarded as unacceptable.

Similarly, the incoming signal is, in practice, not fully attenuated to the ideal level
of 0 in the stopband. The (preferably small) variation within the stopband is called the
allowable stopband ripple. A voltage in the stopband that is between 0 Volts and 1 mil-
livolt (i.e., a stopband ripple of 1 millivolt or less) is regarded as acceptable for this
problem. Any voltage above 1 millivolt in the stopband is regarded as unacceptable.

The frequencies between 1,000 Hz and 2,000 Hz constitute the filter’s transitional
“don’t care” region.

These specifications are identical to those of chapter 25 of Genetic Programming
III (Koza, Bennett, Andre, and Keane 1999a). In that previous work, the test fixture
contained a built-in 1,000-Ohm source resistor and a built-in 1,000-Ohm load resistor.
The test fixture in the previous work has the topology of figure 4.8 of this book. 
In this section, there is no built-in source or built-in load resistor.

4.7.1 Preparatory Steps for the Lowpass Filter Problem 
Without an Explicit Test Fixture

4.7.1.1 Initial Circuit In this problem, the initial circuit has the incoming signal
source VIN and a voltage probe point VOUT; however, there is no built-in source
resistor or built-in load resistor. Thus, each individual circuit must grapple with the
task of either creating a suitably-valued explicit source resistor and suitably-valued
explicit load resistor or figuring out a way of doing without them.

The floating embryo used in this problem consists of a single modifiable wire that
is not initially connected to the circuit’s input, output, or ground. Thus, each developing
circuit must grapple with the task of discovering the circuit’s input, output, or ground.

Use of the floating embryo requires functions that enable a circuit to make 
connection to the circuit’s input(s) and output(s).
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The two-argument INPUT_0 function makes a connection from a point in a
developing circuit to the circuit’s external input port 0. This function creates a new
node and a series composition consisting of a first modifiable wire, a nonmodifiable
wire, and a second modifiable wire. The nonmodifiable wire is associated with the
new node. The nonmodifiable wire makes a connection to external input 0 at the new
node. The INPUT_0 function takes two arguments, one for each of the construction-
continuing subtrees associated with the two modifiable wires. The INPUT_1,
INPUT_2, … functions operate in a similar way with respect to external inputs 1, 2,
and so forth.

Similarly, the two-argument OUTPUT_0, OUTPUT_1, OUTPUT_2, … functions
are used to make a connection from a point in a developing circuit to the circuit’s
external output ports.

Figure 4.30 shows the test fixture for this problem in the same style that is used
elsewhere in this book. This figure shows a source signal VIN, an output probe point
VOUT, and ground.

Two implementation details should be mentioned at this time in connection with
our use of the floating embryo in this problem. These two techniques are used on all
problems of circuit synthesis in this book.

First, dangling wires are not allowed by the SPICE simulator. The floating embryo
has dangling wires. To accommodate this requirement of the simulator, our software
automatically modifies all netlists (before they are passed along to SPICE) by 
connecting each end of a dangling wire to a nonmodifiable, grounded 1-giga-Ohm
resistor. In particular, each end of the modifiable wire in a floating embryo is con-
nected (just prior to simulation) to a nonmodifiable, grounded 1-giga-Ohm resistor.
Because this resistance is so high, these added resistors have no noticeable effect on
the circuit’s behavior. However, the addition of these functionless resistors enables
SPICE to simulate the circuit. These added high-valued resistors should not be 
confused with the missing source or load resistors (which must necessarily possess
non-extreme values of resistance in order to perform their desired functions).

Second, to accommodate a specific requirement of the SPICE simulator con-
cerning short circuits, a nonmodifiable 1-pico-Ohm resistor is inserted after VIN.
Because this resistance is so low, this added resistor has negligible effect on the cir-
cuit’s behavior. This added resistor is included in the netlist that is supplied to the
SPICE simulator.
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Figure 4.30 Initial circuit for the lowpass filter problem without an explicit test fixture.



Note that because these huge 1-giga-Ohm resistors and these tiny 1-pico-Ohm
resistors are not modifiable, they cannot serve as the starting point for developing any
part of the (missing) test fixture.

Of course, a circuit only containing resistors with extreme (high or low) values
will receive a very poor value of fitness.

4.7.1.2 Program Architecture Because there must be a result-producing branch in
the program tree for each modifiable wire in the embryo and there is one modifiable
wire in the embryo, the architecture of each circuit-constructing program tree has one
result-producing branch. Automatically defined functions and the architecture-
altering operations are not used.

4.7.1.3 Function Set A constrained syntactic structure enforces the use of one
function set for the first argument of the TWO_LEAD function and another function
set for all other parts of the program tree.

The TWO_LEAD function is described in section 10.1.4 and provides a 
way to insert two-leaded components (such as resistors, capacitors, and inductors) 
into the developing circuit. Because resistors, inductors, and capacitors may be used
in this problem, the function set, Ftwo-lead, for the first argument of the TWO_LEAD
function is

Ftwo-lead � {R_NEW, L_NEW, C_NEW}.

The function set, Fccs, for each construction-continuing subtree is

Fccs � {TWO_LEAD, SERIES, PARALLEL_NEW, NODE,
TWO_GROUND, THREE_GROUND, INPUT_0, OUTPUT_0}.

The PARALLEL_NEW function is described in section 10.1.2.
The NODE function is described in section 10.1.1.
The two-argument TWO_GROUND function enables a part of a circuit to be 

connected directly to ground. The connection to ground is unconditionally made 
(i.e., even if there is only one TWO_GROUND function in the circuit-constructing 
program tree). After the execution of a TWO_GROUND function, there are two new
modifiable wires.

Similarly, the three-argument THREE_GROUND function enables a part of a cir-
cuit to be connected directly to ground. The connection to ground is unconditionally
made (i.e., even if there is only one THREE_GROUND function in the circuit-
constructing program tree). After the execution of a THREE_GROUND function, there
are three new modifiable wires.

4.7.1.4 Terminal Set A constrained syntactic structure enforces the use of one
terminal set for the value-setting subtrees, another for the first argument of the
PARALLEL_NEW function (section 10.1.2), and yet another for all other parts of 
the program tree.

The numerical parameter value for each electrical component possessing a 
parameter in this problem is established by a value-setting subtree containing a single
perturbable numerical value. This approach for establishing numerical parameter 
values is described in section 3.5.5.2.
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The terminal set, Tvss, for the value-setting subtrees is

Tvss � {�p},

where �p denotes a perturbable numerical value.
The terminal set, Tparallel, for the first argument of the PARALLEL_NEW

function is

Tparallel � {UP_OR_LEFT, DOWN_OR_RIGHT}.

The terminal set, Tccs, for each construction-continuing subtree is

Tccs � {END, SAFE_CUT}.

4.7.1.5 Fitness Measure Because the high-level statement of the behavior for the
desired circuit is expressed in terms of the passing or suppressing of signals at various
frequencies, the output voltage VOUT is measured in the frequency domain. SPICE is
instructed to perform an AC small signal analysis (AC sweep) and report the circuit’s
behavior over five decades (between 1 Hz and 100,000 Hz) with each decade being
divided into 20 parts (using a logarithmic scale). Thus, there are a total of 101 sampled
frequencies.

Fitness is the sum, over the 101 frequencies, of the absolute weighted deviation
between the actual value of the voltage that is produced by the circuit at the probe
point VOUT and the target value for voltage (0 or 1 Volt). Specifically, this term is

where fi is the frequency of fitness case i; d(x) is the absolute value of the difference
between the target and observed values at frequency x; and W(y,x) is the weighting for
difference y at frequency x.

The fitness measure is designed not to penalize ideal voltage values, to slightly
penalize acceptable voltage deviations, and to heavily penalize unacceptable voltage
deviations.

Specifically, the procedure for computing the detrimental contribution to fitness
for each of the 61 points in the three-decade interval between 1 Hz and 1,000 Hz for
the intended passband is as follows: If the voltage is equal to the ideal value of 1 Volt
in this interval, the deviation is 0.0. If the voltage is between 970 millivolts and 1,030
millivolts, the absolute value of the deviation from 1 Volt is weighted by a factor of
1.0. Otherwise, the absolute value of the deviation from 1 Volt is weighted by a factor
of 10.0.

The acceptable and unacceptable deviations for each of the 35 points from 2,000 Hz
to 100,000 Hz in the intended stopband are similarly weighted (by 1.0 or 10.0) based
on the amount of deviation from the ideal voltage of 0 Volts. For the stopband, the
maximum acceptable voltage is 1 millivolt. For each of the five “don’t care” points
between 1,000 and 2,000 Hz, the deviation is deemed to be zero.

The smaller the value of fitness, the better.
The number of hits is defined as the number of fitness cases for which the voltage

is acceptable or ideal or that lie in the “don’t care” band.

F(t) � �
100

i � 0
(W(d(fi),fi)d(fi)),
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Figure 4.31 Behavior of the best-of-run circuit for the lowpass filter without an explicit test
fixture.

Figure 4.32 Best-of-run lowpass filter circuit for the lowpass filter without an explicit test
fixture.

4.7.1.6 Control Parameters The population size is 1,000,000.

4.7.2 Results for the Lowpass Filter Problem without an Explicit Test Fixture

The best-of-run individual emerged in generation 211. Figure 4.31 shows the 
frequency-domain behavior of the best-of-run circuit. The circuit scores 101 hits 
(out of 101) and is 100% compliant with the problem’s requirements.

The evolutionary process created the 100%-compliant circuit in figure 4.32 without
the benefit of a human-supplied test fixture containing suitably valued source and load
resistors. The evolutionary process also successfully grappled with the task of discover-
ing the circuit’s input point, output point, and ground. As can be seen in the figure, the



evolutionary process did not create a test fixture in the way that a human ordinarily would.
There is no single source resistor neatly positioned on the left side of the circuit diagram.
And, there is no single load resistor. Instead, a distributed set of components cooperatively
work together as a substitute for the missing test fixture. Specifically, every path from the
incoming signal VIN to ground contains either a resistor or capacitor and every path from
the output probe point VOUT to ground also contains either a resistor or capacitor. In this
regard, this highly distributed method for addressing the absence of an explicit source
resistor and an explicit load resistor would probably never occur to a human engineer.

Of course, there is a cost associated with indulging in the luxury of not providing
an explicit test fixture to the evolutionary process.

The most efficient way (of which we are aware) for solving the problem of 
synthesizing a lowpass filter (to satisfy the particular specifications herein) is the
“base case” using a population size of 30,000, as described in section 54.2 of Genetic
Programming III (Koza, Bennett, Andre, and Keane 1999a). The statistics associated
with this base case were calculated after making 64 independent runs of the problem.
One of the 64 runs was successful by generation 22; 72% of the runs were successful
by generation 42; and 86% of the runs were successful by generation 81. The 
performance curve (figure 54.1 of Genetic Programming III) shows that a total 
computational effort, E, of 4,683,183 individuals (i.e., 30,000�43 generations�3.63
runs) is sufficient to yield a solution to this problem with 99% probability.

In contrast, a total of 212,000,000 individuals were processed by the time that our
one (and only) run of the present problem yielded its solution in generation 211.
Because the run of the present problem took nine hours of computer time, we were,
of course, not inclined to make 63 additional runs of this problem merely to obtain sta-
tistics of the same quality as in Genetic Programming III. However, the fact that our
one run here required the processing of 212,000,000 individuals (more than 45 times
greater than 4,683,183) strongly suggests that there is a considerable increased cost in
terms of computational resources associated with not supplying the test fixture.

Nonetheless, if one is interested in the boundary question of whether genetic 
programming can successfully solve a problem in the context of minimizing the
amount of human-supplied information, this run demonstrates the principle that it is
possible to relieve the human user of the task of specifying the test fixture.

4.7.3 Routineness for the Lowpass Filter Problem without an 
Explicit Test Fixture

The preparatory steps for this problem are substantially the same as the preparatory
steps for previous problems of analog circuit synthesis, except that the present 
problem has a different goal (and hence a different fitness measure) and that there is,
in effect, no test fixture. The transition from the previous problems of analog circuit
synthesis to the present problem is routine.

4.7.4 AI Ratio for the Lowpass Filter Problem without an 
Explicit Test Fixture

The solution produced by genetic programming to this problem has a moderately high
amount of “A.” The preparatory steps for this problem incorporate a small amount of “I.”
Thus, the AI ratio for the solution produced by genetic programming is moderately high.

174 Genetic Programming IV



5

Automatic Synthesis of Circuit Topology,
Sizing, Placement, and Routing
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The previous chapter described how genetic programming can be used to automati-
cally synthesize both the topology and sizing of an electrical circuit. The output of the
automated process consists of the number of components in the circuit, the identity of
each component (e.g., transistor, capacitor, resistor, inductor), the connections
between each lead of each component, and the sizing of each component. However,
the automated process in chapter 4 does not yield the physical (geographic) placement
of the circuit’s components on a printed circuit board or silicon wafer or the physical
routing of the wires.

Placement involves the assignment of each of the circuit’s components to a 
particular geographic location on a printed circuit board or silicon wafer.

Routing involves the assignment of a particular geographic location to the wires
connecting the components.

A more complete version of the design process for electrical circuits begins with
a high-level description of the circuit’s desired behavior and typically entails creation
of the circuit’s topology, sizing, placement, and routing. As shown in figure 5.1, design
engineers typically perform these four tasks sequentially.

Each of these four tasks is, by itself, either vexatious or computationally
intractable for analog electrical circuits. In particular, the placement problem and the

Synthesis of

Sizing Placement Routing
Synthesis of

Topology

Laid-Out

Circuit

High Level

Circuit

Requirements

Figure 5.1 The process of designing a circuit includes creation of the circuit’s topology, sizing
of the circuit’s components, placement of the components onto the substrate, and the routing of
wires between the components.



routing problem (for both analog and digital circuits) are examples of intractable com-
binatorial optimization problems that require a computing effort that (in general)
increases exponentially with problem size (Wong, Leong, and Liu 1988; Garey and
Johnson 1979; Ullman 1984). Because it is considered unlikely that efficient 
algorithms can be found for such problems, considerable effort has been expended on
finding efficient approximate solutions to such problems (Wong, Leong, and Liu 1988;
Cohn, Garrod, Rutenbar, and Carley 1994; Maziasz and Hayes 1992; Sechen 1988).

The mandatory requirements for an acceptable scheme for placement and routing
are that

● there must be a wire connected to every lead of all the circuit’s components,
● wires must not cross on a particular layer of a silicon chip or on a particular side (or

layer) of a printed circuit board, and
● minimum clearance distances must be maintained between wires, between compo-

nents, and between wires and components.

It is possible to make connections (called vias) between layers of the silicon chip
or printed circuit board; however, the total number of layers that are available and the
type of components that can be located on each layer are strictly limited by the par-
ticular fabrication technology being used.

Once these mandatory requirements are satisfied, other considerations come into
play. Minimization of area of the laid-out circuit is often the next most important con-
sideration in the placement and routing of electrical circuits. Minimization of area has
a substantial and direct economic effect on the fabrication of electronic circuitry. This
objective is often expressed in terms of the area of the minimal bounding rectangle that
encloses all the circuit’s components and wires. In addition, it is often desirable to min-
imize the length of wires connecting components and to minimize the number of vias.

The question arises as to whether all four aspects of circuit design can be combined
into a unified automatic process. At first glance, it would appear that the four aspects
are so different in character that such a combination would be impossible. However,
this chapter demonstrates that genetic programming can indeed be used to automati-
cally create the topology, sizing, placement, and routing of analog electrical circuits.

Our method will be illustrated on the problems of creating the topology, sizing,
placing, and routing for

● a lowpass filter and
● an amplifier.

The desired lowpass filter is to pass all frequencies below 1,000 Hertz (Hz), to
suppress all frequencies above 2,000 Hz, and to have 1,000-to-1 (or better) attenua-
tion in the stopband (i.e., satisfy the same requirements as the filter in section 4.7).
The circuit is to be constructed on a printed circuit board whose top side contains dis-
crete components (capacitors and inductors) that are connected by perpendicularly
intersecting metallic wires and whose bottom side is devoted solely to making con-
nections to ground.

The desired amplifier ideally has 60 dB gain, zero distortion, zero bias, and the
smallest possible total area for the bounding rectangle of the fully laid-out circuit.
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(See Bennett, Koza, Andre, and Keane 1996 for a more detailed statement of the 
60 dB amplifier problem). The circuit is to be constructed on a two-sided printed 
circuit board with two internal layers. The top side contains discrete components 
(e.g., transistors, capacitors, and resistors) that are connected by perpendicularly inter-
secting metallic wires. The bottom side is devoted to connections to ground. The two
internal layers are associated with VIA0 and VIA1.

5.1 Our Approach to the Automatic Synthesis of Circuit 
Topology, Sizing, Placement, and Routing

A printed circuit board or silicon wafer has a limited number of layers that are 
available for wires and a limited number of layers (usually one for a wafer and one or
two for a board) that are available for both wires and components. Each wire and 
component is located at a particular geographic location on the printed circuit board
or silicon wafer.

In our approach, an electrical circuit is created using a developmental process in
which the component-creating functions, topology-modifying functions, and develop-
ment-controlling functions of a circuit-constructing program tree are executed. Each
of these three types of functions is associated with a modifiable wire or modifiable
component in the developing circuit. The starting point of the developmental process
is an initial circuit consisting of an embryo and a test fixture. The embryo consists of
modifiable wire(s). The embryo is embedded into a test fixture consisting of hard-
wired components and certain fixed wires that provide connectivity to the circuit’s
external inputs and outputs. Unless the modifiable wires are modified by the develop-
mental process, the circuit produces only trivial output. An electrical circuit is devel-
oped by progressively applying the functions in a circuit-constructing program tree 
(in the population being bred by genetic programming) to the modifiable wires of the
original embryo and to the modifiable components and modifiable wires created 
during the developmental process. The functions in the program tree are progressively
applied (in a breadth-first order) to the initial circuit and its successors until a fully
developed circuit emerges.

This section describes how all four aspects of circuit design (topology, sizing,
placement, and routing) can be combined into a unified approach using genetic 
programming.

5.1.1 Initial Circuit

The initial circuits consists of an embryo and a test fixture. All the wires and compo-
nents of the initial circuit are located at specified physical locations on a printed 
circuit board or silicon wafer.

The embryo is an electrical substructure consisting of at least one modifiable wire.
The test fixture is a substructure composed of nonmodifiable wires and nonmodifiable
electrical components. The test fixture provides access to the circuit’s external input(s)
and permits testing of the circuit’s behavior and probing of the circuit’s output. The
embryo here is connected to the test fixture.



Figure 5.2 shows a one-input, one-output initial circuit located on one layer of a
silicon wafer or printed circuit board. This initial circuit consists of the ground G
(at the far left), the source V for the incoming voltage signal, a piece of nonmodifiable
wire (hatched), a fixed 1,000-Ohm source resistor RSRC, another piece of nonmodi-
fiable wire, a piece of modifiable wire Z, another piece of nonmodifiable wire, a fixed
1,000-Ohm load resistor RLOAD, and the ground G (at the far right). The output probe
point VOUT is the place where the circuit’s output voltage is measured.

Each element of a circuit resides at a particular physical location on the circuit’s
two-dimensional substrate and occupies a particular amount of space.

The location of the 1�1 ground point G at the far left of the initial circuit (figure
5.2) is (13, 20); the location of the incoming signal source V is (14,20); the location of
the center of the 3�3 source resistor RSRC is (17, 20); the location of the 1�1 mod-
ifiable wire Z is (20, 20); the location of the center of the 3�3 load resistor RLOAD is
(23, 20); and the location of the 1�1 ground point G at the far right is (25, 20).

All development originates from the modifiable wire Z at (20, 20). As will be seen
momentarily, circuit elements typically undergo changes in geographic location dur-
ing the developmental process.

Note that the initial circuit complies with the requirement that wires must not cross
on a particular layer of a silicon chip or on a particular side of a printed circuit board.
The initial circuit also complies with the requirement that there must be a wire con-
necting all the leads of all the circuit’s components. In addition, the initial circuit com-
plies with the minimum requirements for clearance between wires, between
components, and between wires and components. Each of the component-creating and
topology-modifying functions operates in a compliance-preserving way. Thus, every
fully developed circuit will also comply with these requirements.

5.1.2 Circuit-Constructing Functions

A program tree typically contains component-creating functions, topology-modifying
functions, and development-controlling functions. Each of these three types of func-
tions operates on a modifiable wire or modifiable component in the developing circuit.
The construction-continuing subtree(s), if any, of these functions point to a successor
function or terminal in the circuit-constructing program tree.

A program tree typically also contains arithmetic functions and constants. 
The arithmetic-performing subtree of a component-creating function consists of a
composition of arithmetic functions (addition and subtraction) and random numerical
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Figure 5.2 Initial circuit for synthesis of topology, sizing, placement, and routing of lowpass
filter.
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constants (in the range �1.0 to �1.0) as described in section 3.5.5.1. The arithmetic-
performing subtree specifies the numerical value of a component by returning a float-
ing-point value that is interpreted by means of the nonlinear mapping described in
section 3.5.5.

5.1.3 Component-Creating Functions

The component-creating functions insert a component into the developing circuit and
assign component value(s) to the new component.

The two-argument capacitor-creating LAYOUT-C function inserts a capacitor into a
developing circuit in lieu of a modifiable wire (or modifiable component). Figure 5.3
shows a partial circuit containing four capacitors (C2, C3, C4, and C5) and a modifiable
wire Z0. Each capacitor occupies a 3�3 area. Each piece of wire occupies a 1�n or
an n�1 area. The modifiable wire Z0 occupies a 1�1 area and is located at (20, 20).

Figure 5.4 shows the result of applying the two-argument capacitor-creating 
LAYOUT-C function to the modifiable wire Z0 of figure 5.3. The newly created capac-
itor C6 occupies a 3�3 area and is centered at location (20, 20). The newly created
component is larger in both directions than the 1�1 piece of modifiable wire that it
replaces. Thus, its insertion affects the locations of all preexisting components in the
developing circuit. In particular, preexisting capacitor C2 is pushed north and west by
one unit, thereby relocating it from (18, 23) to (17, 24). Similarly, preexisting capac-
itor C5 is pushed south and east by one unit, thereby relocating it from (22, 17) to 
(23, 16). In our actual implementation, all adjustments in location are made after the
completion of the entire developmental process; however, each circuit-constructing
function below will be explained as if the required adjustments are made at the time
that each function is executed.

The first argument of the capacitor-creating function is an arithmetic-performing
subtree that specifies the capacitance of the newly created capacitor in nanofarads.

Z0

C2 C4

C3 C5

1 2

10 12

1311

3 x 3 3 x 3

3 x 3 3 x 3

(18,23)

(18,17) (22,17)

(22,23)

– +

(20,20)

Figure 5.3 Partial circuit with a 1�1 piece of modifiable wire Z0 at location (20, 20) and four
capacitors.



The second argument of the capacitor-creating function is the construction-continuing
subtree. The newly created capacitor C6 remains subject to subsequent modification.

Similarly, the two-argument inductor-creating LAYOUT-L function causes an
inductor to be inserted into a developing circuit in lieu of a modifiable wire (or other
modifiable component). The inductors in this chapter each occupy a 3�3 area; 
however, different components may, in general, have different dimensions. The induc-
tance of the new inductor (in microhenrys) is specified by the arithmetic-performing
subtree (the function’s first argument). The function’s second argument is the 
construction-continuing subtree.

Three-leaded components, such as transistors, may also be inserted into a 
developing circuit. Figure 5.5 shows the result of applying the one-argument transis-
tor-creating NPN-TRANSISTOR-LAYOUT function to the modifiable wire Z0 of
figure 5.3. The newly created npn (Q2N3904 BJT) transistor Q6 occupies a 3�3
area and is located at (18, 20). The newly created component is larger than that which
it replaces, thereby affecting the locations of two preexisting components (C2 and C3)
in the developing circuit. Specifically, preexisting capacitor C2 is pushed north by one
unit, thereby relocating it from (18, 23) to (18, 24). Similarly, preexisting capacitor C3
is pushed south by one unit, thereby relocating it from (18, 17) to (18, 16). The argu-
ment of the transistor-creating function is an arithmetic-performing subtree that spec-
ifies the transistor’s width. The newly created transistor Q6 is not subject to
subsequent modification (and hence this function possesses only one argument and
has no construction-continuing subtree).

Similarly, the PNP-TRANSISTOR-LAYOUT function inserts a pnp (Q2N3906
BJT) transistor.
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Figure 5.4 The application of the LAYOUT-C function to the modifiable wire Z0 of figure 5.3
causes a 3�3 capacitor C6 to be inserted at location (20, 20). The insertion of the new capacitor
C6 forces a change in location of the other capacitors.
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5.1.4 Topology-Modifying Functions

Each topology-modifying function modifies the topology of the developing circuit.
The two-argument SERIES-LAYOUT function creates a series composition 

consisting of the modifiable wire or modifiable component with which the function is
associated and a copy of it. The function also creates one new node. Figure 5.6 shows a
partial circuit containing six capacitors (C2, C3, C4, C5, C6, and C7). Figure 5.7 shows
the result of applying the SERIES-LAYOUT function to modifiable capacitor C6
located at (20, 20) of figure 5.6. The SERIES-LAYOUT function creates a new capac-
itor C8 occupying a 3�3 area. The newly created capacitor C8 has the same values as
modifiable capacitor C6. Room is made for the newly created capacitor C8 in the direc-
tion of a specified one of the two leads (the positive lead) of the preexisting component.
Thus, C8 is located at (22, 20) to the east of C6 in this example. The addition of the four
units horizontally to accommodate C8 affects the horizontal (but not vertical) location
of the four preexisting capacitors. For example, preexisting capacitor C2 is pushed west
by two units, thereby relocating it from (17, 24) to (15, 24). Similarly, preexisting capac-
itor C5 is pushed east by two units, thereby relocating it from (23, 16) to (25, 16). The
addition of the four units horizontally to accommodate C8 also affects other parts of the
developing circuit. For example, the wires to the east and west of preexisting capacitor
C7 are lengthened (by two units each) to reflect the addition of the four horizontal units
associated with the creation of C8. The function does not change the position of the pre-
existing component (C6) relative to C2 or C3. Both arguments of the SERIES-
LAYOUT function are construction-continuing subtrees. Thus, both C6 and C8 remain
subject to subsequent modification. New node 3 is located between preexisting capaci-
tor C6 and new capacitor C8 at the original location (20, 20) of preexisting capacitor C6.
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Figure 5.5 The application of NPN-TRANSISTOR-LAYOUT function to the modifiable wire
Z0 of figure 5.3 causes a three-leaded transistor Q6 occupying a 3�3 area to be inserted at
location (18, 20).
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Figure 5.6 Partial circuit with a 3�3 modifiable capacitor C6 at location (20, 20) with five
nearby capacitors.
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Figure 5.7 The application of the SERIES-LAYOUT function to the modifiable capacitor 
C6 of figure 5.6 causes a new 3�3 capacitor C8 to be inserted at location (22, 20) in series 
with C6.
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Each of the two functions in the PARALLEL-LAYOUT family of four-argument
functions creates a parallel composition consisting of two new modifiable wires, the
preexisting modifiable wire or modifiable component with which the function is asso-
ciated, and a copy of the modifiable wire or modifiable component. Each function also
creates two new nodes. Figure 5.8 shows the result of applying the PARALLEL-
LAYOUT-LEFT function to modifiable capacitor C6 located at (20, 20) of figure 5.4.
The function does not change the location of the modifiable component or modifiable
wire with which the function is associated. The function creates a new capacitor C7
occupying a 3�3 area with the same numerical value as C6. When looking from the
negative to the positive lead of the modifiable component or modifiable wire with
which the function is associated (C6 here), the PARALLEL-LAYOUT-LEFT function
positions the new capacitor C7 to the left of C6 (i.e., to the north of C6). The 
PARALLEL-LAYOUT-LEFT function does not affect the location of preexisting 
circuitry to the south of C6 (i.e., C3 and C5). The function inserts a new 1�1 modi-
fiable wire Z9 at (23, 22) to the north of C6, a new 1�1 piece of wire between 
preexisting node 2 and new modifiable wire Z9, and a new 1�1 piece of wire between
new node 4 and Z9. The function inserts a new 1�1 modifiable wire Z8 at (17, 22) to
the north of C6, a new 1�1 piece of wire between preexisting node 1 and new 
modifiable wire Z8, and a new 1�1 piece of wire between new node 3 and Z8.
The new capacitor C7 is located at (20, 24).
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Figure 5.8 The application of the PARALLEL-LAYOUT-LEFT function to the modifiable
capacitor C6 of figure 5.4 causes a new 3�3 capacitor C7 to be inserted at location (20, 24) in
parallel with C6.



The function also relocates the preexisting circuitry to the north of C6.
Specifically, preexisting capacitor C2 is pushed to the north from (17, 24) to (17, 28)
and preexisting capacitor C4 is pushed to the north from (23, 24) to (23, 28).

Figure 5.9 shows the result of applying the PARALLEL-LAYOUT-RIGHT func-
tion to modifiable capacitor C6 located at (20, 20) of figure 5.4. This function oper-
ates in a manner similar to the PARALLEL-LAYOUT-LEFT function, except that
new capacitor C7 is located to the south of C6 and the location of preexisting circuitry
to the south of C6 is pushed south.

The one-argument polarity-reversing FLIP function reverses the polarity of the
modifiable component or modifiable wire with which the function is associated.

All the foregoing circuit-constructing functions operate on a plane. However, most
practical circuits are not planar. Vias provide a way to connect distant points of a cir-
cuit. Each of the four functions in the VIA-TO-GROUND-LAYOUT family of three-
argument functions creates a T-shaped composition consisting of the modifiable wire
or modifiable component with which the function is associated, a copy of it, two new
modifiable wires, and a via to ground. The function also creates two new nodes.

Figure 5.10 shows the result of applying the VIA-TO-GROUND-NEG-LEFT-
LAYOUT function to modifiable capacitor C6 located at (20, 20) of figure 5.4. The
function creates a new node 3 at the location (20, 20) of the modifiable component or
modifiable wire with which the function is associated and also creates a new 2�1
area at the negative end of the modifiable component or modifiable wire with which
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C6
(20,20)

3 x 3

Z9Z8

2
+

1

–

––
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Figure 5.9 The application of the PARALLEL-LAYOUT-RIGHT function to the modifiable
capacitor C6 of figure 5.4 causes a new 3�3 capacitor C7 to be inserted at location (20, 16) in
parallel with C6.
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the function is associated and a new 4�1 area to the north (i.e., to the left when look-
ing from the negative to the positive lead of C6).

The new 4�1 area consists of a new 1�1 piece of wire perpendicular to, and to
the north of, the modifiable component or modifiable wire with which the function is
associated (facing from the negative to positive lead of the modifiable component or
modifiable wire with which the function is associated), a new 1�1 modifiable wire
Z9 at location (20, 22) beyond the new 1�1 piece of wire, a new node 4 at (20, 23)
beyond Z9 and the new 1�1 piece, and a via to ground G at (20, 24) beyond node 4,
Z9, and the new 1�1 piece.

The new 2�1 area consists of a 1�1 piece of wire at (19, 20) at the negative lead
of the modifiable component or modifiable wire with which the function is associated
and a modifiable wire Z8 at (18, 20). Because the VIA-TO-GROUND-NEG-LEFT-
LAYOUT function creates a new 2�1 area at the negative end of preexisting capaci-
tor C6 and a new 1�1 node 3, capacitor C6 is pushed to the east by three units with
the result that C6 becomes centered at (23, 20). Consequently, preexisting capacitor
C4 is pushed east from (23, 24) to (26, 24) and preexisting capacitor C5 is pushed east
from (23, 16) to (26, 16).

The three other members of this family of functions are named to reflect the fact
that they create the new 2�1 area at the positive (instead of negative) end of the mod-
ifiable component or modifiable wire with which the function is associated and that
they create the new 4�1 area to the right (instead of left).

If desired, similar families of three-argument functions can be defined to allow
direct connections to a positive power supply or a negative power supply.

In addition, if desired, numbered vias can be created to provide connectivity
between two different parts of a circuit. A distinct four-member family of three-argu-
ment functions is used for each via. For example, VIA-2-NEG-LEFT-LAYOUT

C2 C4

C3 C5

C6

1 2

10 12

1311

(23,20)

(26,16)

(26,24)(17,24)

(17,16)
3 x 3 3 x 3

3 x 3

3 x 3 3 x 3

– +
Z9

Z8

G (20,24)

–
+

+ –

(18,20)

(20,22)

3

4

Figure 5.10 The application of the VIA-TO-GROUND-NEG-LEFT-LAYOUT function to the
modifiable capacitor C6 of figure 5.4 causes a new 1�1 connection to ground G to be inserted
at location (20, 24).



makes a connection with a layer (numbered 2) of the imaginary multi-layered silicon
wafer (or multi-layered printed circuit board) on which the circuit resides.

The initial circuit complies with the requirement that wires cannot cross on a par-
ticular layer of a silicon chip or on a particular side of a printed circuit board and with
the requirement that there must be a wire connecting 100% of the leads. Each of the
component-creating and topology-modifying functions preserves compliance with these
two mandatory requirements for successful placement and routing, so any sequence of
such functions yields a fully laid-out circuit that complies with these two requirements.

5.1.5 Development-Controlling Functions

The zero-argument END function makes the modifiable wire or modifiable component
with which it is associated into a nonmodifiable wire or component (thereby ending a
particular developmental path).

The one-argument NOOP (“no operation”) function has no effect on the modifiable
wire or modifiable component with which it is associated; however, it has the effect
of delaying the developmental process on the particular path on which it appears.

5.1.6 Developmental Process

An electrical circuit is created by executing the functions in a circuit-constructing pro-
gram tree as part of a developmental process. The functions are progressively applied
to the embryonic circuit (and its successors) until all functions in the program tree are
executed. That is, the functions in the circuit-constructing program tree progressively
side-effect the embryonic circuit and its successors until a fully developed circuit
eventually emerges. The functions are applied in a breadth-first order.

5.2 Lowpass Filter with Layout

5.2.1 Preparatory Steps for the Lowpass Filter with Layout

5.2.1.1 Initial Circuit The one-input, one-output initial circuit consisting of an
embryo with one modifiable wire and a test fixture as shown in figure 5.2 is suitable
for the lowpass filter problem.

5.2.1.2 Program Architecture Because there must be one result-producing branch
in the program tree for each modifiable wire in the embryo and there is one modifiable
wire in the embryo, the architecture of each circuit-constructing program tree has one
result-producing branch. Neither automatically defined functions nor architecture-
altering operations are used in this chapter.

5.2.1.3 Function Set The function set, Fccs, for each construction-continuing
subtree is

Fccs ={C-LAYOUT, L-LAYOUT, SERIES-LAYOUT, PARALLEL-LAYOUT-LEFT,
PARALLEL-LAYOUT-RIGHT, FLIP, NOOP, VIA-TO-GROUND-NEG-LEFT-
LAYOUT, VIA-TO-GROUND-NEG-RIGHT-LAYOUT, VIA-TO-GROUND-
POS-LEFT-LAYOUT, VIA-TO-GROUND-POS-RIGHT-LAYOUT}.
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These functions possess 2, 2, 1, 4, 4, 1, 1, 3, 3, 3, and 3 arguments, respectively.

5.2.1.4 Terminal Set The terminal set, Tccs, for each construction-continuing
subtree is

Tccs ={END}.

In this problem, the numerical parameter value(s) for each electrical component
possessing a parameter are established by an arithmetic-performing subtree consisting
of one or more arithmetic functions and one or more constant numerical terminals.
This approach for establishing numerical parameter values is described in section
3.5.5.1.

A constrained syntactic structure enforces the use of one function set and one 
terminal set for the arithmetic-performing subtrees and another function set and 
terminal set for all other parts of the program tree.

The terminal set, Taps, for each arithmetic-performing subtree consists of

Taps ={�},

where � represents floating-point random constants from �1.0 to �1.0.
The function set, Faps, for each arithmetic-performing subtree is

Faps ={+, -}.

5.2.1.5 Fitness Measure The fitness measure for this problem is multiobjective
and is expressed in terms of

● suppression of frequencies in the stopband of the desired filter,
● passage at full power of frequencies in the passband of the desired filter, and
● minimization of area of the smallest bounding rectangle that encloses the fully laid-

out circuit.

The evaluation of each individual circuit-constructing program tree in the population
begins with its execution. This execution progressively applies the functions in the
program tree to the embryo (and its successors), thereby creating a fully developed
(and a fully laid out) circuit. A netlist is then created that identifies each component
of the fully developed circuit, the nodes to which each component is connected, and
the numerical value associated with each component. The netlist becomes the input to
our modified version of the SPICE simulator.

Because the high-level statement of the behavior for the desired circuit is
expressed (in part) in terms of the passing or suppressing of signals at various fre-
quencies, the output voltage VOUT is measured in the frequency domain. SPICE is
instructed to perform an AC small signal analysis (AC sweep) and report the circuit’s
behavior over five decades (between 1 Hz and 100,000 Hz) with each decade being
divided into 20 parts (using a logarithmic scale). Thus, there are a total of 101 sam-
pled frequencies.

The area of the bounding rectangle for the fully developed circuit is easily 
computed because the developmental process for creating the circuit is aware of the
actual geographical location of all components and wires.



The desired lowpass filter is to have a passband below 1,000 Hz, a stopband above
2,000 Hz, and a 1,000-to-1 (or better) attenuation in the stopband relative to the pass-
band. The circuit is driven by an incoming AC voltage source with an amplitude of 2
Volts. The test fixture contains a 1,000-Ohm source resistor RSRC and a 1,000-Ohm
load resistor RLOAD. The desired lowpass filter should have a sharp drop-off from 1
to 0 Volts in the transitional (“don’t care”) region between 1,000 Hz and 2,000 Hz.

The first element is the sum, over the 101 frequencies, of the absolute weighted devi-
ation between the actual value of the voltage that is produced by the circuit at the probe
point VOUT and the target value for voltage (0 or 1 Volt) as described in section 4.7.1.5.

The second element of the fitness measure is the area of the bounding rectangle
for the fully developed circuit divided by 100,000 square units of area. This element
of the fitness measure is much smaller than the term involving the filter’s frequency
response until a circuit scores 101 (or near 101) hits.

For individuals not scoring the maximum number (101) of hits, fitness is the sum
of the two terms.

For individuals scoring the maximum number of hits, fitness is only the area-based
term.

The smaller the value of fitness, the better.
The number of hits is defined using the first element of the fitness measure. The

number of hits is defined as the number of fitness cases for which the voltage is
acceptable or ideal or that lie in the “don’t care” band.

5.2.1.6 Control Parameters The population size is 1,120,000.

5.2.2 Results for the Lowpass Filter with Layout

We use the best-of-generation circuit-constructing program tree (figure 5.11) from
generation 0 to illustrate the developmental process that converts a tree into a fully
developed and fully laid-out electrical circuit. The program tree is a composition of
component-creating, topology-modifying, and development-controlling functions.

The circuit-constructing program tree of figure 5.11 is shown below in the style of
a LISP S-expression:

(L-LAYOUT
V1
(PARALLEL-LAYOUT-LEFT
(FLIP (FLIP (NOOP END)))
(C-LAYOUT

(-(-0.656 -0.507) (+ -0.463 -0.970))
(FLIP (FLIP END)))

(FLIP
(SERIES-LAYOUT

(C-LAYOUT -0.776 END)
(VIA-TO-GROUND-NEG-LEFT-LAYOUT END END END)))

(FLIP
(NOOP (L-LAYOUT -0.765 END)))))

The program begins with a two-argument inductor-creating L-LAYOUT function.
The value of the new inductor is established by the first argument of this L-LAYOUT
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function. Because this particular argument is a large arithmetic-performing subtree
composed of addition, subtraction, and floating-point random constants, it is abbrevi-
ated and labeled V1 in figure 5.11. The second argument (construction-continuing
subtree) of this L-LAYOUT function is a PARALLEL-LAYOUT-LEFT function.

The first argument of the four-argument PARALLEL-LAYOUT-LEFT function
executes two one-argument polarity-reversing FLIP functions and one one-argument
NOOP (“no operation”) function before reaching a development-terminating zero-
argument END function.

The second argument of the PARALLEL-LAYOUT-LEFT function executes 
a capacitor-creating two-argument C-LAYOUT function whose value is established 
by a seven-point arithmetic-performing subtree (shown in its entirety in the figure)
and whose construction-continuing subtree contains two polarity-reversing FLIP
functions and one END function.

The third argument of the PARALLEL-LAYOUT-LEFT function is a one-argument
FLIP function whose construction-continuing subtree consists of a two-argument
SERIES-LAYOUT function. The first construction-continuing subtree of the SERIES-
LAYOUT function executes a second capacitor-creating C-LAYOUT function. The value
of the second capacitor is established (in the manner described earlier) by the one-point
arithmetic-performing subtree consisting of the floating-point random constant �0.776.
The second construction-continuing subtree of the SERIES-LAYOUT function
executes a three-argument VIA-TO-GROUND-NEG-LEFT-LAYOUT function.

The fourth argument of the PARALLEL-LAYOUT-LEFT function is a FLIP
function whose construction-continuing subtree executes a one-argument NOOP func-
tion which, in turn, causes execution of a second two-argument inductor-creating 
L-LAYOUT function. The value of the second inductor is established by the one-point
arithmetic-performing subtree consisting of the floating-point constant �0.765.

When this circuit-constructing program tree for the best-of-generation circuit of
generation 0 is executed, it yields a fully laid-out circuit (figure 5.12) with two induc-
tors (L2 and L11) and two capacitors (C10 and C19). The four components, the con-
necting wires, the ground points, and the source of the incoming signal are all
assigned a precise physical location in this fully laid-out circuit. Notice that all the
nonmodifiable elements of the original test fixture of the initial circuit of figure 5.2

L-LAYOUT

V1 PARALLEL-
LAYOUT-LEFT

FLIP C-LAYOUT FLIP FLIP

FLIP

NOOP

END

– FLIP

FLIP

END

– +

0.656 –0.507 –0.463 –0.970

SERIES-
LAYOUT

C-LAYOUT

–0.776 END

VIA-TO-GROUND-
NEG-LEFT-LAYOUT

ENDENDEND

NOOP

L–LAYOUT

–0.765 END

Figure 5.11 Best-of-generation circuit-constructing program tree of generation 0.



(including, in particular, the incoming signal V, the source resistor RSRC, and the load
resistor RLOAD) appear in the fully developed and fully laid-out circuit (albeit in dif-
ferent physical locations). In addition, notice that this fully laid-out circuit complies
with the requirement that wires cannot cross on a particular layer of a silicon chip or
on a particular side of a printed circuit board and with the requirement that there must
be a wire connecting 100% of the leads.

The best-of-generation circuit from generation 0 (figure 5.12) scores 53 hits and
has a fitness of 57.961037. The incoming signal V first passes through source resistor
RSRC located at position (�7.8, 7.7) at the top left of figure 5.12. The signal passes
into inductor L2 located at position (1.2, 7.7), into load resistor RLOAD located at
position (11.8, 7.7), and into ground G (at the top right of the figure). In addition,
capacitor C10 located at (�2.7, 4.2) is connected to ground G (in the middle left of
the figure). Also, the series composition of inductor L11 and capacitor C19 is con-
nected to the same ground point G in the middle left of the figure. The area-based term
of the fitness measure is only 0.003710 at this early stage of the run.

The behavior in the frequency domain of the best circuit of generation 0 bears only
a faint resemblance to a lowpass filter. The circuit passes approximately 1 Volt for fre-
quencies up to about 50 Hz and passes approximately 0 Volts for a few frequencies
near 100,000 Hz. However, none of the intermediate frequencies have the desired 
voltage.

Both the average fitness of all individuals in the population and the fitness of the
best individual in the population improve over successive generations. The best circuit
of generation 8 (figure 5.13) scores 82 hits and has a fitness of 9.731077 (of which
only 0.008138 is contributed by the area-based term of the fitness measure). The
result-producing branch of its circuit-constructing program tree contains 165 points.
The circuit has five inductors and three capacitors. The incoming signal V passes
through source resistor RSRC (at the bottom left of the figure) and is fed into a paral-
lel-series composition of inductors L13, L2, and L12 (which are together electrically
equivalent to one inductor). In a lowpass filter, the capacitors that are connected to
ground are called shunts and the inductors positioned in series (along the bottom of
this figure) between the source resistor and load resistor are called series inductors.
When all the parallel and series compositions of like components are combined, this
circuit is equivalent to a first series inductor (the L13, L2, and L12 combination), a first
capacitive shunt (C18), a second series inductor (L11), a second capacitive shunt (the
C16 and C19 combination), and a third series inductor (L10). The series inductors and
capacitive shunts of a lowpass filter are typically drawn on paper to resemble a ladder
(as they are, for example, in figure 11.7). Figure 5.13 is equivalent to a two-rung lad-
der. The capacitive shunts correspond to the rungs of the ladder. The series inductors
correspond to one side of the ladder. The second side of the ladder is a common
ground wire to which each capacitive shunt is connected. The best-of-run circuit that
emerges in generation 138 is a four-rung ladder.

The behavior in the frequency domain of the best circuit of generation 8 bears
some resemblance to the desired lowpass filter. The circuit passes approximately 1
Volt for frequencies up to about 900 Hz and passes approximately 0 Volts for all fre-
quencies above 10,000 Hz. However, none of the intermediate frequencies have the
desired voltage.
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The first circuit scoring 101 hits (out of 101) appears in generation 25 (figure 5.14).
It has a fitness of 0.01775. The result-producing branch of its circuit-constructing pro-
gram tree contains 548 points. The circuit has five capacitors and 11 inductors. The
incoming signal V passes through source resistor RSRC (at the bottom left of the fig-
ure) and is fed into a composition of inductors along the straight line connecting the
incoming signal V to the load resistor RLOAD (at the bottom right). Along the way,
there is a series composition of L2, L12, the L11/L23 parallel combination, L10, L26,
the L9/L33 parallel combination, L32, and L31. There are four shunts to ground G.
Three of these shunts consist of one capacitor each (C13, C29, and C40). The fourth
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Figure 5.12 Best-of-generation circuit of generation 0 containing two inductors and two
capacitors.

L2
(–11.5,–6)
78800uH

RLOAD
(21,–6)

1K

RSRC
(–18.5,–6)

1K

L10
(14.5,–6)
158000u

H

L11
(2.5,–6)
8.91uH

L12
(–5.5,–6)

78800uH

L13
(–11.5,8)
78800uH

C16
(8.5,8)
131nF

C18
(–1.5,–3)
1.18nF

G V G

G

C19
(5.5,2)
131nF

VOUT

Figure 5.13 Best-of-generation circuit of generation 8 containing five inductors and three
capacitors.
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shunt consists of inductor L16 and the C17/C19 parallel combination. As can be seen,
the circuit in figure 5.14 occupies a considerable geographical area (1775.2).

The behavior of the 16-component best-of-generation circuit from generation 25
is 100% compliant in terms of problem’s required filter characteristics. It passes
approximately a full Volt for all frequencies up to about 1,000 Hz and passes approx-
imately 0 Volts for all frequencies above 2,000 Hz. There is a sharp drop-off in the
transition region between 1,000 Hz and 2,000 Hz. However, in addition to having 16
components, it occupies an area of 1775.2.

In generation 30, the best-of-generation circuit (figure 5.15) has a fitness of
0.00950. It also scores 101 hits. This circuit has 10 inductors and five capacitors. This
100%-compliant 15-component circuit (occupying an area of 950.3) occupies only
54% of the area of the 16-component circuit from generation 25.

The best-of-run circuit (figure 5.16) appears in generation 138. It has a near-zero
fitness of 0.00359 (more than five orders of magnitude better than the fitness of the
best circuit of generation 0). The result-producing branch of its circuit-constructing
program tree contains 463 points. This circuit has four inductors and four capacitors
(half as many components as the best circuit from generation 25). In addition, the cir-
cuit has a compact layout. There are no series or parallel compositions of capacitors
or inductors that redundantly connect the same two points of the circuit. The topology
of this best-of-run circuit is a four-rung ladder.

This best-of-run circuit occupies an area of 359.4 (only 20% of the area of the
100%-compliant best circuit from generation 25 in figure 5.14). Note that, for reasons
of space, figures 5.14, 5.15, and 5.16 are not drawn to scale.

Table 5.1 shows the number of capacitors, the number of inductors, the number of
shunts to ground, the area in terms of the number of square units of the bounding rec-
tangle, the frequency-based element of fitness, and the fitness for the three best-of-
generation circuits (each scoring 101 hits) from generations 25, 30, and 138.

As can be seen in table 5.1, all three of these three best-of-generation circuits have
the same number (four) of shunts to ground. That is, they solve the problem with more
or less the same approach. However, the best-of-generation circuits from the two ear-
lier generations (25 and 30) each have a total of 16 inductors and capacitors whereas
the best-of-run circuit from generation 138 has a total of only eight. Moreover, the
best-of-run circuit from generation 138 has only one fifth of the area of the best-
of-generation circuit from generation 25. The frequency-based element of the fitness
measure (column 6) is shown for reference only. Because all three of the circuits in
this table are 100%-compliant, their fitness (shown in column 7) is simply the area of
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Table 5.1 Comparison of characteristics of three best-of-generation circuits scoring 101 hits
for the lowpass filter problem with layout

Number of Frequency-
Number of Number of shunts to based

Generation capacitors inductors ground Area element Fitness

25 5 11 4 1775.2 0.264698 0.01775
30 10 5 4 950.3 0.106199 0.00950

138 4 4 4 359.4 0.193066 0.00359
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the bounding rectangle (column 5) for the fully developed circuit divided by 100,000.
For additional details see Bennett, Koza, Yu, and Mydlowec (2000).

5.2.3 Human-Competitiveness of the Result for the Lowpass Filter 
Problem with Layout

The best-of-run circuit from generation 138 (figure 5.16) has the recognizable features
of the circuit for which George Campbell of American Telephone and Telegraph
received U.S. patent 1,227,113 in 1917 (Campbell 1917). Claim 2 of Campbell’s
patent covers:

“An electric wave filter consisting of a connecting line of negligible attenuation
composed of a plurality of sections, each section including a capacity element and
an inductance element, one of said elements of each section being in series with the
line and the other in shunt across the line, said capacity and inductance elements
having precomputed values dependent upon the upper limiting frequency and the
lower limiting frequency of a range of frequencies it is desired to transmit without
attenuation, the values of said capacity and inductance elements being so propor-
tioned that the structure transmits with practically negligible attenuation sinusoidal
currents of all frequencies lying between said two limiting frequencies, while
attenuating and approximately extinguishing currents of neighboring frequencies
lying outside of said limiting frequencies.”

An examination of the evolved circuit of figure 5.16 shows that it indeed consists
of “a plurality of sections” (specifically, four). Also, as can be seen in the figure,
“Each section include[s] a capacity element and an inductance element.” Specifically,
the first of the four sections consists of inductor L20 and capacitor C12; the second
section consists of inductor L29 and capacitor C18; and so forth. Moreover, “one of
said elements of each section [is] in series with the line and the other in shunt across
the line.” As can be seen in the figure, inductor L20 of the first section is indeed “in
series with the line” and capacitor C12 is “in shunt across the line.” This is also the
case for the remaining three sections of the evolved circuit. In addition, the topology
of the circuit in figure 5.16 herein exactly matches the topology of the circuit in fig-
ure 7 in Campbell’s 1917 patent. Finally, this circuit’s 100%-compliant frequency
domain behavior confirms the fact that the values of the inductors and capacitors are
such as to transmit “with practically negligible attenuation sinusoidal currents” of the
passband frequencies “while attenuating and approximately extinguishing currents”
of the stopband frequencies. In short, the circuit created by genetic programming has
all the features contained in claim 2 of Campbell’s 1917 patent.

Referring to the eight criteria in table 1.2 for establishing that an automatically
created result is competitive with a human-produced result, the rediscovery by genetic
programming of a filter that infringes Campbell’s 1917 patent satisfies the following
two of the eight criteria:

(A) The result was patented as an invention in the past, is an improvement over a
patented invention, or would qualify today as a patentable new invention.

(F) The result is equal to or better than a result that was considered an achievement
in its field at the time it was first discovered.



The rediscovery by genetic programming of the Campbell filter circuit came about
eight decades after Campbell received a patent for his invention. Nonetheless, the fact
that the original human-designed version satisfied the Patent Office’s criteria for
patent-worthiness means that the genetically evolved duplicate would also have satis-
fied the Patent Office’s criteria for patent-worthiness (if only it had arrived earlier than
Campbell’s patent application).

The Campbell filter was, in fact, rediscovered by genetic programming in 1995
(and previously reported in Koza, Bennett, Andre, and Keane 1996a, 1996d, and
1999a). This fact is included in table 1.3 of human-competitive results. This previous
rediscovery of the Campbell filter by genetic programming did not, of course, entail
the circuit’s placement and routing.

In this chapter, genetic programming not only automatically synthesized the topol-
ogy and sizing of an analog electrical circuit, it is also simultaneously performed the
tasks of placement and routing. The problem of automatic placement and routing of a
circuit whose topology and sizing has already been devised is alone considered to be
a formidable problem. Referring again to the eight criteria in table 1.2, the simultane-
ous automatic synthesis of the topology, sizing, placement, and routing of the lowpass
filter in this section (and the 60 dB amplifier in section 5.3) satisfies the following
additional criterion:

(G). The result solves a problem of indisputable difficulty in its field.

The automatic synthesis by genetic programming of the topology, sizing, place-
ment, and routing of analog circuits satisfies Arthur Samuel’s criterion (1983) for arti-
ficial intelligence and machine learning:

“[T]he aim [is]…to get machines to exhibit behavior, which if done by humans,
would be assumed to involve the use of intelligence.”

5.2.4 Routineness of the Transition from a Problem of Circuit Synthesis 
without Layout to a Problem of Circuit Synthesis with Layout

What is the nature of the effort required to make the transition from a basic circuit syn-
thesis problem involving only topology and sizing to a problem involving placement
and routing (i.e., layout) in addition to topology and sizing?

First, there is the issue of the function and terminal sets. The function and termi-
nal sets for handling a problem combining placement and routing with topology and
sizing are similar to the function and terminal sets that we used in chapter 4 for han-
dling just topology and sizing. The difference is that geographically-aware functions
are used for handling a problem entailing the simultaneous synthesis of topology,
sizing, placement, and routing. This difference is an inherent and necessary part of
making the transition from a basic circuit synthesis problem entailing just topology
and sizing to a problem additionally entailing placement and routing. The required
change in function and terminal sets does not require an enormous amount of effort.

Second, the fitness measure for a problem involving topology, sizing, placement, and
routing necessarily has an added element concerning layout (i.e., the area of the bound-
ing rectangle of the laid-out circuit). The change in fitness measures from problem to
problem is an inherent and necessary part of making the transition from one problem
to another. The required change does not entail an enormous amount of effort.
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Once the preparatory steps are performed for a problem combining both basic 
circuit synthesis and layout, the executional steps of genetic programming are the
same as for a problem involving basic circuit synthesis.

Thus, the transition is routine from the domain of basic circuit synthesis to the
domain involving topology, sizing, placement, and routing.

5.2.5 AI Ratio for the Lowpass Filter Problem with Layout

What is the AI ratio for the solution produced by genetic programming to the problem
of synthesizing the topology, sizing, placement, and routing of a lowpass filter?

The result produced by genetic programming on this problem is human-competitive
because the result (without any consideration of placement and routing) was patented
as an invention in the past. Thus, the solution produced by genetic programming for
this problem has a high amount of “A.”

The preparatory steps for the present problem are (except for the fitness measure
and the geographically-aware functions) substantially the same as the preparatory
steps for other problems of circuit synthesis in chapter 4. Thus, for the same reasons
stated in chapter 4, the solution produced by genetic programming for the present
problem incorporates a small amount of “I.”

The high amount of “A” represented by the human-competitive result in conjunc-
tion with the small amount of “I” provided by the human user means that the AI ratio
for the solution produced by genetic programming is high.

5.3 60 dB Amplifier with Layout

5.3.1 Preparatory Steps for 60 dB Amplifier with Layout

5.3.1.1 Initial Circuit Figure 5.17 shows a one-input, one-output initial circuit
(consisting of an embryo and a test fixture) located on one layer of a silicon wafer or
printed circuit board. The embryo consists of the three modifiable wires, Z0, Z1, and
Z2 (in the middle of the figure). All development originates from these modifiable
wires. The test fixture contains three ground points G, an input point V (lower left), an
output point O (upper right), nonmodifiable wires (hatched), and four nonmodifiable
resistors. There is a fixed 1,000-Ohm source resistor R4, a fixed 1,000-Ohm load
resistor R18, a fixed 1-giga-Ohm feedback resistor R14, and a fixed 999-Ohm
balancing resistor R3.

Each element of this initial circuit (and all successor circuits created by the devel-
opmental process) resides at a particular geographic location on the circuit’s two-
dimensional substrate. Each element occupies a particular amount of space. For
example, the resistors each occupy a 3�3 area; the source point V and the output
probe point O each occupy a 1�1 area; the nonmodifiable wires each occupy a 1�n
or n�1 rectangular area; the modifiable wires each (temporarily) occupy a 1�1 area.

5.3.1.2 Program Architecture There is one result-producing branch in the program
tree for each modifiable wire in the embryo. Thus, the architecture of each circuit-
constructing program tree has three result-producing branches. Neither automatically
defined functions nor architecture-altering operations are used.



5.3.1.3 Function Set The function set, Fccs, for each construction-continuing
subtree includes component-creating functions for npn transistors, pnp transistors,
resistors, capacitors, and inductors (a totally extraneous component for this problem);
the development-controlling NOOP function; and topology-modifying functions for
series, parallel, flips, and vias to ground, the positive power supply, the negative power
supply, and layers 0 and 1 of the printed circuit board.

5.3.1.4 Terminal Set In this problem, the numerical parameter value(s) for each
electrical component possessing a parameter are established by a value-setting subtree
containing a single perturbable numerical value. This approach for establishing
numerical parameter values is described in section 3.5.5.2.

The terminal set, Tvss, for the value-setting subtrees is

Tvss �{�p},

where �p denotes a perturbable numerical value.

5.3.1.5 Fitness Measure The fitness measure for this problem is multiobjective
and is expressed in terms of

● the gain of the candidate amplifier circuit,
● bias,
● distortion, and
● minimization of the area of the smallest bounding rectangle that encloses the fully

laid-out circuit.
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Figure 5.17 Initial circuit consisting of test fixture and embryo with three modifiable wires.
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An amplifier can be viewed in terms of its response to a DC input. An ideal 
inverting amplifier circuit would receive a DC input, invert it, and multiply it by the
amplification factor. A circuit is flawed to the extent that it does not achieve the
desired amplification, to the extent that the output signal is not centered on 0 Volts
(i.e., there is a bias), and to the extent that the circuit’s DC response is not linear.

The fitness measure is based on SPICE’s DC sweep. The DC sweep analysis
measures the circuit’s DC response at several different DC input voltages. The circuits
are analyzed with a 5 point DC sweep ranging from �10 millivolts to �10 millivolts,
with points at �10, �5, 0, �5, and �10 millivolts. SPICE is used to simulate the cir-
cuit’s behavior for each of these five DC voltages. Four penalties (an amplification
penalty, a bias penalty, and two nonlinearity penalties) are derived from this analysis.

First, the circuit’s amplification factor is measured by the slope of the straight line
between the output for �10 millivolts and the output for �10 millivolts (i.e., between
the outputs for the endpoints of the DC sweep). If the amplification factor is less than
the target (60 dB), there is a penalty equal to the shortfall in amplification.

Second, the bias is computed using the DC output associated with a DC input of
0 Volts. There is a penalty equal to the bias multiplied by a weight of 0.1.

Third, the linearity is measured by the deviation between the slope of each of two
shorter line segments and the circuit’s overall amplification factor. The first shorter line
segment connects the output value associated with an input of �10 millivolts and the out-
put value for �5 millivolts. The second shorter line segment connects the 
output value for �5 millivolts and the output for �10 millivolts. There is a penalty for
each of these shorter line segments equal to the absolute value of the difference in slope
between the respective shorter line segment and the circuit’s overall amplification factor.

Fitness is the sum of the area of the bounding rectangle for the fully developed and
laid-out circuit weighted by 10�6, the amplification penalty, the bias penalty, and the
two nonlinearity penalties; however, if this sum is less than 0.1 (indicating achieve-
ment of a very good amplifier), the fitness becomes simply the rectangle’s area mul-
tiplied by 10�6. Thus, after a good amplifier design is achieved, fitness is based solely
on area minimization.

5.3.1.6 Control Parameters The population size is 10,000,000.

5.3.2 Results for 60 dB Amplifier with Layout

The best-of-generation circuit from generation 0 has a fitness of 999.86890.
The first best-of-generation circuit (figure 5.18) delivering 60 dB of amplification

appeared in generation 65. This 27-component circuit occupies an area of 8,234 and
has an overall fitness of 33.042583.

The best-of-run circuit (figure 5.19) appears in generation 101. Note that figures
5.18 and 5.19 use different scales. The best-of-run circuit from generation 101 contains
11 transistors, 5 resistors, and 3 capacitors. The four “P” symbols indicate vias to the
positive power supply. This 19-component circuit occupies an area of 4,751 and has an
overall fitness of 0.004751. The best-of-run circuit from generation 101 occupies only
58% of the area of the 27-component best-of-generation circuit from generation 65.

Table 5.2 shows the number of components, the area, the four penalties comprising the
non-area element of the fitness measure, and the overall fitness for the best-of-generation



circuit from generation 65 (figure 5.18) and the best-of-run circuit from generation 101
(figure 5.19).

The best-of-generation circuit from generations 65 has 81, 189, and 26 points,
respectively, in its three branches. The best-of-run circuit from generation 101 has 65,
85, and 10 points, respectively, in its three branches. That is, the sizes of the corre-
sponding branches of the best-of-run circuit from generation 101 are smaller than
those of the best-of-generation circuit from generations 65.
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Figure 5.18 Best-of-generation circuit from generation 65 for the amplifier problem with
layout.

Table 5.2 Comparison of characteristics of two best-of-generation circuits for the
amplifier problem with layout

Generation Components Area Four penalties Fitness

65 27 8,234 33.034348 33.042583
101 19 4,751 0.061965 0.004751
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The third branches of these two individuals are both small (26 and 10 points,
respectively). The only effect of these branches is to insert a single transistor (a pnp
transistor in generation 65 and an npn transistor in generation 101).

The shaded portion of figure 5.18 shows the portion of the best circuit from gen-
eration 65 that is deleted in order to create the best-of-run circuit of generation 101
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Figure 5.19 Best-of-run circuit from generation 101 for the amplifier problem with layout.



(figure 5.19). The first branches of these two individuals are so similar that it is clear that
these two branches are genealogically related. These two first branches account for 14
components (nine transistors and five resistors) that are in common with both circuits.

The second branches of these two individuals are almost completely different. The
second branch of the best-of-run circuit of generation 101 accounts for the bulk of the
reduction in component count (six transistors and three capacitors). There is one
added component (capacitor C10).

The difference between generations 65 and 101 caused by the first branches is that
two extraneous components that are present in generation 65 are missing from the
smaller 19-component circuit from generation 101.

Table 5.3 shows the X and Y coordinates for the 19 components of the best circuit
of generation 101, the type (npn Q2N3904 or pnp Q2N3906) for each transistor, and
the component value (sizing) for each capacitor and resistor. Capacitances are in
nanofarads and resistances are in kilo-Ohms.

For additional information, see Koza and Bennett 1999 and Bennett and Koza
2002.

5.3.3 Routineness for the 60 dB Amplifier Problem with Layout

The problem involving the amplifier is in the same domain (i.e., the automatic 
synthesis of circuit topology, sizing, placement, and routing) as the problem concerning
the lowpass filter (section 5.2). Thus, in this section, we consider the effort required
to make the transition from one problem to another problem within the same domain.
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Table 5.3 Placement of the 19 components of the best-of-run circuit
from generation 101 for the amplifier problem with layout

Component X-coordinate Y-coordinate Sizing/Type

Q8 �8.398678 21.184582 Q2N3906
C10 �8.54565 31.121107 101
R21 18.245857 �24.687471 1,480
R24 12.105233 �20.687471 5,780
R27 12.105233 �12.690355 3,610
R30 5.128666 �8.690355 87.5
R33 �3.398678 �4.690355 1,160
Q36 �3.398678 3.30961 Q2N3904
Q39 �3.398678 13.309582 Q2N3904
Q43 �18.472164 8.309597 Q2N3904
Q45 �18.472164 �1.690355 Q2N3904
Q46 �3.398678 21.184582 Q2N3904
Q47 5.128666 21.184582 Q2N3904
Q48 �18.472164 �17.687471 Q2N3904
Q49 12.105233 21.184582 Q2N3904
Q50 18.245857 21.184582 Q2N3904
C52 �15.472164 31.121107 125
C53 �15.472164 21.184582 0.00778
Q54 24.873787 31.121107 Q2N3906



Circuit Topology, Sizing, Placement, and Routing 203

The preparatory steps for the present problem are substantially the same as the
preparatory steps for the problem involving the lowpass filter with two exceptions.
First, the amplifier problem has a different goal (and hence a different fitness meas-
ure). Second, the lowpass filter contains only passive components (capacitors and
inductors) whereas the amplifier (like most present-day active circuits) contains tran-
sistors (in addition to passive components such as capacitors and resistors). The inclu-
sion of transistors in the parts bin, in turn, necessitates a source of external power.
Neither change entails an enormous amount of effort.

Thus, relatively little effort is required to make the transition from the problem
involving the lowpass filter to the problem involving the amplifier. That is, the transi-
tion is routine.

5.3.4 AI Ratio for the 60 dB Amplifier Problem with Layout

The solution produced by genetic programming to the problem involving the layout
of an amplifier has a moderately high amount of “A.”

The preparatory steps for this problem are the same (with the two exceptions noted
in the previous section) as the preparatory steps for the previous problem involving the
lowpass filter (section 5.2). Thus, the denominator of the AI ratio contains only a
small amount of “I.”

Thus, the AI ratio for the solution produced by genetic programming to this 
problem is moderately high.
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An antenna is a device for receiving or transmitting electromagnetic waves. 
An antenna may receive an electromagnetic wave and transform it into a signal on 
a transmission line. Alternately, an antenna may transform a signal from a transmis-
sion line into an electromagnetic wave that is then propagated in free space.

Some antennas are directional in the sense that they send and receive a signal 
primarily in a specified direction. Some operate only over a narrow band of frequencies
whereas others operate over a wide band of frequencies. Antennas vary as to the imped-
ance at their feed points and the polarization of the waves that they transmit or receive.
Some antennas are two-dimensional; others are three-dimensional; and others are 
“two and a half” dimensional (e.g., an antenna embedded in a curved surface such an
automobile windshield). The antenna’s gain is usually a major design consideration.

Maxwell’s equations govern the electromagnetic waves generated and received by
antennas. The task of analyzing the characteristics of a given antenna is difficult. The
task of synthesizing the design of an antenna with specified characteristics is even
more difficult and typically calls for considerable creativity on the part of the antenna
engineer (Balanis 1982; Stutzman and Thiele 1998; Linden 1997). That is, antennas
resemble circuits and controllers in that analysis is difficult and synthesis is an art.

The behavior and characteristics of many antennas can be determined by simula-
tion. For example, the Numerical Electromagnetics Code (NEC) is a method-of-
moments (MoM) simulator for wire antennas that was developed at the Lawrence
Livermore National Laboratory (Burke 1992). The NEC simulator is reasonably fast.
It works from a relatively simple text input (called the geometry table) and produces
output in the form of well-defined and easily parsed text. The NEC simulator is widely
used in the antenna community and is considered to be reasonably accurate and reli-
able for a broad range of structures (Linden 1997). The availability of the source code
(in FORTRAN) for the NEC simulator enables the simulator to be efficiently embed-
ded inside a run of the genetic algorithm or genetic programming. In regard to 
these characteristics, the NEC simulator is similar to the SPICE simulator used else-
where in this book for simulating analog electrical circuits, controllers, and metabolic
pathways.
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This chapter demonstrates the use of genetic programming to automatically 
synthesize the design of a wire antenna for an illustrative problem. This illustrative
problem has been previously solved by both conventional antenna design techniques
and by the genetic algorithm operating on fixed-length strings.

Genetic algorithms have been successfully applied to the design of a variety of
antennas, including the design of thinned arrays (Haupt 1994), wire antennas (Linden
1997; Altshuler and Linden 1998, 1999), patch antennas (Johnson and Rahmat-Samii
1999), and linear and planar arrays (Marcano and Duran 1999). The book
Electromagnetic Optimization by Genetic Algorithms (Rahmat-Samii and Michielssen
1999) describes numerous applications of the genetic algorithm to antenna design.
Jones (1999) applied genetic programming to antenna design.

When the genetic algorithm is applied to a problem of antenna design, the human
user typically prespecifies many of the key characteristics of the size and shape of the
solution. In contrast, when genetic programming is applied to this problem, the human
user is not required to prespecify the size and shape of the solution. Instead, these
characteristics are automatically generated by the evolutionary process.

6.1 Our Approach to the Automatic Synthesis of the 
Geometry and Sizing of Antennas

Our approach to the problem of automatically creating both the geometry and sizing
of an antenna that satisfies user-specified design requirements involves

(1) establishing a representation for antennas involving LISP symbolic expressions
(S-expressions) and program trees that can be progressively bred by means of
genetic programming, and

(2) defining a fitness measure that measures how well the behavior and characteris-
tics of a candidate antenna satisfy the problem’s high-level design requirements.

The representation and fitness measure are then used in a run of genetic program-
ming. During the run, the evaluation of the fitness of each individual in the population
involves

(1) converting each individual program tree in the population into an antenna,
(2) converting each antenna into a geometry table of the type accepted by the antenna

simulator,
(3) obtaining the behavior of the individual antenna by simulating its behavior, and
(4) using the antenna’s behavior and characteristics to calculate its fitness.

The implementation of our approach entails working with four different represen-
tations for an antenna:

● Drawing: An antenna can be represented as an engineering drawing in two-
dimensional or three-dimensional space. In this representation, certain lines or
curves represent conductive material (e.g., metal).
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● Program Tree: An antenna can also be represented as a program tree whose 
internal points (nodes) are functions and external points (leaves) are terminals. This
representation enables genetic programming to breed a population of programs in 
a search for an antenna that satisfies user-specified design requirements.

● Symbolic Expression: The program can also be represented as a symbolic expres-
sion (S-expression) in the style of the LISP programming language. This represen-
tation is used internally by genetic programming.

● Geometry Table: A wire antenna can also be represented as a geometry table that
specifies the two-dimensional (or three-dimensional) coordinates of the endpoints
of each wire, the radius of each wire, and certain information necessary to control
the method of moment calculation performed by the NEC simulator. The geometry
table used by the NEC simulator is similar in concept to the netlist used by the
SPICE simulator. The geometry table is described in section 6.4.4.

6.2 Illustrative Problem of Antenna Synthesis

We illustrate the use of genetic programming for the design of antennas with a prob-
lem that was previously solved by both conventional antenna design techniques and
the genetic algorithm operating on fixed-length strings (Linden 1997; Altshuler and
Linden 1999).

The problem is to synthesize the design of a planar symmetric antenna composed
of wires of a half-millimeter radius that

● has maximum gain in a preferred direction (specifically, along the positive X-axis)
over a range of frequencies from 424 MHz to 440 MHz,

● has a reasonable value (specifically � 3.0) for voltage standing wave ratio (VSWR)
when the antenna is fed by a transmission line whose characteristic impedance, Z0,
is 50 ,

● fits into a bounding rectangle whose height is 0.4 meters and whose width is 
2.65 meters, and

● is excited by a single voltage source. One end of the transmission line is connected
to the source and the other end is connected (at the origin of a coordinate system)
to the antenna’s driven element. The lower left corner of the bounding rectangle is
positioned at (�250, �200) and the upper right corner is at (2400, 200).

These requirements can be satisfied by a Yagi-Uda antenna (Uda 1926, 1927; Yagi
1928). A Yagi-Uda antenna (figure 6.1) is a planar symmetric wire antenna consisting
of a number of parallel linear elements. The Yagi-Uda antenna is widely used for
home TV antennas. The driven element is a vertical linear element positioned along
the Y-axis. The midpoint of the driven element (i.e., at position (0, 0) in the figure) is
connected to a transmission line (not shown). The antenna’s other elements are not
connected to the transmission line. Instead, the currents in those elements are induced
parasitically by mutual coupling (Balanis 1982). All the antenna’s elements are sym-
metric (about the X-axis) in that they are all arranged in parallel (with all their mid-
points lying on a straight line perpendicular to the parallel wires). The elements to the
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left of the driven element act as reflectors. Usually (but not necessarily) there is just
one reflector. The (usually numerous) elements to the right of the driven element act
as directors. The antenna in the figure has four directors. The directors are typically
spaced unequally. They are typically shorter than the driven element and of different
lengths. A well-designed Yagi-Uda antenna is an endfire antenna in the sense that it
directs most of its energy (along the positive X-axis here) toward a point in the farfield
of the antenna. The driven element, directors, and reflector(s) of a Yagi-Uda antenna
are physically mounted on a non-conducting physical support (not shown).

Before applying the genetic algorithm operating on fixed-length strings to a par-
ticular problem, the human user must perform four preparatory steps of:

(1) choosing the representation scheme by which the to-be-discovered parameters
are mapped onto the chromosome string,

(2) defining the fitness measure,
(3) choosing control parameters for the run, and
(4) choosing the termination criterion and method of result designation.

The representation scheme for the genetic algorithm typically involves choosing
the number of characters in the alphabet for the chromosome string, the number of
characters that are allocated to each variable, and the location of each variable on the
chromosome string (Goldberg 1989).

When Linden and Altshuler (Linden 1997; Altshuler and Linden 1999) applied 
the genetic algorithm operating on fixed-length strings on the present problem, they
prespecified

(A) that all the antenna’s wires (i.e., the directors, the reflectors, and the driven 
elements) would be straight,

(B) that all the antenna’s wires would be arranged in parallel (with all their midpoints
lying along a single straight line that is parallel to the X-axis), and

(C) that the energy source (the transmission line) would be connected to the midpoint
of a single straight wire (the driven element),

(D) the number of directors, and
(E) the number of reflectors (one).

Specifications (A), (B), and (C) are key characteristics of the topology of a 
Yagi-Uda antenna (figure 6.1).

After specifying (A), (B), (C), (D), and (E), the only remaining issue is the dis-
covery of certain numerical values, namely the lengths of the wires and the spacing

0 0.5 1 1.5 2
x(m)

y(
m

)

0.2

0

0.2

Figure 6.1 Example of a Yagi-Uda antenna.
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between the wires. In applying the genetic algorithm to this problem, Linden and
Altshuler constructed a chromosome string in which each part of the chromosome
represented one of these to-be-discovered numerical values.

As will be seen shortly, when genetic programming is applied to this problem, the
human user need not prespecify (A), (B), (C), (D), or (E).

6.3 Repertoire of Functions and Terminals

Our approach to the synthesis of a planar wire antenna involves creating a two-
dimensional drawing of the antenna. The drawing is made by a turtle moving in the
plane. The turtle may (or may not) deposit ink (metal) as it moves. The necessary
movements can be implemented using an amalgam of features of turtle geometry
(Abelson and diSessa 1980), the Logo programming language, and Lindenmayer sys-
tems (Lindenmayer 1968; Prusinkiewicz and Hanan 1980; Prusinkiewicz and
Lindenmayer 1990) augmented by certain additional features of our own.

The Logo programming language is a dialect of LISP that was created in 1967 by
Seymour Papert and Wallace Feurzeig, and others at Bolt, Beranek, and Newman. We
use functions patterned after functions from Logo that move and turn the turtle and
that iteratively execute a group of functions.

We also use a function that rubber-bands the turtle in the same manner as the
brackets of Lindenmayer systems (Koza 1993).

6.3.1 Repertoire of Functions

Eight functions are used in the program trees. All are side-effecting functions that do
not return any value.

The one-argument TURN-RIGHT function changes the facing direction of the 
turtle by turning the turtle clockwise by the amount specified by its argument. 
The argument is a floating-point number between 0.0 and 1.0. The argument is then
multiplied by 2� (with the result that it represents an angle in radians).

The two-argument DRAW function moves the turtle in the direction that it is 
currently facing by an amount specified by its first argument. The turtle may or may
not deposit a wire as it is moving, depending on its second argument. Drawing with
HALF-MM-WIRE is equivalent to depositing a half-millimeter wire while moving the
turtle. Drawing with NOWIRE is equivalent to moving the turtle without depositing
metal. The first argument is a floating-point number between 0.0 and 1.0. This num-
ber is scaled between two bounds (16 to 200 millimeters for this problem). These par-
ticular bounds were chosen to avoid unreasonably long wires and unreasonably short
wires (which may represent an implausible antenna geometry and may sometimes
lead to simulator errors).

The two-argument REPEAT function causes the subtree in its second argument 
to be executed for the number of times specified by its first argument. The first argu-
ment is an integer modulo 100. This particular bound was chosen to give the drawing
process considerable freedom while limiting the expenditure of computer time. 
One use of the REPEAT function is to permit the reuse of a useful substructure. Notice
also that an iterative function such as REPEAT has the practical effect of enabling the
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creation of curved substructures (composed of a large number of very short straight
wires).

The one-argument LANDMARK function causes the turtle to execute its single
argument. The turtle is then restored to the position and facing direction that it had at
the start of the evaluation of the LANDMARK function. The LANDMARK function oper-
ates in the same manner as the brackets of Lindenmayer systems (Lindenmayer 1968;
Prusinkiewicz and Hanan 1980; Prusinkiewicz and Lindenmayer 1990).

The two-argument TRANSLATE-RIGHT function does three things. First, this
function temporarily turns the turtle clockwise by the angular amount specified by its
first argument (in the same manner as the argument of the TURN-RIGHT function).
Second, this function moves the turtle forward (in the direction in which the turtle was
temporarily turned) by the amount specified by its second argument (in the same man-
ner as the DRAW function with NOWIRE as its second argument). Third, this function
restores the turtle to its original facing direction.

The connective functions PROGN2, PROGN3, and PROGN4 sequentially execute
their 2, 3, and 4 arguments (respectively).

This foregoing repertoire of functions and terminals can be easily extended in var-
ious ways. For example, three-dimensional antennas can be constructed simply by
adding an additional angle to the TURN-RIGHT and TRANSLATE-RIGHT functions
(thus creating a “flying turtle”). In addition, coordinate transformations can be defined
to enable the turtle to move on an irregularly shaped surface (e.g., a curved automobile
windshield). Variable width wires can be accommodated merely by using a numerical
parameter for the wire width. The foregoing repertoire of functions and terminals
assumes that there is only one connection to the transmission line. However, antennas
with more than one connection to the transmission line can be easily accommodated by
adding a function that creates such a connection at the turtle’s current location.

Also, many antennas involve repetitions of substructures (either exactly or with
slight variations). Automatically defined functions can create repetitive structures in
an efficient manner. Moreover, automatically defined functions with dummy variables
(formal parameters) can efficiently create structures with variation in the repeated
structure. Although this degree of flexibility is not required in the present problem,
this facility of genetic programming would be advantageous in synthesizing the
design of more complex antennas.

6.3.2 Repertoire of Terminals

Four terminals are used in the program trees.
The terminal HALF-MM-WIRE denotes a half-millimeter wire. The terminal

NOWIRE represents the absence of a wire. A constrained syntactic structure restricts
the location of these two terminals to the second argument of the DRAW function.

�real denotes floating-point numbers between 0.0 and 1.0. These floating-point
numbers can appear only as the first argument of a TURN-RIGHT or DRAW function.
Note that we do not use the nonlinear mapping (section 3.5.5).

�integer denotes integers between 0 and 99. These integers can appear only as the
first argument of a REPEAT function.

The END terminal appears at all other leaves (endpoints) of the program tree.
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6.3.3 Example of the Use of the Functions and Terminals

The following composition of turtle-controlling functions and terminals illustrates
how an antenna may be created:

1 (PROGN3
2  (TURN-RIGHT 0.125)
3  (LANDMARK
4    (REPEAT 2
5      (PROGN2
6       (DRAW 1.0 HALF-MM-WIRE)
7        (DRAW 0.5 NO-WIRE)))
8  (TRANSLATE-RIGHT 0.125 0.75))

As shown in figure 6.2(a), the turtle starts facing north. The PROGN3 connective
function on line 1 causes the execution of the functions on lines 2, 3, and 8. As shown
in figure 6.2(b), the TURN-RIGHT function on line 2 causes the turtle to turn clock-
wise by 1/8 of 2� (i.e., 45 degrees). The PROGN2 connective function on line 5 causes
the execution of the functions on lines 6 and 7. As shown in figure 6.2(c), the DRAW
function of line 6 moves the turtle in its current facing direction by length 1.0 while
depositing metal (i.e., HALF-MM-WIRE). As shown in figure 6.2(d), the DRAW func-
tion of line 7 moves the turtle in its current facing direction by length 0.5 but without
depositing metal (i.e., NO-WIRE). The functions on lines 5, 6, and 7 are encompassed
by the iterative REPEAT function on line 4. Consequently, as shown in figure 6.2(e),
this REPEAT function causes the metal of length 1.0 and the gap of length 0.5 to be
repeated. The functions on lines 4, 5, 6, and 7 are encompassed by the LANDMARK
function on line 3. As shown in figure 6.2(f), this LANDMARK function first causes the
turtle to be restored to the position and facing direction that it had after the execution
of the TURN-RIGHT function of line 2, namely the position and facing direction of
figure 6.2(b). Finally, the TRANSLATE-RIGHT function of line 8 temporarily turns
the turtle clockwise by 1/8 of 2� (i.e., 45 degrees) so that it is facing east and then
moves the turtle forward 0.75 without depositing metal. After execution of this
TRANSLATE-RIGHT function, the turtle is restored to its previous facing direction
(i.e., northeast). The effect of executing the TRANSLATE-RIGHT function is shown
in figure 6.2(g).

The consequence of executing lines 1 through 8 is the creation of the two wires
shown in figure 6.2(g). That is, the turtle made the drawing shown in figure 6.2(g).

(a) (b) (c) (d) (e) (f) (g)

Figure 6.2 Examples of effects of turtle-controlling functions.
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6.4 Preparatory Steps for the Antenna Problem

6.4.1 Program Architecture

Each individual program in the population has one result-producing branch.
Automatically defined functions are not used in this problem.

6.4.2 Function Set

The function set for the result-producing branch is

Frpb �{TURN-RIGHT, DRAW, REPEAT, LANDMARK, TRANSLATE-RIGHT,
PROGN2, PROGN3, PROGN4}.

6.4.3 Terminal Set

In this problem, the numerical parameter value(s) for each function possessing a
parameter are established by a value-setting subtree containing a single perturbable
numerical value. This approach for establishing numerical parameter values is
described in section 3.5.5.2.

The terminal set, Tvss, for the value-setting subtrees is

Tvss � {�p},

where �p denotes a perturbable numerical value.
As previously mentioned, a constrained syntactic structure is used to restrict cer-

tain terminals (WIRE, NOWIRE, �real, and �integer) to be certain arguments of certain
functions. For all other parts of the program tree, the terminal set is simply

Trpb � {END}.

6.4.4 Fitness Measure

The evaluation of each individual antenna-creating program tree in the population
begins with its execution. The program tree is executed in the usual depth-first order
of evaluation (from left to right). The number, location, and shape of the antenna’s
elements are determined by the program tree. As the turtle moves, it may (or may not)
deposit metal in the form of straight pieces of wire. Separate antenna elements can be
created by the DRAW function (when it is executed with the NOWIRE argument) and
by the TRANSLATE-RIGHT function. The result is a two-dimensional drawing of the
antenna that typically consists of multiple, distinct wire segments. A geometry table
is created that identifies each distinct wire of the antenna.

More specifically, the turtle starts at position (0, 7.5) with a facing direction of
north (i.e., along the positive Y-axis). Each antenna begins with a 7.5-millimeter
straight piece of wire beginning at the origin and lying along the positive Y-axis
(i.e., facing north). This stub becomes part of the antenna’s driven element. The driven
element is excited by a voltage source applied at (0, 0).

The desired antenna is intended to fit inside a specified area. Thus, after the 
execution of the program tree, any metal that has been deposited outside the bound-
ary of the specified clipping rectangle is deleted. The lower left corner of the clipping
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rectangle for this problem is positioned at (�250, 0) and its upper right corner is 
positioned at (2400, 200).

Because the statement of this problem calls for a symmetric antenna, all metal
deposited above the X-axis is, after clipping, duplicated by reflecting it around the 
X-axis and duplicating it below the X-axis. The result is the desired symmetric antenna
lying inside the bounding rectangle (which is twice the height, but equal in width, to
the clipping rectangle).

Antennas can be simulated by means of the Numerical Electromagnetics Code
(NEC) simulator. We embedded version 4 of the Numerical Electromagnetics Code
(NEC) antenna simulator into our genetic programming software (in much the same
way as we embedded the SPICE simulator used elsewhere in this book for simulating
the behavior of controllers, circuits, and networks of chemical reactions).

Table 6.1 shows a sample input file to the NEC simulator. The input to the NEC
simulator consists of textual information. This textual information includes the geom-
etry table; information about the means of excitation, the output, and the ground plane
(or lack thereof); and various commands for controlling the simulation.

In table 6.1, “CM” denotes comments. The input starts with the geometry table
(denoted by “GW”). There is one line in the geometry table for each wire in the antenna.

Table 6.1 Sample input file to the Numerical Electromagnetics
Code (NEC) antenna simulator

CM
CM THE GEOMETRY TABLE (GW)
CM
GW 1 3 0 0 0 0 0.015 0 5.0E-4
GW 2 3 0 0.015 0 0 0.163304 0 5.0E-4
GW 3 3 0.179902 0 0 0.179902 0.140018 0 5.0E-4
GW 4 3 0.254795 0 0 0.254795 0.139828 0 5.0E-4
GW 5 3 0.329688 0 0 0.329688 0.139638 0 5.0E-4
GW 6 3 0.404581 0 0 0.404581 0.139448 0 5.0E-4
GW 7 3 0.479474 0 0 0.479474 0.139258 0 5.0E-4
GW 8 3 0.554367 0 0 0.554367 0.139068 0 5.0E-4
GW 9 3 0.629260 0 0 0.629260 0.138878 0 5.0E-4
GW 10 3 0.704153 0 0 0.704153 0.138688 0 5.0E-4
GW 11 3 0.779046 �0 0 0.779046 0.138498 0 5.0E-4
GW 12 3 0.853939 0 0 0.853939 0.138308 0 5.0E-4
GW 13 3 0.928832 0 0 0.928832 0.138118 0 5.0E-4
GW 14 3 1.003726 �0 0 1.003726 0.137928 0 5.0E-4
GW 15 3 1.078619 0 0 1.078619 0.137738 0 5.0E-4
GW 16 3 1.153512 0 0 1.153512 0.137548 0 5.0E-4
GW 17 3 1.228405 �0 0 1.228405 0.137358 0 5.0E-4
GW 18 3 1.303298 0 0 1.303298 0.137168 0 5.0E-4
GW 19 3 1.378191 0 0 1.378191 0.136978 0 5.0E-4
GW 20 3 1.453084 0 0 1.453084 0.136788 0 5.0E-4
GW 21 3 1.527977 0 0 1.527977 0.136598 0 5.0E-4
GW 22 3 1.60287 0 0 1.60287 0.136408 0 5.0E-4
GW 23 3 1.677763 0 0 1.677763 0.136218 0 5.0E-4
GW 24 3 1.752656 �0 0 1.752656 0.136028 0 5.0E-4
GW 25 3 1.827549 0 0 1.827549 0.135838 0 5.0E-4
GW 26 3 1.902442 0 0 1.902442 0.135648 0 5.0E-4

(Continued)
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Table 6.1 (Continued)

GW 27 3 1.977335 �0 0 1.977335 0.135458 0 5.0E-4
GW 28 3 2.052228 0 0 2.052228 0.135268 0 5.0E-4
GW 29 3 2.127121 0 0 2.127121 0.135078 0 5.0E-4
GW 30 3 2.202014 �0 0 2.202014 0.134888 0 5.0E-4
GW 31 3 2.276907 0 0 2.276907 0.134698 0 5.0E-4
GW 32 3 2.351800 0 0 2.351800 0.134507 0 5.0E-4
GW 33 3 0.114958 0 0 0.114958 0.151050 0 5.0E-4
GW 34 2 0.141304 0.110982 0 0.141304 0.2 0 5.0E-4
GW 35 2 �0.002003 0 0 �0.002003 0.071799 0 5.0E-4
GW 36 4 �0.118964 0 0 �0.118964 0.174407 0 5.0E-4
GW 37 3 �0.235924 0.079042 0 �0.235924 0.2 0 5.0E-4
CM
CM GEOMETRY SYMMETRY REQUEST
CM
GX 2000 010
CM
CM GROUND PLANE FLAG AND ERROR BEHAVIOR FLAG
CM
GE 0 1
CM
CM SIMULATION FREQUENCY OPTIONS
CM
FR 0 1 0 0 424.0 0
CM
CM EXCITATION DESCRIPTION AND LOCATION
CM
EX 0 1 1 0 1.00
CM
CM RADATION PATTERN REQUEST
CM
RP 0 1 1 0011 90.0 0.0 1.0 1.0

Each line of the geometry table for an antenna contains

● a segment number (1 to 37 in table 6.1),
● the number of segments into which each wire is to be partitioned for purposes of

simulation by the method of moment calculation performed by the Numerical
Electromagnetics Code simulator,

● the three-dimensional coordinates of the endpoints of each wire (X1, Y1, Z1, X2,
Y2, X2), with the third number of each group of coordinates being 0 here because
the present problem involves a two-dimensional antenna,

● the radius of each wire (consistently one half-millimeter in this example).

The remaining lines are described in detail in the manual for version four of the
Numerical Electromagnetics Code antenna simulator (Burke 1992).

Fitness for this problem is a linear combination of VSWR and gain.
The VSWR is a measure of how much of the input energy from the source is

reflected back down the transmission line from the antenna (rather than radiated by
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the antenna). The NEC code calculates the complex input impedance, Z, at the 
voltage source.

The reflection coefficient, R, is then computed from Z and Z0 (the characteristic
impedance of the transmission line feeding the antenna) as follows:

.

Finally,

.

The value of VSWR ranges from 1 (representing no reflection—that is, all energy
is radiated), to infinity (i.e., all energy is reflected and there is no radiation). In this
implementation, the maximum value of the VSWR is limited to 2 � 108.

The NEC simulator is instructed to compute the farfield radiation pattern at ��90
and ��0. � is measured from the positive Z-axis to the X-Y-plane whereas � is meas-
ured from the positive X-axis to the positive Y-axis. The value for the antenna’s gain
is the magnitude (in decibels relative to an isotropic radiator) of the farfield radiation
pattern at ��90 and ��0.

The simulator calculates the current at the center of each segment.
The accuracy of an antenna simulation can be significantly affected by the num-

ber of segments into which each straight wire in the antenna is divided for purpose of
simulation. There is no a priori way to compute the ideal number of segments to
achieve an accurate simulation. Worse yet, contrary to intuition, the largest number of
segments does not necessarily produce the most accurate simulation of an antenna.
Therefore, we invoked the NEC simulation 12 times for each antenna and then used
only the worst outcome in the fitness calculation. Specifically, we performed a simu-
lation using both 15 and 25 segments per wavelength. Then, for each of these two
cases, we performed a simulation using both 1 and 2 as the minimum number of seg-
ments per straight wire section. Finally, for each of these four cases, we performed a
simulation at three different frequencies (424, 432, 440 MHz). The value of the VSWR
used in the fitness calculation is the maximum over all the 12 cases. The value of the
gain, G, used in the fitness calculation is the minimum over all the 12 cases.

Fitness is �G�C*VSWR. A smaller fitness is better. The constant C is 0.1 when
VSWR�3.0 and is 10 when VSWR
3.0. This is the same fitness measure used by
Altshuler and Linden (1999), except that it has a slightly heavier penalty for poor
VSWR. We increased the penalty because an antenna with poor VSWR can produce an
artificially high gain (offsetting the VSWR in the overall fitness). The gain, G, appears
with a negative sign because greater gain is more desirable.

As required by the NEC simulator, each pair of intersecting wires is replaced with
four new wires (each with an endpoint at the intersection point) prior to running the
simulator. In addition, each antenna-geometry is pre-checked by various rules. If the
length of each segment divided by its radius is not greater than 2.0 or the center 
of each segment is not at least 4 wire radii from the axis of every other wire, then 
the individual is either replaced (for generation 0) or assigned a high penalty value of
fitness (108).

VSWR �
1� �R �
1� �R �

R�
(Z�Z0)
(Z�Z0)
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If more than 10,000 turtle functions are executed (due to excessive iterations),
execution of the individual program tree is terminated and the individual is assigned
a high penalty value of fitness (108).

Antennas that cannot be simulated receive a high penalty value of fitness (108).

6.4.5 Control Parameters

The population size is 500,000.

6.5 Results for the Antenna Problem

Figure 6.3 shows a best-of-node (i.e., the best individual from a particular processing
node of the parallel computer system) antenna from generation 0 of our one and only
run of this problem. It consists of only one element (i.e., the driven element). It has a
fitness of �2.03. This figure (and each of the following figures) is accompanied by
the antenna’s radiation pattern produced by the NEC simulator.

Figure 6.4 shows another best-of-node antenna from generation 0. It consists of
two elements, namely a driven element and a V-shaped element. It has a fitness 
of �3.82.

Figure 6.5 shows yet another best-of-node antenna from generation 0. It consists
of numerous straight wires and numerous V-shaped elements. It has a fitness of
�4.43.
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Figure 6.3 First example of a best-of-node antenna from generation 0.
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Figure 6.4 Second example of a best-of-node antenna from generation 0.



Automatic Synthesis of Antennas 217
y(

m
)

0.2

0

0.2

x(m)
0 0.5 1 1.5 2

13

3

7

  17

135

90

45

0

45

90

135

180

φ = 0 at 432 MHz
peak = 4.17 dBi  

Figure 6.5 Third example of a best-of-node antenna from generation 0.
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Figure 6.6 Best-of-generation antenna from generation 2.
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Figure 6.7 Best-of-generation antenna from generation 9.

Figure 6.6 shows the best-of-generation antenna from generation 2. This antenna
resembles a starburst and consists of both straight wires and V-shaped elements. It has
a fitness of �5.18.

The best-of-generation antenna from generation 9 (figure 6.7) has a fitness of
�7.58.

The best-of-generation antenna from generation 47 (figure 6.8) has a fitness of
�14.13.

The best-of-run antenna emerged in generation 90 (figure 6.9). It has a fitness of
�16.04.
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Figure 6.8 Best-of-generation antenna from generation 47.
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Figure 6.9 Best-of-run antenna from generation 90.

Table 6.2 compares the gain (in decibels) and VSWR for a conventional Yagi-Uda
antenna, the antenna created by Altshuler and Linden using the genetic algorithm
(Linden 1997; Altshuler and Linden 1997, 1998), and the antenna created by genetic
programming. All three are satisfactory solutions to the problem.

The conventional Yagi-Uda antenna and the antennas created by the genetic 
algorithm and genetic programming are all approximately the same length (i.e., about
3.6 wavelengths along the X-axis).

Note that characteristics (A), (B), (C), (D), and (E) enumerated earlier were auto-
matically discovered during the run of genetic programming. In contrast, all five of
these characteristics were preordained by Linden and Altshuler prior to launching
their run of the genetic algorithm.

Table 6.2 Comparison of a Yagi-Uda antenna, the antenna created by Altshuler and Linden
using the genetic algorithm, and the antenna created by genetic programming

Frequency
Yagi-Uda Altshuler-Linden GP

(MHz) Gain (dB) VSWR Gain (dB) VSWR Gain (dB) VSWR

424 15.5 1.41 15.4 1.88 16.3 2.19
428 15.8 1.11 16.0 1.80 16.4 2.00
432 15.9 1.23 16.3 1.09 16.4 2.02
436 15.7 1.60 16.1 9.50 16.5 2.16
440 15.5 1.85 9.4 39.00 16.3 2.36
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Characteristics (A), (B), and (C) are key characteristics of the Yagi-Uda topology
for antennas (Uda 1926, 1927, Yagi 1928).

The Yagi-Uda antenna (Uda 1926, 1927, Yagi 1928) was considered an achieve-
ment in its field at the time it was first invented. As Balanis (1982) observed,

“Although the work of Uda and Yagi was done in the early 1920s and published in
the middle 1920s, full acclaim in the United States was not received until 1928
when Yagi visited the United States and presented papers at meetings of the
Institute of Radio Engineers (IRE) in New York, Washington, and Hartford. In
addition, his work was published in the Proceedings of the IRE, June 1928, where
J. H. Dellinger, Chief of Radio Division, Bureau of Standards, Washington, D. C.,
and himself a pioneer of radio waves, wrote ‘I have never listened to a paper that I
left so sure was destined to be a classic.’ So true!!”

For additional information, see Comisky, Yu, and Koza 2000.

6.6 Routineness of the Transition from Problems of Synthesizing Controllers,
Circuits, and Circuit Layout to a Problem of Synthesizing an Antenna

This book has previously presented the solutions to problems from three domains:

● the synthesis of controllers (chapter 3),
● the synthesis of the topology and sizing of circuits (chapter 4), and
● the synthesis of the layout (along with the topology and sizing) of circuits (chapter 5).

What is the nature of the effort required to make the transition from the previous
three domains to the domain of automatic synthesis of antennas?

First, there are, of course, differences in the function and terminal sets. These 
differences reflect the fact that controllers, circuits, and antennas are all composed of
different ingredients. For problems involving the synthesis of controllers, the function
and terminal set permitted the construction of entities composed of ingredients such
as integrators, differentiators, gains, adders, subtractors, reference signals, and plant
outputs. For the problems involving the synthesis of the topology and sizing of 
circuits, the function and terminal set permitted the construction of ingredients such
as transistors, capacitors, and resistors. For the problems involving the simultaneous
synthesis of circuit topology, sizing, placement, and routing, a geographically-aware
function set was used. For problems involving the synthesis of the design of an
antenna, the function and terminal set permitted the construction of entities composed
of multiple metallic wires of various lengths and orientations.

Second, there is a difference in fitness measures. The fitness measure for a 
problem involving the synthesis of controllers is couched in terms of behavior and
characteristics relevant to the field of control, such as the integral of the time-weighted
absolute error, overshoot, and robustness. The fitness measure for a problem of circuit
synthesis is couched in terms of behavior and characteristics relevant to circuits, such
as the circuit’s frequency-domain and time-domain response. The fitness measure for
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a problem involving circuit layout considers factors such as the area of the bounding
rectangle (in addition to the circuit’s frequency-domain and time-domain response).
Likewise, the fitness measure for an antenna problem is couched in terms of behavior
and characteristics relevant to antennas (e.g., directionality, gain, and bandwidth).

Once the preparatory steps are performed for a problem of antenna synthesis, the
executional steps of genetic programming are the same as those from the problems
from the other domains.

In summary, relatively little effort is required to make the transition from the 
previous three domains to the domain of automatic synthesis of antennas and it is
therefore reasonable to say that the transition is routine.

6.7 AI Ratio for the Antenna Problem

What is the AI ratio for the design by genetic programming of an antenna?
In 1927 and 1928, the Yagi-Uda antenna clearly solved “a problem of indisputable

difficulty in its field” (criterion G of table 1.2). Genetic programming produced an
antenna in this chapter that has the essential topological features of the Yagi-Uda
antenna. However, we believe that the genetically produced result in this chapter falls
slightly short of qualifying as human-competitive under the intentionally stringent 
criteria for human-competitiveness enumerated in table 1.2 because of its excessive
number of wires. Because genetic programming duplicated the essential topological
features of a Yagi-Uda antenna, we attribute a moderately high amount of “A” to the
solution produced by genetic programming for this problem.

The function and terminal sets reflect the nature of antennas. We did not employ
any deep knowledge about the design of antennas in selecting the functions and ter-
minals. Quite the contrary. Our approach simply involves creating a two-dimensional
drawing of the antenna using a turtle that may (or may not) deposit ink (metal) as it
moves. These same functions and terminals could be used for constructing a wide
variety of two-dimensional antennas. In fact, these same functions and terminals could
be used to draw a wide variety of structures other than antennas.

Of course, a small amount of domain knowledge is embedded in certain details of
the functions and terminals. For example, we choose the numerical bounds on the
DRAW function. We also choose the half-millimeter width for the wire. Also, we
choose the upper bound on the number of executions of the REPEAT function in order
to conserve computational resources. We view all of these choices as distinctly minor.

The fitness measure specifies the performance and characteristics of the desired
antenna. Each candidate antenna in each generation of the population during the run
is analyzed using the Numerical Electromagnetics Code (NEC) simulator. Note the
use of the NEC simulator does not supply any knowledge to the genetic programming
system for the substantially same reasons mentioned in section 3.7.1.7 in connection
with the SPICE simulator.

The moderately high amount of “A” represented by the result in conjunction with
the small amount of “I” provided by the human user means that the AI ratio for the
solution produced by genetic programming is moderately high.
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Considerable amounts of data are becoming available concerning the concentrations
of substances that participate in genetic networks (Ptashne 1992; McAdams and
Shapiro 1995; Loomis and Sternberg 1995; Yuh, Bolouri, and Davidson 1998; Voit
2000).

The question arises as to whether it is possible to automatically infer the under-
lying logic of a genetic network from observed time-domain data for gene expression
levels. The reverse engineering of a genetic network entails creating both a topologi-
cal arrangement of conditional operators and comparative functions and all necessary
numerical parameters such that the behavior of the genetic network matches observed
time-domain data.

This chapter demonstrates that it is possible to use genetic programming to 
automatically create a computer program representing the underlying logic of the
genetic network for the expression level of the lac operon as measured by its mRNA
(messenger RNA). Genetic programming starts with observed time-domain expres-
sion levels of two regulatory genes (REPRESSOR and CAP) and the concentrations 
of two substances (GLUCOSE and LACTOSE) and automatically creates both the
topology for the genetic network (including conditional operators and comparative
functions) and all necessary numerical parameters associated with the network.

The work in this chapter was described in a poster paper accepted at the First
International Conference on Systems Biology in Tokyo on November 14–16, 2000
(Lanza, Mydlowec, and Koza, 2000).

7.1 Statement of the Illustrative Problem

The lac operon is a basic control circuit present in many simple organisms, including
Escheria coli. The genetic network involves two regulatory proteins (REPRESSOR
and CAP) and two substances (GLUCOSE and LACTOSE). The two regulatory proteins
(REPRESSOR and CAP) are involved in regulating the expression of the Z and Y
genes. Figure 7.1 is a schematic representation of a genetic network for the expression



level of the lac operon (composed of the Z, Y, and A genes). The metabolism of lac-
tose requires permease and b-galactosidase (encoded by the Z and Y genes, respec-
tively). The permease is involved in the transport of lactose into the cell whereas the
b-galactosidase is involved in cleaving the lactose molecule into glucose and galac-
tose. This control circuit causes the expression of proteins that metabolize lactose
when glucose (the preferred source of energy) is scarce and lactose is abundant.

The actual performance of the genetic network shown in figure 7.1 is determined
by the expression levels of the two genes (REPRESSOR and CAP) and the concentra-
tions of the two substances (GLUCOSE and LACTOSE) in relation to threshold values.
These threshold values appear as numerical parameters of certain conditional opera-
tors and comparative functions. The logic underlying the genetic network for the lac
operon can be succinctly written in the C-style pseudo-code shown below. The numer-
ical value returned by this program is the expression level of the lac operon
(LAC_MRNA_LEVEL).

IF(LACTOSE_LEVEL >= LACTOSE_THRESHOLD)
{

IF(GLUCOSE_LEVEL >= GLUCOSE_THRESHOLD)
{

LAC_MRNA_LEVEL = LOW;
}
ELSE
{

IF (CAP_LEVEL >= CAP_THRESHOLD)
{

LAC_MRNA_LEVEL = HIGH;
}
ELSE
{

LAC_MRNA_LEVEL = LOW;
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}
}

}
ELSE
{

IF(REPRESSOR_LEVEL >= REPRESSOR_THRESHOLD)
{

LAC_MRNA_LEVEL = 0;
}
ELSE
{

LAC_MRNA_LEVEL = LOW;
}

}

The goal in this chapter is to automatically create both the topology for the genetic
network (including conditional operators and comparative functions) and all neces-
sary numerical parameters representing the expression level of the lac operon as meas-
ured by its mRNA. In other words, the goal is to automatically create logic that is
equivalent to that shown above. This will be accomplished using time-domain data for
the expression levels of the two genes and the concentrations of the two substances.

7.2 Representation of Genetic Networks by Computer Programs

Each program tree represents the logic of a genetic network. Each program tree is 
a composition of functions from the function set and terminals from the terminal set.
A program tree contains

● internal nodes representing conditional operators and comparative functions,
● external points (terminals) representing expression levels of various genes,
● external points representing concentrations of substances, and
● external points representing numerical values

The value returned by the result-producing branch of the program tree is the
expression level of the lac operation (called “LAC_MRNA_LEVEL” in the C-style
pseudo-code in section 7.1).

7.2.1 Repertoire of Functions

The three-argument IF operator returns the result of evaluating its third argument (the
“else” clause) if its first argument is FALSE, but returns the result of evaluating its
second argument (the “then” clause) if its first argument is TRUE.

The two-argument � comparative function returns a value of TRUE if its first
argument is less than its second argument, but otherwise FALSE.

The two-argument 
 comparative function returns a value of TRUE if its first
argument is greater than its second argument, but otherwise FALSE.
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7.2.2 Repertoire of Terminals

The terminals GLUCOSE_LEVEL and LACTOSE_LEVEL represent substances.
The terminals REPRESSOR_LEVEL and CAP_LEVEL represent expression 

levels of genes.
Note that the nonlinear mapping (section 3.5.5) is not used in this chapter.

7.3 Preparatory Steps

7.3.1 Program Architecture

Each program tree has one result-producing branch.

7.3.2 Function Set

Program trees are constructed in accordance with a constrained syntactic structure.
The entire program tree returns a single floating-point number. The first argument of
an IF operator must be a comparative function (� or 
). The two arguments of 
a comparative function must each be a terminal. The second and third arguments 
of an IF operator may be another IF operator or a perturbable numerical value.

The function set is

F�{IF, �, 
}.

These three functions have arity of three, two, and two, respectively.

7.3.3 Terminal Set

A constrained syntactic structure enforces the use of one terminal set for the value-
setting subtrees and another terminal set for all other parts of the program tree.

In this problem, the numerical value(s) are established by a value-setting subtree
containing a single perturbable numerical value. These numerical values will serve as
the thresholds in the overall logic of the evolved program. This approach for estab-
lishing numerical parameter values is described in section 3.5.5.2.

The terminal set, Tvss, for the value-setting subtrees is

Tvss�{�p},

where �p denotes a perturbable numerical value.
The terminal set for all other parts of the program trees is

T�{GLUCOSE_LEVEL, LACTOSE_LEVEL, REPRESSOR_LEVEL, CAP_LEVEL,
�p}.

7.3.4 Fitness Measure

Each individual genetic network is exposed to four time-domain scenarios represent-
ing the concentrations of substances (GLUCOSE_LEVEL and LACTOSE_LEVEL)
and expression values of genes (REPRESSOR_LEVEL and CAP_LEVEL) over 20
time steps (except that there are only 19 time steps in the first scenario because time
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t � 0 is ignored). The network is exposed, during the 20 time steps, to the four com-
binations of high and low values of CAP_LEVEL and REPRESSOR_LEVEL.

The first of the four fitness cases is based on a high level (10) of
GLUCOSE_LEVEL and a low level (0) of LACTOSE_LEVEL. Broadly speaking,
CAP_LEVEL initially rises. While CAP_LEVEL is steady, REPRESSOR_LEVEL
begins to rise. When REPRESSOR_LEVEL reaches it peak, CAP_LEVEL begins 
to fall.

The second fitness case is based on a high level (10) of GLUCOSE_LEVEL and
a high level (10) of LACTOSE_LEVEL.

The third fitness case is based on a low level (0) of GLUCOSE_LEVEL and a high
level (10) of LACTOSE_LEVEL.

The fourth fitness case is based on a low level (0) of GLUCOSE_LEVEL and a low
level (0) of LACTOSE_LEVEL.

Fitness is the sum, over the 79 fitness cases, of the absolute weighted value of the
difference between the value returned by the result-producing branch and the observed
expression level of the lac operon (as measured by mRNA). If the value returned by
the result-producing branch is within 5% of the observed expression-level data, the
weight is 1.0; otherwise the weight is 10. The smaller the fitness, the better.

The number of hits is defined as the number of fitness cases (time steps 1 to 79)
for which the difference is within 5% of the correct value.

7.3.5 Control Parameters

The population size is 10,000.

7.4 Results

The fitness of the best individual from the initial random generation (generation 0) is
poor (i.e., it has a high value of 116.6). This individual scores 0 hits (out of 79).

The best-of-run individual emerges in generation 93. This individual has a fitness
of 3.15 and scores 78 hits (out of 79). This program is shown below:

(IF (< LACTOSE_LEVEL 9.139) (IF (< REPRESSOR_LEVEL 6.270)
(IF (> GLUCOSE_LEVEL 5.491) 2.02 (IF (< CAP_LEVEL
0.639)2.033 (IF (< CAP_LEVEL 4.858) (IF (> LACTOSE_LEVEL
2.511) (IF (> CAP_LEVEL 7.807) 5.586 (IF (> LACTOSE_LEVEL
2.114) 1.978 2.137)) 0.0) (IF (> REPRESSOR_LEVEL 4.015)
0.036 (IF (< GLUCOSE_LEVEL 5.128) 10.0 (IF (< REPRESSOR_
LEVEL 4.268) 2.022 9.122)))))) (IF (> CAP_LEVEL 0.842) 0.0
5.97)) (IF (< CAP_LEVEL 1.769) 2.022 (IF (< GLUCOSE_LEVEL
2.382) (IF (> LACTOSE_LEVEL 1.256) (IF (> LACTOSE_LEVEL
1.933) (IF (> GLUCOSE_LEVEL 2.022) (IF (< GLUCOSE_LEVEL
5.183) 6.323 (IF (> CAP_LEVEL 1.208) 9.713 0.842)) 10.0)
(IF (> GLUCOSE_LEVEL 6.270) 2.109) 1.965)) 0.665) 1.982)))
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Notice that genetic programming automatically created both the topological
arrangement of conditional operators and comparative functions as well as all neces-
sary numerical parameters of the logic for this genetic network.

When the logic of the best-of-run program from generation 93 is simplified and
rewritten in C-style pseudo-code, the result is as follows:

IF(LACTOSE_LEVEL < 9.139)
{

IF(REPRESSOR_LEVEL < 6.270)
{

LAC_MRNA_LEVEL = 2.022;
}
ELSE
{

LAC_MRNA_LEVEL = 0.0;
}

}
ELSE
{

IF(CAP_LEVEL < 1.769)
{

LAC_MRNA_LEVEL = 2.022;
}
ELSE
{

IF(GLUCOSE_LEVEL < 2.382)
{

LAC_MRNA_LEVEL = 10.0;
}
ELSE
{

LAC_MRNA_LEVEL = 1.982;
}

}
}

In summary, the behavior of this automatically created genetic network closely
matches the observed time-domain data.

7.4.1 Routineness of the Transition from Problems of Synthesizing 
Controllers, Circuits, Circuits with Layout, and Antennas to a Problem of 
Genetic Network Synthesis

In this book, we previously solved problems involving the automatic synthesis of enti-
ties from four different domains: controllers (chapter 3), circuits (chapter 4), circuits
with layout (chapter 5), and antennas (chapter 6).
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What is the nature of the effort required to make the transition from these 
previous four domains to the domain of automatic synthesis of genetic networks?

First, there are, of course, differences in the function and terminal sets. These 
differences reflect the fact that controllers, circuits, antennas, and genetic networks are
all composed of different ingredients.

Second, there is a difference in fitness measures. The fitness measure for a prob-
lem involving the synthesis of a genetic network is couched in terms of characteristics
and performance relevant to the field of genetic networks (i.e., the difference between
the single numerical value returned by the network and an observed quantity).

Once the preparatory steps are performed, the executional steps of genetic pro-
gramming are the same for a problem involving genetic networks as for a problem
involving the synthesis of a controller, circuit, and antenna, or anything else.

Thus, the effort required to make the transition from the previous four domains to
the domain of automatic synthesis of genetic networks is relatively small. That is, the
transition is routine.

7.4.2 AI Ratio for the Genetic Network Problem

What is the AI ratio for the discovery by genetic programming of a genetic network?
The function set and terminal set reflect the nature of genetic networks. We did not

employ any deep knowledge about the genetic network in selecting the functions and
terminals for the present problem. Quite the contrary. We simply provided conditional
operators and comparative functions that create the possibility of expressing a genetic
network.

The fitness measure merely reflects the statement of the problem (i.e., finding 
a genetic network whose behavior matches observed data).

The inference of a genetic network from data is generally considered to be a 
moderately difficult problem.

The moderately high amount of “A” represented by the result in conjunction with
the small amount of “I” provided by the human user means that the AI ratio for the
solution produced by genetic programming is moderately high.
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A living cell can be viewed as a dynamical system in which a large number of different
substances react continuously and nonlinearly with one another. In order to understand
the behavior of a continuous nonlinear dynamical system with numerous interacting
parts, it is usually insufficient to study behavior of each part in isolation. Instead, the
behavior must usually be analyzed as a whole (Tomita, Hashimoto, Takahashi,
Shimizu, Matsuzaki, Miyoshi, Saito, Tanida, Yugi, Venter, and Hutchison 1999; Voit
2000).

The concentrations of substrates, products, and intermediate substances partici-
pating in a network of chemical reactions are modeled by nonlinear continuous-time
differential equations, including various first-order rate laws, second-order rate laws,
power laws, and the Michaelis-Menten equations (Voit 2000). The concentrations of
catalysts (e.g., enzymes) control the rates of many chemical reactions in living things.

The topology of a network of chemical reactions comprises

● the total number of reactions in the network,
● the number of substrate(s) consumed by each reaction,
● the number of product(s) produced by each reaction,
● the pathways supplying the substrate(s) (either from external sources or from other

reactions in the network) to each reaction,
● the pathways dispersing each reaction’s product(s) (either to other reactions or to

external outputs), and
● an indication of which enzyme (if any) acts as a catalyst for a particular reaction.

We use the term sizing for a network of chemical reactions to encompass all the
numerical values associated with the network (e.g., the rates of each reaction).

Biochemists have historically determined the topology and sizing of networks of
chemical reactions, such as metabolic pathways, through meticulous study of particu-
lar networks of interest (Mendes and Kell 1998; Bower and Bolouri 2000).

Vast amounts of time-domain data are now becoming available concerning the
concentration of biologically important chemicals in living organisms (McAdams and
Shapiro 1995; Loomis and Sternberg 1995; Arkin, Shen, and Ross 1997; Yuh, Bolouri,



and Davidson 1998; Laing, Fuhrman, and Somogyi 1998; Mendes and Kell 1998;
D’haeseleer, Wen, Fuhrman, and Somogyi 1999; Kitano 2001; Collado-Vides and
Hofestadt 2002). Such data include both gene expression data (obtained, in some
cases, from microarrays) and data on the concentration of substances participating in
metabolic pathways obtained from laboratory experiments.

The question arises as to whether it is possible to start with observed time-domain
concentrations of final product substance(s) and automatically create both the topol-
ogy and sizing of the network of chemical reactions (Arkin, Shen, and Ross 1997). In
other words, is it possible to automate the process of reverse engineering a network of
chemical reactions?

Although it may seem difficult or impossible to automatically infer both the topol-
ogy and numerical parameters for a network of chemical reactions from observed
data, the results presented in this chapter answer this question affirmatively.

As shown elsewhere in this book, genetic programming can automatically create
complex networks comprising both a graphical structure and numerical values that
exhibit prespecified behavior in fields such as analog electrical circuits (chapters 4,
10, 11, and 15), controllers (chapters 3 and 13), genetic networks (chapter 7), and
antennas (chapter 6).

This chapter describes how genetic programming automatically created a meta-
bolic pathway involving four chemical reactions that takes in Glycerol and fatty acid
as input, uses ATP as a cofactor, and produces diacyl-glycerol as its final product. In
addition, this chapter describes how genetic programming similarly created a meta-
bolic pathway involving three chemical reactions for the synthesis and degradation of
ketone bodies. Both automatically created metabolic pathways contain at least one
instance of three noteworthy topological features, namely an internal feedback loop,
a bifurcation point where one substance is distributed to two different reactions, and
an accumulation point where one substance is accumulated from two sources.

8.1 Our Approach to the Automatic Synthesis of the Topology and Sizing of
Networks of Chemical Reactions

Our approach to the problem of automatically creating both the topology and sizing
of a network of chemical reactions involves

(1) establishing a representation for a network of chemical reactions involving LISP
symbolic expressions (S-expressions) and program trees that can be progressively
bred by means of genetic programming, and

(2) defining a fitness measure that measures how well the behavior and characteris-
tics of a candidate network satisfy the problem’s high-level design requirements.

The representation and fitness measure are then used during the run of genetic 
programming. During the run, the evaluation of the fitness of each individual in the
population involves

(1) converting each individual program tree in the population into an analog electri-
cal circuit representing the network of chemical reactions,
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(2) converting each analog electrical circuit into a netlist (so that it can be simulated),
(3) obtaining the behavior of the network of chemical reactions by simulating the cor-

responding electrical circuit, and
(4) using the network’s behavior and characteristics to calculate its fitness.

The implementation of our approach entails working with five different represen-
tations for a network of chemical reactions (each described in detail later):

● Reaction Network: Biochemists often use this representation (shown in figures 8.1
and 8.2 in section 8.2) to represent a network of chemical reactions. In this repre-
sentation, the blocks represent chemical reactions and the directed lines represent
flows of substances between reactions.

● Program Tree: A network of chemical reactions can also be represented as a pro-
gram tree whose internal points (nodes) are functions and external points (leaves)
are terminals (section 8.4.1.1). This representation enables genetic programming to
breed a population of programs in a search for a network of chemical reactions
whose time-domain behavior concerning concentrations of final product sub-
stance(s) closely matches the observed data.

● Symbolic Expression: A network of chemical reactions can also be represented as a
symbolic expression (S-expression) in the style of the LISP programming language
(section 8.4.2). This representation is used internally by genetic programming.

● System of Nonlinear Differential Equations: A network of chemical reactions can
also be represented as a system of nonlinear differential equations (section 8.4.3).

● Analog Electrical Circuit: A network of chemical reactions can also be represented
as an analog electrical circuit (as shown in figure 8.16 in section 8.4.4). The repre-
sentation of a network of chemical reactions as a circuit facilitates simulation of the
network’s time-domain behavior.

● SPICE Netlist: The SPICE (Simulation Program with Integrated Circuit Emphasis)
simulator is used in this book for simulating networks of chemical reactions, cir-
cuits, and controllers. In order to invoke the SPICE simulator, the circuit is repre-
sented in the form of a netlist (described earlier in section 3.6.6).

8.2 Statement of Two Illustrative Problems

Our technique for automatically creating (reverse engineering) both the topology and
sizing of a network of chemical reactions will be demonstrated in this chapter by
means of two problems.

The network for the first illustrative problem (figure 8.1) consists of four reactions
that are part of the phospholipid cycle, as presented in the E-CELL cell simulation
model (Tomita, Hashimoto, Takahashi, Shimizu, Matsuzaki, Miyoshi, Saito, Tanida,
Yugi, Venter, and Hutchison 1999).

The first network’s external inputs (shown at the top of the figure) are Glycerol
(C00116) and fatty acid (C00162). The network also uses the cofactor ATP
(C00002) (shown in the top right part of the figure).

This network’s final product is diacyl-glycerol (C00165) (shown in the bottom
left part of the figure).
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This network has four reactions (shown as rectangles in the figure). The four reactions
are catalyzed by Glycerol kinase (EC2.7.1.30), Glycerol-1-phosphatase (EC3.1.3.21),
Acylglycerol lipase (EC3.1.1.23), and Triacylglycerol lipase (EC3.1.1.3). The EC num-
bers are the codes assigned by the Enzyme Nomenclature Commission (Webb 1992).

The reaction catalyzed by Acylglycerol lipase (EC3.1.1.23) and the reaction cat-
alyzed by Triacylglycerol lipase (EC3.1.1.3) both have two substrates and one prod-
uct. In figure 8.1, the reaction catalyzed by Glycerol kinase (EC2.7.1.30) has two
substrates and two products. The reaction catalyzed by Glycerol-1-phosphatase
(EC3.1.3.21) has one substrate and two products.

This network (figure 8.1) has two intermediate substances, namely sn-Glycerol-3-
Phosphate (C00093) and Monoacyl-glycerol (C01885), that are produced and con-
sumed within the network.

In this network (figure 8.1), the external supply of fatty acid (C00162) (shown at
the top left in the figure) is distributed to two reactions (both on the left side of the fig-
ure), namely the reaction catalyzed by Acylglycerol lipase (EC3.1.1.23) and the reac-
tion catalyzed by Triacylglycerol lipase (EC3.1.1.3). The external supply of Glycerol
(C00116) (shown at the top right in the figure) is distributed to two reactions, namely
the reaction catalyzed by Glycerol kinase (EC2.7.1.30) and the reaction catalyzed by
Glycerol-1-phosphatase (EC3.1.3.21). That is, both fatty acid (C00162) and Glycerol
(C00116) are consumed by two reactions. This network of chemical reactions has
two instances of a bifurcation point.

In addition, the concentration of Glycerol (C00116) in this network (figure 8.1)
is increased in two ways. First, as previously mentioned, it is externally supplied.
Second, it is produced by the reaction catalyzed by Glycerol-1-phosphatase
(EC3.1.3.21). That is, this network of chemical reactions has an instance of an accu-
mulation point (where one substance is accumulated from two sources).

Also, this network (figure 8.1) has an internal feedback loop in which a substance
is both consumed and produced by the reactions in the loop. Specifically, Glycerol
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(C00116) is consumed (in part) by the reaction catalyzed by Glycerol kinase
(EC2.7.1.30). This reaction, in turn, produces an intermediate substance, sn-Glycerol-
3-Phosphate (C00093). This intermediate substance is, in turn, consumed by the
reaction catalyzed by Glycerol-1-phosphatase (EC3.1.3.21). That reaction, in turn,
produces Glycerol (C00116).

An oval is used to indicate a point for measuring the concentration of each interme-
diate substance in this figure. In addition, an oval is also used for each bifurcation point
and each accumulation point. When there is both a bifurcation point and an accumula-
tion point for one particular substance (such as Glycerol in this figure), one oval is used.

The rate, K, of each of the four reactions in figure 8.1 is specified by a numerical
constant contained in the rectangle representing the reaction. For example, the rate of
the reaction catalyzed by Acylglycerol lipase (EC3.1.1.23) is 1.95. The rate of reac-
tion catalyzed by Triacylglycerol lipase (EC3.1.1.3) is 1.45. The rate of the reaction
catalyzed by Glycerol kinase (EC2.7.1.30) is 1.69. The rate of the reaction catalyzed
by Glycerol-1-phosphatase (EC3.1.3.21) is 1.19.

The second network (figure 8.2) consists of three reactions that are involved in the
synthesis and degradation of ketone bodies.

This network’s external inputs are Acetoacetyl-CoA and Acetyl-CoA.
This network’s final product is Acetoacetate.
The second network (figure 8.2) has three reactions. The three reactions are 

catalyzed by 3-oxoacid CoA-transferase (EC 2.8.3.5), Hydroxymethylglutaryl-CoA
synthase (EC 4.1.3.5), and Hydroxymethylglutaryl-CoA lyase (EC 4.1.3.4). One of
this network’s reactions (i.e., the reaction catalyzed by 3-oxoacid CoA-transferase
(EC 2.8.3.5) ) is a one-substrate, one-product reaction. The other two reactions are
two-substrate, one-product reactions.
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There is one intermediate substance, INT-1, in this network.
Like the first illustrative network of chemical reactions (figure 8.1), this second

network (figure 8.2) incorporates three noteworthy topological features.
First, this second network of chemical reactions has one instance of a bifurcation

point (where one substance is distributed to two different reactions), namely for the
externally supplied substance Acetoacetyl-CoA (in the upper left part of the figure).

Second, this second network has two accumulation points. Acetyl-CoA (at the top
of the figure) is an externally supplied substance and it is also produced by the reac-
tion catalyzed by Hydroxymethylglutaryl-CoA lyase (EC 4.1.3.4). Also, the network’s
final product, Acetoacetate (at the bottom of the figure) is produced by the reaction
catalyzed by 3-oxoacid CoA-transferase (EC 2.8.3.5) and by the reaction catalyzed by
Hydroxymethylglutaryl-CoA lyase (EC 4.1.3.4).

Third, this second network has an internal feedback loop (in which a substance is
both consumed and produced by the reactions in the loop). Specifically, Acetyl-CoA
is consumed by the reaction catalyzed by Hydroxymethylglutaryl-CoA synthase (EC
4.1.3.5). This reaction, in turn, produces an intermediate substance (INT-1). This
intermediate substance is, in turn, consumed by the reaction catalyzed by
Hydroxymethylglutaryl-CoA lyase (EC 4.1.3.4). That reaction, in turn, produces
Acetyl-CoA.

8.3 Types of Chemical Reactions

A chemical reaction typically causes a change, over time, in the concentration of the
various substances participating in the reaction. The substances involved in chemical
reactions include reactants (input substances), intermediate products, and products
(output substances). A substance often appears as both a reactant and product in a 
network of reactions.

The rates of many chemical reactions are affected by a catalyst (a substance 
that accelerates or decelerates the rate of a reaction, but remains unchanged by the
reaction). In a living cell, the catalysts are often enzymes. The reactant(s) of a 
catalyzed reaction are usually called substrate(s).

8.3.1 One-Substrate, One-Product Reaction

First consider an illustrative chemical reaction in which one chemical (the substrate)
is transformed into another chemical (the product) under control of a catalyst.

Figure 8.3 shows a one-substrate, one-product chemical reaction in which
pyrophosphate (the substrate) is transformed into orthophosphate (the product) under
control of the catalyst pyrophosphatase (EC3.6.1.1). Herein C00013 is an alternative
designation for pyrophosphate and C00009 is an alternative designation for
orthophosphate. This reaction (and the other illustrative reactions in this section) is
part of the nine reactions of a surmised phospholipid cycle that is presented in the 
E-CELL cell simulation model (Tomita, Hashimoto, Takahashi, Shimizu, Matsuzaki,
Miyoshi, Saito, Tanida, Yugi, Venter, and Hutchison 1999).

Figure 8.4 shows a plot, over 60 seconds of time, of the concentrations of the three
substances involved in the one-substrate, one-product enzymatic reaction for producing
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orthophosphate. The concentration of pyrophosphatase (the catalyst) is constant at 1.2
over the entire period involved. The concentration of pyrophosphate (the substrate) starts
at 1.0 (its concentration at time t�0). As the substrate (pyrophosphate) is consumed by
the reaction, its concentration decreases until it reaches a level of 0.0 at about t�10 (and
remains at this level thereafter). The concentration of the product (orthophosphate) starts
at 0.0 (its concentration at time t�0). As the product (orthophosphate) is produced by
the reaction, its concentration increases to a level of 1.0 at about t�10 (and remains at
this level thereafter).

The action of an enzyme (catalyst) in a one-substrate chemical reaction can be
viewed as a two-step process in which the enzyme E first binds with the substrate 
S at a rate k1 to form ES. The formation of the product P from ES then occurs at a rate
k2. The reverse reaction (for the binding of E with S) in which ES dissociates into 
E and S, occurs at a rate of k�1, and is represented by

.E � S lk1k
k�1

ESlk2

P � E
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The rates of chemical reactions are modeled by rate laws. The concentrations of
substrates, products, intermediate substances, and catalysts participating in reactions
are modeled by various rate laws, including first-order rate laws, second-order rate
laws, power laws, and the Michaelis-Menten equations (Voit 2000).

For example, the Michaelis-Menten rate law for a one-substrate chemical reaction is

.

In this rate law, [P] is the concentration of the reaction’s product P; [S]t is the con-
centration of substrate S at time t; [E]0 is the concentration of enzyme E at time 0 (and
at all other times); and Km is the Michaelis constant defined as

.

However, when the constants Km and k2 are considerably greater than the concen-
trations of substances, it is often satisfactory to use a pseudo-first-order rate law such as

where Knew is a constant defined as

.

The pseudo-first-order rate law involves only multiplication.
It is both convenient and useful to represent the behavior, over time, of a chemi-

cal reaction as an analog electrical circuit. In this representation, the concentration of
a substance is represented as a voltage in the time domain.

Figure 8.5 shows an electrical circuit representing the illustrative one-substrate,
one-product enzymatic reaction.

This circuit is composed of the following components:

● voltage sources (represented by small circles such as V18 at the top left of the figure
as well as voltage sources V20, V8, V1, and V2 elsewhere in the figure),

● voltage adders with three ports (represented by rectangles and labeled ADDV, such
as M21 at the top left of the figure as well as voltage adders M23 and M8 elsewhere
in the figure),

● sum-integrators (represented by a triangle-rectangle combination with three ports,
such as U23 at the top left of the figure as well as sum-integrators U26 and U7 else-
where in the figure),

● a one-substrate chemical reaction function MICH_1 (represented by the rectangle
U25 with five ports at the top right of the figure),

● a ground point (at the bottom of the figure), and
● an output point (represented by the probe wire emanating from voltage adder M8 at

the bottom middle of the figure and labeled as probe point 5).

knew �
k2

Km

d[P]
dt

�
k2[E]0[S]t

Km
� knew[E]0[S]t ,

Km �
k�1 � k2

k1

d[P]
dt

�
k2[E]0[S]t

[S]t � Km
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The initial concentration of pyrophosphate (the substrate) is 1.0, as established by
the 1-Volt voltage source V18 (in the top left part of figure 8.5).

Voltage adder M21 (in the top left part of figure 8.5) is an electrical component
used for adding two voltages. V18 is one of its two inputs.

The output of voltage adder M21 represents the concentration of pyrophosphate
(the substrate in this illustrative one-substrate, one-product reaction). Ignoring, for the
moment, the second input port to voltage adder M21, the output of M21 goes into the
port labeled “substrate” of the one-substrate reaction function MICH_1 labeled U25
(at the top right of the figure). If desired, this voltage representing the concentration of
the substrate may be measured at probe point 9 (along the line at the top of the figure).

The rate law may be the Michaelis-Menten law. Alternatively, the rate law may be
a first-order rate law. Then again, the rate law may be some other rate law (Voit 2000).
The function MICH_1 in figure 8.5 is an analog computational subcircuit that models
the Michaelis-Menten rate law.

The constant, Km, goes into the port labeled Km of the reaction function MICH_1
of figure 8.5. Similarly, the constant k2 goes into the port labeled k2 of the reaction
function MICH_1.

The initial concentration of catalyst (pyrophosphatase) is 1.0 (established by the
1-Volt voltage source V20 connected to voltage adder M23). The output of voltage
adder M23 goes into the port labeled “enzyme” of the one-substrate, one-product 
reaction function MICH_1 labeled U25. If desired, this voltage may be measured at
probe point 12.

The initial concentration of product (orthophosphate) is 0.0, as established by 
the 0-Volt voltage source V8 connected to voltage adder M8. If desired, the output of
voltage adder M8 may be measured at probe point 5.

U23, U26, and U7 are sum-integrators that integrate, over time, the sum of their
respective two inputs. In each case in figure 8.5, one of the two incoming ports is
negated. In other words, U23, U26, and U7 serve as differential-integrators (i.e., they
sum, over time, the difference between their two inputs).
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The output of the reaction function MICH_1 labeled U25 is the reaction’s rate. If
desired, this reaction rate may be measured at probe point 4 (along the bottom of the
figure). This reaction rate is fed to

● a subtractive input to sum-integrator U23, and
● an additive input to sum-integrator U7.

These two connections are of central importance in the figure. They reflect the con-
servation principle inherent in a chemical reaction. Specifically, the subtractive input
to sum-integrator U23 reflects the fact that the substrate substance is consumed by the
reaction at the specified rate. The additive input to sum-integrator U7 reflects the fact
that the product substance is produced by the reaction at the same specified rate.

Because there is nothing in the figure that consumes any of the reaction’s product,
the subtractive input to sum-integrator U7 is zero (i.e., grounded). Two-input voltage
adder M8 adds the product’s initial concentration (0.0) (at probe 3) to the concentra-
tion (at probe 6) of the product that is being produced by the reaction.

Because there is nothing in the figure that creates an additional substrate, the addi-
tive input to sum-integrator U23 is zero (i.e., grounded). Thus, two-input voltage adder
M21 adds the substrate’s initial concentration (1.0) (at probe 10) to the (negative) con-
centration (at probe 11) of the substrate that is being consumed by the reaction.

There is one voltage source, one sum-integrator, and one voltage adder associated
with the enzyme that catalyzes this reaction. Because the concentration of a catalyst
is unchanged by a reaction, the additive and subtractive inputs to sum-integrator U26
are both zero (i.e., grounded). This sum-integrator could, of course, be deleted.
However, we employ this consistent arrangement of three components (i.e., voltage
source, sum-integrator, and voltage adder) in all the figures herein to emphasize the
formal procedure used to translate a chemical reaction diagram into an electrical cir-
cuit. In practice, when both inputs of a sum-integrator are connected to ground, the
sum-integrator is simply deleted from the circuit that is eventually simulated.

The circuit is simulated using the SPICE simulator (Quarles, Newton, Pederson,
and Sangiovanni-Vincentelli 1994) in the same manner as in the chapter on controllers
(chapter 3) and the chapters on electrical circuits (chapters 4 and 5). See section 3.6.6
for additional discussion of SPICE and netlists.

A diagram representing an electrical circuit differs from a diagram representing a
network of chemical reactions in several important ways. In particular, there is no
directionality of wires in circuits (as there is in the block diagram representing a net-
work of chemical reactions and in the block diagram representing a controller). In
addition, because SPICE was written for the purpose of simulating the behavior of
electrical circuits, it does not have built-in components that correspond to chemical
rate laws (such as a first-order rate law, a second-order rate law, a power law, or the
Michaelis-Menten equations). However, these rate laws can be realized by using the
facility of SPICE to create subcircuit definitions (macros). Mathematical functions
such as integration and differentiation can be realized by using electrical components
such as capacitors and inductors. However, SPICE is not limited to electrical compo-
nents that actually exist in the real world. SPICE has a facility for representing 
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arbitrary continuous-time mathematical functions. Once a subcircuit is defined in
SPICE, it operates as if it were an electrical component. Thus, it may be inserted into
an electrical circuit in addition to other electrical components or other subcircuits.

For example, voltage multiplication (XMULTV) can be realized by a subcircuit def-
inition (macro). The subcircuit definition entails multiplying two voltages, V(1) and
V(2), in order to produce an output voltage at node V(3).

*NETLIST FOR SUBCIRCUIT DEFINITION OF VOLTAGE MULTIPLICATION (XMULTV)
.SUBCKT XMULTV 1 2 3
BX 3 0 V=V(1)*V(2)
.ENDS XMULTV

Voltage addition (XADDV) can be realized in a similar manner by means of the fol-
lowing subcircuit definition:

*NETLIST FOR SUBCIRCUIT DEFINITION OF VOLTAGE ADDITION (ADDV)
.SUBCKT XADDV 1 2 3
BX 3 0 V=V(1)+V(2)
.ENDS XADDV

Similarly, voltage division (XDIVV) can be realized by the following subcircuit
definition:

*NETLIST FOR SUBCIRCUIT DEFINITION OF VOLTAGE DIVISION (DIVV)
.SUBCKT XDIVV 1 2 3
BX 3 0 V=V(1)/V(2)
.ENDS XDIVV

Similarly, the pseudo-first-order rate law can be realized in SPICE by a subcircuit
definition (macro). The pseudo-first-order rate law XFORL (“First Order Rate Law”)
entails multiplying three voltages, V(1), V(2), and V(4) to produce an output 
voltage at node V(3).

*NETLIST FOR SUBCIRCUIT DEFINITION OF PSEUDO-FIRST-ORDER RATE LAW (XFORL)
.SUBCKT XFORL 1 2 3 4
BX 3 0 V=V(1)*V(2)*V(4)
.ENDS

The pseudo-second-order rate law can be realized in SPICE by a subcircuit 
definition. The pseudo-second-order rate law XSORL (“Second Order Rate Law”)
entails multiplying four voltages, V(1), V(2), V(3), and V(5) to produce an output
voltage at node V(4).

*Netlist for SUBCIRCUIT DEFINITION OF PSEUDO-SECOND-ORDER RATE LAW (XSORL)
.SUBCKT XSORL 1 2 3 4 5
BX 4 0 V=V(1)*V(2)*V(3)*V(5)
.ENDS
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As another example, a sum-integrator (SUMINT) can be realized in SPICE by the
following subcircuit definition (employing a 1-giga-Ohm resistor R2, a voltage-con-
trolled current source G1, and a capacitor C1 with an initial condition (IC) of 0 Volts):

*NETLIST FOR SUMINTEGRATOR (SUMINT)
.SUBCKT SUMINT 1 2 3 4
G1 4 0 1 2 1.0
C1 4 0 1.0 IC=0.0
R2 4 0 1000.0MEG
UNARYV 3 0 V=�V(4)
.ENDS

Figure 8.6 shows a subcircuit for a sum-integrator SUMINT. The symbol for the
sum-integrator is shown at the top of the figure in the form of a triangle-rectangle
combination. The sum-integrator has two input ports (one with a positive sign and one
with a negative sign). Its one output (node 3) is the integral of the difference of its two
inputs. The circuit required to implement a sum-integrator consists of a voltage-
controlled current source (in the lower left corner of the figure), a capacitor C1, a
resistor R2, and an inverter UNARYV (the rectangle in the middle of the right side of
the figure). The rounded box on the right side of the figure represents the initial con-
dition (i.e., initial charge) on the capacitor C1. The voltage-controlled current source
converts the difference in the two voltages to a current. The capacitor C1 (starting with
its initial charge) integrates the current. The capacitor voltage (node 4) is equal to the
total charge (i.e., the integral of the current) divided by its capacitance. Note that in
this figure the input and output ports of the subcircuit are connected with wires to the
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corresponding ports on the schematic symbol for the sum-integrator (the triangle-
rectangle combination in the figure).

The Michaelis-Menten equations can also be realized by an electrical circuit.
Figure 8.7 shows a circuit for the one-substrate Michaelis-Menten equation MICH_1

,

using two voltage multiplications (M1 and M2), a voltage addition M3, and a voltage
division M4.

The subcircuit definition in SPICE for the one-substrate Michaelis-Menten equa-
tion MICH_1 is as follows:

*NETLIST FOR MICHAELIS-MENTEN MICH_1
.SUBCKT XMICH1 1 2 3 4 5
* 1 IS SUBSTRATE
* 2 IS ENZYME
* 3 IS K2
* 4 IS KM
* 5 IS RATE
XXM1 7 6 5 XDIVV
XXM2 4 1 6 XADDV
XXM3 3 8 7 XMULTV
XXM4 2 1 8 XMULTV
.END

d[P]
dt

�
k2[E]0[S]t

[S]t � Km
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When the user-defined macro for the differential-integrator and the user-defined
macro for the one-input reaction function are combined, the resulting netlist is as 
follows:

*NETLIST FOR 1-1-REACTION IN PHOSPHOLIPID-CIRCUIT
XXM1 15 6 XUNARYV
GVCIS1 15 0 4 0 1
C1 0 15 1
XXM2 3 6 5 XADDV
V8 3 0 DC 0
V2 7 0 DC 0.2V
V1 8 0 DC 0.2V
XXM3 16 11 XUNARYV
GVCIS2 16 0 0 4 1
C2 0 16 1
XXM4 10 11 9 XADDV
V18 10 0 DC 1V
XXM5 17 13 XUNARYV
GVCIS3 17 0 0 0 1
C3 0 17 1
XXM6 19 18 4 XDIVV
XXM7 7 9 18 XADDV
XXM8 8 20 19 XMULTV
XXM9 12 9 20 XMULTV
XXM10 14 13 12 XADDV
V20 14 0 DC 1V
R1 0 15 1000MEG
R2 0 16 1000MEG
R3 0 17 1000MEG
.IC V(15)=0V V(16)=0V V(17)=0V
*
* SELECTED CIRCUIT ANALYSES :
.TRAN 10M 60 0 10M
*
* MODELS/SUBCIRCUITS USED:
*
*UNARYV UNARY MINUS OF VOLTAGE
.SUBCKT XUNARYV 1 2
BX 2 0 V=-(V(1))
.ENDS XUNARYV
*
*ADDV ADD VOLTAGES
.SUBCKT XADDV 1 2 3
BX 3 0 V=V(1)+V(2)
.ENDS XADDV
*
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*DIVV DIVIDE VOLTAGES
.SUBCKT XDIVV 1 2 3
BX 3 0 V=V(1)/V(2)
.ENDS XDIVV
*
*MULTV MULTIPLY VOLTAGES
.SUBCKT XMULTV 1 2 3
BX 3 0 V=V(1)*V(2)
.ENDS XMULTV
*
.END

8.3.2 One-Substrate, Two-Product Reaction

Figure 8.8 shows an illustrative one-substrate, two-product chemical reaction in which
Phosphatidylglycerophosphate (the substrate) is transformed into orthophosphate and
Phosphotidylglycerol (the two products) under control of phosphatidylglycerophos-
phatase (the catalyst). The catalyst in this reaction is the enzyme pyrophosphatase
(EC3.1.3.27). Note that C03892 is an alternative designation herein for
Phosphatidylglycerophosphate; that C00009 is an alternative designation for orthophos-
phate; and that C00344 is an alternative designation for Phosphotidylglycerol.

This illustrative one-substrate, two-product chemical reaction can be represented
as a circuit in a manner similar to that just described in the previous section for a one-
substrate, one-product reaction.

Figure 8.9 shows an electrical circuit representing a one-substrate, two-product
enzymatic reaction.

This circuit is composed of

● voltage sources V23, V24, V25, V8, V2, and V1,
● voltage adders M27, M29, M30, and M8,
● sum-integrators U27, U32, U33, and U7,
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● a one-substrate chemical reaction function MICH_1,
● a ground point (at the bottom of the figure), and
● two output points (represented by the probe wires emanating from voltage adders

M30 and M8 at the bottom middle of the figure).

Note that in this circuit

● there is one voltage adder M27 (representing the one substrate of this reaction),
● there are two voltage adders M30 and M8 (representing the two products of this

reaction) and a probe wire for each of the two products of the reaction,
● the output of the reaction function MICH_1 labeled “rate” is connected to the nega-

tive lead of sum-integrator U27 (representing the one substrate) to establish that one
substrate is consumed by the reaction, and

● the output of the reaction function MICH_1 labeled “rate” is connected to the posi-
tive lead of sum-integrators U33 and U7 (representing the two products) to establish
that two products are produced by the reaction.

As before, there is one voltage source, sum-integrator, and voltage adder associ-
ated with the enzyme that catalyzes this reaction. Both the positive and negative leads
of this sum-integrator are grounded to reflect the fact that the concentration of the
enzyme remains unchanged during the reaction.

8.3.3 Two-Substrate, One-Product Reaction

Figure 8.10 shows an illustrative two-substrate, one-product chemical reaction in which
fatty acid (C00162) and Glycerol (C00116) (the two substrates) are transformed into
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Monoacyl-glycerol (C01885) (the product) under control of Acylglycerol_lipase
(EC3.1.1.23) (the catalyst).

The action of an enzyme (catalyst) in a two-substrate chemical reaction can be
viewed as a two-step process in which the enzyme E first binds with the substrates A
and B at a rate k1 to form ABE. The reverse reaction, in which ABE dissociates into
E, A, and B occurs at a rate of k�1. The formation of the product P from EAB then
occurs at a rate k2:

The Michaelis-Menten rate law for a two-substrate chemical reaction is

.

However, when k�1~0 and k�1 ��k1 ��k2, it is often satisfactory to use a
pseudo-second-order rate law such as

Ratet �k1[A][B][E].

This illustrative two-substrate, one-product chemical reaction can be represented
as a circuit in a manner similar to that just described in the previous section.

Figure 8.11 shows an electrical circuit representing a two-substrate, one-product
enzymatic reaction.

This circuit is composed of

● voltage sources V1, V6, V12, V122, V2, V3, V4, and V5,
● voltage adders M1, M6, M12, and M11,
● sum-integrators U14, U9, U2, and U4,
● a one-substrate chemical reaction function MICH_2,

Ratet �
[E]0

1
K0

�
1

KA[A]t
�

1
KB[B]t

�
1

KAB[A]t[B]t

E � A � B � lk1k
k�1

ABElk2

P � E.
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● a ground point (at the bottom of the figure), and
● one output point (represented by the probe wire emanating from voltage adder M11

at the bottom middle of the figure).

This circuit makes use of

● two voltage adders M1 and M6 (representing the two substrates of this reaction),
● one voltage adder M11 (representing the one product of this reaction), and a probe

wire for the product of the reaction.

The output of the reaction function MICH_1 labeled “rate” is connected to the 
negative lead of sum-integrators U14 and U9 (representing the two substrates) to
establish that two substrates are consumed by the reaction.

The output of the reaction function MICH_1 labeled “rate” is connected to the 
positive lead of sum-integrator U14 (representing the one product) to establish that
one product is produced by the reaction.

As before, there is one voltage source, sum-integrator, and voltage adder associ-
ated with the enzyme that catalyzes this reaction. Both the positive and negative leads
of this sum-integrator (U32) are grounded to reflect the fact that the concentration of
the enzyme remains unchanged during the reaction.

In practice herein, we use the pseudo-second-order rate law XSORL (defined in an
earlier section) to represent the behavior of two-substrate chemical reactions.

The two-substrate Michaelis-Menten equations can be realized as an electrical 
circuit. Figure 8.12 shows a circuit for a two-substrate Michaelis-Menten equation
MICH_1

Ratet �
[E]0

1
K0

�
1

KA[A]t
�

1
KB[B]t

�
1

KAB[A]t[B]t

.
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This circuit includes four voltage multiplications (labeled MULTV), four voltage
divisions (labeled DIVV), and one voltage addition (labeled ADDV).

The netlist in SPICE for the two-substrate Michaelis-Menten equation MICH_1 is
as follows. It invokes definitions for voltage division XDIVV, voltage addition ADDV,
and voltage multiplication XMULTV.

*NETLIST FOR MICHAELIS-MENTEN MICH_2
XXM1 4 3 2 XDIVV
XXM2 5 6 3 XADDV
XXM3 11 10 6 XDIVV
XXM4 13 12 10 XMULTV
XXM5 11 14 7 XDIVV
XXM6 11 15 8 XDIVV
XXM7 17 16 13 XMULTV
XXM8 18 16 14 XMULTV
XXM9 19 17 15 XMULTV
V1 11 0 DC +1
XXM10 11 20 9 XDIVV
XXM11 21 9 5 XADDV
XXM12 7 8 21 XADDV
* SELECTED CIRCUIT ANALYSES :
.TRAN 10M 60 0 10M UIC
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Figure 8.12 Subcircuit for the two-substrate Michaelis–Menten equation MICH_1.



* MODELS/SUBCIRCUITS USED:
*DIVV DIVIDE VOLTAGES
.SUBCKT XDIVV 1 2 3
BX 3 0 V=V(1)/V(2)
.ENDS XDIVV
*ADDV ADD VOLTAGES
.SUBCKT XADDV 1 2 3
BX 3 0 V=V(1)+V(2)
.ENDS XADDV
*MULTV MULTIPLY VOLTAGES
.SUBCKT XMULTV 1 2 3
BX 3 0 V=V(1)*V(2)
.ENDS XMULTV
.END

8.3.4 Two-Substrate, Two-Product Reaction

Figure 8.13 shows an illustrative two-substrate, two-product chemical reaction in
which ATP (C00002) and Glycerol (C00116) (the two substrates) are transformed
into ADP (C00008) and sn-Glycerol-3-Phosphate (C00093) (the two products)
under control of Glycerol kinase (EC2.7.1.30) (the catalyst).

This illustrative two-substrate, two-product chemical reaction can be represented
as a circuit in a manner similar to that just described in the previous sections.

Figure 8.14 shows the electrical circuit representing this two-substrate, two-product
enzymatic reaction.

This circuit for the illustrative two-substrate, two-product chemical reaction is
composed of

● voltage sources V1, V2, V7, V3, V4, V5, V8, V9, and V6,
● voltage adders M1, M2, M7, M3, and M4,
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● sum-integrators U14, U13, U8, U12, and U21,
● a two-substrate chemical reaction function MICH_2,
● a ground point (at the bottom of the figure), and
● two output points (represented by the probe wires emanating from voltage adders

M3 and M4 at the bottom middle of the figure).

This circuit uses

● two voltage adders M1 and M2 (representing the two substrates of this 
reaction),

● two voltage adders M3 and M4 (representing the two products of this reaction), and
● two probe wires for each of the two products of the reaction.

The output of the reaction function MICH_1 labeled “rate” is connected to the 
negative lead of sum-integrators U14 and U13 (representing the two substrates) to
establish that two substrates are consumed by the reaction.

The output of the reaction function MICH_1 labeled “rate” is connected to the 
positive lead of sum-integrators U12 and U21 (representing the two products) to 
establish that two products are produced by the reaction.

As before, there is one voltage source, sum-integrator, and voltage adder associated
with the enzyme that catalyzes this reaction. Both the positive and negative leads of
this sum-integrator (U8) are grounded to reflect the fact that the concentration of the
enzyme remains unchanged during the reaction.
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8.4 Representation of Networks of Chemical Reactions by 
Computer Programs

We work with five different representations for networks of chemical reactions in this
section. The first representation was presented in figures 8.1 and 8.2 in section 8.2.
The remaining four ways are presented in what follows.

8.4.1 Representation as a Program Tree

This section describes one particular method for representing a network of chemical
reactions as a program tree suitable for use in a run of genetic programming. Each pro-
gram tree represents an interconnected network of chemical reactions involving vari-
ous substances. A chemical reaction herein may consume one or two (but not more)
substances and produce one or two (but not more) substances. The consumed 
substances may be externally supplied input substances or intermediate substances
produced within the network. The chemical reactions, enzymes, and substances of a
network may be completely represented by a program tree that contains

● internal nodes representing chemical reaction functions,
● internal nodes representing selector functions that select the reaction’s first versus

the reaction’s second product (if any),
● external points (leaves) representing substances that are consumed by a reaction,
● external points (leaves) representing substances that are produced by a reaction,
● external points representing enzymes that catalyze a reaction, and
● external points representing numerical constants (reaction rates).

8.4.1.1 Repertoire of Functions in the Program Tree There are four chemical
reaction functions and two selector functions.

The first argument of each chemical reaction function identifies the enzyme that cat-
alyzes the reaction. The second argument is a numerical value that specifies the reaction’s
rate. There are two, three, or four additional arguments specifying the reaction’s one or
two substrates and the reaction’s one or two products. Table 8.1 shows the number of sub-
strate(s) and product(s) and overall arity for each of the four chemical reaction functions.

Each chemical reaction function returns a list (of length 1 or 2) composed of the
reaction’s one or two products. The one-argument FIRST-PRODUCT function returns
the first of the one or two products produced by the chemical reaction function desig-
nated by its argument. The one-argument SECOND-PRODUCT function returns the sec-
ond of the two products (or the first product, if the reaction produces only one product).
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Table 8.1 Four chemical reaction functions

Function Substrates Products Arity

CR_1_1 1 1 4
CR_1_2 1 2 5
CR_2_1 2 1 5
CR_2_2 2 2 6



8.4.1.2 Repertoire of Terminals Some terminals represent substances (externally
supplied input substances, intermediate substances created by reactions, or output
substances). Other terminals represent the enzymes that catalyze reactions. Still other
terminals represent perturbable numerical values that specify the rate of the reactions.

8.4.1.3 Constrained Syntactic Structure Each program tree in the population is a
composition of functions from the specified function set and terminal set. The trees
are constructed in accordance with a constrained syntactic structure (section 2.3.1).
The trees have one or more result-producing branches. The root of each result-
producing branch must be a chemical reaction function. The enzyme that catalyzes a
reaction always appears as the first argument of its chemical reaction function. 
A numerical value representing a reaction’s rate always appears as the second
argument of its chemical reaction function. The one or two substrate arguments to a
chemical reaction function can be either a substance terminal or a selector function
(FIRST-PRODUCT or SECOND-PRODUCT). Whenever a selector function appears
as an input argument to a chemical reaction function, the effect is to create a cascade
of reactions. The one or two product arguments to a chemical reaction function must
be substance terminals. The argument to a selector function (FIRST-PRODUCT or
SECOND-PRODUCT) is always a chemical reaction function.

8.4.1.4 Example of a Program Tree Figure 8.15 shows a program tree that
corresponds to the metabolic pathway of figure 8.1. Thus, this program tree is a
succinct solution to the problem of reverse engineering this particular metabolic
pathway. The program tree is presented in the style of the LISP programming
language (except that informative arrows have been added in certain places to aid the
reader in tracing the flow of substances).
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The program tree (figure 8.15) has two result-producing branches, RPB0 and
RPB1. These two branches are connected by means of a connective PROGN function.

There is no return value for either result-producing branch or for the program tree
as a whole.

As can be seen, there are four chemical reaction functions in figure 8.15. The first
argument of each chemical reaction function is constrained to be an enzyme and the
second argument is constrained to be a numerical rate. The remaining arguments are
substances, such as externally supplied input substances, intermediate substances 
produced by reactions within the network, and the final output substance produced by
the network. The remaining arguments are marked (as a visual aid to the reader) by an
arrow. An upward arrow indicates that the substance at the tail of the arrow points to
a substrate of the reaction. A downward arrow indicates that the head of the arrow
points to a product of the reaction.

There is a two-substrate, one-product chemical reaction function CR_2_1 in the
lower left part of figure 8.15. For this reaction, the enzyme is Acylglycerol lipase
(EC3.1.1.23) (the first argument of this chemical reaction function); its rate is 1.95
(the second argument); its two substrates are fatty acid (C00162) (the third argument)
and Glycerol (C00116) (the fourth argument); and its product is Monoacyl-glycerol
(C01885) (the fifth argument). The fact that the third and fourth arguments of this
CR_2_1 function denote substrates whereas the fifth argument denotes a product is
inherent in the definition of a two-substrate, one-product chemical reaction function.

There is another two-substrate, one-product chemical reaction function CR_2_1
in the upper left part of figure 8.15 (immediately above the first chemical reaction
function CR_2_1). For the higher (in the figure) reaction, the enzyme is
Triacylglycerol lipase (EC3.1.1.3) (the first argument); its rate is 1.45 (the second
argument); the first of its two substrates is fatty acid (C00162) (the third argument);
and its product is diacyl-glycerol (C00165) (the fifth argument).

There is a FIRST-PRODUCT function between the two chemical reaction 
functions in the left half of figure 8.15. The FIRST-PRODUCT function selects the
first of the two products of the lower CR_2_1 function. The line in the program tree
from the lower chemical reaction function to the FIRST-PRODUCT function and the
line between the FIRST-PRODUCT function and the higher CR_2_1 reaction means
that when this tree is converted into a network of chemical reactions, the first (and, in
this case, only) substance produced by the lower CR_2_1 reaction is a substrate to the
higher reaction. In particular, the product of the lower reaction function (the interme-
diate substance Monoacyl-glycerol) is the second of the two substrates to the higher
chemical reaction function (i.e., the fourth argument of the higher function). Thus,
although there is no return value for any branch or for the program tree as a whole,
the return value(s) of all but the top chemical reaction function of a particular branch
(as well the return values of a FIRST-PRODUCT function and a SECOND-PRODUCT
function) define the flow of substances in the network of chemical reactions repre-
sented by the program tree.

Notice that the fatty acid (C00162) substance terminal appears as a substrate
argument to both of these chemical reaction functions (in the left half of figure 8.15
and also in the left half of figure 8.1). The repetition of a substance terminal as a sub-
strate argument in a program tree means that when the tree is converted into a network

252 Genetic Programming IV



of chemical reactions, the available concentration of this particular substrate is dis-
tributed to two reactions in the network. That is, the repetition of a substance terminal
as a substrate argument in a program tree corresponds to a bifurcation point where one
substance is distributed to two different reactions in the network of chemical reactions
represented by the program tree.

For the one-substrate, two-product chemical reaction function CR_1_2 in the
lower right part of figure 8.15, the enzyme is Glycerol-1-phosphatase (EC3.1.3.21)
(the first argument); its rate is 1.19 (the second argument); its single substrate is sn-
Glycerol-3-Phosphate (C00093) (the third argument); and its two products are
Glycerol (C00116) (the fourth argument) and orthophosphate (C00009) (the fifth
argument). The fact that the third argument of this CR_1_2 chemical reaction func-
tion denotes a substrate whereas the fourth and fifth arguments denote products is
inherent in the definition of the one-substrate, two-product chemical reaction function
CR_1_2.

A two-substrate, two-product chemical reaction function CR_2_2 appears above
the one-substrate, two-product chemical reaction function CR_1_2 in figure 8.15.
There is an intervening FIRST-PRODUCT function between CR_1_2 and CR_2_2.
The FIRST-PRODUCT function selects the first of the two products of the CR_1_2
function, namely Glycerol (C00116) to be one of the substrates for the CR_2_2
chemical reaction function. If the intervening selector function was SECOND-PROD-
UCT (instead of FIRST-PRODUCT), then orthophosphate (C00009) (the fifth argu-
ment of the CR_1_2 function) would have been selected.

The two-substrate, two-product chemical reaction function CR_2_2 in the upper
right part of figure 8.15 has six arguments. The enzyme for this reaction is Glycerol
kinase (EC2.7.1.30) (the first argument); its rate is 1.69 (the second argument); its two
substrates are ATP (C00002) (the third argument) and (as its fourth argument) the
FIRST-PRODUCT of the two products of the lower chemical reaction function
CR_1_2, namely Glycerol (C00116); and its two products are ADP (C00008) (the
fifth argument) and sn-Glycerol-3-Phosphate (C00093) (the sixth argument).

Notice that Glycerol (C00116) appears as a substrate argument to both the two-
substrate, one-product chemical reaction function CR_2_1 (in the lower left of figure
8.15 and in the upper left part of figure 8.1) and the two-substrate, two-product chem-
ical reaction function CR_2_2 (in the upper right part of figure 8.15 and in the upper
right part of figure 8.1). The repetition of a substance terminal as a substrate argument
in a program tree means that when the tree is converted into a network of chemical
reactions, the available concentration of this particular substrate is distributed to two
reactions in the network. That is, the repetition of a substance terminal as a substrate
argument in a program tree corresponds to a bifurcation point where one substance is
distributed to two different reactions. This is the second bifurcation point in this par-
ticular network of chemical reactions.

Glycerol (C00116) has two sources in this network of chemical reactions. First, it
is externally supplied (shown at the top right of figure 8.1). Second, this substance is the
product of the one-substrate, two-product chemical reaction function CR_1_2 (in the
middle of figure 8.1 and in the lower right of figure 8.15). When a substance in a net-
work has two or more sources (by virtue of being externally supplied, of being a prod-
uct of a reaction of a network, or a combination thereof), the substance is accumulated.
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When the program tree is converted into a network, all the sources of this substance
are pooled. That is, there is an accumulation point for the substance. There is exactly
one accumulation point in this particular network of chemical reactions.

In this network, Glycerol (C00116)

● is consumed by the one-product chemical reaction function CR_2_1 catalyzed
by EC.3.1.1.23 (in the upper left part of figure 8.1 and in the lower left part of 
figure 8.15),

● is consumed by the two-substrate, two-product chemical reaction function CR_2_2
catalyzed by EC2.7.1.30 (in the upper right part of figure 8.15 and in the right part
of figure 8.1),

● is supplied as a product by the one-substrate, two-product chemical reaction function
CR_1_2 catalyzed by EC3.1.3.21 (found in the middle of figure 8.1 and in the lower
right of figure 8.15), and

● is supplied from an external source (at the top of figure 8.1).

Also, Glycerol (C00116) appears as part of an internal feedback loop consisting
of two reactions, namely

● the one-substrate, two-product chemical reaction function CR_1_2 catalyzed by
EC3.1.3.21 (in the middle of figure 8.1 and in the lower right of figure 8.15) and

● the two-substrate, two-product chemical reaction function CR_2_2 catalyzed by
EC2.7.1.30 (in the upper right part of figure 8.15 and in the right part of figure 8.1).

An internal feedback loop is a feature of this network’s overall topology. An inter-
nal feedback loop may or may not be easy to spot when viewing a program tree that
represents the network of chemical reactions.

The internal feedback loop in this particular network can be spotted easily because
the loop encompasses only two reactions and because the network is small. The pres-
ence of an internal feedback loop is established in this network because of the fol-
lowing two features of this program tree:

● There exists a substance, namely sn-Glycerol-3-Phosphate (C00093) such that this
substance
● is a product (sixth argument) that is produced by the two-substrate, two-product

chemical reaction function CR_2_2 (catalyzed by EC2.7.1.30) in the upper right
part of figure 8.15, and

● is also a substrate that is consumed by the one-substrate, two-product chemical
reaction function CR_1_2 (catalyzed by EC3.1.3.21) in the lower right part of
Figure 8.15 that lies beneath the CR_2_2 function.

● There exists a second substance, namely Glycerol (C00116), that
● is a product that is produced by the chemical reaction function CR_1_2 (catalyzed

by EC3.1.3.21) and
● is a substrate that is consumed by the chemical reaction function CR_2_2 (catalyzed

by EC2.7.1.30).
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In summary, the network of figure 8.15 contains the following three noteworthy
topological features:

● an internal feedback loop in which Glycerol (C00116) is both consumed and 
produced,

● two bifurcation points (one where Glycerol is distributed to two different reactions
and one where fatty acid is distributed to two different reactions), and

● an accumulation point where one substance, namely Glycerol, is accumulated from
two sources.

Note that there are numerous alternative program trees that are functionally equiv-
alent to the metabolic pathway of figure 8.1. Also, note that the individual created by
genetic programming is usually not the most succinct possible representation of a
solution to a problem.

8.4.2 Representation as a Symbolic Expression

The program tree of figure 8.15 can be presented as the following S-expression 
(symbolic expression) in the style of the LISP programming language:

(PROGN
(CR_2_1

EC3_1_1_3
1.45
C00162
(FIRST-PRODUCT

(CR_2_1
EC3_1_1_23
1.95
C00162
C00116
C01885

)
)
C00165

)
(CR_2_2

EC2_7_1_30
1.69
C00002
(FIRST-PRODUCT

(CR_1_2
EC3_1_3_21
C00093
C00116
C00009
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)
)
C00008
C00093

)
)

8.4.3 Representation as a System of Nonlinear Differential Equations

The metabolic pathway of figure 8.1 can also be represented as a system of nonlinear
differential equations.

The network’s final product, diacyl-glycerol (C00165) is produced by the two-
substrate, one-product reaction (found at the bottom left of figure 8.1) catalyzed by
Triacylglycerol lipase (EC 3.1.1.3). The rate of supply of the network’s final product,
diacyl-glycerol (C00165), is given by

[1]

This rate depends on the concentration of the externally supplied fatty acid (C00162),
the concentration of intermediate substance Monoacyl-glycerol (C01885), the con-
centration of enzyme Triacylglycerol lipase (EC3.1.1.3), and the numerical constant
1.45. The right side of this equation consists of a single positive term (and no nega-
tive terms) because the network produces, but does not consume, diacyl-glycerol
(C00165).

The rate of supply and consumption of the intermediate substance Monoacyl-
glycerol (C01885) is given by

[2]

This equation has two terms (one positive and one negative) because it relates to the
concentration of a substance, namely Monoacyl-glycerol (C01885), that is both 
produced (by one reaction in the network) and consumed (by another reaction).
Specifically, the first (positive) term reflects the production of Monoacyl-glycerol
(C01885) by the two-substrate, one-product reaction catalyzed by Acylglycerol
lipase (EC3.1.1.23) (found at the top left of figure 8.1). The first (positive) term
depends on the externally supplied substances, fatty acid (C00162) and Glycerol
(C00116); the concentration of Acylglycerol lipase (EC3.1.1.23); and the numerical
constant 1.95. The second (negative) term reflects the consumption of Monoacyl-
glycerol (C01885) by the two-substrate, one-product reaction catalyzed by
Triacylglycerol lipase (EC3.1.1.3) (found at the bottom left of figure 8.1). The second
(negative) term depends on the externally supplied fatty acid (C00162), the concen-
tration of intermediate substance Monoacyl-glycerol (C01885), the concentration of
Triacylglycerol lipase (EC3.1.1.3), and the numerical constant 1.45.

� 1.45[C00162][C01885][EC 3.1.1.3].

d[C01885]
dt

� 1.95[C00162][C00116][EC 3.1.1.23]

d[C00165]
dt

� 1.45[C00162][C01885][EC 3.1.1.3].
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The rate of supply and consumption of the intermediate substance sn-Glycerol-3-
Phosphate (C00093) in the internal feedback loop is given by

[3]

This equation has two terms (one positive and one negative). There are two terms
because sn-Glycerol-3-Phosphate (C00093) is produced by one reaction and then con-
sumed by another reaction. The first (positive) term reflects the production of sn-
Glycerol-3-Phosphate (C00093) by the two-substrate, one-product reaction
catalyzed by Glycerol kinase (EC2.7.1.30) (on the right side of figure 8.1).
Specifically, the first term depends on the externally supplied substances, namely the
concentration of Glycerol (C00116) and ATP (C00002); the concentration of
Glycerol kinase (EC2.7.1.30); and the constant 1.69. The second (negative) term
reflects the consumption of sn-Glycerol-3-Phosphate (C00093) by the one-substrate,
one-product reaction catalyzed by Glycerol-1-phosphatase (EC3.1.3.21). Specifically,
the second (negative) term depends on the concentration of intermediate product sn-
Glycerol-3-Phosphate (C00093), the concentration of Glycerol-1-phosphatase
(EC3.1.3.21), and the numerical constant 1.19. This second term consists of only three
factors because the reaction catalyzed by Glycerol-1-phosphatase (EC3.1.3.21) has
only one substrate.

The rate of supply and consumption of cofactor ATP (C00002) is

[4]

This equation has two terms (one positive and one negative). The equation relates to
a substance that is externally supplied to the network and then consumed by one reac-
tion of the network. The first (positive) term reflects the external supply of ATP
(C00002). The second (negative) term depends on the two externally supplied sub-
stances, namely Glycerol (C00116) and the cofactor ATP (C00002); the concentra-
tion of Glycerol kinase (EC2.7.1.30); and the numerical constant 1.69.

The rate of supply and consumption of fatty acid (C00162) is

[5]

This equation has three terms—one positive and two negative. The greater complex-
ity of this equation reflects the fact that fatty acid (C00162) is externally supplied and
then consumed by two different reactions of the network. Specifically, there is a bifur-
cation point where fatty acid (C00162) is distributed to two different reactions that
consume it. The first (positive) term reflects the external supply of fatty acid
(C00162). The second (negative) term reflects the two externally supplied sub-
stances, namely fatty acid (C00162) and Glycerol (C00116); the concentration of
Acylglycerol lipase (EC3.1.1.23); and the constant 1.95. The third (negative) term

� 1.45[C00162][C01885][EC 3.1.1.3].

d[C00162]
dt

� 1.2 � 1.95[C00162][C00116][EC 3.1.1.23]

d[ATP]
dt

� 1.5 � 1.69[C00116][C00002][EC 2.7.1.30].

� 1.19[C00093][EC 3.1.3.21].

d[C00093]
dt

� 1.69[C00116][C00002][EC 2.7.1.30]
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reflects the externally supplied fatty acid (C00162), the concentration of intermedi-
ate substance Monoacyl-glycerol (C01885), the concentration of Triacylglycerol
lipase (EC3.1.1.3), and the constant 1.45. The bifurcation point is reflected by the neg-
ative second and third terms (relating to the consumption of fatty acid by the net-
work’s two reactions).

Glycerol (C00116) participates in three noteworthy topological features, namely
a bifurcation point where it is distributed to two different reactions, an accumulation
point where it is accumulated from two sources, and an internal feedback loop in
which it is both consumed and produced.

The rate of supply, consumption, and production of Glycerol (C00116) is

[6]

This equation has four terms—two positive and two negative. The greater complexity
of this equation reflects the fact that Glycerol (C00116) is both externally supplied
and produced by the network (by the internal feedback loop) and the fact that Glycerol
(C00116) is consumed by two reactions (one associated with the internal feedback
loop). The fact that the third and fourth terms are negative reflects the fact that there
is a bifurcation point where Glycerol (C00116) is distributed to two different reac-
tions. The fact that the first and second terms are positive reflects the fact that there is
an accumulation point where Glycerol (C00116) is accumulated from two sources.

The first (positive) term reflects the external supply of Glycerol (C00116). The
second (positive) term depends on the concentration of intermediate product sn-
Glycerol-3-Phosphate (C00093), the concentration of Glycerol-1-phosphatase
(EC3.1.3.21), and the constant 1.19. This second term consists of only three factors
(as opposed to the four factors in the remaining terms of this equation) because the
reaction catalyzed by Glycerol-1-phosphatase (EC3.1.3.21) has only one substrate,
namely intermediate product sn-Glycerol-3-Phosphate (C00093). The third term
(negative) depends on the concentration of Glycerol (C00116), the concentration of
cofactor ATP (C00002), the concentration of Glycerol kinase (EC2.7.1.30), and the
numerical constant 1.69. The fourth (negative) term depends on the two externally
supplied substances, namely fatty acid (C00162) and Glycerol (C00116); the con-
centration of Acylglycerol lipase (EC3.1.1.23); and the numerical constant 1.95.

An internal feedback loop is a feature of the overall topology of this network of
chemical reactions. An internal feedback loop may or may not be easy to spot when
viewing a system of nonlinear differential equations.

The internal feedback loop in this particular network can be spotted easily here
because the loop encompasses only two reactions and because the network is small.
The presence of an internal feedback loop is established in this network because of the
following two features of equations [3] and [6]:

● There exists a substance, namely sn-Glycerol-3-Phosphate (C00093),
● that the positive first term of equation [3] shows to be a product that is produced

by the chemical reaction catalyzed by EC2.7.1.30 and

� 1.95[C00162][C00116][EC 3.1.1.23].
� 1.69[C00116][C00002][EC 2.7.1.30]

d[C00116]
dt

� 0.5 � 1.19[C00093][EC 3.1.3.21]
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● that the negative second term of equation [3] shows to be a substrate that is con-
sumed by the chemical reaction catalyzed by EC3.1.3.21.

● There exists a substance, namely Glycerol (C00116),
● that the positive first term of equation [3] shows to be a product that is produced

by the reaction function catalyzed by EC3.1.3.21 and
● that the negative second term of equation [6] shows to also be a substrate that is

consumed by the chemical reaction catalyzed by EC2.7.1.30.

8.4.4 Representation as an Analog Electrical Circuit

The metabolic pathway of figure 8.1 can also be represented as an analog electrical
circuit.

Figure 8.16 shows the electrical circuit corresponding to the metabolic pathway of
figure 8.1 (and to the program tree of figure 8.15). The six triangle-rectangle combina-
tions in the figure are sum-integrators (each with a positive port and a negative port).
There is one sum-integrator for each substance in the network of chemical reactions. The
output of each sum-integrator corresponds to the concentration of that substance. The
three small rectangles on the left side of the figure are adders. Adders are used when
there is more than one substance that must be connected to the same port 
(positive or negative) of a sum-integrator. The four large rectangles on the right side of
the figure represent the four chemical reactions in the network of chemical reactions.
The four large circles (each labeled “V”) on the right side of the figure are time-
varying voltage sources that specify the independently varying concentrations of the four
enzymes that catalyze the four chemical reactions. The four tiny circles associated with
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the four chemical reactions on the right side of the figure are constant voltage sources
that provide the numerical rate constants for the four reactions. The three tiny circles
(one associated with an adder and two associated with a sum-integrator) toward the left
side of the figure are constant voltage sources that represent the constant rates at which
Glycerol (C00116), fatty acid (C00162), and ATP (C00002) are externally supplied.

Starting at the bottom right of figure 8.16, there is a chemical reaction (large 
rectangle) representing a two-substrate, one-product chemical reaction function
whose enzyme is Triacylglycerol lipase (EC3.1.1.3) and whose rate is specified by the
constant voltage source labeled 1.45. There is a long wire (running along the far right,
top, and far left of the figure) connecting the rate of this reaction to the positive port
of the sum-integrator (in the bottom right part of the figure) for diacyl-glycerol
(C00165), reflecting the fact that this reaction produces diacyl-glycerol (C00165) as
its product. As it happens, this reaction’s product is also the final product of the net-
work as a whole. This same long wire is connected to the negative port of the sum-
integrator for intermediate product Monoacyl-glycerol (C01885) reflecting the fact
that this reaction consumes Monoacyl-glycerol (C01885). Similarly, this same long
wire is connected (through an adder) to the negative port of the sum-integrator for
fatty acid (C00162) reflecting the fact that this reaction consumes fatty acid
(C00162). The fact that the long wire is connected to two negative ports and one pos-
itive port of various sum-integrators reflects the fact that this reaction is a two-
substrate, one-product reaction. Because the network’s final product, namely 
diacyl-glycerol (C00165), is not consumed anywhere in the network, the negative
port of its sum-integrator (in the bottom right part of the figure) is connected to a con-
stant 0 voltage source (i.e., ground). There is a connection from the output of the sum-
integrator for fatty acid (C00162) to the port of this reaction labeled “substrate A”
reflecting the fact that the concentration of fatty acid (C00162) plays a role (as a mul-
tiplicative factor in the rate law) in establishing the rate of this reaction. Also, there is
a connection from the output of the sum-integrator for Monoacyl-glycerol (C01885)
to the port labeled “substrate B” reflecting the fact that the concentration of
Monoacyl-glycerol (C01885) also plays a role (again, as a multiplicative factor in the
rate law) in establishing the rate of this reaction.

Moving up along the right side of figure 8.16, there is a chemical reaction (large
rectangle) representing a two-substrate, one-product chemical reaction function
whose enzyme is Acylglycerol-lipase (EC3.1.1.23) and whose rate is 1.95. There is a
wire connecting the rate of this reaction to the positive port of the sum-integrator for
Monoacyl-glycerol (C01885) reflecting the fact that this reaction produces
Monoacyl-glycerol (C01885) as its product. This same wire is connected (through an
adder) to the negative port of the sum-integrator (the top sum-integrator in the figure)
for Glycerol (C00116) reflecting the fact that this reaction consumes Glycerol
(C00116). Similarly, this same wire is connected (again, through an adder) to the
negative port of the sum-integrator for fatty acid (C00162) reflecting the fact that this
reaction also consumes fatty acid (C00162). There is also a connection from the out-
put of the sum-integrator for fatty acid (C00162) to the port of this reaction labeled
“substrate A” reflecting the fact that the concentration of fatty acid (C00162) plays a
role (as a multiplicative factor in the rate law) in establishing the rate of this reaction.
Also, there is a connection from the output of the sum-integrator for Glycerol
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(C00116) to the port labeled “substrate B” reflecting the fact that the concentration
of Glycerol (C00116) also plays a role (again, as a multiplicative factor in the rate
law) in establishing the rate of this reaction.

There is a connection from a constant voltage source (tiny circle) of 1.2 Volts to
the positive port of the sum-integrator for fatty acid (C00162) reflecting the external
supply of this substance. Similarly, there is a connection (through an adder) from a
constant voltage source (tiny circle) of 0.5 Volts to the positive port of the sum-
integrator for Glycerol (C00116) and a connection from a constant voltage source
(tiny circle) of 1.5 Volts to the positive port of the sum-integrator for ATP (C00002).
There is no connection from a constant voltage source to the sum-integrator for the
reaction’s final product, diacyl-glycerol (C00165), because this substance has an ini-
tial concentration of 0 and is not externally supplied. There is no connection from a
constant voltage source to the sum-integrators for the two intermediate products,
namely Monoacyl-glycerol (C01885) and sn-Glycerol-3-Phosphate (C00093).

Proceeding up again along the right side of figure 8.16, there is a chemical reac-
tion (large rectangle) representing a one-substrate, one-product chemical reaction
function whose enzyme is Glycerol-1-phosphatase (EC3.1.3.21) and whose rate is
1.19. There is a wire connecting the rate of this reaction (through an adder) to the pos-
itive port of the sum-integrator for Glycerol (C00116), reflecting the fact that this
reaction produces this substance as its product. Note that we do not show this reac-
tion’s second product in this circuit. This same wire is connected to the negative port
of the sum-integrator for intermediate substance sn-Glycerol-3-Phosphate (C00093)
reflecting the fact that this reaction consumes this substance. This reaction differs
from the two previously discussed reactions in that it has only one substrate. Hence it
has only one connection to a negative port of a sum-integrator. There is also a con-
nection from the output of the sum-integrator for intermediate substance sn-Glycerol-
3-Phosphate (C00093) to the port of this reaction labeled “substrate.”

At the top of the right side of figure 8.16, there is a chemical reaction (large rec-
tangle) representing a two-substrate, two-product chemical reaction function whose
enzyme is Glycerol kinase (EC2.7.1.30) and whose rate is 1.69. There is a wire con-
necting the rate of this reaction (through an adder) to the positive port of the sum-
integrator for intermediate product sn-Glycerol-3-Phosphate (C00093) reflecting the
fact that this reaction produces this substance as its product. Note that we do not show
this reaction’s second product, ADP, in this circuit. This same wire is connected to the
negative port of the sum-integrator for Glycerol (C00116) reflecting the fact that this
reaction consumes this substance. Similarly, this same wire is connected to the nega-
tive port of the sum-integrator for ATP (C00002) reflecting the fact that this reaction
consumes this substance. There is also a connection from the output of the sum-
integrator for Glycerol (C00116) to the port of this reaction labeled “substrate A” and
a similar connection from the output of the sum-integrator for ATP (C00002) to the
port labeled “substrate B.”

As previously mentioned, an adder is used whenever there is more than one 
substance that must be connected to a particular port (positive or negative) of a sum-
integrator.

A bifurcation point (where one substance is distributed to two different reactions)
exists whenever there is an adder feeding in to the negative port of a sum-integrator.
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This occurs in figure 8.16 for Glycerol (C00116) and fatty acid (C00162). Both of
these substances are consumed by two different reactions.

An accumulation point (where one substance is accumulated from two sources)
exists whenever there is an adder feeding in to the positive port of a sum-integrator.
This occurs in figure 8.16 for Glycerol (C00116) because this substance is both
externally supplied (as reflected by the constant 0.5 voltage source) and produced 
by this network of chemical reactions by the reaction catalyzed by Glycerol-1-
phosphatase (EC3.1.3.21).

Notice that there is no adder associated with the network’s two intermediate prod-
ucts, namely Glycerol-3-Phosphate (C00093) and Monoacyl-glycerol (C01885).
The reason is that both of these intermediate products are consumed and produced by
only one reaction and that they are not externally supplied.

Similarly, there is no adder associated with the network’s final product, namely
diacyl-glycerol (C00165). The reason is that it is produced by only one reaction, con-
sumed nowhere, and is not externally supplied.

An internal feedback loop is a feature of the overall topology of this network of
chemical reactions. An internal feedback loop may or may not be easy to spot when
viewing a circuit that represents a network of chemical reactions.

The internal feedback loop in this particular network can be spotted easily here
because the loop encompasses only two reactions and because the network is small.
The presence of an internal feedback loop is established in this network because of the
existence of the following connections in the circuit:

● There exists a substance, namely sn-Glycerol-3-Phosphate (C00093), such that
● the positive port of its sum-integrator is connected to the reaction catalyzed by

EC2.7.1.30 and
● the negative port of its sum-integrator is connected to the reaction catalyzed by

EC3.1.3.21.

● There exists a substance, namely Glycerol (C00116), such that
● the positive port of its sum-integrator is connected to the reaction catalyzed by

EC3.1.3.21 and
● the negative port of its sum-integrator is connected to the reaction catalyzed by

EC2.7.1.30 and EC3.1.1.23.

8.4.5 Flexibility of the Representation

Neither the random generative process used to create the individuals in the initial pop-
ulation (generation 0) of the run of genetic programming nor the operations of genetic
programming used to create individuals in later generations of the run have any a pri-
ori knowledge concerning the number of reactions in the network, the rate of any par-
ticular reaction, which particular substance(s) should be consumed by any particular
reaction in the network, which substance(s) should be produced by any particular
reaction, the proper source of substrates for any particular reaction, the proper desti-
nation for the product of any particular reaction, which reaction(s) should produce the
network’s intended final product of, say, the actual phospholipid cycle, and whether

262 Genetic Programming IV



the network should contain any internal feedback loop(s), bifurcation point(s), or
accumulation point(s).

The representation (described in previous sections) for networks of chemical reac-
tions is explicitly intended to permit the expression of a vast variety of possibilities—
regardless of whether those possibilities are consistent with any physical reality.
Indeed, the vast majority of the networks that exist in generation 0 (and indeed
throughout the run of genetic programming) are not physically realizable—much less
close to the performance of any physical network or the observed data. The aim of the
representation is to provide an open-ended milieu in which genetic programming may
conduct its search. The aim is to put everything up for grabs.

This point is especially clear if one looks at the individual networks in generation
0 of a run of genetic programming. Each individual in the initial population is nothing
more or less than a random composition of the available functions and terminals that
are constructed subject to the minimal requirements of the constrained syntactic struc-
ture (previously described). For example, in a randomly created individual network, the
rate of a reaction is a random number and certainly does not reflect the existence of any
actual reaction that actually operates at that rate in nature. Similarly, in a randomly cre-
ated individual network, a particular enzyme may be associated with a chemical reac-
tion function that consumes k substrates and produces j products, regardless of whether
that enzyme can actually catalyze any reaction in nature in that way. Likewise, in a ran-
domly created individual network, a reaction that consumes k substrates and produces
j products may consume and produce substance(s), regardless of whether any reaction
actually exists in nature that consumes or produces those substance(s).

The vast majority of the individuals in later generations of the run of genetic 
programming are similarly divorced from physical reality.

Given that the aim of the representation is to provide a milieu in which to conduct
a search, it is then the task of the evolutionary search process (that is, genetic 
programming) to effectively and efficiently conduct the search. The task of the search
process is to discover a network consisting of an interconnected sequence of chemi-
cal reactions (each operating at some specific rate, each catalyzed by a particular
enzyme, each consuming particular substances, and each producing particular sub-
stances) that achieves a near-perfect match to the observed time-domain concentration
of the network’s final product(s). The search conducted by genetic programming is
guided by the fitness of each particular individual in the population.

8.5 Preparatory Steps

8.5.1 Program Architecture

Each program tree in the initial random population (generation 0) has one result-
producing branch. In subsequent generations, the architecture-altering operations
(patterned after gene duplication and gene deletion in nature and described in detail in
Koza, Bennett, Andre, and Keane 1999a) may add and delete result-producing
branches to and from particular program trees in the population. Each program tree
may have up to four result-producing branches.
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8.5.2 Function Set

The function set, F, is

F�{CR_1_1, CR_1_2, CR_2_1, CR_2_2, FIRST-PRODUCT,
SECOND-PRODUCT}.

These chemical reaction functions use pseudo-first-order rate laws and pseudo-
second-order rate laws.

8.5.3 Terminal Set

A constrained syntactic structure enforces the use of one terminal set for the value-
setting subtrees and another terminal set for all other parts of the program tree.

The terminal set, Tvss, for the value-setting subtrees is

Tvss �{�p},

where �p denotes a perturbable numerical value. In the initial random generation
(generation 0) of a run, each perturbable numerical value is set, individually and sep-
arately, to a random value in a chosen range (between 0.0 and 2.0 here).

For the first network, the terminal set, T, is

T�{�, INT_1, INT_2, INT_3, C00116, C00162, C00002, C00165}.

Here INT_1, INT_2, and INT_3 are the concentrations of intermediate sub-
stances 1, 2, and 3 (respectively).

For the first network, C00116 is the concentration of Glycerol; C00162 is the
concentration of fatty acid; C00002 is the concentration of the cofactor ATP; and
C00165 is the concentration of diacyl-glycerol (the network’s final product).

For the second network, the external inputs are acetoacetyl-CoA and Acetyl-CoA
and the output product is Acetoacetate.

In this problem, the numerical parameter value(s) for each function possessing a
parameter are established by a value-setting subtree containing a single perturbable
numerical value. This approach for establishing numerical parameter values is
described in section 3.5.5.2.

8.5.4 Fitness Measure

In order to evaluate the fitness of an individual in the population, the program tree
(more specifically, the LISP S-expression corresponding to the program tree) is first
converted into a directed graph representing the network of chemical reactions. This
is accomplished by executing the one (or more) result-producing branches of the 
program tree from left to right. The functions in each such result-producing branch are
executed in a depth-first manner (from left to right) in the style of the LISP program-
ming language. One reactor (representing the concentration of the substances partici-
pating in the reaction) is inserted into the network for each chemical reaction function
that is encountered. The reactor is labeled with the reaction’s enzyme and rate. 
A directed line entering the reactor is added for each of the reaction’s one or two 
substrates. A directed line leaving the reactor is added for each of the reaction’s
one or two products. The first product of a reaction is selected whenever a 
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FIRST-PRODUCT function is encountered. The second product of a reaction is
selected whenever a SECOND-PRODUCT function is encountered. As previously
explained, such networks can acquire various topological features, such as bifurcation
points, accumulation points, and internal feedback loops.

After the directed graph representing the network of chemical reactions is 
constructed, it is converted into an analog electrical circuit.

A SPICE netlist is then constructed to represent the electrical circuit. We provide
SPICE with subcircuit definitions (macros) to implement all the chemical reaction
equations.

The netlist is wrapped inside an appropriate set of SPICE commands to carry out
an analysis in the time domain. The electrical circuit is then simulated using our mod-
ified version of the original SPICE simulator. Our modified version of SPICE is
embedded as a submodule within our genetic programming system.

The concentrations of each of the four enzymes (EC2.7.1.30, EC3.1.3.21,
EC3.1.1.23, and EC3.1.1.3) are varied in accordance with one of the following six 
different time-series patterns over 30 half-second time steps:

● slope-up,
● slope-down,
● step-up,
● step-down,
● sawtooth, and
● knock-out.

None of these time series patterns are extreme. Each has been structured so as to
vary the concentrations between 0 and 2.0 in a pattern that a living cell would be
expected to survive.

Each individual chemical reaction network is exposed to nine test cases. Thus,
there are 270 fitness cases (9 test cases, each consisting of 30 time steps).

Each of the nine test cases (table 8.2) is constructed by choosing four different
time series from this set of six time series as the concentration for the four enzymes
(EC2.7.1.30, EC3.1.3.21, EC3.1.1.23, and EC3.1.1.3).

The slope-up time series for an enzyme starts at a concentration of 0.5 at time step
0 and increases linearly to a concentration of 1.75 at time step 30.

The slope-down time series for an enzyme starts at a concentration of 1.55 and
decreases linearly to a concentration of 1.0 at time step 30.

The step-down time series starts at a concentration of 1.95 at time step 0, contin-
ues at that level until time step 6, steps down to a concentration of 1.5 at time step 7,
and then remains at the lower level.

The step-up time series starts at a concentration of 0.4 at time step 0, continues at
that level until time step 12, steps up to a concentration of 1.65 at time step 13, and
then remains at the lower level.

The sawtooth time series starts at a concentration of 2.0 at time step 0, linearly
decreases to a concentration of 1.0 at time step 5, and linearly increases to a concen-
tration of 2.0 at time step 10. This pattern is then repeated between time steps 10 and
20 and between time steps 20 and 30.
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The knock-out time series starts at a concentration of 1.2 at time step 0 and then
drops to a concentration of 0 for all remaining time steps.

There are a total of 270 data points. The data was obtained using SPICE. We ver-
ified that our data is close to that obtained from the E-CELL cell simulation model
(Tomita, Hashimoto, Takahashi, Shimizu, Matsuzaki, Miyoshi, Saito, Tanida, Yugi,
Venter, and Hutchison 1999; Voit 2000).

The concentrations of all intermediate substances and the network’s final product
are 0 at time step 0.

For the runs herein, Glycerol (C00116), fatty acid (C00162), and ATP
(C00002) are externally supplied at a constant rate (table 8.3). That is, these values
are not subject to evolutionary change during the run.

In an alternative implementation, these values could be opened to evolutionary
change during the run by adding a value-setting subtree containing one perturbable
numerical value for each value that is to be allowed to evolve. For example, one might be
interested in finding the rate of supply that could produce a given set of output values.

Fitness is the sum, over the 270 fitness cases, of the absolute value of the 
difference between the concentration of the end product of the individual reaction 
network (diacyl-glycerol C00165 for the first network and Acetoacetate for the 
second network) and the observed concentration. The smaller the fitness, the better.

The SPICE simulator is remarkably robust; however, it cannot simulate every con-
ceivable circuit. In particular, many circuits corresponding to networks of chemical
reactions that are randomly created for the initial population of a run of genetic pro-
gramming and many circuits corresponding to networks of chemical reactions that are
created by the crossover and mutation operations in later generations are so patholog-
ical that SPICE cannot simulate them. The networks associated with such circuits
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Table 8.2 Variation in the levels of the four enzymes for the nine test cases

Test case EC2.7.1.30 EC3.1.3.21 EC3.1.1.23 EC3.1.1.3

1 Slope-up Sawtooth Step-down Step-up
2 Slope-down Step-up Sawtooth Step-down
3 Step-down Slope-up Slope-down Step-up
4 Step-up Slope-down Step-up Step-down
5 Sawtooth Step-down Slope-up Step-up
6 Sawtooth Step-down Knock-out Slope-up
7 Sawtooth Knock-out Slope-up Step-down
8 Knock-out Step-down Slope-up Sawtooth
9 Step-down Slope-up Sawtooth Knock-out

Table 8.3 Rates for externally
supplied substances

Substance Rate

Glycerol (C00116) 0.5
Fatty acid (C00162) 1.2
ATP (C00002) 1.5



receive a high penalty value of fitness (108) and thereby become the worst-of-genera-
tion individuals for their generation.

The number of hits is defined as the number of fitness cases (0 to 270) for which
the concentration of the measured output substance is within 5% of the observed data
value.

8.5.5 Control Parameters

The population size is 100,000.

8.6 Results for the Phospholipid Cycle

The population for the initial generation (generation 0) of a run of genetic program-
ming is created at random. This initial random population is a blind random search of
the space of possible chemical reaction networks.

The fitness of the median individual (figure 8.17) from the population at genera-
tion 0 is 297.3. This individual scores 17 hits (out of 270). As can be seen in the fig-
ure, this network is extremely sparse. Only one reaction appears in this network,
whereas there are four reactions in the correct metabolic pathway for the part of the
phospholipid cycle under consideration here. Fatty acid (C00162) appears as an input
substance to the network of figure 8.17; however, Glycerol (C00116) and cofactor
ATP (C00002) do not.

The network of figure 8.17 contains none of the noteworthy topological features
in the metabolic pathway that we are attempting to discover. The rate constant associ-
ated with the one reaction is shown outside the parentheses and the correct rate 
constant is shown inside the parenthesis for the reaction (given the catalyst shown).

Note that the one reaction in the median network for generation 0 has one 
substrate and one product and is labeled enzyme EC3.1.1.3 (Triacylglycerol lipase).
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In the correct metabolic pathway (figure 8.1), enzyme EC3.1.1.3 catalyzes a two-
substrate, one-product chemical reaction. Neither the random generative process used
to create the individuals in generation 0 nor the operations of genetic programming
used to create individuals in later generations have any knowledge a priori that
EC3.1.1.3, in fact, should catalyze a two-substrate, one-product reaction as part of the
actual phospholipid cycle. Moreover, neither the random generative process nor the
operations of genetic programming have any knowledge concerning which particular
substrate should be consumed by any particular reaction. Similarly, neither the 
random generative process nor the operations of genetic programming have any
knowledge concerning the proper destination for the product of the reaction. All that
genetic programming knows is that the value of fitness of this particular individual in
the initial random population of generation 0 is better than one half of the population
of generation 0 and worse than the other half of generation 0. It is the task of the evo-
lutionary process to discover that if EC3.1.1.3 catalyzes a two-substrate, one-product
reaction as part of an entirely appropriate interconnected network containing three
other reactions catalyzed by three other enzymes, then such a network will achieve a
near-perfect match to the observed concentrations of diacyl-glycerol (C00165).

The fitness of the best individual (figure 8.18) from generation 0 is 86.4. This net-
work is a faint shadow of the correct metabolic pathway. This individual network
scores 126 hits (out of 270). This network has only three reactions, whereas the actual
metabolic pathway has four reactions. Fatty acid (C00162) appears as an input 
substance to this network; however, Glycerol (C00116) and cofactor ATP (C00002)
do not. Two of the four available catalysts (EC 3.1.1.23 and EC 3.1.1.3) are effectively
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used. A third catalyst (EC 3.1.3.21) consumes an intermediate substance (INT_2) that
is not produced anywhere (or supplied from anywhere). This network contains one
(but only one) of the three noteworthy topological features of the correct metabolic
pathway, namely a bifurcation of the supply of incoming substance C00162
(fatty acid) to two different reactions.

In generation 10, the fitness of the best individual (figure 8.19) is 64.0. This 
individual scores 151 hits. This network is superior to the best individual of 
generation 0 in that it uses both C00162 (fatty acid) and Glycerol (C00116) as 
external inputs. However, this network still does not use ATP (C00002). This network
is also defective in that it contains only two reactions.

In generation 25, the fitness of the best individual (figure 8.20) is 14.3. This 
individual scores 224 hits. This network contains four reactions (the same number as
the correct metabolic pathway). It contains two instances where a substance is 
distributed to two different reactions. First, C00162 (fatty acid) is distributed to the
reactions catalyzed by Acylglycerol lipase (EC3.1.1.23) and Triacylglycerol lipase
(EC3.1.1.3). Second, C00116 is distributed to the reactions catalyzed by Glycerol
kinase (EC2.7.1.30) and Acylglycerol lipase (EC3.1.1.23).

The best network for generation 25 is more complex than previous best-of-generation
individuals in this run in that it contains two topological features not previously seen.

First, this network contains an internal feedback loop in which one substance
(Glycerol C00116) is consumed by one reaction (catalyzed by enzyme EC 2.7.1.30)
of the loop, produced by another reaction (catalyzed by enzyme EC 3.1.3.21) of the
loop, and then supplied as a substrate to the first reaction of the loop.
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Second, this network contains a place where there is an accumulation of quantities
of one substance. Specifically, Glycerol (C00116) is produced by the reaction 
catalyzed by enzyme EC 3.1.3.21 and it is also externally supplied.

In other words, this best individual from generation 25 contains all three noteworthy
topological features of the correct metabolic pathway. However, this network does yet
have the topology of the correct metabolic pathway. This network does not use ATP
(C00002) and has only one intermediate substance.

In generation 120, the fitness of the best individual (figure 8.21) is 2.33. This 
network has four reactions. It has two intermediate substances. The cofactor ATP
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(C00002) appears as an input to this network. In fact, this network has the exact
topology as the correct metabolic pathway. However, the numerical rates (sizing) of
this network are not yet correct (as reflected in the fact that it scores only 255 out of
270 hits).

The best-of-run individual (figure 8.22) appears in generation 225. That is, in a
practical sense, the first half of the run (approximately) was concerned with the for-
mation of the correct topology whereas the second half of the run was concerned with
the refinement of the numerical constants.

The fitness of the best-of-run individual from generation 225 is almost zero
(0.054). This individual scores 270 hits (out of 270). In addition to having the same
topology as the correct metabolic pathway, the rate constants of three of the four 
reactions of this network match the correct rates (to three significant digits). The
fourth rate is within less than 2% of the correct rate (i.e., the rate of EC 3.1.3.21 is
1.17 compared with 1.19 for the correct network). Figure 8.23 shows the electrical 
circuit for the best-of-run individual from generation 225.

In the best-of-run network from generation 225, the rate of supply of the network’s
final product, diacyl-glycerol (C00165), is given by

Note that genetic programming has correctly determined that the reaction that pro-
duces the network’s final product diacyl-glycerol (C00165) has two substrates and
one product; and it has correctly identified enzyme EC3.1.1.3 as the catalyst 
for this final reaction. In addition, it has correctly determined the rate of this final 
reaction as 1.45. Moreover, it has correctly identified the externally supplied 
substance, fatty acid (C00162), as one of the two substrates for this final reaction.
None of this information was supplied a priori to genetic programming.

d[C00165]
dt

� 1.45[C00162][INT_2][EC3.1.1.3].
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Of course, genetic programming has no way of knowing that biochemists call the
intermediate substance (INT_2) by the name Monoacyl-glycerol (C01885) (as indi-
cated in figure 8.1). It has, however, correctly determined that an intermediate sub-
stance is needed as one of the two substrates of the network’s final reaction and that
this intermediate substance should, in turn, be produced by a particular other reaction
(described next).

In the best-of-run network from generation 225, the rate of supply and consump-
tion of the intermediate substance INT_2 is given by

Again, genetic programming has correctly determined that the reaction that pro-
duces the intermediate substance (INT_2) has two substrates and one product. In
addition, it has correctly identified enzyme EC3.1.1.23 as the catalyst for this reaction.
Also, it has correctly determined the rate of this reaction as 1.95. Finally, it has cor-
rectly identified two externally supplied substances, fatty acid (C00162) and
Glycerol (C00116), as the two substrates for this reaction. None of this information
was supplied a priori to genetic programming.

In the best-of-run network from generation 225, the rate of supply and 
consumption of the intermediate substance INT_1 in the internal feedback loop is

d[INT_2]
dt

� 1.95[C00162][C00116][EC3.1.1.23] � 1.45[C00162][INT_2][EC3.1.1.3].
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given by

Note that the numerical rate constant of 1.17 is slightly different from the correct rate
(as shown in figure 8.1).

Here again, genetic programming has correctly determined that the reaction that
produces the intermediate substance (INT_1) has two substrates and one product.
Also, it has correctly identified enzyme EC2.7.1.30 as the catalyst for this reaction. In
addition, it has almost correctly determined the rate of this reaction to be 1.17
(whereas the correct rate is 1.19, as shown in figure 8.1). Moreover, it has correctly
identified two externally supplied substances, Glycerol (C00116) and the cofactor
ATP (C00002), as the two substrates for this reaction. None of this information was
supplied a priori to genetic programming.

Genetic programming has no way of knowing that biochemists call the intermedi-
ate substance (INT_1) by the name sn-Glycerol-3-Phosphate (C00093) (as indicated
in figure 8.1). Genetic programming has, however, correctly determined that an inter-
mediate substance is needed as the single substrate of the reaction catalyzed by
Glycerol-1-phosphatase (EC3.1.3.21) and that this intermediate substance should, in
turn, be produced by the reaction catalyzed by Glycerol kinase (EC2.7.1.30).

In the best-of-run network from generation 225, the rate of supply and consump-
tion of ATP (C00002) is

The rate of supply and consumption of fatty acid (C00162) in the best-of-run 
network is

The rate of supply, consumption, and production of Glycerol (C00116) in the
best-of-run network is

Again, note that the numerical rate constant of 1.17 is slightly different from the 
correct rate (as shown in figure 8.1).

Notice the internal feedback loop in which C00116 is both consumed and produced.
In summary, driven by the time-domain concentration values of the final product

C00165 (diacyl-glycerol), genetic programming created both the topology and sizing

� 1.95[C00162][C00116][EC3.1.1.23].

d[C00116]
dt

� 0.5 � 1.17[INT_1][EC3.1.3.21] � 1.69[C00116][C00002][EC2.7.1.30]

� 1.45[C00162][INT_2][EC3.1.1.3].

d[C00162]
dt

� 1.2 � 1.95[C00162][C00116][EC3.1.1.23]

d[ATP]
dt

� 1.5 � 1.69[C00116][C00002][EC 2.7.1.30].

d[INT_1]
dt

� 1.69[C00116][C00002][EC2.7.1.30] � 1.17[INT_1][EC3.1.3.21].
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for an entire metabolic pathway whose time-domain behavior closely matches that of
the naturally occurring pathway. In particular, genetic programming automatically
determined

● the total number of reactions in the network,
● the number of substrate(s) consumed by each reaction,
● the number of product(s) produced by each reaction,
● an indication of which enzyme (if any) acts as a catalyst for each reaction,
● the pathways supplying the substrate(s) (either from external sources or other reac-

tions in the network) to each reaction,
● the pathways dispersing each reaction’s product(s) (either to other reactions or

external outputs),
● the number of intermediate substances in the network,
● topological features such as

● internal feedback loops,
● bifurcation points,
● accumulation points, and

● numerical rates (sizing) for all reactions.

Genetic programming did this using the 270 time-domain concentration values of
the final product C00165 (diacyl-glycerol). The genetically evolved metabolic 
pathway contains at least one instance of three noteworthy topological features: an
internal feedback loop, a bifurcation point where one substance is distributed to two
different reactions, and an accumulation point where one substance is accumulated
from two sources.

For additional information, see Koza, Mydlowec, Lanza, Yu, and Keane 2000a,
2000b, 2001a, 2001b.

This example (and the one in section 8.7) demonstrates the principle that it is 
possible to reverse engineer a metabolic pathway using the observed data for the 
concentration values of the pathway’s final product.

8.6.1 Routineness of the Transition from Problems of Synthesizing 
Controllers, Circuits, Circuits with Layout, Antennas, and Genetic Networks 
to a Problem of Synthesis of a Network of Chemical Reactions

In this book, we previously solved problems involving the automatic synthesis of enti-
ties from five different domains: controllers (chapter 3), circuits (chapter 4), circuits
with layout (chapter 5), antennas (chapter 6), and genetic networks (chapter 7).

What is the nature of the effort required to make the transition from the previous
five domains to the domain of automatic synthesis of chemical reaction networks?

First, there are, of course, differences in the function and terminal sets. These dif-
ferences reflect the fact that networks of chemical reactions are composed of different
ingredients than the previously discussed entities.

Second, there is a difference in fitness measures. The fitness measure for a problem
involving the automatic synthesis of each different type of entity is couched in terms of
characteristics and performance relevant to that entity.
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Once the preparatory steps are performed for a problem involving the automatic
synthesis of a network of chemical reactions, the executional steps of genetic pro-
gramming are the same as for problems from the other five domains.

The effort required to make the transition from the previous five domains to the
domain of automatic synthesis of chemical reaction networks is relatively small. That
is, the transition is routine.

8.6.2 AI Ratio for the Metabolic Pathway Problem for the Phospholipid Cycle

What is the AI ratio for the discovery by genetic programming of a network of chem-
ical reactions for the phospholipid cycle?

We did not employ any deep knowledge about chemistry or biology in selecting
the functions and terminals for the present problem. Our approach simply involves
creating the ability to produce a network of chemical reactions. The function set and
terminal set merely reflect the nature of networks of chemical reactions.

The fitness measure merely reflects the statement of the problem.
The moderately high amount of “A” represented by the result in conjunction with

the small amount of “I” provided by the human user means that the AI ratio for the
solution produced by genetic programming is moderately high.

8.7 Results for the Synthesis and Degradation of Ketone Bodies

We proceed to automatically infer a metabolic pathway for the synthesis and degra-
dation of ketone bodies in the same way as we did for the phospholipid cycle (but with
appropriate different data).

Figure 8.24 shows one individual with several noteworthy topological features
from the randomly created population of generation 0. It has a fitness of 213.6 and
scores 163 hits (out of 270). Although this network has little resemblance to the cor-
rect metabolic pathway, it contains a trifurcation of one substance (Acetoacetyl-CoA),
one double accumulation point (where Acetoacetyl-CoA and Acetyl-CoA are com-
bined) and one triple accumulation point (where the network’s output, Acetoacetate,
is produced). This network employs no intermediate substances and contains no inter-
nal feedback loops. The correct rate constants are shown inside the parentheses for
each of the three reactions and the rate constants for this particular individual are
shown outside the parentheses.

Figure 8.25 shows the best individual from the randomly created population of gen-
eration 0. It has a fitness of 76.96 and scores 164 hits. This network contains a bifur-
cation of one substance (Acetoacetyl-CoA) and two double accumulation points. It
employs one intermediate substance (INT_1). It contains no internal feedback loops.

Figure 8.26 shows the best individual from generation 5. It has a fitness of 22.89
and scores 209 hits. This network has the correct topology. It has the internal feedback
loop in which Acetyl-CoA is produced by the reaction catalyzed by
Hydroxymethylglutaryl-CoA lyase (EC 4.1.3.4) and, in turn, consumed by the reac-
tion catalyzed by Hydroxymethylglutaryl-CoA synthase (EC 4.1.3.5). It employs one
intermediate substance (INT_1).
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The best network of generation 18 has the same topology as the best network of
generation 5; however, its improved numerical parameters for the reactions give it a
score of 270 hits (out of 270).

The best-of-run network appears in generation 97 (figure 8.27). It has a fitness of
0.000 and scores 270 hits. It has the same topology as the best network of generations
5 and 18. This individual has the same topology as the correct metabolic pathway and
the same rates (to three significant digits) for each of the three reactions.

In summary, driven by the time-domain concentration values of Acetoacetate (the
final product), genetic programming created the entire metabolic pathway.

8.7.1 Routineness for the Metabolic Pathway Problem Involving Ketone Bodies

The problem in this section is in the same domain (i.e., the automatic discovery of a
metabolic pathway) as the problem concerning the phospholipid cycle. The prepara-
tory steps for the problem in this section are substantially the same as the preparatory
steps for the problem concerning the phospholipid cycle except that the present prob-
lem has a set of fitness cases reflecting data for ketone bodies. Thus, relatively little
effort is required to make the transition from the problem involving the phospholipid
cycle to the problem involving ketone bodies. That is, the transition is routine.

8.7.2 AI Ratio for the Metabolic Pathway Problem Involving Ketone Bodies

The AI ratio for the solution to this problem is moderately high for the same reasons
as stated in connection with the previous problem involving the phospholipid cycle
(section 8.6.2).

8.8 Future Work on Metabolic Pathways

Numerous directions for future work are suggested by the work described herein.

8.8.1 Improved Program Tree Representation

Although the representation used herein yielded the desired results, the authors
believe that alternative representations for the program tree (i.e., the function set, ter-
minal set, and constrained syntactic structure) would significantly improve the effi-
ciency of the search. The authors are currently contemplating a developmental
approach.

8.8.2 Null Enzyme

The addition of a null enzyme to the terminal set would permit non-catalyzed chemi-
cal reactions to appear in the evolved network.

8.8.3 Minimum Amount of Data Needed

The work in this chapter has not addressed the important question of the minimal
number of data points necessary to uniquely identify a correct metabolic pathway or
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the question of whether the requisite amount of data is actually available in practical
situations.

8.8.4 Opportunities to Use Knowledge

There are numerous opportunities to incorporate and exploit preexisting knowledge
about chemistry and biology in the application of the methods described in this 
chapter.

The chemical reaction functions used herein (i.e., CR_1_1, CR_1_2, CR_2_1,
CR_2_2) are intentionally open-ended in the sense that they permit great flexibility
and variety in the networks that can be created by the evolutionary process. However,
a price, in terms of efficiency, is paid for this complete flexibility and generality.
Alternative chemical reaction functions that advantageously incorporate preexisting
knowledge might be defined and included in the function set.

For example, a particular substrate, a particular product, or both might be made
part of the definition of a new chemical reaction function. For example, a variant of
the CR_2_2 chemical reaction function might be defined in which ATP is hard-wired
as one of the substrates and ADP is hard-wired as one of the products. This new chem-
ical reaction function would have only one free substrate argument and one free prod-
uct argument. This new chemical reaction function might be included in the function
set in addition to (and conceivably in lieu of) the more general and open-ended
CR_2_2 chemical reaction function. This new chemical reaction function would
exploit the well-known fact that there are a number of biologically important and com-
mon reactions that employ ATP as one of their two substrates and produce ADP as one
of the products.

Similarly, a particular enzyme might be made part of the definition of a new chem-
ical reaction function. That is, a chemical reaction function with k substrates and j
products might be defined in which a particular enzyme is hard-wired. This new
chemical reaction function would not possess an argument for specifying the enzyme.
This new chemical reaction function would exploit knowledge of the arity of reactions
catalyzed by a particular enzyme.

Similarly, a known rate might be made part of the definition of a new chemical
reaction function.

8.8.5 Designing Alternative Metabolisms

In a paper entitled “Designing Metabolism: Alternative Connectivities for the Pentose
Phosphate Pathway,” Mittenthal, Ao Yuan, and Scheeline (1998) presented a method
for generating alternative biochemical pathways. They illustrated their method by
generating diverse alternatives to the non-oxidative stage of the pentose phosphate
pathway. They observed that the naturally occurring pathway is especially favorable
in several respects to the alternatives that they generated. Specifically, the naturally
occurring pathway has a comparatively small number of steps, does not use any reduc-
ing or oxidizing compounds, requires only one ATP in one direction of flux, and does
not depend on recurrent inputs.

Mendes and Kell (1998) have also suggested that novel metabolic pathways might
be artificially constructed.
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It would appear that genetic programming could also be used to generate diverse
alternatives to naturally occurring pathways. Conceivably, realizable alternative
metabolisms might emerge from such evolutionary runs.

In one possible approach, the fitness measure in a run of genetic programming
might be oriented toward duplicating the final output(s) of the naturally occurring
pathway (as was done in this chapter). However, instead of harvesting only the indi-
vidual with the very best value of fitness, individuals that achieve a slightly poorer
value of fitness could be examined to see if they simultaneously possess other desir-
able characteristics.

In a second possible approach, the fitness measure in a run of genetic program-
ming might be specifically oriented to factors such as the pathway’s efficiency or use
or non-use of certain specified reactants or enzymes.

In a third possible approach, the fitness measure in a run of genetic programming
might be specifically oriented toward achieving novelty. Genetic programming has
previously been used as an invention machine by employing a two-element fitness
measure that incorporates both the degree to which an individual in the population sat-
isfies the certain performance requirements and the degree to which the individual
does not possess the key characteristics of previously known solutions (Koza, Bennett,
and Stiffelman 1999a, 1999b; Koza, Bennett, Andre, and Keane 1999a).
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9

Automatic Synthesis of Parameterized
Topologies for Controllers

281

This chapter (and chapters 10, 11, and 13) demonstrates the ability of genetic pro-
gramming to automatically create parameterized topologies. In particular, this chapter
demonstrates that genetic programming can start with a high-level statement of a prob-
lem of controller synthesis and automatically create a parameterized topology for a
generalized controller. That is, genetic programming can create, in a single run, a gen-
eral (parameterized) solution to a problem in the form of a graphical structure whose
nodes or edges represent a controller’s signal-processing blocks and where the param-
eter values of the controller’s blocks are specified by mathematical expressions con-
taining free variables.

The mathematical expressions establish parameter values (tuning) for controller’s
signal-processing blocks (e.g., the amplification factor of a gain block, the time con-
stant of a lag block). The resulting parameterized controller represents the solution to
all instances of a general problem of controller synthesis—not just the solution to a
single instance of the problem.

Specifically, the goal for the two problems in this chapter is to automatically syn-
thesize a parameterized topology

● whose size and shape (topology) is not specified in advance, and
● in which the tuning of the signal-processing blocks is specified by mathematical

expressions containing externally supplied free variable(s).

This chapter describes the automatic synthesis of both the topology and tuning for
a parameterized controller for controlling

● a three-lag plant whose time constant is specified by a free variable (section 9.1), and
● plants belonging to two different families of plants (section 9.2).

Later, chapter 12 describes the automatic synthesis of tuning rules for a parame-
terized PID controller. The tuning rules are in the form of four mathematical expres-
sions containing free variables.



Chapter 13 describes the automatic synthesis of parameterized topologies for con-
trollers. Parameterized topologies for circuits are covered in chapters 10 and 11.

There is, of course, nothing new about the automatic creation by means of genetic
programming of a mathematical expression containing free variables. Free variables
have appeared in genetically evolved programs since the 1980s. Indeed, the solution to
one of the earliest problems solved by genetic programming was in the form of a for-
mula (containing free variables) for solving pairs of linear equations (Koza 1988,
1989). Also, there is nothing new about genetic programming automatically creating a
complex graphical structure. For example, genetic programming evolved a non-tree
graphical structure representing a neural network (Koza and Rice 1991; Koza 1992a)
using “defined functions”—a forerunner of what are now called “automatically defined
functions.” The distinguishing feature of the work in this chapter (and in chapters 10,
11, 12, and 13) on parameterized topologies is that the components in the genetically
evolved structures are parameterized by genetically evolved mathematical expressions.

9.1 Parameterized Controller for a Three-Lag Plant

The problem in this section is to create a parameterized topology for a robust con-
troller for a three-lag plant. The to-be-created parameterized controller is to contain a
free variable representing the plant’s time constant, �. This free variable is allowed to
range over two orders of magnitude (from 0.1 to 10.0).

The transfer function of the three-lag plant is

where K is the plant’s internal gain and � is the plant’s time constant.
The high-level requirements of the to-be-evolved controller are as follows:

● The controller is to be parameterized by an externally supplied free variable, �, that
is allowed to range over two orders of magnitude.

● The plant output is to reach the level of the reference signal while minimizing the
integral of the time-weighted absolute error.

● The overshoot in response to a step input (reference signal) is to be less than 2%.
● The input to the plant is limited to the range between �40 and �40 Volts.
● The controller is to be robust in the face of variation in the plant’s internal gain

(from 1.0 to 2.0).
● The controller is to be robust in the face of variations (of 2-to-1) in the externally

supplied time constant, �.

Notice that we are talking about two distinct types of variation in the plant’s time
constant, �, in connection with this problem.

First, we are talking about gross differences (i.e., 100-to-1) in the nominal values
of the time constant, �, that are externally supplied as a free variable. The ability to
specify significantly different nominal values of � from the outside is what makes a
controller “general.”

G(s) �
K

(1 � �s)3,
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Second, we are talking about the controller’s ability to operate robustly in the face
of comparatively smaller (2-to-1) variations in the value of � around the externally
supplied nominal value of �. The controller’s ability to operate well in the face of these
minor operational variations makes a controller “robust.”

The controller being sought in this section differs from the controller for a three-
lag plant described in section 3.8 in that the controller being sought here is to be a gen-
eralized controller that is parameterized by an externally supplied free variable, �.

The controller being sought in this section (like the one that was sought in section 3.8)
is intended to be robust in the face of comparatively small operational variations in the
value of �.

The techniques in Åström and Hägglund 1995 yield a credible controller for this
problem.

This section demonstrates that such a parameterized topology for a robust gener-
alized controller can be automatically created by means of genetic programming. 
As will be seen (section 9.1.2), the genetically evolved controller performs better than
the controller designed with the techniques in Åström and Hägglund 1995. Moreover,
the genetically evolved controller has reasonable and interpretable characteristics.

9.1.1 Preparatory Steps for the Parameterized Controller 
for a Three-Lag Plant

9.1.1.1 Program Architecture The architecture of the to-be-evolved program is
automatically determined during the run of genetic programming using the architec-
ture-altering operations in the manner described in section 3.7.1.1.

9.1.1.2 Terminal Set A constrained syntactic structure enforces the use of one
terminal set for the arithmetic-performing subtrees and another terminal set for all
other parts of the program tree.

Arithmetic-performing subtrees may appear in both the result-producing branch
and automatically defined functions (if any) that are created during the run by the
architecture-altering operations.

In this problem, the free variable is the plant’s time constant � (called “TAU” below).
The numerical parameter value for each signal-processing block possessing a

parameter is established by an arithmetic-performing subtree that may contain per-
turbable numerical values, arithmetic operations, and the free variable (TAU). This
approach for establishing numerical parameter values is described in section 3.5.5.3.

The terminal set, Taps, for the arithmetic-performing subtrees is

Taps �{�, TAU},

where � denotes perturbable numerical values between �3.0 and �3.0. The value
returned by each entire arithmetic-performing subtree is interpreted by a nonlinear
mapping (section 3.5.5) as a component value lying in a range of (positive) values
between 10�3 and 103.

The terminal set, T, for all the other parts of the result-producing branch and auto-
matically defined functions (if any) is

T�{REFERENCE_SIGNAL, CONTROLLER_OUTPUT,
PLANT_OUTPUT, CONSTANT_0}.
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9.1.1.3 Function Set A constrained syntactic structure enforces the use of one
function set for the arithmetic-performing subtrees and another function set for all
other parts of the program tree.

The function set for the arithmetic-performing subtrees contains functions (such
as addition, subtraction, multiplication, and division) that can be used to perform
mathematical calculations on the free variable.

Thus, the function set, Faps, for the arithmetic-performing subtrees is

Faps �{�, �, *, DIV_NUMERIC}.

The two-argument DIV_NUMERIC function divides the first argument by the sec-
ond argument. It is similar to the % function (section 2.2.1); however, in problems
involving controllers, the absolute value of the quotient (unless 0) is never allowed to
be larger than 105 or smaller than 10�5.

The function set, F, for all other parts of the result-producing branch and auto-
matically defined functions (if any) is

F�{GAIN, INVERTER, LEAD, LAG, LAG2, DIFFERENTIAL_INPUT_
INTEGRATOR, DIFFERENTIATOR, ADD_SIGNAL, SUB_SIGNAL,
ADD_3_SIGNAL, ADF0, ADF1, ADF2, ADF3, ADF4}.

9.1.1.4 Fitness Measure When there is a free variable in a problem, it is necessary
to ascertain the behavior and characteristics of each candidate individual for a
representative sample of values of the free variable. Multiple externally supplied
values of the free variable force generalization by requiring that the to-be-evolved
controller take the externally supplied free variable into account.

The fitness of each controller in the population is measured by means of 42 sepa-
rate invocations of the SPICE simulator.

The 42-element fitness measure consists of

(1) 40 time-domain elements,
(2) one frequency-domain element measuring bandwidth, and
(3) one frequency-domain element measuring the effect of sensor noise.

The fitness of an individual controller is the sum of the detrimental contributions
of these 42 elements of the fitness measure. The smaller the sum, the better.

The first 40 elements of the fitness measure together represent

● five different externally supplied values for the plant’s time constant, �, in conjunc-
tion with

● two choices of values for the height of the reference signal, in conjunction with
● two choices of values for the plant’s internal gain, K, in conjunction with
● two choices in the amount of variation of the time constant around its externally

supplied value.

The five values of the free variable for the plant’s time constant, �, are 0.1, 0.3, 1.0,
3.0, and 10.0.

The reference signal is a step function that rises from 0 to a specified height at t�
100 milliseconds. The two values for the height of the reference signal are 1 Volt and
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1 microvolt. Two values are used to force the to-be-evolved controller to deal with the
nonlinearity caused by the limiter (positioned between the controller output and the
plant’s input).

The two values of the plant’s internal gain, K, are 1.0 and 2.0.
The two choices for the amount of variation in the plant’s time constant are 100%

and 50% (of the externally supplied value of the plant’s time constant).
For each of the first 40 elements of the 42-element fitness measure, a transient analy-

sis is performed in the time domain using the SPICE simulator. The contribution to fit-
ness for each of these 40 elements is based on the integral of time-weighted absolute error

Here e(t) is the difference (error) at time t between the plant output and the reference
signal. The integral is approximated from t�0 to t�10�, where � is the external sup-
plied value of the time constant. B is a factor that is used to normalize the contributions
associated with the two step-functions. Each value of e(t) in the body of the integral is
multiplied by the reciprocal of the amplitude of the reference signal associated with
that fitness case (so that both reference signals are equally influential). Specifically, B
multiplies the difference e(t) associated with the 1-Volt step function by 1 and multi-
plies the difference e(t) associated with the 1-microvolt step function by 106. In addi-
tion, each value of e(t) in the body of the integral is multiplied by an additional weight,
A. The function A depends on e(t) and heavily penalizes non-compliant amounts of
overshoot. The function A weights all variations below the reference signal and all vari-
ations up to 2% above the reference signal by a factor of 1.0, but penalizes overshoots
above 2% by a factor of 10.0. Finally, each value of the integral is divided by �2 so as
to equalize the influence of each of the five externally supplied values of �.

The 41st element of the fitness measure is designed to constrain the frequency of
the overall system (i.e., the controller and the plant) so as to avoid extremely high-fre-
quency demands on the plant. This term reflects an unspoken constraint that is typically
applied to systems in the real world in order to prevent damage to a plant’s (often) del-
icate components. This element of the fitness measure is based on 121 frequencies.
Specifically, SPICE is instructed to perform an AC sweep of the reference signal over
20 sampled frequencies (equally spaced on a logarithmic scale) in each of six decades
of frequency between 0.01 Hz and 10,000 Hz. A gain of less than 6 dB is acceptable
for frequencies between 0.01 Hz and 60 Hz and a gain of less than �80 dB is accept-
able for frequencies between 60 Hz and 10,000 Hz. For each of the 121 frequencies,
the contribution to fitness is 0 if the gain is acceptable, but 1,000/121 otherwise.

The 42nd element of the fitness measure is also based on 121 frequencies.
Specifically, SPICE is instructed to perform an AC sweep of the signal that results
when the plant response is added to a noise source over 20 sampled frequencies
(equally spaced on a logarithmic scale) in each of six decades of frequency between
0.01 Hz and 10,000 Hz. A gain of less than 6 dB is acceptable for frequencies between
0.01 Hz and 60 Hz and a gain of less than �80 dB is acceptable for frequencies
between 60 Hz and 10,000 Hz. For each of the 121 frequencies, the contribution to fit-
ness is 0 if the gain is acceptable but 1,000/121 otherwise.

� 10�

t � 0
t�e(t)�A(e(t))B dt

�2
.
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9.1.1.5 Control Parameters The population size is 500,000.

9.1.2 Results for the Parameterized Controller for a Three-Lag Plant

The best-of-generation circuit from generation 0 has a fitness of 3,448.8.
The best-of-run parameterized topology appears in generation 42. This parame-

terized controller has an overall fitness of 38.72. Referring to the block diagram 
(figure 9.1) of this parameterized controller, notice that the parameter values for five
of this controller’s 19 signal-processing blocks are not constant, but instead, are para-
meterized by mathematical expressions containing the problem’s free variable (�). The
expressions containing the problem’s free variable confer generality on this genetically
evolved parameterized controller. The expressions containing the problem’s free vari-
able are what makes this parameterized controller a general solution to the problem.

Notice that genetic programming automatically created all the following in the
single run that produced the parameterized topology shown in figure 9.1:

● the controller’s topology, including
● the total number of processing blocks (19),
● the type of each block (i.e., six gain blocks, four three-argument adders, four 

two-argument adders, three lead blocks, and two lag blocks),
● all the connections (directed lines) that exist between the controller’s two external

input points (i.e., the reference signal and the plant output), the controller’s 19
blocks, and the controller’s external output point,

● the controller’s tuning, including
● two mathematical expressions containing the free variable, �, for the two lag blocks,
● three mathematical expressions containing the free variable, �, for the three lead

blocks, and
● six constant mathematical expressions (for the gain blocks).

The best-of-run controller from generation 42 has recognizable characteristics that
are interpretable in the context of previously patented inventions and previously
known control engineering techniques.

First, the genetically evolved controller has the topology of a PID-D2 (propor-
tional, integrative, derivative, and second derivative) controller, followed by a first-
order lag block. As previously discussed in section 3.7.2, the PID-D2 controller was
patented in 1942 by Harry Jones of the Brown Instrument Company of Philadelphia
(Jones 1942).

Second, the genetically evolved controller employs setpoint weighting (a well-
known technique in control engineering). In setpoint weighting, the reference signal
is multiplied by a constant before the plant output is subtracted from it.

The output, U(s), for the genetically evolved best-of-run controller from genera-
tion 42 is given by the transfer function

.�
[Kd(cR(s) � Y(s))s � Kd2(eR(s) � Y(s))s2]

1 � ns

U(s) �
[Kp(bR(s) �Y(s)) � Ki(R(s)�Y(s))/s]

1 � ns
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Here the four PID-D2 coefficients in the numerator are

● Kp �17.0 for the proportional (P) term,
● Ki �6/� for the integrative (I) term (with the 1/s in the numerator),
● Kd �16� for the derivative (D) term (with the s), and
● Kd2 �5�2 for the second derivative (D2) term (with the s2).

The coefficient of the setpoint weighting applied to the reference signal of the con-
troller’s proportional block is b�0.706. That is, the plant output, Y(s), is subtracted from
b multiplied by the reference signal, R(s). Similarly, the coefficient of the setpoint
weighting applied to the reference signal of the controller’s derivative block is c�0.375.
The coefficient for the setpoint weighting of the second derivative term is e�0.0 (so the
input to the second derivative block consists only of the inverted plant output).

The time-constant of the first-order lag (shown here in the denominator of the
transfer function) is n�0.5�.

Figure 9.2 compares the time-domain response to a 1-Volt reference signal of the
genetically evolved controller (triangles) from generation 42 and the Åström and
Hägglund controller (squares). The comparison is made with K�1 and ��1. As can
be seen, the genetically evolved controller reaches the level of the reference signal
much sooner than does the Åström and Hägglund controller. Also, the genetically
evolved controller has less overshoot. This figure is typical of those (not shown) for
other values of K and �.

Figure 9.3 compares the time-domain response to a 1-Volt disturbance signal of
the best-of-run controller (triangles) from generation 42 and the Åström and
Hägglund controller (squares). The comparison is made with K�1 and ��1. As can
be seen, the genetically evolved controller has better disturbance rejection. This fig-
ure is typical of those (not shown) for other values of K and �.
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Figure 9.1 Best-of-run parameterized topology (with a free variable of �) for a controller for
a three-lag plant.
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Figure 9.2 Comparison of the time-domain response of the best-of-run controller (triangles)
from generation 42 and the Åström and Hägglund controller (squares).
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Figure 9.3 Comparison of the time-domain response to a 1-Volt disturbance signal of the
genetically evolved best-of-run controller (triangles) and the Åström and Hägglund controller
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Table 9.1 Comparison of performance of the best-of-run controller and the Åström and
Hägglund controller for the three-lag plant problem with a free variable

Genetically evolved Åström-Hägglund
Units controller controller

ITAE for unit-step reference Volt sec2 0.77 2.84
Rise time seconds 1.43 2.51
Settling time seconds 4.66 8.50
Disturbance sensitivity Volts/Volts 0.07 0.19
IATE for unit-step disturbance Volt sec2 0.42 1.35
Noise attenuation corner frequency Hz 0.72 0.34
Noise attenuation roll off dB/decade 40 40
Maximum sensitivity Volts/Volts 2.09 2.11

Table 9.1 compares several different characteristics of the genetically evolved con-
troller from generation 42 with those of the Åström and Hägglund 1995 controller.
The comparison is made with K�1 and ��1. The reference signal is 1 Volt. The con-
troller created by genetic programming is more than 3.69 times as effective as the
Åström and Hägglund 1995 controller as measured by the integral of the time-
weighted absolute error, has only 57% of the rise time in response to the reference sig-
nal, and has only 55% of the settling time.

The genetically evolved controller has other reasonable and interpretable charac-
teristics. Suppose that G(s) is the transfer function of a plant and that we wanted to
change all the time constants of this plant by the same amount, say �. To do this, we
would produce a plant with transfer function, G�(s)�G(�s). In this new transfer func-
tion, G�(s), each coefficient of s would be multiplied by �; each coefficient of s2 would
be multiplied by �2; and each coefficient of 1/s would be multiplied by 1/�.

A human designer might approach this problem as follows: Call the plant with 
��1 the reference plant. Design a controller for this reference plant satisfying the
design requirements and call the new controller, H, the reference controller. Call the
plant, J, controlled by the reference controller the reference controlled plant. Let H(s)
be the transfer function of the reference controller and let J(s) be the transfer function
of the reference controlled plant. Now, to handle the time scaling, let H�(s)�H(�s) be
the controller design for the time-scaled plant. This will produce an entire controlled
plant, J�(s), scaled by the same factor �. That is J�(s)�J(�s). Effectively all the behav-
ior of the time-scaled controlled plant is that of the reference controlled plant with the
time scale changed.

In fact, we did exactly this in order to produce a PID controller with setpoint
weighting for the comparison purposes above (using the design rules on page 225 of
Åström and Hägglund 1995 with Ms �2).

Referring now to the genetically evolved controller, notice that we could have
written the following four coefficients in the controller’s output, U(s), as follows:

Ki/s�6/�s
Kds �16�s2

Kd2s
2�5�2s2

Ns�0.5�s.



This is, in fact, the very same change in time scale that a human designer would
have used.

Of course, we did not provide genetic programming with any of the just-described
insight about how a human designer might approach this problem. We did not bias
genetic programming toward multiplying s by �; toward multiplying s2 by �2; nor
toward multiplying 1/s by 1/�. We simply made the free variable, �, available as a ter-
minal that genetic programming could use in conjunction with the ordinary mathe-
matical functions of addition, subtraction, multiplication, and division.

Most of the computer time was consumed by the fitness evaluation of candidate indi-
viduals in the population. The fitness evaluation (involving 40 time-consuming time-
domain SPICE simulations and two relatively fast frequency-domain SPICE simulations)
averaged about 3.92 seconds per individual (using a 350-MHz Pentium II processor).

For additional details, see Koza, Yu, Keane, and Mydlowec 2000a.

9.1.3 Routineness of the Transition from a Problem Involving a 
Non-Parameterized Controller to a Problem Involving 
a Parameterized Controller

There is a considerable difference between the original version of the three-lag plant
problem (section 3.8) and the present problem involving a three-lag plant with a free
variable. The difference is that the solution to the earlier problem applies only to a sin-
gle instance of a problem of controller synthesis, whereas the solution to the present
problem solves an entire category of problems. The earlier problem entailed produc-
ing a controller (graphical structure) whose blocks were labeled with constant numer-
ical component values whereas the present problem entails producing a graph whose
components are labeled with mathematical expressions containing a free variable.

In spite of this fundamental difference, the preparatory steps for the present ver-
sion of the problem involving the free variable, �, differ from those for the earlier ver-
sion only in that

● there is a free variable, �, representing the plant’s time constant in the terminal set, and
● additional fitness cases are added to the fitness measure (so that fitness can be meas-

ured over a range of values of the free variable).

The first difference is implemented by changing the terminal set from

Taps �{�}

to

Taps �{�, �}.

The second difference is implemented by measuring fitness for multiple instances
of the value of the externally supplied free variable �.

These two differences are essentially mechanical in nature. They reflect necessary
administrative steps to implement a problem involving free variables. They certainly
do not reflect the infusion of any significant amount of knowledge about the field 
of control. Also, they certainly do not reflect any knowledge about how to derive
expressions for the mathematical relationship between the free variable and the
parameters of the controller’s various signal-processing blocks.
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Thus, by making two relatively minor mechanical changes in the preparatory
steps, we make the major transition from producing a solution to a specific instance
of a problem to producing a solution to an entire category of problems. We consider
this transition to be virtually effortless and therefore routine.

9.1.4 AI Ratio for the Parameterized Controller for a Three-Lag Plant

The solution produced by genetic programming to the problem involving a three-lag
plant with a free variable is a parameterized (i.e., general) solution to a category of
problems. The genetically evolved solution is a human-competitive result because it
is the PID-D2 (proportional, integrative, derivative, and second derivative) controller
patented in 1942 by Harry Jones. Thus, for the same reasons mentioned in 3.7.4, there
is a high amount of “A” in the numerator of the AI ratio.

Except for the relatively mechanical and minor changes mentioned in the previous
section, the preparatory steps for the problem involving a three-lag plant with a free
variable are substantially the same as the preparatory steps for earlier problems of
controller synthesis without a free variable. Hence, there is only a small amount of “I”
in the denominator of the AI ratio.

Thus, the AI ratio is high for the solution by genetic programming to the problem
of synthesizing a parameterized controller for a three-lag plant.

9.2 Parameterized Controller for Two Families of Plants

The previous section demonstrated the principle that genetic programming can auto-
matically create a parameterized topology for a controller for a three-lag plant, where
the plant’s time constant is the free variable.

The question arises as to whether it is possible to evolve a parameterized topology
for a controller for multiple plants, an entire family of plants, two or more families of
plants, or even broader collections of plants.

Åström and Hägglund (1995) identified four families of plants “that are represen-
tative for the dynamics of typical industrial processes.”

We consider two of these four families in this section.
One of the four industrially representative families of plants consists of the n-lag

plants. They are represented by the transfer functions of the form

[1]

The reader will recall that chapter 3 dealt with two-lag or three-lag plants. Åström
and Hägglund consider three members of this family, namely the plants for which 
n�3, 4, and 8 as part of their test bed.

Another of the four families consists of plants represented by the transfer func-
tions of the form

[2]G(s) �
1

(1 � s)(1 � �s)(1 � �2s)(1 � �3s)
.

G(s) �
1

(1 � s)n.
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Åström and Hägglund consider three members of this family, namely the plants for
which ��0.2, 0.5, and 0.7.

The methods developed by Åström and Hägglund use a small set of parameters
representing the overall characteristics of a plant. These parameters do not, of course,
provide a complete representation of the plant’s behavior; however, they have the
practical advantage of being readily obtainable for a given plant by means of relatively
straightforward testing in the field.

In one version of their method, Åström and Hägglund use two frequency-domain
parameters, namely the ultimate gain, Ku (the minimum value of the gain that must be
introduced into the feedback path to cause a system to oscillate) and the ultimate
period, Tu (the period of this lowest frequency oscillation). In another version of their
method, Åström and Hägglund use two time-domain parameters, namely the time
constant, Tr, and the dead time, L (the period before the plant output begins to respond
significantly to a change in the reference signal).

In this section, we show that genetic programming can be used to automatically
create a parameterized topology for a controller for all plants belonging to the two
families of plants described by equations [1] and [2]. The automatically designed con-
troller is created using a fitness measure that attempts to optimize for the integral of
the time-weighted absolute error (ITAE) for a step input, the ITAE for disturbance
rejection, maximum sensitivity, and sensor noise attenuation. The parameterized
topology is general in the sense that it contains free variables and therefore provides
a solution to an entire category of problems (i.e., the control of all the plants in the
two families) as opposed to providing a solution for a single instance of the problem
(i.e., control of a single plant).

9.2.1 Preparatory Steps for the Parameterized Controller 
for Two Families of Plants

9.2.1.1 Program Architecture The architecture of the to-be-evolved program is
automatically determined during the run of genetic programming using the architec-
ture-altering operations in the manner described in section 3.7.1.1.

9.2.1.2 Terminal Set A constrained syntactic structure enforces the use of one
terminal set for the arithmetic-performing subtrees and another terminal set for all
other parts of the program tree.

Arithmetic-performing subtrees may appear in both the result-producing branch
and automatically defined functions (if any) that are created during the run by the
architecture-altering operations.

In this problem, there are four free variables representing the overall characteris-
tics of a plant. They are the plant’s ultimate gain, Ku (called KU below); ultimate
period, Tu (called TU); dead time, L (called L); and time constant, Tr (called TR).

The numerical parameter value for each signal-processing block possessing a
parameter is established by an arithmetic-performing subtree that may contain per-
turbable numerical values, arithmetic operations, and the problem’s four free variables
(KU, TU, L, TR). This approach for establishing numerical parameter values is
described in section 3.5.5.3.
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The terminal set for the arithmetic-performing subtrees is

Taps �{�, KU, TU, L, TR},

where � denotes a perturbable numerical value between �3.0 and �3.0 and KU, TU,
L, and TR are the problem’s four free variables. The value returned by an entire arith-
metic-performing subtree is interpreted by a nonlinear mapping (section 3.5.5) as a
component value lying in a range of (positive) values between 10�3 and 103.

All the remaining terminals are time-domain signals. The terminal set, T, for all
other parts of the result-producing branch and any automatically defined functions is

T�{REFERENCE_SIGNAL, CONTROLLER_OUTPUT, PLANT_OUTPUT}.

9.2.1.3 Function Set A constrained syntactic structure enforces the use of one
function set for the arithmetic-performing subtrees and another function set for all
other parts of the program tree.

The function set, Faps, for the arithmetic-performing subtrees is

Faps �{�, �, *, %, REXP, RLOG}.

The one-argument REXP function is the exponential function. The one-argument
RLOG function is the natural logarithm of the absolute value. Both of these functions
are protected in the sense that if the absolute value returned by any of these functions
(unless 0) is less than 10�9 or greater than 109, a value of 10�9 or 109, respectively, is
instead returned.

The function set, F, for all other parts of the result-producing branch and auto-
matically defined functions (if any) is

F�{GAIN, INVERTER, LEAD, LAG, LAG2, DIFFERENTIAL_INPUT_
INTEGRATOR, DIFFERENTIATOR, ADD_SIGNAL, SUB_SIGNAL,
ADD_3_SIGNAL, MUL_SIGNAL, DIV_SIGNAL, ULIMIT, ADF0,
ADF1, ADF2, ADF3, ADF4}.

The one-argument ULIMIT function limits a signal by constraining it between an
upper and lower bound. This function returns the value of its argument (the incoming sig-
nal) when its argument lies between �1.0 and �1.0. If the argument is greater than �1.0,
the function returns �1.0. If the argument is less than �1.0, the function returns �1.0.

ADF0,…, ADF4 denote automatically defined functions added during the run by
the architecture-altering operations.

9.2.1.4 Fitness Measure When there are free variables in a problem, it is necessary
to ascertain the behavior and characteristics of each candidate individual for 
a representative sample of values for each of the free variables. Multiple combinations
of values of the free variables force generalization of the to-be-evolved controller.
Generalization is achieved in this problem by considering six different plants.

The fitness measure for this problem aims to optimize the integral of the time-
weighted absolute error for a step input and to optimize disturbance rejection while simul-
taneously imposing constraints on maximum sensitivity and sensor noise attenuation.
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For each plant under consideration, the fitness of each controller is measured by
means of eight separate invocations of the SPICE simulator. The fitness of an indi-
vidual controller is the sum, over the eight fitness cases for each plant under consid-
eration, of the detrimental contributions to fitness. The smaller the sum, the better.

Because there are six plants, the fitness measure makes 48 separate invocations of
the SPICE simulator.

Step response and disturbance rejection are measured by means of the first six of the
eight SPICE simulations for each plant under consideration. Specifically, for each plant
under consideration, six combinations of values for the height of the reference signal and
disturbance signal are considered (as shown in table 9.2). The reference signal is a step
function that rises from 0 at time t�0 to its specified height at t�1 millisecond. The ref-
erence signal is one of the inputs to the controller. The disturbance signal is a step func-
tion that rises from 0 at time t�10Tu to its specified height at t�10Tu�1 milliseconds.
The disturbance signal is added to the controller’s output before it reaches the plant.

For each plant under consideration, a transient analysis is performed in the time
domain using the SPICE simulator for each of the six combinations of height of ref-
erence and disturbance signals in table 9.2. The function e(t) is the difference (error)
at time t between the plant output and the reference signal. The contribution to fitness
for each of the six elements of the fitness measure associated with a plant is based on
the sum of two integrals of time-weighted absolute error. The first term (the integral
running from time t�0 to t�10Tu) accounts for the controller’s step response. The
second term (the integral running from time t�10Tu to t�20Tu) accounts for distur-
bance rejection. The sum is

The factor B in the first term multiplies each value of e(t) by the reciprocal of the
amplitude of the reference signal associated with that fitness case (so that all reference
signals are equally influential). The factor C in the second term multiplies the value
of e(t) by the reciprocal of the amplitude of the disturbance signals. When the ampli-
tude of either the reference signal or the disturbance signal is zero, the appropriate fac-
tor (B or C) is set to zero.

� 10Tu

t � 0
t�e(t)�B dt

T2
u

�

� 20Tu

t � 10Tu

(t � 10Tu)�e(t)�C dt

T2
u

.
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Table 9.2 Six combinations of height of
reference and disturbance signals for the
parameterized controller for two families of
plants

Reference signal Disturbance signal

1.0 1.0
10�3 10�3

�10�6 10�6

1.0 �0.6
�1.0 0.0
0.0 1.0



Each plant has a different value of Tu. The ITAE component of fitness is such that,
all other things being equal, a change in the time scale by a factor of F results in a change
in ITAE by F2. The division of the integral by is an attempt to eliminate this artifact
of the time scale and equalize the influence of each plant. For each of the six elements
of the fitness measure associated with a plant, the contribution to fitness is multiplied by
20 if the element is greater than that for the Åström and Hägglund controller.

Figure 9.4 presents a model for the entire system containing the given plant and
the to-be-evolved controller. In this figure, R(s) is the reference signal, Y(s) is the plant
output, and U(s) is the controller’s output. In the figure, a disturbance D(s) is added to
the controller’s output U(s). Also, a sensor noise signal, N(s), is added to the plant’s
output, Y(s), yielding Q(s).

The stability margin of each plant under consideration is measured by means of the
seventh SPICE simulation (out of a total of eight). For each plant under consideration,
an AC sweep is performed using the SPICE simulator from a minimum frequency of
1/(1,000Tu) to a maximum frequency of 1,000/Tu while holding the reference signal R(s)
and the disturbance signal D(s) at zero. The maximum sensitivity, Ms, is a measure of
the stability margin. It is desirable to minimize the maximum sensitivity (and therefore
maximize the stability margin). The quantity 1/Ms is the minimum distance between the
Nyquist plot and the point (�1, 0) and is the stability margin incorporating both gain
and phase margin. The maximum sensitivity is the maximum amplitude of Q(s). The
contribution to fitness is 0 if Ms�1.5; 2(Ms�1.5) for 1.5�Ms�2.0; and 20(Ms�2.0)
�1 for Ms
2.0. For each plant under consideration, the contribution to fitness is mul-
tiplied by 10 if the element is greater than that for the Åström and Hägglund controller.

Sensor noise attenuation is measured by means of the eighth (and final) SPICE
simulation for each plant under consideration. Achieving favorable sensor noise atten-
uation is often in direct conflict with the goal of achieving a rapid response to setpoint
changes and rejection of plant disturbances. For each plant under consideration, an AC
sweep is performed using the SPICE simulator from a minimum frequency of 10/Tu

to a maximum frequency of 1,000/Tu while holding the reference signal R(s) and the
disturbance signal D(s) at zero. The attenuation of sensor noise N(s) is measured at the

Tu
2
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Figure 9.4 Overall system containing a controller and plant with additive disturbance signal
and sensor noise signal.



plant output Y(s). Amin is the minimum attenuation in decibels within this frequency
range. It is desirable to maximize the minimum attenuation. The contribution to fit-
ness for sensor noise attenuation is 0 if Amin 
40 dB; (40�Amin)/10 if 20 dB�Amin �
40 dB; and 2� (20�Amin) if Amin �20 dB. For each plant under consideration, the
contribution to fitness is multiplied by 10 if the element is greater than that for the
Åström and Hägglund controller.

9.2.1.5 Control Parameters The population size is 100,000.

9.2.2 Results for the Parameterized Controller for Two Families of Plants

The best-of-generation circuit from generation 0 has a fitness of 14,530.8.
The best-of-run parameterized topology appears in generation 217. This geneti-

cally evolved parameterized controller has an overall fitness of 14.996. Referring to
the block diagram (figure 9.5) of this parameterized controller, notice that the con-
troller’s own output is fed back internally into this controller. Also, notice that the val-
ues for eight of this controller’s 14 blocks are not specified by numerical constants,
but instead, are parameterized by mathematical expressions containing the problem’s
four free variables (Ku, Tu, L, and Tr). The four free variables confer generality on this
genetically evolved controller and make it a parameterized general solution to the
problem.

Notice that genetic programming automatically created all the following in the
single run that produced the parameterized topology shown in figure 9.5:

● the controller’s topology, including
● the total number of processing blocks (14),
● the type of each block (i.e., five gain blocks, one three-argument adder, two two-

argument adders, three subtractors, two lead blocks, and one lag block),
● all the connections (directed lines) that exist between the controller’s two exter-

nal input points (i.e., the reference signal and the plant output), the controller’s 14
blocks, and the controller’s external output point,
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Figure 9.5 Best-of-run parameterized topology (with free variables Ku, Tu, L, and Tr) for a
controller for two families of plants.



● the controller’s tuning, including
● one mathematical expression containing the free variable, Tu, for the one lag block,
● two mathematical expressions containing the free variable, Tr, for the two lead

blocks, and
● five mathematical expressions containing Ku, L, and Tr for the five gain blocks.

Table 9.3 compares the characteristics of the best-of-run controller from genera-
tion 217 with those of the Åström and Hägglund controller for all six plants. As can
be seen, the genetically evolved controller is superior to the Åström and Hägglund
controller for all six plants in terms of the integral of the time-weighted absolute error
for the step input, the integral of the time-weighted absolute error for disturbance
rejection, and the maximum sensitivity, Ms. As can be seen, all values of Amin, the min-
imum sensor noise attenuation, in the table are above the desired minimum of 40
(except for the plant with ��0.2 from family 2). Averaged over the six plants, the
ITAE for the step input for the genetically evolved controller is only 58% of the value
for the Åström and Hägglund controller; the disturbance rejection ITAE is 91% of the
value for the Åström and Hägglund controller; and the maximum sensitivity, Ms for
the genetically evolved controller is only 85% of the value for the Åström and
Hägglund controller. Averaged over the six plants, the genetically evolved controller
has an average minimum attenuation, Amin, of 52.7 dB whereas the Åström-Hägglund
controller has an average minimum attenuation of 56 dB. That is, the minimum atten-
uation of the genetically evolved controller is slightly worse than, but comparable to,
that of the Åström-Hägglund controller.

The transfer function for the controller’s output, U(s), for the best-of-run con-
troller from generation 217 is

�
[ln (Ku(1 � eTr � Ku))(ln (Ku � 1.334419L) � 1)]

Tus
.

U(s) �
[(1 � Trs)(1 � Tus)ln (Ku) � (1 � Trs)(ln (Ku))

2]
Tus

Parameterized Topologies for Controllers 297

Table 9.3 Comparison of characteristics of the genetically evolved best-of-run parameterized
controller and the Åström and Hägglund controller for two families of plants

Genetically evolved controller Åström and Hägglund controller

Parameter ITAE ITAE for ITAE ITAE for
Family value for step disturbance Ms Amin for step disturbance Ms Amin

1 n�3 1.93 1.15 1.66 41.26 2.75 1.28 2.11 43
1 n�4 4.60 6.64 1.80 54.17 8.5 7.6 2.08 58
1 n�8 27.43 74.20 1.69 85.8 49.7 78 1.87 90
2 ��0.2 0.037 0.0055 1.59 35.23 0.051 0.006 1.9 40
2 ��0.5 0.436 0.498 1.72 47.5 0.945 0.522 2.07 50
2 ��0.7 1.40 1.99 1.77 52.2 2.9 2.23 2.07 55



The program tree for the best-of-run controller from generation 217 has one result-
producing branch with 10 points and five automatically defined functions with 22, 38,
3, 19, and 3 points, respectively. The result-producing branch refers to ADF0. The
invocation of ADF0 is underlined in the result-producing branch. ADF0, in turn, refers
hierarchically to ADF1. The invocation of ADF1 by ADF0 is underlined in ADF0.
Notice also that each instance of negative feedback (i.e., the difference between the
plant output from the reference signal) is in bold below. The other three automatically
defined functions are not referenced.

The result-producing branch is

(ADD_SIGNAL
(LEAD
(GAIN
(SUB_SIGNAL REFERENCE_SIGNAL PLANT_OUTPUT)
LOG_NUMERIC PLANT_KU_VALUE))

PLANT_TR_VALUE)
(ADF0)
)

Automatically defined function ADF0 is

(INVERTER
(INVERTER

(LAG
(ADD_3_SIGNAL

(ADD_SIGNAL
(SUB_SIGNAL REFERENCE_SIGNAL PLANT_OUTPUT)
(ADF1))

(GAIN
(LEAD
(GAIN

(SUB_SIGNAL REFERENCE_SIGNAL PLANT_OUTPUT)
(LOG_NUMERIC PLANT_KU_VALUE))

PLANT_TR_VALUE)
(LOG_NUMERIC PLANT_KU_VALUE))

CONTROLLER_OUTPUT)
PLANT_TU_VALUE)))

Automatically defined function ADF1 is
(SUB_SIGNAL (GAIN (SUB_SIGNAL (GAIN (SUB_SIGNAL REFERENCE_
SIGNAL PLANT_OUTPUT) (LOG_NUMERIC (+ (* PLANT_L_VALUE 
(CONSTANT_BRIDGE (NUM 8 5 5 8 8 6 8 C))) PLANT_KU_VALUE)))
(SUB_SIGNAL REFERENCE_SIGNAL PLANT_OUTPUT)) (LOG_NUMERIC (+
PLANT_KU_VALUE (EXP_NUMERIC (� (LOG_NUMERIC PLANT_KU_VALUE)
(� PLANT_KU_VALUE PLANT_TR_VALUE)))))) (SUB_SIGNAL REFERENCE_
SIGNAL PLANT_OUTPUT))
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When simplified, it can be seen that the best-of-run controller from generation 217 is
a PID controller. The gain for the proportional (P) part of the equivalent PID controller is

The gain for the integrative (I) part of the equivalent PID controller is

The gain for the derivative (D) part of the equivalent PID controller is

Kd � ln(Ku)Tr.

Because the evolved controller contains the proportional, integrative, and deriva-
tive (PID) blocks, it infringes claim 3 of the now-expired 1939 Callender and
Stevenson patent (portions of which were previously quoted in section 3.3).

The values of the PID coefficients created by genetic programming are very close
to those of the Åström and Hägglund controller.

Most of the computer time was consumed by the fitness evaluation of candidate indi-
viduals in the population. The fitness evaluation (involving 36 time-consuming, time-
domain SPICE simulations and 12 relatively fast frequency-domain SPICE simulations)
averaged about 6.7 seconds per individual (on a 350-MHz Pentium II processor).

The four parameters (Ku, Tu, Tr, and L) in the genetically evolved controller are
free variables. That is, genetic programming has automatically created a parameter-
ized (i.e., general) solution to an entire category of problems (i.e., the control of all
the plants in the two families)—not merely a single instance of the problem (i.e., con-
trol of a particular single plant). 

For additional details, see Keane, Yu, and Koza 2000 and Yu, Keane, and Koza
2000.

9.2.3 Human-Competitiveness of the Result for the 
Parameterized Controller for Two Families of Plants

Referring to the eight criteria in table 1.2 for establishing that an automatically cre-
ated result is competitive with a human-produced result, the rediscovery by genetic
programming of a PID controller that infringes the claims of the 1939 Callender and
Stevenson patent satisfies the following two of the eight criteria:

(A) The result was patented as an invention in the past, is an improvement over a
patented invention, or would qualify today as a patentable new invention.

(F) The result is equal to or better than a result that was considered an achievement
in its field at the time it was first discovered.

The rediscovery by genetic programming of the PID controller came about six
decades after Callender and Stevenson received a patent for their invention.

Ki �
ln (Ku)(1 � ln (Ku)) � (ln (Ku) � ln (1 � eTr�Ku))(ln (Ku � 1.33419L) �1)

Tu

.

K �
ln (Ku)(Tu � Tr(1 � ln (Ku)))

Tu

.
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Nonetheless, the fact that the original human-designed version satisfied the criteria for
patent-worthiness of both the British and U.S. Patent Offices means that the geneti-
cally evolved duplicate would also have satisfied the criteria for patent-worthiness (if
only it had arrived earlier than the patent application by Callender and Stevenson).

This instance of an automatically synthesized solution to a problem satisfies
Arthur Samuel’s criterion (1983) for artificial intelligence and machine learning:

“[T]he aim [is]…to get machines to exhibit behavior, which if done by humans,
would be assumed to involve the use of intelligence.”

9.2.4 Routineness for the Parameterized Controller for Two Families of Plants

For substantially the same reasons stated in section 9.1.3, the transition required to
solve this problem using genetic programming is routine.

9.2.5 AI Ratio for the Parameterized Controller for Two Families of Plants

The solution produced by genetic programming is a previously patented invention and
therefore qualifies as a human-competitive result. Thus, this automatically created
solution has a high amount of “A.”

Except for the relatively minor mechanical changes mentioned in the previous sec-
tion, the preparatory steps for the problem of automatically synthesizing a controller
with free variables for a multiplicity of plants are substantially the same as the
preparatory steps for earlier problems of controller synthesis. Hence, the solution pro-
duced by genetic programming incorporates a small amount of “I.”

Thus, the AI ratio is high for the solution by genetic programming to the problem
of automatically synthesizing a parameterized controller for two families of plants.
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10

Automatic Synthesis of Parameterized
Topologies for Circuits

Chapter 9 demonstrated that genetic programming can, in a single run, automatically
create a parameterized topology for a controller.

The four problems in this chapter demonstrate that genetic programming can 
similarly create parameterized topologies for electrical circuits. Specifically, genetic
programming will create, in a single run, a general (parameterized) solution to a prob-
lem in the form of a graphical structure whose nodes or edges represent a circuit’s
components and where the parameter values of the circuit’s components are specified
by mathematical expressions containing free variables.

That is, the goal is to automatically synthesize a parameterized topology

● whose size and shape (topology) is not specified in advance, and
● in which the sizing of at least one of the circuit’s components is specified by a 

mathematical expression containing externally supplied free variable(s).

This chapter describes the automatic synthesis of parameterized circuit-constructing
program trees that yield

● a Zobel network involving two free variables (section 10.2),
● a passive third-order elliptic lowpass filter whose modular angle is specified by a

free variable (section 10.3),
● a passive lowpass filter whose passband boundary is specified by a free variable

(section 10.4), and
● an active lowpass filter whose passband boundary is specified by a free variable

(section 10.5).

Later, chapter 11 describes the automatic synthesis of circuit-constructing pro-
gram trees containing conditional developmental operators as well as free variables.

10.1 Five New Techniques

Before proceeding with the first problem in this chapter, we discuss five tech-
nique changes that we believe generally increase the efficiency of runs of genetic 
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programming on problems of circuit synthesis. The new techniques are used on the
Zobel network problem (section 10.2), the modular angle problem (section 10.3), the
active lowpass filter problem (section 10.5), and throughout chapter 15. All five
changes occurred to us after we completed the work in chapter 4 and sections 10.4,
11.1, and 11.2. That is, our use of the new techniques reflects the chronology of our
work and the evolution of our thinking (as opposed to any special requirement or exi-
gency of the particular problems on which they are used). We intend to use these new
techniques for our future work on problems of circuit synthesis.

10.1.1 New NODE Function for Connecting Distant Points

Most practical circuits require connections that cannot be achieved in a totally planar
arrangement.

The work concerning the automatic synthesis of electrical circuits in Genetic
Programming III (Koza, Bennett, Andre, and Keane 1999a) employed the VIA and
PAIR_CONNECT functions to connect distant points in a developing circuit. The ear-
lier work (in chapter 4 and sections 10.4, 11.1, and 11.2) employs the PAIR_
CONNECT function for this purpose. Although runs of genetic programming using
these earlier functions were successful in automatically creating circuits, we have long
believed that these functions were inefficient.

The premise behind the crossover operation in the genetic algorithm and genetic
programming is that individuals with relatively high fitness are likely to contain some
substructures which, when recombined, may create offspring with even higher fitness.

In the genetic algorithm operating on fixed-length strings, the conventional
crossover operation recombines a contiguous sub-string of characters from one par-
ent’s chromosome with a contiguous sub-string of characters from the second parent’s
chromosome. Over many generations, combinations of characters that are located
close to each other on the chromosome string tend to be differentially preserved in the
face of the inherently disruptive crossover operation. Thus, shorter contiguous sub-
strings are preserved to a greater degree than longer ones. That is, local substructures
are preserved in the face of the (often) disruptive nature of the crossover operation.

In genetic programming, the conventional crossover operation recombines a subtree
from one parent’s program tree with the second parent’s program tree. Over many gen-
erations, functions and terminals that are nearby in the tree tend to be differentially pre-
served. In particular, smaller subtrees are preserved to a greater degree than larger ones.

The VIA and PAIR_CONNECT functions have the disadvantage that when a 
subtree of one circuit-constructing program tree is swapped with a subtree of another
circuit-constructing program tree, the connectivity of points within both the crossover
fragment and the remainder is, almost always, dramatically altered in an extremely
disruptive way. That is, crossover usually significantly disrupts the nature of the 
preexisting connections formed by the VIA and PAIR_CONNECT functions within 
a local area of the developing circuit. These local structures may have contributed to
the individual’s comparatively high fitness and to the individual’s being selected to
participate in the genetic operation in the first place.

To the extent that crossover dramatically alters the characteristics of the swapped
genetic material, it acquires the characteristics of the mutation operation and its 
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effectiveness in solving the problem is consequently reduced to the lesser level deliv-
ered by the random mutation operation. It would be desirable that local substructures
be preserved during the evolutionary process.

This perceived problem concerning the VIA and PAIR_CONNECT functions is
addressed by introducing a new two-argument function (called “NODE”).

The two-argument NODE function provides a way to connect distant points in a
developing circuit to each other. The NODE function replaces one modifiable wire (or
modifiable component) with a series composition consisting of one modifiable wire,
a temporary port that can potentially be connected to other point(s) in the circuit, and
a second modifiable wire. Prior to the execution of the developmental process, the 
circuit-constructing program tree is examined to identify the set of NODE functions
that are not ancestors of any NODE function higher in the program tree. The NODE
functions in this set are called “top-most NODE functions.” For each top-most NODE
function, all the temporary ports (if any) associated with the NODE functions that are
ancestors of a particular top-most NODE function are connected to the port of the top-
most NODE function (subsequent to the execution of the developmental process). Any
temporary ports that do not become connected by this process are removed. The NODE
function takes two arguments, one for each of the construction-continuing subtrees
associated with the two modifiable wires.

When the crossover operation moves any subtree within the subtree rooted by a
particular top-most NODE function into another circuit-constructing program tree, the
connectivity of the ports contained in the moved subtree remains intact. Moreover, the
connectivity of the ports in the unmoved remainder of the original program tree also
remains intact. We believe that this new approach encourages the preservation of
building blocks and thereby increases the efficiency of the overall search.

10.1.2 Symmetry-Breaking Procedure using Geometric Coordinates

In earlier work (in chapter 4 and sections 10.4, 11.1, and 11.2), a unique consecutive
part number (internally assigned during the developmental process when a component
is first inserted into the developing circuit) is used to break symmetries involving the
behavior of certain circuit-constructing functions.

For example, the transistor-creating functions insert a transistor in a different way
depending on the unique consecutive part numbers of neighboring components. When
a transistor is inserted into a developing circuit, the correspondence between the three
leads of the transistor (its base, collector, and emitter) and the three points in the devel-
oping circuit to which these leads are connected is defined by referring to the unique
consecutive part numbers of neighboring components. These unique part numbers are
similarly employed by the PARALLEL_0 and PARALLEL_1 topology-modifying
function.

The overall circuit-constructing program tree, of course, changes throughout the
run of genetic programming. Thus, when neighboring parts change, the behavior of
the transistor-creating and parallel division functions is dramatically altered in a rather
abrupt way. These abrupt changes in behavior may disrupt the local structures that
contribute to the individual’s relatively high fitness and to the individual’s selection to
participate in genetic operations in the first place.
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To the extent that the genetic operations do not preserve locality, they lose some
of their effectiveness (and, in the extreme case, come to resemble blind random
search).

This perceived problem is addressed by breaking symmetry using geometric 
coordinates that are assigned to each node in the developing circuit (instead of using
the unique consecutive parts number).

We start by assigning geometric coordinates to the nodes to which each modifi-
able wire in the embryo is connected. For example, if there is one modifiable wire in
the embryo, the positive end is defined to be at coordinate location (0, 0), and its neg-
ative end is defined to be at coordinate location (1, 0). The coordinate locations of new
nodes that are created by functions that entail symmetry breaking (and those created
by all other functions) are defined in terms of the coordinate locations of the existing
nodes. This is accomplished by recursively dividing the preexisting modifiable wires
into smaller and smaller new wires. As an example, a series division performed on the
one modifiable wire just described would create three new modifiable wires and
would create two new nodes: one at (1/3, 0) and the other at (2/3, 0). In this way, the
behavior of the functions that in our previous approach relied on the unique consecu-
tive (circuit-wide) part number is now defined in terms of information that is local to
the region of the circuit where the symmetry-breaking is performed. We believe that
this new approach encourages the preservation of building blocks and thereby
increases the efficiency of the crossover operation.

We use a new parallel division function in conjunction with this new approach.
The first argument of the five-argument PARALLEL_NEW function specifies the
direction in which the parallel division is to be performed. This first argument is one
of the following two terminals: UP_OR_LEFT or DOWN_OR_RIGHT. The terminal
UP_OR_LEFT means that the parallel division will be performed upwards if the cur-
rent modifiable wire or component is horizontal, but left if it is vertical. The terminal
DOWN_OR_RIGHT means that the parallel division will be performed downwards if
the current modifiable wire or component is horizontal, but right if it is vertical.

Note that if all the modifiable wires in the embryo are either horizontal or 
vertical, all subsequent wires and components will be either horizontal or vertical.

The remaining four arguments of the PARALLEL_NEW function are the 
construction-continuing subtrees that correspond to the four modifiable wires created
by this function.

10.1.3 Depth-First Evaluation

When we first started doing automatic synthesis of electrical circuits by means of
genetic programming in 1995 (Koza, Bennett, Andre, Keane 1996a, 1996b, 1996c,
1996d, 1996e, 1996f, 1999b; Bennett, Koza, Andre, and Keane 1996; Koza, Bennett
Andre, Keane, and Dunlap 1997), we used a breath-first order of evaluation during the
developmental process. However, we have come to believe that this choice is not as
efficient as the alternative (i.e., depth-first evaluation).

When a subtree is evaluated using a depth-first order of evaluation in the develop-
mental process, all the component-creating and topology-modifying functions in the
subtree are evaluated before any other part of the overall program tree is evaluated.
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That is, the entire subtree is fully evaluated before the developmental process moves
on to another subtree.

Conversely, when a subtree is evaluated using a breath-first order of evaluation 
in the developmental process, the evaluation of each function in the subtree is 
followed (in general) by the evaluation of functions (usually many) that are not part of
the subtree.

The genetic algorithm and genetic programming work on the principle that there
is something about the structure of a relatively fit individual that contributes to the
individual’s fitness. In genetic programming, the crossover operation creates new indi-
viduals by recombining subtrees of relatively fit individuals. Thus, it seems reasonable
that the crossover operation would be more efficient if the parts of a program that 
are moved by the crossover operation (i.e., subtrees) more closely corresponded to the
sequence of component-creating and topology-modifying functions.

10.1.4 New TWO_LEAD Function for Inserting Two-Leaded Components

In previous sections of this chapter (and in sections 11.1 and 11.2), two-leaded com-
ponents, (such as resistors, capacitors, and inductors) were inserted into the develop-
ing circuit by means of separate component-creating functions (e.g., the R, C, and L
functions). Each of these functions has a construction-continuing subtree as one of its
arguments. Thus, with these functions, any crossover or mutation that changes one of
these functions necessarily changes the construction-continuing subtree.

It may be advantageous for the evolutionary process to be able to change one two-
leaded component into another without changing the construction-continuing subtree.

The new three-argument TWO_LEAD function replaces one modifiable wire (or
component) with a series composition consisting of one modifiable wire, a two-leaded
component, and a second modifiable wire.

The first argument of the TWO_LEAD function specifies the identity and numeri-
cal value (sizing) of the component. The first argument of the TWO_LEAD function is
a subtree whose root is always one of the following new one-argument component-
creating functions: R_NEW, C_NEW, or L_NEW. Each of these three new functions
takes a value-setting subtree as its argument. The value-setting subtree may be either
a single perturbable numerical value or an arithmetic-performing subtree (in particu-
lar, an arithmetic-performing subtree containing free variables).

The second and third arguments of the TWO_LEAD function are the construction-
continuing subtrees that correspond to the two modifiable wires created by this 
function.

The important point is that the first argument of the TWO_LEAD function does not
possess a construction-continuing subtree. As a result, the identi y of the two-leaded
component may be changed (by crossover or mutation) without changing either con-
struction-continuing subtree. That is, a two-leaded component can be changed in a
localized way.

10.1.5 New Q Transistor-Creating Function

Similarly, it may be advantageous for the evolutionary process to be able to 
change the orientation of a transistor or the transistor model without changing the 
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construction-continuing subtrees associated with the insertion of the transistor into the
developing circuit.

The new six-argument Q function inserts a transistor into a developing circuit, with
both the model and orientation of the transistor specified as parameters.

The first argument of the Q function specifies the transistor model that is to be
used. The set of available transistor models is specific to the problem at hand.

The second argument establishes which end (polarity) of the preexisting modifi-
able wire will be bifurcated (if necessary) in inserting the transistor. It can take on the
values BIFURCATE_POSITIVE or BIFURCATE_NEGATIVE.

The third argument of the Q function specifies which of six possible permutations
of the transistor’s three leads (base, collector, and emitter) is to be used. It can take on
the values B_C_E, B_E_C, C_B_E, C_E_B, E_B_C, and E_C_B. For example,
C_B_E causes the first point to be connected to the transistor’s collector; the second
point to be connected to the transistor’s base; and the third point to be connected to
the transistor’s emitter. As previously mentioned, the geometric coordinates define 
an underlying order of the three points to which the transistor’s base, collector, and
emitter may be connected.

Considering the second and third argument together, there are 12 possible ways of
inserting a transistor.

The remaining three arguments of the Q function are the construction-continuing
subtrees that correspond to the three modifiable wires created by this function.

10.2 Zobel Network with Two Free Variables

An audio power amplifier driving a loudspeaker may be modeled, at first approxima-
tion, as an inductor L1 and resistor R1 situated in series between the incoming signal
and ground, as shown in figure 10.1 (Boutin 2002).

When the loudspeaker is prone to instability, it may be desirable to make the 
reactive load in figure 10.1 appear to be a purely resistive load to the driving source
(Boutin 2002). This may be accomplished by adding additional circuitry to the LR 
circuit shown in figure 10.1.
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Figure 10.1 An inductor and resistor in series between the incoming signal and ground.



In this section, the problem is to find the topology of the unspecified additional
circuitry as well as the sizing of each component of this additional circuitry such that
the original LR circuit (figure 10.1) plus the additional circuitry together appear to the
driving source to be a purely resistive load.

The desired solution to this problem must be parameterized (i.e., general) because
the sizing of at least some of the additional components will necessarily depend on 
the particular value, L1, of the original inductor L1 and the particular value, R1, of the
original resistor R1.

Boutin (2002) describes the mathematical solution to this problem in the form of
what is called a Zobel network (Zobel 1926, 1928). If the original LR circuit (figure
10.1) plus the added circuitry must together have the behavior of a resistor with resist-
ance Roverall, then the current flowing through the circuit must (according to Ohm’s
law) be Vin/Roverall, where Vin is the voltage of the incoming signal. If, for example, the
driving source is a step function rising from 0 to Vmax at time t� trise, then the current
of the original LR circuit plus the added circuitry must be a step function rising from
0 to Vmax/Roverall at time t� trise.

The original LR circuit does not, of course, behave this way. Instead, its current
response starts at 0 and rises exponentially (with time constant L1/R1) toward its 
final value. Thus, the to-be-discovered additional circuitry must compensate for the
original circuit’s exponential response (Boutin 2002).

10.2.1 Preparatory Steps for the Zobel Network Problem with 
Two Free Variables

10.2.1.1 Initial Circuit The initial circuit consists of an embryo and a test fixture.
We use a particularly challenging embryo (the floating embryo described in sec-

tion 4.7.1.1) as the starting point of the developmental process for this problem.
Specifically, as shown in figure 10.2, the floating embryo consists of a single modifi-
able wire Z0 that is not initially connected to the circuit’s input(s) or output(s). Thus,
each individual must grapple with the problem of discovering the circuit’s input(s) and
output(s) on its own.

Figure 10.2 shows the test fixture for the Zobel network problem. The test fixture
contains the inductor L1 and resistor R1 of the original LR circuit. These two original
components are in series with the input source VIN0. The current probe is at IOUT0.
The test fixture has two ports to which the developing circuit may connect. One 
of these two ports provides potential access to the input signal VIN0. The other port
provides potential access to ground.

10.2.1.2 Program Architecture Because there must be one result-producing branch
in the program tree for each modifiable wire in the embryo and there is one modifiable
wire in the embryo, the architecture of each circuit-constructing program tree has one
result-producing branch. Automatically defined functions and the architecture-
altering operations are not used on this problem.

10.2.1.3 Function Set A constrained syntactic structure enforces the use of one
function set for the arithmetic-performing subtrees, another for the first argument of
the TWO_LEAD function, and yet another for all other parts of the program tree.
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The function set, Faps, for the arithmetic-performing subtrees is

Faps �{+, �, *, %, RLOG, EXP}.

Because resistors, inductors, and capacitors may be used in this problem, the func-
tion set, Ftwo-lead, for the first argument of the TWO_LEAD function is

Ftwo-lead �{R_NEW, L_NEW, C_NEW}.

The function set, Fccs, for each construction-continuing subtree is

Fccs �{TWO_LEAD, SERIES, PARALLEL_NEW, NODE,
TWO_GROUND, THREE_GROUND, INPUT_0}.

Note that because the input source is a voltage source and the probe point 
measures current at the same point, there is no need for a separate output probe point
in this particular test fixture (and hence no need for the OUTPUT_0 function in the
function set).

10.2.1.4 Terminal Set A constrained syntactic structure enforces the use of 
one terminal set for the value-setting subtrees, another for the first argument of the
PARALLEL_NEW function (section 10.1.2), and yet another for all other parts of the
program tree.

In this problem, there are two free variables. They represent the inductance L1

(called “L1” below) of the original inductor L1 and the resistance R1 (called “R1”) of
the original resistor R1.

The component value for each component possessing a parameter is established
by an arithmetic-performing subtree that may contain perturbable numerical values,
arithmetic operations, and the two free variables (L1 and R1). This approach for
establishing numerical parameter values is described in section 3.5.5.3.
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Figure 10.2 Test fixture for the Zobel network problem.



The terminal set, Taps, for the arithmetic-performing subtree for component-creating
functions is

Taps �{�p, L1, R1},

where �p denotes a perturbable numerical value.
In problems involving parameterized topologies, the nonlinear mapping (section

3.5.5) can potentially impede the evolutionary process and complicate the post-run
analysis of mathematical expressions containing free variables. Thus it is not used for
this problem. Note that our non-use of the nonlinear mapping on this particular prob-
lem reflects the chronology of our work and the evolution of our thinking (as opposed
to any special requirement or exigency of the present problem). We believe that the
nonlinear mapping is inefficient for problems involving free variables and intend to
avoid it on such problems in the future.

A constrained syntactic structure specifies the terminals that may appear as the
first argument of the PARALLEL_NEW function. The terminal set, Tparallel, for the first
argument of the PARALLEL_NEW function is

Tparallel �{UP_OR_LEFT, DOWN_OR_RIGHT}.

The terminal set, Tccs, for each construction-continuing subtree is

Tccs �{END, SAFE_CUT}.

10.2.1.5 Fitness Measure The purpose of a Zobel network is to make the entire
circuit (that is, the original inductor L1 and original resistor R1 in the test fixture plus
any additional circuitry developed from the embryo) appear to be purely resistive 
to the driving source. In this problem, the inductance of inductor L1 and the resis-
tance of resistor R1 are free variables that vary over a number of different values
(fitness cases).

When there are free variables in a problem, it is necessary to ascertain the 
behavior and characteristics of each candidate individual for a representative sample
of values of each of the free variables. Multiple combinations of values of the free
variables force generalization of the to-be-evolved circuit.

The free variable for the inductance, L1, of inductor L1 is L1). L1 ranges over 
six values, namely 1.0, 2.5, 6.3, 15.8, 39.8, and 100.0 microhenrys.

The free variable for the resistance, R1, of resistor R1 is R1. R1 ranges over 
six values, namely 10, 25, 63, 158, 398, and 1,000 Ohms.

Thus, there are a total of 36 fitness cases, each representing a combination of 
values of the two free variables (L1 and R1).

The input signal (driving source) for a particular one of the 36 fitness cases is

,

where the time constant, �, is L1/R1. This curve has an initial amplitude of 0 Volts, rises
with a time constant �, and has a potential maximum amplitude of 1 Volt.

SPICE is instructed to perform a transient (time-domain) analysis for 10L/R
seconds. There are 100 time steps. The current at the current probe, IOUT0, is reported
for 101 times.

1 � e�
t
�
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The contribution to fitness of each of the 36 fitness cases is equalized by weight-
ing each fitness case by Roverall. In this connection, recall that a maximum input 
voltage of 1 Volt corresponds to a maximum desired current of 1/Roverall.

The number of hits is defined as the number of fitness cases for which the absolute
error is less than or equal to 5% of the reciprocal of the value of Roverall for that fitness
case.

The fitness measure is designed to encourage two types of parsimony.
The first type of parsimony is based on the familiar idea of counting the circuit’s

components. For this problem, a simple count of the number components is used.
However, it may be preferable to consider factors such as the component’s dollar cost,
power consumption, or physical size.

The second type of parsimony, called equational parsimony, is the total number of
mathematical functions in the arithmetic-performing subtrees. This type of parsimony
is often appropriate when parameterized topologies are being used.

For individuals scoring less than 36 hits, fitness is the sum, for each of the 101
time steps associated with each of the 36 fitness cases, of the product of Roverall (the
equalizing factor for the fitness case) and the weighted absolute value of the difference
between the current at the current probe point, IOUT0, and the current value of
Vin/Roverall for the fitness case involved. The absolute value of the difference is
weighted by 1.0 if the absolute error is less than or equal to 5% of the reciprocal of
the value of Roverall for that fitness case, but 10. 0 otherwise.

For individuals scoring 36 hits, fitness is one trillionth of the sum of the total num-
ber of components (including the fixed components in the test fixture) and one tenth
of the total number of mathematical functions in the arithmetic-performing subtrees.

10.2.1.6 Control Parameters The population size is 500,000.

10.2.2 Results for the Zobel Network Problem with Two Free Variables

The best-of-run individual (figure 10.3) emerged in generation 15 of our one run of
this problem. Genetic programming produced this circuit’s overall topology as well as
the two mathematical expressions (containing the free variables L1 and R1) for speci-
fying the parameter values for new capacitor C2 and new resistor R2. That is, genetic
programming produced a parameterized (i.e., general) solution to the problem.
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Figure 10.3 Best-of-run parameterized topology for the Zobel network problem.



The best-of-run parameterized circuit from generation 15 is a Zobel network as
described by Boutin (2002). In addition to the original inductor L1 and original resis-
tor R1, the overall circuit (figure 10.3) contains a new capacitor C2 with component
value

L1/R1
2,

and a new resistor R2 with component value

R1.

These values for the new components in the genetically evolved circuit are exactly
those that Boutin derived by mathematical analysis.

The addition of the second shunt consisting of an appropriately valued new capac-
itor and an appropriately valued new resistor makes the overall load appear to be
purely resistive to the driving source.

Notice that genetic programming automatically created all the following in the
single run that produced the additional circuitry of figure 10.3:

● the topology of the additional circuitry, including
● the total number of added components (two),
● the type of each added component (i.e., one new capacitor and one new 

resistor),
● all the connections between the circuit’s added components, preexisting 

components, and accessible points of the test fixture,
● the sizing of the additional circuitry, including

● one mathematical expression containing both of the problem’s free variables (L1

and R1) for establishing the sizing of the added capacitor C2, and
● another mathematical expression containing one of the problem’s free variables

(R1) for establishing the sizing of the added resistor R2.

10.2.3 Routineness of the Transition from a Problem Involving a 
Non-Parameterized Circuit to a Problem Involving a Parameterized Circuit

There is a fundamental difference between the Zobel network problem in this section
and all the problems of automatic circuit synthesis in chapter 4 and our 1999 book
Genetic Programming III (Koza, Bennett, Andre, and Keane 1999a).

The difference is that each earlier problem calls for the discovery of a single 
circuit with fixed numerical values for each of the circuit’s components whereas the
present problem calls for the discovery of a parameterized circuit that represents the
solution to an entire category of problems. Each earlier problem entailed producing a
circuit (graphical structure) whose components were labeled with constant numerical
component values whereas the present problem entails producing a circuit (graphical
structure)whose components are labeled with mathematical expressions containing
free variables.

Although this difference is fundamental, its implementation requires only two
changes in the preparatory steps.
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First, the problem’s two free variables (L1 and R1) are added to the terminal set.
That is, the terminal set is changed from

Taps �{�p}

to

Taps �{�p, L1, R1}.

Second, fitness is measured for a representative set of combinations of values of
the problem’s two free variables.

These two required changes are essentially mechanical and administrative in
nature. They do not draw on any knowledge of electrical engineering or any insight
about how to derive mathematical expressions for the relationship between the prob-
lem’s free variables and the values for the circuit’s components. They are certainly not
knowledge-intensive.

The other preparatory steps for the present problem are substantially the same as
for other problems of circuit synthesis.

In summary, the transition from the earlier problems of circuit synthesis not
involving free variables to the present problem involving free variables is nearly
effortless. We consider the transition to be routine.

10.2.4 AI Ratio for the Zobel Network Problem with Two Free Variables

The problem involving the Zobel network resembles the type of problems found in
many textbooks. The solution produced by genetic programming to the problem is a
parameterized (i.e., general) solution. However, under the specific stringent criteria for
human-competitiveness enumerated in table 1.2, these two facts (either alone or
together) do not justify rating the genetically evolved result as “human-competitive.”
Nonetheless, it seems reasonable to say that the solution to the present problem has a
moderately high amount of “A.”

The preparatory steps for this problem are a straightforward rendering of the high-
level statement of the problem and incorporate a small amount of “I.”

Therefore, the AI ratio for the solution produced by genetic programming to the
problem involving the Zobel network with two free variables is moderately high.

10.3 Third-Order Elliptic Lowpass Filter with a Free Variable 
for the Modular Angle

The problem in this section is to automatically create both the topology and sizing of
a lowpass filter circuit with the performance characteristics of a third-order elliptic fil-
ter in which the values of the circuit’s components are parameterized by mathemati-
cal expressions containing a free variable representing the filter’s modular angle, �.

The modular angle � of a filter is the arcsine of the ratio of the boundaries of the
passband and stopband (Williams and Taylor 1995). Table 10.1 shows the stopband
boundary as a function of the modular angle � for a lowpass filter whose passband
boundary is 1,000 Hz. For example, if the stopband boundary is 2,000 Hz, the 
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modular angle � is 30� because the ratio of the boundaries of the passband and 
stopband is 1w . As the stopband boundary approaches the 1,000-Hz passband boundary
(i.e., the modular angle approaches 90�), filter design becomes increasingly difficult.

The desired filter is to have a reflection coefficient, 	, of 20%. When the input
amplitude is 1 Volt, this particular value of 	 corresponds to a passband ripple of 
21 millivolts (Williams and Taylor 1995) and is close to the 30 millivolts used on other
problems of filter synthesis in this book.

The solution sought in this section is analogous to what one finds in a filter 
cookbook. In a filter cookbook, the user first turns to the page that provides informa-
tion about a particular combination of topology and reflection coefficient (e.g.,
the third-order elliptic filter with 	 of 20%). The user then looks at the row of the table
given on that page that specifies the specific component values to be used to achieve
a specific modular angle. In this section, genetic programming will create both 
the topology and sizing (in the form of a parameterized topology) for a third-order
elliptic filter with variable modular angle. Thus, genetic programming is effectively
recreating a page out of the filter cookbook.

Notice that, in this section, we are not talking about a lowpass filter that has one
modular angle at some moments during the filter’s operational lifetime while having
a different modular angle at other times. Instead, we are talking about a circuit-
constructing program tree (genome) that, at the single moment when the program tree
is executed to create a fully developed circuit, yields a lowpass filter with a particular
modular angle. The fully developed circuit then operates with that particular modular
angle for its entire operational lifetime.

10.3.1 Preparatory Steps for the Third-Order Elliptic Lowpass Filter 
with a Free Variable for the Modular Angle

10.3.1.1 Initial Circuit Figure 10.4 shows a one-input, one-output initial circuit
consisting of an embryo embedded in a test fixture.
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Table 10.1 Stopband boundary as a
function of the modular angle (when the
passband boundary is 1,000 Hz)

� Stopband boundary

5 11,474
10 5,759
15 3,864
20 2,924
25 2,366
30 2,000
35 1,743
40 1,556
45 1,414
50 1,305
55 1,221
60 1,155



The embryo consists of two modifiable wires (Z0 and Z1). The test fixture has an
incoming signal source VSOURCE, a 1,000-Ohm source resistor RSOURCE, a non-
modifiable wire ZOUT, a voltage probe point VOUT (the output of the overall circuit),
a 1,000-Ohm load resistor RLOAD, and a nonmodifiable wire ZGND connecting to
ground. The test fixture has three ports to which the developing circuit may connect.
One port makes the input signal VSOURCE available to the developing circuit. A sec-
ond port provides access to ground. A third port is connected to the voltage probe
point VOUT.

10.3.1.2 Program Architecture Because there must be one result-producing branch
in the program tree for each modifiable wire in the embryo and there are two
modifiable wires in the embryo for this problem, the architecture of each circuit-
constructing program tree has two result-producing branches. Automatically defined
functions and the architecture-altering operations are not used.

10.3.1.3 Function Set The function set for this problem is the same as that of
section 10.2.1.3, except that no resistors are used and there is no INPUT_0 function
(because of the initial circuit used for the present problem).

10.3.1.4 Terminal Set A constrained syntactic structure enforces the use of one
terminal set for the value-setting subtrees, another for the first argument of the
PARALLEL_NEW function (section 10.1.2), and yet another for all other parts of 
the program tree.

In this problem, there is one free variable. The free variable represents the value
for sin � (called “SIN_THETA” below).
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Figure 10.4 One-input, one-output initial circuit with two modifiable wires.



The component value for each component possessing a parameter is established
by an arithmetic-performing subtree that may contain perturbable numerical values,
arithmetic operations, and the free variable (SIN_THETA). This approach for 
establishing numerical parameter values is described in section 3.5.5.3.

The terminal set, Taps, for the arithmetic-performing subtree for component-
creating functions is

Taps �{�p, SIN_THETA},

where �p denotes a perturbable numerical value. The nonlinear mapping (section
3.5.5) was not used.

The terminal set, Tparallel, for the first argument of the PARALLEL_NEW function is

Tparallel �{UP_OR_LEFT, DOWN_OR_RIGHT}.

The terminal set, Tccs, for each construction-continuing subtree is

Tccs �{END, SAFE_CUT}.

10.3.1.5 Fitness Measure The free variable Q ranges over 12 values that are
equally spaced between 5� and 60�.

The passband is fixed for this problem and ends at 1,000 Hz.
The frequency at which the stopband starts is determined by the value of �.
Because the high-level statement of the behavior for the desired lowpass filter 

circuit is expressed in terms of frequencies, the output voltage VOUT is measured in
the frequency domain. For each of the 12 values of �, SPICE is instructed to perform
an AC small signal analysis (AC sweep) and report the circuit’s frequency response.

The intended lowpass filter is to satisfy the special (and decidedly complex) per-
formance requirements of a third-order elliptic filter. One of the signature characteris-
tics of an elliptic filter is the extreme suppression of the signal in the transitional
region between the boundary of the passband and the boundary of the stopband. 
The 2 frequency of an elliptic filter is the lowest frequency at which attenuation is
infinite (i.e., corresponding to the passing of 0 Volts). Note that, for this problem, we
do not refer to the transitional frequencies as the “don’t care” region because we do,
in fact, care about what happens in the transitional region.

The range of frequencies over which the AC sweep is performed for each value of
� is determined using the 2 frequency associated with a third-order elliptic filter
(with a reflection coefficient 	 of 20%) that is tuned to yield the given value of �.
For each of the 12 values of �, the AC sweep is performed from four octaves below
the 2 frequency to three octaves above the 2 frequency.

Table 10.2 shows, for each of the 12 values of �, the 2 frequency (in Hertz), the
starting point for the AC sweep (in Hertz), and the ending point for the AC sweep 
(in Hertz). As previously mentioned, the passband is fixed for this problem and ends
at 1,000 Hz.

Each octave is divided into 20 parts. The resulting 141 frequencies end up, accord-
ing to the value of �, in the passband, transitional region, and stopband.

Parameterized Topologies for Circuits 315



The fitness measure for this problem is based on four elements measuring

● the frequency response in the passband,
● the frequency response in the transitional region,
● the frequency response in the stopband, and
● the passband ripple.

Each of these four elements is calculated separately for each of the 12 values of �.
The first element of the fitness measure is concerned with the part of the frequency

response curve below 1,000 Hz. The detrimental contribution to fitness is the weighted
sum, over all sampled frequencies below 1,000 Hz, of the absolute difference between
the circuit’s output and an ideal output of 1 Volt. We use a value called the minimum
acceptable passband voltage to determine the weighting. The minimum acceptable
passband voltage is obtained by multiplying the maximum passband error (i.e., the
maximum deviation from 1 Volt) that is allowed for a third-order elliptic filter (with 
a reflection coefficient 	 of 20%) by 101% and subtracting this product from 1 Volt.
If the circuit’s output is greater than the minimum acceptable passband voltage, the
weighting is 1.0, but 10.0 otherwise.

The second element of the fitness measure is concerned with the part of the fre-
quency response curve between 1,000 Hz and the stopband boundary. The detrimen-
tal contribution to fitness is the weighted sum, over all sampled frequencies between
1,000 Hz and the stopband boundary, of the absolute difference between the circuit’s
output in decibels and the output of a third-order elliptic filter (tuned for the particu-
lar value of �). If the absolute difference is less than 3 dB, the weighting is 1.0, but
otherwise 10.0. In order to avoid dealing with extraordinarily large negative values 
of attenuation, any value below �100 dB (corresponding to 10�5 Volts) is taken to 
be �100 dB.

The third element of the fitness measure is concerned with the part of the 
frequency response curve above the stopband boundary. The detrimental contribution
to fitness is the weighted sum, over all sampled frequencies above the stopband
boundary, of the absolute difference between the circuit’s output in decibels and the
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Table 10.2 Ranges for the AC sweeps

� 2 Starting frequency Ending frequency

5 13,242 828 105,939
10 6,637 415 53,096
15 4,442 278 35,538
20 3,351 209 26,804
25 2,700 169 21,600
30 2,270 142 18,161
35 1,967 123 15,733
40 1,742 109 13,938
45 1,571 98.2 12,568
50 1,437 89.8 11,495
55 1,330 83.1 10,642
60 1,245 77.8 9,957



output of a third-order elliptic filter (tuned for the particular value of �). If the
absolute difference is less than 101% of the value for a third-order elliptic filter, the
weighting is 1.0, but otherwise 10.0.

The fourth element of the fitness measure is based on the passband ripple. For each
value of �, the minimum value of the frequency response in the passband is ascer-
tained. The detrimental contribution is the sum, over the 12 values of �, of the greater
of 0 and the difference between the minimum acceptable passband voltage and the
minimum value of the frequency response in the passband.

In this problem, numerous mathematical expressions must be evolved to establish
the parameters for components of the to-be-evolved circuit. The values of the compo-
nents of the to-be-evolved circuit are presumptively complicated nonlinear functions
of the free variable �.

Note that even if the mathematical expression being sought were, in fact, a linear
function of one variable, genetic programming usually must consider more than two
values of a free variable in order to discover a linear relationship. Of course, if one
already knows that the relationship is linear, one can simply draw a straight line
between two data points. However, genetic programming does not have such advance
knowledge about the linearity of the mathematical relationships that may exist in a
particular problem. Genetic programming may well create a nonlinear function to pass
through the two points that are, in reality, produced by a linear relationship. Thus,
a multiplicity of data points is required even if the underlying function happens to 
be a linear function of one variable. A fortiori, a multiplicity of data points is required
when the underlying function is actually nonlinear (as is usually the case in non-
trivial problems).

Having said that, the amount of computer time is (as an initial approximation) 
proportional to the number of fitness cases. Thus, there is a strong incentive to try to
solve a problem with as few fitness cases as possible.

In evolving mathematical expressions containing free variables, one is always 
concerned about possible overfitting.

Balancing these competing considerations, we used 12 different values of � for
this problem. We did not know in advance whether 12 different values of � would
prove to be sufficient to enable genetic programming to unearth the complicated 
relationships inherent in this problem.

Recognizing that 12 fitness cases might well prove to be inadequate to discover the
required curve, we doubled the weight on the lowest and highest values of � under
consideration (i.e., 5� and 60�) in order to place additional emphasis on the two ends
of this presumptively nonlinear curve.

We substantially increased the weights for the first and fourth elements of the 
fitness measure because these elements were in Volts (as opposed to decibels).

The fourth element of the fitness measure receives less weight than the first
because it involves only the passband ripple.

Fitness is the sum of two terms. The first term is the sum, for 5� and 60�, of 
200 times the first element of the fitness measure, twice the second element, twice the
third element, and 100 times the fourth element. The second term is the sum, over the
10 other values of �, of 100 times the first element of the fitness measure, the second
element, the third element, and 50 times the fourth element.
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The number of hits is defined to be the number of fitness cases for which the
weighting is 1.0 (as opposed to 10.0).

10.3.1.6 Control Parameters The population size is 1,000,000.

10.3.2 Results for the Lowpass Third-Order Elliptic Filter with 
a Free Variable for the Modular Angle

The best-of-run individual for this problem emerged in generation 293 (figure 10.5).
Ignoring the fixed source and load resistors that are hard-wired into the test fixture, the
genetically evolved parameterized topology has two capacitors (C21 and C66) and
two inductors (L44 and L15).

The circuit of figure 10.6 is a parameterized (i.e., general) solution to the problem.
The component values for the two capacitors and two inductors of the best-of-run cir-
cuit are not specified by constant numerical values, but instead, by genetically evolved
mathematical expressions containing the free variable �.
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Figure 10.5 Best-of-run parameterized topology for the lowpass filter with a free variable for
the modular angle.
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Notice that genetic programming automatically created all the following in the sin-
gle run that produced the circuit of figure 10.6:

● the circuit’s topology, including
● the total number of components (four) in addition to those of the test fixture,
● the type of each component (i.e., two capacitors and two inductors),
● all the connections between the circuit’s components and accessible points of the

test fixture, and
● the circuit’s sizing as expressed by four mathematical expressions containing the

problem’s free variable (�) for establishing the sizing of C21, C66, L44, and L15.

Averaged over the 12 values of �, the best-of-run circuit from generation 293 has:

● 9.17 millivolts average absolute error in the passband,
● 4.15 dB average absolute error in the stopband and transitional region, and
● 98.6% of the possible number of hits.

Note that average absolute error in the passband is based on the absolute differ-
ence between 1 Volt and the value on the evolved circuit’s frequency response curve,
whereas average absolute error in the stopband and “don’t care” region is based on 
the absolute difference between the evolved circuit’s frequency response and the 
frequency response of the textbook third-order elliptic filter.
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Figure 10.6 shows the topology and sizing for a classical third-order lowpass 
elliptic filter for a modular angle � of 30� (Williams and Taylor 1995). The topology
in this figure applies to any other value of � between 5� and 60�.

Figure 10.7 shows the behavior in the frequency domain of a textbook third-order
elliptic filter for six choices of modular angle � between 10� and 60� (Figure 10.6).
The horizontal axis shows frequencies from 1 Hz to 100,000 Hz on a logarithmic
scale. The vertical axis shows gain (in decibels). As can be seen, the incoming signal
is passed up to 1,000 Hz with virtually no attenuation. Note that each curve
approaches a desired gain of ��dB (corresponding to the passing of 0 Volts) at the 
2 frequency in the transitional region above 1,000 Hz.

Figure 10.8 shows the behavior in the frequency domain of the best-of-run 
circuit from generation 293 for six choices of modular angle � between 10� and 60�
(figure 10.6).

Recall that the modular angle � of a filter is the arcsine of the ratio of the bound-
aries of the passband and stopband.
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Figure 10.7 Frequency domain behavior of a textbook third-order elliptic filter for six choices
of modular angle � between 10� and 60�.

Figure 10.6 Textbook third-order elliptic filter with modular angle � of 30�.



The � of a third-order elliptic filter may be measured from the frequency response
curve in the following way:

First, find the minimum value of the frequency response curve in the stopband and
transitional region. The frequency at which this minimum value occurs is known as
the 2 frequency of the filter.

Second, find the maximum value of the frequency response for the region of 
the curve lying to the right of the 2 frequency. This value is known as the stopband
attenuation Amin.

Third, find the leftmost frequency in the stopband and transitional region for
which the value of the frequency response curve is equal to Amin. This is the s

frequency of the filter.
Fourth, the � value of a filter whose passband boundary is 1,000 Hz is given by

the equation ��sin� 1(1,000/s).
Using these four steps, we can measure the � of the best-of-run circuit for each of

the 12 in-sample fitness cases. Table 10.3 gives the actual and desired values of � for
all 12 angles for the best-of-run filter.

The maximum passband deviation of a filter is defined, for each frequency in the
passband, as the maximum value of the absolute difference between 1 Volt and the 
filter’s frequency response. Table 10.4 shows the maximum passband deviation in 
millivolts for the best-of-run circuit for each of the 12 in-sample fitness cases.

The 	 value of a filter, the passband ripple RdB, and the maximum passband 
deviation (MPD) are related by the following two equations:

RdB ��10*log(1�	2)

and

MPD�10R dB
/ 20

�1.

The second equation assumes a 1-Volt source.
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Figure 10.8 Frequency domain behavior of a best-of-run circuit for six choices of modular
angle � between 10� and 60�.



A value of 	�20 percent thus corresponds to a maximum passband deviation of
approximately 20.62 millivolts. As can be seen from table 10.4, the evolved filter’s
maximum passband deviation is within 5 percent of this value for all values of �.

The performance of the best-of-run circuit from generation 293 is cross-validated
using 11 previously unseen values of �. For these 11 out-of-sample fitness cases, the
best-of-run circuit has:

● 9.21 millivolts average absolute error in the passband,
● 3.47 dB average absolute error in the stopband and transitional region, and
● 97.9 percent of the possible number of hits.

Table 10.5 compares the desired and actual values of � for the 11 out-of-sample
fitness cases.
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Table 10.4 Maximum passband deviation
for the 12 in-sample fitness cases

Desired � Maximum passband deviation

5 18.5
10 17.9
15 17.7
20 17.7
25 17.7
30 17.8
35 17.9
40 18.3
45 18.7
50 19.3
55 19.9
60 21.2

Table 10.3 Comparison of
desired and actual � for the 
12 in-sample fitness cases

Desired � Actual �

5 5.06
10 9.79
15 14.7
20 19.7
25 24.7
30 29.8
35 33.7
40 38.7
45 43.6
50 47.1
55 52.3
60 55.4



Table 10.6 shows the maximum passband deviation in millivolts for the 11 out-
of-sample fitness cases.

The mathematical expressions for the sizing of C21, C66, L15, and L44 are
complicated. There are several options if the user desires or requires more parsimo-
nious expressions.

First, equational parsimony can be incorporated into the fitness measure (as we did
in section 10.2.1.5 for the Zobel network problem).

Second, each separate genetically evolved equation could be converted into a 
set of data points. A run of symbolic regression (using with parsimony pressure in its
fitness measure) can be made on the data points in order to obtain a simpler equation
that passes through (or near) the same data points.

In summary, genetic programming produced a parameterized circuit that matches
the behavior of a third-order elliptic filter for any value of the modular angle �
between 5� and 60�.

When we embarked on this problem, we expected that genetic programming
would rediscover the elliptic topology. However, as can be seen by comparing 
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Table 10.5 Comparison of desired
and actual values of � for the 11
out-of-sample fitness cases

Desired � Actual �

7 6.88
13 12.8
17 16.7
23 22.6
27 26.5
33 32.4
37 36.3
43 41.6
47 45.3
53 50.2
57 53.0

Table 10.6 Maximum passband deviation
for the 11 out-of-sample fitness cases

Desired � Maximum passband deviation

7 20.1
13 17.8
17 17.7
23 17.7
27 17.7
33 17.8
37 18.0
43 18.5
47 18.9
53 19.7
57 20.2



figures 10.5 and 10.6, the genetically evolved circuit is not an elliptic filter. In fact, the
genetically evolved circuit has the topology of an M-derived half-section filter
(patented by Zobel in 1925). However, the values of the components in the genetically
evolved circuit differ by factors of more than 2-to-1 from that of the M-derived half-
section filter. Moreover, the genetically evolved filter differs from Cauer’s patented
elliptic filter, Campbell’s patented ladder filter (Campbell 1917), and Johnson’s
patented “bridged T” filter (Johnson 1926).

At the beginning of this section (and other sections in this book involving circuit-
constructing program trees containing free variables), we emphasized that the solution
to the problem posed in this section was not intended to be a filter that has one mod-
ular angle at some moments during the filter’s operational lifetime and a different
modular angle at other times. However, it should be mentioned in passing that one
conceivably could use variable capacitors and variable inductors to construct a circuit
having the topology shown in figure 10.5 and then control the variable capacitors and
variable inductors by signals emanating from analog computational circuits that
implement the mathematical functions contained in the expressions for capacitors C21
and C66 and inductors L15 and L44. In that event, one would have a circuit whose
behavior would vary dynamically in response to dynamically changing values of �
during the circuit’s operational lifetime. However, such a circuit could well be imprac-
tical for several reasons.

First, implementation of the mathematical expressions for the sizing of C21, C66,
L15, and L44 would require a cascade of numerous computational circuits. Each of the
individual computational circuits in the cascade would have to be exceedingly precise
in order to produce a precise final value.

Second, the individual computational circuits (notably the exponential circuit)
would have to be accurate for values that vary over many orders of magnitude.

Third, analog computational circuits often exhibit significant transient phenomena
as their inputs change. The design of analog computational circuits becomes increas-
ingly difficult as the settling time decreases.

10.3.3 Routineness for the Lowpass Third-Order Elliptic Filter 
with a Free Variable for the Modular Angle

For substantially the same reasons stated in section 10.2.3, the result produced in this
section is routine.

10.3.4 AI Ratio for the Lowpass Third-Order Elliptic Filter 
with a Free Variable for the Modular Angle

For substantially the same reasons stated in section 10.2.4, the AI ratio for the 
solution produced by genetic programming to the problem involving the lowpass
third-order elliptic filter with a free variable is moderately high.

10.4 Passive Lowpass Filter with a Free Variable for the 
Passband Boundary

The previous two sections demonstrated that genetic programming can automatically
discover both the topology and sizing of a circuit in which the values of the circuit’s
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components are parameterized by mathematical expressions containing free variables.
This section provides another example involving a filter.

The problem in this section is to evolve a parameterized lowpass filter circuit 
composed of passive components (i.e., inductors and capacitors) with 1,000-to-1
attenuation in the stopband (i.e., 60 decibels) whose passband boundary is specified
by a free variable, f, such that the passband ends at frequency f and the stopband starts
at frequency 2f.

For the problem in this section, a voltage in the passband that is between 970 mil-
livolts and 1 Volt (i.e., a passband ripple of 30 millivolts or less) and a voltage in the
stopband that is between 0 Volts and 1 millivolt (i.e., a stopband ripple of 1 millivolt
or less) is regarded as acceptable. Any voltage lower than 970 millivolts in the pass-
band and any voltage above 1 millivolt in the stopband are regarded as unacceptable.
The frequencies between f and 2f constitute the filter’s “don’t care” region.

Notice that, in this section, we are not talking about a lowpass filter that has one
passband boundary at some moments during the filter’s operational lifetime while
having a different passband boundary at other times. That is, we are not talking about
a filter whose passband dynamically varies, say, in response to an additional input
(i.e., a control signal) that specifies the desired instantaneous passband boundary.
(Note that a post-2000 patented filter with just such a dynamically varying passband
appears in chapter 15). Instead, in this section, we are talking about a circuit-
constructing program tree (genome) that, at the single moment when the program tree is
executed to create the fully developed circuit, yields a lowpass filter with a particular
passband boundary. The fully developed circuit then operates with that particular 
passband boundary for its entire operational lifetime.

10.4.1 Preparatory Steps for the Passive Lowpass Filter with 
a Free Variable for the Passband Boundary

10.4.1.1 Initial Circuit The initial circuit for this problem is the same as in section
10.3.1.1.

10.4.1.2 Program Architecture The architecture of each circuit-constructing
program tree has two result-producing branches. There are no automatically defined
functions in any program tree in the initial random population (generation 0).
However, in later generations, the architecture-altering operations may insert (and
delete) one-argument automatically defined functions. A (generous) maximum of five
automatically defined functions is established for each program tree in the population.

10.4.1.3 Terminal Set A constrained syntactic structure enforces the use of one
terminal set for the value-setting subtrees, another for all other parts of the result-
producing branch, and yet another for all other parts of the automatically defined
functions.

In this problem, there is a free variable f (called “F” below) representing the end
of the desired filter’s passband.

The numerical parameter value for each electrical component possessing a param-
eter is established by an arithmetic-performing subtree that may contain perturbable
numerical values, arithmetic operations, and the free variable (F). This approach for
establishing numerical parameter values is described in section 3.5.5.3.
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Arithmetic-performing subtrees may appear in both result-producing branches 
and any automatically defined functions that may be created during the run by the
architecture-altering operations.

The terminal set, Taps, for the arithmetic-performing subtrees is

Taps �{�p, F},

where �p denotes a perturbable numerical value between �5.0 and �5.0.
The terminal set, Trpb, for all other parts of each result-producing branch is

Trpb = {END, SAFE_CUT}.

Similarly, the terminal set, Tadf, for all other parts of each automatically defined
function is

Tadf = {END, SAFE_CUT, ARG0}.

10.4.1.4 Function Set A constrained syntactic structure enforces the use of one
function set for the arithmetic-performing subtrees and another function set for all
other parts of the program tree.

The function set, Faps, for the arithmetic-performing subtrees is

Faps = {+, �, *, %, REXP, RLOG}.

The function set, Frpb, for all other parts of each result-producing branch is

Frpb = {L, C, SERIES, PARALLEL0, FLIP, NOP, PAIR_CONNECT_0,
PAIR_CONNECT_1, RETAINING_THREE_GROUND_0,
RETAINING_THREE_GROUND_1, ADF0, ADF1, ADF2, ADF3, ADF4}.

Briefly, the two three-argument THREE_GROUND functions each create a via to
ground. See Koza, Bennett, Andre, and Keane 1999a for details.

The function set, Fadf, for all other parts of each automatically defined function is

Fadf = {L, C, SERIES, PARALLEL0, FLIP, NOP, PAIR_CONNECT_0,
PAIR_CONNECT_1, RETAINING_THREE_GROUND_0,
RETAINING_THREE_GROUND_1}.

10.4.1.5 Fitness Measure The free variable f ranges over nine values that are
equally spaced (on a logarithmic scale) in the range between 1,000 Hz and 100,000
Hz. Specifically, the nine values of f are 1,000, 1,780, 3,160, 5,620, 10,000, 17,800,
31,600, 56,200, and 100,000 Hz.

Because the high-level statement of the behavior for the desired filter circuit is
expressed in terms of frequencies, the output voltage VOUT is measured in the fre-
quency domain.

For each of the nine values of the free variable f, SPICE is instructed to perform
an AC small signal analysis and report the circuit’s behavior over five decades with
each decade being divided into 20 parts (using a logarithmic scale). Thus, there are a
total of 101 sampled frequencies associated with each value of f. The starting fre-
quency for each AC sweep is f/1,000 and the ending frequency is 100f. The desired
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lowpass filter has a passband ending at f and a stopband beginning at 2f. For example,
if f is 3,160 Hz (the third of the nine fitness cases), then the AC small signal analysis
is performed between 3.16 Hz (three decades below f) and 316,000 Hz (two decades
above f) and the desired lowpass filter has a passband ending at 3,160 Hz and a stop-
band beginning at 6,320 Hz. In the eventual solution to this problem, there should 
be a sharp drop-off from 1 to 0 Volts in the transitional (“don’t care”) region between
f and 2f.

The ideal voltage in the passband of the desired lowpass filter is 1 Volt and the
ideal voltage in the desired stopband is 0 Volts. A voltage in the desired passband that
is between 970 millivolts and 1 Volt (i.e., a passband ripple of 30 millivolts or less) is
regarded as acceptable. A voltage in the desired stopband that is between 0 Volts and
1 millivolt (i.e., a stopband ripple of 1 millivolt or less) is regarded as acceptable. Any
voltage lower than 970 millivolts in the desired passband and any voltage above 1 mil-
livolt in the desired stopband are unacceptable.

Fitness is the sum, over all nine values of the free variable f and over all 101 fre-
quencies associated with each of the nine values of f of the absolute weighted devia-
tion between the actual value of the voltage that is produced by the circuit at the probe
point VOUT and the target value for voltage (0 or 1 volt). A smaller value of fitness is
better. Specifically,

where fi is the frequency of fitness case i; d(x) is the absolute value of the difference
between the target and observed values at frequency x; and W(y, x) is the weighting
for difference y at frequency x.

The fitness measure is designed not to penalize ideal voltage values, to penalize
slightly every acceptable voltage deviation, and to penalize heavily every unaccept-
able voltage deviation. Specifically, for each of the points in the intended passband, if
the voltage is between 970 millivolts and 1 Volt, the absolute value of the deviation
from 1 Volt is weighted by a factor of 1.0. However, if the voltage is less than 970 mil-
livolts, the absolute value of the deviation from 1 Volt is weighted by a factor of 10.0.
The acceptable and unacceptable deviations for each of the points in the intended stop-
band are similarly weighted (by 1.0 or 10.0) based on the amount of deviation from
the ideal voltage of 0 Volts and the acceptable deviation of 1 millivolt. For each of the
“don’t care” points between f and 2f, the deviation is deemed to be zero.

The number of hits is defined as the number of fitness cases (0 to 909) for which
the voltage is acceptable or ideal or that lie in the “don’t care” band.

When the aim is to automatically create a solution to a category of problems in the
form of a mathematical expression containing free variable(s), the possibility of over-
fitting is especially salient. Overfitting occurs when an evolved solution performs well
on the fitness cases that are incorporated in the fitness measure (i.e., the training
phase), but then performs poorly on previously unseen fitness cases.

In this problem, numerous mathematical expressions must be evolved to establish
the parameters for components of the to-be-evolved circuit. The values of the compo-
nents of the to-be-evolved circuit are presumptively nonlinear functions of the free
variable, f.

F(t) � �
9

k � 1
�
100

i � 0
(W(d( fi), fi)d( fi)),
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Concerned about possible overfitting, we used nine different values of the free
variable, f, all in the range between 1,000 Hz and 100,000 Hz. The choice of nine
points for this problem was governed primarily by considerations of computer time.
Ideally, we would have used even more points. We did not know in advance whether
nine data points would prove to be sufficient to enable genetic programming to
unearth the complicated relationships inherent in this problem.

10.4.1.6 Control Parameters The population size is 10,000,000.

10.4.2 Results for the Passive Lowpass Filter with a Free Variable for the
Passband Boundary

The fitness of the best individual from generation 0 is 957.1.
The first individual to achieve 100 percent compliance with the problem’s require-

ments by scoring 909 hits (out of 909) emerged in generation 78 (figure 10.9). This
best-of-run parameterized circuit has a fitness of 0.18450. The circuit-constructing
program tree has two result-producing branches (with 146 and 295 points, respec-
tively) and five automatically defined functions (with 4, 3, 5, 3, and 1 point, respec-
tively). Both result-producing branches refer to ADF0 once. ADF0 hierarchically
refers to ADF3 and they together evaluate to 1–f. The other three automatically defined
functions are not referenced.

Ignoring the fixed 1,000-Ohm source and fixed 1,000-Ohm load resistors that are
hard-wired into the test fixture, the best-of-run parameterized circuit from generation
78 (figure 10.9) has four inductors and five capacitors. Notice that the values of 
these nine components are not specified by constant numerical values. Instead, each
of the nine component values is specified by a mathematical expression containing the
free variable f. Genetic programming produced this circuit’s topology as well as the
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Figure 10.9 Best-of-run parameterized topology for lowpass filter with variable passband
boundary.



nine mathematical expressions (each containing the free variable f) for specifying the 
values of the circuit’s four inductors and five capacitors. That is, genetic programming
produced a parameterized (i.e., general) solution to this problem.

Specifically, the mathematical expressions for the component values for the para-
meterized circuit’s nine components (L1, L2, L3, L4, C1, C2, C3, C4, and C5) are
shown below. Inductances are in microhenrys and capacitances are in nanofarads.

and

Notice that genetic programming automatically created all the following in the 
single run that produced the best-of-run individual of figure 10.9:

● the circuit’s topology, including
● the total number of components (nine) in addition to those in test fixture,
● the type of each component (i.e., four inductors and five capacitors),
● all the connections between the circuit’s components and accessible points of the

test fixture, and
● the circuit’s sizing as expressed by nine mathematical expressions containing 

the problem’s free variable (f) for establishing the sizing of the circuit’s components
(L1, L2, L3, L4, C1, C2, C3, C4, and C5).

As can be seen, all component values (except for L2 and L3) are inversely pro-
portional to f. In the case of L2 and L3, the component values are approximately
inversely proportional to f for f less than 1,000,000 Hz. This is exactly what you would

C5 �
1.1056 � 105

f
.

C4 �
6.4484 � 105

f
,

C3 �
1.3552 � 105

f
,

C2 �
1.6786 � 105

f
,

C1 �
1.6786 � 105

f
,

L4 �
3.7297 � 107

f
,

L3 �
2.0262 � 108

f
� 2ln f,

� ln f � 2.4451 � 108

f
� ln f,

L2 �
1.3406 � 10�8(4.7387 � 1012 � f ) (1.3331 � 1016 � 9.3714 � 105 f � f 2)

f(3.4636 � 1012 � f )

L1 �
8.0198 � 107

f
,
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expect as a means to make a filter scalable over a wide range of frequencies when the
impedance (i.e., the load and source resistance here) is fixed (Van Valkenburg 1982).
Thus, the mathematical expressions for each of the component values in the evolved
circuit have a reasonable interpretation in electrical engineering terms.

Figure 10.10 shows the behavior, in the frequency domain, of the genetically
evolved parameterized filter from generation 78 for each of the nine values of the free
variable f. The horizontal axis represents the frequency of the incoming signal and
ranges logarithmically over the seven decades of frequency between 1 Hz and 
10 MHz. The 101 equally spaced, filled circles (many of which overlap in the figure)
along each of the nine curves represent the 101 frequencies. The vertical axis repre-
sents the peak voltage of the circuit’s output signal and ranges linearly between 0 and
�1.2 Volts. The amplitudes of the voltages produced by the genetically evolved para-
meterized filter for frequencies below f are all between 970 millivolts and 1 Volt. The
amplitudes of the voltages produced by the genetically evolved parameterized filter
for frequencies above 2f are all between 0 millivolts and 1 millivolt. Thus, the evolved
parameterized filter is 100 percent compliant for all sampled frequencies for all nine
values of the free variable f.

The question arises as to how well the genetically evolved parameterized filter
from generation 78 generalizes to previously unseen values of the frequency f. The
evolutionary process is driven by fitness as measured using nine particular in-sample
values of frequency f. The possibility exists that the circuit that is evolved with a small
number of values of the frequency f (i.e., the in-sample or training cases) will be
overly specialized to those particular values and will prove to be inapplicable to other
unseen values of f. This concern can be addressed by cross-validating the results on
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Figure 10.10 Frequency domain behavior of the genetically evolved parameterized filter for
nine values of frequency f.



additional unseen values of f. Figure 10.11 shows the behavior, in the frequency
domain, of the genetically evolved parameterized filter from generation 78 for four
out-of-sample values of frequency f. Two of the values of f are from inside the range
between 1,000 Hz and 100,000 Hz. They are 4,640 Hz (the antilog of 3 2/3) and 
21,540 Hz (the antilog of 4 1/3). Two others are from outside the range, namely 100 Hz
and 1,000,000 Hz (each a full decade outside the original range of frequencies). 
As can be seen, the genetically evolved parameterized filter from generation 78 is 
100 percent compliant for these four out-of-sample values of frequency f.

In summary, this section demonstrates that genetic programming can automati-
cally create the design for both the topology and component values for an analog elec-
trical circuit in which the value of each component in the evolved circuit is specified
by a mathematical expression containing a free variable. That is, genetic programming
evolved a circuit that is parameterized (i.e., general) in the sense that it represents the
solution to all instances of a problem (instead of just the solution to a single instance
of the problem). The mathematical expressions for each of the component values in
the evolved circuit have a reasonable interpretation in electrical engineering terms.
The evolved circuit was cross-validated on unseen values of the free variable.

For additional details, see Koza, Keane, Yu, and Mydlowec 2000.

10.4.3 Routineness for the Passive Lowpass Filter with a 
Free Variable for the Passband Boundary

For substantially the same reasons stated in section 10.2.3, the result produced in this
section is routine.
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Figure 10.11 Frequency domain behavior of the genetically evolved parameterized filter for
four out-of-sample values of frequency f.



10.4.4 AI Ratio for the Passive Lowpass Filter with a 
Free Variable for the Passband Boundary

For substantially the same reasons stated in section 10.2.4, the AI ratio for the 
solution produced by genetic programming to the problem involving the lowpass
third-order elliptic filter with a free variable is moderately high.

10.5 Active Lowpass Filter with a Free Variable for the Passband Boundary

The problem in this section is to evolve a one-input parameterized lowpass filter com-
posed of transistors, capacitors, and resistors whose passband boundary is specified by
a free variable.

The specifications for the lowpass filter desired in this section originate from U.S.
patent 6,225,859—one of the six post-2000 inventions discussed in detail in chapter
15. The patented circuit (Irvine and Kolb 2001) in chapter 15 is (unlike the circuit
being sought in this section) a dynamically tunable integrated active filter. The
patented circuit has the behavior of the RLC circuit shown in figure 10.12 (hereafter
called the “target circuit”). The target circuit consists of a series composition of a
capacitor C11, inductor L11, and two resistors (R11 and R12).

The values of the four components (R11, R12, L11, and C11) of the target circuit
(figure 10.12) are functions of the passband boundary frequency, f. The values of the
four components are specified in terms of two intermediate variables, Rsource and Ic, as
shown in the following equations:

Ic �
C11*Rsource*(26 mV)

L11,

L11 �
1

(2 �f )2*C11

,

R12 �
Rsource

100
,

Rsource � 50,000 ,

C11 � 100 nF,
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Figure 10.12 Target circuit for U.S. patent 6,225,859.



and

Note that the companion problem in chapter 15 involves a two-input tunable inte-
grated active filter circuit in which the passband boundary varies dynamically in
response to the control signal, Ic, that varies during the circuit’s operational lifetime.
However, in this section, we are not talking about a filter that has one passband bound-
ary at some moments during the filter’s operational lifetime while having a different
passband boundary at other times. Instead, we are talking about a circuit-constructing
program tree (genome) that, at the single moment when the program tree is executed
to create a fully developed circuit, yields a lowpass filter with a particular passband
boundary. The fully developed circuit then operates with that particular passband
boundary for its entire operational lifetime.

10.5.1 Preparatory Steps for the Active Lowpass Filter with a 
Free Variable for the Passband Boundary

10.5.1.1 Initial Circuit The initial circuit (figure 10.13) has a floating embryo
(section 4.7.1.1). The floating embryo consists of a single modifiable wire that is not
initially connected to the circuit’s input(s) or output(s). Thus, each individual circuit
must master the problem of discovering the circuit’s input(s) and output(s) on its own.
The initial circuit also has an incoming signal source VIN, a 1-micro-Ohm source
resistor RSOURCE, a �5-Volt power source, a voltage probe point VOUT, and a
1,000-Ohm load resistor RLOAD.

10.5.1.2 Program Architecture Because there must be one result-producing branch
in the program tree for each modifiable wire in the embryo and there is one modifiable
wire in the embryo, the architecture of each circuit-constructing program tree has one
result-producing branch. Automatically defined functions and the architecture-altering
operations are not used.

10.5.1.3 Function Set A constrained syntactic structure enforces the use of one
function set for the arithmetic-performing subtrees, another for the first argument of
the TWO_LEAD function, and yet another for all other parts of the program tree.

R11 �
26 mV

Ic
.
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Figure 10.13 One-input, one-output initial circuit with one floating modifiable wire.



The function set, Faps, for the arithmetic-performing subtrees is

Faps = {+, �, *, %}.

Because resistors, inductors, and capacitors may be used in this problem, the func-
tion set, Ftwo-lead, for the first argument of the TWO_LEAD function is

Ftwo-lead = {R_NEW, C_NEW}.

The function set, Fccs, for each construction-continuing subtree is

Fccs = {Q, TWO_LEAD, SERIES, PARALLEL_NEW, NODE, TWO_GROUND,
THREE_GROUND, TWO_POS5V, INPUT_0, OUTPUT_0}.

Note that the power supply appears because this problem involves transistors.

10.5.1.4 Terminal Set In this problem, the free variable is log f (called “LOG_F”
below), where f is the passband boundary.

There are six types of terminals for this problem. A constrained syntactic structure
specifies the terminals that may appear in arithmetic-performing subtrees; the first
argument of the PARALLEL_NEW function; the first, second, and third arguments of
the transistor-creating Q function; and each construction-continuing subtree.

The component value for each component possessing a parameter is established
by an arithmetic-performing subtree that may contain perturbable numerical values,
arithmetic operations, and the free variable. This approach for establishing numerical
parameter values is described in section 3.5.5.3.

The terminal set, Taps, for the arithmetic-performing subtrees of component-
creating functions is

Taps = {�p, LOG_F },

where �p denotes a perturbable numerical value and LOG_F is the common logarithm
of the passband boundary f.

The terminal set, Tparallel, for the first argument of the PARALLEL_NEW
function is

Tparallel = {UP_OR_LEFT, DOWN_OR_RIGHT}.

The first argument of the Q function specifies the transistor model used. We 
use the commercially popular 2N3904 (npn) and 2N3906 (pnp) transistors for this
problem. That is, the terminal set, Tmodel, is

Tmodel = {2N3904, 2N3906}.

The second argument of the transistor-creating Q function establishes which end
(polarity) of the preexisting modifiable wire will be bifurcated (if necessary) in insert-
ing the transistor. That is, the terminal set, Tbifurcate, is

Tbifurcate = {BIFURCATE_POSITIVE, BIFURCATE_NEGATIVE}.

The third argument of the Q function specifies which of six possible permutations
of the transistor’s three leads (base, collector, and emitter) is to be used. That is, the
terminal set, Tpermutation, is

Tpermutation = {B_C_E, B_E_C, C_B_E, C_E_B, E_B_C, E_C_B}.
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The terminal set, Tccs, for each construction-continuing subtree is

Tccs = {END, SAFE_CUT}.

10.5.1.5 Fitness Measure The free variable f ranges over the following nine
values: 441, 588, 784, 1,046, 1,395, 1,861, 2,482, 3,310, and 4,414 Hz. Ic acts as 
a control signal in the circuit described in U.S. patent 6,225,859 (Irvine and Kolb
2001). The starting value of 441 Hz corresponds to a value of 100 microamperes of
current for Ic. The ending value of 4,414 Hz corresponds to a value of 10 milliamperes
of current for Ic. This is a reasonable range of values over which the circuit described
in U.S. patent 6,225,859 operates. (Chapter 15 describes another run related to this
same patent).

Because the high-level statement of the behavior for the desired filter circuit is
expressed in terms of frequencies, the output voltage is measured in the frequency
domain.

For each of the nine values of the free variable f, SPICE is instructed to perform
an AC small signal analysis and report the circuit’s behavior from f/100 to 10f with
each of these three decades being divided into 20 parts (using a logarithmic scale), so
there are a total of 61 sampled frequencies associated with each value of f. Note that
the 41st point is f.

Fitness is the sum, over the 61 frequencies for each of the nine values of the free
variable f, of the absolute weighted deviation between the voltage (in decibels) that is
produced by the circuit at the probe point VOUT and the voltage (in decibels) produced
by the target circuit in figure 10.12. For the 31st through the 40th (of the 61) points, the
weighting is 100.0 if the voltage (in decibels) that is produced by the individual circuit
at the probe point VOUT is within 3 dB of the voltage (in decibels) produced by the tar-
get circuit, but 10.0 otherwise. For all other points, the weighting is 10.0 if the voltage
(in decibels) that is produced by the individual circuit at the probe point VOUT is within
3 dB of the voltage (in decibels) produced by the target circuit, but 1.0 otherwise.

The number of hits is defined as the number of points for which the voltage 
(in decibels) that is produced by the individual circuit at the probe point VOUT is
within 3 dB of the voltage (in decibels) produced by the target circuit.

10.5.1.6 Control Parameters The population size is 5,000,000.

10.5.2 Results for the Active Lowpass Filter with a 
Free Variable for the Passband Boundary

The best-of-run individual (figure 10.14) emerged at generation 100.
The best-of-run parameterized circuit (figure 10.14) has 10 transistors. It has 

six capacitors and two resistors whose values are specified by the expressions below
involving the free variable, f. The units for capacitors are nanofarads. The units for
resistors are kilo-Ohms. NLM is the nonlinear mapping described in section 3.5.5.

R1 � f

R2 �NLM (2 log f )

C1 �NLM ((log f )2 � log f )

C2 �NLM ((log f )2 � log f )
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C3 �NLM (log f� (log f )2 �9.6707)

C4 �NLM (2 log f )

C5 �NLM (5(log f )2 �14.509)

C6 �NLM (3.6900� (log f )2 � log f )

Notice that genetic programming automatically created all the following in the sin-
gle run that produced the parameterized circuit of figure 10.14:

● the circuit’s topology, including
● the total number of components (18) in addition to those of the test fixture,
● the type of each component (i.e., 10 transistors, six capacitors, and two resistors),
● all the connections between the circuit’s components, accessible points of the test

fixture, and the power source, and
● the circuit’s sizing as expressed by eight mathematical expressions containing the

problem’s free variable (f) for establishing the sizing of the circuit’s components
(R1, R2, C1, C2, C3, C4, C5, and C6).

That is, genetic programming produced a parameterized (i.e., general) solution to the
problem.

Figure 10.15 shows the frequency response of the best-of-run circuit for the nine
in-sample values of frequency. Averaged over the nine in-sample frequencies, the best-
of-run circuit has 0.316 dB average absolute error.

Figure 10.16 shows the frequency response of the target circuit (depicted in figure
10.12) for the nine in-sample values of frequency.
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Figure 10.14 Best-of-run parameterized topology for the active lowpass filter with a free
variable for the passband boundary.
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Figure 10.16 In-sample frequency response for the target circuit of figure 10.12.

Figure 10.15 In-sample frequency response for the best-of-run circuit for the active lowpass
filter with a free variable for the passband boundary.
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Figure 10.18 Out-of-sample frequency response for target circuit for the active lowpass filter
with a free variable for the passband boundary.

Figure 10.17 Out-of-sample frequency response for the best-of-run circuit for the active
lowpass filter with a free variable for the passband boundary.
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Eight out-of-sample frequencies were used to cross-validate the best-of-run cir-
cuit. These frequencies (509, 679, 906, 1,208, 1,611, 2,149, 2,866, and 3,822 Hz) are
spaced halfway (on a logarithmic scale) between each consecutive pair of the original
nine in-sample frequencies.

Figure 10.17 shows the frequency response for the best-of-run circuit from gener-
ation 100 for the eight out-of-sample frequencies. Averaged over the eight out-of-
sample frequencies, the best-of-run circuit has 0.42 dB average absolute error.

Figure 10.18 shows the frequency response for the target circuit (figure 10.12) for
the eight out-of-sample frequencies.

10.5.3 Routineness for the Active Lowpass Filter with 
a Free Variable for the Passband Boundary

For substantially the same reasons stated in section 10.2.3, the result produced in this
section is routine.

10.5.4 AI Ratio for the Active Lowpass Filter with 
a Free Variable for the Passband Boundary

For substantially the same reasons stated in section 10.2.4, the AI ratio for the 
solution produced by genetic programming to the problem involving the active 
lowpass filter with a free variable is moderately high.
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11

Automatic Synthesis of Parameterized
Topologies with Conditional Developmental

Operators for Circuits

Most computer programs contain conditional operators. Conditional operators enable a
single program to execute alternative sequences of steps based on different circum-
stances. The particular sequence that is executed is usually dictated (directly or indirectly)
by the program’s inputs (i.e., instantiations of values for the program’s free variables).

When conditional operators appear in computer programs that have free variables
as inputs and that produce a complex structure during a developmental process, a sin-
gle program may yield topologically and functionally different fully developed struc-
tures. In this connection, the reader is referred to early work by Spector and Stoffel
(1996a, 1996b) on ontogenetic programming.

This chapter demonstrates that circuit-constructing programs that are evolved
using genetic programming may contain conditional developmental operators that
enable a single genetically evolved program to be expressed as different circuits.
Specifically, genetic programming can be used to create circuit-constructing programs
that contain conditional developmental operators that create topologically and func-
tionally different fully developed circuits depending on the program’s inputs (free
variables) at the moment when the program is executed. Thus, conditional operators
enable genetic programming to create a different graph (topological structure) in
response to different instantiations of values for the free variables.

This chapter demonstrates the automatic synthesis of parameterized topologies
with conditional developmental operators by means of illustrative problems in which
the circuit-constructing program trees yield

● either a lowpass or highpass filter (section 11.1),
● either a lowpass filter with a variable passband boundary or a highpass filter with a

variable passband boundary (section 11.2),
● either a quadratic or cubic computational circuit (section 11.3), and
● either a 40 dB or 60 dB amplifier (section 11.4).

Notice that, in this chapter, we are not talking about a circuit that acts as a lowpass
filter, quadratic computational circuit, or 40 dB amplifier at some moments during its



operational lifetime (say, in response to a varying incoming control signal), while act-
ing as a highpass filter, cubic computational circuit, or 60 dB amplifier, respectively,
at other times. Instead, we are talking about a circuit-constructing program tree
(genome) that, at the single moment that the program is executed to create the fully
developed circuit, yields a circuit that operates throughout its entire lifetime as either
a lowpass filter or a highpass filter, either a quadratic or cubic computational circuit,
or either a 40 dB amplifier or a 60 dB amplifier. Using a biological analogy, we are
not talking about a single cell that acts like a liver cell at certain moments during its
lifetime and acts like an eye cell at other times. Instead, we are talking about the
development of either a liver cell or an eye cell such that the fully developed cell oper-
ates as either a liver cell or an eye cell throughout its entire lifetime.

11.1 Lowpass/Highpass Filter Circuit

This section describes the automatic creation of a circuit-constructing program tree
with free variables and conditional developmental operators that yields two function-
ally different circuits (a lowpass filter and highpass filter) depending on the particular
values of two free variables.

Specifically, the inputs to the program tree are the boundary of the passband (F1)
and the boundary of the stopband (F2). In this section, there are only two possible
combinations of values for the two free variables.

● If the boundary of the passband (F1) is 10,000 Hz and the boundary of the stopband
(F2) is 20,000 Hz, a lowpass filter is desired.

● If the boundary of the passband (F1) is 20,000 Hz and the boundary of the stopband
(F2) is 10,000 Hz, a highpass filter is desired.

The three-argument IFGTZ_DEVELOPMENTAL operator enables different parts
of the LISP S-expression (genome) to be expressed (executed) depending on the out-
come of a numerical test. Specifically, if the first (numerical) argument of the
IFGTZ_DEVELOPMENTAL operator is greater than zero, the operator executes its
second (developmental) argument (but not its third argument); otherwise, this opera-
tor executes its third (developmental) argument (but not its second argument).

In this section, both the desired lowpass filter and the desired highpass filter are to
have a stopband attenuation of 60 decibels (1,000-to-1).

11.1.1 Preparatory Steps for the Lowpass/Highpass Filter

11.1.1.1 Initial Circuit The initial circuit for this problem has one input and one
output and is shown in figure 25.6 of Genetic Programming III (Koza, Bennett, Andre,
and Keane 1999a).

The embryo consists of two modifiable wires.
The test fixture has an incoming signal source VSOURCE, a nonmodifiable 1,000-

Ohm source resistor, a voltage probe point VOUT, a nonmodifiable 1,000-Ohm load
resistor, and other nonmodifiable wires. The test fixture has three ports. One port
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makes the input signal VSOURCE available to the developing circuit. A second port
provides access to ground. A third port is connected to the voltage probe point VOUT.

11.1.1.2 Program Architecture The program architecture is the same as in section 10.4.

11.1.1.3 Terminal Set A constrained syntactic structure enforces the use of one
terminal set for the value-setting subtrees, another for all other parts of the result-
producing branch, and yet another for all other parts of the automatically defined
functions.

In this problem, there are two free variables (F1 and F2) representing the bound-
ary of the passband and stopband, respectively.

The numerical parameter value for each electrical component possessing a param-
eter is established by an arithmetic-performing subtree that may contain perturbable
numerical values, arithmetic operations, and the two free variables (F1 and F2). This
approach for establishing numerical parameter values is described in section 3.5.5.3.

Arithmetic-performing subtrees may appear in both result-producing branches and
any automatically defined functions that may be created during the run by the archi-
tecture-altering operations.

The terminal set, Taps, for the arithmetic-performing subtrees is

Taps �{�, F1, F2},

where � denotes perturbable numerical values between �5.0 and �5.0.
The terminal set, Trpb, for all other parts of each result-producing branch is

Trpb �{END, SAFE_CUT}.

Similarly, the terminal set, Tadf, for all other parts of each automatically defined
function is

Tadf �{END, SAFE_CUT}.

11.1.1.4 Function Set A constrained syntactic structure enforces the use of one
function set for the arithmetic-performing subtrees and another function set for all
other parts of the program tree.

The function set, Faps, for the arithmetic-performing subtrees is

Faps �{�, �, *, %, REXP, RLOG}.

The function set, Fccs, for each construction-continuing subtree is

Fccs �{IFGTZ_DEVELOPMENTAL, L, C, SERIES, PARALLEL0, FLIP, NOP,
PAIR_CONNECT_0, PAIR_CONNECT_1, THREE_GROUND_0,
THREE_GROUND_1, ADF0, ADF1, ADF2, ADF3, ADF4}.

11.1.1.5 Fitness Measure Because the high-level statement of the behavior of 
the desired circuit is expressed in terms of frequencies, the output voltage VOUT is
measured in the frequency domain.

The two free variables, F1 and F2, may assume the values (10,000, 20,000) or
(20,000, 10,000). For each of these two combinations, SPICE is instructed to perform
an AC small signal analysis and report the circuit’s behavior over five decades of 
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frequency with each decade being divided into 20 parts (using a logarithmic scale).
Thus, there are a total of 101 sampled frequencies for each such combination of val-
ues of F1 and F2. The starting frequency for each AC sweep is 1 Hz and the ending
frequency is 100,000 Hz. The desired lowpass filter has a passband ending at 10,000
Hz and a stopband beginning at 20,000 Hz. There should be a sharp drop-off from 1
to 0 Volts in its transitional (“don’t care”) region between 10,000 Hz and 20,000 Hz.
The desired highpass filter has a stopband ending at 10,000 Hz and a passband begin-
ning at 20,000 Hz. There should be a sharp rise from 0 to 1 Volt in the transitional
(“don’t care”) region between 10,000 Hz and 20,000 Hz.

The ideal voltage in the desired passband is 1 Volt and the ideal voltage in 
the desired stopband is 0 Volts. A voltage in the desired passband that is between 
970 millivolts and 1 Volt (i.e., a passband ripple of 30 millivolts or less) is regarded as
acceptable. A voltage in the desired stopband that is between 0 Volts and 1 millivolt
(i.e., a stopband ripple of 1 millivolt or less) is regarded as acceptable. Any voltage
lower than 970 millivolts in the desired passband and any voltage above 1 millivolt in
the desired stopband are regarded as unacceptable.

Fitness is the sum, over the two combinations of values of the free variables and
over all 101 frequencies associated with each combination, of the absolute weighted
deviation between the actual value of the voltage that is produced by the circuit at the
probe point VOUT and the target value for voltage (0 or 1 Volt). Specifically,

,

where fj is the frequency of fitness case i; d(x) is the absolute value of the difference
between the target and observed values at frequency x; and W(y,x) is the weighting for
difference y at frequency x. A smaller value of fitness is better.

The fitness measure is designed to slightly penalize every acceptable voltage devi-
ation and heavily penalize every unacceptable deviation. Specifically, for each of the
points in the intended passband, if the voltage is between 970 millivolts and 1 Volt,
the absolute value of the deviation from the ideal voltage of 1 Volt is weighted by a
factor of 1.0. However, if the voltage is less than 970 millivolts, the absolute value of
the deviation from 1 Volt is weighted by a factor of 10.0. The acceptable and unac-
ceptable deviations for each of the points in the intended stopband are similarly
weighted (by 1.0 or 10.0) based on the amount of deviation from the ideal voltage of
0 Volts and the acceptable deviation of 1 millivolt. The “don’t care” points are ignored.

The number of hits is defined as the number (0 to 202) of fitness cases for which
the voltage is acceptable or ideal or that lie in the “don’t care” band.

11.1.1.6 Control Parameters The population size is 10,000,000.

11.1.2 Results for the Lowpass/Highpass Filter

Before proceeding, let us be clear about the nature of the results that we are expecting
in this section. The outcome of the run of genetic programming is a designated best-
of-run circuit-constructing program tree. The inputs to this best-of-run program tree
(or, in fact, any other program tree in the population) will consist of the problem’s free
variables (F1 and F2). Depending on the values of F1 and F2, one of two topologies

F(t) � �
2

k � 1
�
100

i � 0
(W(d(fi),fi)d(fi))
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will be constructed when the circuit-constructing program tree is executed. One topol-
ogy will be applicable when a lowpass filter is desired (i.e., when the boundary of the
passband, F1, is 10,000 Hz and the boundary of the stopband, F2, is 20,000 Hz). The
other topology will be applicable when a highpass filter is desired. In addition, the run
of genetic programming will yield the sizing of all components in both topologies.
Some components will be sized in terms of the problem’s free variables whereas the
sizing of other components will be constant-valued.

The best individual in generation 0 has a fitness of 214.9 and scores 102 hits (out
of 202).

The first glimmerings of the ultimate solution to the problem can be seen as early
as generation 1 in one of the result-producing branches of the following pace-setting
individual:

(FLIP
(IFGTZ_DEVELOPMENTAL
(* F1 (� F1 F2))
(IFGTZ_DEVELOPMENTAL
(* F2 F2)
(L F2 END)
(FLIP END))
(C (DIVIDE_NUMERIC F2 F2) (PARALLEL0 END END END END))))

The first argument of the first IFGTZ_DEVELOPMENTAL operator in this 
S-expression performs the subtraction F1�F2 and then multiplies the difference by
the always-positive quantity F1. If F1�F2 is non-positive (i.e., a lowpass filter is
desired), then the component-creating C function is unconditionally executed (with
the arithmetic-performing subtree returning a value of 1.0), thereby inserting a shunt
capacitor. If the result is positive (i.e., a highpass filter is desired), the second
IFGTZ_DEVELOPMENTAL operator is executed. Because the first argument of the
second IFGTZ_DEVELOPMENTAL operator squares F2, the FLIP is never executed
and the component-creating L function is unconditionally executed (with the arith-
metic-performing subtree returning a value of F2), thereby inserting a shunt inductor.
Thus, even at this early stage of the run, the evolutionary process has discovered that
it is advantageous to insert a capacitor into the developing circuit as a shunt to ground
if a lowpass filter is desired, but to instead insert an inductor if a highpass filter is
desired. The other branch of the circuit-constructing program tree unconditionally
inserts an inductor into the developing circuit in series with the incoming signal
VSOURCE. If F1�F2, the result is a poor lowpass filter composed of a single series
inductor and a single shunt capacitor. If F1
F2, the result is an extremely poor high-
pass filter composed of a single series inductor and a single shunt inductor.

The best-of-run individual emerged in generation 47. The circuit developed from
this best-of-run individual has a near-zero fitness of 0.0519 and scores 202 hits (i.e.,
it is 100% compliant with the problem’s requirements). The result-producing branches
of this best-of-run individual have 230 and 196 points, respectively. There are also two
small automatically defined functions that are not referenced.

The best-of-run individual from generation 47 is a parameterized circuit-
constructing program that yields different topologies based on the particular values of
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two free variables, F1 and F2. Moreover, the sizing of the components in the result-
ing topologically different circuits is not specified entirely by constant numerical val-
ues. Instead, many of the component values are parameterized by mathematical
expressions containing the free variables.

In presenting the best-of-run circuit, there are two cases to consider, namely

● F1 is 10,000 Hertz and F2 is 20,000 Hz (calling for a lowpass filter), or
● F1 is 20,000 Hz and F2 is 10,000 Hz (calling for a highpass filter).

Figure 11.1 shows the best-of-run circuit from generation 47 that develops when
the two inputs to the 426-point program call for a lowpass filter—that is, where the
combination of values for the two free variables (F1 and F2) is 10,000 and 20,000,
respectively. Note that the values of the components in this figure (and other similar
figures in this chapter) are established by mathematical expressions involving the
problem’s free variables (F1 and F2 here). The circuits in this chapter are presented
after instantiating the free variables with their appropriate values.

Figure 11.2 shows the behavior in the frequency domain of the best-of-run circuit
from generation 47. The horizontal axis represents the frequency of the incoming 
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Figure 11.1 Best-of-run circuit when inputs call for a lowpass filter.

Figure 11.2 Behavior of the best-of-run circuit when inputs call for a lowpass filter.



signal and ranges logarithmically over five decades of frequency between 1 Hz and
100,000 Hz. The vertical axis represents the peak voltage of the circuit’s output signal at
each particular frequency and ranges linearly between 0 and �1.0 Volts. As can be seen,
the circuit is a 100%-compliant lowpass filter in that all voltages are near 1 Volt (i.e.,
between 970 millivolts and 1 Volt) for frequencies up to 10,000 Hz and all voltages are
near 0.0 Volts (i.e., between 0 millivolts and 1 millivolt) for frequencies above 20,000 Hz.

This evolved circuit (figure 11.1) is electrically reasonable. As can be seen, this cir-
cuit is the classical ladder design for a lowpass filter (i.e., inductors in series at the top of
the figure and capacitors as shunts to ground). This circuit is a cascade of seven identical
symmetric �-sections (Johnson 1950; Williams and Taylor 1995; Koza, Bennett, Andre,
and Keane 1999a). These sections are called constant K ladder sections. Each �-section
has an equal series inductor L (with inductance of 20,000 microhenrys) forming the hor-
izontal bar along the top of the �. Each �-section also has two equal capacitors (C/2�
10 nanofarads each) in parallel as the shunts forming the vertical legs of each �. (Two 10-
nanofarad capacitors in parallel are equivalent to one 20-nanofarad capacitor). Such 
�-sections are characterized by a characteristic impedance (resistance) and a nominal
cutoff frequency. The section’s characteristic impedance should approximately match the
circuit’s fixed load (1,000 Ohms here). The section’s nominal cutoff frequency should lie
in the transition region between the end of the passband and the beginning of the stop-
band. The formula for the characteristic resistance, R, of each �-section is . 
In this formula, C is 20 nanofarads because the half-shunt value, C/2, is 10 nanofarads.
This formula yields a value of 1,000 Ohms (exactly the value of the load resistor here).
The formula for the nominal cutoff frequency, fc, of each �-section of a lowpass filter is

. This formula yields a nominal cutoff frequency, fc, of 15,915 Hz
(approximately the midpoint of the transition region here). In other words, genetic pro-
gramming produced both a reasonable topology as well as component values that are
close to those that a human would come up with using classical filter design rules.

Figure 11.3 shows the best-of-run circuit from generation 47 that develops when
the inputs to the circuit-constructing program tree call for a highpass filter—that is,
when the combination of values for the two free variables (F1 and F2) is 10,000 and
20,000, respectively.

Figure 11.4 shows the behavior in the frequency domain of the best-of-run circuit
from generation 47. As can be seen, the circuit is a 100%-compliant highpass filter in
that all voltages are near 0.0 Volts (i.e., between 0 millivolts and 1 millivolt) for fre-
quencies up to 10,000 Hz and all voltages are near 1 Volt (i.e., between 970 millivolts
and 1 Volt) for frequencies above 20,000 Hz.

fc � 1/(��LC)

R � �L/C
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In summary, this section demonstrated that genetic programming can automati-
cally create a two-input computer program that correctly produces either a 100%-
compliant lowpass filter or a 100%-compliant highpass filter depending on the values
of the inputs.

11.1.3 Routineness of the Transition from a Parameterized Topology Problem
without Conditional Developmental Operators to a Problem with Conditional
Developmental Operators

The difference between the present lowpass/highpass filter problem and the problems
in chapters 9 and 10 is that the present problem uses a conditional developmental
operator. This difference is implemented by adding the conditional developmental
operator to the function set of the present problem. That is, the transition required to
get genetic programming to successfully handle the present problem is virtually
effortless and therefore, the transition is routine.

11.1.4 AI Ratio for the Lowpass/Highpass Filter Problem

The solution produced by genetic programming to the problem involving the design of
a lowpass/highpass filter with conditional developmental operators is a general solution
to a category of problems. This solution has a moderately high amount of “A.” Except
for the relatively mechanical and minor matter of using a conditional developmental
operator, the preparatory steps for the present problem are substantially the same as the
preparatory steps for the problems in chapters 9 and 10. The solution produced by
genetic programming incorporates a small amount of “I.” As a result, the AI ratio for
the solution produced by genetic programming to the problem involving a lowpass fil-
ter with a conditional developmental operator is moderately high.

11.2 Lowpass/Highpass Filter with Variable Passband Boundary

This section combines some of the features of the problems of section 11.1 (involving
a program that can create either a lowpass or highpass filter) and section 10.4 (involving
a lowpass filter with variable passband boundary). This section describes the automatic
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Figure 11.4 Behavior of the best-of-run circuit when inputs call for a highpass filter.



creation of a circuit-constructing program with free variables and conditional devel-
opmental operators that yields either a lowpass filter with a particular passband
boundary or a highpass filter with a particular passband boundary.

In this section, two functionally and topologically different circuits (lowpass ver-
sus highpass filters) are created depending on the particular values of two free vari-
ables. The boundaries of the passband and the stopband may vary over the range
between 1,000 Hz and 100,000 Hz. The program’s inputs are the boundary of the pass-
band (F1) and the boundary of the stopband (F2). If F1�F2, then a lowpass filter is
desired, whereas if F2
F1, then a highpass filter is desired. Both desired filters are
to have stopband attenuation of 60 decibels (1,000-to-1).

11.2.1 Preparatory Steps for the Lowpass/Highpass Filter with Variable
Passband Boundary

The preparatory steps for this problem are the same as in section 11.1, except as noted
below.

11.2.1.1 Fitness Measure When there are free variables in a problem, it is
necessary to ascertain the behavior and characteristics of each candidate individual for
a representative sample of values for each of the free variables. Multiple combinations
of values of the free variables force generalization of the to-be-evolved circuit.

The boundary of the passband for a lowpass filter (F1) may range over nine equally
spaced values (on a logarithmic scale) between 1,000 Hz and 100,000 Hz, namely
1,000, 1,780, 3,160, 5,620, 10,000, 17,800, 31,600, 56,200, and 100,000 Hz and the
corresponding boundary of the stopband of the lowpass filter (F2) will then be 2,000,
3,560, 6,320, 11,240, 20,000, 35,600, 63,200, 112,400, and 200,000 Hz, respectively.

The boundary of the stopband for a highpass filter (F2) may range over the values
of 1,000, 1,780, 3,160, 5,620, 10,000, 17,800, 31,600, 56,200, and 100,000 Hz and the
corresponding boundary of the passband of the highpass filter (F1) will then be 2,000,
3,560, 6,320, 11,240, 20,000, 35,600, 63,200, 112,400, and 200,000 Hz, respectively.

For each of the 18 combinations of values of the two free variables, F1 and F2,
SPICE is instructed to perform an AC small signal analysis and report the circuit’s
behavior over five decades with each decade being divided into 20 parts (using a log-
arithmic scale). Thus, there are a total of 101 sampled frequencies for each of the 18
combinations of values. The starting frequency for each AC sweep is 1,000 Hz and the
ending frequency is 100,000,000 Hz.

The desired lowpass filter has a passband ending at F1 and a stopband beginning
at 2F1. There should be a sharp drop-off from 1 to 0 Volts in its transitional (“don’t
care”) region between F1 and 2F1. The desired highpass filter has a stopband ending
at F2 and a passband beginning at 2F2. There should be a sharp rise from 0 to 1 Volt
in its transitional (“don’t care”) region between F2 and 2F2.

The ideal voltage in the desired passband is 1 Volt and the ideal voltage in the
desired stopband is 0 Volts. A voltage in the desired passband that is between 970 mil-
livolts and 1 Volt (i.e., a passband ripple of 30 millivolts or less) is regarded as accept-
able. A voltage in the desired stopband that is between 0 Volts and 1 millivolt (i.e., a
stopband ripple of 1 millivolt or less) is regarded as acceptable. Any voltage lower
than 970 millivolts in the desired passband and any voltage above 1 millivolt in the
desired stopband are unacceptable.
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Fitness is the sum, over all 18 combinations of values of the free variables, F1 and
F2, and over all 101 frequencies associated with each combination, of the absolute
weighted deviation between the actual value of the voltage that is produced by the cir-
cuit at the probe point VOUT and the target value for voltage (0 or 1 Volt). Specifically,

,

where fi is the frequency of fitness case i; d(x) is the absolute value of the difference
between the target and observed values at frequency x; and W(y,x) is the weighting for
difference y at frequency x. A smaller value of fitness is better.

The fitness measure is designed not to penalize ideal voltage values, to penalize
slightly every acceptable voltage deviation, and to penalize heavily every unaccept-
able voltage deviation. Specifically, for each of the points in the intended passband, if
the voltage is between 970 millivolts and 1 Volt, the absolute value of the deviation
from 1 Volt is weighted by a factor of 1.0. However, if the voltage is less than 970 mil-
livolts, the absolute value of the deviation from 1 Volt is weighted by a factor of 10.0.
The acceptable and unacceptable deviations for each of the points in the intended
stopband are similarly weighted (by 1.0 or 10.0) based on the amount of deviation
from the ideal voltage of 0 Volts and the acceptable deviation of 1 millivolt. For each
“don’t care” point, the deviation is deemed to be zero.

The number of hits is defined as the number of fitness cases (0 to 1,818) for which
the voltage is acceptable or ideal or that lie in the “don’t care” band.

11.2.2 Results for the Lowpass/Highpass Filter with a Variable 
Passband Boundary

The best individual in generation 0 has a fitness of 3,332.3 and scores 803 hits (out of
1,818).

The first of the two result-producing branches from a pace-setting individual from
generation 1 (with a fitness of 3,186 and 792 hits) contains the first glimmerings of
this problem’s ultimate solution.

(IFGTZ_DEVELOPMENTAL
(*(% F1 F1)
(� F2 F1))

(C (RLOG F1)
(PARALLEL0
(PARALLEL0 END END END END)
END
END
END))

(IFGTZ_DEVELOPMENTAL
(RLOG F2)
(L F2 END)
(L F1 END)

)
)

F(t) � �
2

k � 1
�
9

j � 1
�
100

i � 0
(W(d(fi),fi)d(fi))
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This branch examines the difference between F2 and F1 (after superfluously mul-
tiplying the difference by the quotient of two identical quantities). If F1�F2 (i.e., a
lowpass filter is desired), a capacitor is inserted as a shunt. If F2�F1 (i.e., a highpass
filter is desired), an inductor is inserted. This approach is a reasonable ingredient of
the ultimate solution.

The best-of-run individual emerged in generation 93. The result-producing
branches of this best-of-run individual have 284 and 282 points (i.e., functions and ter-
minals), respectively. There are three automatically defined functions with 1, 92, and
25 points, respectively. The first result-producing branch calls all three automatically
defined functions. The second result-producing branch calls ADF0 and ADF2. ADF0
hierarchically calls ADF2.

The circuit that develops from the best-of-run individual from generation 93 has a
near-zero fitness of 0.63568, and scores 1,818 hits (i.e., it is 100% compliant with the
problem’s requirements).

Figure 11.5 shows the circuit that develops when the inputs to the best-of-run
circuit-constructing program tree from generation 93 call for a highpass filter 
(i.e., F1
F2). Ignoring the fixed source and load resistors that are hard-wired into the
test fixture, the resulting circuit has six capacitors and six inductors. The values of the 
12 components in the resulting circuit are not specified by constant numerical values,
but instead, by mathematical expressions containing one or more of the problem’s free
variables. Genetic programming produced this circuit’s overall topology as well as the
12 mathematical expressions for specifying the component values for the circuit’s six
inductors and six capacitors. As it happens, all the genetically evolved mathematical
expressions involve F2 in this figure. That is, genetic programming produced a para-
meterized (i.e., general) circuit.

As can be seen in figure 11.5, when the inputs to the program tree call for a high-
pass filter, the best-of-run circuit-constructing program tree from generation 93 devel-
ops into the classical ladder design for a highpass filter (i.e., capacitors in series at the
top of the figure and inductors as shunts to ground). In addition, the rungs of the lad-
der have approximately identical sections. This ladder approximates a classical “con-
stant K” ladder whose inductors have approximately a value of L of 56.2/F2 Henrys
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Figure 11.5 Best-of-run circuit when inputs call for a highpass filter (i.e., F1
F2).
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and whose capacitors have approximately a value of C of 51/F2 microfarads. The
design formulas for “constant K” highpass filters are

and

.

Inserting these values of L and C into these formulae yields a value for R of 1,050
Ohms (approximately the value of the load resistor) and a value for fc of 1.5F2 (the
midpoint of the transition region). In other words, genetic programming produced
both a reasonable topology as well as component values that are close to those that a
human would come up with using classical rules of filter design.

Figure 11.6 shows the behavior in the frequency domain of the best-of-run circuit
from generation 93 that develops when the inputs to the program tree call for a highpass
filter for the nine frequencies. The horizontal axis of the figure represents the frequency
of the incoming signal and ranges logarithmically over the four decades of frequency
between 100 Hz and 1,000,000 Hz. The vertical axis represents the peak voltage of the
circuit’s output signal for each frequency and ranges linearly between 0 and �1.2 Volts.
As can be seen, the circuit is a 100%-compliant highpass filter for all nine frequencies.
In particular, for frequencies below F2, the amplitude of the voltages are all near 0.0
Volts (i.e., between 0 millivolts and 1 millivolt), as required by the design specifications
of the desired highpass filter. Also note that, for frequencies above F1, the amplitude of
the voltages are all near 1 Volt (i.e., between 970 millivolts and 1 Volt).

fc �
1

4��LC

R � �L/C
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Figure 11.6 Frequency domain behavior of the best-of-run circuit when inputs call for a
highpass filter.
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Table 11.1 shows the values for the circuit’s 12 components (six inductors and six
capacitors) when the program’s inputs call for a highpass filter. Frequencies are in
Hertz; inductances are in microhenrys; and capacitances are in nanofarads. Several of
the components have identical values, so the table shows only five distinct values for
the highpass filter.

Figure 11.7 shows the circuit that develops when the inputs to the best-of-run cir-
cuit-constructing program tree from generation 93 call for a lowpass filter. Notice that,
except for the fixed 1,000-Ohm source and 1,000-Ohm load resistors that are hard-
wired into the test fixture, the component sizing is not specified by constant numeri-
cal values. Instead, each component value is specified by a mathematical expression
containing one or more of the problem’s free variables. Genetic programming pro-
duced this circuit’s overall topology as well as the nine mathematical expressions for
specifying the component values for the circuit’s five inductors and four capacitors. As
it happens, all the genetically evolved mathematical expressions involve F1 in this fig-
ure. That is, genetic programming produced a parameterized (i.e., general) circuit.
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Table 11.1 Component values for the best-of-run circuit when inputs call for a
highpass filter

Start of transition C1 C2 and C4 C3, C5, and C6 L1, L2, L3, L6
band (Hertz) (nF) (nF) C6 (nF) L4, and L5 (�H) (�H)

1,000 100.0 57.2 49.9 56,300 100,000
1,778 56.2 32.1 28.1 31,700 63,300
3,162 31.6 18.1 15.8 17,800 35,600
5,623 17.8 10.2 8.88 10,000 20,000
10,000 10.0 5.72 4.99 5,630 11,300
17,782 5.62 3.21 2.81 3,170 6,330
31,622 3.16 1.81 1.58 1,780 3,560
56,234 1.78 1.02 0.888 1,000 2,000
100,000 1.0 0.572 0.499 563 1,130

Figure 11.7 Best-of-run circuit when inputs call for a lowpass filter.
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The circuit in figure 11.7 is (approximately) another “constant K” lowpass ladder
filter with L�220/F1 henrys and C�201/F1 microfarads. Using the formulae men-
tioned earlier, the calculated value of R is 1,046 Ohms and the calculated value of fc
is 1.51F1.

Figure 11.8 shows the behavior in the frequency domain of the circuit in figure
11.7 for the nine frequencies used as the start of the transition band. As can be seen,
the circuit is a 100%-compliant lowpass filter for each of the nine frequencies.

Table 11.2 shows the values for the circuit’s nine components (five inductors and
four capacitors) when the program’s inputs call for a lowpass filter. Several of the
components have identical values, so the table shows only six distinct values for the
highpass filter.

Figure 11.9 shows component values in table 11.1 (for the highpass filter) for the
five components with distinct values. Both axes use a logarithmic scale.
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Figure 11.8 Frequency domain behavior of the best-of-run circuit when inputs call for a
lowpass filter.
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Table 11.2 Component values for the best-of-run circuit when inputs call for a lowpass filter

Start of transition L1 L2, L3, and L5 C1 C2 and C3 C4
band (Hertz) (�H) L4 (�H) (�H) (nF) (nF) (nF)

1,000 100,000 200,000 58,900 183 219 91.7
1,778 63,400 123,000 33,100 103 123 51.6
3,162 35,600 69,000 18,600 58 69.2 29.0
5,623 20,000 38,800 10,500 32.6 38.9 16.3
10,000 11,300 21,800 5,890 18.3 21.9 9.17
17,782 6,340 12,300 3,310 10.3 12.3 5.16
31,622 3,560 6,900 1,860 5.8 6.92 2.90
56,234 2,000 3,880 1,050 3.26 3.89 1.63
100,000 1,130 2,180 589 1.83 2.19 0.917



As can be seen from figure 11.9, the component values for all five distinct com-
ponents for all nine frequencies lie along straight lines. The following formulae (all of
which have the frequency F2 in the denominator) represent the relationships between
the component values and frequencies for the highpass filter:

,

,

,

,

.

This inverse proportionality is exactly what you would expect as a means to make
a filter scalable over a wide range of frequencies when the impedance (i.e., the load
and source resistance here) is fixed (Van Valkenburg 1982).

Note that the above equations yield a value of 113,000 
H for L6 for F2�
1,000 Hz, whereas table 11.1 shows a value of 100,000 
H. This slight discrepancy
for L6 is an artifact of our limiting of component values in the final circuit to a 
prespecified range.

Six plots for the parameterized lowpass filter (not shown here, but similar to those
of figure 11.9) reveal that the component values for the six distinct components for all
nine frequencies also lie along straight lines. The following formulae (all of which
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Figure 11.9 Comparison of component values for the highpass filter.
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have the frequency F1 in the denominator) represent the relationships between the
component values and frequencies in the parameterized lowpass filter:

,

,

,

,

,

.

The question arises as to how well the genetically evolved parameterized filter
from generation 93 generalizes to previously unseen values of F1 and F2. The evolu-
tionary process is driven by fitness as measured by a particular set of 18 combinations
of in-sample values of F1 and F2. The possibility exists that the circuit that is evolved
with a small number of in-sample values of these variables will be overly specialized
to those particular values and will prove to be inapplicable to other unseen values of
those variables.

Figure 11.10 shows the behavior, in the frequency domain, of the genetically
evolved parameterized filter from generation 93 when the inputs call for a highpass fil-
ter for four out-of-sample values of the frequencies F1 and F2. Two of the values of

C4 �
91,700 nF

F1
�

91.7 �F
F1

C2,C3 �
219,000 nF

F1
�

219 �F
F1

C1 �
183,000 nF

F1
�

183 �F
F1

L5 �
58,900,000 �H

F1
�

58.9 H
F1

L2, L3, L4 �
218,000,000 �H

F1
�

218 H
F1

L1 �
113,000,000 �H

F1
�

113 H
F1

356 Genetic Programming IV

Figure 11.10 Frequency domain behavior of the best-of-run circuit for four out-of-sample
values of frequency when inputs call for a highpass filter.
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F1 are from inside the range between 1,000 Hz and 100,000 Hz. They are 4,640 Hz
(the antilog of 3 2/3) and 21,540 Hz (the antilog of 4 1/3). Two others are from out-
side the range, namely 900 Hz and 110,000 Hz. This best-of-run circuit from genera-
tion 93 is 100% compliant for these four out-of-sample frequencies.

Figure 11.11 shows the behavior, in the frequency domain, of the genetically evolved
parameterized filter from generation 93 when inputs call for a lowpass filter for the 
same four out-of-sample values of frequency F1 and F2. Again, the genetically evolved
parameterized filter is 100% compliant for these four out-of-sample frequencies.

For additional information, see Koza, Yu, Keane, and Mydlowec 2000b.
This section demonstrated that genetic programming could automatically create a sin-

gle two-input circuit-constructing program that contains both conditional developmental
operators and inputs (free variables) and that produces either a lowpass or highpass filter
with specified boundaries for its passband and stopband. The single evolved computer
program represents the solution to multiple instances of the problem. The ability of a sin-
gle evolved program to represent the solution to multiple instances of a problem is made
possible by the fact that the evolutionary search was conducted in the space of computer
programs containing conditional developmental operators and free variables.

11.2.3 Routineness for the Lowpass/Highpass Filter with a Variable 
Passband Boundary

For substantially the same reasons stated in section 11.1.3, the transition required to
obtain the result produced in this section is routine.

11.2.4 AI Ratio for the Lowpass/Highpass Filter with a Variable 
Passband Boundary

For substantially the same reasons stated in section 11.1.4, the AI ratio for the 
solution produced by genetic programming to the problem involving the lowpass
third-order elliptic filter with a free variable is moderately high.
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Figure 11.11 Frequency domain behavior of the best-of-run circuit for four out-of-sample
values of frequency when inputs call for a lowpass filter.
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11.3 Quadratic/Cubic Computational Circuit

This section describes the automatic creation of a circuit-constructing program with
free variables and conditional developmental operators that yields either a quadratic or
cubic computational circuit.

Specifically, the free variable TARGET is the input to the program tree. This free
variable may assume the value of either 2 (for quadratic) or 3 (for cubic).

11.3.1 Preparatory Steps for the Quadratic/Cubic Computational Circuit

11.3.1.1 Initial Circuit This problem uses a one-input, one-output initial circuit
(figure 11.12) with one modifiable wire. The one-input, one-output initial circuit has
an incoming signal source VIN, a 1-micro-Ohm source resistor RSOURCE, a �15V
power source, a �15-Volt power source, a voltage probe point VOUT, and a 1,000-
Ohm load resistor RLOAD.

11.3.1.2 Program Architecture Because there must be one result-producing branch
in the program tree for each modifiable wire in the embryo and there is one modifiable
wire in the embryo, the architecture of each circuit-constructing program tree has one
result-producing branch. Automatically defined functions and the architecture-altering
operations are not used.

11.3.1.3 Function Set A constrained syntactic structure enforces the use of one
function set for the arithmetic-performing subtrees associated with the
IFGTZ_DEVELOPMENTAL function, another for the first argument of the
TWO_LEAD function, and yet another for all other parts of the program tree.

The function set, Faps-ifgtz, for the arithmetic-performing subtrees is

Faps-ifgtz �{�, �, *, %, RLOG, EXP}.

The function set, Ftwo-lead, for the first argument of the TWO_LEAD function is

Ftwo-lead �{R_NEW, C_NEW}.

Figure 11.12 One-input, one-output initial circuit with one floating modifiable wire.



The function set, Fccs, for each construction-continuing subtree is

Fccs �{IFGTZ_DEVELOPMENTAL, Q, TWO_LEAD, SERIES, PARALLEL_NEW,
TWO_GROUND, THREE_GROUND, NODE, INPUT_0, OUTPUT_0,
TWO_POS15V, TWO_NEG15V}.

The two-argument TWO_POS15V (“positive reference voltage source”) function
enables any part of a circuit to be connected to the constant �15.0-Volt DC power
source (e.g., a battery). The TWO_POS1V, TWO_POS2V, TWO_POS5V, and
TWO_NEG15V functions operate in a similar way.

11.3.1.4 Terminal Set In this problem, the free variable is TARGET. This free
variable may assume the value of either 2 (for quadratic) or 3 (for cubic).

A constrained syntactic structure enforces the use of one terminal set for the arith-
metic-performing subtrees associated with the IFGTZ_DEVELOPMENTAL function,
another for the value-setting subtree for the component-creating functions, and yet
another for all other parts of the program tree.

The terminal set, Tvss-ifgtz, for the value-setting subtrees associated with the
IFGTZ_DEVELOPMENTAL function is

Tvss-ifgtz �{�p, TARGET},

where �p denotes a perturbable numerical value.
The terminal set, Tvss-components, for the value-setting subtrees for component-

creating functions is

Tvss-components �{�p},

where �p denotes a perturbable numerical value.
The remainder of the specification for the terminal set for this problem is the same

as that found in section 10.5.1.4.

11.3.1.5 Fitness Measure The purpose of the quadratic/cubic computational circuit
is to produce an output voltage (probed at VOUT) that is equal to the square or cube
of the input voltage, depending on whether the value of the free variable terminal
(TARGET) is 2 or 3, respectively.

Fitness is measured using two sets (one for squaring, one for cubing) of four time-
domain fitness cases involving input signals of various shapes and time scales. The four
fitness cases for each desired function (i.e., squaring or cubing) are the same except that
the target voltage is either the square or cube of the input voltage, respectively.

The first fitness case is a ramp that rises from 0 Volts to 1 Volt over a period of 1
millisecond.

The second fitness case is a single full cycle of a sine wave ranging between 0
Volts and �1 Volt over a period of 1 millisecond.

The third fitness case is a ramp that falls from 1 Volt to 0 Volts over a period of 10
milliseconds.

The fourth fitness case is a constant input of 0.5 Volts over a period of 10 milliseconds.
There are 100 time steps associated with each fitness case.
Fitness is the sum, over the four fitness cases and 101 time values for each fitness

case, of the absolute value of the weighted difference between the square or cube (as
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appropriate) of the input voltage and circuit’s actual output. The weight is 1.0 if the
absolute value of the difference is less than 1 millivolt or within 1% of the correct
value, but 10.0 otherwise.

11.3.1.6 Control Parameters The population size is 1,000,000.

11.3.2 Results for the Quadratic/Cubic Computational Circuit

All occurrences of the IFGTZ_DEVELOPMENTAL operator for which the conditional
part always evaluates to true or false have been removed from the LISP S-expressions
presented in this section.

The LISP S-expression for the best-of-generation individual for generation 0
codes for a circuit that consists of a single 776-Ohm resistor located between the cir-
cuit’s input and output. It contains no non-degenerate occurrences of the
IFGTZ_DEVELOPMENTAL operator.

(TWO-LEAD (R_NEW -0.1157337) (SERIES (SERIES END SAFE-CUT
END) (SERIES SAFE-CUT END END) (INPUT_0 END END)) (SERIES
(OUTPUT_0 SAFE-CUT SAFE-CUT) (INPUT_0 END SAFE-CUT)
(SERIES SAFE-CUT END SAFE-CUT)))

Prior to generation 32, there is no instance of a functioning genetic switch in any
pace-setting individual. In this initial part of the run, individuals typically achieve
modest levels of fitness by producing a single output (independent of the free variable)
that is either near the quadratic or cubic curve or intermediate between the two.

The first effective instance of the use of a genetic switch in a pace-setting individ-
ual appears in a pace-setting individual from generation 32. In the S-expression below
(and throughout this section), the operative genetic switch is underlined; the code spe-
cific to the squaring circuit is in bold; and the code specific to the cubing circuit is in
italics.

(TWO-LEAD (R_NEW 0.4040401) (SERIES (SERIES (TWO_POS15V
END SAFE-CUT) SAFE-CUT (TWO_NEG15V END SAFE-CUT)) SAFE-CUT
(SERIES SAFE-CUT SAFE-CUT SAFE-CUT)) (INPUT_0 (OUTPUT_0
(Q_NEW Q2N3906 BIFURCATE_POSITIVE E_C_B END SAFE-CUT SAFE-
CUT) END) (INPUT_0 SAFE-CUT (IFGTZ_DEVELOPMENTAL (* (log
(� (% (log (log TARGET)) TARGET) (� �0.9049953 TARGET)))
(exp (% TARGET TARGET))) (SERIES END (TWO-LEAD (R_NEW
0.4973120) END (OUTPUT_0 (NODE END END) (SERIES END END
SAFE-CUT))) SAFE-CUT) (TWO-LEAD (R_NEW 0.4040401) END
(OUTPUT_0 (NODE END END) (SERIES END END SAFE-CUT)))))))

When a squaring circuit is called for, the S-expression for the pace-setting individ-
ual from generation 32 produces a circuit that has one transistor and two resistors and
that makes one connection to the positive power supply, one connection to the negative
power supply, two connections to the input, and two connections to the output.

When a cubing circuit is called for, the S-expression for the pace-setting individ-
ual from generation 32 produces a circuit with the same topology as for the squaring
circuit. However, the difference between the code in italics and the code in bold in the
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above S-expression causes one of the resistors in the squaring circuit to be 2,540
Ohms, but 3,140 Ohms in the cubing circuit.

The best-of-run circuit emerged in generation 241. When the genetic switch calls
for a squaring circuit, this best-of-run individual yields a circuit with an average
absolute error of 4.68 millivolts. When the genetic switch calls for a cubing circuit, this
best-of-run individual yields a circuit with an average absolute error of 5.27 millivolts.

Figure 11.13 shows the best-of-run circuit from generation 241 when the genetic
switch calls for a squaring circuit.

Figure 11.14 shows the best-of-run circuit from generation 241 when the genetic
switch calls for a cubing circuit.

Figure 11.13 Best-of-run circuit when the genetic switch calls for a squaring circuit.



The LISP S-expression for the best of run individual from generation 241 appears
below.

(Q_NEW Q2N3906 BIFURCATE_NEGATIVE E_C_B (Q_NEW Q2N3904
BIFURCATE_POSITIVE C_B_E END (INPUT_0 (TWO_POS15V END
(NODE END SAFE-CUT)) (Q_NEW Q2N3906 BIFURCATE_NEGATIVE
B_C_E SAFE-CUT END END)) (NODE (IFGTZ_DEVELOPMENTAL (�
�4.410578 (� �0.8668906 (� TARGET TARGET))) (TWO-LEAD
(R_NEW 0.4973120) END (Q_NEW Q2N3904 BIFURCATE_NEGATIVE
E_B_C (Q_NEW Q2N3904 BIFURCATE_NEGATIVE B_E_C (OUTPUT_0
END END) (INPUT_0 SAFE-CUT END) (OUTPUT_0 END END)) 
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Figure 11.14 Best-of-run circuit when the genetic switch calls for a cubing circuit.



SAFE-CUT (TWO-LEAD (C_NEW 0.5471030) (TWO-LEAD (R_NEW
0.4610370) (Q_NEW Q2N3906 BIFURCATE_NEGATIVE C_E_B
(INPUT_0 (Q_NEW Q2N3906 BIFURCATE_NEGATIVE C_E_B SAFE-CUT
END SAFE-CUT) (OUTPUT_0 END SAFE-CUT)) (Q_NEW Q2N3904
BIFURCATE_POSITIVE B_C_E END (INPUT_0 (TWO_POS15V END
(TWO-LEAD (R_NEW �2.373404) END SAFE-CUT)) (Q_NEW Q2N3906
BIFURCATE_NEGATIVE B_C_E SAFE-CUT END END)) (SERIES END
END SAFE-CUT)) (PARALLEL_NEW DOWN_OR_RIGHT SAFE-CUT (Q_NEW
Q2N3904 BIFURCATE_POSITIVE C_B_E END (TWO_NEG15V
(TWO_NEG15V SAFE-CUT END) (SERIES END END END)) END)
(THREE_GROUND END END END) (SERIES END END END)))
(TWO_GROUND SAFE-CUT (TWO_POS15V END (NODE END SAFE-
CUT)))) (INPUT_0 SAFE-CUT SAFE-CUT)))) (Q_NEW Q2N3906
BIFURCATE_NEGATIVE C_B_E (Q_NEW Q2N3904 BIFURCATE_POSITIVE
C_B_E END (INPUT_0 (TWO_POS15V END (NODE END END)) (Q_NEW
Q2N3906 BIFURCATE_NEGATIVE B_C_E SAFE-CUT END END)) (NODE
(TWO-LEAD (R_NEW 0.3975176) END (Q_NEW Q2N3904 
BIFURCATE_NEGATIVE E_B_C (Q_NEW Q2N3904 BIFURCATE_NEGATIVE
B_E_C (OUTPUT_0 END END) (INPUT_0 SAFE-CUT SAFE-CUT) 
(OUTPUT_0 END END)) SAFE-CUT (NODE (TWO-LEAD (R_NEW
�1.265278) (TWO-LEAD (R_NEW 0.3975176) (Q_NEW Q2N3906
BIFURCATE_NEGATIVE C_E_B (INPUT_0 (Q_NEW Q2N3906 
BIFURCATE_NEGATIVE C_E_B SAFE-CUT END SAFE-CUT) (OUTPUT_0
END SAFE-CUT)) (Q_NEW Q2N3906 BIFURCATE_NEGATIVE C_E_B
SAFE-CUT END SAFE-CUT) (NODE SAFE-CUT SAFE-CUT))
(TWO_GROUND (THREE_GROUND END SAFE-CUT SAFE-CUT)
(THREE_GROUND SAFE-CUT SAFE-CUT END))) (NODE SAFE-CUT
SAFE-CUT)) (INPUT_0 SAFE-CUT SAFE-CUT)))) END))
(TWO_NEG15V (TWO_NEG15V (TWO_NEG15V SAFE-CUT END)
(TWO_POS15V END (TWO-LEAD (R_NEW �2.360147) END SAFE-CUT)))
(Q_NEW Q2N3906 BIFURCATE_POSITIVE E_B_C SAFE-CUT SAFE-CUT
(THREE_GROUND END END END))) (SERIES SAFE-CUT (INPUT_0 END
SAFE-CUT) END))) (OUTPUT_0 (Q_NEW Q2N3906 BIFURCATE_
POSITIVE B_C_E SAFE-CUT END SAFE-CUT) SAFE-CUT))) (INPUT_0
(TWO-LEAD (R_NEW 4.023496) (NODE (NODE (SERIES END END
SAFE-CUT) (SERIES (TWO_POS15V END SAFE-CUT) END
(TWO_NEG15V END (Q_NEW Q2N3906 BIFURCATE_NEGATIVE E_C_B
SAFE-CUT SAFE-CUT END)))) (INPUT_0 (Q_NEW Q2N3906 BIFUR-
CATE_NEGATIVE E_C_B END END SAFE-CUT) (OUTPUT_0 SAFE-CUT
SAFE-CUT))) SAFE-CUT) END) (THREE_GROUND SAFE-CUT END
(Q_NEW Q2N3904 BIFURCATE_NEGATIVE C_B_E END END END))).

As can be seen from figures 11.13 and 11.14, this S-expression codes for two dis-
tinctly different circuits depending on the value of the free variable TARGET. These
two different circuits deliver the appropriate quadratic output and the appropriate
cubic output, respectively.
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11.4 A 40/60 dB Amplifier

This section describes the automatic creation of a circuit-constructing program with
free variables and conditional developmental operators that yields either a 40 dB or 60
dB amplifier.

Specifically, the free variable TARGET is the input to the program tree. This free
variable may assume the value of either 40 or 60.

11.4.1 Preparatory Steps for the 40/60 dB Amplifier

The preparatory steps are the same as for quadratic/cubic computational circuit in the
11.3.1, except as noted below.
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Figure 11.15 Best-of-run circuit when the genetic switch calls for a 40 dB amplifier.



11.4.1.1 Initial Circuit The 40–60 dB amplifier problem uses a one-input, one-
output initial circuit with one modifiable wire. The initial circuit has an incoming signal
source, a 1-micro-Ohm source resistor RSOURCE, a voltage probe point VOUT, and a
1,000-Ohm load resistor RLOAD. Figure 11.12 shows the topology of this initial circuit.

11.4.1.2 Terminal Set The free variable TARGET may assume the value of either
40 or 60.

11.4.1.3 Fitness Measure The purpose of the 40–60 dB amplifier is to produce an
output voltage (probed at VOUT) with an amplification factor of 100 (40 dB) or 1,000
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Figure 11.16 Best-of-run circuit when the genetic switch calls for a 60 dB amplifier.



(60 dB) depending on whether the value of the free variable terminal (TARGET) is 40
or 60, respectively.

Fitness is measured using two time-domain fitness cases, one for each desired
amplification factor.

The first fitness case (associated with a desired amplification of 40 dB) is a 1,000
Hz sine wave ranging between �10 millivolts and �10 millivolts over a period of 1
millisecond.

The second fitness case (associated with a desired amplification of 60 dB) is a
1,000 Hz sine wave ranging between �10 millivolts and �10 millivolts over a period
of 1 millisecond.

When a 40 dB amplifier is desired, the designed output is a sine wave between �1
and �1 Volt that is 180 degrees out of phase with respect to the input voltage. When
a 60 dB amplifier is desired, the desired output is a sine wave between �10 and 
�10 Volts that is 180 degrees out of phase with respect to the input voltage.

There are 100 time steps associated with each fitness case.
Fitness is the sum, over the two fitness cases and 101 time values for each fitness

case, of the absolute value of the weighted difference between the desired output and
circuit’s actual output. The weight is 1.0 if the absolute value of the difference is
within 5% of the correct value, but 10.0 otherwise.

11.4.1.4 Control Parameters The population size is 2,000,000.

11.4.2 Results for 40/60 dB Amplifier

The best-of-run individual emerged at generation 332.
When the genetic switch calls for a 40 dB amplifier, this best-of-run individual

yields a circuit with an amplification of 40.1 dB. This circuit (figure 11.15) produces
an inverted sine wave whose minimum value is 967 millivolts and whose maximum
value is 1.06 Volts.

When the genetic switch calls for a 60 dB amplifier, this best-of-run individual
yields a circuit with an amplification of 59.3 dB. This circuit (figure 11.16) produces
an inverted sine wave whose minimum value is �7.27 Volts and whose maximum
value is 11.1 Volts.
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The PID controller was patented in 1939 by Albert Callender and Allan Stevenson of
Imperial Chemical Limited of Northwich, England (Callender and Stevenson 1939).
The PID controller was an enormous improvement over previous manual and auto-
matic methods for control.

In 1942, Ziegler and Nichols published a paper entitled “Optimum Settings for
Automatic Controllers” in which they developed a set of mathematical rules for auto-
matically selecting the parameter values associated with the proportional, integrative,
and derivative blocks of a PID controller (Ziegler and Nichols 1942). The Ziegler-
Nichols PID tuning rules do not require an analytic model of the plant. Instead, they
are based on several parameters that provide a simple characterization of the to-be-
controlled plant. These parameters have the practical advantage of being measurable
for plants in the real world by means of relatively straightforward testing in the field.
The Ziegler-Nichols rules have been in widespread use for tuning PID controllers
since World War II.

The quality of PID tuning rules is of considerable practical importance because a
small percentage improvement in the operation of a plant can translate into large eco-
nomic savings or other (e.g., environmental) benefits.

Thus, the question arises as to whether it is possible to improve upon the Ziegler-
Nichols tuning rules.

Åström and Hägglund answered that question in the affirmative in their important
1995 book PID Controllers: Theory, Design, and Tuning. In that book, Åström and
Hägglund identified four families of plants “that are representative for the dynamics
of typical industrial processes.”

The first of the four families of plants in Åström and Hägglund 1995 consists of
plants represented by transfer functions of the form

, [A]

where T�0.1,…, 10.

G(s) �
e�s

(1 � sT)2

12
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The second of the four industrially representative families of plants consists of the
n-lag plants represented by transfer functions of the form

, [B]

where n�3, 4, and 8.
The third family consists of plants represented by transfer functions of the form

, [C]

where ��0.2, 0.5, and 0.7.
The fourth family consists of plants represented by transfer functions of the form

, [D]

where ��0.1, 0.2, 0.5, 1.0, and 2.0.
In their 1995 book, Åström and Hägglund developed rules for automatically tun-

ing PID controllers for the 16 plants from these four industrially representative fami-
lies of plants.

The PID tuning rules developed by Åström and Hägglund (like those of Ziegler
and Nichols) are based on several parameters representing important overall charac-
teristics of the plant that can be obtained by straightforward testing in the field.

In one version of their method, Åström and Hägglund characterize a plant by two
frequency-domain parameters. The first is the ultimate gain, Ku (the minimum value of
the gain that must be introduced into the feedback path to cause the system to oscillate).
The second is the ultimate period, Tu (the period of this lowest frequency oscillation).

In another version of their method, Åström and Hägglund characterize a plant by
two time-domain parameters, namely the time constant, Tr, and the dead time, L (the
period before the plant output begins to respond significantly to a new reference sig-
nal). Åström and Hägglund describe a procedure for estimating these two time-
domain parameters from the plant’s response to a simple step input.

Åström and Hägglund set out to develop new tuning rules to yield improved per-
formance with respect to the multiple (often conflicting) issues associated with most
practical control systems including setpoint response, disturbance rejection, sensor
noise attenuation, and robustness in the face of plant model changes as expressed 
by the stability margin. In their 1995 book, Åström and Hägglund approached the
challenge of improving on the 1942 Ziegler-Nichols tuning rules with a shrewd 
combination of mathematical analysis, domain-specific knowledge, rough-and-ready
approximations, creative flair, and intuition sharpened over years of practical experi-
ence. They started by identifying a large number of analytic plant models that are rep-
resentative of the plants encountered in industry. Next, they characterized each of the
plants in their test bed in terms of a small number of parameters that are easily meas-
ured in the field. Then they applied the known analytic design technique of dominant
pole design to the analytic plant models and recorded the resulting parameters for PID
controllers produced by this technique. They decided that functions of the form

f(x)�a0 *ea1x � a2x2
,

G(s) �
1 � �s
(s � 1)3

G(s) �
1

(1 � s)(1 � �s)(1 � �2s)(1 � �3s)

G(s) �
1

(1 � s)n
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where x�1/Ku, were the appropriate form for the tuning rules. Finally, they fit approx-
imating functions of the chosen form to the PID controller parameters produced by the
dominant pole design technique.

The tuning rules developed by Åström and Hägglund in their 1995 book outper-
form the 1942 Ziegler-Nichols tuning rules on all 16 industrially representative plants
used by Åström and Hägglund. As Åström and Hägglund observe,

“[Our] new methods give substantial improvements in control performance while
retaining much of the simplicity of the Ziegler-Nichols rules.”

Figure 12.1 shows the topology of the PID controller used by Åström and
Hägglund. The inputs to this controller consist of the reference signal 200 and the
plant output 202 (the feedback). The square 260 containing the expression 1/s repre-
sents integration whereas the square 290 containing the expression s represents dif-
ferentiation. The rectangles 210, 230, 250, and 280 each represent gain blocks. The
square 270 is a gain block with an amplification factor of �1. The circle 232 with pos-
itive signs on all three of its inputs is a three-argument adder. The circles (220 and
240) with a positive sign on one input and a negative sign on the other input represent
subtractors. The controller’s output 234 is the three-argument sum 232 of the result
produced by gain block 230, integrator 260, and differentiator 290.

The controller of figure 12.1, like many controllers, employs setpoint weighting in
the proportional (P) block. Specifically, reference signal 200 is weighted by gain 210
prior to being fed into subtractor 220. The fed-back plant output 202 is then subtracted
(at 220) from the weighted reference signal coming out of gain block 210.

Setpoint weighting is sometimes also used in the derivative (D) portion of some
PID controllers. However, in the Åström-Hägglund tuning rules, the weighting applied
to the reference signal in the derivative block is zero. The weighting of zero is mani-
fested in figure 12.1 by the presence of a gain block 270 with a gain of �1. That is,
the input to the gain block 280 associated with the derivative block 290 is merely the
negated plant output 202 (instead of the difference between a weighted reference sig-
nal and the plant output).
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Figure 12.1 The topology of a PID controller with nonzero setpoint weighting of the
reference signal in the proportional block but no setpoint weighting for the derivative block.
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Setpoint weighting is generally not used for the input to the gain block associated
with a controller’s integrative (I) block.

As mentioned earlier, the PID tuning rules developed by Åström and Hägglund in
their 1995 book can be succinctly expressed by four equations of the form

f(x)�a0*ea1x � a2x2
,

where x�1/Ku

Equation 1 implements setpoint weighting 210 of the reference signal 200 (the set-
point) for the proportional (P) part of figure 12.1. Equation 1 specifies that the setpoint
weighting, b, is given by

b�0.25*e((0.56/Ku)�(�0.12/Ku
2
)). [1]

Equation 2 in figure 12.1 specifies the gain, Kp, for the proportional (P) block 230
of the controller.

Kp �0.72*Ku*e((�1.6/Ku)�(1.2/Ku
2)). [2]

Equation 3 in figure 12.1 specifies the gain 250, Ki, that is associated with the
input to the integrative (I) block 260.

. [3]

Equation 4 in figure 12.1 specifies the gain 280, Kd, that is associated with the
input to the derivative (D) block 290.

Kd �0.108*Ku*Tu*e((�1.6/Ku) � (1.2/Ku
2))*e((�1.4/Ku) � (0.56/Ku

2)). [4]

The transfer function for the Åström-Hägglund PID controller is

where A is the output of the Åström-Hägglund controller, R is the reference signal, P
is the plant output, and b, Kp, Ki, and Kd are given by the four equations above. Note
that only �P (as opposed to R�P) appears in the derivative term of this transfer func-
tion because Åström and Hägglund apply a setpoint weighting of zero to the reference
signal R in the derivative block.

In this chapter, genetic programming is used to discover PID tuning rules that
improve upon the tuning rules developed by Åström and Hägglund in their 1995 book.
The topology of the to-be-evolved controller is not open-ended in this chapter, but
instead, is prespecified to be the PID topology. In the next chapter (chapter 13), the
topology will be open-ended and genetic programming will be used to synthesize both
topology and tuning of improved controllers. As it turns out, all these improved con-
trollers will be non-PID controllers.

The fitness measure used in this chapter considers plants from the same four fam-
ilies used by Åström and Hägglund. The resulting parameterized tuning rules are para-
meterized (i.e., general) in the sense that they incorporate free variables and provide a
solution to an entire category of problems (i.e., the control of all the plants in all the
families).

A � Kp(b*R � P) �
Ki
s (R � P) � Kd*s*(�P),

Ki �
0.72*Ku*e((�1.6/Ku)�(1.2/Ku

2))

0.59*Tu*e((�1.3/Ku)�(0.38/Ku
2))
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12.1 Test Bed of Plants

Before proceeding, we present a test bed of plants that are used to compare the per-
formance of a PID controller tuned using the Åström-Hägglund tuning rules with that
of a PID controller tuned using the genetically evolved tuning rules. This test bed is
used in this chapter and in chapter 13.

Table 12.1 shows the characteristics of 33 plants that are employed, during the evo-
lutionary process, in connection with evaluating the fitness of controllers in this chapter
and chapter 13. All the plants in this table are members of Åström and Hägglund’s four
families of plants. Column 1 of this table identifies the plant family (A, B, C, or D).
Column 2 shows the particular parameter value for the plant within its family. For
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Table 12.1 Characteristics of 33 plants used in various runs

Runs in
which the

Family Parameter value Ku Tu L Tr plant is used

A T�0.1 1.07 2.37 1.00 0.103 A, P, 1, 2, 3
A T�0.3 1.40 3.07 1.01 0.299 A, P, 1, 2, 3
A T�1 2.74 4.85 1.00 1.00 A, P, 1, 2, 3
A T�3 6.80 7.87 1.02 2.99 A, P, 1, 2, 3
A T�4.5 9.67 9.60 1.00 4.50 P
A T�6 12.7 11.1 1.00 6.00 P, 2, 3
A T�7.5 15.6 12.3 1.00 7.50 P
A T�9 18.7 13.4 1.01 9.00 P
A T�10 20.8 14.2 0.916 10.1 A, P, 1, 2, 3
B n�3 8.08 3.62 0.517 1.24 A, P, 1, 2, 3
B n�4 4.04 6.27 1.13 1.44 A, P, 1, 2, 3
B n�5 2.95 8.62 1.79 1.61 P, 2, 3
B n�6 2.39 10.9 2.45 1.78 P, 1, 2, 3
B n�7 2.09 13.0 3.17 1.92 P, 2, 3
B n�8 1.89 15.2 3.88 2.06 A, P, 1, 2, 3
B n�11 1.57 21.6 6.19 2.41 1
C ��0.1 113 0.198 �0.244 0.674 1
C ��0.2 30.8 0.562 �0.137 0.691 A, P, 1, 2, 3
C ��0.215 26.6 0.626 �0.155 0.713 P
C ��0.23 23.6 0.693 �0.116 0.705 P
C ��0.26 19.0 0.833 �0.099 0.722 P
C ��0.3 15.0 1.04 �0.024 0.720 P, 2, 3
C ��0.4 9.62 1.59 0.111 0.759 P, 2, 3
C ��0.5 6.85 2.23 0.267 0.804 A, P, 1, 2, 3
C ��0.6 5.41 2.92 0.431 0.872 P, 2, 3
C ��0.7 4.68 3.67 0.604 0.962 A, P, 1, 2, 3
C ��0.9 4.18 5.31 3.44 0.685 1
D ��0.1 6.21 4.06 0.644 1.22 A, P, 1, 2, 3
D ��0.2 5.03 4.44 0.739 1.23 A, P, 1, 2, 3
D ��0.5 3.23 5.35 1.15 1.17 A, P, 1, 2, 3
D ��0.7 2.59 5.81 1.38 1.16 P, 2, 3
D ��1 2.02 6.29 1.85 1.07 A, P, 1, 2, 3
D ��2 1.15 7.46 3.46 0.765 A, P, 1, 2, 3



example, family B is the family of n-lag plants and the first entry in the table for 
family B is the three-lag plant (i.e., n�3). Columns 3, 4, 5, and 6 show each plant’s
ultimate gain, Ku; ultimate period, Tu; dead time, L; and time constant, Tr; respectively.
Column 7 identifies the 16 plants (with an “A”) belonging to the test bed used by
Åström and Hägglund in their 1995 book; the 30 plants (with a “P”) that are used to
evolve the improved PID tuning rules in this chapter; and the plants that are used to
evolve the three controllers in chapter 13 (indicated by “1,” “2,” or “3,” respectively).
There are 20 plants marked “1,” 24 plants marked “2,” and 24 plants marked “3.”

The possibility exists that a controller that is created using an automated process
that relies on certain plants (the in-sample or training cases) will be overly specialized
to those particular plants and that the automatically created controller will prove not
to operate correctly on other plants. This concern can be addressed by cross-validat-
ing the controller on additional unseen plants.

Table 12.2 shows the characteristics of 18 additional plants that are used to cross-
validate the performance of the genetically evolved PID tuning rules in this chapter
and the three genetically evolved controllers in chapter 13. All 18 additional plants are
members of Åström and Hägglund’s families A, C, and D. Columns 3, 4, 5, and 6 of
the table describe each plant in terms of its ultimate gain, Ku; ultimate period, Tu; dead
time, L; and time constant, Tr; respectively. Because the plant parameter for family B
(the n-lag plants) is an integer and all integer values within the range of values used
by Åström and Hägglund already appear in table 12.1, there are no additional plants
within family B in this table.

Table 12.3 shows the performance of a PID controller tuned using the Åström-
Hägglund tuning rules on the 33 plants of table 12.1 in terms of the fitness measure
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Table 12.2 Characteristics of 18 additional plants used for cross-
validation

Parameter
Family value Ku Tu L Tr

A 0.15 1.13 2.57 0.993 0.153
A 0.5 1.74 3.65 0.982 0.509
A 0.9 2.51 4.60 1.011 0.894
A 2.5 5.69 7.25 0.999 2.50
A 4.0 8.68 9.07 1.002 4.00
A 9.0 18.7 13.4 1.005 9.00
C 0.25 20.3 0.786 �0.099 0.713
C 0.34 12.0 1.25 0.005 0.744
C 0.43 8.35 1.77 0.144 0.775
C 0.52 6.40 2.36 0.287 0.821
C 0.61 5.30 3.00 0.439 0.884
C 0.69 4.72 3.60 0.563 0.965
D 0.15 5.52 4.26 0.680 1.23
D 0.3 4.21 4.77 0.846 1.23
D 0.6 2.86 5.54 1.24 1.18
D 0.85 2.25 6.03 1.62 1.12
D 1.2 1.74 6.57 2.16 1.02
D 1.8 1.25 7.25 3.15 0.824



used in this chapter (and in chapter 13). The fitness measure is the same as in 
section 9.2. The fitness measure seeks to optimize the integral of the time-weighted
absolute error for a step input and disturbance rejection while simultaneously impos-
ing constraints on maximum sensitivity and sensor noise attenuation. The fitness of
each controller is measured by means of eight separate invocations of the SPICE sim-
ulator for each plant under consideration. Columns 3 through 10 correspond to the
eight elements of the fitness measure used for each plant. Columns 3 through 8 show
the six elements of the fitness measure that are measured by means of the integral of
the time-weighted absolute error. Column 9 shows the stability margin penalty.
Column 10 shows the sensor noise penalty.
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Table 12.3 Performance of the Åström–Hägglund PID controller on the 33 plants of 
table 12.1

Plant
parameter ITAE ITAE Stability Sensor

Plant value 1 2 ITAE 3 ITAE 4 ITAE 5 ITAE 6 margin noise

A 0.1 0.740 0.740 0.749 0.743 0.269 0.478 0.980 10.1
A 0.3 0.701 0.701 0.702 0.701 0.266 0.434 0.669 1.75
A 1 0.510 0.510 0.511 0.510 0.237 0.292 0.660 1.11
A 3 0.331 0.331 0.331 0.331 0.211 0.122 0.594 1.49
A 4.5 0.282 0.282 0.282 0.282 0.201 0.082 0.410 1.34
A 6 0.259 0.259 0.259 0.259 0.198 0.062 0.279 1.25
A 7.5 0.244 0.244 0.244 0.244 0.195 0.049 0.158 1.16
A 9 0.236 0.236 0.236 0.236 0.195 0.041 0.070 1.13
A 10 0.232 0.232 0.232 0.232 0.195 0.037 0.016 1.11
B 3 0.334 0.334 0.335 0.334 0.225 0.108 0.368 0
B 4 0.456 0.456 0.456 0.456 0.238 0.215 0.707 0
B 5 0.527 0.526 0.526 0.527 0.243 0.281 0.690 0
B 6 0.570 0.571 0.569 0.570 0.245 0.321 0.646 0
B 7 0.600 0.599 0.597 0.599 0.248 0.348 0.642 0
B 8 0.623 0.623 0.621 0.623 0.251 0.369 0.643 0
B 11 0.667 0.667 0.663 0.665 0.257 0.405 0.641 0
C 0.1 0.187 0.187 0.187 0.187 0.181 0.006 0 0.659
C 0.2 0.193 0.194 0.193 0.193 0.171 0.022 0 0.024
C 0.215 0.196 0.196 0.196 0.196 0.171 0.025 0.039 0
C 0.23 0.201 0.201 0.200 0.201 0.173 0.028 0.081 0
C 0.26 0.211 0.210 0.210 0.211 0.175 0.035 0.156 0
C 0.3 0.225 0.225 0.224 0.225 0.178 0.046 0.241 0
C 0.4 0.272 0.272 0.272 0.272 0.191 0.079 0.421 0
C 0.5 0.325 0.325 0.325 0.325 0.207 0.117 0.542 0
C 0.6 0.374 0.373 0.374 0.374 0.219 0.152 0.594 0
C 0.7 0.414 0.413 0.412 0.414 0.231 0.181 0.675 0
C 0.9 0.452 0.452 0.451 0.452 0.238 0.213 0.711 0
D 0.1 0.187 0.187 0.187 0.187 0.181 0.006 0.585 0
D 0.2 0.193 0.193 0.194 0.193 0.171 0.022 0.699 0
D 0.5 0.225 0.225 0.225 0.225 0.178 0.046 0.728 0
D 0.7 0.272 0.272 0.272 0.272 0.191 0.079 0.746 0
D 1 0.325 0.325 0.325 0.325 0.207 0.116 0.839 0
D 2 0.374 0.373 0.374 0.374 0.219 0.152 4.18 0



Similarly, table 12.4 shows the performance of a PID controller tuned using the
Åström-Hägglund tuning rules on the 18 additional plants shown in table 12.2 in terms
of the fitness measure used in this chapter (and in chapter 13).

12.2 Preparatory Steps for Improved PID Tuning Rules

In this chapter, we are seeking improved PID tuning rules. That is, the controller’s
topology is not subject to evolution, but instead, is prespecified to be the PID topol-
ogy of figure 12.1. Specifically, in this chapter, we are seeking four mathematical
expressions (for Kp, Ki, Kd, and b). Each of the expressions may contain free variables
representing the plant’s ultimate gain, Ku, and the plant’s ultimate period, Tu. Note that
the problem in this chapter differs from the problems in chapters 9 and 13 in that there
is no search for, or evolution of, the topology. The problem in this chapter is simply a
search for four surfaces in three-dimensional space.

Initial experimentation quickly confirmed the fact that the Åström and Hägglund
tuning rules are highly effective. Starting from scratch, genetic programming readily
evolved three-dimensional surfaces that closely match the Åström-Hägglund surfaces
and that outperform the Åström-Hägglund tuning rules on average. However, these
genetically evolved surfaces did not satisfy our goal, namely outperforming the
Åström-Hägglund tuning rules for every plant in the test bed.

For that reason, we decided to approach the problem of discovering improved tun-
ing rules by building on the known and highly effective Åström-Hägglund results.
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Table 12.4 Performance of the Åström–Hägglund PID controller on the 18 additional plants
of table 12.2

Plant
parameter Stability Sensor

Plant value ITAE 1 ITAE 2 ITAE 3 ITAE 4 ITAE 5 ITAE 6 margin noise

A 0.15 0.740 0.740 0.746 0.743 0.269 0.478 0.860 4.72
A 0.5 0.701 0.701 0.702 0.701 0.266 0.434 0.621 0.89
A 0.9 0.510 0.510 0.511 0.51 0.237 0.292 0.638 1.24
A 2.5 0.331 0.331 0.331 0.331 0.211 0.122 0.657 1.05
A 4.0 0.259 0.259 0.259 0.259 0.198 0.062 0.459 1.44
A 9.0 0.232 0.232 0.232 0.232 0.195 0.037 0.070 1.13
C 0.25 0.335 0.334 0.333 0.335 0.225 0.108 0.128 0
C 0.34 0.457 0.457 0.455 0.457 0.239 0.215 0.297 0
C 0.43 0.527 0.526 0.526 0.527 0.243 0.282 0.471 0
C 0.52 0.570 0.571 0.569 0.570 0.245 0.321 0.546 0
C 0.61 0.600 0.599 0.597 0.599 0.248 0.348 0.600 0
C 0.69 0.623 0.623 0.621 0.623 0.251 0.369 0.665 0
D 0.15 0.187 0.187 0.187 0.187 0.181 0.006 0.585 0
D 0.3 0.193 0.193 0.194 0.193 0.171 0.022 0.699 0
D 0.6 0.225 0.225 0.225 0.225 0.178 0.046 0.728 0
D 0.85 0.272 0.272 0.272 0.272 0.191 0.079 0.746 0
D 1.2 0.325 0.325 0.325 0.325 0.207 0.116 0.839 0
D 1.8 0.374 0.373 0.374 0.374 0.219 0.152 4.18 0



Specifically, in this chapter, we use genetic programming to evolve four mathematical
expressions (containing the free variables Ku and Tu) which, when added to the corre-
sponding mathematical expressions developed by Åström and Hägglund, yield improved
performance on every plant in the test bed. Although we anticipated that the resulting
three-dimensional surfaces would be similar to the Åström-Hägglund surfaces (i.e.,
the magnitudes of the added numbers would be relatively small), this additive approach
can, in fact, yield any surface (or, more precisely, any surface that can be represented 
by the generously large number of points that a single program tree may contain). 
We similarly build on the Åström-Hägglund results in the next chapter (chapter 13).

It should be noted that this technique for incorporating a known outstanding result
can be used for problems from many different fields. For additional discussion on
solving problems by progressively building on previously known solutions, see
Streeter, Keane, and Koza 2002a.

12.2.1 Program Architecture

The architecture of each program tree in the population has four result-producing
branches (one associated with each of the problem’s four independent variables,
namely Kp, Ki, Kd, and b).

Note that although there are free variables in this problem, this problem is not
included among the 11 problems in this book listed in section 1.3 in connection with
parameterized topologies because the present problem does not entail discovery of the
solution’s topology.

12.2.2 Terminal Set

In this problem, there are two free variables. They are the plant’s ultimate gain Ku

(called “KU” below) and the plant’s ultimate period Tu (called “TU”).
The terminal set, T, for each of the four result-producing branches is

T = {�, KU, TU},

where � denotes a perturbable numerical value between �5.0 and �5.0.

12.2.3 Function Set

The function set, F, for each of the four result-producing branches contains functions
for performing arithmetic, exponential, and logarithmic operations.

F = {+, �, *, %, REXP, RLOG, POW}.

The two-argument POW function returns the value of its first argument to the power of
the value of its second argument. The POW function has the advantage (as compared
to the EXP function) of permitting the free variables to appear in the base (as well as
the exponent) of an exponential expression.

12.2.4 Fitness Measure

The fitness measure is the same as in section 9.2. Fitness is measured by means of
eight separate invocations of the SPICE simulator for each plant under consideration.
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When the aim is to automatically create a solution to a category of problems in the
form of mathematical expressions containing free variable(s), the possibility of over-
fitting is especially salient. Overfitting occurs when an evolved solution performs well
on the fitness cases that are incorporated in the fitness measure (i.e., in the training
phase), but then performs poorly on previously unseen fitness cases.

In this problem, four mathematical expressions (each incorporating two free vari-
ables) must be evolved. The to-be-evolved mathematical expressions are presump-
tively nonlinear and complicated functions of the two free variables.

In applying genetic programming to this program, we were especially concerned
about overfitting because there are only 16 plants in the test bed used by Åström and
Hägglund. Moreover, there are only three plants in two of the four families. As dis-
cussed in section 10.3.1.5, genetic programming must usually consider a multiplicity
of data points in order to discover even a linear relationship. A fortiori, a multiplicity
of data points is required when the underlying function is actually nonlinear (as is usu-
ally the case in non-trivial problems).

Concerned about possible overfitting, we used the 30 plants marked “P” in column
7 of table 12.1 for this problem. Thus, the fitness measure entails 240 separate invo-
cations of the SPICE simulator. The choice of 30 plants for this first run was governed
primarily by considerations of computer time. Ideally, we would have used even more
plants. We did not know in advance whether 30 plants would prove to be sufficient to
enable genetic programming to unearth the complicated relationships inherent in this
problem.

12.2.5 Control Parameters

The population size is 100,000.

12.3 Results for Improved PID Tuning Rules

In our one run of this problem, the best-of-run individual emerged in generation 76.
Because the population size is 100,000, the fitness of approximately 7,700,000

individuals was evaluated during the run. The average time to evaluate the fitness of
an individual (i.e., to perform the 240 SPICE simulations) was 51 seconds. It took
106.8 hours (4.4 days) to produce the best-of-run individual from generation 76.

The improved PID tuning rules are obtained by adding the genetically evolved
adjustments below to the values of Kp, Ki, and Kd, and b developed by Åström and
Hägglund in their 1995 book.

The quantity, Kp-adj, that is to be added to Kp for the proportional part of the 
controller is

Kp-adj ��.0012340*Tu �6.1173*10�6.

The quantity, Ki-adj, that is to be added to Ki for the integrative part is

Ki-adj � � .065825*
Ku

Tu

.
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The quantity, Kd-adj, that is to be added to Kd for the derivative part is

The quantity, badj, that is to be added to b for the setpoint weighting of the refer-
ence signal in the proportional block is

In other words, the final values (Kp-final, Ki-final, Kd-final, and bfinal) for the genetically
evolved PID tuning rules are as follows:

and

The authors refer to these genetically evolved PID tuning rules as the Keane-Koza-
Streeter (KKS) PID tuning rules.

The automatically designed controller is parameterized (i.e., general) in the sense
that it contains free variables (Ku and Tu) and thereby provides a solution to an entire
category of problems (i.e., the control of all the plants in all the families).

Averaged over the 30 plants used in this run (i.e., those marked “P” in column 7
of table 12.1), the best-of-run tuning rules from generation 76 have

● 91.6% of the setpoint ITAE of the Åström-Hägglund tuning rules,
● 96.2% of the disturbance rejection ITAE of the Åström-Hägglund tuning rules,
● 99.5% of the reciprocal of minimum attenuation of the Åström-Hägglund tuning

rules, and
● 98.6% of the maximum sensitivity, Ms, of the Åström-Hägglund tuning rules.

Averaged over the 18 additional plants of table 12.2, the best-of-run tuning rules
from generation 76 have

● 89.7% of the setpoint ITAE of the Åström-Hägglund tuning rules,
● 95.6% of the disturbance rejection ITAE of the Åström-Hägglund tuning rules,
● 99.5% of the reciprocal of minimum attenuation of the Åström-Hägglund tuning

rules, and
● 98.5% of the maximum sensitivity, Ms, of the Åström-Hägglund tuning rules.

As can be seen, the results obtained for the 18 previously unseen additional plants
are similar to those for the results for the plants used by the evolutionary process.

bfinal � 0.25*e((0.56/Ku) � (�0.12/Ku
2)) �

Ku

eKu
.

Kd-final � 0.108*Ku*Tu*e((�1.6/Ku) � (1.2/Ku
2)*e(�1.4/Ku) � (0.56/Ku

2)) � 0.0026640(eTu)log(1.6342logKu),

Ki-final �
0.72*Ku*e((�1.6/Ku) � (1.2/Ku

2))

0.59*Tu*e((�1.3/Ku) � (0.38/Ku
2))

� .068525*
Ku

Tu
,

Kp-final � 0.72*Ku*e((�1.6/Ku) � (1.2/Ku
2)) � .0012340*Tu � 6.1173*10�6,

badj �
Ku

eKu
.

Kd-adj � �0.0026640�eTu	
log�1.6342log Ku	

.
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We now provide additional comparative details.
We first consider the overall pattern of values for the four genetically evolved

adjusting quantities (Kp-adj, Ki-adj, Kd-adj, and badj).
The genetically evolved adjusting quantity, Kp-adj, for the proportional (P) part of

the PID controller is the smallest and most localized adjustment to the corresponding
value for a PID controller tuned according to the Åström-Hägglund tuning rules.
Figure 12.2 shows, as a function of Ku and Tu, the genetically evolved adjusting quan-
tity, Kp-adj, for the proportional part of the PID controller divided by the value of the
gain, Kp, for the proportional block of a PID controller tuned according to the Åström-
Hägglund tuning rules. The ranges of values for Ku and Tu in this figure (and the next
three figures) are those encountered for the 33 plants of table 12.1 and the 18 addi-
tional plants in table 12.2. As can be seen from the figure, the genetically evolved
adjustment is near zero for most values of Ku and Tu (i.e., the genetically evolved solu-
tion is about the same as the Åström-Hägglund solution). The genetically evolved
adjustment becomes as large as �5% only in the combination of circumstances when
Ku is at the low end of its range and Tu is at the high end of its range.

The genetically evolved adjusting quantity, Ki-adj, for the integrative (I) part of the
PID controller is more significant than that for Kp-adj. Figure 12.3 shows, as a function
of Ku and Tu, the genetically evolved adjusting quantity, Ki-adj, for the integrative part
of the PID controller divided by the value of the gain, Ki, for the integrative block of
a PID controller tuned according to the Åström-Hägglund tuning rules. As can be seen
from the figure, the genetically evolved adjustments range between �4% and �5.5%
and depend only on Ku. Specifically, the genetically evolved adjustment is about
�5.5% for most values of Ku, but drops to as little as �4% when Ku is at the low end
of its range.

The genetically evolved adjusting quantity, Kd-adj, for the derivative (D) part of the
PID controller is also more significant than that for Kp-adj. Figure 12.4 shows, as a 
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Figure 12.2 The genetically evolved adjustment, Kp-adj, for the proportional (P) part of the
PID controller.
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Figure 12.3 The genetically evolved adjustment, Ki-adj, for the integrative (I) part of the PID
controller.

Figure 12.4 The genetically evolved adjustment, Kd-adj, for the derivative (D) part of the PID
controller.

function of Ku and Tu, the genetically evolved adjusting quantity, Kd-adj, for the deriv-
ative part of the PID controller divided by the value of the gain, Kd, for the derivative
block of a PID controller tuned according to the Åström-Hägglund tuning rules. As
can be seen from the figure, the genetically evolved adjustment is near zero for most
values of Ku and Tu (i.e., the genetically evolved solution is about the same as the
Åström-Hägglund solution). However, the genetically evolved adjustment becomes as
large as �40% for the combination of circumstances when both Ku and Tu are at the
low ends of their ranges.



Finally, the genetically evolved adjusting quantity, badj, for the setpoint weighting
applied to the reference signal of the controller’s proportional block is a substantial
quantity. Figure 12.5 shows, as a function of Ku and Tu, the genetically evolved adjust-
ing quantity, badj, for the setpoint weighting for the PID controller divided by the value
of the gain, b, for the setpoint weighting of a PID controller tuned according to the
Åström-Hägglund tuning rules. As can be seen from the figure, the genetically evolved
adjustments range between 0% and about �80% and depend only on Ku. Specifically,
the genetically evolved adjustment is near zero for most values of Ku, but rises sharply
when Ku is at the low end of its range.

Table 12.5 shows the performance of the best-of-run PID tuning rules from genera-
tion 76 for the 30 plants used in this run (i.e., those marked “P” in column 7 of table 12.1).

Table 12.6 compares the performance of the best-of-run PID tuning rules from
generation 76 as a percentage of the value for the Åström and Hägglund controller for
the 30 plants used in this run (i.e., those marked “P” in column 7 of table 12.1). An
“OK” appears in the table for the cases where the penalties associated with both tun-
ing rules are zero. As can be seen, all percentages are either below 100% (indicating
improvement) or “OK.”

Table 12.7 shows the performance of the best-of-run PID tuning rules from 
generation 76 on the 18 additional plants from table 12.2.

Table 12.8 compares the performance of the best-of-run PID tuning rules from
generation 76 as a percentage of the value for the Åström and Hägglund controller for
the 18 additional plants from table 12.2. An “OK” appears in the table for the cases
where the penalties associated with both tuning rules are zero. As can be seen, all 
percentages are either below 100% (indicating improvement) or “OK.”

Averaged over the 16 plants used by Åström and Hägglund in their 1995 book
(i.e., the 16 plants marked “A” in column 7 of table 12.1), the best-of-run tuning rules
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Figure 12.5 The genetically evolved adjustment, badj, for the setpoint weighting of the
reference signal of the controller’s proportional block.



from generation 76 have

● 90.5% of the setpoint ITAE of the Åström-Hägglund tuning rules,
● 96% of the disturbance rejection ITAE of the Åström-Hägglund tuning rules,
● 99.3% of the reciprocal of minimum attenuation of the Åström-Hägglund tuning

rules, and
● 98.5% of the maximum sensitivity, Ms, of the Åström-Hägglund tuning rules.

It is true that the four genetically evolved mathematical expressions are more com-
plicated than the four Åström-Hägglund expressions of the form

f(x)�a0*ea1x � a2x2.

However, most present-day controllers are implemented by means of programmable
microprocessors. Thus, making use of more complicated mathematical tuning rules
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Table 12.5 Performance (for 30 plants) of the best-of-run PID tuning rules

Plant
parameter Stability Sensor

Plant value ITAE 1 ITAE 2 ITAE 3 ITAE 4 ITAE 5 ITAE 6 margin noise

A 0.1 0.698 0.698 0.705 0.701 0.234 0.469 0.934 9.79
A 0.3 0.674 0.674 0.675 0.674 0.240 0.433 0.623 1.73
A 1 0.460 0.460 0.461 0.460 0.197 0.281 0.624 1.10
A 3 0.310 0.310 0.310 0.310 0.195 0.117 0.559 1.49
A 4.5 0.266 0.266 0.266 0.266 0.188 0.079 0.393 1.34
A 6 0.246 0.246 0.246 0.246 0.187 0.059 0.260 1.25
A 7.5 0.233 0.233 0.233 0.233 0.186 0.048 0.139 1.16
A 9 0.225 0.225 0.225 0.225 0.186 0.040 0.056 1.13
A 10 0.222 0.222 0.222 0.222 0.186 0.036 0.009 1.11
B 3 0.320 0.319 0.320 0.320 0.215 0.104 0.339 0
B 4 0.433 0.432 0.434 0.433 0.222 0.208 0.650 0
B 5 0.498 0.498 0.499 0.498 0.222 0.273 0.640 0
B 6 0.538 0.537 0.536 0.538 0.221 0.314 0.564 0
B 7 0.564 0.564 0.561 0.564 0.218 0.342 0.536 0
B 8 0.585 0.585 0.582 0.584 0.218 0.363 0.530 0
C 0.2 0.188 0.188 0.188 0.188 0.166 0.021 0 0.023
C 0.215 0.190 0.191 0.191 0.190 0.166 0.024 0.020 0
C 0.23 0.195 0.194 0.194 0.195 0.167 0.027 0.062 0
C 0.26 0.204 0.203 0.203 0.204 0.168 0.034 0.140 0
C 0.3 0.216 0.217 0.217 0.216 0.171 0.045 0.227 0
C 0.4 0.261 0.260 0.260 0.261 0.183 0.077 0.389 0
C 0.5 0.310 0.311 0.312 0.310 0.196 0.113 0.518 0
C 0.6 0.355 0.356 0.354 0.355 0.206 0.147 0.541 0
C 0.7 0.394 0.393 0.393 0.394 0.217 0.175 0.616 0
D 0.1 0.352 0.353 0.351 0.352 0.216 0.135 0.467 0
D 0.2 0.386 0.387 0.386 0.386 0.218 0.166 0.577 0
D 0.5 0.495 0.495 0.496 0.495 0.231 0.262 0.660 0
D 0.7 0.581 0.581 0.583 0.581 0.248 0.330 0.664 0
D 1 0.720 0.719 0.721 0.720 0.281 0.436 0.659 0
D 2 1.48 1.48 1.48 1.48 0.533 0.944 5.18 0



merely involves a change in software. The relatively small cost of writing a few lines
of additional code is insignificant in comparison to the economic benefits of more effi-
cient control.

In summary, the genetically evolved tuning rules are an improvement over the PID
tuning rules developed by Åström and Hägglund in their 1995 book.

12.4 Human-Competitiveness of the Results for the Improved 
PID Tuning Rules

The Ziegler-Nichols tuning rules (Ziegler and Nichols 1942) for PID controllers were
a significant development in the field of control engineering. These rules have been in
widespread use since they were invented.
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Table 12.6 Percentage comparison (for 30 plants) of the best-of-run PID tuning rules and the
Åström–Hägglund tuning rules

Plant
parameter Stability Sensor

Plant value ITAE 1 ITAE 2 ITAE 3 ITAE 4 ITAE 5 ITAE 6 margin noise

A 0.1 94.4 94.4 94.1 94.2 86.9 98.2 95.4 96.7
A 0.3 96.1 96.1 96.1 96.1 90.3 99.7 93.1 98.9
A 1 90.2 90.2 90.2 90.2 83.2 96.3 94.6 99.4
A 3 93.8 93.8 93.8 93.8 92.7 95.8 94.1 99.8
A 4.5 94.2 94.2 94.2 94.2 93.6 96 95.9 99.8
A 6 94.8 94.8 94.8 94.8 94.5 95.5 93.2 99.8
A 7.5 95.4 95.4 95.4 95.4 95.3 96.3 88 99.7
A 9 95.5 95.5 95.5 95.5 95.4 96.6 81.2 99.7
A 10 95.6 95.6 95.6 95.6 95.4 96.6 60.2 99.6
B 3 95.7 95.5 95.7 95.7 95.6 96 92.2 OK
B 4 94.9 94.8 95.1 94.9 93.4 96.8 91.9 OK
B 5 94.4 94.6 94.8 94.4 91.5 97.2 92.9 OK
B 6 94.2 94 94.1 94.2 90.1 97.9 87.2 OK
B 7 94.1 94.2 94 94.1 87.9 98.3 83.6 OK
B 8 93.8 93.8 93.8 93.7 87 98.5 82.5 OK
C 0.2 97.6 97.1 97.6 97.6 97.6 97.4 OK 93.5
C 0.21 97.1 97.3 97.3 97.1 97 97.7 52.1 OK
C 0.23 96.8 96.8 97.1 96.8 96.6 97.3 77.6 OK
C 0.26 96.4 96.8 96.8 96.4 96.3 97.4 89.5 OK
C 0.3 96.2 96.2 96.6 96.2 95.9 97.4 94.3 OK
C 0.4 96.1 95.8 95.8 96.1 95.8 96.9 92.4 OK
C 0.5 95.4 95.7 95.9 95.4 94.7 96.5 95.6 OK
C 0.6 95 95.3 94.8 95 94 96.4 91.1 OK
C 0.7 95.1 95 95.3 95.1 93.9 96.7 91.3 OK
D 0.1 94.9 95.1 94.9 94.9 94.3 95.7 92.4 OK
D 0.2 94.2 94.2 93.9 94.2 93.1 95.8 90 OK
D 0.5 91.8 91.7 91.9 91.8 88.6 94.6 93.7 OK
D 0.7 91 90.9 91.4 91 86.4 94.7 88.8 OK
D 1 90.1 90.1 90.1 90.1 84.6 94.4 87.4 OK
D 2 91.4 91.4 91.2 91.5 88.4 93.2 73.3 OK
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Table 12.7 Performance (on the 18 additional plants) of the best-of-run PID tuning rules

Plant
parameter Stability Sensor

Plant value ITAE 1 ITAE 2 ITAE 3 ITAE 4 ITAE 5 ITAE 6 margin noise

A 0.15 0.687 0.687 0.694 0.691 0.234 0.453 0.821 4.40
A 0.5 0.546 0.546 0.546 0.546 0.198 0.387 0.564 0.876
A 0.9 0.477 0.477 0.477 0.477 0.198 0.300 0.607 1.23
A 2.5 0.334 0.334 0.334 0.334 0.198 0.139 0.627 1.05
A 4.0 0.277 0.277 0.277 0.277 0.190 0.089 0.443 1.43
A 9.0 0.225 0.225 0.225 0.225 0.186 0.040 0.056 1.13
C 0.25 0.200 0.200 0.200 0.200 0.167 0.032 0.111 0
C 0.34 0.233 0.234 0.233 0.233 0.175 0.057 0.286 0
C 0.43 0.276 0.276 0.275 0.276 0.188 0.087 0.441 0
C 0.52 0.320 0.319 0.321 0.320 0.199 0.120 0.524 0
C 0.61 0.359 0.360 0.358 0.359 0.207 0.150 0.538 0
C 0.69 0.390 0.389 0.389 0.390 0.216 0.173 0.605 0
D 0.15 0.369 0.370 0.368 0.369 0.217 0.150 0.517 0
D 0.3 0.420 0.420 0.421 0.420 0.220 0.198 0.643 0
D 0.6 0.537 0.537 0.538 0.537 0.239 0.295 0.643 0
D 0.85 0.648 0.648 0.650 0.648 0.263 0.382 0.669 0
D 1.2 0.833 0.833 0.834 0.833 0.312 0.517 0.726 0
D 1.8 1.26 1.26 1.259 1.262 0.453 0.805 2.489 0

Table 12.8 Percentage comparison (on the 18 additional plants) of the best-of-run PID tuning
rules and the Åström–Hägglund tuning rules

Plant
parameter Stability Sensor

Plant value ITAE 1 ITAE 2 ITAE 3 ITAE 4 ITAE 5 ITAE 6 margin noise

A 0.15 94.7 94.7 94.3 94.5 88 98.6 95.5 93.2
A 0.5 90.7 90.7 90.7 90.7 79.7 98.8 91 98.5
A 0.9 90.1 90.1 90.1 90.1 82.3 96.8 95.1 99.5
A 2.5 93.2 93.2 93.2 93.2 91.6 95.4 95.4 99.8
A 4.0 94 94 94 94 93.2 96.2 96.5 99.8
A 9.0 95.5 95.5 95.5 95.5 95.4 96.6 81.2 99.7
C 0.25 96.6 96.9 96.9 96.6 96.5 97.7 86.7 OK
C 0.34 96.4 96.6 96.5 96.4 96.1 96.9 96.2 OK
C 0.43 96 95.9 95.7 96 95.7 96.6 93.7 OK
C 0.52 95.8 95.3 95.7 95.8 95.3 96.3 95.9 OK
C 0.61 95.1 95.3 94.9 95.1 94.2 96.4 89.6 OK
C 0.69 95.2 95.1 95.4 95.2 94 96.7 91.1 OK
D 0.15 94.7 94.9 94.3 94.7 94.1 95.7 88.4 OK
D 0.3 93.2 93.3 93.4 93.2 91.2 95.7 91.9 OK
D 0.6 91.2 91.3 91.5 91.2 87.4 94.6 88.3 OK
D 0.85 90.2 90 90.4 90.2 85.3 94.4 89.8 OK
D 1.2 90.4 90.4 90.4 90.4 84.4 94.2 86.6 OK
D 1.8 91.1 91 90.8 91.1 87 93.5 59.6 OK



The 1995 Åström-Hägglund tuning rules were another significant development.
They outperform the 1942 Ziegler-Nichols tuning rules on the industrially representa-
tive plants used by Åström and Hägglund. Åström and Hägglund developed their
improved tuning rules by applying mathematical analysis, shrewdly chosen approxi-
mations, and considerable creative flair.

The genetically evolved PID tuning rules are an improvement over the 1995
Åström-Hägglund tuning rules.

Referring to the eight criteria in table 1.2 for establishing that an automatically
created result is competitive with a human-produced result, the creation by genetic
programming of improved tuning rules for PID controllers satisfies the following five
of the eight criteria:

(B) The result is equal to or better than a result that was accepted as a new scientific
result at the time when it was published in a peer-reviewed scientific journal.

(D) The result is publishable in its own right as a new scientific result—independent
of the fact that the result was mechanically created.

(E) The result is equal to or better than the most recent human-created solution to a
long-standing problem for which there has been a succession of increasingly 
better human-created solutions.

(F) The result is equal to or better than a result that was considered an achievement
in its field at the time it was first discovered.

(G) The result solves a problem of indisputable difficulty in its field.

A patent application (Keane, Koza, and Streeter 2002a) was filed on July 12, 2002,
for the best-of-run PID tuning rules from generation 76 (as well as for the three non-
PID controllers described in chapter 13). The applicants believe that the genetically
evolved PID tuning rules are patentable because they satisfy the statutory require-
ments of being “new,” “useful,” “improved,” and “unobvious” to someone “having
ordinary skill in the art.”

U.S. law suggests that inventions created by automated means are patentable by
saying:

“Patentability shall not be negatived by the manner in which the invention was
made.” (35 United States Code 103a)

If (as expected) a patent is granted, it will (we believe) be the first patent granted
for an invention created by genetic programming.

We believe that the creation by genetic programming of improved tuning rules for
PID controllers satisfies the following additional criterion from table 1.2:

(A) The result was patented as an invention in the past, is an improvement over a
patented invention, or would qualify today as a patentable new invention.

The creation by genetic programming of the improved PID tuning rules satisfies
Arthur Samuel’s criterion (1983) for artificial intelligence and machine learning:

“[T]he aim [is]…to get machines to exhibit behavior, which if done by humans,
would be assumed to involve the use of intelligence.”
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12.5 Routineness of the Transition from Problems Involving Parameterized
Topologies for Controllers to a Problem Involving PID Tuning Rules

Genetic programming previously created parameterized topologies for a controller for
a single plant (section 9.1) and two families of plants (section 9.2).

What is the nature of the transition from this previous work to a problem requir-
ing the automatic synthesis of tuning rules for controllers for four families of plants?

The fitness measure for the present problem is the same as in section 9.2. The
choices of functions and terminals are similar to the choices for elementary problems
of symbolic regression. Therefore very little effort was required to make the transition
to the present problem. Therefore, we consider this transition to be routine.

12.6 AI Ratio for the Improved PID Tuning Rules

As mentioned in section 12.4, the result produced by genetic programming on the
present problem is considered to be human-competitive for six reasons. The fact that
PID tuning rules have been the target of intense ongoing work in the field of control,
that there was a 63 year gap between the 1942 Ziegler-Nichols tuning rules and the
1995 Åström-Hägglund tuning rules, and that an additional seven years has elapsed
between 1995 and the genetically evolved PID tuning rules reported in this chapter
indicate that the results produced by the artificial system (genetic programming) rep-
resent a high amount of “A” in the numerator of the AI ratio.

The preparatory steps in this chapter are simply not noteworthy. The human-sup-
plied “I” amounts to little more than a request to produce four mathematical expres-
sions involving ordinary arithmetic and mathematical functions. The same preparatory
steps are applicable to a many similar problems from a variety of fields and similar to
the preparatory steps for elementary problems of symbolic regression. The fitness
measure is straightforward (and is the same as in section 9.2).

However, because the results in this chapter bootstrapped on an important domain-
specific result from the field of control (the Åström-Hägglund tuning rules), the results
in this chapter benefited from more “I” than would have been the case if the evolu-
tionary process had started from scratch. Thus, the solution produced by genetic pro-
gramming in this chapter has a non-trivial amount of “I” in the denominator of the AI
ratio. Hence, the AI ratio for the problem in this chapter is moderately high.
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387

13

Automatic Synthesis of Parameterized
Topologies for Improved Controllers

This chapter presents three genetically evolved parameterized topologies for con-
trollers. Unlike the work in chapter 12 (where the topology was prespecified to be that
of a PID controller), the topology of the to-be-evolved controller in this chapter is
open-ended. That is, genetic programming creates the topology dynamically during
the run. Accordingly, genetic programming is free to create either a PID or non-PID
topology. As it turns out, all three controllers evolved in this chapter employ non-PID
topologies.

The three controllers evolved in this chapter are parameterized (i.e., general) in the
sense that they incorporate free variables and provide a solution to an entire category
of problems (i.e., the control of all the plants in all the families).

The fitness measure used in this chapter is based on plants from the same four fam-
ilies used by Åström and Hägglund.

The first of the three genetically evolved controllers in this chapter has 66.4% of
the setpoint ITAE of the Åström-Hägglund controller and 85.7% of the disturbance
rejection ITAE of the Åström-Hägglund controller.

In the early years of the field of control, controllers were typically composed of
mechanical, pneumatic, physical, or other non-programmable devices. Although the
parameter values of the blocks in these controllers were usually variable, the topolo-
gies of these devices were typically not easily modifiable. Because of this inflexibil-
ity, there was a strong tendency to consider only PID controllers. In contrast, most
present-day controllers are implemented by means of programmable microprocessors.
Thus, more complex topologies (i.e., non-PID topologies) can be readily implemented
today merely by changing software.

13.1 Preparatory Steps for Improved General-Purpose Controllers

The preparatory steps are, with 10 differences, the same as in section 9.2. The differ-
ences (except the fifth one) represent either minor adjustments in technique or changes
dictated by the problem’s difficulty (e.g., population size, concerns about overfitting,).



Four of the 10 differences (namely the third, fourth, sixth, and ninth) relate to a sin-
gle change (i.e., the handling of takeoff points). All the minor adjustments in tech-
nique occurred to us after our work on the control problems in chapter 3. Our use of
these different techniques reflects the chronology of our work and the evolution of our
thinking (as opposed to any special requirement or exigency of the present problem).
We intend to use these new techniques for our future work on problems of automatic
synthesis of controllers.

13.1.1 Function Set

The first difference is that the POW function (section 12.2.3) is added to the function
set for the arithmetic-performing subtrees.

The second difference is that the ULIMIT function is deleted from the function set.
The third difference relates to the handling of takeoff points. In chapter 3, takeoff

points were implemented using automatically defined functions. This approach was
attractive to us in our early work on the automatic synthesis of controllers because the
architecture-altering operations provide a convenient way to create automatically
defined functions. However, because takeoff points are so common in controllers and
the architecture-altering operations are invoked at a relatively low frequency, we came
to believe that this approach is inefficient. Thus, a new one-argument function was
defined. The one-argument TAKEOFF function acts as an identity function in that it
returns the value of its argument. At the same time, the TAKEOFF function stores the
value of its argument so as to make this value potentially available to other points in
the block diagram. If a subsequent takeoff point reference terminal (defined below)
appears in the program tree, the effect is to connect points in the controller’s block 
diagram.

13.1.2 Terminal Set

The fourth difference (which goes hand in hand with the new approach to takeoff
points mentioned above in section 13.1.1) is that eight new takeoff point reference ter-
minals (LEFT_1, …, LEFT_4 and RIGHT_1, …, RIGHT_4) are added to the ter-
minal set. Whenever one of the four terminals (LEFT_1, …, LEFT_4) is
encountered, it returns the value stored by the first, second, third, or fourth TAKEOFF
function (if any), respectively, occurring earlier (i.e., to the left) in the overall program
tree. For this purpose, the earlier TAKEOFF function is determined on the basis of the
usual depth-first order of evaluation (from left to right) used in the LISP programming
language. If there is no such stored value, the terminal defaults to the value of the root
of the entire program tree (i.e., the controller’s output). Similarly, the value returned
by RIGHT_1, …, RIGHT_4 is based on occurrences of the TAKEOFF function that
occur later (i.e., to the right) in the overall program tree.

The fifth (and most substantial) difference enables us to bootstrap on the 1995
Åström-Hägglund tuning rules. Specifically, a terminal (called AH) is inserted into the
terminal set representing the time-domain output of a PID controller that is tuned for
the plant under consideration according to tuning rules developed by Åström and
Hägglund in their 1995 book. That is, the terminal causes a connection to be made to
the output port of a PID controller that was tuned using the Åström-Hägglund rules
for the particular instantiations (for the plant under consideration) of the free variables
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for ultimate gain, Ku; ultimate period, Tu; dead time, L; and time constant, Tr. Thus,
the terminal set, T, is (except for the arithmetic-performing subtrees)

T�{AH, REFERENCE_SIGNAL, CONTROLLER_OUTPUT, 
PLANT_OUTPUT, LEFT_1,…, LEFT_4, RIGHT_1,…, 
RIGHT_4}.

It should be noted that this technique for incorporating a known outstanding result
can be used for problems from many different fields.

13.1.3 Program Architecture

The sixth difference (which goes hand in hand with the new approach to takeoff points
mentioned in section 13.1.1) is that automatically defined functions (and hence archi-
tecture-altering operations) are not used. Thus, each program tree in the population
simply has one result-producing branch.

13.1.4 Fitness Measure

The seventh difference is that we increase the number of plants considered by the fit-
ness measure. In this problem, numerous mathematical expressions (each incorporat-
ing up to four free variables) must be evolved to establish the parameters for
signal-processing functions of the to-be-evolved controller. We were especially con-
cerned about overfitting because there are only three plants in two of the four families
in the test bed of 16 plants used by Åström and Hägglund. Because each additional
plant adds eight SPICE simulations to the evaluation of fitness for each individual in
the population, we necessarily counterbalanced our concern about overfitting with
practical considerations of computer time. Consequently, we used the 20 plants
marked “1” in column 7 of table 12.1 for the first run in this chapter. Thus, the fitness
measure for the first run entails 160 separate invocations of the SPICE simulator. Of
course, we did not know in advance whether 20 plants would prove to be sufficient to
produce an improved controller. Also, if an improved controller can be evolved at all,
we did not know in advance the number of generations or amount of time required to
accomplish this. After the first run succeeded in producing an improved controller, we
decided to further increase the number of plants. We decided to use the 24 plants
marked “2” and “3” in column 7 of table 12.1 for the second and third runs (i.e., a total
of 192 separate invocations of the SPICE simulator are used to evaluate the fitness of
each individual in the population).

The eighth difference applies only to the second and third runs. After the first run
succeeded, we noticed that the evolved controller has a rather large number of signal-
processing blocks. Consequently, we added a 193rd element (measuring parsimony) to
the fitness measure for the second and third runs. The parsimony penalty places more
weight on the major signal-processing functions (e.g., gain, integrator, differentiator,
lead, lag) than on the ordinary arithmetic functions (e.g., addition, subtraction). The
parsimony penalty is the sum, taken over each signal-processing block in the con-
troller, of 0.1 for each addition or subtraction block and 1.0 for all other blocks. Note
that this parsimony penalty counts signal-processing blocks and does not consider the
number of TAKEOFF functions or the functions in the arithmetic-performing subtrees
of the signal-processing blocks.
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The number of hits is defined as the number of fitness cases for which the indi-
vidual controller outperforms a PID controller tuned using the rules developed by
Åström and Hägglund in their 1995 book.

For an individual that scores less than 100% of the possible number of hits (160
for the first run and 192 for the second and third runs), fitness is the sum of the ele-
ments of the fitness measure associated with the SPICE simulations plus one trillionth
of the parsimony penalty. Thus, the parsimony penalty has virtually no effect on indi-
viduals that do not outperform Åström and Hägglund on all SPICE simulations.

For an individual that scores 100% of the possible number of hits, the fitness is one
trillionth of the parsimony penalty (and nothing else). That is, among individuals that out-
perform the Åström-Hägglund controller, the more parsimonious individual will always
be deemed to be better (i.e., have a smaller value of fitness). Note that this arrangement
means that, once 192 hits is achieved, there is no additional selective pressure in the direc-
tion of increasing the amount of improvement over the Åström-Hägglund controller.

In the hope of achieving a parsimonious controller, our intent was to permit the
second and third runs to continue for one or two weeks after the time when the run
produced its first fully compliant individual.

13.1.5 Control Parameters

The ninth difference (which goes hand in hand with the new approach to takeoff
points mentioned in section 13.1.1) is that necessary minor adjustments are made in
the percentages of genetic operations to reflect the absence of the architecture-alter-
ing operations and automatically defined functions. The percentages of genetic oper-
ations are given in appendix B.

The 10th difference is the population size. For difficult problems, we typically
choose the population size such that genetic programming can execute a reasonably
large number of generations within the amount of computer time we are willing to
devote to the problem. Advance testing indicated that the time required to measure the
fitness of an individual would exceed 2 minutes per individual. Our intent was to
spend several weeks on our 1,000-Pentium Beowulf-style parallel computer on each
run of this manifestly difficult problem. We chose a small population size of 100 for
each node on our 1,000-Pentium Beowulf-style parallel computer (for a total popula-
tion size of 100,000). Given this choice, it was anticipated that each generation would
take a little over three hours and that there would therefore be about eight generations
per day and about 56 generations per week. Note that there is considerable uncertainly
surrounding all advance estimates of the length of time of runs of genetic program-
ming because the complexity of the individuals that are actually generated during the
run significantly affects simulation time.

13.2 Results for Improved General-Purpose Controllers

We made three runs of this problem.

13.2.1 Results for First Run for Improved General-Purpose Controllers

The best-of-run individual from the first run of this problem emerged in generation 88.
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The fitness measure for this first run entails 160 separate invocations of the SPICE
simulator (i.e., eight simulations for each of 20 plants). The average time to evaluate
the fitness of an individual was 2 minutes and 10 seconds. Because the population size
is 100,000, the fitness of about 8,900,000 individuals was evaluated during the run. It
took 320 hours (13.3 days) to produce the best-of-run individual. As in all the prob-
lems in this book, most of the computer time was consumed in evaluating the fitness
of individuals in the population—not on genetic operations.

Figure 13.1 shows the best-of-run parameterized controller from generation 88 of
the first run. This first parameterized controller is composed of lags (with transfer
functions of the form 1/(1��s)) as well as gain, differentiator, integrator, adder, and
subtractor blocks. Genetic programming produced this controller’s overall topology
consisting of four adders, nine subtractors, eight gain blocks parameterized by a con-
stant, five gain blocks parameterized by non-constant mathematical expressions con-
taining free variables, three lag blocks parameterized by non-constant mathematical
expressions containing free variables, and one Åström-Hägglund sub-controller.

The output of the improved parameterized controller of figure 13.1 is control vari-
able 390. There are three time-domain inputs to this controller, namely the reference
signal 300, the plant output 304, and controller output 390 (i.e., internal feedback of
the output of this controller into itself).

The four free variables available to each arithmetic-performing subtree of each
signal-processing function possessing a parameter value are the plant’s ultimate gain,
Ku; ultimate period, Tu; dead time, L; and time constant, Tr.

Note that the plant output indirectly enters the best-of-run parameterized con-
troller from generation 88 through block 306. Block 206 is a PID controller that is
tuned with the tuning rules developed by Åström and Hägglund in their 1995 book for
the plant under consideration.

The first parameterized controller has eight gain blocks (326, 327, 332, 334, 336,
382, 384, and 385) that are parameterized by a constant numerical amplification fac-
tor. In particular, gain blocks 326, 332, 382, and 384 each have a gain of 3. Gain
blocks 327, 334, 336, and 385 each have a gain of 2.

The first parameterized controller has four two-argument adders (324, 352, 388,
and 387) and seven two-argument subtractors (308, 312, 338, 346, 366, 376, and 386).
It also has two three-argument subtractors (328 and 335) in which one signal is sub-
tracted from the sum of the two other signals.

In addition, the first parameterized controller has five gain blocks (310, 330, 340,
360, and 370) that are parameterized by genetically evolved non-constant mathemat-
ical expressions containing free variables.

Gain block 310 in figure 13.1 is parameterized by equation 11:

[11]

Gain block 330 in figure 13.1 is parameterized by equation 13:

[13]

Gain block 340 in figure 13.1 is parameterized by equation 14:

[14]elog�Ku/L�.

10elog�log�Ku*L��
.

10elog�log�log(eKu*L)/L��
.
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Gain block 360 in figure 13.1 is parameterized by equation 16:

[16]

Gain block 370 in figure 13.1 is parameterized by equation 17:

elog(Ku). [17]

The first parameterized controller also has three lag blocks (320, 350, and 380)
that are parameterized by genetically evolved non-constant mathematical expressions
containing free variables.

Equation 12 for lag block 320, equation 15 for lag block 350, and equation 18 for
lag block 380 are the same:

Tr.

The first parameterized controller has internal feedback in several places. For one
thing, its own final output 390 is fed back to seven other blocks (308, 312, 327, 336,
338, 346, and 384) within this controller.

In addition, there is internal feedback involving subtractor 376, lag block 380, and
adder 387 in which the signal that is fed back is not the controller’s own final output.
That is, this internal feedback loop lies entirely inside the controller.

In addition, the first parameterized controller contains Åström-Hägglund con-
troller 306 (which contains additional adder, subtractor, integration, differentiation,
and gain blocks).

Note that figure 13.1 (and other similar figures in this chapter) is simplified by
replacing multiple blocks adding the same signal with a single gain block (with an
appropriate amplification factor) and by deleting pairs of blocks that cancel each other
(e.g., the same signal is first added and then subtracted).

Notice that genetic programming automatically created all the following in the
single run that produced the controller of figure 13.1:

● the controller’s topology, including
● the total number of processing blocks (30),
● the type of each block,
● all the connections (directed lines) that exist between the controller’s two exter-

nal input points (i.e., the reference signal and the plant output), the controller’s
30 blocks, and the controller’s external output point,

● the controller’s tuning, including
● three mathematical expressions containing free variables (for the three lag

blocks),
● five mathematical expressions containing free variables (for five of the 13 gain

blocks),
● eight constant mathematical expressions (for eight of the 13 gain blocks).

As will be seen, the three parameterized controllers in this chapter have several
features in common.

First, each controller includes an Åström-Hägglund block as well as a second sub-
controller that receives the output from the Åström-Hägglund controller.

10elog�log�Ku*L��
.
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Second, the difference between the output of the Åström-Hägglund controller and
output of the second sub-controller is computed at least once.

Third, each second sub-controller makes use of internal feedback in the sense that
it feeds its own output back into itself.

Fourth, each second sub-controller includes at least one lag block or at least one
lead block (in addition to the usual gain, integrative, derivative, additive, and subtrac-
tive blocks).

The best-of-run parameterized controller from generation 88 of the first run can be
described in terms of its transfer function. The transfer function is given by the equation:

,

where U is the controller output, A is the output of the Åström-Hägglund controller,
R is the reference signal, E11 through E17 correspond to equations 11 through 17,
respectively, and GLAG is the transfer function for the identical lag blocks, namely

.

Averaged over the 20 plants used in this run (i.e., those marked “1” in column 7
of table 12.1), the first parameterized controller has

● 66.4% of the setpoint ITAE of the Åström-Hägglund controller,
● 85.7% of the disturbance rejection ITAE of the Åström-Hägglund controller,
● 94.6% of the reciprocal of minimum attenuation of the Åström-Hägglund con-

troller, and
● 92.9% of the maximum sensitivity, Ms, of the Åström-Hägglund controller.

Averaged over the 18 additional plants of table 12.2, the first parameterized con-
troller has

● 64.1% of the setpoint ITAE of the Åström-Hägglund controller,
● 84.9% of the disturbance rejection ITAE of the Åström-Hägglund controller,
● 95.8% of the reciprocal of minimum attenuation of the Åström-Hägglund

controller, and
● 93.5% of the maximum sensitivity, Ms, of the Åström-Hägglund controller.

As can be seen, the results obtained for the plants used in this run are very simi-
lar to those for the 18 previously unseen additional plants.

Thus, the best-of-run parameterized controller from generation 88 is an improve-
ment over the PID controller developed by Åström and Hägglund in their 1995 book.

We now provide additional comparative details.
Figure 13.2 compares the cumulative ITAE for the best-of-run parameterized 

controller from generation 88 of the first run (solid line) with that for the Åström
and Hägglund controller (dotted line) for the three-lag plant in response to a reference
signal that steps up from 0 Volts to 1 Volt. As can be seen, the genetically evolved 

GLAG �
1

1 � Tr*s

U �
A(3 � 3GLAG

2 E13E14E16E17 � GLAG
3 E11E13E14E16E17 � 3GLAG(1 � E16E17)) � (2 � 2GLAG

2 E13E14E16E17 � GLAG(�1 � 2E16)E17)R

4 � GLAG
3 (1 � E11)E13E14E16E17 � GLAG

2 (1 � E14 � 2E13E14)E16E17 � 2GLAG(2 � E16E17)
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controller virtually eliminates the error at about 6 seconds whereas the Åström and
Hägglund controller continues to accumulate error.

Table 13.1 shows the performance of the best-of-run parameterized controller
from generation 88 of the first run on the 20 plants used in this run (i.e., those marked
“1” in column 7 of table 12.1).

Table 13.2 compares the performance of the best-of-run parameterized controller
from generation 88 of the first run as a percentage of the value for the Åström and
Hägglund controller for the 20 plants used in this run (i.e., those marked “1” in col-
umn 7 of table 12.1). An “OK” appears in this table (and other similar tables later in
this chapter) for the cases where the penalties associated with both controllers are 0.
As can be seen in the table, all percentages are either below 100% (indicating
improvement) or “OK.”

Table 13.3 shows the performance of the best-of-run parameterized controller
from generation 88 of the first run on the 18 additional plants from table 12.2.

Table 13.4 compares the performance of the best-of-run parameterized controller
from generation 88 of the first run as a percentage of the value for the Åström and
Hägglund controller for the 18 additional plants from table 12.2. As can be seen, there
is one value over 100% (100.3) for one plant from family A concerning sensitivity and
another value over 100% (235.9) for one plant from category C concerning stability.

For additional information, see Keane, Koza, and Streeter 2002b.
When a human engineer conceives of the design for a controller, circuit, antenna,

or other complex structure, the engineer usually has sufficient mathematical and intu-
itive understanding of the design to be confident about its behavior over a wide range
of situations. In contrast, when an automated method generates a design (particularly
a novel design), confidence must be established in other ways.

The amount of time and attention that is devoted to any particular individual in the
population is necessarily limited because of the millions of individuals that are
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Table 13.2 Percentage comparison (for 20 plants) of the best-of-run parameterized controller
from the first run and the Åström–Hägglund controller

Parameter Stability Sensor
Plant value ITAE 1 ITAE 2 ITAE 3 ITAE 4 ITAE 5 ITAE 6 margin noise

A 0.1 86.8 87 86.1 87 77.8 90.8 59.4 84.2
A 0.3 86.3 86.3 86 86.3 64.1 99.9 70.5 88.3
A 1 78.9 78.9 78.8 74.7 60.6 88.2 89.4 76.9
A 3 67.8 67.8 67.6 67.8 62.4 79.3 71.7 73.3
A 10 73.1 73.3 73.1 73 72 78.3 0 87.6
B 3 67.7 67.8 67.9 67.7 64.8 74.3 0 OK
B 4 69.7 69.7 69.9 69.7 62.8 78 47.5 OK
B 6 78.4 78.5 78.5 78.4 70 85.4 78.9 OK
B 7 80.1 80.2 80.2 80.2 69 88 80.2 OK
B 8 83.3 83.3 83.2 83.2 70.9 91.7 79.5 OK
C 0.1 77.4 78.2 78.5 77.4 77 90.4 OK 30.9
C 0.2 76 76 75.8 76 74.7 86.2 OK 0
C 0.5 70.5 70.4 70.3 70.5 64.7 80.7 32.8 OK
C 0.7 68.3 68.3 68.6 68.3 61.6 77.2 42.7 OK
C 0.9 69.2 69.1 69 69.1 61.9 77.1 47.3 OK
D 0.1 67.1 67.3 67.3 66.8 62.2 74.7 14.2 OK
D 0.2 67.4 67.3 67.1 67.4 61.3 76 32.8 OK
D 0.5 70.3 70.4 70.3 70.4 59.2 80.7 64.2 OK
D 1 73.9 73.6 73.7 73.9 60.4 84.4 70.9 OK
D 2 83.3 83.2 83.4 83.1 74.9 88.2 61.5 OK

Table 13.1 Performance (for 20 plants) of the best-of-run controller from the first run

Parameter Stability Sensor
Plant value ITAE 1 ITAE 2 ITAE 3 ITAE 4 ITAE 5 ITAE 6 margin noise

A 0.1 0.661 0.663 0.664 0.665 0.216 0.445 0.581 8.53
A 0.3 0.606 0.606 0.604 0.605 0.171 0.434 0.472 1.54
A 1 0.385 0.385 0.385 0.365 0.138 0.246 0.590 0.85
A 3 0.222 0.222 0.221 0.222 0.131 0.095 0.426 1.09
A 10 0.165 0.166 0.165 0.165 0.137 0.028 0 0.974
B 3 0.225 0.225 0.225 0.225 0.145 0.079 0 0
B 4 0.320 0.320 0.319 0.319 0.151 0.168 0.336 0
B 6 0.449 0.449 0.448 0.449 0.172 0.274 0.510 0
B 7 0.485 0.485 0.482 0.484 0.173 0.308 0.515 0
B 8 0.512 0.512 0.509 0.511 0.175 0.333 0.511 0
C 0.1 0.141 0.142 0.142 0.141 0.135 0.005 0 0.203
C 0.2 0.144 0.144 0.144 0.144 0.126 0.018 0 0
C 0.5 0.221 0.221 0.221 0.221 0.130 0.090 0.177 0
C 0.7 0.284 0.284 0.284 0.284 0.143 0.140 0.288 0
C 0.9 0.319 0.318 0.318 0.318 0.151 0.166 0.336 0
D 0.1 0.248 0.249 0.249 0.248 0.142 0.105 0.071 0
D 0.2 0.275 0.274 0.274 0.275 0.143 0.131 0.210 0
D 0.5 0.364 0.364 0.364 0.364 0.148 0.215 0.452 0
D 1 0.579 0.578 0.578 0.579 0.196 0.383 0.534 0
D 2 1.32 1.32 1.32 1.32 0.441 0.874 4.343 0
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Table 13.3 Performance (on the 18 additional plants) of the best-of-run controller from the
first run

Parameter Stability Sensor
Plant value ITAE 1 ITAE 2 ITAE 3 ITAE 4 ITAE 5 ITAE 6 margin noise

A 0.15 0.653 0.653 0.658 0.657 0.207 0.447 0.545 1.94
A 0.5 0.533 0.533 0.533 0.533 0.155 0.377 0.449 0.635
A 0.9 0.406 0.406 0.382 0.384 0.140 0.266 0.581 1.135
A 2.5 0.237 0.237 0.237 0.238 0.130 0.113 0.484 0.793
A 4.0 0.203 0.203 0.202 0.202 0.134 0.071 0.322 1.44
A 9.0 0.168 0.168 0.168 0.167 0.136 0.031 0 0.991
C 0.25 0.150 0.150 0.150 0.150 0.123 0.027 0.302 0
C 0.34 0.168 0.168 0.168 0.168 0.122 0.045 0.011 0
C 0.43 0.203 0.203 0.203 0.203 0.129 0.073 0.174 0
C 0.52 0.228 0.228 0.228 0.227 0.131 0.096 0.187 0
C 0.61 0.258 0.258 0.258 0.258 0.137 0.119 0.226 0
C 0.69 0.281 0.281 0.281 0.281 0.142 0.138 0.278 0
D 0.15 0.261 0.262 0.262 0.261 0.143 0.118 0.147 0
D 0.3 0.302 0.302 0.302 0.302 0.143 0.158 0.316 0
D 0.6 0.399 0.399 0.399 0.400 0.154 0.244 0.490 0
D 0.85 0.502 0.502 0.502 0.503 0.181 0.321 0.549 0
D 1.2 0.694 0.695 0.694 0.693 0.227 0.465 0.593 0
D 1.8 1.12 1.12 1.12 1.12 0.367 0.748 1.38 0

Table 13.4 Percentage comparison (on the 18 additional plants) of the best-of-run controller
from the first run and the Åström–Hägglund controller

Parameter Stability Sensor
Plant value ITAE 1 ITAE 2 ITAE 3 ITAE 4 ITAE 5 ITAE 6 margin noise

A 0.15 90 90 89.4 89.9 77.8 97.2 63.5 41.2
A 0.5 88.6 88.6 88.5 88.6 62.5 96.4 72.4 71.4
A 0.9 76.8 76.8 72.2 72.6 58.2 85.7 91 91.6
A 2.5 66.3 66.3 66.2 66.4 60.2 77.8 73.6 75.6
A 4.0 68.9 68.9 68.8 68.8 65.8 77.2 70.2 100.3
A 9.0 71.2 71.3 71.1 71 70 76.5 0 87.8
C 0.25 72.9 72.8 72.8 72.9 71.3 82.1 235.9 OK
C 0.34 69.5 69.2 69.4 69.5 67 77.8 3.9 OK
C 0.43 70.8 70.8 70.8 70.5 66 81.2 37.1 OK
C 0.52 68.1 68.1 67.9 68.1 62.6 77.1 34.3 OK
C 0.61 68.4 68.5 68.3 68.4 62.4 77 37.7 OK
C 0.69 68.6 68.6 69 68.6 61.9 77.3 41.9 OK
D 0.15 67.1 67.1 67.2 67.1 61.9 74.8 25.2 OK
D 0.3 67 67 67 67 59.2 76.4 45.2 OK
D 0.6 67.9 67.8 67.9 67.9 56.4 78.3 67.4 OK
D 0.85 70 69.8 69.8 70.1 58.6 79.3 73.7 OK
D 1.2 75.4 75.3 75.2 75.3 61.3 84.7 70.7 OK
D 1.8 80.6 80.6 80.6 80.8 70.5 86.9 33.1 OK



processed during a run of genetic programming. However, once a single individual
emerges as the best-of-run individual from a run, it becomes practical (and advisable)
to analyze and test that individual more extensively. Post-run testing may involve even
more cross-validation (i.e., additional plants, additional values for the height of the
reference signal and disturbance signals, additional values for noise, different types of
added noise signals). The additional post-run testing may involve types of analysis
that were not part of the original fitness measure. The genetically evolved individual
may also be analyzed mathematically. Of course, there will be considerable motiva-
tion and justification to do such post-run testing and analysis if the automatically cre-
ated design outperforms previously known designs.

13.2.2 Results for Second Run for Improved General-Purpose Controllers

The best-of-run individual from the second run of this problem emerged in generation 38.
The fitness measure for the second run entails 192 separate invocations of the

SPICE simulator (i.e., eight simulations for each of 24 plants). The average time to
evaluate the fitness of an individual is about 2 minutes and 36 seconds. Note that the
time is longer than that of the first run because there are more plants. It took 397 hours
(16.5 days) to produce the best-of-run individual.

The fitness measure for this second run contains a 193rd element that considers the
controller’s parsimony. The parsimony element of the fitness measure is dominant
only after a controller outperforms the Åström-Hägglund PID controller for all 192
SPICE simulations. Unfortunately, within a few hours after the second run evolved its
first individual scoring 192 hits, a citywide power failure (lasting longer than the 15
minutes covered by our uninterruptable power supply) prematurely terminated this
16-day run. Thus, although the second controller outperforms the Åström-Hägglund
controller (by a small margin), it is not particularly parsimonious. Nonetheless, this
second controller is noteworthy because it is another topologically different controller
that outperforms the Åström-Hägglund PID controller and because it helps establish
the common features of the three controllers in this chapter (section 13.2.1).

Figure 13.3 shows the best-of-run parameterized controller from generation 38 of
the second run. This second controller is composed of lags as well as gain, differen-
tiator, integrator, adder, and subtractor blocks. Genetic programming produced this
controller’s overall topology consisting of four adders, six subtractors, three gain
blocks parameterized by a constant, eight lag blocks parameterized by non-constant
mathematical expressions containing free variables, and one Åström-Hägglund
sub-controller.

The output of the second controller is control variable 490. There are three time-
domain inputs to this controller, namely the reference signal 400, the plant output 404,
and controller output 490 (i.e., internal feedback of the output of the controller into
itself).

Note that the plant output indirectly enters the best-of-run parameterized con-
troller from generation 38 through block 406. Block 406 is a PID controller that is
tuned with the Åström-Hägglund tuning rules for the plant under consideration.

The second controller has three gain blocks (412, 416, and 442) that are parame-
terized by a constant numerical amplification factor. In particular, gain block 412 has
a gain of 3. Gain block 416 has a gain of 15. Gain block 442 has a gain of 2.

398 Genetic Programming IV
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The second controller has one three-argument adder 488, two two-argument
adders (418 and 452), and six two-argument subtractors (414, 422, 424, 426, 444,
and 472).

The second controller also has eight lag blocks (410, 420, 430, 440, 450, 460, 470,
and 480) that are parameterized by genetically evolved non-constant mathematical
expressions containing free variables.
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Figure 13.3 Best-of-run parameterized controller from the second run.



Lag block 430 in figure 13.3 is parameterized by equation 23:

[23]

Lag block 440 in figure 13.3 is parameterized by equation 24:

[24]

Lag block 450 in figure 13.3 is parameterized by equation 25:

[25]

Lag block 460 in figure 13.3 is parameterized by equation 26:

[26]

where

Lag block 470 in figure 13.3 is parameterized by equation 27:

[27]

Lag block 480 in figure 13.3 is parameterized by equation 28:

[28]

The second controller has internal feedback of its own final output 490 back into
itself in seven places. Specifically, controller output 490 is fed back as input to six lag
blocks (410, 420, 430, 440, 460, and 470). In addition, controller output 490 is sub-
tracted, by subtractor 414, from the output of PID controller 406 tuned using the
Åström-Hägglund tuning rules. The difference becomes the input to gain block 416.

In addition, the second controller contains Åström-Hägglund controller 406 (which
contains additional adder, subtractor, integration, differentiation, and gain blocks).
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The best-of-run parameterized controller from generation 38 from the second run
can be described in terms of its transfer function, namely

where U is the controller output, A is the output of the Åström-Hägglund controller,
R is the reference signal, and E21 through E28 correspond to equations 21 through 28,
respectively.

Averaged over the 24 plants used in this run (i.e., those marked “2” in column 7
of table 12.1), the second controller has

● 85.5% of the setpoint ITAE of the Åström-Hägglund controller,
● 91.8% of the disturbance rejection ITAE of the Åström-Hägglund controller,
● 98.9% of the reciprocal of minimum attenuation of the Åström-Hägglund con-

troller, and
● 97.5% of the maximum sensitivity, Ms, of the Åström-Hägglund controller.

Averaged over the 18 additional plants of table 12.2, the second controller has

● 84% of the setpoint ITAE of the Åström-Hägglund controller,
● 90.6% of the disturbance rejection ITAE of the Åström-Hägglund controller,
● 98.9% of the reciprocal of minimum attenuation of the Åström-Hägglund con-

troller, and
● 97.5% of the maximum sensitivity, Ms, of the Åström-Hägglund controller.

As can be seen, the results obtained for the plants used in this run are very simi-
lar to those for the 18 previously unseen additional plants.

Thus, the best-of-run parameterized controller from generation 38 from the second
run is an improvement over the PID controller developed by Åström and Hägglund in
their 1995 book.

We now provide additional comparative details.
Table 13.5 shows the performance of the best-of-run parameterized controller

from generation 38 of the second run on the 24 plants used in this run (i.e., those
marked “2” in column 7 of table 12.1).

Table 13.6 presents the performance of the best-of-run parameterized controller
from generation 38 of the second run as a percentage of the value for the Åström and
Hägglund controller for the 24 plants used in this run (i.e., those marked “2” in col-
umn 7 of table 12.1). As can be seen in the table, all percentages are either below
100% (indicating improvement) or “OK.”

Table 13.7 shows the performance of the best-of-run parameterized controller
from generation 38 of the second run on the 18 additional plants from table 12.2.

Table 13.8 compares the performance of the best-of-run parameterized controller
from generation 38 of the second run as a percentage of the value for the Åström and
Hägglund controller for the 18 additional plants from table 12.2. As can be seen, there

U � �
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is one value over 100% (102.2) for one plant from category A concerning sensor
noise.

After the power failure that unexpectedly interrupted this run, we started up a new
run (called a Noah run) whose initial population was pre-populated with a mixture of
best-of-node individuals existing at (or just before) the time of the power failure.
Because this Noah run did not yield any significant additional progress, we made a
third run.

13.2.3 Results for Third Run for Improved General-Purpose Controllers

The best-of-run controller emerged in generation 19 .
The fitness measure for the third run (like that of the second run) entails 192 sep-

arate invocations of the SPICE simulator (i.e., eight simulations for each of 24 plants).
The average time to evaluate the fitness of an individual was about 2 minutes and 
5 seconds. It took 692 hours (28.8 days) to produce the best-of-run individual from
generation 199. This is the longest run of genetic programming that we have ever made.

In addition to the 192 elements of the fitness measure that require a SPICE simu-
lation, the fitness measure for this third run contains a 193rd element that considers the
controller’s parsimony. Unlike the interrupted second run, this 193rd element came
into play during this third run. The first best-of-generation controller with 192 hits
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Table 13.5 Performance (for 24 plants) of the best-of-run controller from the second run

Parameter Stability Sensor
Plant value ITAE 1 ITAE 2 ITAE 3 ITAE 4 ITAE 5 ITAE 6 margin noise

A 0.1 0.698 0.698 0.700 0.692 0.231 0.464 0.737 9.76
A 0.3 0.658 0.658 0.660 0.659 0.230 0.428 0.571 1.71
A 1 0.446 0.446 0.447 0.446 0.203 0.260 0.603 1.05
A 3 0.291 0.291 0.291 0.291 0.182 0.111 0.546 1.44
A 6 0.229 0.229 0.229 0.229 0.174 0.057 0.247 1.19
A 10 0.216 0.216 0.216 0.216 0.181 0.036 0 1.06
B 3 0.288 0.287 0.287 0.288 0.193 0.093 0.321 0
B 4 0.407 0.406 0.406 0.407 0.209 0.195 0.578 0
B 5 0.478 0.477 0.479 0.478 0.216 0.261 0.634 0
B 6 0.526 0.525 0.524 0.526 0.218 0.305 0.603 0
B 7 0.562 0.562 0.560 0.562 0.221 0.338 0.573 0
B 8 0.581 0.580 0.579 0.580 0.221 0.357 0.577 0
C 0.2 0.170 0.170 0.170 0.170 0.150 0.019 0 0
C 0.3 0.190 0.190 0.190 0.190 0.149 0.040 0.163 0
C 0.4 0.232 0.232 0.232 0.232 0.159 0.072 0.266 0
C 0.5 0.260 0.261 0.261 0.260 0.163 0.095 0.432 0
C 0.6 0.317 0.317 0.317 0.317 0.183 0.132 0.526 0
C 0.7 0.361 0.360 0.360 0.361 0.197 0.162 0.53 0
D 0.1 0.319 0.320 0.319 0.319 0.196 0.123 0.459 0
D 0.2 0.354 0.354 0.354 0.354 0.199 0.153 0.531 0
D 0.5 0.450 0.450 0.451 0.450 0.210 0.238 0.634 0
D 0.7 0.530 0.530 0.531 0.530 0.225 0.303 0.625 0
D 1 0.672 0.672 0.672 0.672 0.262 0.409 0.662 0
D 2 1.31 1.31 1.31 1.32 0.460 0.852 4.628 0

9
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Table 13.6 Percentage comparison (for 24 plants) of the best-of-run controller from the
second run and the Åström–Hägglund controller

Parameter Stability Sensor
Plant value ITAE 1 ITAE 2 ITAE 3 ITAE 4 ITAE 5 ITAE 6 margin noise

A 0.1 91.6 91.6 90.7 90.5 83.5 94.6 75.2 96.4
A 0.3 93.8 93.8 93.9 93.9 86.3 98.5 85.2 97.9
A 1 91.4 91.4 91.4 91.4 89.3 93.2 91.5 94.7
A 3 88.9 88.9 88.9 88.9 86.9 92.4 92 96.4
A 6 91.9 91.9 91.9 91.9 90.9 94.8 88.5 95.3
A 10 95.2 95.2 95.3 95.3 94.7 98.2 0 95
B 3 86.4 86.2 86.5 86.4 86.2 87.2 87.4 OK
B 4 88.7 88.6 88.8 88.7 86.9 90.7 81.7 OK
B 5 90.8 90.9 91.1 90.8 88.4 93.5 92 OK
B 6 91.9 91.7 91.9 92 88.6 95.1 93.4 OK
B 7 92.8 93 93.1 93.1 88.3 96.3 89.3 OK
B 8 94.5 94.4 94.5 94.4 89.3 98.1 89.8 OK
C 0.2 89.5 89.5 89.4 89.5 89.1 92.8 OK 0
C 0.3 88.3 88.3 88.4 88.4 87.6 91.3 67.7 OK
C 0.4 89.5 89.5 89.6 89.5 86.7 97.1 63.3 OK
C 0.5 82.8 82.8 82.8 82.8 81.4 85.3 79.8 OK
C 0.6 85.5 85.6 85.4 85.5 84.1 87.8 88.7 OK
C 0.7 86.6 86.6 86.9 86.6 84.7 89 78.5 OK
D 0.1 86.2 86.4 86.2 86.2 85.3 87.5 90.9 OK
D 0.2 86.9 86.9 86.6 86.9 85.4 88.8 82.9 OK
D 0.5 86.8 86.9 87.1 86.8 83.5 89.6 90 OK
D 0.7 87.3 87.2 87.4 87.3 82.4 91.1 83.5 OK
D 1 85.8 85.6 85.6 85.8 80.3 90.3 87.8 OK
D 2 83 82.9 82.9 83.1 78.2 85.9 65.5 OK

Table 13.7 Performance (for the 18 additional plants) of the best-of-run controller of the
second run

Parameter Stability Sensor
Plant value ITAE 1 ITAE 2 ITAE 3 ITAE 4 ITAE 5 ITAE 6 margin noise

A 0.15 0.653 0.653 0.661 0.658 0.208 0.445 0.658 4.23
A 0.5 0.566 0.566 0.566 0.566 0.226 0.379 0.522 0.823
A 0.9 0.478 0.478 0.478 0.478 0.209 0.289 0.592 1.27
A 2.5 0.318 0.318 0.318 0.318 0.187 0.134 0.618 0.96
A 4.0 0.265 0.265 0.265 0.265 0.181 0.086 0.455 1.38
A 9.0 0.221 0.221 0.221 0.221 0.181 0.04 0.048 1.08
C 0.25 0.183 0.183 0.183 0.183 0.152 0.03 0.062 0
C 0.34 0.213 0.213 0.213 0.213 0.159 0.053 0.242 0
C 0.43 0.241 0.240 0.240 0.241 0.162 0.077 0.400 0
C 0.52 0.279 0.279 0.28 0.279 0.172 0.106 0.462 0
C 0.61 0.323 0.324 0.323 0.323 0.185 0.136 0.525 0
C 0.69 0.356 0.355 0.355 0.356 0.195 0.159 0.527 0
D 0.15 0.338 0.339 0.338 0.338 0.198 0.139 0.505 0
D 0.3 0.392 0.392 0.392 0.392 0.205 0.185 0.568 0
D 0.6 0.512 0.512 0.513 0.511 0.227 0.282 0.638 0
D 0.85 0.618 0.618 0.618 0.619 0.251 0.365 0.647 0
D 1.2 0.788 0.788 0.787 0.788 0.294 0.491 0.703 0
D 1.8 1.16 1.16 1.16 1.16 0.406 0.748 2.02 0



emerged in generation 105 after 422 hours (about 61% through the full 28.8-day run).
The remaining 39% of the run was concerned with parsimony. Figure 13.4 shows the
progressive improvement in parsimony during the portion of the third run that
occurred after the creation of the first best-of-generation controller with 192 hits. The
horizontal axis is the time (in hours) starting at 422 hours (17.6 days). The vertical
axis is the parsimony element of the fitness measure. Each point represents a new
best-so-far individual encountered during the run. The parsimony element (weighted
block count) of the fitness measure for the best-of-generation individual from gener-
ation 105 is 22.6. The parsimony element of the fitness measure of the eventual best-
of-run individual from generation 199 is 13.1.

Figure 13.5 shows the best-of-run parameterized controller from generation 
199 of the third run. Genetic programming produced this controller’s overall topol-
ogy consisting of three adders, three subtractors, four gain blocks parameterized by a
constant, two gains blocks parameterized by non-constant mathematical expressions
containing free variables, two lead blocks parameterized by non-constant mathemati-
cal expressions containing free variables, and one Åström-Hägglund sub-controller.

The third controller is composed of leads (with transfer functions of the form
1��s) as well as gain, differentiator, integrator, adder, and subtractor blocks.

The output of the third controller is control variable 790. There are three time-domain
inputs to this controller, namely the reference signal 700, the plant output 704, and con-
troller output 790 (i.e., internal feedback of the output of this controller into itself).

Note that the plant output indirectly enters the best-of-run parameterized con-
troller from generation 199 through PID block 706. Block 706 is a PID controller
tuned with the Åström-Hägglund tuning rules for the plant under consideration.
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Table 13.8 Percentage comparison (for the 18 additional plants) of the best-of-run controller
from the second run and the Åström–Hägglund controller

Parameter Stability Sensor
Plant value ITAE 1 ITAE 2 ITAE 3 ITAE 4 ITAE 5 ITAE 6 margin noise

A 0.15 90 90 89.9 90 78.4 96.8 76.5 89.7
A 0.5 94.1 94.1 94 94.1 91 96.7 84.1 92.5
A 0.9 90.3 90.3 90.3 90.3 87.1 93.3 92.7 102.2
A 2.5 88.8 88.8 88.8 88.8 86.5 92.2 94 91.9
A 4.0 90.2 90.2 90.2 90.2 88.7 93.8 99 96.5
A 9.0 93.6 93.6 93.6 93.6 93 96.5 69 96
C 0.25 88.4 88.4 88.4 88.5 88.1 91.5 48.4 OK
C 0.34 88.1 87.8 88.1 88.2 87.3 91.3 81.5 OK
C 0.43 83.7 83.6 83.4 83.7 82.7 85.7 85 OK
C 0.52 83.7 83.3 83.4 83.7 82.4 85.7 84.6 OK
C 0.61 85.7 85.8 85.6 85.7 84.3 87.8 87.5 OK
C 0.69 86.8 86.7 87.1 86.8 84.8 89.2 79.3 OK
D 0.15 86.8 86.9 86.6 86.8 85.7 88.4 86.4 OK
D 0.3 87 87 87.1 87 84.8 89.6 81.2 OK
D 0.6 87 86.9 87.2 86.9 83.1 90.3 87.6 OK
D 0.85 86.1 85.9 86 86.2 81.2 90.3 86.8 OK
D 1.2 85.5 85.5 85.3 85.5 79.4 89.6 83.8 OK
D 1.8 83.6 83.6 83.6 83.7 78.1 86.9 48.4 OK
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Figure 13.4 Progressive improvement in parsimony during the last part of the third run.

The third controller has four gain blocks (710, 720, 770, and 780) that are parameter-
ized with a constant numerical amplification factor. In particular, gain block 710 has a gain
of 3. Each of gain blocks 720 and 770 has a gain of 2. Gain block 780 has a gain of 10.

The third controller has three three-argument adders (738, 748, and 788) and three
two-argument subtractors (734, 736, and 778).

The third controller also has two gain blocks (730 and 760) whose gain is
expressed as an equation involving the four free variables that describe a particular
plant (i.e., the plant’s ultimate gain, Ku; ultimate period, Tu; dead time, L; and time
constant, Tr). Specifically, gain block 730 has a gain (equation 31) of

[31]

whereas gain block 760 has a gain (equation 34) of

[34]

The third controller also has two lead blocks (i.e., blocks with transfer functions
of the form 1��s) that are parameterized by genetically evolved mathematical expres-
sions. They are blocks 740 and 750.

Lead block 740 in figure 13.5 is parameterized by equation 32:

[32]

where NLM is the nonlinear mapping described in section 3.5.5.
Note that this nonlinear mapping was not mentioned in the discussion of the first

or second run of this problem because the equations evolved in the first and second

NLM(log�L� � (abs(L)L)2T3
u(Tu � 1)Tre

L � 2Tue
L),

�log�Tr � 1��.

�log�Tr � Tu � log
 log(�L�L)

Tu � 1 
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runs all had the property that the nonlinear mapping could be removed in simplifying
the evolved equation. This simplification is possible when the argument x to the NLM
is always in the range �5�x�5 (so the NLM has the form 10x) and when x has the
form x� log(y), where y is some mathematical expression. The value of the expres-
sion is then NLM(x)�10x �10log(y) �y. However, for some of the equations evolved
in this third run, this simplification is not possible.

Lead block 750 in figure 13.5 is parameterized by equation 33:

[33]

The third controller has internal feedback of its own output (control variable 790)
back into itself. Specifically, controller output 790 is subtracted from the output of
PID controller 706 tuned using the Åström-Hägglund tuning rules. The difference
(amplified by a factor of 10 by gain block 780) becomes one of the three signals that
are added together (by adder 788) to create controller output 790. Similarly, controller
output 790 (amplified by a factor of 2 by gain block 770) is subtracted from the out-
put of the Åström-Hägglund controller 706 (amplified by a factor of 2 by gain block
720) by subtractor 734.

In addition, the third controller contains Åström-Hägglund controller 706 (which
contains additional adder, subtractor, integration, differentiation, and gain blocks).

The best-of-run parameterized controller from generation 199 of the third run can
be described in terms of its transfer function:

where R is the reference signal; A is the output of the Åström-Hägglund controller; U
is the controller output; P is the plant output (which is not used explicitly); and E31,
E32, E33, and E34 refer to equations 31, 32, 33, and 34 respectively.

Averaged over the 24 plants used in this run (i.e., those marked “3” in column 7
of table 12.1), the third controller has

● 81.8% of the setpoint ITAE of the Åström-Hägglund controller,
● 93.8% of the disturbance rejection ITAE of the Åström-Hägglund controller,
● 98.8% of the reciprocal of minimum attenuation of the Åström-Hägglund con-

troller, and
● 93.4% of the maximum sensitivity, Ms, of the Åström-Hägglund controller.

Averaged over the 18 additional plants of table 12.2, the third controller has

● 81.8% of the setpoint ITAE of the Åström-Hägglund controller,
● 94.2% of the disturbance rejection ITAE of the Åström-Hägglund controller,
● 99.7% of the reciprocal of minimum attenuation of the Åström-Hägglund con-

troller, and
● 92.5% of the maximum sensitivity, Ms, of the Åström-Hägglund controller.

As can be seen, the results obtained for the plants used in this run are very simi-
lar to those for the 18 previously unseen additional plants.

U �
R(1 � 3E34(1 � E32*s)(1 � E33*s)) � A(10 � E34(3 � E31 � 2E32*s � E31E32*s)(1 � E33*s))

11 � E34(2 � 3E32*s)(1 � E33*s)
,

NLM(log�L� � 2Tue
L(2Ku(log�Kue

L��log�L�)Tu � Kue
L)).
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Table 13.9 Performance (for 24 plants) of the best-of-run controller from the third run

Parameter Stability Sensor
Plant value ITAE 1 ITAE 2 ITAE 3 ITAE 4 ITAE 5 ITAE 6 margin noise

A 0.1 0.694 0.700 0.705 0.695 0.235 0.460 0.726 9.77
A 0.3 0.678 0.679 0.679 0.678 0.245 0.430 0.480 1.70
A 1 0.434 0.434 0.434 0.434 0.182 0.266 0.489 1.14
A 3 0.275 0.275 0.275 0.275 0.170 0.108 0.457 1.46
A 6 0.212 0.212 0.212 0.212 0.163 0.050 0.122 1.26
A 10 0.188 0.187 0.187 0.188 0.158 0.030 0 1.08
B 3 0.270 0.272 0.271 0.270 0.175 0.094 0.144 0
B 4 0.391 0.391 0.391 0.391 0.191 0.197 0.493 0
B 5 0.461 0.461 0.461 0.461 0.197 0.263 0.616 0
B 6 0.510 0.510 0.509 0.510 0.200 0.306 0.569 0
B 7 0.544 0.544 0.542 0.544 0.205 0.337 0.572 0
B 8 0.557 0.558 0.555 0.556 0.202 0.352 0.568 0
C 0.2 0.158 0.158 0.158 0.158 0.138 0.020 0 0
C 0.3 0.187 0.187 0.187 0.187 0.144 0.042 0 0
C 0.4 0.225 0.225 0.225 0.225 0.154 0.070 0 0
C 0.5 0.274 0.273 0.274 0.274 0.168 0.105 0.157 0
C 0.6 0.322 0.321 0.322 0.322 0.180 0.140 0.263 0
C 0.7 0.349 0.350 0.350 0.349 0.181 0.166 0.413 0
D 0.1 0.307 0.309 0.308 0.307 0.181 0.125 0.299 0
D 0.2 0.345 0.346 0.345 0.345 0.187 0.158 0.379 0
D 0.5 0.452 0.451 0.451 0.452 0.201 0.248 0.511 0
D 0.7 0.540 0.540 0.540 0.540 0.219 0.317 0.503 0
D 1 0.699 0.699 0.698 0.699 0.262 0.433 0.587 0
D 2 1.37 1.37 1.37 1.38 0.463 0.897 3.892 0

Thus, the best-of-run parameterized controller from generation 199 of the third run
is an improvement over the PID controller developed by Åström and Hägglund in their
1995 book.

Table 13.9 shows the performance of the best-of-run parameterized controller
from generation 199 of the third run on the 24 plants used in this run (i.e., those
marked “3” in column 7 of table 12.1).

Table 13.10 presents the performance of the best-of-run parameterized controller
from generation 199 of the third run as a percentage of the value for the Åström and
Hägglund controller for the 24 plants used in this run (i.e., those marked “3” in col-
umn 7 of table 12.1). As can be seen in the table, all percentages are either below
100% (indicating improvement) or “OK.”

Table 13.11 shows the performance of the best-of-run parameterized controller
from generation 199 of the third run on the 18 additional plants from table 12.2.

Table 13.12 compares the performance of the best-of-run parameterized controller
from generation 199 of the third run as a percentage of the value for the Åström and
Hägglund controller for the 18 additional plants from table 12.2. As can be seen in the
table, all percentages are either below 100% (indicating improvement) or “OK.”

The authors refer to all three of the genetically evolved non-PID controllers in this
chapter as the Keane-Koza-Streeter (KKS) controllers.
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Table 13.10 Percentage comparison (for 24 plants) of the best-of-run controller from the third
run and the Åström–Hägglund controller

Parameter Stability Sensor
Plant value ITAE 1 ITAE 2 ITAE 3 ITAE 4 ITAE 5 ITAE 6 margin noise

A 0.1 91.1 91.9 91.3 90.9 84.9 93.8 74.1 96.5
A 0.3 96.6 96.8 96.7 96.6 92.1 99 71.8 97.3
A 1 88.9 88.9 88.9 88.9 80.3 95.1 74.2 96.5
A 3 84.2 84.2 84.2 84.2 81.1 90 76.9 98.2
A 6 85.2 85.2 85.2 85.2 85.5 83.4 43.7 99.6
A 10 82.9 82.6 82.6 82.9 83.1 82.7 0 96.8
B 3 81.1 81.8 81.5 81.1 78 88.4 39.3 OK
B 4 85.2 85.3 85.5 85.2 79.6 91.4 69.8 OK
B 5 87.6 87.8 87.7 87.6 81 94.2 89.3 OK
B 6 89.2 89.1 89.2 89.2 81.5 95.3 88 OK
B 7 90 90.1 90.1 90 81.8 96 89.1 OK
B 8 90.6 90.7 90.6 90.6 81.6 96.8 88.4 OK
C 0.2 83.3 83.2 82.9 83.3 81.9 94.1 OK 0
C 0.3 87 87.1 87.1 87 84.6 96.3 0 OK
C 0.4 87 86.8 86.8 87 84.1 94.3 0 OK
C 0.5 87.2 86.7 87 87.2 83.6 94.1 29 OK
C 0.6 86.8 86.6 86.9 86.8 82.7 92.9 44.3 OK
C 0.7 83.9 84.1 84.6 83.9 78 91.1 61.1 OK
D 0.1 83 83.3 83.2 83 78.9 89.3 59.2 OK
D 0.2 84.8 84.7 84.4 84.8 80 91.5 59.1 OK
D 0.5 87.2 87.1 87 87.2 80.3 93.3 72.5 OK
D 0.7 88.8 88.7 88.9 88.8 80.5 95.3 67.2 OK
D 1 89.2 89.1 88.9 89.2 80.5 95.5 77.8 OK
D 2 86.7 86.6 86.6 86.8 78.8 90.4 55.1 OK

This third run demonstrates the principle that parsimony can be incorporated into
the fitness measure of this problem. Parsimony can be important in controller design
because many real-time controllers embedded in manufactured products are imple-
mented by inexpensive microprocessors with very limited processing capability (e.g.,
eight-bit chips). Such inexpensive microprocessors can sometimes only accommodate
controllers whose transfer function can be represented by a low-order polynomial.
This limitation is especially pertinent at high sampling rates.

On the other hand, a significant percentage of present-day controllers are imple-
mented by means of microprocessors that are fast enough to accommodate any con-
troller that is ever likely to be evolved by genetic programming. When this is the case,
the parsimony of a controller is of little importance because the only cost associated
with a non-parsimonious controller is the relatively small cost of writing a few lines
of additional code. This cost will be generally inconsequential in comparison to the
economic benefits of more efficiently controlling and operating the plant. When par-
simony is not important, the first genetically evolved controller in this chapter is, by
far, the best of the three controllers presented in this chapter because it has only 66.4%
of the setpoint ITAE of the Åström-Hägglund controller and only 85.7% of the 
disturbance rejection ITAE of the Åström-Hägglund controller.
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Table 13.12 Percentage comparison (for the 18 additional plants) of the best-of-run controller
from the third run and the Åström–Hägglund controller

Plant
parameter Stability Sensor

Plant value ITAE 1 ITAE 2 ITAE 3 ITAE 4 ITAE 5 ITAE 6 margin noise

A 0.15 94.3 93.8 93.4 94 89.2 97.8 69.7 87.8
A 0.5 94.4 94 94 94.4 88.4 98.8 66.5 90.6
A 0.9 89.2 89.2 89.2 89.2 80 96.9 73.5 98.3
A 2.5 84.5 84.5 84.5 84.5 80.8 89.5 67.4 94.7
A 4.0 84.6 84.6 84.6 84.6 83.6 86.9 64 100.4
A 9.0 81.4 81.4 81.4 81.4 81.5 81.9 0 102.3
C 0.25 86.1 86.2 85.9 86.1 84.3 96.4 0 OK
C 0.34 85.6 85.5 85.8 85.6 82.9 94.2 0 OK
C 0.43 87.2 86.8 87.3 87.2 83.9 94.8 4.5 OK
C 0.52 87.1 86.6 86.9 87.1 83.4 93.1 32.7 OK
C 0.61 86.5 86.1 86.4 86.5 82.1 92.9 45.2 OK
C 0.69 84 84.1 84.7 84 78.1 91.6 61.9 OK
D 0.15 83.9 84.2 83.7 83.9 79.3 90.9 57.6 OK
D 0.3 85.6 85.3 85.4 85.6 80.1 92.2 61 OK
D 0.6 87.6 87.5 87.6 87.6 80 94.3 70.8 OK
D 0.85 89 88.7 88.7 89 80.8 95.4 75.3 OK
D 1.2 89.6 89.5 89.6 89.6 80.2 95.6 77 OK
D 1.8 87.9 87.9 87.7 87.9 79.6 92.4 37.2 OK

Table 13.11 Performance (on the 18 additional plants) of the best-of-run controller from the
third run

Plant
parameter Stability Sensor

Plant value ITAE 1 ITAE 2 ITAE 3 ITAE 4 ITAE 5 ITAE 6 margin noise

A 0.15 0.684 0.680 0.687 0.687 0.237 0.450 0.599 4.14
A 0.5 0.568 0.566 0.566 0.568 0.220 0.387 0.413 0.806
A 0.9 0.472 0.472 0.472 0.472 0.192 0.301 0.469 1.22
A 2.5 0.302 0.302 0.303 0.302 0.174 0.130 0.443 0.993
A 4.0 0.249 0.249 0.249 0.249 0.170 0.080 0.294 1.44
A 9.0 0.192 0.192 0.192 0.192 0.159 0.034 0 1.16
C 0.25 0.178 0.178 0.178 0.178 0.146 0.032 0 0.093
C 0.34 0.207 0.207 0.207 0.207 0.151 0.055 0 0
C 0.43 0.251 0.250 0.251 0.251 0.164 0.085 0.021 0
C 0.52 0.291 0.290 0.291 0.291 0.174 0.115 0.178 0
C 0.61 0.326 0.325 0.326 0.326 0.181 0.144 0.271 0
C 0.69 0.344 0.345 0.345 0.344 0.180 0.163 0.411 0
D 0.15 0.327 0.328 0.327 0.327 0.183 0.143 0.337 0
D 0.3 0.386 0.384 0.385 0.386 0.194 0.191 0.427 0
D 0.6 0.515 0.515 0.515 0.515 0.219 0.295 0.515 0
D 0.85 0.639 0.638 0.638 0.639 0.250 0.386 0.561 0
D 1.2 0.825 0.825 0.826 0.825 0.297 0.524 0.646 0
D 1.8 1.22 1.22 1.22 1.22 0.414 0.796 1.55 0



13.3 Human-Competitiveness of the Results for the Improved
General-Purpose Controllers

The three genetically evolved improved non-PID controllers described in this chapter
outperform a PID controller tuned using the rules developed by Åström and Hägglund
in their 1995 book. As previously mentioned, the tuning rules for the Åström and
Hägglund PID controller, in turn, outperform the 1942 Ziegler-Nichols tuning rules on
the 16 industrially representative plants used by Åström and Hägglund.

The development of the Ziegler-Nichols tuning rules (Ziegler and Nichols 1942)
for PID controllers was a significant development in the field of control engineering.
These rules have been in widespread use since they were invented.

The development by Åström and Hägglund of the tuning rules described in their
1995 book PID Controllers: Theory, Design, and Tuning was another significant
development. Åström and Hägglund developed their improved rules by applying
mathematical analysis, shrewdly chosen approximations, and considerable creative
flair.

Referring to the eight criteria in table 1.2 for establishing that an automatically
created result is competitive with a human-produced result, the creation by genetic
programming of improved tuning rules for PID controllers satisfies the following five
of the eight criteria:

(B) The result is equal to or better than a result that was accepted as a new scientific
result at the time when it was published in a peer-reviewed scientific journal.

(D) The result is publishable in its own right as a new scientific result—independent
of the fact that the result was mechanically created.

(E) The result is equal to or better than the most recent human-created solution to a
long-standing problem for which there has been a succession of increasingly bet-
ter human-created solutions.

(F) The result is equal to or better than a result that was considered an achievement
in its field at the time it was first discovered.

(G) The result solves a problem of indisputable difficulty in its field.

A patent application (Keane, Koza, and Streeter 2002a) was filed on July 12, 2002,
for the three genetically evolved non-PID controllers described in this chapter (as well
as the PID tuning rules described in chapter 12). The applicants believe that the three
genetically evolved controllers are patentable because they satisfy the statutory require-
ments of being “useful,” “new,” “improved,” and “unobvious” to someone “having 
ordinary skill in the art.” If (as expected) a patent is granted, it will (we believe) be the
first patent granted for an invention created by genetic programming.

We believe that the creation by genetic programming of improved tuning rules for
PID controllers satisfies the following additional criterion from table 1.2:
(A) The result was patented as an invention in the past, is an improvement over a
patented invention, or would qualify today as a patentable new invention.

The creation by genetic programming of the three improved non-PID con-
trollers satisfies Arthur Samuel’s criterion (1983) for artificial intelligence and
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machine learning:

“[T]he aim [is]…to get machines to exhibit behavior, which if done by humans,
would be assumed to involve the use of intelligence.”

13.4 Routineness for the Improved General-Purpose Controllers

The implementation of these runs of genetic programming for the problem of synthe-
sizing improved parameterized controllers was routine. The best known human-cre-
ated solution was made available to genetic programming merely by adding one
terminal to the terminal set during the preparatory steps. One could bootstrap from
any similar known solution to any problem in any field in substantially the same way.
Because the preparatory steps in this chapter are very similar to the preparatory steps
for all the other examples of automatic controller synthesis in this book, very little
effort was required to make the transition from earlier problems to the problem of syn-
thesizing improved non-PID parameterized controllers in this chapter.

13.5 AI Ratio for the Improved General-Purpose Controllers

As mentioned in the section 13.3, the result produced by genetic programming on this
particular problem is considered to be human-competitive for five reasons. Thus, the
results produced by the artificial system (genetic programming) in this chapter put a
high amount of “A” in the numerator of the AI ratio.

The preparatory steps for this problem are similar to the preparatory steps for the
other problems of controller synthesis in chapter 3. However, because the results in
this chapter bootstrapped on an important domain-specific r esult from the field of
control (the Åström and Hägglund tuning rules for PID controllers), the results in this
chapter benefited from more “I” than would have been the case if the evolutionary
process had started from scratch. Thus, the solution produced by genetic programming
in this chapter has a non-trivial amount of “I” in the denominator of the AI ratio.
Hence, the AI ratio for this problem is moderately high.
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Reinvention of Negative Feedback

Section 1.2 recounts the history of Harold S. Black’s many years of work at AT&T on
the problem of reducing distortion in amplifiers.

As Black recounted on the 50th anniversary of his 1927 solution to the problem
(Black 1977):

“Then came the morning of Tuesday, August 2, 1927, when the concept of the neg-
ative feedback amplifier came to me in a flash while I was crossing the Hudson
River on the Lackawanna Ferry, on my way to work”.

Prior to Black’s invention of negative feedback in 1927, almost all the work on
amplifiers in the then-new field of electronics was based on the “nearly universal
idiom” of positive feedback (Lee 1998). In fact, even after the 1927 invention of neg-
ative feedback (Black 1977):

“…more than nine years would elapse before the patent was issued…One reason
for the delay was that the concept was so contrary to established beliefs”.
(Emphasis added.)

We believe that one reason why it took an inordinate amount of time for negative
feedback to gain acceptance was that human thinking often becomes channeled along
the well-traveled paths of “established beliefs”. One of the virtues of genetic pro-
gramming is that it approaches a problem in an open-ended way that is not encum-
bered by previous human thinking. Genetic programming is not aware, much less
concerned, about whether a solution is “contrary to established beliefs”. For this rea-
son, genetic programming often unearths solutions that might have never occurred to
human scientists and engineers who are steeped in the thinking of the day.

So, now let’s see how the problem of reducing distortion in amplifiers can be
solved by means of genetic programming. As will be seen, Black’s solution flows
almost effortlessly from a genetic search based on a high-level statement of Black’s
problem.



14.1 Genetic Programming Takes a Ride on the Lackawanna Ferry

14.1.1 Fitness Measure

In Black’s own account of the history of the invention of negative feedback (quoted at
length in section 1.2), Black mentioned that he was greatly “impressed” by how the
famous scientist and engineer Steinmetz got down to “the fundamentals”. The
preparatory steps of genetic programming are effective in forcing the human user to
focus on “the fundamentals”. In particular, the construction of a problem’s fitness
measure requires the human user to identify exactly what is wanted.

Focusing on “the fundamentals” immediately leads to a three-element fitness
measure based on the degree to which a candidate circuit

● amplifies the incoming signal,
● minimizes distortion, and
● contains a small number of expensive components.

As to the first element of the fitness measure, if the specified amount of amplifi-
cation is, say, 10 dB, then the desired output would be an inverted sine wave whose
amplitude is 3.16 times that of the input. If the average absolute difference between a
candidate circuit’s output and the desired output is reasonably small (say, less than 0.1
Volt), the circuit is deemed to deliver a satisfactory amount of amplification and this
first element of the fitness measure is 0. Otherwise, the first element is equal to the
average absolute difference between the desired output and the actual output.

The second element of the fitness measure is based on total harmonic distortion
(THD):

,

where A1 is the magnitude of the first harmonic (i.e., the fundamental frequency) and
Ai is the magnitude of the th harmonic (Vladimirescu 1994). For the audio signals of
interest over a telephone, it would be reasonable to choose 1,000 Hz as the funda-
mental frequency and to consider N�9 harmonics. If the total harmonic distortion is
less than, say, �45 dB, a circuit is deemed to be satisfactory in terms of reducing dis-
tortion and the second element of the fitness measure is 0. Otherwise, the second ele-
ment is equal to

.

The third element of the fitness measure assigns a cost of 1.0 for each vacuum tube
(transistor) and 0.01 for each resistor and capacitor.

Fitness is the sum of the first element (amplification), 10�6 times the second 
element (distortion), and 10�18 times the third element (parsimony). As usual, the
smaller the total value of fitness, the better.

Note that this fitness measure was created by focusing the problem’s high-level
requirements—amplification, distortion, and parsimony. The fitness measure is 
concerned with “what needs to be done”—not with “how to do it”. In particular, notice

10*(1 � �THD � (� 45)�)

THD �
��

N

i � 2
A2

i

A1
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that the fitness measure does not mandate a feed-forward approach, feedback
approach, or any other approach. And, if feedback is used at all, the fitness measure is
agnostic as to whether the feedback is Armstrong’s positive type of feedback
(Armstrong 1914) or Black’s negative type of feedback.

14.1.2 Initial Circuit, Function Set, Terminal Set, and Control Parameters

Although part numbers for vacuum tubes are mentioned in Black’s patents, accurate
models for the vacuum tubes used by Black between 1921 and 1927 were not readily
available to us. However, present-day transistors operate in a manner similar to vac-
uum tubes. Because field-effect transistors (FETs) are voltage-controlled, their behav-
ior closely more resembles the behavior of vacuum tubes (which are voltage-
controlled) than do, say, bipolar junction transistors (which are current-controlled).
Therefore, we used a model IRFZ44 FET transistor in lieu of vacuum tubes.

It is reasonable (in light of the performance levels discussed in Black’s patents) to
use an initial circuit with a voltage source delivering a sine wave with a 4-Volt ampli-
tude, a 50-Ohm source resistor, a 100-Ohm load resistor, and a 60-Volt power supply.
It would also be reasonable to employ the floating embryo shown in figure 4.30 in the
initial circuit and the function set common to all six problems involving the post-2000
patented analog circuits employed in section 15.3.3. The population size is 1,000,000.

14.2 Results for the Problem of Reducing Amplifier Distortion

The best circuit from among the 1,000,000 individuals in generation 0 delivers ampli-
fication of �2.91 dB. That is, the best-of-generation circuit from generation 0 acts as
an attenuator rather than an amplifier.

The first best-of-generation circuit that acts as an amplifier appeared in generation
9. This individual acts as a 5.37 dB amplifier. However, it has a total harmonic dis-
tortion of �5.65 dB.

The first circuit in the run satisfying the amplification criterion and having a total
harmonic distortion of less than �45 dB appeared in generation 46. This circuit has a
total harmonic distortion of �54.2 dB. This circuit’s average absolute error (measur-
ing amplification) is 0.098 Volts.

This best-of-generation circuit from generation 46 (figure 14.1) consists of three
field-effect transistors and two resistors (ignoring the source resistor RSRC and the load
resistor RLOAD in the test fixture). In viewing the figures in this section, note that a FET’s
source corresponds to a vacuum tube’s cathode, the FET’s drain corresponds to the tube’s
anode, and the FET’s gate corresponds to the tube’s grid. Additional information on field-
effect transistors may be found in chapter 51 of Genetic Programming III (Koza, Bennett,
Andre, and Keane 1999a). In this circuit, Q3 is biased off so its removal does not affect
the circuit’s behavior. However, Q1 and Q2 are overlaid in parallel and together act as a
single transistor, Qequivalent, with twice the transconductance and interelectrode capaci-
tance of Q1. The removal of Q2 decreases the amplification slightly (to 9.64 dB), changes
the bias, and adversely affects total harmonic distortion (changing it to �51.9 dB).

The 174-Ohm resistor R2 in figure 14.1 is the mechanism for providing negative
feedback. Because Qequivalent reverses the phase of the incoming signal, the feedback
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is negative—that is, the signal from the drain (corresponding to a vacuum tube’s plate)
of Qequivalent is subtracted from the incoming signal VINSRC.

Table 14.1 shows, in column 2, the amplitude (in decibels) of the fundamental 
frequency (1,000 Hz) and various harmonics for the best-of-generation circuit from
generation 46 (figure 14.1). Column 3 shows the amplitude (in decibels) with respect
to the fundamental frequency.

The best-of-run circuit (figure 14.2) emerged in generation 48. The average
absolute error (measuring amplification) of this best-of-run circuit from generation 48
is 0.065 Volts (about two-thirds of that of the best-of-generation circuit from genera-
tion 46). The best-of-run circuit has amplification of 10.06 dB and total harmonic dis-
tortion of �51.2 dB. This circuit is more parsimonious than the best-of-generation
circuit from generation 46 in that it has only one transistor and two resistors (ignoring
the source resistor RSRC and the load resistor RLOAD in the test fixture). As can be
seen, the 182-Ohm resistor R2 is the mechanism for providing the negative feedback.

Table 14.2 shows, in column 2, the amplitude (in decibels) of the fundamental fre-
quency (1,000 Hz) and various harmonics for the best-of-run circuit from generation

416 Genetic Programming IV

Figure 14.1 Best-of-generation circuit from generation 46 for the problem of reducing
amplifier distortion.

Table 14.1 Distortion for the best-of-generation circuit from generation 46 for the
problem of reducing amplifier distortion

Amplitude with respect to
Harmonic Amplitude fundamental frequency

1,000 (fundamental frequency) 9.96 0
2,000 �44.3 �54.3
3,000 �61.5 �71.5
4,000 �68.7 �78.7
5,000 �71.0 �81.0
6,000 �78.8 �88.8
7,000 �85.6 �95.6
8,000 �81.6 �91.6
9,000 �81.4 �91.4



48 (figure 14.2). Column 3 shows the amplitude (in decibels) with respect to the 
fundamental frequency.

Black received U.S. patents 2,003,282 (Black 1935), 2,102,670 (Black 1937a),
and 2,102,671 (Black 1937b) relating to his work on the problem of reducing distor-
tion in amplifiers (as well as U.S. patent 1,686,792 (Black 1928) for the earlier
impractical solution described in section 1.2). The overall goal of all these efforts is
stated in the description of U.S. patent 2,102,670 (Black 1937a),

“It is common experience that increase of the power output of vacuum tubes or
electric space discharge devices tends to increase distortion of signaling or other
waves transmitted by the devices, and tends to lower the gain of the circuits of the
devices.…

“Therefore, a major problem in devising vacuum tube systems, as for example
vacuum tube amplifier systems, is the securing of high output of power without
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Figure 14.2 Parsimonious best-of-run circuit from generation 48 for the problem of reducing
amplifier distortion.

Table 14.2 Distortion of the best-of-run circuit from generation 48 for the problem
of reducing amplifier distortion

Amplitude with respect to
Harmonic Amplitude fundamental frequency

1,000 (fundamental frequency) 10.06 0
2,000 �41.3 �51.4
3,000 �54.7 �64.8
4,000 �73.2 �83.3
5,000 �66.9 �77.0
6,000 �68.8 �18.9
7,000 �73.2 �83.3
8,000 �69.9 �80.0
9,000 �73.3 �83.4
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attendant disadvantages, as for example without increase of first cost or decrease
of operating efficiency of the systems, and especially in the case of vacuum tube
amplifiers and repeaters, without sacrifice of quality of signal reproduction”.

The best-of-run circuit from generation 48 (figure 14.2) infringes claims 1 and 3
of U.S. patent 2,102,671 (Black 1937b). Claim 1 covers,

“In a wave translating device or system having amplifying properties, an input por-
tion and an output portion, means to apply fundamental waves to said input por-
tion, said system carrying fundamental components in said output portion, and
having means producing other wave components in said output portion, and means
controlling the relative magnitudes of said components in said output portion com-
prising means to feed waves from said output portion to said input portion to
decrease the gain of the system”.

The field-effect transistor Q1 is the “wave translating device or system”. The
incoming voltage signal source is the “means to apply fundamental waves to said
input portion”. Resistor R2 is the “means to feed waves from said output portion to
said input portion to decrease the gain of the system”. The negative feedback
“decrease[s] the gain of the system”.

Claim 3 of U.S. patent 2,102,671 (Black 1937b) covers,

“In a wave translating system operating to amplify applied fundamental waves, and
to produce distortion components as a function of non-linearity in the system,
means to increase the ratio of the amplified fundamental wave component to dis-
tortion components comprising means to utilize a portion of the waves translated
by said system to reduce the gain of the system below the gain with zero feedback
in the system of the waves translated by the system”.

14.3 Human-Competitiveness of the Result for the 
Problem of Reducing Amplifier Distortion

Referring to the eight criteria in table 1.2 for establishing that an automatically 
created result is competitive with a human-produced result, the rediscovery by genetic
programming of negative feedback for reducing amplifier distortion satisfies the 
following four of the eight criteria:

(A) The result was patented as an invention in the past, is an improvement over 
a patented invention, or would qualify today as a patentable new invention.

(E) The result is equal to or better than the most recent human-created solution to 
a long-standing problem for which there has been a succession of increasingly
better human-created solutions.

(F) The result is equal to or better than a result that was considered an achievement
in its field at the time it was first discovered.

(G) The result solves a problem of indisputable difficulty in its field.



The rediscovery by genetic programming of negative feedback for reducing ampli-
fier distortion came over seven decades after Black took his now-famous ride on the
Lackawanna Ferry. Nonetheless, the fact that the original human-conceived solution
to the problem (eventually) satisfied the Patent Office’s criteria for patent-worthiness
means that the genetically evolved duplicate would also have satisfied the Patent
Office’s criteria for patent-worthiness (if only it had arrived before Black took his fer-
ryboat ride).

The fact that genetic programming rediscovered a solution that was unobvious “to a
person having ordinary skill in the art” establishes that the genetically evolved result sat-
isfies Arthur Samuel’s criterion (1983) for artificial intelligence and machine learning:

“[T]he aim [is]…to get machines to exhibit behavior, which if done by humans,
would be assumed to involve the use of intelligence”.

14.4 Routineness for the Problem of Reducing Amplifier Distortion

The preparatory steps for the problem of evolving a circuit that reduces amplifier dis-
tortion are substantially the same as the preparatory steps for other problems of circuit
synthesis in chapter 4 and elsewhere in this book, except, of course, for the fitness
measure. Thus, aside from the usual effort required to construct a fitness measure
appropriate to the problem at hand, relatively little effort was required to make the
transition from other problems of circuit synthesis in this book (chapters 4, 10, and
11) to the problem of reducing amplifier distortion that was so vexatious in the early
part of the 20th century. That is, the transition was routine.

14.5 AI Ratio for the Problem of Reducing Amplifier Distortion

As previously mentioned, the result produced by genetic programming on this prob-
lem is human-competitive for four reasons. Thus, it is fair to say that the solution pro-
duced by genetic programming to this problem has a high amount of “A”. The
preparatory steps for the problem of evolving a circuit reducing amplifier distortion
reflect de minimus information about electrical circuits. Thus, the solution produced
by genetic programming for the present problem incorporates only a small amount of
“I”. The high amount of “A” represented by the result in conjunction with the small
amount of “I” provided by the human user means that the AI ratio for the solution 
produced by genetic programming is high.
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Automated Reinvention of Six Post-2000
Patented Circuits

Filing for a patent entails the expenditure of a considerable amount of time and money.
Therefore, a patent is generally sought only if an individual, business, or institution
believes that the invention is potentially useful in the real world. Patents are only
issued if an arms-length examiner is convinced that the proposed invention satisfies
the statutory tests of being “new,” “useful,” “improved,” and “unobvious.” Recently
issued patents represent current research and development efforts by the engineering
and scientific communities.

Sections 4.3 and 4.4 and chapters 5 and 14 of this book and parts of Genetic
Programming III (Koza, Bennett, Andre, and Keane 1999a) demonstrate that genetic
programming can automatically create analog electrical circuits that duplicate the
functionality of, or infringe, patents that were issued during the first two thirds of the
20th century. This chapter reports that genetic programming is capable of creating
inventions that duplicate the functionality of, or infringe, six patents for analog elec-
trical circuits that were issued after January 1, 2000.

When genetic programming creates a design whose detailed structure matches that
described in the claims of an unexpired patent, it has created an invention that, if man-
ufactured, would infringe the patent. When genetic programming creates a design that
duplicates the functionality of a previously patented invention (but not the detailed
structure specified in the patent’s claims), it has either rediscovered prior art (patented
or not) or created a potentially patentable new invention. Such a design may provide 
a way to avoid infringing an existing patent (assuming that the differences between 
it and the patented invention are not close enough to be covered by the doctrine of
equivalence).

The six post-2000 patented inventions are shown in table 15.1.
The six circuits in table 15.1 were selected after browsing the numerous patents

that were issued for analog circuits during the year and a half following January 1,
2000. The group was selected so as to include different types of circuits, including at
least one mixed analog-digital circuit, at least one multi-input circuit, at least one multi-
output circuit, and at least one circuit whose behavior is measured by each of the major
types of analyses that are commonly used in evaluating circuits (i.e., time-domain



analysis, frequency-domain analysis, DC operating point analysis, and Fourier analy-
sis). Additionally, each circuit of the group satisfies the following criteria:

● The circuit is of some importance and general interest.
● The specific technological problem addressed by the patented invention can be suc-

cinctly explained on a stand-alone basis (i.e., without recourse to a lengthy history
of previous patents and research).

● The patent document contains a clear quantitative statement of the circuit’s intended
behavior and characteristics.

● The patent document contains sufficient information to enable us to build and sim-
ulate the circuit using simulation software.

The last requirement was necessary to enable us to compare the behavior of the
genetically evolved circuit to that of the patented circuit. This requirement caused us
to pass over a number of otherwise interesting patents because some patents left us
uncertain as to the exact range of operation, component values, and component types.
Even for the patents that we eventually selected, we had to risk making assumptions
concerning certain details of the circuit’s operation.

Although multiple runs are often required to solve a problem when working with
a probabilistic algorithm, genetic programming produced a satisfactory solution to all
six problems in this chapter on the very first run. Also, we made additional runs (in
some cases with added requirements) for four of the problems. All the additional runs
were also successful. As will be discussed in section 15.5, the fact that all these runs
were successful suggests that we have not yet reached the limits of what is possible in
the realm of automated circuit synthesis by means of genetic programming (using cur-
rently available computing resources).
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Table 15.1 Six post-2000 patented inventions

Invention Date Inventor Place Patent

Low-voltage 2001 Sang Gug Lee Information and 6,265,908
balun circuit Communications

University
Mixed analog-digital 2000 Turgut Sefket Lucent Technologies Inc. 6,013,958

variable capacitor Aytur
circuit

Voltage-current 2000 Akira Ikeuchi Mitsumi Electric Co., Ltd. 6,166,529
conversion circuit and Naoshi

Tokuda
Low-voltage 2001 Timothy Daun- International Business 6,211,726

high-current circuit Lindberg and Machines Corporation
for testing a voltage Michael Miller
source

Low-voltage cubic 2000 Stefano Cipriani Conexant Systems, Inc. 6,160,427
function generator and Anthony A.

Takeshian
Tunable integrated 2001 Robert Irvine Infineon Technologies AG 6,225,859

active filter and Bernd Kolb



15.1 The Six Circuits

15.1.1 Low-Voltage Balun Circuit

U.S. patent 6,265,908, covering a low voltage balun circuit, was issued to Sang Gug
Lee of the Information and Communications University in South Korea.

The purpose of a balun (balance/unbalance) circuit is to produce two outputs from
a single input, each output having half the amplitude of the input, one output being in
phase with the input and the other being 180 degrees out of phase with the input, with
both outputs having the same DC offset.

Commercially useful balun circuits in battery-powered devices (e.g., cellular tele-
phones) must minimize power consumption in order to maximize battery life.
Contemporary balun circuits typically operate at DC voltages of 3 Volts or less.

The balun circuit for which Lee received a patent in 2001 is noteworthy in that it
operates using a power supply of only 1 Volt.

15.1.2 Mixed Analog-Digital Variable Capacitor

U.S. patent 6,013,958 covers a mixed analog-digital circuit whose behavior is equiv-
alent to that of a capacitor whose capacitance is dynamically controlled by the value
stored in a digital register. The inventor is Turgut Sefket Aytur of Lucent Technologies
Inc. of Murray Hill, New Jersey.

Variable capacitors are useful (Aytur 2000) because

“…the nature of the process of making integrated circuits causes the capacitance 
of the individual unit capacitors to be consistent, improving the linearity of the
capacitance. Capacitors according to embodiments of the invention are useful in
circuits that need to be accurately trimmed once (e.g., filters) and in circuits in
which variable capacitance is required, such as voltage controlled oscillators.”

Variable capacitance devices that possess both accuracy and a wide tuning range
have been primarily available in the past only as discrete components. 

15.1.3 Voltage-Current Conversion Circuit

The purpose of the voltage-current conversion circuit patented by Ikeuchi and Tokuda
of Mitsumi Electric Co., Ltd. (U.S. patent 6,166,529) is to take two time-varying volt-
ages as inputs and to produce as output a stable current whose magnitude is propor-
tional to the difference between the two voltages.

In their patent, Ikeuchi and Tokuda (2000) note that there is a limit on the values
of the input voltages that can be correctly handled by previously known voltage-cur-
rent conversion circuits:

“A requirement of the conventional circuit described above is that the input voltages
Vin1, Vin2 be lower than the power source voltage Vcc. If this requirement is not met,
the circuit does not operate properly. As a result, the size of the input voltages Vin1,
Vin2 is limited and hence the range of applications of the circuit is limited as well.
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“Accordingly, it is a general object of the present invention to provide an
improved and useful voltage-current conversion circuit in which the disadvantages
described above are eliminated.

“A more specific object of the present invention is to provide an improved and
useful voltage-current conversion circuit not restricted by the requirement that the
input voltages be lower than the power source voltage and hence capable of an
expanded range of applications.”

15.1.4 Low-Voltage High-Current Transistor Circuit

U.S. patent 6,211,726 covers a circuit designed to sink a time-varying amount of cur-
rent through a power supply in response to a control signal. Such a circuit is useful for
testing that a power supply is capable of delivering specified amounts of current while
maintaining a constant voltage.

Daun-Lindberg and Miller of IBM state:

“In the design and production of power supply modules for computer systems and
the like, it is necessary to have load circuits which simulate the operation of the
computer itself in the way the voltage and current levels presented by the load vary
with time and other conditions. For example, the load presented to the power sup-
ply by the computer system may switch between high-current and low-current
when the computer goes into a power-down or sleep mode as power management
mechanisms go into effect. Or, current spikes may occur when starting up equip-
ment such as a hard drive, or at boot-up when large capacitive loads are being
charged. Likewise, power-up self test creates a widely variable load as all of the
peripheral equipment is exercised.

“Previous load circuits used for test purposes in the manufacture of computer
systems or the like have not been able to operate at low voltages such as the sup-
ply voltage levels being specified for contemporary microprocessor chips and
memory chips. For example, supply voltage levels of 3.3 V have been used for
some time, and levels of 1.7 V or 1.5 V are coming into common usage. At these
low voltage levels, and at high currents of sometimes hundreds of amps, the avail-
able equipment is not able to accurately simulate varying load currents, nor repre-
sent the loading exhibited by a computer system.”

To satisfy the high-current requirements described in this patent, Daun-Lindberg
and Miller of IBM employed a number of field-effect transistors (FETs) arranged in a
parallel structure, each of which sinks a fraction of the desired current.

15.1.5 Cubic Function Generator

U.S. patent 6,160,427 covers a low-voltage cubic function generator having “a volt-
age drop across only two active devices.” The inventors were Stefano Cipriani and
Anthony A. Takeshian of Conexant Systems, Inc.

The purpose of a cubic function generator (an analog computational circuit) is to
produce an output that is equal to the cube of its input signal.
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Cipriani and Takeshian (2000) state the high-level requirements of their cubic
computational circuit in their patent:

“In many systems today, especially in the digital environment, function generators
are required to perform at high speeds. For example, many circuits operate at fre-
quencies in the gigahertz range. In addition to the speed requirements, many digi-
tal systems are low voltage, requiring a function generator capable of operating at
approximately 2 Volts. If the function generator only needs to produce a quadratic
function, the voltage criteria are easily met. However, existing circuits do not meet
these specifications when a cubic function is required.

“What is needed is a compact, cubic function generator capable of operating at
high frequencies and low voltages. Specifically, a circuit is required that generates
a cubic function while operating at approximately 2 Volts and at frequencies up to
and including the gigahertz range.”…

“The present invention generates a cubic transfer function while maintaining a
voltage drop across only two active devices. This allows the present invention to
operate with low voltage applications, specifically applications requiring a voltage
drop of approximately 2 Volts.”

The design of analog computational circuits is exceedingly difficult even for
seemingly mundane mathematical functions. Success usually relies on the inspired
discovery and exploitation of some aspect of the underlying device physics of the
components (e.g., transistors) that yields the particular desired mathematical function
(Gilbert 1968, 1979; Sheingold 1976; Babanezhad and Temes 1986). Because of this,
the implementation of each different mathematical function (e.g., a squaring function
versus a cubing function, a squaring function versus a square root function) typically
requires an entirely different (clever) insight. In other words, there is nothing “rou-
tine” about the transition from designing one analog computational circuit to the next
when humans design analog computational circuits.

In general, analog computational circuits are especially useful when the mathe-
matical function must be performed more rapidly than is possible with digital circuitry
(e.g., for real-time signal-processing at extremely high frequencies). Analog compu-
tational circuits are also especially useful when the need for a mathematical function
in an otherwise entirely analog circuit does not warrant the cost (in terms of both cir-
cuitry and processing time) of the three-step process of converting the analog signal
into a digital signal (using an analog-to-digital converter), performing the mathemat-
ical function in the digital domain (requiring a general-purpose digital processor con-
sisting of perhaps millions of transistors as well as appropriate software), and then
converting the result to the analog domain (using a digital-to-analog converter).

In discussing a logarithmic computational circuit, Robert Pease (1999) explained
the reasons why analog computational circuits are so useful in practice:

“In the digital, DSP-driven-algorithm world of today’s design, you may think that
determining the logarithm of a signal value without using numerical calculation is
a throwback to an earlier era. But, doing it digitally is not a viable option for many
reasons, and you have to use a single all-analog function block.

Automated Re-Invention of Six Post-2000 Patented Circuits 425



“Why not do it digitally? First, it would take considerable floating-point MIPS
to calculate the logarithm of signals with bandwidth of even 100 MHz, and calcu-
lations on gigahertz signals would be impossible. Second, you’d need a very fast
A/D converter ahead of the DSP to convert the analog signal. Finally, even if these
factors were not obstacles, you would also need resolution of 12 bits to reach 
72 dB of range under ideal conditions. You would need 16 bits for 96 dB of range,
which means using a costly, power-hungry converter. And the design still wouldn’t
work! Just because the converter has the resolution doesn’t mean that your system
would actually realize that resolution, because the actual resolution of the A/D con-
version for millivolt signals is different from what it is for volt-level signals. You’d
need to put a variable-gain stage ahead of the converter, so, your design would be
back to where it started in terms of signal-path gain, range, and resolution.”

Of course, genetic programming is given no knowledge concerning the underly-
ing device physics of the transistors to aid it in solving this problem (or any other
problem of circuit synthesis). Genetic programming simply has access to the fitness
of the entire circuit containing numerous transistors and other components (e.g.,
capacitors, resistors). In contrast to the approach used by knowledgeable, experienced,
inventive, and creative human designers, genetic programming simply searches, over
a series of generations, for ever-better circuits under the guidance of a high-level state-
ment of the specifications of the desired circuit.

15.1.6 Tunable Integrated Active Filter

U.S. patent 6,225,859 covering a tunable integrated active filter was issued to Robert
Irvine and Bernd Kolb of Infineon Technologies AG of Germany.

As the inventors state:

“Multipolar single-stage filters are difficult to implement in integrated bipolar
high-frequency circuits. One essential goal is a steep edge dropoff in the amplitude
response of the filter toward high frequencies, but without having to have recourse
to multistage filter arrays.

“In the past, the art has either dispensed with explicit filter action entirely, or else
used unipolar filters in the form of RC circuits.…

“It is accordingly an object of the invention to provide an integrated low-pass fil-
ter, which overcomes the above-mentioned disadvantages of the heretofore-known
devices and methods of this general type and that has a high selectivity in the
depletion range, and an optimized characteristic curve with minimal damping in
the conducting range, and that can be integrated in an integrated circuit.”

15.2 Uniformity of Treatment of the Six Problems

All six problems in this chapter employ the same embryo, program architecture, func-
tion set, terminal set, minor control parameters, termination criteria, and parallel com-
puting machinery.

The only significant difference in the human-supplied preparatory steps for the six
problems is that each problem has an appropriate problem-specific fitness measure
and associated test fixture. The fitness measure and test fixture together provide the
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means to measure the behavior of a candidate circuit. After this measurement process
is complete, the circuit’s fitness is communicated to the genetic programming system
in the form of a single numerical value.

There are three minor departures from strict uniformity.
The first departure arises because the number of inputs and outputs varies from

problem to problem. The circuit and test fixture must necessarily possess the appro-
priate number of input and output ports.

The second departure arises because the simulation time required to evaluate the
fitness of an individual varies considerably among the six problems. In order to ensure
the reasonableness of the total elapsed time for each run, we used a smaller population
size on some problems. This departure from strict uniformity reflects practical consid-
erations of managing available computational resources—not any foreknowledge that
one particular problem would be facilitated by a particular choice of population size.

The third departure arises because the very essence of some inventions requires
unique treatment.

For example, balun circuits have been in widespread use for decades. The specific
aspect that makes Lee’s balun circuit noteworthy (and patentable) in the year 2001 is
that it operates at the low voltage and power levels required by today’s wireless com-
munication needs. Thus, we use a 1-Volt power source for this particular problem. Our
departure from strict uniformity does not make it easier for genetic programming to
solve this particular problem. Quite the contrary. This change makes the problem
harder. In particular, the use of a low voltage source makes the problem as hard as the
problem solved by Lee and forces genetic programming to address the essential char-
acteristic of this particular post-2000 invention.

Similarly, low voltage is the essential issue in the patent for the cubic function
generator. In fact, Cipriani and Takeshian (2000) discuss in detail a previously known
(prior art) cubic function generator that operates at 3 Volts and state:

“A prior art circuit 300 used to provide a cubic function to compensate for these
power amplifiers is shown in FIG. 3.…

“In operation, the circuit 300 generates the cubic part of the transfer func-
tion…However, the circuit 300 only functions at voltages at or above approxi-
mately 3 Volts. … The 3-Volt limit makes the circuit unusable for many
applications. For example, many low-voltage power amplifiers have a maximum
voltage requirement of 2.7 Volts.”

Thus, we use a 2-Volt power source for the cubic function generator problem
because Cipriani and Takeshian specifically claim that their circuit operates at 2 Volts.

The same issue arises in connection with transistor models. We mainly use the
commercially standard 2N3904 (npn) and 2N3906 (pnp) transistors for problems of
circuit synthesis in this book. However, as detailed in the section 15.3.4 concerning
the terminal set, different transistor models are required for certain problems. For
example, we use a MOSFET transistor for the high-current load problem because
Daun-Lindberg and Miller (2001) specifically state that they use this type of transis-
tor. We chose a MOSFET transistor with a value of rdson (measuring the transistor’s
drain source resistance when it is fully turned on) so that no one transistor could 
handle the problem’s demands. Our departure from strict uniformity and our use of
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this particular transistor model forces genetic programming to create a solution that is
in the spirit of the patent.

15.3 Preparatory Steps for the Six Post-2000 Patented Circuits

15.3.1 Initial Circuit

The initial circuit consists of an embryo and a test fixture.
The test fixture provides the means to enable the fitness measure to evaluate the

circuit’s behavior and characteristics. For each problem, the test fixture consists of
certain fixed components that are connected to the input port(s) and the output port(s).

A “floating” embryo (section 4.7.1.1) is used as the starting point of the develop-
mental process for all six problems in this chapter. The floating embryo consists of a
single modifiable wire that is not initially connected to the circuit’s input(s) or out-
put(s). Thus, each individual circuit must master the problem of discovering the cir-
cuit’s input(s) and output(s) on its own.

Note that several of the initial circuits in this chapter are unnecessarily complex in
that they contain, for our convenience, current-to-voltage or voltage-to-current con-
verters. These converters enable us to conveniently use certain simulation software to
make measurements on the scales specified by the patent documents. They are not
necessary parts of the setup of the problems.

15.3.1.1 Test Fixture for the Low Voltage Balun Circuit Figure 15.1 shows the test
fixture for the low voltage balun circuit. The test fixture has five ports to which the
developing circuit may connect. One of the ports makes the input voltage source
available to the developing circuit. One port connects to the in-phase output 
VOUT0 and another port connects to the out-of-phase output VOUT1. Another port
makes ground available to the developing circuit. Because the essential feature of the
balun circuit for which Lee received a patent in 2001 is its ability to operate at a low
voltage, the remaining port makes a 1-Volt power source available to the developing
circuit.
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The input source in figure 15.1 is in series with a 75-Ohm resistor (the character-
istic impedance of a common unbalanced coaxial video source). VIN0 is the port asso-
ciated with the input source.

The circuit is probed at three probe points (the in-phase output VOUT0, the out-of-
phase output VOUT1, and VDIFF). The ports labeled VOUT0 and VOUT1 are each in
series with a 150-Ohm load resistor and a 1-Volt power source. The voltage at the third
probe point, VDIFF, is equal to the difference between VOUT1 and VOUT0. There is a
1-giga-Ohm resistor RPROBE between VDIFF and ground. Note that 300 Ohms (twice
150) is the characteristic impedance of the common balanced twin-lead video cable.

15.3.1.2 Test Fixture for the Mixed Analog-Digital Variable Capacitor Circuit
This circuit has four inputs. VREG0, VREG1, and VREG2 are the digital values in the
three-bit digital register whereas VIN0 is an analog signal.

Figure 15.2 shows the test fixture for the mixed analog-digital variable capacitor
circuit. The test fixture has six ports to which the developing circuit may connect.
Three of the ports make the values (VREG0, VREG1, and VREG2) in a three-bit dig-
ital register available to the embryo (and, later, the fully developed circuit). Another
port provides access to the analog input signal VIN0 that is used to test the circuit’s
behavior. Yet another port provides a means of connection to a current probe point
IOUT0. The remaining port provides access to ground.

In figure 15.2, three input sources (VREG0, VREG1, and VREG2) are associated
with the three-bit digital register. Each of these input sources is in series with a 1-
micro-Ohm resistor. The input sources take on the value of either �15 Volts or �15 Volts
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(representing the bits 1 and 0, respectively). There are no explicit power sources in the
test fixture for this problem.

A capacitor is a two-leaded electrical component whose voltage, V, and current, I,
are related by

The test fixture applies a test voltage to the evolved circuit and compares the cur-
rent that flows through the evolved circuit to the current that would flow through an
ideal capacitor whose capacitance is equal to 10 nanofarads times the value (0 to 7)
specified by the three-bit digital register. Specifically, the input signal VTEST (repre-
senting the quantity dV/dt in the above equation for I) is connected in series to an inte-
grator INTEG (whose output represents the voltage, V, in the equation) and a
1-micro-Ohm resistor. The output of the integrator INTEG is probed at VIN0 in the test
fixture. The circuit is probed at current probe point IOUT0 (representing the current,
I, in the equation).

The output port is fed into a current-to-voltage converter with a conversion factor
of 1 Volt per Ampere.

The output of VTEST is multiplied (by multiplier X) by a DC voltage VTARGET
that is always set to be equal to 10 nanofarads times the value (0 to 7) in the three-bit
digital register. In other words, VTEST corresponds to dV/dt in the above equation and
VTARGET corresponds to C. Their product, C(dV/dt), is equal to I, the desired output
current. Error is computed in the circuit by subtracting the actual output current from
this ideal output current. Note that because the desired output current is computed as
a voltage in the circuit, it is necessary to pass the current output IOUT0 through a cur-
rent-to-voltage converter with a conversion factor of 1 Ampere per Volt before per-
forming the subtraction. The error is probed at VFINAL.

15.3.1.3 Test Fixture for High-Current Load Circuit Figure 15.3 shows the test
fixture for the high-current load circuit. The test fixture has six ports to which the

I � C dV
dt

.
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Figure 15.3 Test fixture for the high-current load circuit.



developing circuit may connect. One of the ports makes the input voltage available to
the developing circuit. The input voltage is a control signal indicating how much
current is to be sunk through the power supply that is being tested. Specifically, an
input voltage Vinput indicates that a current of Vinput (15 Amperes/Volt) should be 
sunk through the power supply. Two ports make the �15-Volt and �15-Volt power
sources available to the developing circuit. Another port makes ground available to the
developing circuit.

The input voltage signal VCMD is fed through a 100-milliohm source resistor
which is in turn connected to input port VIN0 in figure 15.3.

In figure 15.3, the output current probe point IOUT0 is in series with a 250-micro-
Ohm trace resistor RTRACE0 which is connected to the positive end of the 1.7-Volt
power supply that is to be tested. The probe point IOUT0 is connected through a
10,000-Ohm load resistor RLOAD to another 250-micro-Ohm resistor RTRACE1,
which is in turn connected to ground. There is also a second current probe point
IOUT1 between RLOAD and RTRACE1.

The negative end of the 1.7-Volt power supply being tested is connected to the
high end of a current-to-voltage converter with a conversion factor of �0.0667 Volts
per Ampere (in other words, 1 Volt per �15 Amperes). The output of this current-to-
voltage converter is labeled VFINAL. The 1-giga-Ohm resistor RPROBE prevents the
creation of a dangling wire at VFINAL. Large resistors such as this are commonly
inserted into circuits to enable SPICE to simulate them.

15.3.1.4 Test Fixture for the Voltage-Current Conversion Circuit Figure 15.4
shows the test fixture for the voltage-current conversion circuit. The test fixture has
five ports to which the developing circuit may connect. Two of the ports make the
time-domain input sources available to the developing circuit. One provides a
connection to the output point. The remaining two ports make the �15-Volt power
source and ground available to the developing circuit.

Each input source in figure 15.4 is in series with a 1-micro-Ohm resistor. VIN0 is
the port associated with the first input source and VIN1 is the port associated with the
second input source.

Automated Re-Invention of Six Post-2000 Patented Circuits 431

Figure 15.4 Test fixture for the voltage-current conversion circuit.



The circuit is probed at current probe point IOUT0. The output port is in series
with a time-varying voltage source VS, a 1-Ohm load resistor, and a ground point. The
purpose of VS is to force the evolved circuit to produce a stable current at the probe
point IOUT0 (i.e., a current which is independent of the value of VS).

Note that Ikeuchi and Tokuda (2000) employ a current sink (which contains a
power source) in their design (figure 15.28) whereas we employ a negative 15-Volt
power source in our test fixture. Neither the Ikeuchi-Tokuda circuit nor the genetically
evolved circuit employs a positive power source.

15.3.1.5 Test Fixture for the Cubic Function Generator Figure 15.5 shows the test
fixture for the cubic function generator. The test fixture has five ports to which the
developing circuit may connect. One of the ports makes the input current available to
the developing circuit. Two of the ports provide a means for measuring the flow of
output current. The remaining two ports make the 2-Volt power source and ground
available to the developing circuit.

Because we find it convenient to represent both input and output signals as volt-
ages (rather than currents), the test fixture contains both a voltage-to-current converter
at the input and a current-to-voltage converter at the output.

Specifically, in figure 15.5, the input signal VIN0 is fed into a voltage-to-current
converter with a conversion factor of 100 microamperes per Volt. The high-output of
the voltage-to-current converter is connected to the 2-Volt power source. The low-
output is passed through a 1-micro-Ohm resistor to input port IIN0.

The output current probe point IOUT0 is in series with a 1-micro-Ohm resistor
RCON0 and feeds into the high-input of a current-to-voltage converter with a conver-
sion factor of 10.5 kilovolts per Ampere. There is also a second current probe point
IOUT1 in series with a 1-micro-Ohm resistor RCON1 that feeds into the low-input of
a current-to-voltage converter. The output of the current-to-voltage converter is 
VFINAL. There is a 1-giga-Ohm resistor RPROBE between VFINAL and ground.

15.3.1.6 Test Fixture for the Tunable Integrated Active Filter The test fixture (figure
15.6) for this problem has an incoming signal source VIN, an incoming control signal
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ICONTROL, a 50,000-Ohm source resistor RSRC1 associated with the incoming signal
VIN, a 1-micro-Ohm source resistor RSRC2 associated with the control signal, a �5-Volt
power source, a voltage probe point VOUT, and a 50,000-Ohm load resistor RLOAD.

15.3.2 Program Architecture

Because there must be one result-producing branch in the program tree for each mod-
ifiable wire in the embryo and there is one modifiable wire in the embryo for all six
problems, the architecture of each circuit-constructing program tree for all six prob-
lems has one result-producing branch. Automatically defined functions and the archi-
tecture-altering operations are not used.

15.3.3 Function Set

A constrained syntactic structure enforces the use of one function set for the first argu-
ment of the TWO_LEAD function and another function set for all other parts of the pro-
gram tree.

Because capacitors and resistors are the two-leaded functions used in this chapter,
the function set, Ftwo-lead, for the first argument of the TWO_LEAD function is

Ftwo-lead �{R_NEW, C_NEW}.

Some functions are common to all six problems in this chapter. The common func-
tions for each construction-continuing subtree for the six problems include the fol-
lowing:

Fcommon �{Q, TWO_LEAD, SERIES, PARALLEL_NEW, TWO_GROUND,
THREE_GROUND, NODE}.

In addition to these common functions, table 15.2 shows the additional input, out-
put, and power source functions required for particular problems.

The INPUT_0, INPUT_1, INPUT_2, INPUT_3, OUTPUT_0 and OUTPUT_1
functions are described in section 4.7.1.1.
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The two-argument TWO_POS15V (“positive reference voltage source”) function
enables any part of a circuit to be connected to the constant �15.0-Volt DC power
source (e.g., a battery) as described in section 11.3.1.3. The TWO_POS5V,
TWO_POS2V, TWO_POS1V, and TWO_NEG15V functions operate in a similar way.

15.3.4 Terminal Set

There are six types of terminals for the six problems in this chapter. A constrained
syntactic structure specifies the terminals that may appear in arithmetic-performing
subtrees; the first argument of the PARALLEL_NEW function; the first, second,
and third arguments of the transistor-creating Q function; and each construction-
continuing subtree.

First, the numerical parameter value(s) for each component possessing a parame-
ter (i.e., resistors and capacitors) are established by a value-setting subtree containing
a single perturbable numerical value (as described in section 3.5.5.2). The terminal
set, Tvss, for the value-setting subtrees is

Tvss �{�p},

where �p denotes a perturbable numerical value.
Second, a constrained syntactic structure specifies the terminals that may appear

as the first argument of the PARALLEL_NEW function. The terminal set, Tparallel, for
the first argument of the PARALLEL_NEW function is

Tparallel �{UP_OR_LEFT, DOWN_OR_RIGHT}.

Third, a constrained syntactic structure specifies the terminals that may appear as
the first argument of the transistor-creating Q function. The first argument of the Q
function specifies the transistor model used. We mainly use the commercially popular
2N3904 (npn) and 2N3906 (pnp) transistor models for problems of circuit synthesis
in this book. That is, the terminal set, Tmodel, is usually

Tmodel �{2N3904, 2N3906}.
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Table 15.2 Inputs, outputs, and power sources for the six problems

Circuit Input(s) Output(s) Power sources(s)

Low-voltage balun circuit INPUT_0 OUTPUT_0, OUTPUT_1 TWO_POS1V

Mixed analog-digital INPUT_0, INPUT_1, OUTPUT_0 None
variable capacitor circuit INPUT_2, INPUT_3

High-current load circuit INPUT_0 OUTPUT_0, OUTPUT_1 TWO_POS15V,
TWO_NEG15V

Voltage-current INPUT_0, INPUT_1 OUTPUT_0 TWO_NEG15V
conversion circuit

Low-voltage cubic INPUT_0 OUTPUT_0, OUTPUT_1 TWO_POS2V
function generator

Tunable integrated INPUT_0, INPUT_1 OUTPUT_0 TWO_POS5V
active filter



However, because the description in the patent of the high-current load circuit
(Daun-Lindberg and Miller 2001) specifically calls for a MOSFET transistor, we used
the IRFZ44 (nmos) and a complementary MTP50P03HDL (pmos) transistor models
for that particular problem. Similarly, for the mixed analog-digital variable capacitor
problem, we used a standard IRF511 (nmos) and a complementary IRF9230
(pmos) transistor model. After the first run of the cubic function generator prob-
lem was successful, we tried an additional experiment involving the high-frequency
transistor models HFA3046 (npn) and HFA3128 (pnp) on the second run of this
problem.

Table 15.3 shows the transistor model used for each of the six problems in this
chapter.

Fourth, the second argument of the transistor-creating Q function establishes
which end (polarity) of the preexisting modifiable wire will be bifurcated (if neces-
sary) in inserting the transistor. The terminal set, Tbifurcate, is

Tbifurcate �{BIFURCATE_POSITIVE, BIFURCATE_NEGATIVE}.

Fifth, the third argument of the Q function specifies which of six possible permu-
tations of the transistor’s three leads (base, collector, and emitter) is to be used. The
terminal set, Tpermutation, is

Tpermutation �{B_C_E, B_E_C, C_B_E, C_E_B, E_B_C, E_C_B}.

Sixth, the terminal set, Tccs, for each construction-continuing subtree is

Tccs �{END, SAFE_CUT}.

15.3.5 Fitness Measure

The third preparatory step prior to launching a run of genetic programming involves the
construction of a fitness measure for the problem. The fitness measure is the primary
mechanism for communicating the high-level statement of the problem’s requirements
to the genetic programming system. The fitness measure specifies what needs to 
be done. The fitness measure is, for all the problems in the chapter, multiobjective in
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Table 15.3 Transistor models for various runs of the six problems

Circuit Transistors

Low-voltage balun circuit 2N3904, 2N3906
Mixed analog-digital variable capacitor IRF511, IRF9230
High-current load circuit—First run IRFZ44, MTP50P03HDL
High-current load circuit—Second run Same as first run
Voltage-current conversion circuit 2N3904, 2N3906
Low-voltage cubic function generator—First run 2N3904, 2N3906
Low-voltage cubic function generator—Second run HFA3046, HFA3128
Tunable integrated active filter—First run 2N3904, 2N3906
Tunable integrated active filter—Second run Same as first run
Tunable integrated active filter—Third run Same as first run
Tunable integrated active filter—Fourth run Same as first run



the sense that it combines two or more different elements. The different elements of
the fitness measure are typically in competition with one another to some degree. Each
fully developed candidate circuit is evaluated over a representative sample of differ-
ent elements of the different fitness cases.

The fitness measure is used to establish a partial order among candidate individuals
(i.e., that one individual is better than another). This partial order is used to proba-
bilistically select individuals to participate in the various genetic operations (i.e.,
crossover, reproduction, mutation, and the architecture-altering operations) during the
run of genetic programming. The fitness measure accomplishes this by assigning a
single numeric value that reflects the extent to which the individual circuit satisfies the
high-level requirements of the problem.

15.3.5.1 Fitness Measure for Low Voltage Balun Circuit The circuit described in
U.S. patent 6,265,908 entitled “Low Voltage Balun Circuit” by Sang Gug Lee is a
balun circuit that operates using a power supply of only 1 Volt.

The balun (balance/unbalance) circuit in this problem is to produce two outputs
from a single input, each output having half the amplitude of the input, one output
being in phase with the input with the other being 180 degrees out of phase with the
input, with both outputs having the same DC offset. One of the two outputs is probed
at the in-phase output point VOUT0 and the other is probed at the out-of-phase output
point VOUT1 (of figure 15.1).

Fitness is measured using seven fitness cases, five of which are designed to ensure
the correct magnitude and phase at the circuit’s two outputs. These five fitness cases
involve frequency-sweep analyses. Additionally, there is a fitness case that uses a DC
operating point analysis to ensure that the circuit’s output has the correct DC offset.
Finally, there is a fitness case that uses a Fourier analysis that is designed to penalize
harmonic distortion.

All five frequency-sweep analyses range over two decades of frequency from 1
MHz to 100 MHz. Each decade is divided equally on a logarithmic scale into 20 parts
(for a total of 41 frequencies). All five frequency-sweep analyses employ an input sig-
nal whose amplitude is 10 millivolts.

Two of the five frequency-sweep analyses probe the in-phase output (one for
amplitude and one for phase); two probe the out-of-phase output (again, one for
amplitude and one for phase); and one probes the phase of the difference between the
out-of-phase and in-phase outputs.

The first fitness case for this problem probes the amplitude of the in-phase output.
The desired amplitude of the in-phase output is 5 millivolts (i.e., one half of the ampli-
tude of the input signal). This corresponds to �46 dB (assuming a 1 Volt reference)
and corresponds to �6 dB (using the 10-millivolt input signal as a reference).

The second fitness case is identical to the first except that it probes the amplitude
of the out-of-phase output.

The third fitness case probes the phase of the in-phase output. The desired phase
of the in-phase output is 0 degrees.

The fourth fitness case probes the phase of the out-of-phase output. The desired
phase of the out-of-phase output is 180 degrees.
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The fifth fitness case probes the phase of the difference between the out-of-phase and
the in-phase outputs (probed at VDIFF). The desired phase of the difference is 180 degrees.

The sixth fitness case is a DC operating point analysis that determines the DC off-
set associated with the difference between the out-of-phase and in-phase outputs. The
desired value for the DC operating point is 0 Volts.

The seventh fitness case involves a Fourier analysis designed to penalize total har-
monic distortion (defined in chapter 14 and Vladimirescu 1994). The Fourier analysis
measures the 2nd through 9th order harmonics of a 10-MHz test frequency. The dura-
tion for the Fourier analysis is 200 nanoseconds corresponding to two cycles of the
10-MHz test frequency. The number of time steps is 100. For the Fourier analysis, the
point probed was VDIFF (the difference between the out-of-phase and in-phase out-
puts). A total harmonic distortion of �30 dB is considered acceptable for this problem.

Fitness is the sum of a detrimental contribution to fitness associated with each of
these seven fitness cases.

For the first five fitness cases (i.e., those involving frequency-sweep analyses), the
detrimental contribution to fitness consists of the sum, over the 41 frequencies
between 1 MHz to 100 MHz, of the weighted absolute difference between the desired
value (defined in the description of each fitness case) and the value associated with
that frequency for that fitness case.

For the two fitness cases that relate to amplitude and that are measured in decibels,
the weight is 1.0 if the absolute value of the difference is less than 3 dB and the weight
is 10.0 otherwise.

For the three fitness cases that relate to phase and that are measured in degrees,
the weight is 1.0 if the absolute value of the difference is less than 10 degrees and the
weight is 10.0 otherwise.

For the sixth fitness case (involving the DC operating point analysis), the detri-
mental contribution to fitness is equal to 1,000 times the difference between the
probed value and the desired value of 0 Volts.

For the seventh fitness case (involving the Fourier analysis designed to penalize
harmonic distortion), the detrimental contribution to fitness is

● 10(1� |THD� (�30)|) if the total harmonic distortion is��30 dB, or
● 1/(1� |THD� (�30)|) if the distortion ratio is��30 dB.

Notice that an ideal value of total harmonic distortion of 0 (i.e., �� dB) corre-
sponds to a detrimental contribution to fitness of 0; that a value of total harmonic dis-
tortion of exactly �30 dB corresponds to a detrimental contribution to fitness of 10;
and that if the total harmonic is acceptable (i.e., less than �30 dB), then the detri-
mental contribution to fitness is at most 1.

15.3.5.2 Fitness Measure for Mixed Analog-Digital Variable Capacitor U.S.
patent 6,013,958 by Turgut Sefket Aytur of Lucent Technologies Inc. covers a mixed
analog-digital variable capacitor.

The purpose of the mixed analog-digital variable capacitor circuit is to provide
behavior (probed at IOUTO) that is equivalent to that of a capacitor whose capacitance
is dynamically controlled by the value stored in a digital register.
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There are 16 fitness cases for this problem. Each fitness case employs a combina-
tion of one of two time-domain input signals in conjunction with one of the eight pos-
sible values (000 to 111) in the three-bit digital register.

The two time-domain input signals vary by shape and time scale.
A capacitor is a two-leaded electrical component whose voltage, V, and current, I,

are related by

The input signal for each fitness case is based on the time-domain value of the
voltage source VTEST (corresponding to dV/dt in the above equation). The voltage
that is actually made available to the circuit is the integral of VTEST (i.e., V in the
above equation for I). The integral of VTEST is probed at VIN0 in figure 15.2.
Additionally, note that although VTEST is implemented in our test fixture as a voltage
source, its value actually represents a derivative. Thus, the value of VTEST is
expressed in “Volts per second” rather than “Volts.” Note that at time t�0, the output
of the integrator is zero.

Figure 15.7 shows the integral (i.e., V) of the first input signal. The horizontal axis
is in microseconds and the vertical axis is in Volts. The signal is divided into 100 time
steps (over 10 microseconds).

Figure 15.8 shows the curve for the first input signal (i.e., dV/dt). The horizontal
axis is in microseconds and the vertical axis is in Volts per second.

Figure 15.9 shows the integral (i.e., V) of the second input signal. The horizontal
axis is in microseconds and the vertical axis is in Volts.

Figure 15.10 shows the curve for the second input signal (i.e., dV/dt). The hori-
zontal axis is in microseconds and the vertical axis is in Volts per second.

I � C dV
dt

.
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Figure 15.7 Integrated input signal for fitness case 1 for the mixed analog-digital variable
capacitor problem.



One time-domain simulation is performed for each of the eight values of the 3-bit
digital register in conjunction with each of two possible time-domain input signals.

The eight values of the 3-bit digital register specify a desired capacitance that is
between 0 and 70 nanofarads. The output current desired at the probe point is the
product of the desired capacitance and the input voltage (which represents dV/dt). For
example, if the 3-bit digital register is 001 (making the desired capacitance 10 nano-
farads), then the output voltage desired at the probe point IOUT would range between
�5 and �5 milliamperes (for both time-domain input signals).
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Figure 15.8 Input signal for fitness case 1 for the mixed analog-digital variable capacitor
problem.
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Figure 15.9 Integrated input signal for fitness case 2 for the mixed analog-digital variable
capacitor problem.



Fitness is the sum, over 101 time values for each of the 16 fitness cases, of the
absolute value of the weighted difference between ideal output current (i.e., that which
would flow through a capacitor whose capacitance was equal to 10 nanofarads times
the value in the three-bit digital register) and the circuit’s actual output current. The
weight is 1.0 if the absolute value of the difference is less than 0.25 milliamperes and
the weight is 10.0 otherwise.

15.3.5.3 Fitness Measure for High-Current Load Circuit U.S. patent 6,211,726
covers a circuit designed to sink a time-varying amount of current in response to an
input signal. Toward this end, Daun-Lindberg and Miller of IBM employed a number
of FET transistors arranged in a parallel structure, each of which sinks a small amount
of the desired current.

The amount of current is probed at VFINAL (the output of a current-to-voltage con-
verter) of figure 15.3.

The fitness measure for this problem employs two time-domain simulations, each
representing a different input signal. The two input signals vary by shape and time scale.

The first input signal starts at 0 Volts at time 0, remains at that level for 
50 microseconds, rises to 10 Volts over a period of 100 microseconds, remains at that
level for 300 microseconds, falls to 0 Volts over a period of 100 microseconds, and
remains at that level for another 450 microseconds. Note that these input signals, spec-
ified in terms of voltage, are passed through a voltage-to-current converter with a con-
version factor of �66.7 millivolts per Ampere.

The second input signal starts at 0 Volts at time 0, remains at that level for 
75 microseconds, rises to 6 2/3 Volts over a period of 300 microseconds, remains at
that level for 200 microseconds, falls to 0 Volts over a period of 150 microseconds,
and remains at that level for another 275 microseconds.

Each input signal is divided into 30 time steps (over a period of 1 millisecond).
We made two runs of this problem.
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For the first run of this problem, fitness is the weighted sum, over each time value
for each fitness case, of the absolute value of the difference between the amount of
current sunk by the circuit and the desired amount of current given by the time-
varying input signal. The difference for each time value for each fitness case is
weighted by the product of the reciprocal of the patented circuit’s average absolute
error for that fitness case and the reciprocal of the number of fitness cases (i.e., two).
Thus, a fitness of 1.0 is assigned to the patented circuit.

After the first run was successful, we made a second run. In the first run, there is
a weighting associated with each fitness case. For the second run, there is an addi-
tional weighting associated with each time value. For the second run, we applied an
additional multiplicative weighting of 10.0 for each time value where the absolute
error is greater than the patented circuit’s average absolute error over the two fitness
cases (i.e., 41 millivolts).

15.3.5.4 Fitness Measure for Voltage-Current Conversion Circuit The voltage-current
conversion circuit patented by Akira Ikeuchi and Naoshi Tokuda of Mitsumi Electric Co.,
Ltd. (U.S. patent 6,166,529) takes two time-domain voltage signals as input and is
intended to produce a stable current whose magnitude is proportional to the difference
between the two input voltage signals. The current is probed at current probe point IOUT0.

Fitness is measured using four time-domain fitness cases involving input signals
of various shapes. Each fitness case involves an added and subtracted input part.

For the first fitness case, the subtracted input signal rises linearly from 2 Volts to
10 Volts for a period of 1 second while the added input signal falls linearly from 10
Volts to 2 Volts.

For the second fitness case, the subtracted input signal is a 6.4 Hz sine wave cen-
tered at 6 Volts with a minimum value of 2.5 Volts and a maximum value of 9.5 Volts.
The added input signal is a 4.5 Hz sine wave centered at 5.5 Volts with a minimum
value of 2.0 Volts and a maximum value of 9.0 Volts.

For the third fitness case, both the added input signal and the subtracted signal are
2.0 Hz sine waves centered at 6 Volts with a minimum value of 2.0 Volts and a maxi-
mum value of 10.0 Volts.

For the fourth fitness case, the subtracted input signal is a 6.4 Hz sine wave cen-
tered at 4 Volts with a minimum value of 3 Volts and a maximum value of 5 Volts
while the added input signal is a 4.5 Hz sine wave centered at 4 Volts with a minimum
value of 3.0 Volts and a maximum value of 5.0 Volts.

Each input signal is divided into 30 time steps (over a period of 1 second).
The desired output current is the difference between the added input signal and the

subtracted input signal multiplied by 1 milliampere per Volt.
For all four fitness cases, the time-varying voltage source VS is a 3.2 Hz sine wave

centered at 0 Volts with a minimum value of �1 Volt and a maximum value of �1 Volt.
Fitness is the weighted sum, over all time values for the four fitness cases, of the

absolute difference between the desired output current and the circuit’s actual output
current. The weight associated with the time values for each of the four fitness cases is
one fourth of the reciprocal of the patented circuit’s average absolute error for that fit-
ness case. The values of the average absolute error of the patented circuit for each of
the four fitness cases are 41, 36, 26, and 44 microvolts, respectively. Note that when
the patented circuit is evaluated using this fitness measure, it is assigned a fitness of 1.0.
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15.3.5.5 Fitness Measure for Cubic Function Generator The purpose of the cubic
function generator circuit is to produce an output current (probed at VFINAL) that is
proportional to the cube of the input current. Stefano Cipriani and Anthony A.
Takeshian of Conexant Systems, Inc. received U.S. patent 6,160,427 for their cubic
function generator circuit.

The patented circuit is to be “compact” in the sense that it requires a voltage drop
across no more than two transistors at any point in the circuit. The compactness con-
straint is enforced by allowing the evolutionary process access to only a 2-Volt power
supply (i.e., just less than three base-to-emitter drops).

Fitness is measured using four time-domain fitness cases involving input signals
of various shapes and time scales.

The first fitness case is a ramp that rises from 0 Volts to 1.26 Volts (the cube root
of 2) over a period of 1 millisecond.

The second fitness case is a single full cycle of a sine wave ranging between 0
Volts and �1.26 Volts over a period of 1 millisecond.

The third fitness case is a ramp that falls from 1.26 Volts to 0 Volts over a period
of 10 milliseconds.

The fourth fitness case is a constant input of 1 Volt lasting 10 milliseconds.
All four of these input signals are passed through a voltage-to-current converter

with a conversion factor of 100 microamperes per Volt.
There are 100 time steps associated with each fitness case.
Fitness is the sum, over the four fitness cases and 101 time values for each fitness

case, of the absolute value of the weighted difference between the cube of the input
voltage signal (which passes through a voltage-to-current converter) and the circuit’s
actual output (probed at VFINAL, the output of a current-to-voltage converter). The
weight for each time value is 1.0 if the absolute value of the difference is less than 
7 millivolts (i.e., the average absolute error of the patented circuit of figure 15.32) and
the weight is 10.0 otherwise.

The number of hits is defined to be the number of time values for which the
weighting is 1.0 (as opposed to 10.0).

15.3.5.6 Fitness Measure for Tunable Integrated Active Filter U.S. patent
6,225,859 covers a tunable integrated active filter that was invented by Robert Irvine
and Bernd Kolb of Infineon Technologies AG of Germany. The purpose of the tunable
integrated active filter is to perform the function of a lowpass filter whose passband
boundary is dynamically specified by a control signal. The circuit has two inputs: a
to-be-filtered incoming signal VIN and a control signal ICONTROL.

Because the high-level statement of the behavior for the desired filter circuit is
expressed in terms of the circuit’s differing response to various frequencies, the out-
put is measured in the frequency domain.

The passband boundary, f, ranges over the following nine values: 441, 588, 784,
1,046, 1,395, 1,861, 2,482, 3,310, and 4,414 Hz. Ic acts as a control signal ICONTROL
in the patented circuit. As can be seen from the equations given in section 10.5, the
value of 441 Hz corresponds to a value of Ic of 100 microamperes of current and a
value of 4,414 Hz corresponds to a value of Ic of 10 milliamperes of current (a rea-
sonable range for the patented circuit).
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For each of the nine values of f, the current source ICONTROL takes on a specific
value (i.e., the value of the control variable, Ic) as defined by the equation in section 10.5.

For each of the nine values of the free variable f, SPICE is instructed to perform
an AC small signal analysis and report the circuit’s behavior from f/100 to 10f (an
interval of three decades) with each of these three decades being divided into 20 parts
(using a logarithmic scale). Thus, there are a total of 61 sampled frequencies associ-
ated with each value of f. Note that the 41st point is f itself.

For the first run of this problem, fitness is composed only of a performance
penalty. The second run and subsequent runs also include a parsimony penalty.

The performance penalty is the weighted sum, over the 61 frequencies for each of
the nine values of the free variable f, of the absolute weighted deviation between the
output of the individual circuit at the probe point VOUT and the output of the target
circuit in figure 10.12 at the probe point VOUT.

For all frequencies less than or equal to f, the absolute deviation is calculated in
Volts. However, for all frequencies greater than f, the absolute deviation is calculated
in decibels.

For all frequencies greater than f, the weighting is 10.0 if the absolute deviation
(in decibels) is greater than 3 dB, but 1.0 otherwise.

For the 31st through 40th points of the passband, the weighting is 100,000 if the
absolute deviation is greater than 3 dB, but 10,000 otherwise.

For all other points in the passband, the weighting is 10,000 if the absolute devia-
tion is greater than 3 dB, but 1,000 otherwise.

The larger weights for the passband compensate for the fact that deviations meas-
ured in Volts are (for the range of voltages used in this problem) less than those meas-
ured in decibels.

The larger weighting for the 31st through 40th points of the passband reflects the
fact that the challenge in designing many filters lies with the frequency response in the
part of the passband just before the start of the transitional region.

The number of hits is defined as the number of points for which the voltage (in
decibels) that is produced by the individual circuit at the probe point VOUT is within
3 dB of the voltage (in decibels) produced by the target circuit.

The first run of this problem was successful. However, the best-of-run circuit from
the first run has 12 transistors, three capacitors, and one resistor (in addition to the
components in the test fixture). In reviewing the patent document, it was apparent that
the spirit of the invention involves finding a parsimonious solution to the problem. The
inventor’s patented circuit (shown in figure 15.35) is parsimonious. Therefore, parsi-
mony was explicitly included as part of the fitness measure on each subsequent run of
this problem.

For the second and subsequent runs, fitness is a weighted sum of a parsimony
penalty and a performance penalty. The parsimony penalty is equal to the number of
components in the circuit. For individuals with 543 or fewer hits (out of 549), fitness
is the performance penalty plus 10�12 times the parsimony penalty. For individuals
with 544 (99%) or more hits (out of 549), fitness is 10�18 times the performance
penalty plus 10�12 times the parsimony penalty. Note that the reason for choosing
99% of the hits as the trigger for parsimony in the fitness measure is that the patented
circuit does not attain 100% of the hits for this problem (given our definition of hits).
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15.3.6 Control Parameters

Table 15.4 shows the population size for each of the six problems in this chapter.

15.4 Results for the Six Post-2000 Patented Circuits

15.4.1 Results for Low-Voltage Balun Circuit

The best-of-generation circuit from generation 0 has a fitness of 39.7.
On generation 97 of the balun problem, a circuit emerged that satisfies the prob-

lem’s high-level requirements. Specifically, the circuit produces (in response to a
sinusoidal input signal) sinusoidal signals at both of the output terminals (probed at
VOUT0 and VOUT1 in figure 15.1) that have the desired magnitude and phase.
Moreover, the difference between these two signals (probed at VDIFF) also has the
correct magnitude and phase.

The best-of-run circuit (figure 15.11) from generation 97 has a fitness of 0.429. By
way of reference, the patented circuit has a total fitness of 1.72. Thus, the genetically
evolved circuit achieves roughly a fourfold improvement over the patented circuit in
terms of our fitness measure.

Note that several transistors that are manifestly nonfunctional were deleted from
figure 15.11. Similarly, some or all of the nonfunctional transistors have been removed
from some of the other genetically evolved circuits in this chapter.

Figure 15.12 shows the time-domain behavior of the best-of-run balun circuit from
generation 97 of the first run for both the in-phase and out-of-phase output ports. As
can be seen, the genetically evolved circuit divides the input signal into two half-
amplitude signals that are 180 degrees out of phase from each other.

Figure 15.13 shows the frequency response (probed at VDIFF) for the best-of-run
balun circuit from generation 97 and the circuit described in U.S. patent 6,265,908
(figure 15.15). The ideal response would be a horizontal line at 10 millivolts. As can be
seen, the genetically evolved circuit performs better at the higher frequencies.

Looking at the magnitude of the difference (probed at VDIFF) between the out-of-
phase and in-phase outputs, the best-of-run circuit is superior to the patented circuit
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Table 15.4 Population sizes for various runs of the six problems

Circuit Population

Low-voltage balun circuit 5,000,000
Mixed analog-digital variable capacitor 2,000,000
High-current load circuit—First run 2,000,000
High-current load circuit—Second run Same as first run
Voltage-current conversion circuit 5,000,000
Cubic function generator—First run 5,000,000
Cubic function generator—Second run 2,000,000
Tunable integrated active filter—First run 2,000,000
Tunable integrated active filter—Second run Same as first run
Tunable integrated active filter—Third run Same as first run
Tunable integrated active filter—Fourth run Same as first run



in terms of its frequency response. Specifically, the genetically evolved circuit has an
average absolute error of 0.47 dB from 1 MHz to 100 MHz, whereas Lee’s patented
circuit has an average absolute error of 0.60 dB.

The best-of-run circuit is also superior to the patented circuit in terms of its 
total harmonic distortion (THD). Specifically, the total harmonic distortion for the
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Figure 15.11 Best-of-run balun circuit.
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Figure 15.12 Time-domain behavior of the best-of-run balun circuit.



genetically evolved circuit is �65.6 dB whereas it is �33.9 dB for the patented
circuit.

In his patent, Lee presents a previously known conventional (prior art) balun cir-
cuit as “figure 2.” Figure 15.14 shows “figure 2” of U.S. patent 6,265,908 (Lee 2001).
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Figure 15.13 Comparison of the frequency response of the best-of-run balun circuit and the
patented circuit.

Figure 15.14 A prior art balun circuit as shown in figure 2 of U.S. patent 6,265,908.



Lee presents his invention as “figure 3” in his patent. Figure 15.15 shows “figure
3” of U.S. patent 6,265,908.

Lee (2001) identifies the essence of his invention in the patent documents. The
essential difference between Lee’s invention and the prior art is a coupling capacitor
C2 located between the base and the collector of the transistor Q2. As Lee explains,

“FIG. 2 offers a circuit diagram depicting another conventional balun circuit.”
“FIG. 3 represents a circuit diagram of a low voltage balun circuit in accordance

with a preferred embodiment of the present invention.…
“The structure of the inventive balun circuit shown in FIG. 3 is identical to that

of FIG. 2 except that a capacitor C2 is further provided thereto. The capacitor C2

is a coupling capacitor disposed between the base and the collector of the transis-
tor Q2 and serves to block DC components which may be fed to the base of the
transistor Q2 from the collector of the transistor Q2.” (Emphasis added.)

This essential difference between Lee’s invention and the prior art is an integral
part of claim 1 of Lee’s patent. Claim 1 covers a circuit comprising:

“a set of a first load element, a first device and a second device connected in series
in that order between a supply voltage source and the ground;

“a set of second load element, a third device, and a fourth device connected in
series in that order between the supply voltage source and the ground,

“wherein each of the first to fourth devices has a control electrode and a first and
a second electrodes, first electrodes of the first and the third devices being con-
nected to second electrodes of the second and the fourth devices, respectively;
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Figure 15.15 Lee’s low voltage balun circuit as shown in figure 3 of patent 6,265,908.



“a bias voltage source connected to control electrodes of the first and the third
devices;

“a bias current source connected to control electrodes of the second and the
fourth devices;

“a first capacitor;
“an input voltage source coupled to the second electrode of the second device

via the first capacitor; and
“a second capacitor coupled between the control electrode and the second elec-

trode of the second device.” (Emphasis added.)

As an aid in mapping claim 1 of Lee’s patent to “figure 3” in Lee’s patent (and to
figure 15.15 in this book), we have paraphrased claim 1 in terms of the labels in Lee’s
“figure 3” as follows:

a set comprising resistor RL2, transistor Q4 and transistor Q2 connected in series,
in that order, between supply voltage source VCC and ground;

a set comprising resistor RL1, transistor Q3 and transistor Q1 connected in
series, in that order, between supply voltage source VCC and ground,

wherein the emitters of transistors Q4 and Q3 are connected to the collectors of 
transistors Q2 and Q1, respectively;

a bias voltage source VBIAS is connected to the bases of transistors Q4 and Q3;
a bias current source Ibias is connected to the bases of transistors Q2 and Q1;
a first capacitor C1;
an input voltage source VIN is coupled to the collector of transistor Q2 via the

first capacitor C1; and
a second capacitor C2 is coupled between the base and the collector of transistor Q2.

Thus, the best-of-run circuit from generation 97 (figure 15.11) possesses the very
feature that Lee identifies as the essence of his invention, namely the second capacitor
C2 (called “C302” in figure 15.11).

In addition to having the specific feature that Lee identifies as the essence of 
his invention, the best-of-run circuit from generation 97 (figure 15.11) has several
additional features that are enumerated in claim 1.

First, the genetically evolved circuit has “a first capacitor” with

“an input voltage source coupled to the second electrode of the second device via
the first capacitor.”

The “first capacitor” is C1 in Lee’s circuit (figure 15.15) and is C301 in the geneti-
cally evolved circuit (figure 15.11). The “input voltage source” is VIN in Lee’s circuit
and is VIN0 in the genetically evolved circuit. The “second electrode of the second
device” is the collector of transistor Q2 in Lee’s circuit and the collector of transistor
Q303 in the genetically evolved circuit.

Second, the genetically evolved circuit has

“a set of a first load element,…a second device connected in series in that order
between a supply voltage source and the ground.”
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The “first load element” is RL2 in Lee’s circuit (figure 15.15) and is RLOAD0 in the
genetically evolved circuit (figure 15.11). The “second device” is transistor Q2 in
Lee’s circuit and transistor Q303 in the genetically evolved circuit. The “supply volt-
age source” is VCC in both Lee’s circuit and the genetically evolved circuit. The “first
load element” and the “second device” of the genetically evolved circuit are indeed
“connected in series in that order between a supply voltage source and the ground.”
However, the genetically evolved circuit does not have “a first device” corresponding
to transistor Q4 of Lee’s patented circuit (figure 15.15).

Third, in a similar vein, the genetically evolved circuit has

“a set of second load element,…a fourth device connected in series in that order
between the supply voltage source and the ground.”

However, the genetically evolved circuit does not have “a third device” corresponding
to transistor Q3 of Lee’s patented circuit (figure 15.15).

Thus, even though the best-of-run circuit from generation 97 (figure 15.11) pos-
sesses the feature that Lee identifies as the essence of his invention and also possesses
the three additional important features of Lee’s circuit, it does not infringe Lee’s
patent because it lacks yet other features enumerated in claim 1.

Lee’s circuit satisfied the Patent Office’s requirement of being “useful” because
balun circuits operating off a 1-Volt power supply are of current commercial interest
for practical applications in cellular phones and high-definition television sets.
Because the genetically evolved circuit duplicates the functionality of Lee’s invention,
it too should be considered “useful.”

Lee’s circuit satisfied the Patent Office’s requirement of being “new” because it
has a key feature that distinguished it from the prior art. The genetically evolved cir-
cuit has this same distinguishing feature.

Moreover, the genetically evolved circuit has several unusual features that might
never occur to an experienced electrical engineer. Thus, the genetically evolved circuit is

“[un]obvious…to a person having ordinary skill in the art to which said subject
matter pertains.” (35 United States Code 103a)

Moreover, the genetically evolved circuit does not infringe Lee’s patent and is
therefore “new” in comparison to Lee’s patented invention (which is, of course, now
part of the prior art). The genetically evolved circuit should therefore satisfy the Patent
Office’s requirement of being “new” with respect to Lee.

Therefore, the best-of-run evolved circuit from generation 97 may possibly 
be a patentable new invention. The patentability of this genetically evolved 
circuit may well depend on whether its key features exist in prior art (other than
Lee’s).

Our run of the balun problem was made a little less than a year after the patent was
issued for Lee’s invention.

Both an infringing and a non-infringing circuit qualify as a human-competitive
result under criterion A of table 1.2. Thus, we would have been equally pleased, for
the purposes of this book, if the run had produced an infringing circuit.
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For other purposes, however, a novel solution may be more desirable. One may
simply have a scientific interest in producing novel solutions to challenging problems.
Suppose, however, that one has an economic interest in designing balun circuits.
Alternatively, one might have an interest in patenting a novel circuit in order to gain
commercial advantage. Alternatively, one might have an interest in avoiding infringe-
ment of an existing patent (either to avoid paying royalties or because the patent
holder is unwilling to license a competitor). Although rarely mentioned in textbooks,
engineers in many industries spend a considerable amount of time and effort in devis-
ing designs that do not infringe the claims of unexpired patents (notably those held by
competing companies). Indeed, the avoidance of infringement is the most important
design criterion (albeit often not overtly acknowledged) in many real-world engineer-
ing design organizations.

In any of these three situations, a fitness measure can be formulated that incorpo-
rates the degree to which an individual in the population in a run of genetic program-
ming satisfies the problem’s design requirements as well as the degree to which the
individual avoids characteristics of the prior art.

In particular, imagine that the clock is turned back to the day when Lee’s patent
was issued (July 24, 2001). At that moment, the prior art consisted of Lee’s just-
patented circuit as well as all previously known balun circuits (patented or not). The
prior art for balun circuits includes the two circuits presented by Lee himself as fig-
ures 1 and 2 of his patent. And, the prior art no doubt includes yet other designs (some
of which may have been patented and some of which may simply be in the literature
of the field).

If we seek a design that differs from the prior art, a fitness measure can be con-
structed to include a way to measure the similarity between a circuit employing the
prior art and an individual candidate circuit in the population being bred by genetic
programming.

There are numerous alternative ways to implement this. One might, for example,
use a rule-based system to examine each candidate circuit.

Because circuits can be conveniently represented by labeled graphs, a second
approach is to use a graph isomorphism algorithm on a candidate circuit and various
template graphs representing the key characteristics of the relevant prior art. For
example, the templates for the balun problem would represent the key characteristics
of Lee’s now-patented balun circuit, older balun circuits (such as those cited by Lee
himself as figures 1 and 2 of his patent), and any other previously known balun cir-
cuits in the literature. The measure of similarity could be based on the size of the max-
imal common subgraph between a candidate circuit and a template circuit. The
measure of similarity might employ a cost function based on the number of shared
nodes and edges and the types of electrical components (and perhaps even ranges of
component values) in the graph. An example of such a cost function in connection
with novelty-driven evolution for filter circuits may be found in section 27.6 of
Genetic Programming III (Koza, Bennett, Andre, and Keane 1999a).

In making runs where the goal is to generate numerous different 100%-compliant
circuits for post-run examination, the run should not be terminated upon evolution of
the first 100%-compliant individual. Instead, the run should harvest all (or a significant
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subset of) the 100%-compliant circuits. Once genetic programming has successfully
created one or more novel solutions to the problem at hand, a design engineer may
examine them. Because the evolutionary process is not encumbered by the kind of
preconceptions and predispositions that govern human engineers, some of these har-
vested 100%-compliant circuits may have unexpected features.

15.4.2 Results for Mixed Analog-Digital Variable Capacitor

The best-of-generation circuit from generation 0 has a fitness of 73.5.
In generation 95, a circuit emerged with an average absolute error, over the 16 fit-

ness cases, of 0.808 milliamperes. This is equivalent to 100.6% of the average
absolute error (0.803) of the patented circuit. This circuit has a highly non-symmetric
topology consisting of a relatively large number of components (10 transistors, 7
capacitors, and 6 resistors). This circuit has a fitness of 7.50.

We also harvested the smallest individual with no more than a certain maximum
level of absolute error from each processing node. One of the small individuals from
generation 98 (with average absolute error equal to 117.5% of that of the patented cir-
cuit) has a topology that closely resembles that of the patented circuit. This designated
circuit is shown in figure 15.16.

Figure 15.17 shows the mixed analog-digital variable capacitor circuit (embedded
in a test fixture) that we created from the description in U.S. patent 6,013,958.
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Figure 15.16 Designated mixed analog-digital variable capacitor circuit from generation 98.



Claim 1 of U.S. patent 6,013,958 by Turgut Sefket Aytur of Lucent Technologies
Inc. covers:

“An integrated circuit, for use in a balanced line configuration, said integrated cir-
cuit comprising:

“a plurality of combinations of an integrated unit capacitor connected in series
with a controlled channel of an integrated transistor switch, the combinations being
connected in parallel, wherein at least one of the transistor switches has a control
gate coupled to a bit output of a register whereby the capacitance of the intercon-
nect variable capacitor depends on what word is stored in the register, wherein the
integrated unit capacitor in at least one of the combinations is coupled to a bal-
anced signal line pair, and wherein at least one of the combinations comprises a
transistor switch connected between two integrated unit capacitors connected to a
line of said balanced signal line pair.”

The patented circuit (figure 15.17) consists of a plurality (three) of “combina-
tions…connected in parallel” as specified in claim 1.

The first “combination” in the patented circuit (figure 15.17) contains the “inte-
grated unit capacitor” C1 “connected in series with a controlled channel of an integrated
transistor switch” Q1. The control is provided by “bit output” VREG0 (0 or 1) from the
digital register. Transistor switch Q1 has its “control gate coupled to a bit output of a
register” VREG0. Also, “the capacitance of the interconnect variable capacitor depends
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Figure 15.17 Mixed analog-digital variable capacitor circuit of U.S. patent 6,013,958.



on what word is stored in the register.” Specifically, this capacitance is 0 if the transis-
tor switch Q1 is open (i.e., VREG0 from the digital register is �15 Volts, corresponding
to a binary 0) or is 40 nanofarads (the net capacitance of the two 80 nF capacitors, C1
and C4, in series) if the transistor switch Q1 is closed (i.e., VREG0 from the digital reg-
ister is �15 Volts, corresponding to a binary 1). Moreover, the “combination” “com-
prises a transistor switch” Q1 “connected between two integrated unit capacitors”
(namely capacitors C1 and C4) “connected to a line of said balanced signal line pair.”

Similarly, the second “combination” in the patented circuit (figure 15.17) contains
capacitor C2, transistor switch Q2, bit output VREG1, and second capacitor C5. The
third “combination” in the patented circuit contains capacitor C3, transistor switch
Q3, bit output VREG2, and second capacitor C6.

The patented circuit (figure 15.17) also satisfies the requirements of claim 2:

“The integrated circuit as recited in claim 1, wherein control gates for a different num-
ber of combinations are connected to at least one of the bit outputs of the register.”

Claim 3 covers,

“The integrated circuit as recited in claim 1, wherein the numbers are weighted
using a weighting scheme selected from the group consisting of binary weighting
and unit weighting.”

In the patented circuit (figure 15.17), capacitors with “binary weighting” of 20, 40,
and 80 nanofarads are associated with the low, middle, and high-order bits, respec-
tively, of the three-bit register probed at “bit outputs” VREG2, VREG1, and VREG0,
respectively.

The designated mixed analog-digital variable capacitor circuit from generation 98
(figure 15.16) has many of the key structural features of the patented circuit (figure
15.17).

At a high level, the genetically evolved circuit (figure 15.16) consists of three
“combinations…connected in parallel” as specified in claim 1.

The first “combination” in the genetically evolved circuit (figure 15.16) contains
“integrated unit capacitor” C101 “connected in series with a controlled channel of an
integrated transistor switch” Q101. The control is provided by “bit output” VREG0
(�15 or �15 Volts) from the digital register. Transistor switch Q101 has its “control gate
coupled to a bit output of a register” VREG0. Also, “the capacitance of the interconnect
variable capacitor depends on what word is stored in the register.” Specifically, this capac-
itance is 0 if the transistor switch Q101 is open (i.e., VREG0 from the digital register is
�15 Volts) and is 38.5 nF (the capacitance of C101) if the transistor switch Q101 is
closed (i.e., VREG0 from the digital register is �15 Volts). Note that there is an additional
transistor Q104 which is open or closed when Q101 is open or closed, respectively.

Similarly, the second “combination” in the genetically evolved circuit (figure
15.16) contains capacitor C102, transistor switch Q102, and bit output VREG1 from
the digital register. The third “combination” in the genetically evolved circuit contains
capacitor C103, transistor switch Q103, and bit output VREG2 from the digital register.

Note that deleting Q105 has no effect on the circuit’s performance.
Because none of the three “combinations” of the genetically evolved circuit (fig-

ure 15.16) contain a transistor switch “connected between two integrated unit capac-
itors,” the genetically evolved circuit does not infringe claim 1.
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If a commercial enterprise were seeking a variable capacitor circuit that did not
infringe Aytur’s patent, the genetically evolved circuit might be a serviceable alterna-
tive circuit. That is, genetic programming may have “engineered around” Aytur’s
patent by creating a functionally equivalent non-infringing alternative.

In the genetically evolved circuit (figure 15.16), capacitors C103, C102, and C101
with values of 9.55, 21.1, and 38.5 nanofarads, respectively, are associated with the
low, middle, and high-order bits, respectively, of the three-bit register providing “bit
outputs” VREG2, VREG1, and VREG0, respectively. The numerical values of 9.55, 21.1,
and 38.5 are close to an exponential sequence. Because the numerical values are so
close to an exponential sequence, the genetically evolved circuit would undoubtedly
be regarded as equivalent (under the doctrine of equivalences of the patent law) to the
“binary weighting” mentioned in claim 3 of the patent. However, claim 3 is a depend-
ent claim and the genetically evolved circuit does not infringe the independent claim
with which it is associated (claim 1). Thus, in spite of the fact that the genetically
evolved circuit employs yet another key feature of the invention, the genetically
evolved circuit does not infringe claim 3.

15.4.3 Results for High-Current Load Circuit

We made two runs of this problem.

15.4.3.1 Results for First Run of High-Current Load Circuit
The best-of-generation circuit from generation 0 has a fitness of 61.7.

Our first run for this problem eventually reached a plateau and produced a circuit
that sunk the desired current into one of the negative power supplies (rather than to
ground). The fitness of this circuit is 0.713 (i.e., it has only 71.3% of the weighted
absolute error of the patented circuit).

It so happens that, for the purpose of testing power supplies, it is preferable that
the current be sunk to ground, rather than into the negative power supply. A circuit that
sinks the current into the negative power supply is not a valid solution to this problem.
We did not include anything in our fitness measure to specify that the current should
be sunk to ground.

However, in addition to producing a “cheating” solution, genetic programming
also produced a circuit (figure 15.18) in generation 114 that duplicates Daun-Lindberg
and Miller’s parallel FET transistor structure. This circuit has a fitness (weighted
absolute error) of 1.82, or 182% of the weighted absolute error for the patented cir-
cuit. The fitness of this best-of-run circuit from generation 114 is 1.82.
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Figure 15.18 Best-of-run high-current load circuit from the first run.



Figure 15.19 compares the output of the best-of-run high-current load circuit from
generation 114 for fitness case 1 and the ideal output. As can be seen, the two curves
are almost indistinguishable.

Figure 15.20 compares the output of the best-of-run high-current load circuit from
generation 114 for fitness case 2 and the ideal output. As can be seen, the two curves
are almost indistinguishable.
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Figure 15.19 Comparison of output of the best-of-run high-current load circuit from the first
run for fitness case 1 and the ideal output.
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Figure 15.20 Comparison of output of the best-of-run high-current load circuit from the first
run for fitness case 2 and the ideal output.



Averaged over the two fitness cases, the best-of-run circuit from generation 114 of
the first run of the high-current load problem has

● 288 millivolts maximum absolute error, and
● 71.85 millivolts average absolute error.

Again, note that the circuit’s output is probed at VFINAL (the output of a current-
to-voltage converter).

Table 15.5 shows the average absolute error and maximum absolute error (both in
millivolts) for the best-of-run circuit from generation 114 of the first run for the two
fitness cases.

Figure 15.21 shows the high-current load circuit of U.S. patent 6,211,726.
Table 15.6 gives the average absolute error and maximum absolute error (both in

millivolts) for the patented high-current load circuit.
The genetically evolved circuit from the first run shares the following features

found in claim 1 of U.S. patent 6,211,726:

“A variable, high-current, low-voltage, load circuit for testing a voltage source,
comprising:

“a plurality of high-current transistors having source-to-drain paths connected in
parallel between a pair of terminals and a test load.”
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Table 15.5 Average absolute error and maximum absolute
error for the best-of-run circuit from the first run of the high-
current load problem

Average Maximum
Fitness case absolute error absolute error

10 Volt pulse 50.6 288
6.667 Volt pulse 93.1 276

Table 15.6 Average absolute error and maximum absolute
error for the patented high-current load circuit

Average Maximum
Fitness case absolute error absolute error

10 Volt pulse 48.0 1,530
6.667 Volt pulse 34.0 770

Figure 15.21 High-current load circuit of U.S. patent 6,211,726.



However, the remaining elements of claim 1 in U.S. patent 6,211,726 are very spe-
cific and the genetically evolved circuit does not read on these remaining elements. In
fact, the remaining elements of the genetically evolved circuit bear hardly any resem-
blance to the patented circuit. In this instance, genetic programming produced a cir-
cuit that duplicates the functionality of the patented circuit using a different structure.

15.4.3.2 Results for Second Run of High-Current Load Circuit The first run
employed ideal power supplies that could deliver unlimited amounts of power. In
order to prevent the creation of “cheating” circuits and to obtain a more accurate
circuit, we imposed a limit on the current that can be provided by the positive and
negative power supplies in our second run of this problem.

The best-of-generation circuit from generation 0 has a fitness of 500.3.
The best-of-run individual emerged in generation 215 (figure 15.22). This circuit

has 92% of the weighted absolute error of the patented circuit. The fitness of this best-
of-run circuit from generation 215 is 2.41.

Averaged over the two fitness cases, the best-of-run circuit from generation 215 of
the second run of the high-current load problem has

● 120.4 millivolts maximum absolute error, and
● 37.0 millivolts average absolute error.

Table 15.7 shows the average absolute error and maximum absolute error (both in
millivolts) for the best-of-run circuit from generation 215 of the second run for the two
fitness cases.

As can be seen from tables 15.6 and 15.7, the evolved circuit is superior to the
patented circuit in terms of average absolute error on the first fitness case and com-
parable on the second fitness case. It is significantly better in terms of maximum
absolute error on both fitness cases.

Like the evolved circuit from the first run, the evolved circuit from the second run
shares the “plurality of high-current transistors having source-to-drain paths connected
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Figure 15.22 Best-of-run high-current load circuit from the second run.



in parallel between a pair of terminals and a test load” of U.S. patent 6,211,726.
However, the genetically evolved circuit does not read on the remaining portions of
the patent claims. Again, genetic programming produced a circuit that duplicates the
functionality of the patented circuit using a different structure.

15.4.4 Results for Voltage-Current Conversion Circuit

The best-of-generation circuit from generation 0 has a fitness of 35.1.
A circuit (figure 15.23) emerged in generation 109 that has 62% of the average

(weighted) absolute error of the patented circuit. The fitness of this best-of-run circuit
from generation 109 is 0.619.

Figure 15.24 compares the voltage produced by the best-of-run voltage-current-
conversion circuit from generation 109 with the ideal output for fitness case 1. This
voltage is probed at the node between output voltage source VS and resistor RLOAD,
and is equal to the current at IOUT0 multiplied by 1 Volt per Ampere. As can be seen,
the two curves are almost indistinguishable.

Figure 15.25 compares the voltage produced by the best-of-run voltage-current-
conversion circuit from generation 109 with the ideal output for fitness case 2. Again,
the two curves are almost indistinguishable.
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Table 15.7 Average absolute error and maximum absolute
error for the best-of-run circuit from the second run of the
high-current load problem

Average Maximum
Fitness case absolute error absolute error

10 Volt pulse 39.9 98.7
6.667 Volt pulse 34.2 120.4

Figure 15.23 Best-of-run circuit for the voltage-current-conversion circuit problem.



Figure 15.26 compares the voltage produced by the best-of-run voltage-current-con-
version circuit from generation 109 with the ideal output for fitness case 3. The ideal
value here is 0 Volts (as shown by the horizontal line). As can be seen, the voltage pro-
duced by the best-of-run circuit has a near-zero average absolute error (13.7 microvolts).
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Figure 15.24 Comparison of the voltage produced by the best-of-run voltage-current-
conversion circuit with the ideal output for fitness case 1.
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Figure 15.25 Comparison of the voltage produced by the best-of-run voltage-current-
conversion circuit with the ideal output for fitness case 2.



Figure 15.27 compares the voltage produced by the best-of-run voltage-current-
conversion circuit from generation 109 with the ideal output for fitness case 4. The
two curves are almost indistinguishable.

Figure 15.28 shows the voltage-current-conversion circuit of U.S. patent
6,166,529 (Ikeuchi and Tokuda 2000).
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Figure 15.26 Comparison of the voltage produced by the best-of-run voltage-current-
conversion circuit with the ideal output for fitness case 3.
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Figure 15.27 Comparison of the voltage produced by the best-of-run voltage-current-
conversion circuit with the ideal output for fitness case 4.



The best-of-run circuit from generation 109 (figure 15.23) for the Voltage-current
conversion circuit problem solves the problem in a different manner than the patented
circuit (figure 15.28). The best-of-run circuit has a current source proportional to VIN0
and a current sink proportional to VIN1.

Note that the best-of-run circuit from generation 109, like the patented circuit, is
“not restricted by the requirement that the input voltages be lower than the power
source voltage.”

15.4.5 Results for Cubic Function Generator

We made two runs of this problem. After the first successful run (using the commer-
cially popular 2N3904 and 2N3906 transistors), we made a second run using higher
frequency transistors.

15.4.5.1 Results for First Run of Cubic Function Generator The best-of-
generation circuit from generation 0 has a fitness of 1.87.

The best-of-run evolved circuit (figure 15.29) emerged in generation 182 and has
an average absolute error of 4.20 millivolts. The patented circuit has an average
absolute error of 6.76 millivolts. That is, the evolved circuit has approximately 59%
of the error of the patented circuit over our four fitness cases. The fitness of this best-
of-run cubic signal generation circuit from generation 182 of the first run is 0.0125.

Averaged over the four fitness cases, the best-of-run individual from generation
182 from the first run has:

● 4.20 millivolts average absolute error,
● 26.7 millivolts maximum absolute error, and
● 93.6% of the possible number of hits.
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Figure 15.28 The voltage-current-conversion circuit of U.S. patent 6,166,529.



Table 15.8 shows the average absolute error in millivolts and the maximum
absolute error in millivolts for the best-of-run circuit from the first run for all four fit-
ness cases.

Figure 15.30 compares the output produced by the best-of-run cubic signal gener-
ation circuit from generation 182 (solid line) to the target cubic curve (dotted line). As
can be seen, the two curves are almost indistinguishable.

Figure 15.31 compares the error of the best-of-run cubic signal generation circuit
from generation 182 of the first run and the error of the circuit of U.S. patent
6,160,427. As can be seen from the figure, the error produced by the genetically
evolved circuit is generally less than that produced by the patented circuit.

Figure 15.32 shows the cubic function generator of U.S. patent 6,160,427. This
circuit has nine transistors. The figure includes our test fixture.
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Figure 15.29 Best-of-run cubic signal generation circuit from the first run.

Table 15.8 Average and maximum absolute error for the
best-of-run circuit from the first run of the cubic signal
generation problem

Average Maximum 
Fitness case absolute error absolute error

Rising ramp 3.26 22.9
Sine wave 4.80 26.7
Falling ramp 3.24 22.8
Constant 5.49 5.49



Averaged over the four fitness cases, the patented circuit has:

● 6.76 millivolts average absolute error,
● 17.3 millivolts maximum absolute error, and
● 61% of the possible number of hits.
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Figure 15.30 Output produced by the best-of-run cubic signal generation circuit from the 
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Figure 15.31 Comparison of the error of the best-of-run cubic signal generation circuit from
the first run and the error of the circuit of U.S. patent 6,160,427.



Table 15.9 shows the average absolute error and the maximum absolute error (both
in millivolts) for the patented cubic function generator using the 2N3904 (npn) and
2N3906 (pnp) transistors for all four fitness cases.

The claims in U.S. patent 6,160,427 amount to a very specific description of the
patented circuit. The genetically evolved circuit does not read on these claims and, in
fact, bears hardly any resemblance to the patented circuit. In this instance, genetic pro-
gramming produced a circuit that duplicates the functionality of the patented circuit
using a very different structure.

15.4.5.2 Results for Second Run of Cubic Function Generator After producing a
satisfactory cubic function generator in the first run, we reran this problem using
higher frequency transistor models—specifically, the HFA3046 (npn) in lieu of
2N3904 and HFA3128 (pnp) in lieu of 2N3906.

In the second run, the best-of-generation circuit from generation 0 has a fitness 
of 1.86.

The best-of-run circuit (figure 15.33) emerged in generation 326 of the second
run. The fitness of this circuit is 0.0129.
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Figure 15.32 Cubic function generator of U.S. patent 6,160,427.

Table 15.9 Average and maximum absolute error for the
patented cubic function generator with the 2N3904 and
2N3906 transistors used in the first run of the cubic signal
generation problem

Average Maximum 
Fitness case absolute error absolute error

Rising ramp 7.15 17.3
Sine wave 7.45 17.3
Falling ramp 7.15 17.3
Constant 5.33 5.33



Averaged over the four fitness cases, the best-of-run individual from generation
326 of the second run has:

● 3.61 millivolts average absolute error,
● 15.0 millivolts maximum absolute error, and
● 88.6% of the possible number of hits.

Table 15.10 shows the average absolute error in millivolts and the maximum
absolute error in millivolts for all four fitness cases for the best-of-run circuit from
generation 326 of the second run.

In comparison, when the higher frequency transistor models are used in the
patented circuit, averaged over the four fitness cases, the patented circuit has

● 6.63 millivolts average absolute error,
● 67.0 millivolts maximum absolute error, and
● 48% of the possible number of hits.

Note that the definition of the number of hits for this particular problem is based on
the average absolute error (7 millivolts) of the patented circuit using the higher frequency
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Figure 15.33 Best-of-run circuit from the second run of the cubic signal generation problem.

Table 15.10 Average and maximum absolute error for
the best-of-run circuit from the second run of the cubic
signal generation problem

Average Maximum 
Fitness case absolute error absolute error

Rising ramp 4.01 7.85
Sine wave 5.33 15.0
Falling ramp 3.92 7.36
Constant 1.18 1.20



transistors. Hence, it is reasonable that the patented circuit scores about 50% of the
possible number of hits.

Table 15.11 gives the average absolute error and maximum absolute error for the
patented circuit using the high-frequency transistors for all four fitness cases (i.e., the
HFA3046 and HFA3128 transistors).

As can be seen from tables 15.10 and 15.11, the genetically evolved circuit is
superior to the patented circuit in terms of both average and maximum absolute error
for the first three fitness cases. For the fourth fitness case, the genetically evolved cir-
cuit is not superior to the patented circuit, but has a very low value of both maximum
and absolute error.

For additional details on the first five problems in this chapter, see Streeter, Keane,
and Koza 2002b and 2003.

15.4.6 Tunable Integrated Active Filter

We made four runs of this problem. After the first successful run, we made additional
runs in order to obtain a more parsimonious solution, to generate audit trails, and to
harvest numerous solutions for comparison to the patented circuit.

15.4.6.1 Results for First Run of Tunable Integrated Active Filter In the first run,
the best-of-generation circuit from generation 0 has a fitness of 94.5.

The best-of-run circuit from the first run emerged in generation 70. It has fitness
of 1.09 and scores 100% (549 out of 549) hits.

Averaged over the nine in-sample frequencies used during the run of genetic pro-
gramming, the best-of-run circuit from the first run has

● 54.6 millivolts average absolute error for frequencies in the passband,
● 0.58 dB average absolute error for frequencies to the right of the passband, and
● 100% of the possible number of hits.

Figure 15.34 shows the frequency response for the nine in-sample frequencies for
the best-of-run circuit from generation 70 of the first run.
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Table 15.11 Average and maximum absolute error
for the patented circuit with the high-frequency
transistors used in the second run of the cubic signal
generation problem

Average Maximum
Fitness case absolute error absolute error

Rising ramp 10.1 42.1
Sine wave 11.5 67.0
Falling ramp 4.50 30.4
Constant 0.5 0.5
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Figure 15.34 In-sample frequency response for the best-of-run circuit from the first run of the
tunable integrated active filter problem.

Figure 15.35 Patented circuit for the tunable integrated active filter.



Figure 15.35 shows the patented tunable integrated active filter circuit. Averaged
over the nine in-sample frequencies, the patented circuit has

● 146 millivolts average absolute error for frequencies in the passband,
● 0.66 dB average absolute error for frequencies to the right of the passband, and
● 99.1% of the possible number of hits.

Eight out-of-sample frequencies were used to cross-validate the best-of-run circuit
from generation 70 of the first run. These frequencies (509, 679, 906, 1,208, 1,611,
2,149, 2,866, and 3,822 Hz) are spaced halfway (on a logarithmic scale) between each
consecutive pair of the original nine in-sample frequencies.

Averaged over the eight out-of-sample frequencies, the best-of-run circuit from
the first run has

● 55.0 millivolts average absolute error in the passband,
● 0.51 dB average absolute error to the right of the passband, and
● 99.8% of the possible number of hits.

Figure 15.36 shows the frequency response for the eight out-of-sample frequen-
cies for the best-of-run circuit from generation 70 of the first run.

Figure 15.35 shows the patented circuit for the tunable integrated active filter.
Averaged over the eight out-of-sample frequencies, the patented circuit has

● 149 millivolts average absolute error for frequencies in the passband,
● 0.62 dB average absolute error for frequencies to the right of the passband, and
● 99.6% of the possible number of hits.
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Figure 15.36 Out-of-sample frequency response for the best-of-run circuit from the first run
of the tunable integrated active filter problem.



The best-of-run circuit from generation 70 has 12 transistors, three capacitors, and
one resistor (in addition to the components in the test fixture).

This genetically evolved circuit is much larger than the circuit (figure 15.35)
described in U.S. patent 6,225,859 (Irvine and Kolb 2001) and clearly contains the
type of appendix-like features that frequently emerge during the evolutionary process.

Parsimony is an important consideration in circuit design. Unnecessary compo-
nents occupy space, consume power, and increase manufacturing costs.

One technique for analyzing large circuits created by evolutionary methods is
“Muntzing,” named after Earl “Madman” Muntz, who used the technique to design
inexpensive television receivers in the 1950s. Robert Pease explained “Muntzing” in
his “Pease Porridge” column (1992).

“[H]ow did Muntz get his circuits designed to be so inexpensive?…The story
around the industry was that he would wander around to an engineer’s workbench
and ask, ‘How’s your new circuit coming?’

“After a short discussion, Earl would say, ‘But, you seem to be over-engineering
this—I don’t think you need this capacitor.’ He would reach out with his handy nip-
pers (insulated) that he always carried in his shirt-pocket, and snip out the capaci-
tor in question.

“Well, doggone, the picture was still there! Then he would study the schematic
some more, and SNIP, SNIP, SNIP. Muntz had made a good guess of how to sim-
plify and cheapen the circuit.

“Then, usually, he would make one SNIP too many, and the picture or the sound
would stop working. He would concede to the designer, ‘Well, I guess you have to
put that last part back in,’ and he would walk away. That was ‘Muntzing’—the abil-
ity to delete all parts not strictly essential for basic operation.”

By “Muntzing” the best-of-run circuit from generation 70, we were able to remove
seven transistors, one capacitor, and one resistor. However, the reduced circuit still
contained five transistors and was still substantially larger than the patented circuit.

15.4.6.2 Results for Second Run of Tunable Integrated Active Filter After the first
run produced a satisfactory (although non-parsimonious) solution, we decided to
make an additional run in which parsimony was explicitly incorporated into the fitness
measure.

In the second run, the best-of-generation circuit from generation 0 has a fitness 
of 63.3.

A parsimonious solution emerged in generation 50 of the second run. This best-
of-run circuit consists (in addition to the components in the test fixture) of only one
transistor and two capacitors (figure 15.37). This circuit has a fitness of 13�10�12.

Averaged over the nine values of frequency, the best-of-run circuit from genera-
tion 50 of the second run has

● 72.7 millivolts average absolute error for frequencies in the passband,
● 0.39 dB average absolute error for frequencies to the right of the passband, and
● 99.5% of the possible number of hits.
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Figure 15.38 shows the frequency response for the nine in-sample frequencies for
the best-of-run circuit from generation 50 of the second run.

The best-of-run circuit from generation 50 of the second run scores 99.5% of the
possible number of hits. Note that this circuit scores more hits than that scored by the
patented circuit. Also, note that the parsimony element of the fitness measure for this
problem becomes relevant when 99% of the possible number of hits is achieved.

As can be seen in comparing figures 15.37 and 15.35, the topology of the best-of-
run circuit from generation 50 from the second run is identical to the topology of the
patented circuit, except that the collector of the transistor in the best-of-run circuit is
connected to ground, whereas the collector of the transistor in the patented circuit is
connected to Vcc. Because the adjustable current source in our test fixture is an ideal
current source, it is able to pull current down from ground. Thus, this difference has
no effect on the circuit’s behavior. Moreover, the sizing of the best-of-run circuit from
the second run (86 nanofarads for C11 and 109 nanofarads for capacitor C12) is very
close to that of the patented circuit (i.e., 100 nanofarads for both C1 and C2).

The best-of-run circuit from the second run emerged in generation 50 (figure
15.37) and infringes claim 1 of U.S. patent 6,225,859.

Claim 1 of patent 6,225,859 states:

“An integrated low-pass filter, comprising:
“a filter input terminal;
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Figure 15.37 Best-of-run circuit from generation 50 of the second run of the tunable
integrated active filter problem.



“a transistor having a control terminal, an output terminal, a transistor terminal,
and a source impedance;

“a resistor connected between said input terminal and said control terminal of
said transistor;

“a first capacitor connected between said resistor and said control terminal of
said transistor on one hand and to said output terminal of said transistor on the
other hand;

“a filter output terminal connected to said output terminal of said transistor;
“a second capacitor connected between said filter output terminal and a first ref-

erence potential; and
“an adjustable current source connected between said filter output terminal and the

first reference potential, said transistor terminal of said transistor being connected to
a second reference potential, said source impedance defined by the equation:

“where:

R1 � resistance of said resistor;
��differential current amplification;
C1 �capacitance of said first capacitor;
VT � temperature voltage; and
IC �current generated by said adjustable current source.”

Ze �
R1

�
� j�R1C1

VT

IC
,
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Figure 15.38 In-sample frequency response for the best-of-run circuit from generation 50 of
the second run of the tunable integrated active filter problem.



The genetically evolved circuit reads on each element of claim 1. As an aid in
mapping claim 1 of patent 6,225,859 to the best-of-run circuit from generation 50, we
have paraphrased claim 1 as follows:

An integrated low-pass filter, comprising:
a filter input terminal VIN;
a transistor having a control terminal (base), an output terminal (emitter), a tran-

sistor terminal (collector), and a source impedance;
a resistor RSRC1 connected between said input terminal VIN and said control

terminal (base) of said transistor;
a first capacitor C11 connected between said resistor RSRC1 and said control

terminal (base) of said transistor on one hand and to said output terminal (emitter)
of said transistor on the other hand;

a filter output terminal VOUT connected to said output terminal (emitter) of said
transistor;

a second capacitor C12 connected between said filter output terminal VOUT and
a first reference potential (ground); and

an adjustable current source ICONTROL connected between said filter output
terminal VOUT and the first reference potential (ground), said transistor terminal
(collector) of said transistor being connected to a second reference potential
(ground in figure 15.37 and VCC in 15.35), said source impedance defined by the
equation:

where:

R1 � resistance of said resistor RSRC1;
� �differential current amplification;
C1 �capacitance of said first capacitor C11;
VT � temperature voltage; and
IC �current generated by said adjustable current source ICONTROL.

Averaged over the eight out-of-sample frequencies, the best-of-run circuit from
generation 50 of the second run has

● 74.9 millivolts average absolute error in the passband,
● 0.35 dB average absolute error for frequencies to the right of the passband, and
● 99.6% of the possible number of hits.

Figure 15.39 shows a pace-setting individual from generation 25 of the second run
that is less parsimonious than the eventual best-of-run circuit from generation 50 
(figure 15.37). The less parsimonious circuit has two more components (i.e., transistor
Q105 and 1-giga-Ohm resistor R10) than the more parsimonious best-of-run circuit

Ze �
R1

�
� j�R1C1

VT

IC
,
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from generation 50. The two additional components have no noticeable effect on the
circuit’s operation because the resistor’s value is so large. If Q105 and R10 are removed
from this less parsimonious circuit, the resulting pruned circuit has the same topology
as the more parsimonious best-of-run circuit from generation 50 and almost identical
sizing. Specifically, the value of capacitor C38 in the less parsimonious circuit (109
nanofarads) is identical to the value of the corresponding capacitor (C12) in the more
parsimonious circuit. Moreover, C22 from the less parsimonious circuit has a value of
80.1 nanofarads compared to a value of 86 nanofarads for C11 in the more parsimo-
nious circuit. The less parsimonious circuit of figure 15.39 infringes patent 6,225,859.

15.4.6.3 Results of Third Run of Tunable Integrated Active Filter After getting an
infringing solution in the second run, we made a third run in the hope of getting a non-
infringing solution. A secondary purpose of this third run was to generate a
genealogical audit trail showing how the parents of the satisfactory solution sire the
eventual solution. Except for the added auditing code, the code for the third run is the
same as the second run.

In the third run, the best-of-generation circuit from generation 0 has a fitness of 89.7.
A satisfactory circuit emerged in generation 38 of the third run. Ignoring the com-

ponents in the test fixture, the best-of-run circuit from generation 38 has one transistor
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Figure 15.39 Pace-setting circuit from generation 25 of the second run that is less
parsimonious than the eventual best-of-run circuit from generation 50 for the tunable integrated
active filter problem.



and two capacitors (figure 15.40). This circuit has a fitness of 13�10�12. As can be
seen, the best-of-run circuit from generation 38 of the third run has the same topology
and approximately the same component values as the best-of-run circuit from the sec-
ond run (figure 15.37) and hence it infringes U.S. patent 6,225,859. Specifically, C2
from the best-of-run circuit from generation 38 of the third run has a value of 88.9
nanofarads compared to a value of 86 nanofarads for C11 in the best-of-run circuit
from the second run. Also, C3 from the best-of-run circuit from generation 38 of the
third run has a value of 96.8 nanofarads compared to a value of 109 nanofarads for
C12 in the best-of-run circuit from the second run.

The best-of-run circuit from generation 38 of the third run (figure 15.40) is the off-
spring produced by a crossover of two parents from generation 37.

Figure 15.41 shows the receiving (female) parent from generation 37 from the
third run. As can be seen, the receiving parent has the same (i.e., correct) topology as
the best-of-run circuit (but different component values).

Figure 15.42 shows the donor (male) parent from generation 37.
The crossover that produced the best-of-run circuit from generation 38 of the third

run (figure 15.40) replaced the 48.8-nanofarad capacitor CREMOVED of the receiving
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Figure 15.40 Best-of-run circuit from generation 38 of the third run of the tunable integrated
active filter problem.



Automated Re-Invention of Six Post-2000 Patented Circuits 475

Figure 15.41 Receiving parent from generation 37 of the third run of the tunable integrated
active filter problem.

Figure 15.42 Donor parent from generation 37 of the third run of the tunable integrated active
filter problem.

parent from generation 37 with the 88.9-nanofarad capacitor CINSERTED of the
donor parent from generation 37.

Table 15.12 compares (as an average over the nine values of frequency) the aver-
age absolute error in millivolts for frequencies in the passband, the average absolute



error in decibels for frequencies to the right of the passband, and the percentage of the
possible number of hits for

● the receiving (female) parent from generation 37 (figure 15.41),
● the donor (male) parent from generation 37 (figure 15.42), and
● the best-of-run circuit from generation 38 of the third run (figure 15.40).

As can been seen in table 15.12, the receiving and donor parents are each some-
what fit, but have only about two-thirds of the possible number of hits. After the
crossover, the offspring (i.e., the best-of-run circuit from generation 38 of the third
run) has 99.6% of the possible number of hits and distinctly better average absolute
error in the passband (in millivolts) and average absolute error for frequencies to the
right of the passband (in decibels).

Figure 15.43 shows the frequency response curves for the best-of-run circuit from
generation 38, the RLC model used in the definition of the fitness measure, the receiv-
ing parent, and the donor parent when a value of 10 milliamperes is used for the con-
trol signal (corresponding to a passband boundary of 4414 Hz). As can be seen, the
frequency response curve for the receiving parent (marked by X’s) generally follows
the curve for the RLC model (marked by filled triangles) but is consistently about 4.5
dB too high. The frequency response curve for the donor parent (marked by hollow cir-
cles) follows the target curve very poorly, with an absolute error of 25.4 dB at 100,000
Hz. After being mated, these two parents produce the best-of-run individual (marked
filled squares) that closely follows the target curve associated with the RLC model. In
fact, for most of the frequencies, the frequency response curves for the best-of-run
individual (filled squares) and the RLC model (filled triangles) are indistinguishable.

15.4.6.4 Results of Fourth Run of Tunable Integrated Active Filter The second and
third runs of this problem both produced infringing solutions. We then made a fourth
run to try again to evolve a non-infringing solution. The fourth run has code to harvest
a large number of satisfactory solutions from the various processing nodes of the
1,000-node parallel computer. In order to maximize the chance of producing a non-
infringing solution, the run was permitted to continue long after it produced this first
satisfactory solution. Except for these changes, the code for the fourth run is the same
as the second and third runs.
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Table 15.12 Comparisons of characteristics of the two parents of the best-of-run circuit
from generation 38 of the third run of the tunable integrated active filter problem

Receiving (female)
parent from Donor (male) parent Offspring in
generation 37 from generation 37 generation 38

Average absolute error in 111 millivolts 336 millivolts 94.9 millivolts
the passband

Average absolute error for 5.51 dB 12.7 dB 0.85 dB
frequencies to the right 
of the passband

Percentage of hits 65.8% 64.2% 99.6%



In the fourth run, the best-of-generation circuit from generation 0 has a fitness of
104.1.

The first satisfactory circuit emerged in generation 27 of the fourth run. This cir-
cuit has the same topology and approximately the same component values as the best-
of-run circuits from the second run (figure 15.37) and third run (figure 15.40) and
hence it infringes U.S. patent 6,225,859. This circuit has a fitness of 13�10�12.

Table 15.13 compares the values of the two capacitors from the best-of-run cir-
cuits from the second, third, and fourth runs that correspond to C1 and C2 of the
patented circuit (figure 15.35). All values are in nanofarads.

Averaged over the eight out-of-sample frequencies, the best-of-run circuit from
the fourth run has

● 95.6 millivolts average absolute error in the passband,
● 0.89 dB average absolute error to the right of the passband, and
● 99.3% of the possible number of hits.
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Table 15.13 Comparison of values of two capacitors in patented circuit and
the best-of-run circuits from three different runs of the tunable integrated
active filter problem

Generation Capacitor C1 Capacitor C2

Patented circuit NA 100 100
Second run 50 86 109
Third run 38 88.9 96.8
Fourth run 27 85 105
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Figure 15.43 Comparison of frequency response for the best-of-run circuit from generation
38 of the third run, the RLC model, the receiving parent from generation 37, and the donor
parent from generation 37.



To our surprise, every one of over a hundred other harvested satisfactory circuits
from the fourth run that we examined also infringed U.S. patent 6,225,859. The topol-
ogy of most of the satisfactory circuits from the fourth run is exactly that of the
patented circuit (figure 15.35). The topology of all the other satisfactory circuits con-
sists of the patented circuit plus some additional non-functional circuitry. All these
other satisfactory circuits (with their additional non-functional circuitry) read on 
the claims of patent 6,225,859. That is, all the other satisfactory circuits that we har-
vested and examined also infringe. This fact suggests that the patented solution to this
problem lies in a large basin of attraction (in the search space used by genetic 
programming).

15.5 Commercial Practicality of Genetic Programming for
Automated Circuit Synthesis

The previous sections of this chapter demonstrated that genetic programming can
automatically synthesize analog circuits that duplicate the functionality of six circuits
that were patented after January 1, 2000.

Table 15.14 tallies the computer time consumed by the 11 runs of the six post-
2000 patented circuits in this chapter. For each problem, column 2 of the table shows
the total population size, M (for all 1,000 processing nodes of the parallel computer
system). Column 3 shows the generation number i that yielded the best-of-run 
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Table 15.14 Computer time consumed by 11 runs of the six problems involving post-2000
patented inventions

Problem Population M Generation i M*(i�1) Total hours

Low-voltage balun circuit 5,000,000 97 490,000,000 25
Mixed analog-digital

variable capacitor circuit 2,000,000 98 198,000,000 88
High-current load circuit—

First run 2,000,000 114 230,000,000 134
High-current load circuit—

Second run 2,000,000 215 432,000,000 67
Voltage-current conversion 

circuit 5,000,000 109 550,000,000 83
Cubic function generator—

First run 5,000,000 182 915,000,000 206
Cubic function generator—

Second run 2,000,000 326 654,000,000 135
Tunable integrated 

active filter—First run 2,000,000 70 142,000,000 23
Tunable integrated active

filter—Second run 2,000,000 50 102,000,000 14
Tunable integrated active 

filter—Third run 2,000,000 38 78,000,000 12
Tunable integrated 

active filter—Fourth run 2,000,000 27 56,000,000 6



individual presented in this chapter. Column 4 shows the product of the total popula-
tion size and the number of generations (i�1) run before the best-of-run individual
was encountered. Column 5 shows the length of the run in hours.

As can be seen from table 15.14, the average number of hours for runs involving
each of the six post-2000 patented circuits in the table is 25, 88, 99, 83, 170, and 14,
respectively. The average of these averages is 80 hours (3.3 days). (We use the aver-
age of the averages here because we made four runs of the problem that took the least
computer time).

All the problems in this chapter were run on a home-built parallel computer sys-
tem consisting of 1,000 350-MHz Pentium II processors (described in greater detail
in section 17.1.2). This system operates at an overall rate of 3.5�1011 Hz. A 3.3-day
run represents about 1017 cycles (i.e., 100 petacycles).

The relentless iteration of Moore’s law (Moore 1996) promises increased avail-
ability of computational resources in future years. If available computer capacity con-
tinues to double approximately every 18 months over the next decade, a computation
requiring 80 hours at the time of this writing (February 2003) will require only about
1% as much computer time (i.e., about 48 minutes) a decade from now.

Aside from the promise of increased availability of computational resources in the
future, there are two reasons why we are currently not near the boundary of the cur-
rent capability of genetic programming to automatically synthesize analog circuits.

First, multiple runs of a probabilistic algorithm are often necessary to solve a
problem. However, ignoring partial runs used for debugging purposes, all 11 runs
involving the six post-2000 patented circuits produced a satisfactory solution. The
success rate of 100% in this chapter is thus unusual with a probabilistic algorithm.
This success rate suggests that we are currently not near the boundary of the current
capability of genetic programming.

Second, the (largely intentional) inefficiency of the runs in this chapter is a second
indication. As previously mentioned, the runs of genetic programming in this book
were undertaken with two distinct (and conflicting) orientations. One orientation
involves using as little human-supplied knowledge, information, analysis, and intelli-
gence as possible. The other is the engineer’s orientation to solve problems as quickly
and efficiently as possible.

The dominant orientation of this chapter (that is, the first orientation) is, of course,
entirely irrelevant to the practicing engineer who may be interested in the commercial
practicality of automatic circuit synthesis by means of genetic programming.

Runs of circuit synthesis problems can be accelerated in the following 10 ways.
First, each of the problems in this chapter could have been solved much more effi-

ciently by using a more customized initial circuit. Our use of the floating embryo on
the six post-2000 patented circuits enabled us to minimize the differences in the
human-supplied preparatory steps among the six problems in this chapter. This uni-
formity helps to persuade the reader that the human user need employ only de min-
imus information and domain knowledge in order to launch a run of genetic
programming. However, the floating embryo (section 4.7.1.1) used on all six problems
in this chapter is manifestly inefficient.

Second, the components that are inserted into a developing circuit need not be as prim-
itive as a single transistor, resistor, or capacitor. Instead, the set of component-creating
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functions could easily be expanded to include numerous frequently-used combina-
tions of components. Potentially useful combinations of components include voltage
gain stages, Darlington emitter-follower sections, current mirrors, cascodes, three-
ported voltage divider subcircuits composed of two resistors in series, and three-
ported subcircuits consisting of two resistors (or capacitors) with their common point
connected to power or ground. For certain problems, the set of primitives could read-
ily be expanded to include higher-level entities, such as filters, op amps, oscillators,
voltage-controller current sources, multipliers, and phase-locked loops.

Third, although the runs of the six post-2000 patented circuits in this chapter were
intentionally done in a uniform way, a practicing engineer has no reason to enforce
such uniformity. For example, we did not use automatically defined functions for any
of the six problems in this chapter. However, most practical electrical circuits are
replete with reuse. A practicing engineer would recognize that reuse is specifically
important in at least two of the six problems in this chapter (namely the mixed 
analog-digital integrated circuit for variable capacitance and the low-voltage high-current
transistor circuit for testing a voltage source). The practicing engineer would have no
reason to forgo the manifest benefits of reuse and automatically defined functions.

Fourth, considerable work has been done in recent years to accelerate the conver-
gence characteristics of circuit simulators. As a result, there are numerous commer-
cially available simulators that are considerably more efficient than the one used for
the runs in this book. We use a version of the SPICE3 simulator (Quarles, Newton,
Pederson, and Sangiovanni-Vincentelli 1994) that we modified in various ways (as
described in Koza, Bennett, Andre, and Keane 1999a). Speedups of up to 10-to-1 are
reportedly possible today.

Fifth, there are numerous opportunities to incorporate problem-specific knowl-
edge into a run of genetic programming. For example, the developmental process need
not start merely with modifiable wires. A substructure of known utility for a particu-
lar problem can be hard-wired into the embryo, thereby relieving genetic program-
ming of the need to reinvent it.

Sixth, it is possible to integrate general knowledge of electrical engineering into a
run of genetic programming. For example, Sripramong and Toumazou (2002) com-
bine current-flow analysis into their runs of genetic programming for the purpose of
automatically synthesizing CMOS amplifiers.

Seventh, the authors believe that the efficiency of runs can be improved by adapt-
ing several of the principles set forth in Goldberg’s recently published book on genetic
algorithms entitled The Design of Innovation: Lessons from and for Competent
Genetic Algorithms (Goldberg 2002) to the domain of genetic programming.

Eighth, because there usually are multiple competing elements in the fitness meas-
ures of problems of circuit synthesis in the real world, the authors believe that the effi-
ciency of runs of genetic programming can be improved by using some of the recently
published new techniques of multiobjective optimization (Osyczka 1984; Bagchi
1999; Deb 2001; Coello Coello, Van Veldhuizen, and Lamont 2002; and Zitzler, Deb,
Thiele, Coello Coello, and Corne 2001).

Ninth, the authors believe that the efficiency of runs can be improved by adapting
some of the innovative ideas in Erick Cantu-Paz’s book on genetic algorithms entitled
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Efficient and Accurate Parallel Genetic Algorithms (Cantu-Paz 2000) to the domain
of genetic programming.

Tenth, there has been an outpouring of theoretical work in the past few years on
the theory of genetic algorithms and genetic programming. In particular, the authors
believe that many of the insights in Foundations of Genetic Programming (Langdon
and Poli 2002) can be used to improve the efficiency of runs of genetic programming.

15.6 Human-Competitiveness of the Results for
the Six Post-2000 Patented Circuits

All six of the problems in this chapter involve post-2000 patented inventions.
Referring to the eight criteria in table 1.2 for establishing that an automatically

created result is competitive with a human-produced result, each of the six genetically
evolved circuits in this chapter satisfies the first of the eight criteria:

(A) The result was patented as an invention in the past, is an improvement over a
patented invention, or would qualify today as a patentable new invention.

The fact that genetic programming rediscovered both the topology and sizing of
six patented circuits, each of which was unobvious “to a person having ordinary skill
in the art,” establishes that each of the six genetically evolved results satisfy Arthur
Samuel’s criterion (1983) for artificial intelligence and machine learning:

“[T]he aim [is]…to get machines to exhibit behavior, which if done by humans,
would be assumed to involve the use of intelligence.”

15.7 Routineness for the Six Post-2000 Patented Circuits

As mentioned in section 1.1.3, a problem-solving method may be measured by its rou-
tineness. As also mentioned there, a problem-solving method is routine if it is general
and if relatively little human effort is required to get the method to successfully han-
dle new problems within a particular domain and to successfully handle new problems
from a different domain.

The main difference from one problem to the next in this chapter is the fitness
measure. Each fitness measure is a straightforward translation of the goal of the par-
ticular problem. Beyond that, the preparatory steps for each of the six problems are
substantially the same except for minor adjustments reflecting each problem’s num-
ber of input and output ports and the fact that certain problems used a particular power
supply voltage or transistor model. These adjustments were designed to force genetic
programming to address the particular challenge of the problem and to comply with
the spirit of the invention on which the problem was based.

Thus, relatively little effort was required to make the transition from one problem
to the next in this chapter. That is, the transition was routine.
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15.8 AI Ratio for the Six Post-2000 Patented Circuits

Section 1.1.2 mentions that a method for solving problems may be measured by the
ratio of that which is delivered by the operation of the artificial system (if any) to the
amount of intelligence that is supplied by the human employing the method (i.e., its
AI ratio).

What is the AI ratio for the solution produced by genetic programming to each of
the six problems in this chapter?

The results produced by genetic programming for the six problems are each
human-competitive because each problem arose from a previously patented invention.
Thus, the solutions produced by genetic programming for each of these six problems
have a high amount of “A.”

The preparatory steps for the six problems in this chapter are substantially the
same as the preparatory steps for previous problems of circuit synthesis in this book
(except that a different goal was specified by the fitness measure). Thus, the solutions
produced by genetic programming for the six problems in this chapter incorporate a
small amount of “I.”

The high amount of “A” represented by the results for the six problems in this
chapter, in conjunction with the small amount of “I” provided by the human user for
each problem, means that the AI ratios are high for the solutions produced by genetic
programming.
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16

Problems for Which Genetic Programming
May Be Well Suited

This chapter discusses the characteristics of problems for which

● the genetic algorithm may be better suited than genetic programming (section 16.1),
● genetic programming may be better suited than the genetic algorithm (section 16.2),

and
● genetic methods (such as the genetic algorithm and genetic programming) may be bet-

ter suited than hill climbing, gradient search, and simulated annealing (section 16.3).

16.1 Characteristics Suggesting the Use of the Genetic Algorithm

Consider the hypothetical problem of finding the optimal tuning for a PID controller
(figure 12.1) for controlling a particular plant. This problem entails the discovery of
the five numerical values that characterize a PID controller, namely

● the gain, Kp, applied to the signal entering the controller’s proportional (P) block,
● the gain, Ki, applied to the signal entering the controller’s integrative (I) block,
● the gain, Kd, applied to the signal entering the controller’s derivative (D) block,
● the setpoint weighting, b, applied to the reference signal (prior to subtraction of the

plant output) used in the difference that is fed into the controller’s proportional (P)
block, and

● the setpoint weighting, d, applied to the reference signal (prior to subtraction 
of the plant output) used in the difference that is fed into the controller’s derivative (D)
block.

As this problem is stated, the controller’s topology is prespecified to be the PID
topology. Discovery of the controller’s size and shape is not part of this problem.
Instead, the only issue is the discovery of the five numerical values.



Moreover, there is nothing in the statement of this problem that suggests that there
would be any advantage in trying to represent the solution in the form of a computer
program.

For these reasons, the genetic algorithm operating on fixed-length strings is a good
choice for searching for the required optimal (or near-optimal) combination of five
numerical values.

In applying the genetic algorithm to this problem, the user would typically employ
a five-part chromosome string in which each part represents one of the five numerical
values. At the user’s option, each numerical value may be represented in the chromo-
some as a string of bits or as a floating-point number.

16.2 Characteristics Suggesting the Use of Genetic Programming

Genetic programming may be well suited to a particular problem if one or more of the
following characteristics are a major part of a problem:

(1) discovering the size and shape of the solution,
(2) reusing substructures,
(3) discovering the number of substructures,
(4) discovering the nature of the hierarchical references among substructures,
(5) passing parameters to a substructure,
(6) discovering the type of substructures (e.g., subroutines, iterations, loops, recur-

sions, or storage),
(7) discovering the number of arguments possessed by a substructure,
(8) maintaining syntactic validity and locality by means of a developmental process, or
(9) discovering a general solution in the form of a parameterized topology containing

free variables.

As can be seen, most these nine characteristics flow from the fact that genetic pro-
gramming operates in the domain of computer programs.

We now discuss each of these nine characteristics in greater detail.

16.2.1 Discovering the Size and Shape of the Solution

The genetic algorithm operating on fixed-length strings is well suited to the problem in
section 16.1 involving the tuning of a PID controller because the size and shape of the
solution is not an issue. However, if discovering the size and shape of the solution is a
major part of a problem, genetic programming may be better suited to the problem.

To illustrate this point, recall the problem in chapter 6 of designing a wire antenna
using genetic programming. This problem was previously solved by Linden and
Altshuler using the genetic algorithm operating on fixed-length strings (Linden 1997;
Altshuler and Linden 1999). As part of the preparatory steps prior to applying the
genetic algorithm to this problem, Linden and Altshuler prespecified that

● all the antenna’s wires (i.e., the directors, the reflectors, and the driven elements)
would be straight,
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● all the antenna’s wires would be arranged in parallel (with all their midpoints lying
along a single straight line that is parallel to the X-axis), and

● the energy source (the transmission line) would be connected to the midpoint of 
a single straight wire (the driven element).

In other words, Linden and Altshuler prespecified that the solution would have the
topology of a Yagi-Uda antenna.

In addition, Linden and Altshuler further prespecified

● the number of directors, and
● the number of reflectors.

After specifying all these things, the only remaining issues are the discovery of the
lengths of the wires and the spacing between the wires. As mentioned in section 16.1,
the discovery of a set of numerical values is a task for which the genetic algorithm
operating on fixed-length strings is well suited.

When genetic programming was applied to this problem in chapter 6, none of 
the above five aspects of the solution were prespecified. Instead, all five aspects were
dynamically discovered during the run of genetic programming. If discovering the
size and shape of the solution is a major part of a problem, genetic programming may
be a good choice.

As another illustration of this point, recall the problems of circuit synthesis 
in chapters 4, 5, 10, 11, 14, and 15. In each case, genetic programming automatically
discovered both the topology and sizing of the solution, including

● the total number of components in the circuit,
● the type of each component (e.g., resistor, capacitor, transistor) at each location in

the circuit,
● the sizing of each component that requires sizing,
● a list of all the connections between the leads of the circuit’s components, and
● a list of all the connections between the leads of the circuit’s components and all the

circuit’s external points, including
● input ports,
● output ports,
● power sources, and
● ground.

Similarly, in the problems of controller synthesis in chapters 3, 9, and 13, the con-
troller’s topology was not prespecified. Instead, genetic programming automatically
discovered both the topology and tuning during the run. In the one problem of con-
troller synthesis in this book in which the controller’s topology was prespecified
(chapter 12), the discovery of the size and shape of the four mathematical expressions
was a major part of the problem.

Note that genetic programming is not the only way to dynamically determine the
size and shape of a problem’s solution. Smith (1980) expanded the concept of the
genetic algorithm to include variable-length chromosomes. Linden and Altshuler
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might have employed the genetic algorithm operating on variable-length strings to the
antenna problem described in chapter 6. In addition to discovering the lengths and
spacing of the parallel straight wires, Smith’s form of the genetic algorithm could
readily have been used to dynamically determine the number of wires (i.e., the 
number of directors, the reflectors, and the driven elements). Thus, by availing them-
selves of Smith’s genetic algorithm operating on variable-length strings, Linden 
and Altshuler could have avoided prespecifying three of the above five aspects of the
problem’s solution.

16.2.2 Reuse of Substructures

Genetic programming may be well suited to a particular problem if reusing substruc-
tures is likely to be important in solving the problem.

Systems in the real world typically contain massive regularity, symmetry,
homogeneity, and modularity.

For example, non-trivial analog electrical circuits almost always contain multiple
occurrences of certain subcircuits (e.g., voltage gain stages, Darlington emitter-
follower sections, current mirrors, cascodes, voltage divider subcircuits). At a higher
level, analog circuits often also contain multiple occurrences of various more complex
entities, such as filters, op amps, oscillators, voltage-controlled current sources, and
phase-locked loops. Similarly, digital circuits almost always contain multiple occur-
rences of certain standard cells. And, digital circuits typically contain multiple occur-
rences of higher-level entities (e.g., counters, registers, multiplexers). The design of
large circuits would be considerably more difficult (and perhaps even impractical) if
the designer had to separately think through the design of each subcircuit from the
first principles of electrical engineering on each occasion when the subcircuit is
needed. Reuse enables the designer to solve a particular problem once and, thereafter,
simply reuse the solution.

Reuse of a subcircuit can be realized in the context of genetic programming in 
several different ways.

First, the circuit-constructing functions responsible for a useful subcircuit may
reside in an automatically defined function (ADF). In this kind of reuse, the automat-
ically defined function resembles a subroutine in an ordinary computer program.
Multiple occurrences of the subcircuit result when the automatically defined function
is repeatedly invoked. Automatically defined functions are described in detail and
illustrated in connection with electrical circuits in Genetic Programming III:
Darwinian Invention and Problem Solving (Koza, Bennett, Andre, and Keane 1999a,
chapters 27 and 28).

Second, the circuit-constructing functions responsible for a useful subcircuit may
reside in an automatically defined copy (ADC). An automatically defined copy is an
iteration specialized to problems of circuit synthesis. Multiple occurrences of the sub-
circuit result when the copy body branch (CBB) is repeatedly invoked by the copy
control branch (CCB) of the automatically defined copy, as described in Genetic
Programming III (Koza, Bennett, Andre, and Keane 1999a, chapter 30).

Third, although often overlooked, the ordinary crossover operation may work as a
mechanism for reusing a subtree that is responsible for a useful subcircuit. Multiple
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occurrences of a useful subcircuit may be created when the subtree responsible for the
useful subcircuit (being part of a reasonably fit individual) is included in a crossover
fragment that the crossover operation inserts into another (reasonably fit) individual
that already produces the subcircuit.

The importance of reuse can be illustrated by means of a problem of synthesizing
a lowpass filter with a passband boundary of 1,000 Hz.

To make this illustration concrete, we use the same specifications found in 
section 4.7.

A T-section for a lowpass filter (Johnson 1950; Williams and Taylor 1995) is a 
T-shaped subcircuit containing equally valued inductors on the two arms of the “T”
and a capacitor on the vertical segment of the “T.”

Figure 16.1 shows a circuit consisting of one T-section. This circuit contains a
105,500-microhenry inductor on each arm of the “T” and a 186-nanofarad capacitor
on the vertical segment of the “T.”

Figure 16.2 shows the frequency-domain behavior of the circuit (figure 16.1) con-
sisting of one T-section. As can be seen, a single T-section acts as a (very poor) low-
pass filter.

One way to construct a lowpass filter satisfying this problem’s requirements is by
means of a cascade of identical T-sections in which each T-section contains one 186-
nanofarad capacitor and two equal 105,500-microhenry inductors (Koza, Bennett,
Andre, and Keane 1999a, section 30.3.3). Figure 16.3 shows a circuit consisting of a
cascade of two identical T-sections.
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Figure 16.1 Circuit consisting of one T-section.



Figure 16.4 shows the frequency-domain behavior of a circuit (figure 16.3) 
consisting of a cascade of two identical T-sections. Although this circuit does not 
satisfy the problem’s stated requirements, its filtering performance is distinctly better
than of the circuit consisting of only a single T-section (figures 16.1 and 16.2).
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Figure 16.2 Frequency-domain behavior of a circuit consisting of a single T-section.

Figure 16.3 Circuit consisting of a cascade of two identical T-sections.



The addition of a third, fourth, and fifth identical T-section further enhances filter-
ing performance. For example, figure 16.5 shows a circuit consisting of a cascade of six
identical T-sections. For reasons of space in this figure, each series pair of two 105,500-
microhenry inductors is replaced by the equivalent 211,000-microhenry inductor.

Figure 16.6 shows the frequency-domain behavior of a circuit (figure 16.5) con-
sisting of six T-sections. The filtering performance obtained from six T-sections is
considerably better than that obtained from fewer T-sections (figures 16.2 and 16.4).
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Figure 16.4 Frequency-domain behavior of the circuit consisting of a cascade of two identical
T-sections shown in figure 16.3.

Figure 16.5 Circuit consisting of a cascade of six identical T-sections.



In fact, this cascade of six identical T-sections is a 100%-complaint solution to the
stated problem (section 4.7).

Now consider how one might approach this problem of circuit synthesis using the
genetic algorithm operating on fixed-length strings.

First, the human user would choose the maximum number of components in the
circuit. In practice, the user would choose a generous maximum in order to accom-
modate a circuit of any size that is reasonably likely to solve the stated problem. For
reasons of space in the tables below, we use an artificially low maximum (six).

Because the components involved in this problem have only two leads, each com-
ponent can be conveniently represented by one symbolic variable and three numeric
variables. The symbolic variable specifies the type of component (with “L” denoting
an inductor, “C” denoting a capacitor, and “W” denoting a nonmodifiable wire). The
first of the three numeric variables specifies the component’s sizing (with inductors in
millihenrys and capacitors in nanofarads). The other two numeric variables specify the
nodes to which the component’s leads are connected.

All symbolic and numeric variables could, at the user’s option, be converted into
bits. However, we will proceed herein using a chromosome in which symbolic variables
(“L,” “C,” and “W”) appear in chromosome positions of the form 4i�1 (where i is an
integer); floating-point component values appear in positions of the form 4i�2; and
integers representing nodes appear in positions of the forms 4i�3 and 4i. That is, we
use what can be viewed as a genetic algorithm with a constrained syntactic structure.

Table 16.1 shows one way of representing the circuit consisting of one T-section
(shown in figure 16.1) using the genetic algorithm operating on fixed-length strings. The
first component is a 105.5-millihenry (105,500-microhenry) inductor whose leads are
connected to nodes 2 (the incoming signal) and 6 (an intermediate node). The second
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component is a 186-nanofarad capacitor whose leads are connected to node 6 and
node 0 (ground). The third component is a 105.5 millihenry inductor whose leads are
connected to node 6 and node 3 (the circuit’s output port). The fourth component is a
nonmodifiable wire (with 0 as its component value) whose leads are connected to
node 0 and node 7 (another intermediate point). The fifth component is a 100-
nanofarad capacitor whose leads are connected to nodes 0 and 7. The sixth component
is a 100-nanofarad capacitor whose leads are connected to node 0 and node 8 
(yet another intermediate point). Note that the fourth and fifth components form an
isolated loop and that the sixth component is a dangling component. Oddities such as
this will frequently occur in the initial random generation. However, in practice, iso-
lated loops and dangling wires can be easily edited out of the initial random genera-
tion by routine preprocessing that can occur prior to a circuit’s evaluation by a
simulator, reconfigurable analog chip, or other physical embodiment.

The circuit consisting of a single T-section (represented by the chromosome in
table 16.1 and shown in figure 16.1) is a lowpass filter (albeit a very poor one). 
It is precisely the kind of circuit that one often encounters as a best-of-generation indi-
vidual in an early generation of a run of either the genetic algorithm or genetic pro-
gramming. This circuit, consisting of a single T-section (whose three external points
are at nodes 2, 0, and 3), does not satisfy the problem’s requirements. However, the 
T-section is a useful building block and represents progress toward the eventual 
solution.

Table 16.2 shows one possible way of representing the circuit consisting of two 
T-sections shown in figure 16.3. The first, second, and third components in this chro-
mosome represent the first T-section. Node 6 is the internal point of the first T-section.
The three external points of this first T-section are nodes 2, 0, and 7. The fourth, fifth,
and sixth components in this chromosome represent the second T-section. The three
external points of the second T-section are nodes 7, 0, and 3 (with node 8 being 
the internal point of the T-section). In particular, the fourth component is a 105.5-
millihenry (105,500-microhenry) inductor whose leads are connected to intermediate
nodes 7 and 8. The fifth component is a 186-nanofarad capacitor whose leads are con-
nected to nodes 8 and 0. The sixth component is a 105.5-millihenry inductor whose
leads are connected to node 8 and 3 (the circuit’s output point). Notice that the third
component in table 16.2 is connected to node 7 (an intermediate point), as opposed to
being connected to node 3 (the circuit’s output point) as it was in table 16.1. 
This change reflects the fact that the output of the first T-section in table 16.2 will be
fed into the second T-section. Also note that the final output of the cascade of two
identical T-sections is connected to node 3 (the circuit’s output point).
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Table 16.1 A first illustrative chromosome for the six-component circuit

L 105.5 2 6 C 186 6 0 L 105.5 6 3 W 0 0 7 C 100 0 7 C 200 8 0

Table 16.2 Chromosome for circuit consisting of two identical T-sections shown in figure 16.3

L 105.5 2 6 C 186 6 0 L 105.5 6 7 L 105.5 7 8 C 186 8 0 L 105.5 8 3



Although the genetic algorithm operating on fixed-length strings is capable of solv-
ing the stated problem, notice that its discovery of the first T-section will not aid in dis-
covering the second T-section. The reasons are that each T-section in the chromosome
is defined in terms of particular node numbers and that the three external node num-
bers associated with each new T-section are necessarily different from those associated
with the previous T-section. In particular, after discovering the first T-section (with
external points 2, 0, and 7), the genetic algorithm operating on fixed-length strings
must separately discover the second T-section (with external points 7, 0, and 3).

In contrast, representations employed by genetic programming have the ability to
leverage the once-learned T-section. Consider one way in which this can happen.
Suppose that a particular individual in an early generation develops into a circuit with a
single T-section. During the early generations of the run, this individual will be relatively
fit (when compared to cohorts lacking the T-section or some equally good structure).
Thus, this individual will probably be selected (and, indeed, reselected) to participate in
crossover. On some of the occasions in which this first individual is selected to partici-
pate in crossover, the subtree that is responsible for the T-section will be included in the
crossover fragment. Meanwhile, a relatively fit second individual will be selected to
mate with the first individual. Possibly, the second individual may be reasonably fit
because it too already contains one occurrence of a T-section. Note that because rese-
lection is allowed, the first individual may occasionally mate with itself. Thus, the ordi-
nary crossover operation will sometimes create an offspring with two T-sections. At the
moment when this doubling-up occurs, the offspring will probably have distinctly bet-
ter fitness than its cohorts in the population. The offspring with two T-sections will thus
immediately start winning future tournaments in which it participates and will therefore
frequently participate in future reproduction, mutation, and crossover operations.

Of course, this scenario does not occur on every crossover. However, about 90% of
the genetic operations on a typical run of genetic programming are crossovers. Moreover,
a run of genetic programming involves a large population being bred over many genera-
tions. Thus, there are numerous opportunities for a doubling-up of T-sections.

Figure 16.7 shows a circuit-constructing program tree that develops into the sin-
gle T-section shown in figure 16.1. In this figure, the first and third arguments of the
three-argument THREE_GROUND function (labeled 100) each create a 105,500-
microhenry inductor. The second argument of the THREE_GROUND function creates
a capacitor connected to ground. The first argument of the three-argument SERIES
function is an INPUT_0 function that causes a connection to be made between the
incoming signal (node 2 in figure 16.1) and the first inductor. The third argument of
the SERIES function is an OUPTUT_0 function that causes a connection to be made
between the circuit’s output point (node 3 in figure 16.1) and the second inductor. The
second argument of the SERIES function is a THREE_GROUND function that causes
a connection to be made between the ungrounded lead of the capacitor and the first
and second inductor. For simplicity, figure 16.7 shows the eventual component values
(105,000 microhenrys and 186 nanofarads) as opposed to the intermediate arguments
of the nonlinear mapping (section 3.5.5).

Figure 16.8 shows a circuit-constructing program tree that develops into the two
T-sections shown in figure 16.3. The upper left portion of figure 16.8 (i.e., everything
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above the point labeled 200) is identical to figure 16.7. As can be seen, the subtree
rooted at (that is, below) the point labeled 200 in figure 16.8 is identical to the subtree
rooted at the THREE_GROUND function labeled 100 in figure 16.7. That is, the sub-
tree that produces the T-section that is responsible (during early generations of the
run) for the filtering ability of the individual of figure 16.7 is embedded inside another
individual that itself produces a single T-section. Figure 16.8 shows a way by which
the ordinary crossover operation can create a circuit consisting of a cascade of two
identical T-sections. The circuit consisting of a cascade of two identical T-sections has
better fitness than the circuit consisting of just one T-section.

Automatically defined functions provide a second way by which genetic 
programming can leverage on the already-learned utility of a T-section.

Figure 16.9 shows a circuit-constructing program tree consisting of a result-
producing branch (RPB0) on the left and an automatically defined function (ADF0)
on the right. The entire program tree develops into the two T-sections shown in figure
16.3. Automatically defined function ADF0 develops into one T-section. The result-
producing branch (RPB0) invokes ADF0 twice, thereby creating a circuit consisting
of two identical T-sections.
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Figure 16.7 A circuit-constructing program tree that develops into the single T-section shown
in figure 16.1.



The automatically defined copy (Koza, Bennett, Andre, and Keane 1999a, chapter 30)
provides yet another way by which genetic programming can leverage on the already-
learned utility of a T-section.

In addition, reuse can also be realized in the context of genetic programming in
many additional ways, including by means of automatically defined iterations (ADIs),
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Figure 16.8 A circuit-constructing program tree that develops into the two T-sections shown
in figure 16.3.
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Figure 16.9 Circuit-constructing program tree containing automatically defined function
ADF0 that develops into the two T-sections shown in figure 16.3.



automatically defined loops (ADLs), automatically defined recursions (ADRs), or
automatically defined stores (ADSs) as discussed in Genetic Programming III (Koza,
Bennett, Andre, and Keane 1999a).

The genetic algorithm operating on fixed-length strings cannot readily leverage a
previously discovered useful substructure in the just-described ways. In fact, if the
(usual) homologous crossover is employed, there is no way to move a T-section
attached to, say, nodes 2, 0, and 3 to another part of the chromosome. Thus, after dis-
covering one T-section, the genetic algorithm operating on fixed-length strings must
separately (and laboriously) discover the second one.

Note that the genetic algorithm operating on variable-length strings (Smith 1980)
has the same difficulty. It can easily create two identical T-sections attached to the
same set of nodes. For example, the sub-string producing a T-section attached to nodes
2, 0, and 3 (table 16.3) could easily be inserted, by crossover, into another chromo-
some that already contains a T-section attached to nodes 2, 0, and 3.

However, the result would be two T-sections attached to the same group of nodes
(that is, 2, 0, and 3). The point is that the genetic algorithm operating on variable-
length strings does not readily yield a series composition in which the one T-section
is attached to nodes 2, 0, and 7 and the second T-section is attached to differently num-
bered nodes (say, nodes 7, 0, and 3). In contrast, genetic programming has the ability
to easily produce, by crossover, either a series or parallel composition of T-sections
(with the series composition being the more useful in the immediate situation).

16.2.3 The Number of Substructures

If discovering the number of substructures is an important part of the problem, genetic
programming may be well suited to the problem.
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Figure 16.10 Genetically evolved double-bandpass filter circuit.

Table 16.3 Sub-string producing a T-section

L 105.5 2 6 C 186 6 0 L 105.5 6 3



Consider the problem of automatically synthesizing the double-bandpass filter
described in chapter 36 of Genetic Programming III (Koza, Bennett, Andre, and
Keane 1999a). The architecture-altering operations enable genetic programming to
automatically create the architecture of the overall program during the run.

The genetically evolved double-bandpass filter (figure 16.10) contains four 
occurrences of the three-ported automatically defined function ADF0, two occur-
rences of the four-ported automatically defined function ADF3, and one occurrence of
the three-ported automatically defined function ADF1. The architecture-altering 
operations dynamically determined, during the run of genetic programming, the 
number of automatically defined functions that were used in solving this problem.

Automatically defined function ADF0 appears four times in the genetically
evolved double-bandpass filter (figure 16.10). Figure 16.11 shows the three-ported
subcircuit produced by the execution of ADF0.

Automatically defined function ADF3 appears twice in the genetically evolved
double-bandpass filter (figure 16.10). Figure 16.12 shows the four-ported subcircuit
produced by the execution of ADF3.

16.2.4 Hierarchical References among the Substructures

If discovering the nature of the hierarchical references among the substructures is a
major part of the problem, genetic programming may be appropriate.

The architecture-altering operations enable genetic programming to automatically
create the architecture of the overall program during the run, including the hierarchi-
cal arrangement of automatically defined functions.

Figure 16.13 shows the call tree for the genetically evolved crossover (woofer-
tweeter) filter described in detail in chapter 33 of Genetic Programming III (Koza,
Bennett, Andre, and Keane 1999a). This call tree shows that the circuit-constructing
program tree for this filter consists of three result-producing branches (RPB0, RPB1,
and RPB2). It also shows that RPB0 contains a reference to one-argument automati-
cally defined function ADF3 (the number of arguments being shown inside the braces)
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Figure 16.11 This three-ported subcircuit produced by automatically defined function ADF0
appears four times in the genetically evolved double-bandpass filter.



and that ADF3 invokes one-argument automatically defined function ADF2. Similarly,
the figure shows that RPB1 contains a reference to one-argument automatically
defined function ADF3 and that ADF3 invokes two-argument automatically defined
function ADF2. The figure also shows that RPB2 contains references to one-argument
automatically defined functions ADF4 and ADF2 and that ADF4, in turn, invokes 
one-argument automatically defined function ADF2.

16.2.5 Passing Parameters to Substructures

If passing parameters to a substructure is likely to be useful in solving the problem,
genetic programming may be appropriate.

Continuing the discussion from section 16.2.4, consider the subcircuit produced
by the three-ported automatically defined function ADF3 (figure 16.14) that appears
in the genetically evolved crossover (woofer-tweeter) filter. In addition to the 
mundane matter of inserting an ordinary 5,130-nanofarad capacitor C112, the 
execution of automatically defined function ADF3 has the following two noteworthy
consequences:

● ADF3 inserts a parameterized capacitor C39 whose component value is dependent
on the dummy variable ARG0 that is passed into automatically defined function
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Figure 16.12 This four-ported subcircuit produced by automatically defined function ADF3
appears twice in the genetically evolved double-bandpass filter.
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ADF2 {1} ADF2 {1} ADF2 {1}

Figure 16.13 Call tree for a genetically evolved crossover (woofer-tweeter) filter. 



ADF3 from the program that calls ADF3 (namely the result-producing branch RPB0
shown in figure 16.13).

● ADF3 calls automatically defined function ADF2. A dummy variable ARG0 is
passed along from ADF3 to ADF2. In turn, ADF2 creates a parameterized inductor
whose component value is dependent on this dummy variable.

The passing of a parameter can be seen by examining the genetically evolved LISP
S-expressions for the crossover (woofer-tweeter) filter.

The first result-producing branch, RPB0, is shown below. As shown in the under-
lined portion of this S-expression, automatically defined function ADF3 is called with
a numerical argument of 0.619651.

(PARALLEL0 (L (+ (� 1.883196E-01 (� �9.095883E-02
5.724576E-01)) (� 9.737455E-01 �9.452780E-01)) (FLIP END))
(SERIES (C (+ (+ �6.668774E-01 �8.770285E-01) 4.587758E-
02) (NOP END)) (SERIES END END (PARALLEL1 END END END END))
(FLIP (SAFE_CUT))) (PAIR_CONNECT_0 END END END) (PAIR_CON-
NECT_0 (L (+ �7.220122E-01 4.896697E-01) END) (L (�
�7.195599E-01 3.651142E-02) (SERIES (C 
(+ �5.111248E-01 (� (� �6.137950E-01 �5.111248E-01)
(� 1.883196E-01 (� �9.095883E-02 5.724576E-01)))) END)
(SERIES END END (ADF3 6.196514E-01)) (NOP END))) (NOP END)))

Automatically defined function ADF3 is shown below. The dummy variable
(ARG0) appears twice in ADF3. Each occurrence is underlined. ARG0 is instantiated
with the value of 0.619651 that is obtained from the first result-producing branch,
RPB0. Also, note that the value 0.9737455 is passed to automatically defined function
ADF2 (shown in bold below). The component value for an inductor created by ADF2
is determined by this value.

(C (+ (� (+ (+ (+ 5.630820E-01 (� 9.737455E-01
�9.452780E-01)) (+ ARG0 6.953752E-02)) (� (� 5.627716E-
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Figure 16.14 Subcircuit produced by the execution of three-ported automatically defined
function ADF3 of the genetically evolved crossover (woofer-tweeter) filter. 



02 (+ 2.273517E-01 (+ 1.883196E-01 (+ 9.346950E-02 (+
�7.220122E-01 (+ 2.710414E-02 1.397491E-02)))))) (� (+
(� 2.710414E-02 �2.807583E-01) (+ �6.137950E-01
�8.554120E-01)) (� �8.770285E-01 (� �4.049602E-01
�2.192044E-02))))) (+ (+ 1.883196E-01 (+ (+ (+ (+
9.346950E-02 (+ �7.220122E-01 (+ 2.710414E-02 1.397491E-
02))) (� 4.587758E-02 �2.340137E-01)) 3.226026E-01) (+
�7.220122E-01 (� �9.131658E-01 6.595502E-01))))
3.660116E-01)) 9.496355E-01) (THREE_GROUND_0 (C (+ (� (+
(+ (+ 5.630820E-01 (� 9.737455E-01 �9.452780E-01)) (+ (�
(� �7.195599E-01 3.651142E-02) �9.761651E-01) (� (+ (�
(� �7.195599E-01 3.651142E-02) �9.761651E-01) 6.953752E-
02) 3.651142E-02))) (� (� 5.627716E-02 (� 1.883196E-01
(� �9.095883E-02 5.724576E-01))) (� (+ (� 2.710414E-02
�2.807583E-01) (+ �6.137950E-01 (+ ARG0 6.953752E-02)))
(� �8.770285E-01 (� �4.049602E-01 �2.192044E-02))))) (+
(+ 1.883196E-01 �7.195599E-01) 3.660116E-01)) 9.496355E-
01) (NOP (FLIP (PAIR_CONNECT_0 END END END)))) (FLIP
(SERIES (FLIP (FLIP (FLIP END))) (C (� (+ 6.238477E-01
6.196514E-01) (+ (+ (� (� 4.037348E-01 4.343444E-01) 
(+ �7.788187E-01 (+ (+ (� �8.786904E-01 1.397491E-02) (�
�6.137950E-01 (� (+ (� 2.710414E-02 �2.807583E-01)
(+ �6.137950E-01 �8.554120E-01)) (� �8.770285E-01 (�
�4.049602E-01 �2.192044E-02))))) (+ (+ 7.215142E-03
1.883196E-01) (+ 7.733750E-01 4.343444E-01))))) (� (�
�9.389297E-01 5.630820E-01) (+ �5.840433E-02 3.568947E-
01))) �8.554120E-01)) (NOP END)) END)) (FLIP (ADF2
9.737455E-01))))

Once a dummy variable (formal parameter) is passed from one part of a geneti-
cally evolved hierarchy into another, different instantiations of the dummy variable
may be passed.

16.2.6 Type of Substructures

If discovering the type of substructures (e.g., subroutines, iterations, loops, recursions,
or storage) is an important aspect of the problem, genetic programming may be 
appropriate.

The Genetic Programming Problem Solver (GPPS) uses a standardized set of
functions and terminals and thereby eliminates the need for the user to prespecify a
function set and terminal set for the problem. GPPS uses the architecture-altering
operations to dynamically create, duplicate, and delete subroutines and loops during
the run of genetic programming. Additionally, in version 2.0 of GPPS, the architec-
ture-altering operations are used to dynamically create, duplicate, and delete recur-
sions and internal storage. Because the architecture of the evolving program is
automatically determined during the run, GPPS eliminates the need for the user to

Problems and Genetic Programming 499



specify in advance whether to employ subroutines, loops, recursions, and internal
storage in solving a given problem. It similarly eliminates the need for the user to
specify the number of arguments possessed by each subroutine.

Consider the problem of evolving a computer program for the even-6-parity problem.
In one run of this problem using GPPS 1.0 (described in section 21.1.2.2 of

Genetic Programming III), the genetically evolved solution consisted of

● one result-producing branch, and
● two automatically defined loops.

The architecture-altering operations in GPPS determined that there would be two
automatically defined loops.

16.2.7 Number of Arguments Possessed by Substructures

If discovering the number of arguments possessed by a substructure is an important
part of the problem, genetic programming may be appropriate.

Continuing our discussion of the Genetic Programming Problem Solver (GPPS)
from section 16.2.6, in one run on the even-6-parity problem (described in section
21.1.2.1 of Genetic Programming III), the genetically evolved solution consisted of

● one result-producing branch,
● one automatically defined loop, and
● two two-argument automatically defined functions.

The architecture-altering operations in GPPS determined that the automatically
defined functions would possess two arguments.

16.2.8 The Developmental Process

If a developmental process is a desirable way to represent a solution to the problem,
genetic programming may be appropriate.

As previously mentioned, the developmental approach has several advantages in
automatically synthesizing complex structures such as circuits.

For one thing, the developmental approach has the specific advantage of preserv-
ing locality. Because most of the component-creating, topology-modifying, and devel-
opment-controlling functions operate on a small local area of the circuit, the subtrees
that are transplanted by the crossover operation generally operate locally. Thus, when
a crossover replaces a subtree in one individual with a subtree from another individual,
it (usually) replaces a local structure in the circuit created by the first individual with a
local structure in the circuit created by the second individual. The developmental
process works in conjunction with the crossover operation in preserving locality.

The developmental process has the additional advantage of preserving electrical
connectivity. There are no unconnected leads in the initial circuit. Each component-
creating, topology-modifying, and development-controlling function preserves con-
nectivity at each stage of the developmental process. The result is that there are no
unconnected leads in the fully developed circuit.
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Also, the developmental approach enables useful parts of a circuit-constructing
program tree to be reused (as already illustrated in section 16.2.2 by figures 16.7, 16.8,
and 16.9 and tables 16.1 and 16.2). Reuse eliminates the need to “reinvent the wheel”
on each occasion when a particular sequence of steps may be useful. Reuse makes it
possible to exploit a problem’s modularities, symmetries, and regularities (and thereby
potentially accelerate the problem-solving process).

The preservation of syntactic validity and executablity of the circuit-constructing
program trees during all genetic operations, the preservation of the constrained syn-
tactic structure during all genetic operations, the preservation of electrical connectiv-
ity, the preservation of locality during crossover, and the facilitation of reuse together
contribute to the efficiency by which developmental genetic programming is able to
synthesize circuits.

In contrast, the ordinary crossover operation in the genetic algorithm operating on
fixed-length character strings rarely preserves syntactic validity when chromosome
strings are used to represent complex structures (e.g., electrical circuits).

When syntactic validity is not preserved, the user is usually faced with three
choices concerning the syntactically invalid offspring:

● deletion,
● penalization, or
● repair.

For complex structures such as circuits, deletion is rarely a practical option
because the percentage of syntactically valid offspring after a crossover is so low that
virtually every individual would be deleted. Penalization is rarely practical for the
same reason. Thus, in practice, repair is the most viable option.

The ordinary crossover operation used in the genetic algorithm has the specific
advantage that all genetic material in the offspring comes from one or the other 
parent. This is usually not the case when repair is undertaken. That is, the offspring’s
genetic material does not come exclusively from its parents.

The parents come from the current generation of the run of genetic programming. 
As such, the parents are likely to be relatively fit individuals. The benefit of creating 
offspring from genetic material from the run’s current generation is discussed in detail in
section 16.3.1.2. The repair process does not confer this benefit on the resultant offspring.

As an example of a crossover operation whose offspring requires repair, consider
the circuits defined by the chromosomes in tables 16.4 and 16.5.

The chromosome of the first parent (table 16.4) codes for the single T-section
depicted in figure 16.15. This T-section contains two inductors (L1 and L2) and one
capacitor (C1). This individual is functionally equivalent to the circuit of figure 16.1
and therefore has the same fitness and the same frequency-domain behavior as shown
in figure 16.2. As previously mentioned, a single T-section acts as a (very poor) low-
pass filter; however, in an early generation of the run, a single T-section may be among
the best individuals in the population at the time.

The chromosome of the second parent (table 16.5) codes for the single T-section
depicted in figure 16. This T-section contains two inductors (L3 and L4) and one
capacitor (C2). This individual is functionally equivalent to the first parent.
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Now consider a crossover operation whose offspring requires repair. In particular,
consider a crossover point at the right of the 12th gene. That is, genes 1 through 12
come from the chromosome in table 16.4 and genes 13 through 24 come from the
chromosome in table 16.5.

Table 16.6 shows the chromosome of the offspring resulting from this crossover.
Figure 16.17 shows the offspring. The offspring circuit contains three inductors

and two capacitors. Components L6 and C3 originate from the first parent (where they
were called L1 and C1, respectively, in figure 16.15). Components L5, L7, and C4
originate from the second parent (where they were called L3, L4, and C2 respectively,
in figure 16.16). After the crossover, one end (node 9) of the inductor L7 is left 
dangling. Similarly, one end (node 8) of the capacitor C4 is also dangling. Moreover,
the offspring has no connection to the output probe point VOUT. Because the offspring
is syntactically invalid, a mechanism must now be invoked to repair it.

There are numerous methods in the literature for repairing a syntactically invalid
offspring. Some overtly employ random steps. The ones that do not employ random
steps typically employ steps that are so arbitrary that they might as well be random.
The point is not that these repair mechanisms do not succeed in creating a syntacti-
cally valid offspring, but that they succeed in a manner that resembles mutation.
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Figure 16.15 First parent.

Table 16.5 Chromosome of second parent

W 0 8 6 W 0 9 3 W 0 7 8 L 105.5 6 9 C 186 8 0 L 105.5 2 7

Table 16.6 Result of a crossover

L 105.5 2 6 W 0 6 7 C 186 7 0 L 105.5 6 9 C 186 8 0 L 105.5 2 7

Table 16.4 Chromosome of first parent

L 105.5 2 6 W 0 6 7 C 186 7 0 W 0 7 8 L 105.5 8 9 W 0 9 3



When the genetic algorithm operating on fixed-length character strings is being
used for problems involving complex structures, the probability is exceedingly small
that a syntactically valid chromosome will result from a crossover that is applied
directly to the structure. Thus, virtually every crossover requires repair. To the extent
that the repair mechanism is either random or arbitrary, virtually every crossover
becomes mutational in character.

In summary, the benefits of the developmental process include

● reuse,
● preservation of locality,
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Figure 16.16 Second parent.

Figure 16.17 Offspring circuit.



● preservation of electrical validity (for circuits),
● preservation of syntactic validity and executability (thereby alleviating the need for

repair and the consequent introduction of genetic material from sources other than
the two parents from the current generation of the run).

16.2.9 Parameterized Topologies Containing Free Variables

The genetic algorithm operating on fixed-length character strings can easily find the
roots of a particular quadratic equation such as 3x2 �4x�5�0. In applying the
genetic algorithm to the problem of finding the real and imaginary parts of this equa-
tion’s two roots, one could employ a four-part chromosome string in which each part
represents one of the four required numerical values. At the user’s option, each of the
four required values may be represented in the chromosome as a string of bits or as a
floating-point number. In either case, the fitness measure for an individual chromo-
some can be defined as the sum, over the two complex numbers represented by the
chromosome, of the distance (in the complex plane) between the result of substituting
the complex number into 3x2 �4x�5 and the origin (0, 0).

Notice that a separate run of the genetic algorithm would be required to solve a
different quadratic equation (e.g., 10x2 �2x�7�0).

In contrast, the well-known mathematical formula

is a general solution to the problem of finding the equation’s roots. It is applicable to
all quadratic equations. This formula contains three free variables (a, b, and c) repre-
senting the three coefficients of the quadratic equation ax2 �bx�c�0. Any quadratic
equation (including 10x2 �2x�7�0 and 3x2 �4x�5�0) can be solved merely by
instantiating the free variables a, b, and c in the formula with the particular numerical
values of a, b, and c. The free variables confer generality on the formula and enable it
to provide a solution to the entire category of problems.

In a similar way, free variables (inputs) confer generality on a computer program.
Free variables enable a single genetically evolved program to solve an entire category
of problems (as opposed to a single instance of a problem).

Thus, if the problem requires the generality conferred by free variables, genetic
programming is especially appropriate.

Eleven problems in this book (listed in section 1.3) demonstrate the capability of
genetic programming to automatically create, in a single run, a general (parameter-
ized) solution to a problem in the form of a graphical structure whose nodes or edges
represent components and where the parameter values of the components are speci-
fied by mathematical expressions containing free variables. Chapters 9 and 13 demon-
strate the ability of genetic programming to create parameterized topologies for
controllers. Chapters 10 and 11 demonstrate this ability for electrical circuits. Four of
these 11 problems illustrate the use of conditional developmental operators in con-
junction with free variables (chapter 11).

x �
�b � �b2 � 4ac

2a
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16.3 Characteristics Suggesting the Use of Genetic Methods

This section discusses two differences between the genetic algorithm and genetic pro-
gramming and certain other search methods (e.g., hill climbing, gradient search, and
simulated annealing) that, we believe, make genetic methods particularly advanta-
geous for solving the problems dealt with in this book.

First, the genetic algorithm and genetic programming differ from hill climbing and
gradient search in that they are not greedy.

Second, in genetic methods, the recombination (crossover) operation works in
conjunction with the population in a way that makes genetic search particularly
advantageous.

16.3.1 Non-Greedy Nature of Genetic Methods

Greedy search methods never chose a point that is known to be inferior in preference
to a point that is known to be superior. In particular, hill climbing (section 3.4.1) and
gradient search (section 3.4.2) pursue a search by greedily moving to a point that is
known to be superior to the current point.

Most existing techniques of artificial intelligence and machine learning rely exclu-
sively on greedy methods to move from the current point in the search space to the
next point. Greedy methods have the deficiency that they are easily trapped on a local
optimum that is not a global optimum of the search space. The temptation to rely on
greedy methods is reinforced because many of the toy problems in the literature of the
fields of machine learning and artificial intelligence are so simple that they can, in
fact, be solved by these methods. However, popularity cannot cure the innate tendency
of hill climbing and gradient search to become easily trapped on a local optimum.

Genetic programming and the genetic algorithm differ from hill climbing and 
gradient search in that they are not greedy. That is, during the course of a genetic
search, a point that is known to be inferior will sometimes be preferred to a point that
is known to be superior. The fact that genetic methods employ a population (i.e., are
parallel searches) gives genetic methods the luxury of retaining both known superior
points and known inferior points. The larger the population, the greater the variety of
the retained points. The fact that genetic methods employ a population helps to liber-
ate genetic methods from the nearly irresistible temptation to pursue the search only by
greedily moving to a point that is known to be superior to the current point. Genetic
methods intentionally allocate a certain mathematically principled (small) number of
trials to points that are known to be inferior. That is, they do some exploration (while
still predominantly pursuing an exploitative strategy). This allocation of trials to
known-inferior individuals is not motivated by charity. Instead, the allocation of trials
to known-inferior individuals is based on the expectation that it will sometimes unearth
a trajectory through the search space that leads to points that ultimately have a higher
payoff. The fact that genetic programming operates with a large population enables it
to make a certain small number of adventurous moves while predominantly pursuing
the most immediately gratifying avenues of advance through the search space.

The non-greedy approach of genetic methods is advantageous because interesting
and non-trivial problems almost always have high-payoff points that are inaccessible
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to hill climbing and gradient search. In fact, the existence of points in the search space
that are not accessible to greedy search is a good working definition of non-triviality.
Given that problems of machine intelligence are among the most formidable and chal-
lenging problems in the field of computer science, it seems especially appropriate that
these problems be pursued with non-greedy methods that acknowledge the non-
triviality of the space being searched. Indeed, it would be truly extraordinary to be
able to solve such formidable and challenging problems by means of gre dy search.

It should be noted that simulated annealing (Kirkpatrick, Gelatt, and Vecchi 1983;
Aarts and Korst 1989; Salamon, Sibani, and Frost 2002) shares the feature of 
genetic algorithms and genetic programming of allocating a certain mathematically
principled (small) number of trials to points that are known to be inferior. In the case
of genetic programming and the genetic algorithm, the exploration of seemingly infe-
rior areas is accomplished by the probabilistic Darwinian selection process. The best
individuals in the population are not guaranteed to be selected and the worst individu-
als are not necessarily excluded. In the case of simulated annealing, the exploration of
seemingly inferior areas is accomplished by means of the Metropolis algorithm and the
Boltzmann equation. There is, in fact, a similarity in the mathematical underpinnings
of simulated annealing and genetic methods (Goldberg 1990; Mahfoud and Goldberg
1995). Simulated annealing resembles a genetic search with a population of one.

Genetic methods also differ from simulated annealing in that they sometimes pass
over a point that is known to be superior (whereas simulated annealing never does).

16.3.2 Recombination in Conjunction with the Population in Genetic Methods

The recombination (crossover) operation of the genetic algorithm and genetic 
programming works in conjunction with the population in a way that appears to be
particularly advantageous for solving the problems of interest in this book.

Genetic methods are not, of course, the only search methods that employ paral-
lelism. There are parallel versions of hill climbing (section 3.4.1), gradient search
(section 3.4.2), and simulated annealing (section 3.4.3). However, there is no transfer
of information among the different threads of such parallel searches. That is, each
thread of the parallel search stands alone. Likewise, there are versions of hill climb-
ing, gradient search, and simulated annealing in which the search is iteratively
restarted after the search becomes trapped on a local optimum point. However, when
the search is restarted, there is usually no forward transfer of information gained from
the earlier searches. That is, each restarted run stands alone.

The parallel versions of hill climbing, gradient search, and simulated annealing
resemble the simultaneous dropping of a large number of parachutists onto the 
problem’s search space in the hope that one of them, acting alone, will find the global
optimum point. The parachutists do their best, given their localized view of the entire
search space, to locate a global optimum. Because the parachutists search simultane-
ously, the parallelism of this type of search assuredly reduces the elapsed time
required to locate a global optimum. However, there is no transfer of information
among the parachutists in the parallel versions of hill climbing, gradient search, and
simulated annealing. Each parachutist generates new candidate points without refer-
ence to anything learned by the other parachutists. Hence, no thread of the parallel
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search is any more efficient at discovering a good point in the search space than if
there were no parallelism.

The iterative restart versions of hill climbing, gradient search, and simulated
annealing resemble the sequential dropping of one parachutist at a time onto the
search space. Each single parachutist makes an effort to discover a global optimum
point. The restarting gives the search new life after a parachutist becomes hopelessly
trapped on a non-global optimum point. However, after each restart, the single para-
chutist generates new candidate points without reference to anything learned previ-
ously. That is, information is not transferred from earlier searches to later searches.
Consequently, except for the fact that the parachutist is restarted at a new starting
point, no restarted search is any more efficient than if there were no restarting.

Genetic programming and the genetic algorithm differ from hill climbing, gradi-
ent search, and simulated annealing in that important information is exchanged among
the threads of the parallel search. This information transfer is accomplished by means
of the recombination (crossover) operation. Continuing the analogy with the para-
chutists, genetic methods simultaneously drop a large number of parachutists onto the
search space. However, genetic methods additionally outfit all the parachutists with
wireless telephones that enable them to exchange information that is learned by the
other parachutists. This transfer of information enables parachutists to be rapidly con-
centrated in the most promising areas of the search space.

The mechanism for implementing this advantageous transfer of information is
explained by making three points:

(1) The statistical distribution of what Turing in 1948 called “a combination of genes”
and what Holland in 1975 called a “schema” changes from generation to genera-
tion in a way that enables the population to become a storehouse of information
and experience about the search space.

(2) The mutation operation in genetic programming and the genetic algorithm can be
viewed as a special case of the recombination (crossover) operation.

(3) The recombination operation allocates future trials to individuals that contain
promising “combination[s] of genes” or schemata.

16.3.2.1 The Changing Mix of Schemata Starting with the first of these three
points, consider a run of the genetic algorithm involving a population (of size M) with
chromosome strings of length L over an alphabet of K characters. In generation 0, the
probability of occurrence of individuals in the population possessing a specified sin-
gle gene value at a particular single position along the chromosome is a uniform value
of 1/K. The set of individuals having specified gene values at particular positions
along the chromosome is called a schema. The number, o(H), of specified positions in
a schema H is referred to as the specificity or order of the schema. In generation 0, the
probability of occurrence of individuals in the population possessing any combination
of specified gene values at o(H) particular positions along the chromosome is a 
uniform value of

.

This formula applies to every one of the (K�1)L possible schemata.

1
Ko(H)
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As an example, consider a schema of specificity 3 involving chromosomes of
length L�5 over an alphabet size of K�4, in which there is a “3” in position 1 of the
chromosome, a “2” in position 3, and a “0” in position 5. This schema may be conve-
niently represented by 3#2#0, where # is a “don’t care” symbol. The probability of
occurrence of individuals in the population in generation 0 belonging to this schema
(and any other schema of specificity 3) is 1/64.

After generation 0, the probability of occurrence of individuals in the population
of a run of the genetic algorithm possessing a specified single gene value at a partic-
ular single position of the chromosome will increase or decrease (from its original uni-
form value) depending on whether the specified gene value is helpful or detrimental
(respectively) to the individual’s fitness (based on average performance measured
with necessarily limited sampling). This change in the statistical makeup of the pop-
ulation after generation 0 occurs because of the probabilistic fitness-based selection of
individuals to participate in the genetic operations.

However, the changing probability of occurrence of a single gene is not what is
important about genetic search. As Turing said in his 1948 paper entitled “Intelligent
Machinery” (Turing 1948, page 12; Ince 1992, page 127; Meltzer and Michie 1969,
page 23):

“There is the genetical or evolutionary search by which a combination of genes is
looked for, the criterion being the survival value.” (Emphasis added.)

In Adaptation in Natural and Artificial Systems (1975), Holland formalized the
notion of “combination[s] of genes” with the idea of a schema. The important point is
that, after generation 0, the probability of occurrence of individuals in the population
possessing specified “combination[s] of genes” at particular positions in the chromo-
some will also increase or decrease depending on whether the combination of genes
is helpful or detrimental (respectively) to the individual’s fitness (based on average
performance measured with necessarily limited sampling).

The result is that the probability of occurrence of individuals in the population
possessing any of the (K�1)L specified combinations of gene values at particular
positions in the chromosome departs from the initial uniform random value prevailing
in generation 0. The expected number of individuals belonging to any schema varies,
by generation, in accordance with Holland’s fundamental theorem of genetic algo-
rithms (1975). As the statistical distribution of schemata changes in later generations,
the population becomes a storehouse of memory of previous experience about the
search space. Specifically, the population contains an increasing number of occur-
rences of above-average “combination[s] of genes” (that is, schemata). Further analy-
sis is provided in Stephens and Waelbroeck 1997.

As explained in Foundations of Genetic Programming (Langdon and Poli 2002),
the population in a run of genetic programming similarly stores previous experience
with the search space (using a definition of schema appropriate to the rooted 
point-labeled trees with ordered branches that are used in genetic programming).
The population of individuals in a run of genetic programming also contains an
increasing number of occurrences of above-average “combination[s] of genes”
(schemata).
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That is, for both genetic programming and the genetic algorithm, Darwinian 
selection and reproduction cause the statistical distribution of various combinations of
genes to change from generation to generation.

In this book, there is a cornucopia of examples of building blocks that appear in
relatively fit individuals in intermediate generations of runs of genetic programming
and that later appear in the run’s best-of-run individual.

For example, the subtree

(SUB_SIGNAL REFERENCE_SIGNAL PLANT_OUTPUT)

appears in relatively fit individuals in intermediate generations of many runs of 
control problems in this book and later becomes part of the best-of-run individuals
(e.g., section 9.2.2). This subtree implements negative feedback. Negative feedback is
highly useful in controllers. Harold Black invented negative feedback for electrical
circuits in 1927 and also obtained patents covering negative feedback for controllers
(chapter 14). Negative feedback is an integral part of the PID controller patented by
Callender and Allan Stevenson in 1939.

As another example, a subtree that produces an inductor-capacitor rung is a 
useful building block in creating a multi-rung ladder filter. This example of a reused
substructure is discussed in detail in section 16.2.2 and is further illustrated in sections
5.2.2 and 11.2.2.

As yet another example, a subtree that produces a Darlington emitter-follower 
section is an extremely useful building block in a wide variety of circuits.

As still another example, there is a subtraction of the output of a PID sub-
controller and output of a second sub-controller in all three genetically evolved 
non-PID controllers in chapter 13. This feature is common to all three runs because it
is useful in solving the problem at hand.

Darwinian selection not only causes the frequency of beneficial genes and beneficial
“combination[s] of genes” (schemata) to increase from generation to generation,
it also causes the frequency of detrimental single genes and detrimental “combina-
tion[s] of genes” to decrease.

For example, consider the subtree

(TWO-GROUND (OUTPUT_0 END END) END)

in connection with problems of circuit synthesis. This subtree is a “poison pill”
because it wires the circuit’s output probe point to ground.

As another example, inductors are not helpful in the problem of creating the 
topology, sizing, placement, and routing of the 60 dB amplifier described in 
section 5.3.1.3. Because the inductor-creating function is in the function set, inductors
necessarily appear frequently in the randomly created circuits of generation 0. In the
larger circuits in the population at generation 0, it is a virtual certainty that the circuit
will contain one or more inductors. Even in the smaller circuits of generation 0, an
inductor is as likely as any beneficial component. As the run of this problem 
progressed, the frequency of occurrence of inductors decreased. At the end of the 
successful run, there were no inductors in the best-of-run circuit.
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As yet another example, consider capacitors in computational circuits (sections
15.3.3, 11.3, 4.6). A computational circuit ideally performs the desired computation
in the same way at all times (regardless of what input signals it previously processed).
However, a non-degenerate functioning capacitor in a computational circuit typically
creates memory (in the form of a stored charge). As runs of genetic programming for
computational circuit problems progress, the frequency of occurrence of capacitors
decreases. At the end of a successful run, there will generally be no non-degenerate
functioning capacitors in the best-of-run circuit.

16.3.2.2 Viewing Mutation and Crossover in a Common Framework Before
discussing how the crossover operation employs the changing statistical distribution
of schemata in the population to differentially allocate future trials to more promising
areas of the search space, it is helpful to first examine the nature of the mutation 
operation.

The mutation operation in genetic methods operates on a single parental point in the
search space. In that respect, the mutation operation in genetic methods corresponds to
the modification operation in hill climbing, gradient search, and simulated annealing.

The mutation operation in genetic methods selects one parental individual 
from the population based on fitness and creates one new offspring program from the
single parental individual.

In particular, in the genetic algorithm, a point is randomly chosen in the chromosome;
the chromosome value at the chosen mutation point is deleted; a new chromosome
value is randomly picked from the same set of possibilities in the same manner as
chromosomes were randomly created for the initial population of generation 0; and
the new random chromosome value is implanted at the chosen mutation point.

In some implementations of the genetic algorithm, more than one mutation point is
chosen along the chromosome and, in other implementations, the new chromosome
value is required to be different from the old value. However, neither of these variations
changes the essence of the argument below.

In the mutation operation in genetic programming (section 2.2.1), a point is 
randomly chosen in a single parental program tree; the subtree rooted at the chosen
mutation point is deleted from the program tree; a new subtree is randomly grown
using the available functions and terminals in the same manner as trees were randomly
grown for the initial population of generation 0; and the new random subtree is
implanted at the chosen mutation point.

To understand the mutation operation in the genetic algorithm and genetic 
programming, it is helpful to think of the mutation operation and the crossover oper-
ation in a common framework. In particular, it is helpful to view mutation as a special
case of crossover.

In genetic programming, the subtree that is grown and implanted by the mutation
operation (in lieu of the deleted subtree) can be viewed as having come from a ran-
domly chosen subtree from an individual that was created by the same random process
as the randomly created individuals in generation 0. That is, a mutation operation in
generation i can be viewed as a crossover in which the remainder comes from a 
fitness-selected parent from the current generation i and the crossover fragment 
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consists of a randomly chosen subtree from a randomly selected parent that could
have come from generation 0. In saying this, we do not mean that the particular sub-
tree that is implanted by the mutation operation in generation i was itself necessarily
present in generation 0 of the particular run involved. Instead, we mean that the sub-
tree that is implanted by the mutation operation in generation i is produced by the
same random process that was originally used to produce individuals in generation 0.

Contrast this situation with the crossover operation in genetic programming. In a
crossover at generation i, the remainder comes from a fitness-selected parent from the
current generation i (i.e., the same source as the mutation operation). However, the
difference is that the crossover fragment consists of a randomly chosen subtree from
a fitness-selected parent from the current generation i.

Viewing the mutation operation as a special case of the crossover operation puts both
operations into a common framework. By doing this, it can be seen that the difference
between these two operations is the statistical properties of the source of the fragment
from which the offspring is constructed. The difference between the two operations con-
cerns whether the fragment is randomly chosen versus fitness-selected and whether the
fragment comes from the current generation i or is created in the same way as individuals
were created for generation 0. Table 16.7 compares the crossover operation and mutation
operation in terms of the source of the crossover fragment and remainder used to construct
the offspring. Keep in mind that the mutation operation in genetic methods corresponds to
the modification operation in hill climbing, gradient search, and simulated annealing.

The foregoing argument is a variation of the argument made in greater detail in
chapter 56 of Genetic Programming III: Darwinian Invention and Problem Solving
(Koza, Bennett, Andre, and Keane 1999a).

16.3.2.3 Taking Advantage of the Information Stored in the Population in Allocating
Future Trials Now consider a run of genetic programming or the genetic algorithm
at generation i and focus on an individual that has just been selected to participate in
the next genetic operation. The fact that the individual was selected indicates that it is
likely to be relatively fit. The fact that the run is not yet over suggests that the ideal
solution to the problem has yet to be discovered.

In the case of genetic programming, given that the selected individual is relatively
fit, it must contain some sequence of functions operating on certain terminals (that is,
some subtree) that contributes to the satisfaction of the problem’s requirements. Given
that the selected individual is not the ideal solution, there must be some difference
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Table 16.7 Comparison of crossover and mutation operations

Remainder comes from a randomly Fragment comes from a randomly
chosen subtree of a chosen subtree of a

Mutation fitness-selected parent from current random parent (as if) from generation 0
generation i

Crossover fitness-selected parent from current fitness-selected parent from current 
generation i generation i



between the sequence of functions in the selected individual and the sequence of func-
tions in the ideal solution.

When the mutation operation is performed in generation i, the subtree that is
inserted into the selected individual has the same statistically random profile as sub-
trees found in generation 0 of the run. Of course, an inserted subtree from generation
0 may, with a certain small nonzero probability, be exactly what is required to convert
the selected individual into a better-performing individual (or even the ideal solution).
Ignoring such extremely unlikely situations, how can we characterize subtrees created
in the same way that generation 0 was created? The answer is that these subtrees usu-
ally come from individuals that have very poor fitness (because all the individuals in
generation 0 have very poor fitness). That is, these subtrees can be characterized as
coming from individuals whose structural features do not, in general, contribute to the
satisfaction of the problem’s requirements to any significant degree.

To make this more concrete, when the mutation operation is performed in gener-
ation i, it inserts genetic material in a way that does not take any advantage of infor-
mation such as

● a subtree implementing negative feedback is extraordinarily useful in controllers,
● a subtree producing one inductor-capacitor rung is a useful building block in creat-

ing a multi-rung ladder filter,
● a subtree producing a Darlington emitter-follower section is an extremely useful

building block in a wide variety of circuits,
● an inductor is generally not a helpful building block for synthesizing an amplifier,
● a capacitor is generally not a helpful building block for synthesizing a computa-

tional circuit, and
● wiring the circuit’s output probe point to ground is a very bad idea.

Now consider what happens when crossover is performed in generation i. The sub-
tree that is inserted into the selected individual comes from a cohort from generation
i. Ignoring the extremely unlikely situations in which an inserted subtree is exactly
what is required to convert the selected individual into a better-performing individual
or ideal solution, how can we characterize subtrees from cohorts from generation i?
The answer is that these subtrees usually come from individuals that have relatively
high fitness (i.e., fitness in the same general neighborhood as the selected individual).
That is, these subtrees can be characterized as coming from individuals that contain
certain subtrees that contribute to the satisfaction of the problem’s requirements. That
is, when crossover is performed, both the crossover fragment and remainder come
from individuals that already have relatively high fitness and that partially satisfy the
problem’s requirements. These subtrees can also be characterized as having a ten-
dency to lack detrimental subtrees. In later generations of a run, these subtrees are
unlikely to contain poison pills.

If a given problem is of such a nature that a satisfactory solution can be assembled
from subtrees coming from individuals that partially satisfy the problem’s require-
ments, then crossover operates in precisely the way necessary to carry out the required
assemblage.

Simulated annealing, hill climbing, and gradient search do not deliver this benefit
(in either their point-to-point version or parallel versions). In the point-to-point 
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version of these methods, there is no population at all and hence no opportunity to take
advantage of information about other individuals. In the parallel version of these
methods, the modification operation simply does not take advantage of any informa-
tion about the structure of the other individuals.

Note that simulated annealing, hill climbing, and gradient search are similar in this
respect to a genetic method employing only mutation. As discussed in chapter 56 of
Genetic Programming III (Koza, Bennett, Andre, and Keane 1999a), the computa-
tional effort required to solve a benchmark problem (involving the synthesis of a low-
pass filter) using genetic programming without crossover is considerably greater than
the computational effort required to solve it with crossover.

We believe that, for the types of problems that we deal with in this book, the
search is facilitated by assembling the solution from subtrees coming from individu-
als that partially satisfy the problem’s requirements. That is, we believe that partial
solutions to the problem are helpful in constructing better solutions and that a paral-
lel search employing recombination is better suited to the problems of interest than a
search employing only a mutation operation acting on a single individual.

As previously mentioned in section 1.1.4, Turing speculated in 1948 that a 
“genetical or evolutionary search” for a “combination of genes” might be used to
achieve machine intelligence. Turing did not envision the use of either a population or
recombination in his early papers on this “genetical or evolutionary search.” However,
he correctly perceived the inadequacy of conducting the search by means of mutation
alone. In discussing the potential for speeding up learning by employing a knowl-
edgeable human to pass judgment on each candidate individual, Turing remarked
(Turing 1950, page 456; Ince 1992, page 156):

“One may hope, however, that this process will be more expeditious than evolution.
The survival of the fittest is a slow method for measuring advantages. The experi-
menter, by exercise of intelligence, should be able to speed it up. Equally impor-
tant is the fact that he is not restricted to random mutations. If he can trace a cause
for some weakness he can probably think of the kind of mutation which will
improve it.” (Emphasis added.)

In other words, Turing envisioned addressing the inadequacies of mutation by 
subtracting detrimental combinations of genes in a human-directed, problem-specific,
and domain-specific way.

In contrast, Holland’s genetic algorithm (1975) addresses the inadequacy of 
mutation by adding promising combinations of genes in an automated, problem-
independent, and domain-independent way.

In Holland’s approach, no human is required to “trace a cause” or to “exercise…
intelligence” because (as the Schema Theorem establishes) the population at genera-
tion i of the run automatically contains the promising “combination[s] of genes”
(schemata). The population is the storehouse of this information. Given the existence
of the population, the insertion of promising combinations of genes is accomplished
by the recombination (crossover) operation. The recombination operation inserts a
“combination of genes” into the current individual. The inserted “combination of
genes” is obtained from a cohort from the current generation i of the run. Moreover,

Problems and Genetic Programming 513



the recombination operation does this automatically (without resort to a knowledge-
able human) and it does it in a problem-independent and domain-independent way.

Of course, not all problems are of the nature that a solution can be assembled from
subtrees coming from individuals that partially satisfy the problem’s requirements. In
their paper entitled “No Free Lunch Theorems for Optimization,” Wolpert and
Macready (1997) make the point that if one search method is better than another at
solving a certain subset of problem instances from a universe of problems with a spec-
ified finite search space and a specified finite set of cost values, it is correspondingly
worse on that universe’s remaining problem instances. The NFL theorem applies to all
search methods, including the genetic algorithm, genetic programming, any AI search
method, hill climbing, gradient search, simulated annealing, and random search. In
other words, over the entire universe of all problem instances, a genetic search method
relying primarily on crossover (such as genetic programming or the genetic algorithm)
is no better than, say, simulated annealing, hill climbing, gradient search, a genetic
method employing only mutation, or, for that matter, random search. Further analysis
and discussion is provided in Whitley 2000 and in The Design of Innovation: Lessons
from and for Competent Genetic Algorithms (Goldberg 2002).

Having said that, the fact is that the entire universe of problem instances is not the
same as the subset containing problems of interest. For the problems of interest in 
this book, we believe that there are useful “building blocks” in the intermediate 
generations prior to the emergence of the problem’s solution and that, because of this,
population-based methods employing recombination can advantageously assemble
the problem’s solution from subtrees coming from individuals that partially satisfy the
problem’s requirements. That is, we believe that a genetic search method (employing
a population in conjunction with recombination) is better suited to the problems of
interest in this book than a search method employing only a mutation operation.
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Parallel Implementation and 
Computer Time

515

Techniques of genetic and evolutionary computation generally require significant
computational resources to solve non-trivial problems. This statement is generally true
a fortiori when the results are human-competitive.

Fortunately, because of three factors, the computer time necessary to achieve
human-competitive results has become increasingly available in recent years.

First, the speed of commercially available single computers continues to double
approximately every 18 months in accordance with Moore’s law (Moore 1996). This
exponential growth in computational power (equivalent to two orders of magnitude
per decade) is currently expected to continue (and possibly accelerate) over the next
decade. Petaflop computing (Sterling 1998b; Sterling and Foster 1996a, 1996b;
Messina, Sterling, and Smith 1999) is expected to be available in the next few years.

Second, techniques of genetic and evolutionary computation in general (and
genetic programming in particular) are especially amenable to efficient (and almost
effortless) parallelization (Holland 1975; Robertson 1987; Tanese 1989; Goldberg
1989; Stender 1993; Koza and Andre 1995; Andre and Koza 1995, 1996a, 1996b;
Cantu-Paz 2000). Techniques for parallelizing runs of genetic programming are
detailed in chapter 62 of Genetic Programming III: Darwinian Invention and Problem
Solving (Koza, Bennett, Andre, and Keane 1999a).

Third, parallel cluster computer systems can be assembled with relative ease in the
Beowulf-style using “Commodity Off-The-Shelf” (COTS) hardware (Sterling 1998a;
Sterling, Salmon, Becker, and Savarese 1999; Bennett, Koza, Shipman, and Stiffelman
1999). Two different home-built Beowulf systems (described in the next section) were
used for the work described in this book.

The combined effect of these three factors can be seen by comparing the runs of
genetic programming in this book with those in the 1999 book Genetic Programming
III. The 14 human-competitive results in table 61.1 of Genetic Programming III were
produced (between 1994 and 1999) in runs that averaged about 3.5 days and that con-
sumed an average of 1.5 petacycles (1.5�1015 cycles). All but one of the human-
competitive results in Genetic Programming III were produced by a 64-node Parsytec®

parallel computer with an 80-MHz PowerPC 601 microprocessor at each processing



node (described in detail in section 62.1 of Genetic Programming III). This 1995-vin-
tage parallel system operated, as a whole, at a rate of 5.12 GHz.

We are frequently asked if it is necessary to have a large parallel system to pro-
duce human-competitive results. At the time of this writing (February 2003), a single
2.67-GHz laptop computer can be purchased for less than $1,000. This $1,000 2003-
vintage laptop runs at approximately half the 5.12-GHz clock rate of the entire 1995-
vintage 64-node parallel computer system that was responsible for virtually all the
results (including the 14 human-competitive results) in the 1999 book Genetic
Programming III. Ignoring the numerous improvements in microprocessor architec-
ture over the past eight years, a run that took 3.5-days to produce a human-competi-
tive result on the 1995-vintage 64-node parallel computer system can be executed in
a mere 7 days on a single $1,000 2003-vintage laptop computer. Moreover, if one 
had a pressing reason to replicate a run from Genetic Programming III in precisely 
3.5 days (as opposed to 7 days), one could either combine two $1,000 2003-vintage
laptops into a small two-node Beowulf-style cluster or wait 18 months for yet another
iteration of Moore’s law. In either case, human-competitive results can be readily gen-
erated today using genetic programming on a single $1,000 2003-vintage laptop com-
puter. Moreover, as time passes, it will be possible to make runs on a single computer
that would today occupy a large parallel computer.

17.1 Computer Systems Used for Work in This Book

A parallel computer system was used on 36 of the 37 problems in this book. A desk-
top Pentium machine was used for the remaining problem (the genetic network prob-
lem in chapter 7). This section describes the two parallel computer systems used for
the 36 problems.

17.1.1 Alpha Parallel Computer System

A minority of the problems described in this book were run on a home-built Beowulf-
style parallel cluster computer system consisting of 70 processors (each containing a
533-MHz DEC Alpha microprocessor and 64 megabytes of RAM). In most cases, a 
66-node version of this system was used (with the four remaining nodes being used for
code development and testing). A 56-node version of this system was used on one prob-
lem in this book. The processors communicate with one another as if they were arranged
in a two-dimensional 7�8 or 6�11 toroidal mesh. The 56-node version of this system
operates at an overall rate of 2.9�1010 Hz and the 66-node version operates at an over-
all rate of 3.5�1010 Hz. The system has a DEC Alpha computer as host. The processors
communicate with one another by a 100 megabit-per-second Ethernet. The processors
and the host use the Linux operating system. Details of the construction of this system
can be found in Genetic Programming III. A picture of the Alpha parallel computer and
additional information about it are available at www.genetic-programming.com.

For both the Alpha parallel computer system and Pentium parallel computer sys-
tem (described in section 17.1.2), the distributed “island” version of parallel genetic
programming was employed. In the “island” version of parallel genetic programming,
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semi-isolated subpopulations (demes) of individuals reside at each processing node.
The time-consuming evaluation of fitness and the relatively quick genetic operations
are performed separately on each processing node. Generations are run asynchro-
nously on each processing node. This approach efficiently uses the computational
resources of each processing node because no computational resources are wasted in
an attempt to synchronize activity on a global basis. At the end of each generation, a
small percentage of the node’s subpopulation emigrates to each of the adjacent pro-
cessing nodes. The emigrants wait in a buffer at their destination node until that pro-
cessing node reaches the end of its current generation. When the Alpha parallel
computer was used, a subpopulation of size Q�1,000, 2,000, 5,000, 10,000, or
20,000 resided at each of the D�56 or 66 processing nodes. In each generation,
B�2% (the migration rate) of the node’s subpopulation (selected probabilistically on
the basis of fitness) emigrated to each of the four adjacent processors (i.e., a total of
8%). We call this symmetric migration strategy “A” in table B.6 in appendix B. The
programming aspects of parallel genetic programming are detailed in Genetic
Programming III.

17.1.2 Pentium Parallel Computer System

A majority of the problems described in this book were run on a home-built Beowulf-
style parallel cluster computer system consisting of 1,000 350-MHz Pentium II
processors (each accompanied by 64 megabytes of RAM). That is, the system oper-
ates at an overall rate of 3.5�1011 Hz. This is 10 times faster than the Alpha system
(section 17.1.1). The Pentium system has a 350-MHz Pentium II computer as host.
The processing nodes communicate with one another by 100 megabit-per-second
Ethernet. The processing nodes and the host use the Linux operating system. This
Beowulf system was constructed in a manner that is generally similar to that used for
the Alpha system. A picture of the 1,000-Pentium system and additional information
about it are available at www.genetic-programming.com.

When the 1,000-node Pentium parallel computer is used, distributed genetic pro-
gramming is employed with a population size of Q�100, 500, 2,000, 5,000, or 10,000
at each of the D�1,000 processing nodes. Note that when the 1,000-node Pentium
parallel computer was used, the population residing at each processing node was often
smaller than when the Alpha parallel computer was used. The reason is that much
more difficult and time-consuming problems were generally run on the 1,000-node
Pentium parallel computer. For example, we used only a subpopulation size of 100
(i.e., a total population of only 100,000) on the runs seeking improved parameterized
controllers (chapters 12 and 13). The reason was that the evaluation of fitness for each
individual in the population took about one minute (in chapter 12) or two minutes (in
chapter 13).

Two processors are housed in each of the 500 physical boxes of the 1,000-Pentium
system. As each processor (asynchronously) completes a generation, emigrants from
each subpopulation (selected probabilistically based on fitness) are dispatched to each
of the four toroidally adjacent processors. For many runs in this book, the migration
rate is 2% (but 10% if the toroidally adjacent node is in the same physical box). We
call this symmetric migration strategy “B” in table B.6 in appendix B.
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For certain runs in this book, a different migration strategy was used. This migra-
tion strategy was generally used on the difficult and time-consuming problems for
which the subpopulation on each node was very small (e.g., 100 or 500). In this strat-
egy, groups of 40 processors are treated almost as if they were one processing node.
The entire 1,000-node system is then treated as a 5�5 system. That is, the 1,000
processors are hierarchically organized such that there are 5�5�25 high-level
groups (each containing 40 processors). If the adjacent node belongs to a different
group, the migration rate is 2% and emigrants are probabilistically selected based on
fitness. If the adjacent node belongs to the same group, emigrants are selected ran-
domly with a 5% migration rate (10% if the adjacent node is in the same physical
box). We call this migration strategy “C” in table B.6 in appendix B.

17.2 Computer Time for Problems in This Book

A total of 41 runs are reported in this book for the 36 problems that were run on one
of the parallel computer systems described in sections 17.1.1 and 17.1.2.

Table 17.1 tallies the computer time consumed by the 41 runs employing a paral-
lel computer system. For each run in this table, column 2 shows the total population
size, M, for all processing nodes. Column 3 shows the generation number i that
yielded the best-of-run individual presented in this book. Column 4 shows the prod-
uct of the total population size and the number of generations (i�1) that were run
before encountering the best-of-run individual. Column 5 shows the number of hours
consumed in creating the best-of-run individual. Column 6 shows the number of pro-
cessing nodes on the parallel computer used. In this column, the numbers 56 and 66
refer to the Alpha system and the number 1,000 denotes the 1,000-Pentium system.
The 56-node Alpha system operates at 2.9�1010 Hz; the 66-node Alpha system oper-
ates at 3.5�1010 Hz; and the 1,000-Pentium system operates at 3.5�1011 Hz.
Column 7 shows the number of cycles per second for all the processing nodes of the
particular parallel computer used. Column 8 shows the number of petacycles (1015

cycles) consumed by the run (totaled over all the processing nodes).
As can be seen in table 17.1, the 41 runs ran for an average elapsed time of 81.9

hours (3.4 days) and consumed an average of 93.4 petacycles.
The number of petacycles consumed by the runs (column 8 of table 17.1) range

over about three orders of magnitude—from the 3.0 petacycles consumed by the rel-
atively simple Zobel network problem (section 10.2) to the 871.9 petacycles (almost
1018 cycles) consumed by the four-week run that produced the parsimonious (third)
non-PID controller described in section 13.2.3.

If available computer speed continues to double approximately every 18 months
in accordance with Moore’s law (Moore 1996) for the next decade, a computation
running for an elapsed time of 81.9 hours (the average from table 17.1) today will
require only about 49 minutes (about 1% as much elapsed time) a decade from now.
A computation similar to the most time-consuming run in table 17.1 (the four-week
run that produced the third non-PID parameterized controller from section 13.2.3) will
require only about 7 hours of elapsed time a decade from now. The runs from chapter
15 involving the six post-2000 patented inventions (table 15.14) ran for an average
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Table 17.1 Computer time consumed by 41 runs in this book

Section
Total Total in this

Problem population Generation i M*(i�1) hours Nodes Hz Petacycles book

Two-lag plant 66,000 32 2,178,000 44.5 66 3.5�1010 5.6 3.7

Three-lag plant 66,000 31 2,112,000 32 66 3.5�1010 4.0 3.8

Three-lag plant
with five second
delay 500,000 126 63,500,000 65 1,000 3.5�1011 81.9 3.9

Non-minimal
phase plant 66,000 38 2,574,000 46 66 3.5�1010 5.8 3.10

RC circuit with
gain greater than
two 660,000 927 612,480,000 24 66 3.5�1010 3.0 4.2

Philbrick circuit 660,000 39 26,400,000 7 66 3.5�1010 0.9 4.3
NAND circuit 132,000 17 2,376,000 10 66 3.5�1010 1.3 4.4

Arithmetic logic
unit (ALU) circuit 1,320,000 33 44,880,000 170 66 3.5�1010 21.4 4.5

Square root
computational
circuit 10,000,000 66 670,000,000 52 1,000 3.5�1011 65.5 4.6

Lowpass filter
without an explicit
test fixture 1,000,000 211 212,000,000 9 1,000 3.5�1011 11.3 4.7

Lowpass filter with
layout 1,120,000 138 155,680,000 28 56 2.9�1010 3.0 5.2

Amplifier with
layout 10,000,000 101 1,020,000,000 17 1,000 3.5�1011 21.4 5.3

Yagi-Uda antenna 500,000 90 45,500,000 22 1,000 3.5�1011 27.7 6.5
Metabolic pathway
for phospholipid
cycle 100,000 225 22,600,000 17 1,000 3.5�1011 21.4 8.6

Metabolic pathway
for ketone bodies 100,000 97 9,800,000 20 1,000 3.5�1011 25.2 8.7

Three-lag plant
with free variable 500,000 42 21,500,000 23.4 1,000 3.5�1011 29.5 9.1

Controller for two
families of plants 100,000 217 21,800,000 40.6 1,000 3.5�1011 51.2 9.2

Zobel network
problem (two free
variables) 50,000,000 16 8,500,000 2 1,000 3.5�1011 3.0 10.2

Third-order elliptic
lowpass filter with
a free variable for
the modular angle 1,000,000 293 294,000,000 71 1,000 3.5�1011 89.5 10.3

Passive lowpass
filter with s free
variable for the
passband
boundary 10,000,000 78 790,000,000 45 1,000 3.5�1011 56.6 10.4

Active lowpass
filter with variable
passband boundary
with free variable 5,000,000 101 501,000,000 151 1,000 3.5�1011 190.3 10.5

(Continued)
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Table 17.1 (Continued)

Section
Total Total in this

Problem population Generation i M*(i�1) hours Nodes Hz Petacycles book

Lowpass/highpass
filter with free
variables 10,000,000 47 480,000,000 45 1,000 3.5�1011 56.6 11.1

Lowpass/highpass
filter with variable
passband
boundary with 
a free variable 10,000,000 93 940,000,000 84 1,000 3.5�1011 105.8 11.2

Variable
quadratic/cubic
computational
circuit (one free
variable) 1,000,000 241 242,000,000 49 1,000 3.5�1011 61.7 11.3

Variable 40–60 dB
amplifier (one free
variable) 2,000,000 332 666,000,000 50 1,000 3.5�1011 63.0 11.4

Improved PID
tuning rules (four
free variables) 100,000 76 7,700,000 107 1,000 3.5�1011 134.6 12.3

First non-PID
parameterized
controller (two free
variables) 100,000 88 8,900,000 320 1,000 3.5�1011 403.2 13.2.1

Second non-PID
parameterized
controller (two free
variables) 100,000 38 3,900,000 397 1,000 3.5�1011 500.2 13.2.2

Third non-PID
parameterized
controller (two free
variables) 100,000 199 20,000,000 692 1,000 3.5�1011 871.9 13.2.3

Reinvention of
negative feedback 1,000,000 48 49,000,000 7 1,000 3.5�1011 8.8 14.2

Low-voltage balun
circuit 5,000,000 97 490,000,000 25 1,000 3.5�1011 31.5 15.4.1

Mixed analog-
digital variable
capacitor circuit 2,000,000 98 198,000,000 88 1,000 3.5�1011 110.9 15.4.2

High-current load
circuit—First run 2,000,000 114 230,000,000 134 1,000 3.5�1011 168.8 15.4.3.1

High-current load
circuit—Second
run 2,000,000 215 432,000,000 67 1,000 3.5�1011 84.4 15.4.3.2

Voltage-current
conversion circuit 5,000,000 109 550,000,000 83 1,000 3.5�1011 104.6 15.4.4

Cubic function
generator—
First run 5,000,000 182 915,000,000 206 1,000 3.5�1011 259.6 15.4.5

Cubic function
generator—
Second run 2,000,000 326 654,000,000 135 1,000 3.5�1011 170.1 15.4.5
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elapsed time of 80 hours each (very close to the overall average of 81.9 hours shown
in table 17.1). If Moore’s law is applied to these runs, a similar run would require only
about 48 minutes of elapsed time a decade from now.

Comparing the 41 runs from this book (table 17.1) with the 14 runs involving
human-competitive results shown in table 61.1 of Genetic Programming III, the
elapsed time for the two groups of runs was about the same (3.4 days for this book
versus 3.5 days for the earlier book). However, the problems treated in this book were
qualitatively more substantial than those in Genetic Programming III. The average
population size for the 41 runs in this book is 3,530,000 whereas it was only 256,000
in Genetic Programming III. The 41 runs in this book entailed about 8 times as many
fitness evaluations as those in Genetic Programming III (257,000,000 for this book
versus 32,800,000 for the earlier book). Moreover, because of the greater complexity
of the problems in this book, the 41 runs in this book consumed an average of about
62 times more computational resources than those in Genetic Programming III (93.4
petacycles for this book versus 1.5 petacycles for the earlier book). The fitness meas-
ures for problems in this book are generally far more time-consuming than those in
Genetic Programming III because the fitness measures in this book contain a consid-
erably greater number of different elements (up to a high of 193 elements for the third
non-PID controller in section 13.2.3) and because the elements of the fitness measures
in this book usually involve time-domain simulations (which generally consume far
more computer time than the frequency-domain simulations and other relatively fast
types of simulation and evaluation found in Genetic Programming III).

The data in table 17.1 concerning the duration of each run is approximate for 
several reasons.

First, no adjustment was made in the durational data for the fact that, in practice,
no fitness evaluations are actually performed for the percentage (usually about 9%) of
the population that is reproduced in each generation or for the (smaller) percentage 
of the offspring produced by semantics-preserving architecture-altering operations
(e.g., subroutine duplication or branch creation).
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Table 17.1 (Continued)

Section
Total Total in this

Problem population Generation i M*(i�1) hours Nodes Hz Petacycles book

Tunable integrated
active filter—
First run 2,000,000 70 142,000,000 23 1,000 3.5�1011 29.0 15.4.6.1

Tunable integrated
active filter—
Second run 2,000,000 50 102,000,000 14 1,000 3.5�1011 17.6 15.4.6.2

Tunable integrated
active filter—
Third run 2,000,000 38 78,000,000 12 1,000 3.5�1011 15.1 15.4.6.3

Tunable integrated
active filter—
Fourth run 2,000,000 27 56,000,000 6 1,000 3.5�1011 7.6 15.4.6.4

Average 3,530,000 128.7 267,000,000 81.9 93.4



Second, table 17.1 shows the generation number during which the best-of-run
individual was first created on its processing node. However, because of the asyn-
chronous operation of the processing nodes in the parallel system, other processing
nodes are, at that same moment, generally at a somewhat earlier or somewhat later
generation number.

Third, it is not uncommon for a small fraction of the 1,000 processing nodes to
stop during a particular run because of a deeply-buried problem-specific software flaw
that becomes exposed by the execution of the run’s hundreds of millions of genetic
operations.

Fourth, it is not uncommon for some nodes to be out of commission at any given
time because of fan failures (the only hardware problem that we regularly encounter).

Fifth, no adjustment was made to reflect the fact that we frequently commandeer
10 nodes of the 1,000-node system in the middle of a run in order to test a future run’s
software.

In the last three cases, all individuals on the adversely affected processing nodes
as well as all individuals that attempt to emigrate to the affected nodes are simply lost.

None of these five factors are material to the statistics concerning the overall 
operation of a 1,000-node system.
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Historical Perspective on Moore’s Law and
the Progression of Qualitatively More

Substantial Results Produced by Genetic
Programming

523

This chapter reviews the qualitative nature of the results produced by genetic 
programming over the 15-year period between 1987 and 2002. This chapter relates to
this book’s book fourth main point, namely that genetic programming has delivered a
progression of qualitatively more substantial results in synchrony with five approxi-
mately order-of-magnitude increases in the expenditure of computer time.

18.1 Five Computer Systems Used in 15-Year Period

Table 1.4 lists the five computer systems used to produce our group’s reported work
on genetic programming in the 15-year period between 1987 and 2002.

The first entry in table 1.4 is a serial computer. The four subsequent entries are 
parallel computer systems. The presence of four increasingly powerful parallel 
computer systems in the table reflects the fact that genetic programming has suc-
cessfully taken advantage of parallelization as a source of increased computational
power.

Column 1 of table 1.4 identifies the computer system. Serial Texas Instruments 
25-MHz LISP machines were used for the work in Genetic Programming (Koza
1992a) and Genetic Programming II (Koza 1994a). A 64-node Transtech® transputer
parallel machine (processing bytes at 30 MHz) and a 64-node 80-MHz Parsytec
PowerPC® parallel machine were used for the work in Genetic Programming III
(Koza, Bennett, Andre, and Keane 1999a). These two systems are described in section
62.1 of Genetic Programming III. A 70-node Alpha system (described in section
17.1.1 of this book) and a 1,000-node Pentium system (described in section 17.1.2 of
this book) were used for the work in this book.

Column 2 of table 1.4 shows the time period in which each computer system was
used.



Column 3 of table 1.4 shows the overall number of petacycles (1015 cycles) per
day for the entire system (i.e., all processing nodes, in the case of the parallel
machines). Of course, a computer’s clock rate is not a precise indicator of machine
performance. For one thing, there are differences in the instruction sets, cache designs,
memory bandwidth, and a myriad of other hardware details between the various
machines. Moreover, differences in operating systems, compilers, programming lan-
guages (e.g., LISP, C, Java) and our own genetic programming software also play a
role. Nonetheless, for purposes of the qualitative discussion in this chapter, the num-
ber of petacycles per day for the entire system is a reasonable proxy for a system’s
overall performance.

Column 4 shows the speed-up between each successive computer system in table
1.4 (with the base case being the LISP machine used between 1987 and 1994).

Column 5 shows, for each system listed in table 1.4, the speed-up over the LISP
machine (the table’s first entry).

Column 6 of table 1.4 identifies the book in which the human-competitive results
(if any) are reported.

Column 7 of table 1.4 shows the number of human-competitive results (as defined
in table 1.2 and itemized in table 1.3 of this book) produced by each computer sys-
tem. Two of the 28 human-competitive results in the table could arguably be assigned
to a different system because they were each run successfully on different computer
systems. Specifically, the first run of the transmembrane identification problem was
first run on the LISP machine and later run on the Parsytec parallel system. The low-
pass filter problem was run at various times on the Parsytec, Alpha, and Pentium par-
allel systems.

Table 1.4 shows the following:

● There is approximately an order-of-magnitude speed-up (column 4) between each
successive computer system in the table. Note that, according to Moore’s law
(Moore 1996), exponential increases in computer power correspond approximately
to constant periods of time.

● There is a 13,900-to-1 speed-up (column 5) between the most recent machine (the
1,000-node parallel computer system used for most of the work in this book) and
the earliest computer system in the table (the serial LISP machine).

● The slower early machines generated few or no human-competitive results, whereas
the faster more recent machines generated numerous human-competitive results.

18.2 Qualitative Nature of Results Produced by the Five Computer Systems

The four successive order-of-magnitude increases in computer power shown in table 1.4
resulted in a succession of qualitatively more substantial results, as described below.

The results reported in the first book, Genetic Programming: On the Programming
of Computers by Means of Natural Selection (Koza 1992a) were produced entirely on
a serial LISP machine. The problems in the 1992 book were generally “toy” problems
from the literature of the fields of artificial intelligence and machine learning in the
1980s and early 1990s. This work established the breadth of application of genetic
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programming by demonstrating that genetic programming could solve a wide variety
of problems from a wide variety of fields.

The work in the second book Genetic Programming II: Automatic Discovery of
Reusable Programs (Koza 1994a) was also produced entirely on a serial LISP
machine. The first human-competitive result in table 1.3 (involving the transmem-
brane segment identification problem) appeared in that book.

The work in the third book, Genetic Programming III: Darwinian Invention and
Problem Solving (Koza, Bennett, Andre, and Keane 1999a) was produced on the 64-
node Transtech transputer parallel machine and the 64-node 80-MHz Parsytec paral-
lel machine. The slower 64-node Transtech transputer machine produced one
human-competitive result (involving motifs for families of proteins). Twelve human-
competitive results were produced on the faster 64-node 80-MHz Parsytec machine.

The first two human-competitive results (produced by the first two computer sys-
tems listed in table 1.4) can be characterized as classification problems operating on
one-dimensional discrete data (protein sequences). Both of these results outperformed
previous human-created solutions. Neither involved patented inventions.

The first of the 12 human-competitive results produced by the third computer sys-
tem (the 64-node 80-MHz Parsytec machine) involved cellular automata. In this prob-
lem, the evaluation of fitness of each candidate involved processing discrete data in
two dimensions (i.e., 149 cells of the one-dimensional cellular automata considered
over 600 time steps). This result outperformed previous human-created solutions.
Thus, insofar as human-competitive results are concerned, the increased computa-
tional resources of the third computer system facilitated an increase, from one to two,
in the dimensionality of the discrete data being processed.

Nine of the 12 other human-competitive results produced by the third computer
system involved continuous-time electrical signals (analyzed primarily in the fre-
quency domain). Thus, insofar as human-competitive results are concerned, the
increased computational resources of the third computer system facilitated the transi-
tion in the character of the data from discrete data to continuous signals.

Ten of the 12 human-competitive results (table 1.3) produced by the third computer
system infringe, improve upon, or duplicate the functionality of patents that were issued
in the first two-thirds of the 20th century. Thus, insofar as human-competitive results are
concerned, the increased computational resources of the third computer system facili-
tated the transition to problems involving previously issued (but non-recent) patents.

Concerning the present book, the first of the two human-competitive results pro-
duced by the fourth computer system (the 70-node Alpha parallel machine) involved
time-domain simulations (i.e., the rediscovery of the patented PID-D2 controller in
section 3.7). Time-domain simulations of continuous signals are, in general, consid-
erably more time-consuming than frequency-domain simulations. Thus, insofar as
human-competitive results are concerned, the increased computational resources of
the fourth computer system extended the nature of the analysis being performed from
the frequency domain to the computationally more intensive time domain.

The second of the two human-competitive results produced by the fourth computer
system added the automated creation of placement and routing (layout) to the synthe-
sis of topology and sizing of analog electrical circuits (chapter 5). The increased com-
putational resources of the fourth computer system facilitated the transition between
the synthesis of discrete-component circuits to the synthesis of laid-out circuits.
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Ten of the 12 human-competitive results in the present book were produced by the
fifth computer system listed in table 1.4 (the 1,000-node Pentium II parallel machine).

The fifth computer system made it possible to dramatically increase the number
and complexity of the simulations. For example, the fitness evaluation for the run that
yielded the parsimonious third non-PID controller (described in section 13.2.3)
included eight different time-domain simulations for each of 24 different plants (i.e.,
192 separate runs of the simulator). The evaluation of fitness took an average of over
two minutes per individual. This evaluation was performed on each of 20,000,000
candidate individuals encountered during the run.

Eleven of the results (in chapters 9, 10, 11, and 13) involve parameterized 
topologies—that is, the automatic creation, in a single run, of a general (parameter-
ized) solution to a problem in the form of a graphical structure whose nodes or edges
represent components and where the parameter values of the components are speci-
fied by mathematical expressions containing free variables. The computer time
required for the evaluation of fitness of each individual in the population by problems
involving parameterized topologies is an integral multiple of the time required for
the corresponding problem without free variables. The increased computational
resources of the fifth computer system facilitated the transition to problems involving
free variables.

All of the 14 human-competitive results produced by the fifth computer system
listed in table 1.4 involve patents. Six of these patents were issued after January 1,
2000. Thus, insofar as human-competitive results are concerned, the increased com-
putational resources of the fifth computer system advanced the period represented by
the patents from first two-thirds of the 20th century to the 21st century.

Four successive order-of-magnitude increases in computer power are explicitly
shown in table 1.4. An additional order-of-magnitude increase was achieved by the
expedient of making extraordinarily long runs on the largest machine in the table 
(the 1,000-node Pentium® II parallel machine). The length of the run that produced
the genetically evolved controller described in section 13.2.3 was 28.8 days—almost
an order-of-magnitude increase (9.3 times) over the 3.4-day average for other prob-
lems described in this book (table 17.1). A patent application was filed for the con-
troller produced by this four-week run (Keane, Koza, and Streeter 2002a). This
genetically evolved controller outperforms controllers employing the widely used
Ziegler-Nichols tuning rules and the recently developed Åström-Hägglund tuning
rules. If the final 9.3-to-1 increase in table 1.5 is counted as an additional speed-up,
the overall speed-up between the first and last entries in the table is 130,660-to-1. 
In other words, the transition from merely duplicating the functionality of 21st-century
patented inventions to generating patentable new inventions corresponds to another
order-of-magnitude increase in the expenditure of computational resources.

18.3 Effect of Order-of-Magnitude Increases in Computer Power on the
Qualitative Nature of the Results Produced by Genetic Programming

Table 1.5 is organized around the five order-of-magnitude increases in the expenditure
of computing power resulting from the transitions described in the previous section
(section 18.2). Column 4 of table 1.5 characterizes the qualitative nature of the results
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produced by genetic programming. The table as a whole shows the progression of
qualitatively more substantial results produced by genetic programming in terms of
five order-of-magnitude increases in the expenditure of computational resources.

Taking a broad view of this succession of order-of-magnitude increases in computer
power, we can say the following:

● The Texas Instruments LISP machine (the base case for all subsequent comparative
measurements of computer power) produced solutions to several dozen toy prob-
lems of the 1980s and early 1990s from the fields of artificial intelligence and
machine learning.

● The 9-to-1 increase in computer power associated with the 64-node Transtech 
transputer parallel machine yielded two human-competitive results that were not
patent-related.

● The 22-to-1 increase in computer power associated with the 64-node 80-MHz
Parsytec parallel machine yielded numerous human-competitive results involving
20th-century patented inventions.

● The combined 69-to-1 increase in computer power associated with the next two
computer systems (the 70-node 533-MHz Alpha parallel machine and 1,000-node
350-MHz Pentium II parallel machine) yielded numerous human-competitive
results involving 21st-century patented inventions.

● The 9-to-1 increase in computer power resulting from running the 1,000-node 
350-MHz Pentium II parallel machine for 28.8 days (as compared to the average of
3.4 days shown in table 17.1) yielded one of the controllers claimed as a new inven-
tion in the patent application filed on July 12, 2002 (Keane, Koza, and Streeter
2002a).

The order-of-magnitude increases in computer power shown in table 1.5 corre-
spond closely (albeit not perfectly) with the following progression of qualitatively
more substantial results produced by genetic programming:

● toy problems,
● human-competitive results not related to patented inventions,
● 20th-century patented inventions,
● 21st-century patented inventions, and
● patentable new inventions.

In other words, genetic programming is able to take advantage of the exponentially
increasing computational power made available by iterations of Moore’s law—that is,
it is Mooreware.

These results establish this book’s fourth main point: Genetic programming has
delivered a progression of qualitatively more substantial results in synchrony with five
approximately order-of-magnitude increases in the expenditure of computer time.
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Conclusion

529

For the following reasons, we believe that we have established this book’s four main
points.

19.1 Genetic Programming Now Routinely Delivers 
High-Return Human-Competitive Machine Intelligence

This book’s first main point is: Genetic programming now routinely delivers 
high-return human-competitive machine intelligence.

We defined the term “human-competitive” by means of the eight criteria in table
1.2. We listed 36 human-competitive results (of which we are aware) that have been
produced by genetic programming in table 1.3. We justified the rating of “human-
competitive” for new results in this book in sections 3.7.3, 4.3.3, 4.4.3, 5.2.3, 9.2.3,
12.4, 13.3, 14.3, and 15.6.

In section 1.1.2, we mentioned that a method purporting to produce machine
intelligence can be measured by its AI ratio—that is, the ratio of that which is deliv-
ered by the automated operation of the artificial method to the amount of intelligence
that is supplied by the human applying the method to a particular problem. In numer-
ous places throughout this book, we evaluated (in a qualitative way) the numerator
and denominator of the AI ratio for particular genetically evolved results (sections
3.7.4, 3.8.4, 3.9.4, 3.10.4, 4.2.4, 4.3.5, 4.4.5, 4.5.4, 4.6.4, 4.7.4, 5.2.5, 5.3.4, 6.7,
7.4.2, 8.6.2, 8.7.2, 9.1.4, 9.2.5, 10.2.4, 10.3.4, 10.4.4, 10.5.4, 11.1.4, 11.2.4, 12.6,
13.5, 14.5, and 15.8). The numerator of the AI ratio for all 41 results presented in this
book is generally high because the result is either human-competitive or, at the least,
very substantial. The denominator of the AI ratio for all 41 results is generally low
because the human user pre-supplies only de minimus knowledge, information,
analysis, and intelligence prior to launching a run of genetic programming. Thus, it
can be said that genetic programming has produced numerous “high-return” results.

We mentioned in section 1.1.3 that an automated problem-solving method can be
measured in terms of its routineness. Routineness means that the method is general
and, additionally, that relatively little human effort is required to get the method to



successfully handle new problems within a particular domain and to successfully 
handle new problems from a different domain. In numerous places throughout this
book, we demonstrated

● the routineness of the transition from one problem to another problem in the same
domain (sections 3.8.3, 3.9.3, 3.10.3, 4.3.4. 4.4.4, 4.5.3, 4.6.3, 4.7.3, 5.3.3, 8.7.1,
9.2.4, 10.3.3. 10.4.3. 10.5.3, 11.2.3, 13.4. 14.4. and 15.7),

● the routineness of the transition from one domain to the next (sections 4.2.3, 5.2.4,
6.6, 7.4.1, 8.6.1, and 12.5),

● the routineness of the transition from a non-parameterized version of a problem to
a parameterized version (sections 9.1.3 and 10.2.3), and

● the routineness of the transition from a problem involving parameterized topologies
without conditional developmental operators to a problem involving parameterized
topologies with them (section 11.1.3).

19.2 Genetic Programming Is an Automated Invention Machine

This book’s second main point is: Genetic programming is an automated invention
machine.

There are now 23 instances (shown in tables C.1 and C.2 in appendix C) where
genetic programming has duplicated the functionality of a previously patented inven-
tion, infringed a previously issued patent, or created a patentable new invention.
Specifically, there are 15 instances where genetic programming has created an entity
that either infringes or duplicates the functionality of a previously patented 20th-
century invention, six instances where genetic programming has done the same with
respect to an invention patented after January 1, 2000 (chapter 15), and two instances
where genetic programming has created a patentable new invention (chapters 12 and
13). The two new inventions are general-purpose controllers that outperform 
controllers employing the widely used Ziegler-Nichols tuning rules and the recently
developed Åström-Hägglund tuning rules. As discussed in section 1.2, the inventions
generated by genetic programming exhibit the kind of creativity and illogical discon-
tinuity from previous human work that is required to obtain a patent. There are numer-
ous examples in this book where genetic programming has unearthed a novel and
creative solution to a problem.

As available computer power continues to increase in accordance with Moore’s
Law, we anticipate that the use of genetic programming as an automated invention
machine will become more and more common and that increasing complex entities
will be invented by means of genetic programming.

19.3 Genetic Programming Can Automatically Create 
Parameterized Topologies

This book’s third main point is: Genetic programming can automatically create 
a general solution to a problem in the form of a parameterized topology.
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Eleven problems demonstrate that genetic programming can automatically create,
in a single run, a general (parameterized) solution to a problem in the form of a graph-
ical structure whose nodes or edges represent components and where the parameter
values of the components are specified by mathematical expressions containing free
variables. Chapters 9 and 13 demonstrate the ability of genetic programming to 
create parameterized topologies for controllers. Chapters 10 and 11 demonstrate this
ability for electrical circuits.

19.4 Genetic Programming Has Delivered Qualitatively 
More Substantial Results in Synchrony with Increasing Computer Power

This book’s fourth main point is: Genetic programming has delivered a progression of
qualitatively more substantial results in synchrony with five approximately order-of-
magnitude increases in the expenditure of computer time.

In section 1.4, we raised a series of questions concerning any proposed approach
to machine intelligence.

● Is the method formulated with sufficient precision to enable it to be implemented
(or is it vagueware)?

● Has the method been successfully demonstrated on a specific single problem (or is
it promiseware)?
● Was the method applied to a difficult demonstrative problem (or is it toyware)?
● Did the method top out after succeeding on a single demonstrative problem?

● Has the method solved multiple problems (or is it soloware)?
● Are the multiple problems difficult?
● Did the method top out at this stage?

● Has the method solved problems from multiple domains (or is it nicheware)?
● Are the domains difficult?
● Did the method top out at this stage?

● Were the results human-competitive?
● Can the method profitably take advantage of the increased computational power

available by means of parallel processing (or is it serialware)?
● Or, is the method Mooreware—able to take advantage of the exponentially increas-

ing computational power made available by the relentless iteration of Moore’s law?

Genetic Programming: On the Programming of Computers by Means of Natural
Selection (Koza 1992a) demonstrated that genetic programming is not vagueware,
promiseware, soloware, or nicheware.

The numerous human-competitive results discussed in this book establish that it is
not toyware.

The fact that genetic programming has been successfully run on multiple parallel
computer systems shows that it is not serialware.

In chapter 18, we noted that five successive order-of-magnitude increases in 
computer power (shown in table 1.5) correspond closely (albeit not perfectly) with the
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following progression of qualitatively more substantial results produced by genetic
programming:

● toy problems,
● human-competitive results not related to patented inventions,
● 20th-century patented inventions,
● 21st-century patented inventions, and
● patentable new inventions.

In other words, genetic programming is able to take advantage of the exponentially
increasing computational power made available by iterations of Moore’s law—that is,
it is Mooreware.

As far as we know, genetic programming is, at the present time, unique among
methods of artificial intelligence and machine learning in terms of its duplication of
numerous previously patented results, unique in its generation of patentable new
results, unique in the breadth and depth of problems solved, unique in its demon-
strated ability to produce parameterized topologies, and unique in its delivery of rou-
tine high-return, human-competitive machine intelligence.
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Appendix A: Functions and Terminals
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Table A.1 shows the name and a reference for functions and terminals (i.e., functions
of arity 0) used in this book.

Table A.1 Functions and terminals

Section in 
Name Arity Full name this book

+ 2 Numeric addition 2.2.1
� 2 Numeric subtraction 2.2.1
* 2 Numeric multiplication 2.2.1
% 2 Protected numeric division 2.2.1

 2 Greater-than

comparative function 7.2.1
� 2 Less-than comparative

function 7.2.1
2N3904 0 2N3904 transistor model 10.5.1.4
2N3906 0 2N3906 transistor model 10.5.1.4
ABS_SIGNAL 1 Insert an absolute

value block into a 
controller 3.5.1

ADD_3_SIGNAL 3 Insert a 3-input
addition block into a
controller 3.5.1

ADD_SIGNAL 2 Insert an addition
block into a controller 3.5.1

ADF Variable Automatically defined
function 3.5.4

AH 0 Connect to Åström-Hägglund
controller 13.1.2

B_C_E,…, E_C_B 0 Transistor lead permutation
terminals 10.5.1.4

BIFURCATE_POSITIVE 0 Bifurcate positive end
of wire in inserting
transistor 10.5.1.4
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Table A.1 (Continued)

Section in 
Name Arity Full name this book

BIFURCATE_NEGATIVE 0 Bifurcate negative end
of wire in inserting
transistor 10.5.1.4

C 2 Capacitor-inserting function 4.2.1.3
C-LAYOUT 2 Geographically-aware

capacitor-inserting function 5.2.1.3
C_NEW 1 Create a capacitor 4.7.1.3
C00002 0 Concentration of

cofactor ATP 8.5.3
C00116 0 Concentration of glycerol 8.5.3
C00162 0 Concentration of fatty acid 8.5.3
C00165 0 Concentration of

diacyl-glycerol 8.5.3
CAP_LEVEL 0 Represents gene expression

level in a genetic network 7.3.3
CONSTANT_0 0 Connect to time-domain

signal with constant 0 
value 3.5.2

CONTROLLER_OUTPUT 0 Connect to a
controller’s output 3.5.2

CR_1_1 4 1-subtrate, 1-product
reactor block 8.4.1.1

CR_1_2 5 1-subtrate, 2-product
reactor block 8.4.1.1

CR_2_1 5 2-subtrate, 1-product
reactor block 8.4.1.1

CR_2_2 6 2-subtrate, 2-product
reactor block 8.4.1.1

DELAY 1 Insert a delay block
into a controller 3.5.1

DIFFERENTIAL_ Insert a differential
INPUT_INTEGRATOR 2 input integrator block into

a controller 3.5.1
DIFFERENTIATOR 1 Insert a differentiator

block into a controller 3.5.1
DIV_NUMERIC 2 Protected numeric division

for controllers 9.1.1.3
DIV_SIGNAL 2 Insert a division block

into a controller 3.5.1
DOWN_OR_RIGHT 0 Parallel-divide down or right 10.1.2
DRAW 2 Drawing turtle function 6.3.1
END 0 Development-ending function 4.2.1.4
F 0 Free variable representing

passband boundary 10.3.1.3
F1 0 Free variable

representing passband
boundary 11.1.1.3
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Table A.1 (Continued)

Section in 
Name Arity Full name this book

F2 0 Free variable representing
stopband boundary 11.1.1.3

FIRST_PRODUCT 1 Selects the first product
produced by a
chemical reaction 8.4.1.1

FLIP 1 Flip (polarity-reversing) function 4.2.1.3
GAIN 2 Insert a gain block into

a controller 3.5.1
GLUCOSE_LEVEL 0 Represents glucose level in

a genetic network 7.3.3
HFA3046 0 HFA3046 transistor model 15.3.3
HFA3128 0 HFA3128 transistor model 15.3.3
IF 3 If operator 7.2.1
IF_POSITIVE 3 Insert an if-positive

block into a controller 3.5.1
IFGTZ_DEVELOPMENTAL 3 If greater than zero

developmental operator 11.1
INPUT_0 2 Connect to a circuit’s input 4.7.1.1
INTEGRATOR 1 Insert an integrator

block into a controller 3.5.1
INT1, INT2, INT3 0 Intermediate substance 8.5.3 

terminals
INVERTER 1 Insert an inverter block

into a controller 3.5.1
IRF511 0 IRF511 transistor model 15.3.3
IRF9230 0 IRF9230 transistor model 15.3.3
IRFZ44 0 IRFZ44 transistor model 15.3.3
KU 0 Free variable representing

plant’s ultimate gain 9.2.1.2
L 0 Free variable representing

plant’s dead time 9.2.1.2
L 2 Inductor-inserting function 10.3.1.4
L1 0 Free variable representing

inductance of a specific inductor 10.1.2.4
L_NEW 1 Create an inductor 4.7.1.3
L-LAYOUT 2 Geographically aware

inductor-inserting function 5.2.1.3
LACTOSE_LEVEL 0 Represents lactose level in

a genetic circuit 7.3.3
LAG 2 Insert a lag block into a controller 3.5.1
LAG2 3 Insert a second order lag block

into a controller 3.5.1
LANDMARK 1 Landmark turtle function 6.3.1
LEAD 2 Insert a lead block into a controller 3.5.1
LEFT_1,…, LEFT_4 0 Takeoff point reference

terminals 13.1.2
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Table A.1 (Continued)

Section in 
Name Arity Full name this book

LIMITER 3 Insert a limiter block 
into a controller 3.5.1

LOG_F 0 Free variable representing
logarithm of passband
boundary for filter 10.5.1.4

MTP50P03HDL 0 MTP50P03HDL
transistor model 15.3.3

MULT_SIGNAL 2 Insert a multiplication
block into a controller 3.5.1

NODE 2 Connect distant points
in a circuit 10.1.1

NOP 1 No-operation function 4.2.1.3
OUTPUT_0 2 Connect to a circuit’s output 4.7.1.1
PAIR_CONNECT_0 3 Connects a pair of distant

points in a circuit 4.2.1.3
PAIR_CONNECT_1 3 Connects a pair of distant

points in a circuit 4.2.1.3
PARALLEL-LAYOUT-LEFT 4 Geographically aware

parallel division function 5.2.1.3
PARALLEL-LAYOUT-RIGHT 4 Geographically aware

parallel division function 5.2.1.3
PARALLEL0 4 Parallel-division

function, version 0 4.2.1.3
PARALLEL1 4 Parallel-division function,

version 1 4.2.1.3
PARALLEL_NEW 4 New version of parallel

division function 10.1.2
PLANT_OUTPUT 0 Connect to a controller’s

plant output 3.5.2
POW 2 Power function 12.2.3
PROGN Variable Connective function 6.3.1
Q 6 Transistor-inserting function 10.1.5
Q_DIODE_NPN 1 Insert an NPN diode into

a circuit 4.4.1.4
Q_DIODE_PNP 1 Insert a PNP diode into a circuit 4.4.1.4
Q_GND_EMIT_NPN 1 Insert an NPN transistor

whose emitter is connected
to ground 4.4.1.4

Q_GND_EMIT_PNP 1 Insert a PNP transistor
whose emitter is
connected to ground 4.4.1.4

Q_POS5V_COLL_NPN 1 Insert an NPN transistor
whose collector is connected
to a 5 V power supply 4.4.1.4

Q_POS5V_EMIT_PNP 1 Insert a PNP transistor whose
emitter is connected to a
5 V power supply 4.4.1.4

Q_THREE_NPN0,…, Insert an NPN transistor
Q_THREE_NPN11 3 into a circuit 4.4.1.4
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Table A.1 (Continued)

Section in 
Name Arity Full name this book

Q_THREE_PNP0,…, Insert a PNP transistor
Q_THREE_PNP11 3 into a circuit 4.4.1.4
R 2 Resistor-inserting function 4.2.1.3
R1 0 Free variable representing

inductance of a specific resistor 10.1.2.4
� 0 Random floating-point

constants in specified range 3.5.5.1
�integer 0 Random integer

constants between 0 and 99 6.3.2
�p 0 Random perturbable

floating-point value in
specified range 3.5.5.2

�real 0 Random floating-point
constants between 0.0 and 1.0 6.3.2

R_NEW 1 Create a resistor 4.7.1.3
REFERENCE_SIGNAL 0 Connect to a controller’s

reference signal 3.5.2
REPEAT 2 Repeat turtle function 6.3.1
REPRESSOR_LEVEL 0 Represents repressor level

in a genetic network 7.3.3
RETAINING_ Connect to ground 4.3.1.4
THREE_GROUND0 3
RETAINING_ Connect to ground 4.3.1.4
THREE_GROUND1 3
RETAINING_ Connect to 5 V power supply 4.4.1.4
THREE_POS5V_0 3
RETAINING_ Connect to 5 V power supply 4.4.1.4
THREE_POS5V_0 3
REXP 1 Protected exponential function 9.2.1.3
RIGHT_1,…, RIGHT_4 0 Takeoff point reference terminals 13.1.2
RLOG 1 Protected natural logarithm 

function 9.2.1.3
SAFE_CUT 0 Safe-cut developmental function 4.2.1.4
SECOND_PRODUCT 1 Selects the second product

produced by a chemical reaction 8.4.1.1
SERIES 3 Series division function 4.2.1.3
SERIES-LAYOUT 3 Geographically aware

series division function 5.2.1.3
SIN_THETA 0 Free variable representing sine

of a filter’s modular angle 10.2.1.4
SUB_SIGNAL 2 Insert a subtraction

block into a controller 3.5.1
TAKEOFF 1 New takeoff point function 13.1.1
TARGET 0 Free variable representing identity

of target circuit (for squaring/
cubing problem and 40/60 dB
amplifier problem) 11.3.1.4

TAU 0 Free variable representing
plant’s time constant 9.1.1.2
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Table A.1 (Continued )

Section in 
Name Arity Full name this book

THREE_GROUND 3 Three-argument connection
to ground 10.2.1.3

TU 0 Free variable representing
plant’s ultimate period 9.2.1.2

TURN-RIGHT 1 Turn right turtle function 6.3.1
TR 0 Free variable

representing plant’s rise time 9.2.1.2
TWO_GROUND 2 Two-argument connection

to ground 10.2.1.3
TWO_LEAD 3 Two-leaded-

component-inserting function 10.1.4
TWO_NEG15V 2 �15 Volt reference voltage

source function 11.3.1.3
TWO_POS1V 2 �1 Volt reference voltage

source function 11.3.1.3
TWO_POS2V 2 �2 Volt reference voltage

source function 11.3.1.3
TWO_POS5V 2 �5 Volt reference voltage

source function 11.3.1.3
TWO_POS15V 2 �15 Volt reference voltage

source function 11.3.1.3
UP_OR_LEFT 0 Parallel-divide up or left 10.1.2
VIA-TO-GROUND- 3 Geographically aware via to 
NEG-LEFT-LAYOUT ground function 5.2.1.3

VIA-TO-GROUND- 3 Geographically aware via to
NEG-RIGHT-LAYOUT ground function 5.2.1.3

VIA-TO-GROUND- 3 Geographically aware via to 
POS-T-LAYOUT ground function 5.2.1.3

VIA-TO-GROUND- 3 Geographically aware via to
POS-RIGHT-LAYOUT ground function 5.2.1.3

X 0 Represents value on the X-axis
for symbolic regression
problems 2.2.1
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Appendix B: Control Parameters
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Broadly speaking, we have used substantially the same (almost certainly non-optimal)
choices of control parameters from problem to problem over a period of years.
Although particular problems in this book could possibly be solved more efficiently
by means of a different choice of control parameters, we believe that our policy of sub-
stantial consistency in the choice of control parameters helps the reader eliminate
superficial concerns that the demonstrated success of genetic programming depends
on shrewd or fortuitous choices of the control parameters. That is, the results produced
by genetic programming are not the fruit of intricate and astute tailoring of control
parameters to a particular problem.

This book continues the policy of Genetic Programming (Koza 1992a), Genetic
Programming II (Koza 1994a), and Genetic Programming III (Koza, Bennett, Andre,
and Keane 1999a) of using a fixed set of default values for most of the minor control
parameters throughout the book. Thus, unless otherwise indicated for a specific prob-
lem, the values of all control parameters for all problems in this book are the values
specified in Genetic Programming III (Koza, Bennett, Andre, and Keane 1999a).

In addition to the values of the control parameters inherited from Genetic
Programming III, tables B.1 and B.2 present the percentages of genetic operations that
are used on or before and after generation 5 of runs of the 10 problems in this book
employing the architecture-altering operations. Tables B.3 and B.4 present this infor-
mation for seven additional problems employing the architecture-altering operations.
B.5 presents this information for all the remaining problems. Because the architecture-
altering operations were not used on any of the problems in table B.5, one table of per-
centages is applicable to all generations.

Table B.6 shows the migration strategy (A, B, or C) used for the 41 runs in this
book employing a parallel computer system. Strategy A is described in section 17.1.1
and strategies B and C are described in section 17.1.2.

The information in these tables can be summarized as follows: Not noteworthy.
Many of the differences simply reflect adjustments necessary to accommodate the
presence or absence of the architecture-altering operations. Other differences (such as
the migration strategy) arise from some another choice (e.g., the computer system or
the population size). Most of the other differences reflect the chronology of our work
and the evolution of our thinking on how to maximize the efficiency runs of genetic
programming in general (as opposed to any special exigency of a particular problem).
At least one of the differences (where the column does not add up to 100%) reflects a
typographical error made during programming.
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Table B.5 Percentages of operations for the problems not using the architecture-altering
operations

Lowpass filter without an explicit test fixture 
(section 4.7), Zobel network problem (two 
free variables (section 10.2), Third-order 
elliptic lowpass filter with variable modular 
angle (section 10.3), Active lowpass filter 
with variable passband boundary with free 
variable (section 10.5), Variable Quadratic/
cubic computational circuit (section 11.3),
Variable 40–60 dB amplifier (section 11.4),

Metabolic Improved PID tuning rules (four freevariables) 
pathway for (section 12.3), all three runs of non-PID 
phospholipid parameterized controller (with four free 
cycle (section variables), Problem of reducing amplifier 
8.6), Metabolic distortion by means of negative feedback 

Genetic network pathway for (section 14.2), all 11 runs of the  six problems 
for lac operon ketone bodies involving post-2000 patented inventions in 
(chapter 7) (section 8.7) chapter 15

Crossover on internal
points 63% 58.50% 63%

Crossover on
terminals 7% 6.50% 7%

Crossover on non-
numeric internal
points 0% 0% 0%

Crossover on non-
numeric terminals 0% 0% 0%

Crossover on
numeric terminals 0% 0% 0%

Reproduction 9% 9% 9%
Subtree mutation 1% 1% 1%
Numeric constant

mutation 20% 20% 20%
Subroutine

duplication 0% 0% 0%
Argument

duplication 0% 0% 0%
Subroutine deletion 0% 0% 0%
Argument deletion 0% 0% 0%
Subroutine creation 0% 0% 0%
Argument creation 0% 0% 0%
Iteration creation 0% 0% 0%
Loop creation 0% 0% 0%
Recursion creation 0% 0% 0%
Storage creation 0% 0% 0%
Max. points for RPB 1,000 500 500
Max. points for ADF NA NA NA
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The current published literature in the fields of genetic algorithms and genetic pro-
gramming provides a considerable amount of conflicting advice on the topic of choos-
ing control parameters. Moreover, it is rarely clear how one should go about
translating a problem’s high-level statement in English into particular choices of con-
trol parameters. Thus, it is not clear how a user of genetic programming would go
about shrewdly or optimally tailoring the control parameters for a particular problem
even if that were the intent. Of course, if one has sufficient understanding of the
dynamics of the evolutionary process and sufficient insight concerning the fitness
landscape of an unseen new problem, there is nothing wrong with doing such tailor-
ing if the primary objective is to solve the particular problem at hand.

Table B.6 Migration strategy used on the 41 runs

Migration
strategy Problems

A Two-lag plant (section 3.7), Three-lag plant (section 3.8), Non-minimal phase plant 
(section 3.10), RC circuit with gain greater than two (section 4.2), Philbrick circuit 
(section 4.3), NAND circuit (section 4.4), Arithmetic logic unit (ALU) circuit (section 4.5),
Layout of lowpass filter (section 5.2)

B Three-lag plant with five second delay (section 3.9), Lowpass/highpass filter with free
variable (section 11.1), Lowpass/highpass filter with variable passband boundary with a free
variable (section 11.2)

C Three-lag plant with free variable (section 9.1), Controller for two families of plants 
(section 9.2), Square root computational circuit (section 4.6), Lowpass filter without an explicit 
test fixture (section 4.7), Layout of amplifier (section 5.3), Yagi–Uda antenna (section 6.5),
Metabolic pathway for phospholipid cycle (section 8.6), Metabolic pathway for ketone
bodies (section 8.7), Zobel network problem (two free variables) (section 10.2), Third-order
elliptic lowpass filter with variable modular angle (section 10.3), Passive lowpass filter with
variable passband boundary (section 10.4), Active lowpass filter with variable passband
boundary with free variable (section 10.5), Variable Quadratic/cubic computational circuit
(section 11.3), Variable 40–60 dB amplifier (section 11.4), Improved PID tuning rules (four
free variables) (section 12.3), First non-PID parameterized controller (two free variables)
(section 13.2.1), Second non-PID parameterized controller (two free variables) 
(section13.2.2), Third non-PID parameterized controller (two free variables) (section 13.2.3),
Negative feedback (section 14.2), Low-voltage balun circuit (section 15.4.1), Mixed analog-
digital variable capacitor circuit (section 15.4.2), High-current load circuit (sections 15.4.3.1
and 15.4.3.2), Voltage–current conversion circuit (section 15.4.4), Cubic function generator
(sections 15.4.5 and 15.4.5), Tunable integrated active filter (sections 15.4.6.1, 15.4.6.2.
15.4.6.3, and 15.4.6.4)
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Tables C.1 and C.2 provide additional information on the 23 patent-related results 
(of the 36 human-competitive results produced by genetic programming in 
table 1.3).

Table C.1 provides additional information on the 21 results that relate to previ-
ously patented inventions. Eleven of the 21 results in table C.1 infringe previously
issued patents and 10 duplicate the functionality of previously patented inventions in
a non-infringing way. The first 10 entries in table C.1 refer to problems that were
solved in Genetic Programming III: Darwinian Invention and Problem Solving (Koza,
Bennett, Andre, and Keane 1999a). The last 11 entries in table C.1 are described in
this book. The last six entries in table C.1 relate to patents for analog circuits that were
issued after January 1, 2000.

Four of the 21 entries in the body of table C.1 are marked “See text.” These entries
relate to groups of previously patented inventions (as opposed to single patents) that
are described in detail in Genetic Programming III: Darwinian Invention and Problem
Solving (Koza, Bennett, Andre, and Keane 1999a). Concerning computational circuits
(the 7th entry in table C.1), dozens of different computational circuits have been
patented, including, for example, square root circuits (Newbold 1962) and logarithmic
circuits (Green 1958). Concerning electronic thermometers (the 8th entry in table C.1),
at least two dozen temperature-sensing circuits have been patented, including,
for example, ones by Haeusler (1976) and Massey (1970). Concerning voltage refer-
ence circuits (the 9th entry in table C.1), Robert C. Dobkin and Robert J. Widlar of
National Semiconductor Corporation received U.S. patent 3,617,859 for the volt-
age reference circuit (Dobkin and Widlar 1971). Subsequent to the renowned 
Dobkin-Widlar circuit, other patents have been issued for voltage reference circuits,
including U.S. patent 3,743,923 to Goetz Wolfgang Steudel of RCA Corporation
(Steudel 1973). Hundreds of patents have been issued for amplifiers (the 10th entry in
table C.1).

Table C.2 shows the two inventions generated by genetic programming for which
a patent application has been filed.
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Table C.1 Twenty-one previously patented inventions reinvented by genetic programming

Invention Date Inventor Place Patent Reference

1 Darlington 1953 Sidney Bell Telephone 2,663,806 Section 42.3 of Genetic
emitter- Darlington Laboratories Programming III
follower
section

2 Ladder filter 1917 George American 1,227,113 Section 25.15.1 of Genetic
Campbell Telephone and Programming III and

Telegraph section 5.2 of this book

3 Crossover 1925 Otto American 1,538,964 Section 32.3 of Genetic
filter Julius Telephone and Programming III

Zobel Telegraph

4 “M-derived 1925 Otto American 1,538,964 Section 25.15.2 of Genetic
half section” Julius Telephone and Programming III
filter Zobel Telegraph

5 Cauer 1934 Wilhelm University of 1,958,742, Section 27.3.7 of Genetic
(elliptic) – Cauer Gottingen 1,989,545 Programming III
topology for 1936
filters

6 Sorting 1962 Daniel G. General 3,029,413 Sections 21.4.4, 23.6, and
network O’Connor Precision, Inc. 57.8.1 of Genetic

and Programming III
Raymond
J. Nelson

7 Computational See See text See text See text Section 47.5.3 of Genetic
circuits text Programming III

8 Electronic See See text See text See text Section 49.3 of Genetic
thermometer text Programming III

9 Voltage See See text See text See text Section 50.3 of Genetic
reference text Programming III
circuit

10 60 and 96 dB See See text See text See text Section 45.3 of Genetic
amplifiers text Programming III

11 Second- 1942 Harry Brown 2,282,726 Section 3.7 of this book
derivative Jones Instrument
controller Company

12 Philbrick 1956 George George A. 2,730,679 Section 4.3 of this book
circuit Philbrick Philbrick

Researches

13 NAND circuit 1971 David H. Texas 3,560,760 Section 4.4
Chung Instruments
and Bill Incorporated
H. Terrell

14 PID 1939 Albert Imperial 2,175,985 Section 9.2 of this book
(proportional, Callender Chemical
integrative, and Allan Limited
and Stevenson
derivative)
controller

(Continued)

of this book



Table C.1 (Continued)

Invention Date Inventor Place Patent Reference

15 Negative 1937 Harold S. American 2,102,670, Chapter 14 of this 
feedback Black Telephone and 2,102,671 book

Telegraph

16 Low-voltage 2001 Sang Gug Information and 6,265,908 Section 15.4.1 of 
balun circuit Lee Communications this book

University

17 Mixed 2000 Turgut Lucent 6,013,958 Section 15.4.2 of
analog- Sefket Technologies this book
digital Aytur Inc.
variable
capacitor
circuit

18 High-current 2001 Timothy International 6,211,726 Section 15.4.3 of
load circuit Daun- Business this book

Lindberg Machines
and Corporation
Michael
Miller

19 Voltage- 2000 Akira Mitsumi Electric 6,166,529 Section 15.4.4 of
current Ikeuchi Co., Ltd. this book
conversion and
circuit Naoshi

Tokuda

20 Cubic 2000 Stefano Conexant 6,160,427 Section 15.4.5 of
function Cipriani Systems, Inc. this book
generator and

Anthony
A. Takeshian

21 Tunable 2001 Robert Infineon 6,225,859 Section 15.4.6 of
integrated Irvine and Technologies this book
active filter Bernd AG

Kolb
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Table C.2 Two patentable inventions created by genetic programming

Date of patent 
Claimed invention application Inventors Reference

1 Improved general-purpose July 12, 2002 Martin A. Keane, John R. Koza, Section 12.3 of 
tuning rules for a PID and Matthew J. Streeter this book
controller

2 Improved general-purpose July 12, 2002 Martin A. Keane, John R. Koza, Section 13.2 of 
non-PID controllers and Matthew J. Streeter this book
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