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Finite State Automata

1.1 Finite State Recognizers and Generators

Finite state automata are used a lot for all kinds of things in computational linguistics.
For example, they are used in morphology, phonology, text to speech, data mining ...
Why are they so popular? Well, they are very simple (as you will see for yourself,
soon) and extremely well understood mathematically. Furthermore, they are easy to
implement (this, you will also see soon) and usually these implementations are very
efficient. Therefore, finite state solutions tend to be good solutions. However, some-
thing so simple and efficient has to be restricted in what it is able to do in some way,
which means that there isn’t a finite state solution for every problem. We will look at
some limitations of finite state methods later in this chapter. But first, let’s see what
finite state automata are and what they can do.

1.1.1 A Simple Machine that can laugh

A finite state generator is a simple computing machine that outputs a sequence of sym-
bols.

It starts in some start state

! Finish

y

and then tries to reach a final state by making transitions from one state to another.
Every time it makes such a transition it emits (or writes or generates) a symbol.
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\

e

View animation!

It has to keep doing this until it reaches a final state; before that it cannot stop. All in
all, finite state generators can only have a finife number of different states, that’s where
the name comes from. Another important property of finite state generators is that they
only know the state they are currently in. That means they cannot look ahead at the
states that come and also don’t have any memory of the states they have been in before,
or the symbols that they have emitted.

So, what does the generator in the pictures say? It laughs. It generates sequences of
symbols of the form ha! or haha! or hahaha! or hahahaha! and so on. Why does
it behave like that? Well, it first has to make a transition emitting h. The state that it
reaches through this transition is not a final state. So, it has to keep on going emitting
an a. Here, it has two possibilities: it can either follow the ! arrow, emitting ! and
then stop in the final state (but remember, it can’t look ahead to see that it would reach
a final state with the ! transition); or it can follow the h arrow emitting an h and going
back to the state where it just came from.

Finite state generators can be thought of as directed graphs. And in fact finite state
generators are usually drawn as directed graphs. Here is our laughing machine as we
will from now on draw finite state generators:

d
>@L@C@_!.
h

The nodes of the graph are the states of the generator. We have numbered them, so that
it is easier to talk about them. The arcs of the graph are the transitions, and the labels
of the arcs are the symbols that the machine emits. A double circle indicates that this
state is a final state. An arrow pointing to a state like this:

a®

indicates that this state is a start state.

1 flash_kenguru.html
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1.1.2 Finite State Automata

In the previous section, we have learned that finite state generators are simple com-
puting machines that output a sequence of symbols. You will often find the notion of
an output tape the symbols are written on. A finite state recognizer in turn is a simple
computing machine that reads (or at least tries to read) a sequence of symbols from
an input tape. That is only a small difference: Finite state generators and finite state
recognizers are exactly the same kind of machine. Just that we are using them to out-
put symbols in one case and to read symbols in the other case. The general term for
such machines is finite state automaton (FSA) or finite state machine (FSM). But let’s
have a closer look at what it means for a finite state automaton to recognize a string of
symbols.

An FSA recognizes (or accepts) a string of symbols (or word) s1,s»,...,s, if starting
in an intial state, it can read in the symbols one after the other while making transitions
from one state to another such that the transition reading in the last symbol takes the
machine into a final state. That means an FSA fails to recognize a string if:

1. it cannot reach a final state; or

2. it can reach a final state, but there are still unread symbols left over when it does

So, this machine
d
h A !
-0 0@

recognizes laughter. For example, it accepts the word ha! by going from state 1 via
state 2 and state 3 to state 4. At that point it has read all of the input and is in a final
state. It also accepts the word haha! by making the following sequence of transitions:
state 1, state 2, state 3, state 2, state 3, state 4. Similarly, it accepts hahaha! and
hahahaha! and so on. However, it doesn’t accept the word haha — although it will be
able to read the whole input (state 1, state 2, state 3, state 2, state 3). The problem is
that it will end up in a non-final state without anything left to read that could take it
into the final state. Also, it does not accept hoho!. The reason is that with this input, it
won’t be able to read the whole input (there is no transition that allows reading an o).

So, when used in recognition mode, this machine recognizes exactly the same words
that it generates when used in generation mode. This is something which is true for all
finite state automata and we can make it more precise:

o A formal language is a set of strings.

e The language accepted (or recognized) by an FSA is the set of all strings it
recognizes when used in recognition mode.

e The language generated by an FSA is the set of all strings it can generate when
used in generation mode.

e The language accepted and the language generated by an FSA are exactly the
same.
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1.2 Some Examples

Let’s have a look at some more examples of what finite state automata can look like.

Assume that we want to extend our laughing machine so that it not only recognizes
sequences of ha (followed by !) as laughter but also sequences of ho (followed by !)
and sequences mixing has and hos (followed by !). So, as may now be replaced by
os. This means that in all states where the machine can make an a transition, it should
now also be able to make an o transition. So, all we have to do to extend our machine
in this way is to add an o transition from state 2 to state 3.

a

h /o_\\ !
@ @Y@

Now, look at the following FSA:

00 106
#

It has a strange transition from state 3 to state 1, which is reads/emits #. We will call
transitions of this type jump arcs. Jump arcs let us jump from one state to another
without emitting or reading a symbol. So, # is really just there to indicate that this is a
jump arc and the machine does not read or write anything when making this transition.
This FSA accepts/generates the same language as our first laughing machine, namely
sequences of ha followed by a !.

And what language does this FSA accept/generate?

ha

- @)

It also accepts/generates the same language as our first laughing machine. But the
alphabet it uses is a bit different. Here ha counts as one symbol and can therefore be
read by one transition. Furthermore, the FSA has a reflexive transition, going from
state 2 back to itself.

Finally, an FSA can have several intial and final states (it must have at least one initial
and one final state, though). Here is a machine that has two final states. What language
does it recognize?
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a
h P | |
0P 006
#

The machine can stop after having generated one exclamation mark or after having
generated two exclamation marks. So, the words of the language it accepts/generates
all consist of a sequence of ha followed by either one ! or two !.

1.3 Deterministic vs. Non-deterministic FSAs

Look at the following FSA:
d
h A !
@ -G
a

It accepts/generates the same language as our first laughing machine, but it differs from
the FSAs we have seen so far in a very important way. It has two arcs labelled with the
same symbol (a) going out of one state (state 2) — this FSA is non-deterministic.

Mathematically speaking, non-determinism doesn’t add anything to what FSAs can do.
In fact, we can always find a deterministic automaton that recognizes/generates exactly
the same language as a non-deterministic automaton. Also when using an automaton
for generation, there is no big difference between deterministic and non-deterministic
machines. You can think of the machine flipping a coin to decide which transitition to
take whenever there is more than one arc going out of a state. Operationally however,
there is a big difference when we want to use the machine for recognition. When
the next symbol on the input tape is an a, the machine has to decide which transition
to take and if it makes the wrong decision, it may fail to recognize the input string,
even though it would have been able to, had it decided differently. That means that
non-determinism brings with it the need to perform search.

Here is an example. Assume that we want to check whether the FSA above recognizes
the word ha!. Starting from state 1 we have no choice but to go to state 2 via the h
transition. But next, we have to read an a and there are two a-transitions going out
of state 2. Which one should we take? Well, you can see of course that we would
want to take the transition leading to state 3, because only when taking this transition
will we be able to read the whole input and end in a final state. However, remember
that the machine cannot look ahead and can therefore not base its decision on the rest
of the input or the following states in the automaton. All it can do at this point is to
arbitrarily decide for one transition, try it, and go back to try another transition in case
this one turns out to not lead us to acceptance of the string. That means, we have to
systematically try all alternatives and to do so, we have to keep track of what we have
tried already.
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1.4 FSAs in Prolog

1.4.1 Representing FSAs in Prolog

We will use three predicates to represent FSAs:

® start/2
® final/2

® trans/4

The first argument in each of these predicates is simply an atom naming the automaton
to be specified. Let’s start by specifying our first laughing machine, and call it a1. It
will have the following Prolog representation:

start(al,1l).
final(al, 4).
trans(al,1l,2,h).
trans(al,2,3,a).
trans(al,3,4,!).
trans(al,3,2,h).

start (al, 1), for instance, says that 1 is the initial state of a1; and final (al, 4) says
that 4 is its final state (to be precise: one final of its states. But incidentally, a1 has only
one final state). And trans(al,1,2,h) says that there is a h-transition from state 1 to
state 2 in al.

We will, furthermore, use the atom ’ #’ to mark jump arcs. Here is the laughing ma-
chine with the jump arc. We shall give it the name a2:

start(a2,1).
final(a2,4).
trans(a2,1,2,h).
trans(a2,2,3,a).
trans(a2,3,4,!').

trans(a2,3,1,'#").
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And here’s the non-deterministic version (under the name a3):
start (a3,1).
final(a3,4).
trans(a3,1,2,h).
trans(a3,2,3,a).
trans(a3,3,4,!).
trans(a3,2,1,a).

As you can see, the Prolog representation of these finite state machines is a straightfor-
ward translation of the graphs that we have been drawing in the previous sections.

The three specifications just discussed are found in haha .pl?2.

1.4.2 A Recognizer and Generator for FSAs without Jump Arcs

Now that we know how to represent FSAs, we would of course like to do something
with them; we want to use them to generate and recognize strings. That is, we need
programs to work on top of FSA representations. Those programs should be general
enough, so that we don’t have to know anything about the structure of a certain FSA
before using it — in particular, we would like these programs to be able to deal with
deterministic as well as non-deterministic FSAs. Prolog helps us a lot with this point,
because it’s built-in backtracking mechanism provides us with the search tool that we
need to deal with the non-determinism. Furthermore, Prolog is so declarative, that one
and the same program can (up to a point) work as both a recognizer and a generator.

Let’s first ignore the fact that there may be jump arcs and write a recognizer/generator
for FSAs without jump arcs. We will define the predicate recognize/3 which takes
the name of the automaton to be used as first argument, the number of the node you
want to start from as second argument and a list of symbols representing the string that
you want to recognize as third argument:

recognize (A,Node, SymbolList) :-—

For instance the query recognize(al, 1, [h,a,h,a,!]) should succeed, if the list of
symbols [h,a,h,a,!] can be recognized by the FSA called a1 in Prolog’s database
starting from node 1 and ending in a final state.

We will define recognize/3 as a recursive predicate, which first tries to find a tran-
sition in the automaton 2 from state Node to some other state reading the first sym-
bol of the list symbolList and then calls itself with the node it can reach through

’http://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/code2html.cgi?file=haha.pl
UND course=coal
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this transition and the tail of symbolList. The code for the predicate is found in
recognize. pl3.

In the base case, recognize/3 is called with an empty list, i.e. the whole input has
been read. In this case, it succeeds if the Node is a final state in A:

recognize (A,Node, []) :-
final (A, Node) .

In the case where symbolList is not empty, we first retrieve a transition of A that starts
from Node. Then we take this transition, thereby reading a symbol of the input, and
recursively call recognize/3 again.

recognize (A,Node_1,String) :-
trans (A, Node_1,Node_2, Label),
traverse (Label, String, NewString),

recognize (A,Node_2,NewString) .

The predicate traverse/3 checks that we can indeed take this transition, i.e. that the
label of the transition is the same as the first symbol of the input list, and returns the
input without the symbol that we have just read.

traverse (Label, [Label|Symbols], Symbols) .

Now, if Prolog should ever retrieve an arc from the database that later turns out to be a
bad choice because it doesn’t lead to success, it will (automatically) backtrack on the
call to trans/4 in the second clause of recognize/3 and look for alternatives.

As promised, we can use recognize/3 in two different modes. In recognition mode,
we want to give a list of symbols symbo1List and want to find out whether there is an
initial node Node in A such that the query recognize (2, Node, SymbolList) returns
ves. Here is a driver predicate for the recognition mode:

test (A, Symbols) :-—
start (A, Node),

recognize (A, Node, Symbols) .

In generation mode, we want to get all lists of symbols which recognize/3 can gen-
erate using A and starting from its initial node. For this, we can just call test1/2 with
an uninstantiated variable as second argument. test1/2 then selects an initial node
and calls recognize/3 with this node as first argument and an uninstantiated second
argument.

generate (A, X) -
test (A, X).

3http://www.coli.uni—sb.de/~stwa//Milca/CodeInterface/codethml.cgi?file:recognize.p
UND course=coal
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1.4.3 A Recognizer and Generator for FSAs with Jump Arcs

It is very easy to adapt the recognizer/generator of the previous section to be able to
deal with jump arcs. All we have to do is to specify that if an arc is labelled with
"4, we can make a transition without doing anything to the input string. We do so by
adding the following the following clause to the traverse/3 predicate:

traverse(’#’,String, String).

1.5 Finite State Methods in Computational Linguistics and their
Limitations

We have seen in this chapter that finite state machines are very simple. As a conse-
quence, there are limitations to what they can do. It is, for example, not possible to
write an FSA that generates the language a"b", i.e. the set of all strings which consist
of a (possibly empty) block of as followed by a (possibly empty) block of bs of exactly
the same length. Mathematically speaking, FSAs have certain expressive weaknesses.
This also limits their expressive adequacy from a linguistic point of view, because
many linguistic phenomena can only be described by languages which cannot be gen-
erated by FSAs. In fact, even the language a"b" is linguistically relevant, since many
linguistic constructions require ‘balanced’ structures. We shall have a closer look at
the expressive strength (or weakness) of FSAa in Chapter 3.

However, there are linguistic applications where the expressive power of finite state
methods is just sufficient, and FSAs have been used and are used a lot for all kinds
of tasks in computational linguistics; the flip side of their expressive weakness being
that they usually behave very well computationally. If you can find a solution based on
finite state methods, your implementation will probably be efficient.

Areas where finite state methods have been shown to be particularly useful are phono-
logical and morphological processing. We will see some simple examples for that in
the next chapter (Chapter 2). But finite state methods have also been applied to syn-
tactic analysis. Although they are not expressive enough if a full syntactic analysis is
required, there are many applications where a partial syntacic analysis of the input is
sufficient. And such partial analyses can be constructed with cascades of finite state
automata (or rather transducers, which we will learn about in the next chapter), where
one machine is applied to the output of another. Furthermore, hidden markov models,
which are very common for speech recognition and part of speech tagging, can be seen
as a variant of FSAs which assigns probabiltites to transitions.

1.6 The Prolog Files

haha.pl: View*_Download’ Three ‘laughing-machines’
recognize.pl: View®_Download’ The recognizer/generator for FSAs (with or without jump arcs
recognizel.pl: View®_Download® A version of the recognizer/generator that only works for FSA
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1.7 Practical Session

We will start out with a couple of simple keyboard exercises so make sure that you
understand how the Prolog programs that we saw in this section work.

Note: The file recognizel.pl!? contains a version of our recognizer/generator

that that only works for FSAs without jump arcs. It defines the same predicates as
recognize.pl'l, but all predicate names end in a 1.

1. Start Prolog and consult recognize.pl, recognizel.pl, and haha.pl. Us-
ing both test1 (which does not deal with jump arcs) and test (which does) see
whether various strings are accepted e.g test1 (al, [h,a, 1) .2 test (al, [h,a, !]).
testl(al, [h,a,h,a,h,a,!])."*

13

Make sure you understand why these strings are accepted. That is, use trace to
step through the execution so that you understand exactly what is going on.

2. Now let’s have a look at the automaton a3. The difference between a1 and a3 is
that haha5s is not deterministic. Try giving the following queries:

15 16

testl(a3, [h,a,']1) .0 test (a3, [h,a,h,a,h,a,!']).V

test (a3, [h,a,!]).

Make sure you understand why these strings are accepted. That is, use trace to
step through the execution so that you understand exactly what is going on.

3. We now turn to a2. The big difference between a1 and a2 is that a2 contains
a jump arc #. Now, recognizel does not handle jump arcs so it should not be
able to handle a2 correctly.

Try out the following experiments, and make sure you understand why recog-
nizel gives the responses it gives: testl (a2, [h,a, !]) 18 test1(a2, [h,a,h,a,!
testl(a2, [h,a,h,a,h,a,!]).20

]).19

Now try these examples with test instead of test1. Again, carry out traces.

10http://www.coli.uni—sb.de/~stwa//Milca/CodeInterface/codethml.cgi?file:recognizel.
UND course=coal
Unttp://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/code2html.cgi?file=recognize.p
UND course=coal
Zhttp://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/callProlog.cgi?consult='recogn
UND course=coal UND directinput=testl(al, [h,a,!]).
13http://www.coli.uni—sb.de/~stwa//Milca/CodeInterface/callProlog.cgi?consult:’recogn
UND course=coal UND directinput=test(al, [h,a,!]).
14http://www.coli.um’.—sb.de/~stwa//Milca/CodeInterface/callProlog.cgi?consult:’recogn
UND course=coal UND directinput=testl(al, [h,a,h,a,h,a,!]).
Bhttp://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/callProlog.cgi?consult='recogn
UND course=coal UND directinput=test (a3, [h,a,!]).
16http://www.coli.uni—sb.de/~stwa//Milca/CodeInterface/callProlog.cgi?consult:’recogn
UND course=coal UND directinput=testl (a3, [h,a,!]).
Thttp://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/callProlog.cgi?consult='recogn
UND course=coal UND directinput=test (a3, [h,a,h,a,h,a,!]).
18http://www.coli.uni—sb.de/~stwa//Milca/CodeInterface/callProlog.cgi?consult:’recogn
UND course=coal UND directinput=testl (a2, [h,a,!]).
19http://www.coli.uni—sb.de/~stwa//Milca/CodeInterface/callProlog.cgi?consult:’recogn
UND course=coal UND directinput=testl (a2, [h,a,h,a,!']).
nttp://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/callProlog.cgi?consult='recogn
UND course=coal UND directinput=testl (a2, [h,a,h,a,h,a,!]).
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4. Finally, make sure that you understand how the generate predicates are defined.
Try using generatel to generate using a2. Now try using generate with a2.
Why does generatel give a wrong response?

1.8 Exercises and Solutions

1.8.1 Exercises

Exercise 1.1 Now, you are able to write your own automata. You can then use the
recognize and generate predicates to test them. So, here is a task which is a bit
more interesting: Write an FSA (First, as a graph and, then, in Prolog notation!) that
recognizes English noun phrases constructed from the following words: a, the, witch,
wizard, Harry, Ron, Hermione, broomstick, brave, fast, with, rat. E.g.

the brave wizard

the fast broomstick

the wizard with the rat

e Ron

Exercise 1.2 In the lecture, we represented a1 in Prolog as follows:
start(al,1l).
final(al, 4).

trans(al,1l,2,h).
trans(al,2,3,a).
trans(al,3,4,!).
trans(al,3,2,h).

But we could also have represented it like this:
start(al,1l).
final(al, 4).
trans(al,1l,2,h).

al,2,3,a).

al,3,2,h).

trans(al,3,4,!).

trans

(
(
(
(

Does it make any difference which way we represent it?

Exercise 1.3 Here’s the code for recognizel given in the lecture:
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recognize (A,Node, []) :-
final (A, Node) .

recognize (A,Node_1,String) :-
trans (A,Node_1,Node_2, Label),

traverse (Label, String,NewString),

recognize (A,Node_2,NewString) .
Suppose we changed it to this:

recognize (A,Node, []) :-
final (A,Node), !.

recognize (A,Node_1,String) :-
trans (A,Node_1,Node_2, Label),

traverse (Label, String,NewString), !,

recognize (A,Node_2,NewString) .

What effect would this change have? What sort of ¥sns would not be affected by the
change?

Exercise 1.4 Write ¥sas that generate the following languages (where e.g. by a™ we
mean the result of repeating a m-times):

1. a"b", where m >3,n>2

2. a"c'b", wherem > 1,1=2,n>3
Solution to Ex. 1.1-1.4
1.8.1.1 1.1

Here is an automaton we call np that accepts English noun phrases:

% to be used with recognize.pl
start(np,1).

final (np, 8) .
trans(np,1,2,ron).
trans(np,1l,2,harry).

trans(np, 1, 2,hermione) .

trans(np,2,5,’#").
trans(np, 2,8, "#').

trans(np,1,3,a).

trans(np, 1,3, the).
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1.8.1.2 1.2
1.8.13 1.3
1.8.14 14

trans(np, 3,4, "#').

trans(np, 3,4, fast).

trans(np, 3, 4,brave) .

trans(np, 4,5,witch).

trans(np,4,5,wizard).
trans(np,5,8,’#’).
trans (np, 5,6,with).

trans(np,6,7,a).

trans(np, 6, 7,the).

trans(np,7,8,rat) .

trans(np, 7,8, broomstick) .

Here’s a test call listing all NPs accepted by the automaton:
test (np,NP) ,write(NP),nl,fail.

If you are unsure whether this automaton really does the job, take a pencil and sketch
it on a piece of paper.

Yes and no. For recognition the order of the rules is unimportant. In this case, the
input string determines which rule to apply (in a given state). For generation as we
implemented it, the order of rules is crucial. If we chose the second ordering, our
generation procedure would not halt. Instead, it would loop between state 2 and 3. The
reason is that Prolog’s built-in search strategy would always take the first rule for the
state it is in. Once it reaches state 3, the first rule takes it back to state 2. From there,
the only transition leads to state 3 again, and so on.

The cut would not affect deterministic automata used in recognition mode. These
automata (as the name suggest) work without backtracking. As soon as we use them
for generation, or use nondeterministic automata, backtracking becomes important. If
we disallow backtracking by setting the cut, we also cut of solutions.

More than 3 ’a’s followed by more than 2 ’b’s:
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a a a ag-> b b b
0020 020502201 (©)
More than 1 ’a’ followed by exactly 2 ’c’s followed by at least 3 ’b’s:

1010 02 0265705 (©)

1.9 Further Reading

e If you want to learn more about the formal properties of finite state automata [4]
and [7] provide (rather mathematical) introductions.

o [5] (chapter 2) give a less formal introduction to the mathematical properties of
FSAs.

e In [5] you can also find more about applications of finite state automata in com-
putational linguistics.



Finite State Parsers and Transducers

2.1 Building Structure while Recognizing

2.1.1 Finite State Parsers

So, in the case of a finite state parser the output should tell us which transitions
had to be made in the underlying FSA when the input was recognized. That is, the
output should be a sequence of nodes and arcs. For example, if we give the in-
put [h,a,h,a,!] to a parser for our first laughing automaton (a1), it should return
[1,h,2,a,3,h,2,a,3,!,4].

There is a fairly standard technique in Prolog for turning a recognizer into a parser:
add one or more extra arguments to keep track of the structure that was found. We will
now use this technique to turn recognize/3 of the last chapter into parse/4, i.e. an
FSA-based parser.

In the base clause, when the input is read and the FSA is in a final state, all we have to

do is record that final state. So, we turn

recognize (A,Node, []) :-
final (A, Node) .

into

parse (A,Node, [], [Node]) :-
final (A, Node) .

Then let’s look at the recursive clause. The recursive clause of recognize/3 looked
as follows:

recognize (A,Node_1,String) :-
trans (A, Node_1,Node_2, Label),
traverse (Label, String, NewString),

recognize (A,Node_2,NewString) .

And here is the recursive clause of parse/4:
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parse (A,Node_1, String, [Node_1,Label |Path]) :-
trans (A, Node_1,Node_2, Label),
traverse (Label, String, NewString),
parse (A,Node_2,NewString, Path) .

The parser records the state the FSA is in and the symbol it is reading on the transition
it is taking from this state. The rest of the path, i.e. the sequence of states and arcs

that the FSA will take from Node2 onwards, will be specified in the recursive call of
parse/4 and collected in the variable Path.

The only thing that’s left to do is to adapt the driver predicates testparse/2 and
generate/2. The new driver predicates look as follows:

testparse (A, Symbols,Parse) :—
start (A, Node),
parse (A, Node, Symbols,Parse) .

generate (A, Symbols,Parse) :—

testparse (A, Symbols, Parse) .

You can find the new predicates in parse.pl'.

2.1.2 An Example

Now, let’s step through an example to have a look at how the output is being built
in the extra argument during recognition. Assume that we have loaded the Prolog
representation of a1 (our first laughing automaton) into the Prolog database. So the
database contains the following facts:

start(al,1l).
final(al, 4).
trans(al,1,2,h).
trans(al,2,3,a).
trans(al,3,4,!).

trans(al,3,2,h).

"http://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/code2html.cgi?file=parse.pl
UND course=coal
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parse .pl2

We ask Prolog the following query: testparse(al, [h,a,!],Parse).> Prolog re-
trieves 1 as the only initial node in the FSA a1 and calls parse instantiated as parse (al,1, [h,a, ! ], Parse
Next, Prolog has to retrieve arcs starting in node 1 from the database. It finds arc (a1, 1,2, h),
which it can use because the first symbol in the input is h as well. So, Parse is unified

with [1,h[G67] where G67 is some Prolog internal variable. Prolog then makes a re-
cursive call (the first recursive call) of parse with parse (al,2, [a,!],G67) .2 Now,
Prolog finds arc(al1,2,3,a) in the database. So, G67 gets unified with [2,2]G68]

(G68 again being some internal variable) and Prolog makes the second recursive call

of parse: parse(al,3, [!],G68).% Using arc (3,4, !), the last symbol of the input

can be read and 68 gets instantiated to [3, ! |G69]. The next recursive call of parse
(parse(al,4, [1,G69)7) matches the base clause. Here, G69 gets instantiated to [4],
instantiating G68 to [3,!,4],G67to [2,a,3,!,4], and Parse to [1,h,2,2,3,!,4]

as Prolog comes back out of the recursion. If you have trouble understanding how the
output gets assembled, draw a search tree for the query parse (al,1, [h,a,!],Parse).

Note, how with every recursive call of parse the third argument gets instantiated with

a list. The first two elements of this list are the state the FSA is currently in and the

next symbol it reads; the rest of the list is an uninstantiated variable at first, but gets
further instantiated by the next recursive call of parse.

2.1.3 Separating out the Lexicon

In !'NUNEXPECTED PTR TO EX_FSA.EX1!!! you were asked to construct a finite
state automaton recognizing those English noun phrases that can be built from the
words the, a, wizard, witch, broomstick, hermione, harry, ron, with, fast. The
FSA that you came up with probably looked similar to this:

brave|fast

Q witch|wizard|broomstick |rat
athe
OO =(©)

harry|ron|hermione

with

Let’s call this automaton b1. So it is

’http://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/code2html.cgi?file=parse.pl
UND course=coal

3http://www.coli.uni—sb.de/~stwa//Milca/CodeInterface/callProlog.cgi?consult:’parse.
UND course=coal UND directinput=testparse(al, [h,a,!],Parse).

“http://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/callProlog.cgi?consult='parse.
UND course=coal UND directinput=parse(al,l, [h,a,!],Parse).

Shttp://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/callProlog.cgi?consult="parse.
UND course=coal UND directinput=parse(al,2,[a,!],G67).

6http://www.coli.uni—sb.de/~stwa//Milca/CodeInterface/callProlog.cgi?consult:’parse.
UND course=coal UND directinput=parse(al,3, [!],G68).

"http://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/callProlog.cgi?consult='parse.
UND course=coal UND directinput=parse(al,4,[],G69)
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start(bl,1).
final(bl, 3).
trans(bl,1,2,a).
trans(bl, 1,2, the).
trans(bl, 2,2, brave) .
trans(bl, 2,2, fast).
trans(bl,2,3,witch).
trans(bl, 2,3,wizard).
trans(bl, 2,3, broomstick) .
trans(bl, 2,3, rat).
trans(bl,1,3,harry).
trans(bl,1,3,ron).
trans(bl, 1,3, hermione).
trans(bl,3,1,with).

in Prolog (this automaton and the next are specified in harry.pl?).

Now, what would Prolog answer if we used the parser of the previous section on this au-

tomaton? Lefspaﬁwtheinput[the,fast,wizard]:testparse(bl,[the,fast,wizard],Parse).9

The call instantiates Parse=[1,the, 2, fast, 2,wizard,3]. This tells us how the

FSA was traversed for recognizing that this input is indeed a noun phrase. But wouldn’t

it be even nicer if we got a more abstract explanation? E.g. one saying that [the, fast, wizard]
is a noun phrase because it consists of a determiner, followed by an adjective, which

is in turn followed by a common noun. That is, we would like the parser to return
something like this:

[1,det,2,ad]j,2,noun,3].

8http://www.coli.uni—sb.de/~stwa//Milca/CodeInterface/codethml.cgi?file:harry.pl
UND course=coal

http://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/callProlog.cgi?consult="parse.
UND course=coal UND directinput=testparse(bl, [the, fast,wizard], Parse).
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Actually, you were probably already making a similar abstraction when you were
thinking about how to construct that FSA. You were probably thinking: ‘Well, a noun
phrase starts with a determiner, which can be followed by zero or more adjectives, and
it must end in a noun; ‘the’ and ‘a’ are the determiners that I have, so I need a ‘the’
and an ‘a’ transition from state 1 to state 2.” In fact, it would be a lot nicer if we could
specify transitions in the FSA based on syntactic categories like determiner, common
noun, and so on, and additionally give a separate lexicon specifying what words belong
to each category. Like this, for example:

start (b2,1).
final(b2,3).
trans(b2,1,2,det).
trans(b2,2,2,adj).
trans (b2,2,3,cn) .
trans(b2,1,3,pn).
trans(b2,3,1,prep) .

lex(a,det) .

lex (the,det) .
lex(fast,adj) .
lex (brave,adj) .

lex (witch,cn).

(

(

(

(

(

lex (wizard, cn).

lex (broomstick, cn) .

lex(rat,cn).

lex (harry,pn) .

lex (hermione, pn) .
(

lex(ron,pn).

It’s not very difficult to change our recognizer to work with FSA specifications that,
like the above, define their transitions in terms of categories instead of symbols and
then use a lexicon to map those categories to symbols or the other way round. The
only thing that changes is the definition of the traverse predicate. We don’t simply
compare the label of the transition with the next symbol of the input anymore, but have
to access the lexicon to check whether the next symbol of the input is a word of the
category specified by the label of the transition. That means, instead of

traverse(’#’,String, String) .

traverse (Label, [Label|Symbols], Symbols) .

WweE use
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traverse(’#’,String, String) .
traverse (Label, [Symbol|Symbols], Symbols) :-
lex (Symbol, Label) .

A recognizer for FSAs with categories (using the above version of traverse/3 can be
found in cat_parse.pl!C,

2.2 Finite State Transducers

2.2.1 What are Finite State Transducers?

A finite state transducer essentially is a finite state automaton that works on two (or
more) tapes. The most common way to think about transducers is as a kind of “trans-
lating machine”. They read from one of the tapes and write onto the other. This, for

instance, is a transducer that translates as into bs:
a:b

£

a:b at the arc means that in this transition the transducer reads a from the first tape and
writes b onto the second.

Transducers can, however, be used in other modes than the translation mode as well: in
the generation mode transducers write on both tapes and in the recognition mode they
read from both tapes. Furthermore, the direction of translation can be turned around:
i.e. a:b can not only be read as “read a from the first tape and write b onto the second
tape”, but also as “read b from the second tape and write a onto the first tape”.

So, the above transducer behaves as follows in the different modes.

e generation mode: It writes a string of as on one tape and a string bs on the other
tape. Both strings have the same length.

e recognition mode: It accepts when the word on the first tape consists of exactly
as many as as the word on the second tape consists of bs.

o translation mode (left to right): It reads as from the first tape and writes a b for

every a that it reads onto the second tape. Try it: testtrans (a2b, [a,a,a], Tape2) . !

e translation mode (right to left): It reads bs from the second tape and writes an a
for every b that it reads onto the first tape.

Ohttp://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/code2html.cgi?file=cat_parse.p
UND course=coal

Unttp://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/callProlog.cgi?consult="parse.
UND course=coal UND directinput=testtrans(al2b, [a,a,a], Tape2).
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Transitions in transducers can make jumps going from one state to another without
doing anything on either one or on both of the tapes. So, transitions of the form a: # or
#:a or #:# are possible. Here is an example:

D=0

And what does this transducer do?

e generation mode: It writes twice as many as onto the second tape as onto the
first one.

e recognition mode: It accepts when the second tape has twice as many as as the
first one.

e translation mode (left to right): It reads as from the first tape and writes twice as
many onto the second tape.

e translation mode (right to left): It reads as from the second tape and writes half as

Inany(nnothefhstone.TTyit testtrans(adoubler,Tapel,[a,a,a,a,a,a,a,a]).12

Similar as with FSAs, we can also use categories to label the arcs and provide a kind
of lexicon which translates these categories into real labels, i.e. labels of the form x:v.
Here is an example translating English number terms into numbers.

‘ONES’|'TEENS’|*ZERO’
TENS ‘ONES’ [#:0

And here is the lexicon that maps the category labels to standard FST transition labels:

lex(one:1, “ONES’) .
(two:2, “ONES’) .
lex(three:3, “ONES’) .
lex (four:4, ‘ONES’) .

lex

lex (eleven:11, ‘“TEENS’) .
lex (twelve:12, ‘TEENS’) .

lex(twenty:2, “TENS’) .

Zhttp://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/callProlog.cgi?consult="parse.
UND course=coal UND directinput=testtrans(adoubler, Tapel, [a,a,a,a,a,a,a,a]l).
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lex(twenty:3, “TENS’) .

lex (zero:0, “ZERO') .

An implementation of a transducer using such a lexicon can be found in t rans_lex.pl 3,

We will not discuss it here in detail. If you have read the next section, you will easily
understand it yourself.

2.2.2 FSTsin Prolog

In implementing finite state transducers in Prolog, we will follow the same strategy that

we used for FSAs: we represent an FST as a static data structure that other programs
manipulate.

Here is how we represent our first transducer, the a to b translator (found in a2b.pl 14,

:— op(250,xfx, ).
start (a2b, 1) .

final (a2b,1).
trans(a2b,1,1,a:b).

To be able to write a:b as the label of the arc, we have to define : as an infix operator
as is done by the operator definition.

Our second transducer, the a doubler (adoubler.pl'), looks like this in Prolog
representation:

:— op(250,xfx, :).
start (adoubler,1).
final (adoubler,1).
trans (adoubler,1,2,a:a).

trans (adoubler, 2,1, "#':a).

Bhttp://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/code2html.cgi?file=trans_lex.p
UND course=coal

Bhttp://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/code2html.cgi?file=a2b.pl
UND course=coal

Bhnttp://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/code2html.cgi?file=adoubler.pl
UND course=coal



2.2. Finite State Transducers

Now, we need a program that can manipulate these data structures and carry out the
transduction. We will extend recognizel from Section 2.1.1 to work as a transducer
(see trans. pll6).

The base case is that both tapes are empty and the FSA is in a final state. In Prolog:

transduce (A,Node, [],[]) :-
final (Node) .

In the recursive case, we make a transition from one node to another which is licensed
by some arc definition in the database. As in the last chapter we define a predicate
traverse/6 to check that the transition is indeed licensed.

transduce (A,Nodel, Tapel, Tape2) :-—
trans (Nodel, Node2, Label),
traverse (A, Label, Tapel,NewTapel, Tape2,NewTape?2),
transduce (A,Node2, NewTapel, NewTape?2) .

traverse (A,L1:L2, [L1|RestTapel],RestTapel, [L2|RestTape2],RestTape?2) .

Finally, we define the following driver predicate testtrans/3. It can be called with
both arguements instantiated, only one of them instantiated, or both uninstantiated —
depending on which mode we want to use the transducer in.

testtrans (A, Tapel, Tape2) :-—
start (Node),
transduce (A, Node, Tapel, Tape?2) .

We can use this program to transduce as to bs with our first transducer. To be able to
use the second transducer, the a doubler, as well, we need a program that can handle
transitions involving jumps. What do we have to change for that? Well, the only thing
that changes is the way that the tapes are treated when making a transition. This is
taken care of by the traverse predicate and this is all we have to adapt. (Remember
that when extending the recognizer of the last chapter to handle jump arcs, we also
only changed the traverse predicate.)

So, what are the possibilites how a tape can be affected by a transition? There are four:
e We have to jump on both tapes.
e We have to jump on the first but not on the second tape.
e We have to jump on the second but not on the first tape.

e We have to jump on neither tape (this is what the clause of traverse/6 given
above does).

The Prolog definition of traverse therefore has four clauses:

traverse('#’:'#’,Tapel, Tapel, Tape2, Tape2) .

traverse(’#’:L2,Tapel, Tapel, [L2|RestTape2],RestTape?) .

traverse(L1l:’'#’, [L1|RestTapel],RestTapel, Tape2, Tape?) .
(

traverse (L1:L2, [L1|RestTapel],RestTapel, [L2|RestTape2],RestTape?2) .

http://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/code2html.cgi?file=trans.pl
UND course=coal
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2.3 An Application: Morphology

2.3.1 Morphology

Morphology is about the inner structure of words. It is interested in what are the
smallest units in word that bear some meaning and how can they be combined to form
words.

First, what are meaning bearing units? You can say that the word rabbits has to two
units which contribute to the meaning of the word: rabbit contributes the main mean-
ing, and s adds the information that the word is plural. The smallest unit in a word
that bear some meaning, such as rabbit and s, are called morphemes. Morphemes like
rabbit that contribute the main meaning of a noun, verb, etc. are also called stems,
while the other morphemes are also known as affixes.

The second question is then, how can morphemes be combined to form words that are
legal in some language. Two kinds of processes can be distinguished here. They are
called inflection and derivation (morphological). Inflection is usually taken to be the
process of adding a grammatical affix to a word stem, forming a word of the same class
as the stem. Adding plural s to a noun stem, for example, is an inflectional process.
Derivation is when adding an affix to a word stem results in a word with a class different
from that of the stem. Making a noun out of a verb by adding ation to the verb is an
example: realize + ation gives us realization.

Let’s look at the example of inflection of nouns in English in more detail. Basically,
English nouns only come in two forms: singular and plural. In the standard case, you
get the plural form by adding an s to the end of the noun stem, which, at the same
time, is the singular form of the noun: rabbit vs. rabbits. However, there are some
exceptions, where the plural is not built by simply adding an s to the stem, but rather
by changing the stem: foot vs. feet. So, valid English nouns consist of either the stem
of a regular noun, or the singular stem of an irregular noun, or the plural stem of an
irregular noun, or the stem of a regular noun plus an s.

The nice thing about these morphological rules, is that they can be captured using finite
state techniques. Which means that you can draw a finite state automaton describing
the inflectional morphology of English noun phrases. Here it is:

regular stem s’
)@ — @ —

lural irregular stem

singular irregular stem

And this is even true for languages which have a much richer morphology than English,
Finnish for example.

There is one more complication, however, and that is that sometimes, when two mor-
phemes are combined, additional changes happen at the boundary. When combining
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the noun stem fox, for instance, with the plural morpheme s we get foxes instead of
foxs. That is, an e slips in between the stem and the suffix. The same things happens
with stem kiss, which becomes kisses when adding the plural morpheme. This insert-
ing of es at the morpheme boundary is not arbitrary though. It follows a rule, which
says: “Insert an e when a morpheme ending in s, x or z is combined with the suffix s.”
As we shall see in the next section this kind of rules can also be expressed using finite
state technology.

2.3.2 Morphological Parsing

The goal of morphological parsing is to find out what morphemes a given word is built
from. For example, a morphological parser should be able to tell us that the word cats
is the plural form of the noun stem cat, and that the word mice is the plural form of
the noun stem mouse. So, given the string cats as input, a morphological parser should
produce an output that looks similar to cat N PL. Here are some more examples:

mouse ==> mouse N SG
mice ==> mouse N PL
foxes  ==> fox NPL

Morphological parsing yields information that is useful in many NLP applications. In
parsing, e.g., it helps to know the agreement features of words. Similarly, grammar
checkers need to know agreement information to detect such mistakes. But morpho-
logical information also helps spell checkers to decide whether something is a possible
word or not, and in information retrieval it is used to search not only cats, if that’s the
user’s input, but also for cat.

To get from the surface form of a word to its morphological analysis, we are going
to proceed in two steps. First, we are going to split the words up into its possible
components. So, we will make car + s out of cats, using + to indicate morpheme
boundaries. In this step, we will also take spelling rules into account, so that there are
two possible ways of splitting up foxes, namely foxe + s and fox + s. The first one
assumes that foxe is a stem and s the suffix, while the second one assumes that the stem
is fox and that the e has been introduced due to the spelling rule that we saw above.

In the second step, we will use a lexicon of stems and affixes to look up the categories
of the stems and the meaning of the affixes. So, cat + s will get mapped to cat NP PL,
and fox + s to fox N PL. We will also find out now that foxe is not a legal stem. This
tells us that splitting foxes into foxe + s was actually an incorrect way of splitting foxes,
which should be discarded. But note that for the word houses splitting it into house +
s is correct.

Here is a picture illustrating the two steps of our morphological parser with some ex-

amples.

split word map stems to

into i i categories i
surface N . N mtermedlate_> g N underlying
form possible form and affixes to form

morphemes meaning
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cat cat cat N SG
cats cat + s cat N PL
mouse mouse mouse N SG
mice mice mouse N PL
foxes fox +s fox N PL

We will now build two transducers: one to do the mapping from the surface form to
the intermediate form and the other one to do the mapping from the intermediate form
to the underlying form.

2.3.3 From the Surface to the Intermediate Form

To do morphological parsing this transducer has to map from the surface form to the
intermediate form. For now, we just want to cover the cases of English singular and
plural nouns that we have seen above. This means that the transducer may or may not
insert a morpheme boundary if the word ends in s. There may be singular words that
end in s (e.g. kiss). That’s why we don’t want to make the insertion of a morpheme
boundary obligatory. If the word ends in ses, xes or zes, it may furthermore delete the
e when introducing a morpheme boundary. Here is a transducer that does this. The
“other” arc in this transducer stands for a transition that maps all symbols except for s,
z, x to themselves.

other

Q e+ S:s
Other /_\

00000

S$:8,Z:Z,X: e:€

S:S,Z:Z,X:X

Let’s see how this transducer deals with some of our examples. The following graphs
show the possible sequences of states that the transducer can go through given the
surface forms cats and foxes as input.

input cats:
input (surface form)

1 output: cats

l——1-3111

€
\ N
2——6 output: cat + s

output (intermediate form)
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input foxes:

2 g 6 output: foxe + s

1 . l——1—x"3 3 output: foxes

T S output: fox + s

2.3.4 From the Intermediate Form to the Morphological Structure

Now, we want to take the intermediate form that we produced in the previous section
and map it to the underlying form. The input that this transducer has to accept is of one
of the following forms:

1. regular noun stem, e.g. cat

2. regular noun stem + s, e.g. cat + s

3. singular irregular noun stem, e.g. mouse

4. plural irregular noun stem, e.g. mice
In the first case, the transducer has to map all symbols of the stem to themselves and
then output N and SG. In the second case, it maps all symbols of the stem to themselves,
but then outputs N and replaces PL with s. In the third case, it does the same as in the
first case. Finally, in the fourth case, the transducer should map the irregular plural

noun stem to the corresponding singular stem (e.g. mice to mouse) and then it should
add N and PL. So, the general structure of this transducer looks like this:

+18

regular stem > @ @ ’
G
NO §lj_1g_ul_ar_ lzfsgyler_%em @

plural irregular ster;l - e:PL

What still needs to be specified is how exactly the parts between state 1 and states
2,3, and 4 respectively look like. Here, we need to recognize noun stems and decide
whether they are regular or not. We do this be encoding a lexicon in the following way.
The transducer part that recognizes cat, for instance, looks like this:

b C.C M\ a:a M\ t:t
O O O O
And the transducer part mapping mice to mouse can be specified as follows:

@ mm N\ i /I €U N\ CS N\ ee O
_/ _/ _/ _/
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Plugging these (partial) transducers into the transducer given above we get a transducer
that checks that input has the right form and adds category and numerus information.

Oyo&o/ﬁl‘o@o

e:SG

oo Yo Yo Vo YoL J¢
m}O

N> 0mOmO—=0—_,O

2.3.5 Combining the two Transducers

If we now let the two transducers for mapping from the surface to the intermediate form
and for mapping from the intermediate to the underlying form run in a cascade (i.e. we
let the second transducer run on the output of the first one), we can do a morphological
parse of (some) English noun phrases. However, we can also use this transducer for
generating a surface form from an underlying form. Remember that we can change the
direction of translation when using a transducer in translation mode.

Now, consider the input berries. What will our cascaded transducers make out of it?
The first one will return two possible splittings, berries and berrie + s, but the one
that we would want, berry + s, is not one of them. The reason for this is that there is
another spelling rule at work, here, which we haven’t taken into account at all. This
rule is saying that “y changes to ie before s”. So, in the first step there may be more
than one spelling rules that all have to be applied.

There are basically two ways of dealing with this. First, we can formulate the trans-
ducers for each of the rules in such a way that they can be run in a cascade. Another
possibility is to specify the transducers in such a way that they can be applied in paral-
lel.

There are algorithms for combining several cascaded tranducers or several transducers
that are supposed to be applied in parallel into a single transducer. However, these
algorithms only work, if the individual transducers obey some restrictions so that we
have to take some care when specifying them.

2.3.6 Putting it in Prolog

If you want to implement the small morphological parser that we have seen in the
previous section, all you really have to do is to translate the transducer specifications
into the Prolog format that we used in the last lecture. Then, you can use last lecture’s
transducer program to let them run.
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We won’t show in detail what the transducers look like in Prolog, but we want to have a
quick look at the e insertion transducer, because it has one interesting feature; namely,
the other- transition. How can we represent this in Prolog?

Assuming the transducer is called c1, here are all transitions that go out of state 6 in
Prolog notation, except for the other-transition.

trans(cl,6,2,z:z).
cl,6,2,s:8).

cl,6,2,x:x).

(
trans(
trans (
(

trans(cl,6,3,'"":"~").

Now, the other-transition should translate any symbol except for z, s, x, * to itself. In
Prolog, we can express this using cuts and exploiting the fact that Prolog searches the
database top down:

trans(cl,6,2,z:z) :— !.
trans(cl,6,2,s:s8) :— !.
trans(cl,6,2,x:x) :— !.
trans(cl, 6,3, :"'~")y = 1,
trans(cl,6,1,X:X) :— .

2.3.7 Further Reading

This lecture is partly based on Chapter 3 of [5]. There you can read more about mor-
phology and finite state transducers and find some more details about the mathematical
properties of FSTs.

e The introduction to morphology in this lecture was very quick and superficial. If
you want to know more, any introductory text to linguistics should help.

e If you are interested in more details about the relation between transducers, reg-
ular relations, and rewriting grammars, have a look at [6].

o Gert-Jan van Noord has developed a system called FSA Ultilities which let’s
you specify regular expressions and builds the corresponding automaton for you.
It can also do various operations on automata (minimization, determinization,
union ...)

2.4 The Complete Programs

parse.pl: View!”_Download!® An FSA-based parser.

cat_parse.pl: View!”_Download?® FSA-based parser for FSA with categories.

haha.pl: View?!_Download? ‘laughing-machines’ from Section 1.4.1.

harry.pl: View?_Download®* FSAs for ‘Harry Potter-phrases’ from ! UNEXPECTED PTR
trans.pl: View?_Download?® A driver for transducers.

trans_lex.pl: View?’_Download?® A driver for transducers using lexicon entries (1ex/2)
al2b.pl: View?? Download° A transducer that translates as into bs

adoubler.pl: View?'_Download3? A transducer that doubles the number of as that it reads on the
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2.5 Practical Session

Now, we will again do some simple exercises going through the programs of this sec-
tion step for step.

1. Start Prolog and consult parse.pl, and haha.pl. Use trace to step through
some examples so you understand clearly what the additional argument is doing.

2. Restart Prolog and consult trans.pl, and a2b.pl. Use trace to step through
some examples so you understand clearly how trans.pl works.

3. Consult adoubler.pl. Use trace again and step through some examples so
you understand clearly how. Look how #-symbols are handled.

4. When you are sure you understand trans.pl properly, extend it so that it can
cope with categories. This is not difficult: all you have to do is extend the
definition of the traverse/5- predicate.

5. Then put the morphological transducer (which parses English noun phrases, see
Section 2.3.4) into Prolog notation and test it with your new predicates.

6. Finally, pick another phenomenon of inflectional morphology in some language
you know. Try to write down a transducer as a graph. Then put it in Prolog and
test it with the programs provided in this section.

2.6 EXxercises

Exercise 2.1 Answer “true” or “false” to the following questions:

1. It is possible to write a finite state automaton (FSA) to generate/recognize any
formal language.

2. It is not possible to write an FSA that generates/recognizes the formal language
a‘b’.

3. It is not possible to write an FSA that generates/recognizes the formal language
a‘b’.

4. We can generate more languages using non-deterministic finite automata than
we can using deterministic finite automata.

5. A finite state transducer (FST) is essentially an FSA that works with 2 (or more)
tapes.

Exercise 2.2 Write an FST that transduces between strings of as (of length m), and
strings consisting of a c, followed by m bs, followed by another c. For example, your
FST should transduce between aaa and cbbbc. Write down your FST in both graphical
and Prolog notation.
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Exercise 2.3 Write an FST that, given a string of as, bs, and cs, deletes all the as,
turns the bs to ds, and leaves the cs alone. For example, given the input abbaabcbca,
your FST should transduce return dddcdc. Write down your FST in both graphical and
Prolog notation.

Exercise 2.4 Design an FST that transduces number names in written form between
two languages you know (for all numbers from 0 to 100). For example, if you write
a French_English FST, this should transduce between ‘ninety four’ and ‘quatre vingt
quatorze’, and if you write a Dutch_German FST, this should transduce between ‘een
en twintig’ and ‘ein und zwanzig’. You have seen a similar transducer in Section 2.2.1.

Exercise 2.5 In Lecture 1, we claimed that the formal language a™b" was relevant
to natural language, because natural languages contain various “balanced” syntactic
constructions. Give an example from some natural language you are familiar with
(German, Irish, Russian, French, English, Japanese, Chinese, Tagalog,...). Make sure
you explain why your answer is relevant.
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Regular Languages

3.1 Regular Languages and Relations

3.1.1 FSAs, Regular Expressions, and Regular Languages

First, let’s go back to finite state automata. We said in Chapter 1 that the languages
that FSAs can recognize are called regular languages. But there is another way of
defining regular languages: Regular languages are exactly those languages that can
be represented by regular expressions. And from this it follows that every automaton
corresponds to a regular expression and vice versa. So, we get the following picture:

finite state automata

regular languages regular expressions

3.1.2 Examples of Regular Expressions

But what are regular expressions? Here are four examples:

®

b

e alab

* (alb)"
The building stones of regular expressions are symbols. These symbols can then be
connected in a number of ways to represent sets of strings. Before we go into the
details, let’s look more closely at the above examples. a and b are regular expres-

sions representing the singleton sets of strings {a} and {b}. They correspond to the
following automata:

Ao_a)© ‘\O—b)©
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Regular expressions can be concatenated. The regular expression ab represents the
(also singleton) set of strings {ab}. It should be clear what the corresponding automa-
ton looks like. We can furthermore combine regular expressions by disjunction. The
regular expression a|(ab) represents the set of strings {a,ab} and corresponds to this
automaton:

e
x: O

Finally, (a|b)* is the set of all strings that consist of as and bs in any order. The empty
word is also accepted. The automaton looks as follows:

(a,_b)

From the examples you might already have guessed that there is a systematic way of
translating regular expressions into finite state automata, which means that we never
actually have to specify automata - we only have to write regular expressions.

3.1.3 Definition of Regular Expressions

LiL,

L*

But before we have a closer look at this systematic relation between regular expressions
and automata, let’s give a more formal statement of what a regular expression is and
what language it denotes.

First here’s some notation to (independently, in terms of sets) describe languages. Let
L, Ly and L, be languages over a (finite) alphabet X (i.e., subsets of the set of all strings
that can be formed from X). Then

denotes the concatenation of these two languages, that is the language that contains all
strings formed by concatenating a string from L; to a string from L; (picking a string
from L; and following it by one from Lj).

denotes the Kleene closure of L. It contains all strings obtained by concatenating any
number of strings from L. In particular it contains the empty string € as the result of
concatenating zero strings from L.
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Definition

0 and €

rs, r|s and r*

3.1.4 Regul

Now we’re ready to turn to regular expressions themselves. Again given an alphabet
X

are regular expressions denoting the empty language, {}, and the language containing
only the empty string, {€}. Note that these two languages are different.

for each a € X is a regular expression and denotes {a}, the language consisting of the
single symbol a.

are regular expressions, provided r and s are. If r denotes the language R and s denotes
the language S, then rs denotes their concatenation RS, r|s denotes their union RU S,
and r* denotes the Kleene closure of R, R*.

ar Expressions and FSAs

Now that we know precisely what regular expressions are, let us look systematically at
their relation to FSAs. As we’ve already mentioned, both formalisms are equivalent.
They both characterize the same set of languages known as the regular languages. We
shall now prove one direction of this equivalence: If r is a regular expression, then
there exists a FSA that accepts the language characterized by r. Proving this basically
means stating more formally what we illustrated by examples in Section 3.1.2. To do
so let us first introduce a canonical notation for FSAs. We write a FSA as a quintuple:

(Q’Z’ 6’ S’F)

In such a quintuple

is the set of states of the automaton.

is the alphabet underlying the language characterized by the automaton.
specifies what transitions can be made in the automaton

is the start state of the automaton.

is the set of final states of the automaton.

How does 8 specify what transitions can be made? It states for each state-symbol-pair
in the automaton, where the transition from the respective state over the symbol leads.
So & is a relation over (Q x £) x Q. We can also require that  be a function, making
the automaton deterministic.

Let’s compare our canonical way of specifying a FSA to our Prolog notation from
Section 1.4: There, we specified possible transitions (i.e. d) by giving trans/4-terms.
The initial state (s) was given as a start/2-term, and the final states (F') in the form of
final/2-terms. The set of states Q as well as the alphabet X were left implicit. Here’s
how we formally specify the laughing machine from Section 1.3:

({1,2,3,4},{a,n,'},{((1,4),2),((2,0),3),((3,!),4),((3,),2)},1,{4})
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3.1.5 From Regular Expressions to FSAs

Basis

Induction

We now prove one direction of the equivalence between regular expressions and FSAs:
We will show that there is a FSA for every regular expression. The nice thing about
this proof is that it is contructive - it proceeds by showing us what such an automaton
will actually look like.

Our proof is by induction over the number of operators (that is, occurences of con-
catenation, | and *) in a regular expression. We first show that there are automata for
all possible singleton regular expressions. Then we assume that there are automata for
the regular expressions with less than n operators, and show that there is one for each
regular expression with n operators.

We first have to look at regular expressions without any operators. This means, we are
talking about 0, € or a for some a € X. For 0 we can use the following automaton:

—>@

Obviously, we can never get to the final state in this automaton, therefore no word is
accepted.

For ¢, the following automaton can be given:
e O)

In this automaton we are at the final state at the moment we begin our computation
(and we cannot get out of it). Therefore the automaton accepts only ‘input’ having no
symbol (that is: the empty word).

We’ve already seen (in Section 3.1.2) the pattern of how to construct automata for a
for any a € X.

Now let’s turn to complex regular expressions, i.e. ones that do contain operators.
More precisely, we assume that there are automata for the regular expressions with
fewer than i operators (with i > 1), and take a regular expression r with i operators. We
have to look at three cases.

1. Concatenation: r = rirp

2. Union: r=ry|r,

3. Kleene Closure: r = r



3.1.

Regular Languages and Relations

In all three cases, r; and (where applicable) r, have i — 1 operators. Therefore there
are FSAs for them by our induction hypothesis. We now have to build an automaton
for r on the basis of these given automata. All we have to do is make a few additions
according to the additional operator used in r. We will basically apply the ideas already
seen in Section 3.1.2.

Let’s go through the cases one by one. We assume that M, is an automaton for ry,
M, corresponds to r;, and that the states in M are disjoint from those in M, (we can
always achieve this by renaming):

1. Concatenation (r = rirp): We construct an automaton M that consists of M
and M, in series. That is, M will accept a word by running M on the first part,
then jumping to M, and running it on the second part of the word. M will look

like this:
—® m @@ -

The start state of M is also the start state of M, and the final state of M, is also
the final state of M. The final state of M and the start state of M> have become
‘normal’ states, but are now connected by a jump arc. Formally (where indices
1 and 2 indicate that an entity originally belongs to M or M>):

M= (Q1UQ2,X1UX,8; U U{((f1,€),52)},51,{f2})

2. Union (r=ry|r2): 'We construct an automaton M that consists of M and M, in
parallel. That is, M will accept a word by jumping into either M| or M», running
it on the word, and then jumping to a new final state. M will look like this:

® @
® " @

The new start state sq is connected by jump arcs to the former start states of M
and M,. Thus it serves as the common start state for going through M or M.
Similarly, the former final states of M| and M, are now both connected to a new
final state fy by jump arcs. This new final state serves as the common final state
for going through M1 or M;. Formally, the new automaton looks like this:

M=(01UQU 21U, 8U8U 750, {0},

/



Chapter 3. Regular Languages

3. Kleene Closure (r =r}: We build a new automaton M that ‘embeds’ M. In M
we can either bypass M| and jump directly from the start state to the final state,
or loop by jumping into M, going through M, and then jumping back to the
(former) start state of M. After looping an arbitrary number of times on M,
we can jump to the final state. Thus M accepts € (via the bypassing jump arc)
as well as all combinations of words that are accepted by M (by looping on the
M -part of M). Here’s the picture:

@ Mm@

We had to add two states (the new start and final states s¢ and fj), and four jump
edges (one into M1, one out of M|, one to bypass it and one to loop). Thus this
is the formal characterization of the new automaton M:

M:(QlU ,X,01U ’ a{ })

So we’ve shown that for any regular expression there is an FSA that characterizes the
same language. And in fact we’ve also shown how to construct such an automaton from
any given regular expression. We just have to formulate a recursive procedure based
on our inductive proof. We won’t give an implementation that builds FSAs based on
regular expressions here. But parts of the proof we’ve just seen will be very useful in
Section 3.3, where we implement a tool for performing operations on given FSAs.

3.1.6 Regular Relations and Rewriting Rules

Before we turn to a closer examination of the class of regular languages, let us have a
short look at finite state transducers. Is there anything to do the job of regular expres-
sions for finite state transducers? And what corresponds to regular languages in this
case?

Finite state transducers recognize tuples of strings. A set of tuples of strings that can be
recognized by an FST is called a regular relation. So, regular relations are to FSTs what
regular languages are to FSAs. The following transducer (we have already seen it in
Section 2.2.1), for instance, recognizes the regular relation { (g, €), (a,aa), (aa,aaaq), ...}.

a:a
—
V@
#:a
Regular relations can be specified using (ordered sets of) rewriting rules. The rewriting

rules
e—>efls+ _s%h,

e—e/z+ _s%,
e—e/x+ _s%,

for instance, express the e-insertion rule. The first one is read as “replace nothing (€)
with e in the context of s+ (s and a morpheme boundary, +) to the left and s% (s and a
word boundary, %) to the right. There are algorithms for translating such rule systems
(at least as long as they obey certain restrictions) into transducers.
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3.2 Properties of Regular Languages

3.2.1 Concatenation, Kleene Closure and Union

It follows from the definition of the operators of concatenation, * and | that the set of
regular languages is closed under concatenation, union and Kleene closure:

e If r is a regular expression and L is the regular language it denotes, then L* is
denoted by the regular expression r* and hence also regular.

e If r; and r;, are regular expressions denoting L; and L, respectively, then L; U L,
is denoted by the regular expression r;|r, and hence also regular.

e If | and r, are regular expressions denoting L; and L, respectively, then L|L; is
denoted by the regular expression rr, and hence itself regular.

The rules for constructing FSAs based on these closure properties can be read off the
respective parts of the inductive step of the proof in Section 3.1.5.

3.2.2 Intersection, Complementation

But the class of regular languages also has closure properties that are not obvious from
the definition of regular expressions. We shall look at closure under intersection and
complementation.

Intersection

If Ly and L, are regular languages, then so is L} N L. We will now construct a FSA
M for Ly N L, from two FSAs M, and M, for L; and L,. The idea is to construct
an automaton that simulates going through M and M, synchronously, step by step in
parallel. Formally (we use indices 1 and 2 to refer to elements of M| or M, respectively,
and assume that both automata share the same alphabet):

M= (Ql X Q272555 (slasZ)aFl XFZ)

The states of the new automaton will are all pairs of states from M with states from
M,.

The transitions will be such that the paths through M are the paths through M| if we
only look at the first element of each state-pair, and are the paths through M if we only
look at second elements:

d={(((p1,p2), ), (q1,92)) |P1,91 € Q1,P2,92 € Q2,a € X, ((p1,a),q1) € d1,((p2,a),92) € &2}

But our new automaton will accept a word only if the computation ends on a pair
where both elements are final states in their ‘original automata’ (the set of final states
is specified as F; x F,). This means that we can reach a final state with a word in M iff
we could reach a final state with it in M and in M,, hence iff the word is in L{ N L;.
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Complementation

If L is a regular language over an alphabet X, then so is L (i.e. the language consisting
of all strings from X* that are not in L). We will again show how to construct an
automaton M for L from an automaton M; for L. Yet this time we have to make three
additional assumptions:

1. M, is e-free, i.e. contains no jump arcs.

2. M, is complete, i.e. there is a transition from each state in Q over each symbol
in X (note that none of the automata we’ve seen so far has had this property).

3. M, is deterministic.

However, these assumptions are quite harmless. We can get rid of jump arcs by sys-
tematically substituting direct transitions over the symbols read before and after each
jump. For example, look at the following very simple automaton with one jump arc:

_)@a@s@b@

To get rid of the jump arc between states 1 and 2, we transform it into the following
automaton:

—(0)—2—(1) @L

The two transitions we’ve added so to speak bypass the former jump arc.

To complete an automaton we do as follows: We add one ‘dead’ state (a new state
that has no outgoing transitions to any other states), and let all the ‘missing’ transitions
point to it. For instance, here’s a completed version of our e-free automaton from
above:

Finally, as we’ve already mentioned, non-determinism doesn’t add anything substantial
to FSAs, and every non-deterministic FSA can be transformed into a deterministic
one. The algorithm fo this purpose is a bit more involved and we can present an easy
example here. The basic idea is to build a new automaton that has as states all sets of
states in the old one.
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So for the construction of a complement-automaton, let’s assume that M is a deter-
minstistic e-free complete FSA for the language L. Then we construct an FSA M for
L; by copying M; and making all and only its non-final states final states of M. M will
reach a final state on a word (and thus accept it) if and only if that word would have
taken M into a non-final state. Hence M will accept all and only those words from X*
that are not accepted by M.

Notice that once we know that regular languages are closed under union and comple-

mentation, closure under intersection follows from the set theoretic fact that L UL; =
LiNL,. An automaton for any intersection language can be contructed accordingly
by nesting the construction methods for union and complementation. But because to
prove closure under complementation, we had to make assumptions that we don’t need
for the direct construction method for intersection, we’ve chosen to present this direct
method first.

3.2.3 The ‘Pumping Lemma’

We will now look at another interesting property of regular languages that often allows
us to tell that a language is not regular. We will first illustrate the basic idea. Consider
our simple ‘laughing machine’ (already well known from Section 1.1.1):

_)

h

The automaton has four states. This means that the only word it can accept without
visiting any state more than once is the three-symbol word ha/. All other words from
the ‘laughing language’ require it to visit some state(s) more than once. We can easily
see from the diagram that these are the states 2 and 3. They will be visited twice when
accepting haha!, three times when accepting hahaha!, etc.

This observation can be generalized: Let M be an automaton with #n states that accepts
a language L. Then for any word w € L that consists of n or more symbols, there must
be at least one state in M that is visited more than once when w is processed. Now if a
state (or sequence of states) in a FSA can be visited more than once, it can be visited
any number of times. This is so becaues such a FSA must contain a loop, and we are
free to go through it as often as we like. Let’s suppose M reads the word v while going
through the loop. So we know that w can be split in parts as follows: w = wivw,. But
this means that, by looping on v, M will as well accept wivvw,, wivvvw,, etc.

Take for instance our laughing machine above. We had to go through 2 and 3 twice to
accept haha!, using the loop from 2 to 3 and back. On our way through this loop we
read ha (the second occurence, to be precise). And we can go through this loop any
number of times. Looping like this we accept hahaha!, hahahaha! etc.

The above considerations lead to the following lemma, known as the ‘Pumping Lemma’,
because it says that we can ‘pump’ up words in regular languages under certain condi-
tions. (By w' we mean the result of repeating w i-times; w' = €. By |w| is the length
of w.):
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Let L be a regular set. There is a constant n such that if w is any word that is in L and
is of length greater n, then we can split w in parts wivw, with |wyv| <nand |v| > 1,
and wvw, is in L, too for all i > 0. Moreover, we know that 7 is no greater than the
number of states in the smallest FSA accepting L.

The main use of the pumping lemma is in showing that a given language is not regular.
Consider for instance the language L), of all palindromes (‘symmetrical’ words that are
the same whether you read them forward or backwards) that can be formed over some
alphabet containing more than one symbol (say {a,s}). L, contains words of any finite
length. Now if L, was regular, all of its words exceding a certain length n could be
‘pumped’ on, and all the resulting words would also be in L,. In particular, this would
be

Now take the palindrome a”h". The ‘Pumping Lemma’ states that there is some sub-
string within the first n symbols, thus a substring consisting entirely of as, that we
should be allowed to repeat arbitrarily often without leaving L,. Yet obviously any
such repetition of as would destroy the symmmetry in p and the resulting word would
no longer be a palindrome.

3.3 Implementing Operations on FSAs

3.3.1 The scan-Predicate

All operations on FSAs that we are going to implement will be carried out within
one general framework: We will define a predicate scan/1. This predicate takes as
input a symbolic specification of the operation to be performed. Then it traverses the
FSAC(s) referred to in its input and calls helper predicates according to the operation
that has been requested. We will use the Prolog operators ; and , to specify union and
intersection in the input to scan/1. But how can we refer to the FSAs ot be operated
on? Recall that our Prolog notation (see Section 1.4) requires us to give a name to each
FSA that we put in the database (the first argument of the clauses that make up the
automaton). And it is these names that we use in the operation specifications for the
scan/1-predicate.

Here are two examples. Let’s assume our database contains two automata named al
and a2 (accepting L and L,, respectively). Then the specification used to request the
union-automaton (for L; U L,) will be:

al;az2
To specify an automaton for L; N L, we write:
al,az2

As indicated, our scan/1-predicate will have only one argument. Now if this single
argument is to be filled by the specification of the operation to be performed, there’s
no argument left for output. Of course we don’t want to lose the automaton resulting
from performing the requested operations. But we won’t use an additional argument
for output. Instead, we will implement an operation cp that saves an automaton under
a new name. For instance calling
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scan(cp(al,bl)).
results in the automaton a1 being copied to an automaton bi. If for instance a1l is
our first ‘laughing machine’ from Section 1.4.1, we will have the following additional
database entries after running scan (cp (al,bl)) .:

start(al,1l).

final(al,4).

trans(al,1l,2,h).

trans(al,2,3,a).

trans(al,3,4,!).

trans(al,3,2,h).

The cp-operation is used to save the output of other operations. For instance to intersect
al and a2 and save the result as b2, we call:

scan(cp((al,a2),b2)).

3.3.2 Implementation of scan/1

Now we will have a look at the code of scan/1 and its helpers. We will again assume
that our first laughing machine (see Section 1.4.1) is in the database under the name a1
and discuss what happens when we copy it to b1 by calling scan (cp(al,bl)).

Here’s the code of the toplevel predicate scan/1. It has only one clause:

scan (A) :—
retractall (state(A,_)),
start (A, S),

retract state markers
find start state

o® o o°

scan_state (A, S) . start scanning from there
Line 1 contains the head of the unary predicate scan (2). Its single argument is the
specification of the operation to be carried out. Hence in the case of our example, 2 will
be cp(al,bl). Line 2 then removes all database entries with the pattern state (2, ).
As we will see soon, our system uses such entries to remember what has already been
done. Some such state/2-entries might still be in the database from earlier runs of
scan/1. Soit’s a good idea to start by removing all of them.

Line 3 consists of a call to start/2. Here, the execution of our program branches
according to the operation specified as input. Different clauses of start/2 match for
different properties. They call different other predicates, but there is one invariant: All
of them output a state name in s, namely the name of the start state of the automaton
resulting from the requested operation. So in our example with A=cp (a1,b1), s will
be 1. To see how this is achieved and what else happens, let’s look at the relevant
clause of start/2:
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3.3.3

start (cp(Al,A2),S) :—
start (Al,S),
retractall (start (A2,_)),
retractall (trans(RA2,_,_,_)),
retractall (final (A2,_)),
assert (start (A2,S)).

In our example 21 and A2 are unified with a1 and b1. First of all in the body, the
name of the start state of a1 is retrieved (resulting in the instantiation s=1). Next any
potential remains of other automata name b1 are removed. Finally, and a start state of
the name just retrieved is asserted for a2.

scan_state/2

Now control returns to the top-level call of scan/1, the database contains a new
entry start(a2,1) and s is instantiated to 1. Next thing in scan/1 is a call to
scan_state/2. This predicate is the most important part of our system. Here’s the
code:

scan_state(A,S) :—

state (A, S),!. % state already scanned?

The predicate consists of two clauses. The second one is the one that succeeds in our
example, so let’s look at it first. After unifying the two arguments 2 and s respec-
tively with the the instruction cp(al,bl) and the state name 1 in the head, the call
to assert/1 in the first line of the body adds an entry state (cp(al,bl),1) to the
database. This marks state 1 as processed in copying cp (a1, b1). Next, it is checked
if s is a final state. This is done using check_final/2. We will look at the code later.
Suffice it to say for now that check_final/2 will not do anything and just succeed
trivially in our example because state 1 isn’t a final state.

The final lines of scan_state/2-predicate make use of a special Prolog construction
similar to ‘if-then-else’-constructions in imperative languages like Basic. This con-
struction has the form (1r -> THEN; ELSE).

So in the scan_state/2-predicate, the IF part contains a call to setof /3. Basically,
this call gives us all states D which are the destination of a transition originating from
state s over any symbol x in the automaton resulting from the operation that’s just
being performed. The result is a list bound to the variable ps (‘destinations’). Just
as in a1 itself, we can only reach state 2 from 1 in the copy that we are making. So
Ds=[2].

If setof/3 does not find any destinations, it fails, the ‘if-then-else’-construction ac-
tivates the ELse-part. This part contains only the atom true, letting scan_state/2
succeed. But if seto£/3 finds any destination-states, the list containing them is further
processed.

Before we discuss how this is done, let’s have a closer look at what happens ‘within’
the setof/3-call in our example. Using the instantiations we’ve collected, the call
looks as follows:
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setof (D, X*"trans(cp(al,bl),1,X,D),Ds)

This means that trans (cp(al,bl), 1,x,D) is called and re-done until no further so-
lutions are available. Like start/2, /trans/4 is implemented differently for all kinds
of operations that can be specified. Here is the clause for cp:

trans(cp(Al,A2),S,D,X):-
trans (Al,S,D,X),
assert (trans(A2,S,D,X)).

If the original automaton 21 has a transition from s over x to D, then an according
transition is asserted for its copy 22. The solution for D is the destination state of the
transition found in the original automaton. In our example, a copy of the transition
trans(al,1l,2,h) is asserted as trans(b1,1,2,h). And because trans(al,1,2,h)
is the only transition out of state 1 in a1, setof/3 has already finished its job and Ds
is instantiated to (2] (as we’ve already said above).

3.3.4 Recursion

Now finally we come to the THEN-part in scan_state/2. It consists in calling scan_states/2
(plural!) on the ps produced by the preceding setof/3-call. The scan_states/2-
predicate recursively calls scan_state/2 (singular!) on every state on Ds:

scan_states (A, [S|Ss]) :—
scan_state (A, S), % scan state from state list

scan_states (A, Ss) . go to next state from state list

scan_states(_, []) . % state list already emptied?

In our example, this means that the transition trans (al, 2,3, a) iscopied to trans(a2,2,3,a).
Then the next level of the recursion is entered by calling scan_states/2 again, this

time on Ds=[3]. Now there are two transitions. This means that s will have two
members: [2,4]. State 2 has already been processed, and state 4 for has no outgo-

ing transitions. This indicates that a1 has been fully traversed and the next call to
scan_states/2 should end the recursion.

How is this done? For state 2, the one that has already been processed, the first clause of
scan_state/2 will succeed, because the database contains the entry state (cp(al,bl), 2)
that was asserted when state 2 was processed for the first time. This means that no fur-
ther recursive level will be entered. For state 4, recursion will end simply because
setof/3in scan_state/2 won’t find any transitions and so Ds will be empty.

Finally notice that state 4 is the final state of a1. For this reason, the call to check
check_final/2 in the second clause of scan_state/2 will not just trivially succeed.
Rather it will really do something before it succeeds. Let’s have a look at the code:

check_final (A,S) :—

final(A,S),!. % final states receive special treatment
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o)

check_final(_,_). % non-final states: no processing necessary -

The first clause contains a call to £inal/2. This predicate is again implemented dif-
ferently for cp, intersection and union. Here’s the clause for cp:

final(cp(Al,A2),S) :-
final (A1, S),
assert (final (A2,S)).

If s is a final state in the original A1, an according final state is asserted for the copy
a2. In our example, the entry final (b1,2) will be asserted. For all non-final states,
the above clause of final/2 will fail and the second clause of check_final/2 will
succeed without any further actions.

Summing up, after running scan (cp(al,bl)), the following will have happened:

e Due to the call to start/2 in scan/1, the database will contain the entry:
start (bl,1)

e The calls to trans/2 in the second clause of scan_state/2 will have added:
trans(bl,1,2,h).
trans(bl,2,3,a).
trans(bl,3,4,!).
trans(bl,3,2,h).

e The call to final/2 in check_final/2 will have added:

final(bl,4).

That’s a full copy of a1. Additionally, the database will contain the entries:

state(cp(al,bl),1).
state(cp(al,bl),2).
state(cp(al,bl),3).
state(cp(al,bl),4).

These were asserted in scan_state/2 as control information and can be retracted.

3.3.5 Intersection

We now turn to the more interesting operations of union and intersection. We imple-
ment them simply by giving additional clauses for start/2, trans/2 and final/2.
Let’s look at an example call to see how this works. We assume that our database con-
tains two automata named al and a2 (accepting L and L,, respectively). As said above
we call

scan(cp((al,a2),b2)).



3.3. Implementing Operations on FSAs

to build an automaton for L; N L, and save it as b1.

Just as when we were simply copying a1, the first substantial thing to happen is a call
to start/2, like this:

start(cp((al,a2),b2),9)

Again, this leads to another call to srart/2. But this time, this call will not directly
match a start state specification of any of the automata in the database. Rather it will
look like this:

start((al,a2),S)

The first argument contains our intersection symbol, the operator ‘,’. And we provide
the following clause of start/2 to match in this case:

start ((Al,A2),S1/S2) :-
start (Al,S1),
start (A2,S2).

This clause produces the start state of our intersection automaton. The start state has
to be the pair of the start states of a1 and a2 according to the construction method
discussed in Section 3.2.2. We represent this in Prolog using the /-operator.

Next, control returns to the embedding call start (cp((al,a2),b2),S), and the start
state of the new b1 is asserted to the database.

Similarly, the calls to trans/4 issued in scan_state/2 now lead to one further call,
which processes the intersection operator. Here’s how we implement trans/4 for
intersection:

trans((Al,A2),S1/S2,D1/D2,X) :—
trans (Al,S1,D1,X),
trans (A2,S52,D2,X).

This code translates our ideas from Section 3.2.2: If a transition over some symbol is
present in A1 and 22, the intersection-automaton should contain a transition over that
symbol between the corresponding pair-states. The above code ‘builds’ this transition.
It is then asserted when control passes back to the embedding call that performs the
cp-operation.

The third predicate that has to be extended is £inal/2 (called by check_final/2 in
scan_state/2). Here is the clause we will add:

final((Al,A2),S1/S2):-
final (Al1,S1),
final (A2,S2).

Any pair of final states of 1 and ~2 is a final state of the intersection automaton.
Again, the new final states are asserted by the embedding f£inal/2-call processing the
cp-instruction.
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3.3.6 Union

To obtain a method for constructing union-automata, we have to translate some of the
ideas underlying our proof of the equivalence between regular expressions and FSAs
in Section 3.1.5. We proceed again by giving further clauses of start/2, trans/4 and
final/2.

Remember that we gave the automaton for the union of two regular languages a brand
new start state. This is encoded in the clause we add to start/2:

start((_;_),start).

Assume that we are building a union-automaton from a1 and a2. The first setof/3-
call will then search for transitions out of the new start state as follows:

setof (D, X"trans(cp((al;a2),bl),start,X,D),Ds)

This leads to a call:

trans((al;a2),start,X,D)

As we’ve seen in Section 3.1.5, our union-automaton should contain jump arcs from
the new start state to (copies of) the start states of a1 and a2. We add the following
clauses to trans/4 for this purpose:

trans ((Al;_),start,1/S1, #"):-
start (Al,S1).

trans((_;A2),start,2/S2,"#"):-
start (A2, S52).

When we were building a union-automaton from two automata M and M, in Sec-
tion 3.1.5, we assumed that the states in both automata were disjoint. To the same
effect we will generally give states that come from M a prefix 1/ and states that come
from M, a prefix 2/ in our implementation of the union-operation. So even if M and
M, have some state names in common, the corresponding states in our union automa-
ton will have different names.

The interior of our union automaton is build up by taking over all transitions from the
automata to be united and prefixing their start and end states by 1/ or 2/:

trans((Al;_),1/S1,1/D1,X):-
trans (Al,S1,D1,X).

trans((_;A2),2/82,2/D2,X) :-
trans (A2, S2,D2,X).
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For the final states, we deviate a little from the method discussed in Section 3.1.5.
There we introduced one new final state and added jump arcs into it from all former
final states. But we don’t have to insist on having only one final state in our union-
automaton. So we can simply prefix and take over the final states from the two input
automata. Hence we just add the following two clauses to final/2:

final ((Al;_),1/S1):-
final (Al,S1).

final ((_;RA2),2/82):—
final (A2,S2).

3.4 The Complete Code

operations.pl: View!_Download? The complete program for operations on FSAs

hahuho.pl: View®’_Download* Further ‘laughing-machines’ needed in the Practical sessi
deterministic.pl: View’_Download® Deterministic and € free ‘laughing machine’ for use in the
recognize.pl: View’_Download® The recognizer/generator for FSAs with or without jump

3.5 Practical Session

Hint: In newer versions of SWI-Prolog (at least) you can use the built-in predicate
atom_chars/2 to convert an atom into a list of one-character atoms. For instance
calling

atom_chars (hallo, X).

yields:
X = [h, a, 1, 1, o]

So you can use atom_chars/2 to prepare the input for your FSA like this:
atom_chars(’haha!’, X), test(al,X).

Note that if the word you want to split in single letter contains an exclamation mark,
you have to enclose the whole word in single quotes (as seen in the example).

Now, let’s see if our program for manipulating FSAs really works as it should.

1. Have a look at hahuho.pl. This file contains two automata, named hahu and
haho. They recognize different kinds of laughter. For hahu, the laughter can be
any sequence of ‘ha’ and ‘hu’, ended by an exclamation mark. For haho it has
to consist of ‘ha’ and ‘ho’ and also end in an exclamation mark. These are the
automata we will test our new program on, so make sure you understand them.
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2. Start Prolog and consult recognize.pl,hahuho.pland operations.pl.
(You may see some warnings. Don’t mind...) Use test/2 to test hahu and haho
on some laughter of your choice.

3. Think about how to characterize the language that the union-automaton of hahu
and haho should accept.

4. Build and test the automaton. First request our program to build the union-
automaton of hahu and haho (indicated by ;) and then save it under the name u
(using cp), as follows: scan (cp((hahu;haho), u)).

Now you can use test/2 to test u on any input that you think should or shouldn’t
be accepted. For instance try test (u, [h,a,h,u,!]).,test(u, [h,a,h,o0,!]).,
and test (u, [h,u,h,o0,!])..

5. Describe (for yourself...) the language that the intersection-automaton of hahu
and haho should accept.

6. Build the intersection-automaton (using ,) and save it under the name s. Then
test s on several inputs that it should or shouldn’t accept.

7. Finally, use generate/2 to generate with hahu, haho, s and u (if you don’t
remember how to do this, look it up in Section 1.4.2). What do you see? Have a
look at the code to explain your observations.

3.6 Exercises

Exercise 3.1 What language does the regular expression (hi|(ha (ho)*))* describe?
Sketch the step-by-setp construction of an automaton along the lines of our proof in
Section 3.1.5. To make this task a bit less cumbersome, here are some simplifications
that you can make:

e You don’t have to treat hi, ha, and ho as complex, that is you can read each of
them as a whole word over one edge.

e You don’t have to give names to the states. Just draw empty circles.

e The solution you hand in needn’t contain all intermediate step. That means you
can re-use for the next one what you’ve drawn in one step and don’t have to copy
over and over.

Exercise 3.2 Now draw an automaton for (hi|(ha (ho)*))* as you would normally
do it (that is, don’t stick to the proof in Section 3.1.5). Compare!

Exercise 3.3 In Section 3.1.5 we looked at one direction of the equivalence between
regular expressions and FSAs. We showed that every language that can be character-
ized by a regular expression is also accepted by some FSA. Now let’s look at the other
direction and prove that for every FSA there is a regular expression that characterizes
the same language.

Let
M= ({qla---aqn}a Za 65 qi, F)
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be a deterministic FSA, and L be the language accepted by it. We are going to show
that there is also a regular expression for L.

Before we begin, let’s define the following notion: Ri-‘, are those strings that M reads
when it goes from i to j without passing through a state numbered higher than k (by
passing through, we mean entering and leaving again). So i and j may have numbers
greater than k. We will use Ré‘j to ‘zoom’ in and out of our automaton, determining that
only a part of it may be used.

Now our induction will be over k. Starting from single states we successively allow
ourselves to use larger parts of our automaton. We have to show that (given any choice

ofi,j <n):

Basis There is a regular expression that characterizes R?j. This is the language of all strings
that take M from i to j without going through any state numbered higher than 0 (that
is infact, without going through any state at all).

Induction There is a regular expression for Ré‘j, given that there is one for Rﬁ; ! for any choice of
I,m<n.

Give proofs for basis and induction! To prove the basis, you can of course simply
enumerate as a disjunction all the words that can be read in M in one step from i to j.
For the inductive step, think about the following: If a word can be read from i to jin M
without going through any state higher than k, it can always be split into a sequence of
parts none of which takes M through a state higher than k — 1 (in the sense of entering
and leaving). How can this be done?

Exercise 3.4 Add a ‘pretty-print’ operation (you can call it pr) to the operations
defined in Section 3.3. It should use the backbone of the scan/1-predicate to crawl

along an automaton and print out messages with information about any state it visits
and about any edge it passes.

For instance loading haha .pl® and then calling scan (or (al)) . should result in
output like the following:

automaton al:
initial state 1

from 1 to 2 over h

etc...
final state 4

yes

9http://www.coli.uni—sb.de/~stwa//Milca/CodeInterface/codethml.cgi?file:haha.pl
UND course=coal
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Exercise 3.5 In Section 3.2.2 we saw how to build complement automata, that is
how to make an automaton M that accepts some language L into an automaton M that

accepts L.

The method we discussed there works for FSAs that are complete, deterministic and
e-free. We did not implement a complementation-operation in our Prolog system in
Section 3.3 because we did not want to bother with establishing these properties.

Add a complementation-operation comp to the implemetation. Your operation may sim-

ply assume that the input FSA is complete, deterministic and e-free. The file deterministic.pl'?
contains a complete, deterministic (and of course €-free) version of our very first laugh-

ing machine. Use this file to test you implementation.

3.7 Solutions to the Exercises

3.1
A (very) informal description of the language (hi|(ha (ho)*))*: Any combination of
‘hi” and ‘ha’, ‘haho’, ‘hahoho’ etc. In particular, €, ‘hi’, and ‘ho’ are words of that
language.
A bit more formally: Any combination of words from two languages L and L,, char-
acterised as follows:

Ly Any sequence of ‘hi’s, including the empty word, €.

L All words consisting of one ‘ha’, followed by an arbitrary number of ‘ho’s (including

Zero).

Here’s the official way of constructing an automaton for (hi|(ha (ho)*))*:

Onttp://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/code2html.cgi?file=determinist
UND course=coal
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0. ha, ho, and hi

3. hi | (ha (ho*))

4. (hi | (ha (ho")))*
——_—f
//// \\\\
e N
P € \\
7
ho
OO O D
€ =
\\\ __________ € ///
\. hi -7 -
N\
\\ ///
\\ ///
\\ ’//
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3.2

3.3

Basis:

Induction:

Alternatively (if we don’t have to apply the construction algorithm), the following FSA
does the same job:

hi ho

00

This automaton is obviously a lot smaller. The main problem (at least if you prefer
small automata) with our construction algorithm is that it works in a strictly incre-
mental manner: It always adds states and arcs (a lot of them jump arcs), without ever
checking if each of the additions is really needed.

When accepting a word from R?/. (for any i, j), M may use no more than one transition,
because otherwise it would have to pass through at least one state. So R?j must be
a finite set of one-symbol words, possibly including €. Hence R?, can be described
by a disjunctive regular expression a; | az |...|ap (or a; | a2 |...| ap | € if i = )),
where ay, ay ..., a, are those symbols a for which ((i,a), j) € 8. If there are no such
symbols, then the regular expression is @ (or € if i = j).

We assume that we have regular expressions describing any Rf-‘j_l. Let’s see how to get
one for Rﬁ.‘j based on this. The idea here is the following: We know that if M reads a
word from Rf?j, qr is the highest state it may possibly pass through. So when it gets into
g for the first time, it cannot yet have passed through states higher than g;_;. Once it
has been in ¢, it may come back there arbitrarily often, but cannot pass through states
higher than g;_; between two such visits to g. Then, after its last visit to gz, M again
cannot visit any state higher than g;_ until it finally reaches g;.

Now this means that we can build up a regular expression for R¥ ; from the following
regular expressions that we already have by hypothesis:

1. rf;l for R;‘;l. These are the words that can be read while moving to g, for the
first time.

2. (r/gzl)* for the arbitrary sequences of words from Rﬁl that can be read while
moving from gy, to gy.

3. r,f;l for Ri;l. These are the words that can be read while moving to g; after the
last visit to g.
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3.4

3.5

4. rl’f]fl for Rffj_.l. These are the words that can be read anyway, without even visiting
gx once.

The complete regular expression will look as follows:
k=1 k—Tyk k—1y| k=1
(rix (rik )*’]l;] )|”ij
So apart from regular expressions that we already have, we only need to use the regular
operations of concatenation, disjunction and Kleene closure.

Now we know that we can construct regular expressions for all the R¥ ; corresponding
to our original automaton M. But how do we characterize L(M), the language accepted
by M as a whole? Observe that:

L(M) = U R} ;
9;€F

In other words, M accepts the union of all those languages that are accepted by going
from its start state to one of its final states, possibly using all of its states. So L(M) is
described by the following regular expression:

n n n
s | " [...] ",
(where g}, ..., g, are the final states of M).
% Print an automaton
start(pr(A),S) :—
start (A, S),
format ( , [A,S]).
trans(pr(A),S,X,D) :—
trans (A, S,X,D),
format( ’ [S/X/D])-
final (pr(A),S):—
final (A, S),
format ( ,[S]).

All we have to do for complementing a complete and deterministic automaton is take
all and only its non-final states as final.

% Complement an automaton

start (comp(A),S) :—
start (A, S) .
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trans (comp (A),S,X,D) :—
trans (A, S,X,D).

final (comp(A),S) :—
\+final (A, S).

So by calling scan (cp (comp (al), compl)) ., We assert a new automaton compl that
is like a1, except having as final states the complement set of a1’s final states.

3.8 Further Reading

e References already mentioned in Section 1.9 are [4], [7], and [5]. This chapter
follows the exposition of FSAs and regular languages given in Chapters 2 and 3
of [4].

e The implementation presented in the third part of this chapter is based on the
Fistame system implemented'! and documented'? by Ralph Debusmann. Fis-
tame uses ideas from a course by Martin Kay and Ronald Kaplan. The slides
from this course are available online'?.

Unttp://pictures_eps/www.ps.uni-sb.de/~rade/papers/fistame.tar.gz
12http://pictures_eps/www.ps.uni—sb.de/~rade/papers/fistame.pdf
13http://www.coli.um’.—sb.de/~kay/algorithms.pdf



Finite State Technologies for
Dialogue Processing

4.1 Dialogue Processing

4.1.1 Introduction

ELIZA

Dialogue is at the same time the most fundamental and broadly used form of language,
as well as the most complex one. And most of all, dialogue is the most natural medium
of communication for human beings. It is these aspects of dialogue that make its
modelling a research area of its own, and one of greatest interest at that. In many
cases of interaction between humans and machines, using dialogue may enables better
results with regard to the target each time.

We now consider some general desired characteristics that any dialogue system should
have, and give examples in the form of dialogue fragments. This will serve as back-
ground when we look at a real life-application of dialogue processing with finite state
techniques, namely at the speaking elevator of the Computational Linguistics depart-
ment of Saarland University.

But before we do any of that, have a look at the following.

Eliza (to be found here') is one of the first dialogue systems. You can regard it as your
friend. Tell it your problems and it will try to help you. It cannot really understand
what you tell it. It picks on words that it then maps onto specific output. Play with it
for fun. Do try to work out how it operates!

4.1.2 General Dialogue characteristics

We’ll now give some general characteristics that should be handled by a dialogue man-
ager in some way or another. Besides giving insight into how dialogues work and how
they re structured, these characteristics serve as beackround for the evaluation and clas-
sification of dialogue systems. We will use them when we discuss the dialogue system
of the Saarbriicken speaking elevator later in this chapter, and you will also have the
opportunity to apply them to further systems in your exercises.

"http://www-ai.ijs.si/eliza/eliza.html
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So what are the general characteristics of dialogues that a dialogue manager should be
able to handle?

. Turn-taking: When, how, and for how long should each dialogue participant

talk? (Example ( (page 58)), Elevator characteristic (Section 4.5.1)).

. Adjacency pairs and insertions: What is the appropriate way of responding to

a given input? How can one correct what one has said, ask for additional infor-
mation in order to and before one can provide the appropriate response, etc.?(
Example ( (page 59)), Elevator characteristic (Section 4.5.2)).

. Grounding: How does a dialogue participant make sure that their contribution is

rightly understood, or that they themselves have understood correctly a previous
contribution? How can misinterpretations be corrected? (Examples ( (page 59)),
( (page 59)), ( (page 59)), Elevator characteristic (Section 4.5.3).)

. Dialogue context: How do dialogue participants use the contributions and the

conclusions previously drawn to interpret the current contribution and decide
on their next contribution? (Example ( (page 59)), Elevator characteristic (Sec-
tion 4.5.4).)

. Ellipsis: How do dialogue participants make sense of fragmentary responses

that are often provided in dialogue situations?( Example ( (page 60)), Elevator
characteristic (Section 4.5.5).)

. Reference resolution: How can participants disambiguate what referring expres-

sions refer to? (Example ( (page 60)), Elevator characteristic (Section 4.5.6).)

. Mixed initiative: What is the amount, quality and level of contribution of every

participant? (Example ( (page 60)), Elevator characteristic (Section 4.5.7).)

4.1.3 General Dialogue characteristics: Examples

This was a bit abstract. So next, let’s look at some examples.

Turn-taking

A: Is there something bothering you or not?
(1.0)

A: Yes or no?

(1.5)

A: Eh?

B: NO

A asks a question and that signals a point where the turn passes on to B. Since there is
a significant amount of time where no response is produced by B, A reclaims the turn
and repeats the question. That happens twice, until B actually responds.
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Adjacency pairs and insertions

Where are you going?

Why?

I thought I'd come with you.
I’'m going to the supermarket

e

One of the commonest adjacency pairs is the question-answer pair. This means that
whenever a question has been asked, an answer is to be expected, or is appropriate. In
this example, B does not answer the question A has asked. That, however, is all right,
since B is not ignoring the question. He is just initiating a sub-dialogue in order to
clarify the reasons as to A’s asking the question and be able to better respond.

Grounding

A: OK. I'll take the Sish flight on the night before the 11th.
B: Onthe 11th? OK. Departing at 5:55pm arrives Seattle at 8pm, U.S. Air flight 115.
A: OK.

A gives a departure date. B briefly states what he has understood the departing date to
be and goes ahead to give the details of the itinerary on that date.

What if A changed his mind and wanted to take a later flight, after all?
A: Hm, actually, the 8ish flight would be better.
Or, if the system hadn’t understood him correctly, for example, due to mis-hearing?
B: On the 10th? OK. ...

A dialogue system must be able to deal with these cases, especially as with the current
state of the art in speech recognition there is a lot of room for misrecognition. That
means, that the system should be able to delete information and resume the dialogue at
the right point.

Dialogue context

A: That’s the telephone.
B: I'm in the bath.
A: OK.

B gives an answer which is not at first glance relevant to A’s assertion that the telephone
is ringing. If interpreted in context, though, A’s original assertion must have also been a
prompt for B to pick the telephone up. Therefore, B’s utterance is interpreted as stating
B’s inability to pick up the phone. This particular example requires a lot of world
knowledge as well as dialogue context to be taken into account. World knowledge, for
instance, is used when A realises that B cannot pick up the phone. A is aware of the
fact that getting out of the bath is not what most people enjoy doing in order to answer
a telephone call.
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Ellipsis

A:  Which day would you like to travel?
B: Friday.
A: You want to travel on Friday.

B is able from the fragmentary response ‘Friday’, to reconstruct the semantics of some-
thing like ‘I want to travel on Friday’.

Reference resolution

We need to get the woman from Penfield to Strong.
OK.

What vehicles are available?

There are ambulances in Pittsford and Webster.
OK. Use one from Pittsford.

e

B is able to map ‘vehicles’ onto the vehicles in Penfield or near Penfield, as A has
previously specified the place where the woman has to be transfered from to be Penfield
and, thus, that that will be the place of departure. B also infers that the vehicles should
be ambulances, since this kind of vehicle is normally used for transferring people. The
interpretation here is made easier because B can also infer that the woman is injured,
given the domain. This example is taken from the TRIPS system, a quite sophisticated
system which we will look at briefly later in this lecture.

Mixed initiative

There are ambulances in Pittsford and Webster.

OK. Use one from Pittsford.

Do you know that Route 96 is blocked due to construction?
Oh.

Let’s use the interstate instead.

OK, I'll dispatch the crew.

2 rrE e

A’s suggestion to use the particular ambulances makes the system infer that Route 96
needs to be used. Thereupon, it takes the initiative and informs A that that route is
blocked, implying that it is not a good choice. In the final turn, A takes the initiative
again. It offers to dispatch the crew of the ambulance once the route has been decided
on.

4.2 FSA-based dialogue systems

4.2.1 Processing dialogue with finite state systems

At the heart of the speaking elevator’s dialogue processing capabilities, there’s a FSA
much like the ones we’ve looked at in the last lectures. We will now have a closer look
at how finite state automata can be adapted for dialogue processing. When modeling a
dialogue with an automaton, the key idea is to think of the states of that automaton as
standing for different states of the dialogue, and of its edges as corresponding to things
that happen in the dialogue.
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So states are always defined with certain expectations as to what the system can have
had as input, and what else can have happened at certain stages of the dialogue. For
instance, the initial state of a dialogue automaton is naturally the beginning of the
dialogue, and final states will normally correspond to possible end-points of a dialogue.

Edges of a dialogue automaton may for instance be defined to take the user input into
account in order to decide what the new system state is, and to activate certain pro-
cedures, for instance output or movements. That way whenever a particular input is
recognised by the system, a predefined behaviour and the way to realise it can be pro-
duced next.

So one adaption that has to be made to use FSA for dialogue processing is to allow
various kinds of actions to be connected to edges, other than just consuming given
input. Although this step is formally quite far-reaching, it is conceptually simple. For
the practical purposes we’re going to look at, the striking simplicity of FSAs remains
untouched.

4.2.2 A simple FSA example

The dialogue module of the speaking elevator is modeled by a finite state automaton.
It handles input and output. For this purpose it communicates with a speech recogniser
and a text to speech synthesiser. Specific kinds of spoken input are expected according
to the current state. Besides that, it also communicates with the hardware and controls
mechanical actions.

As a first example let us look at a FSA dialogue manager that could be used to produce
very simple elevator dialogues. As we will soon see, the real speaking elevator’s FSA is
somewhat more complex. Still it is based on the same structure. The dialogue module
of the speaking elevator handles input and output and it controls mechanical actions. It
communicates with a speech recogniser and a text to speech synthesiser. Specific kinds
of spoken input are expected according to the current state. It also communicates with
the hardware. So a very simple FSA for elevator dialogues consists of five states and
five arcs and looks as follows:

A simple finite state automaton

A: Question about
floor Input Understood

A: Floor

B: Keyword announcement

Trip

State 1 is the initiating state. In the elevator it is expecting a particular keyword. When
the keyword is recognised, the system is set to State 2. A question about which floor
the user wants to go to is produced, which sets the system to state 3. The user’s input is
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recognised, which sets the system to state 4. The system informs the user of the floor
he is being taken to and the state after that is State 5. After State 5, the trip begins and
the system is reset.

From this picture we can see another difference between finite state systems used in
dialogue processing and FSAs in the strict sense as we have seen them in previous
lectures: Dialogue automata don’t always have final states. This is of course because
dialogues systems - like for instance in an elevator - often need to be ready for new
input immediately when one dialogue is over, and shouldn’t be ‘switched off’ after
one interactive sequence. This can be symbolised by simply looping back to the intial
state. In the above picture, we could just as well regard state 5 as final state and view
the trip-and-reset as external to the automaton.

Example dialogue

Our simple automaton is able to generate only dialogues of the following kind.

User: Elevator.

System: Which floor do you want?

User: Professor Bill Barry.

System: I’m taking you to the Fifth floor.
(Mechanical command execution follows)

One thing that this dialogue does not allow the user is to confirm or correct the sys-
tem in case of a misrecognition. We will now look at various ways of mending this
shortcoming.

4.2.3 Extending FSA

The kind of dialogue that the automaton we’ve just seen allows is only an abstraction
of the expected dialogues. It covers so few of the characteristics that make dialogue an
efficient way of communicating that it almost defeats the purpose of using dialogue at
all. A drop-down menu would probably be equally efficient.

Let us see, then, what a programmer has to do in order to extend a FSA dialogue man-
ager in order to encapsulate the dialogue characteristics considered in Section 4.1.2.
We will do that by looking at an example, namely, handling grounding.

4.2.4 Grounding extension

So let’s look at the possibilities of extending the simple automaton in Section 4.2.2 to
cover different forms of grounding. Due to the low performance of the state of the
art speech recognisers, it is absolutely necessary for a system to model this feature in
order to prevent irrecoverable errors.

Grounding Extension 1

An obvious solution for modeling grounding would be to add a backward-transition
from every state where input is expected, pointing to the state before it, where the
corresponding question is to be produced. This new edge should then be taken when
the input given by the user is not understood. Here’s the general picture:
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Adding a transition

question

input recognized

question
to come

expecting
input

The resulting dialogue would be as follows:

User: Elevator.

System: Which floor do you want?
User: Professor Bill Barry.
(input unrecognised)

System: Which floor do you want?
User: Professor Bill Barry.
(input unrecognised)

System: Which floor do you want?

This is a likely result, as the user cannot know why the failure to recognise the input
occurred in the first place.

Grounding Extension 2

The grounding method we’ve just seen covers (in a very trivial way) the case that the
system doesn’t recognize the user’s input at all. Yet even if the system does recognize
the user’s input, grounding is important to make sure that the input has been understood
correctly. For this, one solution is to add extra states to every state that expects input.
Those states are responsible for asking for explicit or implicit confirmation based on
what the proposed recognition is.
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Adding states

question input recognized

question
to come

input
expected

The resulting dialogues would be as follows:

User: Elevator.

System: Which floor do you want?
User: Professor Bill Barry.

System: Did you say professor Barry?
User: Yes

System: [Trip...]

User: Elevator.

System: Which floor do you want?
User: Professor Bill Barry.

System: Did you say professor Barry?
User: No

System: Which floor do you want?

It is of course quite aggravating for the user to have to confirm what he has said every
time he says something. That would amount to almost double the number of turns that
humans need to hold a dialogue with the same outcome. If the number of the original
questions that the system needs to ask is more than a couple, which is true for most
domains, this becomes a significant problem.

Grounding Extension 3

Delayed Confirmation

A third option for systems that request a lot of information from the user is to have
delayed implicit requests for confirmation. That means adding for some states other
states that asks the user to confirm all the information that the system has elicited in
the previous states. This method avoids prolonging dialogues too much.

A dialogue with such a system might look as follows:
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User: Elevator.
System: Please specify the city for which you want a weather forecast.
User: Saarbriicken.
System: OK, For when?
User: Tomorrow afternoon.
System: So, you want a weather forecast for Saarbriicken for tomorrow afternoon.
User: Okay.
System: [...]
Or:
User: Elevator.
System: Please specify the city for which you want a weather forecast.
User: Saarbriicken.
System: OK, For when?
User: Tomorrow afternoon.
System: So, you want a weather forecast for Stuttgart for tomorrow afternoon.
User: No, that’s wrong.

System: Please specify the city for which you want a weather forecast.

The system first collects some user input and then requires confirmation for all the
collected information at once. This method is already quite advanced, since it requires
some kind of way for storing all of the previous answers recognised before the confir-
mation is done.

And what about Repair?

The last two examples involve defining a lot of states and transitions. Yet note again
that they do not take into account the case where the input is not understood at all. In
order to do that, we could first implement the first method we saw in Section 4.2.4.
That is, adding a transition to return to the state before the corresponding question if
the input is not understood.

Even this combination of methods would not allow the user to correct the input directly
after the request for confirmation. If the information gathered by the system is inad-
equate, the user has to go through answering all questions again. Instead it would be
nice to allow for more targeted corrections by the user, for example corrections like:

System: So, you want a weather forecast for Stuttgart for tomorrow afternoon.
User: No, I said Saarbriicken.
System: So, you want a weather forecast for Saarbriicken for tomorrow afternoon.

Or:
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System: So, you want a weather forecast for Saarbriicken for tomorrow morning.
User: Wrong time.

System: So, you want a weather forecast for Saarbriicken for tomorrow afternoon.
System: OK, For when?

To allow for this kind of dialogues, we have to add still more states and transitions,
to distinguish between different kinds of user-reactions to the system’s confirmation
request and repeat different questions based on what recognition errors the user points
out.

?- Question!

What about including insertions, for example clarification sub-dialogues, and still al-
lowing for grounding within them in the manner described above?

4.3 An in-depth look at the speaking elevator

4.3.1 The Saarbriicken CL department’s Speaking Elevator

Now let’s have a closer look at the dialogue engine of the Saarbriicken CL department’s
speaking elevator. In the following we will assume that the automaton at the heart of
the speaking elevator looks like this:
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Elevator dialogue finite state automaton

U: Keyword + direct floor request

U: No answer

E: Question about floor\ ' [Listening..] NPut understood E: Request for confirmation
[Listening...]

U: Correct floor number

U: Keyword

E: Notify user Input not understood*

Input understood

[Listening...]

@ Inconsistent command g
~Question agai

nconsistent command

Arrival : "Please use the keyboard."

Input not understood* Trip*

?- Question!
Compare this automaton to the simple one in Section 4.2.2. Do you recognize the
additions that correspond to the grounding techniques we’ve just discussed?
Animation?

Try different trips interactively!

2flash_elevator .html
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4.3.2 How does the dialogue progress?

The initiation of the dialogue occurs via a keyword, namely, either ‘Fahrstuhl’ or
‘Aufzug’, that the user has to be aware of and utter. There is also the possibility to
skip the second and third state and go directly to state 4, if the user uses the keyword
and makes a travel request at the same time. This possibility is defined separately from
the single keywords in the recognition grammar. It is only an added feature for quicker
interaction for the people familiar with the system.

When one of the keywords is recognised, the elevator asks in German ‘Which floor do
you want to go to?’, which corresponds to transition 2—>3 in the model. By that, the
system is set to the state of expecting an answer, which corresponds to state 3. The
answers are all in the recognition grammar of the speech recognizer and they include
numbers of floors as well as descriptions that can be mapped onto floor numbers, e.g.
names of professors that sit on that floor. Turns are strictly defined: The elevator
prompts for information, the user answers, the elevator prompts again, and so on.

4.3.3 An additional memory

There is a memory that is used for storing global variable values, which are acces-
sible from all states. One thing such variables do is providing a mechanism to have
parametrized actions connected to edges instead of fully instantiated ones. This ex-
tends the possibility of things that can happen over one and the same transition from
one state to the next. So that way, the memory allows defining less states explicitly,
as the actual arguments are defined via global variables instead of states. For instance
we will see that there is no need to add explicit states for every different target floor in
order to produce correct confirmation sentences. The floor requested is looked up in
the memory and is added to the standard confirmation utterance.

The memory is also used for various other purposes that we will soon come across. It is
important for the time management. The request of the selection function to the speech
recogniser must be assigned a point in time when a relevant utterance from the user is
to be expected. Relevant here means, an utterance that matches one of the arguments
that the selection function is expecting. And the memory also adds dialogue context by
keeping track of already recognised targets, which floors the elevator has been on, and
the current floor. The global memory is reset when the automaton reaches the starting
state again at the end of a trip or when it has given up understanding the user.

4.3.4 How long does the system wait for a response?

The system waits for responses for a pre-defined specific amount of time (this happens
at states 3, 5, and 8. We have indicated such ‘time windows’ in the diagram by writing
[Listening...]). If there is no answer within the time limit at a state with a ‘time win-
dow’, the system carries out a specified default action. We indicate default actions by
marking the corresponding edge label with a little asterisk *.

So for instance at state 3 the system waits for user input for some time. If, however,
there is no input within that time, the system goes to state 7 because that is the default
action. From there it moves to state 8 and asks for a floor specification again. If there
is no response in due time after that second prompt in a row, the elevator asks the user
to use the keyboard and it is reset to the starting point.
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4.3.5 How does the elevator deal with unrecognised utterances or
inconsistent input?

If the user utterance is not understood, a transition is chosen which corresponds to the
elevator stating so, ‘I have not understood.”. If the second try by the user is still not
understood, there is a request that the user uses the buttons instead, and the elevator is
reset. (Since the Input not understood-edges are marked as default, this is of course
exactly the same course of things that we just discussed for time-outs at the ‘time

windows’ at states 3 and 8).

Due to its global memory, the elevator also has a modest possibilty to check the (un-
derstood) user input for consistency. It compares the floor number that it understood
from the request to that of the floor it’s on, which it finds in its memory. If these are
the same, the automaton moves to state 6, then to back to state 2 and informs the user:
‘We are already on floor x’. Being in state 2, the elevator asks for instructions again.

4.3.6 And what happens if the elevator does understand the input?

If however the user’s utterance is understood at state 3 (that is, if a floor number is
understood that makes sense as destination floor), the elevator moves to state 4. From
there a transition follows for the confirmation of the floor understood. After this, the
elevator is in state 5. If then the user corrects the elevator, we are back at state 4

(confirmation to come). This can end up in an infinite loop.

?- Question!

Can you trace the loop in the dialogue model in figure ( (page 67))?

4.3.7 How is the user input confirmed?

User input is confirmed indirectly. The elevator informs the user of the floor it is about
to start traveling to. If there is no correction or if the input is “Thank you’, the elevator

starts the trip.

4.3.8 During the trip...

The dialogue cannot continue during or after the trip to the requested floor. It has to

start from state 1 again.

When the trip starts, the automaton moves to state 10 and waits until the mechanical
command has been executed. The user is then informed that they have arrived at the
particular floor (transition 10—>1). This transition resets the automaton to the starting

state.

4.3.9 What happens when there is ambiguous input?

The Saarbriicken Phonetics department is in the same building as the CL department.
They use the same elevator, and because they are on floors 4 and 5, they probably use
it quite often. Now someone might ask the elevator: “Take me to the phonetics depart-
ment!” If there is such an ambiguous request, the elevator should ask a clarification
question and be reset to state 3. For example, the elevator should ask ‘Do you want the

4th or the 5th floor?’.
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?- Question!

How would our automaton have to be extended to deal with this situation?

4.3.10 Speaking elevator reference

e Download here.?

4.4 Examples of required behaviour

4.4.1 Turn-taking

System: Which floor do you want?
User: (no input)
System: I’'m sorry I didn’t understand you. Please specify a floor number, a person or a department you

The elevator prompts in a more elaborate way when there is no response by the user
after a pre-defined amount of time. It gives information on what kind of answer is
expected.

Current state and possibility of extension: See Section 4.5.2. See also description of
elevator, Section 4.3.

4.4.2 Adjacency pairs and insertions

System: Which floor do you want?

User: Which floor is Malte Gabsdil on?
System: Malte Gabsdil is on the first floor.
User: Then, first floor, please.

The user requires more information in order to decide which floor they want to be
taken to. The elevator provides it. When the user makes their mind up, based on the
additional information, the elevator is able to understand that the last utterance is a
response to the first question.

Current state and possibility of extension: See Section 4.5.2. See also description of
elevator, Section 4.3.

4.4.3 Grounding

System: Which floor do you want?

User: Third floor.

System: I’m taking you to the fourth floor.
User: No, third floor.

System: I’m taking you to the third floor.

The elevator misrecognises the requested floor. The user corrects it and the elevator
takes the correction correctly into account.

Current state and possibility of extension: See Section 4.5.3. See also description of
elevator, Section 4.3.

3speaking—pictures_eps/elevator .ps.gz
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4.4.4 Dialogue context

(user gets in on third floor)
System: Which floor do you want?
User: Ground floor.
System: I'm taking you to the ground floor.
(trip starts)
User: I left my bag in the office. Can we go back?
System: Yes. I’m taking you to the third floor.

The user specifies a target floor. After the trip has started he says that he wants to go
‘back’. The system interprets ‘back’ in context and understands that the user wants to
go to the third floor, where the trip started from.

Current state and possibility of extension: See Section 4.5.4. See also description of
elevator, Section 4.3.

4.4.5 Ellipsis

System: Which floor do you want?
User: Fifth.
System: I’m taking you to the fifth floor.

The user gives a fragmentary response. Instead of saying ‘I want to go to the fifth
floor.’, he says ‘fifth’. The elvator still understands that the fifth floor is where the user
wants to go.

Current state and possibility of extension: See Section 4.5.5. See also description of
elevator, Section 4.3.

4.4.6 Reference resolution

System: Which floor do you want?
User: The top floor.
System: I’'m taking you to the 5th floor.

The elevator does not give a floor number but a referring expression for it. The elevator
is able to resolve the referring expression and realise that “The top floor’ is the fifth
floor.

System: Which floor do you want?

User: Phonetics

System: Do you want the 4th or the 5th floor?
User: The fifth floor, please.

The same here. The system resolves ‘Phonetics’ to be referring to either the fourth or
the fifth floor. Being aware of the ambiguity, it requests a clarification.

Current state and possibility of extension: See Section 4.5.6. See also description of
elevator, Section 4.3.
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4.4.7 Mixed initiative

User: Third floor quickly!
System: I’'m taking you to the third floor.

The user should be able to initiate the dialogue in the way they choose. In this example
no keyword has been used, but the elevator still responds appropriately.

System: Which floor do you want?

User: I want to go to the second floor to professor Pinkal’s office.
System: Professor Pinkal’s office is on the first floor. Shall I take you to the first floor?
User: Yes.

The user makes an inconsistent request. The elevator recognises that, lets the user
know, and offers an alternative.

Current state and possibility of extension: See Section 4.5.7. See also description of
elevator, Section 4.3.

4.5 Dialogue characteristic and extension of the elevator

4.5.1 Turn-taking

Turn-taking is strict. It has to be explicitly defined in states. The system asks the user
something and waits for the user’s contribution for a defined amount of time. An empty
turn, where the user does not say anything, or not within the time limit, is also defined
as a turn.

4.5.2 Adjacency pairs and insertions

Insertion dialogues and adjacency pairs have to be defined explicitly as possible tran-
sitions from every state. This would lead to computational explosion! Try to work
out what the dialogue model would look like if you wanted to add some clarification
dialogues.

4.5.3 Grounding

Grounding in the speaking elevator is implicit. Traversing the edge 4->5, the floor
requested is looked up in the system’s globl memory and is then mentioned in a stan-
dard confirmation utterance: ‘I’m taking you to the x-th floor.”, which the user can then
object to.

As we’ve discussed above, by using an extra global memory to store the floor requested
we can keep the number of states and edges needed for grounding quite small: There
is no need to add explicit states for every different target floor in order to produce the
correct confirmation sentence. A nice extension would be to remember the floor that
was misunderstood, so that it does not recognise it wrongly twice, that is, if the user
has already stated that the original recognition was wrong.
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Repair is also possible, although in a very limited fashion in the depicted dialogue
model. It is defined as a possible transition from the state after the confirmation utter-
ance has been produced (5->4). The elevator can only recognize correct floor requests
over this transition. Everything else activates the 7rip edge. That is, you can only cor-
rect it by giving alternative (and consistent) floor requests, not by saying for instance
‘No!” or ‘Stop!’.

?- Question!

How would the speaking elevator-automaton have to be changed to allow for more
natural corrections by the user?

4.5.4 Dialogue context

Almost all dialogue context is hard-coded in the states and transitions. It is not explic-
itly represented, with the exception of storing the floor requested and the floor currently
on. That makes it difficult to change general aspects of the dialogue. All states have to
be re-defined.

4.5.5 Ellipsis

Ellipsis can be dealt with only in the very particular context of the current state. Recog-
nition is based on keyword spotting. So, as long as elliptical phrases are present in the
recognition grammar, they will be recognised. The recognition grammar is the same
for every state. Therefore, the elevator cannot be extended by allowing a different
grammar to be called for every state. There are other similar systems that do make use
of that possibility.

4.5.6 Reference resolution

There is no possibility of extending the elevator to handle reference resolution apart
from explicitly including the referring expressions in the recognition grammar. That
can only be done for a tiny amount of referring expressions out of the, in principle,
unlimited possible ones.

4.5.7 Mixed initiative

Only the system has initiative, apart from the initialisation of the interaction. Still that
can only be done by one of the pre-specified keywords. If something goes wrong, the
system is reset and the dialogue has to start anew, with loss of all information. The
system prompts the user for a specific kind of contribution and waits for a relevant
utterance in the very limited context of the current state. The user cannot provide more
information that could be helpful, or underspecify a parameter required by the system,
as only the utterances defined in the recognition grammar can be recognised. Users
cannot even choose to answer questions still in the pre-defined way, but in an order
that better fits their purpose. In addition, the system cannot reason about anything that
is not hard-coded. It cannot make suggestions based on context, for example.

There is no possibility of extending the elevator for mixed initiative other than defining
states that allow the system to take further initiative itself. An extension to accept
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user initiative can also partially be handled in the same way. It is, however, more
problematic as there is no upper limit as to what the user can say, or request. This is a
general problem with allowing a high degree of user initiative - even sophisticated plan
recognition techniques are faced with it.

A fairly easy extension would be for the system to inform the user of the options they
have at each point, so that the dialogue does not come to a break. In a way, this is mod-
eled now by the system telling the user to use the keyboard after two misrecognitions
in a row.

4.6 Summary and Outlook

4.6.1 Advantages and disadvantages

Dialogue structure

Dialogue management with FSA is simplified. That means that they are easy and quick
to develop, as long as the domain is well-structured. The developer can define the states
and transitions necessary based on the structure already present in the domain. This
also presupposes that only the system has the initiative, because as soon as the user is
allowed to take the initiative the input and structure cannot be controlled. Moreover,
when there are more than just the basic dialogue requirements for a domain, FSA be-
come an effort-some and time-consuming dialogue modeling method that is moreover
not very robust. The developer has to hard-code every single behaviour while at the
same time he always runs the risk of leaving something out, which can eventually cause
the system to break down. In other words, there is no clear way of capturing a general
conceptualization that makes a system less bug-prompt.

User input

Another advantage exemplified by FSA is that speech recognition and interpretation
are simplified, because of the predefined user input. As far as the latter is concerned,
keyword spotting is enough. That means that only the important semantic entities in
the user’s answer need to be recognised and interpreted. That, however, amounts to
the restriction of the input the user is supposed to give in a very unnatural mode and
any information based on structure of the input is lost. Moreover, the user cannot give
more information than what has been asked for explicitly each time, since there is no
handling of over-answering.

Conclusion

The above drawbacks make dialogue modeling with FSA appropriate only for very
simple domains with flat structures. Any domain that involves possible sub-tasks, and
especially in an unpredictable order, would require a lot of expensive backtracking in
order to recover the state before the sub-task was initiated.

Summing up

In summary, the advantages of FSA are:
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Quick and easy to develop

Controlled user input

Simple speech recognition

Simple interpretation

Appropriate for well-structured domains

The disadvantages of FSA are:

e Need to hard code dialogue specifications

Need to predict dialogue possibilities

Inflexible structure

Prompt to break-downs

Inappropriate for more complicated domains

4.6.2 The CSLU tool

One rather practical advantage of finite state techniques for dialogue processing is that
there are various tools for designing dialogue automata that are readily available. If
you are keen on finding out more about FSA designing tools, here? is the link to the
CSLU tool webpage. That includes information on the toolkit and tutorials on use. The
tool runs only on Windows.

4.6.3 Beyond finite state techniques

As we’ve just seen, using finite state techniques in dialogue processing may lead to
good results with relatively little effort, but only under certain conditions. If for in-
stance great flexibility in a complicated domains is what is needed, finite state tech-
niques often don’t lead to satisfying solutions.

In such cases, one uses methods that are more sophisticated linguistically as well as
technically. Such methods often involve a fair amount of reasoning, for instance about
plans and communicative intentions. A key idea is that of representing the user’s and
the system’s knowledge state explicitely and employ reasoning techniques on these
state representations. Fully-fledged reasoning also allows for the consideration of do-
main knowldege to the extent needed for solving even quite complex tasks. Another
concept of great importance in designing advanced dialogue systems is that of speech
acts or dialogue acts, defining what role a each utterance plays within a dialogue.

Two examples of quite ambitious dialogue systems are the TRAINS system and its
successor, the TRIPS system. Both deal with helping humans in logistics tasks. The
basic dialogue scenario that TRAINS deals with is route-planning in a transportation
domain. TRIPS collaborates with the user in disaster relief management.

“http://cslu.cse.ogi.edu/toolkit/docs/index.html
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A TRAINS example dialogue

Here’s an example of a dialogue with the trains system:

User[1]:  Ineed to get to Detroit, Syracuse and Montreal.

Syst[2]: Ok. [highlights the three cities]

User[3]: Let’s send the trains from Chicago to Detroit.

Syst[4]: Ok. [draws route from Chicago to Detroit via Toledo] But the terminal at Toledo is delaying
User[5]:  That’s ok. Now let’s go from Atlanta up to Syracuse.

Syst[6]: Please tell me a route to use to get from Atlanta to Syracuse [highlights engine at Atlanta anc
User[7]: Go via Charleston and Pittsburgh.

Syst[8]: Ok. [draws route via Cincinnati] But traffic through Cincinnati is being delayed due to const
User[9]: Ok, let’s go via Charleston and Buffalo instead.

Syst[10]:  No problem. [draws route]

User[11]: That’s great.

Syst[12]: I hope it was helpful.

User[13]: Finally, I want to go from Montreal to Philadelphia.

Syst[14]:  Ok. [draws route]

User[15]: That’s great. I’'m done.

As you can see from this small dialogue already, the TRAINS system allows for much
more flexible interaction than for instance the speaking elevator. Dialogues start by
either the system presenting the user with a problem, or the user presenting the system
with their goal. The participants then have to define tasks in order to solve the original
problem and talk about them. Interactions are interpreted with reference to all previous
interactions.

TRAINS was built with the objective of allowing the user and the system to collab-
orate towards solving the problem in a way that humans collaborate with each other.
Each participant is responsible for the part of the task that they can perform better.
That means that the user is responsible for the top level goals of how to attack a prob-
lem. The system constantly tries to infer from the user’s input what the user’s goals
are, with respect to the task. Based on that, it draws the user’s attention to possible
problems and makes relevant suggestions. Due to the aimed behaviour for the system,
a lot of planning and plan recognition becomes necessary. The TRAINS system uses
domain-specific reasoning techniques to make plan recognition less computationally
expensive. As far as planning is concerned, the system is deliberately weak, so that
more collaboration with the human user is provoked.

Demo videos

The following demo videos contain further information on the TRAINS and TRIPS
systems.

1. This’ is a general demo via an example on the objectices, the architecture and
what the TRAINS system is capable of doing. [Format: Quicktime, Size: 24M]

2. This demo® includes an extensive dialogue with the TRAINS system. [Format:
Quicktime, Size: 19M]

Shttp://www.coli.uni-sb.de/%7Estwa/shadow/dialog/TRAINS-Project-Promo.qt
Shttp://www.coli.uni-sb.de/%7Estwa/shadow/dialog/TRAINS95-v1l.3-Pia.qt
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4.7 EXxercises

Exercise 4.1 Watch the TRIPS/TRAINS-demo videos referenced in Section 4.6.3. Use
the criteria given in Section 4.1.2 to evaluate the systems based on these videos and
the example dialogue in the same section.

Exercise 4.2 The Philips train information system is a system that gives information
on train travels. In this exercise you're asked to experiment with this system.

1. Dial the following phone number to be connected with the system:
0241 604020
We suggest you do that in groups! Protocol your dialogues.

2. Try to systematically evaluate the system with regard to the characteristics dis-
cussed in Section 4.1.2 and the desired behaviour you would like it to depict.
Take notes of your results.

3. Which of the dialogue systems that we have looked into is it closer to; the speak-
ing elevator or the TRAINS system? Justify your opinion by specific examples,
where possible.

4. Try if you can draw an automaton that handles some or even all of your proto-
coled dialogues.

Exercise 4.3 Give a Prolog-specification of the simple dialogue automaton shown in
Section 4.2.2, using the following extensions to our ususal representation scheme:

e Use write(’blabla blubb’) as label for edges meant to produce the output
‘blabla blubb’.

e Useread(’blabla blubb’) aslabel for edges meant to (possibly) ask for input
and then to be traversed if the input was ‘blabla blubb’.

e Use call (trip(FloorNumber)) as label for edges meant to trigger an action
nanu%ltrip(FloorNumber%

For this exercise you can assume that the edge labeled ‘Input understood’ in the picture
somehow sets a global variable named ¥1oorNumber that can then be accessed by all
edges traversed later on.

How would you describe the language accepted by the FSA you’ve specified? (Just
look at it as if it was one of the usual FSAs that you know from the previous lectures.
Can you give a regular expression for it?).

Describe what extensions to the predicates in recognize.pl’ become neccessary
in order to use them for produce a dialogue based on the automaton you’ve specified.

"http://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/code2html.cgi?file=recognize.p
UND course=coal
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Exercise 4.4 [Mid-term project]

Adapt the predicates in recognize . p18 so that they can process specifications of di-
alogue automata as described above in !!!UNEXPECTED PTR TO EX_DIALOGUE.EX.SPECIFY!!!.

You can use the predicate readnton/1 from the file readAtom.pl® to read input

from the keyboard into an atom.

readAtom.pl: View'_Download"' Predicate readnton/1 for reading keyboard input into an atom

Here’s an example of what this predicate does:

2 ?- readAtom(A).
|: hallo spencer.

A = 'hallo spencer.’

Yes
3 72—

Include the following code before your program to be able to use the predicate:
:— use_module (readAtom, [readAtom/1]) .

Please let us know'? if you would like to do this exercise as your mid-term project.

8http://www.coli.uni—sb.de/~stwa//Milca/CodeInterface/codethml.cgi?file:recognize.p

UND course=coal
http://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/code2html.cgi?file=readAtom.pl

UND course=coal
2n3ilto:stwa@ecoli.uni-sb.de
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5.1 Context Free Grammars

5.1.1 The Basics

context free grammars (CFGs) describe a larger class of formal languages than regular
languages do. As we will see below, the language a"b" can in fact be described by
a CFG. Even more, many natural language structures can be neatly described with
context free grammars. This makes them especially useful for writing grammars for
NLP applications. Another reason why CFGs are widely used in the field of NLP is
the availability of many efficient tools (compilers, parsers, etc.).

Here’s a simple CFG:

S — AB
S — ASB
A — a
B — b

Some Terminology

The — is called the rewrite arrow, and the four expressions listed above are called
context free rules (you may also see them called rewrite rules, or something similar).

Apart from the —, there are two sorts of symbols in this grammar: terminal symbols
and non-terminal symbols. In the above grammar, the terminal symbols are ‘a’ and ‘b’,
and the non-terminal symbols are ‘S’, ‘A’, and ‘B’.

Terminal symbols never occur to the left of a rewrite arrow.

Non-terminal symbols may occur either to the right or the left of the rewrite arrow (for example, the
‘S’ in the above grammar occurs both to the right and the left of — in the second
rule).

Every context free grammar has one special symbol, the start symbol (or sentence
symbol), which is usually written ‘S’. Some context free grammars also use another
special symbol, namely €, for the empty string. The € symbol can only occur on the
right hand side of context free rules. For example, we could add the rule S — € to
the above grammar, but we could not add € — A.



Chapter 5. Context Free Grammars

Rewrite Interpretation

The simplest interpretation of context free grammars is the rewrite interpretation. This
views CFGs as rules which let us rewrite the start symbol to other strings: each rule is
interpreted as saying that we can replace an occurrence of the symbol on the left side
of the rule by the symbol(s) on the right side.

For example, the above grammar lets us rewrite ‘S’ to ‘aabb’:

S

ASB  Rule 2
aSB Rule 3
aSb Rule 4
aABb Rule 1
aaBb Rule 3
aabb  Rule 4

Such a sequence is called a derivation of the symbols in the last row. For example,
the above sequence is a derivation of the string ‘aabb’. Note that there may be many
derivations of the same string. For example,

S

ASB  Rule 2
ASb  Rule4
aSb Rule 3
aABb Rule 1
aAbb Rule 4
aabb Rule 3

is another derivation of ‘aabb’.

Why are such grammars called ‘context free’? Because all rules contain only one sym-
bol on the left hand side — and wherever we see that symbol while doing a derivation,
we are free to replace it with the stuff on the right hand side. That is, the ‘context’ in
which a symbol on the left hand side of a rule occurs is unimportant — we can always
use the rule to make the rewrite while doing a derivation. !

The language generated by a context free grammar is the set of terminal symbols that
can be derived starting from the start symbol ‘S’. For example, the above grammar
generates the language b\ {€} (the language consisting of all strings consisting of a
block of ’a’s followed by a block of ’b’s of equal length, except the empty string). And
if we added the rule S — € to this grammar we would generate the language a"b".

A language is called context free if it is generated by some context free grammar. For
example, the language a"b"\{€} is context free, and so is the language a”b", for we
have just seen that these can be produced by CFGs. Not all languages are context free.
For example, a"b"c" is not. That is, no matter how hard you try to find CFG rules that
generate this language, you won’t succeed. No CFG can do the job.

IThere are more complex kinds of grammars, with more than one symbol on the left hand side of the
rewrite arrow, in which the symbols to the right and left have to be taken into account before making a
rewrite. Such grammars can be linguistically important, but we won’t study them in this course.
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5.1.2 The Tree Admissibility Interpretation
While the rewrite interpretation of CFGs is important, there is a more fundamental way
of thinking about CFGs, namely as tree admissibility rules.

A parse tree is a finite tree all of whose interior nodes (that is, nodes with daughters)
are licensed (admitted) by a grammar rule. What does this mean? Let’s look at an
example:

A Parse Tree

S
A/SI\
| VRN [
a A ]'3 b
bob

This tree is licensed by our grammar — that is, the presence of every node with daugh-
ters can be justified by some rule. For example. the top node is ok, because under the
tree admissibility interpretation we read S — A S B as saying: A tree node labelled
S can have exactly three daughters, labelled (reading left to right) A, S, and B. The
node labelled A is ok, because under the tree admissibility interpretation we read the
rule A —> a as saying: A tree node labelled A can have exactly one daughter which
is labelled a. Similarly, all the other nodes with daughters are ‘justified” or ‘admitted’
by other rules (the terminal nodes of the tree don’t need to be justified).

If you think about it, you will see that there is a close correspondence between parse
trees and derivations: every derivation corresponds to a parse tree, and every parse tree
corresponds to (maybe many) derivations. For example, the tree above corresponds to
both our earlier derivations of ‘aabb’.

The tree admissibility interpretation is important for two reasons. First, it is the lin-
guistically most fundamental interpretation. We don’t think of natural language as a
bunch of strings that need rewriting — we think of natural language sentences, and
noun phrases and so on as having structure, tree structure. Thus we think of CFG rules
as telling us which tree structures we have.

Ambiguity

Second, the idea of parse trees brings us to an important concept: ambiguity. A string
is ambiguous if it has two distinct parse trees. Note: We said ‘parse trees’, not ‘deriva-
tions’. For example, we derived the string ‘aabb’ in two different ways from our little
grammar — but both ways correspond to the same derivation tree. That is, the string
‘aabb’ is not ambiguous in this grammar. And in fact, no string this grammar generates
is ambiguous. But we will see that some grammars do generate ambiguous strings.

5.1.3 A Little Grammar of English

The above ideas adapt straightforwardly to natural languages. But with natural lan-
guages it is useful to draw a distinction between rules which have syntactic categories
on the right hand side, and rules which have only words on the right hand side. The
rules are known as phrase structure rules, and lexical rules, respectively.
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A Phrase Structure Grammar

Here’s a simple so-called phrase structure grammar (PSG) of English. We have phrase

structure rules:

...and lexical rules:

S — NPVP
NP — PN

NP — PN Rel
NP — Det Nbar
NBar — N
NBar —> N Rel
Rel — WhVP
VP — IV

VP — TV NP
VP — DV NP PP
VP — SV S

PP — PNP

PN — vincent
PN — mia
PN — marsellus
PN — jules
Det — a

Det —> the

Det — her
Det —> his

N — gun

N — robber
N — man

N — woman
Wh — who
Wh — that

P — to

1V — died
IV — fell
TV — loved
TV —» shot
TV — knew
DV — gave
DV — handed
SV — knew
SV — believed

So in this grammar, the terminal symbols are English words. There is a special word
for the symbols (such as N, PN, and Det) which occur in lexical rules: they are called

preterminal symbols.

This grammar is unambiguous. That is no string has two distinct parse trees. (Inciden-
tally, this means that it is not a realistic grammar of English: all natural languages are
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highly ambiguous.) But it does display an interesting (and troublesome) phenomenon
called local ambiguity.

Local Ambiguity

Consider the sentence ‘The robber knew Vincent shot Marsellus’. This has a unique
parse tree in this grammar. But now look at the first part of it: ‘The robber knew
Vincent’. This is also a sentence according to this grammar — but not when considered
as a part of ‘The robber knew Vincent shot Marsellus’. This can be a problem for a
parser. Locally we have something that looks like a sentence — and a parser may
prove that this part really is a sentence according to the grammar. But this information
does not play a role in analyzing the larger sentence of which it is a part. Keep this in
mind. It will become important again when we build a parser using this grammar in
Section 6.1.

5.2 DCGs

5.2.1 DCGs are a natural notation for context free grammars

Suppose we are working with a context free grammar, for example, this:

S —> NP VP
NP — DetN
VP — VNP
Det — the
Det — a

N — witch
N — wizard
\" — curses

We can immediately turn this into the following DCG (found in dCGExample .pl?):
s ——> np,vp.
np —-—-> det,n.
vp —-—> v,np.

det —-—> [the].

det —-—> [a].
n ——> [witch].
n ——> [wizard].

Zhttp://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/code2html.cgi?file=dCGExample.
UND course=coal
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v ——> [curses].

The link between the two formalisms is obvious. About the only thing you have to
remember is that in DCG notation, lexical items (that is, the words) have to be written
as elements of a one-element list.

What’s not quite so obvious is the way DCGs are used. For example, to see whether
‘A witch curses the wizard’ is accepted by the grammar we need to pose the following
query:s([a,witch,curses,the,wizard],[]).3

That is, we have to give two arguments, one of which is the empty list. Similarly,
to see if ‘the witch’ is a noun phrase in this grammar, we would pose the query
np([the,witchl, [1).*

DCGs can be used to generate (a very useful property). For example, to see all
the sentences generated by our little grammar, we would give the following query:
s(X,[1),write(X),nl,fail.>

To see all the noun phrases produced by the grammar we would pose the query np (X, [1),write(X),nl, fa

5.2.2 DCGs are really Syntactic Sugar for Difference Lists
[Background]

Why the two arguments when we make queries? Because DCGs are really "syntactic
sugar" for something else. They are a nice user friendly notation for grammars written
in terms of difference lists. For example, when the above grammar is given to Prolog,
the Prolog interpreter will immediately translate the first rule into something like this:

s(A,B) :-
np (A, C),
vp(C,B) .

The lexical rule for ‘the’ will translate into something like this
det ([the|W],W) .

This is not the place to go into how this works, but we will make two remarks: First,
the difference list representation of grammars, while a bit complicated at first sight,
is a very efficient way of representing grammars. In particular, the use of difference
lists allows us to avoid using the append/3 predicate, thus DCGs are a useful way of
writing even quite large grammars. Second, notice that the translated clauses all have
two arguments — which explains why the above queries needed two arguments.

Summing up: DCG notation is a natural notation that lets us write context free gram-
mars in a natural way. DCGs translate into a difference list representation that allows
far more efficient processing than a naive single-list representation that relies on using
append/3.

3http://www.coli.uni—sb.de/~stwa//Milca/CodeInterface/callProlog.cgi?consult:’dCGExa
UND course=coal UND directinput=s([a,witch,curses,the,wizard], []).

http://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/callProlog.cgi?consult='dCGExa
UND course=coal UND directinput=np([the,witch], []).

Shttp://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/callProlog.cgi?consult="dCGExa
UND course=coal UND directinput=s(X, []),write(X),nl,fail.

Shttp://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/callProlog.cgi?consult='dCGExa
UND course=coal UND directinput=np(X, []),write(X),nl,fail.
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5.2.3 DCGs give us a Natural Notation for Features

But we can do more with DCGs. For a start, we are able to add extra arguments to our
DCG rules. And this lets us do some linguistically useful things — and in particular it
lets us use features.

Suppose we wanted to deal with sentences like ‘She shoots him’, and ‘He shoots her’.
What should we do? Well, obviously we should add rules saying that ‘he’, ‘she’, ‘him’,
and ‘her’ are pronouns:

pro ——> [he]
pro —-> [she]
pro ——> [him]
pro —-> [her]

Furthermore, we should add a rule saying that noun phrases can be pronouns:
np —-—> pro.
This new DCG (kind of) works. For example:

s ([she, shoots,him], []) .

yes

But there are obvious problems. The DCG will also accept a lot of sentences that are
clearly wrong, such as ‘A witch curses she’, ‘Her curses a wizard’, and ‘Her shoots
she’.

Here’s a bad way of repairing the problem: add more rules. For example, we might

rewrite the DCG as follows:

s ——> np_subject, vp.

np_subject —--> det,n.

np_object —--> det,n.
np_subject —--> pro_subject.
np_object —--> pro_object.

vp —--> v,np_object.

vp -—> V.

det —-—> [the].

det --> [a].

n ——> [witch].

n ——> [wizard].
pro_subject —--> [he].
pro_subject —--> [she].
pro_object —-> [him].
pro_object —--> [her].

v ——> [curses].
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This is awful. Basically, we’ve had to make a big change to the grammar to cope with a
very small set of facts. After all, let’s face it: ‘I’ and ‘me’ are pretty much the same —
they just differ with respect to their case property and the way they sound. By marking
information with features, we can do a much neater job:

s ——> np(subject),vp.
np(_) —--> det,n.
np(X) —--> pro(X).

vp —--> v,np(object).

vp ——> V.

det —-—> [the].
det --> [a].

n ——> [witch].
n ——> [wizard].
v —-—> [curse].
pro(subject) —--> fhe].
pro(subject) —--> [she].
pro(object) —--> [him].
pro(object) —--> [her].

The extra argument — the feature — is simply passed up the tree by ordinary unifica-
tion. And, depending on whether it can correctly unify or not, this feature controls the
facts of English case neatly and simply.

Summing up: features let us get rid of lots of unnecessary rules in a natural way. And
DCGs enable us to implement rules with feature information in a natural way.

?- Question!
Above, we said that DCGs are formally more powerful than CFGs. Did the addition of
features in our case leave the expressivity of CFGs?

[Background]
One last remark. Note that extra arguments, really are just plain old Prolog arguments.
For example

s ——> np(subject), vp.

translates into something like.

s(A,B) :-
np (subject,A,C),
vp(C,B) .
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5.3 DCGs for Long Distance Dependencies

5.3.1

Relative Clauses

Consider these two English NPs:
‘The witch who Harry likes.’

This NP contains a relative clause where the relative pronoun is the direct object. Next,
an NP with a relative pronoun in subject position:

‘Harry, who likes the witch.’

What is the syntax of such NPs? That is, how do we build them? We are going to start
off by giving a fairly traditional explanation in terms of movement, gaps, extraction,
and so on. As we’ll soon see, it’s pretty easy to think of these ideas in terms of features,
and to implement them using DCGs.

The Traditional Explanation

The traditional explanation basically goes like this. We start from the following sen-
tence: ‘Harry likes the witch’ Now we can think of the NP with the object relative
clause as follows.

| |
the witch who Harry likes GAP(NP)

That is, we can think of it as being formed from the original sentence by (1) extracting
the NP ‘the witch’ from its original position, thereby leaving behind an empty NP, or
an NP-gap, and (2) moving it to the front, and (3) inserting relative pronoun ‘who’
between it and the gap-containing sentence.

What about the subject relative clause example? We can think of this as follows:

1

Harry who GAP(NP) likes the witch

That is, we have (1) extracted the NP ‘Harry’ from the subject position, leaving behind
an NP-gap, (2) moved it to the front, and (3) placed the relative pronoun ‘who’ between
it and the gap-containing sentence.

But why are relative clause constructions an example of unbounded dependencies? The
word ‘dependency’ indicates that the moved NP is linked, or depends on, its original
position. The word ‘unbounded’ is there because this “extracting and moving” opera-
tion can take place across arbitrary amounts of material. For example, from ‘A witch
who Harry likes, likes a witch.” we can form

| |
a witch who a witch who Harry likes, likes GAP(NP)
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And we can iterate such constructions indefinitely — albeit, producing some pretty
hard to understand sentences. For example, from: ¢ A witch who a witch who Harry
likes, likes a witch.” we can form

I I
a witch who a witch who a witch who Harry likes, likes GAP(NP)

In what follows we shall see that, by using features, we can give a nice declarative
account of the basic facts of English relative clauses. Indeed, we won’t even have to
think in terms of movement. We’ll just need to think about what information is missing
from where, and how to keep track of it.

5.3.2 A First DCG

Let’s now sit down and write a DCG for simple English relative clauses. In this DCG
(found in ACG4Gaps.pl’) we will only deal with transitive verbs (verbs that take
a single NP as argument — or to use the proper linguistic terminology, verbs that
subcategorize for a single NP). Further, to keep things simple, the only relative pronoun
we shall deal with is ‘who’.

Let’s first look at the NP rules:

p (nogap) —--> det, n.

p (nogap) —--> det, n, rel.
p (nogap) --> pn.

p (nogap) --> pn, rel.
p(gap(np)) -—> [].

The first four rules are probably familiar. They say that an English NP can consist of a
determiner and a noun (for example: ‘a witch’), or a determiner and a noun followed
by a relative clause (for example: ‘a witch who likes Harry’), or a proper name (for
example: ‘Harry’), or a proper name followed by a relative clause (for example: ‘Harry,
who likes a house-elf’). All these NPs are ‘complete’ or ‘ordinary’ NPs. Nothing is
missing from them. That is why the extra argument of np contains the value nogap.

What about the fifth rule? This tells us that an NP can also be realized as an empty
string — that is, as nothing at all. Obviously this is a special rule: it’s the one that lets
us introduce gaps. It says: we are free to use ‘empty’ NPs, but such NPs have to be
marked by a feature which says that they are are special. Hence in this rule, the value
of the extra argument is gap (np). This tells us that we are dealing with a special NP
— one in which the usual NP information is absent.

A Feature-Based Approach

The use of features to keep track of whether or not information is missing, and if
so, what kind of information is missing, is the crucial idea underlying grammar-based
treatments of all sorts of long distance dependency phenomena, not just relative clauses.

"http://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/code2html.cgi?file=dCG4Gaps.pl
UND course=coal
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Usually such features keep track of a lot more information than our simple nogap ver-
sus gap (np) distinction — but as we are only looking at very simple relative clauses,
this is all we’ll need for now.

Now for the S and VP rules.
s (Gap) —-—> np(nogap),vp (Gap) .
vp(Gap) --> v(1l), np(Gap).

The first rule says that an S consists of an NP and a VP. Note that the NP must have the
feature nogap. This simply records the fact that in English the NP in subject position
cannot be realized by the empty string (in some languages, for example Italian, this
is possible in some circumstances). Moreover, note that the value of the Gap variable
carried by the VP (which will be either nogap or gap (np), depending on whether the
VP contains empty NPs) is unified with the value of the Gap variable on the S. That is,
we have here an example of feature passing: the record of the missing information in
the verb phrase (if any) is passed up to the sentential level, so that we have a record of
exactly which information is missing in the sentence.

The second rule says that a VP can consist of an ordinary transitive verb together with
an NP. Note that instead of using the symbol tv for transitive verbs, we use the symbol
v marked with an extra feature (the 1). (In the following section we shall introduce
a second type of verb, which we will call v (2) verbs.) Also, note that this rule also
performs feature passing: it passes the value of Gap variable up from the NP to the VP.
So the VP will know whether the NP carries the value nogap or the value gap (np).

Now for the relativization rules:

rel ——> prorel, s(gap(np)).
rel —--> prorel, vp(nogap).

The first rule deals with relativization in object position — for example, the clause
‘who Harry likes” in ‘The witch who Harry likes’. The clause ‘who Harry likes’ is
made up of the relative pronoun ‘who’ (that is, a prorel) followed by ‘Harry likes’.
What is ‘Harry likes’? It’s a sentence that is missing its object NP — that is, it is a
s (gap (np) ), which is precisely what the first relativization rule demands.

Incidentally — historically, this sort of analysis, which is due to Gerald Gazdar, is
extremely important. Note that the analysis we’ve just given doesn’t talk about moving
bits of sentences round. It just talks about missing information, and says which kind of
information needs to be shared with the mother category. The link with the movement
story should be clear: but the new information-based story is simpler, clearer and more
precise.

The second rule deals with relativization in subject position — for example, the clause
‘who likes the witch’ in ‘Harry, who likes the witch’. The clause ‘who likes the witch’
is made up of the relative pronoun ‘who’ (that is, a prorel) followed by ‘likes the
witch’. What is ‘likes the witch’? Just an ordinary VP — that is to say, a vp (nogap)
just as the second relativization rule demands.

And that’s basically it. We re-use the lexical rules from above (page 83) and add some
new ones:
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n ——> [house-elf].

pn —--> [harry].

v(l) ——> [likes].
v(l) ——> [watches].
prorel —--> [who].

Let’s look at some examples. First, let’s check that this little DCG handles ordinary
sentences:

s(_,[harry,likes,the,witch},[J).8

Let’s now check that we can build relative clauses. First, object position relativization:

np (_, [the,witch, who,harry, likes], []).°

Now subject position relativization:

np(_,[harry,who,likes,the,witch],[}).10

And of course, there’s no need to stop there — we can happily embed such construc-
tions. For example, combining the last two examples we get:

np(_, [the,witch,who, harry,who,likes, the,witch,likes], []). 1

And indeed, we really are correctly handling an unbounded construction. For example,
we can form:

np(_, [a,witch,who, a,witch,who,harry,likes, likes], []). 12

And we go on to add another level:

np(_, [a,witch,who,a,witch,who,a,witch,who,harry,likes, likes,likes], []). 13

But this is getting hard to understand — so let’s simply check that we can make sen-
tences containing relative clauses and then move on:

s(_, [a,house-elf, likes, a, house-elf,who,a,witch,likes], []). 14

5.3.3 A Second DCG

Our first DCG works, but it only covers a tiny fragment of English. So let’s try and
improve it a bit.

Now, one obvious thing we could do is to add further relative pronouns, like ‘that” and
‘which’, so that we could deal with such sentences as:

8http://www.coli.uni—sb.de/~stwa//Milca/CodeInterface/callProlog.cgi?consult:’dCG4Ga
UND course=coal UND directinput=s(_, [harry,likes,the,witch], []).
http://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/callProlog.cgi?consult="dCG4Ga
UND course=coal UND directinput=np(_, [the,witch,who,harry,likes], []).
10http://www.coli.uni—sb.de/~stwa//Milca/CodeInterface/callProlog.cgi?consult:’dCG4Ga
UND course=coal UND directinput=np(_, [harry,who,likes,the,witch], []).
11http://www.coli.um’.—sb.de/~stwa//Milca/CodeInterface/callProlog.cgi?consult:’dCG4Ga
UND course=coal UND directinput=+np(_, [the,witch,who,harry,who,likes,the,witch,likes],
Zhttp://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/callProlog.cgi?consult="dCG4Ga
UND course=coal UND directinput=+np(_, [a,witch,who,a,witch,who,harry,likes,likes], []).
13http://www.coli.uni—sb.de/~stwa//Milca/CodeInterface/callProlog.cgi?consult:’dCG4Ga
UND course=coal UND directinput=+np(_, [a,witch,who,a,witch,who,a,witch,who,harry,likes
Bhttp://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/callProlog.cgi?consult="dCG4Ga
UND course=coal UND directinput=+s(_, [a,house-elf,likes, a,house-elf,who,a,witch,likes]
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e ‘The broomstick which was in Harry’s room flew down to the lake’.
e ‘The castle that the four wizards built is called Hogwarts’,

e ‘The house-elf that was in the kitchen cried’.

But making this extension is not particularly difficult. The basic point is that ‘who’
can only be be used with conscious entities (such as wizards, witches, and house-
elves), while ‘which’ has to be used with entities that lack consciousness (such as
broomsticks), while ‘that’ can be used with both. So all we’d need to do is introduce a
feature which could take the values consc and unconsc, mark the nouns in the lexicon
appropriately, and then extend the DCG so that this information was taken into account
when forming relative clauses. It’s a good exercise, but We won’t discuss it further.

A far more interesting extension is to add new kinds of verbs — that is, verbs with
different subcategorization patterns. In what follows we’ll discuss verbs such as ‘give’
which subcategorize for an NP followed by a PP.

Consider the following sentence:
‘The witch gave the house-elf to Harry’.
We can relativize the NP argument of ‘give’ (that is, the NP ‘the house-elf”) to form:
‘the house-elf who the witch gave to Harry’.

Moreover, we can also relativize the NP that occurs in the PP ‘to Harry’. That is, we
can take ‘Harry’ out of this position, leaving the ‘to’, behind to form:

‘Harry, who the witch gave the house-elf to’.

We would like our DCG to handle such examples. But note — there are also some
things that the DCG should not do, namely perform multiple extraction. There are now
two possible NPs that can be moved: the first argument NP, and the NP in the PP. Can
both be moved at once? In some languages, yes. In English, no. That is, in English

* ‘who the witch gave to’,

is not a well-formed relative clause (at least not if we view it as resulting from the
extraction of two NPs. It could be short for ‘who the witch gave something to’. In this
case, the direct object would have been dropped and not extracted). So when we write
our DCG, not only do we have to make sure we generate the NPs we want, we also
have to make sure that we don’t build NPs using multiple extraction.

Now, we can develop our previous DCG to do this — but the result (found in dCG4Gaps2 .pl ")

is not something a computational linguist should be proud of. Let’s take a closer look.

As we are going to need to build prepositional phrases, we need a rule to build them:

Bhttp://www.coli.uni-sb.de/~stwa//Milca/CodelInterface/code2html.cgi?file=dCG4Gaps2.p
UND course=coal
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pp (Gap) —--> p,np(Gap) .

This says: a prepositional phrase can be built out of a preposition followed by an NP.
We have used the extra argument to pass up the value of the Gap feature from the NP
to the PP. So the PP will know whether the NP is an ordinary one or a gap.

We’ll also need a larger lexicon: we’ll add the verb ‘gave’ and the preposition ‘to’:

v(2) --> [gave].

p ——> [to].

Now comes the crucial part: the new VP rules. We need to allow single extractions,
and to rule out double extractions. Here’s how this can be done — and this is the part
linguists won'’t like:

vp (Gap) --> v(2), np(nogap),pp(Gap) .
vp (Gap) --> v(2), np(Gap),pp(nogap).

We have added two VP rules. The first rule insists that the NP argument be gap-free,
but allows the possibility of a gap in the PP. The second rule does the reverse: the
NP may contain a gap, but the PP may not. Either way, at least one of the VPs two
arguments must be gap-free, so multiple extractions are ruled out.

Now, this does work. For example it generates such sentences as: s (_, [the,witch, gave, the, house-elf,to, har:

And we can relativize in the NP argument: np(_, [the, house—elf,who, the,witch,gave,to,harry], []). 1/

And in the PP argument: np(_, [harry,who, the,witch, gave, the, house-elf,to], []). 18

Moreover, the DCG refuses to accept multiple extractions, just as we wanted: np(_, [the, house-elf,who, the,wi

So why would a linguist not approve of this DCG? Because we are handling one con-
struction — the formation of VPs using V(2) verbs — with two rules.

The role of syntactical rules is to make a structural claim about the combination pos-
sibilities in our language. Thus there should be one rule for building VPs out of V(2)
verbs, for there is only one structural possibility: V(2) verbs take an NP and a PP ar-
gument, in that order. We used two rules not because there were two possibilities, but
simply to do a bit of ‘feature hacking’: by writing two rules, we found a cheap way

16http://www.coli.um’.—sb.de/~stwa//Milca/CodeInterface/callProlog.cgi?consult:’dCG4Ga
UND course=coal UND directinput=+s(_, [the,witch, gave,the, house-elf,to,harry], []) .+

Thttp://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/callProlog.cgi?consult="dCG4Ga
UND course=coal UND directinput=+np(_, [the, house-elf, who,the,witch,gave,to,harry], []).

18http://www.coli.uni—sb.de/~stwa//Milca/CodeInterface/callProlog.cgi?consult:’dCG4Ga
UND course=coal UND directinput=+np(_, [harry,who,the,witch, gave,the, house-elf,to], []).

Ohttp://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/callProlog.cgi?consult="dCG4Ga
UND course=coal UND directinput=+np(_, [the, house-elf,who,the,wizard, gave], []) .+
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to rule out multiple extractions. And this is a silly way to write a grammar. As we
saw when we discussed the case example, one role of features is precisely to help us
minimize the number of rules we need — so to add extra rules to control the features
is sheer craziness!

There are also practical disadvantages to the use of two rules. For a start, many un-
ambiguous sentences now receive two analyses. For example, ‘The witch gave the
house-elf to Harry’ is analyzed in two distinct ways.

Such a spurious analysis is a real nuisance — natural language is ambiguous enough
anyway. We certainly don’t need to add to our troubles by writing DCGs in a way that
guarantees that we generate too many analyses!

Furthermore, adding extra rules is just not going to work in the long run. As we add
more verb types, we are going to need more and more duplicated rules. The result
will be a mess, and the grammar will be ugly and hard to maintain. We need a better
solution — and there is one.

5.3.4 Gap Threading

The basic idea underlying gap threading is that instead of using simple feature values
such as nogap and gap (np) we are going to work with more structure. In particular,
the value of the cap feature is going to be a difference list. Think of the first item (list)
as ‘what we have before we analyze this category’ and the second one as ‘what we
have afterwards’. Or more simply: think of the list as the ‘in value’, and the second
item as the ‘out value’.

Here are the new NP rules (found in dCG4GapThreading.pl?0):
np(F-F) —--> det,n.
np(F-F) —--> det,n,rel.
np(F-F) --> pn.
np(F-F) --> pn,rel.
np ([gap (np) |IF1-F) --> [].

Note that in the first four rules, the difference list ¥-F is doing the work that nogap used
to do. And this is the way it should be. After all, r-r is a difference list representation
of the empty list. So, for example, the first rule says that an NP can consist of a proper
name, and when an NP is built that way, no material has been removed. (That is: the
in value is the same as the out value.)

What about the last rule? This says that we can build empty NPs, but that when we do
so, we have to add gap (np) to the first list. That is, in this case there is a difference
between the in value and the out value: the difference is precisely the gap (np) value.

The S rule is analogous to our old one:

s(F-G) —--> np(F-F),vp(F-G).

2Ohttp://www.colj_.um’.—sb.de/~stwa//Mj_lca/CodeInterface/codethml.cgi?fj_le:dCGZlGapThre
UND course=coal
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This says that the subject NP must be an ordinary NP (recall: r-F is essentially the
same as nogap) and that the difference list associated with the VP is passed up to the
S. That is, just as before we are performing feature passing, except that now the Gap
feature is a difference list.

Thus the rules for PPs and relativization should not be puzzling:

pp(F-G) --> p,np(F-G).
rel —--> prorel,s([gap(np) |F] - F).
rel —-—-> prorel,vp(F-F).

Once again, these are exact analogs of our earlier rules — except that we are using
complex features.

So we come at last to the critical part: how do we handle VPs? As follows:

vp(F-G) ——> v(1),np(F-G).
vp(F-G) --> v(2),np(F-H),pp(H-G).

o)

% lexicon

This looks nice: we have one rule for each of the verb types. The first rule is is
analogous to our earlier v (1) rule. But what about the second rule? Why do we only
need one for v (2) verbs?

Think about it. The most complicated feature we have is
[gap (np) |F]-F]

and this indicates that precisely one element is missing. So when we enter the second
vp rule, there is only one missing item and two arguments. It may end up in the first
position, or the second, but (as there is only one) it cannot end up in both.

This DCG is well worth studying. For a start, you should carefully compare it with our
previous DCG (dCG4Gaps2.pl?!). Note the systematic link between the two. Sec-
ond, you really should play with lots of traces so you can see how the gap is threaded
in and out of the various categories. Start by running our example queries from before
(page 92).

This threading technique can be used to thread other things besides gaps. For example,
it can be used in computational semantics. There is a simple way of implementing
Discourse Representation Theory (DRT): one threads the semantic representations (the
DRSs) through the parse tree. In this way, each part of the sentence gets to make its own
semantic contribution. You can find a discussion of this in Volume 2 of the textbook
on semantics by Blackburn and Bos, which is available at www.comsem.org.

21http://www.coli.uni—sb.de/~stwa//Milca/CodeInterface/codethml.cgi?file:dCG4Gaps2.p
UND course=coal
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5.3.5 AQuestions

As we have promised above, we now apply the technique of gap threading to another
phenomenon: wh-questions. Let us look at an example:

e ‘Harry likes the witch.’

e ‘Who likes the witch?’

So we can think of this wh-question as a sentence with a gap:

1
Who GAP(NP) likes the witch?

If we want to ask about the witch, not about Harry, we form the following question:

I I
Who does Harry like GAP(NP)?

So this looks very much like the analysis of relative clauses that we had in the previous
paragraph, except for one small complication: When we ask about the object, we have
to use an auxiliary and the infinite form of the verb (‘does...like’). Apart from that,
the heart of the new DCG (found in dCG4Questions.pl%?) contains nothing really
new:

%$subject interrogative
s(F-F) —-—> wh, vp(F-F,fin).

%object interrogative

s(F-F) —--> wh, aux, np(F-F), vp([gap(np)|F]-F, inf).
vp(F-G, FIN) --> v (1, FIN),np(F-G).
vp (F-G, FIN) --—> v (2, FIN),np(F-H),pp(H-G).

Auxiliary and a wh-pronouns are added to the lexicon straight forward:

o)

% auxiliary

aux ——> [does].

% wh-pronoun

2nttp://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/code2html.cgi?file=dCG4Questio
UND course=coal
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wh —-> [who].

The annotation of verbs as being finite or not is achieved by adding a new feature:

v(l,inf) --> [like].

v(l,fin) --> [likes].

Finally, we have said that relative constructions are a case of unbounded dependencies:
an arbitrary amount of material may stand between the gap and the extracted and moved
noun phrase. The same holds for wh-questions: From a sentence like ‘Harry said that
a witch likes Ron.” we can get to the question

| |
‘Who did Harry say that a witch likes GAP(NP)?

And of course we can make the question even longer, for example like this:

| !
‘Who did Hermione say that Harry said that a witch likes GAP(NP)?

5.3.6 Occurs-Check

There is one thing about Prolog we can learn using the previous DCG (dCG4Questions.pl??).
If you feed this DCG to Prolog and play with it, you will see that it accepts sentences
(questions) that should not be accepted:

2 ?- s(_, [who, likes], []).

Yes
What happens here is that NPs can be empty that should not be allowed to. But our
DCG is correct. So how can this be? The problem is an unwanted interaction between
Prolog’s unification mechanism and the way we represent empty difference lists. We

write np (F-F) to make sure that the list containing the gaps of an NP is empty. But in
fact, Prolog can unify such an NP with an NP having a gap:

?- np(F-F) = np([gap(np) |G]-G).

T
I

[gap(np), gap(np), gap(np), gap(np), gap(np), gap(np), gap(np), gap(np), g
[gap(np), gap(np), gap(np), gap(np), gap(np), gap(np), gap(np), gap(np), g

(]
Il

Yes

Bhttp://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/code2html.cgi?file=dCG4Questio
UND course=coal
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The reason lies in Prolog’s standard unification mechanism. For reasons of efficiency,
it leaves out the so-called Occurs-Check. This plays no role most of the time. But in
some cases it does. Let’s look at a canonical example to see what’s going wrong:

?—- A = f£(A).

Yes

If you ask Prolog to unify a variable with a complex term, it does not check whether this
variable occurs inside the term. Therefore you can unify the variable and the term in
the example above resulting in an infinite structure. You can think of what is happening
as follows: First,  on the left matches £ (a) on the right and becomes £ (). At the
same time, £ (2) on the right becomes £ (£ (a)). This matches £ (2) on the left again
and becomes £ (£ ( (2))), and so on.

The simplest solution to this is not to use Prolog’s standard unification. For example
in SWI Prolog there is a special predicate unify_with_occurs_check/2:

?— unify_with_occurs_check (A, £ (A)).
No.

Now that was the true story. It looks like we will have to use unification-with-occurs-
check, instead of the standard built-in Prolog unification. Luckily, there’s another,
much simpler, solution in our case: Nothing hinges on how exactly we represent the
empty difference list. We don’t have to use variables for this purpose (in particular, we
needn’t be as unspecific as in the calls shown above, where we gave one anonymous
variable _ for the whole difference list). Instead of using variables, we can also use a
non-variable ’-’-term, as long as we make sure that the difference between both sides
of the ’-’ is the empty list. For instance, we can use the following to symbolize an
empty difference list: [1-[].

Indeed np ([1-11) and np ([gap (np) |G]-G) don’t unify, in contrast to np (F-F) and
np ([gap (np) 1G] -G). Socalling s ([1-[], [who, likes], [])%*instead of s (_, [who, likes], [])
should solve our problem - and so it does.

25

5.4 Pros and Cons of DCGs

We have seen that we can do a lot with DCGs, some of it quite surprising. For in-
stance, the feature passing mechanism of DCGs makes it possible to give a surprisingly
straightforward account of long distance dependencies, especially when more complex
features values (and in particular, difference lists) are used. So: just how good are
DCGs? Let’s start by thinking about their good points:

24http://www.coli.uni—sb.de/~stwa//Milca/CodeInterface/callProlog.cgi?consult:’dCG4Qu
UND course=coal UND directinput=s([]-[], [who,likes], [])

Bhttp://www.coli.uni-sb.de/~stwa//Milca/CodelInterface/callProlog.cgi?consult="dCG4Qu
UND course=coal UND directinput=s(_, [who,likes], [])
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1. It seems fair to say that DCGs are neat in a way. Certainly in the form we have
been writing them, in which we just have simple context free rules, regulated
by feature agreement. Of course, in DCGs we are free to add arbitrary pieces
of code to our rules — and if we do this, we are working with a full-powered
programming language with all its complexities. But it is clear from our work
that we don’t have to do this. Simple feature agreement can already perform a
lot of useful linguistic work for us.

2. Secondly, DCGs are declarative (as opposed to procedural). Certainly the rules
we have written above have a clear declarative interpretation: they simply license
certain configurations of features and categories. We don’t have to think about
them in terms of procedures that transform structures (e.g. movement).

But DCGs have certain disadvantages:

1. For a start, they lock us into one way of handling grammars. DCGs carry our
recognition and parsing using top-down depth-first search — for that’s the way
the Prolog search strategy works. This won’t always be the best way to work
(sometimes a bottom-up, or left-corner, strategy might be better). But if we
decide to use DCGs, we’re forced to accept the top down approach. As compu-
tational linguists, it really is our business to know a lot about grammars and how
to compute with them — we shouldn’t accept the off-the-shelf solution offered
by DCGs just because it’s there.

2. Our DCGs make it very clear that “grammars + features” is potentially a very
powerful strategy. But our use of the idea has been highly Prolog specific. What
exactly is a feature? How should they be combined? Is the idea of gap threading
really fundamental as a way of handling long-distance dependencies, or is that
just neat a Prolog implementation idea? These are important questions, and we
should be looking for answers to them.

3. Finally, it should be remarked that DCGs can quickly get clumsy to write. DCGs
with six features are OK; DCGs with 30 features, are painful. It would be nice if
we had a more friendly notation for working with features.

This discussion pretty much tells us what we should do next. For the remainder of the
course, we will examine the two components (grammars and features) in isolation, and
only right at the end will we put them back together. Most of our time will be spent
looking at context free grammars and how to work with them computationally. Once
we have a good understanding of what is involved in recognizing/parsing context free
languages, we will take a closer look at features. Finally, we’ll bring them together
again. This will result in a system that has all the advantages of DCGs, and none of the
disadvantages.
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5.5 The Complete Code

dCGExample.pl: View?*_Download?’
wrongDCG4Pronouns .pl: View?®_Download?
badDCG4Pronouns .pl: View’’_Download?!
dCG4Pronouns.pl: View32_Download??
dCG4Gaps .pl: View?_Download®
dCG4Gaps2.pl: View?*_Download?’
dCG4GapThreading.pl: View?_Download*
dCG4Questions.pl: View*! Download*?

5.6 Exercises

A small DCG for very simple English sentences (
A DCG for simple English sentences with pronou
A DCG for simple English sentences with pronou
A DCG for simple English sentences with pronou
A DCG for simple English relative clauses (see S¢
A not very promising extension of dCG4Gaps.p
A DCG for simple English relative clauses using ¢
A DCG for simple English questions using gap th

Exercise 5.1 In the text (page 93) we claimed that the DCG found in dCG4GapsZ2.pl™®
gives two distinct analyses of ‘The witch gave the house-elf to Harry’.

1. Design a Prolog query to verify this observation.

2. Explain why there are two analyses.

Exercise 5.2 Extend the gap-threading DCG (dCG4Gaps2 . pl*) so that it handles
the English relative pronouns ‘that’ and ‘which’, adjectives, and subject-verb agree-

ment.

Exercise 5.3 [This is a possible mid-term project.]

Write a DCG that handles the basic facts of German relative clauses. Your DCG should
correctly handle basic facts about agreement, case, and German word order in relative

clauses.

43http://www.coli.uni—sb.de/~stwa//Milca/CodeInterface/codethml.cgi?file:dCG4Gaps2.p

UND course=coal

“nttp://www.coli.uni-sb.de/~stwa//Milca/CodelInterface/code2html.cgi?file=dCG4Gaps2.p

UND course=coal
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Parsing: Bottom-Up and Top-Down

6.1 Bottom-Up Parsing and Recognition

The basic idea of bottom-up parsing and recognition is to begin with the concrete data
provided by the input string — that is, the words we have to parse/recognize — and
try to build bigger and bigger pieces of structure using this information. Eventually
we hope to put all these pieces of structure together in a way that shows that we have
found a sentence.

Putting it another way, bottom-up parsing is about moving from concrete low-level
information, to more abstract high-level information. And this is reflected in a very
obvious point about any bottom-up algorithm: In bottom-up parsing, we use our CFG
rules right to left.

What does this mean? Consider the CFG rule C — P1 P2 P3. Working bottom-up
means that we will try to find a P1, a P2, and a P3 in the input that are right next to each
other. If we find them, we will use this information to conclude that we have found a
C. That is, in bottom-up parsing, the flow of information is from the right hand side of
the rules to the left hand side of the rules.

Let’s look at an example of bottom-up parsing/recognition. Suppose we’re working
with the grammar of English that was given earlier (page 81), and that we want to see
whether the following string of symbols is a sentence:

vincent shot marsellus.

Working bottom-up, we might do the following. First we go through the string, sys-
tematically looking for strings of length 1 that we can rewrite by using our CFG rules
in a right to left direction. Now, we have the rule PN — vincent, so using this in a
right to left direction gives us:

pn shot marsellus.
But wait: we also have the rule NP — PN, so using this right to left we build:
np shot marsellus

It’s time to move on. We're still looking for strings of length 1 that we can rewrite
using our CFG rules right to left — but we can’t do anything with np. But we can do
something with the second symbol, shot. We have the rule TV — shot, and using
this right to left yields:
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np tv marsellus

Can we rewrite tv using a CFG rule right to left? No — so we move on and see what
we can do with the last symbol, marsellus. We have the rule PN — marsellus, and
this lets us build:

np tv pn
Now, we can apply the rule NP — PN once more and get:
np tv np

Are there any more strings of length 1 we can rewrite using our context free rules right
to left? No — we’ve done them all. So now we start again at the beginning looking for
strings of length 2 that we can rewrite using our CFG rules right to left. And there is
one: we have the rule VP — TV NP, and this lets us build:

np vp

Are there any other strings of length 2 we can rewrite using our CFG rules right to left?
Yes — we can now use S — NP VP:

And this means we are finished. Working bottom-up we have succeeded in rewriting
our original string of symbols into the symbol s — so we have successfully recognized
‘Vincent shot marsellus’ as a sentence.

Well, that was an example. A couple of points are worth emphasizing. This is just one
of many possible ways of performing a bottom-up analysis. All bottom-up algorithms
use CFG rules right to left — but there many different ways this can be done. To give
a rather pointless example: we could have designed our algorithm so that it started
reading the input in the middle of the string, and then zig-zagged its way to the front
and back. And there are many much more serious variations — such as the choice
between depth first and breadth first search — which we shall discuss in the second
part of this chapter.

In fact, the algorithm that we used above is crude and inefficient. But it does have one
advantage — it is easy to understand, and as we shall soon see, easy to put into Prolog.

6.2 Bottom-Up Recognition in Prolog

The main goal of this section is to write a simple bottom-up recognizer in Prolog. But
before we do this, we have to decide how to represent CFGs in Prolog. The repre-
sentation that we are going to introduce distinguished between phrase structure rules
and lexical rules by representing them in different ways. As we mentioned above, it is
often useful to be able to make this distinction when dealing with natural languages.
For representing phrase structure rules, we shall use a notation that is quite close to the
one used in DCGs. In fact, there are only two differences. First, whereas DCGs use
the symbol
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for the rewrite arrow, we shall use the symbol
——>

Second, in DCGs we would write S — NP VP as:
s ——> np,vp.

However we shall use instead the following notation:
s ———> [np,vp].

Here’s an example. The phrase structure rules of our English grammar (page 81) be-
come in this notation (from file ourEng.pl: View'_Download?):

s -——> [np, vp]l.

np -——> [pn].

np -——> [pn,rel].

np ———> [det, nbar].
nbar —-—-——-> [n].

nbar —-—--> [n, rel].
rel -——> [wh, wvp].

vp ——=> [iv].

vp -—=> [tv, np].

vp -——> [dv, np, ppl.
vp -———> [sv, s].

PP -——> [p, np].

How does Prolog know about the symbol --->? Well, it needs to be told what it means,
and we can do this using an operator definition as follows:

"http://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/code2html.cgi?file=ourEng.pl
UND course=coal
2prolog/ourEng.pl
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?— op(700,xfx, ———>).

That is, we have declared ---> to be a binary infix operator. The best place to put
this definition is probably in the recognizer, not in each and every grammar. But note:
this means you will have to consult the recognizer before you consult any of the the
grammars, as otherwise Prolog won’t know what ——-> means.

Now, we can represent phrase structure rules. Lexical rules we shall represent using the
predicate 1ex/2. Forexample, PN — vincent will be represented as lex (vincent, pn).
Here are the lexical rules of the little English grammar that we have seen above in the
new notation.

lex (vincent, pn) .
lex(mia,pn) .

lex (marsellus,pn) .
lex (jules, pn) .
lex(a,det) .

lex (the,det) .

lex (her,det) .

lex (his, det) .
lex(gun,n).

lex (robber,n) .
lex (man,n) .

lex (woman, n) .
lex (who,wh) .
lex (that,wh) .
lex(to,p).

lex (died, iv) .
lex (fell,iv).
lex (loved, tv) .
lex (shot, tv).
lex (knew, tv) .
lex (gave,dv) .
lex (handed, dv) .
lex (knew, sv) .

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

lex (believed, sv) .

Incidentally — we shall use this notation for grammars throughout the course. All our
parser/recognizers will make us of grammars in this format.

It’s now time to define our very first recognizer — a simple (though inefficient) rec-

ognizer which carries out the algorithm sketched above. Here it is. The predicate
recognize_bottomup/1 takes as input a list of symbols (for example, [vincent, shot,marsellus])
and tries to build the list [s] (that is, a sentence). Here is its definition (from file
bottomup_recognizer .pl3):

recognize_bottomup ([s]) .

%$%% the recursive case: choose a part of the incoming

3http://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/code2html.cgi?file=bottomup_re
UND course=coal
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o
o
oe

string which matches with the right hand side of a

o\
o
o

rule and replace it with the category symbol

o
o
oe

on the left hand side of that rule. Recursivel

o\
o
o

recognize the result.
recognize_bottomup (String) :-
/*** uncomment the following line to see which states
the recognizer goes through ***/

% nl,write(’STATE: '),write(String),
split (String, Front,Middle, Back),

( Cat —-—-> Middle

;

(Middle = [Word], lex(Word,Cat))

)r
/*** uncomment to see which rules are applied ***/
% tab(5),write(’RULE: ’),write((Cat —---> Middle)),nl,
split (NewString, Front, [Cat],Back),

How does this work? Well, the first clause, recognize_bottomup ([s]), tells us that
we have succeeded if we find the list [s]. Incidentally, if you glance down at the
following clause, you will see that recognize bottomup/1 is recursive. This first
clause is the base clause of the recursion.

So what about the second clause? First we have:
split (String,Front,Middle, Back)
The predicate sp1it/4 splits a list into three parts. It is defined as follows:

split (ABC, A, B, C) :-
append (A, BC, ABC),
append (B, C, BC).

split/4 uses the standard append/3 predicate to split up the incoming list by calling
it with uninstantiated varibles in the first two arguments. append/3 is called twice:
The first time the incoming list is split in two parts, and the second time one of the
parts is again split into two parts, resulting in three parts altogether. Unfortunately,
using append/3 in this way is very inefficient.

So— split/4 splits the string into three parts: Front, Middle, and Back. Next comes
a disjunction:

Cat —---> Middle
7

(Middle = [Word], lex(Word,Cat))
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It succeeds if we have either a phrase structure rule with Middle as its right hand side,
or if Middle is actually a word that we can map to a category by a lexical rule.

Now for the key step. Suppose we have such a rule. Then
split (NewString,Front, [Cat],Back)

builds a new string out of our input string by replacing the list Middle with the list
[cat]. That is, from

Front Middle Rest
we get the new string
Front Cat Rest

Note how we used the predicate split/4 here in reverse to "unsplit”, that is to join the
lists.

In short: we have used our rule right to left to build a new string. The rest is simple.
We recursively call

recognize_bottomup (NewString)

on the new string we have built. If we have a sentence on our hands, this recursion will
eventually produce [s], and we will succeed using the first clause. Note that every call
to recognize_bottomup/1 makes use of append/3 to decompose the input list. So,
via backtracking, we will eventually find all possible ways of decomposing the input
list — thus if the input really is a sentence, we will eventually succeed in showing this.

6.3 An Example Run

Let’s look at an example, to see if we’ve got it right. If you ask Prolog

recognizefbottomup([vincent,shot,marsellus])4

it will answer yes, as it should. Try some other examples and check whether Prolog an-

swers the way it should. A trace will give you more information about how Prolog is ar-

riving at these answers. Here is an abbreviated trace for the query recognize_bottomup ( [vincent, shot,
You can see how Prolog splits up the string that is to be recognized into three parts,

which rules it applies for replacing the middle part with a category symbol, and you

can see the recursive calls of recognize_bottomup that it makes.

?— recognize_bottomup ([vincent, shot,marsellus]).

Call: (7) recognize_bottomup([vincent, shot, marsellus]) ?

Call: (8) split([vincent, shot, marsellus], _G647, _G648, _G649) 7

Exit: (8) split([vincent, shot, marsellus], [], [vincent], [shot, marsellus])
Call: (8) lex(vincent, _G653) ?

http://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/callProlog.cgi?consult="bottom
UND course=coal UND directinput=recognize_bottomup ([vincent, shot,marsellus])
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Exit:

Call:
Call:
Exit:
Call:
Exit:

Ca
Ca

Ca

(9
(1
Exit: (1
(1
(1

(8) lex(vincent, pn) ?

(8)
(9)
(9)
(9)
(9)
11:

11:

11:

Exit:

Call:
Call:
Exit:
Call:
Exit:

Call:
Call:
Exit:
Call:
Exit:

Ca
Ca

recognize_bottomup ([pn,

split ([pn, shot, marsellus],

shot, marsellus]) ?

split ([pn, shot, marsellus], [],

_G658-——>[pn] 2

np--->[pn] ?

recognize_bottomup ([np, shot,

split ([np, shot, marsellus],

)

0)

0) split([np, shot, marsellus],
0) lex(shot, _G671) 2

0) lex(shot, tv) ?

(10)
(11)
(11)
(11)
(11)

11:
11:

Exit:

Ca

11:

Exit:

Call:
Call:
Exit:
Call:
Exit:

(11)
(12) split([np, tv,
(12) split([np, tv,
(12) _G706——->[pn]
(12) np-—->[pn] ?

recognize_bottomup ([np, tv,

split ([np, tv, marsellus],

split([np, tv, marsellus],

lex (marsellus, _G689) ?

lex (marsellus, pn)

split([np, t
split([np, t
_G724———>[tv

(14) split([np,
(14) split([np,
(14) _G736———>]
(14) s—-——>[np,

recognize_bottomup ( [np,

pnl,

?

pn], [np,

?

Vy

Vv,

3) vp———>[tv, np]

vpl,

recognize_bottomup ( [np,

[pn], [shot,

marsellus])

?

_G662, _G663,

[np], [shot]

marsellus])

4

_G677, _Go678,

[np, tv], [marsellus],

tv, pn]) ?

_G656, _G657, _G658)

?

marsellus])

_Go664)

?

[marsellus])

?

_G679)

_G698, _G699, _G700)

tvl, [pn], [1) ?

tv, npl) ?

?

npl, _G716, _G717, _G718)

npl, [np], [tv, np],
, npl ?

?

(13) recognize_bottomup ([np, vpl) ?
_G731, _G732, _G733)

vel, [1, [np, vpl, [1])

np,
vpl

vpl] ?
?

Call: (14) recognize_bottomup([s]) *?

Exit: (14) recognize_bottomup([s]) ?

Exit

Exit:

Exit
Exit:

Exit: (9

Exit
Exit:

Yes

: (8)

: (11)

: (13) recognize_bottomup([np, vpl) ?

(12) recognize_bottomup ( [np,

recognize_bottomup ( [np,

(10) recognize_bottomup([np, tv,

) recognize_bottomup ([np, shot,

recognize_bottomup ([pn,

tv, npl) ?

tv, pn]) ?

marsellus])

marsellus])

shot, marsellus]) *?

(7) recognize_bottomup([vincent, shot,

marsellus])

?

[n

?

?

?

?

?

?

This trace only shows the essence of how the recognizer arrives at its answer. We cut
out all the rest. Try it yourself and you will see that the recognizer spends a LOT of
time trying out different ways of splitting up the string.

?

(n

?

?

?
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6.4 How Well Have we Done?

6.4.1 Implementation

By this stage of your Prolog career, it should be quite clear to you why this recognizer
is badly implemented. We made heavy use of append/3 to subdivide lists into the
required pattern. This is very inefficient. If you examine a trace, you will see the the
program spends most of its time trying out different ways of putting lists together. The
time it devotes to the key recognition steps is comparatively small.

It’s worth emphasizing that this implementation inefficiency has nothing to do with the
basic idea of bottom-up recognition/parsing. For a start, there are many nice Prolog
implementations of fairly simple bottom-up parsers — in particular, what are known
as shift-reduce parsers — that are much better than this. Moreover, soon we will be
discussing naive top-down parsing/recognition. If this is implemented using append/3,
the result is just as inefficient as what we have just seen. But we are going to take care
to avoid this implementation inefficiency there. We’ll be using difference lists instead,
and as we’ll see, the result is a /ot faster.

6.4.2 Algorithmic Problems

There is, however, a deeper problem. What we have just discussed is a naive bottom-
up recognizer — but its naivete has nothing to do with its implementation.It has an
inefficiency you will find in many different kinds of parsers/recognizers namely The
algorithm needlessly repeats work.

Consider the sentence ‘The robber knew Vincent shot Marsellus’ As we have already
mentioned, this sentence is locally ambiguous. In particular, the first part of the string,
‘The robber knew Vincent’ is a sentence. Now, our naive bottom-up algorithm will find
that this string is a sentence — and then discover that there are more words in the input.
Hence, in this case, s is not the right analysis. Thus our parser will backtrack and it
will undo and forget all the useful work it has done. For example, while showing that
‘The robber knew Vincent’ is a sentence, the parser has to show that “The robber’ is an
np. Great! This is dead right! And we need to know this to get the correct analysis!
But then, when it backtracks, it undoes all this work. So when it finally hits on the
right way of analyzing ‘The robber knew Vincent shot Marsellus’ , it will once again
demonstrate that “The robber’ is an NP. If lots of backtracking is going on, it may end
up showing this simple fact over and over and over again.

It is for this reason that we call the algorithm described above ‘naive’. The poor imple-
mentation is easily corrected — our top-down parser won’t have it — but this deeper
problem is harder to solve.

6.4.3 [Sidetrack] Using a Chart

But the problem can be solved. We can perform non-naive parsing by using charts.
In their simplest form, charts are essentially a record of what pieces of information
we found and where (for example, that the initial string “The robber’ is an np). So-
phisticated parsing algorithms use the chart as a look-up table: they check whether
they have already produced an analysis of a chunk of input. This saves them having to
repeat needless work.
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And the use of charts really does pay off: naive algorithms are exponential in the size
of their input — which, roughly speaking, means they may take an impossibly long
time to run no matter how good the implementation is. The use of charts, however,
turns context free parsing into a polynomial problem. That is, roughly speaking, it
turns the problem of finding a parse into a problem that can be solved in reasonable
time, for any CFG grammar.

We will study the idea of chart parsing later in the course: it is an idea of fundamental
importance. But note well: chart parsing is not an idea we need to study instead of the
various naive parsing strategies — its something we need to study in addition to them.
The various naive strategies (bottom-up, top-down, left corner,...) are importantly dif-
ferent, and we need to understand them. What is nice about chart parsing is that it is a
general idea that can remove the naivete from all these approaches.

6.5 Top Down Parsing and Recognition

6.5.1 The General Idea

Remember that in bottom-up parsing/recognition we start at the most concrete level
(the level of words) and try to show that the input string has the abstract structure we
are interested in (this usually means showing that it is a sentence). So we use our CFG
rules right-to-left.

In top-down parsing/recognition we do the reverse: We start at the most abstract level
(the level of sentences) and work down to the most concrete level (the level of words).
So, given an input string, we start out by assuming that it is a sentence, and then try to
prove that it really is one by using the rules left-to-right. That works as follows: If we
want to prove that the input is of category S and we have the rule S — NP V P, then we
will try next to prove that the input string consists of a noun phrase followed by a verb
phrase. If we furthermore have the rule NP — Det N, we try to prove that the input
string consists of a determiner followed by a noun and a verb phrase. That is, we use
the rules in a left-to-right fashion to expand the categories that we want to recognize
until we have reached categories that match the preterminal symbols corresponding to
the words of the input sentence.

Of course there are lots of choices still to be made. Do we scan the input string from
right-to-left, from left-to-right, or zig-zagging out from the middle? In what order
should we scan the rules? More interestingly, do we use depth-first or breadth-first
search?

In what follows we’ll assume that we scan the input left-to-right (that is, the way we
read) and the rules from top to bottom (that is, the way Prolog reads). But we’ll look
at both depth first and breadth-first search.

6.5.2 With Depth-First Search

Depth first search means that whenever there is more than one rule that could be applied
at one point, we first explore one possibility (and all its consequences). Only if we fail,
we consider the alternative(s) following the same strategy. So, we stick to a decision
as long as possible.

Let’s look at an example. Here’s part of the grammar ourEng.pl again:
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np

vp

vp

lex (vi

lex (mi

-——> [np, vp].
-——> [pn].
——=> [iv].

-——> [dv, np, pp].

ncent,pn) .

a,pn).

lex (loved, tv) .

lex (kn

ew,tv) .

lex (gave,dv) .

The sentence “Mia loved vincent” is admitted by this grammar. Let’s see how a top-
down parser using depth first search would go about showing this. The following table
shows the steps a top-down depth first parser would make. The second row gives the
categories the parser tries to recognize in each step and the third row the string that has
to be covered by these categories.

1 S
2. np vp
3. pn vp
4 vp
5 iv
4. wvp
5. tv np
6’. np
7. pn

State
mia loved vincent
mia loved vincent

mia loved vincent

loved vincent

loved vincent

loved vincent

loved vincent

vincent

vincent

Comments
s ——> [np,vp]
np —-> [pn]

lex (mia, pn)

We’ve got a match

vp ——> [iv]

We’re doing depth first search. So we ignore
the other vp rule for the moment.

No applicable rule. Backtrack to the state in
which we last applied a rule. That’s state 4.
vp ——> [tv]

lex(loved, tv)

Great, we’ve got match!

np --> [pn]

lex (vincent, pn)

Another match. We’re done.

It should be clear why this approach is called top-down: we clearly work from the
abstract to the concrete, and we make use of the CFG rules left-to-right.
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And why was this an example of depth first search? Because when we were faced with
a choice, we selected one alternative, and worked out its consequences. If the choice
turned out to be wrong, we backtracked. For example, above we were faced with a
choice of which way to try and build a VP — using an intransitive verb or a transitive
verb. We first tried to do so using an intransitive verb (at state 4) but this didn’t work
out (state 5) so we backtracked and tried a transitive analysis (state 4’). This eventually
worked out.

6.5.3 With Breadth-First Search

Let’s look at the same example with breadth-first search. The big difference between
breadth-first and depth-first search is that in breadth-first search we pursue all possible
choices "in parallel”, instead of just exploring one. So, instead of commiting to one
decision, we so to speak jump between all alternatives.

It is useful to imagine that we are working with a big bag containing all the possibilities
we should look at — so in what follows we have used set-theoretic braces to indicate
this bag. When we start parsing, the bag contains just one item.

State Comments

1. {( s, mia loved vincent)} s -——> [np, vp]
2. {{np vp, mialoved vincent)} np --> [pn]
3. {{(pn vp, mialoved vincent)} Match!
4. {(vp, loved vincent)} vp —-> [iv], vp --> [tv, np]
5. {(4iv, loved vincent), No applicable rule for iv analysis.

(tv np, loved vincent)} lex(loved,tv)
6. {(np, vincent)} np -—-> [pn]
7. {{pn, vincent)} We’re done!

The crucial difference occurs at state 5. There we try both ways of building VPs at
once. At the next step, the intransitive analysis is discarded, but the transitive analysis
remains in the bag, and eventually succeeds.

The advantage of breadth-first search is that it prevents us from zeroing in on one
choice that may turn out to be completely wrong; this often happens with depth-first
search, which causes a lot of backtracking. Its disadvantage is that we need to keep
track of all the choices — and if the bag gets big (and it may get very big) we pay a
computational price.

So which is better? There is no general answer. With some grammars breadth-first
search, with others depth-first.
?- Question!

Can you explain whe these to serach strategies are called depth-first and breadth-first,
respectively?
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6.6 Top Down Recognition in Prolog

6.6.1 The Code

It is easy to implement a top-down depth-first recognizer in Prolog — for this is the
strategy Prolog itself uses in its search. Actually, it’s not hard to implement a top-
down breadth-first recognizer in Prolog either, though we are not going to discuss how
to do that. As we said earlier, this implementation will be far better than that used
in the naive bottom-up recognizer. This is not because because top-down algorithms
are better than bottom-up ones, but simply because we are not going to use append/ 3.
Instead we’ll use difference lists.

Here’s the main predicate, recognize_topdown/3. Note the operator declaration (we
want to use our ——-> notation we introduced last week).

:— op (700, xfx, ———>) .

recognize_topdown (Category, [Word|Reststring],Reststring) :-
/*** Uncomment the following lines to see the steps the top
down parser takes ***x/

nl, write(’String to recognize: '), write([Word|Reststring]),

o° o
o° o
o° o

nl, write(’Category to recognize: '), write(Category),
lex (Word, Category) .

recognize_topdown (Category, String, Reststring) :-
Category —-—--> RHS,
/*** Uncomment the following lines to see which steps the

recognizer takes. **%x/

o

%% nl, write(’Rule: '), write((Category —---> RHS)),

matches (RHS, String,Reststring).

Here category is the category we want to recognize (s, np, vp, and so on). The second
and third argument are a difference list representation of the string we are working with
(you might find it helpful to think of the second argument as a pointer to the front of
the list and the third argument Reststring as a pointer to the rest of the list).

The first clause deals with the case that category is a preterminal that matches the
category of the next word on the input string. That is: we’ve got a match and can
remove Word from the string that is to be recognized.

The second clause deals with phrase structure rules. Note that we are using the CFG
rules right-to-left: category will be instantiated with something, so we look for rules
with Category as a left-hand-side, and then we try to match the right-hand-side of
these rules (that is, RHS) with the string.

Now for matches/3, the predicate which does all the work:

matches ([], String, String).

matches ([Category|Categories], String, RestString) :-—
recognize_topdown (Category, String, Stringl),

matches (Categories, Stringl,RestString) .
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The first clause handles an empty list of symbols to be recognized. The string is re-
turned unchanged. The second clause lets us match a non-empty list against the dif-
ference list. This works as follows. We want to see if string begins with strings
belonging to the categories

[Category|Categories]

leaving behind rReststring. So we see if string starts with a substring of cate-
gory Category (the first item on the list). Then we recursively call matches to see
whether what’s left over (stringl) starts with substrings belonging to the categories
Categories leaving behind Reststring. This is classic difference list code.

Finally, we can wrap this up in a driver predicate:

recognize_topdown (String) :-

recognize_topdown (s, String, []) .

Now we’re ready to play. We shall make use of the ourEng.pl grammar that we
worked with before.

6.6.2 A Quick Evaluation

We used this same grammar with our bottom-up recognizer — and we saw that it was
very easy to grind bottomup_recognizer.pl into the dust (see Section 6.4). Try this
example sentence again:

‘Jules believed the robber who shot Marsellus fell. ’

The bottom-up recognizer takes a long time on this examples. But the top-down pro-
gram handles it without problems:

recognizefbottomup([jules,believed,the,robber,who,shot,marsellus,fell}).5

recognizeftopdown([jules,believed,the,robber,who,shot,marsellus,fell]).6

The following sentence is not admitted by the grammar, because the last word is spelled
wrong (felll instead of fell).

‘Jules believed the robber who shot Marsellus felll.’

Unfortunately it takes our bottom-up recognizer a long time to find that out, and hence
to reject the sentence. The top-down program is far better:

recognize_bottomup([jules,believed,the,robber,who,shot,marsellus,felll]).7

recognizeftopdown([jules,believed,the,robber,who,shot,marsellus,felll}).8

5http://www.coli.uni—sb.de/~stwa//Milca/CodeInterface/callProlog.cgi?consult:’bottom
UND course=coal UND directinput=recognize_bottomup([jules,believed, the, robber,who, shot
Shttp://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/callProlog.cgi?consult="bottom
UND course=coal UND directinput=recognize_topdown([jules,believed, the, robber,who, shot,
"http://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/callProlog.cgi?consult="bottom
UND course=coal UND directinput=recognize_bottomup ([jules,believed, the, robber,who, shot
8http://www.coli.uni—sb.de/~stwa//Milca/CodeInterface/callProlog.cgi?consult:’bottom
UND course=coal UND directinput=recognize_topdown ([jules,believed, the, robber,who, shot,



114 Chapter 6. Parsing: Bottom-Up and Top-Down

6.7 Top Down Parsing in Prolog

It is easy to turn this recognizer into a parser — and (unlike with bottomup_recognizer.pl
) it’s actually worth doing this, because it is efficient on small grammars. As is so often

the case in Prolog, moving from a recognizer to a parser is simply a matter of adding
additional arguments to record the structure we find along the way.

Here’s the code. The ideas involved should be familiar by now. Read what is going on
in the fourth argument position declaratively:

:— op (700, xfx, ———>).

parse_topdown (Category, [Word|Reststring],Reststring, [Category,Word]) :-—
/*** Uncomment the following lines to see the steps the top

down parser takes ***x/

o°

°
°

oe

nl, write(’String to recognize: '), write([Word|Reststring]),

o\

o
°

o\

nl, write(’Category to recognize: ’), write(Category),

lex (Word, Category) .

parse_topdown (Category, String,Reststring, [Category|Subtrees]) :—
Category —---> RHS,
/*** Uncomment the following lines to see the steps the top

down parser takes ***/

o

%% nl, write(’Rule: '), write((Category —---> RHS)),

matches (RHS, String,Reststring, Subtrees) .
matches([],String, String, []) .

matches ([Category|Categories], String,RestString, [Subtree|Subtrees]) :-
parse_topdown (Category, String, Stringl, Subtree),

matches (Categories, Stringl, RestString, Subtrees).

And here’s the new driver that we need:

parse_topdown (String, Parse) :-—

parse_topdown (s, String, [],Parse) .

Time to play. Here’s a simple example:
parseftopdown([vincent,fell},Parse).9
And another one:
parse_topdown([vincent,shot,marsellus],Parse).IC
And here’s a much harder one:

parse_topdown ([jules, believed, the, robber, who, shot, the, robber, who, shot, the, robber, wh

As this last example shows, we really need a pretty-print output!

http://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/callProlog.cgi?consult="bottom
UND course=coal UND directinput=parse_topdown([vincent, fell],Parse).

10http://www.coli.um’.—sb.de/~stwa//Milca/CodeInterface/callProlog.cgi?consult:’bottom
UND course=coal UND directinput=parse_topdown ([vincent, shot,marsellus],Parse).

Uhttp://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/callProlog.cgi?consult="bottom
UND course=coal UND directinput=parse_topdown([jules,believed, the, robber,who, shot, the,
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6.8 The Code

bottomup_recognizer.pl: View'?_Download!3
bottomup_recognizer_tests.pl: View!4 Download!®
topdown_recognizer.pl: View'®_Download!’
topdown_recognizer_tests.pl: View!8 _Download!®
topdown_parser.pl: View?’_Download?!
topdown_parser_tests.pl: View??_Download®
ourEng.pl: View?*_Download®

aNbN.pl: ViewZ° Download?’

epsilon.pl: View?®_Download®

leftrec.pl: View’_Download?!

6.9 Practical Session

6.9.1 Bottom Up

The naive bottom-up recognizer
Input for testing
The (less naive :-) top down recognize

The English grammar we discussed in
A grammar which generates a”"b"\{}

A grammar with an empty production
A left-recursive grammar for a"b"\{}

Play with the bottom-up recognizer (defined in bottomup_recognizer.pl??).
Make sure you thoroughly understand how it works. In particular, make sure you

understand

e the way append/3 is used to divide the input list into three sublists;

e why it is so slow!

We have provided two grammars for you to test it with, namely:

ourEng.pl: View?>_Download** The English grammar we discussed in the lecture.

aNbN. pl: View*>_Download?® Which generates a"b"\{}.

We have also provided a file

bottomup_recognizer_tests.pl: View3’_Download?®

which contains examples for you to cut-and-paste to help you test.

6.9.2 Top Down

e Make sure you thoroughly understand how the top-down recognizer (t opdown_recognizer.pl:
View??_Download*®) works. Test it with ourEng.p1. You will find examples to

32http://www.coli.uni—sb.de/~stwa//Milca/CodeInterface/codethml.cgi?file:bottomup_re

UND course=coal

37http://www.coli.uni—sb.de/~stwa//Milca/CodeInterface/codethml.cgi?file:bottomup_re

UND course=coal
38prolog/bottomup_recognizer_tests.pl

Phttp://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/code2html.cgi?file=topdown_rec

UND course=coal
40prolog/topdown_recognizer.pl



116 Chapter 6. Parsing: Bottom-Up and Top-Down

cut-and-paste in topdown_recognizer_tests.pl: View* _Download*’.
Compare its performance with the naive bottom-up recognizer from the last sec-
tion.

e Make sure you thoroughly understand how (t opdown_parser .pl: View*_Download*)
works. Test it with the ourEng.p1 You will find examples to cut-and-paste in
topdown_parser_tests.pl: View?_Download*.

e Extend ourEng.pl so that noun phrases may contain adjectives. E.g. “The dan-
gerous robber died’ should be accepted by the grammar.

6.10 Exercises

6.10.1 Bottom-Up

Exercises for bottom-up parsing.

Exercise 6.1 Design a simple ambiguous context free grammar. Show that your
grammar is ambiguous by giving an example of a string that has two distinct parse
trees. Draw the two trees.

Exercise 6.2 The following grammar (epsilon.pl*) contains a rule producing
an empty terminal symbol: S — € written as s ——>[1 in our Prolog notation.

s ——> [].
s ———> [left,s,right].
lex(a, left).

lex (b, right) .

Does this grammar admit the string ab? What happens if you try to use bottomup_recognizer.pl
with this grammar to recognize the string ab? Why?

Exercise 6.3 Our naive bottom-up recognizer only recognizes strings of category s.
Change it, so that it recognizes strings of any category, as long as the whole string is
spanned by that category, and returns the category that it found. For example:

?- recognize_bottomup_any([the,man],Cat) .

Cat = np

41http://www.coli.uni—sb.de/~stwa//Milca/CodeInterface/codethml.cgi?file:topdown_rec
UND course=coal

42prolog/topdown_recognizer_tests.pl

43http://www.coli.um’.—sb.de/~stwa//Milca/CodeInterface/codethml.cgi?file:topdown_par
UND course=coal

44prolog/topdown_parser.pl

Phnttp://www.coli.uni-sb.de/~stwa//Milca/CodelInterface/code2html.cgi?file=topdown_par
UND course=coal

46prolog/topdown_parser_tests.pl

47http://www.coli.uni—sb.de/~stwa//Milca/CodeInterface/codethml.cgi?file:epsilon.pl
UND course=coal
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yes

?— recognize_bottomup_any ([the,man,dances], Cat) .
Cat = s

yes

?— recognize_bottomup_any ([the,man,dances,a],Cat).

no

6.10.2 Top-Down

Exercises for top-down parsing.

Exercise 6.4 Using the ourEng.pl*® grammar, give a detailed top-down depth-
first analysis of Marsellus knew Vincent loved Mia. That is, start with:

State
1. s marsellus knew vincent loved mia

and then show all the steps of your work, including the backtracking.

Exercise 6.5 Using the ourEng.pl* grammar, give a detailed top-down breadth-
first analysis of Marsellus knew Vincent loved Mia. That is, start with:

State
1. {{( s, marsellus knew vincent loved mia)}

and then show all the steps of your work.

Exercise 6.6 Can topdown_recognizer.p150 or topclown_parser.p151
handle the following grammar (leftrec.pl>?)?

s ———> [left,right].
left ———> [left,x].
left ——> [x].

right ---> [right,vy].
right —--> [y].
lex(a, x) .

lex(b,vy).

If you are not sure try it. Why does it not work? How can it be fixed?

48http://www.coli.uni—sb.de/~stwa//Milca/CodeInterface/codethml.cgi?file:ourEng.pl
UND course=coal

Pnttp://www.coli.uni-sb.de/~stwa//Milca/CodelInterface/code2html.cgi?file=ourEng.pl
UND course=coal

50http://www.coli.uni—sb.de/~stwa//Milca/CodeInterface/codethml.cgi?file:topdown_rec
UND course=coal

51http://www.coli.um’.—sb.de/~stwa//Milca/CodeInterface/codethml.cgi?file:topdown_par
UND course=coal

S2nttp://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/code2html.cgi?file=leftrec.pl
UND course=coal
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6.10.3 Midterm Project

This could be your midterm project

Exercise 6.7 As we said in Section 6.7, we need a pretty printer that translates list

representations of parses (like [s, [np, [pn, vincent]l, [vp, [tv, shot], [np, [pn, marsellt
to trees. As an example, see a pretty printer>> for so called semantic tableaux that was

written in Prolog. Just select some example from the boxes and then click on "send".

Here, the output is a html-table. Write some pretty printer for the parses we have seen

before (it might also produce latex or plain ascii or whatever format you like).

53http ://www.coli.uni-sb.de/~stwa/Tableaux/tableaux.cgi



Left-Corner Parsing

7.1 Introduction Left-Corner Parsing

7.1.1 Going Wrong with Top-down Parsing

Assume that we have the following grammar fragment

S — NP VP
NP — Det N
NP — PN
VP — IV

Det — the

N — robber
PN — Vincent
1V — died

and that we want to use it to top-down recognize the string ‘vincent died’. Proceeding
in a top-down manner, we would first expand S to NP VP. Next we would check what
we can do with the NP and find the rule NP — Det N. We would therefore expand
NP to Det N. Then we have to find a phrase structure rule to expand Det or to find
a lexical rule to relate vincent to the category Det. Neither is possible, so we would
backtrack checking whether there are any alternative decisions somewhere.

Ignoring the Given Data

So, when recognizing in a top-down manner, we totally ignore what the actual input
string looks like. We start from some non-terminal symbol and then use rules to rewrite
that symbol. Only when we can’t apply any rules anymore, we check whether what we
have produced matches with the input string.

Here is part of the trace that we will get when trying to recognize vincent died with the
top-down recognizer of the previous section. You can see how Prolog first tries to use
the first NP rule NP — Det N to expand the noun phrase. And only when Prolog
realizes that Det leads into a dead-end does it try the next NP rule NP — Det N.

, 1) 2
Call: (8) matches([np, vpl, [vincent, died], []) ?
1, _G579) 2

Call: (7) recognize_topdown (s, [vincent, died]

Call: (9) recognize_topdown (np, [vincent, died
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Call: (11) recognize_topdown (det, [vincent, died], _G585) ?
Fail: (11) recognize_topdown(det, [vincent, died], _G585) °?
Call: (11) recognize_topdown (pn, [vincent, died], _G582) ?
Exit: (11) recognize_topdown (pn, [vincent, died], [died]) °?
Exit: (9) recognize_topdown (np, [vincent, died], [died]) ?

Call: (10) recognize_topdown (vp, [died], _G582) 2

7.1.2 Going Wrong with Bottom-up Parsing

As we have seen in the previous example, top-down parsing starts with some goal
category that it wants to recognize and ignores what the input looks like. In bottom-up
parsing, we essentially take the opposite approach: We start from the input string and
try to combine words to constituents and constituents to bigger constituents using the
grammar rules from right to left. In doing so, any possible "child" consituents that
can be built are built; no matter whether they eventually fit into a suitable "mother"
constituent (an S in the end).

Ignoring the Overall Goal

No top-down information of the kind ‘we are at the moment trying to built a sentence’
or ‘we are at the moment trying to built a noun phrase’ is taken into account. Let’s
have a look at an example.

Say, we have the following grammar fragment:

S — NPVP
NP — Det N
vP — IV
VP — TV NP
TV — plant
IV — died
Det — the
N — plant

Note, how plant is ambiguous in this grammar: it can be used as a common noun or as
a transitive verb. If we now try to bottom-up recognize ‘the plant died’, we would first
find that the is a determiner, so that we could rewrite our string to Det plant died.
Then we would find that p1ant can be a transitive verb giving us bet Tv died. Det
and Tv cannot be combined by any rule. So, died would be rewritten next, yielding
pet TV IV and then pet TV vp. Here, it would finally become clear that we took a
wrong decision somewhere: nothing can be done anymore and we have to backtrack.
Doing so, we would find that p1ant can also be a noun, so that et plant died could
also be rewritten as bet N died, which will eventually lead us to success.
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7.1.3 Combining Top-down and Bottom-up Information

As the previous two examples have shown, using a pure top-down approach, we are
missing some important information provided by the words of the input string which
would help us to guid our decisions. However, similarly, using a pure bottom-up ap-
proach, we can sometimes end up in dead ends that could have been avoided had we
used some bits of top-down information about the category that we are trying to build.

The key idea of left-corner parsing is to combine top-down processing with bottom-up
processing in order to avoid going wrong in the ways that we are prone to go wrong
with pure top-down and pure bottom-up techniques. Before we look at how this is
done, you have to know what is the left corner of a rule.

The Left Corner

The left corner of a rule is the first symbol on the right hand side. For example, NP is
the left corner of the rule S — NP VP, and 1V is the left corner of the rule VP — IV.
Similarly, we can say that vincent is the left corner of the lexical rule PN — vincent.

A left-corner parser alternates steps of bottom-up processing with top-down predic-
tions. The bottom-up processing steps work as follows. Assuming that the parser has
just recognized a noun phrase, it will in the next step look for a rule that has an NP as
its left corner. Let’s say it finds S — NP VP. To be able to use this rule, it has to rec-
ognize a VP as the next thing in the input string. This imposes the fop-down constraint
that what follows in the input string has to be a verb phrase. The left-corner parser
will continue alternating bottom-up steps as described above and top-down steps until
it has managed to recognize this verb phrase, thereby completing the sentence.

A left-corner parser starts with a top-down prediction fixing the category that is to be
recognized, like for example S. Next, it takes a bottom-up step and then alternates
bottom-up and top-down steps until it has reached an S.

To illustrate how left-corner parsing works, let’s go through an example. Assume that
we again have the following grammar:

S — NP VP
NP — Det N
NP — PN
VP — IV

Det — the

N — robber
PN — Vincent
1V — died

Now, let’s look at how a left-corner recognizer would proceed to recognize vincent died.

1.) Input: vincent died. Recognize an S. (Top-down prediction.)

S

vincent died
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2.) The category of the first word of the input is PN. (Bottom-up step using a lexical
rule.)

A
vincent died
3.) Select a rule that has PN at its left corner: NP — PN. (Bottom-up step using a

phrase structure rule.)

S

NIP
i
vincent died

4.) Select a rule that has NP at its left corner: S — NP VP. (Bottom-up step.)

5.) Match! The left hand side of the rule matches with S, the category we are trying to
recognize.

S
PN
NIP VP
i
vincent died

6.) Input: died. Recognize a VP. (Top-down prediction.)

7.) The category of the first word of the input is /V. (Bottom-up step.)

S
PN
NIP vP
PIN 1 IV
vincent died

8.) Select a rule that has IV at its left corner: VP — IV. (Bottom-up step.)

9.) Match! The left hand side of the rule matches with VP, the category we are trying
to recognize.

S
PN
NIP VIP
PIN 1 IV
vincent died

Make sure that you see how the steps of bottom-up rule application alternate with top-
down predictions in this example. Also note that this is the example that we used
earlier on for illustrating how top-down parsers can go wrong and that, in contrast to
the top-down parser, the left-corner parser doesn’t have to backtrack with this example.
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7.2 A Left-Corner Recognizer in Prolog

Now, we will put the strategy that we have just described into Prolog. We will show
how to implement a recognizer (see leftcorner_recognizer.pl!'). One of the
exercises will ask you to change this recognizer into a parser. As in the implementation
of the top-down recognizer, we will use difference lists to keep track of how much of
the input we have worked through.

The main predicate is leftcorner_recognize/3. It takes the following arguments:
1.) the category that is to be recognized, 2.) the input string, 3.) what’s left of the
input string after a starting sequence that belongs to the category specified in the first
argument has been cut off. leftcorner_recognize/3 first looks up the category of
the first word of the input, wcat. It then calls complete/4 which tries to close the hole
between wCat and Cat. leftcorner_recognize/3 evaluates to true, if it is possible
to build a parse tree that has cat at its root and is spanning a prefix of the input, such
that stringout 1is left.

leftcorner_recognize (Cat, [Word|StringIn],StringOut) :-
lex (Word, WCat),
complete (Cat,WCat, StringIn, StringOut) .

complete/4 has four arguments: 1.) cat, the category that we are trying to recognize,
2.) wcat, the category that we already have recognized (it has to be incorporated into
the left part of the parse tree), 3.) the input string that has not been recognized, yet, and
4.) what is left of the input string, once we have managed to recognized cat.

In case the first and second argument are the same category (i.e., the category that we
are trying to recognize is the same as the category that we have already found), we
have completed that part of the parse tree.

complete (Cat,Cat,String, String).

If that is not the case, we need a recursive clause. This clause looks for a rule that has
the second argument (the category that we have already recognized) as its left corner.
It then calls matches/3, which will try to recognize strings of the other categories on
the right hand side of the rule. If that’s successfull, the recursive call of complete/4
checks whether we already managed to recognize cat or whether another left-corner
bottom-up step has to be made to fill the hole that’s left between cat and LHS.

complete (Cat, SubCat, StringIn, StringOut) :-
LHS ——-—> [SubCat|Cats],
matches (Cats, StringIn, Stringl),
complete (Cat, LHS,Stringl, StringOut) .

matches/3 finally checks whether the input begins with a certain sequence of cate-
gories and returns what’s left of the input. The way it works and the way it is im-
plemented is very similar to the matches predicate that we saw with the top-down
recognizer.

"http://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/code2html.cgi?file=leftcorner_
UND course=coal
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matches ([], String, String).

matches ([Cat|Cats], StringIn, StringOut)
leftcorner_recognize(Cat, StringIn, Stringl

matches (Cats, Stringl, StringOut) .

And, lastly, here is a driver predicate:

leftcorner_recognize (String)

leftcorner_recognize (s, String, []) .

7.3 Using Left-corner Tables

)y

This left-corner recognizer handles the example that was problematic for the pure top
down approach much more efficiently. It finds out what is the category of vincent and
then doesn’t even try to use the rule NP — Det N to analyze this part of the input.

Remember that the top-down recognizer did exactly that.

But how about the example that was problematic for the bottom-up approach? Here,
we don’t see any improvement, yet. Just like the bottom up recognizer, the left-corner
recognizer will first try to analyze plant as a transitive verb. Let’s see step by step
what the left-corner recognizer defined above does to process the plant died given the

grammar

S — NPVP
NP — Det N
vP — IV
VP — TV NP
TV — plant
1V — died
Det — the
N — plant

We will only show how the parse tree developes.

S
S S
NP
1.) 2)| Det 3) SN
the plant died I Det N
the plant died I
the plant  died
S
S
’ NP ~ NP\
/NP\ D ~ \N Det N
et
4)| Det N 5.) 6.) VP
VP PN
TV PN TV NP
I TV NP
the plant  died I v
the plant died [
the plant died
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S
NP
Det 7N N
7.) / VP\ No way to continue! Backtracking!
TV NP
VP
v
the plant diled

So, just like the bottom-up recognizer, the left-corner recognizer chooses the wrong
category for plant and needs a long time to realize its mistake. However, the left-
corner recognizer provides the information that the constituent we are trying to build at
that point is a noun. And nouns can never start with a transitive verb according to the
grammar we were using. If the recognizer would use this information, it would notice
immediately that the lexical rule relating plant to the category transitive verb cannot
lead to a parse. The solution is to record this information in a table. This left-corner
table stores which constituents can be at the left-corner of which other constituents.
For the little grammar of the problematic example the left-corner table would look as
follows:

S NP, Det, S

NP  Det, NP
vep IV, TV, VP
Det Det

N N

v 1V

TV TV

Note, how every category can be at the left corner of itself. In Prolog, we will simply
store this table as facts in the knowledge base (1c (2, B) reads 2 is a possible left corner
of B):

lc(np,s).

lc(det,np) .
lc(det, s).
lc(iv,vp) .
le(

tv,vp) .
lc(X,X).
Now, we can check every time that we choose a rule whether it makes sense to use this

rule given the top-down information about the category that we are trying to recognize.

So, every time we decided on a category for a word, we first look into the left-corner
table to check whether the category of the word can appear at the left corner of the
constituent we are working on:
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leftcorner_recognize (Cat, [Word|StringIn],StringOut) :-
lex (Word, WCat),
lc(WCat,Cat),
complete (Cat,WCat, StringIn, StringOut) .

Similarly, we check that the left-hand sides of the rules we are using can appear as the
left corner of the category we are building:

complete (Cat, SubCat, StringIn, StringOut) :-—
LHS —--—-> [SubCat|Cats],
lc(LHS,Cat),
matches (Cats, StringIn, Stringl),
complete (Cat, LHS,Stringl, StringOut) .

The other clause of complete is unchanged (see leftcorner_recognizer_table. pl?).

Now, go back to the example and check what happens. In step four, where the previous
version of the algorithm made the mistake, this new version would check whether
1c(TV,N) is true. Since this is not the case, it would immediately backtrack and find
the second possibility for plant in the lexicon.

7.4 The Code

leftcorner_recognizer.pl: View’_Download*The left corner recognizer

leftcorner_recognizer_table.pl: View?>_Download® The left corner reco
ourEng.pl: View’_Download® Our English gramm
leftrec.pl: View? Download!? A left recursive con
epsilon.pl: View'! Download!? A grammar with an

7.5 Practical Session

1. Download leftcorner_recognizer.pl!3, the left-corner recognizer, and
ourEng.pl!'4, the English grammar fragment, and make sure that you under-
stand how the left-corner algorithm works.

2. Write the left-corner table for ourEng.pl!3.

3. Now, use ourEng.pl'® and the left-corner table that you have written to test
leftcorner_recognizer_table.pl 17 the left-corner recognizer using
a left-corner table. Make sure that you understand how the left-table is used.

’http://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/code2html.cgi?file=leftcorner_
UND course=coal

13http://www.coli.um’.—sb.de/~stwa//Milca/CodeInterface/codethml.cgi?file:leftcorner_
UND course=coal

14http://www.coli.um’_—sb.de/~stwa//Milca/CodeInterface/code2html.cgi?file:ourEng.pl
UND course=coal

Bhttp://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/code2html.cgi?file=ourEng.pl
UND course=coal

16http://www.coli.uni—sb.de/~stwa//Milca/CodeInterface/codethml.cgi?file:ourEng.pl
UND course=coal

Thttp://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/code2html.cgi?file=leftcorner_
UND course=coal
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7.6 EXxercises

Exercise 7.1 Download leftrec.pl!'8, the left-recursive grammar that we al-
ready saw in the previous chapter. Can the left-corner recognizer cope with it? Why
does it not have the same problems with it as the top-down algorithm?

Exercise 7.2 Now, download epsilon.pl'’, the grammar with the empty produc-
tion that we have seen before, as well. Write a left-corner table for it. (Note: € is a
kind of terminal symbol. ).

Exercise 7.3 [This is tricky] Turn the left-corner recognizer into a parser by adding
an extra argument to collect the structure.

18http://www.coli.uni—sb.de/~stwa//Milca/CodeInterface/codethml.cgi?file:leftrec.pl

UND course=coal
Phttp://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/code2html.cgi?file—epsilon.pl
UND course=coal
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8.1

Passive Chart Parsing

Motivation
Suppose we’re working with a grammar containing the following rules:
vp —---> [v,np].
vp ---> [v,np,pp].
vp —-—--> [v,np,vp].
That is, in this grammar there are three different ways of building VPs, and there
is no distinction between the different types of verb (unlike as in our ourEng.pl!
grammar).
Suppose we try to parse a sentence containing the substring ‘sees vincent give the
money to the drug dealer’. And suppose that we are working with a bottom-up recog-
nizer such as bot tomup_recognizer .pl? from Chapter 5.
Attempt 1a

We first analyze sees as being of category v and vincent as being of category np.
This allows us to next use the rule vp ——> [v, np] (see the little tree on the left hand
side of the diagram below). Now we must go on and analyze the rest of the input string,
‘give the money to the drug dealer’. We can do this: we successfully recognize it as a
VP — but now we have a problem. We’ve got the following structure:

vp vp
/ N\

/ \

/ \
v np
| \
| \
| |  ====sss=sssssssss=s=s=============== =

sees vincent give the money to the drug dealer

"http://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/code2html.cgi?file=ourkEng.pl
UND course=coal

2http://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/code2html.cgi?file=bottomup_re
UND course=coal
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Two VPs standing next to each other isn’t much use — we’re going to have to backtrack
and try something else. We do so, and — without thinking about it — we do something
very silly: we throw away the fact that ‘give the money to the drug dealer’ is a VP.

Attempt 1b

This time we don’t combine sees and vincent using the rule vp --> [v,np], but
first deal with the rest of the string. All goes well: we build the vp for ‘give the money
to the drug dealer’ and then use the rule vp —--> [v,np,vp] to build a VP for the
whole string.

= SUCCEED

sees vincent give the money to the drug dealer

But note: to get this correct parse, we have to show that ‘give the money to the drug
dealer’ is a VP. But we showed that in attempt 1a — and then threw this fact away
when we backtracked! We’re repeating work. This does not sound like a good idea.

And itis not: itreally is very inefficient. Moreover it is an inefficiency of the algorithm,
not the implementation. Naive algorithms really are naive — it it is silly to repeat
work. And sometimes we will pay a price for being naive: no matter how cleverly
we implement naive algorithms, on some grammars, and on some input strings, naive
algorithms will give disastrous performance.

It is important to realize that this kind of inefficiency has nothing to do with the top-
down versus bottom-up distinction. It doesn’t matter which of these strategies we use,
or even if we use a sophisticated mixture of these strategies, such as the left-corner
parsing strategy. The basic point is the same: if we throw away the results of our
work when we backtrack, we may have to redo this work later. And given that realistic
grammars for natural language are not only highly ambiguous, but contain lots of local
ambiguities as well, we may end up repeating the same work a huge number of times.

In this lecture we start our discussion of chart parsing. Chart parsing is based on an
incredibly simple idea: ‘Don’t throw away information. Keep a record — a chart —
of all the structure you have found.” Chart parsing is a very general idea, and it can be
used with just about any kind of parsing (or recognition) strategy you care to think of
(top down, bottom up, left-corner, depth first, breadth first, ...).

Today we are going to examine the simplest form of chart parsing, namely passive chart
parsing. Roughly speaking, this means the chart is simply a record of all constituents
that have been recognized. As we shall see in later lectures, we can use the chart in
more interesting ways, and this leads to what is known as active chart parsing.
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But today we’ll stick with passive chart parsing. We’ll discuss and then implement a
simple bottom-up recognizer using a passive chart.

8.2 A Bottom-Up Recognizer Using a Passive Chart

8.2.1 An Example

In this section, we are going to see what a chart is and how it can be used in a bottom-up
recognizer. That is, for simplicity we are going to do recognition, which means we’re
not actually going to build the parse trees. But it will be clear that all the information
needed to carry out full parsing is there on the chart — the recognition algorithm takes
us most of the way to a full parser.

But first things first — what is a chart anyway? Simply a record of what information
we have found where. For example, suppose we were trying to parse the sentence
‘Jules handed the gun to Marsellus’. Then a (very simple and incomplete) chart for
this string is:

—— pn —-
| \
| \
0 Jules 1 handed 2 the 3 gun 4 to 5 Marsellus 6

This chart is made up of nodes and edges (or arcs). The nodes are the numbers
0,1,2,3,4,5, and 6. The nodes mark positions in the input — clearly every word is
picked out by a pair of numbers. For example, the word to is the word between posi-
tions 4 and 5. Arcs join nodes, and their function is to tell us what structure we have
recognized where. In the above chart there is only one edge, namely the one that goes
from O to 1. We say that this edge spans 0,1. Note that this edge is labelled pn. Thus
this edge tells us that between 0 and 1 we have found a proper name.

Passive chart parsing essentially proceeds by progressively adding more arcs to the
chart as we discover more and more about the input string. The algorithm we are going
to look at is a bottom-up algorithm. Hence, it starts from the concrete information given
in the input string, and works its way upwards to increasingly more abstract levels (and
in particular, to the sentence level) by making use of CFG rules right-to-left. In terms of
arcs in the chart that means that we are going to use CFG rules right-to-left to combine
arcs that are already present in the chart to form larger arcs. For example: suppose we
have an arc going from node 2 to node 3 which is labelled det and an arc from 3 to 4
labelled n in our chart. Then the rule np --> [det,n] allows us to add an arc going
from 2 to 4 which is labelled np.

Example is the best way to learn, so let’s now look at a concrete bottom-up chart
parsing algorithm. Suppose we are working with the ourEng.p1? grammar, and we
want to analyze the sentence ‘Vincent shot Marsellus’. How do we do so using the
bottom-up algorithm? As follows. First, we start with the empty chart:

0 vincent 1 shot 2 marsellus 3

Shttp://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/code2html.cgi?file=ourEng.pl
UND course=coal
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Then we read the first word (word 0,1) and build all arcs that our grammar and lexicon
allow us to build for this word. First, we can use the lexical rule lex (vincent, det)
to build an arc labelled pn going from position O to position 1. We add this arc to the
chart and check whether we can maybe use it to build further arcs. And in fact, we have
the rule np ——> [pn]. Reading it from right to left, we can use the newly added arc
to build a second arc from O to 1 which is labelled np. Now, there is no more that we
can do: there are no other lexical entries for vincent, no more rules that have [pn] as
their right hand side and no rules that have [np] as their right hand side. We therefore
get the following chart:

— np —-

-—— pn —-

0 vincent 1 shot 2 marsellus 3

When nothing can be done for the first word anymore, we read the second word and
all the arcs that we can build for that word and from combinations of the new arcs with
arcs that are already in the chart. That is, we add all new arcs that can be build for the
substring between 0 and 2. Given the grammar ourEng . pl1* there is only one thing
that we can do: add a tv-arc from position 1 to position 2. We get:

—— np —-
| |
| |
-— pn —-— -— tv —-
| | |
| | |
0 vincent 1 shot 2 marsellus 3

Nothing more can be done for the substring between node 0 and node 2. So, we read
the next word (word 2,3) and add all new arcs for the span 0,3.

The lexical rule lex (marsellus,pn) let’s us add the pn-arc from 2 to 3. The we can
use the rule np ——> [pn] to build the np-arc between 2 and 3. This arc can then be
combined with the tv-arc from 1 to 2 using the rule vp —-> [tv,np]. Finally, the
vp-arc which is created this way can be combined with the np-arc from 0 to 1 to form
a sentence spanning 0 to 3 (s —-> [np, vp]).

|
|
r e Vp —————————
|
|

*http://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/code2html.cgi?file=ourEng.pl
UND course=coal
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-— np —- ——— np ———

| | | \

| | | \
-— pn —— -— tv — -— pn ———

| | | \

| | | \

0 vincent 1 shot 2 marsellus 3

At this stage the algorithm halts. Why? Well — the chart contains all the arcs that
can possibly be built for the string from O to 3 and there are no more words to be read.
Pretty clearly, we have succeeded in recognizing that the input was a sentence. After
all, the very last edge we added spans the entire input (that is, positions O to 3) and tells
us that it has category s.

8.2.2 Being Complete

One central point we have not yet addressed explictly is: How can we be sure that
we really find all possible edges spanning (parts of) our input. Well, the principle is
simple. What we are doing is this:

1. We traverse our input string from left to right, and

2. We do not move on before we have done all that can be done at some point.

As a consequence, our chart is always complete to the left: All that could have been
done there had been done. So, when we move on to some node x, we make sure that
all possible edges between 0 and x are being added. Then we know, that the chart
is complete up to node x when we move to x+1. As a consequence, we never have
to backtrack to some earlier nodes to see whether there is anything left that has to be
done. This strategy leads us systematically through the input without forgetting to add
any edge.

8.3 Some Prolog Revision

8.3.1 Database manipulation

There is one key key decision that we have to make before starting to implement the
recognizer and that is how we are going to represent the chart, and how we are going
to work with it.

Now, there are various options here. For example, we could represent the chart using
some sort of structured list. But there is another, more attractive, way to go: represent
the chart using the Prolog database, and manipulate the chart (that is, add new edges)
using the database manipulation operations. As we are going to be making heavy use
of Prolog’s database manipulations, let’s quickly run through them and remember how
they worked.

There are five database manipulation commands that we will using:
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assert

retract
asserta
assertz

retractall

How are these used? Suppose we start with an empty database. So if we give the
command:

?- listing.

yes

we get a yes — and the listing (of course) is empty.

Suppose we now give this command:

?— assert (happy (mia)) .

yes
It succeeds (the assert/1 commands always succeed). But what is important is not
that it succeeds, but the side effect it has on the database, for if we now give the com-
mand:

?- listing.

happy (mia) .
yes

we get again yes — but now there is something in the database, namely the fact we
asserted.

Suppose we then made four more assert commands:

?— assert (happy(vincent)).

yes

?— assert (happy(marsellus)) .

yes

?— assert (happy (butch)) .

yes

?— assert (happy(vincent)).

yes
and then ask for a listing. Then we get:
?— listing.

happy (mia) .
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happy (vincent) .
happy (marsellus) .
happy (butch) .
happy (vincent) .

yes

There is an inverse predicate to assert/1, namely retract/1. For example, if we go
straight on and give the command:

?— retract (happy (marsellus)) .

yes
and then list the database we get:
?- listing.

happy (mia) .
happy (vincent) .
happy (butch) .
happy (vincent) .

yes
Suppose we go on further, and say

?— retract (happy(vincent)) .

yes
and then ask for a listing:
?— listing.

happy (mia) .
happy (butch) .
happy (vincent) .

yes

Note that the first occurrence of happy(vincent) was removed. Prolog removes the first
thing in the database that matches the argument of retract.

?— retract (happy(_)) .
yes

?- listing.
happy (butch) .
happy (vincent) .

yes

The predicate retractall/1 removes everything that matches its argument:
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?— retractall (happy(_)) .
yes
?- listing.

yes

If we want more control over where the asserted material is placed, there are two
variants of assert, namely:

e assertz, which places stuff at the end of the database, and

e asserta, which places stuff at the beginning of the database.

Prolog puts some restrictions on what can be asserted and retracted. More precisely,
other predicates are only allowed to remove or retract clauses of predicates that have
been declared dynamic. So, if you want to write a predicate which asserts or retracts
clauses of the form happy (mia), you also have to put the following statement into
your file:

:— dynamic happy/1.

Database manipulation is useful when we want to store the results of queries, so that
if we need to ask the same question in future, we don’t need to redo the work — we
just look up the asserted fact. This technique is called ‘memoization’, or ‘caching’.
And of course, this ‘memoization’ idea is the basic concept underlying chart-parsing:
we want to store information about the syntactic structure we find, instead of having to
re-compute it all the time.

8.3.2 Failure Driven Loops

The idea of failure driven loops is to force Prolog to backtrack until there are no more
possibilities left. How can we force Prolog to backtrack? Well, Prolog automatically
tries to backtrack when it fails. So, adding a goal which always fails (such as the built
in predicate £ail/0 which has no effect but to make Prolog fail) at the end of a clause,
will force Prolog to backtrack over all the other goals in that clause until it has tried all
the possibilities. Here is an example:

write_everybody_happy :- happy (X),
write(X),nl,
fail.

write_everybody_happy :— true.

If you consult this little program and the ask Prolog the query write_everybody_happy,
Prolog will look up in its database all objects that make happy (x) true and will print
them out on the screen. So, if the database looked as follows

happy (harry) .
happy

happy
happy (hagrid) .

ron) .

hermione) .

(
(
(
(
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Prolog would write on the screen

harry
ron
hermione

hagrid

yes

8.4 Passive Chart Recognition in Prolog

8.4.1 Representing the Chart

We’ll now implement a bottom-up chart recognizer in Prolog. To do so, we first have
to decide how to represent the chart. As already mentioned in the last section, we want
to use the Prolog database for that. More explicitly, we will use the predicates scan/3
and arc/3. The predicate scan encodes the position of the words. For example, we
take scan (2, 3, loves) to mean that the word loves is between positions 2 and 3 of the
input sentence. The initial empty chart for the input sentence vincent loves mia, which
doesn’t contain any arcs, yet, thus looks like this in Prolog:

scan(0,1,vincent) .
scan(1l,2,loves).

scan(2,3,mia) .

We will represent arcs using the predicate arc/3 in the obvious way: arc (0,2, np)
means that there is an np-arc between 0 and 2. So, the chart

| |
| |
—— np —- —— np —-
| | | |
| | | |
-— pn —- -—— tv —— -— pn —-—
| | | |
| | | |
0 vincent 1 loves 2 mia 3

is represented in Prolog as

scan(0,1,vincent) .
scan(l,2,loves) .
scan(2,3,mia) .

arc(0,1,pn).
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arc(0,1,np)
arc(l,2,tv).
arc(2,3,pn) .
arc(2,3,np)
arc(l,3,vp)
(

arc(0,3,s).

8.4.2 The Algorithm

Now, when wanting to recognize a sentence, the first thing we have to do is to ini-
tialize the chart, i.e., to write the appropriate scan-facts for the words into the Prolog
database. This is done by the following predicate. It is a recursive predicate that works
its way through the list representing the input sentence in the standard fashion of Prolog
list processing predicates. For each word in the input it asserts a fact with the functor
scan recording the position of that word.

initialize_chart([], _).

initialize_chart ([Word|Input], From) :-

To is From + 1,

o\

%% assertz -> put new word at the end of the db

@

ssertz(scan(From, To, Word)),

o\

%% write(scan(From, To, Word)), nl,

initialize_chart (Input, To).

Then, we have to read the first word and add all the arcs that we can build from this
first word. When nothing new can be added, we read the next word and add all arcs
that we can build for the substring between 0 and 2. When no more can be done for
that span, we read the next word and again add all new arcs that can be build for this
new word. We continue like this until we reach the end of the sentence.

The main predicate of this part of the program is process_bottomup/0.

process_chart_bottomup :-
doall (
(scan(From, To, Word),
%$%% write(’read word: '), write(Word),nl,
lex (Word, Cat),
add_arc(arc(From, To, Cat)))

).

It reads a word from the database (scan (From, To, Word)) and looks up its category
in the lexicon (lex (Wword, cat)). The real work is done by calling add_arc/1. This
predicate adds the new arc and all arcs that can be built from it to the chart.

Then, doal1/1 forces backtracking: process_bottomup/0 backtracks to use other
lexical entries for the word under consideration if there are any and to read the next
word if there are none. doal1/1 implements a failure driven loop. It forces Prolog to
backtrack over its argument. doal1/1 is implemented as follows:
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doall (Goal) :- Goal, fail.
doall(_) :- true.

add_arc/1 takes an arc as argument. If that arc is not yet in the chart, add_arc adds
it. It then calls new_arcs/1, which constructs and adds all the arcs that can be build
from combining the newly added arc with what is already in the chart.

add_arc(Arc) :-
\+ Arc,

assertz (Arc),

SS
200
557

write (Arc),nl,

new_arcs (Arc) .

new_arcs/1 also uses the failure driven loop predicate doal1/1 — we want to find all
the new arcs that can be built. We do this by looking for suitable edges to our left in
the chart. As we have explained in Section 8.2.2, the chart is complete to the left: All
potential arcs to combine with can only be on our left.

For example if our newly added category is an np, we try to find rules having an NP
as rightmost part of the right hand side (remember we are using a bottom-up strategy),
e.g. vp -—> [tv,np]. Then we try to find the left part of the right hand side (tv in
this example) in the database (and hence in the chart on our left).

new_arcs (arc(J, K, Cat)) :-
doall (
(LHS —--—> RHS,
append (Before, [Cat], RHS),
path (Before, I, J),
add_arc(arc(I, K, LHS)))
) -

new_arcs takes an arc arc (J, K, Cat) as argument. To find new arcs, we take a rule
from the grammar and check a) whether cat is the last category on the right hand side
of that rule and b) whether there is a sequence of arcs in the chart that spans 1, J and
is labelled with the categories that come on the right hand side of the rule before cat.
If that is the case, a recursive call of add_arc adds the new arc /the one spanning 1, J
and labelled with the left hand side of the rule) to the chart and checks whether it can
be used to build any further arcs.

Let’s go back to our example from Section 8.2.1. Suppose we have just added the vp
andcaﬂednewfarcs(arc(l, 3, vp)).

— np —- - np ——-

-— pn —— -— tv - -—— pn ——-
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0 vincent 1 shot 2 marsellus 3

We then find the rule s ——> [np,vpl, SO Before is instantiated with [np]. Next,
path([np], I, 1) checks whether there is such a path. Indeed there is: T is instantiated
with 0. So we add the arc arc (0, 3, s) to the chart (and recursively check whether there
is anything else that has to be done).

It only remains to define path/3. It’s first argument is a list of categories, and the
second and third arguments are nodes. The predicate recursively checks if an arc, or a
sequence of arcs, links the two input nodes:

path([], I, I).

path([Cat|Cats], I, K) :-
arc(I, J, Cat),
J =< K,
path(Cats, J, K).

Now, we have defined the predicates that build the chart. What is missing is a predicate
the calls them and then checks whether the final chart contains an arc that spans the
whole input sentence and is labelled with s. Here it is:

chart_recognize_bottomup (Input) :-
cleanup,
initialize_chart (Input, 0),
process_chart_bottomup,
length (Input, N),
arc(0, N, s).

The first thing this predicate does is to clean the chart. This is very important. Our
recognizer works by asserting stuff into the database. This means we need to get rid of
all the stuff that was asserted to the database before we try to recognize a new sentence
— for otherwise all the old stuff will be hanging around, and may interfere with the
analysis of the new sentence. In short, we need to retract all the information asserted
the last time we used the recognizer before we use it again. And this is exactly what
cleanup/0 does for us:

cleanup :-
retractall(scan(_,_,_)),

retractall (arc(_,_,_)).

After cleaning the database up, chart_recognize_bottomup/1 initializes the chart
with the input sequence, and processes the chart. Finally, the only thing to be done is
check whether there is an arc labled s that is spanning the whole input.

The whole program can be found in passive_chart_bottomup. pl>.

Shttp://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/code2html.cgi?file=passive_cha
UND course=coal
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8.4.3 An Example

Let’s look at an example. Let’s see what happens when we give this recognizer the
example we looked at before, that is, “Vincent shot Marsellus”. Here is an abbreviated
trace that shows you how the words are read and which arcs are added to the chart
subsequently.

[trace] 12 7?- chart_recognize_bottomup ([vincent, shot,marsellus]).
Exit: (11) scan(0, 1, wvincent) ?
Exit: (11) assert(arc(0, 1, pn)) ?
Exit: (15) np-——>[pn] °?

Exit: (15) assert(arc(0, 1, np)) ?
Exit: (11) scan(l, 2, shot) ?
Exit: (11) assert(arc(l, 2, tv)) ?
Exit: (11) scan(2, 3, marsellus) ?
Exit: (11) assert(arc(2, 3, pn)) ?
Exit: (15) np-——>[pn] °?

Exit: (15) assert(arc(2, 3, np)) ?
Exit: (19) vp--->[tv, np] ?

Exit: (19) assert(arc(l, 3, vp)) ?
Exit: (23) s—-——>[np, vpl ?

Exit: (23) assert(arc(0, 3, s)) ?

Yes
And this is what the final chart looks like:
13 ?- listing(scan).
scan(0, 1, wvincent).
scan(l, 2, shot).

scan(2, 3, marsellus).

Yes

14 ?- listing(arc).

arc(0, 1, pn).
arc(0, 1, np).
arc(l, 2, tv).
arc(2, 3, pn).
arc(2, 3, np).
arc(l, 3, vp).
arc(0, 3, s)

Yes
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8.5 The Code

passive_chart_bottomup.pl: View® Download’” The bottom-up chart recognizer.
ourEng.pl: View®_Download’ Our well-known English grammar fragment.

8.6 EXxercise

Exercise 8.1 Today’s exercise is to write a pretty-printer for charts. Remember that
theChaﬂissﬁﬂintheckﬂabaseqﬁ?rlhe;nn@e:chart_recognize_bottomup([Vincent,shot,marsellt
Write a failure-driven loop (page 136) that reads out the chart from the database and

prints it out (as in our examples in the text, or upside down - as you like it).

[Hints:]

Exercise 8.2 [Mid Term Project]

In I!!/UNEXPECTED PTR TO EX_CHARTPARSING.EX.1!!!, the chart was printed af-
ter parsing. Alternatively, you can print out the chart incrementally during the parsing
process. Modify the respective predicates in passive_chart_bottomup.pl!l.
If the visualization is too fast, you can slow it down using the predicate sleep/1:
write(a), flush_output,sleep(2),nl,write(b). Thesnnenkmtflush_output
is important for incremental output. If you leave it away, Prolog might buffer the output
some and print it all at once: write (a),sleep(2),nl,write(b).

10http://www.coli.uni—sb.de/~stwa//Milca/CodeInterface/callProlog.cgi?consult:’passiv
UND course=coal UND directinput=chart_recognize_bottomup([vincent, shot,marsellus]),lis

Uhttp://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/code2html.cgi?file=passive_cha
UND course=coal



Active Chart Parsing

9.1 Active Edges

In this lecture we move from passive chart parsing to active chart parsing. Active chart
parsing is based on a very simple idea. A passive chart, like the one we worked with
in the previous chapter, is used to keep a record of complete constituents that we have
found. (For example, on a passive chart we can record the information that the string
between nodes 2 and 4 is an NP.) In an active chart we additionally record hypotheses
— that is, we record what it is we are actually looking for, and how much of it we have
found so far. Such information is recorded in active edges (or active arcs).

Here’s an example of an active edge:

S = NP.VP

0 1 2

This is an arc between nodes 0 and 2. The important thing to note is the arc label:
S — NP . VP This says: ‘I am trying to build an s, consisting of an np followed by a
vp. So far I have found an np arc, and I'm still looking for the vp. ° So the insignificant

(3]

looking ‘. in the middle of the rule is very important: it marks the boundary between
what we have found so far, and what we are still looking for.

Here’s another example:

S - .NPVP

0

This says: ‘I am trying to build an s, consisting of an np followed by a vp, starting at
node 0. So far I have neither found the np nor the vp that I need.’

Here’s another example:
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VP — DV NP . PP

4 5 6 7 8

This says: ‘I am trying to build a vp, consisting of a dv followed by an np followed by a
pp, starting at node 4. So far I have found a dv arc and an np arc, and I'm still looking
for the pp.” The np-arc ends in node 8, so the pp-arc will have to start in node 8.

Here’s another example:

VP — TV NP.

6 7 8 9 10

This says: ‘I am trying to build a vp consisting of a tv followed by an np starting at
node 4 — and I've done it!” Note that the .’ is at the end of the arc label. This means
that everything we need to find has been found. Such an arc is called a passive edge, or
a passive arc. It records complete information. In effect, these are the arcs we are used
to from the previous chapter, though we didn’t use the ‘.’ notation there.

One final example:

S = NPVP.

0 1 ... ]ast-1 last

This says: ‘I am trying to build an s consisting of an np and a vp starting at node 0 —
and I've done it! I've found both the np and the vp, and moreover, I've done it in a way
that the arc goes all the way from the first to the last node. This means I’'ve recognized
the sentence!’

9.2 The Fundamental Rule

Active arcs are called ‘active’ for a very good reason: They ‘actively’ hint at what can
be done with them. In particular, we can see at once how to combine them with passive
edges to make new edges. The new edges we make may be either passive or active.

The fundamental rule for combining a passive edge and an active edge works as fol-
lows: Suppose the active edge goes from node n; to node n, and has category C im-
mediately to the right of the dot.
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oa— B.Cy

np ny

Further, suppose that the passive edge goes from node 7n, to node n3 (hence, it starts
where the active edge ends) and has category C on its left hand side.

C > 9

o

ny ns

The fundamental rule now allows us to combine these two edges to build a new one
that starts in node 71 and ends in n3. For the label of that new edge we move the dot in
the active edge one category forward.

oa— BC.y

ni ny ns

Here are two examples to illustrate the fundamental rule.

VP — DV NP.PP

VP — DV .NP PP
NP — Det N )

4 8 10

Here we have an active edge (the one on the left) which is looking for a np. And
immediately to its right we have an np (note that the edge to the right is passive: that
is we really know that there is a np between nodes 8 and 10). Using the fundamental
rule, we can combine these edges to build a new edge going from node 4 to node 10.
Note, that this new edge is active.
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VP — DV NP PP.

VP — DV NP.PP

PP — PNP.

4 8 10

Here we have an active edge (the one on the left) which is looking for a pp. And
immediately to the right we have a pp (note that the edge to the right is passive: that
is we really know that there is a pp between nodes 8 and 10). Using the fundamental
rule, we can combine these edges. Note, that in this case the new edge we have built is
passive.

9.3 Using an Agenda

Active chart parsers usually make use of an agenda. An agenda is a datastructure that
keeps track of the things that we still have to do. When new edges are created, we have
to remember that we have to look at them to see whether they can be combined with
other edges in any way. To not forget this we store them in the agenda. (They are not
added directly to the chart as with the passive chart parser.) We will then take one edge
at a time from the agenda, add it to the chart, and then use it to build new edges.

You can think of the agenda as a list of edges. When we take edges from the agenda,
we will always take them from the beginning of the list. So, by modifying where we
insert new edges into this list, we change the order in which edges are processed.

We are going to treat the agenda as a stack. That is, we add new edges to the front of the
agenda. This leads to a depth-first search strategy. Another possibility would be to add
new edges to the end of the agenda. The corresponding datastructure is called queue
and would lead to breadth-first search. Finally, you could also order the elements in
the agenda due to some other criterion, such as, e.g., how probable it is that the edges
will lead to a parse.

9.4 A General Algorithm for Active Chart Parsing

A nice thing about using an agenda is that it is straightforward to specify a very gen-
eral algorithm for active chart parsing. We’ll now present this algorithm. With only
minor changes — or to be more accurate, simply by being a bit more precise about how
we are going to carry out the individual steps given below — it is very easy to con-
vert this general algorithm into (say) a top-down or bottom-up active charting parsing
algorithm.

Here’s the general algorithm:
1. Make initial chart and agenda.
2. Repeat until agenda is empty:

(a) Take first arc from agenda.

(b) Add arc to chart. (Only do this if edge is not already on the chart!)
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(c) Use the fundametal rule to combine this arc with arcs from the chart. Any
edges obtained in this way should be added to the agenda.

(d) Make hypotheses (i.e., active edges) about new constituents based on the
arc and the rules of the grammar. Add these new arcs to the agenda.

End repeat

3. See if the chart contains a passive edge from the first node to the last node that
has the label s. If ‘yes’, succeed. If ‘no’, fail.

This algorithm is very general; especially step (2d). By being more precise about when
and how we predict new hypotheses it is easy to try out different parsing strategies.
We’ll soon see how 2c is carried out in the bottom-up case, and later we’ll learn how it
is carried out in the top-down case.

Actually, it’s not only the way 2c is handled that leads to different concrete algorithms.
We also have to initialize the agenda slightly differently in the bottom-up and top-down
cases. That is, there are different ways of carrying out step 1.

9.5 Bottom-up Active Chart Parsing

9.5.1 An Example

Suppose we want to analyze the sentence "Mia danced" using the following grammar.

S — NPVP

S — NPVP PP
NP — PN
VP— IV
PP— PNP
PN — mia
1V — danced

First, we have to initialize the chart and the agenda (step 1 of the general algorithm
(page 146)). The chart initialization works exactly as for the passive chart parser. So,
the initial chart for the sentence Mia danced looks like this:

0 mia 1 danced 2
The initial agenda looks like this:

1. (0,1,PN — mia.)
2. (1,2,IV — danced .)
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For all words of the input we have added passive edges saying of which category they
are and what their position in the sentence is. The edge (0,1,PN — mia .), for
instance, is a passive edge (indicated by the dot at is end) that says that there is a PN
between positions 0 and 1. This edge was added because we have the rule PN — mia
in our grammar.

Now that the initialization process is over, we get to step 2, the ‘repeat’ part of our
general algorithm (page 146). The first thing we do is take the first arc of the agenda
(step 2a). In our example that’s (0,1, PN — mia .). We then check whether it is aready
recorded in the chart (step 2b). That’s not the case, so we add it:

PN — mia .

0O mia 1 danced 2

Next, we try to apply the fundamental rule to the new arc (step 2c). The fundamental
rule lets us combine an active arc with a passive arc that is immediately to the right of
the active one. Since the arc we are working with is passive, we have to find an active
arc to its left. Or more precisely, we have to find an active arc ending in position O.
There is no such arc, so we cannot do anything here. We go on to step 2d.

The general algorithm (page 146) tells us that we have to build new hypotheses in
this step. Let’s see what that means for the bottom-up case. In bottom-up parsing,
we always build the parse tree from the bottom upwards, i.e., we combine already
completed constituents to form bigger ones. Therefore, we only apply step 2d to pas-
sive arcs when working bottom-up; we only predict new constituents based on already
completed ones.

In our example we are dealing with a passive arc at the moment (namely with (0,1, PN —
mia)). Making hypotheses then works as follows. We look for grammar rules whose
left corner (i.e. the the first symbol on their right hand side, see Section 7.1.3) is the
same as the left hand side of the arc under consideration (which is a PN in our case).
NP — PN is such arule, for example. We then build active edges for all of these rules.
These edges start in the same position as the arc we were looking at, end in exactly that
same position, and have the dot right after the arrow. Like this: (0,0, NP — . PN).
This edge is the hypothesis that we might be able to build an NP starting in 0. To do so
we still have to find a PN, also starting in 0. As we have already found a PN starting
in O, that’s a sensible hypothesis to make. If there were more suitable rules, we would
build an active edge for each of them.

9.5.2 An Example (continued)

Summing up, the instantiation of step 2d for a bottom-up strategy is as follows: If the
new arc A is passive and has category C as its left hand side, then look for grammar
rules that have C as their left corner. Add active edges starting and ending in the
starting point of A for all of these rules to the agenda. Their dots must be right behind
the arrow.

Back to our example. We have added all new edges to the agenda and are now at the
end of the first round through the repeat loop of step 2. The chart and agenda look as
follows:
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PN — mia .

0 mia 1 danced 2

1. (0,0,NP — .PN)
2. (1,2,1IV — danced .)

The agenda is not empty, yet, so let’s start the 2nd round. The first part of this should be
clear: we simply place the top of the agenda, that is, the active edge (0,0, NP — . PN),
on the chart. To apply the fundamental rule (step 2¢) we have to find a passive edge
in the chart that starts in position 0 (the end point of the active edge). There is one;
namely, (0,1,PN — mia). We can therefore build the edge (0,1,NP — PN .) (go
back to Section 9.2 if you don’t see how this works) and add it to the agenda. As step
2d only applies to passive edges, we skip it. The current state of chart and agenda are:

PN — mia .

0 mia 1 danced 2
)
NP — . PN
1. (0,1,NP — PN .)
2. (1,2,IV — danced .)

In the next round (0,1,NP — PN .) will be moved from the agenda to the chart. Step
2¢ doesn’t produce any new edges, but in step 2d the active edges (S — NP VP) and
(S — NPVP PP) will be added to the agenda. Chart and agenda then look as follows:

NP — PN.

0 mia 1 danced 2

NP = .PN
1. (0,0, — .NPVP)

2. {0,0,S — .NPVP PP)
3. (1,2,IV — danced .)

Next, we move (0,0,S — . NP VP) from the agenda to the chart. Applying the
fundamental rule in step 2c gives us the new edge (0,1,§ — NP.VP).
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NF — FPN.
0 mia 1 danced 2
N N
S — .NPVP L. (0,1, = NP.VP)

2. (0,0,S — .NPVP PP)
3. (1,2,1IV — danced .)

(0,1, — NP .VP) is moved to the chart. No new edge can be built.

S - NP.VP
0 mia 1 danced 2
N N
S — NPVP 1. (0,0,S — .NPVPPP)

2. (1,2,1IV — danced .)

(0,0,S — . NP VP PP) is moved to the chart. The fundamental rule creates (0,1,S —
NP .VP PP).

S - NP.VP

mia 1 danced 2

S - .NPVPPP
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1. (0,1,S — NP.VP PP)
2. (1,2,1IV — danced .)

(0,1,S — NP.VP PP) is moved to the chart. No new edge is created.

S - NP.VPPP

mia 1 danced 2

1. (1,2,IV — danced .)

(1,2,IV — danced .) is moved to the chart. Step 2d predicts VP — . IV.

S — NP.VPPP

\ IV — danced .

2

danced

S —- .NPVPPP
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1. (1,2,VP — .IV)

(1,2,VP — .1IV) is moved to the chart. The fundamental rule produces (1,2,VP —
v ).

S — NP.VP PP

1V — danced .

danced 2

1
O
VP — IV

S —- .NPVPPP
1. (1,2,VP = IV )
(1,2,VP — IV .) is moved to the chart. The fundamental rule produces (0,2,§ —

NP VP .)and (0,2,S — NP VP . PP). Step 2d, although applicable as (1,2,VP —
IV .) is a passive edge, produces no new rules.

S — NP.VP PP

\ /IV — danced .

2
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1. (0,2,S = NPVP.)
2. (0,2, — NPVP.PP)

(0,2,S — NP VP.)is moved to the chart. Neither step 2c nor step 2d produce any
new rules.

S - NPVP.

V — danced

2

danced

S —- .NPVPPP

1. (0,2,S — NPVP.PP)

(0,2,S — NP VP . PP)is moved to the chart. Again, no new edges can be built.
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V — danced

danced 2

S - .NPVPPP

The agenda is now empty, so we exit the repeat. This takes us to step 3. And yes,
we do have a passive s node from the first to the last node, so we have succeeded in
recognizing the sentence.

9.5.3 Putting it into Prolog

It is not particularly difficult to write a Prolog program that carries out bottom-up
active chart parsing. Indeed, the code is probably slightly simpler than the code for the
passive chart parser that we studied in the last chapter. But before we get into it, let’s
briefly review the built in predicate findall/3 as we are going to make extensive use
of it.

9.5.3.1 findall/3

findall/3 is a predicate for finding all solutions to a goal or a sequence of goals.
Queries of the form

findall (+Object, +Goal, -List)
compute a list of all instantiations of 0bject that satisfy Goal. The query
?—- findall(X, happy(X), L).

for example, would give you a list of all instantiations of x such that happy (X) is
satisfied. object doesn’t necessarily have to be a variable. For example,

?— findall (happy_duck (X), (happy(X), duck(X)), L).

would give you a list with all instantiations of happy_duck (x) such that happy (X), duck (X)
is satisfied. So, assuming that your database looks as follows
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9.5.3.2

duck (tick) .
duck (trick) .
duck (track) .
duck (dagobert) .

happy (tick) .
happy (trick) .
happy (track) .

Prolog would answer

L = [happy_duck(tick), happy_duck (trick), happy_duck (track)]

Representing the Arcs

Before we look at the implementation of the parser, we have to decide how to represent
arcs. We are going to use the same strategy as in the last chapter. For that purpose we
use a predicate which we call arc. In addition to the positions that the arc spans, this
predicate has to encode a dotted rule. We will therefore use arc with five arguments in
the following way:

arc(Start, End, LHS, FoundSoFar, ToFind)

>

The three last arguments represent the information contained in the ‘.” notation of arc
labels. rus is the left hand side of the respective rule, Foundsorar is the list of those
symbols that are to the left of the dot, and Torind are those that are to the right of the
dot. For example, the arc

VP — DV . NP PP

2 3

is represented as
arc(2, 3, vp, [dvl, [np, ppl)

One important thing to notice is that we represent the categories in FoundSoFar in
reversed order. So

VP — DV NP .PP

2 5

would be

arc(2, 5, vp, [np, dv], [pp]).
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9.5.3.3 Bottom Up Active Chart Recognition

For representing the chart, we will again use the Prolog database. The agenda will be
represented as a list. New edges are added by just appending them to the front (or the
end).

The main predicate is active_chart_recognize/1 (see active_chart_bottomup.pl b,
It takes a list of words (the input sentence) as argument and succeeds if it can:

1. Initialize the chart and agenda. (step 1 of the general algorithm (page 146))
2. Build the chart while processing the agenda until it’s empty. (step 2)

3. End up with a chart containing a passive s arc that leads from the first node to
the last node. (step 3)

Here is the code:

active_chart_recognize (Input) :-—
cleanup,
%$%% step 1
initialize_chart_bottomup (Input, O0),
initialize_agenda_bottomup (Agenda),
%$%% step 2
process_agenda (Agenda),
%$%% step 3
length (Input, N),

arc(0, N, s, _, [1).

Now, let’s look at the initialization predicates. We said that the initial chart is exactly as
for the passive chart parser (see Section 8.4.1). So, initialize_ chart_bottomup/2
looks exactly like the initialze chart/2 predicate of the last chapter:

initialize_chart_bottomup([], _).

initialize_chart_bottomup ([Word|Input], From) :-
To is From + 1,
assert (scan(From, To, Word)),

initialize_chart_bottomup (Input, To).

The initial agenda should contain passive arcs recording the position and category
of the words of the input sentence. We retrieve one word and its category using the
following sequence of goals

scan (From, To, Word),
lex (Word, Cat).

"http://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/code2html.cgi?file=active_char
UND course=coal
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To get all categories for all of the words, we simply use findall. The passive arc is
constructed directly in the first argument of findall.

initialize_agenda_bottomup (Agenda) :-
findall (arc(From, To, Cat, [Word], []),

(
scan (From, To, Word),
lex (Word, Cat)

)y

Agenda

) .

This is what we need in order to carry out steps 1 and 3 of the general algorithm
(page 146) in a bottom-up fashion. Now, let’s look at step 2, the loop which does most
of the work.

9.5.3.4 Bottom Up Active Chart Recognition (continued)

process_agenda/1 is a recursive predicate. Its argument is the list representing the
agenda. It takes the first arc off that list and processes it. This may add new arguments
to the agenda. In the end it recursively calls itself with the new agenda as argument.
The recursion stops when the agenda is empty.

Processing of an arc works as follows. We make sure that the arc is not in the chart yet,

and add it. (That’s step 2b of the general algorithm.) The predicate make_new_arcs_bottomup/2
then carries out steps 2c and 2d which may create new arcs. These are appended to the

front of the agenda. If the arc is already in the chart, we throw it away and look at the

rest of the agenda.

process_agenda([]) .

process_agenda ( [Arc|Agendal]) :-—
\+ Arc,!,

assert (Arc),

ss
%% nl,write(’New arc on chart: ’), write(Arc), nl,
make_new_arcs_bottomup (Arc, NewArcs),

append (NewArcs, Agenda, NewAgenda),

%$%% write(’New arcs on agenda: '), write(NewArcs), nl,

process_agenda (NewAgenda) .

process_agenda([_|Agenda]) :-—

process_agenda (Agenda) .

There are two steps in the general algorithm (page 146) which generate new rules:
steps 2¢ and 2d. In the bottom-up case, step 2c is applied to all edges, while step 2d is
applied only to passive edges. The predicate make_new_arcs_bottomup/2 therefore
has two clauses which carry out only step 2¢ (apply_fundamental_rule/2) Or step
2c and step 2d (predict_new_arcs_bottomup/2) depending on whether the arc that’s
coming in is active or passive.
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make_new_arcs_bottomup (Arc, NewArcs) :-

Arc = arc(_,_,_,_,[_1_1),

apply_fundamental_ rule (Arc, NewArcs).

make_new_arcs_bottomup (Arc, NewArcs) :-
Arc = arc(_,_,_,_,[1),
apply_fundamental_rule (Arc, NewArcsl),
predict_new_arcs_bottomup (Arc, NewArcs2),

append (NewArcsl, NewArcs2, NewArcs).

apply_fundamental_rule/2 tries to apply the fundamental rule to the arc given in
the first argument. There are two clauses: one for those cases where we are dealing
with a passive arc and one for those cases where we are dealing with an active arc.
In the first case, we have to look for an active arc which satisfies the following two
conditions:

e It must end in the starting position of the passive arc.

e The next category that the active arc has to find must be what the passive arc has
on its left hand side.

We again use £indall/3 to collect all possible solutions.

apply_fundamental_rule(arc (I, J, Cat, Done, [SubCat|SubCats]),
findall (arc(I, K, Cat, [SubCat|Done], SubCats),
arc(J, K, SubCat, _, [1),
NewArcs

) .
In case we are dealing with an active arc, we looking for a passive arc in the chart.

apply_fundamental_rule(arc(J, K, Cat, _, []), NewArcs) :-—
findall (arc (I, K, SuperCat, [Cat|Done], Cats),
arc(I, J, SuperCat, Done, [Cat]|Cats]),
NewArcs

When processing the chart in a bottom-up fashion we only apply step 2d to passive
rules. In that case, we look for grammar rules that have the left hand side of the arc as
the first symbol in the right hand side. findal1/3 again gives us all possible solutions.

predict_new_arcs_bottomup(arc(J, _, Cat, _, []), NewArcs) :—
findall (arc(J, J, SuperCat, [], [Cat|Cats]),
SuperCat ---> [Cat|Cats],

NewArcs
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9.6 The Code

active_chart_bottomup.pl: View?_Download® The active bottom-up chart recognizer.
ourEng.pl: View*_Download’ Our English grammar fragment.

9.7 Top-Down Active Chart Parsing

9.7.1 Top-down rule selection

Let’s first look at how to change 2d. When working bottom-up, we were interested in
using rules right-to-left. We would start with structure that we knew we had (for exam-
ple, perhaps we have a passive edge that tells us that there is a PN between positions
0 and 1) and then find a rule that we could use right-to-left to make use of this fact
(for example, reading the rule NP — PN right to left we could deduce that we had an
NP between positions 0 and 1). Summing up: working bottom up, we read the rules
right-to-left, and start with the information in passive edges.

However, when we work top-down, we do precisely the opposite: we read the rules
left-to-right and start with the information in active edges. Let’s see why.

Suppose we have an active edge that starts at position 0 and is trying to build an S out
of an NP and a VP in that order, and suppose it has found neither the NP nor the VP. So
the arc label would be S — . NP V P. Further, suppose we can’t apply the fundamental
rule (that is, there is no passive edge that tells us that there is an NP starting at position
0). What should we do? Since we are hypothesizing that it is possible to build an S out
of an NP and a VP in that order starting at position 0, we should try and find grammar
rules that will let us do this. In particular, we should look for grammar rules that have
NP on the left-hand-side, for these are the rules that tell us how to build NPs — if we
want that sentence, we need an NP! We then use these rules to add a new active edge
at position 0. For example, if we have the rule NP — Det N, we should add an active
edge at position 0 that is trying to build an NP out of a Det and an N in that order.

In short: working top-down, we read the rules left-to-right, and start with the informa-
tion in active edges. So in the top-down case we should change step 2d to read: ‘If the
edge you added was active, try to select rules that can be used with the edge you have
just added to make new active edges. Add these new edges to the agenda.” This is the
main point we need to make about rule selection, but there is another, less important
issue, due to which we will make slight changes to the way we represent our grammar.

9.7.2 Initializing Chart and Agenda

In the bottom-up algorithm, we form an initial agenda containing passive arcs that
represent all possible categories of all the words in the input string. Now, this is clearly
important information, and it’s information we will continue to need when working
top-down. But since in the top-down case new rules can only be predicted from active
edges, we won’t be able to use the passive arcs representing categories of words in the
beginning. Only when we have worked our way down to the pre-terminal nodes will
this information be important. We therefore write those arcs directly into the chart.
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What we do need though is at least one active edge on the agenda to start the parsing
process.

So what active edge(s) should we start with? Recall that active edges can be thought
of as hypotheses about structure — and there is one very obvious hypothesis to make
about the structure of the input string, namely, that it is a sentence.

This suggests that, right at the start of the top-down algorithm, we should look at our
grammar and find all the rules that let us make sentences. We should then use these
rules to make active edges. These active edges should start at position 0. After all, we
want to show that we have an S that starts at position 0 and spans the entire sentence.

For example, if we have the rule S — NP VP in our grammar, we should add at
position 0 an active edge that wants to make an S out of an NP and a VP in that order,
at position 0. And if we have coordination rules, for example S — S Coord S, where
coord can be ‘and’, ‘or’, ‘but’, and so on, then we should also add an active edge
at position O that is trying to build an S out of an S followed by a coordination word
followed by another S.

The initial state of chart and agenda for the sentence Mia danced and the grammar of
the last chapter would look like this:

PN — mia _IV — danced .

0 mia 1  danced 2

1. (0,0, — .NPVP)
2. (0,0, — .NPVP PP)

9.7.3 An Example

Let’s see an example of the top-down algorithm in action. As in the last chapter, we
will parse the sentence Mia danced and we will also use the same grammar. Here it is
again:

S — NPVP

S — NPVP PP
NP — PN
VP — IV
PP— PNP
PN — mia
1V — danced

So, our initial chart and agenda will look like shown at the end of the last section. We
enter the repeat loop and move the edge (0,0,S — . NP VP) to the chart. There is
nothing in the chart that we could use to apply the fundamental rule, so we go on to
step 2d. (0,0,S — . NP VP) is an active edge, and as we saw above, step 2d is carried
out for active instead of passive edges in the top-down algorithm. We therefore have to
look for a grammar rule that has NP at its left hand side. We find NP — PN and add
it to the agenda.
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PN —s mia . 1V — danced .

0 mia 1 danced 2
(@)
S —- .NPVP
1. (0,0,NP — .PN)
2. (0,0,S — .NPVP PP)

(0,0,NP — . PN) is moved from the agenda to the chart. The fundamental rule creates
(0,1,NP — PN .).

PN — mia . 1V — danced .

0 mia 1 danced 2
S @VP
NP — . PN 1. (0,I,NP — PN.)
2. (0,0,S — .NPVP PP)

(0,1,NP — PN .) is moved to the chart. Applying the fundamental rule creates
(0,1,S — PN .VP).

NP — PN .
4 1V — danced .

0 mia 1 danced 2
S @VP
NP — . PN 1. (0,1, - PN.VP)
2. (0,0,S — .NPVP PP)

(0,1,S — PN . VP) goes to the chart. Step 2d adds a new hypothesis: (1,1,VP —
V).

S - NP.VP
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1. (1,1,VP = .1V)
2. (0,0,S — .NPVP PP)

(1,1,VP — .1V) is moved to the chart and combined with IV — danced . by the
fundamental rule to form (1,2,VP — IV .).

S - NP.VP

\ IV — danced .

0 mia 1 danced 2
O
S ®VP VP — IV
NP — . PN

1. (1,2,VP = IV .)
2. (0,0, — .NPVP PP)

(1,2,VP — IV .) is moved to the chart. The fundamental rule gives us (0,2,S —
NPVP.).

S - NP.VP VP — IV.

0 mia 1 danced 2
()
s @VP Ve S IV
NP . PN 1. (0,2,S —- NPVP.)

2. (0,0,S — .NPVP PP)

(0,2,S — NP VP.)is moved to the chart. Neither the fundamental rule nor step 2d
produce any new edges.

S = NPVP.
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1. (0,0,S — .NPVP PP)

(0,0, — . NP VP PP) is moved to the chart. The fundamental rule produces
(0,1,S — NP .VP PP) and step 2d predicts (0,0,NP — . PN).

S = NPVP.

S d
NR ’N 1. (0,1,S — NP.VP PP)
S — .NPVPPP 2. (0,0,NP — .PN)

(0,1, — NP .VP PP) is moved to the chart. The fundamental rule creates (0,2,S —
NP VP . PP) and step 2d predicts (1,1,VP — .1IV)

S = NPVP.

1. (0,2, — NPVP.PP)
2. (1,1,VP — .1IV)
3. (0,0,NP — .PN)

(0,2,S§ — NP VP . PP)is moved to the chart. There are no appropriate edges in the
chart to apply the fundamental rule. Step 2d, however, produces (2,2,PP — . P NP).
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S - NPVP.PP

1. (2,2,PP — .PNP)
2. (1,1,VP — .1V)
3. (0,0,NP — .PN)

(2,2,PP — . P NP) is moved to the chart, but no new edges can be created.

S -+ NPVP.PP

danced 2
&)
PP — .PNP

1. (I,1LVP = .1IV)
2. (0,0,NP — .PN)

The two edges which are left on the agenda at this point are both already recorded in
the chart. So, they will be popped off the agenda without adding any new edges to it.
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S —

danced 2
&)
PP — .PNP

.NPVP PP

You should experiment with other examples of this algorithm in action. You should
also compare the top-down treatment of Mia danced with the bottom-up treatment that
you saw in the last chapter.

9.8 Exercise

Exercise 9.1 [This may be your end project]
Implement a top-down chart recognizer in Prolog.

As we have said, you only have to adapt steps 1 (the initialization of chart and agenda)
and 2d (how new hypotheses are predicted) of the general algorithm (page 146) to
arrive at a top-down parser.

That means that you can reuse most of the code that we wrote for the bottom-up algo-

rithm. In fact, you only have to change the predicates initialize_chart_bottomup/?2
and initialize_agenda_bottomup/1 that take care of the initialization, and the

predicates make_new_arcs_bottomup/2 and predict_new_arcs_bottomup/2 that
implement step 2d.

initialize chart

Let’s first look at the initialization. For top-down processing, we initially write not
only the words and their position into the chart but also passive arcs giving us the
categories of the words. So, initialize_chart_topdown/2 has to recurse through
the input list, and

1. write the approriate scan entries to the chart,

2. retrieve all categories for each word from the lexicon, and

3. assert a passive arc to the chart for each of these categories.

For step 2 and 3, you might use a failure driven loop (remember doal1/1 from Sec-
tion 8.4.2).
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initialize agenda

In the initial agenda we want to have all possible hypotheses of how a sentence can be
built. Use £indall/3 to to find all rules that have s on the left hand side of the arrow
and add and active arc from position 0 to position 0.

new arcs

Now, let’s look at how new arcs are created. As in the bottom-up case, we apply step 2c

to all arcs. But unlike there, we will apply step 2d only to active arcs. make_new_arcs_topdown/?2
has to make sure that apply_fundamental_rule/2 andpredict_new_arcs_topdown/?2
are applied appropriately depending on whether an active or a passive arc is coming

in.

The fundamental rule remains the same. But predict_new_arcs_topdown/2 differs
from predict_new_arcs_bottomup/2 . The arcs that are coming in now are active:

C — CFound . CatToFind.... predict_new_arcs_topdown/2 has to look for all
rules that have the category CatToFind on the left hand side and create new active
edges for them. These new active edges don’t cover anything of the string, yet, and
start in the position where the active edge ends.

That is basically it. Remember that a proper documentation is an essential part of
your Endprojekt. Give a short specification of what you implemented, i.e. the use and
functionality of your program. Then describe in detail (!) how you implemented it. le.
quote parts (or all) of the code and explain how it works. Third, supply examples calls
that can be used for testing your program.

Once again, if you have trouble or see that something doesn’t work properly, don’t
mind. Document this problem and discuss your efforts to solve it. You need not be
perfect, but you should show your understanding of the matter.
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Semantic Construction

10.1 Introduction

Meaning Representations

Before looking at the details of semantics construction, there’s one big question that
we have to answer: Meaning as such is a very abstract concept. It’s not at all easy to
imagine what it is to ‘get to the meaning’ of a sentence, let alone to ‘construct’ it from
that sentence. To study meaning, and especially to deal with it on a computer, we need
a handle on it, something more concrete: We shall work with meaning representations
- strings of a formal language that has technical advantages over natural language. In
this chapter, we will represent meanings using formulas of first-order logic.

For instance, we will say that the meaning of the sentence ‘Every man walks’ is rep-
resented by the first order formula Vx(MAN(x) — WALK(x)), and that the formula
LOVE(JOHN, MARY) represents the meaning of the natural language sentence ‘John
loves Mary’.

So basically, this chapter will be concerned with finding a systematic way of translating
natural language sentences into formulas of first order logic (and writing a program that
automates this task). Here’s what we will do:

1. We will start with a very short repetition of some central concepts of first order
logic. For a broader overview, turn to the first chapter of the course Computa-
tional Semantics'.

2. Then, we will show how to represent first order formulas - thus, our target rep-
resentations - in Prolog.

3. Next, we will discuss theoretically some of the basic problems that arise in se-
mantic construction, introduce A-calculus, and show why it is our tool of choice
for solving these problems.

4. Finally we will turn to our implementation: We give Prolog code for the basic
functionalities of A-calculus, and then show how to couple A-based semantic
construction with our first, DCG-based, parsing-predicates.

"http://www.coli.uni-sb.de/~stwa/Milca/html/
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10.2 First-Order Logic: Basic Concepts

10.2.1 Vocabularies

Intuitively, a vocabulary tells us the language the ‘first-order conversation’ is going to
be conducted in. It tells us in what terms we will be able to talk about things. Here is
our first vocabulary:

({MARY,JOHN, ANNA, PETER }, { (LOVE,2), (THERAPIST, 1), (MORON, 1)})
Generally, a vocabulary is a pair of sets:

1. The first set tells us what symbols we can use to name certain entities of special
interest. In the case of the vocabulary we have just established, we are informed
that we will be using four symbols for this purpose (we call them constant sym-
bols or simply names), namely MARY, JOHN, ANNA, and PETER.

2. The second set tells us with what symbols we can speak about certain properties
and relations (we call these symbols relation symbols or predicate symbols).
With our example vocabulary, we have one predicate symbol LOVE of arity 2
(that is, a 2-place predicate symbol) for talking about one two-place relation, and
two predicate symbols of arity 1 (THERAPIST and MORON) for talking about (at
most) two properties.

As such, the vocabulary we’ve just seen doesn’t yet tell us a lot about the kinds of
situations we can describe. We only know that some entitities, at most two properties,
and one two-place relation will play a special role in them. But since we’re interested
in natural language, we will use our symbols ‘suggestively’. For instance, we will
only use the symbol LOVE for talking about a (one-sided) relation called loving, and
the two symbols THERAPIST and MORON will serve us exclusively for talking about
therapists and morons. With this additional convention, the vocabulary really shows us
what kind of situations the conversation is going to be about (formally, it gives us all
the information needed to define the class of models of interest - but we said that we
won’t go into this topic here). Syntactically, it helps us define the relevant first-order
language (that means the kinds of formulas we can use). So let’s next have a look at
how a first order language is generated from a vocabulary.

10.2.2 First-Order Languages

A first-order language defines how we can use a vocabulary to form complex, sentence-
like entities. Starting from a vocabulary, we then build the first-order language over that
vocabulary out of the following ingredients:

The Ingredients

1. All of the symbols in the vocabulary. We call these symbols the non-logical
symbols of the language.

2. A countably infinite collection of variables x, y, z, w and so on.
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3. The Boolean connectives — (negation), — (implication), V (disjunction), and A
(conjunction).

4. The quantifiers V (the universal quantifier) and 3 (the existential quantifier).
5. The round brackets ) and (. (These are essentially punctuation marks; they are

used to group symbols.)

Items 2-5 are called logical symbols. They are common to all first-order languages.
Hence the only aspect that distinguishes first-order languages from one another is the
choice of non-logical symbols (that is, of vocabulary).

10.2.3 Building Formulas

Terms

Let’s suppose we’ve composed a certain vocabulary. How do we mix these ingredients
together? That is, what is the syntax of first-order languages? First of all, we define
a first-order term T to be any constant or any variable. Roughly speaking, terms are
the noun phrases of first-order languages: constants can be thought of as first-order
counterparts of proper names, and variables as first-order counterparts of pronouns.

Atomic Formulas

We can then combine our ‘noun phrases’ with our ‘predicates’ (meaning, the various
relation symbols in the vocabulary) to form what we call atomic formulas:

If R is a relation symbol of arity n , and 1y,...,T, are terms, then R(ty,...,T,) is an
atomic formula.

Intuitively, an atomic formula is the first-order counterpart of a natural language sen-
tence consisting of a single clause (that is, a simple sentence). So what does a formula
like R(ty,---,T,) actually mean? As a rough translation, we could say that the enti-
ties that are named by the terms Ty, -, T, stand in a relationship that is named by the
symbol R. An example will clarify this point:

LOVE(PETER, ANNA)

What’s meant by this formula is that the entity named PETER stands in the relation
denoted by LOVE to the entity named ANNA - or more simply, that Peter loves Anna.

Complex Formulas

Now that we know how to build atomic formulas, we can define more complex ones
as well. The following inductive definition tells us exactly what kinds of well-formed
formulas (or wffs, or simply formulas) we can form.

1. All atomic formulas are wffs.

2. If ¢ and y are wffs then so are =, (¢ — W), (0 V V), and (0 A y).

3. If ¢ is a wff, and x is a variable, then both 3x¢ and Vx¢ are wifs. (We call ¢ the
matrix or scope of such wffs.)
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4. Nothing else is a wff.

Roughly speaking, formulas built using A, —, V and — correspond to the natural lan-
guage expressions ‘... and .., ‘if ... then ..’, ‘... or..’, and ‘it is not the case that
..., respectively. First-order formulas of the form Jx¢ and Vx¢ correspond to natural
language expressions of the form ‘some...” or ‘all...’.

10.2.4 Bound and Free Variables

Free and Bound Variables

Let’s now turn to a rather important topic: the distinction between free variables and
bound variables.

Have a lok at the following formula:

—(THERAPIST(x) V Vx(MORON(x) A VYPERSON(y)))

The first occurrence of x is free, whereas the second and third occurrences of x are
bound, namely by the first occurrence of the quantifier V. The first and second oc-
currences of the variable y are also bound, namely by the second occurrence of the
quantifier V.

Informally, the concept of a bound variable can be explained as follows: Recall that
quantifications are generally of the form:

Vxd

or
dx0

where x may be any variable. Generally, all occurences of this variable within the
quantification are bound. But we have to distinguish two cases. Look at the following
formula to see why:

Ax(MAN(x) A (VXWALKS(x)) A HAPPY (x))

1. x may occur within another, embedded, quantification Vxy or 3xy, such as the x
in WALKS(x) in our example. Then we say that it is bound by the quantifier of
this embedded quantification (and so on, if there’s another embedded quantifica-
tion over x within y).

2. Otherwise, we say that it is bound by the top-level quantifier (like all other oc-
curences of x in our example).

Here’s a full formal simultaneous definition of free and bound:

1. Any occurrence of any variable is free in any atomic formula.

2. No occurrence of any variable is bound in any atomic formula.
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3. If an occurrence of any variable is free in ¢ or in Y, then that same occurrence is

free in =4, (¢ — ), (0V ), and (0 A ).

4. If an occurrence of any variable is bound in ¢ or in \, then that same occurrence
is bound in —¢, (6 — ), (&6 V V), (0 Ay). Moreover, that same occurrence is
bound in Vy¢ and Jy¢ as well, for any choice of variable y.

5. In any formula of the form Vy¢ or 3yd (where y can be any variable at all in this
case) the occurrence of y that immediately follows the initial quantifier symbol
is bound.

6. If an occurrence of a variable x is free in ¢, then that same occurrence is free in
Vy¢ and Jy¢, for any variable y distinct from x. On the other hand, all occur-
rences of x that are free in ¢, are bound in Vx¢ and in Jx¢.

If a formula contains no occurrences of free variables we call it a sentence.

10.2.5 Notation

In what follows, we won’t always be adhering to the official first-order syntax defined
above. Instead, we’ll generally try and use as few brackets as possible, as this tends to
improve readability. For example, we would rather not write

Outer Brackets

(THERAPIST (JOHN) A MORON(PETER))

which is the official syntax. Instead, we are (almost invariably) going to drop the
outermost brackets and write

THERAPIST (JOHN) A MORON(PETER)

Precedence

To help further reduce the bracket count, we assume the following precedence conven-
tions for the Boolean connectives: — takes precedence over V and A, both of which
take precedence over —. What this means, for example, is that the formula

Vx((~THERAPIST(x)) A MORON(x) — MORON(x))
is shorthand for the following:

Vx((~THERAPIST (x) A MORON(x)) — MORON(x))

In addition, we’ll use the square brackets ] and [ as well as the official round brackets,
as this can make the intended grouping of symbols easier to grasp visually.
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10.2.6 Representing formulas in Prolog

We would like to use first order logic as a semantic representation formalism, and we
want to deal with it in Prolog. So the next thing we need is a way of writing down
formulas of first-order logic in Prolog. In short, we will simply use Prolog terms for
this purpose that resemble the formulas they stand for as closely as possible. This is
what we deal with in this section.

Atomic Formulas

First, we must decide how to represent constant symbols, predicate symbols, and vari-
ables. We do so in the easiest way possible: a first-order constant ¢ will be represented
by the Prolog atom c, and a first-order predicate symbol P will be represented by the
Prolog atom p. Variables will also be represented by Prolog atoms. Note that this
choice of representation won’t allow our programs to distinguish constants from vari-
ables. So it’s our own responsibility to choose the atoms for constants distinct from
those for variables when we write down formulas in Prolog.

Given these conventions, it is obvious how atomic formulas should be represented. For
example, LOVE(JOHN,MARY) would be represented by the Prolog term love (john, mary),
and HATE(PETER,x) would be represented by hate (peter, x).

Complex Formulas

Next for Boolean combinations of simple formulas. The symbols

will be used to represent the connectives A, V, —+, and — respectively.

The following Prolog code ensures that these connectives have their usual precedences:

oe

:— op(900,yfx,>). implication

oe

:— op(850,yfx,v). disjunction

:— op(800,yEx, &) . % conjunction

:— op (750, fy,~).

o

negation

Have a look at Learn Prolog Now!? if you are unsure about what this code means.

Here are some examples of complex first-order formulas represented in Prolog. To test
your understanding of the above operator definitions: How would the formulas look in
fully bracketed version?

® love(john, mary) & love(mary, john) > hate(peter, john)
® love(john, mary) & ~ love(mary, john) > hate(john.peter)

® ~ love(mary, john) v love(peter,mary) & love(john, mary) > hate(john.peter)

thtp://www.coli.uni—sb.de/~kris/prolog—course/html/node82.html#sec.l9.operators
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Quantifiers

Finally, we must decide how to represent quantifiers. Take for example the first order
formula MAN(x). Its representation as a Prolog term is man (x). Now Vx.MAN(x) will
be represented as

forall (x,man(x))
and Ix.MAN(x) will be represented as

exists(x,man(x))

10.3 Building Meaning Representations

10.3.1

Being Systematic

Is there a systematic way of translating such simple sentences as ‘John loves Mary’
and ‘A woman walks’ into first-order logic?

The key to answering this question is to be more precise about what we mean by
‘systematic’. When examining the sentence ‘John loves Mary’, we see that its semantic
content is (at least partially) captured by the first-order formula LOVE(JOHN,MARY).
Now this formula consists of the symbols LOVE, JOHN and MARY. Thus, the most
basic observation we can make about systematicity is the following: the proper name
‘John’ contributes the constant symbol JOHN to the representation, the transitive verb
‘loves’ contributes the relation symbol LOVE, and the proper name ‘Mary’ contributes
the constant symbol MARY.

More generally, it’s the words of which a sentence consists that contribute the relation
symbols and constants in its semantic representation. But (important as it may be) this
observation doesn’t tell us everything we need to know about systematicity. It tells
us where the building blocks of our meaning representations will come from - namely
from words in the lexicon.

But it doesn’t tell us how to combine these building blocks. For example we have to
form the first-order formula LOVE(JOHN,MARY) from the symbols LOVE, JOHN and
MARY. But from the same symbols we can also form LOVE(MARY,JOHN). So why do
we choose to put MARY in the second argument slot of LOVE rather than in the first
one? Is there a principle behind this decision? For this task, we haven’t been specific
yet about what we mean by working in a systematic fashion.

10.3.2 Being Systematic (ll)

Syntactic Structure...

Our missing link here is the notion of syntactic structure. As we know well from the
previous chapters, ‘John loves Mary’ isn’t just a string of words: it has a hierarchical
structure. In particular, ‘John loves Mary’ is an S (sentence) that is composed of the
subject NP (noun phrase) ‘John’ and the VP (verb phrase) ‘loves Mary’. This VP is
in turn composed of the TV (transitive verb) ‘loves’ and the direct object NP ‘Mary’.
Given this hierarchy, it is easy to tell a conclusive story about - and indeed, to draw a
convincing picture of - why we should get the representation LOVE(JOHN,MARY) as a
result, and nothing else:
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View movie!?

John loves Mary (S)
LOVE(JOHN,MARY)

John (NP) loves Mary (VP)
JOHN LOVE(?,MARY)
loves (TV) Mary (NP)
LOVE(?2,?) MARY

...and its use for Semantics

When we combine a TV with an NP to form a VP, we have to put the semantic repre-
sentation associated with the NP (in this case, MARY) in the second argument slot of
the VP’s semantic representation (in this case, LOVE(?,?)). And why does JOHN need
to be inserted into the first argument slot? Simply because this is the slot reserved for
the semantic representations of NPs that we combine with VPs to form an S.

In more general terms, given that we have some reasonable syntactic story about what
the pieces of our sentences are, and which pieces combine with which other pieces, we
can try to use this information to explain how the various semantic contributions have
to be combined.

Summing up we are now in a position to give quite a good explication of ‘systematic-
ity’: When we construct meaning representations systematically, we integrate infor-
mation from two different sources:

1. The lexical items (i.e. the words) in a sentence give us the basic ingredients for
our representation.

2. Syntactic structure tells us how the semantic contributions of the parts of a sen-
tence are to be joined together.

10.3.3 Three Tasks

Task 1

Task 2

Let us have a look at the general picture that’s emerging. How do we translate sim-
ple sentences such as ‘John loves Mary’ and ‘A woman walks’ into first-order logic?
Although we still don’t have a specific method at hand, we can formulate a plausible
strategy for finding one. We need to fulfill three tasks:

Specify a reasonable syntax for the natural language fragment of interest.

Specify semantic representations for the lexical items.

3flash_syntactic_structurel .html



10.3. Building Meaning Representations 175

Task 3

Specify the translation of complex expressions (i.e. phrases and sentences) composi-
tionally. That is, we need to specify the translation of such expressions in terms of
the translation of their parts, parts here referring to the substructure given to us by the
syntax.

Of course all three tasks should be carried out in a way that naturally leads to computa-
tional implementation. Because this chapter is on semantic construction, tasks 2 and 3
are where our real interests lie, and most of our attention will be devoted to them. But
we also need a way of handling task 1.

10.3.4 From Syntax to Semantics

Task 1 v/

In order to approach Task 1, we will use a simple context free grammar like the ones
we’ve seen in previous lectures. As ususal, the syntactic analysis of a sentence will
be represented as a tree whose non-leaf nodes represent complex syntactic categories
(such as S, NP and VP) and whose leaves represent lexical items (these are associated
with lexical categories such as noun, transitive verb, determiner, proper name and
intransitive verb). To enhance the readability of such trees, we will ommit the non-
branching steps and take for instance Mary (NP) as a leave node.

Let’s have a second look at our semantically annotated syntax-tree for the sentence
‘John loves Mary’ (from Section 10.3.2).

John loves Mary (S)
LOVE(JOHN,MARY)

John (NP) loves Mary (VP)
JOHN LOVE(?,MARY)
loves (TV) Mary (NP)
LOVE(?,7) MARY

We said that the systematic contribution of syntactic structure to semantic construc-
tion consists in guiding the semantic contributions of words and phrases to the right
places in the final semantic representation. Obviously, when we contructed the for-
mula LOVE(JOHN,MARY) along the above syntax tree, we made tacit use of a lot of
knowledge about how exactly syntactic information should be used. Can we make this
knowledge more explicit?

Let’s take a step back. What’s the simplest way of taking over syntactic information
into our semantic representation? Surely, the following is a very undemanding first
step:
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John loves Mary (S)
(JOHNyp @(LOVE(?,?7)7y @MARY Np)yP)s

John (NP) loves Mary (VP)
JOHNpnp (LOVE(?,?) 7y @MARYNp)vP
loves (TV) Mary (NP)
LOVE(?,N) 7y MARY yp

We’ve simply taken the semantic contributions of words and phrases, uniformly joined
them with an @-symbol, and encoded the tree structure in the bracketing structure
of the result. Yet the result is still quite far from what we actually want to have. It
definitely isn’t a first order formula. In fact we’ve only postponed the question of how
to exploit the syntactic structure for guiding arguments to their places. What we’ve
got is a nice linear ‘proto’-semantic representation, in which we still have all syntactic
information at hand. But this representation still needs a lot of post-processing.

What we could now try to do is start giving post-procesing rules for our ‘proto’-
semantic representation, rules like the following:‘If you find a transitive verb repre-
sentation between two @-symbols, always take the item to its left as first argument,
and the item to its right as second argument.’

Formulating such rules would soon become very complicated, and surely our use of
terms like ‘item to the left’ indicates that we’ve not yet reached the right level of ab-
straction in our formulation. In the next section, we’re going to look at A-calculus, a
formalism that gives us full flexibility in speaking about missing pieces in formulas,
where they’re missing, and when and from where they should be supplied. It provides
the right level of generality for capturing the systematics behind the influence that syn-
tactic structure has on meaning construction. Post-processing rules like the one just
seen won’t be necessary, their role is taken over by the uniform and very simple oper-
ation of B-reduction.

10.4 The Lambda Calculus

10.4.1

Lambda-Abstraction

A-expressions are formed out of ordinary first order formulas using the A-operator.
We can prefix the A-operator, followed by a variable, to any first order formula or A-
expression. We call expressions with such prefixes A-abstractions (or, more simply,
abstractions). We say that the variable following a A-operator is abstracted over. And
we say that the variable abstracted over is (A-)bound by its respective A-operator within
an abstraction, just as we say that a quantified variable is bound by its quantifier inside
a quantification.

Abstractions

The following two are examples of A-abstractions:



10.4. The Lambda Calculus 177

1. Ax.WOMAN(x)

2. Au.Av.LOVE(u,v)

In the first example, we have abstracted over x. Thus the x in the argument slot of
WOMAN is bound by the A in the prefix. In the second example, we have abstracted
twice: Once over v and once over u. So the u in the first argument slot of LOVE is
bound by the first A, and the v is bound by the second one.

Missing Information

We will think of occurrences of variables bound by A as placeholders for missing in-
formation: They serve us to mark explicitly where we should substitute the various bits
and pieces obtained in the course of semantic construction. Let us look at our first ex-
ample A-expression again. Here the prefix Ax. states that there is information missing
in the formula following it (a one-place predication), and it gives this ‘information gap’
the name x. The same way in our second example, the two prefixes Au. and Av. give
us separate handles on each of the two information gaps in the following two-place
predication.

10.4.2 Reducing Complex Expressions

So the use of A-bound variables allows us to mark places where information is missing
in a partial first order formula. But how do we fill in the missing information when it
becomes available? The answer is simple: We substitute it for the A-bound variable.
We can read a A-prefix as a request to perform substitution for its bound variable.

Controlled substitution

In Ax.WOMAN (x), the binding of the free variable x in WOMAN(x) explicitly indicates
that WOMAN has an argument slot where we may perform substitutions.

We will use concatenation (marked by an @-symbol) to indicate when we have to
perform substitutions, and what to substitute. By concatentating a A-expression with
another expression, we trigger the substitution of the latter for the A-bound variable.
Consider the following expression (we use the special symbol @ to indicate concate-
nation):

AX.WOMAN (x) @MARY

Functional Application, 3-Reduction

This compound expression consists of the abstraction Ax.WOMAN ((x) written immedi-
ately to the left of the expression MARY, both joined together by @. Such a concatena-
tion is called functional application; the left-hand expression is called the functor, and
the right-hand expression the argument. The concatenation is an instruction to discard
the Ax. prefix of the functor, and to replace every occurrence of x that was bound by this
prefix with the argument. We call this substitution process B-reduction (other common
names include B-conversion and A-conversion). Performing the B-reduction demanded
in the previous example yields:
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WOMAN(MARY)

The purpose of A-bound variables is thus to mark the slots where we want substitutions
to be made, the purpose of A-prefixes is to indicate at what point in the reduction pro-
cess substitutions should be made, and the arguments of applications provide the ma-
terial to be substituted. Abstraction, functional application, and B-reduction together
will drive our first really systematic semantic construction mechanism. Next, let’s see
how it works in practice.

10.4.3 Using Lambdas

Let’s return to the sentence ‘A woman walks’. According to our grammar, a deter-
miner and a common noun can combine to form a noun phrase. Our semantic analysis
couldn’t be simpler: we will associate the NP node with the functional application that
has the determiner representation as functor and the noun representation as argument.
Structurally, this is of course the same thing that we did in Section 10.3.4. Only this
time the semantic contributions of constituents are generally A-expressions, and we
will simply read the @-symbols as application markers. In fact it will turn out that the
combination of functional application and -reduction is a method of such generality
that we can even completely disregard the phrase-indices (such as NP and V P) that
were part of our ‘proto’-representations in Section 10.3.4.

Building a structured application...

awoman (NP) _
~=77 7 APAQ.Ix(P@x A Q@x) @Ay. WOMAN(Y) >~

e a (Det) woman (Noun) __~
APAQ.3x(P@x A\ Q@x) Ay. WOMAN(y)

As you can see from the picture, we use the A-expression APAQ.(Ix(P@x A Q@x)) as
our representation for the indefinite determiner ‘a’. We’ll take a closer look at this rep-
resentation soon, after we’ve looked at how it does its job in the semantic construction
process. But there’s one thing that we have to remark already now. While the A-bound
variables in the examples we’ve seen so far were placeholders for missing constant
symbols, P and Q in our determiner-representation stand for missing predicates. The
version of A-calculus introduced here does not distinguish variables that stand for dif-
ferent kinds of missing information. Nevertheless we will stick to a convention of
using lower case letters for variables that stand for missing constant symbols, and cap-
ital letters otherwise.

But now let’s carry on with the analysis of the sentence ‘A woman walks’. We have to
incorporate the intransitive verb ‘walks’. We assign it the representation A.zZWALK(z).
The following tree shows the final representation we obtain for the complete sentence:
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N a woman walks (S) -
27777 (WPAQ.3x(P@x — Q@x) @Ly.WOMAN(Y)) @ (Az.WALK(z)) ~  ~~<

\\\\ \\
S~ /
~~~~~~ a woman (NP) walks (VP) .~
_ = =>APAQ.3x(P@x — Q@x) @Ly. WOMAN(y)=< ~ - Az.WALK(z)
7 N
/ \
| \
\ I
\\_ a (Det) woman (Noun) __/’

~ APAQ.Ix(P@xA Q@x) Ay.WOMAN(y)

The S node is associated with (APAQ.3x(P@xA\ Q@x) @Ly.WOMAN(y)) @ (Az.WALK(z)).
We obtain this representation by a procedure analogous to that performed at the NP
node. We associate the S node with the application that has the NP representation just
obtained as functor, and the VP representation as argument.

...and reducing it.

Now instead of hand-tailoring lots of specially dedicated post-processing rules, we
will simply B-reduce as often as possible the expression we find at the S node. We
must follow its (bracketed) structure when we perform B-reduction. So we start with
reducing the application AP.AQ.3x(P@x A Q@x) @Ly.WOMAN(y). We have to replace
P by Ay.WOMAN(y), and drop the AP prefix. The whole representation then looks as
follows:

AQ.3x(Ay.WOMAN(y) @x A Q@x) @Az.WALK(Z)

Beta conversion movie!*

Let’s go on. This time we have two applications that can be reduced. We decide to get
rid of the AQ. Replacing Q by Az.WALK(z) we get:

Ix(Ay.WOMAN(y) @x A Az.WALK (z) @x)

Again we have the choice where to go on B-reducing, but this time it should be clear
that our choice doesn’t make any difference for the final result (in fact it never does.
This property of A-calculus is called confluence). Thus let’s B-reduce twice. We have
to replace both y and z by x. Doing so finally gives us the desired:

Jx(WOMAN(x) A WALKS(x))

Determiner

Finally, let’s have a closer look at the determiner-representation we’ve been using.
Remember it was AP.AQ.3x(P@x A Q@x). Why did we choose this expression? In a
way, there isn’t really an answer to this question, except simply: Because it works.

So now let’s have a closer look at why it works. We know that a determiner must
contribute a quantifier and the pattern of the quantification. Intuitively, indefinite de-
terminers in natural language are used to indicate that there is something of a certain

4flash_beta_conv.html
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kind (epressed in the so-called restriction of the determiner), about which one is going
to say that it also has some other property (expressed in the so-called scope of the de-
terminer). In the sentence ‘A woman walks’, the ‘a’ indicates that there is something
of a kind, which is then specified to be ‘woman’, that also has a certain property, which
is then specified as ‘walk’.

So for the case of an indefinite determiner, we know that the quantifier in its first-order
formalization has to be existential, and that the main connective within the quantifi-
cation is a conjunction symbol. This is the principle behind formalizing indefinite
determiners in first-order logic.

Now clever use of A-bound variables in our determiner representation allows us to
leave unspecified all but just these two aspects. All that is already ‘filled in’ in the
representation APAQ.Ix(P@xA Q@x) is the quantifier and a little bit about the internal
structure of its scope, namely the main connective A. The rest is ‘left blank’, and this
is indicated using variables.

The second crucial aspect of a A-expression is the order of prefixes. This is where the
role of syntactic structure comes in: It should be obvious from the further construction
process why we had to choose AP.AQ and not AQ.AP - the reason is simply that phrases
and sentences containing determiners are generally built up syntactically as they are.
So when deciding about the order of A-prefixes of a meaning representation, one has
to think of the right generalizations over the syntactic use of its natural language coun-
terpart.

10.4.4 Advanced Topics: Proper Names and Transitive Verbs

It looks as if there are clouds on the horizon. We said before that the first-order coun-
terparts of proper names are constant symbols, and that for example JOHN stands for
‘John’. But while the semantic representation of a quantifying NP such as ‘a woman’
can be used as a functor, surely such a constant symbol will have to be used as an
argument. Will this be a problem for our semantic construction mechanism?

Proper names

In fact, there’s no problem at all - if we only look at things the right way. We want
to use proper names as functors, the same way as quantified noun phrases. So maybe
we just shouldn’t translate them as constant symbols directly. Let’s simply keep the
intended use in mind when designing semantic representations for proper names. It’s
all a matter of abstracting cleverly. Indeed the A-calculus offers a delightfully simple
functorial representation for proper names, as the following examples show:

‘Mary’: AP.P@MARY
‘John’: AQ.Q@JOHN

Role-Reversing

From outside (i.e. if we only look at the A-prefix) these representations are exactly
like the ones for quantified noun phrases. They are abstractions, thus they can be used
as functors in the same way. However looking at the inside, note what such functors
do. They are essentially instructions to substitute their argument in P (or Q), which
amounts to applying their own arguments to themselves! Because the A-calculus offers
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us the means to specify such role-reversing functors, proper names can be used as
functors just like quantified NPs.

Transitive verbs

As an example of these new representations in action, let us build a representation
for ‘John loves Mary’. But before we can do so, we have to meet another challenge:
‘loves’ is a transitive verb, it takes an object and forms a VP; we will want to apply it
to its object-NP. And the resulting VP should be usable just like a standard intransitive
verb; we want to be able to apply the subject NP to it. This is what we know in advance.

Given these requirements, a A-expression like the simple Au.Av.LOVE(u,v) (which
we’ve seen in Section 10.4.1) surely won’t do. After all, the object NP combining
with a transitive verb is itself a functor. It would be inserted for u in this A-expression,
but u isn’t applied to anything anywhere. So the result could never be B-reduced to a
well-formed first-order formula. How do we make our representation fit our needs this
time? Let’s try something like our role-reversing trick again; we’ll assign ‘loves’ the
following A-expression:

AR.Az.(R@Ax.LOVE(z,x))

An example

Thus prepared we’re now ready to have a look at the semantic construction for ‘John
loves Mary’. We can build the following tree:

Semantics construction movie!®

John loves Mary (S)
(AP.P@JOHN) @ (AX .Az.(X @\x.LOVE(z,x)) @ (AP.P@MARY))

N

John (NP) loves Mary (VP)
AP.P@JOHN AX . Az.(X @Ax.LOVE(z,x)) @ (AP.P@MARY)
loves (TV) Mary (NP)
AX.Az.(X @Ax.LOVE(z,x)) AP.P@MARY

How is this going to work? Let’s look at the application at the S-node, and think
through step by step what happens when we B-convert (page 177) it: Inside our com-
plex application, the representation for the object NP is substituted for X. It ends up
being applied to something looking like an intransitive verb (namely to Ax.LOVE(z, x)).
This application is going to be no problem - it’s structurally the same we would get if
our object NP was the subject of an intransitive verb. So everything is fine here.

Now the remaining prefix Az makes the complete VP-representation also function like
that of an intransitive verb (from outside). And indeed the subject NP semantic rep-
resentation finally takes the VP semantic representation as argument, as if it was the
representation of an intransitive verb. So everything is fine here, too.

5flash_syntactic_structurel I.html
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Trace the semantic construction!

Make sure you understand what is going on here by B-reducing the expression at the
S-node yourself!

10.4.5 The Moral

Our examples have shown that A-calculus is ideal for semantic construction in two
respects:

1. The process of combining two representations was perfectly uniform. We sim-

ply said which of the representations is the functor and which the argument,
whereupon combination could be carried out by applying functor to argument
and B-converting. We didn’t have to make any complicated considerations here.

. The load of semantic analysis was carried by the lexicon: We used the A-calculus

to make missing information stipulations when we gave the meanings of the
words in our sentences. For this task, we had to think accurately. But we could
make our stipulations declaratively, without hacking them into the combination
process.

Our observations are indeed perfectly general. Doing semantic construction with the
help of A-calculus, most of the work is done before the actual combination process.

What we have to do...

When giving a A-abstraction for a lexical item, we have to make two kinds of decisions:

...and how

1. We have to locate gaps to be abstracted over in the partial formula for our lexical

item. In other words, we have to decide where to put the A-bound variables inside
our abstraction. For example when giving the representation AP.P@MARY for
the proper name ‘Mary’ we decided to stipulate a missing functor. Thus we
applied a A-abstracted variable to MARY.

. We have to decide how to arrange the A-prefixes. This is how we control in

which order the arguments have to be supplied so that they end up in the right
places after B-reduction when our abstraction is applied. For example we chose
the order AP.AQ when we gave the representation AP.AQ.Ix(P@x A Q@x) for
the indefinite determiner ‘a’. This means that we will first have to supply it with
the argument for the restriction of the determiner, and then with the one for the
scope.

Of course we are not totally free how to make these decisions. What constrains us is
that we want to be able to combine the representations for the words in a sentence so
that they can be fully B-reduced to a well-formed first order formula. And not just some
formula, but the one that captures the meaning of the sentence.

So when we design a A-abstraction for a lexical item, we have to anticipate its potential
use in semantic construction. We have to keep in mind which final semantic represen-
tations we want to build for sentences containing our lexical item, and how we want
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to build them. In order to decide what to abstract over, we must think about which
pieces of semantic material will possibly be supplied from elsewhere during semantic
construction. And in order to arrange our A-prefixes, we must think about when and
from where they will be supplied.

Summing up

The bottom line of all this is that devising lexical representations will be the tricky part
when we give the semantics for a fragment of natural language using A-calculus. But
with some clever thinking, we can solve a lot of seemingly profound problems in a
very streamlined manner.

10.4.6 What’s next

What’s next?

Task 1

Task 2

Task 3

For the remainder of this lecture, the following version of the three tasks listed earlier
(page 174) will be put into practise:

Specify a DCG for the fragment of natural language of interest.
Specify semantic representations for the lexical items with the help of the A-calculus.

Specify the translation %' of a syntactic item ® whose parts are # and 4 with the
help of functional application. That is, specify which of the subparts is to be thought
of as functor (here it’s ¥ ), which as argument (here it’s 4) and then define % ' to be
F'@a’, where 7' is the translation of # and 4’ is the translation of 4. Finally, apply
[B-conversion as a post-processing step.

10.4.7 [Sidetrack:] Accidental Bindings

But before we can put A-calculus to use in an implementation, we still have to deal
with one rather technical point: Sometimes we have to pay a little bit of attention
which variable names we use. Suppose that the expression # in AV.# is a complex
expression containing many A operators. Now, it could happen that when we apply
a functor AV.7 to an argument 4, some occurrence of a variable that is is free in 4
becomes bound when we substitute it into F .

For example when we construct the semantic representation for the verb phrase ‘loves
a woman’, syntactic analysis of the phrase could lead to the representation:

AP.y.(P@Ax.LOVE(y,x)) @(AQ.AR.(Fy(Q@(y) AR@y)) @ Aw.WOMAN (w))

-reducing three times yields:

Ay.(AR.(3y(WOMAN(y) AR@y)) @\x.LOVE(y,x))

Notice that the variable y occurs A-bound as well as existentially bound in this expres-
sion. In LOVE(y,x) it is bound by Ay, while in WOMAN(y) and R it is bound by Jy.
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So far, this has not been a problem. But look what happens when we -convert once
more:
Ay.(Fy(WOMAN((y) A Ax.LOVE(y,x) @y))

LOVE(y,x) has been moved inside the scope of Jy. In result, the occurrence of y has
been ’caught’ by the existential quantifier, and Ay doesn’t bind any occurence of a
variable at all any more. Now we B-convert one last time and get:

Ay.(3y(WOMAN(y) ALOVE(y,y)))

We’ve got an empty A-abstraction, made out of a formula that means something like
‘A woman loves herself’. That’s not what we want to have. Such accidental bindings
(as they are usually called) defeat the purpose of working with the A-calculus. The
whole point of developing the A- calculus was to gain control over the process of per-
forming substitutions. We don’t want to lose control by foolishly allowing unintended
interactions.

10.4.8 [Sidetrack:] Alpha-Conversion

But such interactions need never happen. Obviously, the fact that lies at the heart
of our problem is that we used mwo variables named y in our representation. But A-
bound variables are merely placeholders for substitution slots. The exact names of
these placeholders do not play a role for their function. So, relabeling bound variables
yields A-expressions which lead to exactly the same substitutions in terms of ’slots
in the formulas’ (much like relabeling bound variables in quantified formulas doesn’t
change their truth values).

Let us look at an example. The A-expressions Ax.MAN(x), Ay.MAN(y), and Az.MAN(z)
are equivalent, as are the expressions AQ.3x(WOMAN (x) AQ@x) and AY.3x(WOMAN(x) A
Y@x). All these expressions are functors which when applied to an argument, re-
place the bound variable by the argument. No matter which argument 2 we choose,
the result of applying any of the first three expressions to 4 and then B-converting

is MAN(4), and the result of applying either of the last two expressions to 4 is
dx(WOMAN(x) A 2 @x).

o~Equivalence

Two A-expressions are called o-equivalent if they only differ in the names of A-bound
variables. In what follows we often treat o-equivalent expressions as if they were
identical. For example, we will sometimes say that the lexical entry for some word is a
A-expression ‘£, but when we actually work out some semantic construction, we might
use an o-equivalent expression £’ instead of £ itself.

a-Conversion

The process of relabeling bound variables is called a-conversion. Since the result of o
converting an expression performs the same task as the initial expression, o-conversion
is always permissible during semantic construction. But the reader needs to understand
that it’s not merely permissible to a-convert, it can be vital to do so if B-conversion is
to work as intended.
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Returning to our intial problem, if we can’t use AV.¥ as a functor, any o-equivalent
formula will do instead. By suitably relabeling the bound variables in AV.7 we can
always obtain an o-equivalent functor that doesn’t bind any of the variables that occur
free in 4, and accidental binding is prevented.

So, strictly speaking, it is not merely functional application coupled with B-conversion
that drives the process of semantic construction in this course, but functional applica-
tion and B-conversion coupled with (often tacit) use of a-conversion. Notice we only
didn’t encounter the problem of accidental binding earlier because we (tacitly) chose
the names for the variables in the lexical representations cleverly. This means that
we have been working with o-equivalent variants of lexical entries all along in our
examples.

10.5 Implementing Lambda Calculus

10.5.1 Representations

First, we have to decide how to represent A-expressions in Prolog. As in the case of
representing first-order formulas, we will use Prolog terms that resemble the expres-
sions they represent as closely as possible. For abstractions, something as simple as
the following will do:

lambda (x, F)

Secondly, we have to decide how to represent application. Let’s simply transplant our
@-notation to Prolog by defining @ as an infix operator:

:— op(950,vfx, Q). % application

That is, we shall introduce a new Prolog operator ¢ to explicitly mark where functional
application is to take place: the notation rea will mean ‘apply function F to argument
2’. We will build up our representations using these explicit markings, and then carry
out B-conversion when all the required information is to hand.

10.5.2 Extending the DCG

Let’s see how to use this notation in DCGs. We’ll use an extended version of our well-
known dCGExample.pl from Chapter 5. To make things a bit more interesting,
we’ve added an intransitive verb and a proper name as well as the necessary rules to
use them in sentences. To use the resulting DCG for semantic construction, we have
to specify the semantic representation for each phrasal and lexical item. We do this
by giving additional arguments to the phrase markers of the DCG (a technique that we
already know from Chapter 5).

The resulting grammar is found in semanticDCG.pl® Let’s have a look at the
phrasal rules first:

Shttp://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/code2html.cgi?file=semanticDCG
UND course=coal
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s (NP@VP) ——-> np(NP),vp(VP).

np (DET@N) —--> det (DET),n(N).
np (PN) —--> pn(PN).

vp (TVE@NP) —--> tv (TV),np(NP).
vp(IV) ——> iv(IV).

The unary phrasal rules just percolate up their semantic representation (here coded
as Prolog variables np, vp and so on), while the binary prasal rules use @ to build a
semantic representation out of their component representations. This is completely
transparent: we simply apply function to argument to get the desired result.

10.5.3 The Lexicon

The real work is done at the lexical level. Nevertheless, the lexical entries for nouns
and intransitive verbs practically write themselves:

n(lambda (X, witch(X))) —--> [witch], {vars2atoms(X)}.

n(lambda (X, wizard(X))) --> [wizard], {vars2atoms(X)}.
n(lambda (X, broomstick (X))) —--> [broomstick], {vars2atoms (X)}.
iv(lambda (X, fly(X))) —--> [flies], {vars2atoms(X)}.

If you do not remember the somewhat difficult representation of transitive verbs, look
at Section 10.4.4 again. Here’s the lexical rule for our only transitive verb form,
‘curses’:

tv(lambda (X, lambda(Y, X@lambda(Z, curse(Y,Z))))) —-—> [curses], {vars2atoms(X)

Recall that the A-expressions for the determiners ‘every’ and ‘a’ are AP.AQ.Vx.(P@x —
Q@x) and APAQ.3x.(P@x A Q@x). We express these in Prolog as follows:

det (lambda (P, lambda(Q, exists(x, ((P@x) & (Q@x)))))) —-—> [a], {vars2atoms(P),
det (lambda (P, lambda(Q, forall(x, ((P@x) > (Q@x)))))) —--> [every], {vars2atoms

Finally, the ‘role-reversing’ (Section 10.4.4) representation for our only proper name:

pn(lambda (P, PG@harry)) --> [harry], {vars2atoms(P)}.
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Prolog Variables?

Note that we break our convention (page 172) of representing variables by constants
in these lexical rules. All the A-bound variables are written as Prolog variables instead
of atoms. This is the reason why we have to include the calls to vars2atoms/1 in
curly brackets. As you probably remember from Chapter 5, curly brackets allow us to
include further Prolog calls with DCG-rules in some of our phrasal rules. Whenever
a lexical entry is retrieved, vars2atoms/1 replaces all Prolog variables in it by new
atoms. Distinct variables are replaced by distinct atoms. We won’t go into how exactly
this happens - if you’re interested, have a look at the code of the predicate. After this
call, the retrieved lexical entry is in accord with our representational conventions again.

This sounds complicated - so why do we do it? If you have read the sidetracks in the
previous section (Section 10.4.7 and Section 10.4.8), you’ve heard about the possibility
of accidental binding and the need for a-conversion during the semantic construction
process. Now by using Prolog variables in lexical entries and replacing them by atoms
on retrieval, we make sure that no two meaning representations taken from the lex-
icon ever contain the same A-bound variables. In addition, the atoms substituted by
vars2atoms/1 are distinct from the ones that we use for quantified variables. Finally,
no other rules in our grammar ever introduce any variables or double any semantic
material. In result accidental bindings just cannot happen. So altogether, using Prolog
variables in the lexicon is a bit of a hack, but that way we get away without implement-
ing oi-conversion.

10.5.4 A First Run

Now this makes semantic construction during parsing extremely easy. Here is an ex-
ample query:

?-S(Sem,[harry,flies],[]).7

Sem = Sem=lambda(vl, vl@harry)@lambda(v2, fly(v2))

Or generate the semantics for ‘Harry curses a witch.”: s (sem, [harry, curses,a,witch], []).%

The variables v1,v2 etc. in the output come from the calls to vars2atoms during
lexical retrieval. The predicate generates variable names by concatenating the letter v
to a new number each time it is called.

So now we can construct A-terms for natural language sentences. But of course we
need to do more work after parsing, for we certainly want to reduce these complicated
A-expressions into readable first-order formulas by carrying out B-conversion. Next,
we will implement the predicate betaConvert/2, which will do the job.

Thttp://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/callProlog.cgi?consult=’semcon
UND course=coal UND directinput=s(Sem, [harry,flies], []).

8http://www.coli.uni—sb.de/~stwa//Milca/CodeInterface/callProlog.cgi?consult:’semcon
UND course=coal UND directinput=s(Sem, [harry,curses,a,witch], []).
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10.5.5 Beta-Conversion

The first argument of betaConvert/2 is the expression to be reduced and the second
argument will be the result after reduction. Let’s look at the two clauses of the predicate
in detail. You find them in the file betaConversion.pl”®.

betaConvert (Functor@Arg, Result) : -

betaConvert (Functor, lambda (X, Formula) ),

|
-7

substitute (Arg, X, Formula, BetaConverted),

betaConvert (BetaConverted, Result) .

The first clause of betaconvert/2 is for the cases where ‘real’ -conversion is done,
i.e. where a A is thrown away and all occurences of the respective variable are replaced
by the given argument. In such cases

1. The input expression must be of the form Functor @ Arg,

2. The functor must be (recursively!) reducible to the form lambda (X, Formula)
(and is in fact reduced to that form before going on).

If these three conditions are met, the substitution is made and the result can be further
B-converted recursively.

This clause of betaConvert/2 makes use of a predicate substitute/4 (originally
implemented by Sterling and Shapiro) that we won’t look at in any more detail. It is
called like this:

substitute (Substitute,For, In, Result).

Substitute 18 substituted for For in In. The result is returned in Result.

10.5.6 Beta-Conversion Continued

Second, there is a clause of betaConvert/2 that deals with those expressions that do
not match the first clause. Note that the first clause contains a cut. So, the second
clause will deal with all and only those expressions whose functor is not (reducible
to) a A-abstraction. The only well-formed expressions of that kind are formulas like
walk (john) & (lambda (X,talk(X))@john) and atomic formulas with arguments
that are possibly still reducible. Apart from that, this clause also applies to predicate
symbols, constants and variables (remember that they are all represented as Prolog
atoms). It simply returns them unchanged.

betaConvert (Formula, Result) : —
compose (Formula, Functor,Formulas),
betaConvertList (Formulas, ResultFormulas),

compose (Result, Functor,ResultFormulas) .

http://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/code2html.cgi?file=betaConvers
UND course=coal
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The clause breaks down Formula using the predicate compose/3. This predicate de-
composes complex Prolog terms into the functor and a list of its arguments (thus in our
case, either the subformulas of a complex formula or the arguments of a predication).
For atoms (thus in particular for our representations of predicate symbols, constants
and variables), the atom is returned as Functor and the list of arguments is empty.

If the input is not an atom, the arguments or subformulas on the list are recursively
reduced themselves. This is done with the help of:

betaConvertList ([], []).

betaConvertList ([Formula|Others], [Result |ResultOthers]) :—
betaConvert (Formula, Result),
betaConvertList (Others,ResultOthers) .

After that, the functor and the reduced arguments/subformulas are put together again
using compose/3 the other way round. Finally, the fully reduced formula is returned
as Result

If the input is an atom, the calls to betaConvertList/2 and compose/3 trivially suc-
ceed and the atom is returned as Result.

Here is an example query with 3-conversion:

?— s(Sem, [harry,flies], []), betaConvert (Sem,Reduced).
Sem = lambda (A,ARmary)@lambda (B,walk (B)), Reduced = walk (mary)
TTyitﬂn'q{mTyCUHmsa\NﬂChf:s(Sem,[harry,curses,a,witch],[]), betaConvert(Sem,Res).1C

?- Question!

Above, we said that complex formulas like £1y (harry) & (lambda(x,fly(x))@harry)
are split up into their subformulas (which are then in turn B-converted) by the last
clause of betaConvert/2. Explain how this is achieved at the example of this partic-
ular formula.

10.5.7 Running the Program

We’ve already seen a first run of our semantically annotated DCG, and we’ve now im-
plemented a module for B-conversion. So let’s plug them together in a driver predicate
go/0 to get our first real semantic construction system:

go :-—
readLine (Sentence),
resetVars,
s (Formula, Sentence, []),
nl, print(Formula),
betaConvert (Formula, Converted),

nl, print(Converted).

Ohttp://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/callProlog.cgi?consult='semcon
UND course=coal UND directinput=s(Sem, [harry,curses,a,witch], []),+betaConvert (Sem, Res)
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This predicate first converts the keyboard input into a list of Prolog atoms. Next, it
does some cleaning up that is needed to manage the creation of variable names during
lexicon retrieval (see Section 10.5.3). Then it uses the semantically annotated DCG
from semant icDCG.pl!! and tries to parse a sentence.

Next, it prints the unreduced A-expression produced by the DCG. Finally, the A-expression
is B-converted by our predicate betaConvert/2 and the resulting formula is printed
out, too.

Note: In order to get a nice printout of semantic representations, the definitions for
the operators used in them have to be consulted on top-level. So in order to run the
program, do the following at a Prolog prompt:

1 ?- [semconOperators], [runningLambda].

% semconOperators compiled 0.00 sec, 400 bytes

% semconOperators compiled into semconHelpers 0.00 sec, 216 bytes
% semconHelpers compiled into semconHelpers 0.00 sec, 7,232 bytes

% semconOperators compiled into betaConversion 0.00 sec, 216 bytes
% betaConversion compiled into betaConversion 0.00 sec, 1,628 bytes
% semconOperators compiled into runningLambda 0.00 sec, 216 bytes
% semanticDCG compiled into runningLambda 0.00 sec, 4,092 bytes

% semconOperators compiled into runningLambda 0.00 sec, 0 bytes

% runningLambda compiled into runningLambda 0.01 sec, 14,184 bytes

Yes
2 ?7- go.

Code For This Chapter

Here’s a listing of the files needed:

semanticDCG.pl: View!2_Download!? The semantically annotated DCG.
runningLambda.pl: View'*_Download!’ The driver predicate.

betaConversion.pl: View!®_Download!” -conversion.

semconOperators.pl: View'®_Download!® Definitions of operators used in semantic representati
semconHelpers.pl: View??_Download?! Aucxiliary predicates.

simplifiedEng.pl: View??_Download?? Simplified version of ourEng.pl from Chapter 8. |

10.6 EXxercises

Exercise 10.1 Look at the semantics construction in Section 10.4.4 again. Work
through the functional applications and B-reductions required to build the VP and S
representations. Make sure you understand the role-reversing idea used in the TV
semantic representation.

nttp://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/code2html.cgi?file=semanticDCG
UND course=coal
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Exercise 10.2 Find a suitable h-expression for the determiner ‘no’ and add it to our
implementation of h-calculus. Test your solution with sentences like ‘No man walks.

Extend semanticDCG. pl accordingly.

Exercise 10.3 Starting off from our treatment of transitive verbs (Section 10.4.4),
how would you handle ditransitive verbs such as ‘offer’? Give a semantic representa-
tion for ‘offer’, as well as semantically annotated grammar rules to analyse sentences
like ‘A witch offers Harry a broomstick.’

Exercise 10.4 [Project]

This exercise is about extending the chart parser from Chapter 8 such that it produces
semantic representations. Here’s a simplified version of the grammar ourEng.pl
that we used there: simplifiedEng.pl®*. This simplified version contains only
the kind of constructions that we already know how to deal with semantically.

1. Extend the phrasal rules of this grammar with arguments for semantic construc-
tion along the lines of semanticDCG.pl%.

2. Add a semantic representation to each lexical entry as a third argument. Use
Prolog variables for the A-bound variables.

3. Now extend the chartparser from Chapter 8 to deal with the semantic informa-
tion. To get rid of the Prolog variables in the lexical entries, just add a call to
vars2atoms/1 immediately after the lexicon is accessed in process_chart_bottomup/0.

4. Add relative clauses to the grammar. For the syntactic part, just have a look
at ourEng.pl®®. As regards the semantics: The predication from the relative
clause should simply be conjoined to the predication from the noun that is mod-
ified. For instance, the representation assigned to ‘man who walks’ should look
like this when fully B-reduced:

Ax.(MAN(x) A WALK(x))

So what you have to do is think of a representation for the relative pronouns
that leads to this result when combined with the representations for ‘walks’ (that
is Ax.WALK (x)) and ‘man’ (that is \x.MAN(x)) in the order determined by the
syntax tree.

Ynttp://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/code2html.cgi?file=simplifiedE
UND course=coal

25http://www.coli.um’.—sb.de/~stwa//Milca/CodeInterface/codethml.cgi?file:semanticDCG
UND course=coal

nttp://www.coli.uni-sb.de/~stwa//Milca/CodeInterface/code2html.cgi?file=ourEng.pl
UND course=coal
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a2b.pl

aNbN.pl
active_chart_bottomup.pl
adoubler.pl
badDCG4Pronouns.pl
betaConversion.pl
bottomup_recognizer.pl
cat_parse.pl
dCG4GapThreading.pl
dCG4Gaps.pl

dCG4Gaps2.pl
dCG4Pronouns.pl
dCGExample.pl
deterministic.pl
epsilon.pl

haha.pl

hahuho.pl

harry.pl
leftcorner_recognizer.pl

leftcorner_recognizer_table.pl

leftrec.pl
operations.pl
ourEng.pl

parse.pl
passive_chart_bottomup.pl
readAtom.pl
recognize.pl
recognizel.pl
runningLambda.pl
semanticDCG.pl
semconHelpers.pl
semconOperators.pl
simplifiedEng.pl
trans.pl
trans_lex.pl
wrongDCG4Pronouns.pl

Code Index

View?” Download?®
View?’_Download*’
View3! Download??
View>3_Download3*
View>>_Download3°
View>’_Download?®
View>_Download*’
View*! Download*?
View*?_Download**
View*_Download?*®
View*’_Download*®
View>°_Download>!
View>2_Download3
View>* Download>
View>°_Download>’
View>8 Download”®
View®_Download®!
View®? Download®?
View® Download®’
View®_Download®’
View® Download®®
View’?_Download”!
View’?_Download”?
View’*_Download”>
View’®_Download”’
View’®_Download”®
View?? Download?®!
View32_Download®
View3* Download®
View®®_ Download®’
View?®®_Download®
View?® Download®!
View®?_Download”?
View?* Download®’
View?_Download®’
View”® Download”®

A transducer that translates as int
A grammar generating a"b"\{}.
An active bottom-up chart recogn
A transducer that doubles the nun
A DCQG for simple English senten
B-conversion.

A very naive bottom-up recognize
FSA-based parser for FSA with ¢
A DCG for simple English relativ
A DCQG for simple English relativ
A not very promising extension o
A DCQG for simple English senten
A small DCG for very simple Eng
Deterministic and € free ‘laughing
A grammar with an empty produc
‘laughing-machines’ from Sectior
Further ‘laughing-machines’ neec
FSAs for ‘Harry Potter-phrases’ f
A left corner recognizer.

The left corner recognizer using a
A left recursive context free gram
The complete program for operati
Our English grammar fragment.
An FSA-based parser.

A bottom-up chart recognizer.
Predicate readatom/1 for reading
A recognizer/generator for FSAs
A version of the recognizer/gener
The driver predicate for our imple
A semantically annotated DCG.
Auxiliary predicates for semantic:
Definitions of operators used in s
Simplified version of ourEng.p
A driver for transducers.

A driver for transducers using lex
A DCQG for simple English senten
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A

Answers To Exercises

Answer to exercise 2.1.

1. Nein, Gegenbeispiel sieche unten.

2. Richtig. Man kann es sich so vorstellen, dass der Automat immer n Transitionen
zum lesen von ’a’s braucht und dann 'n’ Transitionen fiir ’b’s. Da n aber beliebig
grof3 werden kann und Automaten immer eine endliche Menge von transitionen
haben, kann man den Automaten fiir diese Sprache nicht spezifizieren. Mehr
dazu in der néchsten Lektion.

3. Falsch, hier ein Automat fiir a"b™:
b

2052©)

4. Falsch. Man kann jeden nicht-deterministischen Automaten in einen determin-
istischen tiberfithren und umgekehrt. Damit sind sie gleichméchtig.

5. Richtig.

Answer to exercise 2.2.

ab

0 ci# © ci#t

:— op(250,xfx, :).

start (t22,1).
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final (t22,3).

trans(t22,1,2,'#":c).
trans(t22,2,2,a:b).
trans(t22,2,3,'#":c).

Answer to exercise 2.3.

aft

Cc:C

start (t23,1).
final(t23,1).

trans(t23,1,1,c:c).
trans (t23,1,1,a:"#").
trans(t23,1,1,b:d).

Answer to exercise 2.4.

Hier mal zwei Beispiele Niederlidndisch-Deutsch mit und ohne Benutzung von lex/2:

start (dnll, 1
dnll, 2
dnll,3
final (dnll, 5

final

( )

( ).
final ( ).
( )

o
°

% einerzahlen, die teil von zweistelligen zahlen ab 20 sind, aber auch allein

trans(dnll, 1, 3,ein
trans(dnll, 1,3, zwel
trans(dnll, 1, 3,drei
trans(dnll,1,3,vier
trans(dnll, 1,3, finf
trans(dnll, 1, 3, sechs
trans(dnll, 1,3, sieben
trans(dnll, 1, 3, acht
trans(dnll, 1, 3,neun

o
°

een ).
twee ).
drie) .
vier) .
vijf).
zes ).
zeven) .
acht) .

negen) .

% einerzahlen, die nicht teil von zweistelligen zahlen sein koennen,

oe

% die nur allein stehen koennen:

% 10-19

sondern nur allein stehen koennen und andere zahlen,
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% 100
trans(dnll,1,2,null : nul ).
trans(dnll,1,2,eins : een ).
trans(dnll, 1,2, zehn : tien).
trans(dnll,1,2,hundert : honderd).
trans(dnll,1,2,elf : elf).
trans(dnll,1,2,zwo6lf : twaalf).

(

(
trans(dnll, 1, 2,dreizehn : dertien).
trans(dnll, 1, 2,vierzehn : veertien).
trans(dnll, 1,2, finfzehn : vijftien).
trans(dnll, 1, 2,sechzehn : zestien).
trans(dnll, 1,2, siebzehn : zeventien).
trans(dnll, 1, 2,achtzehn : achttien).
trans(dnll, 1, 2,neunzehn : negentien).

% verbindung von einer und zehnerzahlen mit und/en

trans(dnll, 3,4,und : en).

% zehnerzahlen ab 20 bis 90, die teil der zusammengesetzten zahlen sind , aber
trans(dnll, 4,5, zwanzig : twintig).

trans(dnll,4,5,dreissig : dertig).

trans(dnll, 4,5,vierzig : veertiqg).

trans(dnll, 4,5, finfzig : vijftiqg).

(

(

(

(
trans(dnll, 4,5,sechzig : zestig).
trans(dnll, 4,5, siebzig : zeventiqg).
trans(dnll, 4,5,achtzig : tachtig).
trans(dnll, 4,5,neunzig : negentiqg).
(

trans(dnll, 1,4, "#":"#").
Der zweite hat allerdings einen Schonheitsfehler: er schreibt einsundzwanzig...
:—op (250, xfx,:).

start (dnl2,1).
final (dnl2,4).

trans(dnl2,1,4, "ZERO’") .
trans(dnl2,1,4, 'ONES’) .
trans(dnl2,1,4, "TEENS') .
trans(dnl2,1,4, 'TENS’).
trans(dnl2,1,2, 'ONES’) .
trans (dnl2,2,3,en:und) .
( ).

trans(dnl2, 3,4, "TENS’
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lex(dnl2,nul:null, "ZERO') .
lex (dnl2,een:eins, "ONES’) .

(
(
lex (dnl2, twee:zwei,
lex(dnl2,drie:drei,
lex(dnl2,vier:vier,
lex(dnl2,vijf:finf,
lex (dnl2, zes:sechs,

(

(

(

(

lex (dnl2,acht:acht, 'ONES’) .
lex(dnl2, negen:neun, "ONES’) .
lex(dnl2, tien:zehn, '"ONES’) .

"ONES') .
"ONES') .
"ONES") .
"ONES') .
"ONES") .

lex (dnl2, zeven:sieben, 'ONES’) .

lex(dnl2,elf:elf, "TEENS’) .

(
lex (dnl2, twaalf:zwolf, '"TEENS') .
lex(dnl2,dertien:dreizehn, "TEENS’) .
lex (dnl2,vertien:vierzehn, "TEENS') .
lex(dnl2,vijftien:flinfzehn, "TEENS’) .
lex (dnl2, zestien:sechzehn, "TEENS') .
lex (dnl2, zeventien:siebzehn, '"TEENS’) .
lex (dnl2,achttien:achtzehn, "TEENS’) .
lex(dnl2, negentien:neunzehn, "TEENS’) .

lex(dnl2, twintig:zwanzig, "TENS’) .
lex(dnl2,dertig:dreibig, "TENS’) .
lex(dnl2,veertig:vierzig, "TENS’) .
dnl2,vijftig:finfzig, "TENS’) .
lex(dnl2, zestig:sechzig, "TENS’) .

lex

lex(dnl2, zeventig:siebzig, "TENS’) .
lex(dnl2, tachtig:achtzig, "TENS’) .

(
(
(
(
(
(
(
(

lex(dnl2,negentig:neunzig, "TENS’) .

Answer to exercise 2.5.

Im Deutschen werden zum Beispiel die Pradikate den Subjekten manchmal "balanciert

zugeordnet:

n

‘(Ich streichle) die Katze, die den Vogel, der den Wurm, der zappelte fraf}, beobachtete.’

Diese Konstruktion konnte ja potentiell unendlich tief sein. Hier konnte ein Automat

nicht liberpriifen, dass n Subjekten genau n Préadikate folgen miissen.

Answer to exercise 5.1.

1. s (X, [the,witch,gave, the, house-elf,to,harry], []).

Diese Anfrage ergibt zwei Werte fiir x.

2. In diesem Fall konnen beide vp (Gap) Regeln angewendet werden, da die Vari-

able Gap jedes Mal mit nogap unifiziert werden kann.
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Answer to exercise 5.2.

/****************************************************************

A DCG for simple English relative clauses using gap threading

with P

Tim Schwartz

,adjectives & subject-verb agreement

****************************************************************/

np (F-F, SP)
p(F-F, SP)
np (F-F, SP)
( )
(

p(F-F, SP

det,adj,n(_,SP).

det,adj, n(CONS, SP),rel (CONS, SP) .

adj,pn(_,SP).
adj, pn(CONS, SP),rel (CONS, SP) .

lgap(np) |F]-F,_) -—> [].

pp (F-G,SP) -—> p,np(F-G,SP).

rel (CONS,_) —--> prorel(CONS),s([gap(np)|F] - F,_).
-—> prorel (CONS),vp(F-F, SP) .

rel (CONS, SP)

s(F-G,SP) ——> np(F-F,SP),vp(F-G,SP).
vp(F-G,SP) ——> v (1,SP),np(F-G,_).
vp (F-G,SP) --> v (2,SP),np(F-H,SP2),pp (H-G,SP2).

o)

% lexicon

det —--> [the].

det —-—> [a].

consc, sg)
consc,pl)
consc, sg)
consc,pl)
consc, sg)
consc,pl)
unconsc, sg
unconsc, pl

n (
n (
n (
n (
n (
n (
n (
n (
n(unconsc, sg
n (

)
)
)
unconsc,pl)
p ——> [to].

pn(consc, sg)

pn(unconsc, sqg)

——> [witch]

-—> [witches].

——> [wizard].

--> [wizards].

——> [house-elf].
——> [house-elfs].
——> [broomstick].
-—> [broomsticks].
-—> [wand] .

——> [wands]

——> lharry].
——> [nimbus2000].

prorel (consc) ——> [who].
prorel (unconsc) —--> [which].
prorel (_) ——> [that].
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v(l,sg) ——> [likes]
v(l,pl) —-—> [like]
v(l,sg) —--> [watches]
v(l,pl) ——> [watch]
v(2,_) —-—> [gave]

adj --—> [].

adj --> [ugly].

adj --> [fast].

adj -—-> [beautiful].

Answer to exercise 7.1.

Der leftcorner recognizer kann mit der leftrec Grammatik umgehen. Beim Aufruf:
leftcornerfrecognize(s,[a,b},N).ﬁndeterlex(a,x)undruftcomplete(s,x,[b},fG463L
auf. Hier sucht er nun nach einer Regel, wo das x an der left corner steht, und findet

somit auch die zweite der left Regeln, ndmlich 1eft-->[x].

Answer to exercise 7.2.

Ein left_corner_tabel fiir epsilon kann so aussehen:

lc (e, s).
lc(left,s).
lc(X,X).

Answer to exercise 7.3.

:— op(255,xfx,———>).

leftcorner_parse(Cat, [Word|StringIn], StringOut,Parse) :-
lex (Word, WCat),
complete (Cat, [WCat |StringIn], StringOut, [WCat, Word],Parse) .

complete (Cat, [Cat|StringOut], StringOut,P,P) .

complete (Cat, [WCat|StringIn], StringOut,ParselIn,ParseOut) :-
LHS ---> [WCat|Cats],
matches (Cats, StringIn, Stringl, Parses),

complete (Cat, [LHS|Stringl],StringOut, [LHS,Parseln|Parses],ParselOut) .

matches([],String, String, []) .

matches ([Cat|Cats], StringIn, StringOut, [P|Ps]) :—
leftcorner_parse(Cat, StringIn, Stringl,P),
matches (Cats, Stringl, StringOut,Ps) .

leftcorner_parse(String,Parse) :-

leftcorner_parse (s, String, [],Parse).
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Answer to exercise 8.1.

print_arcs :-
retract (arc(F,T,C)),
print_arc(arc(F,T,C)),
fail.

print_arcs.

print_arc(arc(F,T,Cat)) :-
tabulator (Tabulator),
retract (chartTab(Tab)),
From is 2 * F * Tabulator,
From >= Tab, !,
(From = 0 —> PrettyFrom = 0;PrettyFrom is From + 1),
number_codes (PrettyFrom, FromChar),
append([126 |FromChar], ,FS1),
To is 2 * T * Tabulator,
number_codes (To, ToChar),
append([126,96,45,116,126|ToChar], ,FS2),
append (FS1,FS2,FS),
format (FS, [Cat]),
assert (chartTab(To)) .

print_arc(arc(F,T,C)) :—
nl,
assert (chartTab(0)),

print_arc(arc(F,T,C)).
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(4]
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(6]

(7]

(8]
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